UNN42 Vol. 3 - World Bank Documents

Post on 05-May-2023

4 views 0 download

Transcript of UNN42 Vol. 3 - World Bank Documents

RESTRICTED

For official use onlyNot for nublication

UNN42Vol. 3

REPORT TO THE PRESIDENT OF THE

INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT

AS ADMINISTRATOR OF THE INDUS BASIN

DEVELOPMENT FUND

STUDY OF THE WATER AND POWER RESOURCES OF WEST PAKISTAN

VOLUME II

Program for the Development of Irrigation and Agriculture

Annexes Z. 1 - 3. 3

Prepared by a Group of the World Bank Staff

Headed by

Dr. P. Lieftinck

July 28, 1967

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Pub

lic D

iscl

osur

e A

utho

rized

Program for the Development ofIrrigation and Agriculture in Nest Pakistan

TABLE OF CONTENTS

ANNEXES

2.1 1rjatercourse Studies

2.2 IACA Agricultural Zones and Estimated Production

2.3 Factors Affecting Cropping Intensities

3.1 IACA Estimates of Cost of Groundwater Mining

3.2 Sequential Analysis

3.3 Priorities for Groundwater Development

I

ANNEX 2.1Page 1

Vuatercourse Studies

Background

At the time the Bank Group was setting up the working arrangements forthe study (June 1964) the LIP consultants were already at an advanced stage witha Regional Survey of the Sind which was due to be completed in 1965. Includedin the LIP survey were some 60 watercourse studies designed to obtain detailedbasic data on farming conditions in the Sind. It was agreed with the Govern-ment 1/ that the Bank Groupts consultants would set up a similar (but smallerand shorter duration) arrangement in the Punjab so that the combined resultswould provide a fairly good coverage of the irrigated plains and reasonablysound basic data.

This annexure contains in brief summary form some of the findings ofthe two sets of watercourse studies. Fuller details are given in the LIPReport 2/ and IACA's Comprehensive Report and Supporting Documents 3/ fromwhich these notes have been extracted.

A watercourse is the basic unit of the irrigation system and in thesestudies is defired as the area of land served by a fixed outlet from a canal ordistributary. 4/ Farmers may live within the watercourse, or in a nearby vill-age, and often have land in more than one watercourse. It is the most suitableunit for studying on-farm irrigation practices. The objectives of the twostudies were similar; namely, to determine at first-hand the present state ofagricultural development, to provide basic and reliable data for the formula-tion of development plans and to obtain a base from which the progress ofdevelopment schemes could be assessed.

The main differences between the two sets of watercourse studies werein their size and duration. The LIP watercourse studies extended over some18,170 acres in the Sind (representing 0.15 percent of the official CCA of theRegion) and were conducted over four seasons. The IACA watercourse studiescovered some 6,200 acres in the Punjab (0.03 percent of the CCA) with a partialcoverage of a further 3,900 acres, and the period of study was less than twofull seasons.

The study areas in the Sind were chosen to represent each of themain geographical areas as well as the major canal commands. Within the twelvecategories established, a stratified sampling technique was employed to select60 watercourses for detailed study with an average size of about 300 acres.

1/ Irrigation and Agriculture Section paper: IA/l dated June 6, 1964.2/ Lower Indus Report, Hunting Technical Services; Sir M. Macdonald & Ptnrs.3/' IACA's Comprehensive Report, Volume 10, Annexure 14 and Supporting

Documents.4/ The irrigation system and its operation is more fully described in

Chapter III of Volume II of the Bank Group's Report.

ANNEX 2.1Page 2

A different procedure was adopted by IACA in the Punjab. Ten represen-tative sample areas each covering 500 square miles were delineated. In each ofthese sample areas two watercourses, sited wherever possible at the head and tailsections of a distributary, were selected for detailed study. This provided 20watercourses for detailed study with an average size of about 300 acres.

"lithin the selected watercourses (60 in the Sind and 20 in the Punjab)detailed records were made of all farming activities. For the watercourses asa whole these were made weekly or fortnightly but within most watercourses onefarm was selected on which daily records were made of all activities. Thesevoluminous detailed records were analysed to provide information on all aspectsof farming practice including water management, frequency and methods of culti-vation, physical inputs, yields, farm costs and some aspects of farm management.Some of the principle findings or observations emerging from these studies areset out below.

Land: In the irrigated areas of both regions about three to fourpercent of the area is occupied by roads, canals, villages, etc., leavingavailable for agriculture about 96 to 97 percent of the gross area. In thePunjab more than seven percent is also excluded, mainly because of salinity.The average culturable waste in the Sind was even higher at 19 percent. Therewere marked differences in land tenure between the Punjab and the Sind. Theformer is characterized by small land owners predominantly farming their ownland. By contrast, the Sind had larger land owners generally farming the landby share cropping tenants.

Soils: Chemical and physical analyses of the soils of the Punjab sug-gested that quality varied widely. An attempt was made to assess the effects of

soil quality on yield by grouping soil types into four major categories. Yieldsassociated with these showed that only the poorest class of soils gave consis-tently lower yields. Since the distinguishing characteristics were heavy tex-ture, marked salinity and alkalinity, it was concluded that these were importantconstraints. In the Punjab some degree of salinity was present in 77 percent ofall soil profiles examined and 28 percent of the samples showed some degree ofalkalinity. For the Sind, where less precise measurements were made, it wasevident that salinity in its extreme form was a very serious constraint onproduction. It was also concluded that these constraints could be reduced underconditions of better watering and controlled water tables.

Water: Cropping patterns in both regions were markedly influenced bythe times during which canal supplies were available for irrigation, the majordistinction being between perennial and non-perennial supplies. In the Punjab,some non-perennial canals supply water for short periods in winter. This, com-bined with the greater prevalence of fresh groundwater in the Punjab and itsexploitation by tubewells and Persian wheels, tended to obscure the differencesin the cropping on the perennial and non-perennial canals, which is very markedin the Sind. Comparisons between annual cropping intensities (though for dif-ferent agricultural years) indicated an overall average of 123 percent for thePunjab and only 88 percent for the Sind. The studies showed that there was aconsiderable range of intensities in the Punjab from 65 to 175 percent.

ANNEX 2.1Page 3

Both the Punjab and Sind investigations provided evidence of widespreadunderwatering. In the Punjab there was only limited evidence of higher yieldsresulting from higher applications of water alone. The Sind studies showed thatincreased water supply up to 20 inches in the case of wheat gave increased yieldbut, beyond this level, there was no further increase due to water alone, andyields actually declined. The general conclusion appeared to be that underprevailing conditions timing and regularity of supply is at least as importantas the total amount of water.

Physical distribution of water on all watercourses is frequently com-plicated and inefficient. The LIP group estimated for the Sind that adoption ofa rectangular field layout plus better watercourse maintenance would make 17.5percent more water available. In addition, the studies indicated that there wasconsiderable tampering with and blocking of outlets, together with other irregu-lar practices. This was done mainly during the sowing season when there is apeak requirement for irrigation. The larger farmers frequently received addit-ional supplies and, conversely, the more numerous smaller farmers received areduced supply and suffered accordingly. The hazard of irregular supply isalways present. Because of the uncertain and short supply, farmers deliberatelyplan to underirrigate employing extensive rather than intensive practices.

Labor: In both regions, the studies report hidden unemployment aswell as seasonal underemployment of labor. There is a considerable reserve oflabor available to meet the increased demands of higher cropping intensities,especially if the underutilized family labor is included.

Livestock: Only a very small percentage of farmers had no workingbullocks. In the Punjab the average cropped area per pair of bullocks was 12.5acres. The comparable figure for the Sind was 16 acres. Between 20 and 50percent of the annual cropped area was devoted to fodder crops in the Sind. Thecomparable area devoted to fodder in the Punjab was nearly 60 percent. Malnutri-tion amongst young and unproductive zebu cattle is prevalent in both regions.Stock density was higher in the Punjab at 505 animal units per thousand acresCCA compared with 379 in the Sind. The total annual amount of TDN fed to live-stock averaged over 3,800 lb. for the Punjab compared with little more than3,000 lb. for the Sind. While it appeared that the feeding of productive animalswas adequate, at least from the Punjab studies, there was inadequate knowledge ofTDN requirements for work animals. Even the higher figure of 3,800 lb. TDN aboveobscures the fact that the protein constituent fluctuates widely and is often lowfor extended periods, and it has been concluded that this is an important causeof delayed maturity in livestock. At present no attempt is made to conserve suchprotein rich fodder as berseem, and while working bullocks and cows in milk arepresumed to be adequately fed, grazing stock or dry cows receive little supple-mentary rations and are forced to subsist on a low plane of nutrition basedmainly on grazing and browsing. Very few farms were larger than the 80-acresholding deemed to be required in the Punjab to make tractor power in place ofdraft animals wcrthwhile. (The corresponding figure of 60 acres given fromthe Sind study is surprising in the light of current cropping intensities.) Intheir conclusions on the nutrition of work animals, IACA has pointed out thatmore intensive study is needed on the whole problem of work animals, their workoutput and feed requirements.

ANNEX 2.1Page 4

Fertilizers: The LIP group carried out numerous fertilizer trials onthe main crops of the Sind. In most cases the trials were superimposed on actualfarmers' fields. These were selected for uniformity of crop cover and thereforetended to reflect better than average farmers on better than average land andwith favorable water conditions. Nevertheless, widespread underwatering wasrecorded. Average response of wheat, based on more than one hundredd experi-ments conducted on lighter textured soils, showed that nitrogen at 40 lb. peracre without phosphate gave a 27 percent increase over the control yield of16.9 maunds per acre. The increase with 200 lb. of single super-phosphateadded was 34 percent, a result similar to the long-term average obtained by theWest Pakistan Department of Agriculture. Results on the heavier textured soilswere less conclusive and yields without fertilizer were considerably lower at5.5 maunds per acre. There were indications that higher dressings than 40 lbsof N would be optimal.

Evidence for yield response of rice to fertilizers indicated that thebest results were obtained when this was applied at transplanting. Unfortunatelyto get the best results from this top-dressing demands complete water controland fields to be drained prior to application. This condition could notgenerally be fulfilled in the Sind.

The failure of cotton, as grown under present conditions, to respondto fertilizer was ascribed mainly to low plant populations. These in turn weresaid to be a reflection of the farmer's reaction to the hazardous water supplysituation and to inadequate plant protection measures.

Information from the Punjab study was less direct since no formalexperiments other than those of the Rapid Soil Fertility Testing Scheme wereavailable. These indicated that 40 lb. nitrogen and 200 lb. single super-phosphate led to a yield increase of about 40 percent. Fertilizer usage wasreported to be common throughout the Punjab watercourses. Unfortunately, IACAwas unable to relate yields directly to fertilizer applications. They pointedout that from field observation, farmers appeared to be aware of the benefitsof fertilizers especially when the amount of water was adequate with regularityof supply.

Improved Seed: The Punjab study indicated that farmers on all but oneof the twenty watercourses purchased seed of the desirable American-type cotton,thus indicating that provided the quality of seed was good and supplies wereavailable, there should be no difficulty in introducing better varieties. Inthe case of rice also, the advantages of pure seed of recommended varieties haslong been recognized. The supply is inadequate. Efforts to overcome the short-age of good seed have led to adulteration and abuses with consequent disreputeof the seed.

The studies also showed that a number of recommended wheat varietiesbred in Pakistan are being grown in the Punjab watercourses. The best yieldingof these require abundant water and rich soils or artificial fertilizer toachieve potential yields of the order of 56 maunds per acre. In practice, far-mers have made wider use of a lower yield potential variety which is describedas being suited to average fertility and irrigation conditions and this varietyaccounts for 36 percent of the total wheat acreage on the watercourses.

HaiirX 2.1Page 5

In its conclusions, IACA noted that while new varieties are readilyaccepted by the larger farmers, the majority of farmers are content to waituntil seed becomes freely available as a result of local multiplication duringwhich time they will have been able to assess its merits.

Cultivation Methods: Seedbed preparation was found to be one of themost important factors affecting germination and subsequent early developmentof grain. Because the soils of Nffest Pakistan generally have poor structure,this aspect of cultivation is of great importance. Unfortunately, no general-ized description of requirements to secure good seedbed conditions could begiven. Consistently high yields of wheat were obtained only by those farmerswho devoted considerable attention to seedbed preparation.

Other cultivation practices were shown to be of great importance inthe Sind. Higher yields both for wheat and cotton were obtained with increasednumbers of ploughings, smoothing and good standards of levelling. The magnitudeof the differences due to cultivation practices was impressive. For wheat,yield differences varied from nine to fifteen maunds per acre and cotton fromsix to twelve maunds according to the number of ploughings from one to seven.Even allowing for some interaction effects which could be attributed to otherfactors, these results iiidicate that agronomic practices reflecting managementrather than physical inputs have great effects on Yields.

Plant Population: Farmers on the Punjab watercourses were well awareof the relationship between plant population and yield of certain crops. Butbecause of their expectation of shortage of irrigation water, they were gener-ally cautious about increasing plant density. Even the highest plant popula-tions recorded both for wheat and cotton were low by standards in other partsof the world. Averages for cotton in the Sind of 11,300 plants per acre andfor the Punjab of 10,000 set a low limit to yield under existing conditions.The Sind study also showed for cotton that economic returns from the use offertilizer and pesticide inputs, were not likely to be obtained unless plantpopulations exceeded 16,000 plants per acre.

Credit: The situation regarding credit requirements was compiledfrom a sample of farmers from each of the 20 watercourses in the Punjab. Nearly64 percent of the 460 farmers in the sample were found to be in debt. Of theindebtedness, which averaged Rs. 30 per acre, about 60 percent was estimated tobe incurred in the interests of farming. No direct relationship between debtand farm size class was evident although it was observed that in the tenantgroup the debt per farmer was highest in the 0-5 acre class and lowest in thesize class of 25 acres or more. Owners and owner/tenants generally had lowerindebtedness than tenants. Furthermore, owner farmers with holdings of 15 ormore acres in the Punjab were found to be capable of generating savings. Thegeneral conclusion was that while there appeared to be an adequate supply ofshort-term credit available for working capital or purchase of small implementsunder present conditions, there was a shortage of medium-term and long-termcredit for effecting major improvements such as land reclamation, drainage,installation of tubewells, etc. Short-term credit was generally obtained fromnon-institutional sources. Better facilities for obtaining medium- and long-term credit should be made more readily available to farmers.

ANNEX 2.1Page 6

The official sources of credit were reported to be too difficult forthe smaller farmers and more particularly sharecropping tenants to use. Thedifficulties to be overcome and the procedure involved before a loan could beobtained were too great. Where the Cooperative Bank was well established, itproved to be a popular source of credit. It was concluded that the establish-ment of more Cooperative Banks should be encouraged to provide medium- andlong-term credit.

Yields: Both the Sind and Punjab studies indicated that given presentagricultural practices the attainment of high yields is a relatively slow processeven when good management is employed. Earlier discussion indicates the complex-ity of constraints which operate both in the Punjab and in the Sind. In generalterms there was no identifiable situation on the watercourses which wasunequivocally associated with high yields. Clearly, water is a generallylimiting factor, and the farmers' response has been to adopt what seems to bea limited and rational system of underwatering. There were enough tubewells inthe Punjab watercourses to provide a considerable range of water availabilitybut, except in the case of wheat, IACA was unable to show that the watercourseswith better water availability had better yields. These findings go some waytowards explaining the reasons for the widespread practice of underwatering.It is evident that within limits spreading a limited amount of water over awider area gives a higher production than concentrating that amount of water ona small area. Where farming intensities are high and sufficient water toinclude a leaching element is applied to the kharif crop, this practice isjustified. But if farming intensities are low and insufficient water isapplied in kharif to remove salt accumulated in rabi, continued underwateringwould lead to a progressive decline in crop yields.

IACA has summarized the situation as one in which multiple limita-tions are acting together, amongst them are general underwatering, deficiencyof nitrogen, widespread salinity, for some crops damaging pests, a difficultyin obtaining good seedbeds, broadcasting rather than line sowing of crops andgroundwater levels too high. All of these factors have been investigated bythe research stations, usually as single variables, sometimes in restrictedcombinations, and often under conditions better than those found on thewatercourses.

There is no doubt that additional water supplies lead quickly toincreased production, but on the evidence of the watercourse studies IACAbelieves that the increase comes very largely from increased cropped area andonly very secondarily from increased yields. In a situation where underwateringis general practice it would be surprising if other limitations were not alsoeffective, particularly since one limitation, salinity, should be rapidlyimproved by improved watering.

Uhile the use of fertilizer was fairly common on the watercourses,IACA was unable to show any uniform or striking response. Nevertheless itstates there is, in general, in West Pakistan much stronger evidence for theresponse to nitrogen than for the response to water. It seems possible thatyield increases should be associated with fertilizer combined with water -- in

ANNEX 2.1Page 7

that order -- and limited by other constraints. If this analysis is correct,there is no single input which should be expected to give dramatic increasesin yields, and it is not by any means clear which inputs should receive prior-ity. The weight of the evidence seems to favor fertilizers followed by water.There is a strong case for multiple factor experiments covering fertilizers,water delta, seedbed preparation, plant population, pest and disease controland variety. The current thinking that additional water followed by fertil-izer and other inputs is a fully confirmed order of priorities may have to bere-examined.

Management and Extension Services: Management at farm level as illus-trated by the farmers skillful allocation of limited resources appears to beadequate at the present time and with present inputs. To overcome the con-straints on the factors involved in production would eventually need a complexseries of new inputs. As this is attempted, there would be a need for moresophisticated management. The extension service should recognize this need inadvance and begin to strengthen its farm management advice in conjunction withother specialists. This role of the extension services should be recognizedas of paramount importance. The complexity and variability of the farmingproblems call for exceptional skill on the part of extension officers. IACAconsiders that identification of constraints under different situations callsfor skills which are rare in the present services and since these only developslowly, their absence may act as a constraint on development.

The surveys indicated that farmers are receptive of advice. Fromthe rapidity of the response to tubewell water, the readiness to change crop-ping patterns, the awareness that new varieties may be better than old ones,the acceptance of fertilizers and the general skill in using resources, IACAhas concluded that conservatism and resistance to change, should not beconsidered to be crippling constraints.

ASNNEX 2.2Page 1

Analysis of IACAts Production Projections by Agricultural Zonesin the Canal Commanded Areas

A. Analysis of Growth of Agricultural Output by Zones

For purposes of assessing agricultural conditions and making projec-tions, IACA grouped the canal irrigated lands having similar crop distributioninto nine agricultural zones (see Map 2). Except for Zone I, Peshawar Vale, allare in the Indus Plains. The nine zones and the canal commands they includedwere as follows:

Agricultural Zone Canal Commands Included 2/

Zone I - Peshawar Vale Upper Swat, Lower Swat, Kabul River andWarsak High Level.

Zone II - Punjab Rice Area Upper Chenab, Marala Ravi, Upper Jhelum,Ravi Dipalpur, Dipalpur above B.S., nor-thern tips of Lower Chenab, Bari Doab,Dipalpur below B.S.

Zone III - Punjab Cotton Area Lower Jhelum, Lower Chenab, Lower BariDoab, Dipalpur below B.S., Pakpattan,Sidhnai, Haveli, Mailsi, Bahawal,Fordwah Sadiqia, Qaim, Panjnad Abbasia.

Zone IV - Punjab Development Paharpur, Thal, D.G. Khan, Rangpur,Area Muzzafargarh.

Zone V - Sind Cotton Area Ghotki, Khairpur, Rohri, Nara.

Zone VI - Gudu and Sukkur Northwest and Dadu.Perennial Rice Area

Zone VII - Gudu and Sukkur Begari Sind, Desert, Pat, Khirtar,Non-Perennial Rice Rice.Area

Zone VIII - Ghulam Mohammed- Pinyari, Fuleli, Kalri Baghar Feeder.Non-Pereunihi -- RiceArea

Zone IX - Ghulam--o1iammod Tando Bago, Gaja, Ochito, Kalri Pumps.Perennia-lz Aiea

1/ The distribution of-CCA and cropped acres is given on page 28,Volume II of the Bank Groupts Report.

;a±iJiX 2.2Page 2

IACA based its estimation of 1965 cropping patterns and cropping inten-sities for all canal commands on data supplied by the Irrigation Department, theBureau of Statistics, the 1960 Census and a paper by Ghulam Mohammed..7 For theSind, data compiled by the LIP consultants were used.

These data are not intended to represent the agricultural situation onany one farm, but to provide an average picture of a specific region. Withinsuch a region, variations in cropping patterns, intensities and prevailing levelof production reflect differences due to climate, soils, water supply, tenancy,farm size, use of inputs and husbandry practices, markets and processing facil-ities. Differences in cropping patterns and intensities are, however, generallymore pronounced between rather than within agricultural zones because of thegreater influence of some of the above factors as well as the respective stageof development.

The more important crops grown during the kharif and rabi seasons inthe respective zones are given in Table 1 below together with the percentagesof land they occupied in each of the seasons. Throughout this annex, both thekharif and the rabi seasonal cropped acreages take into account the perennialcrops, i.e., perennials are counted twice.

1/ Private Tubewell Development and Cropping Patterns in West Pakistan"Research Report No. 28", Pakistan Institute of Development Economics,March 1965.

TABLE 1

Proportion of Cropped Area Under Major Crops During Kharif

and Rabi Seasons for the Nine Agricultural Zones(per cent)

Kharif RabiOilseeds 17

GramZone Rice Cotton Maize Millet Fodder Sugar Wheat Pulses Fodder Sugar

I. Peshawar Vale 47 5 26 53 11 26

II. Punjab Rice Area 49 U 14 9 63 7 20 8

III. Punjab Cotton Area 38 20 13- 55 11 20 10

IV. Punjab Development Area 19 32 23 6 66 19 10 4

V. Sind Cotton Area 49 20 5 47 30 12 5

VI. Gudu and Sukkur Rice Area 76 6 2 41 29 26 2(perennial)

VII. Gudu and Sukkur Rice Area 86 7 31 40 29(non-perennial)

VIII. Ghulam Mohammed Rice Area 94 2 22 54 19(non-perennial)

IX. Ghulam Mohammed Rice Area 2 32 31 5 24 42 13 18 27(perennial)

1/ Oilseeds in northern zones, gram and pulses increase southwards.

2/ Although in the rice area, the zone influenced by sugar mill at Tandojam. CD

ANNEX 2.2Page 4

The zonal cropping characteristics are distinctive. Thus in Zone 1,the Peshawar Vale, the main emphasis is on food crops rather than cash crops.Nearly 50 percent of the cropped acreage in kharif is under maize and more than50 percent of the rabi acreage is under wheat. The greater part of the sugar-cane is grown in Zones I and IX. Rice occupies 55 percent of the kharifcropped area in Zone II, the Punjab Rice Area, and even more in the Sind RiceAreas of Zones VI to VIII. Cotton, similarly, dominates the Punjab CottonArea, Zone III, and the Sind Cotton Area, Zone V, but in these, as in otherzones, the important position occupied by wheat is clearly shown. It isnoteworthy that the areas under oil seeds, gram and pulses begin to increaseat the expense of wheat from the Punjab southwards reflecting the increasinguncertainties of rabi water supplies. The high proportion of millet grownduring kharif in the Punjab Development Area (Zone IV), is an indication ofthe farmers' preoccupation with subsistence rather than cash crops at a com-paratively early stage of development.

Seasonal and annual cropping intensities and cropped acreages ofthe agricultural zones for 1965, and those projected by IACA for referenceyears, are given at Table 2.

TABLE 2

CCA, Cropped Acres and Cropping Intensitiesfor the Nine Agricultural Zones

(Acres in million: intensity per cent)

Zones

I II nIi IV Total V VI VII VIII Ix Total BasinPunjab Sind Total

CCA 0.7 3.1 13.0 3.6 19.7 5.2 1.0 1.4 1.0 0.3 8.9 29.3

Reference Years1965-

Kharif Annuals 44.5 43.4 38.2 22.7 36.2 38.8 46.0 79.0 80.8 21.0 50.0 40.6Rabi 1t 45.0 53.0 49.0 37.2 47.5 39.5 55.1 57.8 21.2 18.8 41.4 45.6Perennials 22.7 5.5 7.2 2.0 6.0 4.6 2.3 0.4 1.0 7.1 3.4 5.6Total Intensity (%) 135 107 102 64 96 87 106 138 104 54 98 97Cropped Acreage 0.9 3.3 13.2 2.3 18.8 4.5 1.1 1.9 1.1 0.2 8.7 28.4

1975Kharif Annuals 43.3 54.1 43.2 30.2 42.5 39.6 44.9 83.3 81.6 18.2 51.1 45.1Rabi 140.9 62.8 58.9 49.1 57.7 51.4 61.1 -58.4 23.1 21.6 49.4 54.8Perennials 23.6 8.2 7.1 3.7 6.6 5.8 2.5 - - 14.1 4.1 6.3Total Intensity (%) 131 - 133 116 87 113 103 111 142 105 68 109 112Cropped Acreage 0.9 4.1 15.1 3.1 22.3 5.3 1.1 2.0 1.1 0.2 9.6 32.9

1985Kharif Annuals 51.3 62.1 49.6 46.4 51.0 45.4 55.9 73.0 63.4 19.8 52.1 51.3Rabi tt 51.7 67.4 58.6 71.6 62.4 65.5 67.1 53.7 33.5 34.1 59.2 61.1Perennials 25.2 10.0 8.8 5.8 8.4 8.9 4.7 - - 18.9 6.4 8.2Total Intensity (%) 153 150 126 130 130 129 132 127 1/ 97 1/ 92 124 129Cropped Acreage 1.1 4.6 16.3 4.6 25.5 6.7 1.3 1.8- 1.0' 0.3 11.1 37.7

2000Kharif Annuals 59.1 66.6 67.3 60.7 66.0 62.3 64.2 91.0 95.0 37.3 69.8 67.0Rabi n 59.0 63.8 61.9 73.9 64.4 62.7 70.8 60.0 35.0 39.5 59.3 62.7Perennials 27.3 9.8 10.4 7.7 9.8 12.5 7.5 - - 41.6 2/ 9.5 10.1Total Intensity (%) 173 150 150 150 150 150 150 151 130 160 148 150Cropped Acreage 1.2 4.6 19.5 5.4 29.5 7.8 1.5 2.1 1.3 0.5 13.2 43.9

I/ Reduction reflects conversion to full delta equivalent.

2/ Mainly sugar cane. m

ANNEX 2.2Page 6

Real cropping intensity in each season will be the sum of the areaunder annual crops plus the area under perennials. Thus for Zone 1, the actualkharif intensity for 1965 was 67.2 percent and that for rabi was 67.7 percent,giving the annual cropping intensity of 135 percent. This high intensityresults from both large acreages under sugarcane and fruit, as well as tofavorable water supplies. Low rabi intensities for Zones IV, V and VIIIreflect the unreliability of rabi supplies mentioned earlier. Even with thelarge sugarcane acreage in Zone IX, the low rabi acreage suggests that peren-nial water supplies are not uniformly distributed throughout the zone.

IACA considers that the ultimate attainment of 150 percent croppingintensity would result from additional water supplies associated with otherinputs in all zones except VIII for which rabi supplies would continue to beunreliable. The present and ultimate patterns shown in Table 2 reflect theproposals to use water mainly for the cash crops, cotton and rice, as well ason fodder crops. Thus in Zone 1, by 1975 IACA projects a reduced acreage con-sistent with the delivery capacity for full delta irrigation. This would reduceboth the maize and wheat acreages. After 1975, however, there is a rapidincrease in intensity ultimately reaching over 170 percent.

IACA also expects a rapid increase in cropping intensity in the PunjabRice Area (II) which should achieve 133 percent by 1975 and 150 percent by 1985.The expansion for other zones, between 1975 and 1985, is the result of raisingthe irrigation application to full delta by 1985 for the quite considerable pro-portion of cropped land which would continue to be underirrigated up to 1975.Rates at which desired intensities are achieved would vary between zones,especially where underlying groundwater is highly saline. Proportions of areawith perennial surface water supply, effective precipitation and percent ofarea with good underlying groundwater for the nine zones are given in Table 3.

ANNEX 2.2Page 7

TABLE 3

CCA, Effective Precipitation, Percent of Area With Perennial Supplyand Percent of Area With Usable Groundwater for Nine

Zones

% of % ofAverage Area With Area dith

CCA Effec. Perennial FreshZone and Canal Commands '000 acres Prec. ft. Water Supply Groundwater

I. Vale of Peshawar 687 0.84 100 85

II. Punjab Rice Area 3,113 1.08 51 82

III. Punjab Cotton Area 13,020 o.44 68 55

IV. Punjab DevelopmentArea 3,617 0.37 45 56

V. Sind Cotton Area 5,218 0.13 87 25

VI. Gudu and SukkurRice Area (perennial) 1,027 0.08 95 15

VII. Gudu and Sukkur Rice 1/Area (Non-perennial) 1,L412- 0.08 - 25

VIII. Ghulam Mohammed Rice 2Area (Non-perennial) 1,056-' 0.17 -

IX. Ghulum Mohammed Rice 2/Area (perennial) 267- 0.17 100

1/ 75 percent of CCA underlain by groundwater 2,000 ppm TDS or greater.2/ Entire area underlain by groundwater 2,000 ppm TDS or greater.

The magnitude of some of the agricultural problems is illustrated by ZoneVIII. Besides having no perennial water supplies, this zone is also underlain

with groundwater having TDS of the order of 2,000 or more ppm. The table also

illustrates the advantage which the Punjab Zones II and III enjoy over the Sind.Not only are they nearer the source of water, but both perennial surface water

availability and the quality of underlying groundwater are generally better.Moreover, effective precipitation is appreciably higher for the Punjab than for

the more arid Sind region.

To examine IACA's growth of agricultural production, its projections for

reference years based on its canal command analysis and its assumptions forprices and TDN value for production animals, were apportioned between the ninezones. From these, values of GPV per cropped acre were also derived. These

data are given in Table 4.

TABI 4

1/Cropped Acreage, GPV Per Cropped Acre and Gross Production for Nine Agricultural Zones

(Acres in millionsi GPV per cropped acre in Rupees; Total CHPV in Rs. billions)

1965 1975 1985 2000

GPV GPV GPV GPVAcres Cropped Per Total Cropped Per Total Cropped Per Total Cropped Per Total

Zones CCA Acres Acre GPV Acres Acre GPV Acres Acre GPV Acres Acre GPV

I Peshawar Vale 0.7 0.9 0.9 1.1 1.2337 406 6 14 869

303.5 365.3 675.0 1043.1

II Punjab Rice Area 3.1 3.3 4.1 4.6 24.6256 361 562 780

843.8 148 1.1 2589.4 3598.3

III Punjab Cotton Area 13.0 13.2 15.1 16.3 19.5287 377 572 786

3785.1 5694.1 9320.0 15335.3

IV Puntjab Development Area 3.6 2.3 3.1 4.6 5.4 6166 252 430 639

381.5 780.8 1980.6 3450.1

V Sind Cotton Area 5.2 4.5 5.3 6.7 7.8214 279 462 739

961.2 1481.4 3098.3 5763.7

VI Gudu & Sukkur Rice Area 1.0 1.1 1.1 1.3 1.5(Perennial) 163 249 423 668

179.7 274.5 550.6 1001.6

VII Gudu & Sukkur Rice Area 1.4 1.9 2.0 1.8 2.1(Non-Perennial) 116 149 234 376

220.8 297.3 421.7 790.4

VIII Ghulam Mohammed Rice 1.0 1.1 1.1 1.0 1.4(Non-Perennial) 62 80 159 342

68.1 89.2 162.847.

IX Ghulam Mohamned Rice 0.3 0.2 020.2 0*i4(Perennial) 167 0.2 310 64 0 1,02024.1 56.1 157.4 435.4

Total Commanded in Basin 29.3 28.5 32.9 37.7 43.9238 320 503 726

6766 10520 18956 31888

1/ Seasonally cropped acres, i.e. perennials counted twice.

ANNEX 2.2Page 9

Striking zonal differences in GPV per cropped acre are shown in Table4. The low GPV for Zone VIII in 1965 can be attributed in part to the absenceof rabi water supplies and to a considerable dubari/bosi acreage (residualmoisture cropping) from which extremely low yields are obtained.

The steps proposed by IACA for the removal of constraints are dis-cussed fully in its Report. Improvements are reflected in the projected GPVper cropped acre at reference years in Table 4. As might be expected, growthwould be less spectacular for zones of relatively high initial productivity.The improvements expected for the less favored zones are more readily seen bycomparisons of compound growth for the three variables, cropped acreage, GPVper cropped acre, and total GPV, which are given in Table 5. The high overallgrowth of total GPV for Zone IX is due largely to the continuing expansion ofsugarcane from about 18,000 acres in 1965 to over 80,000 by 2000.

TABLE 5

Growth Rates for Acreage. GPV per Cropped Acre, and Total GPV for Agricultural Zones(per cent per annum) r

1965-1975 1975-1985 1985-2000 1965-2000 ° P

Cropped GPV per Total Cropped GPV per Total Cropped GPV per Total Cropped GPV per TotalZone Area Acre GPV Area Acre GPV Area Acre GPV Area Acre GPV

I 0 1.5 0.7 0.71.9 4.2 2.3 2.7

1.9 6.3 2.9 3.5

II 2.2 1.2 0 0.93.5 4.5 2.2 3.2

5.7 5.7 2.2 4.2

III 1.3 0.7 1.2 1.12.8 4.3 2.2 2.9

4.1 5.0 3.4 4.1

IV 3.0 4.0 1.1 2.44.2 5.5 2.5 3.9

7.4 9.9 3.7 6.5

V 1.6 2.4 1.0 1.62.7 5.2 3.2 3.6

4.4 7.7 4.2 5.2

VI 0 1.7 1.0 0.94.3 5.5 3.1 4.1

4.3 7.1 4.1 5.1

VI 0.5 - 1.0 1.0 0.32.5 4.6 3.2 3.4

3.0 3.6 4.2 3.7

VIII 0 - 0.9 2.0 0.72.6 7.1 5.2 5.0

2.8 6.2 9.0 5.7

IXC 2.3 3.1 3.8 3.16.4 7.5 3.1 5.38.8 10.9 7.0 8.6

I/ See footnote on page 12 regarding reduction in cropped acreage.

ANNEX 2.2Page 11

For zones with unreliable rabi supplies, but without the further con-straint of poor quality groundwater, the growth of acreage resulting fromadditional water is almost axiomatic. For zones with poor quality of groundwaterand some waterlogging, additional supply cannot be effective until such con-straints have been removed (Zones VI to VIII).

GPV per cropped acre as a measure of the contribution of all inputs,including the elimination of underwatering, is more difficult to interpret.Table 5 shows that highest yield growth is generally achieved during thedecade 1975-85.

B. Analysis of Growth Factors

In order to assess the contribution of the separate effects of waterand other inputs, an analysis was made by the Bank Group of the increments inGPV attributable to (a) water alone, i.e., increased acreage at constant yieldof GPV per cropped acre, and (b) due to other inputs, i.e., no increase incropped acreage but employing IACA's full delta yields for the various refer-ence years._V To do this, first acreage was derived from IACA's croppingintensities at reference years. Then the GPV was estimated employing IACA'scropping patterns, yield projections, and price assumptions. From these it waspossible roughly to apportion the incremental contribution of either water aloneor non-water inputs to total GPV for each of the nine zones for the referenceyears. The difference between the sum of the acreage effect and the inputseffect from the total increment would be a rough measure of the interactionbetween these separate effects. Results of this analysis for the nine zonesare summarized in Table 6.

1/ The analysis was based on Rupee values at constant prices as used by IACA.

TABLE 6

Estimated Contribution of Water Alone and Other Inputs to Incremental GPV forNine Agricultural Zones

(Effects mewased in GPV in Rs. millions)

Total Relative Contributions Totutions Totl Relative Contributions Total

Zone 1965 Acreage GPV/acre Residual 1975 Acreage GiV/acre Residual 1985 Acreage 0PV/acre Residual 2000

I. Peshawar Vale 303.5 11.0 40.0 10.8 365.3 62.5 219.0 25.2 275.0 58.1 220.2 89.8 1,043.1 1Per cent of Total Increment 18 65 17 20 71 9 16 60 24

II. Punjab Rice Area 843.8 254.2 298.2 84.9 1,4181.1 208.4 607.8 292.1 2,589.4 63.5 636.6 308.8 3,598.3Per cent of Total Increment 40 47 13 19 55 26 6 63 31

III. Punjab Cotton Area 3,785.1 534.8 1,186.0 188.2 5,694.1 616.5 2,267.8 741.6 9,320.0 1,239.5 2,540.7 2,235.1 15,335.3Per cent of Total Increment 28 62 10 17 63 20 21 42 37

IV. Punjab Development Area 381.5 205.2 123.8 70.3 780.8 360.9 307.9 531.0 1,980.6 298.9 373.1 797.5 3,450.1Per cent of Total Increment 51 31 18 30 26 44 20 25 55

V. Sind Cotton Area 961.2 160.2 287.1 72.9 1,481.4 3114.2 777.2 525.4 3,098.3 356.4 1,029.6 1,279.4 5,763.7Per cent of Total Increment 31 55 14 19 48 38 13 39 148

VI. Gudu-Sukkur Rice Area(perennial) 179.7 6.9 81.8 6.1 2714.5 31.3 188.2 56.6 550.6 36.6 237.9 176.5 1,001.6Per cent of Total Increment 7 86 7 11 68 21 8 53 39

VII. Gudu-Sukkur Rice Area 7(non-perennial) 220.8 10.9 58.5 7.1 297.3 -18.5 153.0 -10.1 421.7 56.o 216.3 96.4 790.4Per cent of Total Increment 14 76 10 -15 123 - 8 15 59 26

VIII. Ghulam Mohammed Rice Area V8(non-perennial) 68.1 -2.8 29.1 -5.5 89.2 -5.5 82.7 -3.6 162.8 16.3 1914.6 96.4 470.1Per cent of Total Increment -13 139 -26 -9 118 - 9 2 76 22

IX. Ghulam Mohammed Rice Area(perennial) 24.1 16.3 11.1 14.6 56.1 26.3 29.0 146.0 157.4 73.0 30.2 174.8 435.4Per cent of Total Increment 51 35 14 26 29 45 26 11 63

Total for West Pakistan 6,766 1,197 2,116 439 10,520 1,596 4,633 2,207 18,956 2,198 5,1479 5,255 31,888Per cent of Total Increment 32 56 12 19 55 26 17 42 1h1

1/ In zone VII and VIII the negative contribution from acreage (water) shown arises as a result of IACA's procedure, where underwateringoccurs, of reducing the actual cropped acreage to the full delta equivalent. This procedure results in a corresponding inflation of the GPV percropped acre without however materially affecting the total GPV.

ANNEX 2.2Page 13

The relative importance of water and inputs is illustrated by theirpercentage contribution to increments between reference years. Thus, whereperennial supplies are limited as in Zones II and IV, a larger proportion ofthe expected increment would be expected from additional water. By contrast,in all zones except IV the effects of non-water inputs on yield would besubstantially greater. Even in Zone IV the sums of input effects plusresidual or interaction would be very large once the initial water shortagewas overcome.

The observation that the residual (or interaction) proportion increasesover the successive reference years is an axiomatic reflection of the importanceof employing higher input levels after enlarging the cropped acreage in order toachieve best results.

The overall picture of development is one of higher growth of rabiacreages up to 1985 and thereafter a further rise in kharif acreage which by2000 just exceeds the former. During this period, the increased area underperennial crops is a modest one, being from about three to six million acresat a rate of growth of 1.6 percent per annum.

Analysis of IACA's projections clearly implies that non-water inputswould make a substantially greater contribution to the increase in agriculturalproduction than water alone. Even if the total residual effect were attributedto increases in irrigation supplies, the response to water would be less thanthat to inputs throughout the period up to 1985. To the extent that it can betraced in this analysis the relative contributions to the incremental GPV forthe periods between reference years are demonstrated below on the basis of thetotal CCA:

Relative Contributions of Growth Factors to Incremental GPV(as implicit in the IACA projections)

1965 to 1975 1975 to 1985 1985 to 2000

Rs. Rs. Rs.billion Percent billion Percent billion Percent

Total Increment 3.753 100 8.437 100 12.932 100

Thereof:

Inputs 2.116 56 4.633 55 5.479 42Water 1.197 32 1.596 19 2.198 17Residual .439 12 2.207 26 5.255 41

This analysis would tend to overstate the input effects to the extent that theIACA yield projections beyond 1975 are generally based on full delta irrigation.The elimination of underwatering of an average of about 20 percent between 1965and 1975 would thus be attributed to non-water inputs. However, even if allow-ance is made for this, the analysis forcefully demonstrates the importance ofnon-water inputs for rapid growth of agricultural production in the irrigatedareas of iJest Pakistan.

ANNEX 2.2Page 14

C. Analysis of IACA's Aggregate Production Projections

IACA's totals of GPV for West Pakistan were obtained by adding GPV forthe uncommanded outside areas to those of the nine zones and are shown in Table7 below. The separate contributions of agriculture and livestock are alsoincluded as are growths between reference years.

TABLE 7

Contribution of Crops and Livestock to Total GPV(Rs. billions)

1965 1975 Growth 1985 Growth 2000 GrowthTotal Total 1965-1975 Total 1975-1985 Total 1985-2000

GPV GPV (%) GPV (,) GPV (M)

(A) Canal Commanded Areas

Crops 4.41 6.34 3.7 11.95 6.5 18.70 3.0Livestock 2.35 4.18 5.9 7.00 5.3 13.19 4.3

TOTAL 6.76 10.52 4.5 18.95 6.0 31.89 3.5

(B) Outside(Uncounanded) Areas

Crops 0.96 1.21 2.3 1.49 2.1 1.88 1.5Livestock 0.97 1.58 5.0 2.71 5.5 5.27 4.6

TOTAL 1.93 2.79 3.8 4.20 4.2 7.15 3.6

(C) Total for Tlest Palcistan

Crops 5.37 7.55 3.5 13.44 5.9 20.57 2.9Livestock 3.32 5.77 5.7 9.71 5.3 18.46 4.3

TOTAL 8.69 13.32 4.3 23.15 5.7 39.03 3.5

The contribution of livestock production based on IACA's projectionsis extremely high. However, in the Bank Group's view, as discussed in ChapterII.6, the maintenance of a growth rate in livestock production in excess of fivepercent per annum for some 20 years (1965-85) would demand a level of herdmanagement and breed improvement far in excess of current standards and dif-ficult to attain. The growth of crop production for the period 1965-85 at 5.1percent also represents a challenge of immense proportion and would only be madepossible by the best use of the interdependent factors also discussed inChapter II.5.

ANNEX 2.3Page 1

Factors Affecting Cropping Intensities

The Chapter text gives a general description of the factors which pre-clude cropping intensities as high as 200 percent, the theoretical maximum. Thetext also indicates IACA has concluded that an overall intensity of 150 percentis a reasonable indicative target for the Indus Basin. This Annex is providedto illustrate in some detail how different factors impinge on cropping intensityand why 150 percent may be regarded as a reasonable overall average.

The example used here is based on IACA's Region III (Punjab CottonArea). The first table shows the present distribution of crops between the twomajor seasons at a cropping intensity of 102 percent. The table also givesbasic data on monthly rainfall, crop water requirements, and temperatures. Thegreatest occupancy of land by kharif crops occurs during July (36 percent), andby rabi crops in December (h8.5 percent). The area under perennial crops mustbe added to each of these to determine the full occupancy of the land at anygiven month. Thus it is in November, rather than December, that the largestpercentage of the land is utilized (58.5 percent), for some cotton and maizeare still unharvested from the kharif season. If ten percent of the land isreserved in all months for livestock use, then only 90 percent is the maximumavailable for cropping. An additional 31.5 percent of the land (90 percentminus 58.5 percent) thus represents what could be cropped in November if waterwere available. Actually, as the table shows, intensity could be increased byadding acreage in both kharif and rabi seasons if adequate water wasavailable.

ANNEX 2.3Page 2 Region III (Punjab Cotton Area) Monthly Land Occupation

f6r a Cropping Intensity of 102 Per Cent

Kharif Rabi

Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar.

Rainfall Average - inches 0.3 0.3 o.6 2.0 1.8 o.5 0.1 0.1 0.2 0.4 o.4 0.4

Crop Irrigation Requirement - inches 5.6 6.9 6.8 6.4 5.8 5.1 4.2 2.7 1.8 1.7 2.3 3.9

Mean Maxirmum Temp. (Degrees F) 95 105 107 102 99 99 91 83 72 68 73 84

Mean Minimum Temp. (Degrees F) 68 77 85 86 83 78 64 51 43 42 47 57

Mean Diurnal Temp. Difference (Degrees F) 27 28 22 16 16 21 30 32 29 26 26 27

Number Crop GrossSowing Period Area

(Months) - -------------------- percent- ------- p er -n--------

Kharif

Rice 1 34 2 - - - 2 2 2 1 - - - - -

Cotton 1 6 17 - 3 16 17 17 17 17 15 - - - -

Maize 1 3 l 3 - - - 1 2 3 3 1 - - - -

Fodder 2 21 9 - - 41 9 6-3/A 21 -- - - - - -

Jowar 1 4 5 - - - 5 5 5 5 - - - - -

Others 1 4 2 - - 2 2 2 2 - - - - - -

Total (excluding perennials) 38% - 3 22* 36 34-3/4 314 26 16* - - - -

Rabi

Wheat 1 5* 31 20 - _ - - - 74 19 31 31 31 31

Fodder 1 5v 11 - - - - - 1* 6 9 11 11 11 11

Oil Seeds 1 3* 2* - - 11 2* 2* 21 - - -

Others 1 4 4 - _ _ _ _ 4 4 4 4 - - -

Total (excluding perennials) 48j% 20 - - - - 6-3/4 20 341 181 42 42 12

Perennials

Sugar Cane 1 12 6 6 6 6 6 6 6 6 6 6 6 6 6

Fruit 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1

Vegetables 1 12 A i i i i i i i i i i i i

7* 7* 71 7* 7* 7* 7* 7* 7* 7* 7* 7* 7*

Total Monthly Land Occupation 27* 10* 30 43 4214 45* 53* 58* 56 49* 49* 19*

Cropping Intensity (Perennials Twice) Kharif 38 + 74 - 454%Rabi 482+ 74 = 56%

TO I ;

ANNEX 2.3Page 3

The next table illustrates IACA's conception of a feasible intensityof 150 percent under full delta irrigation. The same area is involved, and thesame basic rainfall and temperature data apply. The peak month of land occu-pancy in the kharif season would still be July, but by September the foddercrop would have been harvested and some rabi crops would be sown. The acreageunder crops would begin to build up again following further harvesting of riceand pulses in October, plus some sowing of rabi crops on land which was notoccupied during the kharif season. Such sowing could take place, for example,because the cropping pattern shows a peak land occupancy in July of 73 percent,or 17 percent below the 90 percent maximum which reserves ten percent forlivestock use.

During October and November the total land occupancy hovers aroundthe 90 percent maximum, even exceeding this slightly in November. This isbecause some cotton would not be harvested until this time, and the full rabicrop could not be planted until the cotton-occupied land has been cleared.Some wheat sowing must therefore be delayed until December, a practice whichis technically possible but results in reduced yields. Referring to the tem-perature data, the mean monthly temperature minimum drops eight degrees betweenNovember and December. One alternative is to grow less cotton and more fodderand pulses in order to advance the wheat planting date, but the economic returnsfrom this pattern are likely to be lower than if cotton is retained at theexpense of some reduction in wheat yields. Another is to increase rice produc-tion at the expense of cotton in the kharif season, but the feasibility of thiswould depend on soil and water conditions to a great extent. In the area selec-ted for the example these preclude rice as a major alternative to cotton. Theresult of considerations such as these is that kharif crops would be held to67 percent of the CCA and rabi crops to 63 percent of the CCA because of diffi-culties of fitting any succession of crops which is more economical. A constantten percent of the CCA is under perennial crops in all months. Adding in theperennials, the combined intensity of 77 percent in kharif and 73 percent inrabi equals the 150 percent which IACA has used as a design objective. Inarriving at this end result, the maximum land occupancy by all crops in anymonth, not the maximum occupancy by the seasonal crops of kharif or rabi, hasset the limits to the ultimate feasible cropping intensity, because thismeasure reflects the extent of overlapping in the succession of the differentcrops which are grown.

Region III (Punjab Cotton Area) UltimateCropping Intensity of 150 Per Cent

Number Crop GrossSowings Period Area Apr. May Jun. Jul. Aug. Sep* Oct. Nov. Dec. Jan. Feb. Mar.

_ _ _ _ _ - _ _ . _~~~Au . e(Months) (T…%)c PerCen --------------------------- ----

Kharif

Rice 1 31 4 - - - 4 4 4 2 -Cotton 1 6 35 - 3 35 35 35 35 35 32Maize 1 3 5 - - - 1 4 5 5 21Fodder 2 22 18 4 [v4 131 18 9 - - -_

Pulses 1 4 5 - - 2d- 5 5 5 21 -_

Khariif - Monthly Land Use 67 - 72 51 63 57 49 4412 342 - - - -

Rabi

Wheat- 1 51 29 171 - - - - - 12 14 29 29 29 29Fodder 1 5; 15 _- - 3 12 15 15 15 15Oilseeds 1 31 3 - _ _ _ _ 1, 3 3 3 - - -Grams/Pulses 1 4 2 _ _ _ _ - 2 2 2 2 - - -

Maize 1 4 -_ _ _ _ _ 4 4 4 4 - -

Green Manure 1 4 10 - - - - - - - 10 10 10 10 -

Rabi - Monthly Land Use 63 171 - - - - 10i 33 48 63 54 54 29

Perennials

Sugar 1 12 5 5 5 5 5 5 5 5 5 5 5 5 5Fruit 1 12 3 3 3 3 3 3 3 3 3 3 3 3 3Vegetables 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2

Perennials - Monthly Land Use 10 10 10 10 10 10 10 10 10 10 10 10 10

Real Total Monthly Land Use 272 171 61 73 67 69" 871 921 73 64 64 39

Cropping Intensity (Perennials Twice) Kharif 67+10 a 77Rabi 63+10 - 73

15-0%

iUEM2 3.1Page 1

IACA Estimates of Cost of Groundwater Mining

The need to maintain the water table sufficiently below the surfaceto avoid salinity and waterlogging is agreed by all who have examined theproblem, but expert opinions have diverged widely on the question of whetherfresh groundwater should be continuously pumped to greater depths. TheWhite House Panel Report recommended overpumping and so lowering the watertable down to about 100 feet below ground level in order to meet the rapidlyincreasing water demand. SCARP IV is designed to permit lowering the watertable to an equilibrium level calculated to reach a depth of 80 feet nearthe center of the well field. On the other hand, in the LIP report, it isproposed that balanced recharge should be abstracted at relatively shallowlevels of the water table. Harza plan to pump balanced recharge over the longterm but with considerable periodic fluctuations of water table level in orderto take full advantage of aquifer storage.

Continuous pumping of a groundwater resource which could not bereplaced is called mining. In the Indus Plains it would theoretically alwaysbe possible to replace groundwater at some future date by pumping less thanthe recharge over a long period. Nonetheless, there is a clear distinctionbetween temporary overpumping to alleviate short-term shortages and con-tinuous overpumping for a long period. Temporary overpumping is a valuableexpedient as a means of maintaining supplies at times of lower than averageriver flows or before the introduction of surface storage projects and inthese cases the replacement of the groundwater would form a part of the generalplan. On the other hand, continuous overpumping implies no such replacementbut rather the exploitation of water in the natural subsurface reservoir asin the White House Panel Report recommendation that the water table in areasof fresh groundwater should be lowered to a depth of about 100 feet belowground level over a period of 30 years. Continuous overpumping in this wayis effectively mining, which involves substantial additional costs both forcapital installation of the tubewells and for power to pump from the greaterdepths.

The increased capital costs consist of two elements. Firstly, thecost of all tubewells would be raised as deeper installations would berequired to operate with the lowered water table. Secondly, extra installedtubewell capacity would be required to pump the mined water.

If the wells were to be designed for a final depth of water tableat the 100 foot level IACA estimates that capital costs would be increasedby about 50 percent for each tubewell compared to those for balanced re-charge at ten feet. The main items in this increased cost would be thepump housing and motor and controls; smaller amounts would be added fordrilling and the gravel pack. However, it is unlikely that the wells wouldbe designed initially for a condition which would not be applicable for 30years, particularly as IACA has projected a life of only 20 years for the

ANNEX 3.1Page 2

motors. IACA has therefore taken a lower increase of 30 percent in thecapital cost of the wells. The maximum output and hence capacity, ofindividual tubewells would be limited by the hydrological conditions ofthe aquifer regardless of whether the groundwater is mined. A typicalfour cusec well, without mining, commands about 600 acres and thus theextra capital cost for deeper installations would be:

Rs. 90,00030% of = Rs. 45 per acre

600

If thewater table is lowered from a depth of ten feet to 100 feetbelow ground level in an aquifer with a specific yield of 0.15, the amount ofwater mined would be 13.5 acre feet per acre which is equal to 0.45 acrefeet per acre per year for 30 years. Irrigation requirements would followthe same projected pattern as without mining and the increase in groundwaterpumping would be provided partly from a higher utilization of the wells andpartly from additional installed tubewell capacity. The increase in thedesigned quantity of groundwater to be pumped would be between 20 and 25percent for which an increase of about 15 percent would be required in theinstalled capacity. The cost of this additional installed capacity wouldtherefore be:

Rs. 90,00015% of 130% of = Rs. 29 per acre

600

The additional capital costs are therefore:

45 + 29 = Rs. 74 per acre

Amortized over 20 years the capital charges attributable to miningare then:

Depreciation = Rs. 3.7 per acre per year

Interest at 8 percent = Rs. 3.0 per acre per year

Capital Charge = Rs. 6`.7 per acre per year6.7

Or: = Rs. 14.9 per acre foot mined.0.45

This capital charge of Rs. 14.9 per acre foot mined compares with a capitalcost of Rs. 6.9 per acre foot pumped with balanced recharge, as derived byIACA. Turning now to the power costs of mining, IACA finds that theeconomic cost is substantially more than that of the immediate pumpinginvolved, since allowance must be included for the considerable extra costin perpetuity of pumping normal recharge from a lowered water table. IACA

ANNEX 3.1Page 3

has projected a typical unit power cost of Rs. 7.4 per acre foot for a fourcusec public tubewell pumping against a total head of 40 feet. If one acrefoot is then mined from an acre of the aquifer, the water table would belowered by about 6-2/3 feet and the power cost would be raised to Rs. 8.6per acre foot, in proportion to the pumping head. The incremental powercost in nerpetuity caused by mining the acre foot of water would thereforebe:

(8.6 - 7.4) = Rs. 1.2 per acre foot pumped

With a future recharge of two acre feet per acre and future costsdiscounted at eight percent (i.e., a discount factor of 12.5), the effectivecost in terms of power alone to mine an acre foot of water from an acre ofthe aquifer would be:

7.4 + (2 x 1.2 x 12.5) = Rs. 37.4 per acre foot mined.

A similar figure was calculated in IACA Report, Volume 3, Annexure4, "Climate and Hydrology", with different assumptions for the pumping head,economic electricity cost and wire to water efficiency. Depending also onthe assumptions for specific yield of the aquifer and the amount of annualrecharge, the power cost for mining an acre foot of water from an acre ofthe aquifer may be taken as between Rs. 30 and 40.

Clearly the most significant item in this power cost, and indeedin the total cost of mining, is the additional cost in perpetuity of pumpingrecharge from the lower levels. This additional cost in perpetuity is relatedto the specific yield of the aquifer but is independent of the depth of watertable. On the other hand, the actual power cost for each acre foot minedwould increase as the water table is lowered, and would be about Rs. 23.8per acre foot pumped with the water table at 100 feet below ground level.The effective power cost to mine an acre foot of water from an acre of theaquifer would then be:

23.8 + (2 x 1.2 x 12.5) = Rs. 53.8 per acre foot mined

The mean power cost between ten and 100 feet would therefore be:

37.4 + 53.8= Rs. 45.6 per acre foot mined

2

For operation and maintenance, the same unit rates may be allowedas for balanced recharge pumping. These can now be added to the capitaland power costs derived above to give the effective cost of Rs. 63 per acrefoot mined, if the water table is lowered from ten feet to 100 feet belowground level over a period of 30 years.

The variation in power costs for actual pumping of the mined waterwould make the last acre foot mined more expensive than the first. Theeffective cost of Rs. 63 per acre foot mined is the mean of Rs. 55 per acrefoot mined with a ten foot water table and Rs. 71 per acre foot mined with a100 foot water table.

ANNEX 3.1Page 4

Effective Cost of Mining Groundwater

Item Cost(Rs. per acre foot mined)

Capital 14.9

Power 45.6

Operation and Maintenance 2.6

Total Mining Cost, say Rs. 63 per acre foot

This effective cost of about Rs. 63 per acre foot makes miningappear to be about the same as surface storage when comparing the cost peracre foot at watercourse. It is also evident that the effective cost ofmining is several times that of pumping with balanced recharge.

However, apart from these economic considerations, there areseveral technical factors which would require detailed analysis before miningcould be accepted. The most important of these is the possible intrusion ofsaline groundwater down the steep gradient into the fresh groundwater zones.The extent of this hazard would vary at different sites but additional bufferdrainage wells might be necessary in order to safeguard the quality of usablegroundwater. Other problems which cculd be caused by mining would be increasedlosses from rivers and canals and diminished yields from existing wells.Finally, the construction of tubewells for mining could introduce additionalconstraints on the implementation capacity and so retard the general rate ofdevelopment in the next decade.

For these reasons IACA does not at this stage foresee a case forwidespread mining of groundwater although special cases could arise in parti-cular areas. IACA's recommendations on the policy of temporarily loweringthe water table, as opposed to mining are contained in Volume 5, Annexure 7of the IACA report and where IACA also discusses the possibility of inducingadditional recharge in fresh groundwater zones.

SEQUENTIAL ANALYSIS OF A PROGRI'IE FOR

IRRIGATION AND POWER DEVELOPMENT

IN WEST PAKISTAN

As prepared by Sir Alexander Gibb and Partners,on the basis of the Harza computer programme, London, 1966

CONTENTS

Page Number

SUiMRY (i) - (iv)

AGENCIES AND CONSULTANTS

TERMS OF REFERENCE

Chapter 1 INTRODUCTION1.1 Background to Study 11.2 Conditions of Sequential River Flows 2

Chapter 2 THE DEVELOPMENT PROGRAMME h

Chapter 3 METHOD OF ANALYSIS3.1 General 63.2 Integrated Use of Surface and Groundwater 63.3 Power and Energy Generation 73.4 Load Dispatching and Inter-Zone Transfers 7

Chapter 4 INPUT DATA4.1 General 94.2 The Irrigaticn System 104.3 Groundwater Hydrology 14.b Surface Water Supplies 164.5 Watercourse Requirements 194.6 Power Demands and Installation 20h.7 Operating Cr'iteria 20

Chapter 5 PRINCIPAL RESULTS OF ANALYSIS5.1 General 225.2 Irrigation Sapplies 235.3 Power 345.4 Reservoir Operation 37

Appendices A Input DataB Mean Year Sequence : Zonal and System Summaries

i966,85C First Historic Sequence : System Summaries

1966-85

I

I

I

TABLES

Table PageNumber Title Number

2.1 Projected Number of Wells in Operation 42.2 Areas Developed under Proposed Programnme 514.1 Canal Cormriands 11t.2 Variations of Historic Rabi Flows from Mean Flows 175.1 Watercourse Requirements and Mean Year Deliveries 235.2 lWatercourse Shortages (October-May) - Mean Year

Sequence5.3 Surplus at Ghulam Mohammed (October-May)- Mean Year

Sequence 255.4 Watercourse Shortages (October-May) - 1st Historic

Sequence 275.5 Surplus at Ghulam Mohammed (October-May)- 1st Historic

Sequence 275.6 Watercourse Shortage (October-May) 2nd Historic

Sequence 285.7 Surplus at Ghulam Mohammed (October-May) - 2nd Historic

Sequence 285.8 Water Budgets before and after Tarbela. Period

November to April 335.9 Annual Pumping Energy Load - Mean Year Sequence 365.10 Peak Pumping Load 365.11 Minimum Peak Reserve. Interconnected System 1973-1985 365.12 Reserve Generating Capacity. Comparisons for Critical

Water Years in 1976 and 1985 375.13 Interzone Power Transfer - Mean Year Sequence 37

A.1 Capacities of Link CanalsA.2 Canal Head CapacitiesA.3 Tubewell and Drainage InstallationA.4 Gain and Loss Factors in River ReachesA.5 Indus, Jhelum and Chenab River Flows - Mean Year SequenceA.6 Indus River Flows at Attock - Historic SequencesA.7 Jhelum River Flows above Mangla - Historic SequencesA.8 Chenab River Flows above Marala - Historic SequencesA.9 Indus, Jhelum and Chenab River Flaws - Supplementary SequenceA.10 Ravi and Sutlej River Flows - All SequencesA.I1 Watercourse Requirements and Associated IntensitiesA.12 Schedule of Power Installations

I

I

FIGTURES

Figure Number Title

1 Proposed Basin Groundwater and Canal DevelopmentProgramme

2 Schematic Diagram of Irrigation and Power System

3 Canal Commands

L River and Link Canal Distribution System

5 Growth of Watercourse Requirements and Mean YearDeliveries

6 Groundwater Pumping by Years

7 Overdraft on the Aquifer below 10 ft. Level

8 Depth of Fresh Groundwater in Rohri Canal Command

9 Depth of Fresh Groundwater in Panjnad and AbbasiaCanal Commands

10 Depth of Fresh Groundwater in Lower Jhelum CanalCommand

I

(i)SUMvARY

As part of the Indus Special Study, the consultants to theWorld Bank formulated proposals for the development of irrigation andpower in West Pakistan over the next twenty years. The Irrigation andAgricultural Consultants Association (IACA) were responsible for theirrigation programme, Stone and Webster for the power programme andC.T. Main for dam sites. Harza, as general consultants to WAPDA, haveevolved an elaborate computer programme which enables a development planto be tested on a monthly time basis over any desired period of years.In this study, the effects on the predetermined development programmeof a sequence of river flaws, which may be historic, random, or synthetic,can be examined. In accordance with terms of reference laid down onJune 28th 1966 Gibb, as co-ordinating consultants, were directed tocarry out, in co-operation with Harza a behaviour trial of the ILACAprogranme from 1966 to 1985 and to test the power programme against thesystem electrical demand. The results of these studies are containedin this report.

THE DEVELOPMNENT PROGRAJE

The dominant feature of the IACA programme during the firstdecade is the continued installation of public tubewells (2 to 5 cuseccapacity) which would rise to about 20,000 in number by 1975, covering11.6 million acres. From 1975 to 1985 public tubewell fields would beextended over the outstanding usable groundwater areas with the objectof achieving full integration between tubewell and canal supplies.Increasingly tubewells would be installed for drainage in saline areas,so that by 1985 an estimated total of 44.,100 public tubewells would bein operation of which 34,300 would cover an area of 18.7 million acresunderlain by usable groundwater, and 9,800 an area of 4.3 million acresin zones of saline groundwater. Projections were also made for thegrowth of private tubewells (approximately 1 cusec capacity) whichindicated that about 48,ooo would be in operation in 1975, declining to25,000 in 1985 as they become superseded by public wells. Surfacestorage facilities are provided during this period by three mainprojects, the Mangla Dam (4.5 MLF) in 1967, Tarbela Dam (8.6 MAF) in1974 and Selwan/Manchar (1.8 MAF) in 1982. Other minor schemes arealso anticipated, including a reservoir at Chasma in 1971. Canalenlargement is only applied to a limited area in the first decade, about0.9 million acres, but subsequently takes the leading role and by 1985 afurther 5 million acres are developed.

The power programme envisages a steady growth of thermal powerin the South and hydro-electric power in the North. In 1975 the minimuminstalled capacity is approximately 2540 megawatts, of which thermalstations contribute 1660 megawatts and hydro stations would provide aminimum capability of 880 megawatts, from 2 units at Tarbela, 6 at Manglaand 6 at Warsak. By 1985 thermal capacity will have risen to 3800megawatts and minimum hydro capability to 1700 megawatts with the

I

installation of 2 more units at Mangla and 10 more units at Tarbela.

THE METHOD OF ANALYSIS

The Harza computer programme is essentially a numerical modelof the irrigation and power delivery system of West Pakistan, incorpor-ating all the major physical constituents, rivers, link canals, canalcommands, reservoir and power installations, in their correct geograph-ical layout. Into this model is fed the data of the analysis, whichfalls into six main categories.

1. Values for the physical components of the system,such as canal size, reservoir capacity and installedtubewell capacity.

2. Assumptions regarding groundwater hydrology.

3. The sequence of monthly river flows entering thesystem.

4. Monthly irrigation demands at the watercourse.

5. IMlonthly power demands and the characteristics ofgenerating plants.

6. Assumptions on the method of operation to be adopted,including such aspects as groundwater mixing andreservoir operation.

The essence of the IACA programme is contained in items 1 and 6 whilethe associated irrigation demands forms ibem L. Item 5 is derived fromthe Stone and Webster report.

The analysis starts at a fixed point in time, which for thisstudy was October 1965, regarded as the beginning of water year 1966.The analysis proceeds to meet the irrigation demands of the basin bythe distribution of surface and groundwater governed by a complex systemof rules, which incorporate all the physical constraints of the systemand all the operating criteria. Similarly the power demand is derivedand supplied by the generating system. Thus the analysis willcalculate the total deliveries of water and power, revealing at the sametime any shortages that may arise.

Three main studies were made of the system in which the only itemsof data that were varied were the monthly river flows. The first studyused for every year the 4l year mean flows of the Indus, Jhelum andChenab which had previously served as the benchmark for the IACA studies.Two further studies were made with historic sequences of river flow;and a variation on one of these studies used critical river flows atselected points in time.

CONCLUSIONS

The principal conclusion arising from this study is that theIACA programme behaved satisfactorily and it confirms the earlier studiesmade by IACA for certain reference years. Some irrigation shortageswere noted but this was expected. The aggregated shortage was 8.2 MAFin the mean year sequence out of a total watercourse delivery over thetwenty years of 1840 I4AF. These shortages occur primarily in twoperiods of time, I.3 MAF in the first two years of the study, which isdue to the very low estimate that was made for the availability of waterfrom the Ravi and Sutlej in the transition period before the advent ofMangla and 2.9 UAF in the three years just prior to the commissioning ofTarbela as demand rises in anticipation of the reservoir. There wereno irrigation shortages beyond 1975 under mean year flows. The historicsequences revealed higher shortages throughout, but as much the sameperiods of time. Excluding the effect of the first two years, which maybe slightly unreal, the aggregated October to May shortages in the twohistoric sequences were 10.1 IMAF and 11.9 WA.F. Kharif shortages alsoarose in the historic sequences, but these were mostly due to exceptionalcircumstances. The IACA programme was not intended to meet requirementsunder all conditions of low river flow and small shortages were there-fore expected. In general these shortages were not more than about6 per cent of the projected watercourse requirement in any year before1975 and less than one per cent thereafter. It is reasonable to concludethat, subject to the limitations of the accuracy of the basic assumptions,the IACA programme contains adequate facilities to meet the projectedirrigation demands.

Since the sequential analyses are operational rather than analyt-ical it is not suitable for an evaluation of the IACA projections forstored water demand. It is however possible to make deductions on thissubject from the incidence of shortages and surpluses and fron thebehaviour of the watertable. Prior to 1975 there is evidence ofirrigation shortages in the system and a small overdraft on the aquifer,restricted to areas of public tubewell development. This is temporarilyrelieved by the installation of the Tarbela reservoir, but by 1980 theoverdraft is becoming more rapid which is an indication that Tarbelastorage water is being fully absorbed and that the system is becomingshort of water again. At this point also the surplus passed to the seain the release period has become very small. By 1985 the total over-draft on the system has reached 8 N4AF in the mean year sequence and 16HAF and 18 MAF in the historic sequences. The higher figures for theh-istoric sequences are due to two factors. Firstly the total rabiflows in the historic sequences are slightly lower than mean, andsecondly the constraint imposed by canal capacities means that the over-draft on the aquifer cannot always be fully replaced by additional surfacewater at times of high river flow.

The two main conclusions from the power aspects of the studyare:

1. There are small deficiencies in peaking capability in theNorth prior to commissioning of the Mangla units, but beyond this point

I

I

(iv)

and with the completion of the North-South inter-tie in 1973 the systempeaking capability exceeds the system demand at all times. After thefirst Tarbela units are commissioned there is also considerable transferof power from North to South.

2. The pumping loads that were calculated in the analysis wereclosely in line with the estimates made by IACA in july 1966, but lessthan those assumed for the Stone and Webster report. This resulted ina higher value arising for the peak power reserve of the system.

Nothing arose from the study to suggest any radical change inthe mode of reservoir operation visualized by IACA, except that itwould seem desirable to draw down Mangla to the lower elevation of 100hwhen required, rather than maintain it at 1075 as previously assumed.

The method of sequential analysis is a valuable technique forexamining alternative development plans and providing a basis forplanning decisions. This study has provided a very useful overallimpression of the irrigation and power programmes in operation. Itwould however be unwise to attach too much emphasis on individualfigures derived from this series of studies for it must be recognizedthat any particular topic will in most cases require more detailedanalysis, on a shorter time base, than is possible in this form of study.

I I -

AGENCIES AND CONSULTANTS

Title Abbreviation

International Bank for Reconstruction IBRD or World Bankand Development

liater and Power Development Authorityof West Pakistan WAPDA

Consultants to IBRD for Indus Special Study:

Irrigation and Agriculture ConsultantsAssociation IACA

consisting of:*

Sir Alexander Gibb and Partners* GibbInternational Land Development Consultants ILACOHunting Technical Service Hunting

Stone and Webster Overseas Consultants Inc. Stone and Webster

Chas. T. Main International Inc. C.T. Main

General Consultants to WAPDA:

Harza Engineering Company International Harza

* Sir Alexander Gibb and Partners acted as co-ordinatingconsultants for the Indus Special Study.

I

TERMS OF REFERENCE

INDUS SPECIAL STUDY

HARZA/GIBB SEQUENTIAL ANALYSIS OF

kWATER DISTRIBUTION DEMvxOPMENT PROGRAMME

1. OBJECTIVE

The objective is to carry out a behaviour trial of IACA'sassumed plan for distributing surface water and for the pumping ofgroundwater, simulating the twenty-year period 1965 to 1985, using thecomputer programme developed by Harza operated by an IBM 7094 computer.The programme will be modified as necessary to test the Bank's Con-sultants proposed development plan for water and power and new inputwill be prepared to suit their assumptions.

2. SCOPE

A historic sequence, random or other selection of river flows,will be adopted to include in the twenty year period some years of highflow and some of low level, but the mean of the twenty year period willbe close to the long term mean flow. A separate run will use the meanflow for each year.

Releases from the reservoirs (Mangla and Tarbela) and theoperation of pumps should follow rules which could, in practice, beadopted. Distribution of water will meet the water course requirementsderived from IACA's assumptions regarding crop intensities, patterns andwater requirements. The use of groundwater will follow the assumptionsmade by IACA regarding recharge, mixing ratios and aquifer coefficients.

The analysis will indicate the fluctuation of the groundwaterstorage and levels year by year, the electrical power and energy requiredfor pumping and the capability of, and energy generated at, the hydro-electric power stations at Mangla and Tarbela and water shortages incritical years, following the sequence of IACA's development plan. Theanalysis will also test the Dank's Consultants' power programme againstthe system electrical demand.

3. PROGRAMME AND REPORTS

It is intended that the task will be started on July 3, 1966,and be completed by September 15, 1966.

An interim analysis will be submitted to the Bank and WAPDA onAugust 1, 1966 which will assess the feasibility of completing the taskin the proposed period of 2½ months and which will suggest any changesthat may be necessary in the scope of the analysis as a result of thefirst month's work. Preliminary results will be issued from time totime, when available.

A final report will be issued to the Bank and to WAPDA on com-pletion of the task.

I4. RESPONSIBILITIES

(i) Harza will be responsible for:-

(a) Advising Gibb of the details involved in thepreparation of all items of input data requiredand the format for punching of these data onIBM cards.

(b) (1) Discussing the logic built into the Harzaprogramme with Gibb; and

(2) making such programme changes as are desiredby Gibb to the extent that such changes canbe accomplished in the time available andare necessary to apply the logic adopted byIACA.

(c) Directing the computer runs in Chicago.

(d) Assist Gibb in:

(1) evaluating the several runs; and

(2) preparing effective tabular, graphic andnarrative presentation of the results forsubmission to IBRD and W4APDA.

(ii) Gibb will be responsible for:-

(a) Examining the Harza programme logic and advisingHarza of the nature of the changes necessary tosimulate the development programme as envisagedby IACA.

(b) Performing the computations and preparing allitems of input data required for simulation ofthe operation of the water and power systems ofWest Pakistan during the period October 1965through September 1985 with average and one ormore twenty-year sequences of varying river flow.

(c) Preparing and assembling input data cards inaccordance with instructions on format andsequence by Harza.

(d) Evaluating the several computer runs.

(e) Selecting modifications in programme or inputdata to be used in the next run.

(f) Participating with Harza in preparing effectivetabular, graphic and narrative presentation ofthe results for submission to IBRD and WAPDA.

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND TO STUDY

This report is an account of a series of sequential operationstudies of the water and power system of West Pakistan performed inaccordance with the Terms of Reference, reproduced at the front of thisreport. The objective of the studies was to carry out a behaviourtrial of IACA's assumed plan for distributing surface water and for thepumping of groundwater, simulating the twenty year period 1965 to 1985,using the computer programme developed by Harza. The scope of thestudies was also intended by the Terms of Reference to test the WorldBank's Consultants' power programme against the system electricaldemand.

Gibb, in association with the other Bank Consultants, made systemanalyses for certain reference years, including 1975 and 1985, as partof the Indus Special Study. Various potential forms of development ofwater and power resources were tested in the reference years underdifferent conditions of river flows. These system analyses were usedby IACA in conjunction with other studies in order to formulate theproposed programme for development of irrigation supplies described inChapter 2. The IACA porjections for growth of storage demand were usedby C.T. Main in their study of dam sites and the projections for tubewellpumping and hydro energy generation were used by Stone and Webster intheir study of power resources.

The sequential method of analysis evolved by Harza as generalconsultants to WAPDA enables a development programme to be tested forany desired period of consecutive years. The methods of analysis andbasic data used by Gibb and Harza were compared in some detail atmeetings in London and Arnhem in February 1966 and it was found that theexchange of data between the consultants since the inception of theIndus Special Study had resulted in agreement on many of the basic para-meters relating to system analysis. Subsequent to these meetings theBank and WAPDA agreed on the desirability of initiating a series ofstudies combining the development programme of the Bank's consultantsand the techniques of system analysis developed by WAPDA's general con-sultants.

The studies reported herein are the result of a co-operativeeffort between Gibb and Harza. Gibb held primary responsibility forpreparing input data consistent with the Bank consultants' developmentprogramme and the associated technical criteria and assumptions, forselecting the sequences of river flows adopted, and for evaluating theresults. Harza provided advice and assistance in arranging and pro-cessing the input data in the form required for the analysis, and inthe use of computer facilities.

- 2 -

The period July to August 1966 was used for the preparation ofthe input data described in Chapter 4. 'The studies were then carriedout in Chicago in August, 1966, using the IBM 7091 computer at theIllinois Institute of Technology Research Institute.

1.2 CONDITIONS OF SEQUENTIAL RIVER FLOWS

Three analyses and one supplementary analysis were made underdifferent sequences of flow in the Indus, Jhelum and Chenab Rivers.Water years, assumed to begin in October, were used rather than calendaryears. Thus a water year begins in October of the previous calendaryear and continues until September of its own calendar year. In eachcase the analysis was applied to projections for the 20 year sequence ofwater years from 1966 to 1985.

The four conditions of sequential river flors were:-

(i) Mean Year Sequence

A mean water year was used in each of the 20 years forthis analysis. The mean was taken from monthly flowsover the same 41 year period of water years, 1923 to1963, as were adopted in the IACA studies. This sequenceprovided a direct comparison with many of the IACA pro-jections.

(ii) First Historic Sequence

For this sequence actual recorded river flows were used.The historic period of water years 1926 to 1945 wasapplied in the same sequence to the period of the study1966 to 1985. In this way the programme was tested undera sequence of river flows which were known to have actuallyoccurred.

(iii) Second Historic Sequence

This analysis provided a second test of the programmeunder actual river flows. The same period of water yearswas used as in the previous analysis but the order of thesequence was transposed by ten years. The historic flowsof the water years 1926 to 1935 were applied to the period1976 to -1985 and the years 1936 to 1945 were applied to1966 to 1975.

(iv) Supplementary Sequence

The -river flows in this analysis were the same as in thefirst historic sequence except that certain flows werereplaced by those of a critically low water year. Thisanalysis served as a further test cn the power programmeand as a check on the possible scale of irrigation.

I

- 3 -

shortages. The critical water year selected was 1955which was also used in the IACA studies. In this wateryear the lowest October to May floir of record occurredon the Indus, Jhelum and Chenab Rivers combined. Thiscritical year was applied to 1976 ;nd 1985. It wasnot used for the water year 197L, which is likely to bedifficult for power, as both the h:.storic sequenceshappened to produce low rabi flows for that year.

The conditions of sequential river flows are discussed in moredetail with the assumptions for other tributary rivrer flowis in Section.l4. The other input data described in Chapter b wrere the same in

each of the sequential analyses.

I

CHAPTER 2

THE DEVELOPMENT PROGRAMME

LICA considered potential development of water resources in theIndus Basin from the combined aspects of agriculturo, water supply andeconomics. These considerations led to a proposed groundwater andcanal development programme which is reproduced as F'igure 1 of thisreport. The installed tubewell capacities, canal sizes and irrigationrequirements which are used as input data for the soquential analyseswere based on this programme for development.

The dominant feature during the first decade of the IACA pro-gramme is the continued installation of tubewells to provide newirrigation supplies and simultaneously to control the watertable. Thefollowing decade from 1975 to 1985 would witness tho extension ofpublic tubewells fields over the outstanding usable groundwater areasand hence the achievement of fully integrated tubewoll and canalsupplies. IACA's estimate for the number of public and private tube-wells which would be operating in reference years fr'om 1965 to 1985under their proposed programme is shown in Table 2.1.

TABLE 2.1

Projected Number of Wells in Operation

Plan Year 1965 1970 1975 1980 1985

Public Wells(2 to 5 cuseccapacity)

Usable groundwater 2,200 9,500 19,800 32,200 34,300Saline groundwater - - 200 I,500 9,800

Private Wells(Approx. 1 cuseccapacity. Canalcommanded anduncommanded areas)

Electric 9,000 17,000 24,000 18,000 23,000Diesel 23,000 35,000 2b,000 5,000 2,000

The scheduled completion of Mangla Dam (4.5 MAF) on the JhelumRiver in 1967 has a predetermined place in the IACA programme as alsodoes the proposed Tarbela Dam (8.6 MAF) which, undee the IACA terms ofreference, is assumed to begin operation on the Indus River in theautumn of 1974. Surface storage development is alsc expected atChasma in 1971 but the reservoir size there would be relatively small(0.5 MAF). Further storage proposed by IACA at Sehuran/Manchar

I

I

II

- 5 -

(2.2 MAF capacity), equivalent to 1.8 MAF of useful storage, in 1982would be particularly related to the enlargement and remodelling ofRohri Canal. Other storage projects would be implemented after 1985which is the last reference year for the sequential analysis.

The improved irrigation supplies and the control over the water-table in usable groundwater zones form the backgrouad to canal enlarge-ment in the IACA programme. Canal enlargement is a:plied to a limitednumber of canal commands in the first decade but the programme for en-largement gains momentum and takes the leading rule in further develop-ment. IACA's projections for the areas which would be developed bycanal enlargement-and by tubewells and horizontal d&ains are shown inTable 2.2 for 1965, 1975 and 1985.

TABLE 2.2

Areas Developed under Proposed Progrwmme

(millions of acres CCA)

1965 By 197' By 1985

Saline groundwater area undersub-surface drainage development:

Vertical drainage - 0.5 4-3by tubewells

Horizontal drainageby tile drains - 0.3 1.1

Total saline groundwater areawith sub-surface drainage - 0.8 5.4

Usable groundwater area underpublic tubewell development 1.3 10.8 18.7

Total area under groundwaterdevelopment 1.3 11.6 24.1

Area under development bycanal enlargement - 0.9 5.9

From their projections for development, IACA calculated the tube-well pumping requirements. Stone and Webster took these IACA estimatesfor tubewell pumping and added their own projection.; for other powerdemands in order to derive a programme for the installation of powergenerating equipment. The power installation programme and the basicload forecasts form part of the input for the sequential analyses andare described in Chapter .

I;

PROPOSED BASIN GROUNDWATER AND CANAL DEVELOPMENT PROGRAMMEINCLUDING HORIZONTAL DRAINAGE

REGION,AND COMMAND, PROJECT PLAN YEAR PLAN PERIODOR DEVELOPMENT AREA Ns T R_9/61W8 19681 N iPm/h 7 1971/i2 1974/4 19741/ sz75- O 980- as /95 - iooo

PESHA WAR VALE

UPPER SwA r

L OWER SWAT

A8UL /RIVER

WARSAK HIGH lEfVEfL

I.Dous RIoHr BANK ANO THAL DOAB

THA L DEVELOPmeNT----

/MUZAF:4AROA 'NJ SCARP 3AND RAN o PUR ----------

o G A'HAN#______.....,__

PAHARPUR (D I. aAN) DEV,_

CHAd DOAG

LoEvR JEL u£44 j SCARP 2

AECHNVA DOA_

Al-f LINEC U SPP_ __e-AND LOWEr cNEANAaI SCARP4

4'PPER CHENAB J --S.OWER CHNr.AA SCARPIIw" ----

LOWER RECHNIA DVrLoPwNTvrl ==

sHoRNor- RAMALI/A PROJEcr(2_

BARI DOA B

WAGAN PRojecT(3)

RA Vl SYPAON-DIPA4PUR LINK PRoJEcr _ G __

DIPALPUR AaOVE B-S LINK PROJECr

omm,pow e Stojw e-s AlvloroRojcr_ C __

SHUAABAD PRoJECTr 4)(9)

LOWER BARI DOAd3 DnEVEOPMENT (5)_ |- -- -

PAXPATrAN ABOVE S-l LAINK DEVr (6)

PoAKPArrAm ariowS-m LlAw Ory _ le

SBEGAI DESKERT _AD PATr7

MAfALSI 8ELOW S-, L/NVK OC ,(a) zr

SUrifJ AAD PAA,V.1AD LZ"r8A#1r

ORTD WAE - SANDO AA -' NOT ,

8AAIAWAI- QAI 9 __ C ez

PAN.IA(AD- AfiASIA 09J _______.

L oWER //VDUS _ _ _ __ __

GHorErXC

BEGARI S/NDO,ESERr AIVO PArT__ _

NO,9rN WAE3r AAsO DADU VoRrH 9 -e

OPADU SOUrH

RI1CE

rAAIRP(IR EAsr AND WeSr

ROHRI VORTrH(9_

RONRI SOUTHr (9)

NARA PUPS_ _

EASrERN NARA

KB. EEDER, OCHNrO Is A/ID PUMPS_

AINYARI AND AU |ELI

LINED CHANNEL GAJA

rANDO BACO Ga 0 ------

USABLE GRoUvowArTEA wELLS CANAL fNL4,RGEA4ENr

SAL/NE CROUNWOATER WELLS HORIZOANrAL DRAINAGEFI G. I (TILE DRAINS)

PROPOSED BASIN GROUNDWATER AND CANAL DEVELOPMENT PROGRAMIM

NOTES ON FIGURE 1

The programme takes account of the following developments which are not

shown in the figure:

Mangla Dam to be completed in 1967.

Other IBP works (including Chasma Barrage) to be completed in 1971l

Tarbela Dam to be completed in 1974.

Sehwan Barrage to be completed (including Sehwan-Manchar storage)in 1982. 1

Sehwan-Nara Feeder to be completed in 1985.

Lower Indus Left Bank outfall drain under construction 1968/85.

Lower Indus Righ Bank outfall drain under construction 1980/90.

Northern zone surface drainage projects under construction 1965/72.

Additional Link canal capacity under construction in the Punjabfrom 1980.

Well drilling periods are shown for each tubewell project. Tubewellswould be fully operational one year after completion of drilling.

NOTES:(1) Lower Rechna Development area covers lower Chenab Canal command

excluding the areas in SCARP 1 and in the Shorkot-Kamalia Project(see below).

(2) Shorkot-Kamalia Project area covers the usable and saLine ground-water areas of Haveli Canal command, Koranga and Kot Distributariesof Lower Bari Doab Canal, and the tail of Burala Branch of LowerChenab Canal. The project includes remodelling of some distribu-taries, and subsurface drainage by tile drains in the saline ground-water areas.

(3) Wagah Project covers the present CCA between the Ravi Siphon.6Dipalpur Link and the Indian border.

(4) Shujaabad Project area covers the usable groundwater areas ofShujaabad Branch of Sidhnai Canal, Fazal Shah Distributary of LowerBari Doab Canal, and the tail of Lodhran Branch of Mailsi Canal.

(5) Lower Bari Doab Development area covers the Lower Bari Doab Canalcommand, excluding Fazal Shah, Koranga and Kot Distributaries whichwill be developed with other projects (see (2) and (4) ). A pilotscheme to include subsurface drainage by tile drains and distribu-tary remodelling is proposed in the saline groundwater area on theleft bank of the head reach.

I

(6) Includes that part of Mailsi Canal comnmand which lies above theS-M Link.

(7) Excludes Shujaabad Branch, which is in Shujaabad Project.

(8) Excludes tail of Lodhran Branch, which is in Shujaabad Project.

(9) Project covers development of usable grouncbdater area by tubewellsbut does not include canal remodelling.

(Notes on Figure 1)

- 6 -

CHAPTER 3

I4ETHOD OF ANALYSIS

3.1 GENERAL

The method of analysis consists of a numerical model of theIndus Basin Power and Irrigation System which simulates system operationusing time intervals of one month for any desired period of years. Thesystem corresponds geographically to the Indus Plains and the PeshawarVale and the storage reservoirs on the Indus and its principal tribu-taries. The basic model includes all existing irrigation and powerfacilities, projects under construction and all major potential projectsas shown in Figure 2. Individual components of the system may beincluded, excluded, or modified by suitable selections of input data.The water and power demands of the system are also defined by input datawhich can be chosen to correspond to projected future demands. An IBM7094 electronic computer is used to perform the computations. Thecomputer programme and the general principles of system operationassumed in its formulation, are described in 'A Guide to the ComputerProgram' published by Harza in March 1966 and revised in September 1966.

The account of the method of analysis contained in this sectionis largely confined to a discussion of those areas where the proceduresfollowed in the Harza method differ fram the procedures and assumptionsadopted in the system analyses made by IACA in the course of the IndusSpecial Study. Reference should be made to 'A Guide to the ComputerProgram' for a more detailed account of the Harza method of analysis.

3.2 INTEGRATED USE OF SURFACE AND GROUNDWATER

The IACA and Harza system studies differ in regard to the useof groundwater. In the IACA analysis the pattern of groundwater pump-ing is pre-determined by Discrete canal command studies in which allow-ance is made for groundwater mixing and the state of development ofpublic and private tubewells. The remainder of the watercourse require-ment is made up by surface water deliveries. The elements of surfacewater are then aggregated to build the demand throughout the system.The Harza computer programme works in the reverse manner by first dis-tributing surface water throughout the system and then pumping in thecanal commands to meet the watercourse requirements. Both studies aimto balance the volume of recharge in a command by an equal amount ofgroundwater pumping, thus maintaining the groundwater at a fairlyconstant level. In the Harza system analysis pumping may, howeverexceed recharge when surface water deliveries are limited by canalcapacity or by a general shortage of water in the system and IACAassumed the same principle in their development plan.

In practice the two approaches would produce much the same results.

W.rs.k D..

.Goml Rarwo,r .. und.. ./W

A_randaro H/W

ARABIAN~~~~~~~~~~~~~~ \oig //5Of Suku J".lu R org inir soor

Rep~~~~~.d~~~~cd f.m,,, ~ ~ ~ .d C..

G.~~~~~~~~FG

+~epoinOd by ver ONversoon foru.te \rP FDA\ \r / a

+ Irolgrztion ConoI t /SId~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~hnc .k t; 1 \ \ Borroge \s° rQ/ J / | f~~~~~~~~~~~~~~~~~~~~~~....

T Slphon \ \ 2\ \ Oodirobod / Khonki D Shodlarol /~~~~~~~~~~~~~~~~~~~~~~vD Hydroeleelrie Porrerplont \ \ 3/ \ \ Borroge ffi t Borro,gel ldorolo^30rroge c~~~~~~~R ....

SYMBOLSA\g ~~ ~~ ~ ~ ~ ~~~~~~ R B.,a \,m-l Rolk ... t °

X~~~~~~~~~~~~~~~~~~hk Sh\ .d...l

N r ~~~~AKSTAN Bro

\ C ~~~~~~~SCHEMATIC DIAGRAM

/ ~~~~~~~OF IRRIGATION AND

POWER SYSTEMRptrprdf-sed fo

dis,orom -"rooeo 4 H-rw f-i WAPDA F IG. 2

-7 -

Consequently it was decided to retain the Harza logic in the analysis

without any change to the computer programme.

The Harza and IACA methods of analysis both assume a high degreeof co-ordination between surface water distribution and groundwater use.

Both consultants recognise the difficulty of including privately ownedtubewells in an integrated system. Current indications are thatutilisation factors for private wells are much lower than for publicwells. Preliminary system analyses made by Harza indicated that the

lower utilisation faccors associated with private tubewells could be

recognised in the analysis by means of input data rather than by a

change in the computer programme. The effective pumping capacity for

private wells was taken as 30 per cent of installed capacity and for

public wells as 87 per cent of the installed capacity, which represents

the maximum monthly utilisation rate adopted as a criterion by IACA.

This subject is elaborated in Chapter 4.

3.3 POIER AND ENERGY GENERATION

Although the Stone and liebster basic load projections and plant

installation schedule were adopted as input data for the sequential

study, complete compatibility cannot be achieved due to differences

that exist between the Stone and Webster method of computing the peaking

capability at the hydro plants and that of Harza. Stone and Webster

impose a limitation on peaking capability in months when reservoir out-

flow is less than the flow required for continuous full gate operation

of the turbines. Harza do not impose any restriction on peakingcapability other than that resulting from the head on the turbines and

it is assumed that full gate output can be developed whenever required.

However in the months of minimum reserve generating capacity the

reservoir outflows are in most cases sufficiently large to allow full

gate operation and therefore at such times the Stone and Webster method

does not result in any significant reduction in peaking capability.Furthermore the Stone and Webster analysis of generating capability is

based on calculations at ten day intervals and the hydro capability for

any month is governed by the lowest ten day period. In the Harza

analysis hydro peaking capability is determined by the head correspond-ing to the mean reservoir level for the month. In effect the

comparison would be between a minimum capability and an average value.

It was decided to retain the Harza logic in the analysis,

although it was recognised that the peak reserve indicated might be

higher than obtained in the Stone and Webster analysis. The effects

of the two different methods of calculating peak reserves are examinedin Chapter 5.

3.4 LOAD DISPATCHING AND INTER-ZONE TRANSFERS

The basic power and energy demands for the North and South Zones

are defined by input data and groundwater pumping loads are computed

- 8 -

in the analysis. Total power and energy demands are thereforeobtained for each month of each year of the analysis and for each zone.Two important elements of the load duration curve-are then derived,the maximum ordinate, which 9s akb fir the- total area under

the curve which is the total energy`.lBy assum he curve to beparabolic and to be a function of the system load- factor, it is possibleto define the complete shape of the mont-hly load duration curve, and to

match the requirements with the hydro and thermal components.

A load dispatching process is used in the analysis to determinepeak reserves or deficiences in each zone, and to compute inter-zonetransfGrs of power and energy. For the purposes of the analysis the

South Zone includes Karachi. Transfers between the North and South

Zone can only take place after interconnection, the date of which is

determined by input data (1973 in the analyses described herein).Transfers from South to North take place only when there is a capacity

deficiency in the North and reserve capacity in the South. Transfers

from the North to South will always take place when there is surplus hydro

capacity after the demands of the North Zone have been met, to reduce

the consumption of thermal power in the South Zone.

- 9 -CHAPTER 4

INPUT DATA

4.1 GENERPL

The input data used in the sequential analysis fall into sixmain categories:

(i) data descriptive of the existing and future physical com-ponents of the irrigation system, such as canal commands,main canals, link canals, barrages and reservoirs, andtubewells for irrigation and drainage;

(ii) data relating to groundwater hydrology including seepageloss factors, areal variations in groundwater quality,aquifer storage coefficients, and estimates of rechargefrom rivers, link canals and rainfall;

(iii) the surface water supply to the system expressed asmonthly river flows by years at the rim stations;

(iv) the demand for irrigation water expressed as monthlywatercourse requirements by years for each canal command,based on the development programme selected for analysis;

(v) projected demands for basic power and energy for eachmonth of the study period, the factors used to expressgroundwater pumping in terms of electric power and energy,and the capacities and characteristics of existing andfuture thermal and hydro-electric generating plants;

(vi) system operating criteria such as groundwater mixingratios, reservoir release patterns, and minimum releasesbelow reservoirs and barrages.

For the analyses described in this report, the input data areconsistent with the IACA and Stone and Webster development programmesand the associated assumptions and criteria. Different conditions ofsurface water supply to the system were considered in each of thesequential analyses but other input data remained the same in eachanalysis.

The account of the more significant input data presented in thischapter under the above headings is supplemented by further detailscontained in Appendix A.

- 10 -

4.2 THE IRRIGATION SYSTEM

(a) Comparison of Canal Commands

In their basin studies IACA used 61 divided canal command units,whereas the Harza analysis allows for 45 units covering the same geo-graphical area. It was therefore necessary to combine certain IACAunits, and in some cases to split units in order to make them compatiblewith the computer programme. The configuration of commands that wasfinally adopted corresponds closely to that used in Harza studies exceptthat Abbasia was combined with Panjnad, Desert with Pat, and Pinyariwith Fuleli. Thus 42 canal commands emerge which are shown in Table4.1 with the corresponding IACA commands indicated where the nomencla-ture differs. The IACA canal commands are shown in Figure 3.

(b) Link Canals

The system includes all existing link canals, the link canals ofthe Indus Basin Project, the canals required for diversion of Induswaters to offstream storage reservoirs and the canals associated withthe Sehwan Development.

The link canals of the system and the capacities adopted in theanalysis are tabulated in Appendix A.

The head and tail capacities of the link canals are defined byinput data for each year of the study; capacities are set at zero inthe years prior to commissioning. None of the canals required foroffstream storage set in the Harza programme are included in the IACAprogramme and hence their capacities are zero throughout the study.The links of the Indus Basin Project are introduced in the analysis inaccordance with the current construction programme.

There are three canals in the South Zone considered as linkcanals:

(i) the Nara Feeder, which is the existing canal supplyingthe Nara Command from Sukkur;

(ii) the Sehwan Feeder, which serve Sehwan Command(Rohri South) from Sehwan;

(iii) the Sehwan-Nara Link which will serve the Nara Commandfrom Sehwan.

In the IACA programme the Sehwan Feeder is assumed to commenceoperation in 1982, and Nara Command continues to be served from Sukkurthrough 1985.

TABLE 4.1

Canal Commands

Canal Command in Culturable CorrespondingSequential Analysis Commanded Area IACA Command

(nialion acres)

Upper Dipalpur .372 Dipalpur above B.S. LinkCentral Bari Doab .595 Ravi-Syphon Dipalpur Link Int.Raya Branch .1427 Existing non-perennial area

commanded by Raya Branch inUpper Chenab.

Upper Chenab Internal 1.018 Existing perennial area and theremainder of the existing non-perennial area of Upper Chenab.

Marala Ravi Internal .105 Marala Ravi Link Int.Sadiqia .975 Existing perennial area of

Fordwah and E.Sadiqia.Fordwah .387 Existing non-perennial area of

Fordwah and E.Sadiqia.Pakpattan 1.047 Pakpattan above SM Link, Mailsi

above SM Link, Qaim, andBahawal above MB Link.

Lower Dipalpur .611 Dipalpur below BS Link.Lower Bari Doab 1.575 Lower Bari Doab including Ravi

offtakes.Jhang and Rakh Branches 1.278 Area of Lower Chenab commanded

by Khanki headworks and theLower Chenab Canal Feeder.

Gugera Branch 1.703 Area of Lower Chenab commandedby Khanki headworks.

Upper Jhelum Internal .543 Upper Jhelum.Lower Jhelurm 1.500 Lower Jhelum.Bahawal .596 Bahawal below MB Link.Mailsi .996 Mailsi below SM Link and

Pakpattan below SM Link.Sidhnai .754 Sidhnai.Haveli Internal .143 Haveli.Ralgpur .3hb Rangpur.Panjnad and Abbasia 1.455 Panjnad and Abbasia.Upper Swat .276 Upper Swat.Lower Swat .169 Lower Swat, Doaba and Sholgara.Warsak .119 Warsak High Level Right and

Left Bank.Kabul .123 Kabul River, Jui Sheikh and

Inundation.Thal 1.641 Thal.Paharpur .104 Paharpur.Muizaffargarh .656 Muzaffargarh.D.G. Khan .872 D.G. Khan.Desert and Pat .382 Desert and Pat.Begari Feeder .693 Begari Sind.Ghotki Feeder .513 Ghotki.North West .633 North West.

-12 -

TABLE 4.1 (Continued)

Rice .337 Rice.Dadu .39 Dadu.Khairpur West .252 Khairpur West.Khairpur East .330 Khairpur East.Rohri 1.075 Rohri North and Rohri South

until 1983; thereafter RohriNorth only.

Sehwan 1.405 Rohri South from 1983.Eastern Nara 1.559 Eastern Nara.Kalri .27) Kalri Baghar.Lined Channel .152 Lined Channel (Gaja and Tando

Bago).Pinyari and Fuleli .897 Pinyari and Fueli.

(c) Canal capacities

The IACA figures for canal capacity were adopted throughout.At various points in time canal capacities were enlarged in accordancewith the IACA programme. The canal capacities used and the extentand timing of enlargement are shown in Appendix A.

(d) Reservoirs

The study assumes that three major reservoir schemes are intro-duced into the system.

(i) Low Mangla

This has an initial live capacity of L.94 MAF between E1.1202and E1.1040. The useful storage at a drawdown level of 1075,that was used in the IACA studies, is bl.5 MAF. For practicalreasons the volume of water trapped in the Jari arm wasneglected but the effect of this extra water is considered inthe evaluation of results. Impounding commences at Manglain April 1967.

(ii) Tarbela

The initial live storage content is 9.3 MAF between El.1550and El.1300. However the IACA assumption is that drawdownwill only be'-to El.1332, which allows a live capacity of 8.6MAF. Impounding is assumed to start in August 1974 and itwas considered for the purpose of the analysis that this wouldpermit only-5-.0 MAF to be stored in the first year of operation.Full impounding begins in June 1975.

SO NVflPWf IVNVO

£ 9I 1SJIN31)

N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~S1 =sND''.S -T 31~ ~ ~ .-Ee ~~~~~~~~~~~~~~ I

N......

- - ~ ~ ~ ~ ~~~~~~7z.. l v

-

- -'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- A-

4t t'" t~~~~~V4

IW^S AI§-S .3.01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

- 13 -

(iii) Sehwan

The Sehwan project is assumed to come into operation inSeptember 1982 with a storage capacity of 2.2 MAF, takenfrom the LIP report, which after evaporation allows auseful storage of about 1.8 MAF.

All three reservoirs are subject to evaporation losses and sedi-mentation. In the case of Mangla and Tarbela evaporation losses aresmall in relation to storage capacity and only amount to an annualvalue of 0.05 and 0.1 YAF respectively during the release period. AtSehwan, however, they are significant and account for about 20 per centof the storage capacity. On the other hand Mangla and Tarbela,particularly the latter, suffer from quite severe sedimentation. Thesediment is treated as a function of river flow and at both thesereservoirs 50 per cent of the sediment is considered as depleting livestorage. The figures used for sedimentation are such that in a meanwater year Mangla depletes at a rate of 0.02 MAF a year and Tarbela at0.12 MAF a year.

No allowance is made in the study for the Chasma reservoir whichwould store up to 0.5 MAO since it was considered that it would be bestoperated on a variable release pattern, and the computer programme allowsvariable operation only at the main reservoirs. However allowancecan be made for this in considering the results.

(e) Tubewell Installation

The pattern of tubewell installation is based on the IACAprojections for public and private tubewell development. Tubewellcapacity is in two parts, tubewells used for irrigation and in somecases also for drainage in the areas of usable groundwater and tube-wells used for drainage alone in the areas of saline grcundwater.

In the areas of usable groundwater the tubewell capacity wascalculated for every command for each of the twenty years of the study.For public tubewell areas the effective capacities used are 87 per centof the existing, or planned, installed capacities, since 87 per centrepresents the peak monthly utilisation factor projected by IACA. Inthe case of private tubewells a different approach was used. The IACAprojections have assumed an annual utilisation factor for private wellsof 27.4 per cent. The difficulty that arises is that the logic of thecomputer programme will try to maintain the groundwater table at afixed level, in this case, ten feet. This has the effect that in anarea of low installed tubewell capacity, the pumps will be used to100 per cent of their capacity, which will give unrealistic quantitiesof groundwater pumping. To offset this tendency the value of effectivecapacity for private tubewells was tacen as thirty per cent of the in-stalled capacity. This will correct the annual pumping total thoughat the same time leaving no flexibility in the monthly figure. In areasof mixed development (i.e. private and public wells in the same command)

I

- 14 -

the capacities of public and private tubewells were added. Someallowance was also made for persian wheels in the early years of thestudy. The use of groundwhater in a command is physically limited bythe capacities as computed above, but, mixing criteria also imposelimitations and these are discussed in section 4.7(a). A table showingthe installed capacity for each command at four points in time, 1970,1975, 1980 and 1985 is shown in Appendix A.

Drainage capacity in the saline areas was installed in accordancewith the IACA plan. Three options exist for the disposal of drainagewater.

(i) To discharge it into the river.

(ii) To evaporate it in salt-pans.

(iii) To pass it by drains into the sea.

Also, in some commands drainage pumping and release of drainageto the rivers is restricted to months of high river flow in order toensure dilution of drainage effluent. The assumptions regarding thetiming and disposal of drainage releases for each of the canal commandsare set forth in Appendix A.

1.3 GROUNDW1ATER HYDROLOGY

(a) Quality of Groundwater

In order that watertable depths and drainage requirements canbe estimated, each canal command is divided into 'area good' and 'areabad'. 'Area good' is the area wherein mixing criteria allows all re-charge to be pumped for irrigation use and is defined as the part ofthe gross commanded area lying outside the 3000 ppm isogram or the 2000ppm isogram in the case of the Lower Indus canal commands. 'Area bad'is the area wherein none of the recharge can be used for irrigation,and is the part of the gross commanded area lying within the 3000 ppmisogram or 2000 ppm for Lower Indus. The use of groundwater qualitydata in the determination of mixing ratios is explained in Section 4.7(a).

(b) Aquifer Storage Coefficient

The aquifer storage coefficients used in the study are 0.15 forthe North Zone and 0.13 for the South Zone. This means, for examplein the South Zone, that one cubic foot of aquifer below the watertablecontains 0.13 cubic feet of recoverable groundwater. The change indepth to groundwater (an average value for each canal command) is asimple computation based on aquifer storage coefficient, 'area good' or'area bad', and the difference between pumping and recharge. Estimatesof depth to groundwater are therefore directly related to the aquiferstorage coefficient.

I

I

- 15 -

(c) Canal Loss Factors

Loss factors used to compute seepage and evapotranspirationlosses from the main canal systems and the link canals are those used byIACA in their system analysis. The annual computed losses as a percent-age of annual canal head diversions are about 28 per cent in the NorthZone, and 23 per cent in the South Zone. Annual link canal losses rangefrom 5.2 MAF to 6.1 MAF.

The proportion of main canal losses going to groundwater re-charge is defined by input data; in this analysis a value of 0.80 wasused.

(d) Watercourse Field Losses

The losses assumed in the analysis are as follows:

Watercourse loss 10% of watercourse deliveryField losses 30r of field delivery

IACA assume that one half of the watercourse loss and one thirdof the field loss are non-recoverable. Therefore the recoverable loss,or recharge, is 23 per cent of the watercourse delivery and this value isused for all canal commands in the system.

(e) River Losses and Gains

The factors and equations used to compute river losses and gainsare tabulated .in Appendix A. The factors were derived by Harza fromflow records for the period 1937 - 1946 and were also used in the IACAstudies.

(f) Groundwater Recharge

The three main components of groundwater recharge are:

(i) Seepage from main canal systems (all channels in acanal command between the head of the main canal andthe head-'of the watercourse).

(ii) Seepage-_from watercourses and deep percolation fromthe f ields.

(iii) Other 1os686 to groundwater which include seepagefrom-li•k-canals and rivers, and rain throughput.

Components~(i) and (ii) are directly computed in the analysis.The factors required for the computation are introduced as input data.

Component (iii) is input data and values of this component foreach month and for each canal command are computed by hand. Previous

- 16 -

studies are used to obtain total link canal and river losses. Riverlosses in each river reach were divided into the seepage and evapo-transpiration components and the recharge from each reach computed anda similar calculation was made for link canals. The annual contributionof links and rivers to recharge within the canal cammands is of the orderof 9 MAP. This is less than 'total seepage losses since some lossesoccur outside the canal commands. The distribution of the link andriver recharge between the commands is based on map studies, and rainthroughput is added to obtain monthly values of component (iii) for eachcanal command.

The computer programme is so written that the computed values forcomponents (i) and (ii) for each month in each command are added to inputvalues for component (iii) to obtain total recharge. The total rechargeis then multiplied by a factor (defined in the input data) to obtain thedistribution of recharge between 'area good' and 'area bad'; values forthis factor are obtained by map studies and hand computations based onprevious system analyses.

L .L SURFACE WIATER SUPPLIES

(a) Indus, Jhelum and Chenab Supplies

The conditions of sequential river flows used in the analysishave been described in Section 2.2. In the historic sequence, theactual river flows have a considerable bearing on the results of theanalysis. Months of high river flow can produce plentiful surfacewater supplies and a reduction of groundwater use, whereas low flowscan increase the tubewell pumping requirements and cause shortages. Themean water year used by IACA may be regarded as a bencbmark and an exam-ination of variations in the historic sequence from the mean provides avaluable guiding light in which to view the results.

Table h.2 shows how the rabi flows from October to March for thehistoric sequences vary from the 41 year mean flows used by IACA. Themost striking feature is that on total balance for the twenty yearperiod the rabi flows between October and March in the Jhelum and ChenabRivers combined are 17 WAP less than mean. The Chenab has a particu-larly large number of low flow years with a total of 12 MAF less thanmean in rabi over the twenty year period. The Indus rabi flows areslightly higher than mean on balance over the twenty years.

The overall effect of the variations in the historic sequencesfrom the mean water years would be to produce rather critical conditionsof surface water availability in the areas served by the Jhelum andChenab Rivers alone, shown in Figure 4. These critical conditionswould in turn be reflected in the remainder of the system in spite ofthe fact that Indus flows in total are reasonably close to the mean.One factor which influenced the choice of years was that Harza hadalready processed figures for river flows in a thirteen year sequenceand considerable extra work was avoided by incorporating this thirteen

I

LIZ Land commanded by Chenob Rivger.

LI] Land commonded by Jhe/um or Je/um and Chenab Rlvers. WARA 5

2 Land comrnanded by Indus or Indus, ihe/um ond Chenab IQ,vers... ,> pfS f/A WAR

LI* Land commanded by kobul or Swa* Rivers. JIA A4AE

ARG g .CHAS4 BARAAG WA T

BARRAG R -

RIVER AND LINK *CANAL DISTRIBUTION SYSTEM./97/ Situa*/on (inc/udin9 / B. /Links) FSITG. 4

- 17 -

year Harza period into the twenty year period for the sequentialanalysis. It was also considered that a more trenchant test of theIACA programme would be provided by low rabi flows than by high flows.

Apart froma these overall considerations of the twenty year period,there are significant variations in individual years and months. Thelowest combined rabi flow was in 1941, equivalent to 1981 in the firsthistoric sequence and to 1971 in the second historic sequence, when thetotal flow was 7.0 MAF less than the mean. On the other hand in 1930,equivalent to 1970 and 1980 in the first and second sequences respect-ively, the total flow was 8.3 MAF higher than the mean. The fullmonthly flows for the three rivers are shown in Appendix A.

TABLE 4.2

Variations of Historic Rabi Flows from Mean Flows

Equivalent Equivalent Variation of Historic Rabi FlowWater Water Year Water Year October to MarchYear in first in second From 41 Year Mean Flow

historic historic (MAF)sequence sequence Indus Jhelum Chenab

1926 1966 1976 - .1 -1.0 -1.127 67 77 - .7 -1.14 -1.228 68 78 +1.0 - .2 -1.029 69 79 -1.2 + 7 - .330 70 80 +4.6 +3.0 + .7

1931 1971 1981 0 - 3 -1.332 72 82 +2.2 - *3 -1.233 73 83 - .1 -1.2 -1.134 74 84 - *5* -1.1 - 735 75 85 + o5 -1.0 - o8

1936 1976 1966 +1.3 + .8 - .337 77 67 -1.6 - .3 - *938 78 68 -1.7 + .1 + 339 79 69 +2.8 + .2 - .540 80 70 - .8 -1.6 -1.6

19)1 1981 1971 -3.14 -1.7 -1.942 82 72 +1.6 +1.1 + .543 83 73 +1.2 + 9 +.844 84 74 - .9 -1.1 045 85 75 - .6 - 7 - .5

TOTAL +3.6 -5.1 -12.0

For input into the computer programme, flows of the Indus Riverat Attock are divided into the component flows of the Kabul River atIJarsak, the Swat River at Amandara and the Indus at Tarbela. The Indus atTarbela is itself composed of the Indus at Darband plus the Siran River, asmall tributary between Darband and Tarbela, Indus flows at Darband werebased on Attock records and were derived from the method agreed in 1964 byGibb, Harza and TAMS and described in Annexure 4 of the IACA Comprehensive

I

- 18 -

Report. Studies were made by Harza in 1964 to derive data for the Swatand Kabul Rivers which when combined with the Tarbela flows would beconsistent with the Attock record. The study revealed an annual discrepancy ofof about 4 MAF which was removed by the introduction of a tributaryinflow to the Kabul below Warsak. Tributary inflow on the Swat Riverbelow Amandara represents supplies from the Panjkora River, a majortributary of the Swat.

A further tributary inflow was introduced on the Jhelum River inorder to take account of the recorded gains in the river between Manglaand Rasul.

(b) Ravi and Su.tlej Supplies

Surface water supplies from the Ravi and Sutlej Rivers weretreated differently from those of the Indus, Jhelum and Chenab. Underthe terms of the Indus Water Treaty the flows of the Ravi and Sutlejwill be available for use wholly by India after 31st March, 1970, unlessPakistan applies for a deferment of up to three years. The proceduresfor sharing supplies in the Ravi and Sutlej during the transition periodbefore 31st March, 1970, are set out in Annexure H of the Indus WatersTreaty. In January 1966 Harza made a study (unpublished) in order todetermine haf much water could actually be expected by Pakistan fromthese rivers during the transition period. Harza based their calcula-tions on discharges in the water year 1945 which they considered tocorrespond approximately to average year runoff conditions for the Raviand Sutlej. They then computed the minimum supplies which would haveto be released by India to fulfill her obligations under the Treaty.Supplies were considered in two periocb; the first period extended to30th September, 1968, after which it was assumed that Mangla releaseswould be fully available for use in Pakistan, and the second period wasfrom 1st October, 1968, to the end of the transition on 31st March 1970.It was calculated that in the second period, starting on 1st October,1968, there would be no rabi water supplies available from India.During the first period, up to the 30th September, 1968, there would besupplies from the Sutlej River at Ferozepore and from the Ravi River atMadhopur through the Upper Bari Doab Canal. The total rabi flowsentering Pakistan between October and March in the water years 1967 and1968 would be:

Ravi River to Central Bari Doab Canal 0.48 MAFSutlej River at Ferozepore 1.80 IAF

Total 2.28 MAF

The supplies computed by Harza for the Ravi and Sutlej Riverswere used in each of the sequential analyses and are tabulated inAppendix A. The rabi supplies computed by Harza are substantially lessthan either the assumed replacement storage at Mangla of 4.75 MAF or thehistoric deliveries from the Ravi and Sutlej. The effect on theanalysis of these low rabi supplies is to produce shortages which may ormay not occur in-practice during the years before the advent of XMangla,

I

I

- 19 -

a period which is well before the IACA projections become effective.

4.5 WATERCOURSE REQUIREMENTS

Irrigation water requirements at the watercourse are functions ofthe development programme and are the primary determinants of the scopeand timing of other physical works such as storage reservoirs, enlarge-ment of main canals and link canals, tubewell capacities and the gener-ating facilities needed to serve the pumping loads. Monthly watercourserequirements for each canal command for each year of study constitutethe most important block of input data. The watercourse requirementsaccount for 10,000 separate values out of about 60,000 separate valuesfor all kinds of input data in each sequential analysis.

As part of their planning studies IACA computed watercourserequirements for the reference years 1970, 1975 and 1985 and estimateswere also made for present conditions of development. For the years1975 and 1985 the requirements were based on full crop watering for theprojected cropping patterns and intensities. In the period prior to1975 the transition from present day watercourse deliveries with itsassociated underwatering and unregulated deliveries to optimal deliverieswas accomplished in three ways.

(i) In commands where public tubewells are installed,full delta watercourse requirements coincide withthe implementation of the project.

(ii) In the remaining commands, supplied by the Jhelumand Chenab rivers, Mangla reservoir is assumed to becapable of regulating rabi flows. In these areashistoric seasonal totals were maintained but re-distributed by months in accordance with the computedrequirements.

(iii) In commands served by the Indus main stem in which nopublic tubewell development was scheduled before 1975mean historic monthly deliveries were maintainedwithout regulation.

In conditions (ii) and (iii) an extra allowance was made for thecontribution of private pumping.

These figures were derived for the 61 development units of theIACA study and therefore had to be rearranged to suit the 42 canalcommands used in the analysis. Finally it was necessary to inter-polate between the reference years to obtain watercourse requirementsfor the remaining years of the study period. Interpolation factorswere used which were keyed to the IACA projections for growth ofintensities. A programme was developed for an IBM 1620 computer andused to compute the monthly values and punch the cards in the formatrequired for the IBM 709M. Such an approach necessarily involves a

IiI

- 20 -

certain degree of approximation and the validity of the figures shouldonly be viewed on an overall basis. Figures for the annual total ofwatercourse requirement in certain reference years in each command withthe appropriate intensity are given in Appendix A.

1!.6 POIWER DEMANDS AND INSTALLATION

The forecasts of basic power and energy demands prepared by Stoneand Webster were used as input data in the sequential analysis. Thebasic load includes all classes of load other than pumping loads forirrigation and drainage. Pumping loads are computed in the analysis byapplying factors to the monthly volumes of groundwater pumping and thenadded to the basic loads to obtain energy and power demands for thesystem.

The thermal plants and hydro-electric generating units wereintroduced during the study period in accordance with the Stone andWebster schedule reproduced in Appendix A. The boundary of the NorthZone is south of the Multan thermal plant. The South Zone includesKarachi for the purpose of this analysis. The capacity of the North-South inter-tie is defined by input data, and a capacity in excess ofpotential transfers was used in the study in order to determine themaximum extent to which the output of the North Zone hydro plant couldbe used in the South.

h.7 OPERATING CRITERIA

(a) Mixing Ratios

In the IACA studies groundwater quality zones were treated asseparate entities and the following mixing ratios were adopted.*

Deep Groundwater Average Mixing RatioQuality Zone Surface Wvfater to

(ppm TDS) Groundwater

0 - 1000 No restriction1000 - 2000 1 : 12000 - 3000 2½ : 1

Over 3000* No groundwater use

*Although the computer study does not deal with groundwater zonesexplicitly the mixing ratio is controlled in the programme by a factor whichonly permits a prQportion of the watercourse delivery to be met by ground-water. This factor will vary from 1.0 in a fresh groundwater zone to zeroin a saline zone, and for a command with different zones a weighted averagefactor was calculated. These calculations were made separately for eachcommand over the twenty years and account for the apparent monthly variationof pumping capacity.This factor was also used to control the internal distribution of ground-water within a canal command and prevent pumps from supplying the watercourserequirements of an area not served by tubewells. This is particularlyimportant in the case of private tubewells which are concentrated inportions of the canal command and cannot supply the remainder of that command.

**Over 2000 ppm in Lower Indus commands.

I

- 21 -

(b) Reservoir Operation

The reservoirs were operated in the manner suggested in the IACAReport with the following fixed release patterns, shown below as amonthly percentage of live storage.

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May

Mangla* 23 15 10 10 24 18 - -

Tarbela - 8 11 21 26 19 10 5Sehwan - 10 30 27 33 - - -

The releases at Tarbela were slightly modified in 1975 sinceonly 5 ItAF was impounded in the previous year. The release patternswere developed to make allowance for an average condition of low rabi,but would clearly be modified in operation to match the variation inriver flows. It was however, considered too complicated to vary therelease patterns in the study, and hence they remained constant.

After an examination of preliminary results it was concludedthat there was no justification in maintaining the drawdown level atMangla as high as 1075. Consequently the reservoir was drawn down to1040 in all years except 1975 when there appeared to be a slight shortageof power capability.

The following outlet facilities were assumed to be effective:

Mangla below Spillway crest (1086) 4 tunnelsTarbela below Spillway crest (1492) 4 tunnelsSehwan No restriction

Outlet capacities below the spillway level at Mangla and Tarbelaare governed by the installation of turbines and valves. Above thespillway crest the capacity is virtually unrestricted.

(c) Link Canals

The computer programme provides for several alternative modesof operation for the Chasma-Jhelum and Taunsa-Panjnad Links. In thisanalysis the Chasma-Jhelum Link is operated to meet requirements at Trimmu,and the Taunsa-Panjnad Link is operated to meet requirements at Panjnad,when Jhelum and Chenab flows are not sufficient to meet the demands atthese diversion points.

*Due to an input error, a small amount of impounding takes place atINangla in April. In fact this makes no significant difference tothe analysis as in a mean year 0.3 MAF is in any case involuntaryimpounded due to the restriction of the outlet capacity.

- 22 -

CHAPTER 5

PRINCIPAL RESULTS OF ANALYSIS

5.1 GENERAL

The results of the sequential analysis for the period 1966-1985generally confirm the earlier studies made by IACA for certain referenceyears including 1975 and 1985. The water and power demands of thesystem as projected by IACA and Stone and Webster are adequately servedby the physical works embodied in their development programmes.

As discussed elsewhere in this chapter, the sequential anlaysisrevealed some irrigation shortages in the early years of development,and also in some months of critically low water years prior to thecommissioning of Tarbela. The former shortages occur before the IACAprojections become effective, and the latter shortages are reflectionsof the underwatering assumed by IACA in the pre-Tarbela period.

The minimum reserve generating capacity of the system is higherin most years than indicated in the Stone and Webster report due to thelower pumping loads derived in the study* A study to determinewhether these findings would justify modifications in the power develop-ment would be beyond the scope of this report.

The method of sequential analysis is a valuable technique forexamining alternative development plans and for providing a basis forplanning decisions. It would however, be unwise to attach too muchemphasis to the figures derived in this study. It should be recognizedthat any particular topic will in most cases require more detailedanalysis than is possible in this form of study. Studies using a timebase shorter than one month would be required when considering thedesign or operation of individual projects. This comment applies tofeatures such as reservoir release patterns, outlet capacity require-ments, and integrated operation of the thermal and hydro plants, wherethe results of a sequential analysis should be supplemented by dailyor weekly operation studies.

Four copies of the complete series of computer output for thisstudy were produced. One copy was submitted to the Bank, one sent toWAPDA, and one each retained by Gibb in London and Harza in Chicago.However, summaries of the most important parts of the output have beenreproduced as Appendices B to C of this report. The system summarysheets for the mean-year sequence together with the breakdown summariesfor the North and South zones are contained in Appendix B. The systemsummary alone for the first historic sequence is presented in Appendix C.

* The pumping loads derived are in line with the latest projectionsof IACA made in July 1966.

- 23 -

5.2 IRRIGATION SUPPLIES

(a) Surface and Groundwater Deliveries

Table 5.1 presents a summary of the watercourse requirements forthe next two decades and shows the breakdown of deliveries in terms ofsurface and groundwater, under mean year conditions. The volume ofgroundwater pumped is slightly higher than projected in the IACA reportfor the reference years. The subject of groundwater pumping is con-sidered in Section 5.2(c).

TABLE 5.1

W4atercourse Requirements and Mean Year Deliveries

(MAF)

Year Water Surface Ground Shortagecourse water waterreqt.

1966 68.7 56.8 9.6 2.31967 70.3 55.4 12.9 2.01968 72.4 56.7 15.6 0.11969 73.8 54.2 19.2 0.41970 75.3 53.3 21.7 0.31971 78.2 54.1 23.8 0.31972 80.6 54.4 25.6 o.61973 83.8 55.7 27.1 1.01974 87.3 57.0 29.1 1.21975 92.1 61.1 31.0 0.01976 95.3 63.2 32.1 0.01977 97.4 63.2 34.2 0.01978 99.6 63.3 36.3 0.01979 101.8 63.2 38.6 0.01980 103.9 64.2 39.7 0.01981 107.8 67.1 40.7 0.01982 109.6 68.9 40.7 0.01983 111.7 70.6 41.1 0.01984 114.3 73.1 41.2 0.01985 116.5 74.4 42.1 0.0

The growth of requirements and deliveries is also representedgraphically in Figure 5. Shortages are not shown in Figure 5 as theyrepresent too small a proportion of the requirements to be illustratedin this way.

I

/20 -

I/O

loo I-90 __ _ __ _ __ _ _

require-n7ents

80 _ _ _ .__

70 ____

(rnean yea,-)r d -

60 ____

.50__

4 0_ _ _ _ _ __ _ _ __ _

Gr-ounrdwCl^e r dfe/Averl/es _

30 l X a(rn an ye ar)J 30 // .

20 _III ___

WATER YEAR

66 67t 6 69 ,9 to 7'72 7 1975 /70 o7 7 7 759 75 6,2 8,3 8/ 5

GROWTH OF WATERCOURSE REQUIREMENTS

AND MEAN YEAR DELIVERIES.FIG. 5

- 24 -

(b) Shortages and Surplus

The crucial test of the IACA programme as analysed in this studyis the extent to which the planned installation of groundwater andsurface water facilities can meet the demands of the projected agri-cultural growth. Any deficiency would appear as a shortage at thewatercourse. The pattern of shortages that arise under mean yearconditions is shown in Table 5.2.

TABLE 5.2

Watercourse Shortages (October - May)Mean Year Sequence

(MAF)

Oct. Nov. Dec. Jan. Feb. M4ar. Apr. 1Iay Total

1966 .58 .65 .140 .26 .41 - - - 2.301967 .42 .51 .31 .22 .51 - - - 1.971968 - - .03 - .05 - - - .081969 - - .08 .13 .19 - - - .401970 - - .07 - .22 - - - .291971 - - - - .27 _ - - .271972 .01 - .08 .09 .44 - - - .621973 - - .11 .27 .55 .10 - - 1.031971 - - .06 .33 .64 .20 - - 1.231975 - - - - .04 - - - .O0

No shortages were revealed in the analysis beyond 1975, at whichpoint there is ample surface storage available and the tubewell pro-gramme is well advanced. This result in itself is not very significant,since the programe is geared to meet water requirements in conditionslower than mean. Any deficiencies would have been surprising and anindication of incorrect projections. The output of Appendix B doesshow occasional small shortages in Kharif, which are the result ofapproximations in the method of calculation and should be ignored. Thetotal shortage prior to 1975 is 8.2 MA and occurs primarily in twoperiods, the first two years of the study, and the period from 1972 to19714 just before Tarbela comes into operation. The combined shortageof 1.3 IAF in 1966 and 1967 arises from the restricted allowance thathas been made for the flows of the Ravi and Sutlej Rivers in the trans-ition period before the advent of Mangla storage. The early years ofthe study are based on present deliveries, and do not form part of theIACA plan. Hence such shortages are not very meaningful and inpractice would depend entirely on the actual flows passed down theSutlej and Ravi. The impact of Mangla reservoir in the water year 1968is evident, and this factor in conjunction with increasing tubewellcapacity reduces shortages to a low level until 1973. At this pointthe demand is rising in anticipation of Tarbela storage. The shortageswe equivalent to about 3 per cent of deliveries from October to April in1973, rising to 3¼2 per cent in 19714. These small shortages are theresult of interpolation in the input data and would be reflected in theundertatering projected by IACA before Tarbela.

II

- 25 -

A measure of t&e efficiency of the use of water is the extentto which surface water, s passed to the sea during the period ofreservoir release. Tjhe surplus at Ghulam Mohammed is shown in Table5.3. A certain qua4tity of water is passed to the sea in October, amonth during which '-substantial releases are made at Mangla. All theMangla releases however are effectively used upstream of Trimmu and thesurplus at Ghulam Mohammed is entirely due to flows from the Indus. In1976 some water is surplus during the release period, but by 1982 thishas shrunk to inconsiderable proportions.

TABLE 5.3

Surplus at Ghulam Mohammed (October - May)Mean Year Sequence

(MAF)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. Nay

1966 2.2 .5 0 .2 0 *3 1.5 3.31967 2.8 .6 .1 .2 0 .3 1.6 3.11968 2.8 .8 .1 .2 .1 .4 1.7 3.61969 2.8 .7 .1 .3 0 .3 1.7 3.51970 2.7 .7 .1 .2 0 .1 1.6 3.71971 2.8 .8 .1 .1 0 .1 1.5 3.31972 2.4 .5 .1 0 0 0 1.2 3.01973 2.4 .4 0 0 0 0 1.0 2.7197T 2.3 .4 0 0 0 0 .8 2.21975 1.7 .2 0 0 0 0 .9 2.01976 2.0 .4 0 0 0 0 1.4 2.41977 1.9 .4 0 0 0 0 1.3 2.41978 2.0 .14 0 0 0 0 1.3 2.41979 2.1 .4 0 0 0 0 1.3 2.41980 2.2 .3 0 0 0 0 1.0 2.01981 2.0 .2 0 0 0 0 .5 1.51982 1.7 .1 0 0 0 0 .3 1.21983 0.4 0 0 0 0 0 .1 1.11981! 1.1 0 0 0 0 0 0 .91985 0.9 0 0 0 0 0 0 .7

A study of the shortages that occur under the historic sequencesof river flow is a more revealing test of the programme than under themean year sequence. These figures are shown in Tables 5.4 and 5.6 withthe corresponding surpluses in Tables 5.5 and 5.7. As would be expectedthe shortages are somewhat larger than under mean year flows. Againneglecting the first two years of the study, the first historic sequencereveals October to Nay shortages from 1968-1974 totalling 7.3 MAF.This is an average shortage of about 3¼ per cent of the rabi watercourserequirement during the period, with the highest shortage of 6½ per centoccurring in 197M. From 1975 - 1985 the total shortage is 2.8 MAF.Of this figure, however, 2.2 MAF occurs in the month of October, whichis a special case. These shortages occur in those areas which are onlycommanded by Mangla. The watercourse requirements in these commandsare at a high peak in October and there is little spare capacity in the

I

- 26 -

tubewells to supplement shortfalls in the river flows. The problem isaccentuated by the selection of a historic sequence of flows thatcontains rather low rabi flows for the Chenab and Jhelum. The Octoberto March mean for the twenty years is about 0.85 MAAF below the 41 yearmean (See Section I1.4). Thus the system has been tested under some-what severe circumstances. The shortages in low water years could bealleviated to some extent by modifying the releases at Mangla forOctober, as suggested by the IACA report.

Apart from the October shortage there is a total of 0.6 MAFoccurring at random during the rabi months over the entire ten yearperiod from 1975 to 1985. This represents less than half a per cent ofthe watercourse requirement and may be regarded as negligible. In anycase the capacity of the Chasma reservoir would be more than adequateto overcome these shortages.

The pattern of shortages in the second historic sequence bearsa marked resemblance to that of the first historic sequence. From1968 to 19714 there is a total October to May shortage of 9 MAF, theworst amnual total reaching 2.5 MAF in 1971. From 1975 onwards theshortage is 2.9 MAF of which the largest proportion, 1.7 MAF occurs inthe month of October for similar reasons as before. Of the remainingshortages part arises in 1975, when the full benefit of Tarbela is notavailable, and part is due to an exceptionally low May in 1984.

In both historic sequences occasional shortages are apparent inJune, and there are also September shortages in the Jhelum and Chenabcommands in the early years of the second historic sequence before thecompletion of the T-P Link. The effect of a low June would be offsetby a reduction in the reservoir impounding for that month.

Finally an examination of the critical years in 1976 and 1985reveals no significantly large shortages. The conclusion that can bedrawn from these results is that subject to the limitations of theaccuracy of the basic assumptions the IACA programme contains adequatefacilities to meet the irrigation demands. The IACA programme was notintended to meet requirements under all conditions that might arise andsmall shortages were therefore expected in some months of the historicsequences. Such shortages as exist are confined almost entirely to theperiod prior to 1975, or more pertinently the commissioning of Tarbela,and even these shortages are put in perspective when compared to thetotal projected watercourse deliveries over the twenty years of 1840MAF.

I

- 27 -

TABLE 5.4

Watercourse Shortages (October - May)1st Historic Sequence

(I4AF)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Total

1966 .90 .64 .1h0 .45 .94 .20 .16 - 3.691967 .41 .62 .S3 .42 1.01 .78 .26 .20 4.131968 .51 .09 .20 .16 - .16 - - 1.121969 - - - .03 .42 - - - 0.451970 -_ _ - -1971 .h1 - .07 - .43 .05 - 0 0.961972 .01 - - .06 .51 - _ _ 0.581973 .11 - .08 .35 .88 .28 _ - 1.701974 - - .10 .43 1.02 .72 _ .21 2.1481975 .L4t .04 _ - - - - - 0.481976 .17 - - .05 - - - - 0.221977 .15 - _ - - - - - 0.151978 .39 - - - .03 - - - 0.121979 .23 - .01 .09 - - - - 0.331980 .01 - - .06 .02 .04 - - 0.131981 .57 - - - .15 - - - 0.721982 - - - -1983 - - _ _ _ _ _ _ -1984 - - - - - .01 - - .011985 .30 - - - - .07 - - .37

TABLE 5.5

Surplus at Ghulan Mohammed (October - May)1st Historic Sequence

(MAF)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. M4ay1966 2.2 o.6 .1 .2 0 0 1.2 2.51967 Li.14 1.1 .1 .1 0 0 .6 1.01968 2.0 0.4 0 .2 .2 .9 2.7 5.21969 2.4 .6 .1 .2 0 .2 1.1 1.41970 3.8 1.4 .5 .6 .2 1.3 t1.1 6.11971 2.2 .7 .2 .1 0 0 1.2 2.61972 3.3 1.1 .2 0 0 0 .9 1.21973 2.1 .3 0 0 0 0 .1 1.41974 3.5 .7 .1 0 0 0 0 01975 1.3 .2 0 0 0 0 .8 2.01976 2.0 .14 0 0 0 .5 1.9 4.81977 1.7 .2 0 0 0 0 1.1 3.11978 .7 0 0 0 0 0 1.9 6.31979 .9 0 0 0 0 1.1 2.7 5.11980 2.1 .4 0 0 0 0 .4 .91981 .5 0 0 0 0 0 .1 2.01982 .7 0 0 0 0 0 1.4 1.81983 .7 .1 .3 .1 .1 0 .5 .51984 1.9 .1 0 0 0 0 0 .11985 .7 0 .1 0 0 0 0 0

- 28 -

TABLE 5.6

Watercourse Shortages (October - May)2nd Historic Sequence

(IMAF)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Total

1966 .91 .74 .43 .47 .63 0 0 0 3.181967 .85 .60 .36 .31 .58 .29 0 0 2.991968 .48 .08 .04 0 .11 0 0 0 .711969 .75 .16 .39 .35 .09 0 0 0 1.741970 .23 .01 .22 .19 .65 .57 0 0 1.871971 .68 .06 .27 .19 .90 .04 0 0 2.501972 .01 .04 .18 0 .02 0 0 0 0.251973 0 0 0 0 .41 0 0 0 O.bh1974 0 0 .08 .33 .74 .41 0 0 1.561975 .17 0 0 0 .20 .18 0 0 0.551976 .15 0 0 .06 .17 0 0 0 .381977 0 0 0 .09 .14 0 0 0 .231978 .39 0 0 .06 0 0 0 0 0.451979 0 0 0 0 .01 0 0 0 0.011980 0 0 0 0 0 0 0 0 0.01981 .08 0 0 0 0 0 0 0 0.081982 0 0 0 0 0 0 0 0 0.01983 .3L4 0 0 0 0 0 0 0 .34198)4 0 0 0 0 .01 .11 0 .24 0.361985 .53 0 0 0 0 0 0 0 0.53

TABLE 5.7

Surplus at Ghulam Mohammed (October - May)2nd Historic Sequence

(iAr)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. M4ay

1966 2.3 .6 .1 .2 .1 1.0 2.2 5.61967 2.7 .5 .0 .2 0 0 1.5 4.01968 1.4 .2 .1 .2 0 .4 2.6 7.51969 1.9 .4 0 .2 .1 1.5 3.0 6.31970 2.7 .8 .1 .1 0 0 1.0 2.51971 .8 .1 0 0 0 0 .9 3.81972 1.3 .2 0 0 0 .2 2.3 3.71973 3.6 1.7 .1 0 0 0 1,4 2.11974 3.2 .6 0 0 0 0 .6 1.51975 1.8 .2 0 0 0 0 .9 1.21976 2.1 .5 .1 0 0 0 .8 1.21977 3.6 .9 .1 0 0 0 .1 01978 1.0 0 0 0 0 .5 2.1 4.11979 1.8 .1 0 0 0 0 .7 .21980 3.4 1.1 .3 0 0 .9 3.6 4.71981 1.3 .1 0 0 0 0 .2 .61982 2.6 .5 0 0 0 0 .5 01983 .4 0 0 .1 .1 0 0 .11984 2.1 .1 0 0 0 0 0 01985 .8 0 0 0 0 0 0 .8

- 29 -

(c) Control of the Watertable

The IACA programme emphasises the intensive installation oftubewells in areas underlain by usable groundwater. Both public andprivate development are important to this programme in the early yearsbut by 1980 most of the usable groundwater in the canal commanded areaswould be covered by the public tubewell projects. These projectswould then be extended at a declining rate into the few remaining canalcommanded areas with usable groundwater during the decade after 1980.Also by about 1980 the early public tubewells would be operating atabout their maximum average utilisations. The general pattern of pump-ing to be expected from the IACA programme is therefore a steadily in-creasing quantity of water pumped up to about 1980 with a decreasingrate of pumping thereafter, approach-ing the peak level by 1985. Thispattern is confirmed in the sequential analyses as can be seen from thegroundwater pumping by years shown in Figure 6. The slightly highergroundwa-ter delivery than in the IACA study is caused in 1975 by de-watering and in 1985 by overpumping; also there is slightly more pump-ing due to an assumption of higher recharge from rivers and link canalsthan in the IACA study. The effect of these factors on the tubewellpumping is very small.

Other aspects of Figure 6 which call for comment are the effectsof surface water storage and the relation of pumping in the historicriver flow sequences to pumping under mean year conditions. Theadvent of Tarbela storage which would be effective in the water year1975 might be expected to cause a reduction in tubewell pumping. None-theless the rate of increase in groundwater use is apparently unaffectedby the additional surface water made available from Tarbela. There arefive reasons set out below for this apparent anomaly:-

(i) The most important reason is that tubewells are usedup to the limits of their effective capacity to preventfurther rise cf a watertable which has risen to withinten feet of ground level. Very little overpumpingtakes place before the advent of Tarbela in the sequentialanalyses as pumping is limited both by the installed tube-well capacity and by the amount of the irrigation re-quirements in the project areas. Effectively, there-fore, because there has been but little overpumpingbefore Tarbela there is also no reduction in the ground-water pumping after Tarbela but instead there is anincrease due to the larger number of tubewells installed.

(ii) Many of the tubewell projects are still in a phase ofdewatering which would continue regardless of additionalstorage water.

(iii) The cropwater requirements used as input for the analysesare related in part to a rise in intensities due to theuse of Tarbela water outside tubewell project areas.

46- _ _ _ _ _

44 _ _ __ - *9z s

A 1~~~~~~~st. HIstoric Sequence4 0_ __ _ _ _ _ __ __ _

3S t --------- / it t \~~~~~~~~~~~~2nd Historic Sew nce,36/

34-

3Z 'g. tMX l+ LA _ baean YeKar Sequence

32 t - X_ X_ X_4X

28 - - _

26 - -__ _

22 - _ _ _ _ _ _

14 _

/0

I 66 7 6B 9 70 7) 72 7.3 74 /95 76 77 76 79 9 8/ 82 83 84 9

GROUNDWATER PUMPING BY YEARS

FIG. 6

- 30 -

(iv) It is assumed in the analyses that impounding atTarbela would not be possible until August 1974 withthe result that only five MAF would be released inthe water year 1975.

(v) The Tarbela release patterns are based on low rabirather than mean year river flow conditions and sosome surpluses would be passed to the sea in monthssuch as April and May. However, this point is largelyoutweighed by the requirements of balanced rechargein (i).

Between 1975 and 1980 extensive control of the watertable shouldbe provided by the tubewell projects. By this time it should bepossible under the IACA projections for the public tubewells to make useof the aquifer as a balancing reservoir with the amount of groundwaterpumping related to the availability of surface water. This potentialuse of aquifer storage is shown by the greater variations of thehistoric series from the mean year conditions in the later years of thestudy. The variations from mean conditions in the individual yearsare caused solely by the differences in river flows. It can be seenfrom Figure 6 that although these variations are significant they do notdiffer by more than about five per cent from the mean when considered ona yearly basis.

A further aspect of the control of the watertable is the amountof overpumping beyond the balanced recharge level. IACA concluded thata satisfactory average level for the watertable would be about 10 to 15feet below ground level but that temporary overpumping beyond thebalanced recharge level would be desirable at times of low surface wateravailability or prior to the introduction of new surface storage water.In the computer programme for the sequential analyses the recharge isbalanced by withdrawals from the aquifer at an average level of 10 feetbelow the ground when sufficient surface water is available. Pumpingbeyond the 10 foot level may be regarded as an overdraft on the aquifer.The cumulative totals for these overdrafts in the sequential studiesare shown in Figure 7. The overdraft is small before 1975 as it isrestricted to those areas in which public tubewells would already havecontrolled the watertable. A reduction of the overdraft in 1976 isevident in the mean year study due to the use of Tarbela water. Inthe historic sequences the overdraft actually increases at this timedue to low Chenab flows and consequent overpumping in the Punjab SCARPsin the case of the first historic series and due to low rabi flows inboth the Jhelum and the Chenab in the case of the second historicseries.

The amount of overpumping is not large but increases steadily after1976 until the total overdraft on the aquifer is approaching 8 MAF 1985in the mean year sequence. Some alleviation of this overdraft isprovided by reservoir releases at Sehwan/Manchar from 1982 onwards. Theoverdrafts in the historic sequences vary from year to year accordingto the monthly river flows, and these variations, shown in Figure 7

I

20- __

-J- I - _se.____- nd. Historic S equence

'4J_ _ _ _____IIIIIl ,_

16 I-e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

QLJ

13 ----/

12---Ii-Hsoi

O __- ' __- rSequenceAR

7~~~~~~~~~~~~~~~~~~fG

9 - - -- _ _ -- _ _ _

I~~~FG

- 31 -

emphasise how sensitive the overdraft is to the river flow conditionsat any stage of development. By 1985 the total overdraft reachesabout 16 MAF in the first sequence and about 18 IIAF in the secondsequence or about double the overdraft in the mean year sequence.There are two reasons for this higher level of overpumping found inthe historic sequences. Firstly, as explained in Section 4.4, thetotal rabi flows on the Jhelum and Chenab in the historic period 1926-L6 are about 17 IIAF lower than under the 141 year mean conditions. Thisfactor alone is sufficient to account for the differences in over-pumping between the historic and mean year sequences and provides anindication of the way in which the system would be capable of over-pumping if faced with a series of low rabi years. The second reasonfor the higher rate of overpumping in the historic sequence is theconstraint imposed by canal capacities in certain commands. The effectof this constraint is that the overdraft on the aquifer cannot always bereplaced by additional surface water at times of high river flows.

The total overdraft of 8 MAF in 1985 with the mean year sequencewould be equivalent to a drawdown of less than three feet over theentire fresh groundwater area in the canal commands. In practice thedrawdown would be concentrated in certain canal commands but thisgeneral figure for the drawdown does indicate that the overpumpingwould not be at all excessive. Between 1976 and 1979 in the meanyear sequence the total overdraft is increasing at a rate of only about½2 YiAF a year which is very small in relation to the total irrigationdeliveries of about 100 MAF a year. The more rapid increase in over-pumping at a rate of about 1 MAF a year after 1979 is indicative of therising demand for storage projected in the IACA progranme.

The total figures for groundwater use are derived from the de-tailed figures calculated in the sequential analyses for individualcanal commands. The depth of watertable in the fresh groundwater areasis shown by years under the assumed method of system operation inFigures 8, 9 and 10 for Rohri, Panjnad and Abbasia and Lower Jhelumcommands. Rohri Canal command is selected as representative of theLower Indus Region and also because it has the greatest drawdown of anyof the commands in the basin under the method of analysis. By 1982the watertable is at a depth of over 40 feet in the mean year sequenceor over 70 feet after a series of low river flows in the first historicsequence, as shaon in Figure 8. After 1982, the overdraft on theaquifer is reduced by the introduction of storage water from Sehwan/Manchar and the enlargement of Rohri Canal. In practice a watertabledepth of 70 feet in this area may be unacceptable for technical reasonsand is certainly greater than envisaged by IACA. Some overpumping toraise intensities before 1982 was foreseen by IACA but not on this scale.However the depths shown in Figure 8 require clarification. The logicof the computer programme in its present form is not designed toeliminate drawdown by changes in surface water distribution. Inpractice the drawdown in Rohri could be alleviated by increasing pumpingin upstream commands and thereby releasing additional surface water foruse at Rohri in the rabi season.

*t4 z,0070 - --- __ _ _ _

60- -- - - -

r2nd Historic Sequ nce

r rT X X 1X S X X Xf \)Won Year Sequence

50 - _ _ __ _ _ _=_ _ _.'_

o _ - S m- ~~~~~~~~~~WA rER YEAR19 s66 6~ 7 6' c 9 /9-- -4 Ift7> 73 7 9r , z 9 , o6Z d l w

DEPTH OF FRESH'v GROUNDWATERIN ROHRI CANAL COMMAND

FIG. 8

2g - _ _2a1

I8 --- , _ _ _AT R E

'7-

16 - _

/5 - - l _ l

14-

Ist. hisoi eu is toric storiceSequnce _

1! 66 67_ 68_ 69 / 7_l7__ 4 / 5 6 7 7 9 /2s / z 8 4 / d1

9 - 'I -

C ~~~~~~~Mean Year Sequlerce

7-

6 _ _ _ _ _

A. ... L L ___ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ FI.

4 __ _

WATER YEAR

/966C, 68 659 171 712 737I4 -7177 9 8 238,866 1~~970 1975 -7 7 7 9 /980 8 2 8 418

DEPTH OF FRESH GROUNDWATER IN

PANJNAD& ABBASIA CANAL COMMANDSFIG. 9

70- __ _

19- - -I I . Ist. Historic sequlence

I-94- _

2nd. Historlc Sequlence j16 - _ _

15 ?_ ___ _

w_ ~ ~ 4 - _ - _ _ __ l_ lc _

14 766 6 7 f 8 6 9 {9 7o 7 =r 2 7 ffi 74 9 7S 76 77 7 B u 9 l5 '80 81 82 #3 84 85

DEPTH OF FRESH GROUNDWATER

14 - _ -_

7 -~~~~_ _ __

s~~~~~~~~~~~~~~~~~~~~~~~

4~~~~I4

IN LOWER JHELUM CANAL CATOMRAYEA

10-- - - - -1208_

-~~~~~~7 j

19 6 67 6 9 1i 7____75__76 77 _ 7 ___ 79 __ 19_ ___ __ __5_

9- - -I-- 970 /9 ___ __ _ _

* -IEPHfFleEHaRONDYeArTEqR nc

8----- -NLOERJHLU -NA CMMND FIG 1

- 32 -

In contrast to Rohri, the depth of the watertable in FaQn1adand Abbasia Canal commands is seen from Figure 9 to remain stablethrough the period of analysis. However, it should not be concludedthat all the overdraft at Rohri could be transferred to Panjnad andAbbasia. Part of the reason for the stable level of the watertablein Panjnad and Abbasia is that the canal capacities are adequate toreplenish the aquifer at times of high river flow. In any case thepumping could not be increased above the level of requirements in thiscommand. Nonetheless, it would be feasible to increase slightly theamount of pumping here and in the Trimmu commands in order to alleviatethe overdraft in Rohri.

The third command illustrated is Lower Jhelum Canal, whichdepends for its supplies on the Jhelum River with Mangla reservoir andcannot be served by the Indus (see Figure 4). In this command it canbe seen from Figure 10 that there would be some overpumping prior tocanal enlargement but the overdraft would be entirely made good before1985 by use of the enlarged canal combined with the projected additionallink canal capacity in the Punjab. Variations in the depth of thewatertable are attributable to the availability of surface water in theconditions of river flow used for the analyses. The watertable isgenerally deeper under the historic sequences due to the constraint ofthe canal system which prevents the same degree of aquifer replenishmentas would be possible under mean conditions.

Canals served by the Chenab River alone (see Figure )) are notillustrated as the watertable in these commands remains generally with-in the 10 to 15 foot range, in spite of the low rabi flows in thehistoric sequences.

(d) Link Canal System

IACA expected the existing and IBP link canal system to beadequate until about 1980 when they estimated that there would be arising demand for additional link capacity in the Punjab. An allowancewas made in the input data for an additional 0.3 MAF/month capacity inthe RQ and QB Links (see Figures 2 and 4) from the water year 1981onwards. This additional capacity in the sequential analyses isutilised in many months in the QB Link and in a few months in the RQLink.

Allowance was also made in the input data for ten per cent excessover the design capacity in the TSMB Link in all years. The excesscapacity seemed reasonable from the reports of early operation of theLink. Without the additional capacity there would have been someshortages in the canals served by the TSMB Link. In practice the short-ages could alternatively have been largely removed by using suppliespassed dowqnstream from the RQBS Link.

No capacity constraints were apparent in the others link canals.

I

- 33 -

(e) Use of Surface Storage

The IACA analysis projected a firm demand for storage on theIndus of about 5 MAF in 1975 rising to 9 MAF in 1985 under meanconditions of river flow. Projections for the period between 1975 and1985 were made by interpolation between the reference years.

The sequential analyses are operational rather than analyticalin nature and are therefore not suited to an evaluation of the IACAprojections for growth of stored water demand. While a generalassessment can be made of the use of surface storage water, it is notpossible to quantify the results.

The results of the sequential analyses are illustrated in Table5.8 which shows the breakdown of irrigation deliveries,in the mean yearsequence for the period November to April, before and after thecommissioning of Tarbela Reservoir.

TABLE 5.8

Water Budgets Before and After Tarbela

Period November to April - Mean Year Sequence

(M4AF)

1974 1976 Increase

W4atercourse Requirement 30.3 33.5 3.2

comprising: Surface WaterDeliveries 16.5 20.7 4.2

GroundwaterPumping 12.6 12.8 0.2

Shortages 1.2 0 - 1.2

Canal Head Diversions 24.3 29.9 5.6

River Outflow 1.2 1.8 o.6

The fact that river outflow during the period November to Aprilincreases by only 0-.6 RAF between 1974 and 1976 would seem to indicatethat nearly all the storage water is absorbed immediately. It cannothowever be deduced--that this represents a firm demand for storage sincethe computer proggramme will tend to utilise surface water in preferenceto groundwater.--The-,analysis is further complicated by the fact thatneither the capacity o'f tubewells nor the operation of reservoirs isbased on mean year-conditions but is geared to low rabi conditions.

A general examination of the results of the sequential analysisconfirms that a steadily rising storage requirement exists from 1972 on-wards under the IACA programme. In Figure 7, the pattern of overdraft onthe aquifer shows the drawdown increasing from 1977. Up to 1979 the

- 314 -

relatively small drawdown is in fact the result of the constraints inindividual canal commands, but beyond then the rate of drawdown ismore rapid which is an indication that Tarbela storage water is beingfully absorbed and that the system is becoming short of water again,as projected by IACA.

Between 1975 and 1985 the watercourse requirements during therelease period are increasing at a rate that is approximately linear.The same is true of the pumping capacity, and it is reasonable toconclude that tlhis will be also true of the storage demand.

5.3 POWER

(a) General

The sequential analysis provided an opportunity to compare theStone and Webster programme for power development with the systemdemands. The demands of the system are the Stone and W4ebster basicload forecasts, included as input data, and the groundwater pumpingloads computed in the analysis. The principal conclusions to be drawnfrom the results of the sequential studies are:

(i) there are deficiencies in peaking capability in theNorth Zone prior to commissioning of the first M4anglaunits;

(ii) minor and infrequent deficiencies occurring in theNorth Zone after completion of the inter-tie in 1973are met by transfers from the South Zone;

(iii) there are no deficiencies of peaking capability in theSouth Zone after 1971; prior to 1971 there may bedeficiencies in certain areas witlin the South Zonewhich would not be revealed by the analysis;

(iv) system peaking capability exceeds system demand for theentire period following completion of the North-Southinter-tie;

(v) there are substantial power transfers from North toSouth in the months of July through January after thefirst Tarbela units are commissioned.

The principal results of the analysis with regard to power andenergy generation appear in the summary sheets of the ccmputer print-out (Appendices B through C) which are generally self-explanatory.'Peak Reserve' - the difference between peaking capability and totalpeak load - is listed for each zone, and for the system. Ihen 'PeakReserve' is negative in the period 1973-1985 there is a 'Firm CapacityTransfer' having the same value.

I

- 35 -

In the North Zone, after Mangla is in operation, the hydro-plants will serve most of the power and energy demand, and the load-dispatching process adopted in the analysis has the effect of maximisingthe use of the hydro-plants and minimising the use of the thermal plants.It is believed that this method yields realistic values for the 'ThermalCapacity to Load's but the 'Thermal Energy to Load' would in practicebe somewhat greater than compuited and the 'Hydro Energy to Load'correspondingly less. This is because the thermal plants, in order tobe available at the time of peak demand, would be operating at partload during off-peak hours, although the hydro plants could meet theoff-peak load.

(b) Pumping Loads

The power and energy required for groundwater pumping arecomputed in the sequential analysis in contrast to the basic loads whichare input. Pumping loads are a significant part of the system demands.The annual energy demands for groundwater pumping within the canalcommands are tabulated in Table 5.9.

Monthly pealc power loads for the years 1975 and 1985, given inTable 5.10, indicate the magnitude and annual distribution of peakpumping loads. No interruption of service to tubewells was assumed inderiving these values.

In general the power and energy demands for pumping obtained inthe sequential analysis are lower than the values adopted as a basisfor the Stone and Wlebster development programme.

(c) Peak Reserves

The minimum reserve capacities of the system after the North-South inter-tie becomes effective are shown in Table'5.11. The peakreserves obtained in the sequential analysis are somewhat greater thanthose given in the Stone and Webster report. The principal reasonsfor the difference are firstly the lower pumping loads and secondly thehigher hydro peaking capability obtained due to the method of calcula-tion in the sequential analysis. Table 5.12 presents a comparison ofresults for the critical water years 1976 and 1985, in which adjustmentshave been made to place the figures on a similar basis.

Transfers of power between zones obaained in the mean yearanalysis for 1976, 1980 and 1985 are given in Table 5.13. Transferswere not limited by inter-tie capacity, since a large capacity wasadopted for the inter-tie in order to determine the potential for inter-zone power transfers.

-36 -

TABLE 5. 9

Annual Pumping Energy LoadMean Year Sequence

(mi l lion Kwh)

Year Pumping Per cent of Year Pumping Per cent ofenergy total load energy total load

1966 491 114 1976 2877 231967 726 18 1977 3153 231968 897 19 1978 3462 221969 1205 22 1979 3747 221970 1466 22 1980 3932 211971 1776 23 1981 1283 211972 1982 24 1982 4393 201973 2191 23 1983 4608 201974 2448 23 1984 4626 191975 2738 23 1985 4731 18

TABLE 5.10

Peak Pumping Load (MW)

1975 Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

Mean 517 398 353 381 525 503 194 249 447 477 546 5341st Historic 518 428 380 405 540 549 193 222 415 473 556 5462nd Historic 533 1418 366 357 554 531 167 212 426 478 5145 539

1985Mean 865 684 5514 653 853 809 413 505 726 791 9L11 932

1st Historic 919 759 589 671 943 900 1403 533 751 808 999 9902nd Historic 952 754 619 705 911 903 413 500 757 783 1003 1013

Critical 899 759 640 735 959 969 834 722 694 686 985 968

TABLE 5.11

Minimum Peak ReserveInterconnected System 1973-1985

Year IMean ,Water 1st Historic 2nd Historic Criticalyear sequence sequence years

Month _ 94 Month MW Month MW Month NW1973 IIarch 421 March 400 March 5051971I 4 364 " 288 3341975 " 345 " 304 3141976 May 555 Mlay 635 523 March 4531977 571 " 619 5301978 682 " 721 May 7471979 564 " 623 " 5311980 61414 March 652 " 6251981 710 " 594 March 7171982 735 May 772 May 6501983 760 " 739 April 7551984 965 " 994 May 5461985 1036 " 990 '' 1095 M4ay 800

- 37 -

TABLE 5.12

Reserve Generating Capacity

Comparisons for Critical Water Years in 1976 and 1985

May 1976 May 1985Sequential S & 1I Sequential S & W

MW ME mlW 14WPeak pumping load 384 709 722 1211Less interruptable - 130 - 187Peak basic load 1850 1850 4162 4162Total peak load 2234 2429 18814 5186Hydro capacity 1070 1043 1937 1717Thermal capacity 1662 1662 3747 3796Total capability 2732 2705 5684 5513Reserves 198 276 800 327

Adjustmentsa) Tubewells outside

canal commands -15 -55b) Assume no load shedding -130 -187c) Use common value for total

capabilityAdjusted reserves -27 -171

456 146 574 140

TABLE 5.13

Interzone Power Transfers - Mean Year Sequence(14w)

Month 1976 1980 1985

October 539 833 1221November 56Li 916 1320December 500 855 1281January 373 630 923February 80 121 233Harch 0 0 0April 0 0 0IHIay 0 0 -30June 0 0 0July 400 584 1262August 413 641 1251September 424 645 1265

Transfers are North to South, except for the negative value whichis South to North. The maximum South to North transfer of 214 MWoccurs in April 1985 (critical water year conditions).

5.4 RESMVOIR OPERATION

Since the reservoirs are influenced by both irrigation and powerconsiderations we have dealt with them under a separate heading. To

I

- 38 -

draw any justifiable conclusions on reservoir operation it is necessaryto examine the subject on a time interval that is shorter than themonthly base used in the study. Nevertheless it is possible to commenton three aspects of reservoir operation, namely drawdown levels, outletcapacities and release patterns.

(i) Drawdown Levels

The results of the analysis seem to confirm the view that theMangla reservoir should be drawn down to the 100h level when required.In the pre-Tarbela period there would in general be a need for as muchwater as can be made available from the reservoir. Nothing arose inthe analysis to suggest any alteration in the Tarbela drawdown level of1332.

(ii) Outlet Capacities

The outlet capacity at Mangla of four tunnels has certainrestrictive effects. It causes the involuntary impounding in a meanyear of 0.3 MAF in April and it is not even possible to pass the fullreleases in March that were projected in the IACA plan. While noshortages were apparent in April, they did arise in March.

(iii) Release Patterns.

The justification for the release patterns adopted is thatrelatively few shortages arose after 1975, and such shortages as arosebefore 1975 could not be much alleviated by altering the MIangla releasepattern. Two points regarding the release patterns, however, may needfurther consideration. Firstly it may be necessary to increase Manglareleases in October during months of low flow. Secondly releases fromTarbela in April and iMay tend to be wasted to the sea up to 1980 underconditions of mean flow. Such releases are, however, needed to counter-act low flows in these months, and they serve the dual function ofreducing groundwater pumping and at the same time increasing hydrocapability in the months of lowest peak reserve. Fairly severe short-ages can occur on the Indus in April and May which is the criticalperiod for the sowing of kharif crops and a small retention in thereservoir up to the first ten days of M4ay will act as a safeguard. Asa rough indication of the effect on peaking capability of storage inApril it can be calculated that every 0.1 M4AF stored during this monthis equivalent to increasing the peak reserve of the system by a valuevarying from 20 megawatts in 1977 to 30 megawatts in 1985. Thus thedrawing down of the Tarbela reservoir by the end of Yarch would requirea compensating increase in peak reserve of the order of 200 megawatts,which may be a high price to pay for extra releases in the early part ofthe year.

I

APPENDIX A

INPUT DATA

I

TABLE A.1

Capacities of Link Canals(N4AF/month)

FirstHead Tail year in

Link Canal Capacity Capacity operation Remarks

Upper Jhelum .703 .471 ERasul Power Channel .217 .215 ELower Jhelum Feeder .328 .327 E

Head and tailcapacities enlargedto .598 & .594 in1981

Rasul-Quadirabad 1.142 1.n16 1969 Capacities enlargedby .3 MAF/month in1981

Quadirabad-Balloki 1.122 .808 1969Quadirabad-Balloki

Sub Link .247 .238 1969Lower Chenab Upper .754 .675 EBalloki-Suleimanki .784 .757 E Enlarged in 1969 to

1.I16 and 1.082Marala-Ravi .965 .920 E Enlarged in 1969 to

1.326 and 1.174IR Cross Link .332 .329 EBombanwata-Ravi-

Bedian-Dipalpur .310 .130 EChasma-Jhelum 1.309 1.224 1972Taunsa-Panjnad .724 .693 1970Trimmu-Sidhnai .729 .692 EHaveli .320 .265 ESidhnai-Mailsi- Bahawal .673 .655 ENara .917 .826 ESehwan-Nara 1.321 1.226 1983

E = Existing canal at start of analysis

I

TABLE A.2

Canal Head Capacities(MAF/month)

Date whenInitial Enlarged enlargement

Canal Command capacity capacity becomes effective

Upper Dipalpur ,124Central Bari Doab .141 .173 1974Raya Branch .095Upper Chenab Internal .206IR Internal .052Sadiqia .307Fordwhah .160Pakpattan .391Lower Dipalpur .241Lower Bari Doab .470 .575 1983 - 85Jhang & Rahk Branches .247Gugera Branch .452Upper Jhelum Internal .151Lower Jhelum .327 .591! 1981 - 85Bahawal .262Mailsi .369Sidhnai .241 .312 1981Haveli Internal .048 .067 1972Rangpur .163Panjnad & Abbasia .641 1.040 1978 - 81Upper Swat .119Lower Swat .071lWarsak .030Kabul .077Thal .452Paharpur .030Muzaffargarh .501D.G. IKhan .1446Desert & Pat .500Begari Feeder .891Ghotki Feeder .557North West .452 .688 1983 - 85Rice .579Dadu .253 .408 1983 - 84Khairpur Wlest .115 .171 1974 - 75Khairpur East .145 .308 1973 - 75Rohri North .723 .620 )Sehwan 0 1.038 ) 1981 - 83Eastern Nara .823Kalri .543Lined Channel .076Pinyari & Fuleli 1.018

I

TABLE A.3

Tubewell and Drainage Installation

Effective capacities in Drainageusable groundwater zones Date of Method of

Canal Command (MAF/month) Installation Disposal1970 1975 1980 1985

Upper Dipalpur .062 .128Central Bari Doab .039 .137 1978 RRaya Branch .148Upper Chenab Internal .393 .447DR Internal .035 .054 o62Sadiqia 0 0 0 0Fordwah .012 .111Pakpattan .089 .148 .302 .397Lower Dipalpur .052 .157Lower Bari Doab .145 .228 .503 .555 1971 RJhang & Rahk Branches .305 .332Gugera Branch .514 .562Upper Jhelum Internal .147Lower Jhelum .310 1977 RBahawal .015 .092Mailsi .061 .101 .159 .194 1985 RSidhnai .063 .153 .227 .244 1983 RHaveli Internal .087 1971 R (Hor)Rangpur .140Panjnad & Abbasia .177 .330 1975 SPUpper Swat 0 0 .065Lower Swati .002 .002 .052Warsak 0 0 .023Kabul 0 0 .037Thal .021 .135 .335 .390 1982 RPaharpur .002 .012 .037Muzaftfargarh .168 .210 1980 RD.G. Khan .013 .022 .085 .260Desert & Pat 0 0 0 0Begari Feeder .005 .138Ghotki Feeder .014 .023 .092 .160 1984 SPNorth West 0 .040 .076Rice 0 0 0 0Dadu 0 .028 .051 1984 RKhairpur West .047 1973 ODKhairpur East 0 0 0 0 1967 ODRohri North .092 .315 .446 .226 1978 ODSehwan 0 0 0 .220 1983 ODEastern Nara 0 0 0 0 1981 ODKalri 0 0 0 0 1975 ODLined Channel 0 0 0 0 1971 ODPinyari & Fuleli 0 0 0 0R = Disposal to river May to OctoberR(Hor) Disposal to river by horizontal drainageSP Disposal into salt pansOD Disposal into outfalls drains to the sea

TABLE A.L

Gain and Loss Factors in River Reaches

Approximate LengthRiver Reach (statute miles) GF SF

Ferozepore-Suleimanki 60 .091 .037Modhopur-I8E Tail 90 .070 .050I4arala-Khanki 30 .080 .020NIR Tail-Balloki I10 .070 .060Klianki-Qadirabad 20 0.0 0.0Mangla-Rasul 0 .060 .050Rasul-CJ Tail 100 .140 .110Suleimanki-Islam 90 .245 .08hIslan-Panjnad 120 .259 .116Balloki-Sidhnai 140 .615 .136Amandara-Munda 40 0.O 0.0Munda-Kabul River 20 0.0 0.0Warsak-Indus River 60 0.0 0.0Tarbela-Kalabagh 100 0.0 0.0Kalabagh- Chasma 70 .080 .050Chasma-Taunsa 120 .120 .080Taunsa-Mithankot 130 .120 .080Qadirabad-Trimmu 120 .060 .050CJ Tail-Trimmu 60 .110 .090Trimmu-TP Tail 100 .110 .075TP Tail-Panjnad 70 .100 .065Panjnad-Nlithankot 40 .040 .030Mithankot-Gudu 50 .070 .050Gudu-Sukkur 110 .IL0 .080Sukkur-Ghlulam Mohammed 220 .280 .250

The general form of the river routing equation is

RL = (GF x Q2) - (SF x Q1 )

Where RL = nett loss (+) or gain (-) in the reach

SF = channel and bank storage factor for thereach (see table above)

Q 2 = volume of inflow to the head of the reachduring the current month (includes tributary inflow)

Q1 = volume of inflow to the head of the reachduring the previous month

LF = channel loss factor (permanent seepage andevaporation)

GF = LF + SF and is shown in the table above.

TAIBLP A.5

Indus, Jhelum and Chenab River Flows - Mean Year Sequence

(M4F)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total

Indus at Attock 3.62 2.14 1.87 1.71 1.62 2.h5 4.30 8.38 15.h9 22.57 19.81 8.65 92.61

Jhelum above Mangla .85 .54 .48 .53 .73 1.56 2.58 3.61 3.69 3.79 2.97 1.60 22.93

Chenab above Marala 1.o4 .52 .46 .53 .66 1.06 1.36 2.23 3.55 5.68 5.61 2.94 25.64

Note: The above flows are used for each of the twentyyears of the mean year sequence.

TABLE A.6

Indus River Flows at Attock - Historic Sequences

(MkF)

Actual First SecondWater Historic Historic Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep0 TotalYear Sequence Sequence

Water Year Water Year

1926 1966 1976 3.38 2.66 2.13 1.78 1.34 2.06 3.37 6.71 10.86 18.74 23.38 12.11 88.5227 67 77 1.36 2.13 1.75 1.49 1.30 1.76 3.08 5,95 8.65 20.73 19.44 6.99 77.6328 68 78 3.28 2.10 1.88 1.58 2.18 3.47 5.39 11.17 18.55 22.72 16.48 7.99 96.7929 69 79 3.05 2.14 1.89 1.55 1.27 2.38 3.47 6.04 13.65 18.51 25.72 9.15 88.8230 70 80 4.29 2.70 2.33 2.31 2.25 4.18 6.48 10.04 16.98 29.76 17.34 7.67 106.33

1931 1971 1981 3.59 2.40 1.89 1.77 1.68 2.15 4.17 7.59 13.84 20.49 21.15 9.33 90.0532 72 82 4.77 2.25 1.98 1.93 1.74 3.08 4.07 5.83 14.18 25.89 20.70 8.02 94.4433 73 83 3.81 2.10 1.99 1.62 1.45 2.39 3.55 7.38 17.46 24.68 22.24 9.37 98.o434 74 84 4.22 2.09 1.79 1.61 1.42 1.83 3.32 4.h6 18.22 25.39 19.22 9.20 92.7735 75 85 4.17 2.14 1.80 1.58 1.79 2.53 4.13 7.75 11.95 24.93 21.77 8.14 92.68

1936 1976 1966 3.91 2.29 1.92 1.65 1.61 3.4o 4.07 12.09 20.29 19.91 16.85 10.41 98.4o37 77 67 2.95 1.92 1.80 1.65 1.58 2.03 4.24 11.22 16.99 19.36 16.01 8.18 87.9338 78 68 2.33 2.04 2.38 1.45 1.26 2.35 5.18 15.31 17.65 20.55 19.94 7.64 98.0839 79 69 3.20 1.99 1.67 1.59 2.25 5.58 6.22 12.30 19.59 23.15 16.88 10.52 104.9440 80 70 4.04 2.07 1.75 1.56 1.46 1.78 4.11 7.70 17.47 20.99 14.9k 6.08 83.95

1941 1981 1971 2.39 1.77 1.51 1.37 1.26 1.78 4.05 13.47 18.37 18.36 18.114 6.88 89.3542 82 72 3.82 1.8 1.4'l1 2.08 2.31 3.22 5.07 10.50 14.94 28.03 22.22 10.31 106.1543 83 73 3.55 2.31 2.11 2.11 1.71 2.96 4.39 6.17 15.414 25.38 20.99 9.91 97.0344 84 74 3.53 2.14 1.80 1.75 1.60 1.82 ,.08 7.63 10.88 21.')0 22.10 8.02 87.2545 85 75 3.3k 2.09 1.88 1.87 1.51 2.25 4.97 7.39 17.27 27.62 18.74 10.28 99.21

I

TABLE A.7

Jhelum River Flows Above Mangla - Historic Sequences

(MAF)

Actual First SecondWVater Historic Historig Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.. Aug. Sep. TotalYear Sequence Sequence

Water Year Wr.Tater Year

1926 1986 1976 o.69 0.61 o.4o 0.36 0.41 1.24 2.25 4.07 3.98 3.89 2.98 1.87 22.7527 67 77 0.82' 0.45 0.41 0.36 0.46 0.86 1.72 2.84 2.86 3.90 3,68 1.18 19.5428 68 78 o.59 0.39 0.39 0.40 0.98 1.77 3.38 4.80 4.44 3.49 2.16 3.52 26.3129 69 79 1.11 0.56 0.65 0.65 0.77 1.67 1.97 2.10 2.46 2.44 4.24 2.62 21.2430 70 80 1.56 0.91 0.71 0.77 o.95 2.84 3.80 3.94 4.ol 4.98 3.02 1.42 28.91

1931 1971 1981 0.70 0.07 o.41 0.71 0.69 1.45 2.72 3.54 3.48 5.62 3.59 1.88 25.2632 72 82 1.oo o.53 0.42 o.46 o.63 1.44 2.19 2.90 3.96 4.33 3.40 1.06 22.3233 73 83 o.56 0.36 0.32 0.34 0.38 1.54 1.92 3.94 5.36 4.66 4.32 2.32 26.0234 74 84 0.99 0.55 0.42 0.42 0.51 0.77 1.55 1.76 3.69 3.98 2.41 0.97 18.0235 75 85 0.49 0.34 0.44 0.48 0.73 1.19 3.01 4.00 3.81 4.24 3.94 1.25 23.92

1936 1976 1966 0.73 0.52 0.44 o.4i o.59 2.88 3.16 4.65 4.50 3.99 2.16 1.45 25.4837 77 67 o.63 0.48 0.59 0.53 0.87 1.31 2.81 4.20 3.67 2.78 1.79 0.98 20.6438 78 68 0.60 0.48 0.39 0.59 0.78 1.97 3.L9 4.94 4.18 2.94 2.16 o.95 23.4739 79 69 0.61 0.38 0.34 0.36 o.88 2.38 2.85 4.65 4.30 3.50 2.40 1.25 23.9040 80 70 0.73 o.54 0.38 0.39 0.42 o.68 1.68 2.88 3.65 2.36 1.87 1.01 16.59

1941 1981 1971 0.61 0.43 0.33 0.35 0.34 0.97 1.92 3.42 2.67 2.36 1.54 2.03 16.9742 82 72 0.81 0.41 0.55 0.69 1.32 2.o5 3.1) 4.21 3.50 3.27 3.25 1.91 25.8143 83 73 0.81 0.49 0.44 1.06 0.69 2.17 2.60 3.23 4.46 4.21 3.62 1.50 25.2844 84 74 0.72 o.44 0.38 0.43 0.52 1.15 2.24 3.08 2.28 2.49 3.43 1.50 18.66'45 85 75 0.69 o.48 0.47 0.58 0.43 1.36 2.46 3.21 3.94 4.28 2.35 1.22 21.47

I

TABLE A.8

Chenab River FLows Above lMarala - Historic Sequences

Actual First SecondWater Historic Historic Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total

Year Sequence SequenceWater Year Water Year

1926 1966 1976 0.67 0.50 0.37 0.36 0.31 o.89 0091 1.69 2.34 4.51 6.30 3.24 22.09

27 67 77 0.89 o.46 0.37 0.33 0.38 o.64 0.73 1.24 1.75 5.28 6.39 1.81 20.27

28 68 78 0.57 0.36 0.31 0.32 0.89 0.78 1.17 2.16 3.28 4.73 3.71 2.98 21.26

29 69 79 0.76 o.48 0.73 o.56 o.53 o.86 1.21 1.61 3.20 4.Lo 6.16 2.33 22.83

30 70 80 o.94 o.45 0.60 0,78 0.73 1.47 2.07 2.53 3.63 6.79 5.06 1.80 26.85

1931 1971 1981 0.77 0.42 0.33 0.39 o.41 o.66 0.92 1.53 2.49 4.88 4.77 2.42 19.99

32 72 82 o.94 0.42 0.33 0.37 0.38 0.60 0.73 1.15 3.02 6.23 5.59 2.00 21.76

33 73 83 0.66 0.36 0.34 0.33 o.45 l.ol 0.98 2.08 k.11 6.64 6.22 2.88 26.06

34 74 84 1.17 0.58 0.42 0.41 0.41 0.51 0.81 1.14 3.95 5.85 5.21 2.42 22.88

35 75 85 0.67 0.35 0.34 o.50 o.64 o.9o 1.48 2.77 3.53 6.21 5.71 2.27 25.37

1936 1976 1966 0.62 0.42 0.37 0.33 o.49 1.67 1.25 3.52 4.83 5.11 5.07 2.74 26.42

37 77 67 0.81 o.43 o.4o 0.36 o.54 0.77 1.18 2.49 3.63 4.62 4.35 2.05 21.63

38 78 68 0.58 O.L,2 0.37 0.74 0.96 1.51 2.01 4.51 5.17 6.09 5.08 2.05 29.49

39 79 69 0.73 0.38 0.30 0.29 0.61 1.48 1.09 2.62 4.11 5.15 4.46 2.59 23.81

4o 80 70 0.79 0.36 0.29 0.27 o.4o 0.52 0.76 2.00 3.31 4.45 4.14 1.70 18.99

19M1 1981 1971 o.54 0.35 0.28 0.32 0.29 0.52 o.86 2.16 3.87 4.38 L.12 2.45 20.14

42 82 72 0.90 o.Lti 0.55 0.61 1.07 1.22 1.64 2.43 3.26 6.10 6.98 3.41 28.58

43 83 73 0.84 0.50 0.54 1.25 0.61 1.29 1.h1 1.78 3.77 6.39 7.07 3.72 29.17

44 84 74 l.oo o.48 o.4o o.49 o.64 1.21 1.76 ?.06 2.50 5.70 6.07 2.43 2L.74

45 85 75 0.72 0.43 0.13 0.69 0.42 1.08 1.56 1.83 3.84 6.77 5.03 2.75 25.55

I

I

TABLE A.9

Indus, Jhelum and Chenab River Flows - Supplementary Sequence

Flows for 1976 and 1985

(M4AF)

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total

Indus at Attock 3.01 1.69 i.h7 1.36 1.18 1.74 2.52 4.87 i4.61 17.16 13.11 9.67 72.39

Jhelum above Mangla .90 .56 .45 .h3 .51 .89 2.00 2.85 2.84 2.88 3.43 1.77 19.51

Chenab above Marala 1.01 .51 .41 .41 .46 .73 .99 2.10 3.51 4.70 7.5h 3.58 25.95

Note: The above flows are used in 1976 and 1985 of the supplementarysequence. All other years of the sunplementary sequence arethe same as in the first historic sequence.

TABLE A.10

Ravi and Sutlej River Flows - All Sequences(KkF)

WaterYears Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Total

Ravi supplies from

Madhopur at head 1966 to 68 .075 .053 o4h9 .096 .o65 .1h6 .0A7 0 0 0 0 .032 .563

Doab Canal

Sutlej supplies atFerozepore 1966 to 68 .524 .308 .243 .363 .225 .136 .039 0 .012 .226 .2h5 .338 2.659

Sutlej supplies at 1969 to 70 0 0 0 0 0 0 0 0 0 .187 .245 .079 .511Fero zepore

Note: The above figures are based on the unpublished Harzastudy. Flows are shown for the water years indicatedabove. In all other years flows are taken Ps zero.No other Ravi River flows are taken than the CentralBari Doab Canal deliveries shown above.

I

TABLE A.11

Watercourse Requirements and Associated Intensities

1975 1985

Annual AnnualWatercourse Associated Watercourse AssociatedRequirement Intensity Requirement Intensity

(MAF) percent (MAF) -percent

Upper Dipalpur 1.19 124 1.46 150Central Bari Doab 1.90 138 2.08 150Raya Branch 1.46 138 1.62 150Upper Chenab Internal 3.22 123 3.61 137MR Internal .56 150 .56 150Sadiqia 2.08 73 2.10 75Fordwah 1.11 98 1.56 135Pakpattan 3.55 105 4.61 144Lower Dipalpur 1.96 123 2.39 150Lower Bari Doab 5.14 113 6.75 141Jhang & Rahk Branches 3.66 113 4.15 123Gugera Branch 5.21 125 5-65 131Upper Jhelum Internal 1.71 148 1.76 150Lower Jhelum 4.21 113 5.61 147Bahawal 1.86 104 2.42 133Mailsi 3.18 96 3.63 118Sidhnai 2.63 110 3.55 144Haveli Internal .57 134 .63 150Rangpur 1.18 115 1.43 147Panjnad & Abbasia 5.35 107 7.49 144Uppper Swat .73 132 1.11 166Lower Swat .51 120 .74 179Warsak .18 63 .47 164Kabul .46 140 .52 180Thal 3.09 74 4.83 121Paharpur .20 71 *33 121Muzaffargarh 2.35 121 2.83 148D. G. Khan 2.09 80 3.28 128Desert & Pat 1.25 64 1.26 65Begari Feeder 2.67 94 2.96 105Ghotki Feeder 1.88 115 2.30 123North West 2.34 116 2.94 104*Rice 1.62 83 1.62 87Dadu 1.42 96 1.96 122Khairpur West 1.00 115 1.30 150Khairpur East 1.30 120 1.72 150Rohri North 7.11 86 5.21 145Sehwan - - 6.80 132Eastern Nara 5.07 88 5.96 108Kalri 1.14 66 1.37 77Lined Channel .57 80 .64 102Pinyari & Fuleli 3.40 70 3.32 70

* Change to non-perennial cropping pattern in North West Kirthar.

I

TABLE A.12

Schedule of Power Installations 1.

Aggregate total CapabilityNorth Zone South Zone

New Units Installed ' Capability Thermal Hvdro ThermalExisting 277 245 300

1966 Lahore-Gas Turbines 26Sukkur & Hyderabad-Steam 48 303 245 348

1967 Lahore-Gas Turbines 26Lyallpur units 124 453 245 348

1968 Mangla 1, 2 131Lower Sind - Gas Turbines 26Hyderabad - retire (3) 453 376 371

1969 Mangla 3 66M4ari-Gas Turbines 26Lower Sind - Gas Turbines 53 453 442 437

1970 Warsak 5, 6 80Mari - Gas Turbines 24Korangi 3 125 453 522 599

1971 Mangla 4 65Mari - Gas Turbines 96Karachi - Nuclear 25 453 587 720

1972 Mangla 5, 6 132Northern Grid - retire (16)Karachi - Nuclear 100 437 719 820

1973 Mari - Steam 1 120Karachi retire (16) 437 719 924

1974 Mari - Steam 2 150 437 719 10741975 Tarbela 1, 2 162

Mari - Steam 3 150 437 881 12241976 Tarbela 3 , 4 162 437 1043 12241977 Tarbela 5, 6 149

Korangi 4 125 437 1192 13491978 Tarbela 5, 6 125

Korangi 5 200 437 1317 15491979 Mari - Steam 4 150 437 1317 16991980 Mari - Steam 5 150

Korangi 6 200 437 1317 20491981 Mangla 7, 8 139

'Mari - Steam-6 150 437 1456 21991982 Tarbela 9, 10 125

Karachi - Uni-t x 200 437 1581 23991983 Tarbela ll,E12 136

Karachi - Unit Y 240 437 1717 26391984 Mari - Steamk7 240

Karachi - Unit Z 240 437 1717 31191985 Mari - Steam 8 240 437 1717 3359

The complete schedule of monthly power and energy demands canbe seen from the output in Appendix B.

1. Reproduced from the Stone and Webster Report - May 1966.

, I

APMJDIX B

MEAN YEAR SEQUENCE

ZONAL AND SYSTEM SUNWRIES 1966-815

I

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685n72110

YEAR 1966

NORTH ZONE SUMMARY

wATER (MAF) OCT NOV DEC JAN FEB MAR APR mAy JUNE JULY AUG SEPT TOTALFROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM TRIBUTARIES 0.280 0.200 0-220 0.210- 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.000 0.000 m.ooo 0.0U0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RESERVOIR EVAPORA7ION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RIVER OUTFIOW 3.470 1.867 1.367 1.435 1.330 1.927 3.906 7.193 13.085 20.925 20.770 10.597 87.874TO RIVER LOSS -0.751 -n.126 0.104 0.369 0.226 0.735 1.607 2.766 4.303 6.062 2.538 -2.386 15.448TO LINK LOSS 0.164 0.068 0.070 0.062 0.081 0.215 0.269 0.266 0.276 0.280 0.278 0.278 2.307TO CANAL LOSS 1.124 0-687 0.619 0.590 0.718 0.964 1.021 1.201 1.309 1.315 1.324 1.315 12.186TO WATERCOURSF 2.302 1.28? 1.130 0.917 1.133 2.190 2.273 3.165 3.839 4.144 4.175 4. 007 3n.556FROM GROUND WATER 1.121 n.928 0.811 0.699 0.864 0.788 0.707 0.598 0.763 0.637 0.738 0. 880 9.534SHORTAGE AT WATERCOUJRSE 0.579 0-647 0.305 0.264 0.339 0.000 0.000 0.000 0.000 0.000 0.001 0.000 2.13;WATERCOIJRSE RFOT. 4.001 2.857 2.246 1.880 2.335 2.978 2.980 3.763 4.602 4.781 4.914 4.887 42.224

PUMP CAPACITY GOOD AREA 1.125 - 0.937 0.805 0.709 D.865 1.026 1.001 1.084 1.140 1.090 1.092 1.136 12.009PUMPED FROM GOOD AREA 1.121 0.92A 0.811 0.699 0.864 0.788 0.707 0.598 0.763 0.637 0.738 0.880 q.534EVAPORATION GOOD AREA 0.033 0.008 0.016 0.018 0.036 0.050 0.0v0 0.234 0.380 0.867 0.993 0.791 3.517RECHARGE TO bOOD AREA 1.840 1.252 1.019 0.967 1.256 1.833 1.743 2.113 2.476 4.001 3.941 2.751 25.193NET CHANGE -- GOOD AREA 0.686 0.316 0.192 0.250 0.356 0.994 0.947 1.281 1.333 2.497 2.210 1.O80 12.143PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUIMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION bAD AREA 0.000 0.000 0.000 0.001 0.001 0-003 0.003 0.012 0.019 0.041 0-111 0.109 0.301RECHARGE TO BAD ARFA 0.272 0.174 0.147 0.146 0.171 0.257 0.239 0.289 0.357 0.570 0.547 0.398 3.568NET CHANGE BAD AREA 0.272 0.174 0.146 0.145 0.170 0.255 0.235 0.276 0.339 0.529 0.437 0.289 3.268DRAIN STORAGE CONTFNI 0.000 n.ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 o.onn

'-NFR6, (t' I ! CN,IVeTOTAL PUIMP LOAD 57.75 47.7? 42.70 35.38 45.28 44.45 39.00 32.99 39.59 31.19 34.16 39.00 489.19TOTAL BASE LOAD 158.00 159.00 162.00 155.00 152.00 151.00 159.00 163.00 167.00 167.00 168.00 170.00 1931.00TOTAL ENERGY LnAD 215.75 206.7? 204.70 190.38 197.28 195.45 198.00 195.99 206.59 198.19 202.16 209.00 2420.19HYDRO ENERGY TO LOAD 122.20 95.60 93.84 92.99 88.89 136.99 134.74 132.61 131.64 130.29 131.27 131.56 1422. 63THERMAL ENERGY TO LOAD 93.52 110.75 110.53 96.93 107.68 58.44 63.25 63.37 74.12 67.88 70.88 77.43 994.78ENERGY DEFICIENCY -0.02 -0.37 -0.33 -0.45 -0.72 0.00 0.00 0.00 -0.83 0.00 0.00 0.00 -2.72INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00HYnRO ENERGY SURPLIIS 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.09

POwER (MEGAWATTS)PEAK PUMP LOAO1 101.U7 84.qn 82.30 74.92 84.16 84.95 81.81 74.81 83.05 71.22 75.19 80.90 979.28PEAK BASE LOAD 380.00 400.00 400.00 375.00 355.00 347.00 367.00 37n.00 388.00 388.00 390.00 396.00 4565.00TOTAL PEAK LOAD 481.07 484.9n 482.30 449.92 439.16 431-95 448.81 453.81 471-05 459.22 465.19 476.90 5544.28HYDRO CAPACITY TO LOAD 170.48 156.09 155.27 156.49 160.20 187.68 184.59 181.80 180.35 178.50 179.84 180.24 2071.53THERMAL CAPACITY TO LOAD 277.00 277.00 277.00 277.00 277.00 244.27 264.23 272.02 290.00 280.72 285.35 296.67 3318.24FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0-00PEAK RESERVE -33.58 -51.61 -50.03 -16.43 -1.95 32.73 12.77 17.98 -0.70 9.28 17.65 6.33 _57.74

B-l

SOUTH ZONE SUMMARY

wATER (MAF) OCT NOv DEC JAN FEB MAR APR MAy JUNE JUJLY AUG SEPT TOTAL

FROM RIVER INFLOW 3.470 1.867 1.367 1.435 1.330 1.927 3.906 7.lq3 13.085 20.925 20.770 10.597 87.874FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBLUTARIES 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 4.555 2.nn4 1.365 1.858 1.329 2.357 6.122 11.779 20.523 34.399 35.204 16.888 138.385TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0-000 -0-000 -0-000 -0-000 -0.000 -0-000 0-000TO RIVER OIJTFLOW 2.204 0.460 0.029 0.234 0.025 0.245 1.540 3.303 6.216 11.970 14.148 8.428 48.801TO RIVER LOSS -1.587 -0.436 -0.051 0.157 -0.060, 0.212 0.761 1.212 1.940 3.201 1.332 -2.226 4.455TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0-091 0.091 0.091 n.091 0-091 0.091 1.053TO CANAL LOSS 0.654 n.41? 0.367 0.303 0.361 0.376 0.367 0.594 0.973 0.986 0.982 0.948 7.323TO WATERCOURSE 2.108 1.341 0.933 0.681 0.918 1.003 1.147 1.993 3.865 4.678 4.217 3.357 26.241FROM GROUND WATER O.OU6 0.004 0.005 0.004 n.oos 0.004 0.004 0.006 0.006 0.007 0.007 0.006 0.064SHORTAGE AT WATERCnORSE 0.000 n.000 0.090 n.ooo 0.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.157WATERCOURSE REQT. 2.114 1.34s 1.028 0.685 0.990 1.on7 1.151 1.999 3.871 4.685 4.224 3.363 26.462

PUMP CAPACITY GOOD AREA 0.007 8.005 0.005 O.0U5 0.005 0.005 0.005 0.007 0.007 0.007 0.007 0.007 0.072PUMPED FROM GOOD AREA 0.006 0.004 0.005 0.004 0.005 0.004 0.004 0.006 0.006 0.007 0.007 0.006 0.064EVAPORATION GOnD AREA 0.117 0.186 0.163 O.LOO 0.149 0.152 0.140 0.177 0.338 0.678 n.760 0.631 3.593RECHARGE TO bOOD AREA 0.319 0.19n 0.155 0.115 0.143 0.166 0.145 0.194 0.440 0.738 0.767 0.637 4.010NET CHANGE -- GOOD ARFA 0.196 -0.000 -0.013 0.011 -0.011 0.010 0.001 0.010 0.096 0.053 -0.000 -0.000 0.353PUMP CAPACITY BAD AREA 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION UAD AREA 0.543 0.459 0.374 0.272 0.373 0.403 0.429 0.751 1.280 1.702 1.660 1.276 q.522RECHARGE TO BAD AREA 0.738 0.462 0.360 0.288 0.362 0.417 0.430 0.774 1.325 1.764 1.676 1.279 9.876NET CHANGE BAD AREA 0.195 0.003 -0.014 0.017 -0.011 0.014 0.002 0.024 0.045 0.062 0.016 0.003 0.354DRAIN STORAGt CONTENT 0.000 0.000 0.000 0;000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 0.49 0.33 0.41 0-33 0.41 0-33 0-33 0.48 0.47 0.53 0.53 0.45 5.10TOTAL BASE LOAD 81.00 80.00 80.00 78.00 78.00 80.00 82.00 85.00 87.00 87.00 88.00 92.00 998.00TOTAL ENERGY LOAD 81.49 80.33 80.41 78.33 78.41 80.33 82.33 8r.48 87.47 87.53 88.52 92.45 1003.10HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 -0.00 -0-00 -0.00 -0.00 -0.00 0.00THIERMAL ENERbY TO LOAD 81.49 80.33 80.40 78.33 78.40 80.33 82.33 85.48 87.46 87.52 88.52 92.44 1003.03ENERGY DEFICIENCY 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER o.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 0.77 0.57 0.64 0.52 0.64 0.52 0.52 0.76 0.74 0.84 0.83 0.71 a.03PEAK BASE LOAD 170.00 169.00 170.00 166.00 166.00 171.00 178.00 183.00 186.00 187.00 193.00 196.00 2135 00TOTAL PEAK LOAD 170.77 169.52 170.64 166.52 166.64 171.52 176.52 181.76 186.74 187.84 193.83 196.71 2143.03HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 170.77 169j52 170.64 166.52 166.64 171.52 178.52 183.76 186.74 187.84 193.83 196.71 2143.03FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 177.23 178.48 177.36 181.48 181.36 176.48 169.48 164.24 161.26 160.16 154.17 151.29 2032.97

B-2

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr SEPT TOTAL

FROM RIVER INFLOW 6-029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 o-ooo 0o000 0.000 0.000 0.000 0.000 0.000 0.000FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 4.555 2.004 1.365 1.858 1.329 2.357 6.122 11.779 20.523 34.399 35.204 16.888 138.385TO RESERVOIR EVAPORATION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RIVER OIJTFLOW 2.204 0.460 0.029 0.234 0.025 0.245 1.540 3.303 6.216 11.970 14.148 8.428 48.801TO RIVER LOSS -2.338 -0.562 0.053 0.527 0.166 0.947 2.369 3.978 6.244 9.263 3.870 -4.613 19.903TO LINK LOSS 0.255 0.159 0.160 o.1z3 0.167 o.305 o.359 o.357 0.367 0.371 0.369 0.368 3.360TO CANAL LOSS 1.778 1.099 0.986 0.893 1.079 1.340 1.388 1.795 2.282 2.300 2.306 2.263 19.509TO WATERCOURSE 4.410 2-623 2.063 1.598 2.051 3.193 3.420 5.158 7.704 8.822 8-392 7.364 56.796FROM GROUND WATER 1.127 0.93? 0.816 0.703 0.869 0.792 0.711 0.604 0.769 0.644 0.745 0.886 9.598SHORTAGE AT WATERCOURSE 0.579 0.647 0.395 0.264 -0.406 0.000 0.000 0.000 0.000 0.000 0.001 0,000 2.292WATERCOURSE REOT. 6.115 4.202 3.274 2.565 3.325 3.985 4.131 5.762 8.473 9.466 9.138 8.250 68.686

PUMP CAPACITY GOOD AREA 1.132 0.94? 0.810 0.714 0.870 1.031 1.006 1.091 1.147 1.097 1.099 1.143 12.081PUMPED FROM GOOD AREA 1.127 0.93? 0.816 0o703 0.869 0.792 0.711 0.604 0.769 0.644 0.745 0.886 9.598EVAPORATION GOOD AREA 0.150 0.194 0.180 0.118 0-185 0.203 0-230 0.412 0.718 1.545 1-753 1.422 7.110RECHARGF TO GOOD AREA 2.159 1.441 1.174 1.082 1.400 1.999 1.889 2.307 2.916 4.739 4.708 3.389 29.203NET CHANGE -- GOOD AREA 0.882 0.316 0.179 0.261 0.345 1.004 0.948 1.291 1.429 2.550 2.210 1.080 12.495PUMP CAPACITY BAD APEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION fAU AREA 0.543 0.460 0.375 0.272 0.374 0.405 0.432 0.763 1.299 1.744 1.771 1.385 9.823RECHARGE TO "AD AREA 1.010 0.636 0.507 0.434 0.533 0.674 0-669 1.063 1.682 2.334 2.224 1.677 13.444NET CHANGE BAD AREA 0.467 0.177 0.132 0.162 0.159 0.269 0.237 0.300 0.383 0.591 0.453 0.292 3.621DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 58.24 48.05 43.11 35.71 45.69 44.78 39.33 31.48 4n.06 31.72 34.68 3q.45 494.29TOTAL BASE LOAD 239.00 239.00 242.00 233.00 230.00 231.00 241.00 24A.00 254.00 254.00 256.00 262.00 2929.00TOTAL ENERGY LOAD 297.24 287.05 285.11 268.71 275.69 275.78 280.33 281.48 294.06 285.72 290.68 301.45 3423.29HYDRO ENERGY TO LOAD 122.20 95.6n 93.84 92.99 88.89 136.99 134.74 132.61 131.64 130.29 131.27 131.56- 1422.63THERMAL ENERGY TO LOAD 175.01 191.07 190.93 175.26 186.08 138-77 14 CR 166-n 85 1 --^1 a-, i997.rlENFRr.Y FrFTr!rK,Cl -U,37 -G.33 -u.-5 -0.72 0-00 0.00 0-00 -0.83 0-00 0.00 0.00 -2-72INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SIIRPLIIS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.09

POWER (MEGAWATTS)PEAK PUMP LOAD 101.84 S85.4? 82.94 75.45 84.80 85.47 82.34 75.57 83.79 72.05 76.02 81.61 987.31PEAK BASE LOAD 550.00 569.00 570.00 541.00 521.00 518.00 545.00 56P.00 574.00 575.00 583.00 592.00 6700.00TOTAL PEAK LOAD 651.84 654.4? 652.94 616.45 605.80 603.47 627.34 637.57 657.79 647.05 659.02 673.61 7687.31HYDRO CAPACITY TO LOAD 170.48 1S6.09 155.27 156.49 160.20 187.68 184.59 181.80 180.35 178.50 179.84 180.24 2071.53THERMAL CAPACITY TO LOAD 447.77 446.5? 447.64 443.52 443.64 415.79 442.75 455.78 476.74 468.55 479.18 493.37 5461.27FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 143.64 126.67 127.33 165.04 179.40 209.21 182.25 182.22 160.56 169.45 171.82 157.63 1975.23

B-3

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMFER 6685072110

YEAR 1967

NORTH ZONE SUIMMARY

WATER (MAF) ocr Nov DEC JAN FEB MAR APR *AY JUNE JUL Y AUG SEPT TOTAL

FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 0.000 0-000 0-000 0-000 0.000 0.000 0.000 -1.481 -1.626 -1.426 -0.392 0.001 -4.925FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.000 0.000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0.000 0.000 0.000 0.000TO RESERVOIR EVAPORATION 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.021 0.034 0.025 0.027 0.002 0.109TO RIVER OUTILOW 3.904 1.910 1.386 1.442 1.324 1.945 4.017 6.827 12.146 20.064 20.241 10.409 85.615TO RIVER LOSS -1.392 -0.142 0.122 0.353 0.245 0-739 1.635 2.191 3.883 6-000 2-775 -2.221 14.187TO LINK LOSS 0.174 0.072 0.070 0.057 0.072 0.209 0.252 0.236 0.274 n.279 0.277 0.27R 2.250TO CANAL LOSS 1.120 0.690 0.614 0.603 0.723 0.947 0.960 1,102 1.300 1.301 1.311 1.302 11.972TO WATERCOURSE 2.502 1.261 1.100 0.923 1.134 2.172 2.211 2.733 3.549 3-632 4.063 4.041 2q.321FROM GROUND WATER 1.352 1.054 0.905 0.808 1.084 1.128 0.816 0.979 1.155 1.087 1.082 1.149 12.599SHORTAGE AT WATERCOURSE 0.415 0.511 0.244 0.216 0.431 0.000 0.000 0.000 0.000 0.000 0.004 0.000 1.s71WATERCOURSE REOT. 4.269 2.825 2.249 1.947 2-649 3.300 3.027 3.712 4.704 4.719 5.150 5.190 43.741

PUMP CAPACITY GOOD AREA 1.349 1.01 0.900 0.806 1.082 1.237 1.148 1.215 1.364 1.305 1.300 1.3'3 14.110PUMPED FROM GOOD AREA 1.352 1.054 0.905 0.8U8 1.084 1.128 0.816 0.979 1.155 1.087 1.082 1.149 12.599EVAPORATION bOOD AREA 0.335 0.203 0.219 0.185 0.229 0.352 0-404 0.561 0-851 1.542 1.521 1.10P 7.510RECHARGE TO GOOD ARFA 1.923 1.274 1.028 0.998 1.302 1.879 1.708 2.029 2.491 3.982 3.979 2.805 25.398NET CHANGE -- GOOD AREA 0.236 0.01P -0.097 0.005 -0.011 0.398 0.488 0.488 0.485 1.353 1.376 0,549 5.288PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 0-000 0.000 0.000 0.000 0-000 0-000 0.000 0.000 0-000 0.000 0.000 0.000-"EVAPORATION bAD AREA 0.118 0.068 0.041 0.054 0.065 0.082 0.103 0.141 0.186 0.283 0.277 0.20p 1.626RECHARGE TO BAD AREA 0285 0.178 0.148 0.152 0.181 0.272 0.236 0.282 0.359 0.564 0.552 0.404 3.613NET CHANGE BAD AREA 0.167 O.1ln 0.107 0.098 0-116 0.190 0.133 0.141 0.173 0.281 0.275 0.196 1.987DRAIN STORAGE CONTENt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 74.00 58.30 51.00 43.89 60.78 62.11 38.67 47.08 56.69 50.69 49.56 53.97 646.75TOTAL BASE LOAD 165.00 167.00 176.00 171.00 168.00 166.00 175.00 179.00 184.00 184.00 186.00 188.00 2109.00TOTAL ENERGY LOAn 239.00 225.30 227.00 214.89 228.78 228.11 213.67 226.08 240.69 234.69 235.56 241.97 2755.75HYDRO ENERGY TO LOAD 129.82 96.7? 93.36 95.91 88.76 140.00 136.95 134.15 134.34 232.78 234.57 240.55 1757.92THERMAL ENERGY TO LOAD 108.84 128.45 133.38 118.88 139.96 88.09 76.71 91.57 106.33 1.90 0.98 1.40 996.50ENERGY DEFICIENCY -0.34 -0.14 -0.26 -0.09 -0-06 0.00 0.00 -0-36 0.00 0.00 0.00 0.00 -1-25INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SIJRPLUS 0,00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 82.97 95.19 89.79 267.96

POWER (MEGAWATTS)PEAK PUMP LOAD 118.80 100.47 94.81 87.18 103.56 103.72 78.36 90.84 102.50 95.03 92.87 98.63 1166.78PEAK BASE LOAD 384.00 388.00 408.00 410.00 391.00 382.00 404.00 41.00 427.00 427.00 431.00 435.00 4905,00TOTAL PEAK LOAn 502.80 488.47 502.81 497-18 494.56 485.72 482.36 508.84 529.50 522.03 523.87 533.63 6071.78HYDRO CAPACITY TO LOAD 181.13 157.62 154.61 160.49 160.23 191.80 187.62 181.78 184.05 432.58 451.77 452.57 2898.26THERMAL CAPACITY TO LOAD 303.00 303.00 303.00 303.00 303.00 293.91 294.74 303.00 345.45 89.45 72.10 81.06 2994.71FIRM CAPACITY TRANSFER 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE -18.68 -27.85 -45.20 -33.69 -31.33 9.09 8.26 -22.06 19.55 337.55 354.90 345.94 896.48

B-4

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 3.904 1.910 1.386 1.442 1.324 1.945 4.017 6.827 12.146 20.064 20.241 10.409 85.615FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0-000 0-000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 5.453 ?.141 1.383 1.862 1.321 2.389 6.347 11.113 18.735 32.717 34.148 16.498 134.108TO RESERVOIR EVAPOPATION -0.000 -n.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTFLOW 2.788 0.635 0.059 0.243 0.031 0.262 1.635 3,103 5.524 11.176 13.569 8.151 47.177TO RIVER LOSS -1.734 -0.541 -0.080 0.155 -0.061 0.219 0.799 1.059 1.708 3.155 1.396 -2.131 3.943TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053TO CANAL LOSS 0.656 0.411 0.369 0.300 0.360 0.375 0.366 0.594 0.973 0.986 0.982 0.948 7.320'TO WATERCOURSE 2.103 1.314 0.948 0.684 0.908 0.998 1.126 1.979 3.851 4.657 4.204 3.350 2A.122FROM GROUND WATER 0.022 0.019 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.246SHORTAGE AT WATERCnIJRSE 0.000 0.000 0.065 0.0°O 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.138WATERCOUJRSE REOT. 2.125 1.333 1.032 0.7U3 1.000 1.017 1.145 2.001 3.873 4.679 4.226 3.372 26.506

PUMP CAPACITY GOOD AREA 0.022 n.020 0.020 0.020 0.020 0.020 0.020 0.022 0.022 0.022 0.022 0.022 0.2s2PIJMPED FROM GOOD APEA 0.022 0.019 0.019 0.019 0.019 0.019 0.019 0.022 0.022 0.022 0.022 0.022 0.246EVAPORATION GOOD AREA 0.297 0.173 0.151 0.093 0.137 0.141 0.127 0.163 0.415 0.716 0.746 0.616 3.773RECHARGE TO GOOD AREA 0.319 0.190 0.159 0.117 0.144 0.167 0.145 0.194 0.440 0.738 0.768 0.638 4.019NET CHANGE -- GOOD AREA -0.000 -0.00? -0.010 0.005 -0.012 0.008 -0.001 0.009 0.003 -0.000 -0.000 -0.000 -0.000PUMP CAPACITY BAD ARtA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.200 0.194 0.039 0.037 0.044 0.038 0.040 0.044 0.046 0.060 0.060 0.052 0.953EVAPORATION HAD AREA 0.691 0.414 0.337 0.240 0.330 0.366 0.388 0.731 1.279 1.693 1.614 1.228 9.313RECHARGE TO HAD ARFA 0.742 0.459 0.365 0.289 0.361 0.418 0.428 0.775 1.325 1.763 1.675 1.280 9.878NET CHANGE BAD AREA -0.149 -0.151 -0.011 0.011 -0.013 0.014 -0.000 -0.000 0.000 0.010 0.001 -0.000 -0.788DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 14.02 15.15 4-33 4.24 4.71 4.27 4.43 4.96 5.08 6.11 6.11 5.56 78.97TOTAL BASE LOAD 96.00 95.00 95.00 92.00 92.00 94.00 97.00 100.00 103.00 103.00 104.00 108.00 1179.00TOTAL ENERGY LOAD 110.02 110.15 99.33 96.?4 96.71 98.27 101.43 104.96 108.08 109.11 110.11 113.56 1257.97HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 ° o.nn _n-nn __THERMAL ENERGY TO LOAD 110.01 110.14 99.32 96.23 96.70 CA n n - - . L.& _iu.11 113.55 1257.88ENERGY DEFICIENCY A6 uAuu 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00E EN tRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 °.-° 0.00 0.00 0.00 0.00HYDRO ENERGY StIRPLIiS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 19.55 21.04 6.22 6.10 6.74 6.15 6.36 '.14 7.30 8.71 8.71 7.96 111.99PEAK BASE LOAD 204.00 203.00 204.00 195.00 196.00 201.00 208.00 21.O0 21A.00 219.00 225.00 230.00 2516.00TOTAL PEAK LOAD 223.55 224.04 210.22 201.10 202.74 207.15 214.36 220.14 225.30 227.71 233.71 237.96 2627.99HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.oo 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 223.55 2?4.04 210.22 201.10 202.74 207.15 214.36 220.14 225.30 227.71 233.71 237.96 2627.99FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 124.45 123.n6 137.78 146.90 145.26 140.85 133.64 127.86 122.70 120.29 114.29 110.04 1548.01

B-5

SYSTEM SUMMARY

wATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AOir, SEPT TOTAL

FROM RIVER INFLOW 6.029 3.5ql 3.072 3.219 3.260 5.322 7-976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.481 -1.626 -1.426 -0.392 0.001 -4.925FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 5.453 2.141 1.383 1.862 1.321 2.389 6.347 11.113 1.735 32.717 34.148 16.4i8 134.108TO RESERVOIR EVAPORATION 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.034 0.025 0.027 0.002 0.109TO RIVER OUTILOW 2.788 0.635 0.059 0.243 0.031 0.262 1.635 3.103 5.524 11.176 13.569 8.151 47.177TO RIVER LOSS -3.126 -0.683 0.042 0.507 0.183 0.957 2.434 3.250 5.590 9.155 4.171 -4.352 18.130TO LINK LOSS 0.265 0.163 0.160 0-118 0.159 o.300 0.343 0.327 o.365 0.369 0.367 o.369 3.303TO CANAL LOSS 1.776 1.101 0.983 0.903 1.083 1.322 1.327 1.696 2.273 2.286 2.292 2.250 19.291TO WATERCOURSE 4.605 2.575 2.048 1.607 2.042 3.170 3.337 4.712 7.400 8.289 8.267 7.3q1 55.443FROM GROUND WATER 1.374 1.073 0.924 0.8Z7 1.103 1.147 0.835 1.001 1.177 1.109 1.104 1.171 12.445SHORTAGE AT wATERCOURSE 0.415 0.511 0.309 0.216 0.504 0.000 0.000 0.000 0.000 0.000 0.004 0.000 1.q59WATERCOURSE REOT. 6.394 4.158 3.281 2.650 3.649 4.317 4.172 5.713 8.577 9.398 9.376 8.562 7n.247

PUMP CAPACITY GOOD AREA 1.371 1.071 0.920 0.826 1.102 1.257 1.168 1.237 1.386 1.327 1.322 1.375 14.362PUMPED FROM GOOD AREA 1.374 1.073 0.924 0.8Z7 1.103 1.147 0.835 1.001 1.177 1.109 1.104 1.171 12.A45EVAPORATION GOOD ApEA 0.632 0.375 0.370 0.278 0.366 0.492 0-532 0.724 1.265 2.258 2.267 1.724 11.284RECHARGE TO GOOD AREA 2.242 1.464 1.187 1.115 1.446 2.046 1.853 2.223 2.931 4.720 4.747 3.444 29.417NET CHANGE -- GOOD AREA 0.236 0.018 -0.107 0.010 -0.023 0.406 0.487 0.497 0.489 1.353 1.376 0.549 5.288PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.200 0.194 0.039 0.037 0.044 0.038 0.040 0.044 0.046 0.060 0.060 0.05? 0.A53EVAPORATION BAD AREA 0.809 0.483 0.378 0.294 0.396 0.448 0-491 0.872 1.465 1.977 1.891 1.435 10.939RECHARGE TO UAD AREA 1.027 0.637 0.513 0.440 0.542 0.690 0.664 1.057 1.684 2.327 2.227 1.684 13.491NET CHANGE BAD AREA 0.018 -n.041 0.096 0.109 0.103 0.204 0.133 0.141 0.173 0.291 0.277 0.196 1.699DRAIN STORAGE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.(0o 0.000

ENEROY (MILLION KWHITOTAL PUMP LOAD 88.02 73.45 55.32 48.13 65.49 66.38 43.10 52.04 61.78 56.81 55.68 59.53 725.73TOTAL BASE LOAD 261.00 262.00 271.00 263.00 260.00 260.00 272.00 27n.00 287.00 287.00 290.00 296.00 3288.00TOTAL ENERGY LOAD 349.02 335.45 326.32 311.13 325.49 326.38 315.10 331.04 348.78 343-81 345.68 355.53 4013.73HYDRO ENERGY TO LOAD 129.82 96.7? 93.36 95.91 88.76 140.00 136.95 134.15 134.34 232.78 234.57 240.55 1757.92THERMAL ENERbY TO LOAD 218.85 238.58 232.70 215.11 236.66 186.36 178.13 196.53 214.41 111.00 111.09 114.96 2254.38ENERGY DEFICIENCY -0.34 -0.14 -0.26 -0.09 -0.06 0.00 0.00 -0-36 0.00 0.00 0.00 0.00 -1.25INTERZONE ENERGY TRANSFER 0.00 n.oo 0.00 o0.o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 82.97 95.19 89.79 267.96

POWER (MEGAWATTS)PEAK PUMP LOAD 138.35 121.5? 101.03 93.28 110.30 109.87 84.72 97.98 109.80 103.75 101.58 106.59 1278.77PEAK BASE LOAD 588.00 591.00 612.00 605.00 587.00 583.00 612.00 631.00 645.00 646.00 656.00 665.00 7421.00TOTAL PEAK LOAD 726.35 712.52 713.03 698-Z8 697.30 692-87 696.72 728.98 754.80 749.75 757.58 771.59 8699.77HYDRO CAPACITY TO LOAD 181.13 157.62 154.61 160.49 160.23 191.80 187.62 183.78 184.05 432.58 451.77 452.57 2898.26THERMAL CAPACITY TO LOAD 526.55 527.04 513.22 504.10 505.74 501.06 509.10 523.14 570.75 317.16 305.81 319.02 5622.70FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00PEAK RESERVE 105.78 96.11 92.58 113.21 113.92 149.94 141.90 105.80 142.25 457.84 469.19 455.98 2444.49

B-6

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1968

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV nEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 1.133 n.739 0.493 0.492 1.182 0.167 -0.195 -0.560 -1.620 -1.421 -0.390 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.005 0.009 0.025 0.033 0.024 0.027 0.002 0.169TO RIVER OUTFLOW 4.063 2.001 1.398 1.433 1.493 2.076 4.045 7.474 12.550 20.358 20.406 10.521 87.818TO RIVER LOSS -1.072 -n.260 0.074 0.411 0.443 0.615 1.560 2.726 3.634 6.025 2.774 -2.224 14.707TO LINK LOSS 0.222 0.150 0.127 0.098 0.183 0.219 O.242 O.222 o.269 o.268 o.268 0.273 2.541TO CANAL LOSS 1.126 0.873 0.782 0.745 n.897 0.953 0.940 1.041 1.271 1.276 1.282 1.282 12.468TO WATERCOURSE 3.081 1.755 1.398 1.188 1.660 2.313 2.083 2.543 3.435 3.355 3.938 3.956 30.704FROM GROUND WATER 1.535 1.058 0.871 0.852 1.325 1.383 1.022 1.139 1.431 1.356 1.526 1.636 15.134SHORTAGE AT WATERCOuJRSE 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.008 0.002 0.055WATERCOURSE REOT. 4.616 2.813 2.269 2.040 3.030 3.696 3.105 3.682 4.866 4.711 5.471 5.594 45.893

PUMP CAPACITY GOOD AREA 1.735 1.176 0.952 0.878 1.330 1.548 1.334 1.452 1.721 1.588 1.676 1.753 17.144PUMPED FROM bOOD AREA 1.535 1.058 0.871 0.852 1.325 1.383 1.022 1.139 1.431 1.356 1.526 1.636 15.134EVAPORATION GOOD ARFA 0.649 0.445 0.376 0.337 0.416 0.525 0.499 0.629 0.857 1.723 1.906 1.295 9.657RECHARGE TO GOOD AREA 2.076 1.489 1.191 1.148 1.562 1.960 1.708 1.975 2.502 3.965 4.023 2.873 26.473NET CHANGE -- GOOD AREA -0.108 -0.015 -0.055 -0.041 -0.178 0o052 0.188 0o207 0.213 0.886 0.591 -0.057 1.681PUMP CAPACITY BAD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION BAD ARFA 0.158 0.107 0-086 0.091 0.115 0.168 0.162 0.201 0.266 0.391 0.386 0.290 2.423RECHARGE TO BAD AREA 0.312 0.224 0.180 0.186 0.236 0.286 0.238 0.280 0.362 0.559 0.559 0.413 3. 36NET CHANGE BAD AREA 0.155 0.117 0.094 0.095 0.121 0.118 0.076 0.079 0.096 0.168 0.172 0.123 1.414DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0-000 0.000 0-000 0.000 0.000

TOTAL PIUMP LOAD 83.67 57.79 47.89 46.92 76.11 77.30 51.25 5P.54 76.05 70.29 82.39 89.83 818.03TOTAL BASE LOAD 181.00 184.00 194.00 194.00 191.00 189.00 198.00 203.00 208.00 208.00 211.00 213.00 2374.00TOTAL ENERGY LOAD 264.67 241.79 241.89 240.92 267.11 266.30 249.25 261.54 284.05 278.29 293.39 302.83 3192.03HYDRO ENERGY TO LOAD 259.87 236.27 232.15 227.45 262.16 256.75 243.20 259.58 280.20 278.27 293.37 302.81 3128.09THERMAL ENERGY TO LOAD 4.78 5.50 9.72 13.46 4.93 9.53 6.04 S.94 3.83 0.00 0.00 0.00 63.74ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SHRPLUS 62.45 48.01 34.54 24.51 38.86 46.82 65.27 71.22 83-56 215.40 230.72 223.53 1144.89

POwER (MEGAWATTS)PEAK PUMP LOAD 146.81 121.65 109.95 108.88 136.66 139.73 105.44 llq.95 140.21 129.46 145.01 150.94 1554.71PEAK BASE LOAD 422.00 427.00 449.00 455.00 442.00 432.00 457.00 472.00 483.00 483.00 488.00 493.OO 5503.00TOTAL PEAK LUAD 568.81 548.65 558.95 563-88 578.66 571.73 562.44 591.95 623.21 612.46 633.01 643.94 7057.70HYDRO CAPACITY TO LOAD 445.24 414.58 391.88 374.28 451.22 415.90 422.60 447.71 498.35 676.33 718.01 721.09 5977.20THERMAL CAPACITY Tn LOAD 123.56 134.07 167.07 189.60 127.44 155.83 139.84 144.24 124.87 0.00 0.00 0.00 1306.52FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 303.44 292.93 259.93 237.40 299.56 284.17 313.16 30R.76 328.13 516.87 537.99 530.15 4212.50

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JIINE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 4.063 2.001 1.398 1.433 1.493 2.076 4.045 7.474 12.550 20.358 ?0.406 10.521 87.818FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 n.ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 5.758 2.364 1.398 1.842 1.568 2.669 6.443 12.365 19.561 33.312 34.489 16.745 13A.513TO RESERVOIR EVAPORATION -0.000 -n.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTtLOW 2.835 0.767 O.n91 0.243 0.090 0.388 1.723 3.561 5.969 11.506 13.777 8.288 49.237TO RIVER LOSS -1.612 -0.538 -0.116 0.147 -0.019 0.242 0.776 1.269 1.679 3.134 1.365 -2.140 4. 186TO LINK LOSS 0.091 n.091 0.090 0-060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053TO CANAL LOSS 0.658 0.407 0.367 0.296 0.364 0.371 0.362 0.595 0.972 0.986 0.981 0.949 7.307TO WATERCOURSE 2.092 1.274 0.966 0.687 0.972 0.985 1.094 1.958 3.838 4.642 4.193 3.333 26.034FROM GROUND WATER 0.040 n.038 0.039 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.469SHORTAGE AT WATERCOURSE 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029WATERCOURSE REQT. 2.132 1.312 1.034 0.725 1.010 1.023 1.132 1.998 3.878 4.682 4.233 3.373 26.532

PUMP CAPACITY GOOD AREA 0.040 n.038 0.038 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.468PUMPED FROM GOOD AREA 0.040 0.038 0.039 0.038 0.038 0.038 0.038 0.040 0.040 0.040 0.040 0.040 0.469EVAPORATION GOOD AREA 0.278 0.161 0.142 0.094 0.128 0.140 0.117 0.150 0.371 0.672 0.706 0.598 3.558RECHARGE TO GOOD AREA 0.318 0.188 0.161 0.118 0.154 0.166 0.143 0.193 0.440 0.738 0.769 0.638 4.027NET CHANGE -- GOOD AREA -0.000 -0.011 -0.020 -0.015 -0.012 -0.012 -0.012 0.003 0.030 0.026 0.023 -0.000 -0.000PUMP CAPACITY BAD ARtA 0.200 0.700 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.051 0.043 0.040 0.041 0.046 0.041 0.040 0.044 0.046 0.060 0.060 0.052 0.564EVAPORATION BAD AREA 0.694 0.410 0.334 0.243 0.328 0.376 0.383 0.731 1.279 1.703 1.616 1.229 9.327RECHARGE TO BAD AREA 0.745 0.453 0.369 0,290 0.374 0.417 0.423 0.776 1.325 1.763 1.675 1.281 9.891NET CHANGE BAD AREA -0.000 -n.000 -0.005 0.005 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000DRAIN STORAGt CONTENT 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 6.85 6.09 5.96 6.03 6.39 6.07 6.01 6.49 6.60 7.58 7.50 6.91 78.48TOTAL BASE LOAD 112.00 112.00 112.00 112.00 111.00 115.00 117.00 120.00 124.00 124.00 127.00 130.00 1416.00TOTAL ENERGY LOAD 118.85 118.09 117.96 118-03 117.39 121.07 123.01 126.49 130.60 131.58 134.50 136.91 1494.48HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 -0-00 -0.00 -0.00 -0.00 -0.00 0.00THERMAL ENERGY TO LOAD 118.84 118.08 117.95 118.02 117.38 121.07 123.00 12A.48 130.59 131.57 134.49 136.90 1494.37ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 10.00 9.01 8.86 8.95 9.44 9.02 8.94 9.54 9.69 11.02 10.90 10.08 115.45PEAK BASE LOAD 239.00 238.00 239.00 240.00 237.00 245.00 251.00 260.00 264.00 265.00 270.00 279.00 3027.00TOTAL PEAK LOAD 249.00 247.01 247.86 248.95 246.44 254.02 259.94 269.54 273-69 276.02 280.90 289.08 3142.45HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 249.00 247.01 247.86 248.95 246.44 2S4.02 259.94 269.54 273.69 276.02 280.90 289.08 3142.45FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 99.00 100.99 100.14 122.05 124.56 116.98 111.06 101.46 97.31 94.98 90.10 81.92 1240.55

B-8

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL

FROM RIVER INFLOW 6.029 3.591 3.072 3.219 3.260 5.322 7.976 13.500 21.972 31.386 28.155 13.260 140.742FROM STORAGE RELEASE 1.133 0.739 0.493 0.492 1.182 0.167 -0-195 -0.560 -1.620 -1.421 -0.390 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 5.758 2.364 1.398 1.842 1.568 2.669 6.443 12.365 19.561 33.312 34.489 16.745 138.513TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.005 0.009 0.025 0.033 0.024 0.027 0.002 0.169TO RIVER OUITFLow 2.835 0.767 0.091 0.243 0.090 0.388 1.723 3.561 5.969 11.506 13.777 8.288 49.237TO RIVER LOSS -2.684 -0.798 -0.042 0.558 0.424 0.857 2.336 3.995 5.314 9.159 4.139 -4.364 18.893TO LINK LOSS 0.313 0.241 0.217 0.158 0.269 0.310 o.333 0.313 0.360 o.359 0.359 0.364 3.595TO CANAL LOSS 1.784 1.280 1.149 1.040 1.261 1.323 1.302 1.636 2.244 2.261 2.263 2.232 19.775TO WATERCOURSE 5.173 3.02q 2.365 1.875 2.632 3.298 3.177 4.501 7.273 7.997 8.131 7.289 56.738FROM GROUND WATER 1.575 1.098 0.909 0.890 1.363 1.421 1.060 1.179 1.471 1.396 1.566 1.676 15.603SHORTAGE AT WATERCOURSE 0.000 0.000 0.029 0.000 0.045 0.000 0.000 0.000 0.000 0.000 0.008 0o002 0.084WATERCOURSE REQT. 6.748 4.125 3.303 2.765 4.040 4.719 4.237 5.680 8.744 9.393 9.704 8.967 72.425

PUMP CAPACITY GOOD AREA 1.775 1.214 0.990 0.916 1.368 1.586 1.372 1.492 1.761 1.628 1.716 1.793 17.612PUMPED FROM GOOD AREA 1.575 1.096 0.909 0.890 1.363 1.421 1.060 1.179 1.471 1.396 1.566 1.676 15.603EVAPORATION GOOD AREA 0.927 0.606 0.518 0.431 0.544 0.665 0.616 0.779 1.228 2.395 2.612 1.893 13.216RECHARGE TO GOOD AREA 2.395 1.676 1.353 1.265 1.716 2.126 1.852 2.168 2.942 4.703 4.792 3.511 30.500NET CHANGE -- GOOD AREA -0.108 -0.026 -0.075 -0.056 -0.190 0.040 0.176 0.209 0.243 0.912 0.614 -0.057 1.681PUMP CAPACITY BAD ARtA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.051 0.043 0.040 0.041 0.046 0.041 0.040 0.044 0.046 0.060 0.060 0.052 0.564EVAPORATION BAD AREA 0.852 0.517 0.421 0.334 0.443 0.544 0.545 0.932 1.546 2.095 2.002 1.519 11.750RECHARGE TO BAD AREA 1.058 0.677 0.549 0.476 0.610 0.703 0.662 1.056 1.688 2.322 2.234 1.694 13.727NET CHANGE BAD AREA 0.155 0.117 0.089 0.100 0.121 0.118 0.076 0.079 0.096 0.168 0.172 0.123 1.414DRAIN STORAGL CONTENT 0.000 0.000 0.000 O.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.oo0 o.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAn 90.52 63.87 53.85 52.96 82.50 83.38 57.26 65.03 82.65 77.87 89.89 96.74 896.51TOTAL BASE LOAD 293.00 296.00 306.00 306.00 302.00 304.00 315.00 323.00 332.00 332.00 338.00 343.00 3790.00TOTAL ENERGY LOAD 383.52 359.87 359.85 358.96 384.50 387.38 372.26 388.03 414.65 409.87 427.89 439.74 4686.51HYDRO ENERGY TO LOAD 259.87 236.27 232.15 227.45 262.16 256.75 243.20 255.58 280.20 278.27 293.37 302.81 3128-09THERMAL ENERGY TO LOAn 123.62 123.58 127.68 131.49 12Z.31 13060 '129.04- '-32.42 134.42 i31.57 i34.49 136.90 1558.12ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 62.45 48.01 34.54 24.51 38.86 46.82 65.27 71.22 83-56 215-40 230.72 223.53 1144.89

POWER (MEGAwATTS)PEAK PUMP LOAD 156.80 130.66 118.81 117.83 146.11 148.75 114.38 129.50 149.91 140.48 155.91 161.07 1670.16PEAK BASE LOAD 661.00 665.00 688.00 695.00 679.00 677.00 708.00 73?.00 747.00 748.00 758.00 772.00 8530.00TOTAL PEAK LOAD 817-80 795-66 806.81 812-83 825.11 825-75 822.38 861.50 896.91 888.48 913.91 933.02 10200.15HYnRO CAPACITY TO LOAD 445.24 414.58 391.88 374.28 451.22 415.90 422.60 447.71 498.35 676.33 718.01 721.09 5977.20THERMAL CAPACITY Tn LOAD 372.56 381.07 414.93 438.55 373.88 409.85 399.78 413.79 398.56 276.02 280.90 289.08 4448.97FIRM CAPACITY TRANSFIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00PEAK RESERVE 402.44 393.93 360.07 359.45 424.12 401.15 424.22 410.21 425.44 611.85 628.09 612.07 5453.05

B-9

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMI3ER 6685072110

YEAR 1969

NORTH ZONE SIIMMARY

WATER (MAF) OCT mnv DEC JAN FEB MAR APR AAY JUNE JULY AUG SEPT TOTAI

FROM RIVER INFLOW 5.430 3.Z3n 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.347 28.155 12.969 138.031FROM STORAGE RELEASE 1.128 0.736 0.491 0.491 1.177 0.745 -0.274 -1.057 -1.614 -1.415 -0.389 0.001 o0o.QFROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RESERVOIR EVAPORATION 0.022 n.o0n 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTFLOW 3.944 1.927 1.402 1.423 1.290 1.926 4.001 7.342 12.527 20.563 20.612 10.413 87.370TO RIVER LOSS -1.285 -0.245 0.125 0.321 0.324 0.734 1.514 2.559 3.790 6.170 2.819 -2.331 14.495TO LINK LOSS 0.325 n.238 0.171 0.159 0.280 n.329 0.240 0.234 0.311 0.305 0.303 0.331 3.226TO CANAL LOSS 1.080 0.77F 0.661 0.611 0.871 0.979 0.892 1.002 1.234 1.257 1.257 1.255 11.e75TO WATERCOURSE 2.753 1.461 1.122 0-946 1.617 2.544 2.063 2.376 3.293 ?.953 3-678 3.850 28.655FROM GROUND WATER 2.123 1.281 1.040 1.014 1.631 1.493 1.049 1.12 1.613 1.618 1.992 2.034 18.071SIIORTAGE AT WATERCOURSE 0.000 0.000 0.078 0.125 0.122 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.332WATERCOURSE RFOT. 4.876 P.742 2.240 2.085 3.370 4.037 3.112 3.558 4.906 4.571 5-674 5.887 47.058

PlIMP CAPACITY GOOD AREA 2.137 1.3n4 1.034 1.011 1.628 1.876 1.513 1.616 2.054 1.868 2.047 2.173 20.262PUMPED FROM GOOD AREA 2.123 1.281 1.040 1.014 1.631 1.493 1.049 1.182 1.613 1.618 1.992 2.034 18.071EVAPORATION GOOD AREA 0.581 0.403 0.358 0.2b5 0.319 0.449 0.430 0.560 0.766 1.543 1.702 1.116 8.493RECHARGE TO CO0D AREA 2.096 1.421 1.096 1.053 1.601 2.049 1.685 1.922 2.482 3.927 4.047 2.914 26.291NET CHANGE -- GOOD AREA -0.608 -0.263 -0.303 -0.226 -0.350 0,107 0.205 0.180 0.103 0.766 0.353 -0.236 -0o272PUMP CAPACITY BAD AREA 0.000 n.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 n.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION BAD ARFA 0.216 n.130 0-111 0.107 0.146 0.188 0.153 0.194 0.264 0.387 0.389 0.293 2.579RECHARGE TO BAD AREA 0.316 0.19A 0.155 0.156 0.238 0.297 0.225 0.274 0.361 0.550 0.562 0.417 3.747NET CHANGE BAID AREA 0.099 n.068 0.044 0.048 0.091 0,109 0.072 0.080 0.098 0.163 0.173 0.123 1.169DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY IMILLION KWH)TOTAL PUMP LOAD 131.58 77.26 62.99 60.Z0 101.38 84.92 54.81 65.21 94.51 94.61 122.62 124.60 1074.69TOTAL BASE LOAD 206.00 208-00 221.00 213.00 211.00 208.00 219.00 224.00 229-00 229.00 232.00 235.00 2635.00TOTAL ENERGY LOAD 337.58 285.26 283.99 273.20 312.38 292.92 273.81 289.21 323.51 323.61 354.62 359.60 3709.69HYDRO ENERGY TO LOAD 337.56 2A5.24 283.88 272.67 307.40 276.99 257.96 283.49 320.67 323.58 354.59 359.58 3663.61THERMAL ENERGY TO LOAD 0.00 0.00 0.09 0.51 4.96 15-91 15-83 5.71 2.82 0.01 0.00 0.00 45.85ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 165.32 164-27 96.42 114.06 54.56 44.81 43.50 85.18 110-91 161.00 167-51 166.78 1374.32

POWER (MEGAWATTS)PEAK PUMP LOAD 218.93 164.46 149.29 144.71 189.84 173.49 114.75 138.47 184.32 181.58 205.89 209.32 2075.05PEAK BASE LOAD 477.00 483.00 508.00 510.00 487.00 476.00 504.00 521.00 532.00 532.00 538.00 543.00 6111.00TOTAL PEAK LOAD 695-93 647.46 657.29 654.71 676-84 649-49 618.75 659.47 716.32 713.58 743.89 752.32 8186.05HYDRO CAPACITY TO LOAD 692.97 641.16 604.36 582.29 534.90 440.86 412.99 505.08 591.26 663.88 715.28 721.11 7106.14THERMAL CAPACITY TO LOAD 2.96 6.3n 52.93 72.41 141.94 208.63 205.76 154,39 125.06 49.69 28.61 31.21 1079.91FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 450.04 446.70 400.07 380.59 311.06 244.37 247.24 298.61 327.94 403.31 424.39 421.79 4356.09

B-10

SOUTH ZONF SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIvER INFLOW 3.944 1.927 1.402 1.423 1.290 1.926 4.001 7.342 12.527 20.563 20.612 10.413 S7.370FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 5.580 2.264 1.402 1.857 1.290 2.395 6.377 12.148 19.534 33.757 34.937 16.585 138.126TO RESERVOIR EVAPORATION -0.000 -o.ooo -o.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUJTFLOW 2.813 0.745 0.088 0.271 0.047 0.286 1.685 3.488 5.947 11.682 14.009 8.305 49.365TO RIVER LOS5 -1.681 -0.533 -0.103 0.153 -0.066 0.225 0.805 1.242 1.705 3.223 1.383 -2.238 4.116TO LINK LOSS 0.091 0.091 0.090 0.060 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.053TO CANAL LOSS 0.660 0.401 0.366 0.280 0.356 0.368 0.363 0.595 0.972 0.985 0.980 0.949 7.276TO WATERCOURSE 2.060 1.223 0.966 0.658 0.867 0.956 1.057 1.926 3.812 4.582 4.150 3.306 25.564FROM GROUND WATER 0.102 0.094 0.090 0.095 0.101 0.094 0.076 0.083 0.092 0.102 0.102 0.102 1.132SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068WATERCOURSE REaT. 2.162 1.317 1.056 0.753 1.036 1.050 1.133 2.009 3.904 4.684 4.252 3.408 26.764

PUMP CAPACITY GOOD AREA 0.102 0.094 0.090 0.095 0.101 0.094 0.089 0.099 0.102 0.102 0.102 0.102 1.171PUMPED FROM GOOD AREA 0.102 n.094 0.090 0.095 0.101 0.094 0.076 0.083 0.092 0.102 0.102 0.102 1.132EVAPORATION 00D AREA 0.233 0.118 0.100 0.048 0.085 0.089 0.074 0.102 0.315 0.628 0.653 0.540 2.985RECHARGE TO GOOD AREA 0.3Z1 0.187 0.166 0.115 0.148 0.169 0.147 0.195 0.443 0.740 0.772 0.642 4.045NET CHANGE -- GOOD AREA -0.014 -0.025 -0.023 -O.OZ7 -0.038 -0.015 -0.004 0.010 0.036 0.010 0.016 0.000 -0.072PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.051 0.04? 0.041 0.045 0.047 0,040 0.037 0.042 0.047 0.057 0.060 0.053 0.561EVAPORATION BAD ARFA 0.700 n.407 0. 334 0.241 0.328 0.366 0.384 0.735 1.282 1.704 1.617 1.232 9.332RECHARGE TO HAD ARFA 0.751 0.450 0.375 0.286 0.363 0.419 0.421 0.776 1.329 1.761 1.676 1.285 9.892NET CHANGE BAD AREA -0.000 -0.000 -0.000 -0.000 -0.013 0.013 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000DRAIN STORAGE CONTENT 0.000 n.ooo o.ooo O.o0O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 11.51 10.30 9-92 10.68 11.51 10.44 8.69 1.66 10.80 12.40 12-52 12.01 130.43TOTAL BASE LOAD 136.00 135.00 135.00 135.00 135.00 138.00 142.00 146.00 149.00 150.00 153.00 157.00 1711.00TOTAL ENERGY LOAD 147.51 145.30 144.92 145.68 146.51 148.44 150.69 155.66 159.80 162.40 165.52 169.01 1841.43HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -o.uo -0.00 -0.00 -0.00 -0-00 -0.00 -0-00 -0.00 -0-00 0.00THERMAL ENERGY TO LOAD 147.50 145.29 144.91 145.67 146.50 148.43 150.67 15s.65 159.79 162.39 165.51 169.00 1841.30ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00INTERZONE ENLRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAn 17.35 15.5q 15.27 16.15 17.42 15.85 14.37 1l.44 16.46 18.65 18.81 18.10 199.48PEAK BASE LOAD 289.00 286.00 286.00 295.00 284.00 292.00 301.00 307.00 314.00 316.00 322.00 331.00 3623.00TOTAL PEAK LOAD 306.35 3n0.5' 301.27 311.15 301.42 307.85 315.37 322.44 330.46 334.65 340-81 349.10 3822.48HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.(O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 306.35 301.59 301.27 311.15 301.42 307.85 315.37 322.44 330.46 334.65 340.81 349.10 3822.48FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0.00 0.00PEAK RESERVE 64.65 69.41 69.73 138.85 148.58 142.15 134.63 127.56 119.54 115.35 109.19 100.90 1340.52

B-l1

SYSTEM SUMMARY

WATER (MAF) OCT NnV nEC JAN FEB MAR APR MAY JUNE JULY AUr, SFPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.347 28-155 12.969 138.031FROM STORAGE RELEASE 1.128 0.736 0.491 0.491 1-177 0.745 -0.274 -1.057 -1.614 -1.415 -0.389 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 5.580 2.264 1.402 1.857 1.290 2.395 6.377 12.148 19.534 33.757 34.937 16.585 138.126TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTtLOW 2.813. 0.745 0.088 0.271 0.047 0.286 1.685 3.488 5.947 11.682 14.009 8.305 49.365TO RIVER LOSS -2.965 -0.77A 0.022 0.474 0.258 0.958 2.319 3.801 5.495 9.393 4.202 -4.569 18.610TO LINK LOSS 0.416 0.329 o.261 0.219 o.366 0.419 0.331 0.325 o.402 o.396 o.394 0.422 4.279TO CANAL LOSS 1.740 1.176 I.O27 0.892 1.227 1.348 1.255 1.597 2.206 2.242 2,237 2.204 19.151TO WATERCOURSE 4.813 2.684 2.088 1.604 2.483 3.500 3.120 4.301 7.105 7.535 7-828 7.156 54.218FROM GROUND WATER 2.225 1.375 1.130 1.109 1.732 1.587 1.125 1.266 1.705 1.720 2.094 2.136 19.203SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.078 0.125 0.190 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.400WATERCOURSE REOT. 7.038 4.059 3.296 2.838 4.406 5.087 4.245 5.567 8.810 9.255 9.926 9.295 73.822

PUMP CAPACITY GOOD AREA 2.239 1.398 1.123 1.106 1.729 1.970 1.602 1.715 2.156 1.970 2.149 2.275 21.433PUMPED FROM GOOD AREA 2.225 1.375 1.130 1.109 1.732 1.587 1.125 1.266 1.705 1.720 2.094 2.136 19.203EVAPORATION GOOD AREA 0.813 0.521 0.458 0.313 0.404 0.538 0.505 0.662 1.081 2.171 2.355 1.656 11.478RECHARGE TO GOOD AREA 2.417 1.608 1.262 1.169 1.749 2.218 1.831 2.117 2.925 4.667 4.818 3.556 30.337NET CHANGE -- GOOD AREA -0.621 -0.288 -0.326 -0.253 -0.388 0.092 0.201 0.189 0.140 0.776 0.369 -0.236 -0.344PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.051 0.042 0.041 0.045 0.047 0.040 0.037 0.042 0.047 0.057 0.060 0.053 0.561EVAPORATION HAD AREA 0.916 0.538 0.446 0.349 0.475 0.554 0.537 0.928 1.545 2.091 2.006 1.526 11.910RECHARGE TO BAD AREA 1.067 0.648 0.530 0.442 0.601 0.716 0.646 1.050 1.690 2.311 2.238 1.702 13.640NET CHANGE BAD AREA 0.099 0.068 0.044 0.048 0.079 0.122 0.072 0.080 0.098 0.163 0.173 0.123 1.169DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 143.09 87.56 72.91 70.88 112.89 95.36 63.49 74.87 105.31 107.01 135.14 136.61 1205.12TOTAL BASE LOAD 342.00 343.00 356.00 348.00 346.00 346.00 361.00 370.00 378-00 379.00 385.00 392.00 4346.00TOTAL ENERGY LOAD 485.09 430.56 428.91 418.88 458.89 441.36 424.49 444.87 483.31 486.01 520.14 528.61 5551.12HYDRO ENERGY TO LOAD 337.56 285.24 283.88 272.67 307.40 276.99 257.96 283.49 320.67 323.58 354.59 359.58 3663.61THERMAL ENERGY TO LOAD 147.50 145.29 145.00 146-19 151.46 164.34 166-51 161.36 162.61 162-39 165.51 169.00 1887.15ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 165.32 164.27 96.42 114.06 54.56 44-81 43.50 85-18 110.91 161-00 167.51 166.78 1374.32

POwER (MEGAWATTS)PEAK PUMP LOAD 236.28 180.05 164.57 160.86 207.26 189.35 129.12 153.92 200.79 200.23 224.69 227.42 2274.53PEAK BASE LOAD 766.00 769.00 794.00 805.00 771.00 768.00 805.00 828.00 846.00 848.00 860.00 874,00 9734.00TOTAL PEAK LOAD 1002.28 949.05 958.57 965.06 978.26 9S7.35 934.12 gal.92 1046-79 1048.23 1084.69 1101.42 12008.53HYDRO CAPACITY TO LOAD 692.97 641.16 604.36 582.29 534.90 440.86 412.99 505.08 591.26 663.88 715.28 721.11 7106.14THERMAL CAPACITY TO LOAD 309.31 307.89 354.21 383.57 443.36 516.48 521.13 476.83 455.53 384.3s 369.41 380.31 4902.39FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 514.69 516.11 469.79 519.43 459.64 386.52 381.87 426.17 447.47 518.65 533.59 522.69 5696.61

B-12

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 668507Z110

YEAR 1970

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTALFROM RIVER INFLOw 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.347 28.155 12.969 138.031FROM STORAGE RELEASE 1.124 0.733 0.489 0.489 1.172 0.745 -0.274 -1.055 -1.607 -1.410 -0.3A7 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.2ZO 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.000 n.ooo o.ooo o.o0o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTFLOW 3.757 1.806 1.296 1.253 1.038 1.662 3.972 7.575 12.719 21.085 20.850 10.489 87.503TO RIVER LOSS -1.336 -0.206 0.133 0.252 0.241 0.712 1.620 2.624 3.779 6.355 2.729 -2.376 14.526TO LINK LOSS 0.361 0.262 0.190 0.206 0.344 0.371 0.235 0.214 0.308 0.269 0.300 0.336 3.396TO CANAL LOSS 1.094 0.786 0.694 0.670 0.900 1.010 0.881 0.908 1.217 1.175 1.221 1.241 11.795TO WATERCOURSE 2.936 1.505 1.166 1.077 1.854 2.757 2.003 2.193 3.139 2.370 3.570 3.829 28.399FROM GROUND WATER 2.237 1.167 1.055 1.073 1.902 1.668 1.136 1.235 1.817 2.060 2.337 2.377 20.064SHORTAGE AT WATERCOIJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOIURSE REQT. 5.173 2.672 2.221 2.150 3.756 4.425 3.139 3.428 4.956 4.430 5.907 6.206 48.463

PUMP CAPACITY GOOD AREA 2.441 1.354 1.074 1.1U6 1.955 2.208 1.65? 1.684 2.317 2.109 2.389 2.531 22. 819PIJMPED FROM GOOD APEA 2.237 1.167 1.055 1.073 1.902 1.668 1.136 1.235 1.817 2.060 2.337 2.377 20.064EVAPORATION GOOD AREA 0.487 0.368 0.339 0.2t6 0.313 0.483 0.447 0.533 0.656 1.327 1.453 0.919 7.601RECHARGE TO bOOD AREA 2.169 1.429 1.130 1.129 1.723 2.150 1.687 1.834 2.480 3.840 4.068 2.971 26.609NET CHANGE -- GOOD AREA -0.554 -0.106 -0.264 -0.2ZO -0.492 -0.001 0.105 0.066 0.007 0.453 0.276 -0.326 -1.056PUMP CAPACITY BAD ARtA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000PUMPED TO DRAINAGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000EVAPORATION BAD AREA 0.219 0.1?8 0.115 0.110 0.159 0.202 0.149 0.176 0.261 0.379 0.394 0.299 2.592RECHARGE TO BAD ARFA 0.322 n.183 0.160 0.11 0.254 0.310 0.220 0.257 0.361 0.539 0.567 0.423 3.766NET CHANGE BAD AREA 0.103 0.054 0.045 0.060 0.096 0.107 0.071 0. 081 0.100 0.159 0.173 0. 124 1.174DRAIN STORAGt CONTFNI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 146.04 73.47 67.56 68.11 125.94 106.02 66.32 74.96 116.02 136.32 155.51 157.65 1293.92TOTAL BASE LOAD 227.00 230.00 243.00 242.00 248.00 236.00 251.00 257.00 263.00 267.00 273.00 273.00 3010.00TOTAL ENERGY LOAD 373.04 303.47 310.56 310.11 373.94 342.02 317.32 331.96 379.02 403.32 428.51 430.65 4303.92HYDRO ENERGY TO LOAD 372.16 303.29 308.34 3n6.21 350.42 301.10 279.05 31?.72 362.95 394.03 421.36 423.92 4135.54THERMAL ENERbY TO LOAD 0.85 0.17 2.20 3.89 23.49 40.91 38.26 l.22 16.05 9.26 7.12 6.70 168.12ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0O. 0 0.00 °° 0.00 ° n.o00 0.00 0.00 0.00 0.00 0.001HYDRO ENERGY SURPLIIS 131.32 150.08 72.02 81.19 13.35 21.69 21.90 5S.65 68.19 89.14 100.48 102.12 qO7.12

POWER (MEGAWATTS)PFAK PUMP LOAD 251.92 174.76 168.87 165.52 236.63 210.59 134.00 15-.22 223.47 244.29 262.04 263.99 2493.30PEAK BASE LOAD 526.00 532.00 560.00 570.UO 563.00 550.00 582.00 602.00 614.00 621.00 640.00 640.00 7000.00TOTAL PEAK LOAD 777.92 706.76 728.87 735.52 799.63 760.59 716.00 75q.22 837.47 865.29 902.04 903.99 9493.30HYDRO CAPACITY TO LOAD 694.11 646.44 605.19 583.94 537.80 442.22 412.29 504.66 590.66 661.94 714.91 720.67 7114.83THERMAL CAPACITY TO LOAD 83.82 60.33 123.68 151.58 261.83 318.37 303.70 254.56 246.81 203.35 187.12 183.33 2378.47FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 o.uO 0.00 0-00 0.00 .00 000 0.00 0.00 0.00 0 .00PEAK RESERVE 369.18 392.67 329.32 301.42 191.17 134.63 149.30 19P.44 206.19 249.65 265.88 269.67 3057.53

B-13

SOUTH 7ONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAAy JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 3.757 1.806 1.296 1.253 1.038 1.662 3.972 7.575 12.719 21.085 20.850 10.489 87.503FROM STORAGE RELEASE -0.000 -n.000 -0.000 -0.00O -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 5.270 2.067 1.296 1.5Z9 1.038 1.869 6.342 12.6?9 19.957 34.822 35.481 16.788 139.n88TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -O.OUO -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTfLOW 2.702 0.668 0.070 0.161 0.019 0.091 1.629 3.662 6.168 12.137 14.354 8.470 S0.132TO RIVER LOSS -1.718 -0.523 -0.087 0.102 -0.046 0.150 0.879 1.341 1.714 3.353 1.326 -2.28ri 4.201TO LINK LOSS 0.091 0.091 0.090 0.061 0.087 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.054TO CANAL LOSS 0.663 0.398 0.361 0.265 0.302 0.374 0.362 0.598 0.972 0.984 0.979 0.950 7.209TO WATERCOIJRSE 2.019 1.171 0.862 0.664 0.676 0.956 1.012 1.884 3.774 4.521 4.100 3.268 24.0n6FROM GROUND WATER 0.158 0.132 0.136 0.113 0.155 0.109 0.115 0.132 0.141 0.158 0.158 0.158 1.665SHORTAGE AT WATERCOURSE 0.000 0.000 0.068 0.000 0.217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.285WATERCOURSE REOT. 2.177 1.303 1.065 0.777 1.048 1.065 1.127 2.016 3.915 4.679 4.258 3.426 26.A56

PUMP CAPACITY GOOD AREA 0.158 0.136 0.138 0.149 0.155 0.145 0.135 0.146 0.158 0.158 0.158 o.158 1.794PUMPED FROM GOOD AREA 0.158 0.137 0.136 0.113 0.155 0.109 0.115 0.132 0.141 0.158 0.158 0.158 1.665EVAPORATION GOOD AREA 0.184 0.074 0.055 0.031 0.045 0.031 0.019 0.041 0.236 0.555 0.605 O.4q2 2.367RECHARGE TO UOOD APEA 0.322 0.186 0.159 0.112 0.117 0.173 0.147 0.196 0.444 0.740 0.772 0.643 4.011NET CHANGE -- GOOD AREA -0.021 -0.019 -0.031 -0.032 -0.083 0.033 0.013 0.023 0.066 0.027 0.009 -0.006 -0.021PUMP CAPACITY BAD AREA 0.200 0.200 0.200 O.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPEU TO DRAINAGE 0.051 0.041 0.042 0.045 0.049 0.034 0.036 0.041 0047 0.056 0.060 0.053 0.553EVAPORATION BAD AREA 0.706 0.404 0.338 0.223 0.328 0.332 0.383 0.739 1.283 1.704 1.617 1.235 9.291RECHARGE TO BAD AREA 0.757 0.445 0.365 0.2B2 0.320 0.423 0.419 0.779 1.330 1.759 1.677 1.289 9.844NET CHANGE BAD AREA -0.000 -0.000 -0.015 0.015 -0.057 0.057 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERLY (MILLION KWHTOTAL PIJMP LOAD 16.17 13.25 13.66 12.06 16.13 10.91 11.60 13.37 14.58 16.63 16.86 16.38 171.61TOTAL BASE LOAD 162.00 160.00 160.00 172.UO 170.00 174.00 179.00 184.00 189.00 178.00 191.00 195.00 2114.00TOTAL ENERGY LOAD 178.17 173.25 173.66 184.06 186.13 184.91 190.60 197.37 203.58 194.63 207.86 211.38 2285.61HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -O.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00THERMAL ENERbY TO LOAD 178.15 173.23 173.65 184.04 186.12 184.90 190.59 197.36 203.57 194.62 207.84 211.36 22A5.43ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 24.68 21.42 21.81 19.13 24.67 16.67 18.77 21.75 22.90 25.35 25.64 24.99 267.77PEAK BASE LOAD 344.00 340.00 341.00 350.00 347.00 358.00 368.00 378.00 384.00 386.00 393.00 404.00 4393.00TOTAL PEAK LOAD 368.68 361.42 362.81 369.13 371.67 374.67 386.77 39Q.75 406.90 411.35 418-64 428.99 4660.77HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 368.68 361.42 362.81 369.13 371.67 374.67 386.77 399.75 406.90 411.35 418.64 428.99 4660.77FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O-0. 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00PEAK RESERVE 81.32 88.58 87.19 229.87 227.33 224.33 212.23 199.25 192.10 187.65 180.36 170.01 2080.23

B-14

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUrn SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21-960 31.347 28.155 12.969 138.031FROM STORAGE RELEASE 1.124 o.733 0.489 0.489 1.172 0.745 -0.274 -1.055 -1.607 -1.410 -0.387 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 5.270 2.067 1.296 1.5Z9 1.038 1.869 6.342 12.629 19.957 34.822 35.481 16.788 139.088TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTFLOW 2.702 0.668 0.070 0.161 0.019 0.091 1.629 3.662 6.168 12.137 14.354 8.470 50.132TO RIVER LOS5 -3.053 -0.729 0.046 0.354 0.195 0.861 2.498 3.965 5.493 9.708 4.055 -4.666 1A.727TO LINK LOSS 0.452 0.353 0.281 0.267 0.431 0.462 0.325 0.304 0.399 0.360 0.391 0.426 4.450TO CANAL LOSS 1.757 1.184 1.054 0.935 1.201 1.384 1.243 1.507 2.189 2.159 2.200 2.191 19.004TO WATERCOURSE 4.955 2.676 2.028 1.740 2.530 3.713 3.015 4.077 6.913 6.891 7.670 7.097 53.305FROM GROUND WATER 2.395 1.299 1.190 1.187 2.057 1.777 1.251 1.367 1.958 2.218 2.495 2.535 21.729SHORTAGE AT WATERCOURSE 0.000 0.000 0.068 O.OUO 0.217 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.?85WATERCOURSE REQT. 7.350 3.975 3.286 2.927 4.804 5.490 4.266 5.444 8.871 9.109 10.165 9.632 75.319

PUMP CAPACITY GOOD AREA 2.599 1.489 I.Z12 1.255 2.110 2.353 1.786 1.830 2.475 2.267 2.547 2.689 24.613PUMPED FROM GOOD AREA 2.395 1.799 1.190 1.187 2.057 1.777 1.251 1.367 1.958 2.218 2.495 2.535 21.729EVAPORATION GOOD AREA 0.671 0.442 0.394 0.306 0.359 0.514 0.466 0.573 0.893 1.883 2.058 1.411 9.968RECHARGE TO GOOD AREA 2.490 1.615 1.289 1.241 1.840 2.322 1.834 2.030 2.924 4.580 4.840 3.614 30.620NET CHANGE -- GOOD AREA -0.575 -0.126 -0.296 -0.252 -0.575 0.032 0.117 0.089 0.073 0.479 0.288 -0.332 -1.077PUMP CAPACITY BAD AREA 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 2.400PUMPED TO DRAINAGE 0.051 0.041 0.042 0.045 0.049 0.034 0.036 0.041 0.047 0.056 0.060 0.053 0.553EVAPORATION bAD AREA 0.925 0.53Z 0.452 0.333 0.487 0.535 0.532 0.915 1.544 2.083 2.011 1.535 11.883RECHARGE TO bAD AREA 1.078 0.628 0.525 0.453 0.574 0.732 0.639 1.037 1.692 2.298 2.243 1.712 13.610NET CHANGE BAD AREA 0.103 0.054 0.031 0.075 0.039 0.164 0.071 O.0A1 0.100 0.159 0.173 0.124 1.174DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PIJMP LOAD 162.21 86.72 81.22 80.17 142.07 116.94 77.92 88.34 130.60 152.95 172.36 174.03 1465.53TOTAL BASE LOAD 389.00 390.00 403.00 414.00 418.00 410.00 430.00 441.00 452.00 445.00 464.00 46A.00 5124.00TOTAL ENERGY LOAD 551.21 476.72 484.22 494.17 560.07 526.94 507.92 529.34 582.60 597.95 636.36 642.03 6589.53HYURO ENERGY TO LOAD 372.16 303.29 308.34 306.21 350.42 301.10 279.05 312.72 362.95 394.03 421.36 423.92 4135.54THERMAL ENERGY TO LOAD 179.01 173.41 175.85 187.93 209.60 225.80 228-84 216.58 219.62 203.88 214.96 218.07 2453.55ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLIIS 131.32 150.08 72.02 81.19 13.35 21.69 21.90 55.65 68.19 89.14 100.48 102.12 907.12

POWER (MEGAWATTS)PEAK PUMP LOAD 276.61 196.18 190.67 184.65 261.30 227.26 152.77 17R.97 246.36 269.64 287.68 288.98 2761.06PEAK BASE LOAD 870.00 872.00 901.00 920.00 910.00 908.00 950.00 980.00 998.00 1007.00 1033.00 1044.00 11393.00TOTAL PEAK LOAD 1146.61 1068.18 1091.67 1104.65 1171.30 1135.26 1102.77 1158.97 1244.36 1276.64 1320.68 1332.98 14154.06HYDRO CAPACITY TO LOAD 694.11 646.44 605.19 583.94 537.80 442.22 412.29 504.66 590.66 661.94 714.91 720.67 7114.83THERMAL CAPACITY TO LOAD 452.50 421.74 486.48 520.11 633.50 693.04 690.48 654.31 653.70 614.69 605.76 612.31 7039.23FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 450.50 481.26 416.52 531.Zg 418.50 358.96 361.52 397.69 398.30 437.31 446.24 439.69 5137.77

B-15

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 66850721O

YEAR 1971

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEc JAN FEB MAR APR M AY JIINE JuLY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.730 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27-910 12.890 137.520FROM STORAGE RELEASE 1.j20 -.730 0.487 0.487 1.168 0.745 -0.274 -1.052 -1.601 -1.404 -0.385 0.001 0.01QFROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.030 0.030 0.030 0.030 0.030 0.030 0.024 0.024 0.024 0.030 0.030 0.026 0.338TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.OU1 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTFLOW 3.823 1.848 1.349 1.267 1.018 1.615 3.689 7.250 12.514 20.806 20.634 10224 A6.037TO RIVER LOSS -1.303 -0.202 0.134 0.246 0.234 0.642 1.475 2.621 3.775 6.238 7.774 -2.455 14.179TO LINK LOSS 0.345 0.261 0.192 0.2u9 0.342 0.388 0.265 0.241 n.324 0.299 0.319 0.343 3. 530TO CANAL LOSS 1.100 0.816 0.698 0.684 0.924 1.066 0.980 1.026 1.249 1.143 1.194 1.275 12.155TO WATERCOURSE 2.873 1.456 1.134 1.080 1.884 2.830 2.325 2.402 3.330 2.617 3.537 4.079 29.548FROM GROUND WATER 2.652 1.321 1.146 1.200 2.175 1.932 1.006 1.206 1.838 2.001 2.612 2.391 21.479SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REOT. 5.525 P.777 2.280 2.280 4.059 4.762 3.331 3.608 5.168 4.618 6.149 6.470 51.027

PUMP CAPACITY GOOD AREA 2.748 1.498 1.178 1.230 2.215 2.523 1.848 1.874 2.650 2.457 2.787 2.941 25.q50PUMPED FROM GOOD AREA 2.652 1.321 1.146 1.200 2.175 1.932 1.006 1.206 -1.838 2.001 2.612 2.391 21.479EVAPORATION bOOD AREA 0.483 0.345 0.323 0.282 0.331 0.439 0.398 0.476 0.586 1.241 1.363 0.774 7.041RECHARGE TO GOOD AREA 2.247 1.471 1.143 1.163 1.801 2.263 1.799 1.957 2.550, 3.853 4.100 3.055 27.400NET CHANGE -- GOOD AREA -0.888 -0.195 -0.326 -0.3cO -0.705 -0.108 0.394 0.275 0.126 0.611 0.125 -0,110 -1.120PUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0. 030 0.030 0.360PUMPED TO DRAINAGE 0.030 0.030 0.030 0.030 0.030 0.030 0.024 0.024 0.024 0.030 0.030 0.026 0.338EVAPORATION BAD AREA 0.214 0.123 0.109 o.1u8 0.158 0.198 0.148 0.248 0.350 0.515 0.536 0.407 3.116RECHARGE TO tAD AREA 0.330 0.188 0.164 0.178 0.266 0.319 0.232 0.270 0.366 0.543 0.568 0.428 3. 852NET CHANGE BAD AREA 0.086 0.03s 0.025 0.040 0.078 0.091 0.060 -0.001 -0.009 -0.003 0.002 -0.006 0.399DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.00o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERUY (MILLION KWH)TOTAL PUMP LOAD 191.24 94.20 82.37 86.13 160.22 138.63 65.16 81.23 126-37 138.87 189.33 169.68 1523.43TOTAL BASE LOAD 257.00 260.00 273.00 261.UO 268.00 255.00 271.00 278.00 285.00 288.00 295.00 295.00 3286.00TOTAL ENERGY LOAD 448.24 354.20 355.37 347.13 428.22 393.63 336.16 359.23 411.37 426.87 484.33 464.68 4809.43HYDRO ENERGY TO LOAD 447.39 354.18 354.36 345.71 360.96 327.61 325.01 353.43 405.53 ,425.51 480.97 462.67 4643.35THERMAL ENERGY TO LOAD 0.81 0.00 0.99 1.40 67.23 65.99 11.13 5.78 5.82 1.34 3.32 1.98 165.78ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 54.92 95.89 22.50 35.31 0.01 0.00 70.12 118.09 128.09 163.74 143.25 124.55 956.47

POWER (MEGAWATTS)PEAK PUMP LOAD 320.21 220.69 207.48 208.Z9 293.13 272.26 138.35 179.05 258.60 251.86 319.36 302.82 2972.09PEAK BASE LOAD 602.UO 608.00 640.00 630.00 608.00 594.00 629.00 649.00 663.00 670.00 691.00 691.00 7675.00TOTAL PEAK LOAD 922.21 828.69 547.48 838-29 901.13 866-26 767.35 828.05 921.60 921.86 1010.36 993.82 10647.09HYDRO CAPACITY TO LOAD 832.40 781.66 740.90 715.68 673.70 583.89 553.82 645.99 731.06 807.26 855.19 860.85 8782.41THERMAL CAPACITY TO LOAD 89.a1 47.03 106.58 122.62 227.44 282.36 213.53 182.06 190.54 114.59 155.17 132.97 1864.68FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0O0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 363.19 405.97 346.42 330.38 225.56 170.64 239.47 270.94 262.46 338.41 297.83 320.03 3571.32

B-16

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 3.823 1.848 1.349 1.267 1.018 1.615 3.689 7.250 12.514 20.806 20.634 10.224 86.o37FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBtJTARIES 0.000 0.000 0.000 0.000 0-000 0-000 0-000 0.000 0-000 0.000 0-000 0.000 0.000FROM DRAINS 5.467 2.212 1.337 1.418 0.974 1.774 5.859 11.773 19.412 34.407 35.240 16.503 136.376TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTFLOW 2.817 0.790 0.107 0.111 -0.001 0.060 1.483 3.329 5.876 11.902 14.176 8.376 49.027TO RIVER LOSS -1.717 -0.521 -0.111 0.071 -0.033 0.142 0.807 1.251 1.739 3.363 1.346 -2.300 4.037TO LINK Loss 0.091 0.091 0.089 0.070 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 1.066TO CANAL LOSS 0.658 0.405 0.375 0.3U0 0.302 0.390 0.369 0.650 0.979 0.982 0.978 0.921 7.310TO WATERCOURSE 1.975 1.084 0.888 0.715 0.659 0.932 0.938 1.930 3.829 4.468 4.043 3.136 24.597FROM GROUND WATER 0.195 0.178 0.178 0.181 0.208 0.162 0.167 0.183 0.192 0.209 0.209 0.209 2.272SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.271WATERCOURSE REQT. 2.170 1.262 1.066 0.896 1.138 1.094 1.105 2.113 4.021 4.677 4.252 3.345 27.139

PUMP CAPACITY GOOD AREA 0.209 0.188 0.190 0.202 0.208 0.198 0.188 0.198 0.209 0.209 0.209 0.209 2.417PUMPED FROM GOOD AREA 0.195 0.178 0.178 0.181 0.208 0.162 0.167 0.183 0.192 0.209 0.209 0.209 2.272EVAPORATION bOOD AREA 0.154 0.053 0.048 0.035 0.044 0.024 0.017 0.063 0.265 0.437 0.463 0.421 2.024RECHARGE TO GOOD AREA 0.319 O.189 0.175 0.157 0.121 0.181 0.149 0.215 0.455 0.734 0.764 0.633 4.072NET CHANGE -- GOOD AREA -0.030 -0.042 -0.051 -0.080 -0.130 -0.004 -0.036 -0.031 -0.002 0.087 0.092 0.003 -0.224PUMP CAPACITY BAD AREA 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 0.240 2.880PUMPED TO DRAINAGE 0.092 0.081 0.082 0.087 0.089 0.063 0.054 0.063 0.069 0.084 0.084 0.074 0.921EVAPORATION BAD AREA 0.682 0.381 0.329 0.250 0.334 0.308 0.364 0.760 1.280 1.680 1.598 1.183 9.150RECHARGE TO BAD AREA 0.753 0.439 0.377 0.314 0.324 0.433 0.418 0.824 1.349 1.764 1.682 1.257 9.933NET CHANGE BAD AREA -0.021 -0.024 -0.034 -0-.04 -0.099 0.063 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0.138DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERNY (MILLION KWH)TOTAL PUMP LOAD 21.z4 19.28 19.59 20-12 23.65 17.97 17.96 20.19 21.51 23.95 23.57 22.67 252-30TOTAL BASE LOAD 204.00 202.00 201.00 198.00 198.00 203.00 209.00 214.00 218.00 219.00 223.00 227.00 2516.00TOTAL ENERGY LOAD 225.24 221.28 220.59 218.12 221.65 220.97 226.96 234.19 239.51 242.95 246.57 249.67 2768.30HYDRO ENERGY TO LOAD -O.UO -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0-00 -0.00 0.00THERMAL ENERbY TO LOAD 225.Z2 221.27 220.57 218.70 221.64 220.95 226.94 234.17 239.49 242.93 246.55 249.65 2768.08ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PowEm (MEGAWATTS)PEAK PUMP LOAD 32.63 30.69 31.14 32.r8 35.92 27.34 28.40 32.13 33.45 36.44 35.85 34.57 391.34PEAK BASE LOAU 419.00 414.00 415.00 406.U0 403.00 415.00 426.00 437.00 445.00 447.00 455.00 467.00 5149.00TOTAL PEAK LOAD 451.63 444.69 446.14 438.78 438.92 442.34 454.40 469.13 478.45 483.44 490.85 501.57 5540.34HYDRO CAPACITY TO LOAD o.uO 0.00 0.00 0.0O 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 .°00THERMAL CAPACITY TO LOAD 451.63 444.69 446.14 438.78 438.92 442.34 454.40 46q.13 478.45 483.44 490.85 501.57 554n.34FIRM CAPACITY TRANSFER 0.00 0.00 0-00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0-00 0.00 0.00PEAK RESERVE 147.37 154.31 152.86 281.Z2 281.08 277.66 265.60 250.87 241.55 236.56 229.15 218.43 2736.66

B-17

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 Z-780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.ZO 0.730 0.487 0.457 1.168 0.745 -0.274 -1.052 -1.601 -1.404 -0.385 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 5o497 2.242 1.367 1.448 1.004 1.804 5-883 11-796 19.436 34.437 35.270 16.529 136.714TO RESERVOIR EVAPORAIION 0.022 n.0I0 0.006 O.OU1 0.005 0,004 0.005 0.020 0.031 0.024 0.026 0.002 0.157TO RIVER OUTtLOW 2.817 0.790 0.107 0.111 -0.001 0.060 1.483 3.329 5.876 11.902 14.176 8.376 49.027TO RIVER LOSS -3.020 -0.723 0.023 0.317 0.201 0.784 2.282 3.872 5.514 9.601 4.120 -4.756 I.216TO LINK LOSS 0.435 0.352 0.281 0.278 0.433 0.479 0.356 0.332 0.415 0.390 0.410 0.434 4.596TO CANAL LOSS 1.758 1.221 1.073 0.985 1.226 1.456 1.350 1.676 2.228 2.125 2.172 2.196 19.464TO WATERCOUR5E 4.848 2.540 2.023 1.7V4 2.544 3.762 3.262 4.332 7.159 7.085 7.580 7.215 54.144FROM GROUND WATER 2.847 1.499 1.323 1.352 2.383 2.094 1.174 1.389 2.030 2.210 2.821 2.600 23.751SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 O.OuO 0-271 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.771WATERCOURSE REOT. 7.695 4.039 3.346 3.176 5.197 5.856 4.436 5.721 9.189 9.295 10.401 9.815 78.166

PUMP CAPACITY GOOD AREA 2.957 1.687 1.368 1.432 2.423 2.722 2.037 2.071 2.859 2.666 2.996 3.150 28.367PUMPED FROM GOOD AREA 2.847 1.499 1.323 1.382 2.383 2.094 1.174 1.389 2.030 2.210 2.821 2.600 23.751EVAPORATION 00D AREA 0.636 0.398 0.371 0.318 0.374 0.463 0.415 0-539 0.851 1.678 1.827 1.194 9.665RECHARGE TO GOOD AREA 2.565 1.659 1.317 1.299 1.922 2.444 1.947 2.172 3.005 4.587 4.865 3.688 31.472NET CHANGE -- GOOD AREA -0.918 -0.238 -0-377 -0-4uo -0.835 -0-112 0.359 0.244 0.123 0.698 0.217 -0.107 -1.345PUMP CAPACITY BAD ARtA 0.270 0.270 0.270 0.210 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 3.240PUMPED TO DRAINAGE 0.122 0.111 0.112 0.117 0.119 0.093 0.078 0.087 0.093 0.114 0.114 0.100 1.258EVAPORATION BAD AREA 0.896 0.504 0.438 0.358 0.492 0.505 0.512 1.008 1.630 2.196 2.135 1.590 12.266RECHARGE TO BAD AREA 1.083 0.627 0.540 0.492 0.589 0.752 0.650 1.094 1.715 7.307 2.250 1.6A5 13.785NET CHANGE BAD AREA 0.065 0.011 -0.009 0.016 -0.022 0.154 0.060 -0.001 -0.009 -0.003 0.002 -0.006 0.260DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 212.48 113.49 101.96 106.84 183.87 156.60 83.13 101.41 147.88 162.82 212.90 192.35 1775.73TOTAL BASE LOAD 461.00 462.00 474.00 459.00 466.00 458.00 480.00 497.00 503.00 507.00 518.00 522.00 5802.00TOTAL ENERGY LOAD 673.48 575.49 575.96 565.84 649.87 614.60 563.13 593.41 650.88 669.82 730.90 714.35 7577.73HYDRO ENERGY TO LOAD 447.39 354.18 354.36 345.71 360.96 327.61 325.01 353.43 405.53 425.51 480.97 462.67 4643.35THERMAL ENERGY TO LOAD 226.04 221.27 221.56 220.10 288.86 286.94 238.07 239.95 245.31 244.27 249.87 251.62 2933.87ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0-00 0.00 0-00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 54.92 95.89 22.50 35.31 0.01 0.00 70.12 118.09 128.09 163.74 143.25 124.55 956.47

POWER (MEGAWATTS)PEAK PUMP LOAD 352.84 251.38 238.62 241.07 329.06 299.60 166.75 211.18 292.05 288.30 355.21 337.39 3363.43PEAK BASE LOAD 1021.00 1022.00 1055.00 1036.00 1011.00 1009.00 1055.00 1086.00 1108.00 1117.00 1146.00 1158.00 12824.00TOTAL PEAK LOAD 1373-84 1273.38 1293.62 1277-07 1340.06 1308.60 1221.75 1297.18 1400.05 1405.30 1501.21 1495.39 16187.43HYDRO CAPACITY TO LOAD 832.40 781.66 740.90 715.68 673.70 583.89 553.82 645.99 731.06 807.26 855.19 860.85 8782.41THERMAL CAPACITY TO LOAD 541.44 491.72 552.71 561.39 666.36 724.71 667.92 651.19 668.99 598.04 646.02 634.53 7405.02FIRM CAPACITY TRANSFLR 0-00 0-00 0-00 0-uo 0.00 0-00 0.00 0-00 0-00 0-00 0-00 0.00 0.00PEAK RESERVE 510.56 560.28 499.29 611.61 506.64 448.29 505.08 521.81 504.01 574.96 526.98 538.47 6307.98

B-18

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1972

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.115 0.727 0.485 0.4a5 1.163 0.805 -0.320 -1.064 -1.594 -1.398 -0.384 0.001 0.019FROM TRIBUTARIES 0.280 0.200. 0.220 0.210 0.240 0.730 1,100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.025 0.023 0.023 O-OZ3 0.024 0.025 0.014 0.014 0.014 0.026 0.028 0.021 0.259TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.0ul 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156TO RIVER OUTeLOW 3.174 1.580 1.157 1.060 0.878 1.476 3.453 7.217 12.544 21.129 20.745 10.353 84.766TO RIVER LOSS -1.492 -0.109 0.098 0.219 0.273 0.606 1.552 2.664 3.765 6.409 2.666 -2.408 14.242TO LINK LOSS 0.468 o.286 0.247 0.260 0.352 0.390 0.247 0.239 o.320 0.278 0.317 0.330 3.735TO CANAL LOSS 1.203 0.820 0.745 0.751 0.976 1.129 1.082 1.062 1.247 1.091 1.238 1.286 12.630TO WATERCOURSE 3.476 1.597 1.251 1.186 1.914 2.995 2.345 2.337 3.313 2.197 3.493 3.899 29.998FROM GROUND WATER 2.333 1.262 1.061 1.195 2.400 2.048 1.141 1.408 1.997 2.545 2.797 2.730 22.16SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 o.ouO 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.009WATERCOURSE REOT. 5.809 2.854 2.312 2.381 4.314 5.043 3.486 3.745 5.310 4.742 6.294 6.633 52.q23

PUMP CAPACITY GOOD AREA 3.011 1.605 1.255 1.332 2.454 2.795 2.o26 2.027 2.920 2.671 3.135 3.288 28.518PUMPED FROM GOOD AREA 2.333 1.26? 1.061 '1.195 2.400 2.048 1.141 1.408 1.997 2.545 2.797 2.730 22.916EVAPORATION GOOD AREA 0.428 0.307 O.Z84 0.243 0.299 0.392 0.351 0.428 0.493 0.886 0.959 0.614 5.685RECHARGE TO GOOD AREA 2.382 1.488 1.182 1.2Z8 1.890 2.366 1.894 2.005 2.581 3.843 4.165 3.098 28.122NET CHANGE -- GOOD AREA -0.379 -0.082 -0.163 -0.210 -0.809 -0.074 0.402 0.170 0.090 0.412 0.409 -0.246 -0.479PUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360PUMPED TO DRAINAGE 0.025 0.023 0.023 0.023 0.024 0.025 0.014 0.014 0.014 0.026 0.028 0.021 0.259EVAPORATION BAD AREA 0.324 0.181 0.167 0.1a7 0.257 0.308 0.231 0.266 0.350 0.513 0.538 0.408 3.729RECHARGE TO BAD AREA 0.342 0.193 0.170 0.190 0.277 0.330 0.253 0.281 0.366 0.541 0.571 0.430 3.945NET CHANGE BAAD AREA -0.0U7 -0.011 -0.019 -0.020 -0.003 -0.003 0.009 0.002 0.002 0.002 0.004 0.001 -0.043DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 170.27 90.55 77.09 87.68 181.07 152.41 76.91 99.40 142.38 19.67 207.60 200.61 1675.63TOTAL BASE LOAD 278.00 281.00 295.00 28O.UO 287.00 273.00 291.00 298.00 305.00 309.00 316.00 316.00 3529.00TOTAL ENERGY LOAD 448.27 371.55 372.09 367.68 468.07 425.41 367.91 397.40 447.38 498.67 523.60 516.61 5204.63HYDRO ENERGY TO LOAD 446.41 370.94 369.60 363.12 361.66 408.85 361.38 396.18 447.35 498.63 523.56 516.57 5064.25THERMAL ENERGY TO LOAD 1.83 0.60 Z.47 4.55 106.38 16.53 6.51 1.20 0.00 0.00 0.00 0.00 140.07ENERGY DEFICIENCY 0.00 0.00 0.00 o.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.UO 0.00 0.00 o.Uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 61.72 81.64 11.30 16.81 0o00 4.22 109.18 188.89 234.91 261.81 294.22 191.70 1456.40

POWER (MEGAWATTS)PEAK PUMP LOAD 321.42 220.96 207.35 223.91 331.53 302.04 177.11 223.31 289.90 338.56 357.55 346.34 3339.98PEAK BASE LOAD 649.00 656.00 691.00 680.00 652.00 637.00 674.00 696.00 711.00 719.00 741.00 741,00 8247.00TOTAL PEAK LOAD 970.42 876.96 898.35 903-91 983.53 939.04 851.11 919.31 1000.90 1057-56 1098-55 1087.34 11586.98HYDRO CAPACITY TO LOAD 840.71 785.08 747.21 714.92 674.83 700.96 657.36 801.54 934.70 1041.81 1120.35 1129.36 10148.84THERMAL CAPACITY TO LOAD 129.71 91.88 151.14 188.98 308.71 238.08 193.75 117.77 66.20 15.76 0,00 o,oo 1501.97FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0-00 0.00 0.00 0-00 0.00 0.00PEAK RESERVE 323.29 361.12 301.86 248.02 128.29 198.92 243.25 319.23 370.80 421.24 458.80 479.03 3853.86

B-19

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUnY-FEB 1965 REVISED VERSION

STUDY NUMBER 668507Z110

YEAR 1973

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DFC JAN FEB MAR APR MAY JUNE JIJLY AUOr SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27-910 12.890 137.520FROM STORAGE RELEASE 1.111 0.724 0.483 0.483 1.158 0.804 -0.322 -1.060 -1.588 -1.393 -0.382 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.02A 0.021 0.196TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156TO RIVER OUTPLOW 3.035 1.451 1.073 0.937 0.860 1.302 3.247 6.908 12.369 21.019 20.684 10.327 83.212TO RIVER LOSS -1.613 -0.097 0.095 0.193 0.295 0.511 1.514 2.642 3.793 6.399 2.682 -2.402 14.013TO LINK LOSS 0.4.90 n.328 0.300 0.310 0.353 0.431 0.276 0.262 0.320 0.284 0.314 0.330 3.997TO CANAL LOSS 1.270 0.867 0.768 0.792 0.963 1.152 1.123 1.175 1.223 1.116 1.252 1.288 12.082TO WATERCOURSE 3.634 1.611 1.247 1.231 1.907 3.191 2.516 2.537 3.490 2.292 3.528 3.918 31.102FROM GROUND WATER 2.540 1.35n 1.124 1.291 2.664 2.212 1.170 1.390 2.017 2.624 2.975 2.950 24.307SHORTAGE AT WATERCOURSF 0.000 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055WATERCOURSE REQT. 6.174 2.961 2.371 2.5Z2 4,626 5.403 3-686 3.927 5.507 4.916 6.503 6.868 55.464

PUMP CAPACITY GOOD AREA 3.281 1.71? 1.331 1.443 2.676 3.068 2.190 2.183 3.123 2.829 3.353 3.508 30.696PUMPED FROM GOOD AREA 2.540 1.350 1.124 1.291 2.664 2.212 1.170 1.390 2.017 2.624 2.975 2.950 24.307EVAPORATION GOOD AREA 0.395 0.289 0.246 0.2Z8 0.308 0.382 0.326 0.408 0.477 0.811 0.898 0.563 5.331RECHARGE TO GOOD AREA 2.507 1.535 1.206 1.282 1.937 2.455 1.963 2.126 2.604 3.896 4.219 3.148 28.878NET CHANGE -- GOOD AREA -0.429 -0.104 -0.164 -0.237 -1.036 -0.138 0.468 0.328 0.110 0.461 0.346 -0.366 -0.760PUMP CAPACITY BAD ARLA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360PUMPED TO DRAINAGE 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.028 0.021 0.196-EVAPORATION BAD AREA 0.336 0.191 0.175 0.197 0.271 0.308 0.239 0.277 0.353 0.519 0.545 0.414 3.A24RECHARGE TO BAD AREA 0.355 0.203 0.177 0.201 0.279 0.344 0.263 0.293 0.369 0.547 0.577 0.436 4.044NET CHANGE BAD AREA 0.002 0.001 -0.008 -0.0U8 -0.007 0.019 0.011 0.002 0.002 0.003 0.004 0.001 0.023DRAIN STORAGt CONTFNT 0.000 0.000 0.000 0.0uo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 194.03 102.06 86.09 99-J9 210.12 174.77 84.25 102.42 151-22 205.04 229.60 226.64 1865.62TOTAL BASE LOAD 298.00 301.00 316.00 303.00 310.00 295.00 314.00 322.00 330.00 334.00 341.00 341.00 3805.00TOTAL ENERGY LOAD 492.U3 403.06 40Z.09 402.39 520.12 469.77 398.25 424.42 481.22 539.04 570.60 567.64 5670.62HYDRO ENERGY TO LOAD 492.00 403.04 373.49 371.47 482.01 408.77 384.63 420.58 479.74 .538.42 570.56 567.59 5492.31THERMAL ENERGY TO LOAD 0.00 0.00 28.58 30.91 38.06 60.97 13.60 3.82 1.44 0.59 0.00 0.00 177.97ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 29.77 45.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.51HYDRO ENERGY SURPLUS 171.10 32.75 0.00 0.00 7.90 0.00 85.54 165.26 202.52 222.65 247.24 140.56 1275.49

POWER (MEGAWATTS)PEAK PUMP LOAD 357.Z0 246.06 233.11 248.17 368.22 329.60 187.81 229.43 300.89 364.16 391.79 383.96 3640.41PEAK BASE LOAD 696.00 704.00 741.00 740.00 704.00 688.00 728.00 752.00 768.00 776.00 800.00 800.00 8897.00TOTAL PEAK LOAD 1053.20 950.06 974.11 988-17 1072.22 1017-60 915.81 981.43 1068.89 1140.16 1191.79 1183.96 12537.41HYDRO CAPACITY TO LOAD 1053.20 950.06 954.51 908.47 850.74 695.28 657.02 802.60 934.70 1042.65 1120.39 1129.36 11098.98THERMAL CAPACITY TO LOAD O.00 0.00 19.60 79.70 221.49 322.32 258.79 178.83 134.19 97.51 71.40 54.60 1438.43FIRM CAPACITY TRANSFER 40-79 62-66 0.00 O-O0 0.00 0-00 0.00 0-00 0.00 0-00 0.00 0.00 103.44PEAK RESERVE 477.79 499.66 417.40 357.30 215.51 114.68 178.21 258.17 302.81 339.49 365.60 382.40 3909.02

B-22

SYSTEM SUMMARY

WAtER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31-160 27.910 12.890 137.520FROM STORAGE RELEASE 1.115 0.727 0.485 0.485 1.163 0.805 -0.320 -1.064 -1.594 -1.398 -0.384 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 4.422 1.763 1.151 1.OZ8 0.849 1.593 5.267 11.373 19.199 35.182 35.757 17.202 134.786TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156TO RIVER OUITFLOW 2.418 n.536 0.047 -0.000 -0.000 -0.000 1.204 3.023 5.629 12.060 14.371 8.703 47.990TO RIVER LOSS -3.360 -0.557 0.034 0.236 0.284 0.732 2.263 3.920 5.525 9.956 4.002 -4.660 18.375TO LINK LOSS 0.559 0.377 0.335 0.339 0.443 0.481 0.338 0.330 0.411 0.369 0.407 0.421 4.510TO CANAL LOSS 1.838 1.223 1.083 1.050 1.224 1.510 1.461 1.749 2.232 2.071 2.215 2.146 19.803TO WATERCOURSE 5.374 2.590 1.998 1.852 2.443 3.873 3.413 4.497 7.392 6.648 7.463 6.850 54.393FROM GROUND WATER 2.620 1.503 1.314 1.470 2.684 2.306 1.173 1.480 2.069 2.793 3.098 3.031 25.541SHORTAGE AT WATERCOURSE 0.005 0.000 0-083 0-057 0.435 0-000 0-000 0.000 0.000 0-000 0-004 0.004 0.619WATERCOURSE REOT. 7.999 4.093 3.396 3.409 5.562 6.179 4.586 5.977 9.461 9.441 10.565 9.885 80.553

PUMP CAPACITY GOOD AREA 3.312 1.856 1.509 1.607 2.737 3.058 2.267 2.318 3.221 2.972 3.436 3.589 31.883PUJMPED FROM GOOD AREA 2.620 1.503 1.314 1.470 2.684 2.306 1.173 1.480 2.069 2.793 3.098 3.031 25.541EVAPORATION GOOD AREA 0.561 0.356 0.329 0.277 0.344 0.406 0.370 0.472 0.669 1.191 1.364 0.960 7.301RECHARGE TO GOOD AREA 2.694 1.677 1.340 1.375 1.997 2.548 2.047 2.235 3.049 4.572 4.924 3.709 32.167NET CHANGE -- GOOD AREA -0.488 -0.1A2 -0.304 -0.373 -1.031 -0.164 0.505 0.283 0.310 0.588 0.461 -0.282 -0-675PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.3Z0 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.440PUMPED TO DRAINAGE 0.148 0.130 0.110 0.094 0.089 0.055 0.082 0.095 0.111 0.153 0.160 0.130 1.356EVAPORATION BAD AREA 0.976 0.541 0.480 0.449 0.568 0.581 0.574 1.050 1.624 2.157 2.098 1.507 12.608RECHARGE TO HAD AREA 1.089 0.624 0.519 0.5U2 0,559 0.766 0.673 1.148 1.737 2.312 2.262 1.638 13.829NET CHANGE BAD AREA -0.035 -0.048 -0.071 -0.041 -0.097 0.130 0.017 0.002 0.002 0.002 0.004 0.001 -0.134DRAIN STORAGE CONTENT 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 202-03 118.30 105.24 117.e4 211.77 178.96 84.46 111.24 155.26 220.31 242.73 234.n4 1981.58TOTAL BASE LOAD 514.00 515.00 529.00 511.U0 516.00 507.00 531.00 545.00 557.00 562.00 574.00 580.00 6441.00TOTAL ENERGY LOAD 716.03 633.30 634.24 628.24 727.77 685.96 615.46 656.24 712.26 782.31 816.73 814.04 8422.58HYDRO ENERGY TO LOAD 446.41 370.94 369.60 363.12 361.66 408.85 361.38 396.18 447.35 498.63 523.56 516.57 5064.25THERMAL ENERGY TO LOAD 269.57 262.33 264.60 265.08 366.06 277.06 254.05 260.02 264.86 283.62 293.11 297.40 3357.76ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLDS 61.72 81.64 11.30 16.51 0.00 4.22 109.18 18R.89 234.91 261.81 294.22 191.70 1456.40

POWER (MEGAWATTS)PEAK PUMP LOAD 370.09 265.87 252.48 269.99 379.37 344.85 189.23 240.70 308.70 385.52 410.88 397.32 3815.01PEAK BASE LOAD 1134.00 1136.00 1172.00 1152.00 1122.00 1119.00 1169.00 1203.00 1227.00 1236.00 1269.00 1283.00 14222.00TOTAL PEAK LOAD 1504.09 1401.87 1424.48 1421.99 1501.37 1463.85 1358.23 1443.70 1535.70 1621.52 1679.88 1680. 3 18037.01HYDRO CAPACITY TO LOAD 840.71 785.0R 747.21 714.92 674.83 700.96 657.36 801.54 934.70 1041.81 1120.35 1129.36 10148.84THERMAL CAPACITY TO LOAD 663.39 616.79 677.27 707.07 826.54 762.88 700.87 64?.16 601.00 579.71 581.33 592.98 7952O00FIRM CAPACITY TRANSFtR o.0o 0.00 0.00 n.uO 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 509.61 556.71 495.73 549.Y3 430.46 494.12 556.13 614.84 656.00 677.29 697.47 706.04 6943.83

B-Z1

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 3.174 1.580 1.157 1.060 0.878 1.476 3.453 7.217 12.544 21.129 20.745 10.353 84.766FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0-000 0-000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 4.396 1.740 1.129 1.005 0.825 1.569 5.253 11.360 19.185 35.156 35.728 17.181 134.527TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTF-LOW 2.418 0.536 0.047 -0.oUo -0.000 -0.000 1.204 3.023 5.629 12.060 14.371 8.703 47.990TO RIVER LOSS -1.868 -0.448 -0.064 0.017 0.010 0.126 0.711 1.257 1.760 3.548 1.337 -2.251 4.133TO LINK LOSS 0.091 0.091 0.088 0.0/9 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.075TO CANAL LOSS 0.636 0.403 0.338 0.298 0.248 0.381 0.379 0.687 0.986 0.980 0.977 0.860 7.173TO WATERCOURSE 1.898 0.998 0.747 0.665 0.530 0.878 1-068 2.160 4.079 4.451 3.970 2.951 24.394FROM GROUND WATER 0.287 0.241 0.253 0.276 0.284 0.258 0.032 0.072 0.072 0.248 0.301 0.301 2.025SHORTAGE AT WATERCOURSE 0.005 0.000 0.083 0.087 0.435 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.10WATERCOURSE REQT. 2.190 1.239 1.084 1.OZ8 1.248 1.136 1.100 2.232 4.151 4.699 4.271 3.252 27.630

PUMP CAPACITY GOOD AREA 0.301 0.251 0.254 0.276 0.284 0.263 0.241 0.291 0.301 0.301 0.301 0.301 3.365PUMPED FROM GOOD AREA 0.287 0.241 0.253 0.276 0.284 0.258 0.032 0.072 0.072 0.248 0.301 0.301 2.625EVAPORATION GOOD AREA 0.134 0.049 0.045 0.034 0.045 0.014 0.019 0.045 0.176 0.304 0.405 0.346 1.616RECHARGE TO GOOD AREA 0.312 0.190 0.158 0.147 0.107 0.182 0.153 0.230 0.468 0.729 0.759 0.611 4.045NET CHANGE -- GOOD AREA -0.109 -0.100 -0.141 -0.163 -0.222 -0.090 0.102 0.113 0.221 0.177 0.053 -0.036 -0.196PUMP CAPACITY 8AD ARtA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480PUMPED TO DRAINAGE 0.122 0.108 0.087 0.071 0.065 0.030 0.068 0.082 0.097 0.128 0.131 0.109 1.097EVAPORATION BAD AREA 0.652 0.361 0.313 0.262 0.312 0.273 0.344 0.784 1.274 1.644 1.560 1.099 8.879RECHARGE TO BAD AREA 0.746 0.431 0.348 0.312 0.282 0,436 0.420 0.866 1.371 1.772 1.691 1.208 9.884NET CHANGE BAD AREA -0.028 -0.037 -0.052 -0.020 -0.094 0.133 0.008 -0.000 -0.000 -0.000 -0.000 -0.000 -0.091DRAIN STORAGt CONTENT 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LoAD 31.76 27.75 28-15 29-55 30.70 26.55 7.55 11.84 12-88 30.65 35-13 33.43 305.94TOTAL BASE LOAD 236.00 234.00 234.00 231.UO 229.00 234.00 240.00 247.00 252.00 253.00 258.00 264.00 2912.00TOTAL ENERGY LOAD 267.76 261.75 262.15 260.55 259.70 260.55 247.55 258.84 264.88 283.65 293.13 297.43 3217.94HYDRO ENERGY TO LOAD -0.00 -0.00 -0.00 -o.uo -0-00 -0-00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00THERMAL ENERGY TO LOAD 267.74 261.73 262.13 260.53 259.68 260.53 247.53 258.82 264.86 283.62 293.11 297.40 3217.69ENERGY DEFICIENCY 0.00 0.00 0.00 O.UO 0-00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 48.67 44.91 45.14 46.08 47.83 42.81 12.12 17.39 18.80 46.96 53.33 50.98 475.03PEAK BASE LOAD 485.00 480.00 481.00 472.00 470.00 482.00 495.00 507.00 516.00 517.00 528.00 542.00 5975.00TOTAL PEAK LOAD 533.67 524.91 526.14 518.08 517.83 524.81 507-12 524.39 534-80 563-96 581.33 592.98 6450.03HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY Tn LOAD 533.67 524.91 526.14 518.08 517.83 524.81 507.12 524.39 534.80 563.96 581.33 592.98 6450.03FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 186.33 195.09 193.86 301.92 302.17 295.19 312.88 295.61 285.20 256.04 238.67 227.02 3089.97

B-20

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 3.035 1.451 1.073 0.9J7 0.860 1.302 3.247 6.908 12.369 21.019 20.684 10.327 83.212FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 4.151 1.409 1.028 0.852 0.779 1.250 4.826 10.538 18.637 34.817 35.663 17.406 131.358TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTPLOW 2.381 0.374 0.003 -0.000 0.000 0.000 1.020 2.668 5.301 11.750 14.178 8.739 46.414TO RIVER LOSS -2.021 -0.47A -0.021 0.011 0.017 0.075 0.675 1.167 1.779 3.559 1.384 -2.193 3.955TO LINK LOSS 0.091 0.091 0.087 0.068 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 1.083TO CANAL LOSS 0.635 0.416 0.322 0.273 0.237 0.360 0.402 0.739 0.998 0.990 0.988 0.814 7.173TO WATERCOURSE 1.949 1.049 0.683 0.585 0.515 0.776 1.059 2.243 4.201 4.629 4.043 2.876 24.587FROM GROUND WATER 0.259 0.170 0.314 0.331 0.351 0.303 0.039 0.119 0.120 0.139 0.306 0.323 2.775SHORTAGE AT WATERCOURSE 0.000 0.000 0.106 0.269 0.493 0.103 0.000 0.000 0.000 0.000 0.000 0.000 0.971WATERCOURSE REQT. 2.208 1.219 1.103 1.165 1.359 1.181 1.098 2.362 4.321 4.768 4.349 3.199 28.332

PUMP CAPACITY GOOD AREA 0.372 0.310 0.314 0.331 0.351 0.302 0.276 0.383 0.393 0.393 o.393 o.393 4.212PUMPED FROM GOOD AREA 0.259 0.170 0.314 0.331 0.351 0.303 0.039 0.119 0.120 0.139 0.306 0.323 2.775EVAPORATION GOOD AREA 0.127 0.04A 0.044 0.048 0.038 0.014 0.018 0.054 0.176 0.270 0.316 0.277 1.428RECHARGE TO GOOD AREA 0.308 0.192 0.152 0.134 0.112 0.182 0.158 0.248 0.483 0.730 0.757 0.594 4.050NET CHANGE -- GOOD AREA -0.077 -0.026 -0.206 -0.245 -0.277 -0.135 0.101 0.075 0.187 0.321 0.135 -0.006 -0.153PUMP CAPACITY BAD ARLA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480PUMPED TO DRAINAGE 0.107 0.081 0.073 0.012 0.055 0.025 0.059 0.091 0.109 0.140 0.149 0.126 1.087EVAPORATION BAD AREA 0.648 0.353 0.311 0.283 0.293 0.270 0.314 0.828 1.296 1.654 1.571 1.051 8.871RECHARGE TO UAD ARFA 0.754 0.434 0.341 0.295 0.281 0.406 0.433 0.920 1.405 1.794 1.719 1.177 9.959NET CHANGE BAD AREA -0.000 -0.000 -0.043 -0.060 -0.067 0.110 0.059 0.001 -0.000 -0.000 -0.000 -0.000 -0.000DRAIN STORAGt CONTENT 0.000 0.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 29.48 70-35 32.90 35.43 37.42 31.72 7.48 16.75 1.21 22.03 37.23 36.75 325. 72TOTAL BASE LOAD 275.00 272.00 272.00 269.00 265.00 273.00 281.00 285.00 294.00 295.00 298.00 305.00 3384.00TOTAL ENERGY LOAD 304.48 292.35 304.90 304.43 302.42 304.72 28A.48 301.75 312.21 317.03 335.23 341.75 3709.72HYDRO ENERGY TO LOAD 29.77 45.74 0.00 0.00 0.00 0.00 o.0n 0.00 0.00 0.00 0.00 0.00 75.51THERMAL ENERGY TO LOAD 274.68 246.58 304.87 304.40 302.40 304.69 288.45 301.73 312.18 317.00 335.20 341.72 3633.92ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER -29.77 -45.74 0.00 0.00 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 -75.51HYDRO ENERGY SIJRPLIJS 0.00 0.00 0.00 0.00 n.oo 0.00 n.00 0.00 0.00 0.00 0.00 0.00 0.00

POWEk (MEGAWATTS)PEAK PUMP LOAD 49.78 41.4? 54.11 56.64 59.74 52.40 12.93 24.99 27.26 33.95 59.88 58.02 531.13PEAK BASE LOAD 562.00 556.00 557.00 557.00 551.00 566.00 584.00 600.00 608.00 611.00 629.00 635.00 7016.00TOTAL PEAK LOAD 611.78 597.42 611.11 613.64 610.74 618.40 596.93 624.99 635.26 644.95 688.88 693.02 7547.13HYDRO CAPACITY TO LOAD 40.79 62.66 0.00 o.0o 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 103.44THERMAL CAPACITY TO LOAD 571.00 534.76 611.11 613.64 610.74 618.40 596.93 624.99 635.26 644.95 688.88 693.02 7443.68FIRM CAPACITY TRANSFLR -40.79 -62.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -103.44PEAK RESERVE 208.22 222.58 208.89 311.36 314.26 306.60 328.07 30n.01 289.74 280.05 236.12 231.98 3237.87

SYSTEM SUMMARY

WATER (MAF) OCT NOV DIEC .JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.111 0.724 0.483 0.483 1.158 0.804 -0.322 -1.060 -1-588 -1.393 -0.382 0.001 0.019FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 4.168 1.420 1.038 0.8b3 0.793 1.267 4.839 10.552 18.651 34.842 35.692 17.428 131.554TO RESEhVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.026 0.002 0.156TO RIVER OUTPLOW 2.381' 0.374 0.003 -0.0(10 0.000 0.000 1.020 2.668 5.301 11.750 14.178 8.739 46.414TO RIVER LOSS -3.633 -n.574 0.074 O.2u4 0.312 0.586 2.189 3.809 5.572 9.958 4.066 -4.595 17.968TO LINK LOSS 0.580 0.41q 0.387 0.398 0.444 0.522 0.367 0.353 0.411 0.374 0.405 0.420 5.080TO CANAL LOSS 1.905 1.277 1.090 1.065 1.199 1.512 1.524 1.914 2.221 2.106 2.240 2.102 20.156TO WATERCOURSE 5.583 2.659 1,930 1.796 2.422 3.967 3.575 4.780 7.691 6.921 7.570 6.794 55.689fROM GROUND WATER 2.799 1.521 1.438 1.622 3.015 2.514 1.209 1.509 2.137 2.763 3.282 3.273 27.082SHORTAGE AT WATERCOURSE 0.000 0.000 0.106 0.269 0.548 0.103 0.000 0.000 0.000 0.000 0.000 0.000 1.026WATERCOURSE REQT. 8.382 4.180 3.474 3.687 5.985 6.584 4.784 6.289 9.828 9.684 10.852 10.067 83.796

PUMP CAPACITY GOOD AREA 3.653 2.022 1.645 1.774 3.027 3.369 2.466 2.566 3.516 3.222 3.746 3.901 34.909PUMPED FROM GOOD AREA 2.799 1.S21 1.438 1.622 3.015 2.514 1.209 1.509 2.137 2.763 3.2t2 3.273 27.082EVAPORATION GOOD AREA 0.522 0.337 0.290 0.275 0.346 0,396 0.344 0.462 0.653 1.081 1.213 0.841 6.760RECHARGE TO bOOD AREA 2.815 1.727 1.358 1.415 2.049 2.636 2.122 2.374 3.086 4.627 4.976 3.742 32.928NET CHANGE -- GOOD AREA -0.506 -0.130 -0.369 -0.482 -1.313 -0.273 0.56A 0.403 0.296 0.783 0.481 -0.372 -0.d13PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.A40PUMPED TO DRAINAGE 0.123 0.092 0.083 0.083 0.070 0.042 0.072 0.105 0.124 0.166 0.177 0.148 1.284EVAPORATION BAD AREA 0.984 0.544 0.486 0.480 0.563 0.578 0.553 1.105 1.649 2.173 2.115 1.465 12.696RECHARGE TO BAD AREA 1.109 0.637 0.518 0.495 0.559 0.749 0.695 1.213 1.775 2.341 2.297 1.613 14.003NET CHANGE BAD AREA 0.002 0.001 -0.051 -0.068 -0.074 0.129 0.070 0.003 0.002 0.003 0.004 0.001 0.023DRAIN STORAGE CONTENT 0.000 0.000 0.000 O.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 223.51 122.40 118.98 134.81 247.54 206.48 91.73 119.18 169.42 2?7.07 266.83 263.38 2191.34TOTAL BASE LOAD 573.00 573.00 588.00 572.U0 575.00 568.00 595.00 607.00 624.00 629.00 639.00 646.00 7189.00TOTAL ENERGY LOAD 796.51 695.40 706.98 706.81 822.54 774.48 686.73 726.18 793.42 856.07 905.83 909.38 9380.34HYDRO ENERGY TO LOAD 521.77 448.78 373.49 371.47 482.01 408.77 384.63 420.58 479.74 538.42 570.56 567.59 5567.82THERMAL ENERGY TO LOAD 274.68 246.58 333.45 335.J1 340.46 365.66 302.06 305.55 313.63 317.59 335.20 341.72 3811.89ENERGY DEFICIENCY O-UO 0.00 0.00 0.0o 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER O.UO 0.00 0.00 o.uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 171.10 32.75 0.00 o.uO 7.90 0.00 85.54 165.26 202.52 222.65 247.24 140.56 1275.49

POWER (MEGAWATTS)PEAK PUMP LOAD 406.99 287.49 287.22 304.81 427.96 381.99 200.73 254.43 328.15 398.11 451.67 441.98 4171.53PEAK BASE LOAD 1258.00 1260.00 1298.00 1297.00 1255.00 1254.00 1312.00 1352.00 1376.00 1387.00 1429.00 1435,00 15913,00TOTAL PEAK LOAD 1664.99 1547.49 1585.22 1601.81 1682.96 1635.99 1512.73 1606.43 1704.15 1785.11 1880.67 1876.98 20084.53HYDRO CAPACITY TO LOAD 1093.99 1012.72 954.51 908.47 850.74 695.28 657.02 802.60 934.70 1042.65 1120.39 1129.36 11202.42THERMAL CAPACITY TO LOAD 571.00 534.76 630.71 693.34 832.23 940.72 855.72 803.82 769.45 742.45 760.29 747.62 8882.11FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00PEAK RESERVE 686.00 722.24 626.29 668.66 529.77 421.28 506.28 558.18 592.55 619.55 601.71 614.38 7146.89

B-24

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY ,NUMBER 6685072110

YEAR 1974

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV UEC JAN FEB MAR APR MAY JUNE JUJLY AUG SEPT TOTAL

FROM RIVER INFLOW .5.430 3.230 2.780 2.760 2.970 5.040 7.890 13-500 21.960 31.160 27-910 12.890 137.520FROM STORAGE RELEASE 1.106 0.721 0.481 0.481 1.154 0.804 -0.323 -1.056 -1.581 -1.387 -5.786 0.410 -4.977FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.017 n.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.02e 0.021 0.198TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.001 0.005 0.004 0.005 0.020 0.031 0.024 0.027 0.020 0.175TO RIVER OUTtLOW 2.918 1.411 1.129 0.968 0.863 1.199 2.997 6.666 12.164 20.826 17.073 9.406 77.620TO RIVER LOSS -1.632 -0.074 0.134 0.198 0.254 0.499 1.373 2.673 3.806 6.351 0.879 -1.195 13.267TO LINK LOSS 0.493 0.356 0.293 0.3U4 0.353 0.440 0.334 0.282 0.326 0.282 0.310 0.331 4.105TO CANAL LOSS 1.298 0.901 0.754 0.792 0.965 1.197 1.194 1.212 1.257 1.146 1.247 1.313 13.276TO WATERCOUR5E 3.733 1.559 1.171 1.199 1.939 3.250 2.776 2.695 3.649 2.511 3.546 3.996 32.022FROM GROUND WATER 2.813 1.507 1.258 1.458 2.906 2.507 1.093 1.411 2.030 2.562 3.139 3.070 25.755SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102WATERCOURSE REQT. 6.546 3.066 2.429 2.657 4.947 5.757 3.869 4.106 5.679 5.073 6.685 7.066 57.880

PUMP CAPACITY GOOD AREA 3.569 1.844 1.433 1.569 2.917 3.357 2.370 2.350 3.302 2.976 3.525 3.703 32.913PUMPED FROM GOOD AREA 2.813 1.507 1.258 1.458 2.906 2.507 1.093 1.411 2.030 2.562 3.139 3.070 25.755EVAPORATION GOOD AREA 0.352 t.237 0.183 0.188 0.288 0.348 0.271 0.351 0.441 0.749 0.787 0.498 4.692RECHARGE TO GOOD AREA 2.603 1.578 1.200 1.301 1.998 2.555 2.050 2.184 2.661 3.948 4.252 3.206 29.536NET CHANGE -- GOOD AREA -0.562 -0.167 -0.241 -0.345 -1.196 -0.300 0.686 0.421 0.190 0.638 0.326 -0.361 -O.qllPUMP CAPACITY BAD AREA 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.360PUMPED TO DRAINAGE 0.017 0.011 0.010 0.011 0.014 0.016 0.013 0.014 0.015 0.026 0.028 0.021 0.198EVAPORATION BAD AREA 0.349 0.204 0.186 0.211 0.284 0.312 0.252 0.290 0.362 0.527 0.549 0.421 3.944RECHARGE TO BAD ARFA 0.367 0.216 0.185 0.213 0.282 0.360 0.276 0.306 0.379 f.555 0.582 0.443 4.166NET CHANGE BAU AREA 0.002 0.001 -0.010 -0.009 -0.016 0.032 0.011 0.002 0.002 0.003 0.005 0.001 0.024DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 222.56 119.46 100.60 117.08 238.11 208.71 84.02 108.85 160.77 206.95 251.82 246.40 2065.33TOTAL BASE LOAD 322.00 326.00 342.00 328.00 337.00 320.00 341.00 349.00 358.00 362.00 371.00 371.00 4127.00TOTAL ENERGY LOAD 544.56 445.46 442.60 445.U8 575.11 528.71 425.02 457.85 518.77 568.95 622.82 617.40 6192.33HYDRO ENERGY TO LOAD 544.52 445.44 367.05 364.U5 488.92 407.06 403.60 448.59 513.36 566.17 619.85 615.37 5783.99THERMAL ENERGY TO LOAD 0.00 0.00 75.54 81.00 86.14 119.87 21.40 9.24 5.37 2.74 2.92 1.98 406.21ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 -1.78 0.00 0-00 0.00 0.00 0.00 0.00 -1.78INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 n.0o 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 148.45 31.48 0.00 0.uo 0.24 1.74 68.14 137.78 168.90 199.41 197.97 92.67 1046.77

POWER (MEGAWATTS)PEAK PUMP LOAD 399.45 288.21 263.63 281.68 407.75 386.16 177.58 236.15 312.03 375.64 425.42 414.19 3967.87PEAK BASE LOAD 752.00 760.00 800.00 800.00 765.00 747.00 791.00 817.00 834.00 843.00 869.00 869.00 9647.00TOTAL PEAK LOAD 1151.45 1048.21 1063.63 1081.68 1172.75 1133.16 968.58 1053.15 1146.03 1218.64 1294.42 1283.19 13614.87HYDRO CAPACITY TO LOAD 1094.24 1007.57 946.44 899.06 849.71 692.93 659.16 803.33 934.70 1048.84 1120.42 1129.36 11185.76THERMAL CAPACITY TO LOAD 57.21 40.63 117.19 182.62 323.05 437.00 309.42 249.82 211.33 169.79 174.00 153.83 2425.88FIRM CAPACITY TRANSFER 0.00 0.00 0.00 O-UO 0.00 -3-22 0.00 0.00 0-00 0-00 0-00 0.00 -3.22PEAK RESERVE 379.79 396.37 319.81 254.38 113.95 -3.22 127.58 187.18 225.67 267.21 263.00 283.17 2814.89

B-25

SOUTH ZONE SUMMARY

WATER (MAF) OCT NnV nEC JAN FEB MAR APR MAY JUNE JIJLY AUG SEPT TOTAL

FROM RIVER INFLOW 2.918 1.411 1.129 0.968 0.863 1.199 2.997 6.666 12.164 20.826 17.073 9.406 77.620FROM STORAGE RELEASE -0.000 -0.000 -0.000 -O.0UO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBlUTARIES 0.000 n.000 0.000 0.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 3.943 1.355 1.069 0.850 0.750 1.123 4.302 9.459 17.919 34.506 28.941 15.527 119.745TO RESERVnIR EVAPORATION -0.000 -0.000 -0.000 -O.Ouo -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTtLOh 2.'306 0.355 0.000 -0.000 -0.000 -0.000 0.845 2.220 4.873 11.494 11.687 7.242 41.021TO RIVER LOSS -2.084 -0.453 -0.011 0.008 0.014 0.064 0.592 1.041 1.801 3.618 0.210 -1.583 3.217TO LINK LOSS 0.091 0.091 0.087 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 1.085TO CANAL LOSS 0.639 0.416 0.341 0.284 0.234 0.339 0.419 0.848 1.016 1.006 0.981 0.791 7.313TO WATERCOURSE 1.967 1.003 0.713 0.585 0.523 0.706 1.050 2.467 4.383 4.616 4.105 2.865 24.983FROM GROUND WATER 0.296 0.218 0.378 0.421 0.447 0.346 0.059 0.059 0.163 0.268 0.353 0.303 3.311SHORTAGE AT WATERCOURSE 0.000 0.000 0.057 0.325 0.535 0.201 0.000 0.000 0.000 0.000 0.000 0.000 1.118WATERCOlURSE REOT. 2.263 1.221 1.148 1.331 1.505 1,253 1.109 2.526 4.546 4.884 4.458 3.168 29.412

PUMP CAPACITY GOOD AREA 0.458 0.364 0.378 0.423 0.449 0.351 0.303 0.465 0.515 0.515 0.515 0.515 5.252PUMPED FROM bOOD AREA 0.296 0.218 0.378 0.4Z1 0.447 0.346 0.059 0.059 0.163 0.268 0.353 0.303 3.311EVAPORATION GOOD AREA 0.090 0.017 0.016 0.033 0.021 0.009 0.003 0.019 0.128 0.209 0.279 0.240 1.065RECHARGE TO G00D AREA 0.312 0.192 0.168 0.149 0.126 0,174 0.167 0.297 0.505 0.739 0.753 0.590 4.171NET CHANGE -- GOOD AREA -0.073 -0.044 -0.226 -0.305 -0.343 -0.181 0.105 0.219 0.214 0.262 0.120 0.047 -0.205PUMP CAPACITY BAD ARtA 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480PUMPED TO DRAINAGE 0.120 0.089 0.083 0.081 0.055 0.022 0.050 0.103 0.124 0.154 0.164 0.141 1.185EVAPORATION BAD AREA 0.646 0.346 0.311 0.332 0.309 0.270 0.283 0.891 1.326 1.671 1.580 1.014 8.979RECHARGE TO BAD AREA 0.766 0.434 0.361 0.314 0.289 0.390 0.440 0.995 1.449 1.826 1.743 1.155 10.164NET CHANGE BAD AREA -0.000 -0.000 -0.032 -0.099 -0.075 0.098 0.107 0.001 -0.000 -0.000 -0.000 0.000 -0.000DRAIN STORAGt CONTENr 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 33.74 74-92 39.17 44.40 47.06 35.96 8.31 12-27 22-91 34.67 42-92 36.49 182.82TOTAL BASE LOAD 312.00 307.00 306.00 307.00 303.00 313.00 323.00 328.00 337.00 338.00 342.00 350.00 3866.00TOTAL ENERGY LOAD 345.74 331.92 345.17 351.40 350.06 348.96 331.31 340.27 359.91 372.67 384.92 386.49 4248.82HYDRO ENERGY TO LOAD 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL ENERGY TO LOAD 345.71 331.89 345.14 351.57 350.03 348.93 331.28 340.25 359.89 372.64 384.89 386.46 4248.49ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0-00 0-00 0.00 0-00 0.00 0-00 0.00 0.00 0.00INTERZONE ENtRGY TRANSFER 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 61.36 51.78 65.42 72.Z9 76.46 61.86 12.31 17.74 34.78 60.51 73.92 65.36 653.80PEAK BASE LOAD 650.00 640.00 638.00 638.00 631.00 646.00 668.00 686.00 697.00 700.00 712.00 727.00 8033.00TOTAL PEAK LOAD 711.36 691.78 703.42 710.Z9 707.46 707.86 680.31 703.74 731.78 760.51 785.92 792.36 8686.80HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00THERMAL CAPACITY TO LOAD 711.36 691.78 703.42 710.29 707.46 707.86 680.31 703.74 731.78 760.51 785.92 792.36 8686.80FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.00 0.00 3-22 0.00 0-00 0.00 0.00 0-00 0.00 3.22PEAK RESERVE 213.64 233.22 221.58 364.71 367.54 367.14 394.69 371.26 343.22 314.49 289.08 282.64 3763.20

B-26

SYSTEM SUMMARY

WATER (MAF) OCT NnV DEC JAN FEB MAR APR MAY JUNE JULY AUr- SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.7bO 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.106 0.721 0.481 0.481 1.154 0.804 -0.323 -1.056 -1.581 -1.387 -5.786 0.410 -4.977FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.960 1.367 1.079 0.862 0.764 1.140 4.315 9.473 17.934 34.532 28.969 15.548 119.943TO RESERVOIR EVAPORATION 0.022 0.010 0.006 0.0U 0.005 0.004 0.005 0.020 0.031 0.024 0.027 0.020 0.175TO RIVER OJTtLOW 2.306 0.3S5 0.000 -0.000 -0.000 -0.000 0.845 2.220 4.873 11.494 11.687 7.242 41.021TO RIVER LOSS -3.717 -0.527 0.123 0.2U6 0.268 0.563 1.966 3.714 5.607 9.969 1.089 -2.778 16.484TO LINK LOSS 0.584 0.447 0.380 0.395 0.444 0.531 0.425 0.373 0.417 0.372 0.401 0.422 5.190TO CANAL LOSS 1.937 1.316 1.095 1.076 1.199 1.536 1.614 2.060 2.273 2.152 2.228 2.103 20.589TO WATERCOURSE 5.700 2.561 1.883 1.754 2.462 3.956 3.826 5.162 8.032 7.128 7.651 6.861 57.005FROM GROUND WATER 3.109 1.726 1.637 1.879 3.353 2.853 1.152 1.470 2.193 2.829 3.492 3.373 29.067SHORTAGE AT WATERCOuRSE 0.000 0.000 0.057 0.3z5 0.637 0.201 0.000 0.000 0.000 0.000 0.000 0.000 1.220WATERCOURSE REQT. 8.809 4.287 3.577 3.988 6.452 7.010 4.978 6.632 10.225 9.957 11.143 10.234 87.292

PUMP CAPACITY GOOD AREA 4.027 ?.208 1.811 1.992 3.366 3.708 2.673 2.815 3.817 3.491 4.040 4.218 38.166PUMPED FROM GOOD AREA 3.109 1.726 1.637 1.819 3.353 2.853 1.152 1.470 2.193 2.829 3.492 3.373 29.067EVAPORATION GOOD AREA 0.442 0.254 0.199 0.221 0.309 0.357 0.273 0.370 0.569 0.958 1.067 0.738 5.758RECHARGE TO GOOD AREA 2.915 1.770 1.369 1.450 2.123 2.729 2.217 2.481 3.166 4.687 5.005 3.796 33.707NET CHANGE -- GOOD AREA -0.636 -0.211 -0.467 -0.650 -1.539 -0.481 0.791 0.641 0.404 0.900 0.446 -0.314 -1.117PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 3.A4OPUMPED TO DRAINAGE 0.137 0.100 0.093 O.0V2 0.070 0.039 0.063 0.117 0.138 0.180 0.192 0.162 1.383EVAPORATION BAD AREA 0.995 0.549 0,497 0.543 0.593 0.581 0.535 1.181 1.687 2.198 2.129 1.435 12.923RECHARGE TO BAD AREA 1.134 0.651 0.547 0.5Z7 0,571 0.751 0.716 1.301 1.828 2.381 2.325 1.598 14.330NET CHANGE BAD AREA 0.002 0.001 -0.042 -0.108 -0.092 0.131 0.118 0.003 0.002 0.003 0.004 0.001 0.024DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 256.30 144.38 139.77 161.47 285.17 244.67 92.33 121.12 183.68 241.62 294.74 282.89 2448.14TOTAL BASF LOAD 634.00 633.00 648.00 635.U0 640.00 633.00 664.00 677.00 695.00 700.00 713.00 721.00 7993.00TOTAL ENERGY LOAD 890.30 777.38 787.77 796.47 925.17 877.67 756.33 798.12 878.68 941.62 1007.74 1003.89 10441.14HYDRO ENERGY TO LOAD 544.52 445.44 367.05 364.U5 488.92 407.06 403.60 448.59 513.36 566.17 619.85 615.37 5783.99THERMAL ENERbY TO LOAD 345.71 331.89 420.68 432.38 436.17 468.80 352.68 349.48 365.26 375.38 387.82 388.45 4654.70ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 -1-78 0.00 0.00 0.00 0.00 0-00 0.00 -1.7IfirIHERUNE ENLRGY TRAN5FER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLIIS 148.45 31.48 0.00 0.00 0.24 1.74 68.14 137.78 168.90 199.41 197.97 92.67 1046.77

POWER (MEGAWATTS)PEAK PUMP LOAD 460.51 339.99 329.05 353.97 484.22 448.02 189.89 253.89 346.80 436.15 499.33 479.55 4621.67PEAK BASE LOAU 1402.00 1400.00 1438.00 1438.00 1396.00 1393.00 1459.00 1503.00 1531.00 1543.00 1581.00 15q6.00 17680.00TOTAL PEAK LOAD 1862.81 1739.99 1767.05 1791.97 1880.22 1841.02 1645.89 1756.89 1877.80 1979.15 2080.33 2075.55 22301.67HYDRO CAPACITY TO LOAD 1094.24 1007.57 946.44 899.06 849.71 692.93 659.16 803.33 934.70 1048.84 1120.42 1129.36 11185.76THERMAL CAPACITY TO LOAD 768.57 732.41 820.61 892.v1 1030.51 1144.86 989.73 953.56 943.11 930.30 959.92 946.19 11112.69FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 o.uo 0.00 -0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 593.43 629.59 541.39 619.U9 481.49 363.92 522.27 558.44 568.89 581.70 552.08 565.81 6578.09

B-27

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1q65 REVISED VERSION

STUDY NUMBER 668507ZL0

YEAR 1975

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DFC JAN FEB MAR APR MAY JIUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.23n 2.780 2.760 2-970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.006 0.670 1.079 2.096 3.024 1.517 -0.213 -0.829 -6.100 -6.043 -0.337 0.007 -4.124FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.017 n.012 0.010 0.012 0.016 0.017 0.013 0.014 0.015 0.026 0.029 0.023 0.204TO RESERVOIR EVAPORATION 0.044 n.020 0.010 0.002 0.009 0.010 0.016 0.039 0.068 0.036 0.02A 0.026 0.309TO RIVER OUTtLOW 2.735 1.342 1.325 1.726 1.726 1.571 2.965 6.494 9.179 16.670 19.435 10.000 75.167TO RIVER LOSS -1.622 -0.062 0.315 0.547 0.357 0.456 1.101 2.644 2.282 5.579 3.771 -2.336 13.034TO LINK LOSS 0.509 0.381 0.336 0.3Y4 0.472 0.477 0.403 0.310 0.332 0.286 0.317 0.338 4.557TO CANAL L05s 1.300 0.929 0.840 0.947 1.137 1.295 1.155 1.181 1.271 1.136 1.239 1.300 13.729TO WATERCOURSE 3.767 1.502 1.259 1.461 2.549 3.495 3.151 3.107 3.584 2.776 3.741 4.142 34.933FROM GROUND WATER 3.272 1.723 1.272 1.401 2.829 2.748 0.986 1.256 2.345 2.524 3.225 3.224 26.806SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 7.039 3.225 2.531 2.862 5.378 6.243 4.137 4.363 5.929 5.300 6-966 7.366 61.339

PUMP CAPACITY GOOD AREA 3.802 1.978 1.518 1.685 3.165 3.612 2.534 2.536 3.462 3.112 3.693 3.894 34.991PUMPED FROM GOOD AREA 3.272 1.723 1.272 1.401 2.829 2.748 0.986 1.256 2.345 2.524 3.225 3.224 26.806EVAPORATION GOOD AREA 0.290 0.189 0.160 0.11 0.218 0.285 0.248 0.271 0.368 0.673 0.697 0.404 3.984RECHARGE TO bOOD AREA 2.692 1.613 1.262 1.434 2.209 2.715 2.062 2.205 2.714 3.979 4.292 3.249 30.426NET CHANGE - GOOD AREA -0.869 -0.299 -0.171 -0.149 -0.838 -0.319 0.827 0.679 0.001 0.782 0.370 -0.379 -0.364PUMP CAPACITY BAD AREA 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080PUMPED TO DRAINAGE 0,077 0.072 0.070 0.072 0.076 0.077 0.073 0.074 0.075 0.086 0.089 0.083 0.924EVAPORATION BAD AREA 0.313 0.192 0.172 n.188 0.259 0.305 0.220 0.241 0.294 0.448 0.500 0.377 3.510RECHARGE TO BAD AREA 0.392 0.240 0.216 0.251 0.331 0.391 0.294 0.319 0.395 0.569 0.600 0.459 4.457NET CHANGE BAD AREA 0.002 -0.024 -0.026 -0.008 -0.004 0.009 -0.000 0.003 0.025 0.034 0.011 -0.001 0.023DRAIN STORAGE CONTENT 0.060 0.120 0.180 0.240 0.300 0.360 0.420 0.480 0.540 0.600 0.660 0.720 4.680

ENERGY (MILLION KWH)TOTAL PUMP LOAD 272-52 146.43 108.67 118.85 240.61 234.85 82.11 10i.76 196.41 211.86 269-24 269.00 2254.32TOTAL BASE LOAD 349,00 354.00 370.00 368.uo 363.00 354.00 368.00 391.00 396.00 396.00 409.00 409.00 4527.00TOTAL ENERGY LOAD 621.52 500.43 478.67 486.85 603.61 588.85 450.11 494.76 592.41 607.86 678.24 678.00 6781.32HYDRO ENERGY TO LOAD 618.09 460.42 347.85 346.85 509.04 447.78 430.75 488.90 589.65 607.82 678.19 677.95 6203.31THERMAL ENERGY TO LOAD 3.38 39.98 130.80 139.98 94.52 140.56 19.34 5.83 2.72 0.00 0.00 0.00 577.12ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 -0-51 0.00 0.00 0.00 0.00 0.00 0.00 -0-51INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.14 88.84 97.87 274.86HYDRO ENERGY SURPLUS 76.95 0.00 0.00 o.uo 1.31 0.47 88.45 171.98 234.03 355.22 344.82 226.17 1499.39

POWER (MEGAWATTS)PEAK PUMP LOAD 459.67 336.64 284.93 297.Z6 429.17 423.01 173.93 227.60 386.26 391.23 454.39 451.08 4315.16PEAK BASE LOAD 817.00 826.00 869.00 870.O0 843.00 824.00 871.00 900.00 928.00 928.00 947.00 947.00 10570.00TOTAL PEAK LOAD 1276.67 1162-63 1153-93 1167-Z6 1272.17 1247-01 1044.93 1127.60 1314-26 1319.23 1401.39 1398.08 14885.16HYDRO CAPACITY TO LOAD 1097.24 1011.19 948.66 905.68 878.94 748.72 724.39 905.40 1128.43 1319.23 1401.39 1398.08 12467.35THERMAL CAPACITY TO LOAD 179.43 151.45 205.27 261.58 393.23 437.00 320.54 222.20 185.83 0.00 0.00 0.00 2356.52FIRM CAPACITY TRANSFER 0.00 0.00 0.00 o.uo 0.00 -61-29 0.00 0.00 0-00 120-89 121.85 134-07 315.52PEAK RESERVE 257.57 285.55 231.73 175.42 43.77 -61.29 116.46 214.80 251.17 557.89 558.85 571.07 3203.00

B-28

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTALFROM RIVER INFLOW 2.735 1.342 1.325 1.7Z6 1.726 1.571 2.965 6.494 9.179 16.670 19.435 lo.ooo 75.167FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 3.271 1.193 1.197 1.503 1.584 1.657 4.232 8.779 12.031 26.474 33.201 17.079 112.200TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTeLOW 1.724 0.242 -0.001 -0.004 -0.000 -0.004 0.869 1.952 2.720 7.974 12.095 8.221 35.788TO RIVLR LOSS -1.868 -0.349 0.025 0.069 0.053 0.082 0.515 0.917 0.833 3.003 2,171 -1.815 3.636TO LINK LOSS 0.091 0.091 0.086 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.085TO CANAL LOSb 0.676 0.426 0.394 0.498 0.477 0.446 0.434 0.890 1.033 1.021 0.986 0.769 8.051TO wATERCOURSE 2.112 0.932 0.821 1.072 1.105 0.955 1.057 2.643 4.502 4.580 4,092 2.735 26.607FROM GROUND WATER 0.242 0.317 0.402 0.472 0.546 0.407 0.084 0.068 0.265 n.406 0.493 0.422 4.123SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0UO 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042WATERCOURSE KEQT. 2.354 1.249 1.223 1.544 1.693 1.362 1.141 2.711 4.767 4.986 4.585 3.157 30.772PUMP CAPACITY GOOD AREA 0.545 0.415 0.448 0.534 0.550 0.411 0.337 0.505 0.591 0.591 0.591 0.571 6.090PUMPED FROM GOOD AREA 0.242 0.317 0.402 0.412 0.546 0.407 0.084 0.068 0.265 0.406 0.493 0.422 4.123EVAPORATION GOOD AREA 0.070 0.014 0.010 0.032 0.031 0.015 0.007 0.022 0.112 0.180 0.223 0.200 0.916RECHARGE TO GOOD AREA 0.334 0.203 0.203 0.265 0.263 0.216 0.176 0.325 0.527 0.746 0.756 0.589 4.604NET CHANGE -- GOOD AREA 0.022 -0.128 -0.209 -0.239 -0.313 -0.206 0.085 0.234 0.150 0.160 0.040 -0.033 -0.435PU'MP CAPACITY BAD ARtA 0.290 0.290 0.290 0.29O 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480PUMPED TO DRAINAGE 0.134 0.091 0.085 0.097 0.115 0.092 0.088 0.117 0.139 0.169 0.178 0.158 1.462EVAPORATION BAD AREA 0.662 0.348 0.321 0.393 0.416 0.405 0.338 0.925 1.353 1.685 1.595 0.979 9.420RECHARGE TO BAD AREA 0.796 0.438 0.399 0.492 0.502 0.505 0.450 1.044 1.491 1.854 1.774 1.136 10.882NET CHANGE BAD AREA -0.000 -0.001 -0.007 0.002 -0.029 0.008 0.024 0.001 -0.000 -0.000 0.001 -0.001 -0.000DRAIN STORAGE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENER5Y (MILLION KWH)TOTAL PUMP LOAD 30.10 33.7F 42.05 51.19 61.22 46.98 13-31 14.16 33.73 49.18 58.00 50.27 483.96TOTAL BASE LOAD 357.00 351.00 351.00 353.UO 345.00 357.00 366.00 374.00 384.00 384.00 390.00 399.00 4411.00TOTAL ENERGY LOAD 387.10 384.78 393.05 404.19 406.22 403.98 379.31 388.16 417.73 433.18 448.00 449.27 4894.96HYDRO ENERGY TO LOAD 0.00 0.00 0.00 O.0O 0.00 0.00 0.00 0.00 0.00 88.14 88.84 97.87 274.86TIIERMAL ENERGY TO LOAU 387.07 384.75 393.02 404.15 406.18 403.95 379.28 38 '3 '!7.'0 3'.5.1 0 3;9.12 351.36 4619.73ENERGY nEFFC!EfC! u.uu t.uO 0.00 O.UO 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.110 0.00 0.00 0.00 0.00 0.00 -88.14 -88.84 -97.87 -274.86HYURO ENERGY SURPLUS 0.00 0.00 0.00 O.Uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 57.53 61.4? 68.75 83.40 95.84 80.35 19.62 21.66 61.07 85593 92.01 83.69 811.26PEAK BASE LOAD 743.00 725.00 730.00 728.U0 720.00 738.00 762.00 787.00 794.00 798.00 812.00 830.00 9162.00TOTAL PEAK LOAD 800.53 786.4? 798.75 811.40 815.84 818.35 781.62 803.66 855-07 883.93 904.01 913.69 9973.26HYDRO CAPACITY TO LOAD 0.00 0.00 0.00 o.Uo 0.00 0.00 0.00 0.00 0.00 120.89 121.85 134.07 376.81THERMAL CAPACITY TO LOAD 800.53 786.4? 798.75 811.40 815.84 818.35 781.62 803.66 855.07 763.04 782.16 779.62 9596.45FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 61.29 0.00 0.00 0-00 -120.89 -121.85 -134.07 -315.52PEAK RESERVE 274.47 288.58 276.25 413.60 409.16 406.65 443.38 421.34 369.93 341.07 320.99 311.31 4?76.74

SYSTEM SUMMARY

wATER (MAF) OCT Nnv DEC JAN FEB MAR APR MAY JUNE JUJLY AUCI SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.OU6 0.670 I.o09 2.096 3.024 1.517 -0.213 -0.829 -6.100 -6.043 -0.337 0.007 -4.124FROM TRIBUTARIES 0.280 O.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.288 1.205 1.207 1.515 1,600 1.674 4.245 8.794 12.046 26.500 33.230 17.102 112.403TO RESERVOIR EVAPORATION 0.044 0.020 0.010 0.002 0.009 0.010 0.016 0.039 0.068 0.036 0.028 0.026 0.309TO RIVER OUTtLOW 1.724 0.242 -0.001 -0.004 -0.000 -0.004 0.869 1.952 2.720 7.974 12.095 8.221 35.788TO RIVER LOSS -3.490 -0.411 0.341 0.616 0.410 0.539 1.616 3.562 3.115 8.582 5.941 -4.151 16-670TO LINK LOSS 0.600 0.472 0.422 0.489 0.563 0.568 0.494 0.401 0.423 0.377 0.408 0.428 5.641TO CANAL L05 1.976 1.355 1.234 1.445 1.613 1.742 1.589 2.072 2.304 2.157 2.225 2.069 21.781TO WATERCOURSE 5.879 2.434 2.079 2.533 3.654 4.450 4.208 5.750 8.086 7.356 7.834 6.877 61.140FROM GROUND WATER 3.514 2.040 1.675 1.873 3.375 3.155 1.070 1.324 2.610 2.930 3.717 3.646 30.929SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042WATERCOURSE REOT. 9.393 4.474 3.754 4.406 7.071 7.605 5.278 7.074 10.696 10.286 11.551 10.523 92.111

PUMP CAPACITY GOOD AREA 4.347 2.394 1.966 2.219 3.715 4.024 2.871 3.040 4.053 3.703 4.284 4.465 41.081PUMPED FROM GOOD AREA 3.514 2.040 1-675 1.873 3.375 3.155 1-070 1.324 2.610 2.930 3-717 3.646 30.929EVAPORATION GOOD AREA 0.360 0.203 0.170 0.214 0.249 0.300 0.255 0.293 0.480 0.853 0.920 0.603 4.900RECHARGE TO GOOD AREA 3.026 1.817 1.465 1.699 2.472 2.931 2.238 2.530 3.241 4.725 5.048 3.838 35.030NET CHANGE -- GOOD AREA -0.847 -0.427 -0.380 -0.3a7 -1.152 -0-525 0.913 0.913 0.152 0.942 0-410 -0.412 -0.799PUMP CAPACITY BAD AREA 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 4.560PUMPED TO DRAINAGE 0.211 0.162 0.155 0.169 0.190 0.169 0.161 0.192 0.214 0.256 0.266 0.241 2.386EVAPORATION BAD AREA 0.974 0.540 0.494 0.580 0.676 0.710 0.559 1.167 1.647 2.133 2.095 1.356 12.q30RECHARGE TO BAD AREA 1.188 0.678 0.616 0.744 0.834 0,897 0.744 1.363 1.886 2.423 2.374 1.595 15.340NET CHANGE BAD AREA 0.002 -0.024 -0.033 -O.OU6 -0.032 0.018 0.024 0.005 0.025 0.034 0.013 -O0002 0.023DRAIN STORAGt CONTENT 0.060 0.120 0.180 0.240 0.300 0.360 0.420 0.480 0.540 0.600 0.660 0.720 4.680

ENERbY (MILLION KWH)TOTAL PUMP LOAD 302.62 180.21 150.72 170.04 301.83 281.83 95.42 117.92 230.13 261.04 327.24 319.27 2738.28TOTAL sASE LOAD 706.00 705.00 721.00 721.UO 708.00 711.00 734.00 76S.00 780.00 780.00 799.00 808.00 8938.00TOTAL ENERGY LOAD 1008.62 885.21 871.72 891.04 1009.83 992.83 829.42 882.92 1010.13 1041.04 1126.24 1127.27 11676.28HYDRO ENERGY TO LOAD 618.09 460.42 347.85 346.85 509.04 447.78 430.75 488.90 589.65 695.97 767.03 775.83 6478.16THERMAL ENERGY TO LOAD 390.45 424.73 523.81 544.13 500.71 544.51 398.62 393.97 420.42 345.01 359.12 351.36 5196.85ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 -0.51 0.00 0-o00 0-00 0-00 -0.0 0.00 -051INTERZONE ENLRGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 76.95 0.00 0.00 0.00 1.31 0.47 88.45 171.98 234.03 355.22 344.82 226.17 1499.39

POWER (MEGAWATTS)PEAK PUMP LOAD 517.20 398.05 353.68 380.67 525.01 503.36 193.54 249.26 447.32 477.16 546.40 534.76 5126.43PEAK BASE LOAD 1560.00 1551.00 1599.00 1598.00 1563.00 1562.00 1633.00 1682.00 1722.00 1726.00 1759.00 1777.00 19732.00TOTAL PEAK LOAD 2077.20 1949.05 1952.68 1978.67 2088.01 2065.36 1826.54 1931.26 2169.32 2203.16 2305.40 2311.76 24858.42HYDRO CAPACITY TO LOAD 1097.24 1011.19 948.66 905.68 878.94 748.72 724.39 905.40 1128.43 1440.12 1523.24 1532.15 12844.17THERMAL CAPACITY TO LOAD 979.96 937.86 1004.02 1072.99 1209.07 1255.35 1102.15 1025.86 1040.89 763.04 782.16 779.62 11952.97FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 532.04 574.14 507.98 589.0l 452.93 345.36 559.85 636.14 621.11 898.96 879.84 882.38 7479.74

B-30

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1976

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TnTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.098 1.355 1.391 2.213 3.338 2.450 0.495 -0.590 -5.308 -5.980 -0.336 0.007 o.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.016 0.012 0.010 0.012 0.016 0.017 0.014 0.014 0.016 0.026 0.030 0.022 0.205TO RESERVOIR EVAPORAIION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTtLOW 2.687 1.75? 1.633 1.852 1.775 1.906 3.795 7.043 9.814 16.868 19.377 9.915 78.415TO RIVER LOSS -1.613 0.166 0.285 0.510 0.396 0.705 1.200 2.568 2.509 5.429 3-715 -2.340 13.530TO LINK LOSS 0.508 0.379 0.337 0.397 0.473 0.509 0.388 0.305 0.331 0.286 0.318 0.339 4.568TO CANAL LOSS 1.315 0.943 0.856 0.964 1.216 1.300 1.162 1.190 1.250 1.124 1.248 1.299 13.867TO WATERCOURSE 3.878 1.534 1.275 1.470 2.693 3.806 2.938 2.869 3.535 2.805 3.848 4.230 34.880FROM GROUND WATER 3.359 1.771 1.313 1.462 2.808 2.573 1.328 1.640 2.583 2.662 3.373 3.396 28.269SHORTAGE AT WATERCOtJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000WATERCOURSE REQT. 7.237 3.305 2.588 2.932 5.501 6.379 4.266 4.509 6.118 5.467 7.221 7.626 63.149

PUMP CAPACITY GOOD AREA 3.980 2.069 1.587 1.769 3.340 3.763 2.671 2.688 3.671 3.300 3.886 4.075 36.801PUMPED FROM GOOD AREA 3.359 1.771 1.313 1.462 2-808 2.573 1.328 1.640 2.583 2.662 3.373 3.396 28.269EVAPORATION bOOD AREA 0.227 n.127 0.114 0.146 0.167 0.195 0.161 0.215 0.273 0.482 0.591 0.313 3.009RECHARGE TO OOD AREA 2.745 1.639 1.285 1.459 2.294 2.744 2.092 2.241 2.738 4.005 4.352 3.302 30.897NET C11ANGE -- GOOD AREA -0.841 -0.259 -0.142 -0.148 -0.681 -0.023 0.604 0.387 -0.119 0.860 0.388 _0.407 -0.381PUMP CAPACITY BAD AREA 0.090 0.090 - 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080PUMPED TO DRAINAGE 0.076 0.072 0.070 0.072 0.076 0.077 0.074 0.074 0.076 0.086 0.090 0.082 0.o25EVAPORATION BAD AREA 0.318 0.194 0.175 O. 111 0.262 0.311 0.225 0.246 0.297 0.451 0.512 O.3A3 3.563RECHARGE TO bAD AREA 0.397 0.243 0.219 0.255 0.338 0.396 0.298 0.324 0.398 0.572 0.606 0.465 4.513NET CHANGE BAD AREA 0.003 -0.023 -0.026 -0-008 0.000 0.009 -0-000 0.004 0.026 0.035 0.005 0.000 0.025DRAIN STORAGt CONTENT 0.780 0.840 0.900 0.960 1.020 1.080 1.140 1.200 1.260 1.320 1.380 1.440 13.320

ENERUY (MILLION KWH)TOTAL PUMP LOAn 284.43 jS2.84 113.91 125.97 241.21 221.00 113.72 i3q.66 220.47 226.81 286.19 287.96 2414.17TOTAL BASE LOAD 373.00 377.00 396.00 400.UO 394.00 384.00 400.00 424.00 429.00 429.00 444.00 444.00 4894.00TOTAL ENERGY LOAD 657.43 529.84 509.91 525.97 635.21 605.00 513.72 563-66 649.47 655.81 730.19 731.96 7308.16HYDRO ENERGY TO LOAD 657.38 529.81 509.89 525.94 635.17 602.28 510.42 560.40 649.43 655.77 730.14 731.90 7298.52THERMAL ENER6Y TO LOAn o.0O 0.00 0.00 0.00 0.00 2.68 3.28 3.23 0.00 0.00 0.00 0.00 9.19ENERGY DEFICIENCY 0.00 0.00 0.00 o0uO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 218.36 384.60 301.76 272.50 42.19 0.00 0.00 0.00 0.00 292.56 301.49 310.04 2123.49HYDRO ENERGY SURPLIIS 336.26 145.15 124.23 85.43 242.97 120.63 21n.68 229.13 334.47 382.48 374.26 254.05 2839.72

POWER (MEGAWATTS)PEAK PUMP LOAD 480.15 353.S58 298.74 312.Z3 442.99 407.14 247.68 300.89 421.55 413.26 482.87 480.22 4641.30PEAK BASE LOAD 881.00 890.00 928.00 927.U0 917.00 896.00 948.00 978.00 1009.00 1009.00 1030.00 1030.00 11443.00TOTAL PEAK LOAD 1361.15 1243.58 1226.74 1239.23 1359.99 1303.14 1195.68 1278.89 1430.55 1422.26 1512.R7 1510.22 16084.30HYDRO CAPACITY TO LOAD 1361.15 1243.58 1226.74 1239.23 1359.99 1125.44 1001.19 1081.65 1347.94 1422.26 1512.87 1510.22 15432. 26THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uO 0.00 177.70 194.49 197.24 82.61 0.00 0.00 0.00 652.04FIRM CAPACITY TRANSFER 539.04 564.41 500.55 373.28 80.48 0.00 0.00 0.00 0-00 400-95 413.19 424.71 3296.61PEAK RESERVE 976.04 1001.41 937.55 810.28 517.48 259.30 242.51 239.76 354.39 837.95 850.19 861.71 7888.57

B-31

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JIINE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.6B7 1.75? 1.633 1.852 1.775 1.906 3.795 7.043 9.814 16.868 19.377 9.915 78.415FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 3.228 1.731 1.493 1.623 1.707 1.879 5.745 9.770 13.204 26.791 32.992 16.856 117.017TO RESERVOIR EVAPOPAlION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTFLOW 1.959 0.351 0.014 -0.0U4 0.001 0.000 1.370 2.401 3.182 8.150 11.999 8.035 37.457TO RIVER LOS5 -2.139 -0.280 -0.005 0.059 0.067 0.084 0.769 0.872 0.896 2.885 2.078 -1.830 3.456TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.656 n.434 0.428 0.504 0.474 0.518 0.450 0.912 1.033 1.028 0.997 0.767 8.203TO WATERCOURbE 2.120 1.156 1.105 1.201 1.143 1.213 1.115 2.767 4.612 4.714 4.213 2.852 28.209FROM GROUND WATER 0.269 0.133 0.156 0.398 0.608 0.177 0.065 0.141 0.376 0.476 0.566 0.511 3.A77SHORTAGE AT WATERCOIIRSE 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 2.389 1.289 1.261 1.599 1.751 1.390 1.180 2.908 5.005 5.206 4.795 3.363 32.136

PUMP CAPACITY GOOD AREA 0.626 0.458 0.487 0.577 0.613 0.453 0.385 0.552 0.668 0.668 0.668 0.654 6.809PUMPED FROM GOOD AREA 0.269 0.133 0.156 0.398 0.608 0.177 0.065 0.141 0.376 0.476 0.566 0.511 3.P77EVAPORATION GOOD AREA 0.056 n.01? 0.008 0.031 0.029 0.013 0.005 0.020 0.094 0.119 0.159 0.183 0.731RECHARGE TO bOOD AREA 0.332 0.204 0.210 0.270 0.261 0.244 0.180 0.346 0.542 0.759 0.769 0.598 4.713NET CHANGE -- GOOD AREA 0.006 0.058 0.045 -0.160 -0.377 0.054 0.110 0.184 0.072 0.165 0.044 -0.097 0.105PUMP CAPACITY BAD AREA 0.290 0.290 0.290 0.Z90 0.290 0.290 0.290 0.290 0.290 0.290 0.290 0.290 3.480PUMPED TO DRAINAGE 0.140 0.100 0.096 0.106 0.121 0.117 0.103 0.122 0.144 0.176 0.185 0.167 1.577EVAPORATION BAD AREA 0.650 0.353 0.334 0.4U4 0.424 0.399 0.365 0.964 1.383 1.717 1.627 1.009 9.630RECHARGE TO BAD AREA 0.790 0.453 0.429 0.505 0.525 0.542 0.469 1.086 1.527 1.893 1.813 1.174 11.207NET CHANGE BAD AREA -0.000 -0.000 -0.001 -0.005 -0.020 0.026 -0.000 -0.000 -0.000 -0.000 0.002 -0.002 -0.000DRAIN STORAGt CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 33.85 18.39 20.43 44.02 66.58 25.06 12.97 21.17 43-93 55.25 63.78 57.86 463.28TOTAL BASE LOAD 407.00 401.00 400.00 392.00 386.00 397.00 408.00 416.00 427.00 429.00 434.00 444.00 4941.00TOTAL ENERGY LOAD 440.85 419.39 420.43 436.02 452.58 422.06 420.97 437.17 470.93 484.25 497.78 501.86 5404.28HYDRO ENERGY TO LOAD 218.36 384.60 301.76 272.50 42.19 0.00 0.00 0.00 0.00 292.56 301.49 310.04 2123.49THERMAL ENERGY TO LOAD 222.46 34.76 118.64 163.49 410.35 422.03 420.94 437.13 470.89 191.66 196.26 191.78 3280.38ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-218.36 -384.60 -301.76 -272.50 -42.19 0.00 0.00 0.00 0.00 -292.56 -301.49 -310.04 -2123.49HYDRO ENERGY SURPLUS 0-00 0-00 0.00 0-00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 66.45 32.87 43.73 77.53 104.01 53.80 18.84 37.86 78.90 94.62 100.40 93.55 802.56PEAK BASE LOAU 847.00 832.00 832.00 811.00 799.00 820.00 850.00 872.00 891.00 891.00 907.00 925.00 10277.00TOTAL PEAK LOAD 913.45 864.87 875.73 888.53 903.01 873-80 868.84 909.86 969.90 985.62 1007.40 1018.55 11079.56HYDRO CAPACITY TO LOAD 539.04 564.41 500.55 373.Z8 80.48 0.00 0.00 0.00 0.00 400.95 413.19 424.71 3296.61THERMAL CAPACITY TO LOAD 374.41 300.46 375.18 515.Z5 822.52 873.80 868.84 909.86 969.90 584.68 594.20 593.84 7782.95FIRM CAPACITY TRANSFER -539.04 -564.41 -500.55 -373.Z8 -80.48 0.00 0.00 0.00 0.00 -400.95 -413.19 -424.71 -3296.61PEAK RESERVE 311.55 360.13 349.27 336.47 321.99 351.20 356.16 315.14 255.10 239.38 217.60 206.45 3620.44

B-32

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.098 1.355 1.391 2.213 3.338 2.450 0.495 -0.590 -5.308 -5.980 -0.336 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.244 1.742 1.502 1.635 1.722 1.896 5.759 9.784 13.220 26.817 33-022 16.878 117.222TO RESERVOIR EVAPORATION N0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTFLOW 1.959 0.351 0.014 -0.004 0.001 0.000 1.370 2.401 3.182 8.150 11.999 8.035 37.457TO RIVER LOSS -3.751 -0.113 0. 280 0.569 0.463 0.788 1.969 3.440 3.405 8.314 5.793 -4.170 16.986TO LINK LOSS 0.599 0.469 0.427 0.468 0.564 0.599 0.479 0.396 0.422 0.377 0.409 0.430 5.658TO CANAL LOSS 1.972 1.377 1.285 1.468 1.690 1.818 1.612 2.102 2.283 2.152 2.245 2.067 22v070TO WATERCOURSE 5.997 2.689 2.379 2.611 3.836 5.019 4.053 5.636 8.147 7.518 8.060 7.082 63.088FROM GROUND WATER 3.629 1.905 1.470 1.860 3.416 2.750 1.393 1.781 2.959 3.138 3.939 3.907 32.146SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.017 0-017 0.000 0.0sOWATERCOURSE REOT. 9.626 4.594 3.849 4.531 7.252 7.769 5.446 7.417 11.123 10.673 12.016 10.989 95.285

PUMP CAPACITY GOOD ARFA 4.606 2.527 2.074 2.345 3.953 4.217 3.056 3,240 4.339 3.968 4.554 4.729 43.610PUMPED FROM GOOD AREA 3.629 1.905 1.470 1.880 3.416 2.750 1.393 1.781 2.959 3.138 3.939 3.907 32.146EVAPORATION GOOD AREA 0.283 0.140 0.122 0.177 0.196 0.208 0.165 0.235 0.367 0.601 0.750 0.496 3.739RECHARGE TO bOOD AREA 3.077 1.843 1.495 1.7Z9 2.555 2.988 2.272 2.587 3.280 4.764 5.121 3900 35.610NET CHANZGE -- GOOD AREA -0.834 -0.202 -0.097 -0.3U8 -1.057 0.031 0.714 0.570 -0.046 1.025 0.433 -0.503 -0.276PUMP CAPACITY BAD ARtA 0.380 0.380 0.380 0.360 0.380 0.380 0.380 0.380 0.380 0.380 0.380 0.380 4.560PUMPED TO DRAINAGE 0.216 0.172 0.166 0.118 0.197 0.194 0.177 0.196 0.220 0.262 0.275 0.249 2.501EVAPORATION BAD AREA 0.968 0.548 0.510 0.595 0.686 0.709 0.590 1.210 1.679 2.168 2.138 1.392 13.193RECHARGE TO BAD AREA 1.187 0.697 0.648 0.760 0.863 0.938 0.767 1.410 1.925 2.465 2.420 1.639 15.720NET CHANGE BAU AREA 0.003 -0.023 -0.027 -0.013 -0.020 0.035 -0.000 0.004 0.026 0.035 0-007 -0.002 0.025DRAIN STORAGt CONTENT 0.780 0.840 0.900 0.960 1.020 1.080 1.140 1.200 1.260 1.320 1.380 1.440 13.320

ENERbY (MILLION KWH)TOTAL PUMP LOAD 318.28 171.23 134.34 169.99 307.79 246.06 126.69 160.82 264.39 282.06 349.98 345.81 2877.45TOTAL BASE LOAD 780.00 778.00 796.00 792.uo 780.00 781.00 808.00 840.00 856.00 858.00 878.00 888.00 9835.00TOTAL ENERGY LOAD 1098.Z8 949.23 930.34 961.99 1087.79 1027.06 934.69-1000.82 1120.39 1140.06 1227.98 1233.81 12712.45HYDRO ENERGY TO LOAD 875.74 914.41 811.65 798.44 677.36 602.28 510.42 560.40 649.43 948.33 1031.63 1041.94 9422.02THERMAL ENERGY TO LOAD 222.46 34.76 118.64 163.49 410.35 424.71 424.22 440.36 470.89 19!66 !76.2s 191.78 3269.57ENERGY DEFTCIECrv S,^ 0.00 0.00 u.uO 0.00 0.00 0.00 n.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0-00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLIUS 336.26 145.15 124.23 85.43 242.97 120.63 210.68 22q.13 334.47 382.48 374.26 254.05 2839.72

POWER (MEGAWATTS)PEAK PUMP LOAIJ 546.60 3A6.45 342.47 389.76 546.99 460.95 266.52 33A.75 500.45 507.89 583.27 573.77 5443.86PEAK BASE LOAD 1728.00 1722.00 1760.00 1738.U0 1716.00 1716.00 1798.00 1850.00 1900.00 1900.00 1937.00 1955.00 21720.00TOTAL PEAK LOAD 2274.60 2108.45 2102.47 2127.76 2262.99 2176.95 2064.52 218Q.75 2400.45 2407.89 2520.27 2528.77 27163.85HYDRO CAPACITY TO IOAU 1900.18 1807.99 1727.29 1612.51 1440.47 1125.44 1001.19 1081.65 1347.94 1823.21 1926.06 1934.93 18728.87THERMAL CAPACITY TO LOAD 374.41 300.46 375.18 515.Z5 822.52 1051.50 1063.33 1107.10 1052.51 584.68 594.20 593.84 8434.99FIRM CAPACITY TRANSFER 0.00 0.00 0.00 o.uo 0.00 '0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1287-59 1361-54 1286.82 1146.75 839.48 610-50 598.67 554.90 609.49 1077.32 1067.80 1068.16 11509.01

B-33

WES7 PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 668507Z110

YEAR 1977

NORTH ZONE SIIMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2-970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.093 1.344 1.378 2.190 3.306 2.429 0.483 -0.591 -5.255 -5.917 -0.334 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.017 0.012 0.010 0.012 0-016 0.017 0.014 0.014 0.016 0.026 0.030 0.023 0.205TO RESERVOIR EVAPORATION 0.053 0.023 0-012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328TO RIVER OUTtLOW 2.725 1.817 1.645 1.809 1.777 1.941 3.730 6.931 9.781 16.932 19.342 9.871 78.300TO RIVER LOSS -1.559 0.169 0.270 0.491 0.420 0.730 1.144 2.519 2.571 5.469 3-662 -2.333 13.553TO LINK LOSS 0.509 0.373 0.344 0.403 0.472 0.509 0.410 0.323 0.333 0.286 0.324 0.345 4.631TO CANAL LOSS 1.296 0.926 0.857 0.970 1.195 1.264 1.159 1.191 1.235 1.117 1.246 1.299 13.755TO WATERCOURSE 3.799 1.477 1.256 1.496 2.658 3.760 3.029 3.010 3.572 2.770 3.933 4.262 35.023FROM GROUND WATER 3.635 1.921 1.394 1.502 2.962 2.744 1.375 1.655 2.749 2.883 3.561 3.639 30.019SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003WATERCOURSE REQT. 7.434 3.398 2.650 2.998 5.620 6.504 4.404 4.665 6.321 5.653 7.495 7.903 65.045

PUMP CAPACITY GOOD AREA 4.208 2.216 1.687 1.842 3.479 3.936 2.860 2.900 3.912 3.511 4.127 4.319 38.996PUMPED FROM GOOD AREA 3.635 1.921 1.394 1.5U2 2.962 2.744 1.375 1.655 2.749 2.883 3.561 3.639 30.019EVAPORATION GOOD AREA 0.150 0.084 0-075 0.1Y5 0.099 0.111 0.093 0.133 0.201 0.391 0.437 0.215 2.114RECHARGE TO GOOD AREA 2.771 1.644 1.298 1.478 2.301 2.743 2.118 2.272 2.768 4.038 4.408 3.359 31.198NET CHANGE -- GOOD AREA -1.014 -0.360 -0.172 -0.148 -0.760 -0.111 0.650 0.484 -0.183 0.763 0.410 -0494 -0.935PUMP CAPACITY BAD AREA 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 1.080PUMPED TO DRAINAGE 0.077 0.072 0.070 0.072 0.076 0.077 0.074 0.074 0.076 0.086 0.090 0.083 0.925EVAPORATION BAD AREA 0.321 0.197 0.178 0.193 0.265 0.312 0.228 0.251 0.301 0.458 0.518 0.388 3.611RECHARGE TO DAD AREA 0.401 0.246 0.221 0.256 0.341 0.398 0.302 0.330 0.402 0.577 0.612 0.471 4.558NET CHANGE BAD AREA 0.003 -0.022 -0.026 -0.008 0.000 0.009 -0.000 0.004 0.026 0.032 0.004 -0.000 0.021DRAIN STORAGt CONTENT 1.500 1.560 1.620 1.680 1.740 1.800 1.860 1.920 1.980 2.040 2.100 2.160 21.960

ENERbY IMILLION KWH)TOTAL PUMP LOAD 311.30 167.25 122.14 131.31 258.22 239-23 118.73 142.09 237-65 248.73 305-55 312.36 2594.56TOTAL 8ASE LOAD 404.00 409.00 429.00 436.00 430.00 419.00 437.00 463.00 468.00 468.00 485.00 485.00 5333.00TOTAL ENERGY LOAD 715-30 576.25 551.14 567.31 688.22 658.23 555-73 605.09 705-65 716.73 790.55 797.36 7927.56HYDRO ENERGY TO LOAD 715.24 576.22 551.12 567.29 688.18 657.85 554.05 602.48 705.60 716.68 790.50 797.30 7922.51THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.34 1.65 2.58 0.00 0.00 0.00 0.00 4.57ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 396.63 466.78 461.89 325.61 44.90 0.00 0.00 0.00 0.00 442.98 468.64 489.52 3096.96HYDRO ENERGY SURPLUS 367.38 219.80 115.35 254.92 382.93 199.62 268.55 262.04 403.08 421.91 414.17 299.58 3609.35

POWER (MEGAWATTS)PEAK PUMP LOAD 525.05 385.67 321.35 328.37 476.03 438.71 272.08 311.54 457.41 455.71 519.17 520.65 5011.73PEAK BASE LOAD 958.00 968.00 1009.00 1012.00 1000.00 978.00 1034.00 1068.00 1101.00 1101.00 1124.00 1124.00 12477.00TOTAL PEAK LUAD 1483.05 1353.67 1330.35 1340.37 1476.03 1416.71 1306.08 1379-54 1558.41 1556-71 1643.17 1644.65 17488.73HYDRO CAPACITY TO LOAD 1483.05 1353.67 1330.35 1340.37 1416.03 1308.60 1138.46 1184.39 1518.90 1556.71 1643.17 1644.65 16978.35THERMAL CAPACITY TO LOAD O.OO 0.00 0.00 0.00 0.00 108.11 167.62 195.14 39.51 0.00 0.00 0.00 510.38FIRM CAPACITY TRANSFER 783.28 827.55 778-03 634-15 231.14 0-00 0.00 0.00 0-00 610-04 649-27 688.15 5201 62PEAK RESERVE 1220.28 1264.55 1215.03 1071.15 668.14 328.89 269.38 241.86 397.49 1047.04 1086.27 1125.15 9935.24

B-34

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.725 1.817 1.645 1.8U9 1.777 1.941 3.730 6.931 9.781 16.932 19.342 9.871 78.300FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 3.231 1.824 1.501 1,579 1.706 1.899 5.535 9.618 13.167 26.978 32.940 16.821 116.798TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0-000 -0-000 -0-000 -0-000 0.000TO RIVER OUTFLOW 1.933 0.365 0.018 -O.OU5 -0.000 0.000 1.264 2.358 3.162 8.207 11.992 8.016 37.310TO RIVER L05S -2.099 -0.259 -0.015 0.054 0.070 0.084 0.725 0.886 0.909 2.927 2.041 -1.829 3.493TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.660 0.434 0.431 0.493 0.462 0.523 0.466 0.905 1.033 1.033 1.005 0.771 8.216TO WATERCOURSE 2.141 1.187 1.121 1.116 1.154 1.243 1.184 2.691 4.586 4.675 4.213 2.822 28.192FROM GROUND WATER 0.269 0.139 0.174 0.473 0.650 0.165 0.040 0.129 0.371 0.540 0.633 0.560 4.144SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001WATERCOURSE REOT. 2.410 1.326 1.295 1.649 1.804 1.408 1.224 2.820 4.959 5.215 4.846 3.382 32.338

PUMP CAPACITY GOOD AREA 0.683 0.499 0.524 0.617 0.654 0.493 0.420 0.599 0.731 0.741 0.741 0.733 7.435PUMPED FROM GOOD AREA 0.269 0.139 0.174 0.473 0.650 0.165 0.040 0.129 0.371 0.540 0.633 0.560 4.144EVAPORATION GOOD AREA 0.056 0.012 0.008 0.032 0.029 0.013 0.005 0.020 0.092 0.116 0.125 0.167 0.675RECHARGE TO GOOD AREA 0.338 0.205 0.208 0.268 0.260 0.247 0.190 0.341 0.540 0.760 0.775 0.598 4.730NET CHAN6E -- GOOD AREA 0.013 0.053 0.026 -0.2J7 -0.419 0.069 0.145 0.193 0.077 0.104 0.017 -0.130 -0.089PUMP CAPACITY BAD AREA 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 0.390 4.680PUMPED TO DRAINAGE 0.241 0.203 0.199 O.2U9 0.222 0.217 0.207 0.223 0.246 0.278 0.2A7 0.270 2.804EVAPORATION BAD AREA 0.550 0.257 0.243 0.309 0.328 0.299 0.281 0.839 1.271 1.623 1.540 0.913 8.454RECHARGE TO BAD AREA 0.791 0.460 0.441 0.510 0.529 0.546 0.482 1.064 1.522 1.901 1.830 1.181 11.257NET CHANGE BAD AREA- -0.000 -0.000 -0.001 -0.009 -0-021 0.030 -0-006 0.002 0.005 -0-000 0-003 -0-003 -0-000DRAIN STORA6iE CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 39-51 24.84 27.91 56.Z6 75.81 29-81 17.01 26-02 49.52 67.05 76.04 68.89 558.68TOTAL BASE LOAD 452.00 445.00 442.00 438.00 430.00 443.00 455.00 464.00 476.00 479.00 484.00 495.00 5503.00TOTAL ENER'Y LOAD 491.51 469.84 469.91 494.26 505.81 472.81 472.01 49f.02 525.52 546-05 560.04 563.89 6061.68HYDRO ENERGY TO LOAI) 396.63 466.7A 461.89 325.b1 44.90 0.00 0.00 0.00 0.00 442.98 468.64 489.52 3f96.96THERMAL ENERGY TO LOAD 94.85 3.02 7.99 168.61 460.86 472.77 471.98 489.99 525.48 103,03 91.36 74.m3 2964.26ENERGY DEFICIENCY 0.00 0-00 0.00 000 ' 0-00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-396.63 -466.78 -461.89 -325.61 -44.90 0.00 0.00 0.00 0.00 -442.98 -468.64 -489.52 -3096.96HYDRO ENERGY SURPLIIS O.UO 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 77.23 42.36 54.79 94.Z9 117.18 60.87 25.53 44.03 88.17 111.09 117.08 109.75 942.37PEAK BASE LOAD 944.00 931.00 9?7.00 911.UO 899.00 923.00 953.00 977.00 993.00 998.00 1015.00 1036.00 11507.00TOTAL PEAK LUAD 1021.Z3 973.36 981.79 1005.Z9 1016.18 983.87 978.53 1021.03 1081.17 1109.09 1132.n8 1145.75 12449.36HYDRO CAPACITY TO LOAD 783.Z8 827.55 778.03 634.15 231.14 0.00 0.00 0.00 0.00 610.04 649.27 688.15 5201.62THERMAL CAPACITY TO LOAD 237.95 145.80 203.76 371.14 785.04 983.87 978.53 1021.03 1081.17 499.05 482.80 457.60 7247.74FIRM CAPACITY TRANSFER -783.28 -827.55 -778.03 -634.15 -231.14 0.00 0.00 0.00 0.00 -610.04 -649.27 -688.15 -5201.62PEAK RESERVE 203.77 2SI.64 243.21 344.71 333.82 366.13 371.47 328.97 268.83 240.91 217.92 204.25 3375.63

B-35

SYSTEM SUMMARY

'WATER (MAFI OCT NOV nEC JAN FEB MAR APR MAY JUINE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.23n 2.780 2.7bO 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.093 1.344 1.378 2.190 3.306 2.429 0.483 -0.591 -5.255 -5.917 -0.334 0.007 0.13?FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.248 1.835 1.511 1.590 1.721 1.916 5.549 9.632 13.182 27.004 32-970 16.844 117.003TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328TO RIVER OIJTFLOW 1.933 0.365 0.018 -0.0U5 -0.000 0.000 1.264 2.358 3.162 8.207 11.992 8.016 37.310TO RIVER LOSS -3.658 -0.090 0.255 0.545 0.490 0.814 1.869 3.405 3.480 8.395 5.703 -4.161 17.045TO LINK LOSS 0.600 0.464 0.435 0.494 0.563 0.600 0.500 0.414 0.424 0.377 0.414 0.435 5.720TO CANAL LOSS 1.956 1.360 1.288 1.4b4 1.656 1.787 1.625 2.096 2.268 2.150 2.251 2.069 21.970TO WATERCOURSE 5.940 2.664 2.377 Z.672 3.812 5.003 4.212 5.702 8.158 7.445 8.146 7.084 63.216FROM GROUND WATER 3.904 2.060 1.568 1.975 3.612 2.909 1.416 1.783 3.120 3.423 4.194 4.199 34.163SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0UO 0.000 0-000 0.000 0.000 0.001 0.000 0.001 0.002 0.004WATERCOURSE REOT. 9.844 4.724 3.945 4.647 7.424 7.912 5.628 7.485 11.280 10.868 12.341 11.285 97.383

PUMP CAPACITY GOOD AREA 4.891 2.714 2.211 2.459 4.133 4.429 3.280 3.499 4.643 4.252 4.868 5.052 46.431PUMPED FROM GOOD AREA 3.904 2.060 1.568 1.975 3.612 2.909 1.416 1.783 3.120 3.423 4.194 4.199 34.163EVAPORATION GOOD AREA 0.206 0.096 0.083 0.156 0.129 0,124 0.097 0.153 0.293 0.508 0.562 0.382 2.789RECHARGE TO GOOD AREA 3.109 1.849 1.505 1.747 2.561 2.990 2.308 2.613 3.308 4.798 5.182 3.957 35.927NET CHANGE -- GOOD AREA -1.001 -0.307 -0.146 -0.365 -1.179 -0.042 0.795 0.676 -0.106 0-867 0-427 -0.624 -1.024PUMP CAPACITY BAD ARtA 0.480 0.480 0.480 0.460 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 5.760PUMPED TO DRAINAGE 0.318 0.275 0.269 0.261 0.298 0.294 0.281 0.298 0.322 0.365 0.377 0.353 3.729EVAPORATION BAD AREA 0.872 0.454 0.421 0.5U2 0.593 0.611 0.510 1.090 1.571 2.081 2.058 1.301 12.065RECHARGE TO BAD AREA 1.193 0.706 0.662 0.766 0.869 0,944 0.784 1.394 1.924 2.478 2.442 1.652 15.615NET CHANGE BAD AREA 0.003 -0.022 -0.027 -0.016 -0.021 0.039 -0.007 0.006 0.031 0.032 0.006 -0.003 0.021DRAIN STORAGE CONTFNT 1.500 1.560 1.620 1.680 1.740 1.800 1.860 1.920 1.980 2.040 2.100 2.160 21.960

ENERGY (MILLION KWH)TOTAL PUMP LOAD 350.81 192.09 150.05 187.58 334.03 269-04 135.74 168.11 287-16 315-78 381-60 381.25 3153.24TOTAL BASE LOAD 856.00 854.00 871.00 874.00 860.00 862.00 892.00 927.00 944.00 947.00 969.00 980.00 10836.00TOTAL ENERGY LOAD 1206.81 1046-09 1021.05 1061.58 1194.03 1131-04 1027.74 1096.11 1231.16 1262.78 1350.60 1361.25 13989.24HYDRO ENERGY TO LOAD 1111.87 1043.00 1013.01 892.90 733.08 657.85 554.05 602.48 705.60 1159.66 1259.14 1286.82 11019.46THERMAL ENERGY TO LOAD 94.85 3.02 7.99 168.61 460.86 473.11 473.63 492.56 525.48 103.03 91.36 74.33 2968.83ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 367.38 219.80 115.35 254.92 382.93 199.62 268.55 262.04 403.08 421.91 414.17 299.58 3609g35

POWER (MEGAWATTS)PEAK PUMP LOAD 602.Z8 428.02 376.15 422.66 593.21 499.58 297.61 355.57 545.57 566.80 636.24 630.41 5954.09PEAK BASE LOAD 1902.00 1899.00 1936.00 1923.U0 1899.00 1901.00 1987.00 2045.00 2094.00 2099.00 2139.00 2160.00 23984.00TOTAL PEAK LOAD 2504.28 2327.02 2312.15 2345.66 2492.21 2400-58 2284.61 2400.57 2639.57 2665.80 2775.24 2790.41 29938.09HYDRO CAPACITY TO LOAD 2266.33 2181.22 2108.39 1974.52 1707.17 1308.60 1138.46 1184.39 1518.90 2166.75 2292.44 2332.80 22179.97THERMAL CAPACITY TO LOAD 237.95 145.80 203.76 371.14 785.04 1091.98 1146.15 1216.17 1120.68 499.05 482.80 457.60 7758.13FIRM CAPACITY TRANSFtR 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1424.05 1516.20 1458.24 1415.86 1001.96 695.02 640.85 570.83 666.32 1287.95 1304.20 132q.40 13310.87

B-36

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1978

- NORTH ZONE SIIMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.089 1.334 1.364 2.167 3.274 2.409 0.471 -0.593 -5.202 -5.854 -o.333 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.059 0.012 0.009 0.012 0.016 0.017 0.014 0.057 0.100 0.110 0.114 0.107 0.627TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTtLOW 2.750 1.811 1.716 1.859 1.775 1.965 3.779 6.953 9.815 17.021 19.399 9.979 78.824TO R!YEP LOSS =:.553 0.159 0.290 0.458 0.411 0.734 1.148 2.499 2.588 5.494 3.659 -2.306 13.610TO LINK LOSS 0.505 0.39? 0.330 0.399 0.473 0.508 0.405 0.326 0.333 0.285 o.320 0.342 4.619TO CANAL LOSS 1.331 0.904 0.813 0.953 1.204 1.277 1.139 1.190 1.268 1.153 1.282 1.315 13.829TO WATERCOURSE 3.772 1.485 1.208 1.446 2.626 3.700 2.989 3.046 3.624 2.768 3.934 4.198 34.797FROM GROUND WATER 3.822 1.990 1.492 1.6U9 3.080 2.894 1.533 1.759 2.872 3.043 3.804 3.951 31.848SHORTAGE AT WATERCOURSE 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00?WATERCOURSE REQT. 7.596 3.475 2.700 3.055 5.706 6.594 4.522 4.805 6.496 5.811 7.738 8.149 66.647

PUMP CAPACITY GOOD AREA 4.476 2.371 1.804 1.965 3.643 4.121 3.054 3.101 4.115 3.704 4.413 4.599 41.368PUMPED FROM GOOD AREA 3.822 1.990 1.492 1.609 3.080 2.894 1.533 1.759 2.872 3.043 3.804 3.951 31.848EVAPORATION GOOD AREA 0.043 0.009 0.026 0.027 0.005 0.017 0.014 0.012 0.114 0.257 0.212 0.093 0.828RECHARGE TO GOOD AREA 2.829 1.649 1.280 1.478 2.326 2.768 2.130 2.302 2.827 4.095 4.483 3.420 31.588NET CHANGE -- GOOD AREA -1.035 -0.350 -0.238 -0.157 -0.758 -0.143 0.583 0,531 -0.159 0.795 0.467 -0.623 -1.089PUMP CAPACITY BAD ARtA 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 2.808PUMPED TO DRAINAGE 0.179 0.132 0.129 0.132 0.136 0.137 0.134 0177 0.220 0.230 0.234 0.227 2.067EVAPORATION BAD AREA 0.278 0.189 0.172 0.159 0.267 0.315 0.223 0.218 0.268 0.387 0.429 0.318 3.254RECHARGE TO BAD AREA 0.408 0.241 0.216 0.256 0.344 0.404 0.301 0.331 0.409 0.584 0.621 0.480 4.596NET CHANGE BAU AREA -0.049 -0.080 -0.085 -0.065 -0.059 -0.049 -0.057 -0.064 -0.078 -0.034 -0.042 -0.065 -0.725DRAIN STORAGt CONTENI 2.280 2.400 2.520 2.640 2.760 2.880 3.000 3.120 3.240 3.360 3.480 3.600 35.280

ENERGY (MILLION KWH)TOTAL PUJMP LOAD 335.51 177.86 135.18 145.50 274.93 259.11 137.79 159.45 260.62 274.84 338.66 351.62 2851.07TOTAL BASE LoAD 444.00 447.00 468.00 477.00 471.00 459.00 477.00 507.00 513.00 513.00 530.00 530.00 5836.00TOTAL ENERGY LOAD 779.51 624.86 603-18 622.50 745.93 718.11 614.79 666.45 773.62 787.84 868.66 881.62 8687.07HYDRO ENERGY TO LOAD 779.45 624.83 603.15 622.47 745.88 718.07 614.62 665.31 773.58 787.79 868.60 881.55 8685.29THERMAL ENERGY TO LOAU 0.00 0.00 0.00 0.00 0.00 0.00 0.14 1.10 0.00 0.00 0.00 0.00 1.24ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 550.11 526.67 522.64 532.88 115.54 0.00 0.00 0.00 44.32 575.62 604.95 605.40 407A.14HYDRO ENERGY SURPLUS 387.03 117.47 5.81 172.08 424.63 295.34 344.42 325.34 467.63 5n6.59 514.16 397.03 3957.53

POWER (MEGAWATTS)PEAK PUMP LOAD 564.29 406.46 347.79 358.58 510.45 480.52 311.38 344.92 497.28 500.51 570.27 57A.26 5470.71PEAK BASE LOAD 1045.00 1057.00 1101.00 1105.00 1093.00 1068.00 1130.00 1167.00 1201.00 1203.00 1228.00 1228.00 13628.00TOTAL PEAK LOAD 1609.29 1463.46 1448.79 1463.58 1603.45 1548-52 1441.38 1511.92 1700.28 1703.51 1798.27 1806.26 19098.71HYDRO CAPACITY TO LOAD 1609.29 1463.46 1448.79 1463.58 1603.45 1522.58 1326.13 1357.19 1700.28 1703.51 1798.27 1806.26 18802.77THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 25.95 115.26 154.73 0.00 0.00 0.00 0.00 295.94FIRM CAPACITY TRANSFtR 1096.05 1088.07 1066.65 872.99 398.20 0.00 0.00 0.00 60.89 858.38 924.89 934.23 7300.36PEAK RESERVE 1533.05 1571.22 1503.65 1309.99 835.20 411.05 321.74 282.27 497.89 1295.38 1361.89 1371.23 12294.56

B-37

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.750 1.811 1.716 1.859 1.775 1.965 3.779 6.953 9.815 17.021 19.399 9.979 78.824FROM STORAGE RELEASE -0.000 -n.ooo -o.ooo -o.ooo -o.ooo -O.oOO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO o.Ooo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 3.322 1.851 1.632 1.658 1.736 1.943 5.668 9.673 13.269 27.168 33.033 17.054 11A.006TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -O.ouO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTPLOW 1.989 0.374 0.035 -O.OU4 0.000 0.000 1.302 2.383 3.183 8.246 12.007 8.064 37.579TO RIVER LOSS -2.081 -0.268 o.ooo 0.048 0.067 0.085 0.745 0.875 0.920 2.945 2.030 -1.801 3.564TO LINK LOSS 0.091 0.091 0.091 O.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.639 0.421 0.423 0.483 0.448 0.516 0.453 0.896 1.027 1.033 1.009 0.778 8.125TO WATERCOURSE 2.113 1.194 1.167 1.242 1.169 1.274 1.187 2.709 4.595 4.707 4.262 2.847 28.466FROM GROUND WATER 0.303 0.162 0.157 0.450 0-679 0.147 0.066 0.154 0.443 0.605 0-700 0.628 4.495SHORTAGE AT WATERCOIJRSE 0.000 0.000 0.000 O.o0O 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001WATERCOURSE REOT. 2.416 1.356 1.324 1.692 1.848 1.421 1.253 2.863 5.040 5.312 4.962 3.475 32.962

PUMP CAPACITY GOOD AREA 0.715 0.531 0.552 0.648 0.685 0.524 0.455 0.635 0.770 0.806 0.806 0.804 7.93lPUMPED FROM GOOD AREA 0.303 0.162 0.157 0.450 0.679 0.147 0.066 0.154 0.443 0.605 0.700 0.628 4.495EVAPORATION GOOD AREA 0.026 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.069 0.102 0.144 0.341RECHARGE TO GOOD AREA 0.332 0.199 0.201 0.262 0.254 0.244 0.184 0.341 0.543 0.768 0.785 0.604 4.717NET CHANGE -- GOOD AREA 0.003 0.037 0.044 -0.157 -0.426 0.097 0.118 0.187 0.100 0.093 -0.017 -0.167 -0.118PUMP CAPACITY BAD AREA 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490 5.880PUMPED TO DRAINAGE 0.342 0.304 0.292 0.212 0.223 0.241 0.256 0.297 0.347 0.379 0.389 0.372 3.654EVAPORATION BAD AREA 0.498 0.259 0.248 0.313 0.337 0.273 0.231 0.765 1.144 1.514 1.437 0.839 7.856RECHARGE TO BAD AREA 0.782 0.462 0.448 0.517 0.534 0.547 0.483 1.067 1.533 1.916 1.850 1.201 11.340NET CHANGE BAD AREA -0.058 -0.100 -0.092 -0.008 -0.026 0.033 -0.004 0.005 0.042 0.023 0.025 -0.010 -0.170DRAIN STORAGL CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 44.15 28.71 28.68 54.26 78.43 28.49 20.66 30.42 58.89 75.59 85.-n 78.46 611.84TOTAL BASE LOAD 506.00 498.00 494.00 491.00 476.00 490.00 508.00 523.00 532.00 538.00 548.00 554.00 6158.00TOTAL ENERGY LOAD 550.15 526.71 522.68 545.46 554.43 518-49 528.66 553.42 590-89 613.59 633.09 632.46 6769.84HYDRO ENERGY TO LOAD 550.11 526.67 522.64 532.58 115.54 0.00 0.00 0.00 44.32 575.62 604.95 605.40 4078.14THERMAL ENERGY TO LOAD 0.00 0.00 0.00 12.34 438.85 518.46 528.62 553.38 546.53 37.93 28.09 27.01 26q1.20ENERGY DEFICIENCY 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-550.11 -526.67 -522.64 -532.88 -115.54 0.00 0.00 0.00 -44.32 -575.62 -604.95 -605.40 -4078.14HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 86.09 48.07 45.45 95.01 121.05 57.76 31.59 50.18 105.86 123.77 130.04 123.34 1024.22PEAK BASE LOAD 1057.00 1040.00 1038.00 1030.00 999.00 1028.00 1071.00 1100.00 1117.00 1119.00 1147.00 1166.00 12912.00TOTAL PEAK LOAD 1143.09 1088-07 1086.45 1128.01 1120.05 1085.76 1102.59 1150.18 1222.86 1242.77 1277.04 1289.34 13936.21HYDRO CAPACITY TO LOAD 1096.05 1088.07 1066.65 872.99 398.20 0.00 0.00 0.00 60.89 858.38 924.89 934.23 7300.36THERMAL CAPACITY TO LOAD 47.04 0.00 19.80 255.03 721.85 1085.76 1102.5q 1150.18 1161.96 384.38 352.15 355.11 6635.86FIRM CAPACITY TRANSFER -1096.05-1088.07-1066.65 -872-Y9 -398.20 0.00 0.00 0-00 -60-89 -858-38 -924.89 -934.23 -7300.36PEAK RESERVE 206.91 261.93 263.55 421.99 429.95 464.24 447.41 399.82 327.14 307.23 272.96 260.66 4063.78

B-38

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2. 780 2.Tb0 2.970 5.040 1.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.089 l.334 1.364 2. 167 3.274 2.409 0.471 -0.593 -5.202 -5.854 -0.333 0.007 0.i32FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0. 730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.381 1.863 1.641 1.669 1.752 1.960 5.682 9.729 13.369 27.279 33.147 17.161 116.633TO RESERVOIR EVAPORATION .0.053 0.023 0.012 0.00j2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTFLOW 1.989 0.374 0.035 -0.004 0.000 0.000 1.302 2.383 3.183 8.246 12.007 8.064 37.579TO RIVER LOSS' -3.634 -0.109 0.290 0.536 0.478 0.819 1.893 3.373 3.508 8.439 5.688 -4.107 17.175TO LINK LOSS 0.596 0.483 0.421 0.490 0.564 0.599 0.496 0.417 0.424 0.376 0.411 0.433 5.T09TO CANAL LOSS 1.970 1.325 1.236 1.436 1.653 1.793 1.592 2.086 2.294 2.186 2.292 2.093 21.953TO WATERCOURSE 5.885 2.679 2.376 2.658 3.795 4.974 4.176 5.755 8.219 7.475 8.196 7.045 63.263FROM GROUND WATER 4.126 2.152 1.648 2.059 3.759 3.041 1.599 1.913 3.315 3.648 4.504 4.579 36.343SHORTAGE AT WATERCOURSE 0.002 0.000 0.000 0.000 0.000 Moo0 oz0o0 A.000c 0.001 0.000 0.000 0.000 0.003WATERCOURSE RECT. io.rOiZ 4.831 4.024 4.747 7.554 8.015 5.775 7.668 11.536 11.123 12.700 11.624 99.609

PUMP CAPACITY GOOD AREA 5.192 2.902 2. 356 2.614 4.328 4.645 3.510 3.736 4.886 4.510 5.219 5.403 49.299PUMPED FROM OOOD AREA 4.1Z6 2.152 1.648 2.OSg9 3.759 3.041 1.599 1.913 3.315 3.648 4.504 4.579 36.343EVAPORATION GOOD AREA 0.069 0~.009 0.026 0.027 0.005 0.017 0.014 0.012 0.114 0.326 0.314 0.236 1.169RECHARGE TO GOOD AREA 3.161 1.848 1.480 1.741 2.580 3.012 2.315 2.643 3.370 4.863 5.268 4.025 36.305NET CHANGE -- GOOD AREA -1.033 -0.313 -0.194 -0.345 -1.184 -0.047 0.701 0.718 -0.059 0.889 0.450 -0.791 -1.207PUMP CAPACITY 5AD ARIA 0.724 0.724 0.724 0.7Z4 0.724 0.724 0.724 0.724 0.724 0.724 0.724 0.724 8.688PUMPED TO DRAINAGE 0.521 0.436 0.4Z1 0.343 0.358 0.378 0.390 0.474 0.566 0.610 0.623 0.600 5.720EVAPORATION BAD AREA 0. 776 0.448 0.420 0.502 0.605 0.588 0.455 0.983 1.412 1.901 1.865 1.157 11.110RECHARGE TO BAD ARFA 1.190 0.704 0.664 0.773 0.878 0.950 0.784 1.398 1.942 2.500 2.471 1.681 15.936NET CHANGE BA0) AREA -0.107 -0.180 -0.177 -0. 072 -0.085 -0O. 016 -0.060 -0.059 -0.037 -0.011 -0.017 -0.075 -0.895DRAIN STORAGE CONTFNT 2.280 2.400 2.520 2.640 2.760 2.880 3.000 3.120 3.240 3.360 3.480 3.600 35.280

ENERGY (MILLION KWH)TOTAL PUMP LOAD 379.66 206.57 163.86 199.15 353.36 287.61 158.45 189.88 319.51 350.44 423.75 430.08 3 462. 91TOTAL BASE LOAD 950.00 945.00 962.00 968.U0 947.00 949.00 905.00 1030.00 1045.00 1051.00 1078.00 1084.00 11994.00TOTAL ENEkGY LOAD 1329.66 1151.57 1125.85 1167.75 1300.36 1236.61 1143.45 IZIP.88 1364.51 1401.44 1501.75 1514.08 15456.91HYIIRO ENERGY TO LOAD 1329.56 1151.50 1125.79 1155.35 861.42 718.07 614.62 665.31 817.90 1363.41 1473.55 1486.95 12763.42THERMAL ENERGY TO LOAD 0.00 0.00 0.00 12.34 438.85 518.46 528.76 554.48 546.53 37.93 28.09 27.01 2692.44ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 387.03 117.47 5.81 172.08 424.63 295.34 344.42 325.34 467.63 506.59 514.16 397. 03 3957.53

POWER (MEGAWATTS)PEAK PUMP LOAD 650.38 454.53 396. 25 456.59 6 31. 50 538.28 342.97 395.11 603.13 624.28 7 00. 32 701.60 6494.93PEAK BASE LOAD 2102.00 2097.00 2 139. 00 2135.00 2092.00 2096.00 2201.00 2267.00 2320.00 2322.00 2375. 00 2394.00 26540.00TOTAL PEAK LOAD 2752.38 2551.53 25 35. 25 2591.59 2723.50 2634.28 2543.97 2662.11 2923.13 2946.28 3075.32 3095.60 33034.92HYDRO CAPACITY TO LOAD 2705.34 2551.53 2515.45 23 36. 56 2001.65 1522.58 1326.13 1357.19 1761.17 2561.89 2723.16 2740.49 26103.13THERMAL CAPACITY TO LOAD 47.04 0.00 19.80 255.03 721.85 1111.70 1217.84 1304.92 1161.96 384.38 352.15 355.11 6931.79FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1739.96 1833.14 1767. 20 1731.97 1265.15 875.30 769.16 682.08 825.04 1602.62 1634.85 1631.89 16358.35

1'-39

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1979

NORTH ZONE SlIMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JIINE JULY AUG SEPT TnTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.084 1.323 1.351 2.1'43 3.243 2.388 0.459 -0.594 -5.150 -5.791 -0.331 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.060 n.Oll 0.009 0.011 0.016 0.017 0.014 0.057 0.100 0.111 0.114 0.108 0.629TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.0U2 0.010 0.012 0.01 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTFLOW 2.803 1.81n 1.655 1.9U5 1.761 1.931 3.811 6.988 9.829 17.065 19.396 9.978 78.932TO RIVER LOSS -1.568 0.146 0.284 0.510 0.388 0.724 1.173 2.515 2.582 5.507 3-641 -2.302 13.0O0TO LINK LOSS 0.502 0.396 0.338 0.386 0.474 0.507 0.395 0.325 n.336 0.287 0.319 0.341 4.607TO CANAL LOSS 1.357 0.891 0.826 0.927 1.220 1.307 1.140 1.184 1.294 1.182 1.316 1.343 13.986TO WATERCOURSE 3.712 1.498 1.241 1.3'04 2.615 3.694 2.929 3.002 3.640 2.742 3.923 4.170 34.560FROM GROUND WATER 4.051 2.053 1.510 1.718 3.184 2.992 1.719 1.947 3.040 3.236 4.077 4.236 33.763SHORTAGE AT WATERCOUIRSE 0.000 0.000 0.000 0.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOlJRSE REOT. 7.763 3.551 2.751 3.112 5.799 6.686 4.648 4.949 6.680 5.978 8.000 8.406 68.323

PlIMP CAPACITY GOOD AREA 4.722 2.479 1.875 2.017 3.817 4.307 3.234 3.302 4.35o 3.925 4.686 4.858 43.632PUMPEU FROM GOOD AREA 4.051 2.053 1.510 1.718 3.184 2.992 1.719 1.947 3.040 3.236 4.077 4.236 33.763EVAPORATION GOOD AREA 0.000 n.0oo o.n25 O.OZ5 0.002 0.000 0.012 0.009 0.027 0.133 0-082 0.013 0.329RECHARGE TO GOOD AREA 2.881 1.657 1.299 1.473 2.357 2.807 2.158 2.329 2.881 4.148 4.560 3.491 32.040NET CHANGE -- GOOD AREA -1.170 -0.396 -0.236 -0.271 -0.829 -0.185 0.427 0.372 -0.186 0.780 0.400 -0.758 -2.051PUMP CAPACITY BAD AREA 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 0.234 2.808PUMPED TO DRAINAGE 0.180 0.050 0.049 0.067 0.083 0.078 0,077 0.123 0.193 0.213 0.200 0.204 1.51?EVAPORATION bAD AREA 0.278 0.173 0.156 0.171 0.247 0.287 0.212 0.218 0.271 0.390 0.433 0.321 3.159RECHARGE TO ffAD AREA 0.416 0.241 0.218 0.254 0.347 0.411 0.303 0.333 0.419 0.593 0.632 0.490 4.655NET CHANGE BAD AREA -0.042 0.017 0.014 0.016 0.016 0.045 0.013 -0.009 -0.046 -0.010 -0.001 -0.035 -0.020DRAIN STORAGt CONTENT 3.720 3.758 3.798 3.854 3.921 3.982 4.045 4.111 4.204 4.306 4.392 4.488 48.581

ENERGY (MILLION KWH)TOTAL PUMP LOAD 359.?0 180.32 133.45 152.62 283.34 266.64 152.89 175.13 277.42 293.82 364.27 379.56 3018.66TOTAL BASE LOAD 483.U0 489.00 513.00 517.00 510.00 497.00 517.00 54q.00 556.00 556.00 575.00 575.00 6337.00TOTAL ENERGY LOAD 842.Z0 669.32 646.45 669.62 793.34 763.64 669.89 724.13 833.42 849.82 939.27 954.56 9355.66HYDRO ENERGY TO LOAD 842.14 669.28 646.42 669.59 793.29 762.89 666.22 718.11 833.37 849.76 939.20 954.49 9344.76THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 0.69 3.64 5.98 0.00 0.00 0.00 0.00 10.32ENERGY DEFICIENCY 0.00 0.00 0.00 O.uO 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00TNTERZONE ENERGY TRANSFER 589.41 579.34 479.87 528.23 31.11 0.00 0.00 0.00 0.00 530.43 571.46 573.57 3883.42HYDRO ENERGY SURPLUS 284.10 15.96 0.00 121.50 461.31 249.64 293.34 273.11 452.15 493.03 477.79 355.91 3477.85

POWER (MEGAWATTS)PEAK PUMP LOAD 599.72 415.48 353.95 378.50 534.63 505.84 346.51 384.17 529.16 536.42 608.81 620.14 5813.32PEAK BASE LOAD 1142.00 1154.00 1203.00 1210.00 1184.00 1157.00 1224.00 1263.00 1303.00 1303.00 1330.00 1330.00 14803.00TOTAL PEAK LOAD 1741.72 1569.48 1556.95 1588.50 1718.63 1662.84 1570.51 1647-17 1832.16 1839.42 1938.8l 1950.14 20616.32HYDRO CAPACITY TO LOAD 1741.72 1569.48 1556.95 1588.50 1718.63 1521.52 1326.97 1357.98 1761.17 1839.42 1938.81 1950.14 19871.28THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 141.31 243.53 289.20 71.00 0.00 0.00 0.00 745.04FIRM CAPACITY TRANSFER 963.73 1028.72 958.11 747-67 282.55 0.00 0.00 0.00 0.00 726-89 785-37 790-35 6283.39PEAK RESERVE 1400.73 146S.72 1395.11 1184.L7 719.55 295.69 193.47 147.80 366.00 1163.89 1222.37 1227.35 10782.35

B-40

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV OEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.803 1.810 1.655 1.905 1.761 1.931 3,811 6.988 9.829 17.065 19.396 9.978 78.932FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0f0FROM DRAINS 3.478 1.894 1.575 1.754 1.752 1.926 5.758 9.686 13.366 27.290 33.037 17.054 118.571TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTFLOW 2.094 0.400 0.016 0.000 0.001 0.000 1.325 2.392 3.194 8.266 11.989 8.015 37.693TO RIVER LOSS -2.065 -0.285 -0.017 0.010 0.059 0.080 0.763 0.863 0,935 2.953 2.013 -1.803 3.544TO LINK LOSS 0-091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.619 0.407 0.408 0.411 0*434 0.498 0.442 0.897 1.007 1.029 1.012 0.787 8.012TO WATERCOURSE 2.084 1.197 1.157 1.274 1.177 1.262 1.190 2.745 4.602 4.727 4.292 2.888 28.594FROM GROUND WATER 0.330 0.185 0.191 0.452 0.706 0.162 0.089 0.151 0.497 0.666 0-762 0.671 4.A62SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.007WATERCOURSE REQT. 2.414 1.382 1.348 1.726 1.883 1.424 1.279 2.896 5.103 5.396 5.054 3.559 33.464

PUMP CAPACITY GOOD AREA 0.743 0.560 0.576 0.674 0.712 0.551 0.487 0.670 0.806 0.828 0.828 0.828 8.263PUMPED FROM GOOD AREA 0.330 0.185 0.191 0.452 0.706 0.162 0.089 0.151 0.497 0.666 0.762 0.671 4.862EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.034RECHARGE TO GOOD AREA 0.326 0.193 0.192 0.255 0.247 0.236 0.180 0.348 0.536 0.771 0.793 0.611 4.688NET CHANGE -- GOOD AREA -0.004 0.008 0.002 -0.197 -0.459 0.074 0.091 0.197 0.039 0.105 0.030 -0.094 -0.209PUMP CAPACITY BAD ARtA 0.590 0.590 0.590 0.59f0 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 7.080PUMPED TO DRAINAGE 0.442 0.322 0.302 0.314 0.323 0.276 0.254 0.303 0.390 0.480 0.490 0.475 4.370EVAPORATION BAD AREA 0.457 0.257 0.245 0.300 0.320 0.267 0.229 0.766 1.106 1.360 1.278 0.756 7.341RECHARGE TO BAD AREA 0.771 0.464 0.450 0.5Z2 0.537 0.541 0.485 1.069 1.538 1.929 1.866 1.221 11.393NET CHANGE BAD AREA -0.128 -0.114 -0.096 -0.092 -0.106 -0.003 0.002 -0.000 0.042 0.089 0.098 -0.010 -0-318DRAIN STORAGt CONTFNT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 53-88 35.69 36.65 63.43 90.87 34.56 24.67 37.86 69.88 91.78 101.53 92.93 728.74TOTAL BASE LOAD 551.00 547.00 544.00 545.00 527.00 544.00 564.00 581.00 592.00 597.00 609.00 615.00 6816.00TOTAL ENERGY LOAD 604.88 582-69 580.65 608-43 617.87 578.56 588-67 613.86 661.88 688-78 710.53 707.93 7544.74HYDRO ENERGY TO LOAD 589.41 579.34 479.87 528.Z3 31.11 0.00 0.00 0.00 0.00 530.43 571.46 573.57 3883.42THERMAL ENERGY TO LOAD 15.44 3.32 100.74 80.15 586.71 578.52 588.63 613.82 661,84 158.30 139.02 134.30 3660.76ENERGY DEFICIENCY 0.00 0-00 0-00 0.uO 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-589.41 -579.34 -479.87 -528.23 -31.11 0.00 0.00 0.00 0.00 -530.43 _571.46 -573.57 _3883.42HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 100.53 57.96 62.58 112.77 138.69 65.15 37.81 54.42 122.90 145.17 153.62 143.41 1195 02PEAK BASE LOAD 1164.00 1143.00 1141.00 1150.00 1116.00 1148.00 1197.00 122q.00 1249.00 1260.00 1281.00 1302.00 14380.00TOTAL PEAK LOAD 1264.53 1200-96 1203-58 1262-T7 1254.69 1213.15 1234.81 1283-42 1371.90 1405-17 1434-62 1445.41 15575.02HYDRO CAPACITY TO LOAD 963.73 1028.72 958.11 747.67 282.55 0.00 0.00 0.00 0.00 726.89 785.37 790.35 6283.39THERMAL CAPACITY TO LOAD 300.80 172.24 245.47 515.10 972.14 1213.15 1234.81 1283.42 1371.90 678.28 649.25 655.06 9291.63FIRM CAPACITY TRANSFtR -963.73-1028.72 -958.11 -747.67 -282.55 0.00 0.00 0.00 0.00 -726.89 -785-37 -790.35 -6283-39PEAK RESERVE 285.47 349.04 346.42 437.23 445.31 486.85 465.19 416.58 328.10 294.83 265.38 254.59 4374.98

B-41

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.004 1.323 1.351 2.143 3.243 2.388 0.459 -0.594 -5.150 -5.791 -0.331 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.538 1.905 1.584 1.765 1.768 1.944 5.773 9.743 13.466 27.401 33.151 17.162 119.200TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTPLOW 2.094 0.400 0.016 0.0U0 0.001 0.000 1.325 2.392 3.194 8.266 11.989 8.015 37.693TO RIVER LOSS -3.653 -0.139 0.267 0.580 0.447 0.804 1.936 3.378 3.517 8.460 5.654 -4.106 17.144TO LINK LOSS 0.593 o.486 0.429 0.477 0.564 o.598 0.486 0.416 0.427 0.378 0.410 0.432 5.696TO CANAL LOSS 1.976 1.298 1.234 1.398 1.654 1.806 1.582 2.081 2.301 2.211 2.328 2.129 21.998TO WATERCOURSE 5.795 2.695 2.399 2.667 3.793 4.956 4.119 5.747 8.242 7.469 8.214 7.058 63.155FROM GROUND WATER 4.302 2.238 1.700 2.171 3.889 3.154 1.808 2.098 3.537 3.901 4.840 4.907 38.625SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.007WATERCOURSE REQT. 10.177 4.933 4.099 4.838 7.682 8.110 5.927 7.845 11.783 11.374 13.054 11.965 101.787

PUMP CAPACITT GOOD AREA 5.465 3.039 2.452 2.751 4.528 4.857 3.721 3.972 5.156 4,753 5.514 5.686 51.895PUMPED FROM GOOD AREA 4.382 2.238 1.700 2.171 3.889 3.154 1.808 2.098 3.537 3.901 4.840 4,907 38.625EVAPORATION GOOD AREA 0.000 0.000 0.025 0.05Z 0.002 0.000 0.012 0.009 0.027 0.133 0.082 0.048 0.363RECHARGE TO GOOD AREA 3.207 1.849 1.491 1.728 2.604 3.043 2.338 2.676 3.417 4.919 5.352 4.102 36.728NET CHANGE -- GOOD AREA -1.175 -0.388 -0.234 -0.468 -1.288 -0.111 0.518 0.569 -0.147 0.885 0.431 -0.852 -2.260PUMP CAPACITY BAD AREA 0.824 0.824 0.824 0.8Z4 0.824 0.824 0.824 0.824 0.824 0.824 0.824 0.824 9.888PUMPED TO DRAINAGE 0.622 0.372 0.350 0.381 0.406 0.355 0.331 0.426 0.583 0.693 0.689 0.678 5.687EVAPORATION bAD AREA 0.735 0.430 0.401 0.471 0.567 0.555 0.441 0.984 1.377 1.750 1.711 1.078 10.500RECHARGE TO BAD AREA 1.187 0.705 0.669 0.776 0.884 0.952 0.788 1.402 1.957 2.521 2.497 1.711 16.049NET CHANGE BAD AREA -0.170 -0.097 -0.082 -0.015 -0.089 0.043 0.015 -0.009 -0.004 0.079 0.097 -0.045 -0.338DRAIN STORAGE CONTENT 3.720 3.758 3.798 3.854 3.921 3.982 4.045 4.111 4.204 4.306 4.392 4.488 48.581

ENERbY (MILLION KWH)TOTAL PUMP LOAD 413.08 216.01 170.10 216.U4 374.22 301.20 177.56 207.99 347.30 385.60 465.80 472.49 3747.40TOTAL BASE LOAD 1034.00 1036.00 1057.00 1062.U0 1037.00 1041.00 1081.00 1130.00 1148.00 1153.00 1184.00 1190.00 13153.00TOTAL ENERGY LOAD 1447.08 1252.01 1227.10 1278.04 1411.22 1342.20 1258.56 1337.99 1495.30 1536.60 1649.80 1662.49 16900.40HYDRO ENERGY TO LOAD 1431.54 1248.62 1126.29 1197.82 824.40 762.89 666.22 718.11 833.37 1380.19 1510.66 1528.06 13228.18THERMAL ENERGY TO LOAD 15.44 3.32 100.T4 80.15 586.71 579.21 592.27 619.80 661.84 158.30 139.02 134.30 3671.08ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O.UO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 284.10 15.96 0.00 121.50 461.31 249.64 293.34 273.11 452.15 493.03 477.79 355.91 3477.85

POWER (MEGAWATTS)PEAK PUMP LOAD 700.25 473,45 416.53 491.28 673.32 570.99 384.31 436.60 652.06 681.59 762.42 763.55 7008.34PEAK BASE LOAD 2306.00 2297.00 2344.00 2360.00 2300.00 2305.00 2421.00 2492.00 2552.00 2563.00 2611.00 2632.00 29183.00TOTAL PEAK LOAD 3006.25 2770.45 2760.53 2851.Z8 2973.32 2875.99 2805.31 2930.60 3204.06 3244.59 3373.42 3395.55 36191.34HYDRO CAPACITY TO LOAD 2705.45 2598.20 2515.05 2336.18 2001.18 1521.52 1326.97 1357.98 1761.17 2566.31 2724.18 2740.49 26154.67THERMAL CAPACITY TO LOAD 300.8O 172.24 245.47 515.10 972,14 1354.46 1478.34 1572.62 1442.90 678.28 649.25 655.06 10036.67FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1686.20 1814.76 1741.53 1621.90 1164.86 782.54 658.66 564.38 694.10 1458.72 1487.75 1481.94 15157.33

B-42

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1980

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB mAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1-080 1.312 1.338 2.1ZO 3.211 2.368 0.447 -0.595 -5.097 -5.728 -0.330 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.075 n.011 0.009 0.010 0.016 0.018 0.014 0.072 0.121 0-132 0.135 0.130 0.743TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTILOW 2.847 1.688 1.479 1.787 1.769 1.910 3.439 6.759 9.720 17.107 19.362 9.890 77.757TO RIVER LOSS -1.565 n.093 0.272 0.502 0.405 0.726 1.012 2.518 2-613 5.553 3.597 -2.335 13.391TO LINK LOSS 0.499 0.425 0.366 0.422 0.472 0.509 0.476 0.340 0.343 0.291 0.328 0.354 4.824TO CANAL LOSS 1.375 0.921 0.864 0.943 1.227 1.335 1.187 1.189 1.297 1.188 1.343 1.367 14.238TO WATERCOURSE 3-660 1.602 1.350 1.445 2.553 3.664 3.321 3.221 3.781 2.731 3.987 4.274 35.588FROM GROUND WATER 4.251 2.020 1.447 1.7Z0 3.324 3.106 1.442 1.864 3.060 3.397 4.253 4.373 34.258SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOUIRSE REOT. 7.911 3.622 2.797 3.165 5.877 6.770 4.763 5.085 6.841 6.128 8.240 8.647 69.846

PUMP CAPACITY GOOD AREA 4.970 2.569 1.940 2.152 4.001 4.499 3.386 3.489 4.586 4.159 4.967 5.128 45.847PUMPED FROM GOOD AREA 4.251 2.020 1.447 1.7z0 3.324 3.106 1.442 1.864 3.060 3.397 4.253 4.373 34.258EVAPORATION GOOD AREA 0.000 n.000 0.000 0.011 0.000 0.000 0.000 0.000 0.011 0.102 0.064 0.011 0.199RECHARGE TO bOOD AREA 2.923 1.694 1.333 1.494 2.379 2.842 2.212 2.361 2.916 4.182 4.627 3.557 32.520NET CHANGE -- GOOD AREA -1.328 -0.327 -0.114 -0.237 -0.944 -0.265 0.770 0.496 -0.155 0.683 0.311 -0.827 -1.q37PUMP CAPACITY BAD AREA 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 4.176PUMPED TO DRAINAGE 0.156 0.044 0.051 0.062 0.086' 0.079 0.080 0.138 0.219 0.239 0.227 0.230 1.613EVAPORATION BAD AREA 0.269 0.179 0.159 0.177 0.248 0.288 0.220 0.214 0.259 0.375 0.418 0.311 3.118RECHARGE TO BAD ARFA 0.423 0.245 0.226 n.257 0.348 0.418 0.313 0.336 0.423 0.598 0.641 0.500 4.727NET CHANGE BAD APEA -0.003 0.021 0.015 0.018 0.012 0.051 0.012 -0.015 -0.054 -0.016 -0.003 -0.042 -0.003DRAIN STORAGt CONTENT 4.568 4.602 4.644 4.696 4.769 4.830 4.895 4.961 5.059 5.166 5.257 5.358 58.806

ENERGY (MILLION KWH)TOTAL PUMP LOAD 380.74 180.59 130.73 155.16 300.78 282.83 132.60 172-26 285.47 313.94 387.20 399.73 3122.01TOTAL BASE LOAD 523.00 530.00 555.00 563.U0 563.00 542.00 570.00 591.00 606.00 606.00 620.00 620.00 6889.00TOTAL ENERGY LOAD 903.74 710.59 685.73 718-16 863.78 824.83 702.60 763.26 891.47 919.94 1007.20 1019.73 10011.01HYDRO ENERGY TO LOAD 903.67 710.56 685.70 718.12 863.73 819.46 694.83 748.09 889.69 919.88 1007.12 1019.65 9980.50THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uO 0.00 5.31 7.74 18.13 1.72 0.00 0.00 0.00 29.90ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 585.24 550.04 435.66 460.32 44.07 0.00 0.00 0.00 0.00 426.55 467.91 470.94 3440.73HYDRO ENERGY SURPLIJS 226.51 0.00 0.00 133.02 421.65 193.81 266.64 243.90 395.84 530.01 514.34 393.36 3319.08

POWER (MEGAWATTS)PEAK PUMP LOAD 635.03 432.54 357.01 395.59 569.41 539.93 329.98 402.21 557.49 575.15 644.19 655.34 6093. 85PEAK BASE LOAD 1237.00 120.00 1303.00 1310.00 1310.00 1267.00 1325.00 1382.00 1411.00 1411.00 1440.00 1440.00 16086. 00TOTAL PEAK LOAD 1872.03 16c2.54 1660.01 1705.59 1879.41 1806-93 1654.98 1784-21 1968.49 1986.15 2084.19 2095.34 22179.85HYDRO CAPACITY TO LOAD 1872.03 16R2.54 1660.01 1705.59 1879.41 1522.76 1329.86 135q.03 1761.17 1986.15 2084.19 2095.34 20938.05THERMAL CAPACITY TO LOAD 0.UO 0.00 0.00 o0uo 0.00 284.18 325.13 425.17 207.32 0.00 0.00 0.00 1241.79FIRM CAPACITY TRANSFER 833.50 916-59 855.10 630.57 121.31 0.00 0.00 0.00 0-00 584-58 641.24 645.13 5227.82PEAK RESERVE 1270.30 13S3.59 1292.10 1067.57 558.31 152.82 111.87 11.83 229.68 1021.58 1078.24 1082.13 9230.02

B-43

SOUTH ZONE SUMMARY

wATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JONE JULY AUfi SEPT TOTAL

FROM RIVER INFLOW 2.847 1.688 1.479 1.787 1.769 1.910 3.439 6.759 9.720 17.107 19.362 9.890 77.757FROM STORAGE RELEASE -0.000 -0.000 -0.000 -o.OuO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.oUo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 3.610 1.694 1.417 1.669 1.791 1.798 4.860 9.083 13.215 27.445 32.991 16.835 116.409TO RESERVOIR EVAPORAlION -0.000 -n.ooo -0.000 -0.ouo -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUT?LOW 2;.168 0.338 -0.002 -O.OUO -0.000 0.000 0.979 2.039 3.048 8.278 11.971 7.870 36.688TO RIVER LOSS -2.058 -0.341 -0.004 0.075 0.069 0.061 0.605 0.876 1.011 3.009 1.984 -1.845 3.441TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.597 0.397 0.390 0.450 0.421 0.523 0.480 0.893 0.987 1.009 1.016 0.793 7.957TO WATERCOURSE 2.048 1.202 1.004 1.171 1.189 1.235 1.285 2.860 4.584 4.720 4.301 2.981 28.581FROM GROUND WATER 0.358 0.203 0.367 0.593 0.733 0.195 0.048 0.138 0.596 0.719 0.820 0.698 5.467SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 2.406 1.405 1.371 1.764 1.922 1.430 1.333 2.998 5.180 5.439 5.121 3.679 34.048

PUMP CAPACITY GOOD AREA 0.772 0.584 0.587 0.7U2 0.739 0.575 0.517 0.703 0.842 0.850 0.850 0.850 8.571PUMPED FROM GOOD AREA 0.358 0.203 0.367 0.593 0.733 0.195 0.048 0.138 0.596 0.719 0.820 0.698 5.467EVAPORATION GOOD AREA 0.000 0.000 0.000 0.0UO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001RECHARGE TO bOOD AREA 0.320 0.188 0.186 0.246 0.240 0.256 0.203 0.359 0.532 0.763 0.800 0.620 4.714NET CHANGE -- GOOD AREA -0.038 -n.014 -0.181 -0.347 -0.492 0.062 0.155 0.221 -0.064 0.044 -0.020 -0.078 -0.754PUMP CAPACITY BAD ARtA 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 7.080PUMPED TO DRAINAGE 0.442 0.295 0.206 0.232 0.243 0.239 0.257 0.303 0.394 0.481 0.490 0.477 4.059EVAPORATION BAD AREA 0.448 0.257 0.247 0.3U3 0.315 0.276 0.241 0.775 1.110 1.355 1.280 0.769 7.378RECHARGE TO MIAD AREA 0.758 0.466 0.448 0.5Z4 0.542 0.542 0.504 1.078 1.545 1.931 1.877 1.244 11.460NET CHANGE BAD AREA -0.132 -0.086 -0.006 -0-011 -0.017 0.027 0.006 -0.000 0.042 0.096 0.106 -0.001 0.023DRAIN STORAGE CONTENT 0.000 n.000 0.000 o.o0O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 59.36 37-26 49.49 75.95 93.44 37.76 21-37 31.87 82.73 102.80 114.97 103.05 810.04TOTAL BASE LOAD 612.00 607.00 605.00 606.00 585.00 604.00 625.00 643.00 656.00 662.00 673.00 681.00 7559.00TOTAL ENERGY LOAD 671.36 644.26 654.49 681.95 678.44 641.76 646.37 674.87 738.73 764.80 787.97 784.05 8369.04HYDRO ENERGY TO LOAD 585.24 550.04 435.66 460.32 44.07 0.00 0.00 0.00 0.00 426.55 467.91 470.94 3440.73THERMAL ENERGY TO LOAD 86.07 94.16 218.79 221.58 634.32 641.71 646.32 674.82 738.67 338.19 320.00 313.05 4927.69ENERGY DEFICIENCY 0.00 0-00 0.00 0o.0 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-585.24 -550.04 -435.66 -460.32 -44.07 0.00 0.00 0.00 0.00 -426.S5 -467.91 -470.94 -3440.73HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 109.75 60.37 96.96 123.75 143.60 81.69 34.57 54.74 141.11 160.15 174.78 156.58 1338.06PEAK BASE LOAD 1299.00 1275.00 1273.00 1276.00 1237.00 1272.00 1327.00 1363.00 1385.00 1399.00 1421.00 1443.00 15970.00TOTAL PEAK LOAD 1408.75 1335.37 1369.96 1399-75 1380.60 1353-69 1361.57 1417.74 1526.11 1559-15 1595.78 1599.58 17308.06HYDRO CAPACITY TO LOAD 833.30 916.59 855.10 630.57 121.31 0.00 0.00 0.00 0.00 584.58 641.24 645.13 5227.82THERMAL CAPACITY TO LOAD 575.45 418.78 514.86 769.18 1259.30 1353.69 1361.57 1417.74 1526.11 974.57 954.54 954.45 12080.24FIRM CAPACITY TRANSFtR -833.30 -916-59 -855.10 -630.57 -121.31 0.00 0.00 0.00 0.00 -584.58 -641.24 -645.13 -5227.82PEAK RESERVE 291.25 364.63 330.04 650.25 669.40 696.31 688.43 632.26 523.89 490.85 454.22 450.42 6241.94

B -44

SYSTEM SUMMARY

WATER (MAF) OCT NOY DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.23n 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31-160 27.910 12.890 137.520FROM STORAGE RELEASE 1.080 1.312 1.338 2.1i0 3.211 2.368 0.447 -0.595 -5.097 -5.728 -0.330 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0,730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.685 1.705 1.425 1.680 1.807 1.816 4.874 9.155 13.336 27.577 33.127 16.965 117.152TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.OU2 0.010 0.012 0.016 0.040 0.070 0.035 0.028 0.026 0.328TO RIVER OUTFLOw 2.168 0.338 -0.002 -O.OO -0.000 0.000 0.979 2.039 3.048 8.278 11.971 7.870 36.688TO RIVER LOSS -3.623 -0.247 0.268 0.576 0.474 0.786 1.618 3.395 3.623 8.562 5.581 -4.180 16.832TO LINK LOSS 0.590 0.516 0.457 0.513 0.562 0.600 0.567 0.431 0.434 0.3a1 0.419 0.445 5.914TO CANAL LOSS 1.972 1.319 1.254 1.393 1.648 1.858 1.666 2.082 2.284 2.197 2.360 2.161 22.195TO WATERCOURSE 5.708 2.804 2.354 2.616 3.743 4.899 4.606 6.080 8.365 7.450 8.288 7.255 64.169FROM GROUND WATER 4.609 2.223 1.814 2.313 4.056 3.301 1.490 2.003 3.656 4.117 5.073 5.071 39.725SHORTAGE AT WATERcnuRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE MEOT. 10.317 5.027 4.168 4.929 7.799 8.200 6.096 8.083 12.021 11.567 13.361 12.326 103.894

PUMP CAPACITY GOOD AREA 5.741 3.153 2.527 2.854 4.740 5.074 3.904 4.193 5.428 5.009 5.817 5.978 54.418PUMPED FROM OOD AREA 4.609 2.223 1.814 2.313 4.056 3.301 1.490 2.003 3.656 4.117 5-073 5.071 39.725EVAPORATION bOOD AREA 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.011 0.102 0.064 0.012 0.200RECHARGE TO GOOD AREA 3.243 1.882 1.rlB 1.740 2.619 3.098 2.415 2.720 3.448 4.945 5.428 4.177 37.233NET CHANGE -- GOOD AHEA -1.366 -0.341 -0-295 -0.554 -1.437 -0.203 0.925 0.717 -0.219 0.726 0.291 -0.906 -2.691PUMP CAPACITY BAD AREA 0.938 0.938 0.938 0.9J8 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 11.256PUMPED TO DRAINAGE 0.598 0.339 0.257 0.294 0.331 0.318 0.337 0.440 0.612 0.720 0.717 0.707 5.672EVAPORATION BAD AREA 0.718 0.436 0.407 0.480 0.563 0.564 0.462 0.989 1.368 1.729 1.699 1.080 10.495RECHARGE TO BAD AREA 1.181 0.710 0.674 0.781 0.890 0.960 0.817 1.414 1.968 2.529 2.518 1.744 16.187NET CHANGE BAD AREA -0.135 -0.065 0.010 0.007 -0.004 0.078 0.018 -0.015 -0.013 0.080 0.103 -0.043 0.020DRAIN STORAGE CONTENT 4.568 4.602 4.644 4.696 4.769 4.830 4.895 4.961 5.059 5.166 5.257 5.358 58.806

ENERGY (MILLION KWH)TOTAL PUMP LUAD 440.09 217.85 180.22 231-11 394.22 320.59 153.97 204.12 368.19 416.74 502-16 502.78 3932.05TOTAL BASE LOAD 1135.00 1137.00 1160.00 1169.00 1148.00 1146.00 1195.00 1234.00 1262.00 1268.00 1293.00 1301.00 14448.00TOTAL ENERGY LOAD 1575.09 1354.85 1340.22 1400.11 1542.22 1466.59 1348.97 1438.12 1630.19 1684.74 1795.16 1803.78 18380.05HYDRO ENERGY TO LOAD 1488.91 1260.61 1121.36 1178.44 907.80 819.46 694.83 748.09 889.69 1346.43 1475.03 1490.59 13421.24THERMAL ENERGY TO LOAD 86.07 94.16 218.79 221.58 634.32 647.03 654.06 689.95 740.39 338.19 320.00 313.05 4957.59ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 0-00 0-00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 226.51 0.00 0,00 133.02 421.65 193.81 266.64 243.90 395.84 530.01 514.34 393.36 3319.08

POWER (MEGAWATTS)PEAK PUMP LOAD 744.78 492.90 453.97 519.34 713.01 621.62 364.55 456.95 698.60 735.29 818.97 811.92 7431.91PEAK BASE LOAD 2536.uO 2525.00 2576.00 25R6.00 2547.00 2539.00 2652.00 2745.00 2796.00 2810.00 2861.00 2883.00 32056.00TOTAL PEAK LOAD 3280.78 3017.90 3029.97 3105.34 3260.01 3160.62 3016.55 3201.95 3494.60 3545.29 3679.97 3694.92 39487.91HYDRO CAPACITY TO LOAD 2705.33 2599.12 2515.11 2336.16 2000.71 1522.76 1329.86 1359.03 1761.17 2570.72 2725.43 2740.47 26165.87THERMAL CAPACITY TO LOAD 575.45 418.78 514.86 769.18 1259.30 1637.87 1686.69 184?.92 1733.43 974.57 954.54 954.45 13322.03FIRM CAPACITY TRANSFER 0.00 0-00 0.00 o.uo 0.00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1561.55 1718.22 1622.14 1717.82 1227.70 849.13 800.31 644.08 753.57 1512.43 1532.46 1532.55 15471.97

B-45

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1q65 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1981

NORTH ZONE SUMMARY

WATER IMAF) oCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT ToTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.075 1.301 1.325 2.097 3.179 2.384 0.399 -0.597 -5.045 -5.665 -0.328 0.007 0.132FROM TRIBIJTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0,930 0.550 7.730FROM DRAINS 0.107 0.017 0.010 0.010 0.015 0.017 0-015 0.107 0.191 0.202 0.206 0.201 1.092TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTPLOW 2.704 1.547 1.369 1.696 1.821 1.374 2.851 6.469 9.487 16.873 19.109 9.578 74.877TO RIVER LOSS -1.550 0.083 0.271 0.500 0.442 0.440 1.076 2.521 2.605 5.535 3.580 -2.374 13.129TO LINK LOSS 0.515 0.442 0.352 0.399 0.472 0.537 0.532 0.355 0.355 0.310 0.322 0.342 4.933TO CANAL LOSS 1.443 0.998 0.922 0.995 1.234 1.436 1.298 1.294 1.394 1.263 1.426 1.447 15.150TO WATERCOURSE 3.727 1.651 1.406 1.484 2.424 4.375 3.630 3.423 4.036 3,022 4,253 4.628 38.058FROM GROUND WATER 4.478 2.104 1.492 1.804 3.633 2.587 1.340 1.887 3.087 3.371 4.398 4.430 34.612SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REOT. 8.205 3.755 2.898 3.288 6.057 6.962 4.970 5.310 7.123 6.393 8.651 9.058 72.670

PUMP CAPACITY GOOD AREA 5.213 2.729 2.067 2.3Ug 4.248 4.715 3.628 3.780 4.817 4.392 5.216 5.375 48.488PUMPED FROM GOOD AREA 4.478 2.104 1.492 1.804 3.633 2.587 1.340 1.887 3.087 3.371 4.398 4.430 34.612EVAPORATION bOOD AREA 0.000 0.000 0.000 O.OuO 0.000 0.000 0.000 0.000 0.007 0.057 0.047 0.010 0.120RECHARGE TO GOOD AREA 3.023 1.767 1.388 1.549 2.407 2.945 2.321 2.473 3.033 4.281 4.761 3.688 33.636NET CHANGE -- GOOD AREA -1.455 -0.337 -0.104 -0.255 -1.226 0.358 0.982 0.586 -0.061 0.853 0.316 -0.752 -1.096PUMP CAPACITY 8AD AREA 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 0.418 5.016PUMPED TO DRAINAGE 0.201 0.054 0.060 0.075 0.093 0.097 0.098 0.184 0.303 0.324 0.314 0.318 2.121EVAPORATION BAD AREA 0.270 0.180 0.158 0.119 0.239 0.279 0-224 0.219 0.264 0.377 0.420 0.314 3.125RECHARGE TO BAD AREA 0.445 0.263 0.240 0.272 0.367 0.439 0.340 0.359 0.449 0.620 0.668 0.527 4.990NET CHANGE BAD AREA -0.027 0.029 0.022 0.019 0.035 0.063 0.018 -0.044 -0.118 -0.080 -0.066 -0.105 -0.256DRAIN STORAGt CONTFNT 5.452 5.494 5.543 5.608 5,686 5.765 5.849 5.927 6.039 6.161 6.269 6.386 70.178

ENERbY (MILLION KWH)TOTAL PUMP LOAD 411.12 192.65 138.35 166.90 335.06 241.84 126.64 179.01 296.30 320-26 409.34 414.68 3232.16TOTAL BASE LOAD 577.00 584.00 598.00 609.U0 609.00 586.00 617.00 639.00 655.00 655.00 670.00 670.00 7469.00TOTAL ENERGY LOAD 988.12 776.65 736.35 775.sO 944.06 827.84 743.64 818-01 951.30 975.26 1079.34 1084.68 10701.16HYDRO ENERGY TO LOAD 988.05 776.61 736.32 775.86 944.00 824.55 736.81 807.37 951.24 975.20 1079.26 1084.60 10679.89THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.0o 0.00 3.24 6.79 10.60 0.00 0.00 0.00 0.00 20.63ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 502.71 482.35 382.22 365.00 0.00 0.00 0.00 0.00 0.00 547.61 546.73 558.70 3385.33HYORO ENERGY SURPLUS 222.78 0.00 0.00 164.07 384.15 268.67 299.48 299.82 472.28 574.54 556.98 240.65 3483.42

POWER (MEGAWATTS)PEAK PUMP LOAD 675.12 453.52 378.40 421.84 617.20 526.00 328.16 417.58 577.95 596.92 684.42 686.65 6363.76PEAK BASE LOAD 1339.00 1354.00 1382.00 1417.00 1417.00 1370.00 1432.00 1495.00 1526.00 1526.00 1557.00 1557.00 17372.00TOTAL PEAK LOAD 2014.12 1807.52 1760.40 1838.84 2034.20 1896.00 1760.16 1912-58 2103.95 2122-92 2241-42 2243.65 23735.76HYDRO CAPACITY TO LOAD 2014.12 1807.52 1760.40 1838.84 1999.42 1632.49 1432.48 1516.86 1964.80 2122.92 2241.42 2243.65 22574.92THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 34.78 263.50 327.68 395.72 139.15 0.00 0.00 0.00 1160.84FIRM CAPACITY TRANSFER 688.65 794.72 757.72 500.01 0.00 0.00 0.00 0.00 0.00 750-44 749.24 765.34 5006.11PEAK RESERVE 1125.65 1231.72 1194.72 937.01 402.22 173.50 109.32 41.28 297.85 1187.44 1186.24 1202.34 9089.27

B -46

SOUTH ZONE SUMMARY

WATER IMAf) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.704 1.547 1.369 1.696 1.821 1.374 2.851 6.469 9.487 16.873 19.109 9.578 74.877FROM STORAGE RELEASE -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0-000 -0.000 0.000FROM TRIBllTARIES 0.000 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 3.212 1.473 1.330 1.699 1.858 1.468 3.494 8.137 12.112 26.902 32.355 16.081 110.122TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.0UO -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTrLOW 1.968 0.219 -0.002 0.001 -0.000 0.000 0.462 1.515 2.471 7.869 11.592 7.438 33.534TO RIVER LOSS -2.102 -0.306 0.023 0.082 0.073 0,017 0.377 0.899 0.955 3.077 1.956 -1.886 3.164TO LINK LOSS 0.091 0.091 0.091 0-091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.610 0.409 0.380 0.417 0.429 0.392 0.530 0.940 1.048 1.018 1.034 0.821 8.026TO WATERCOURSE 2.137 1.134 0.877 1.106 1.228 0.875 1.392 3.024 4.923 4.818 4.436 3.114 29.063FROM GROUND WATER 0.318 0.332 0.556 0.744 0.781 0.593 0.000 0.033 0.356 0.742 0.857 0.721 6.034SHORTAGE AT WATERCOuRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.003WATERCOuRSE REOT. 2.455 1.466 1.433 1.850 2.009 1.468 1.392 3.057 5.282 5.560 5.293 3.835 35.100

PUMP CAPACITY GOOD AREA 0.824 0.616 0-614 0.750 0.787 0.602 0.553 0.744 0.872 0.872 0.872 0.872 8.q78PUMPED FROM GOOD AREA 0.318 0.33? 0.556 0.744 0.781 0.593 0.000 0.033 0.356 0.742 0.857 0.721 6.034EVAPORATION GOOD AREA 0.000 n.000 0.000 o.o0o 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.007RECHARGE TO GOOD AREA 0.334 0.200 0.189 0.238 0.251 0.203 0.236 0.396 0.577 0.778 0.823 0.645 4.870NET CHANGE -- GOOD AREA 0.016 -0.132 -0.367 -0.5U6 -0.530 -0.391 0.236 0.363 0.221 0.036 -0.034 -0.083 -1.172PUMP CAPACITY BAD ARIA 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 10.680PUMPED TO DRAINAGE 0.627 0.351 0.316 0.340 0.353 0.346 0.354 0.413 0.509 0.664 0.682 0.594 5.548EVAPORATION BAD AREA 0.349 0.163 0.151 0.2U5 0.217 0.160 0.112 0.680 1.021 1.254 1.188 0.678 6.176RECHARGE TO BAD AREA 0.765 0.47P 0.450 0.5Z5 0.559 0.500 0.525 1.092 1.571 1.951 1.907 1.278 11.601NET CHANGE BAD AREA -0.210 -0.036 -0-018 -0.019 -0.011 -0.006 0.059 -0.000 0.042 0.034 0.037 0.006 -0.124DRAIN STORAGt CONTENT 0.000 0.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY IMILLION KWH)TOTAL PUMP LOAD 69.07 55.47 82.58- 106.74 116.42 94.81 22.76 29.20 75-27 127.59 145.51 125.26 1050.67TOTAL BASE LOAD 679.00 672.00 670.00 660.00 638.00 658.00 681.00 702.00 715.00 724.00 736.00 744.00 8279.00TOTAL ENERGY LOAD 748.07 727.47 752.58 766.14 754.42 752.81 703.76 731.20 790.27 851.59 881.51 869.26 9329.67HYDRO ENERGY TO LOAD 502.71 482.35 382.22 365.UO 0.00 0.00 0.00 0.00 0.00 547.61 546.73 558.70 3385.33THERMAL ENERbY TO LOAD 245.30 245.06 370.31 401.67 754.37 752.75 703.71 731.15 790.21 303.91 334.71 310.50 5943.64ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZUNE ENERGY TRANSFER-502.71 -482.35 -382.22 -365.UO 0.00 0.00 0.00 0.00 0.00 -547.61 -546.73 -558.70 -3385.33HYDRO ENERGY SURPLUS o.uo 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAP 122.51 107.88 137.54 163.89 178.34 160.51 31.18 41.24 136.39 196.99 220.16 190.86 1687.48PEAK BASE LOAD 1440.00 1414.00 1411.00 1394.00 1352.00 1390.00 1441.00 1490.00 1514.00 1528.00 1552.00 1577.00 17503.00TOTAL PEAK LOAD 1562.51 1521.88 1548.54 1557-89 1530.34 1550-51 1472.18 1531-24 1650.39 1724-99 1772.16 1767.86 19190.48HYDRO CAPACITY TO LOAD 688.65 794.72 757.72 500.01 0.00 0.00 0.00 0.00 0.00 750.44 749.24 765.34 5006.11THERMAL CAPACITY TO LOAD 873.87 727.16 790.82 1057.88 1530.34 1550.51 1472.18 1531.24 1650.39 974.55 ln22.9 2 1002.52 14184.36FIRM CAPACITY TRANSFtR -688.65 -794.72 -757.72 -500.01 0.00 0.00 0.00 0.00 0.00 -750.44 -749.24 -765.34 -5006.11PEAK RESERVE 487.49 528.1? 501.46 642.11 669.66 649.49 727.82 668.76 549.61 475.01 427.84 432.14 6759.52

B-47

SYSTEM SUMMARY

WATER (MAF) OCT NOV nEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.075 1.301 1.325 2.097 3.179 2.384 0.399 -0.597 -5.045 -5.665 -0.328 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 3.319 1.486 1.340 1.709 1.873 1.485 3.509 8.244 12.303 27.105 32.560 16.281 111.214TO RESERVOIR EVAPORATION 0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0,036 0.028 0.026 0.329TO RIVER OUTtLOW 1.968 0.219 -0.002 O.OU -0.000 0.000 0.462 1.515 2.471 7.869 11.592 7.438 33.534TO RIVER LOSS -3.652 -0.224 0.294 0.582 0.515 0.457 1.453 3.419 3.559 8.612 5.536 -4.259 16.293TO LINK LOSS 0.606 0.533 0.443 0.490 0.563 0.628 0.623 0.446 0.446 0.400 0.413 0.433 6.022TO CANAL LOS5 2.053 1.407 1.301 1.413 1.663 1-828 1.828 2.235 2.442 2.281 2.460 2.267 23.176TO WATERCOURSE 5.864 2.785 2.283 2.589 3.652 5.249 5.022 6.446 8.958 7.840 8.689 7.743 67.121FROM GROUND WATER 4.796 2.436 2.048 2.549 4.414 3.181 1.340 1.921 3.444 4.113 5.255 5.150 40.646SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 0.000 0.000 0.000 0.000 0.000 0-003 0.000 0.000 0.000 0.003WATERCOURSE REQT. 10.660 5.221 4.331 5.138 8.066 8.430 6.362 8.367 12.405 11.953 13.944 12.893 107.770

PUMP CAPACITY GOOD AREA 6.037 3.345 2.680 3.059 5.035 5.317 4.181 4.524 5.689 5.264 6.008 6.247 57.465PUMPED FROM GOOD AREA 4.796 2.436 2.048 2.549 4.414 3.181 1.340 1.921 3.444 4.113 5.255 5.150 40.646EVAPORATION GOOD AREA 0.000 0.000 0.000 O.0OU 0.000 0.000 0.000 0.000 0.007 0.057 0.047 0.018 0.128RECHARGE TO GOOD AREA 3.357 1.967 1.578 1.788 2.658 3.147 2.558 2.869 3.610 5.059 5.584 4.333 38.506NET CHANGE -- GOOD AREA -1.440 -0.469 -0.471 -0.761 -1.756 -0.033 1.218 0.948 0.159 0.889 0-282 -0.835 -2-268PUMP CAPACITY BAD ARtA 1.308 1.308 1.308 1.3U8 1.308 1.308 1.308 1.308' 1.308 1.308 1.308 1.308 15.696PUMPED TO DRAINAGE 0.828 0.405 0.376 0.415 0.446 0.443 0.452 0,597 0.812 0.988 0.995 0.912 7.669EVAPORATION BAD AREA 0.620 0.343 0.309 0.383 0.456 0.439 0.336 0.899 1.285 1.630 1-609 0.992 9.301RECHARGE TO BAD AREA 1.210 0.740 0.689 0.797 0.926 0.939 0.865 1.452 2.020 2.571 2.576 1.805 16.590NET CHANGE BAD AREA -0.237 -0.on6 0.004 -0.001 0.024 0.057 0.077 -0.044 -0.077 -0.047 -0.028 -0.099 -0.380DRAIN STORAGt CONTENT 5,452 5.494 5.543 5.6U8 5.686 5.765 5.849 5.927 6.039 6.161 6.269 6.386 70.178

ENERbY (MILLION KWH)TOTAL PUMP LOAD 480.19 248.12 220.94 273.63 451.49 336.65 149.39 208.22 371.57 447.85 554.84 539.94 4282.84TOTAL BASE LOAD 1256.00 1256.00 1268.00 1269.00 1247.00 1244.00 1298.00 1341.00 1370.00 1379.00 1406.00 1414.00 15748.00TOTAL ENERGY LOAD 1736.19 15n4.12 1488.94 1542.63 1698.49 1580.65 1447.39 1549.22 1741.57 1826.85 1960-84 1953.94 20030.83HYDRO ENERGY TO LOAD 1490.76 1258.97 1118.54 1140.86 944.00 824.55 736.81 807.37 951.24 1522.81 1625.99 1643.30 14065.21THERMAL ENERGY TO LOAD 245.30 245.06 370.31 401.67 754.37 755.99 710.50 741.75 790.21 303.91 334.71 310.50 5964.27ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0-00 0-00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLIIS 222.78 0.00 0.00 164.07 384.15 268.67 299.48 299.82 472.28 574.54 556.98 240.65 3483.42

POWER (MEGAWATTS)PEAK PUMP LOAD 797.63 561.40 515.94 585.73 795.54 686.51 359.34 458.82 714.34 793.91 904.58 877.50 8051.24PEAK BASE LOAD 2779.00 2768.00 2793.00 2811.00 2769.00 2760.00 2873.00 2985.00 3040.00 3054.00 3109.00 3134.00 34875.00TOTAL PEAK LOAD 3576.63 3329.40 3308.94 3396.73 3564.54 3446.51 3232.34 3443.82 3754.34 3847.91 4013.58 4011.50 42926.24HYDRO CAPACITY TO LOAD 2702.76 2602.24 2518.11 2338.85 1999.42 1632.49 1432.48 1516.86 1964.80 2873.37 2990.66 3008.99 27581.04THERMAL CAPACITY TO LOAD 873.87 727.16 790.82 1057.88 1565.12 1814.01 1799.86 1926.96 1789.55 974.55 1022.92 1002.52 15345.20FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1613.13 1759.84 1696.18 1579.12 1071.88 822.99 837.14 710.04 847.45 1662.45 1614.08 1634.48 15848.79

B -48

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVrsED VERSION

STUDY NUMBER 668507Z110

YEAR 1982

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.071 1.290 1.312 2.073 3.147 2.360 0.390 -0.598 -4.992 -5.602 -0.327 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.127 0.017 0.010 0.010 0.015 0.017 0.015 0.127 0.231 0.242 0.246 0.197 1.250TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0-002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTFLOW 2.5zo 1.457 1.398 1.7Z7 1.868 1.355 2.631 6.180 9.480 17.001 19.056 9.431 74.104TO RIVER LOSS -1.522 0.101 0.293 0.485 0.444 0.407 1.011 2.528 2.664 5.622 3.469 -2.402 13.101TO LINK LOSS 0.514 0.437 0.326 0.392 0.471 0.534 0.534 0.372 0.355 0.310 0.325 0.350 4.919TO CANAL LOS5 1.444 1.014 0.917 0.980 1.212 1.444 1.322 1.347 1.407 1.275 1.440 1.457 15.258TO WATERCOURSE 3.899 1.700 1.371 1.467 2.366 4.396 3.881 3.654 4.064 2.897 4-441 4.782 38.919FROM GROUND WATER 4.425 2.110 1.559 1.856 3.732 2.606 1.185 1.768 3.193 3.618 4.422 4.482 34.955SHORTAGE AT WATERCOtIRSE 0.000 0.000 0.000 0.0uo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 8.324 3.810 2.930 3.323 6.098 7.002 5.066 5.422 7.257 6.515 8.863 9.264 73.874

PUMP CAPACITY GOOD AREA 5.3z5 2.788 2.106 2.356 4.321 4.810 3.728 3.900 4.952 4.532 5.334 5.490 49.642PUMPED FROM GOOD AREA 4.425 2.110 1.559 1.856 3.732 2.606 1.185 1.768 3.193 3.618 4.422 4.482 34.955EVAPORATION GOOD AREA 0.000 0.000 0.000 0.ouo 0.000 0.000 0.000 0.000 0.006 0.056 0.046 0.010 0.118RECHARGE TO GOOD AREA 3.047 1.789 1.390 1.549 2.397 2.959 2.358 2.528 3.069 4.315 4.816 3.738 33.957NET CHANGE -- GOOD AREA -1.377 -0.321 -0.168 -0.3U7 -1.335 0.353 1.173 0.760 -0.130 0.641 0.348 -0.753 -1.117PUMP CAPACITY BAD AREA 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 0.458 5.496PUMPED TO DRAINAGE 0.223 0.055 0.060 0.077 0.085 O0099 0.099 0.216 0.345 0.365 0.355 0.317 2.296EVAPORATION BAD AREA 0.251 0.182 0.159 0.119 0.240 0.278 0.214 0.202 0.243 0.354 0.396 0.290 2.987RECHARGE TO BAD AREA 0.448 0.267 0.241 0.268 0.369 0.440 0.345 0.373 0.453 0.624 0.674 0.532 5.033NET CHANGE BAD AREA -0.026 0.030 0.023 0.012 0.044 0.063 0.032 -0.045 -0.134 -0.096 -0.077 -0.075 -0.250DRAIN STORAGt CONTENT 6.482 6.524 6.574 6.641 6.711 6.793 6.878 6.966 7.080 7.203 7.313 7.432 82.598

ENERGY (MILLION KWH)TOTAL PUMP LUAD 412-31 194.80 145.52 173.55 347.13 248.72 115.46 173.19 312.04 348.12 419.53 424.16 3314.53TOTAL BASE LOAD 624.00 632.00 647.00 659.U0 659.00 634.00 667.00 691.00 708.00 708.00 724.00 724.00 8077.00TOTAL ENERGY LOAD 1036.31 826.8n 792.52 832.55 1006.13 882.72 782.46 864.19 1020.04 1056.12 1143.53 1148.16 11391.53HYDRO ENERGY TO LOAD 1036.24 826.7f 792.48 832.51 1006.07 882.48 779.77 856.12 1019.97 1056.05 1143.45 1148.08 11379.97THERMAL ENERGY TO LOAV o.uo 0.00 0.00 0.00 0.00 0.19 2.65 R.03 0.00 O.O0 0.00 0.00 10.87ENERGY DEFICIENCY o.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 710.51 430.25 321.82 465.35 225.20 0.00 0.00 0.00 0.00 716.23 742.09 642.91 4254.36HYDRO ENERGY SURPLUS o.uo 0.00 0.00 O .UO 258.45 371.58 369.92 353.00 556.13 613.64 594.19 386.96 3503.87

POWER (MEGAWATTS)PEAK PUMP LOAD 686.31 459.58 400.57 431.80 635.45 530.04 312.05 423.00 605.07 636.69 699.25 703.16 6522.98PEAK BASE LOAD 1448.00 1464.00 1495.00 1529.00 1529.00 1478.00 1546.00 1613.00 1646.00 1646.00 1680.00 1680.00 18754.00TOTAL PEAK LOAD 2134.31 1973.58 1895.57 1960.8O 2164.45 2008.04 1858.05 2036.00 2251.07 2282.69 2379.25 2383.16 25276.98HYDRO CAPACITY TO LOAD 2134.31 1923.58 1895.57 1960.80 2164.45 1853.97 1605.47 1656.49 2171.41 2282.69 2379.25 2383. 16 24411.16THERMAL CAPACITY TO LOAD o*UO 0.00 0.00 O.uo 0.00 154.07 252.58 379.50 79.66 0.00 0.00 0.00 865.82FIRM CAPACITY TRANSFER 1225.77 1316.05 1235.69 945.55 308.49 0-00 0.00 0.00 0.00 986.02 1017.98 1028.61 8064.15PEAK RESERVE 1662.77 1753.05 1672.69 1382.55 745,49 282.93 184.42 57.50 357.34 1423.02 1454.98 1465.61 12442.33

B-49

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.5ZO 1.457 1.398 1.727 1.868 1.355 2.631 6.180 9.480 17.001 19.056 9.431 74.10FROM STORAGE RELEASE -0.000 -0.000 -0.000 -o.00o -0.000 -0.000 -0,000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000FROM TRIBUTARIES 0.000 10-000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 2.732 1.328 1.397 1.744 1.925 1.434 2.990 7.494 11.852 26.702 32.038 15.617 107.253TO RESERVOIR EVAPORATION -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000TO RIVER OUTPLOW 1.674 0.145 0.000 0.000 0.000 0.000 0.263 1.222 2.215 7.651 11.343 7.113 31.626TO RIVER LOSS -2.077 -0.235 0.049 0.000 0.077 0.005 0.286 0.854 0.992 3.084 1.929 -1.923 3.120TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.622 0.426 0.375 0.4Z3 0.445 0.389 0.563 0.968 1.074 1.074 1.062 0.847 8.268TO WATERCOURSE 2.210 1.031 0.884 1.134 1.256 0.870 1.429 3.044 5.108 5.102 4.631 3.303 30.001FROM GROUND WATER 0.25 0.472 0.587 0.773 0.810 0.613 0.000 0.037 0.231 0.530 0.769 0.637 5.715SHORTAGE AT WATERCOURJSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE HEQT. 2.465 1.503 1.471 1.907 2.066 1.483 1.429 3.081 5.339 5.632 5.400 3.940 35.716

PUMP CAPACITY GOOD AREA 0.857 0.635 0.626 0.781 0.818 0.619 0.578 0.768 0.894 0.894 0.894 0.894 9.258PUMPED FROM GOOD AREA o.255 0.472 0.587 0.773 0.810 0.613 0.000 0.037 0.231 0.530 0.769 0.637 5.715EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.009 0.014RECHARGE TO bOOD AREA 0.346 n.216 0.191 0.243 0.259 0.205 0.255 0.416 0.595 0.815 0.844 0.664 5.049NET CHANGE -- GOOD AREA 0.090 -0.257 -0.396 -0.530 -0.551 -0.407 0.255 0.379 0.364 0.284 0.071 0.017 -0.680PUMP CAPACITY BAD ARtA 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 0.890 10.680PUMPED TO DRAINAGE 0.502 0.372 0.321 0.343 0.360 0.352 0.358 0.424 0.524 0.681 0.699 0.611 5.548EVAPORATION BAD AREA 0.343 0.169 0.158 0.210 0.214 0.158 0.113 0.676 1.023 1.258 1.193 0.684 6.199RECHARGE TO BAD AREA 0.766 n.484 0.453 0.538 0.575 0.498 0.541 1.100 1.588 1.976 1.934 1.304 11.757NET CHANGE BAD AREA -0.079 -0.058 -0.025 -0.015 0.001 -0.012 0.070 -0.000 0.041 0.036 0.042 0.009 0.010DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERGY (MILLION KWH)TOTAL PUMP LOAD 51.99 81.71 96.09 122.32 133.37 107.61 23.11 30.49 62.69 110.83 140.81 117.30 1078.30TOTAL BASE LOAD 739.00 732.00 730.00 721.00 696.00 718.00 744.00 766.00 780.00 789.00 803.00 810.00 9028.00TOTAL ENERGY LOAD 790.99 813.71 826.09 843.32 829.37 825.61 767.11 796.49 842.69 899.83 943.81 927.30 10106.30HYDRO ENERGY TO LOAD 710.51 430.25 321.82 465.35 225.20 0.00 0.00 0.00 0.00 716.23 742.09 642.91 4254.36THERMAL ENERGY TO LOAD 80.42 383.39 504.21 377.90 604.11 825.54 767.05 796.43 842.63 183.54 201.65 284.32 5851.20ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0-00INTERZONE ENERGY TRANSFER-710.51 -430.25 -321.82 -465.35 -225.20 0.00 0.00 0.00 0.00 -716.23 -742.09 _642.91 -4254.36HYDRO ENERGY SURPLIJS 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 78.95 147.05 162.64 188.15 204.93 182.65 31.66 42.77 116.71 190.71 216.87 186.05 1749.12PEAK BASE LOAD 1574.00 1544.00 1543.00 1526.00 1479.00 1522.00 1588.00 1630.00 1658.00 1673.00 1700.00 1726.00 19163.00TOTAL PEAK LOAD 1652.95 1691.05 1705.64 1714.15 1683.93 1704.65 1619.66 1672.77 1774.71 1863.71 1916.87 1912.05 20912.12HYDRO CAPACITY TO LOAD 1225.77 1316.05 1235.69 945.55 308.49 0.00 0.00 0.00 0.00 986.02 1017.98 1028.61 8064.15THERMAL CAPACITY TO LOAD 427.18 375.00 469.94 768.60 1375.44 1704.65 1619.66 1672.77 1774.71 877.69 898.90 883.44 12847.97FIRM CAPACITY TRANSFER -1225.77-1316.05-1235.69 -945.55 -308.49 0.00 0.00 0.00 0.00 -986.02-1017.98-1028.61 -8064.15PEAK RESERVE 547.05 508.95 494.36 635.a5 666.07 645.35 730.34 677.23 575.29 486.29 433.13 437.95 6837.88

B-50

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27-910 12.890 137.520FROM STORAGE RELEASE 1.071 1.290 1.312 2.073 3.147 2.360 0.390 -0.598 -4.992 -5.602 -0.327 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 2.859 1.341 1.407 1.754 1.939 1.452 3.005 7.621 12.083 26.945 32.283 15.814 108.503TO RESERVOIR EVAPORAIION .0.053 0.023 0.012 O.OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTtLOW 1.674 0.145 0.000 0.000 0.000 0.000 0.263 1.222 2.215 7.651 11.343 7.113 31.626TO RIVER LOSS -3.599 -0.134 0.342 0.565 0.521 0.412 1.296 3.381 3.656 8.706 5.399 -4.326 16.221TO LINK LOSS 0.605 0.528 0.417 0.482 0.562 0.625 - 0.625 0.463 0.446 0.400 0.415 0.441 6.009TO CANAL LOSS 2.066 1.440 1.292 1.4U2 1.656 1.833 1.885 2.315 2.481 2.349 2.503 2.304 23.526TO WATERCOURSE 6.109 2.730 2.255 2.601 3.622 5.266 5.310 6.698 9.172 7.999 9.072 8.085 68.920FROM GROUND WATER 4.680 2.583 2.146 2.6Z9 4.542 3.219 1.185 1.805 3.424 4.148 5.191 5.119 40.670SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 10.789 5.313 4.401 5.210 8.164 8.485 6.495 8.503 12.596 12.147 14.263 13.204 109.590

PUMP CAPACITY GOOD AREA 6.182 3.424 2.732 3.1J7 5.139 5.428 4.306 4.667 5.846 5.426 6.228 6.384 58.900PUMPED FROM GOOD AREA 4.680 2.583 2.146 2.6Z9 4.542 3.219 1.185 1.805 3.424 4.148 5.191 5.119 40.670EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-006 0.056 0.051 0.019 0.132RECHARGE TO GOOD AREA 3.393 2.005 1.582 1.792 2.656 3.165 2.613 2.944 3.664 5.129 5.660 4.402 39.006NET CHANGE -- GOOD AREA -1.287 -0.578 -0.564 -0.837 -1.885 -0.054 1.428 1.139 0.234 0.925 0.418 -0.736 -1.796PUMP CAPACITY BAD AREA 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 1.348 16.176PUMPED TO DRAINAGE 0.724 0.427 0.381 0.4Z0 0.446 0.452 0.457 0.640 0.869 1.047 1.055 0.928 7.844EVAPORATION BAD AREA 0.594 0.351 0.316 0.309 0.454 0.435 0.326 0.879 1.266 1.612 1.589 0.974 9.186RECHARGE TO BAD AREA 1.214 0.750 0.694 0.8U6 0.944 0.938 0.886 1.473 2.042 2.600 2.607 1.836 16.790NET CHANGE BAD AREA -0.104 -0.028 -0.002 -0.OU4 0.045 0.051 0.102 -0.045 -0.093 -0.059 -0.036 -0.066 -0.240DRAIN STORAGt CONTENT 6.482 6.524 6.574 6.641 6.711 6.793 6.878 6.966 7.080 7.203 7.313 7.432 82.598

ENERbY (MILLION KWH)TOTAL PUMP LOAD 464.30 276.51 241.61 295.87 480.51 356-33 138.56 203.68 374.72 458.95 560.34 541.46 4392.83TOTAL BASE LOAD 1363.00 1364.00 1377.00 1380.U0 1355.00 1352.00 1411.00 1457.00 1488.00 1497.00 1527.00 1534.00 17105.00TOTAL ENERGY LOAD 1827.30 1640.51 1618.61 1675.87 1835.51 1708.33 1549.56 1660.68 1862.72 1955.95 2087.34 2075.46 21497.83HYDRO ENERGY TO LOAD 1746.74 1257.01 1114.30 1297.86 1231.27 882.48 779.77 856.12 1019.97 1772.27 1885.54 1790.99 15634.32THERMAL ENERUY TO LOAD 80.42 383.39 504.21 377.90 604.11 825.74 769.7n 804.46 842.63 183.54 201.65 284.32 5862.07ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0-00 0-00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 258.45 371.58 369.92 353.00 556.13 613.64 594.19 386.96 3503.87

POWER (MEGAWATTS)PEAK PUMP LOAD 765.26 606.63 563.21 619.95 840.38 712.69 343.71 465.77 721.78 827.40 916.12 889.21 8272.10PEAK BASE LOAD 3022.00 3008.00 3038.00 3055.00 3008.00 3000.00 3134.00 3243.00 3304.00 3319.00 3380.00 3406.00 37917.00TOTAL PEAK LOAD 3787.26 3614.63 3601.21 3674.95 3848.38 3712.69 3477.71 370A.77 4025.78 4146.40 4296.12 4295.21 46189.10HYDRO CAPACITY TO LOAD 3360.08 3239.63 3131.27 2906.35 2472.94 1853.97 1605.47 1656.49 2171.41 3268.71 3397.23 3411.77 32475.31THERMAL CAPACITY TO LOAD 427.18 375.00 469.94 768.60 1375.44 1858.72 1872.24 2057.27 1854.37 877.69 898.90 883.44 13713.79FIRM CAPACITY TRANSFtR 0.00 0-00 0.00 o.uo 0.00 0.00 0.00 0-00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 2209.82 2262.00 2167.06 2018.40 1411.56 928.28 914.76 734.73 932.63 1909.31 1888.10 1903.56 19280.21

B-51

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1065 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1983

NORTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.066 1.279 1.298 2.o00 3.116 2.337 0.381 -0.599 -4.939 -5.539 -o.325 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.108 0.013 0.010 0.011 0.015 0.018 0.015 0.173 0.237 0.179 0.195 0.167 1.142TO RESERVOIR EVAPORATION 0.053 0.023 0.012 .0OU2 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.328TO RIVEP OUTtLOW 2.568 1.464 1.076 1.536 1.505 1.515 2.534 6.139 9.295 16.837 18.849 9.202 72.520TO RIVER LOSS -1.479 0.093 0.218 0.5U8 0.368 0.521 0.913 2.488 2.643 5.620 3.424 -2.457 12.860TO LINK LOSS 0.508 0.427 0.388 0.393 0.486 0.533 0.536 0.382 0.358 0.312 0.334 0.376 5.o33TO CANAL LOSS 1.449 1.048 1.032 1.036 1.321 1.448 1.349 1.367 1.433 1.302 1.465 1.480 15.731TO WATERCOURSE 3.786 1.667 1.578 1.555 2.650 4.095 4.038 3.749 4.300 3.034 4.610 4.987 40.049FROM GROUND WATER 4.661 2.204 1.384 1.810 3.493 2.952 1.125 1.791 3.096 3.606 4.472 4.496 35.090SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 8.447 3.871 2.962 3.365 6.143 7.047 5.163 5.540 7.396 6.640 9.082 9.483 75.139

PUMP CAPACITY GOOD AREA 5.394 2.849 2.143 2.407 4.397 4.888 3.825 4.021 5.071 4.661 5.389 5.542 5n.588PUJMPED FROM GOOD AREA 4.661 2.204 1.384 1.810 3.493 2.952 1.125 1.791 3.096 3.606 4.472 4.496 35.090EVAPORATION 600D AREA 0.000 0.000 0.000 0.0uO 0.000 0.000 0.000 0.000 0.006 0.056 0.046 0.010 0.118RECHARGE TO GOOD AREA 3.076 1.827 1.469 1.592 2.486 2.971 2.397 2.567 3.117 4.359 4.879 3,800 34.540NET CHANGE -- GOOD AREA -1.585 -0.377 0.085 -0.218 -1.006 0.019 1.273 0.775 0.014 0.697 0.361 -0.706 -0.668PUMP CAPACITY BAD AREA 0.549 n.549 0.549 0.549 0.549 0.549 0.549 0,549 0.549 0.549 0.549 0.549 6.588PUMPED TO DRAINAGE 0.204 n.068 0.060 0.013 0.100 0.101 0.101 0.262 0.352 0.303 0.307 0.288 2.219-EVAPORATION BAD AREA 0.243 0.166 0.153 0.166 0.223 0.280 0.216 0.199 0.240 0.350 0.386 0.287 2.911RECHARGE TO BAD AREA 0.452 0.270 0.261 0.280 0.377 0.442 0.350 0.377 0.459 0.630 0.681 0.539 5.119NET CHANGE BAD AREA 0.005 0.035 0.049 0.041 0.054 0.061 0.033 -0.084 -0.133 -0.024 -0.012 -0.036 -0.011DRAIN STORAGt CONTENT 7.528 7.584 7.634 7.696 7.781 7.865 7.950 8.039 8.154 8.278 8.389 8.510 95.408

ENERbY (MILLION KWH)TOTAL PUMP LOAD 437.77 206.88 131.81 170.85 329.34 281.42 110.94 179.60 306.81 344.44 422.91 425.91 3348.69TOTAL BASE LOAD 675.00 683.00 700.00 711.U0 711.00 6f5.00 720.00 747.00 765.00 765.00 783.00 783.00 8728.00TOTAL ENERGY LOAD 1112.77 889-88 831.81 881.85 1040.34 966.42 830.94 926.60 1071.81 1109.44 1205.91 1208.91 12076.69HYDRO ENERGY TO LOAD 1112.69 889.83 831.77 881.81 1040.27 966.37 830.07 920.02 1071.75 1109.37 1205.82 1208.82 12068.60THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uo 0.00 0.00 0.83 6.53 0.00 0.00 0.00 0.00 7.36ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-00 0-00 0-00 0.00 0-00 0.00INTERZONE ENERGY TRANSFER 631.85 365.13 278.25 408.85 362.94 0.00 0.00 0.00 7.54 867.40 894.52 646.60 4463.08HYDRO ENERGY SURPLUS 0.00 0.00 0.00 o.uo 77.04 283.95 318.43 390.75 649.34 694.50 674.72 616.53 3705.26

POWER (MEGAWATTS)PEAK PUMP LOAD 721.21 490.75 367.95 431.89 621.86 580.82 296.11 420.85 591.71 632.89 704.96 708.90 6569.90PEAK BASE LOAD 1562.00 1579.00 1613.00 1649.00 1649.00 1595.00 1667.00 1739.00 1776.00 1776.00 1812.00 1812.00 20229.00TOTAL PEAK LOAD 2283-21 2069-75 1980.95 2080.89 2270.86 2175-82 1963.11 2159-85 2367-71 2408.89 2516.96 2520.90 26798.90HYDRO CAPACITY TO LOAD 2283.Z1 2069.75 1980.95 2080.89 2270.86 2073.01 1778.10 1795.75 2367.71 2408.89 2516.96 2520.90 26146.99THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 o.uo 0.00 102.81 185.01 364.10 0.00 0.00 0.00 0.00 651.91FIRM CAPACITY TRANSFER 1478.54 1575-21 1546.67 1188-42 497-18 0.00 0.00 0.00 10.33 1250-75 1284.87 1293.66 10125.62PEAK RESERVE 1915.54 2012.21 1983.67 1625.42 934.18 334.19 251.99 72.90 447.33 1687.75 1721.87 1730.66 14717.71

B-52

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.568 1.464 1.076 1.536 1.505 1.515 2.534 6.139 9.295 16.837 18.849 9.202 72.520FROM STORAGE RELEASE -1.628 -0.131 0.438 0.594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -2.200FROM TRIBUTARIES 0.000 0.000 0.000 O.0U0 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 3.924 1.896 1.044 1.402 1.497 1.869 3.158 7.798 11.836 26.391 31.631 15.565 108.011TO RESERVOIR EVAPORATION .0.096 0.081 0.064 0.054 0.026 '0,000 0.000 0.000 0.000 0.000 0.098 0.122 0.540TO RIVER OUTFLOW 0.439 0.002 0.080 0.0o5 0.077 0.000 0.110 1.077 1.806 7.017 9.493 5.234 25.419TO RIVER LOSS -1.949 -0.172 -0.058 0.072 0.055 0.099 0.250 0.875 0.918 3.011 1.752 -1.888 2.965TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.647 0.422 0.432 0.556 0.582 0.442 0.694 1.158 1.271 1.271 1.271 1.035 9.782TO WATERCOURSE 1.615 0.910 0.906 1.273 1.404 0.884 1.390 2.937 5.209 5.447 5.044 3.509 30.529FROM GROUND WATER 0.837 0.624 0.587 0.679 0.699 0.609 0.065 0.156 0.253 0.371 0.570 0.533 5.982SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OU0 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0-017WATERCOURSE REQT. 2.452 1.534 1.493 1.952 2.103 1.493 1.455 3.093 5.467 5.824 5.620 4.042 36.528

PUMP CAPACITY GOOD AREA 0.843 0.632 0.612 0.751 0.811 0.618 0.574 0.782 0.918 0.918 0.918 0.918 9.325PUMPED FROM GOOD AREA 0.837 0.624 0.587 0.679 0.699 0.609 0.065 0.156 0.253 0.371 0.570 0.533 5.982EVAPORATION bOOD AREA 0.000 n.000 0.000 o.ouo 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.015 0.039RECHARGE TO GOOD AREA 0.364 0.214 0.214 0.304 0.313 0.234 0.317 0.500 0.688 0.919 0.957 0.750 5.775NET CHANGE -- GOOD AREA -0.472 -0.410 -0.373 -0.376 -0.386 -0.375 0.252 0.344 0.435 0.548 0.364 0.202 -0.246PUMP CAPACITY BAD AREA 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090. 1.090 1.090 1.090 1.090 13.080PUMPED TO DRAINAGE 0.875 0.764 0.710 0.7i1 0.737 0.571 0.617 0.692 0.797 0.950 0.969 0.887 9.301EVAPORATION DAD AREA 0.210 0.055 0.047 0.069 0.097 0.074 0.027 0.590 0.923 1.082 1.018 0.533 4.745RECHARGE TO BAD AREA 0.765 0.488 0.481 0.594 0.640 0.513 0.588 1.171 1.680 7.073 2.037 1.391 12.422NET CHANGE BAD AREA -0.321 -0.331 -0.275 -0.2Z6 -0.194 -0.133 -0.056 -0.112 -0.039 0.041 0.051 -0.029 -1.623DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY IMILLION KWH)TOTAL PUMP LOAD 139-02 115.10 112.66 128-U9 135-24 114.80 47.11 60.44 77.82 101.91 122.20 104.94 1259-34TOTAL BASF LOAD 807.00 799.00 796.00 786.00 768.00 782.00 820.00 842.00 859.00 866.00 882.00 883.00 9890.00TOTAL ENERGY LOAD 946.02 914.10 908.66 914.09 903.24 896.80 867.11 902.44 936-82 967.91 1004.20 987.94 11149.34HYDRO ENERGY TO LOAD 631.85 365.13 278.25 408.85 362.94 0.00 0.00 0.00 7.54 867.40 894.52 646.60 4463.08THERMAL ENERbY TO LOAD 314.10 548.90 630.34 505.17 540.24 896.74 867.04 902.38 929.21 100.45 109.61 341.26 6685.44ENERGY DEFICIENCY 0.00 0-00 0.00 o.uo 0-00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0-00INTERZONE ENERGY TRANSFER-631.85 -365.13 -278.25 -408.85 -362.94 0.00 0.00 0.00 -7.54 -867.40 -894.52 -646.60 -4463.08HYDRO ENERGY SURPLUS O.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 210.80 187.47 187.34 202.92 212.78 189.89 72.77 9n.72 119.22 147.35 194.92 155.24 1971.42PEAK BASE LOAD 1721.00 1690.00 1687.00 1681.U0 1627.00 1677.00 1753.00 1812.00 1845.00 1857.00 1886.00 1887.00 21123.00TOTAL PEAK LOAD 1931.80 1877.47 1874.34 1883.92 1839.78 1866-89 1825.77 1902.72 1964.22 2004.35 2080.92 2042.24 23094.42HYDRO CAPACITY TO LOAD 1478.54 1575.21 1546.67 1188.42 497.18 0.00 0.00 0.00 10.33 1250.75 1284.87 1293.66 10125.62THERMAL CAPACITY TO LOAD 453.26 302.26 327.67 695.50 1342.61 1866.89 1825.77 1902.72 1953.89 753.60 796.05 748.58 12968.80FIRM CAPACITY TRANSFER -1478.54-1575.21-1546.67-1188-42 -497.18 0.00 0.00 0.00 -10.33-1250.75-1284.87-1293.66 -10125.62PEAK RESERVE 418.20 472.53 475.66 706.U8 750.22 723.11 764.23 687.28 625.78 585.65 509.08 547.76 7265.58

B-53

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUr, SEPT TOT4L

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE -0.561 1.149 1.737 2.644 3.842 2.337 0.381 -0.599 -4.939 -5.539 -1.425 -1.093 -2.068FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 4.033 1.909 1.054 1.413 1.511 1.887 3.173 7.972 12.073 26.570 31.826 15.731 109.153TO RESERVOIR EVAPORATION 0.149 0.104 0.076 0.056 0.036 0.012 0.016 0.040 0.070 0.036 0.126 0.148 0.869TO RIVER OUlTtLOW 0.439 0.00Z 0.080 0.085 0.077 0.000 0.110 1.077 1.806 7.017 9.493 5.234 25.419TO RIVER LOSS -3.428 -0.080 0.160 0.5a0 0.423 0.620 1.163 3.364 3.561 8.632 5.176 -4.346 15.825TO LINK LOSS 0.599 0.518 0.479 0.483 0.577 o.624 0.627 0.473 0.449 0.403 0.424 0.467 6.123TO CANAL LOSS 2.096 1.471 1.464 1.593 1.903 1.890 2.043 2.525 2.704 2.573 2.736 2.515 25.513TO WATERCOURSE 5.402 2.577 2.484 2.828 4.055 4.978 5.429 6.686 9.509 8.480 9.654 8.496 70.578FROM GROUND WATER 5.497 2.8z8 1.971 2.489 4.191 3.562 1.189 1.947 3.349 3.977 5.042 5.029 41.072SHORTAGE AT WATERCOIURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0.017WATERCOURSE REOT. 10.899 5.405 4-455 5.317 8-246 8.540 6.618 8.633 12.863 12.464 14.702 13.525 111.667

PUMP CAPACITY GOOD AREA 6.237 3.481 2.755 3.188 5.209 5.506 4.399 4.802 5.989 5.579 6.307 6.460 59.912PUMPED FROM GOOD AREA 5.497 2.828 1.971 2.4a9 4.191 3.562 1.189 1.947 3.349 3.977 5.042 5.029 41.072EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.056 0-070 0.025 0.157RECHARGE TO GOOD AREA 3.440 2.041 1.683 1.896 2.799 3.205 2.714 3.067 3.804 5.279 5.836 4.550 40.315NET CHANGE -- GOOD AREA -2.058 -0.787 -0.288 -0.593 -1.392 -0.357 1.525 1.120 0.449 1.245 0.724 -0.504 -0.914PUMP CAPACITY BAD ARtA 1.639 1.639 1.639 1.6J9 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668PUMPED TO DRAINAGE 1.080 0.832 0.770 0.8U4 0.837 0.672 0.718 0.955 1.149 1.254 1.276 1.175 11.520EVAPORATION BAD AREA 0.453 0.221 0.200 0.255 0.320 0.355 0.244 0.789 1.163 1.432 1.404 0.821 7.655RECHARGE TO BAD AREA 1.217 0.758 0.743 0.874 1.018 0.955 0.938 1.548 2.139 2.702 2.718 1.931 17.541NET CHANGE BAD AREA -0.316 -0.295 -0.226 -0.185 -0.140 -0.072 -0.023 -0.196 -0.173 0.017 0.039 -0.065 -1.634URAIN STORAGt CONTENT 7.528 7.584 7.634 7.696 7.781 7.865 7.950 8.039 8.154 8.278 8.389 8.510 95.408

ENERbY (MILLION KWH)TOTAL PUMP LOAD 576.79 321.97 244.47 298.94 464.58 396-23 158.05 240.04 384.64 446.36 545.11 530.84 4608.02TOTAL BASE LOAD 1482.00 1482.00 1496.00 1497.00 1479.00 1467.00 1540.00 1589.00 1624.00 1631.00 1665.00 1666.00 18618.00TOTAL ENERGY LOAD 2058.79 1803.97 1740.47 1795.94 1943.58 1863.23 1698.05 1829.04 2008.64 2077.36 2210.11 2196.84 23226.02HYDRO ENERGY TO LOAD 1744.53 1254.96 1110.02 1290.66 1403.21 966.37 830.07 920.02 1079.29 1976.77 2100.34 1855.42 16531.68THERMAL ENERGY TO LOAD 314.10 548.90 630.34 505.17 540.24 896.74 867.88 908.91 929.21 100.45 109.61 341.26 6692.79ENERGY DEFICIENCY 0.00 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 O0.0 0.00 0.00 0.00 0.00 0.00 0.00 o.0o 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.O0 0.00 0.00 77.04 283.95 318.43 390.75 649.34 694.50 674.72 616.53 3705.26

POWER (MEGAWATTS)PEAK PUMP LOAD 932.01 678.22 555.29 634.al 834.64 770.71 368.87 511.57 710.93 780.24 899.89 864.13 8541.33PEAK BASE LOAD 3283.00 3269.00 3300.00 3330.00 3276.00 3272.00 3420.00 3551.00 3621.00 3633.00 3698.00 3699.00 41352.00TOTAL PEAK LUAD 4215.01 3947.22 3855.29 3964.a1 4110.64 4042.71 3788.87 4062.57 4331.93 4413.24 4597.89 4563.13 49593.32HYDRO CAPACITY TO LOAD 3761.76 3644.96 3527.62 3269.30 2768.04 2073.01 1778.10 1795.75 2378.04 3659.64 3801.83 3814.56 36272.61THERMAL CAPACITY TO LOAD 453.26 302.26 327.67 695.50 1342.61 1969.70 2010.77 2266.82 1953.89 753.60 796.05 748.58 13620.71FIRM CAPACITY TRANSFtR 0.00 0.00 0.00 0.UO 0.00 0-00 0-00 0-00 0-00 0-00 0.00 0.00 0.00PEAK RESERVE 2333.74 2454.74 2459.33 2331.50 1684.39 1057.30 1016.23 760.18 1073.11 2273.40 2230.95 2278.42 21983.28

B-54

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1984

NnRTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2-780 2.7b0 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.062 1.269 1.285 2.027 3.084 2.313 0.373 -0.601 -4.887 -5.475 -o.323 0.007 0.i32FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1,100 1.090 0.840 1.340 0.930 0.550 7.730FROM BRAINS 0.110 0.013 0.010 0.010 0-015 0.018 0.016 0.174 0.247 0.181 0.197 0.170 1.161TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0-002 O.OlO 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTFLOW 2.377 1.324 1.279 1.497 1.579 1.615 2.512 6.014 9.197 16.628 18.721 9.071 71.816TO RIVER LOSS -1.433 0.082 0.274 0.472 0.393 0.528 0.896 2.435 2.653 5.554 3-440 -2.490 12.805TO LINK LOSS 0.504 0.441 0.355 0.383 0.475 0.528 0.539 0.395 0.363 0.313 0.338 0.393 5.n27TO CANAL LOSS 1.448 1.061 0.944 1.069 1.306 1.467 1.359 1.390 1.445 1.319 1.480 1.494 15.780TO WATERCOURSE 3.933 1.781 1.428 1.553 2.545 3.949 4.057 3.889 4.433 3.356 4-706 5.122 40.783FROM GROUND WATER 4.604 2.132 1.557 1.8U4 3.619 3.113 1.194 1.7S4 3.076 3.385 4.562 4.548 35.347SllORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOUtRSE REOT. 8.537 3.913 2.985 3.3a7 6.164 7.062 5.251 5.643 7.509 6.741 9.268 9.670 76.130

PUMP CAPACITY GOOD AREA 5.421 2.886 2.167 2.435 4.434 4.936 3.894 4.1o5 5.165 4.766 5.430 5.571 51.21oPUMPED FROM GOOD AREA 4.604 2.132 1.557 1.804 3.619 3.113 1.194 1.754 3.076 3.385 4.562 4.548 35.347EVAPORATION GOOD AREA o.ouo 0.000 0.000 O.ouo 0.000 0.000 0.000 0.000 0.004 0.055 0.046 0.009 0.114RECHARGE TO GOOD AREA 3.093 1.842 1.420 1.614 2.477 2.987 2.421 2.605 3.148 4.392 4.928 3.849 34.775NET CHANGE -- GOOD AREA -1.511 -n.290 -0.138 -0.159 -1.141 -0.125 1.227 0.851 0.068 0.951 0.321 -0.709 -0.686PUMP CAPACITY BAD AREA 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 0.549 6.588PUMPED TO DRAINAGE 0.207 0.058 0.059 o.o09 0.101 0.103 0.102 0.264 0.363 0.306 0.310 0.292 2.243EVAPORATION BAD AREA 0.243 0.159 0.144 0.160 0.211 0.280 0-214 0.200 0.241 0.351 0-387 0.288 2.877RECHARGE TO BAD AREA 0.455 0.275 0.246 0.2ag 0.379 0.444 0.354 0.381 0.463 0.634 0.687 0.545 5.150NET CHANGE BAD AREA 0.005 0.057 0.044 0.049 0.068 0.061 0.038 -0.082 -0.140 -0.023 -0.010 -0.035 0.030DRAIN STORAGE CONTFNT 8.606 8.65? 8.700 8.710 8,856 8.941 9.027 9.117 9.232 9.357 9-470 9.592 108.320

ENERbY (MILLION KWH)TOTAL PUMP LOAD 436-00 200-73 147.99 171.84 342.86 298-91 117.93 177.47 308.39 327.11 433.63 433.78 3396.63TOTAL BASE LOAD 729.00 738.00 756.00 762.UO 762.00 734.00 772.00 801.00 819.00 819.00 839.00 839.00 9370.00TOTAL ENERGY LOAD 1165-00 938.73 903.99 933-.4 1104.86 1032.91 889.93 978.47 1127.39 1146.11 1272.63 1272.78 12766.63HYDRO ENERGY TO LOAD 1164.92 938-68 903.94 933.co 1104.79 1031.18 885.76 965.12 1127.32 1146.03 1272.54 1272.69 12746.77THERMAL ENERGY TO LOAD 0.00 0.00 0.00 o.uo 0.00 1.67 4.13 10.13 0.00 0.00 0.00 0.00 15.92ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -1.22 0.00 0.00 0.00 0.00 -3-22INTERZONE ENERGY TRANSFER 577.67 313.65 201.98 349.63 269.78 0.00 0.00 n.00 0.00 835.42 837.29 646.60 4032.02HYDRO ENERGY SURPLIIS 0.00 0.00 0.00 o.uo 96.60 215.46 260.53 349.06 603.14 690.97 665.27 552.66 3433.69

POWER (MEGAWATTS)PEAK PUMP LOAD 720.03 468.46 406.97 437.38 636.42 602.48 308.14 414.30 597.05 615.17 717.54 719,01 6642.93PEAK BASE LOAD 1685.00 1703.00 1739.00 1763.00 1763.00 1705.00 1782.00 1859.00 1898.00 1898.00 1937o00 1937 00 21669.00TOTAL PEAK LOAD 2405-03 2171-46 2145-97 2200-.8 2399-42 2307-48 2090.14 2273.30 249S.05 2513.17 2654.54 2656.01 28311.93HYDRO CAPACllY TO LOAD 2405.03 2171.46 2145.97 2200.38 2399.42 2075.71 1780.19 1796.09 2378.02 2513.17 2654.54 2656.01 27175.98THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 231.76 309.95 437.00 117.03 0.00 000 0.00 1095.74FIRM CAPACITY TRANSFtR 1355-97 1475-25 1382.55 1069-58 369.56 0.00 0.00 -40.21 0.00 1148.04 1147.35 1158.55 9066.66PEAK RESERVE 1792.97 1912.25 1819.55 1506.58 8O6.56 205.24 127.05 -40.21 319.97 1585.04 1584.35 1595.55 13214.92

B-55

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.377 1.324 1.279 1.497 1.579 1,615 2.512 6.014 9.197 16.628 18.721 9.071 71.816FROM STORAGE RELEASE 0.000 0.220 0.660 0,594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.0U0 0-000 0-000 0.000 0.000 0.000 0.000 0-000 0.000 0.000FROM DRAINS 2.814 1.444 1.107 1.449 1.554 2.041 3*063 7.488 11.507 26.077 31.483 15.268 105.294TO RESERVOIR EVAPORATION 0.129 0.087 0.066 0.054 0.026 0.000 0.000 0.000 0.000 0.000 0.098 0.122 0.580TO RIVER OUTtLOW 1.051 0.031 0-022 -0.0U1 -0.003 -0.000 0.006 0.913 1.540 6.724 9.261 4.986 24.530TO RIVER LOSS -1.840 -0.190 0-002 0.088 0.058 0.125 0-205 0.833 0.893 3.006 1.772 -1.915 3.016TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.794 0.496 0.584 0.510 0.596 0.475 0.729 1.172 1.291 1.291 1-288 1.052 10.339TO WATERCOURSE 2.154 1.030 1.174 1.313 1.537 0.925 1.483 3.005 5.382 5.516 5.110 3.636 32.265FROM GROUND WATER 0.394 0.602 0.426 0.777 0.710 0.638 0.059 0.179 0.236 0.525 0.736 0.622 5.904SHORTAGE AT WATERCOURSE 0.000 0.000 0-000 0.0U0 0-000 0.000 0.000 0.000 0-002 0.000 0-000 0.000 0.002WATERCOURSE REQT. 2.548 1.632 1.600 2.090 2.247 1.563 1.542 3.184 5.620 6.041 5.846 4.258 38.171

PUMP CAPACITY GOOD AREA 0.869 0.654 0.631 0.799 0.833 0,646 0.597 0.807 0.918 0.918 0.918 0.918 9.508PUMPED FROM GOOD AREA 0.394 0.602 0.426 0.717 0.710 0.638 0.059 0.179 0.236 0.525 0.736 0.622 5.904EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.019 0.059RECHARGE TO GOOD AREA 0.447 0.258 0.289 0.318 0.336 0.260 0.343 0.524 0.716 0.952 0.990 0.781 6.214NET CHANGE -- GOOD AREA 0.052 -0.344 -0.137 -0.459 -0.374 -0.378 0.284 0.345 0.480 0.428 0.214 0.141 0.251PUMP CAPACITY BAD AREA 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 1.090 13.080PUMPED TO DRAINAGE 0.781 0.647 0.583 0.628 0.632 0.556 0.511 0.587 0.730 0.964 0.985 0.875 8.478EVAPORATION BAD AREA 0.207 0.083 0.056 0.100 0.090 0.073 0.027 0.592 0.934 1.096 1.030 0.544 4.832RECHARGE TO BAD AREA 0.822 0.526 0.552 0.6Z3 0.662 0.530 0.610 1.179 1.704 2.107 2.072 1.424 12.810NET CHANGE BAD AREA -0.167 -0.203 -0.087 -0.105 -0.060 -0.099 0.073 -0.000 0.040 0.047 0.057 0.005 -0.500DRAIN STORAGE CONTENT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ENERUY (MILLION KWH)TOTAL PUMP LOAD 85.40 111.26 94.24 133-39 131.60 119-74 41.66 57.28 71-25 123-16 142-21 118.42 1229.61TOTAL BASE LOAD 869.00 848.00 845.00 854.00 839.00 852.00 894.00 919.00 937.00 945.00 962.00 963.00 10727.00TOTAL ENERGY LOAD 954.40 959.26 939.24 987.39 970-60 971.74 935.66 976.28 1008.25 1068.16 1104.21 1081.42 11956.61HYDRO ENERGY TO LOAD 577.67 313.65 201.98 349.63 269.78 0.00 0.00 0.00 0.00 835.42 837.29 646.60 4032.02THERMAL ENERGY TO LOAD 376.67 645.54 737.19 637.68 700.75 971.67 935.59 976.21 1008.18 232.66 266.84 434.75 7923.73ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00INTERZONE ENERGY TRANSFER-577.67 -313.65 -201.98 -349.63 -269.78 0.00 0.00 0.00 0.00 -835.42 -837.29 -646.60 _4032.02HYDRO ENERGY SURPLUS 0.00 0.00 0.00 O.U0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER IMEGAWATTSIPEAK PUMP LOAD 130.42 181.84 163.95 204.U3 205.48 192.56 65.57 85.55 107.25 194.34 223.37 186.69 1941.06PEAK BASE LOAD 1859.00 1813.00 1809.00 1835.00 1776.00 1831.00 1911.00 1979.00 2015.00 2030.00 2061.00 2061.00 22980.00TOTAL PEAK LOAD 1989.42 1994.84 1972-95 2039-03 1981.48 2023-56 1976.57 2064.55 2122.25 2224.34 2284.37 2247.69 24921.05HYDRO CAPACITY TO LOAD 1355.97 1475.25 1382.55 1069.58 369.56 0.00 0.00 0.00 0.00 1148.04 1147.35 1156.55 9106.67THERMAL CAPACITY TO LOAD 633.44 519.59 590.40 969.45 1611.92 2023.56 1976.57 2064.55 2122.25 1076.30 1137.02 1089.14 15814.19FIRM CAPACITY TRANSFER -1355.97-1475.25-1382.55-1069.58 -369.56 0.00 0.00 40.21 0.00-1148.04-1147.35-1158.55 -9066.66PEAK RESERVE 600.58 595.16 617.05 1030.Y7 1088.52 1046.44 1093.43 1005.45 947.75 845.66 785.63 822.31 10478.94

B-56

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.062 1.489 1.945 2.6ZI 3.810 2.313 0.373 -0.601 -4.887 -5.475 -1.423 -1.093 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 2.925 1.457 1.117 1.459 1.569 2.059 3.078 7.662 11.754 26.259 31.680 15.437 106.455TO RESERVOIR EVAPORATION .0.182 0.110 o.o07 0.056 0.036 0.012 0.016 0.040 0.070 0.036 0.126 0.148 0.908TO RIVER OUTtLOW 1.051 0.031 0.022 -0.001 -0.003 -0.000 0.006 0.913 1.540 6.724 9.261 4.986 24.530TO RIVER LOSS -3.274 -0.108 0.276 0.540 0.451 o.652 1.100 3,268 3.547 8.560 5.212 -4.405 15.821TO LINK LOSS 0.595 0.532 0.446 0.474 0.566 0.619 0.629 0.486 0.453 0.404 0.429 0.484 6.116TO CANAL LOSS 2.242 1.557 1.528 1.639 1.902 1.942 2.088 2.563 2.736 2.610 2.768 2.546 26.119TO WATERCOURSE 6.087 2.811 2.601 2.897 4.083 4.874 5.540 6.894 9.816 8.873 9.817 8.758 73.048FROM GROUND WATER 4.998 2.734 1.984 2.580 4.328 3.751 1.253 1.933 3.312 3.909 5.297 5.170 41.251SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.002 0.000 0-000 0.000 0.002WATERCOURSE REOT. 11.085 5.545 4.585 5.477 8.411 8.625 6.793 8.827 13.129 12.782 15.114 13.928 114.301

PUMP CAPACITY GOOD AREA 6.259 3.539 2.798 3.234 5.267 5.582 4.492 4.912 6.083 5.684 6.348 6.489 60.719PUMPED FROM GOOD AREA 4.998 2.734 1-984 2.580 4.328 3.751 1.253 1.933 3.312 3.909 5.297 5.170 41.251EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.055 0.086 0.028 0.173RECHARGE TO GOOD AREA 3.540 2.100 1.709 1.932 2.813 3.247 2.764 3.129 3.864 5.344 5.918 4.630 40.990NET CHANGE -- GOOD AREA -1.459 -0.634 -0.275 -0.648 -1.515 -0.504 1.511 1.195 0.548 1.379 0.534 -0.568 -0.434PUMP CAPACITY BAD AREA 1.639 1.639 1.639 1.6J9 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668PUMPED TO DRAINAGE 0.988 0.705 0.641 0.7U7 0.733 0.659 0.612 0.851 1.092 1.270 1.295 1.167 10.721EVAPORATION BAD AREA 0.450 0.242 0.200 0.259 0.300 0.353 0.241 0.792 1.175 1.447 1.417 0.833 7.709RECHARGE TO BAD ARFA 1.276 0.801 0.798 0.911 1.041 0.974 0.964 1.561 2.167 2.741 2.758 1.969 17.960NET CHANGE BAD AREA -0.162 -0.146 -0.044 -0.055 0.008 -0.039 0.111 -0.082 -0.100 0.024 0.047 -0.031 -0.469DRAIN STORAGE CONTENT 8.606 8.652 8.700 8.770 8.856 8.941 9.027 9.117 9.232 9.357 9.470 9.592 108.320

ENERGY (MILLION KWH)TOTAL PUMP LOAD 521.41 311.98 242.22 305.Z3 474.47 418.65 159.59 Z34.75 379.64 450.27 575.84 552.20 4626.25TOTAL BASE LOAD 1598.00 1586.00 1601.00 1616.00 1601.00 1586.00 1666.00 1720.00 1756.00 1764.00 1801.00 1802.00 20097100TOTAL ENERGY LOAD 2119.41 1897.98 1843.22 1921.Z3 2075.47 2004.65 1825.59 1954.75 2135.64 2214.27 2376.84 2354.20 24723.25HYDRO ENERGY TO LOAD 1742.58 1252.33 1105.93 1283.43 1374.57 1031.18 885.76 965.12 1127.32 1981.45 2109.83 1919.29 16778.79THERMAL ENERGY TO LOAD 376.67 645.54 737.19 637.68 700.75 973.34 939.72 986.34 1008.18 232.66 266.84 434.75 7939.65ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -3-22 0-00 0.00 0.00 0.00 -3-22INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0°.00 0.00 6.60 215.46 260.53 349.06 603.14 690.97 665.27 552.66 3433.69

POWER (MEGAWATTS)PEAK PUMP LOAD 850.44 650.29 570.92 641.41 841.90 795.04 373.71 499.85 704.30 809.51 940.91 905.70 8583.99PEAK BASE LOAD 3544.00 3516.00 3548.00 3598.uo 3539.00 3536.00 3693.00 3838.00 3913.00 3928.00 3998.00 3998.00 44649.00TOTAL PEAK LOAn 4394.44 4166.29 4118.92 4239.41 4380.90 4331.04 4066.71 4337.85 4617.30 4737.51 4938.91 4903.70 53232.99HYDRO CAPACITY TO LOAD 3761.00 3646.70 3528.52 3269.97 2768.98 2075.71 1780.19 1796.09 2378.02 3661.21 3801.89 3814.56 36282.85THERMAL CAPACITY TO LOAD 633.44 519.59 590.40 969.45 1611.92 2255.33 2286.52 2501.55 2239.28 1076.30 1137.02 1089.14 16909.92FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0-00 0.00 -0-00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 2393.56 2507.41 2436.60 2537.55 1895.08 1251.67 1220.48 965.24 1267.72 2430.70 2369.98 2417.86 236q3.86

B-57

WEST PAKISTAN IRRIGATION AND POWER OPERATION STUDY-FEB 1965 REVISED VERSION

STUDY NUMBER 6685072110

YEAR 1985

NORTH ZONE SUMMARY

WATER (MAFt ocr NOV DEC JAN FEB MAR APR MAy JUNE JULY AUG sEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2.970 5.040 7.890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.057 1.258 1.272 2.003 3.052 2.289 0.364 -0.602 -4.834 -5.412 -0.322 0.007 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1.340 0.930 0.550 7.730FROM DRAINS 0.136 0.013 0.010 0.011 0.014 0.018 0.016 0.197 0.309 0.229 0.245 0.218 1.416TO RESERVOIR EVAPORATION 0.053 0.023 0.012 0.002 0.010 0.012 0.016 0.040 0.070 0.036 0.028 0.026 0.329TO RIVER OUTMLOW 2.350 1.422 1.161 1.6'0 1.632 1.697 2.340 5.955 9.187 16.511 18.632 8.989 71.516TO RIVER LOS5 -1.392 0.108 0.215 0.522 0.380 0.541 0.835 2.465 2.656 5.504 3.437 -2.508 12.763TO LINK LOSS 0.499 0.403 0.386 0.354 0.475 0.524 0.542 0.404 0.367 0.318 0.342 0.405 5.019TO CANAL LOSS 1.462 1.062 0.975 0.990 1.309 1.467 1.445 1.380 1.481 1.338 1.506 1.518 15.933TO WATERCOURSE 3.935 1.683 1.529 1.476 2.470 3.836 4.193 3.942 4.514 3.610 4.817 5.234 41.239FROM GROUND WATER 4.690 2.280 1.464 1.941 3.714 3.238 1.146 1.805 3.108 3.237 4.636 4.619 35.898SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000WATERCOURSE REQT. 8.625 3.963 3.013 3.417 6.184 7.074 5.339 5.747 7.622 6.847 9.453 9.853 77.131

PUMP CAPACITY GOOD AREA 5.439 2.923 2.189 2.459 4.451 4.953 3.954 4.177 5.224 4.848 5.463 5.592 51.672PUMPED FROM GOOD AREA 4.690 2.280 1.484 1.941 3.714 3.238 1.146 1.805 3.108 3.237 4.636 4.619 35.898EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.055 0.045 0.009 0.112RECHARGE To GOOD AREA 3.121 1.853 1.447 1.572 2.482 2.988 2.500 2.618 3.197 4.427 4.984 3.903 35.093NET CHANGE -- GOOD AREA -1.570 -0.427 -0.037 -0.369 -1.232 -0.250 1.353 0.813 0.087 1.135 0.304 -0.724 -0.917PUMP CAPACITY BAD ARtA 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 0.594 7.128PUMPED TO DRAINAGE 0.233 0.060 0.057 0.051 0.087 0.104 0.102 0.287 0.426 0.355 0.358 0.341 2.491EVAPORATION BAD AREA 0.243 0.159 0.145 0.160 0.207 0.261 0.221 0.199 0.242 0.351 0.389 0.289 2.866RECHARGE TO BAD AREA 0.459 0.276 0.250 0.274 0.381 0.447 0.364 0.384 0.469 0.638 0.693 0.551 5.187NET CHANGE BAD AREA -0.017 0.057 0.048 0.034 0.087 0.081 0.041 -0.103 -0.199 -0.068 -0.054 -0.079 -0.171DRAIN STORAGE CONTENT 9.659 9.735 9.783 9.853 9.926 10.012 10.099 10.189 10.305 10.431 10.544 10.667 121.233

ENERoY (MILLION KWH)TOTAL PUMP LOAD 448.83 215.65 142.40 185.59 353.72 313.88 114.96 184.82 318.73 319.59 447.59 448.10 3493.85TOTAL BASE LOAD 781.00 791.00 810.00 822.00 822.00 791.00 832.00 863.00 883.00 883.00 904.00 904.00 10086.00TOTAL ENERGY LOAD 1229.03 1006.65 952.40 1007.59 1175.72 1104.88 946.96 1047.82 1201.73 1202.59 1351.59 1352.10 13579.85HYDRO ENERGY TO LOAD 1229.13 1006.60 952.36 1007.54 1175.64 1098.25 942.48 1036.50 1201.66 1202.51 1351.49 1352.00 13556.75THERMAL ENERGY TO LOAD 0.00 0.00 0.00 0.00 0.00 6.57 4.43 7.59 0.00 0.00 0.00 0.00 18.59ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.72 0.00 0.00 0.00 0.00 -3.72INTERZONE ENERGY TRANSFER 510.77 243.45 149.14 267.61 170.17 0.00 0.00 0.00 0.00 37.84 822.39 643.18 2844.54HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0-00 118.36 143.31 283.41 395.08 530.57 726-55 648.86 476.77 3322.90

POWER (MEGAWATTS)PEAK PUMP LOAD 738.15 507.57 388.24 453.12 646.66 624.48 308.89 425.80 607.36 604.54 735.67 737.38 6777.87PEAK BASE LOAD 1801.00 1821.00 1859.00 1893.00 1893.00 1830.00 1914.00 1997.00 2038.00 2038.00 2080.00 2080.00 23244.00TOTAL PEAK LOAD 2539.15 2325.57 2247.24 2346.12 2539.66 2454.48 2222.89 2422.80 2645.36 2642.54 2815.67 2817.38 30021.87HYDRO CAPACITY TO LOAD 2539.15 2328.57 2247.24 2346.12 2539.66 2076.28 1892.52 1956.23 2581.66 2642.54 2815.67 2817.38 28783.03THERMAL CAPACITY TO LOAD 0.00 0.00 0.00 0.00 0.00 378.20 330.36 437.00 63.70 0.00 0.00 0.00 1209.27FIRM CAPACITY TRANSFER 1220.92 1320.52 1281.71 923.Z6 233.11 0.00 0.00 -29.57 0.00 1262.28 1251.64 1265.71 8729.58PEAK RESERVE 1657.92 1757.52 1718.71 1360.26 670.11 58.80 106.64 -29.57 373.30 1699.28 1688.64 1702.71 12764.32

B-58

SOUTH ZONE SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT TOTAL

FROM RIVER INFLOW 2.350 1.422 1.161 1.640 1.632 1.697 2.340 5.955 9.187 16.511 18.632 8.989 71.516FROM STORAGE RELEASE 0.000 0.220 0.660 0.594 0.726 0.000 0.000 0.000 0.000 0.000 -1.100 -1.100 -0.000FROM TRIBUTARIES 0.000 0.000 0.000 O.OUO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM DRAINS 2.686 1.725 1.128 1.664 1,586 2.184 2.757 7.269 11.420 25.625 30.981 15.035 104.060TO RESERVOIR EVAPORATION .0.129 0.087 0.066 0.053 0.026 0.000 0.000 0.000 0.000 0.000 0.098 0.122 0.579TO RIVER OUTtLOW 0.955 0.018 0.040 -O.OUO -0.003 0.000 -0.000 0.732 1.403 6.443 8.921 4.738 23.249TO RIVER LOSS -1.815 -0.124 -0.024 0.093 0.038 0.140 0.148 0.810 0.915 2.934 1.747 -1.879 2.983TO LINK LOSS 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 1.089TO CANAL LOSS 0.792 0.513 0.538 0.588 0-609 0.504 0.698 1.193 1.304 1.304 1.304 1.076 10.424TO WATERCOURSE 2.198 1.056 1.111 1.409 1.597 0.962 1.402 3.130 5.475 5.738 5.372 3.742 33.192FROM GROUND WATER 0.403 0.649 0.567 0.704 0.754 0.645 0.199 0.118 0.256 0.458 0.648 0.677 6.158SHORTAGE AT WATERCOUJRSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0-000 0.000 0.000WATERCOURSE REQT. 2.601 1.705 1.678 2.193 2.351 1.607 1.601 3.248 5.731 6.196 6.020 4.419 39.350

PUMP CAPACITY GOOD AREA 0.870 0.658 0.631 0.793 0.827 0.658 0.606 0.811 0.918 0.918 0.918 0.918 9.526PUMPED FROM GOOD AREA 0.403 0.649 0.567 0.784 0.754 0.645 0.199 0.118 0.256 0.458 0.648 0.677 6.158EVAPORATION 6OOD APEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.022 0.071RECHARGE TO GOOD AREA 0.463 0.268 0.271 0.3J6 0.353 0.279 0.343 0.545 0.734 0.973 1.014 0.806 6.385NET CHANGE -- GOOD AREA 0.060 -0.380 -0.296 -0.449 -0.401 -0.366 0.144 0.427 0.478 0.516 0.316 0.108 0.156PUMP CAPACITY BAD AREA 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 1.290 15.480PUMPED TO DRAINAGE 0.714 0.564 0.499 0.5T0 0.589 0.472 0.522 0.574 0.736 0.967 0.991 0.893 8.091EVAPORATION BAD AREA 0.202 0.083 0.051 0.086 0.090 0.074 0.028 0.600 0.946 1.109 1.043 0.561 4.875RECHARGE TO BAD AREA 0.816 n.547 0.551 0.644 0-678 0.544 0.600 1.189 1.722 2.132 2.100 1.455 12.978NET CHANGE BAD AREA -0.100 -0.101 0.000 -0.012 -0.000 -0.002 0.051 0.015 0.039 0.056 0.066 0.001 0.013DRAIN STORAGE CONTENT 0.000 0.000 0-000 O-OUO 0.000 0-000 0-000 0.000 0.000 0.000 0.000 0.000 0.000

ENERbY (MILLION KWH)TOTAL PUMP LOAD 82.75 110.14 101.73 131.46 133.79 115.27 58.17 51.26 74.78 116.48 134.61 126.75 1237.20TOTAL BASE LOAD 946.00 923.00 920.00 930.U0 913.00 929.00 976.00 1001.00 1023.00 1031.00 1048.00 1048.00 11688.00TOTAL ENERGY LOAD 1028.75 1033.14 1021.73 1061.46 1046.79 1044.27 1034.17 1052.26 1097.78 1147.48 1182.61 1174.75 12925.20HYDRO ENERGY TO LOAD 510.77 243.45 149.14 267.61 170.17 0.00 0.00 0.00 0.00 37.84 822.39 643.18 2844.54THERMAL ENERGY TO LOAD 517.91 789.62 872.52 793.77 876.54 1044.20 1034.10 1052.19 1097.70 1109.56 360.13 531.49 10079.73ENERGY DEFICIENCY 0.00 0-00 0.00 o.uO 0-00 0-00 0.00 0-00 0-00 0-00 0.00 0-00 0-00INTERZONE ENtRGY TRANSFER-510.17 -243.45 -149.14 -267.61 -170.17 0.00 0.00 0.00 0.00 -37.84 -822.39 -643.18 _2844.54HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

POWER (MEGAWATTS)PEAK PUMP LOAD 126.71 176.23 170.33 199.81 206.18 184.81 103.92 79.23 118.58 186.26 205.37 195.00 1952.44PEAK BASE LOAD 2031.00 1979.00 1976.00 2009.00 1944.00 2000.00 2095.00 2165.00 2205.00 2215.00 2251.00 2251.00 25121.00TOTAL PEAK LOAD 2157.71 2155.23 2146.33 2208.81 2150.18 2184.81 2198.92 2244.23 2323.58 2401.26 2456.37 2446.00 27073.44HYDRO CAPACITY TO LOAD 1220.92 1320.52 1281.71 923.16 233.11 0.00 0.00 0.00 o.00 1262.28 1251.64 1265.71 8759.16THERMAL CAPACITY TO LOAD 936.80 834.70 864.62 1285.55 1917.07 2184.81 2198.92 2244.23 2323.58 1138.99 1204.73 1180.29 18314.29FIRM CAPACITY TRANSFtR -1220.92-1320.52-1281.71 -923.Z6 -233.11 0.00 0.00 29-57 0.00-1262.28-1251.64-1265.71 -8729-58PEAK RESERVE 912.29 914.77 923.67 1101.19 1159.82 1125.19 1111.08 1065.77 986.42 908.74 853.63 864.00 11926.56

B-59

SYSTEM SUMMARY

WATER (MAF) OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AIJC, SEPT TOTAL

FROM RIVER INFLOW 5.430 3.230 2.780 2.760 2-970 5.040 7-890 13.500 21.960 31.160 27.910 12.890 137.520FROM STORAGE RELEASE 1.057 1.478 1.932 2.597 3.778 2.289 0.364 -0.602 -4.834 -5.412 -1.422 -I.o93 0.132FROM TRIBUTARIES 0.280 0.200 0.220 0.210 0.240 0.730 1.100 1.090 0.840 1-340 0.930 0.550 7.730FROM DRAINS 2.823 1.738 1.138 1.6r5 1.600 2.202 2.773 7.466 11.730 25.853 31.226 15.253 105.476TO RESERVOIR EVAPORATION 0.182 0.110 0.077 0.055 0.036 0.012 0-016 0.040 0.070 0.036 0.126 0.148 0.)oaTO RIVER OUTtLOW 0.955 0.018 0.040 -0.000 -0.003 0.000 -0.000 0.732 1.403 6.443 8.921 4.738 23.249TO RIVER LOSS -3.207 -0.016 0.191 0.615 0.418 0.681 0.983 3.275 3.571 8.438 5.183 -4.387 15.746TO LINK LOSS 0.589 0.494 0.476 0.444 0.566 0.615 0.633 0.494 0.458 0.409 0.433 0.496 6.108TO CANAL LOSS 2.254 1.576 1.513 1.518 1-918 1.971 2.143 2.572 2.785 2.643 2.810 2.594 26.357TO WATERCOURbE 6.133 2.739 2.640 2.884 4.067 4.798 5.595 7.072 9.989 9.348 10.189 8.976 74.431FROM GROUND wATER 5.093 2.929 2.051 2.726 4.468 3.883 1.345 1.923 3.364 3.695 5.284 5.296 42.056SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000WATERCOURSE REQT. 11.226 5.668 4-691 5.610 8.535 8.681 6.940 8.995 13.353 13.043 15.473 14.272 116.487

PUMP CAPACITY GOOD AREA 6.308 3.581 2.820 3.252 5.278 5.611 4.560 4.989 6.142 5.766 6.381 6.510 61.198PUMPED FROM GOOD AREA 5.093 2.929 2.051 2.726 4.468 3.883 1.345 1.923 3.364 3.695 5.284 5.296 42.056EVAPORATION GOOD AREA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.055 0.095 0.030 0.183RECHARGE TO GOOD AREA 3.584 2.121 1.718 1.908 2.835 3.267 2.842 3.163 3.931 5.401 5.998 4.710 41.479NET CHANGE -- GOOD AREA -1.510 -0.808 -0.333 -0.817 -1.632 -0.616 1.498 1.240 0.565 1.650 0.619 -0.617 -0-761PUMP CAPACITY BAD AREA 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 1.884 22.608PUMPED TO DRAINAGE 0.947 0-624 0.556 0.651 0.676 0.576 0.624 0.861 1.162 1.321 1.34q 1.233 10.582EVAPORATION BAD AREA 0.445 0.243 0.197 0.246 0.297 0.335 0.249 0.799 1.188 1.460 1.432 0.851 7.741RECHARGE TO BAD ARFA 1.275 0.823 0.801 0.918 1.060 0.990 0.964 1.573 2.191 2.770 2.793 2.006 18.165NET CHANGE BAD AREA -0.117 -0.044 0.048 0.021 0.087 0.079 0.092 -0.087 -0.159 -0.011 0.012 -0.078 -0.158DRAIN STORAGE CONTENT 9.689 9.735 9.783 9.853 9,926 10.012 10.099 10.189 10.305 10.431 10.544 10.667 121.233

ENERbY (MILLION KWH)TOTAL PUMP LOAD 531.58 325.79 244.13 317.04 487.51 429.16 173.13 236.08 393.52 436.07 582.19 574.85 4731.05TOTAL BASE LOAD 1727.00 1714.00 1730.00 1752.00 1735.00 1720.00 1808.00 1864.00 1906.00 1914.00 1952.00 1952.00 21774.00TOTAL ENERGY LOAD 2258.58 2039.79 1974.13 2069.U4 2222.51 2149.16 1981.13 2100.08 2299.52 2350.07 2534.19 2526.85 26505.04HYDRO ENERGY TO LOAD 1740.50 1250.05 1101.49 1275.15 1345.82 1098.25 942.48 1036.50 1201.66 1240.35 2173.88 1995.18 16401.29THERMAL ENERGY TO LOAD 517-91 789.62 872.52 793.77 876-54 1050.77 1038.54 1059-78 1097.70 1109.56 360.13 531.49 10098.32ENERGY DEFICIENCY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.72 0.00 0.00 0.00 0.00 -3.72INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRO ENERGY SURPLUS 0.00 0.00 0.00 0.00 118.36 143.31 283.41 395.08 530-57 726.55 648.86 476.77 3322.90

POWER (MEGAWATTS)PEAK PUMP LOAD 864.87 683.80 558.57 652.93 852.84 809.29 412.81 505.04 725.94 790.80 941.04 932.38 8730.31PEAK BASE LOAD 3832.00 3800.00 3835.00 390Z.00 3837.00 3830.00 4009.00 4162.00 4243.00 4253.00 4331.00 4331.00 48365.00TOTAL PEAK LOAD 4696.87 4483.80 4393.57 4554.93 4689.84 4639.29 4421.81 4667.04 4968.94 5043.80 5272.04 5263.38 57095.31HYDRO CAPACITY TO LOAD 3760.07 3649.10 3528.95 3269.38 2772.77 2076.28 1892.52 1956.23 2581.66 3904.82 4067.32 4083.08 37542.19THERMAL CAPACITY TO LOAD 936.80 834.70 864.62 1285.55 1917.07 2563.01 2529.29 2681.23 2387.29 1138.99 1204.73 1180.29 19523.55FIRM CAPACITY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 2570-20 2672.30 2642.38 2461.45 1829.93 1183-99 1217.71 1036.19 1359.71 2608.01 2542.27 2566.71 24690.87

B-60

APPENDIX C

FIRST HISTORIC SEQUENCE

SYSTEM SIMARIES 1966-85

SYSTEM SUMMARY

___ _ _ _ _ _ _ _ ~~~~1966___ _ _ _ _ _ _

- wAU~~~T~~4J~~F1 OLu 1 NOV Jn L JAN FtM AR lP 1Y UE JUYG1!T TT.L

-TR-U R IVL' 1NlLUW _ 5.37ia '.U oe7 .U14 e.aub e.jlU1 1.3i3 r.1 le.cutJ1 6.90! 25.925 Je.IUi7 17.2ii -rJT3T.rzqFROM STORAGE FkELE6SE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000FROM TRIRflTA1VIE7S -0-.z8u0.0eU-W-.Z7G- U.210 U.e ~ .1 1.IU00 9U 0 W'.'8'4O7W T -3 4U U(T -Ue55W77 1(FROM DRAINS 4,405 2 .4?, 1.552 1.83'. 1.121 1.600 5.473 9.829 IJ.b22 25.397 37.381 23.U00 1?7.b53TU' REUSFRVOT WT_VAYORATO4 0`fO`_0.T0u- UU0owo Y ova----U -Uw U 1 ou0-;Dg 00 GO0 700TO kIVER OUTFLOW 2.152 0 .se, 0.103 0.243 0.025 0.000 1.222 2.3 J.577 7.999 13.763 10.710 42.922TU) RIVER LOSS -2.*454 -0.261 -Ueu43 U.4ZL (J.U6 U.liUe if.J1J 1. .-3vq 3.136 1. 1,3Ifr 8.173 -3.004 £0.Y?ST C LINK LOSS 0.212 0.164. 0.153 0.106 0.129 0.267 0.376 U.377 0.397 0.371 0.369 0.368 3. ~39)T15 CANAL 'LO'S5- I*bi I*U 1 T U. 16a u.a07 I e * £9-173VY -~ 378 -Z-eU-O--7-3f6- --- ZTW- 175eTO w,ATFHCOURSE 4.096 2.62~: 2.0694 1.412 1.512 2.756 3.029 5 0 33) 7.1753 t6.822 8.426 7.423 54.949FROM4 OUA - -- UNl- ATEI. SIu 01 - 1T U 6 7 3 U T 0 8 4 . 1 7_7SHIORTAGE AT 6.ATERCCURSE 0.900 0.64 3 0.3-3A 0.447 0.942 0.198 0.158 0.000 0.000 0.000 0.001 0.000 J.687WATLRLOUURbt 'ktu1. 6. 315 4.CUe, 3.04 ' .£*-3 J. 3L5 J.965 4.13 5. 76d 1 6.4 IJ 9.406b 9.1 38 8*e5u P68.686

PUIMP CAPAVI-TV-1GOnD AREA -Y1Jt0 u. 14 ? U.1 By-_ 0.114 0. 610 1.031 £. U6T.0IFF.1g I. U 9I -F. -U9__l1_T177DIW1 U8PUMPFD FROM G00OD AdEA 1.110 0.932 U.807 0.706 n.811 1.031 0.944 0.7z9 0.9720 0.644 0.711 0 .t52 7 10.051FvAPOm-ATrUKNlCUU1 APE-A ----- U o.ige. U,178 U*lzq u.l5ie 0.115 0.210u 0.405 0.11a -1.535 1.o7 -Z .22 _ 7z__T.137F_RLCI.ARGE TO (.0Gbj AAREA 2.071 -1.443 1.135 0.966 1.142 1.912 1.831 2.306 2.916 4.739 4.70t6 3.389 28.SG7)N1,T CfiiNG -- (POsJ ARtA U.74U 0.Jn U.15u 0.1:51 U.UIP9 u.(u6 0.07l '.17e~ 1.478 e )Ou e.ess 1.140 J1.4.F3PUMP CAPACITY BAD AREA 0.000 0. 000 __o0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

EVAPOiRATTUI. ADAI Ai%EA 0.543 0.4.60 0.375 0.2Zii 0.374. 0.375 0.424 U.762 1.299 1.7141 1.761 1.8178RFLCHOAiGE TO TFA11 A9F_A U. I 03W W;0U4D__G.V 0. U450 0_6iW0 (J 1 .063I.6_ Z.Ti'I 7T T772Nt T CHANGE 6ALU Arl.A 0,4i9 0.171 0.135 0.121 0.0 75 0.176 0.231 0.301 0.383 0.593 0. 463 0.e9b e46_lURrrNST?T7wrGUT-T TTNT - u.uuu 0.000 0.000 0.000 0.000 0.000 0.000 0.000 u0.oul 0000oo 0.000 0.000

TOTAL PUJMP LOADi 58.29 48.12 42 .54 35.9c 45.99 55.13 53.90 41.69 39.12 32.1Z 33.55 3A.72 923.67TOTAL BASIE LPA1] 2-ST.00 739.rnl 247i2U- -2- -W-OG zj -ZG-23-.00- -VI.O 749.00 Z54.fl0 254.00 -Z576-40a6ebeUO79,29 UYTOTAL FNFfRGY LOAD 297.29 287.11 284.5'. 268.90 275.99 286.73 294.90 289.69 ZY3.12 2bb.12 289.55 300.72 3'454.6 I

Tt'FYMAL ENFHrY TO LOADr 178.i0 191.71 Z01.42 191.73 21le82 181.98 15m.66 156.Oi 154.69 155.81 158.26 169.14 .95r

INTIRIONE ENERGY TRANSFEk 0.00 0.00 0.0 0.00 0.00 0.00 0.00 uO 0.00 0.00O 0.00 0.00 0.00 0.00HynnP FRYU 1[[-80 0 -- oooooo -; ou 0.00 .oo - o.e oo 0 07ov - o -o -

PFA~ PUImP LOAUI 1U1.l7 85.51) 1 82. 0, 75.a0 95. 36 98.59 96. 07 d6. -5 13. 41 13.02 75.25 81.46 I024.54PrAK OlASF -OATi -550.00 -5-6VgQ -5T0. 00 3VI_00 571~0 .- ID3W.-U0_ 545;U0 56j2.00 5T7h_00 TOTAL PLAK LOAD 651.c.7 654.55 652 .fo 616a10 606.36 616.5-i 641.07 648.05 6,7.4-2 64ti.02 658.25 613.46 -7714.54HYnR~O CAPAC-1TTY TO LOAD 16?.74 -16Y t1 152.718 150.69 1-43.-BI 0 8V9 186.63 T83.10 -189. 63 1785017§D I 80_.2-_747fl`r7'y_THFkMAL CAPACITY TO LuAi. 447. 77 4.46.512 447.51 443.52 443.64 433.66 454.44 46~4. '45 4t.>7.79 469.152 4 7Lk. 40 493.22 5)'91.00-FTP-RCAPALITY TRAlIU.l)f 0.0 0 j .00 0.-00 0.00 0.00 0.00 0.00 0.00 0.00 U.0U 0.00 0.00 0.00PE2A~. RESEiivE 135 U.77 127.3n~ 125.76 15 -8 162.44 191.32 17nI.Sb --171.05 170.21 168.48 112.60 157.78 1q14.?2

c-1

SYSTFM SUMIMARY

1967 _____

0r ATF-WMF- (y nCT FLW N - E J - t MAR- -- FAi- -JlJTF lu-JU------T-L

-FRnM-R7Vy, sNtttJu- --- b6.4 b J 1; ?B . b6 Z b I Sf.@4C3 :.#j 997q-: .o J q>F2Tf-- t6,9a-lU78t -- rZ.

FInm STORAGE F ELEASE 0.000 0.000 U.GOu 0.000 0.000 0.000 0.000 -1.4'I -l.148 -1.4Z7 -0.391 O.UO1 -4.92bFROM TRIPUTArE-S 0.ZO -- 7-0r1 eaZJ---u-Zn - .40 -1I U-.-93C 0-5507----7-1T30FROM IURAI?4N 7.944U, 2.5't 4 1.333 1.540 1.080 1.429 3.791 5.924 7.792 25.930 33.364 13.133 lOh.398TO RF5FRV3TR--FVAFFP T-TO?N 0 - U- UU D ou UfU0OW IF.0z 0 033 0 -0Z5* 0. On 0--W 0t0 TO RTVER OUTFLOW. 4.401 1.13 9 0.130 0.133 -0.002 -0.000 0.633 0.u^4 1.074 7.459 12.368 7.018 15.337

-TP-RIVfI Lt]5'. -4. i 4 -1.194 -U.09J4 Uhk6 u.l?I U.5QB 1 049F4 I .tHt 057r I*0.10 6.194 -5.29 111?75-

TO LINK LOSS 0.2A5 0.14u U.152 U.lOt 0.18 0 .190 0.280 0.350 U.337 0.369 0.367 0.401 3.114TO CANAL LO57 L-U7V. 92- U78U83-Tt0-tZ4-5 1.671- -2;.ZZ9 z--TO W.ATRRCIJRSt 4.612 2.461 1.927 1.399 1.535 2.682 2.867 4'.277 .354 ti.344 6.267 7.391 51.l16FROM uPWtNfFIJUTEIP 173 7s- U- W5 -UO.2Z---3TI -. 7 1;u4-4 -1.239 1.I- 1.154- I- .I71 -T 1SA'.-SlinkTAGE AT z,ATLRCOURSF 0.401 0.622 0.42q 0.422 1.010 0.777 0.261 0.1I'7 0.830 0.000 0.004 0.000 4.ih7-WAT7ErC0LIRZ)L btOl. b.gc-4 4.Il5e J.ZA1i Z.b5Uv 3.649R 4-317 4.17Zi 5.7T1 4.511 v.39 9.37 8.,3hZ 7 U.;Tr*7

PjM P CAFACTTY-OOl-AR--A- -T;371 1.O1T U.9ZU * ? -386 -T' .-TZ7-VI3ZTV W 1. T75 14. 362PUMPEd jROM CUOI) AREA 1.375 1.U75 0.925 0.129 1.103 1.258 1.044 1.239 1 .387 1.054 1.104 1.171 IJ.564UVAPORAT fN-GUU0APE-r0-- -- U.63Z O.J77 *4--37WU7T43b6 -- 4W U.478-071 0 --l.--T - 2-02W TiiTVD i; 10.ir-RLCfiARC4 TO GOOD AREA 2.243 1.400 1.131 0.981 1.i19 1.789 1.760 2.169 e.133 4.720 4.747 3.444 e.-135NtT CHANFit - UL)U(JU ARtA J,355 -U.u5c _U.163 -U1ZI -U.zu 0.086 U.e.ZI U. le 1.6i6 1.463 '.63I 4.U60PUMP CAPACITY RAU ARFA 0.200 O.iOU 0.200 0.200 0.200 0.200 0.200 0.200 0.200 O.200 0.200 0.200 2.400P(iVJF.PU Tf-lWTWATT-N1 U00 -U0U19'4 U.039 UT03T ..i 4 UUFC o.n 0 o. OFVAPORATION I,AP AFEA 0.608 0.484 0.377 0.28' 0.389 0.39A 0.440 0.870 1.461 1.964 1.891 1.435 IO.rolRUCHA`R n'U"ARt-VV-A 0- -2076-07 TU74 T0. <59 0.636 -T- -148-6Z7- Z.ZZ ---1.6WW 3 T.71NET CHANGE BAD APLA 0.019 -0.05b 0.080 0.0O5 0.020 0.167 0.156 0.111 Y.141 0.303 0.277 0.196 1.*19IJHAIN MUNAbt LUNTN'41 u.uuo o.uou u.ouo u.ou0 u.nuo u.uuu u.uuu u.uoo o.uou u.uuu u.ouu 0.000 0.000

~tNFh6 r tLTOK wi __IN-__ _ W___TOTAL PUMP LOAD 89.19 74.44 56.15 48.87 66.60 75.77 61.14 74.99 83.30 56.82 57.08 61.29 80U.64TOTAL DAS7TI-nA1 -- -21 *0-aO--0222*61 -- -00 -7T7 -2h370e6U UU 2b.I2W 770-26 -8T.U0 28 - -T-----H W -0

TOTAL ENERGY LOAD 350.19 336.44 327.15 311.87 326.60 335.77 333.14 353.99 370.30 343.82 347.08 357.29 40s3.64YITINO LNtNbT 1U tLuAu 134.20 0r.i r1 9.61 MM Si b. Il) v6.3 134.53 J38.93 lJJ.az LJC.rD 235.64 e'4C e b!4.h)

T'ERMAL ENERGY 10 LOAIJ 715.96 248.62 237.19 232.89 259.48 239.44 193.58 214.93 238.46 111.04 111.22 114.84 2417.6bENtWYUV- UtDr CTF C v -U.UZ -U.04 -0.34 - 21 -0.4u -U.Ue Oz .u. -U .rz- U----UU- .uO - .-INTERZONE ENERGY TRANSFIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00rYU 1 -FG r, - NrOVCy SuR-PT- Ous 0.0UU O.UO -07--u u.oo O. U0 U U-W- 3.o1a 94.05 9 -i67Ar6W

FUWLN IP'tUAWATII4PEAK PtIJP LOAD 140.21 123.14 102.55 94.77 112.17 122.09 101.22 121.q2 133.09 104.86 104.89 110.41 1371.32PEAK 8A3T-LIOAT- '580 OU -39 F-0U -61Z*-UU OVU o7O-w7v b2XV61 6U5**U -- 4bUU 65&.Uu bS7< 9IU-

TOTAL PEAK LOAD 728.21 714.14 714.55 699.77 699.17 705.09 713.22 752.92 1r8.09 750.86 760.89 775.41 874?.3ZHYDRO rCAPACITY TOThOAIY T8Tv6 153.32 15Z.666-- .-9-69- I4t 171- 6 91916 99U3T03Y--iW69 W3Z5W-51 4,390 65-TilEkMAL CAPACITY TO LOAI, 526.55 527.014 511322 504.03 505.76 509-53 517.30 523.14 590.30 318.03 308.95 317.02 5660.87FIRM CAFACITY TI4ANSPtR 0.00 o0.o 0.00 o0u. 0.00 00uu 0.U0 0.00 0.0u 0.u0 O.00 0-00 0.00PEAK RESE'.VE 106.65 90.18 89.11 100.93 96.14 117.47 128.94 86.41 115.50 456.97 466.05 457.98 Z314.34

C-2

SYSTEM SUMmARY

______ ~~~~~~ ~~1968 _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

iWnVTIUMT---- CC;T NOV DLL TJAN UI'1 AR jPW---NUTJULT AT SLPTTTATL

FR~OM STORAGE RELEA5E 1.133 O. 73'4 0.493 0.493 1.182 0.177 -0.132 -0.633 _1.bI8 -1.420 -0.391 00004 0.077FROM Tltr9TTAV WrS5----- u.vio 0.2uu U-22U U.2100-(r24. 0.130 1.100 1 .090f U.80q 1.Jqu u -0 U .55u I 1.30FPOM :)RATN~S 4.365 1.781 1.310 1.619 2.024 4.054 8.621 16.149 24.3J67 33.046 27.16$ 15.237 1J3. 74?Tr, RFESRVVIR1UVA7UWATTDN` .U?_ U.UIU 0.000OU6 uuuoi o.UUos U.uus> 0.00 0v ? U.U?JTu.3- o.UZ' .4 7--T7rTO tRIVrR OCITFLO,O 2.013 0.360, 0,015 0.1538 0.222 0.921 2.650 5.151 6.114 12.025 11.e53 6.894 49.154TO NIVti LUbb -2.15y -U.79r U.U0i? U04.17 U.MUU 1.J14 2.v'o 5. tU44 b.u51 f.u3u U .5bnp -17 U./ilTOl LINK LOSS 0.279 0.224 0.1q5 0.151 0.279 0.292 0.334 0.313 0.360 0.359 0.359 0.364 3.50i-TO CA N4A L_ LUT5W -- e.ig 1.i i,u6. t79¶2m L.275 T.313 L ..3oeT6y6l 1zZWZi ".es z.3 1T9.'8g 9TO) %A T IRCUURJSt 4.464 2.615 2.107 1.688 3.017 3.040 3.147 4.501 1.173 7.997 8.209 7.384 55.641FRMR-GRO-IJVT1YATTWq- 1.779 1 .e1I O4 U. 9z0 1.UZ3 ---. 573-Tr.U Yu 1.17 1-136r.,!81 1 5. 6-61SHIORTAGFE AT 4ATERCOUR,5f 0.505 0.0iq3 U. 202 U.157 0.000 0.155 0.000 0.000 0.000 0.000 0.OOd 0.002 1.122--WATIPtOuR.-L SLQI. 0. 14a 4.2 3.J135 C. 1bt 4.uqp '4. f9 4.ver g 5. 6,U d. rlVo 9.J39.2 907U4 8. 96 T e. WY--

PUIMP CApAITiY1OTWr -AWEA---- j. ir5 I.l u . 9( go -- 1-3ba it5ssb1.J,e ~.'.49 I7 I 5Z T1 1 .5 I e. ler-PuMPFI;, FROM (.001) AR~EA 1.779 1.dll 0.994 0.970 1.073 1.523 1.090 1.179 1.471 1.396 1,487 1.581 15.b6l

RFChiAHGE TO GOOli ARZEA 2.256 1 .633 1.275 1.181 1.734 2.083 1.852 2.160 2.942 4.703 4.792 3 .1 I1 3(1)*31NIt CriANbL- ,uOuLJ AF~LA -0#p19 -IJU *0 1 -U.1~4 -u.Ufb U.eb -. 6 U. 04 .16 UofL U*3 l.09 U 9.951 0.ZZ9 i.Pi,MP CAPACITI R.AU AkFA 0.200 0.z0U 0.200 -0.200 0.200 0.200 0.200 0.200 o.200 0.200 0.20$. 0.200 ______0_

Pii"PFIT TO -WAMAGE' -- DU1 U.Uq4J u70W4* U *U3 U~ .U46 U .041 0 -- U 47q0W0- U6EF .0U-.UNT 0. 561EVAPOR~AT!0. f9AD Af~EA O.8s2 0.510 G. 41I) 0.317 0.428 0.509 0.515 0.ci23 1.546 2.095 Z.002 1 . 1 9 1I.t.35REC4;ARr3f T-A' -~ o1r-ur----s-. 3I obb .1,-0.43 9 6 1., 0.6 Wz--Ius7- T__ V- - -; ----.- y- r-j--n --NET CH-ANGEL BALI ARItA 0.127 0.1le 0*05') 0.096 0.139 0.1L44 0.107 04i 0. ~ 1096 0.1I68 0. I7/- 0.123 1.4331TT-TW sjun;HPjt (LUN[tNT 0.000 0.000 0.000 0.UUU 0.000 0.000 0.000u 0--.000 0.000 0.00 0.000- 0.000 0.000

TOTAL PUMP LOAD 111.48 76.84 63.46 57.17 56.12 95.95 60.86 66.34 64.95 79*3i l$S.10 91.06 91e9.29TOiTAL SIASE LG;AT-V- -- vI0 200003DTU .o.u .suq.ou -IU3DW37033--S 37134.J TnDUOTOTAL FNEHCAY LOAIJ 404.4a 372.84 369.48 363.77 358.12 399.95 375.86 389.34 416.95 411.33 423.1U 434.n6 M719,79

TiPkMAL FNlR6Y TO LOAD 128.07 126.7J 131.21 133.61 119.39 133.51 130.99 132.71 134.33 131.57 134.49 136.90 1513.55E7_t1Gy Ur rTCruiCv _. -.O 0.00 u * pp 7- g.pp 0.00 Ua0 ua 0-WJuo 00 0.00INTER0ONE ENERGY TRAN5FIR 0.00 .00 0.00 0 .00 0 .00 0 .00 0 .00QOO 0.00 0.00 0.00 0.00 0.00 0.00

-TiYURO ENfERrGV5URP11JS - 30.02~ T6w 3Z UT I3. a4F 71 5 ~ I . Z1 ~ T 7 7

PEAK PLIMP LOAL 1esO.07 144.36 131.56 125 *2 14 118.47 162.95 124.92 133.24 155.12 144.493 151.22 169.79 1r31.41PEAK -BASE U-OIATi OT 6.o 6s uI89 IW 67g.00610T~W~3.0 74-6u -00 -. U- 7`T7-0W Y-i~o. D-TOTAL PEAK LnAU A41.1$7 809.36 819.56 820.78 791.47 839.95 832.92 8o5.24 902.12 892.43 909.22 931.79 16?b1.41HmynlTo CAPAr1TTYTO LOA 4.. D8Wi167 J7.04s 1 7.,4, -WTM-9Z--4 9V-Z- 50371U V_67-3 _Z47 L 5. T09? 0e'.TMfRMAL CAPACITY 70 LOA., 400.14 400.91 433.32 448.98 343.91 422.52 415.99 416.q5 398.36 216.0? 2?80.90 289.08 .05Z 7.C9

_TTR7WLAPAFL[TY THAN5FER 0.00 0.00 0.o00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00uPLAK kIESEIPVE 374.86 374.0i) 341.68 349.02 454.09 388.48 408.01 4U1.05 4e5.64 604.a1 629.98 613.30 5371.00

SYSTIM SUMMARY

1969 _______ _ _

WATUWR1¶AFT - rT NUV JAN FA 1 W 1R -- uJUN JUL -5 T

f'RO H] VL JNt Luw 4,9 jz 3. 22 t 3.CS2 if.5 1 1 t. 5,;h 14. 'j U b-412 ^fl.24 5 1 t t4 If,h> -- 1W. t65. -142 IZ~s FROM STORArE kELEA5E 1.127 0.7U U.490 0.4Q0 1.176 0.635 -0.145 -1.077 -1.61' -1.418 -0.386 0.002 0.(1t.FROM TR ERUTAR-i5 -0 U.ZUU O.ZZ U 72U 0u.rJuI- r- TU-U- -T4 . 0930 .5S0 -e8 U -FROM DRAINS 5.121 2.101 1.411 1.571 1.U58 2.202 4.796 6.714 13.036 23.4Z7 33.792 19.786 12U.U23

-TC RTSfRVLR- tVAVIuwATIUI--- .22 O.O1U U7 O,UUI-U.OU', U.UFU4 UU6 U.U2U 07 f X.UZ- -W- Z7 - (. 0I-- - ;r'r--TO RIVFR OUTFLOW 2.393 0.t15 U.065 0.17Z 0.019 0.2U7 1.110 1.409 J.025 7.256 14.05Z 9.759 40.urk4

- TTI klVtl? L(3bb -3.345 -0Oh35 0.1014 0.-l" 0.191 C@}r .'II S ilS L.656 14.6Z.3 6.5 Ius u0. 409_, ds .To LliK LOSS 0.462 0.332 0.283 0.236 0.373 0.42 7 0.341 0.335 U.40i 0.390 0.403 0.447 3a1- TANAL--TLTSS -- - 3 ----- * 1.16 l '1 0.931 s6 *- i r z -- .9 - 7- z7U0 'iJv77To aATFRCULiRSt 5.068 2.67U 2.37h 1.6q2 2.255 3.305 3.133 4.267 711i 1.517 h.067 7.2I7 S4.a1l-fRM-RU l U j -17910-A 1.3a89 0.Fq T1 .I3I T1.T TlTF3B0 169V -T6Th T.7555- ZWJ5- -- rwr-SHORTAGE AT W.ATEPCOURSF 0.000 0.000 0,000 0.034 0.4e1 0.000 0-000 0.000 0.000 0.000 0.004 0.003 0.46eWATLRf.UUR4t PtUl- l.O35 11.U5') 3.c9t z 15,3 i A 4,Uh. >-UB( 4.c5 f. es. Uu 7.423 9, 9Cb 9.C95 T..i. v e

F%MF~~~~~~~~~~~~~~~~~~~~~~~~~~ CAAC 9UD-XF- f.J U.q I, llO I.2 -~.7 .o .71-5 zC.-15 b 1.'V7 - Z,1q9 Z-.Z,Z75 --- Z Cl.433PUMPED FROM GOO AFEA 1.970 1.389 0.918 1.112 1.730 1.782 1.112 1.0o0 1.699 1.67A 1.855 2.005 18.549--rV-FnwxTJ0R (,U rsu-XktA 0.170o 0.468 U. 456 U.,039 -u,43u - 0.500 0-.$05 U.6K .B-Z- Z. I e. 332 1.-TD56 1I*1 76RLCHARGE TO GOOD APEA 2.417 1.601 1.33') 1.210 1.6)7 Z.718 1.e40 2.111 Z.929 4.667 4,824 3.556 30.406NEL (lHANbL -- GUUlJ AFtA -0.3e"* -0 Mi> -u.034 -u.04U -U.46a -U*UP4 u.czj U.14J U.149 U.bld u.6j6 -U.107 U.484PUMP CAPACITY BAD ARFA 0.200 0.200 0,200 0.200 0.200 0.'00 0.200 0,200 0.200 0.200 0.200 0.000PU9E13 -TO7-DV` 0A I1 N A U.-1u.u4e0 U.UJJ. U.--00 UYU5r- U,06U U.u5 u.5s4FVAPORATION BAn AkEA 0.916 0.530 0,445 0.357 0.4t1 0.515 0.537 0.928 1.545 2.091 2.006 1.5?6 11.886

-RtX-A EGL *t tJ AR F 10 u 3,,067 0.641 ' 05 g, u *0.55 0*116 0.op I7t50t6V0 Z7t17 c.23W -rz- 13 -r7TNET C0iANGE bAD ARFA 0.099 0.067 0.0sd 0.050 0.025 0.168 0.072 0.0 0.098 0.163 0.173 0.123 1.17tiUKAIN SJUKAUt LUNIrt1 u.UUU U.O1JU U.Uu uuuu . u .uuu U.UUU U.uUU U.UUU U.Uuu u,uuu U.UUU U.UUU

-- ~ EH 1 EN R T TtT N sLiO ___I_______

TOTAL PUMP LOA 124.00 90.92 55.57 72.23 114.A3 113.98 6L.40 78.39 106.24 104.14 116.02 126.66 lIbS.40-T0TAL 8A 3toA D3 3-42.00 J4J.UU-ag.0U lg5.UU 46.uU0 34.00 J61TU J7UUU0-. 3ye.3 7YD60 Z9 0 5 '46b.UU.0TOTAL ENERGY LOAD 466.nO 433.42 411.57 420.73 460.83 459.98 423.40 448.39 484.24 4e3.14 501.02 518.66 5511.40MyTiJk tNttl, Tu Lu tOAu 31.4 Z00.G1 e266e.4 23.49 3026 2ve.6 27.F3 co5.R3 V1.44 jcu.rc J3-.48 jv.b3 J3O2.3bTHERMAL ENERGY TO LOAD 147.50 145.29 144.91 146.22 152.53 167.39 164.64 162.54 162.77 162.39 165.51 169.00 1690.68ENtEFG otEILJLCECY U.uu u.uu o.uu u.uu .u o. 0u u0.uu ou u.uu ------ u0.uoINTERZONE ENERGY rRANSF(R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0*00 0.00 0.00

1yYDRU NERGY SURPLUS £01a.1 IS.rO 1Tg.3o 111J 4e.uj 35. I 4r1 q.y Jo J0.9J £15.50 169.J LI.rT J '4JO3w.3

ruwtF iMtuIAWAI IS1

PEAK PUMP LOAO! 220.15 185.18 136.18 163.85 210.57 209.41 126.62 164.41 Z03.50 196*72 207*51 222.46 2?46.56P-EAK BASE LUAU ro6.uu 1u9.00 794.00 11.0 TP6.U0 80D.00 5Ill00 pU *Up eo.U oze.uU 8.4a.uua 9r3%.p00tOTAL PEAK LOAD 986.15 954.18 930.18 968.55 981.51 977.41 931.62 992.41 1049.50 1044.72 1067.51 1096.46 11980.56HYUOO CAPA'LITT lI LUAD 698.93 PJ8a12 553970 5a.rl 44Y.02 41V93 *L 50UJ3. y9l.zv Pbe.U5 I1a.05 7rL.L1 133.5rTHEkMAL CAPACITY TO LOAU 306.35 316.04 312.10 385.15 452.79 527.59 511.99 48S88 458.23 382e67 346.67 375935 4665.83FIRM CAPALITY THANbPtL 0.00 0U.u U0UU .0UU U.0U U.UU U0UU .U0U 00U U0UU 0*UU U0.U U0UUPEAK RESEkYE 536.78 507.96 511.90 517.85 450.21 375.41 391.01 414.12 444.77 520.33 554.33 527.65 sr5Z.31

SYSTEM SUMMARY

1970

- TER-UAFF-- -- T NUV - UL' JAN Ft8 MAK APR MAY JUNE JULY AU5 SEPT TOTAL

rtUM NlYtk lNrLUi% b.6jg 3,794 3.541 3.b S -O32 C.*Ce .U9 llOJ- 15.3J1 23.Jb! SUJ79 zo. 425 I1.uu3 1V7*0juFFOM SlORAA,E NELEASE 1.124 0.133 0.488 0.488 1.172 0.186 -0.101 -0.668 -lb04 -1.404 -0.386 0.001 0.02Z9FROH TRitiTAFLtS - 0.2Io O.?uo o.2zo o.zlU 0.Z40 0.1JU 1.1° -1U 1. &j4u 9 U.93U U.b550 -/3'UFROMI DRAINS 7.264 3.291 2.044 2.466 1.654 5.261 12.25T 17.564 Z3.235 46.T66 36.365 14.081 17?.;s1TO RT 1u.ueD UuVu TC---u.uuC 0.010 OOU( u.uu 0.005 Qu.OU O.uuv UO.zq u.'Jz U.u3, o.uZ/ U.UUz U.167TO RIVER OUTFLOW 3.817 1.367 0.462 0.586 0.236 1.333 4.101 6.118 7.'i60 16.736 16.115 7.768 660.00i1Jtii KLv LOSS -J3.1J -O..XZ _ . 5 0 U*Q Z'#lZ ItJlZ9 J.2 . 7IZ14 P J2b -U. J4 -5.921 2U.ZbbTO LINK LOSS 0.459 0.349 0.30' 0.271 0...49 0.405 0.307 0.302 0.399 0*360 0.391 0.455 4.453-Tu CARLC-tTjs_s, - -.1b I.176 1.130 °.S,9C l*Z96 1. 1r5 1.211r 1. 519 z.!az 2.15 Z.sv Ozu Z.197 l9.-Z13T( WATFhCUURS[ 5.132 2.891 2.341 1.943 3.082 3.596 2.870 3.86r 6.610 6.890 7.610 7.055 54.159FRONM tiRUN T7ATERR-1---- ----- 7t2W8 17T50.939 U.9a4- 1.7ZZ I.894 1.39O 10577 Z.U1I C.Z19 2 49 . 1 7 Z1.161UShOpTAGE AT wATLRCOURSF 0.000 0.000 0.000 0.000 0.000 0.300 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000WATLRCUUPOF HUI. I 1.350 J.97j 3.Cah (C. 9Z 4.0JU4 2 o1490 4.CtO ).449 8,87 til ,1UY lU.161 9.b3e 7531

PUMPt-AP-ACTTY-OGUD AREA- -Z.59 1.48'9 - 1.21Z 1,Z55 z.llU2.113 z.Jj 1.3 .. U T.'75 e.Z61 2.54T- Z.b89 Z4.613PUJMPEU FPOM UUO0; APIA 2.218 1.078 0.939 0.9M4 1.722 1.894 1.396 1.577 Z.061 2.219 2.495 2.577 21.160tVAF(UTICN-UfLtP -AFEA---- .brl 0. 447 0.394 U,331 U.159 U.W18 0.466 U,517 15.89 1.9U1 Z.U58 1.'11 l U.UI3REChARGE TO G000 AREA 2.494 1.60' 1.351 1.2s2 1.910 2.315 1.814 2.040U .918 "550 4.840 3.618 .10.1T?Nl.T CHANbt -- LUUO ARtA -U.394 .Uff' U.u1IF -_U.U1I -U.111 -U.IU1 -U.U4T8 -U.ll -U.3.16 U.45.) U.8 -U.37U -aJ.WUPUMP CAPACITY bAD AWEA o0.200 0.on 0.200 0.200 0.200 0.200 00200 0.200 200U 0.00 0200 0.200 O.400FU)5F _TG uRITjNA5 _ -U. U.,1 .4 .4 U.U47 U.U49 U.U,43 U3S-JJ4 .r MU56 UUU -J5 0. 65T5WU~PEUT0-UR~~UE-- .u~ uu4VU~UT~u.u'r o.uu.uvT j u.u.16 UWFI 1 0 U 6 U U

FvAPOf.ATION bAD Ak4A 0,975 0.532 0 ,45 0.350 0.492 0.582 0.531 0.915 1.544 2.083 2.010 1.533 11.949RECI;AR G-E -AREW - 1.079 U. b7e UDP U,54b 0.4¶5 U.8631 U.73Z O.t3t J T.C17- Z 2.296 z r 1 1Ze 13 .t.91NtT ChiANGE BAL APEA 0.103 0,054 0.051 0.060 0.091 0.107 0.071 Q.0j1 u.100 0.159 0.174 0.1?6 1.317

-TiTN 5TCHKA1t CUNItNt 1O.UUU 0uou. U.U UU00 u.uuu .000 .000 UOo 0.00U U.u0U 0.001 0.000 U.0oo U. oo

- -E1ERIT --rE1LT UeN K-WVrTOTAL PUMP LOAD 149-45 67.34 59.94 62.90 113.31 124.85 89.72 106.03 1J9.Z8 152.85 172.22 177.50 1415.40TIJTAL BAST-LOAD -- -- 38-n-w00--390O.0 -4V.100 -44. uu-wrD0u0 uo- 44-.00uo- w52. o 4 45-.CU--4H C.UDO 46-l.uu 51". UOTOTAL ENERr.Y LOAO 53A.45 457.34 462.94 476.90 531.31 534.85 519.72 S47.03 5v1.?8 597.85 636.2Z 645.50 6539.40HYUM(J tNtHfiY II) Li)5qu 5hq.1IY 284.08 2Y0.12 C90.1C 3t2.95 311.43 JUO.20 329.20 369.O1 39:7. c 4e .1.9 *zb.91 't3-.T8T*ERMAL ENERGY TO LOAI] 17v,.63 173.?3 172.79 186.75 198.33 217.39 213.49 217.80 221.43 201.99 214.88 218.48 2415.18ENTFRG? fEtitrLTICY - - f-.uU U.o U .OO -O U-7- U U .UU 7-0--.D- U.U UUU OF.0W 1U.OU O.UOINTERIONE ENEkGY TPA1JSFLP 0.00 0.00 . 0.00 0.00 0.00 0.00 3.0OU 0.00 0.00 0.00 0.00 0.00 0.00IYIRO ENERGY-3wU1(PLUS 15U71T 16a.03-T438.- ITI----33iV--- 34.9 4h.4'-- 57.6-17--b-3-W 98.0u iU-.U 191 1?53

P1AK PUMP LOALi 267.96 145.8d 140.27 141.78 Z31.10 245.79 181.97 218.94 259.61 269.4Z 287.46 291.44 2i81.61PFAk -BASE U1A-C - 70 87.UU- q.1 '9ZU-`WI--YN9T-01--3 gu.uu 95U1.uU- S0.YUD 9Y"15. uu 1uUr.UUY-U3.UUru-D4W -Tr3w3.U0TOTAL PEAK LOAD 1137.96 1017.86 3041.21 1061.7e 1141.10 1153.79 1131.97 1198.94 1257.61 1276.42 1320.46 1335.44 14074.61RnYTRO CAPACTTY Tn LCAC 4p b3.4 u 6-52 9.0Z- t23.8a t7I.,p v15.317 7ZU.61 rZe;l. 7UThERMAL CAPACITY To LOA,. 438.44 371.59 423.18 473.33 596.94 670.98 648.91 669.02 663.73 599.86 605.15 614.71 6775.91!1RFM LAVALJ I Y IxAPNHN 0.3 U-UU U.UU U.UU U.UU U1UU UT3 U.UU 1Mu 1 80 U.UU 0U 0.U U-UU1U.UOPEAK RESERVE 464.56 S31.41 479.82 578.67 455.06 381.02 403.09 182.o 3a8.Z7 452.14 446.85 437.23 5401.09

C-5

SYSTEM SUMtIARY

________ ________ __ _____1 971 _ _ _

WA-TER 1MATI1 - nCrN vU t EI~ -pr - 'TV jt11 -JT- uwo r r cu

FROM STORA(,E IiEL-149 1.117 0. 72,8 0.4836 0 a4136 1.165 0.~,54 -0.414 -1.020) -1.597 -1.396 -0.38) 0.001 E.0iFROM TR IB1UTXiRIFS 0 .2 7 t U2UZf TW UI 0-~U1 J84 T1.3V(J0-(Y. 930 -

FROM UR4!I'S 4.6'2 2.421 1.5?7 1.479 0.984 1.408 5.193 10'.014 15.449 J1.940 36.80Oi 18.e54 1.10.172TV Rf 5FRVaTIR t"'P ORATI ON 00i 0D7Z 1U 0.0 ? T .D 7U 0D5U 7 V3T- O UT WU2 1~~TUj RIvER 0UTFLOw 2.228 0 .7 ?6 O.i75 0.143 0.004 -0.000 1.198 2.614. 4.265 10.540 14.37U 9.129 45..193

TO LINK LOSS 0.436 0.329 0.263 0.29.3 0.409 0.469 0.388 0.% U.418 o.39u Q.4?.3 0.'#59 tc2T5 CA3N AL t U5S - -694 I VatL. m0679.3v rr1-35337--.1 (. T8 - iz. r-6- z;-1-- Z. I 977463TO jATERCOURSE 4.326 2.42M 1.919 1.7194 2.347 3.2i84 3.300 4.455 7.,e6a 7.219 7.846 7.2e80 ~Jst

R?VD!--RU1JTNW~TEW FR- Z9' I5 1.111 T1. TY z .475z75 1 TI6 -1.92 - DI1V253T -Z.)535 ei.tifi,4SviOkTAGE AT ;.-ATLRCOURSF 0.4?4 0.000 0.072 0.000 0.4?6 0.04t1 0.000 0.000 0.000 0.000 0.000 0.000 0."169

PUtJMP CPAtTTY-UUMiAREW 79 i..t8 f 1.J66bL.43Z i!.4e'j if.fez 2.0.11 I 7T 7Z 86 1.9 s.1- 567

PUJMPEU FROM iU0OU ARLA 2.945 1.611 1.356 1.3m2 2.4?5 2.o525 1.136 1.266 I.'421 2.016 2.6,53 2.535 7J.b&9EWAFCIR'ATFUON UW0-AWUA- ---- 36 0.3"' 0J' 02s o J 4 WW 0 4 2 3 0 5 i T e 1.821 -1.194 8.3RCCiAIRGE TO (GOOdJ AREA 2.438 1.61,j 1.26,4 1.Zqg 1.867 2.408 1.950 2.173 3.013 '4.621 4.879 3. t88 VI.el'1,NtT CtIANOt -- UUUI ARtA -1.L43 -U .3.359 -U.456 -U*3613 -U.V3e -U .55 uo.gu U.J69 U.41'h UO3 uo5ao -U.U4Z -1 .T87PUMP CAPACITY B3AD AREA 0.270 ?u 0.270 0.270 0.210 0.210 0. 270 0.270 0.210 0.0 0.270 0.270 0.270 3.2e4UVpuMPE U Tr-uRWANAUrT- U * I - 0 .iz uii U-. 1o7 ITzDV-U.1r W 0.I39 J --U-.W U u *.1 Ui~a .IUU ~ 'FvAPORAtI0'- OAAI3 AkEA 0.89)6 0.49.5 0.435 0.3954 0.492 0.498 0.501 0.9313 1.!o3b Z.062 2.136 1.590 11.933REC~HARGE T 7A A1UZ Z Y3 U.~ 0qe .577 U. 117 U. b50YT.T1W ~. I 3 2 F 7 . j 5 13.115NET CHANGF bAji AHLA 0.044 0.018 -0.016 0.021 -09034 0.137 0.085 0.069 0.086 0.132 09002 -0.006 0.539DRNAIN STO1'AGL LUNItNT 0.000 0.000 0.000 0.000 0.000 0.000 U.UU0 0.000 0.000 0.000 U.UUU 0.000 0.000

TOTAL PUMP LOAD 720.46 123.03 105.14 107.34 188.35 194.88 78.92 91.04 139.76 148.48 190.66 166.87 1776.9ZTOTAL OASt LOAD 41WV.uO- --Z'kT4T#;Oo -45 uu 60 * 0 W.Ses * u u v8ou-. -Wz .fO- 3-T.-U0---U7 * 0W r W0 uw-TOTAL ENENRGY LOAD 681.46 1585.0.3 S79.14 566.34 654.35 652.88 558.92 585.04. 642.76 655.48 708.66 708.87 7S78.q2RiyUNU) tNtKI~T iUi LuAu 45. lb 63o.50 M M.a M M 3'sj.49 evv~.4b jg&.12 jgs.52 39.3 4(.LO 4u.ui 45T %79THEkMAL ENERGY TO LOAD 226.26 221.39 230.23 220.53 306.81 353.37 237.16 236.46 243.37 243.28 248.59 251.37 3018.84

-ENERI;Y EJtrIE,ILNLY 0.00-U 0.00 0.00 0700 0.00 0.00 0.00WuU U 07 D 7 D o 0.000INTERZONE ENFkC.Y TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

'*KYDR UNLHIjy upb 5U ' U 4l8.~ 0.00UU 453.60 OM0 -U.uu r5.66 125.1b6 13V.15B- 191.31 166.03 17U.91 103357SFl

F'UWLK~ iMiLiAWAI ISI

PEAK PUMP LOAD___ 362.41 264.11 244.97 242.40 333.69 341.60 161.55 183.81 216.59 268.72 337.11 332.65 334.9,66-7FA-ArSrT01-M 1U T10UR.00 4055.00 1036.00ou Ltll.00 1009.00 10270U 1086.00 1108.00 1111.00 1146.00 115.U 0D 7W747UU0TOTAL PEAK LOAD 1383.41 1266.11 1299.97 1278.40 1344.69 1350.60 1216.55 1269.81 1384.59 1385.72 1483.11 1490.65 16173.66

--vn-D T-ApACTTT-TOTOWUF 833.62 173.46 663.7Z MM.0 059.68 '31U.VU f1. 6'6.eu 731.ub ezb.rb 857.055 860.85 86 T .-3vTHERMAL CAPACITY TO LOAU 549.79 512.11 636.25 570.37 685.02 779.69 669.18 623.61 653.53 558.96 625.43 629.80 7494.32FIRMI CAPA.ITT INAN5ItLK 0.00 0.00 0.0 0.0 0.00 0.00 0.00 0.00 0.00 U.uu 0.Q0 0.00 0.00PEAK RESERVE 502.21 539.9 436 02963 4a7.98 393.31 503.82 549.39 519.47 614.04 547.57 S43.20 b2136.53

c-6

SYSTEM SUMMARY

1972

-~1TVWU ) - AlL-- OLT NUV nOL JAN FEn MAK AFR MAY JUNt JULY AUG 5FPi TUTAL

r HUiM RI Vtf IN? LUW S.tC ,_i9t J.y . 1139 C. tea oc. IZ9 5*.8C4 7 .I 1 9.851 eU.94U 36.lU I Z9.J51 10.960Ci 3 'il.9Tt FROM STORAGE kELEA5E 1.111 0.775 0.483 0.4a3 1.159 0-869 -0.386 -1.061 -1.589 -1.392 -0.38z 0.000 0.0p0FROM-TRT0UTARI'WlTU ----- if nu U.i .zU U,Z1U0 O.e40 U.710 1.LUU l.U9U U.84u 1.34U 0.9U U.55Ci 7.730FROM DRAINS 6.383 2.533 1.249 1.049 0.851 1.593 4.493 6.510 16.061 40.435 39.563 16.078 136.199TO RTstEvvlR EvAFDUATTJ------ 0.OZ7 0.Glu O.U-6 vf1 0.005 0.00cl 0.0U5 U.019 U.uji 0U0Z'4 U.CT U*U UZ U.156TO RIvER OUTFLOw 3.3Z1 1.0St, 0.149 -0.000 0.000 0.000 0.935 1.240 3.952 13.468 16,.283 8.821 49.226Yu NIVER LU35 -3.019 -U.9',3 -U.IU6 U.199 U.214 U0.b9 1.5Z5 1.9UU b.z9j jJ.5U8 J.534 -b.*19 17.192TO LINK LOSS 0.5F0 0.400 0.344 0.369 0.456 0.552 0.461 0.380 O.41e 0.369 0.401i 0.466 5.174

- D-C iNAL un55 ----- If3 *Z l.aU8 1.03Y 1.1u .g 48 1.599 104Ul 1.756 Z c.CI e.07 ra ---- 27 Z. 145 19.779JTo wATFNC0URSL 5.376 2.5qU 7.015 1.837 2.329 3.924 3.508 4.599 7.335 6.634 7.469 6.644 54.46UR0W GROUNU '.ATLR 4.616 175031 e53U---15 2.Z.5 1.U78 1.378 Z.lZ6 Z.au7 3.0Uq 3.U37 Z51.510

SHORTAGE AT WATERCOURSE 0.00 0.000 0.000 0.03 0.505 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.5A?WATLRCLUR3t RIOT- 1.999 4.U91 3.396 3.4U9 .O6 Z 6.019 4. 586 5.971 9.461 9*%%1 1U.565 9.a85 au.)58

PUMP CAPALITY G(UtlJAEAv-- 3.31' l.h5h 1.509 1.bU7 Ze.37 3.U58 2.C67 Z.318 J.Cz1 C.97C 3.436 3#589 31.683PUMPFE FROM GOOD AFEA 2.618 1.503 l.331 1.509 2.728 Z.Z55 1.078 1.378 W.126 2.807 3.091 3.037 2S.51(

-TFvpArrTnWA --Ttuu AREr U.561 - U.56 O.IZ$ U.e84 0.346 U.4Uo U.3TU -0D4;7T U.669 1.191 13b4 u.96u 7.310REChARGE 10 GOOb AREA 2.694 1.677 1.354 1.364 1.937 2.611 2.On5 2.241 3.050 4.577 4.918 3.709 3i'.137NtT IHANOt -- bUuD ARKA U0.4"5 -0.L82e -U.Z88b -u.4e' 1.137 -U.U70 U.5 I U.lqL U..55 0.2ro U.qae -0.eaa -U.bA3PUMP CAPACITY BAV ARfA 0.3?0 0.320 0.320 0.320 0.320 0.320 0.320 0.320 U.320 0.320 0.320 0.j20 3..e40WU1MPF!TTUURAT^NAUF 0.14h U.13t) U.1IU 0.U98 0.U93 u.u55 U.Ugu 0.U95 ".111 U.153 U.16U 0.13U 1.363EVAPOR4TIUN iAD AREA 0.976 0.541 0.480 0.469 0.571 0.565 0.578 1.05U 1.624 2.158 2.090 1.507 17.b16RFth[RGtNI) l:AU Al;EA 1.089 O.6714 U5S 0.7U9 0.542 U.r14 U. 69 1.117 7 j737 I .J13 c.ZOZ 1.638 13.848NFT CHANGE bAL ARIA -0.035 -0.04. -0.047 -0.058 -0.121 0.154 0.011 0.00 0.002 0.002 0.004 0.001 -0.133UkAI1 5TUt(MIt LUNUtNTIN U.UUU 0.UOb t.U0u U.UUU O.VUO U.0UU U.UUU 0.00 U.UUU 0.UUV 0.OUU U.UOO 0.000

[NttmGT tI-MLLION KH

TOTAL PUMf' LOAD 202.07 118.12 110.88 120.91 216.10 171.Z0 78.60 103.94 lbO.26 221.36 242.3'1 134.68 1 90.72iTTAt BASSFLrA11 514.00 515.0V 570.I 511U 5TTOD-50T.0V07--531 7- -5-W.lo-- 557_O0 -bZ-Ou 5 M4. u -O0. uO 741oUUTOTAL ENERGY LOAD 716.07 633.3? 639.d8 631.91 732.10 678.20 609.60 648."'4 717.26 783.36 516.39 814.66 8421.7ZITljmU LNtLGT TO LOAD 44b.l4

3gu. B I 3cs.v jouso' Sac .1l9 405.U 37Fj.to 38'. 99 452.24 qV0.13 523.c2 5r1.42 SU4j.IcO

TliERMAL ENUROY TO LOAU 269.87 262.47 272.88 271.03 369.11 272.45 253.39 259.90 2o4.97 285.17 293.11 297.40 3371.95ENER6Y DEO1CNC - U.UU U .o0 Ou 7U0 U.uU U0.U U.UU -0 U.UU0 -D-. UUf u.uu O.UU U.0U00 U.U0-INTERZONE ENERGY TPANSFLR 0.00 0.00 0.00 0.00 0.00 0.00 U.OU 0.00 0.00 U.00 0.00 0.00 0.00

-HYDR-n VER YUVUWPtrS -- a89.11 96.1 7Ttf ll,U .uu 1U.. 1U8 w3W .r4 I J. rT 297.21 19.90 13bs.51

'LWLW 1MtUAWATIP5

PEAK PUJMP LOAO 370.23 265.90 2b7.04 276.82 183.52 325.88 166.62 226.j7 319.63 387.15 409.83 198.53 3797.53PTIAK -ASI tU1II -Z 3.uO 1136.00 117 .UwrI520. 1200 1119.uu 1169.uu lZU3.WT22U77 Z37U10U WT2&3.00 14Z.OUO.0TOTAL PEAK LOAD 1504.23 1401.90 1439.04 1428.82 1505.52 1444.a8 1335.62 1429.37 1546.63 1623.15 1678.83 1681.53 Iti019.53HYURO PAPaCTTY Tt O- - R34. 3 a 7 79.6 1 692 .WTU.z e S1 -35 .VT0 44 W1Z4TU IZs.36 10(U41.6UTHFRiMAL CAPACITf Tu LOA. 669.60 622.21 7%6.36 724.53 843.51 762.45 688.73 636.67 611.22 565.90 581.33 592.98 8045.50fIRM CAPALITY TFAN5tO1 0.0U U.UU U.0u O.U0 O.UO U.uU u 0.u 0.00 u.ou u.00 o.uu 0.oo 0.-PEAK RESERVE 503.40 550.79 470.26 537.47 413.49 494.55 560.27 620.33 645.76 691.Z9 702.Z8 704.83 6897.69

C-7

SYSTEM SUMMAkY

wAitm WA-F~~ (ICI NUV lit'- JAN I tLi m¶At PIuq - - - Rw---UNr-iUi v AUG e T.' I u AL

FROM STOpAr,E kELEASE 1.106 0. 722 U.481 0.4FFI 1.15'. 0.6si5 -0.344 -1.05to -1.579 -1.384 -0,377 0.001 0.03UFR0-C[M rUTWE~- 0" 0.2011 0.220 O.-nu 0740 u.i.ju L.IUU - tuqu - u.a4u I.iqu U09su U*55 sojFROM ORAINS 3.556 1.375 1.083 0.878 0.792 0.973 2.153 7.889 21.924 39.734 42.099 ?1.237 143.h93

it q:) V)I7vr0RA1TON u.U22 0U*UL U.006 U.Uui 0.005 U.UU14 U.uuto U. U T0U1 0.03 1'.0Z U*017 U.UUZ~ -U7oT6T-TO kIVER OUTFLOW 2.078 0.i291 -0.004. o.oao o.aoo 0.000 0.077 1.421 6.09, 13.807 17.001 10.873 51.637

Yu LINK LOSS 0.574 0.40U 0.346 0.358 0.387 0.533 0.503 0.311 0.410 0.375 0.405 0.421 5.084-TOCA-NAL LE1J5 L.61 1 L. eI JU0e9 U.93U 1.01I L.'tje 168i I. 911 i 2.22! .3 z.az,3 3 z 19.I7uTO WATFRCOURSL 4.992 2.358 1.791 1.580 2.090 3.690 3.8o0 5.159 7.774 7.285 7.767 6.611 55.,096PROM UROU'LJ WATtL j.zij !.(Sze A.bUJ 1*I6Z J.019 Z.b!U U.vaf I. 3 O30 -2. C.JY ~3 , U ) J.56) ifI uU8zStiORTAGE AT 6'ATERCOURSE 0.107 0.000 0.081 0.345 0.876 0.2a4 0.000 0.000 0.000 0.000 0.000 0.000 1.qWATLICLUKN3r XtUI. .*3-3 g. LFq' ¾. 'I' 3.88!~. 6D b.76'I 4.1af8 b*Z5' 9.15eO Y.05'. 1u,a5z l0.06! 11 fqt.1

P'UMP CAPACITY IiUUUj ARIA 3.653 £.U2' i.14 .b , -rn - 1 3.02 8J9 £.466 2466 J.216 ioz 3,7146 3.901 3 .)9

PUMPED FROM G000 ARE.A 3.283 1,822 1.603 1.162 3.019 2.610 0.984 1.130 Z.054 2.399 3.0a5 3.256 27.U0OsrVA`PTTRWTT0lC4 OUUU AR-Er U. 5 I 0.3za U.290 U.210 0.31#1 U.Jai U.316 U.144U 0.041 1.0!! 1.193 U.84.1 b5RECHARGE. TO G00U AREA 2.726 1.693 1.310 1.309 1.865 2.595 2.156 2.405 3.086 4.651 4.972 3.742 32.51UNEI~T ltiANut -- IUOUU AMLA -1.0150 9*'.-5 -U.50r -0.131 -1. '.'fn -0.3H1 U.0.3b 0.d, U. 38: a.a,, U b -U ,3.) 4 -J.1!.3PUMP CAPACITY BAD AREA 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0.320 0,320 0.320 3.0M4U

EVAPORATION BAD AREA 0.984 0.540 0.485 0.482 0.543 0.543 0.515 1.100 1.649 2.174 2.115 1.465 12.592.EC1A"Qt 1u L¶Au REIA 1.LInq 0.b35 0523 0.418 ja U.Z O.ba: 0.69) 1.Cij I.! v-Z. J4St it~Y 1Z .613 13.688

NET CHANGE BAD AREA -0.003 0.003 -0.044 -0.092 -0.092 0.102 0.129 0.009 0.002 0.003 0.004 0.001 0.02.5IjRAI?4 SIUKAUt CLUfNIL'I 0.000 U.UUu 0.000 U.Uuuu u.0uo u.uuu U*UUU U.OUU U.uu.uuu u.uuu u.ou uuuu U.Uua

t"4t.iuY MIILLIUrN K~WflTOTAL PuMP LOAD 262.69 150.13 134.27 148.60 252.57 217.54 74.01 90.24 163.50 197.05 25loZv 262.77 2204.66rflL I1ASL LUiAu 713.U 7!J.3.0 5ea.uu 712.00 715.00 "oo.uu 5,!1*0 601.00 uc'..uu 629.00 o3.v.u o'6.e.0 uo9.0TOTAL ENERGY LOAD 835.69 723.13 722.27 720.60 827.57 785.54 669.01 697.24 787.50 a26.05 8a0.29 906.77 9393.66nITUNU LNtKG'T [U tUAD 53,.02 q&o.au 3io.56 309.0& '6.30.i 3c.10., jv.3u 3'p's,i9' q14,'fp 50.7 2)9,o1 56.90 93iu.89THERMAL ENERGY TO LOAD 300.57 304.22 405.67 411.55 363.20 397.76 295.87 302.35 312.53 516.50 330.35 341.72 4082.33tLRNtY utJLCiENC.Y 0.00 0.0U 0.00 0.00 U.U0 0.00U U.U0 Do0g 0.00 0.U 0.0 .0 0INTERLONE ENERGY TRANSFER 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 .00 0.0o0 0.00 0.00 0.00I1'VUO ENtNKIT 4UKrLUb 114.01 0.0.0 0.UU 0.00 1.4-1 ovaU p0.11 z00.55 C20.1Y £10.51 262.3c 220 1360.3-3-

--- OFWEN iM1tjAwA I I i

PEAK PUMP LOAD 439.97 336.21 315.86 330.89 436.38 402.05 155.55 181.16 310.86 364.01 437.20 442.33 4152.54FtAK AbAt LUAIU SC)8.00 I£b0.00 IzvaouU levi*uu 1255.0U 11)4.00 1312*0U 1352.0U 13(0.00 liaJouU 14'.00.U 1435,00 1!113.uuTOTAL PEAK LOAD 1697.97 1596.27 1613.86 1627*a9 1691.38 1656.05 1467.55 1533.16 1686.8* 1751.01 1866.20 1877.33 20065.54

JITUNO CAPALI~~iT LOAU 10Y1.4v 119.1Z 6A4.y1 02.60U 601.44 094scZ b20.)3 815.09 954.U0 1060.50 4&Lp.'. 112Y.Jb Z013Y.11THERMAL CAPACITY TO LOAD 606.47 796.57 998.95 1012.30 1029.14 961.82 811.02 717.47 722.7a 682.1 739.72 747.97 9826,37TAN!9 LAPACITY 1NANSFEN 0.00 0.00 0.00 0.00 U.00 0.00 0.1.1 Doug 0.U 0.0 0.00 0.0 0.00v-PEAK RESERVE 650.53 657.98 584.04 626.80 513.67 400.16 550.98 644.53 639.22 679.85 622.28 614.03 7184.09

c-8

6-D

O I IoiEc Zb 65j s OftO9S 2u IZZL W1-09 L6-6qt 9LOL9C 96*1QZ LQ-89b LLt sh 6 00@8so s, t9S9 99-109 3AM2S3H IV3dOplo OO-D nnto - nnnn on- n on-n nn nonn_ nonn nnon aODn nnno nnoa N14qkval Allntrdwl rH8J-szlT1 EL ZEZt 09tS6 tsfaaL 99It99 #O-&OZt bZ-btplt WOSWI CT*EXO1 9-9'9#ll ts-LIttt I-t*sOL ##C'09L I'V01 Oi AillDVdv lVWY3NlicsngrotT Ti rbw 96-tTil Jo-ccnt ni-*r&f r ITC* rfbocc fi6jo 19tiSs 6*6c fibnQQ zq-=tot OsZi*LOt _QtQ1kx- (ini-L s- vv#P ' sscEz fb'190? 9G*990? Go'GiQT G4-sTGY tt'ES6t LtinOOV cosit6i oooZ991 bri9oiT lQ-LLlt 05-lLt 4pt55itT avul jv3d lV101nnno st nn96c-r lEs nn,rbcT nn Trcis nnXfinci OnefcbtJ n c Tffs t On6T nonisbt no9t 0nOb O-OI Q0l]iQMbtpEiEsx/ *to Sg QS@59g qo-20fi SW-S2 #Y1 OSW LtOTft E8sts6 00199b IECgs9 19-6EE nS-LIE bt IESb nvol dwfld 1V3d

QE*bSI WM- 9<*t2t2 Q7*97 Zs on-n t-on QOO- nn onnn 00*0 _rn,j OF134r 4Cfj.HtStisA9Y3N1, 08fljAH00-0 00,0 00,0 0000 00,0 00-0 000n 00-0_ 0000 00-0 0000 00#0 00-0 89dSNV81 A083N] 3NO7d3i1t9ri9ea- nn-on 0* no-n onnn nnlo nnon ren.- nnon non noon on-n Oonn _ zuzj1 sH8LV6611S 99-58f OnX bsC 6a459E br9 z4C L54LZS ZV'6ZtP 1b'6LS #PC LSb tO-L9b 40'9#15 69IsCE tL'SOIE aVOl oi A98IN3 ivwH3HIF.FbO ;Pc 7nlF, az£0 COtXn ca,ob ,o*b j&-i,C gbac&C CC-A9E LnC^9h n&-Qlr 927-0e 94*9tb 61-gCg Sn (ii U1qjN, n-OnA^rt'9#P%Ot 60-b66h eLL96 ht-bS Eh-'T #Q 5L-9t6 Zb*bZg t9-6*6 OV1926t XCbflo S6-26L 6L-89L W190e avol Agh3N3 lt10i5fX It i£L__tL!lZL_ nn-cTL n -n-QL_-n-cfz ___Q-aUnLL On,bgg noocrg nnonbg onn c.Ce an,Q noo C_ on-Esr A_ D _frL S 5l_t I C (5s? 60'QLZ #L )LZ2 6ESIOq W96-9 SCL'9f2 26'09t 1909tt Ot,922sp +5691 S61fyol fL'Scy E6'Lilz UEtOl dwnld IV10f

onfnon nnnXn nnnon nnn-n nonnn nno,n nnn6n nnnon onnnn nnnon nonnn nnnGn nnnon ININi!)n icivma s n

EZnoo oooo0- 4)00* E OOOO LaTIN ttt'O- 110Z'0 C11O ObO-O0- t6Zt*0- OS0*0- tOO-O ZOOOO V3dV nvO 39NVH:) LIN746*f or bc-S4 RZt7? Care? YCt*T _6btIi -- b69o 9;Q q a ZECCn n&!20n nrtsio j;qO bf' I 1wiHt we nwO nHtHz3

I?O.9 I ?t ioE Y I 2Eti@2 66tOZ S*9-T &'Pt I X94t0 0 95@0 99SO0 CCG*0 9bbl0 6W5W S66b0 V3HV abSi NOILVHOdVA3T Zc IT sT9ln ZiTIn nsTen &ZTIn ?zlTin Ttron rctO Tgn*n 91in*a E6060 00rJ0 FreOn lntmxjtu1aatl 0Ia 1nAS0 ti9 WOFO WOzO OZcO 02E*n 02E0o OZ*OO oZEto Ozti oEo 02Eo oco 02Eo oZElO V38v nVg AlIaVdV) dWnd6 RC' 1- c77on- 29lon 2p n s0 7 CO&Ibn ocovn- tinon Ircet- nb)T- A7§*0- %cceo- Q1tt.b 7c*0- W3NV n(lon -- 3ANWW3 11N-L90-E9: OLLIE MICA Q5L* SZv IOsi S02^111 G Z 4GSOZ 9ZhXt 99E*t Ttf-I 19LOT 9161Z v3dv U009 DI 39UVHD3d

9LLV6Z Z9Ze eFit'F FLLOt 1tL'T 60S9' 2 LOOI Cbgsc bcCEC 9L6T 969*t 0969' L6602 V3mV 000O WOUJ O3dWnd

2?*7Lg bt7*nl rb*T? t *CA a C77rT? 7tOq Qlb*b ninoi Pct*9 QOh*£ L6ic IQ7'* %A bng lnih lsHnnoHolvAr9ol? 00OX0 000'O nooo1 cooos 90?10 00060 91100 9t09t 92#**0 LhO0 00010 00010 3SHno)M31Vm 1V 39VlhOHSgLI-62 97Q7c C6ht1 rtlT TTI'1 hO942 QLQot r&bO* 6cstI QoLbt afb9*t n&ot Ibh T _16ht! nmOH9 WDN4Z50o,C - ZL6*9 oG6*L h9t-9 ht Se;0 LT8-E OOtfC b6fiS 0 LLo*Z 9-°S-t ;QL*t L5s-2 ZTQ5 3sHnav3jvm oltL c 6s T tt t .n C202 667X2 jCt47 ZTILt Q*stl catt 9TO-T bw6*n Tcoot btrlt lShi- C SSZ laNvn ath0OrE I ty0 0 h04O tOtOo SZhon 9Lh'O qttlo 694#-10 18E*O 69EO Oc* 6 o *"0 1h*90 SS01 XNI1 OiQTc.rT &hbr-c- ntCln - tit*TT T°Q*Q %It,? Golfo *02 0 0 Cs OtsI6 oG* C7040 IT00T- 047- - cSszl hlAIH ni6 Z L¢ 9 % L919 L9012ZT9t9,2t 99001s OOOC- 00000- 000*0 000*0 OOOO0- Z5000 6IL0O SLOC wgolJLnn 83Ad Olblion Tn* 12n*n 62non TCn-n nzo0- n conn0 hnnn cnIOq ln*no gnn*n nOSO' Z70 0 . uo0nV]Slb33-910n4WTT 2911'CT E99*QZ 6izt9C 0V66jj 62902 CT9It OOLOO ZSLOO 99L0O ZOOlt 95A90 bt9*5s SN%V"u W08JncLel nss nr6on nbe*1 nti sn ni, o*t nnatX nreon ntz In nT2-Q n22?n ac?'O 0QVO _ __ -aMA4EL iC964b_ 690,10 90*';- OOC6I- bLgOT- tSOOI- 29CO0- 09900 Lbll 91 Lb-O 9W10 LILOO OOT*t 3SV313Y 3z9vdolS W08iATConcl colT@t QC9494 lbhQr Olo.cz xf%nl 7&b2*c QC °^2p CC7.2 79clp cICOZ 10Zat 1h:-4 MnIJNT w-AAIM Utmj

lVlol ld3S9 gnv Alnr l]Nnr AVW 8tt mtwu U1S Nwr -in AQN I na ____t 1 N J I _

kmvwwns~~ _ _sA

SYS5TEM SUMMARY

-~~ iTERI~~~¶1~~TT ~0 1,T NUV VIL. JAN ILK MA ---- A X T J JU Y A U U ---TP1 II P1AL

FROM STORA~GE kELEASE 1.002 0 .66i I.U77 2.095 3. 019 1 .523 -0.445 -0.601 -6. 096 -6.025 -0.322 0.006 -4 .I01FROM -TR TRUTAWrr Uu u * f u 0 U7.W UTU;4Owa0 .rurnJu-D. I * sgui u *93U- -.55UWT r.T3-UFkOM ORAINS 2.120 1.20b 1 .220 1.9552 1.173 8 1 .638 4.062 9 .)5 0 1. 848 29. 325 38.2a0 117. 112 115.1751L

= R`tbirR VO N t V RT10 0 .0U 4 -e U-e * u 0 I u- u .T0U u uaZ 1UO 07t1TU-V70T --. 0 o r UUTUt3uo~zuu . -3~3T--TO RIVER OUTFLOw 1.311 0.It.0 -0.003 0.010 -0.000 -0.000 0.502 2.020 1.288 8.463 14.140 8.853 37.044TU RIVtR LU3b-.v, -092 .il' ti.J49 U.OU4 U.5Luu u.jI1 Z.IU2 3.901 0.yla 11.bj7 f.U35 -b.Sjj j1 7 -TsTo LINK LOSS 0.573 0.'.16 0.3R8 0.466 0.562 0.586 0.415 0.3119 U.4.36 O..3a2 U.408 0.4152 5.531

TU vWATERCOURSE 5.418 2.197 1.989 2.445 3.720 4.16b 4.245 5.e71b 8.379 7.531 7.851 6.);04 60.1756rwnr.¶5wUuJNErwATE7w3~~~~~~.540 175t63i5F-J43 1.UJ33 i 9 Z.317 1 3.664 3.619 'D.6

SilORTAGE AT WATIRCOURSF 0.436 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.48U

-PUMfPCLA PA LII Y G OO1liA Rt - ".341 r 239g 1.Vbti .eI J.(13 I7to 4 e." '.7 3.u,u 4.023 3 2 a &g i #5 %6 g1.U1 aPUMPEUi FROM G,OOD AREA 3.540 2,?33 1.765 1.961 3.3 5L 3.439 1.033 1.1'98 k.317 2.7,5 3.664 3.619 -iO6715

RECHARGE TO0(GOOD AREA 2.900 1,721 1.428 1.670 2.495 2.914 2.257 2.524 3.245 4.759 5.041 3.836 34.te03NLT C.tAN(jE -- GjuuU AILA *U.V9'v' .oebbb -u,q9d 02p. I .IU5 -0. 0b U.vbi 1.ulq U.14'j1 1.15j u.QOj -U .Jdb6 - u.9 V-3PuMAP CAPACITY 8AIJ AREA 0.3810 0.380 0.380 0.380 0.380 0.380 0.380 0.3110 U.380 0.380 O.3a0 0.380 4.b60PuPLmtZ W-TflTNRAT A1tO7 0.161 U.154 U,L69 U.T9U 0.Stl 0.16I U.192 U.Z UZ5 U,2o66 0 241r f041EvAPORATION BAD AREFA 0.975 0.51y 0.486 0.578 0.610 0.109 0.560 1.166 1.647 2.134 2.095 1.356 12.894--RtC-H RuE-10 BAn,166 U.-669 U.b1e U.gfib 0.853 U .W# U. yq5 1.363 1.OSD 1. .3' 1. 595 i.0NET CHANGE BAD AREA -0.019 -0-.011 -0.028 -0.011 -0.007 0.001 0.024 0.005 0.025 0.034 0.013 -0.002 0.024UXAIN 7JTUNAIL LUNIitNJ U.Uf6 0.120 0.1a0 U.e9u U.Juu 0.360 0.geu U..'!iU U u.,)%U U.bUU U.0bu U. r?u 4o6

--- - --EnERW1T t1-¶TtL-tU-rtwMTOTAL PUMP LOAn 309,*45 201.93 164.11 184.21 308.36 315.79 93.23 108.78 2j0.20 250.05 329.51 324.n4 2799.13TTTOT1 V StIT1D1 ..D 0 7ZT 12 rcz F O U8.0 fiii Uu r3C400'C-nyU00T8 8tY7UgTVyuu u 50 u0 a i.,J a uvuTOTAL ENEkGy LOAD 1015.45 906.93 885.11 905.21 1016.36 1026.19 821.23 813.18 990.20 1030.05 1128.51 1132.04 11737.73?1IURU triKr'i,y tO ~Au 78.

32.8j.p 33

4.q.u 33.5 7jp.pp 49C.6L %J'.68 404.D'9 71.5 101.1i IbI.4y !V.34C 637THERMAL ENERGY TO LOAD 43G.17 510.03 545.99 561.93 491.41 513.73 39Z.50 391.08 415.58 326.21 360.99 358.64 5366.31tNtRGiY UtFICZENC.T (1. GO D0U U 0.00 U.uu -u.g ~- U.uu uU-.U-U. DUU7 -uu, u.u0 U.OU -- U4INTLRLONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-HYDRO LNNtX, ,HL u.uu ouu0o.uu---W Uuu U. ie49.14~VZ T4W3UTr534 3W5.3e 10U3.141 13f4*9

PUL (PLbAWAII.,JPEAKI PUJMP LOAD 518.65 427.72 379.81 405.36 539.69 548.57 193.04 222.06 414.52 472.51 555.45 545.86 5223.28

1560.00 1551.0U 1599.00 15va.00 1b363. 5UU i~Uo lJ3*Uur807DWT5U 1759.0 L711.000 19732.00TOTAL PEAK LnAD 2018.65 1978.7? 1978.al 2003.36 2102.69 211.0.51 1626.04 1904.06 2136.52 2198.51 2314.45 2322.a6 24955.28FIVDRU CAPArLTY-TO LUAIJ 553.94 149 .5 V133J"8 743.aO U 5iiW3OT5 ie. 3I 1O. I--9ZT-.4 1'-rjc .gg9 &q:o..u ascs.se ISJC.lD zcuiorei'THERMAL CAPACITY TO LOALU 1194.71 1229.14 1242.99 1259.56 1224.39 1262.63 1064.93 976.64 1008.05 741.VT 785.19 190.71 12181.51t i PM 1ArA.I TY TANA?t tN Uo.t 0.uu o.ou U*Uo U.UU -U.UU u.ouu U.Oo U.UU u.u0 0.00 U-au 0.00PEAK RESERVE 526.98 534.18 415.50 562.99 431.61 303.14 597.01 685.36 653.95 920.03 576.21 871.29 7445.50

C-10

SYSTEM SUMMARY

1976

- - ~~~TTtRrNArr FiL~~~~~lt iuV LJLYh. JR'V rt MAR~ 41R M A Y JUNE JULY AU(U 3? P T TOTAL

FROM STORAGE RELEASE 1.092 1.350 1.386 2.207 3.327 1.825 0.721 -0.192 -5.280 -5.964 -0.348 0.009 0.134VFlMM ThBUUTARTtF 0.2'iu 0,tuu u.-Zu- -0. zi u.2gu u.13U 1.zuuo p.09u U.au Iojgu u.9.iu U.515u 707FROM DRAINS 3.081 1.975 1.556 1.543 1.730 3.397 6.665 16.167 22.180 25.650 27.244. 16.665 1?8.009-TOtRESfRvOpIR tvArUINA1LuN 0.1J,J 0.023 00U1e-0.0U2 - O.-CIO u.01%pg U.UCU U.U4* U.IJ7i U.Vjo 0.028 uquzb UoTO RIVER OUTFLOW 1.962 0 39 7 0.9037 -0.003 -0.000 0.479 1.555 4.754 7.066 8.947 9.976 7.?67 142.738Iii XIllt( tus3 J*.q65 10.0II U.z%u U.v 0.4'f 1.621 L.196 6.J3'D 9#.Vqb 4.q J. -2.uuq 10.*b7?TO LINK LOSS 0.5A0 09455 0.401 0.434 0.559 0.53e 0.4se 0.3n5 0.1428 0.377 0.409 0.439 5.4641WLCANAL LU3 - i..v13 !.34o 2 t 1. 3~a.ia i.o0& l. i.o&uo- .U'I7 £.L3 £.1c a l e.4O 4.0pp C1*!81TOwArERCOIJRSL 5.518 Z.591 2 39 241 354 5.589 4.041 5.783 8.297 7.518 8.1,7 7.126 b2.c124-FR`ON1-GRuN1 w~A1tA 3. g34 g - v &,U .SuU -*U"3 -3.18 £f. I aU I . 1 5 I.63'4 2 -1 I.3 3.65d 3. 8 63 jz.UB8SHORTAGE AT dJATLRCOUR5E 0.174 0.000 0.000 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.222

PUMPED FROM GOOU AREA 3.934 2.003 1.500 2.053 3.718 2.1a0 1.405 1.634 2.810 3.13a 3.852 3.863 32.0688-EVA-P0WxATTWUUUI) ARtA U.-C9 U IJU U,V11.177 13.19Z u.euO U.165 0.2235 U.13.231 0.597 0.750 0.496 3.711RECHARGIE TO tGOOD AREA 3.000 1.821 1.466 1.659 2.486 3.006 2.271 2.58Z a.Zau 4* 7b4 5.121 3.899 35.357mtiJ CmANG(L -- Gul.jL AKIA *L.21b -y..312 -Ij.lg, -0.51 -1.geg U # &f U.1UC U.!1t U j1L.~ U.Scu -U.46u --u944ePUMP CAPACITY 8A0 AREA 0.380 0.380 0.380 0.380 0.380 0.360 0.380 0.380 a.350 0.380 0.380 00380 4.560etmptu Tu DRINAGE~ wocI6 0.IIi '.166 0. 1 F U.!Vb .L~ U1! .95 U.z2ti U.gb2 U-z~ -U.eg9 FVAPORATION BAD AREA 0.968 0.538 0.508 0.593 0.678 0708 0.590 1.210 1.679 ?.168 2.138 1.392 1J.1 71RttF{A-GET i BAD AREA 1.111 0.4 u.61'8 vor'L Uj. o0 U.'Vj9 1318 L.'4I 1. 927 2. 7 42U 1.619 150t NET CHANGE 5AIi AREA -0.007 -0.014 -0.027 -0.021 -0.013 0.037 -0.000 0.004 0.026 0.035 0.007 -0.002 0%UKALFI STUINAGL CUPdILNI 0 Ptfo1 13.840 IJ.'9U uo'ftv A.2ut 1.uU L.54U 1.20U L.40u 1.3cIJ 1.3813 1.4413 1 3.3213,

TOTAL PUMP LOAD w351.69 £83.03 139.11 194.04 345o99 198.94 129.06 149.46 256.45 286.96 350.32 350.31 2935.31TUTAT~~~~~~t~~AD~~~ T~ouluO 7Tjp-D0 ,'96.uu r'.euu 18u.uu reo&uo uup.uuo 540.0 05 iU 5!8.131 0555.31 93 i'S 3uuTOjTAL ENERGY LOAD 1131.69 961.03 935.11 986.04 1125.99 979,94 931.06 989.46 1112.45 1144.96 1228.32 123A.31 12770.31'IHIJm LrvL'tuy iu LUNLI arr.tl5 9~1.21 pi,u.7 11r.0r Syr* ru 78p.v9 71oq 7 Y 60.8.c 931.v1 102C3.raI LU13 a. oe-2 Tw V4.ZTHERMAL ENERGY TO LOADJ 253.74 43.81 134.49 206.31 428.21 410.88 421.55 439.44 471.76 21Z.97 204.45 199.60 3429.21LNLImby utFJIL u*uu 13.11 U.1U0 U.uu 0 .013 UOuu U.uu U.UU a.uo o .ouu O.oo 0.00 T;zp0INTERZONE ENFRGY TRANSFER 0.00 0.00 0.00 o*oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HiTURO tfmp'bYbUNLU 331.135 131.20 pIp.Uf 813.16 C13.IU 1y-.U02 259.148 213.43 355.9838. 3375.5 23.uz ,I92U O 6

VUWLK IFMfURWAIiSlPLAK PuIMP LOAD 587.13 403.79 347.81 425.a7 58.5 392.31 274.02 305.56 493.14 518.80 590.14 585.54 5513.61'PE-K8TSE-UAIPW--- 1128.10 1122-.UU -17 b 3.UU-TTTJS.0VU 116 . U U 1718.001 17ve.ou1 18513.031 L9tOJU. DVT9DU7UW1VI 9 37 UUT 19 55T i.ouTOTAL PEAK LOAD 2315.13 2125.791 2107.81 2163.m7 2305.57 2108.31 207Z.02 2155.56 2393.14 241a.50 2527.14 1540.54 21233.67URlmC~wA7CTYTy-LUAD- T1764.- 1 r U1 .? i-71.'. 1UUI17 .eu &.i 3a ,oa iie I . U rTU0Y9 i0.53 iq3q.93 1 r~od. '4THERMAL CAPACITY TO LOA., 1530.60 324.5"4 436. 17 561.A0 870.68 906.93 951.01 1027.53 1047.83 615.61 606.61 605.61 e4b4.-4311IMM eCAFAv T TMPNbtLK ouou U.uu U.Ug o.uu aUOU 13.01 U-.-UV 13.013 13.11 13.01 0.00 13.10 0.0i-PEAK R-ESERVE 1242.a2 L337.46 1276.7A 1100.ZO 791.32 755.07 710.99 634.47 b34.17 1046.39 1055.39 1056.39 11641.44

e-u.

SYSTEM SUMMARY

1977 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~ATFWTMA~~~~ I ULI !4~~~~(JV UtlL JAN MAR FRM MAY J1 EJULT AUGi 5EPT TOTAL

FROM STOR4GE RELEASE 1.0A85 1.339 1.373 2,184 3.295 2.4.71 0.367 -0.517 -5.235 -5.913 -0.350 0.006 0.10!)r-R"J-Tw I 5U IAN I S 0.i ~TT .220 u.Ziu 0.4 U. r.,u I.-IU ---- a-. ;wu70 for3s

FROM URAINS 2.905 1.412 1.49'. 1.498 1.720 1.545 4.983 12.056 1544 21.221 23.8a2 11.559 99.5~19-Tl-R~ESMIR EVAVUKAIJUN~ 070SJ)- u.u?3 -U-.ui 0.UU2 0.010 u.ulz 0.0LO 0 .U4 1- U-.UTWO- -D. u 3 0,8 U.UZ6 0.#3 3 0TO RIVER OUTFLO* 1.723 0.207 -0.000 -0.004 -0.004 -0.005 1.047 3.120 '..150 6.4141 8.151 5.030 29.ti60

TO LINK LOSS 0.573 0,463 0.427 0.460 0.561 0.5a5 0.520 0.411 0.438 0.386 0.4144 0.516 5.61JTJCI1WA~~~~Lt-OS5 ~~~~~1.9i.5 1 .3 1.d8'Jeg 1,4U4 1.619 1.6ab 1 *63~ 2.v9## e.466 1- .1795-22az41 I .010 geI 71.45

TO WATERCOURSE 5.544 2.509 2,289 2.525 3.725 4.418 4.261 5.827 8.373 7.696 8.l82 7.008- 62.356-FW0WMGW0UNU W.ATtM '4.1)0 2.1 '7155 1.Sz 3.b99 J4.'4 1.i1.6158 4.9u!> 3.1le 4.158 id11 J~ 4.673

ShORTAGE AT wATERCOURSE 0.149 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0,154

FUMP CAPALITY (1UUU ~~~~NLA '4.591 C.11'4 C,'LL 2AZ.59 4. 1Js3 g.4449 3.1aU 3.499 4.643 '4.171 '4.006 .O U v--T

PuMPED FROM GOOD ARLA 4.150 2.215 1.656 2.122 3.699 3.494 1.367 1.658 2.905 3.112 4.158 4.275 34.?'T3~~EAP0~'4i1UrI LUULJA~~~tA~ U. 1O0b 0.0 u9 U 0 .063 0.1'j0 0.19 U0.j' U.t 0.15iJ U. '9j U. 505 00501 0.181 i.171

RECHARGE TO 600D ARLA 3.049 1.634 1.500 1,707 2.532 2.938 2.313 2.611 3.307 4.832 5.178 3057 35.758NLT LMANbL - GOpOD ARtlA 1.3uO -u.'*F1 -0.2JV -0.566 1&.196 -u.8au U.O4'9 u0.60 Usl1U9 1.171 0.456 -01uu -1.909

PUMP CAPACITY BAD AREA 0.480 0.480 0.480 0.4a0 0.480 0.480 0.480 0.480 0.480 0.480 0.480 0.480 15.160r u TPt u Iu LIRATNA-G~ 0. 31 5 0.214 0.189 0.IMU0 0.-C19 0.1'e'4 t 0.1 0.11U 8 ') 0.3CCZ 0.307 U0.5! U0353 J* U21

EVAPORATION BAD AREA 0.872 0.448 0.419 0.5u2 0.583 0.611 0.496 1.090 1.563 2.083 2.058 1.302 12.027NICHAXIJE 10 tIRO ~~~~~I~~tA 1.180 -u.! u.661 0,179 0.009 0.915 0.186 1.3wF 1.q14 C. 45 t 14%Z I 1bSlg 15.I!0

NLT CHANGE BAD AREA -0.004 -0.020 -0.021 -0.024 -0.010 0.010 0.014 0.006 0.040 0.032 0.006 -0.003 0.021UkI~RN SIUXAtL LUN4LIti 1.500 1.260 1.610 1.050 &,.1'U 1.1513 1.000 1.It'U 1.900 1.040 lC.1uu 2.160 Z1190u

TOTAL PUMP LOAD 380.86 210.86 162.11 209.36 353.55 336.63 132.94 158.18 277.00 303.09 391.81 402.83 3319.26-TTurAXl-ST1-LnA1Tt 865.00 074.00 811.U0 GF4.00 500.00 862.00 092.00 92F.UU vqq'.uo vq1.uu vsv.uo vau.uo 1uo3b.00TOTAL ENERGY LOAD 1236.86 1064.86 1033.11 1083.36 1213.5S 1198.63 1024.94 1085.18 1221.00 1250.09 1360.87 1352.83 14155.26

IITUMO tNIMOUT ,u LUAU i12.c0 1ula.it i04&.22 avz.za r3.o sve.o'4 72c.04 sb.9i sviv.45 £113.90 tr10.10 lezo.40 1&UJ.61

THERMAL ENERGY TO LOAD 19.56 6.68a 11.83 191401 475.44 505.70 472.03 488.20 526.41 126.04 133.98 162.52 3119047

LNLNOY Ut! ILILNLY 0.00~~u:uo 0.00 0.00 0.00 0.00 .0 .0 u o U 0 uu .u u. .oINTERZONE ENERGY TRANSFER 00 0.0 0.00 0.00 0.00 0.00 (100 000 0.0 .0 0.00 0.00 0.00

-RYLRD ENEMbY 'SUH7LU5~ £05.11 112.11, 1160.9 140.v0 301.15 137.0 %4.1151 1.1 1.5 JOU 4.11 e9 1 4.61Y7

--- UPwER MIGARAITSY

PEAK PUMP LOAD 640.33 470.06 405.67 456.58 620.51 583.19 291.29 331.35 530.01 563.60 856.94 660.76 6210.68FLAK UA5t LIMU 1902.00 15-99.0U 1930.00 11923.OU S599.00 19U1.uu 1951.00 2045.00 2ugq.u0 9099.00 4139.uu if100.00 2398f4*UO

TOTAL PEAK LOAD 2542.33 2369.06 2341.67 2379.88 2519.51 2484.19 2278.29 2376.35 2624.07 2662.60 2795.94 2820.16 30194.68

lIYURO CAPALITY 10 LUAU) 2161.30 2174.46 2104.98 1ais.91 1103.441 1303.51 411.30j 1208.43 1513.a0 g131.40 9243.51 fz33.36 21851.23T-THERMAL CAPACITY TO LOAD 281.0 194.60 236.68 543.97 816.07 1160.32 1140.99 Z167.92 1105.21 531.14 352.07 557.143 8331.45

FIRM CAFALITY TMANSrEN 0.00 0.00 0.00 u*0. 000 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1380.96 1467.40 1425.32 1374.09 970.93 606.68 646.01 619.08 681.19 12515.a6 1317.93 1299.05 13005.09

C-12

SYSTEM SUMMARY

1978

- -- WAltR tMAr1 ! UtT ]uV -Ut'c JAN FtU MAR AFR . .A. JUNt JU(.T AUV SEPT WTiAL

PNUM tlVtK IJFIWLUW J-.bf 2 .'O C.'iUq t.UJi 3.009 5..31 Y.OU3 21.410 44.IiU df*%Ox zo.46 lU.C10 lfU.vo0FROM STORAGE RELEASE 1.R0A 1.330 1.363 2.166 3.270 2.001 0.446 -0.150 -5.189 .5.8593 -0.330 0.005 0.139

1WUIM TRINUU1ARIFS U.ZeS' U.IUU UQZ2u ll.ZIU 11.2U U.130 1.1OlJ 1.09U 11.*qU 1.*U U.930 U.55U0 7.750FROM DRAINS 1.370 I.ZII 1.852 1.551 1.676 1.634 7.533 20,402 20.612 24.785 29.91 12.931 125.475TJ ktR5RVOIN fVAPORAMA1TON 0.05U 00023 u.01C O.UUZ 0 .010 U1.013 U.02 U.*U4 0.071 U*.03 0.0Z8 U.U26 U.338TO RIVER OUTFLOw 0.694 0,023 0.035 -0.001 -0.000 0.000 1.926 6.a95 6.976 8.347 10.663 6.165 41.12510 ftIVtJ LUS5 -2L.59 0.3Ca 0,564 0.3I0 0.449 0.1J1 J3.2O 1.04 2'44."1I 5.JP9 -7.010 10.l1.070 LINK LOSS 0.578 0,486 0.383 0,498 0.566 0.6Z2 0.422 0.392 0.424 0.376 0.411 0.566 5.1Z3TO L.ANAL tu0 ) 1.8cC 1.302 1.iO' 1.23U 1.594 1.b3 *.595 Z 2.083 4.29! 2.106 Z .Zy2 2.U93 Zl.199TO WATFRCOURSL 4,709 2.342 2.300 2.819 3.915 5.251 4.136 5.74.9 6.825 7.495 8.211 7.041 62.25rROM (jRoU'ud WATtI 4.914 2.489 1.t2 v.925 3.611 Z. 10r 1.39 1.919 3J.21 36C At 4. 89 4.053 Jb.965SHIORTAGE AT WATERCOURSE 0.389 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.001 0.000 .0.000 0.000 0.419wAtLRCuuwat Htui. 1.01Z f*lJl 4.02Q '.fiI 7.224 a*.12 P 5.1/5 1.668 11.530 1S.1CJ 12.IUU 1.62Z4 99,bu9

7UMr CAI'AIITr IOUj AKLA 5.l92 2.9OC 2.356 C.614 ' .326- b.645 3.510 3.430 *'.06 -.510 5.219 5.03 '9.299PUMPED FROM GOOD AREA 4.914 2.489 1.724 1.928 3.611 2.764 1.639 1.919 3.276 3.6Za 4.449 4.563 36.965tyAPRHAiUION GUI ARFtA 0.069 O,U000 0.016 U.azr O.Ous uU O.U14 O,U1Z U.114 U.3Z6 U.314 U.23bRECHARGE TO GOOU AREA 3.037 1.045 1.437 1.606 2.538 3.011 2.315 2.641 3.368 4.863 5.26a 4.025 36.155NET CRaNmu -- GuuU AREA -1.940 -0.649 -u.3Ug _0s, -1.ull U.ZZ9 U.061 u.rus *u.Uf22z u*.sus U.46 -UV*I95 -1.962PUMP CAPACITY BAD AREA 0.724 0.124 0.724 0O724 0.2* 0.724 0.724 0.7Z4 0.712 007Z4 0.724 00.724 8.688PUtMPEU to DRAINAGE O-.5Z1 U.1435 U.z2l 0.343 0.556 1.)369 -0.357 y.74 U.56b U.blU U.623 U.bUU 5. 706EVAPORATION BAD AREA 0.776 0.422 0,393 0.509 0.608 0.561 0.442 0.983 1.406 1.901 1.865 1.157 11.044lREt`HAGW TO BAUG ` A 1.1A5Sa7 0.006 O.7tRl 0.805 0.929 0.1 -1.330 T9*C C.5UO 2.411 1.661 15.067NET CNANGE BAD AREA -0.141 -0.185 -0.149 -0.071 -0.100 -0.021 -0.042 -0.059 -0.032 -0*011 .0,017 -0.075 -0.864UHAIN 3TUHARL LUIILRIT C2.R0 2.40u 2.520 i. b9 z.76U Zg.5a 3.OUO J.COu j.ZvU -30JDU 3.4au 3.600 .55.(aU

- tFbRY ("ILL1014 KWH}TOTAL PUMP LOAD 472.76 253.39 174.41 203.25 360.1 278.36 163.64 191.52 32a.18 364.65 445.45 453.66 3669.38~TWTA1--BAy-LflAIF950.005TW945.00 2.UU Y0 a.uU S4r.00 94Y.00 955.U03~0t 01031T.U IU5,OrlX4JO 1018.00 14.00 91994.00TOTAL ENERGY LOAO 1422.76 1198.39 1136.41 1171.25 1307.11 1227.36 1148.6* 1221.52 1373.18 1415.65 1523.45 1537.66 15683.38HnyK LIRIIY *o LUtIAu lcel.60 119g.32 1136.3'9 i61.00 m7l.52 IL6.41 521.11 8613.3 023.71 563.70 96U.2l 5tol.-1 psu-93THERMAL ENERG,Y 70 LOAD 141.05 0.00 0.00 10.17 449.49 500.87 526.80 548.06 549.52 551.97 563.12 250.33 4091.38tNLHGY utLiLiZTCT 0.00 O.UU O.UU 0.00 U.U0 OTDD 0.00 0.O0 0.0O U-OU 0.00 U.0O 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0*00

-RTVDRT'tNJEYSUT PL1U 12.6u 15-.65 w81V28.%4 '933.65 306.32- *10.07 352.32 * 50- 5.e9 '9*5.92 34.z3 ^36U.

ruwLN IMLURAwiJS1PEAK PUMP LOAD 761.3a 530.75 414.23 452.60 656.31 543.85 355.04 403.82 623.37 654.73 736.ak 735.05 6867.97

WUW8TStEU A s E - -2T02.ao-2u97.a Q U139.00 2I 3W0Kt Z1092 .00 oSn< 2r96 r* Zr60U z3225-Z32- U 1`0Z3Z U 237.0U TOTAL PEAK LoAn 2863.38 2627.75 2553.23 2587.60 2748.31 2639.65 2556.04 2670.a2 2943.37 2976.73 3111.82 3129.05 3340T.97MYTJrDcApA^FFtJrTTT1LUOA 2201.62 2290.'9&Z511.U9 Z3$0.Z £978.32 1,06.r9 pgjr.oo 1,o,.l1 Ju77.22 2U5139 21(6.Zo £Z431679 24562.ZTHERMAL CAPACITY TO LOAuJ 575.76 37.31 42.15 237.3B 769.99 1011.36 1119.04 1265.61 1171.95 919.34 935.56 697.26 8642.71rIRM LAPALITY IHANrLNR UU. .U0U U0. .OUO 0.0 U-UU U.UU U-00 U.UU U0UU 0.UU U.00 U.0PEAK RESERVE 1622.34 1749.69 1744.85 17*9.62 1247.35 915.64 867.96 721.39 815.05 1545.12 1592.7w 1598.44 16170.17

C-13

SYSTFM SUMMARY

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19 9_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-- WATFRKAFf UCT NOV D Lt. JAI TEB MAN WR t- UNV JuoY AUG -SEPT TOTAL

FRmu NvLEK 1NFluw 4.434 2.fbU C.316 2,cuc 3.5Z a.zi9 -- .su 1.4so co-Y95 jlqc j.gu 13J.6JU 14b.8u

FROM STORAGE kELEASE 1.076 1.318 1.349 2.142 3.237 1.748 0.782 -0.268 -5.132 -5.772 -0.343 0,U09 0.146

fROM TRMRUTA1E7S - uO.nuu 0,20u0.22u U.lzu -07240 U.orsu r1r I u- -F. 09 U.84U0 T-.jU .s3 0 U.b5U 7.30u

FROM ORAINS 1.632 1.455 1.460 1.597 1.793 5.094 8.542 16.595 21.93f 30.468 28.464 16.374 135.410

-TioRtsERvIRt REvAPORAPRON 0.05 3 uu 0, u OC 0.01 0.u010 0u.U£. v .u£' o.arl .UUZb u .33Yg.e

TO RIOFR OUTFLOV 0.919 0.0I? 0.000 -0.005 0.002 1.068 2.656 5.139 t.984 10.414 10.818 7.210 45.Z36

Tu Rivtm COSS -2.1521 0.212 0.Js0 0,5354 0.04b e.llb a.o .s -"oi .s e.qv9 -zo5Lq ZU.RlA

TO L11NK LOSS 0.579 0,447 0.361 0.407 0.578 0.056 0.454 U,40Z 0.431 0.301 0.410 0.485 5.541

-WTCXANAL-t1SbF i *35 1,Zi4 1.145 *. ael l.rlr *;ni6--t. eOT -1 c ZVZZ5- *,3Zb 2,110o *l.f3b

TO wATERCOURSt 5.187 2.361 2.046 2.325 4.071 5.155 4.053 5.815 e.J55 7.526 8.220 7.162 62.?77

-TF]R`O-GoUN-D--wAE-R` 14 r .572 2.048 %6 Z955i-- C..-74 z.O30 c J .W4Z5 48354 4 o30J 39.177

SHORTAGF DT uATERCOUP'E 0.211 0,000 0.005 0.089 0.000 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.333

WATtRLUURat LUI.- L0.11 g.93,3 4.099 4.63j I.6be a.Slu 5,.9 F 7.,45 l1r.5 1j.J3f lJ.U54 11.965 lul.158

p-Yp-CAAtCITY GUUu ARtA 5o465 3.039 2.45C TZ1Sr 4.5Z8 4. 85 J .Ir. J.97Z 5. 150 g,1rJ 5 51' 5,b86 51.895

PUMPFU FROM GOOD AREA 4.759 2.572 2,048 2.424 3.611 2.955 1.874 2.030 3.425 3.844 4.834 4.803 39.177

--EVAPURAT1LA0030l AFtA UOOUO 0UOUU -U0UT D--I 0 C.U500.WU go -Uuu . 09 - -0U UT3 U. 13.3 7.08 o0.0e48 0.345

RECHARGE TO GOOD AREA 3.130 1.788 1.430 1.630 2.640 3.042 2.336 2.674 3.417 4.929 5.352 4.103 36.471

NLt CHANUE -- bUUU AHLA -1.62c -U.15 -_0.035 -U.1la -U.'DL UsUal U.451 U.b3b -U.UJ4 U.iDJ U.43# -U ty! - .u05

PUMP CAPACIIY BAD AREA 0.824 0.824 0.824 0,824 0.824 0.8Z4 0.824 0.824 0.624 0.824 0.824 0.824 9.888

PUMPTD - TU uNAINAIL U.ee 0 O.a53 U.JS U 38u 0.404 U35.100 7UI1 U.14z Y 5683 U.03 U.689 0.671 50yoo

EVAPORATION PAD ARFA 0.742 0,420 0.397 0.464 0.549 0.557 0.436 0.983 1.377 1.750 1.711 1.078 10.464

RLtHRAR6t TO OAU AA Xs1.119 u,699-0-.658 U 0.7bO U u.95% U.IJI 1. uU V.5TZ z.zz .49I 1.1 1 16.0Z3

NET CHANGE BAD AREA -0.185 -0.104 -0.089 -0.084 -0.055 0.029 0.020 -0.009 -0.004 0.079 0.097 -0.045 -0*349

UHAIN SIONAGt LUNItNl 3.1(0 a.r1 3.810 3,GoV .v 1.u F 4 .0 rO g.1j 4*2c 4.31 41r '..52 45,1'896

-tNERG-1YMILLIlON KWHI-

TOTAL PUMP LOAD 467.29 260.19 217.89 263.82 379.07 287.80 185.76 203.52 354.86 403.15 496.78 494.55 4014.69

--tOTAL:--AStnAD -03-6 bOO-1O07 .0 O 0 t03 1JO0- 0 810-t13DI00 11480 fL5A70Q-l -T' .00 * 1190.00 J1153.uU

TOTAL FNERGY LOAD 1501.29 1296.19 1274.89 1325.02 1416.07 1328.80 1266.76 1333.52 1502.86 1556.15 1680.78 1684.55 17167.69

ITUNMO tNtfObT TO LOAD 1470.n2 llG9.1u 1035.10 1199.0U 0lp.00 1571.1 orrU5 *15.49 0ju.42 1jp,.1o 192.Yq 1490.04 1JU515.b6

THERMAL ENERGY TO LOAD 30.36 127.01 239.72 126.66 604.17 571.31 589.64 617.94 672.33 168.28 174.71 185.78 4107.91

E M NEHGY uEtICsEhCt FUsO 0.00 OCr u * ou ii * uTUU. uO- O.uO* 00 u*UU o.JD uuU O.UU0 U U.O -

INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HYUR0E1ERG-"SUPL U 12.9U 0.00 0.0 Zw. 47c5y34 Zt3JF 8un-.3 FZr-1.7'Zl zc4 . uo '.9 2. SC1.L

UWLf IMLIGAWAWISI

PEAK PUMP LOAD 777.01 561.67 514.65 562.24 700.75 553.17 401.83 423.60 674,45 720.30 812.72 802.52 7506.91

-F -"A-SE tD u UU £197*0 c qg 0U 0-2 034D.O 3 2o6U 2305.00 24Zl1O0l Z.Z50Wz33.-0WZO Zz32.uO z918s0uu

TOTAL PEAK LOAD 3083.01 2858.67 2058.65 22g.Z4 3000.75 Z560.17 t82Z.83 Z915.60 3t26.45 3283.30 3423.72 3434.52 36689.91

-mYMmfCAPACITYTTVt01-D ZO1 T9 27lT4.9l £190.19 232ic 4T-9i8.36 103.71 1431.0 "4017t0 - z5.oa £118.54 cr7u.u3 isioJ.Zl

THERMAL CAPACITY TO LOAD 381.23 590.73 661.76 597.60 1013.39 1256.46 1391.83 1514.50 1451.79 699.69 705.10 729.49 10986.64

F IRM CAPALITT .KANSFEK U-.U U.UU U.UU U.UU U.0U U.UU U.UU C.UU U.UU UwUU U.U0 U.OU U.00

PEAK RESENVE 1605.77 1718.23 1635.26 1339.40 1135.56 660.54 745.17 622.50 665.21 1437.31 1431.02 1442.96 14879.74

C-14

SYSTEM SUMMARY

____ ___ ~~~~~~ ~~ ~~~~~1980_ _ _ _ _ _ _ _ _ _ _ _ _

-- -wAitR IjMAfp Iuc:I ?IUV Lj ~ JAN t mAR( ArI MAY JUNE JuLY AUEi btrT T UT.A

FkOM STORAGE RELEASE 1.072 1.306 1.334 2.116 3.201 2.401 0.410 -0.568 -5.9082 -5.724 -0.349 0.a003 0.099fRQfM ImHijulARUS. 0.2130 U.2%r 0.220 u.2lu O.Z14 U .I1,u 1.LU 10~ U.640 L.jRU U.930JU5 o 1.30FROM DRAINS 4.063 1,799 1.346 1.6*6 1.809 1.496 3.375 6.409 15.6a2 22.227 21.891 8.638 90.5~81tO-RTSticyG:R tyArGpAltO?R-- O.0u3 u.023 0.1 u.uu .UU U. 0.010u U.0J9 Ufu7 U.V35 U.IJCa 0.ui!b eTO RIVER OUTFLOW 2.136 0.395 0.004 0.001 0.000 0.002 0.441 0.893 3.:513 6.662 7.U454 3.652 75.154

TO LINK LUSS 0.581 0.493 o.416 0.4*4 0.522 0.577 0.576 0.547 0.458 o.4j3 0.~444 0.556 6.o026

TO wATERCOURSE. 5.390 2.696 2.188 2.314 3.175 3.626 3.840 6.503 8.723 8.178 b.634 6.7a8 67.0557HM0 bROUINO WATEm '4.,j1 1 2.J3iL W -250 01# u *buJ *.,53 C.56 I ou .98 3.359 4. le 5.5-18 4II Ii'Ski0RTAGE AT wATERCOURSE 0.0100 0.000 0.000 0.055 0.021 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.127wATLRL.UURZt KLUI. 10.31r 5.021 .4. o155 '.9e9 r.199 a.euu O.U9O 8.083 A Icue UZII 0 e I l.jaOI if . i~b LUJ.a9'4

-7UMP CAPALitY IuOuti AMLA 5. 4fgi tS Z.511 ( ato' *.140 5.01I3'4 .q J.9C) Q1oJ to.5009 '.811 5.918 5Q. *LI8PUMPED FROM GonD AREA 4.917 2.331 1 .980 2.560 4.603 4.533 2.256 1.560 3.;e98 3.389 4.727 5.538 41.712

-tEVorrUT hR OOD AR A u* o.oUU7O0 u.oo u.uii u.uoo U.ouu U.UoUU o. ofo---U7UT1 U.u~ o.9gUe'6 u.oiz -- u-.T7-RECHARGE TO G00OD AREA 3.209 1.85b 1.468 1.640 2.524 2.9a0 2.421 2.74L1 3.447 4.975 5.428 4.177 36.1F.66NLT CmANG, -- bUVI A9RLA -1.!0aUd I~f r -0.51C U0.91 -2.0f rv I.51 U.10 b ib 1.11 I .135 L .'#VI 0.631 -j.Jf ----- 5U73-PUMP CAPACITY BAD AREA 0.938 0.938 0.938 0.938 0.938 0.938 0.918 0.938 ). 9 38 0.935 0.938 0.938 ll.~5hPtMTTMP-T0l uxmALNAGt u.598 -3 0.251 , u.9, 0.~ .33 03u . 3~ 0W u;-6Z-W7ZU- U.7u, U. I !obEvAPORATION BAD AR~EA 0.724 0.43Y 0.405 0.477 0.549 0.9557 0.426 U.994 1.368 1.13L 1.699 1.083 10.4%.'

KtLMAHI,t 'U OMO AM~~~~~A 1.1M177 .0 UIJ 08! U.1 .029 -T.4171 1 96 . 31 z .518 I . r * lb,&34*

NET CHANGE BAD AREA -0.135 -0.066 0.006 -0.013 0.008 0.037 0.071 -0.015 -0.013 0.080 0.103 -0.043 0.070

TOTAL PUMP LOAD 486.52 233.61 211.92 279.11 478.98 471.12 231.53 170.17 363.84 383.29 514.15 591.99 44?2.9%

TOTAL ENERGY LOAD 1621.52 1370.67 1371.92 1448.17 1626.98 1617.72 1432.53 1404.17 16d5.84 1651.29 1807.15 1892.99 18870.95"U'TUH E.NERGY IL) LU4G 150i... 1242.76 1Ci63.1i 116.11 1-JW.IJ 90.1C !bg.6C l2b.ft 00L.64 £LOi. .2 147404. aQ151.L 1 333173.55THERMAL ENFR(,Y TO LOAD 111.29 127.82 308.14 285 .37 668.80 712.67 664.82 677.31 74*.10 486.61 352.47 408.71 5554.10LNMGILY ULrLLILNLT 070-0U0 UUWU1J U.0U U.UU -0.0* - F 0UU-- u.u0 0.00 p.U00.0uuU0INTERLnNE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00o 0.00 0.00 0.00MTtTRO TNtRG' ZUK~r LUb : - 320DTh6-0.0 - u .00- - 3373 33. Z6 a16 25W-DnZ- 1U .z53.01A u, e I~ 1. I 5--T7a')7T

110WE P 12MEGAA I I

PEAK PIJMP LOAD 810.28 515.55 517.3U 597.99 813.51 808.31 504.45 386.?7 712.41 703.25 8b3.15 940.58 co1T1.64-PTAK -OA-SYE-A1YT- 2536.0-0 2525.T 37"0Z5.U 5,*.0u 2,539.0uo 65 L,. u u21Tf5-;0 0 Z7b6.1Jo ZaU.U-W -WZ&3.u eU5b.01-TOTAL PEAK LOAD 3346.28 3040.55 3093.30 3183.99 3360.51 3347.31 3154.45 3131.21 3508.41 3513.25 3724.15~ J823.58 4U221.64'FYWYCAA L2T-UW'--2(1-5823111.vu £j1-312rT3'i4(.q3 1IT6T1-tWZ3T17fJ l . £1 19.16 er F'4 £D !££.884THERMAL CAPACITY TO LOAIi 644.70 606.8d 756.22 859.95 1312.16 1835.40 1786.38 1784.R4 i147.34 975.94 1004.99 108*3.1%1 144S7.91r1MM LAPALIJY 1KANb!Ltk U.U UUU 0.00 U.00 U.0U U.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00PEAK RESERVE 1 49 2 .I0 1686.12 1550.2bV1627105 1114.84 651.60 653.77 702.16 739.66 1511.06 1482.01 1403.89 14614.74

C-15

SYSTFM SUMMARY

1981

- -WWHTE KHFT -OCNT UV 0 UL JAN FEHA MAR APR 4f -JUNE JUl AUG 1uP7 T ToTAL

rFOM RlVtR iNFLUW I 5 z.27077ij 1.990 J.Ib2 6. 76 15.659 Za.b2 2'1'-C- 315J 11.316 1-t(.d0Z

FROM STORAGE RELEASE 1.068 1..Zq8 1.324 2.098 3.178 2.383 0*403 -0.5A9 -5.794 -4.933 -0.336 0.005 U.105

FROM TRIBUTARIE5- 2 U 0.z0u JU U. ZU U.ZIO U.Z4U U.0 l.lUU 1. U0U u.84a.u 1.,4u U.9J0 0.55 7.-3u

FROM ORAINS 1.432 1.287 1.392 1.692 1.768 1.520 2.468 9.892 13.607 18.396 23.112 11.297 ff7.922

-T-VEF Ai -WV U1.UIF 0.lZ 0.u l6 0,039 U04 --UU36 - .UZ8 U .UZ6 U , 33Z

TU RIVER OUTFLOW 0.458 -0.000 0.000 -0.000 -0.000 -0.000 0.103 1.965 3.107 5.01Z 7.289 4.487 ZZ.419

-Tof RlVRSS --1. 93 O.Z68 0.3l 0.562 0.477 4.382 1.05 5 7 ; 5 470Tr 4.570 -3.0 14-.637

TO LINK LOSS 0.603 0,43? U.413 0.398 0.521 0.598 0.607 0.513 0.476 0.4Z7 0.425 0.501 5.91.3

TO CANAL LS5S 1.815 I.Z71 .114 1.Z44 1.478 1.!53 1.907- z.z55 Z.457 2Z.35, Z.471 Z.Z53 22.J7U

TO WATfRCOURSE 4.182 2'*268l 1.971 2.325 2.935 3.726 4.474 6.950 9.385 8.915 9.170 7.820 64.119

T>RtW-ROURW WTER - 5.91Z Z.95---Z36U Z Y83-4.984---.1u'9 1.808 1.41 3.017- 3.U38- 4.7 5.I0'773 Zw4-

SHORtAGE AT 4ATLRCOURSE 0.567 0.000 0.000 0.000 0.141 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.717

WATERCOU3R5 REI . -10.66 5,2 3-5.118- 8.-66 6.430 6.36Z 873ITQ lZ.405 j3 -27gqj IU7.770

PUMF CAPALITY GUUU ARtA t.O3r 3.J4 205U0 3.u5 U s o 5.3a1r 4.1Il 4.s' , ,.cog 6.058 0.2 , b

PuMPEI FROM uOOU AREA 5.912 2.453 2.360 2.013 4.984 4.704 1.888 1.417 3.017 3.038 4.774 5.073 42.934

EVAPFRATIUN GOOU AREA -0.000 0.UO U0,00 10 C 0.000 o.oo 0.000 O.OT O.57 0.041 0.018 Ulah

RECHARGE TO GOOD AREA 3.120 1.891 1.453 1.672 2.500 3.089 2.614 2.879, 3.621 5.113 5.5a8 4.3tl 37.862

-1TC--t`-ANGL -- GOOU AREA -Z.-9Z -1.061 -00T---1.141 -Z.464 -1.615 U.TZ5 1. uI2 -T90 - O;,Io -5.199

PUMP CAPACITY BAD AREA 1.306 1.308 1.308 1.30-8 1.308 1.308 1.30A 1.308 1.30a 1.308 1.308 15.696

PUMPED TO URAINAGL U.8aZ -0398 U.366 U.394 U.4Z3 0.431 U.451 0.6b07 U.*Iz U-.988 0.995 0.912 l7.hb

EvAPORATION BAD AREA 0.619 O.Z98 0.285 0.374 0.444 0.430 0.331 0.696 1.285 1.631 1.614 0.992 9.199

JECITARGE 10 BADU Ah7EA 1.17T 0.7U7 0.6h4 .78 0.902 U.93T u.67Z 1.458 Z.UZ1 Z.5t3 Z.581 1.8I 4 16.4Z5.

NfT CHANGE BAD AREA -0.320 0.011 0.013 0.011 0.034 0.077 0.090 -0.045 -0.076 -0.046 -0.026 -0.100 -0.380

UDAIN STORAGE CONTENT--- 5.4. 5 5*975 5.619 5.676 5.5 5.638 5,9Z6 6.O38 6.16U 6.268 6.3e6 tU.Z49

ENERHY IMiLLION [WM)TOTAL PUMP LOAD 645.20 337.24 283.87 335.71 561.67 531.23 218.84 170.26 372.20 394.47 573.76 593.82 5021.26

-TDTAL ' RAV 3t D lZ56.UU L256.0 A68.Ua 1Z69.0 1247.00 1244.00 1298.001i4TW00 1310 .00 1319.00 1406.00 1414.UU 15748.U0

TOTAL ENERGY LOAD 1901.20 1S93.24 l551.87 1607.71. 1808.67 1775.23 1516.84 1511.26 1742.20 1773.47 1979.76 2007.82 20769.26

MYORODENEGYT *OOAU 1314.1O 1132.01 995.06 1128.7 i020.1S 90. 195703 73.42 935.8Z 1200.05 1424,91 1029.92 10131.94

THERMAL ENERGY TO LOAD 586.Z7 460.53 556.11 478.83 188.38 794.94 721.12 737.75 806.27 567.30 554.64 377.75 7429.89

tNER5Y UtLILILNLY 0D.00 000 0.00 0.00 O.U0 -0.U7 -U.U4 0.U0 0.UU U0.VO UU U00 0. -0.11

INTLRZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HYDRO ENERGY SURPLUS U.00 n.0u 0.00 5 38 27397 99.1 210.16 3Z4.09 W.ZI 405.99 346.69 37Z.45- 24U42

PUWER (MEGAWATT--PEAK PUMP LOAD 1018.33 703.11 630.27 689.e5 938.43 913.74 493.34 386.93 741.55 720.25 962.76 916.36 9174.94

PEAK BASE LOAD Z779.00 276a0UU Z79j.0u z811.Ou 9769.UU Z10U.UU la73*.0 Z9550uu U400.u 3054.UU 31U9.UU 3134.U0 34075.00

TOTAL PEAK LOAD 3797.33 3471.11 3423.27 3500.5 31707.43 3673.74 3366.3*4 3371.93 3781.55 377i.25 4071.76 4110.38 44049.94

HYDRO CAPACITY To LOA 2694.18 Z511.44 2409.52 Z130.61 1984.41 1630.56 1432.30 1503.59 2080.91 Z69Y.9Z 2910,98 -308.99 9 1284.6r

THERMAL CAPACITY TO LOAD 1102.55 939.67 1013.44 1170.18 1723.02 2031.04 1909.18 1868.34 1694.64 1074.33 1100.79 1101.40 16728.57

FIRM CAPACITY TRANSFER 0.00 a.oo 0.000 0.00 0.00 O0.00 0.00 000

PEAK RESERVE 1384.45 1608.14 1571.90 1466.82 913.98 594.12 70Z.91 768.66 942.36 1735.26 1549,54 1535.60 14773.79

C-16

SYSTEM SUMMARY

1982

WATER (MAFF- OCT NV DEV JA FEB MAR AFR MAY JUNE JULTx AUG ST TOTAL

-FROM RIVEN INFLOW 516'O55 ig.17l Z.955 3930 55 *.5zes 9o69o li, r 3 Z0*19f 5 3T03 31,61ZI l5.9J 1'33*601FROM STORAGE RELEASL 1,066 1.290 I1.314 2.079 3.152 1.906 0.461 -0.1 9 8 -5.1U02 -5.385 -0.310 0.009 0.018 3rH0M TRIUIIIANILS u.zt5u 0,Vuu U,ZZU u.z1u 0,1 40 # U*3U l.iuu 1.090 ueallu I .jgu u.9ju U0550 1.130uFROM 4]RAIN5 1.991 1.251 1,433 1.748 1.945 1.875 6.153 8.292 10.789 34.2393 9.297 20.958 129.953TU NE5ERVUIR LVAFOMAT1UN 0.053 0.023 0.011 0.001 U.UIIJ 0.013 0.0120 0.04q 0.010u 0.03l 0,015 .0eb U0338TO RivrR OUTFLOW 0.733 0.013 0.000 0.000 0.001 0.000 1.580 1.840 It,887 10.036 14.630 9.814 40.334-MVRIVER LU35 -2.362 -0.u5Z 0.411 U*64V V.603 U0.15 2,0D5 2.591 2-.1J3 12.543q 502 -1#0350 21.623TO LINK LOSS 0.609 0.503 0.446 0.535 0.612 0.630 0.496 0.044#2 0.447 0.402 0.416 0.439 5.975TO CANAL LU35 2.011 1,31'4 X.JU4 1.5b0 1.5ZL Z.Oul 1.519 1.175 L.4af (.340 zo503 X*.34 73.18(9TO WATERCOURSE 5,861 2.477 2.325 2.913 4.915 5.799 4.988 6.559 9.249 8.144 9.432 8.119 T0.450PROM GROUNU) WATER0.91 Z.SSh 1.01 Z. 3 31; 3.249 9.bG6 1.5ul 1,944 3,34f 4t.03 -5 1 5o. Ono 39.10 TrSHORTAGE AT WdATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 '0.000 0.000 0.000 0.000WATEWcUUR3E RLO!. 1U*159 5,313 4,0401 5.250 a.164 aoq55 6,495 8.503 l1.596 11.141 14,Z6 53 04~p 1U09590

rUmr CAPALITY UUUU ARtA 6. 181t J,'4lz4 de# ,i3 3.Iji 5.139 50448 %.306 4*.66 aaAa :'.84 .#i6 6.lLa 6.389 58.900PUMPED FROM GOOD APEA 4.928 2.036 2.076 2.317 3.249 2,686 1.507 ,1.944 3.347 4.003 S. 131 5.085 39i.1I10EVAPORATION GOOL) AREA 0.000 0.000 0.000 0.0o0 0.000 0.000 0.000 0.000 0.006 0.056 0.051 0.019 U. 1372RECHARGE TO GOOD AREA 3.375 1.934 1.596 1.902 2.781 3.239 2.610 2.922 3.665 5.124 5.660 4.402 39.,211-NET-7T{AWGTJ----UU -AErX-- -1-. 55 -0.903 -U.480 -U.415 -0.468 0.551 1.103 "0 18 u.JiL 1.065 0ui ----- U-0,U37-PUMP CAPACITY BAD AkEA 1.348 1.348 1.346 1.348 1.348 1.3.48 1.348 1.348 1.348 1,34a 1.548 1.348 lb.176PUMPEU TO VRIA1NA~Ei U0.e1, 0.14Z? 0.371 u.9zj V1451 U o.4 U 0 .481 0.631 0.86v 1.091 I .055 0.930 I.86EVAPORATION BAD AREA 0.594 0.348 0,304 0.351 0.454 0.441 0.366 0.879 1.266 1.606 1.559 0.974 9.103RECHARGE Ta OAI AREA 1.210 0.lzu 0.689 0.821 U,952 1.003 U0.53 1.'65 1.04 1,s 591 Z.007 1.836 1r6-. 827TNET CHANGE BAD AREA -0.109 -0.054 0.013 0.015 0.046 0.110 0.036 -0.045 -0.095 -0.056 -0.036 -0.069 -0.240UkINTFSTORAGE CONTENT 6 .481I 6,._2z 6.573 b6.64 6,717 6.799 6.584 6,964 1.075 ,01 1t .311 7,430 84.605

TOTAL PUMP LOAD) 536.30 345.2,i 271.35 309.68 406.88 303.27 173.15 218.63 341.55 476.54 602.02 584.41 4619.66_TITAlI7WART-DUAT 1363.00 1364.00 1377.00 13e0.00 1355.00 1322.0 1411.U0 1457.UU 1488.00U 149T.UU 15ZT7.00 153* .U0 II0 1110.00TOTAL FNERGY LOAD 1599.30 1709.29 1648.35 1689.68 1761.88 1655.27 1584.75 1675.63 1819.55 1973.54 2129,02 2118.41 21124.66HYORO ENENIjY TU LUAU 1193.4 1 114 U.j 1IT3698 1439,YJ 1U13,34 654.11 a13,9U a71.le IUZF.RJ IIVZ.11 1a55556 1119.43 1~57TilERMAL ENERGY TO LOAD 105.74 568.80 511.27 249.s4 738.42 770.89 170.76 803.40 852.00 181.19 243.30 338.82 b134.43tNtNIIY utlLPJCI.NLT 0.00 .00 0.00UOU 0.00 0.000 0.U0 U.UU 0.00 0.00 U.0U 0.00 V.00 0.00INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 oo 0.00 0. 0 0.00HYDRO) ENfHbY _SUR-LU5 0.00 0.0 U 7UW UVU 610.24 471.s5 46_; 381 , I3 qgap*' 616.64 597.~32 5)39.70 4123

POWER (MttJAWATT5JPEAK PUMP LOAD 913.68 710.98 614.13 645.66 796.73 681.10 418.68 489.::6 766.99 666.69 986.42 960.20 8850.51PFAK BJASE LUAU 3011.00 3008.00 3U38.U0 30D55.0 3005.00 JUUU.UU 314.0 24.0 3304.00 3319.UU 3380.00 3406.00 37917.U0TOTAL PEAK LOAD 3935.68 3718.98 .3652.13 3700.66 3804.73 3681.10 5552.68 3732.26 4010.99 4155.69 4366.42 %366.20 46767.51

-WMYW AtrAVTY FtLUA 32'42.90 1046.28 1Z617.78 Z798.6Z 1417.16 i923.a4 1725.9511.9 114Y101 3401.5 .54585398.59THrRMAL CAPACITY TO LUAUi 692.77 1072. 70 10 34.35 902.04 1326.97 1751.27 1191.20 2015.29 1a99.56 885.57 964.88 1020.32 1 8971rgFCwpwCTTYTRTANS1fER 0 .00 0.00 - T . 0 0.00 0.00 0 .00 0700 o_O 7oo 0_.00 .0 0.00 U.DOffPEAK, RESERVE 2062.02 2151.81 2120.84 1992.71 1460.03 1029.13 989.80 771.71 881.44 1901.43 1822.12 1832.57 19022.e'7

C-17

SYSTEM SUMMARY

1983

~~- -- iER MAV 0C7 ---W -D RFr JWN -FE-- MAR APR--- E TLiTAL

FRD1-RTVERTNTL`OW 572T7 -33 -37OI2 4731T- 2.754 - * e.uu6 0782a9 ZZ9 "3vn- S1.1 .148 L'4 *6. Ir

FROM STORAGE RELEASE -1.139 1.495 1.955 2.641 3.834 1.757 09655 -0.Z92 -4.9?8 -5.510 -1.415 -1.092 -2.038

FROM TRIBUTARIt5 0.ZffO O.Z0U 0.22u u..ZU U.C4U U.!3U l.lUU 1.u9U U.ff9U Z.40U u.93U U.55u i.l1U

FROM DRAINS 4.686 1.41l 1,432 1.4f85 1.517 1.888 4.182 5.911 IZ.52Z 32.3Z7 37.545 19.152 124.65b

-`--R`r ERVUTR-EV"PUR1TT0N 0*161 o7V10 UU7T7 -Uo U 16-DUTTO 9DW U uU7i .UY1 U7XT-FfQ8 Uo 896

TO RIVER OUTFLOw 0.720 0.08U 0.260 0.108 0.079 -0.000 0.461 0.480 1.731 9.U50 12.169 7.375 32.513

-Tr v w - -,u7 08 - u,3-- U 7 7 4.519 Ityuy q 90 * -rU-57"4 &* teau -q.7 1z .

TO LINK LOSS 0.608 0.524 0.417 0.537 0.592 0.636 0.590 0.75 0.448 0.404 0.425 0.447 6.103

TO CANAL L039 2.I4 1.595 1.49u 1. 9q1 1.9j4 1.615 cO"z ,.496 Z.99 b.yO C.oJu Z. L4 £b. UZ5

TO wATERCOURSE 5.686 2.946 2.581 4.000 4.074 5.485 5.146 06459 9.335 8.424 9.620 6.490 TZ.Z44

lrwOR- UNWrUWAT"- _ TY5I 8W Z131 Z.4519 - 1 DUWF-- 1.47c - [ 7TT4 5 - -- 1U4 06 5.U35 U5

SHORTAGE AT WATERCOURSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.006 0.006 0.000 0.017WA-ERC-U`q5E RLQT. * T0R95 W-- 455 -.5-.3VF 87Z48633 172 U--TZ; I3TZ.o44 14.7.7u--T-3-z5 111.667

PUMP CAPALITY GUUU ARtA 6..Zt f41 e 55 1 ,lao 5.eU9 vub 4J9sY . q.5'iz a1.vY D>rs b.30u b.'$u 59.Y91

PUMPED FROM 6000 AREA 5.213 Z.4S9 1.874 1.317 4.172 3.055 1.472 2.174 3.524 4.034 5.076 5.035 39,.405

E'iAPVRATION GOOD AREA 0.000 o.ffO O.Do 0UD6- 0.0 U0-0-00 0D-OW OU6 U.055 0.070 0.uz025 U .*157

RFCHARGE TO GOOD AREA 3.468 2.090 1.679 2.095 2.822 3.219 2.713 3.050 3.o01 5.257 5,833 4.550 40.57b

WE VCfRAhGE -- 600 AREA -177W5-- 6 Wfyl -;U.TWU7T 8,- .d35D-- <. 17241 --0 75-- J7Z'7 J TOT6 W.587 --0510 1. U14

PUMP CAPACITY RBA AREA 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668

PUMPED TO URAINA5L 1.U8U 0.8Z8 u.783 U.8Z3 Us.45 U.b/3 U0715 U.948 &.159 I.5t4 1.Zb 1.17> 11.554

EVAPORATION BAD AREA 0.453 0.251 0.225 0.282 0.344 0.369 0,250 0.789 1.162 1,423 1,402 00820 7.769

RECHARGE TO SAD AREA - ---- 0-10 U.7h8 U.914 1.UU U.961 986 - -- 15U Z.138 Z.094 Z.716 1.93U t.*669

NET CHANGE BAD AREA -0.275 -0,270 -0.240 -0.191 -0.169 -0.081 -0.030 -0.196 -0.175 0.011 0.039 -0.065 -1.634DRAIN STORAGE CONTENT 7.Sz6 7.>7u 1,357I --77.r6 7.773 7.550 T.94z 8OCz 0. 139 a.Zs 8.3714 8.495 97.ZTU

ENLRUY IMILLION MWH-TOTAL PUMP LOAD 559.19 205.95 228.93 191.77 481.08 363.08 187.32 261.62 413.21 461.25 S64.37 548.36 4546.11

~TOITAL eAScLOX 8012;oCr1sI4vcHr-v49I 6T0D 7I 700TvG 1 lr9;U0TW 147.B111U.0 Iwe97U0 mr 7>5 0 E nTuur Ies.u lbbb *00 1 o o vu--

TOTAL ENERGY LOAD 2041.19 1767.95 1724.93 1688.77 1960.08 1830.08 1727.32 1AS0.62 2037.21 2092.s5 22a9.36 2214.36 23164.11

HYDRO ININOT TO *OAD 17u5.-nrIU 93.6U 11?0.03 1527.Z1 1596.03 949*ul 6oU.14 9wu.-0174 05.75 1YYO.YS 2109.41 1357.79 vI0u4.3Y

THERMAL ENERGY TO LOAD 317*33 414.23 5s4.80 161.40 563.11 887190 867.08 909.77 951.33 95.15 119.73 356.40 6256.23

ENERGY DELrICINfY 0O.U 0.00 0.00 0.00 a.oo D.Uo u.0u 0. W .00 u.uu 0o00 0.00 0.00

INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00HYDRo ENEROT SURPLUS 0.OU 0.OU 0.U0 O.00 89.35 4se.z7 400.Ob 53869.5 00.sl 70u.0a 670.6u 5S9.43 3977.1Z

PUWIR ImtIWAATiSPEAK PUMP LOAU 904.22 606.64 543.00 386.89 866693 74J*57 432.20 555.73 771.00 606.31 930.73 867.56 6439.70

FLAK BASE LUAU J35j.UU J9.UU J30U.00 330u.Ou 5a70.Uu 3£12.uu 3410.00 3551.UU 30au1.UU J5055. 309e.u 5U 099.UU 41355.UU

TOTAL PEAK LOAD 4167.22 3855.64 3843.00 3716.89 4142.93 4020.57 3852.20 4106.73 4392.00 4439.31 4028.73 4580.56 49791.78PTDRO CAPALITY ° LOUAD 32lJa0S g545.gg C75J.4r 80Z.2Z0 Z6a5.59 Z1sy.o5 1923.30 3 T1..-Zu 2400r14 Jbs5.75 3J06.09 *zo.I1 33811.18THERMAL CAPACITY TO LOAD 959.17 1027*21 1084.52 834.69 1377.04 1860*69 1928.90 2288.33 1991*85 743.56 82004 1057.79 15973.99

FIRM CAPACITY TKAN3FER 0.00 O.OU 0.00 O.OU 600 U.OO U00700 0.00 OU OU.0 0.00 0.00 O.0o

PEAK RESERVE 2362.75 2555.73 2475.75 2577.60 1649.96 1166.11 1098.10 738.67 1035.15 2283.44 2306.96 2255.00 22405.41

C-18

SYSTEM SUMMARY

1984

WATER uMCF) UT NOV UJL JAN LtA A ArR MAY JUNt -- JULY AUj bL T rUT T

FROF RIVER- IN 5.2it 1o 3.1I5 Z.560 Z.641 Z.IOJ *4.G N.MLL L2.25 17.q36 2o.5O5 30.90 11.1YU0 121.291FROM STORAGE RELEASE 1.055 1*482 1.939 2.612 3.796 2.302 0.372 -0.596 -4.d71 -5.462 -1.407 -1.U94 0.128TRFW TRIMUTARIEb U.z3u .zOOu uUIZ4uU,iu u 0 U*IJU A.luu I.ullu u.pgu £J OU u,9jU O.,u -.r3FROM DRAINS 3.920 1.260 1.125 1.462 1.568 2.035 2.308 5.656 5.'95 19.788 33.125 15.200 92.94tTO RFSERVVIR-EVAPORAT1ON O.l8e U.Llo 0.077 U.0,36 0.0j 0.01Z 0.0lb .0U59 u.- O.3O U. 1ztb 0.14U 8*TO RIVFR OUTFLOW 1.938 0.107 0.009 -0.002 -0.003 0.000 -0.000 0.045 -0.000 3.669 8.911 5.001 19.081Tl RIVRLu -4.222 -. 34r U.2)b 0 u.53 o.*' uc 91 2.49b6 0532 a33 -8-.65 -59592 life .To LINK LOSS 0*586 0.510 0.426 0.478 0.557 0.606 0.597 0.551 0.534 0.414 0.426 0.549 6.236TO CANAL LU35 £*CJ3 1.71 1.46 £.751 L.853 15801 2.U i 6 2 C.10 C.z e. T1l £.o46 25. rbuTO wATERCOURSE 5.948 2.851 2.501 Z.823 3.903 4.228 5.626 7.233 7.72? 9.73Z 9,975 8.764 71.309FROM -RQ-U"__!-A-TER 5 2 - Z - 5 4.390 1.167R 1.S9 O W 5.139 O. I 6W4 U4

SHORTAGE AT wATERCOURSE 0.000 0.OO0 0.000 0.000 0.000 0.007 0.000 0.000 0.642 0.000 0.000 0.000 0.649gA-ERCOdR5F REQv. ~~~~ II U85 S. I 5_k5 w5- D. It 7 8.411 -a.6.bC5- O.19 ISI.Z-C.Z9 1. 514 -13.9ZS -S1FVyr

PUMP CAPAtIrY GUUU AREA o.da9 J iZ9198 .s.c.'T 5.zi5'52 414 9 .9 o.ue. ,.ooa b.JR6 b.4aS oU.119PUMPED FROM GOOo AREA 5.137 2.b94 2.084 2.654 4.508 4.390 1.167 1.594 4.762 30050 5.139 5.164 42.3437VAPO-^ATION -GOOD A-RE-A- -- 0000 0.000 0.000 'J°°° OOOG 0.000 0.00W 0 0.000 U.UO4 O.U55 U.092 O.Oz U.180RECHARGE TO 6000 AREA 3.533 2.098 1.665 1.899 2.775 3.187 2*803 3.117 3.764 5.427 5.919 4.630 40.317NET CHANGE -- G000-AERA- -1.6u4 -0.,Qr -U 419- 0755 -1.733 -I1Cu* -17b63I ---J75l-Tuu 1ZzZ-07 e8 075Tt PUMP CAPACITY HAD AREA 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 1.639 19.668WUMNmU TO DRAINAGE U0d g5 U*644 u.7ur U.7Z7 U65g9 umolu 0.81.4 L U91 I 9 199 1.16 I U.665EVAPOkAT ON llAD AREA 0.450 0.242 0.207 0.257 0.304 0.353 0.246 0.703 1.175 1.306 1.417 0.d33 7.573R-EC}iAAGE TO-RADi-A-FA- 1 rz760 OH O191 r ' 93 I.U4O U.968 0 919 1.56r .T939 Z 0.159 1.969 17191NET CHANGE BAU AREA -0.162 -0.128 -0.060 -0.061 0.009 -0.044 0.063 -0.030 -0.327 0.162 0.047 -0.031 -0.541DRAIN sTO8A.r-CUN-T5T-- .9 85.o1 8.6858- a.r55 e.35 h.921 9.0ur 9.O91 9.CIC 9.331 9.45u 9.srg lub.U99

-TFLR(y {(ILLION KWMITOTAL PUMP LOAD 552.33 321.96 264.71 326.34 514.58 500.40 181.76 205.16 570.32 392.05 589.43 579.01 4998.11TOTAL BASE LOAD 15v8aV1W 3T60T6C1Df 1616UO 1Ul000. 1.ab-00 L6W 7ZUU l6.= 170b4.UU IalUO 160e-0W ZUU97.UuTOTAL ENERGY LnAD 2150.33 1907.96 1865.77 1942.34 2115.58 2086.40 1847.76 1925.16 2326.32 2156.05 2390.43 W381.01 25095.11

--RYDRO ENERGY-T-O 1AD - - -1l7a.lC.so55973s lZ5h7 lary.11 1101.45 854.1 95Z.60 1214.a3 1z69.bS C1209.53 *i9.90 15993.96THERMAL ENERGY TO LOAD 471.28 661.q9 806.29 685.55 738.33 984.81 993-52 972.45 1111.32 886.Z7 260.73 486.93 9099.46ENERGY UtrtlItNCY 0*.u U.uu U0UU U0U. UOO U0UU u0UU -nu.5 U..uu UU UUUU -UqU5INTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0a00

1YInRO- ENERGY SUKPt13'- u.u - u0 - - - u.nO --3-7 5 c 7.06 Z33.9f 3* 4 7.- 9r l9.72.-T9-&639I77 5 b F.b193. 91

POW" TIGAWwTTSr -- __

PEAK PUMP LOAD 895.82 679.37 617.40 680.29 896.17 891.81 404.59 456.6h 9b7.96 74Z.41 969.29 954.46 9156h24PEAK HASE LUAU J 3544.UU 3516.UU j5sgouu 3593.uu 3539.UU J53j.UU 3693.UU JaJB.UU J913.UU 3998.UU 3998*UU 3995.UU 94b49.UUTOTAL PEAK LOAD 4439.82 419S.37 4165.4U 4278.29 4435.17 4427.81 4097.59 4294.68 4880.96 4670.41 4967.29 4952.46 53805.24

- YHRO CAP AtTTYVTI LOFAT - J346.319t 4 *'4 e 4.IST2784.72 3Ul1.92 276-9- 19 e0Ta0 ITTJ7OZT78W 31. Z33TWW99 80WTTW.1ZTHERMAL CAPACITY TO LOAIj 1093.45 1250.89 1380.68 1266.37 I665.98 2349.11 2324*56 2475.38 2502.73 1525.41 1159.65 1216.54 20410.76-FIRH CAPACITY T RAhNSFER- --- 07a oo 0o o0U 070W oo UTr0U 0 0D 0700 -0 WPEAK RESERVE 2346.66 2476.07 2386.70 2495.95 1841.02 1157.89 1182.44 994.13 1004.27 2492.15 2347.35 c369.10 23J94.52

C-19

SYSTL.M SUM-Pi ARY

1985

,jA TE R -(MIAVV 1-ntT- -- NUV- Ut'.. JAN ___fLEtI 'AF PJU t J U LY AUGI ?IPTITAIL

FR(ntM 2UV1.UU ~Z991 - . Do 3su .. "e. 334 1I. 15 T.areZ r. :ZU25.57i jv4-I3.*sIv j 4yPSfFROM STORAGE kELEASE 1.052 1.472 1.926 20589 3.765 2.279 0.363 -0.599 -4.811 -5.356 -1.42b -1.091 0.164

_TWUD TRlMUTAIkII.b 0.2ma U.2U 00 u ,eu u.tIu 0.24u U. 1,3 J.lUU A 1.U90 U.Cqu A.340 U*VJU U055u I FROM DRAINS 2.017 1.964 1.122 1.677 1.598 1.992 2.761 5.044 13.175 33.629 31.521 15.761 112.261TO RE5ERvO7IR [WVAP-OR-ATT_OW _U,.Ts .1TO.1 Uu .36 UUi .l (U9 U U U.Jfq9o18 7' 0TO RIvER OUTFLOw 0.662 -0.001 0*054 0.001 -0.003 -0.000 0.000 -0.000 1.536 9.2a0 9.9"60 5.038 Z6.528TO tI41FkRLO_SS -;; 7Z25 a 0*Z8 .0T11V-- U.65U 0.380 U 4 1. 05 208 1K U di7.V U -3.8'41 16.1313To LINK LOSS 0.559 0.3q8 0.480 0.460 0.541 0.611 0.628 0.550 00463 0.414 0.432 0.582 601513TO CANAL LOSS z se*q1 1.9494 1.b6'9 1.110 1.009 Z*19r j.o. c.ir Z 15 .ooob e.azu Z09 £6.jIDJ

TO WATERCOURSL 5.707 2.475 2.650 3.012 3.633 4.263 5.862 7,165 10.081 9.516 10.176 8.97b 13.575FR~OM GROUXWTF_ATER --5-27W4-3 esI3ZO le 75 9 T T 35~ UI a 1.5.30 .3.','- 3.q7-5.7q7ZV- s. Z9 b D~15SHORTAGE AT ~,ATERCO,JRSE 0.295 0.0900 -0.000 0.000 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.361

MWATERCZ)UR5F- P11W7`. T 17 26 5qWK 0691 .5 . 01 85T596T7 33 W I U * .147 14 *2 . 1Z-Tr6481

TUJW CAPALITY bUOD ANtA 6.3ua 3.!)aL t.iizu a. 23 D0o .g16 1.bLL 4 gD6 .989 c. &qe 2*0 s.3cui s. 5 u b1.195PUMPED FROM GOOD AREA 5.224 3,ls3 2.041 2.598 4.902 4.353 1.078 1.830 3.272 3.467 5.297 5.296 '.2.551E`VAFUWRT1UW OUTA9fW7_ 0.000 0.000000 0.OO U000 0.000 0UU00 ooo 0.000 00.002uo u.U55 070 Yf9T-.0uu 0-.181RECHARGF TO GOOD AREA 3.524 2.003 1.707 1.9ev 2.721 3.216 -2.685 3.218 3.909 5.419 5.998 4.71.0 41.279NET CHANGE ---- V0GD -APEXA--T.T00Tuu -U.33 -U .6 3UI 7f~t1 YT1*au 173T5jasT.s r .Ue .. T .~PuMP CAPACITY BAD AREA 1.884 1.884 1.884 1.884 1.884 1.884 1.8a4 1.884 1.684 1.85 1.864 1.884 22.608

-PURVETWTO UNAINA(.L 0.926 00.73 0.559 U.b4q U.012 U.~t'. U.290 U0561 1.16U 1.Jg1 1*3%9 L.233 IU*'479EvAPORATION BAD AR~EA 0.449e 0.231 fj.191 0.243 0.299 0.332 0.248 0.802 1.185 1.461 1,432 09851 7.724R-tCHA fGE-T1T_FADWR-EWA -I , Z6 0. a lI 0.191 0.92.3 1.U05 0.901I 0.965 1.~170 2.109 des 1fi 2.19 2.006ou 15.11!NET CHANGE BAU AREA -0.110 09006 0.047 0.030 0.085 0.055 0.116 -0.0s6 -U0.15 -0.011 0.012 -0.078 -0.087UNIN- Sr'aW~GE--tflNTWTR - 9.6 .rI,TI 9_16 V45 9.0vu v.vaq 1G.U12 1O.Ib6 Lu.Za? 10.44uo IU,5z LU.6q* 1e0.961

TOTAL PUMP LOAD 567.52 370.73 260.82 323.96 561.09 503.60 161.87 239.64 404.80 437.13 617.31 608.40 5057.66-TO-TAL flAST-.UA1J MT1Z'T0U IlLg.uu ii30.00 I7Z.0U Iri ~00 1120.00 180a.0U 1abo.00 p90s.00 pvpq.00 1Y2Zi00 VISY*00 ZLgI*.UOTOTAL ENERG,Y LOAD 2294.52 2084.73 1990.62 207S.96 2296.09 Z223.80 1969.81 2103.64 2310.80 2351.13 2549.31 2560.40 2b831,66

--KURo ENER Y-TWtU1AD 16U0.1% 12Ip.6r 1OV7.10 1311.00 13qa.Vf 1115.50 9g1.ss 1019.06 lzz21.~132Tm.01 1194p.v5 1913.!9 16U75-03THERMAL ENERGY TO LOAD 658.22 812.93 893.51 758.11 946996 1099.59 1048.20 1084.44 1089.11 1095.96 572.15 646.43 10796.26tNtmoY UUriLkLNLY 0.00 0.00 0.00 0.0u 0.U0 5.032 0.00 -UO05 0.00 0.00 0.00 0.0 -.UINTERZONE ENERGY TRANSFER 0.00 0.00 0.00 0.00 0.0 .0 0 00 0.00 0.00 0.0 0.00 0.00 0.00-YURW ENEHRYSURFIV5 u.0Q 90.0 0.00 0.0u 3.88l 0.00 3b2O08 398.21 208*Z1 1342.3 569611 454.63 3098.76

PUWtW (MtE,AWATTbJPEAK PUMP LOAD 919.31 759.35 588.63 671.32 942.83 699.71 402.61 533.13 750.99 801.55 999.11 969.69 9z64.23Pt.AI BASE LUAU 3332.00 3300.00 j5J4.IJU J102.00 3631.00 3a30.0u 400V.00 41L6Z.u0 gr4J.U 4J.U43JL.1W 43311UU 46J53017UUTOTAL PEAK LOAD 4751.31 4559.35 4423.63 4573.32 4779.83 4729.11 4411.61 4695.13 4993.99 53060.56 5330.11 5320.69 57629.22WMYUWU CAPAL-iiyT 1 LUAu 3441.49 3USSeOl 2591.03 3195.55 £!03.34 20,y.vl 1500.04 1Y3!.93 £791.49 3110.3Z 3916-.34 -324. to 34930.20THERMAL CAPACITY TO LOAD 1303.82 1491.34 152.640 1357.44 2016.48 2643.47 2522.97 1731.56 24UZ.50 1852.13 1362.73 1395.91 22667.0671rN-WPCA7.ir TRtNUN3K 0.00 0.00 aqua 0.00 cu. 0.00 u.uu 0.00 0.00 0.00 V.0U 0.00 0.00PEAK RESERVE 2511.99 2592.57 2610.31 2447.19 1730.52 1091.16 1224.03 989.60 1344.50 Z642.S6 9475.9? 2509.40 24182,39

C-20

ANNEX 3.3

Priorities for Groundwater Development

Discounted Net Benefits 1/ per Tubewell in Canal Commandsor Parts of Canal Commands

Rs. 200/4 cusec well Rs. 100-200/4 cusec well Rs. 100/4 cusec well

Upper Swat Lower Swat (2&3) Paharpur (1)Warsak (2&3) Haveli II (1&3) PakpattanLower Swat (1) WIarsak (1) Haveli I (2&3)Rohri North (2) Fordwah & Eastern Sadiqia Haveli II (2)Thal (1) (1-3) Dipalpur Below BSLower Chenab I (1) Ravi Syphon Dipalpur Link Link (1-3)Bahawal Below MB Link I (1) (1&2) Lower Bari Doab (1)Kabul River (1) Rohri South Lower Chenab I (2&3)

Bahawal above MB Link Lower Bari Doab (3)Paharpur (2) Kabul River (2)Panjnad Abbasia I D.G. Khan (2)Tha' (2&3) Dadu North (2)Dipalpur above BS Link (1&2) Mailsi above SM LinkBahawal below MB Link (2&3) (1)Panjnad Abbasia II (1) Bahawal Below MBDadu North (1) Link II (2&3)Rohri North (1) North "est (1&2)Mailsi Below SM Link Ghotki (1&2)Qaim Sidhnai II (2&3)Sidhnai II (1) Panjnad Abbasia IILower Bari Doab (2) (2&3)Kabul River (3) Mailsi below MSD.G. Khan (1) Link (2&3)

Sidhnai I (1-3)Dadu South (2)Begari Sind (1)Dipalpur above BS

Link (3)Fordwah & Eastern

Sadiqia I (3)Ravi Syphon Dipal-

pur Link (3)

IT/Discounted at 8 percent.

Note: Roman numerals denot I = perennialII = non-perennial

Numbers in brackets denote 1 = 1000 ppm2 = 1000-2000 ppm3 = 2000-3000 ppm