(WE-NET) mimm%WA - OSTI.GOV

294
W2¥JtJ£mi8£W NEDOWENET0012 (we-net) mimm%WA ^X^12 id NEED 01 001 8651-9

Transcript of (WE-NET) mimm%WA - OSTI.GOV

W2¥JtJ£mi8£W

NEDO—WE—NET—0012

(we-net) mimm%WA^X^12

idNEED

01 001 8651-9

(we-net)$ 7. i7 1 2ifUrto • 5t«S9fi*l;it5iJt • m%i

¥S13¥3S 30*WE -NE "J Y V - ? BUglO 1" 3 tz tt> ffl

ttlfffl#it£Stole LfcefSc"e65o EoT#:f*®->X7=-a ® *@fi(£ 11 * tt » © ft to * * St te ffi a b. « bS, -ft »£ ft t * * i b t t i < < * g * 5 „

*»%«, im&x-m^MM.%cosmm^ms ■ mu mi:&@&6ij:\ f ®% %. ?®±xx #6nfcEs=t D$rfe&s«ig%*-@ • iiim-E-g

ItSiltl, S|6)ttleWi$ &• **£fiUxi:£gtokLfe„

08 .............................................................................................. rs08 ................................................................................................................. 46 9

12 ................................................................. Vt12 ................................................................. 4iW©E*l • Sfr

£1AI91SIH

SI8181

..........................rz-s

........................................................... lgJflE*©S*2I’3$l* 2'8

.........$ K!SzM4 rrs

.... etc

agto$HB3#lBtil$$#©-A< 3-fl—-£,£ □ .4 q®ME*>F 2T8

............... its

................................................................ w#%:#©@*zm* rs

.................................................. %«©##%#%: - %#* #£:

II01SSt4

»4i©il$a!4i#i:)SS,*ll¥l7fc 8'Z‘2.............. 2-2-2

I'2'2.............. ro±i©W¥fiie*^ • tie#* 2-2.............. «2Stro«¥fW*^ • tie#* I"2- ®±i • wmotmmtuy, ■ tie#* **z

I BMiSgffi ri1 ...................................................................................... *+i©ttm$ s 1 m

3 ¥ II

(S) .................................................................................................................... fir # I

(2) .................................................................................................

(I) ............................................................................................................... iifTI

* 1r&Jffl • PBE5:4Mri«lS«fc^ • tie#* 3fS63£Jffi«II8l

uaN-aM) <?ng_m**>pj

5.2 4-*©« 30

III ft H*%#*###> ••••....................................

• LfcxstfbK*&38ffe£-it&iA 7k*E®ffi©iaikS'm6i©ffffi

• 7k*a«f$b h dyi—y-k >-9--©s«to(#3^txll) •••

• ■k7 51>*7k*6fiSiijXE<*©Sf#@i7k*SS©i8*(l«SJ4k?) ........

• X >afc*s*"x j'-b>->X^A©IISE%06$) ...................

• X^7kS>fefflS7k*lilJK7"D-bxffii)nck-5TkX^tUVjf-XXT AS$iSft|nl±©18$ •••

<¥6812^6 ESItWlfiS»>• X^A'x6ii#k7k*SS$©«$kSi|Sti©ffffl (*E^X/f #*#) ■

• 7k*SiRttb K ny±—(Srnxt X*«) ••■

• ■k7T->S7kS6fia*l$E*©®SM7k*SS©IBS($SS#*¥) .......

• #¥*xx >astHS#xx-b>->x:r Amnesty(XS) .........• maA)$&i:k-5 7k##-fbR#©m#m^

(X 7 f :t • 7 i-x;v • '>XxAtt) .............• j;^7k*«-fbtt®©*i®E%

ft- 1

ft— 7

ft— ll

ft— 15

ft— 19

ft- 21

ft— 31

ft- 81

ft-107

ft—141

ft—163

(ffilRE) ft—221

$ x A3

21tittoi:a6, mmcm-a-bX:x*7i/jF-*xxA©#Wift'&iWbtsi^xuZx, V->3:^;i/=ir

*i#d:ni@%*jSto^nTv>^= 197 0ipc5i6$£h£t>ffl-t:$1£;ti5_ HSMbB3i*7i/*;-&@®(;:N gf*tfe-SV'li^l^x^.;!/^—LT7kAa67jc*6# D Hit©C^ < ©*As|iJ*tlfc<, V* b%#6, zk A^7k#&##*Xg@lc *:#!:# btbf6©©#6%A&©%%i%%*© liMV'S-B-^cfrofeo **5A/x *6SS*)W1'-5*ffittEi: LT#S UT 45 9^ C©8E5StAtt*$%S@T-fc^„ bfrU C© ^Ctt*M^fflSfta«bk*&£fr-B-fc&oT^-5<> *S3i*;v¥-SEf tr, @#% dV3L*;v^-Sb*i:-7j<*$*»16SSt'5Sffc**Slilit'fb^86tt b»b' < oiplj ^6nfc*©©s aiW©ftE6%tfck#CSIffl-fbt-6aiH«k©MEk»ofc0

-$3i*7V^r-k bT8b*6 < TkSSff 6 til V«ffl1"5. C $#f 331*71/=lr-*X?A0^TvJ<*fflRf-Q!|$«$+fl-C4A^-S®5-Nffli®fflt:fe4o lu#tib «##*§#♦s-awticsgrows-msL^ ##i±a* cs*7k*-(bti) ^^©7Kmem#a& 46^U&--7X7i/7k$S?6T-$> 'o s i|ttcE#lj:*mC"B©*r-6ffldn"tvi5o %@©X ')—y^t)\>t—t bTCTkSti:*^ g#S 31*71/*—bxffibti3^#T\ -fbS x*7i/*-fr&©7k*B:*ftg;-t-©bft&u<> 3i*7V*-->xxAI*f9ijFt;:ti; Ex^nfs 1 €®fc©ctix a«4i®*xooN8r£&to61l8%»s$M<gk&3„ cn«:7.kl!t3i*7i/*-i/Xx.k©tt1T\ ^©Stigtitj-

#m-em, mmvt^rommcntzizt-c&z* mtztttiffiy-xftSiS. n, ter-*S3i*;i/dF-'-i/xxAffl^T-Ston^tox 7j<S3i*,ii/=£-##>7?cts© 41 C«2 bTfT < o *>o

CfflXXX 1 2T*li7k*x*71/df—>X^AC®iZ*-e^*s ¥#WC*fbVNfe«->- X©SS6itokbT»l). CCT-©®ffltttS*$nfete«*s7K*x*7V^—>x?A© [t’"t-®jroqJtgtt6s$>^A161ti4bTi/'5o *IBS*c$k®6tiTVA^>©ttT6$ 1 2 4=

?©*k©X&3. (B^fflx-vCHbTliXi-XASM^-S c k*& b@M%%tb#l±B%x&3Ab v\fa*##mv\*©-c&6o 4-#. c®i3

Wtttti^tx < 3Ck&#}#b6^*©X&3o

VfiKl 3f 3H ^XX12gift

(1)

(se%s$«) ©Mtossit.# (NEDO) ** • y;vn-;v • vH*txS«SI%S (HABS)xf:E^9r^©$Kl3 A 9 98ffiVteo Sfe, it

NEDO BAB

1 2FWWG

(M)

(2)

2 . irxt 1 2$*i?/WG£i

1 2

a #R]

:0j

ss

$tgAm±# im

*ig<b^E^9f im$s*t *#p^%#*E%# (bf'>xrAi?M m#g EiSjES# E%S»WE%m#@ *Pfix$s«ff%sf • sawsa s#E%### ««SW^m x*;u3=-® iffiEJSgg-ses* seesss

^yy-’-v-i @# 6# ®it£ ses ®E IEx£*$ mm*p iSS ±15

x$mr$ -a—y->->^^ >i+n#»*$ x#g#p^ -a.-y->^W >8t#ttiS*® g#m#@ essEsas E%^%# E^ga^seESjSS® SrxL^;v*:-y»» ISftffifeNEDO HABS StKiE NEDO HABi

$±9 1 2fffflWG£* a seal

$# 8® £8 t#s§ $i$ to

sryy-A- *f an ±15 s*

±#pa%^^E%# m#gE%##@ ««S«W^Bf E^s»e

E%0#@ «?gE#frE%m 3L*;i/j?-am iffiESSg NEDO HABS ®S£E NEDO HABS £$

ma&Ax:*;i/jr-mAx#E%m E%'*# *# ±JSE5$Ir«j m Ml#m #zAll! X3i /J\# id

m

giJ^SE^j

te#)

(3)

4. ass*#/mas*#M«#

s?$6# assme hiseis t-n#**® etsssiMsm(¥6K1 2^4£~¥bU 3^1)4)

b*$ws ass*# x*sep« -i—y->->+'!'ESEM^stt 2^4M~¥fiU 3^U4)

SB3jE)£ ##S*@ SS&EflltilS eB5E%S$(¥fi£l 3^1M~WU 3^3M)

*$ii6l5 @%S*# XS^A^-ff gr:n*;i^-*t$B$(VfiKl 3^1M~¥®1 3^3J4)

5. • S*8E|girS%a# (NEDO) ffiS#

*F*j| ** • r>3-;u • ;H*VXSEPI*S (habs) sm£5ff±#6* 7k* • T-iyn—;i/•/^^*vxSEIII#6S (HABS)

(4)

I

Summary

1. Research and Development GoalsThe WE-NET is a project worked out from a long-range point of view. In the process

of promoting this project, it is conceivable that the innovative and leading technologies which are promising in the future but not covered at present by the project would ripen into maturity. Conventional technologies may also have to be introduced as part of the technologies which constitute the WE NET, depending on the trend of their improvements. It is aimed at giving valuable suggestions and proposals to the direction of the WE NET project and contributing to the research and development through feasibility study, as well as further research if necessary, of such innovative, leading and conventional technologies.

2. Results of FY 2000 Research and Development2.1 Search for and Assessment of Innovative and Leading Technology In FY 2000, we received 5 new technology proposals. We evaluated the 5 proposals

for feasibility studies, and selected 4 proposals for FY 2000 feasibility studies at the committee. The Table 2.1-1 shows the proposed new technologies and their assessment results.

Table 2.1-1 FY 2000 Proposals and Assessment Results. (in order of receipt)

FYNo. Proposed technology Assessment results

FY20001 A study into the method of producing hydrogen without generating carbon dioxide, using natural gas as raw material, and an assessment of by-products

Feasibility study is conducted.

FY2000-2 A technical feasibility study into hydrogen - selective hydrogenase sensors

Feasibility study is conducted.

FY2000-3 A study into the new dehydrogenation of naphthenic hydrogen storage and transport media

Feasibility study is conducted.

FY2000-4 A study into unbalanced methane reforming gas turbine systems

Feasibility study is conducted.

FY2000-5 A study into the improvement of economic performance of the hydrogen system to be brought about by additional adoption of a process to recover heavy hydrogen from natural hydrogen.

Feasibility study is

passed on.

(5)

2.2 Study on Innovative and Leading Technology (l) Assessment of FY 2000 Feasibility Study ResultsWe evaluated the results of the feasibility studies conducted in FY 2000 regarding 3

proposals.Based on the assessment results of the new technology proposals shown in the Table

2.1-1, we selected the feasibility study items for FY 2000, and conducted feasibility studies on 3 proposals. The results of the feasibility studies are as follows*(D A study into the method of producing hydrogen without generating carbon

dioxide, using natural gas as raw material, and an assessment of by-products The technology to produce hydrogen using natural gas is a large-scale technique

that can be used dispersedly. Yet it is a process that emits carbon dioxide. Thus, a study was conducted on the feasibility of technological options to produce hydrogen without generating carbon dioxide. From this study, valuable information was obtained, such as' a plasma process can convert hydrogen at a high rate and generate high value-added products such as carbon black. A catalytic process can also bring forth high-value-added products but involves some problems, such as the deactivation of a catalyst. A further study must be conducted to look into those problems.

In the next phase, a further study into the catalytic process will be made to assess the cost of hydrogen and the economical efficiency of products generated by this process. Possibilities of other processes will also be examined. In addition, a study will be carried out into hydrogen-manufacturing processes that can help reduce carbon dioxide emissions in order to achieve the dispersed use of natural gas.(§) A technical feasibility study into hydrogen-selective hydrogenase sensors

Because 100% hydrogen-selective hydrogen sensors are not available, a study was carried out to examine the technical feasibility of applying hydrogenase, a protein enzyme functioning as catalyst in hydrogenation and dehydrogenation, to a hydrogen sensor. The study confirmed various characteristics of the sensor, such as hydrogen sensitivity, response speed, and carbon monoxide catalytic recovery. To make a hydrogenase hydrogen sensor commercially viable, sensitivity output and response speed must be improved. To do so, it is necessary to make an effective electron transfer arrangement of hydrogenase and electron transfer medium, establish electrode immobilization technology, and verify durability.

The problem is, however, that it takes a great deal of time to acquire and refine hydrogenase, making it difficult to prepare a required number of samples and confirm durability. Therefore, this study will be suspended during the current fiscal year

(6)

until hydrogenase can be made available readily at reasonable price.® A study into the new dehydrogenation of naphthenic hydrogen storage and

transport mediaCyclohexane and decalin are naphthenic hydrogen storage media that have

relatively large hydrogen content among hydrocarbons that can be easily hydrogenated and dehydrogenated. These two substances were applied in the dehydrogenation reaction as hydrogen transport and storage media to check the reaction-stimulating effect. In addition, the technical feasibility of applying the two substances in a reactor was examined. The study confirmed that both the superheating liquid film process and the membrane reactor process had a reaction-stimulating effect. It was found that a compact reactor could be built when cyclohexane and decaline were applied in the temperature range from 200 °C to 300°C.

In the next phase of the study into the superheating liquid film process, research and development will be made to establish technology for separating hydrogen and naphthenic media from unreacted media. Further qualitative analysis will be conducted through the accumulation and analysis of reaction and separation data. Moreover, from the perspective of system engineering targeted at hydrogen stands, a conceptual design of systems will be developed, and the technical feasibility of systems will be examined. Considering that a technical proposal has been put forward on the membrane reactor process, the direction of a study into this process will be decided in association with that proposal.® A study into unbalanced methane reforming gas turbine systems

A study was conducted into the feasibility of technologies for methane reforming by the use of 5- to 6-megawatt gas turbine exhaust heat and for separating hydrogen from reformed gas. Moreover, the requirements of a reformer, which is capable of achieving a high reforming rate in the exhaust heat temperature range of 500°C, as incorporated in a gas turbine, were examined. And the system advantages of such a reformer were studied. The study found that output and efficiency could be improved by recovering gas turbine exhaust heat and reforming natural gas into hydrogen rich gas. One of the tasks identified by the study was to examine the applicability of a separation membrane in a gas turbine. In the next phase, problems on the gas turbine system and on the reformer, including a hydrogen separation membrane, will be examined, and the feasibility of a system will be studied.

(7)

(5) A study into the improvement of economic performance of the hydrogen system to be brought about by additional adoption of a process to recover heavy hydrogen from natural hydrogen.

Economic performance is the sole theme to be considered in this field. Overall system efficiency is assumed to go down by the energy consumed in the processes of separation and concentration of heavy hydrogen. In the recent situation under which there are no large requirements for heavy hydrogen, any economic advantages are not expected from an application of the heavy hydrogen separation technology to the hydrogen supply service stations.

(2) Assessment of the Results of a Basic Study

<The Subject of a Basic Study>A Basic Study of the Magnetic Refrigeration Technology for Liquefaction of

HydrogenDuring the previous fiscal year, a subject of this basic study was chosen and a basic

study commenced in the current fiscal year.During the current fiscal year, a basic study for a magnetic refrigeration hydrogen

liquefaction system was developed and optimum magnetic materials were examined. A hydrogen hquefier with a hydrogen liquefying capacity of 10 kg/day, with a system efficiency of 50% and operating on the belt-chain system, was designed. Dozens of optimum magnetic materials were selected by blending magnetic materials in the temperature range from 70 K to 150K With this, the objective of the basic study for the current fiscal year was achieved.

In the next phase of a study into elemental technologies, an optimum cool storage machine will be chosen and the flow subsystem will be examined in order to check the heat exchange characteristic of magnetic materials and helium gas.

(8)

Magnetic

\Magnetize, and thereby warm the solid.

Remove heat with a cooling fluid*

and thereby cool the solid.

j Absorb heat from ai cooling toad.

^Cool Fluid In

LmrphMn.'''

r

| Cold Fluid Oi

Conventional

\Compress, and j thereby warm

1

Remove heatwith a coolingfluid. ------

Expand, and j thereby cool |the gas.

Absorb heat from acooling load.

Hot Fluid Out

Cool Fluid In

Cool Fluid In

Cold Fluid Out-

Figure 2.2-1. Analogies between conventional and magnetic refrigeration cycles

(9)

Magnetocaloric Effect at 5 Tesla

Temperature [K|

ErA12

"it Dv.70 Er.30 A12

Gd5(Si.l5 Ge.85)4 IRH

"*--------- Dv

■::¥........... Gd.73Dy.27

Dy.25 Er.75 A12

........ Dy A12

............ Gd5fSi.225 Ge.773)4

■A Gd.18Dv.82

.............Gd

---------®--------- Dv.50 Er.50 A12

---------- i Gd5('Si.0825 Gc.9175)4 IRH

....................... — Gd5fSi.2525 Ge.7475)4

............................Gd.36Dv.64

..........................TbA12

Figure 2.2-2. Magnetocaloric effect for the materials selected for the 10 kg/day AMRL project.

(10)

Figure 2.2-3. Schematic of a Single-Stage AMRR with a belt of regenerators

2.3 An Examination of New Areas and Items of Development Based on the new technological trends clarified by the surveys and studies, new

areas of development and technological topics were examined in order to find promising technologies that can be used in the WE-NET Project.

3. Possible Topics of Research CourseWith attention always given to related technological trends, a study was conducted

to pick up, examine and assess new technologies that could be incorporated in the WE-NET Project. In the field of hydrogen storage technologies, a study was carriedout invo caroon materials in nscai zuuu. in nscai zuuu, a survey was earned out into naphthenic hydrogen storage media. These studies found a number of promising technological options. Some of them were examined in the Task 11 study on hydrogen absorbing alloys for dispersed hydrogen transport and storage. Information useful to develop future prospects for hydrogen was provided in the project.

In order to maintain the effectiveness of the WE NET Project, continued efforts must be made to keep a watch over the trends in related technologies

(11)

1WE-NETttSW!to®l?CiZofc7Dyi^ ht?$>b. £i'l&f|jtUT©<±-e.

#a'efe^t)©0aE©ffl%*f*6a6^nTv^¥*to • %#MKE#a# ut < 6 c k#X.5>n-5o *fc. 4*Stt«C-Q©T4), f©K#am#©mio|CZ-3-CI±, WE-NET7D y = f h©«slji*©—3tU«Da»«SkS:oT< CtokdftipITO • ^#%KE.6*S&E£-DVT©Stt • • ffffl&fft-x -&5 Ct6 GT 5 C 8*351" 3 ^ k 1C J; b . WE-NET7nyxj» • iSSSffVx E3xlB%C#t"-E>ck6itok1"-6o

22.1 ¥Srto • *#%BE©m* • ffffl

¥»l2^6tt5B©SrBE#$&iK* L&o 5tt©grttE#$Kov-tN(ttT rwGj tI5„) e#6lcT*^e©E&#MB^&

«bfe, ##$mBkf©:me*&#2.i-n:^f.

2.1-1 (JiSttSm*)^Jg-Na ti S E n¥fB&nHH12-1

7kss$ffi©ifle k siistifflffeH12-2 7k*SJKttt b ayt-t^-fe >»-©RE8M#BM*m ES1tl4SIEo

H12-3 t7f >%7k*EjmsEft®$fm7k*ss©stt EA#N#m.

H12-4 #¥*1 *'X 9- tr > ^*7- A©lB*8f35

H12-5 X^7k*A^6©a7k*liISi7'D-t:7.<4iaicj;^7k*^7F.7vjr-->XxA«'®tti6i±©iB* bo

2.2 iFSrto • *#%RE©8*35 (l)¥/$12¥6ES1&l1SSiR©FFffl Tai2#@ c%m L 6 4 #©E&#wem©#m u 6.mz.l-l©SrfitE«ie©FFfflSe$S t> k C. ?mi2#@©E^#W*B &S& L, 4#©EA:#

itSHELfco E^Ef8*©fffflttttT®a b =

u^-MKs&%3;se6:v7j<*Sjigffi©MekS'jeti©iiF« Vfc7k*®BSEttx *$#to J;tf'fl-afflfflBJE*SET*&3 Ak -BHb@t*6

Stil-^yn-bX-Cfe^/zto. -e-fbi8<S£i#tti£ti-1\ 7kS6SB"CS^SE®nIegBlcovxT

(12)

-c©K*©^j)p«iffic-3V'-c«WLfco ^©e$. *S6to*69o%W±k#<x «x«, ^inflfilttfflfe5k LT> XX y X »k'/WHe> ft-5 &kite &ts«6fe-5ckAsT-steo MEfficovxTiis ^%mme©*v6a6w#e&mu TV'3t>©©, ###*%f6»k'©m@C-3U-C$6l:#WA^'g?&6o

ikoxx-yy-ctib xxxx&mv^A&c-ov'ixa, 3l*;v^—7kS^x hffffljocfcr/ ^a#0#%##m%k0#M&Rd c©#©**©Al»g@t#&Tx ©HtSA^, 6*#m@A%0m*#WA^gt&^o

<2)7kXSiRttt h* dXA-tiiz >»-©&«) qjisgttlttflf^#%*#!:* LX, loo%0jaKttT-SS1'5**42>'y'—6s6v^fc0x 7k#<b - Kzk#bb©l*

< H»*T'S>-5 t k Dkt-ifS7k*-b >X-Cifclfl LfciS-er©S«toBJ IbttCoUTt&ltLfco f ©e#L -trX+k-k bTOMSttlCOUT, WU, Tk^^xOSSffi,

-mibR^CMf &ckA^X*6o 4-ttFDkt--tr©7k*-b>-9-—^©jSffltc-DVMTtt, #&UlXi®#XkA^*a©0(#A^ax$)bx =£(Dtct£>l=kL t Knyy---t?k«^SSSfioE*k©a*to»«?e5B**$k*ffi±^0ia5e-fbfi *0*6Azmm^K0*m#^@-e&e. la>u stttFDkt-en a^x g;tzmm-zfobs #ef aex,a#©*gi:ia&WA#b&o tcx

h-nyt-e*«Jt«WS<s *s§fc6SIB'r5ik*#l*UT,

®X x y > *7k*af SJ#««ft0SfMK7k*SJ® ©IS*7k*l?i@ • HiSEAk LT, 7k*(t • lM$lbAsSST-$>5Klb7kSlbtei©d 7k*S*«»s

tt«6t)Svv>XD^^-y->i:A"*V >©f 7f->*7k#ma#*c-3^-c, BfeklWb.BS'xjSffl tfea^©s{S(g*as©«if,kfitfcstc*ffl u/%#-&©*#%?##& 2^®$s$, ck^x >xv>u xx x-*ak AcgmsmmwmazdA assstillSLfeS^ 200~300°C8K©B68X3 >71X qJSbtttf&Sk kAst3*ofco @»»*t*SCt:ov\rv *®XT-yX-eti\ **, fx-f >%###&#*&&##%©####©

• a-#X—X©##, ##t:Z b kktl:7k#XX> h*%k'&M#k LfcxxXAix-y^r b > xxd&5» 6 x x X A BS !My®SIZ® k ti«6b nJSbti i:

do x >xv> vyxx-saxouTtiu xxx 11 7k#ilA-Mi7$ • gfHfli7k?l (Tkmem##) ®^%K(m©@i*##&edo

@#¥»XX>SjKS#XX-t*>'>XAA©IB*W^ tMwii® *-x x -1* v^xx >&k kaitfi #x *^7k*»» -5 R*©w

(13)

V -y HcoiM:tS®t:fTofe= ^©i§S, ^XX-K># s&@iku %%#x&7k#vv9"%^xc*#f%,ckcj;i), xfj*isi±Asii,a$n6c t *si$W$ftfco4-&©«ja £ LTtt. ttmfrMWi® *• X f - £ Bjilft* if AW 6 ft,

it, *‘xX-t'>->x?AMk7k®d»«£i3to;fc&«§s#Jffl:fcffl;fc*ffiffllS@£

©XE7k*^e>©e7kSlll®7,n-t:x^*atc=fc^7k*3:*;v4::-v^^AESttini±ffli9$LTK, g«tti«l:@ISr-Ttfe5„ ■**#« • Ii»gt!fi»$ft5x^

7l/f-l:Ztix ■>^fi,l$iifiTtl.ct*!#A?i. *6, e7kS©S$As$ti,>&i'&A--e:S 7k*5>#S«S7k*#tl6X^-vg yicSffl UTSfiStiX ') y H*t-fS:i'.

(2)#!ffiW?ESS0ff®

ESTnlSffiC k * 7k M WMkWi O) *66891 'iim^@tiu *5)f^l$j@©*$6ff V'xJ: 9 S«%C*fWc,*^6ti:, ESlS)$7kSi$f b -> X t- A©S*E$8tkB;SEtitto©5ff 2£& ff o <> f ©M*. 7k

*«-fb510kg/B. ->X^Ax!j*50%s ^;Vh?-:r->5j£©7k*?$M©e*!S8t6ffv\ Effitt Si:outt, 70-150K©sm«%?E#W#©mfr&f?v\ +»a«ffl»IEEtt»»SSjeLfe ckT\ *#S©K^E6ttafi£Siifc»«(DXf7 7Tlk $*ftE6f^k UTeiS*^$ffl®$j=5J:r>"Si7r$kS*'>X'TA©$l^-e-

ims&fioo

Conventional

I Compress, and 1 thereby warm 1

I the gas. ; I

Remove heat with a cooling

I fluid.

Expend,and 1thereby cod j the gas, J

Absorb heat j frame jcooling load.

T

Hot Fluid Out'

Cool Fluid In

Cool Fluid In

Cold Fluid Out-*-

MagneticFA

Wignetke.and thereby warm the sold.

Remove heat withe cooling thud.

Absorb healfrom acoding load.

Hot Fluid Out f

Cool Fluid In ^

liiMgwdili r—_ -intt&tetebiy:AaA)4lui:imlbi:

^ Cool Fluid In

r I

,Cold Fluid O

02.2-1 $£*8i keat^iss t ©stie

Magnetocaloric Effect at 5 Tesla

Temperature [Kj

ErA12

Dv.70 Er.30 A12

Gd5(Si.l5 Ge.85)4 IRH

Dv

Gd.73Dy.27

"♦--------- Dy.25 Er.75 A12

0............ DyA12

"" Gd5(Si.225 Ge.775)4

~ik--------- Gd.18Dy.82

Gd

”■........... Dy.50 Er.50 A12

~i---------Gd5fSi.0825Ge.917514 IRH

"♦--------- Gd5(Si.2525 Ge.7475)4

^ Gd.36Dy.64

...............TbA12

02.2-2

(15)

H2.2-3 hSV yx* ('»^Mf-yAMER)

2.3 sMfflmfim ■ mg©mtcti*T*©10* • E?£CJ: D«Bh.feSr8«©lil6lSi@$x.T. WE-NET7d^i? H:

3 4#©A#+HXSEfflliilSi^SlriiSV. ?®We,WE-NET7nyii' L-moi,wtm©$.?>sfs«&#ai. mk iwtsitcii). Mill trse

EftECovxrtt. VfiKll^gic r^*^y|4jN qzjS12Eglctt ©a16ff©s #3*'>—X&%#U (TkSflfiS##) -.a%m%©9l#@? »k\ TkSfflfcfcftii U6 VAT3±-C-*tt7d:-H$B67"n y 177 h ECtSttf 3 C Wt^fe.

4titiWE-NET7D7x^ h©*att&ffio/ztol®li. gi$E$MattE©l/|o]&SCE $UTV<!K'$7bsafe5„

(16)

II *

nmwtm

mumWE-NE biff^E^tC-tiUtlix 7kSA5f*tiE'f4&%#t S 3 wigtt©$.-E>b>Bf ©^XlSAtiSBCAhS t i: »sSg k ©B;5* 6x • ^©StBfSK

%«i!6ES$Lx 3 >x BiftSib A*« «7k«$?45 ctifk* A' -f-■€ A

3i > y > & fc ^ a*ttE©sff2£/i>s& $ nr © 5 „U» f WE-NET7Di'i? hlix lt«fflt5, RA5J

ffExA JVA —©BBto&A y b y — X &H3|5JSgC'i&ftE$:l!*'A;l> Ck&B%lCLA SI®HSCiofc7ayxi? b -efesfctox klbfctocliSS ©S®H%©®S®±i:lj: giJ©En7cS*Asg@ LT < 5BJ^ttAs%x 6ii^.o

jifot, 7D y 71 X b ffl#Siltt^ffi-3fctoCI±x #*© RE# l5l © ?#!&!?xAAolijitttE&'Bicgjg-fl; uti^ < t kbb.fgtafc^o MlktoRtix & X x x tc £ 17 6 am©R*7'm-ei±^©#fR#C"3©?m# •

k[b^©mm©me@ • sau, MffgAs&nHsgS©5JSbtt6#St LTV < £-$#$> 6= A5 V7clS$&l@$xTx ff 7c *f£EM$6#» k LtS*0WE-NET7D'7x7H:ffflJ:7 %RE#'f 5#&#MA6o

*iff%Tti;±IB® AW&igtx WE-NET7D-7xi' b ©Al5l#C#^%^# • S* &fl©x iff%^*t:#A6C k&BRk LTV%.

* 7c x *E'iE0i9* AfSttx ##M% • 5tSto6ttE(4*6 5Ax @E#©RSt-$> o T S x @t& Lfc b b Lfc->7f AC»fStt*a©7c:-&S {iffliSSJ. CAtC <fc bftW • ilx Am# - '!'##& BAAL $.6i9)^AB©»rttE6MSCADi>xiX hffl#UHb ITl'So

1.1 iff^flBSBIIifltC&VTtit WE-NET7nbxi b©ig*C*S6/ni@* xtv-ask tt 51

lb'l4ffl$>5Et5E®li|6ll9$kSS$ t©¥Eto • bfcStoftEsW^Fffi*1 6x A 6&-S Hm®BJEtt$:181A^7ctotcS®iff5E&IIS6A^ =

SifiKttSCk 6bAT6 < iFITO • ®S69ttE®IS«SffOo A®Ex #6AA##&

* acmumf K©*m^*A-B®5i#'t4ic^©t $ff^iiy.T©Jigc?6oTHSTSo

• ¥Sfto • bfcStoRE®M« • ifffl• ¥fr« • *#%RE©«^#Wiff%• &*gRE®m$ • ifffi• ■ it#%RE©*#iff%

- 1 -

• Srmfefi-if • $ ilulBx S-JIB©SMCTV'TttttTlC7n1"o

(1) iFEto • ^9to8*©«e ■ fffflwe-neTroyi? is*g5;-r-5fi«iix **$Sx 7jc*«)3ji • iriL *«fi\mm

cn^.®tii$©4icaBe^t:ttWE- nett-dy^77 >,®

LT < s w#a#b©tc&So*E%T-iix

So$fcx iastr*©T®a;to6®iiissiS(t'fx & si0s%#a&m$f s»SSsnfcSrfiEttx Wflltt • fiKESS&eiS'totr^y • ffffiShSo cb6©#*@

*(ix WE - NE T7Di7i77 hffl*|B]ffi{;^ia • tBS6ffdfcto©m%/5i:&&o Tx ##KI#LTI±f ©$#@ • *##ld:ttS/vWE-NE T7d?xJ F-x©#Sitt

6:^.0SC, 7D i> x 7? HittiJWlB Cio fe tj©t*S S fete, #fi£fiz®Ai6j<;Bt'S^-i' ;

>y©%©tia@i:%s. ifS«ffliB* • f?«£*tTcne.£jitttox .&s& e,lifts*Sa-ott^.cttcJ;t)x 7DvxT? b©Ri#»#BCS5;T^„

(2) ¥»to •*E%tc *VTI91 • fftiSn-E.ES«li;*«toic5ff^dnrv*©6©As*a4>C^

S CT'EStiSo ffioTx f ©#mw#e&M@©S6©CB:R&#M&%*f S^5# $> S cF b S o

(3) 6*$SE©i@« • ffffl*®%©B69©y-i:-3|j;x WE-NET7n^x!7 I ©TjlDtt £»«£-¥;*. S*rf£*£

ffiotx ##e - *#@©^©a#RE«^Dt»<x @1#©M©#i*-e'b-ii'Jp«ft±lc$.5 *©6HaciB$ • ffffiffl^Jftii-r So

#.*?!ft«trb©r ^fex 8tfiJp^©llT*^b-ti'©'>.X71btcEStt • £fflti©ttiT < s nj|gttii*sv'k#xe.hSo sckczbmm%i:#m#©j#T%©7px m^©

LTOSrSItt • #M@©b#©6©&#* •ffffifSo

(4) • 5t*®ti«©#i8smlull$T-©E5^"519$ • ffffl$tife*rttEt;b©Tx litfe t> $ 6l:%#©BT#gft&

££>$#$, S kflESh.fctiSicoi^-tttx S^toE^Sfrd, W^©M«li*® Ct6 CTSSStlx WE-NET/Dyi^ M;i517 S •€• ffliJE© &gtt * fit f S 7c to

- 2 -

(5)WE-NET7D^j:/7

CD-r, WE-NET7D^o:^h0#^0#m^^^#'^&o

1.1 — 1 IIM

m.i-i *E^07o-

- 3 -

2 ¥Sr6<] • • Fffi

WE-NET7Dyi^ HC*&&Sl®j3IfcUrtg$i: Lt 6Jffitt©fe &f£ *6H$ • JRKLTSfco *5ff?ET-|8S • JR* $ ft-5 $ tit ^ * li *

%o ?:t> a* • iK*LfcS$fit:-3VNTtt. WGAZZfeMACj; cTM&mx *

¥t$12*jgti: 5ft©grtii*#$6JRS U bfte.fflS*ttii:-3i>Tlf«bfc.

2.1 ipSrto • ^StoSS©JR*WE-NET7DyilJ btcWS^SJSjocfctFjSSk L "C nJStti© $■ 3 tt

*619$ • JR* Itifeo ¥Srto • *#*)R*W:t tiO. f ©&a^m$###m&6©am$**cu/:. $ t. mm.L T S tc g n £ PS 17 T BBS Sr MIES 6 §(:W 17-£>-&$] 6 % 6 12#M6#M):=t-E,S*->-X©%# (®5$±ttSS©®6 ko7c) ti'ifSCii). 19$ • JR*6fr■O fzo

¥esi2*®tt5tt©is*6S(t/bo cn-csim6#©-c©%ma47#a%-3t.

2.1-1 Si£l2*@Srti«IS$ (WyttSWIi)^J^-Na # tE$#

HI 2 -1 XSA‘7SI»t *XStieS©l8$ t @iJEti©lf(i

HI 2-2 7k*SiRttb b ny7--4f-b >-y--©S*to sj|H4m$m%

HI 2-3 t7r >^**E«ilii$«*fflEai$izk*SB©li$ *sa»*f

HI 2-4 $$

H12-5

2.1-2 SS©**ft»* 6 $SftE S«ftE(fBHM#) SMSEftECIR I m^ts)

¥/$ll*fi 8 8 4 2?mi2*@ 5 13 4 7

- 4 -

2.2 iFgfto ■

f ©%mw#g@&m@A6 6&©*&#w&#mf a fc-f. use • «*Lfe««tb-3V'Ttt. $f\ WG?m&#M©^g@^©#m%&#WL/:.

tSStii® SiTffit"-5 tbtiu W G lb J; -5 rPiSJU-lbS/toftStS (A H P : Analytic Hierarchy Process) j o fcS^lf ffi t It •?> Siiiffl 2 ®Pg®^ <1 ZmTWmt Z> ^Sitoto

Wc#oT, <*ftfeS®tl*-e*>o-C *»T©fl*ttmt UT©tte6sfi© *©ttffflAs e<*o-cv'?,o o$ t>. cc?mp,©#%»#«i,^ A©?atc© kV'djSC&BStifcV'o

2.2.1 re»-fbSSi*S?i&«oZiSilffffi(1)

*Bf^T«r ffffiiigytci§SLfceipcti£or j-xi1 i2wcy > h 6flsl, cat:####g©@^&#lj-^t#timm*i:z bf ©#&i± mtztniiimm l£„ e#mmg©m»i±x #is*&#©mmMKA:g*T'5 za, 7 Dyx)' h#m#-e&-57D h v*->*-r - A^HS L fc A H P L/zfftiHi©-*ftt®6^gis$nTVN5o iafti4 4^©ii:dii. iwia©-*sitmt4-D(Dtt.ffift,mmcnMbT&wiftmt9cmtiZ> re^j *umtzct-n, ta *8i©ttfc*ft Ltcrngk-vm t=tiz j; a tc ltv' -e.0 s“NEDOWE-NET-969”#®)

3T WVT—T>TWE—NET t©fiaffi

K#©*a#@A*

- 5 -

(2)

<m #>

^Tl^ack^^, yk##^7^-y3>^^CfS^$^a#m^^#T&ao #

LT^, yotxI'Jltlb LT#j^0f#O##t:'o(^-[ 4b###mfT 60

- dig)••• ® (M l'*)- o (^m)- o (^m)••• © (Mid ••• © (Mid ••• © (Mid ••• © ( M l^)- o (^m)" © (Mid

-• 7* > V 'V ' ##• $r^t4. 3 7 h /I 7 —v >7

• WE-NET^CDE^'^• mm&

<m ^>

-u—at b^ioo%*m

b poy:h--bb#f ^&eom#a##$i%&#?^Em#&a##_b/\0ig^

• &m• %rM&. 37 b;^7^ "7>7

(i g)o (^m)© (Mid © (Mido (#m)

- 6 -

• WE - N E T £;©SScfti• HEtt•mmn®r• tti?©§s§ti

O (S«) © ( A © (Al^) © (A V ^)o mm)

<# #>

#&&o

>yi/ > vgM&fjOo

<##^i*i@>-• > S/ -Wl/• mt• ##%

' 3 7 h /i 7 v >7 • WE-NET t(Dm&&---

dm)© (A V1*)© (Al^)© (AM o mm)© (AW © (AW o mm)A (mw© (Av©

@ 0NT#X ^ A©!B$Bf3£<m e>

*"X^-b'>©#it6*Jffl bfey ^ >&Hk&H^x^e.©7kSfl'»4fi;aetK$©EEtoyEtt^sae-r^o

3oo-5oo‘Cffl8i;iitsgs-eaai£H*6afi$;TS-5astH$&»'x#'-f>->x^Aica^ jAA/z®-ertc$*sn^iSKgg©^ff fcj'-bA AX7"A5:<*©k V v h tcov^riSt# ItSff d o

<ttr}PkiS>• tiffiam - (fs)

- 7 -

... © ( ft ® )

- ... © (ft®)

• ### ... o (#m)- 3% h/^7 — ... o (Sii)• WE-NETi:0l^ ... © (ft®)

- ... © (ft®)

- mmm# ... © (ft ®)... o (^«)... © (ft®)

eattini±fflss*<E $>

#a - (1,300m/o x^-)*toicfl-sii • SE'r-as«A5«vzT'sntt, ftAo(m#®m®m7k#®$jm^qi^k» 0, @iS69C7k*3:*ll'ir-A^7"Affl*S8S<BC*Kt: 8 ^ >^1' h @**$®8e^®J®ffl6itok VT, 7k*w$/:!*, /^*‘xafeH7k*tt*&Xx-->3 >CB7.kXfl-®ftE£tt An LTcig^mxWto&BTkWfl'S • iSEKE® nj|gti®S:t£fi:o,> $

m7k*#@m#mkm7k##ama®#m*&f?®, m7k*A*&ftAnLA:#fr®e#

• REAR• /ti 7^ > ® X 71/• *#

• SrSti• n x h7i7 * —v>x• WE-NETtffll^tfi• HEtt• Utilise •tt£f®SSti• ttStoMMS

SSB'J'Mfi (I S)A (#®)A OS®)@ (ft ®)

® (6®)

x (tiitoTS®)© (ft®)

o (#m)A OS®) x (-EtoTS®)

mAmc-mmc

# m #A # #1 12-5 <w*a IV 7.668

2 12-1

%

I 7.507 -HIZ##;###*

3 12-3 t7r> MTkSIj'jScfSiTMS'fk II 7.157 •m2mmmm

4 12-2 umaxzmHt ut-SMb *86#;%#)f#*#=

II 6.266 ■mas^atu#

5 12-4 %^,7j<*6^ffll7j<*lfllltXrn -b ft in t: J; 5 7k S ^ t fv

*#t*# I 4.401

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2.2.2$ BftXXX 12©8*&ici5©Ti6$tiiE©S3$6¥<ffl6¥ro

x®<bK*6%$Se^v^^i9XA^©7k*SiigS®tt. S'lEtti: VT©K*6i:*-5 J; a tcfUffl f-5 ffl CSS k & 3 0 f 9 ©7##Xgiim#©#%$Jm*#©W#*6SfflS L&Uo

® 7k**lRttt h* n y7h--t?-t<ff(ffll*lS>

7k*C-o©T 100%fflSfkffiX!S»J-r&7k*-fe >-*¥-Co©Tli. ttfg, gfiittfflfflT- wmitmtzo >»-i8%©-i;-sttiia@i:±oT*3d. #

X$>3o

© ■k7x>*7k«lt*itt«i!*tt©»fSK7k*St6ii©iS*

7k*emfrAktb#LX 7 wt%fgfi©7k*Sf«»k7k*bbffi7kl!lftic J; 2, 9 -9- f X ivW6b»S*Aserito»fflTFFffl6#^o k©-5 X i-etSBSgttttfii'Sistk^oto $#mk©3kbi±. tkm#©m-cw##&#*f ^im3#a©k©mm

t)&Z>tz o

@ #¥«xx>afeff§J*'xx-e>'>XTiA©!is*5jf?s

<ffttl*)S>stts ttSBAs-$ft©x>xv>vrxx-©«ffls@ia6S5oo°ces-e$>9. gsts

»©9f X X - K>##»fWX 6 S6S300-500T. t MiSto c^-o X V' -5 o X > X k > 9 XX X-©m%K&m^#MXf ©###^l±»$ftX©^, Ak tfXX-eXvXXA

t *f u x a * $ ft -a * n- & k* 4 ii a t -s © t x 1# if © * g tt * 3 11¥ m $ ft t«

© Ik *$ 7k Jl fe © ■ 7k * HI )R X □ -b X bt iP C X. 3 7k * X lb =>r - -> X X k m »tt |0l ± © a

<if(ii*iS>• 7kS$®e300NmVh©7k*#tl^XX--> a > A> e> $1 iS to C f# 6 ft 3 *7k*tt. 213

NmV^kgtilSft. -5. B*©e7k*SSAs500 NmV^T $> 3 C k A> 6 B *t: ftlf

-10-

3s7k«s$ctOtitiseti^kSxT'-va>*si3Mcaif50 mzk#®#am# $fc'>tc^*^-ca7k*fl-«s*67k*winx^-y a >crea LTik$&±i%mjPt tn 7k#$@ (i3oor/u^w) gstoy v v k

$fc, S7kSfl-«, iS$g®g'C*«»$n^7n^;k^-c<t *3, *(*'> 7%-A®K##@Tf 6 c a##% 6 J; b*3k*EStklgito'f ft«. 7 U y k RTffittfcfeS-tpfc kfiftk,

• tfcifrtgfc kttt, g'SttfffflCkk'$5^-vt$, b, 19*® It -o & # 3 nJIEtt As 'kcl 111 o

• E7k*7L^;vjF-h im !9*®it#afrit#w$a& &®t& b> we- net-tDyx^ k t ItiHSto&KIjitilt&iAo

tt±ffll¥(ffi*^V'AH PfflSS$A>6, (D~@X —tlto VTttSSI&Et&^iffif&o © *777 Cib'VTtoSttMtiiff b&Vo

2.2.3

^fiSn^SCSIJfi^nfelR^tftitx-v 1 kHtoVTIix -5 £ tIt & o T £ b , */;, #367-7 2(tCoVxT'fex ® b » V'tf'S. >7' t > 7’ ft * otl'to

(1) r7j<*ji^;i/^-y:sslS^ka(j-T®e«IS%--x®iS«E^j lt**^*mmm, 21 m&%mm ($6-2010 *), *

m (2010-2030 #), Sifl (2030-2050 *). jSftlffi (2050-2100 ^) fflK9Tx?l«

«j|oli8«iKi$A^x@Btolr7kS6*Af ■E.fcto®tt«H#8fl-5^m%?iJtolctoMSh

ntckff«r*$5o

(2) ^>7N >7#$®@tb8v® #*«7< 7>estHstfxj7-f>'>x^A®iaeE?£7-e >777Aftfa»&tfS£it, 7 > 7 v > u r 7 l»-i:S*Sh5*tt t-e®

IfeftcIasi'S7 >7v > v 777-fflES*tF 7 - e > -> 7 7 a it si^&t? it k It J; 3 7 - f > -> 7 7 A £1*® 7 V 7 k ®^ffi 6ffa ®T-afenH®St^M6ff 7ffle

ofefes, ±E®#M&R7± #-?#*%&Sit A®?. SftSi: UTVfiK 12 *6R lf-flSf?7o

-11-

9X9 11 • KM,mikmMm3$i9 X9 <r>M,MiPb, 9X9 11 ©4-16©tol6H9$C$ja^> ^ t U XXX 12 T*ti5t t> ±lf &i'o-*K*ld:4©kc5, Ik&mmT X )\< x r X*mtiiM9,l&h7 9 h-#@©A?*m

bT*ffltt*5&u2:§S!®i$ftT^.5 c btt¥\z X D, *r U'KSW!; L xttiaffl»cfix. & * v> tst>n-ao•fefiL, ilfiik umx H9tcsi#tS5i:c?.As*Sv©t. MfiSUXasTti:*8to«k VT©nJ®ttli«oTU^„ Ui€> < ©fS, »»S*©»Ir]£Hfc x it

VfcV' =

-12-

3

$ e, kw»r£nfc»r&*c-o©-r,fiS#Sl"t&flZ$L'T©3<, ¥JSl2^gtt, ilii*-e©S$te«liFffilS$&* k Cx *^g©

4ff®EStoW6Siffiufco

3.1 ¥fi$12^6©ES1^ltSfi 2 S-effliSStiEffffiSSSIS* kC. ¥fi8l2^6©ES;^EtJI B 6SS b, 4ft©E

&#M&%mb6. EStoEttt. #2tm#M#cj3©-c#MKm©*m&iTix §*a©}g«*ii&ifg* AT«*i®e»A5ft)S^nfe (nut b-c#*c##).

ES:ltWIS*C-3©T(is «*bfcfffeiT©^a©5lt)»©^©ti^^e>. i3HliI AC j3©T#N#@ b6o

3.1-1 ¥n$12^S©ESttf'tX —v ikM9c

ft«*"x6IWk bfcc®ibK*6%4$ti-6vx7k*$Sii© m$ k giigtifflffffl7k*iliRttb K n 7f A-Hf-fe >+>--ffl8StoWf&tt!ttE%

ft7x>*7k*8tM«!l«Sftffl*fSK7k*,5lS©i3*

ss

3.i.ix^±i^&m#k b&cRibR*&*&$#%©*#«&&©#* k@im»©*m(1) B to

XE*";vkSSRami£6kC j^kSSSSEtib ftnxK\ > 7 7&fi«£ tlTl'% Zbfrfb, *»ftfiXr-'> a > tt t ClE ffl $ ft -5 # S& ttET* & -5 o -J, S«©e«-eii, c$ibK**ttiS#a 7"n-k7T-$>;E,£tox cgMb£S*&$ofc<g! itiseift 7k*6®Sr-s^»:lttlt7k*ES8©qrigttSMeT

(2) ®f2£toSt°7 X? kfliiS&ffl©^ 7"n -fc7 Cont. SEtolBSkgiStiltlt&ftV'-x @Jgti

k bTK*©ft6affittC-DVT t)i=pfflttM"k-6o

-13

(3) SfffilSSa. #§ m

*Mm&tiffin -BSth/M^&# tb i~ E XD -fe X X fe E fz S£h ~®-fbKS6#uU S-fetX 7k#&#laX$ER *© Rrtbttk:-^VTfftlt Ufco XtSk LTtt, X^XvktoEtrffli'-ETb'SCoizi'ts ti «tot«S£mx S'JjStik UTfflK*©ff6DfflettC'OUTtolt bteo f ©K%, X?X vMi'tMit **6B**9o%jy.±k,w<, «x«, *-*>x-5 -y «ffi©feE4/»R#fi!e>nE*kit*&ti«£fi ^ c t&nztzo MEiStco^xti:, ftiDffittffiAsff “b tl E njfttt4S bTl'S t ©0, ### E % k"0# @lc-ov\-C$ El:#W#A#XfeEC k#WKLfe.

7,7X?SH'fcSSi:outtt, i^;i/Jf—TkXnix h ©*mka;^#©@%e*m»k©#w&fz9c©m©K#;©5TmRt#©-c, % EtfXfl-iSi-fbMfflmjE/S^e,. -$HbM*©e«t:W-5-1~3**$$*&©!«E k k tc f E o

b.• M I U 7 *- 5 £-$**« O.BkWh/Nm1 liN£ XrlVAti:® 1.3kWh/Ni! kltR-TE kffif ¥ E k@t>n E„

• M I TT-E^ESkLTV'E)* ©lib Xf-i'J7t-5 >XkX^Xxk©7WX'J y b kSt>tiE<=

Sb*^ltcHXiI(Asfe5XfeE„ -jg, X7XvV7*-;> xctnstr bvw x E zxx *#g#M1"Ei£:>EAsfeE =

• 5K^@6*ES«BtSSIto1-E7j|6)Ti8SSff do

3.1.2zkS8iKttt b nXX-Hf-k>-9—©fttfitonJf6ttHlE?S(1) B to

E7k*&ix;b^-i-XxA^©«AtcPiLTIi,$^tt®«©& ©CTk^-fe >+b —A^BJXXfeEo 3St>X TkXCft UT 100%©StRt4"eifiSf'E7kS-fe yv-ffttufctb, **<b • m7k#lb##&#f E b b DXt-«,ISfiJi bfcioo%7k*mKtt-fe >X-©nsbJf£ftCo V^X18*f E

(2) K^toSb bnxx-4:k#?j§s&eEm#k©m*to»m?@@sEm^@km@±^0ia

$S8©S®toaJlbtt6i91t1tlifXEo

-14

(3)a . IS

100%®aiRttT-@iST5 7k*-b>-9—7k*lb - HK*t v

Scair®s««jRjfbttcov^ritMLSc, f ®ism, t >»-k u-c®«##c®®-c,«x«, 7k*^-®@se. ss;s@, -mitmmcftti, k k6st SSc« 4-#k K □ y>—-b?®7k*-te >t-A®SMl:ol'tlk SStti*®tS*kSsas®afc»As^s-cfeb. t®t hD-y^---y

$T-$>3 =b* u attb kD7r'®--tfa, Af> mm c Rig -&#*?*, b, #>s7i/&^.

SSipfi VttEf-5E^tt^®«|gtcli$l»As3; b^o^CT-4-Et k nyk---t?#ltiR to$<, k&#muz,mtio

b .7k*aiRS-b>-9— < 5*®k,®bn-5Ak *

&3X.-C. t Kny:>-—t?®fltflu;msk*oT < j. t k-n-y-k—t?#gsi:Afcti.Bii!iij£ hmfflr%zt*%a,LT<t>mt%c ti>^>

3.1.3 ®7x>*7k*iffi4 • #®a*®#mK7k*stir®m*(i) a re

jbMbTkXSs-fb^atktib 7k*S **:©* $ £-9»6 c kfelSBSffll'Hlitt 6k®«j±i6s$>^o 7k*»a • #®a* k lt. 7k#Bam#$<, 7k*lb - H%7k#!b# §@-(!&%Rlb7k#'(b#i® o t.Tk##### 7 wt %ktb8tto#®±7 51>%->i'D^x

®7r>7R7k*#®Brliaft©J&7k*Stir©l&¥«ak br, itISittTT. ?* ASSzk*64astir.A5$*,!:?>*7 > 7 v > u T7 »-53$;6±7S>*i5i**Stirtca ffl f % m -Sr ® « ffi to W lb tt m * § ft 9 =

(3) ffFffllS* a. IS Is7k*#® • PSEttk bt. 7k*fb • K7k*lb*s§®T*fe^eHb7k*lbti®9*., 7k*

##m^l:b#(to$®s7 o^.jrik>kf*') >®S7S>*7k*flfSatiac®v.r.@i7k

-15-

4 2 Aai:»©T#W Ltzo €©*5 HI. >7l/>')7??-Aii;*(cHisig*3a**sJtigM&mcamL&#A. 2oo~3oo°css®s@«t-3> 71X h CT* $3 qJfgtiAs$>3 C k Vtit^tzo ISSMtJRSiSC'OV-T. ->7HT, 7-kSs t?f JitfStS • ia-»y'-y®ii,ili CJ; b £ 6 tti> IctKSX X > h* 6 Ufc>xyAx>>-y b 'sVom&l?^ >xy

6. x >7v> v giiiiSEti$Aset)nT©-5i: k*$> b. •?nh©ffifflt4-%©*|nlttSz*$1"5o

b . #Wto#• yXyAtoSISttCoVTIi^ *^Acl7Ttt^A5«a* ^.©-C*lift©A»t ©jSJIA5* b . A#&AklX 6 ? fc>XT-Ax>>^y b >X'©mAAXREto#@&#Mf 6^'g%•£> $> -6 o

• X > X U- > U y ^ ^-^St;-o©r(is jlfftotck'toJ; d &8$As&£ftT ©•!,©*?• >xn-x^-y->$ifH^;fex>7"iy>byyx — i%g%7k#S(Btc-3yi%h> ne D 0-.eEa$As6$nTV^5 J; 5 AsM*tolcttbA^»V'©y.^ffl|g$6#i* UT4-^ffl73|p)tt%SlJjittiit Lfc©o

• i/xrii>yyy b y^cii^A^SEWSSSffl^ittg B(®«?i*©AgStofl't)f6*^@6*iiy-5 A'|6lT-l9B-r-E.o• HJUBicixllses. ->77 D^x^-y-y ky'A b >t:joib-5ft«iy^7i/6#it LT. > 77 D^x jr-y-xc j: 5Iii7k*SStcov^Tld: j' X ^1HC§I8 l,t* b > C £ SMzksiSSiBttXXXZr-MSEK'TatiiBmb-k&ofco

3.1.4 #f #X X >aitK$*"x X -1; > > x X A©111*5)12c(i) a to

AXX-lf >©##&$m U£X X >©aftHi:aftE**X;X6©7k*»i&l£ff-5aftH#5©SEtonj|gtt6is*y^o

(2) W^tog3 o o - 5 o o °c © M s g « t* « & H ♦ £ il is-e g-5 aft H S £ x ^ - k > > X y a t; ffi *

a/L,%@frcs>R$ki%aftma3©A($ky-u>>xyAA*©x b > h contii m^'noo

(3) §¥«*§* a. R #$MW8Hg©yfxX-bfcX X xaftHkaftH^x*7 6,7jc*fl-gi6f7d

— 16 —

e> ay a a cia<fr&/uftisiB'i;:g>i<£ft3asiHts®S:ff'i: ->ya Ay v y t- cov^t ^©*a*, ay y-if >#m&iaiRL, x^say6zk*v ya*aye*

Mf 6 c ki:<t d >ma.a*i6i±Asi,a$n^ c tifco4-a©s@fc utis,Mf»«io*'y y-e>ft, »®yf'»7t ttit ay y-K >yya A#k7k#a-%#&#toft&R@s#j©ft©ft©©#@&#M u, a y a a ffl * M BJ m tt £ t& if t -5 * |R| T IB fi 15 „ b. #Mto#

• ¥¥6tiA ^ffiKSItltSfro©*1• y > y V > a a a- — ;v 6 k'ffl J; d C ® & A16 $ ¥t&lt Us 3 y kffffli&TTfcftitfttift BftiA®ft\ *^@*ttg;®8;'eti:-t'$&iAo

• ¥¥6'k*S;61i6lt&SIZ6t‘;5ft|6]T-!B6t"-E>o

3.2 ¥B)il2ftgfflSilSff^3.2.1 ®M^«SCJ:^**$-fbS*®Si$E?£(1) B to

¥ Bit 9 ^ g C SI * $ ft fc «;t» ftr K a l£ « tt * t; J; 3 * S« ft 7.k * « ft © *1« tt IB * j l:ft©y%#©#ftR#ftftx<%^ Si\ynaySii*kE-S'E©lo)±bsiflfvfTS, SSA1 e.7j<*?$ftS6$-eEai^i$s®^c x b 7k#&#ftf 6 yy aaA^$#ftoK%-c&^ kFFffi£ft, m;¥6*$ff^M@©a$6fi;v.*¥6J: bS%E^lc*¥lxft<,

*¥®i4, «a^iS7k*?$ftyyaA@s*i§8t^ejsettti'S©E%iB«6fi;y,

(2) Sf^toS• iokgZB$8®7k«?$ft->yaA©asi9it6ff a,• 300~20K JtrESU^aiiC J; b7k#&*ftf ^ o ft?©##%####©&&k#

ttffFfflaitSfiZo

(3) fffflSg*a. <g #W^£S*=fcb. 7k*$ftaiokg/g. ->yaAa*so%. x<,v ha^->ftj£©7.kSi$

ft«©x*^i+6ffofto $ft, Ettttsftyft'Ttt, 5ayy©m@¥ftftit6®a# ■a¥®iii**£Sfr e>, +m#m©i@iEEK##&a&Lfto ft*. 7o~i5ok©@@-s

«©yyy yak*, ut, yAay©#&####m®ftlaissfflistuyfiftstSttyyrAoo

-17

b.

M£ti,?>©iPo?©IS(;oi'ttt, #l##A#g©g^AZif#A#k^V ^A^%©g####g

©tfC-tftltSii.-Eio• etitm©a$ti\ ss*e^s*-c$, d,

fcto. -5 o• *^6©K%EStt-#j$dnfc©'e, «^s©$*ft$$ff%$ffa= v =? 4-t ■ 11.

(ttT r C F Sttj) #(,©**?$, ^,Stlcourti:. BJEtt©$)-E)t>k-3©S5$l: Ur je^iJSE^BtoT^EteMLrv < „

Conventional Magnetic

Compress, and thereby warm the gas.

Expand, and thereby cool the gas.

Remove heat with a cooling fluid.

Absorb heat from acoding load.

~\.........Magnetize, and thereby warm the solid.

tRemove heat with a cooling fluid.

VDemagnetize, and thereby cool the solid. ,

\rj Absorb heat | from a ; cooling load.

03.2-1 S6*iS kBSU$)$8 t ©#H61t$

-18-

Magnetocaloric Effect at 5 Tesla

ATad

Temperature [K]

Er A12

Dv-70 Er.30 A12

Gd5fSi.l5 Ge.85)4 IRH

Dv

Gd.73Dy.27

Dy.25 Er.75 A12

**............ Dv A12

.......... Gd5fSi.225 Ge.775)4

"A Gd.18Dv.82

Gd

........ .... Dy.50 Er.50 A12

“i Gd5fSi.0825 Ge.9175)4 IRH

Gd5(Si.2525 Ge.7475)4

•'.............. Gd.36Dv.64

.............. TbA12

03.2-2 IgTOfflKaiii*

-19-

-20-

4 a;d9

CtlH;,*i^ffilItS5WE-NET7D yi? h Cfi B* f ^ S #SM ffi £ 16ft L.• iIB©#Sj t; S 3 £ S> © t> © X & 3 „

IBS • E5EC J; 0 S B 1i,£Srfi(E©i6l6]£@$ xt. WE-NETXnyxE7 h csB*i-^#*ae«6#ai'f ^ • ^#%KE*M©^A©R*ee

L^o

4.14.1.1 iF»fto • 9bmm&.wmM<Dtctb<Dm?6frm®.fti 1 . ip Sr 89 • %#89R#**© A 0©%*89%#x A

we-netxdXi^ hiiiiHR^^fEI+e*jiWi® n ISCSIS Lfc r7j<*x 4iVjF-ttSWSn9t4-T®ttEM#g--x©a$5fl^j («Trfe«S*--X©iS*Sf %j) ©m*#ft*@%^B. 7k#mm. 7_k*g?a. 7ks*m e* © ses % © @ 116 ®e (~2010). 4Sf (2010-2020). SE (2020-2030) 69&ti;5;tP B $ ktofco (1)**®®SE®WE-NETXdXx^ hSIIE$)f^l5%l+iH0X*to6:#xA

IS FtT 07k *11)116 itSE-4E mm

• v-vmmm^7km• *ftM 7k* K®

-fb5E#3tH• XEtJxgfcH• 5£KaitH&if

21-

® rsriSB%--xei8ee%j c 60-sib suites*«~#X9 s«g

-fbSMStH • X2KXxaStK

fb5##&R • SKSjK

zk##(##J#y j; 6)• y ;i/ A u zk##- zk#0

njfb^y y ^T —• zk##

7W• %Sl7k*KS

7W tTvx • afcH*"X7k*$S

#{b#7ke#

«64«6fflv^/:7k*SS7< Y 7b7k#

( 2 ) TkSSfStft®

• EE /US 7k #• E-fbxk#• Tk^iErSc'n'^• **7k#*m## (*-*>xxf-i-x&k’)• #85S7k*E*SEtt (k#> v-;k x^n^xx. X* V x&k*)

& k"ffl7k*8f Ex X 'J X-X a >ftfolf<hfL&0

} Xx? 11 T-SS-15%

(3) 7k*fJffltt*(D WE-NETXnXiX

ft itta#@Ml:Alk^7k##A

• 7k#@m$xxxk• 7k##$oXX-x a x3y l^l/“'>3 >

(JSSiMiXXrii

-22-

####§#?Tk*^- > V > gift?

IGFC/MC F C IGFC/S 0 F C

zk^#%# — >

y >(7=-'4-'fc';v3i>y>*k')

stsa

MCFC+GT S 0 F C + G T

2 . #*ft • ^StoKE^eofctocSBfl-l? • i£E®@(1) Tkmm&mn

® SrsasmsmE (x >x*i/> vrx»-&stt)• 3-XX*P:tiXA>&©iWS7j<Sfi'«

800°cg®ffl3 — f X'JptfX©®!** nj(g*pg b #8btCflJffl1"-6o @]®7kS#ISffl®#SE k. LTtiX Pressure Swing Adsorption (JXT r P S A j)

SE/bsE4 LTI'JW®, 7k*»»astc 1 b#*ft^7k*»$ttEo=JtMAs*xe,n^>fcto, ma7k*a-«#REi±, i&gfcsi«»h k#x -So

* p s AttEici-5 7k*SiSiS*!g*^5>^»*»M*s7k**SBfflffl» 20~40% Srttito, ±##c%aak"f

Tkmwwimm ■■ 18.8-7.4 n/Nm=iftAjB : 4.6-3.3 n/Nm= (j7X» 1 , Hii ?6iS*ISSI j; b )

* H£ (ft 800°C) ©3 —X XtP# X fr’G** k X X 3 —XX'ipAfX04>ES0*-e4>EL, .^VSafittiroSS^JciiaifjnB, xft *Z <zk*As$ii£-C'S^BJEttA5$>5 =

<3 — XX;)p*'Xfi£E>Vol% Vol%

H2 5 7 N2 2CH4 2 8 CmHn 3CO 7 f (D# 1 ttTCO2 2

-23-

Amm (Pd-Agfr##) ®PB#6@x^7k**«tt,6Sdz7 ; v xxm%k"®#$m%AsE@"C85o

• fiS7k*^82oo~3oo"CfiSfflS@s-C7k*6fl-#r*snH,

yiAEl:#ti-6 6®k Lt, gtt4'l:SfflT*S5WsbttAi$>5o

<t6iifi*j§>• SlS7k*fl-SE®JiiT-, teifRgr**tkh,li* Lftv®ip?• 3 — x x :F *" x fc li x tt30%®kX>6S$k,rk5b, »S®XX>®SB6kJffl

Lx xx>7kma&mT@ki«#*w»7k#mm#-e^a#x6i.6ck#6x r |9SJ IC*l$6Sfc-E,„ fete Lx 3 —XX#5*XCttx 5000ppmffl 1” 7t ■> d & a £ tl

T®^®T*€ffl®a*#itt^£'@ttafe^o a«3-xx*p^x®a«x 7>t^r tek t3^800°C^fe^l00”Cga*r*^9LTx t6*5®®a#frkih6. LfeAsoTx «)800-C®g^6t:S^7clkkJffl-i:SntfS$ LUg?&6.

• Hill 200~300-Cg@T-7k*£A'#'C- §3 &®»sfch,«x g t Jfeffl t S 3 njS6tt*<6-S®-ex -> A|gtc||t>5 *® A5* ft HUP*# *3 Lk A^&x iflSCB/S L & v * # J: v kSbii-So

• cffl^-x-ciix 7k*s»geLrss-r-Bc k-6)iti«LT®3®-ex mS7K#a-mrn®Jflilix k > X V > V TXX —kV'dSSlcSiE Lfe^*sk®o

Dx 3&®m#-ck >xv>';rxx-*Sto£t$«k Ltilto

-24-

—#fb

Mxi‘\$. digestion------------3L*? J — )\y fermentation

—)]/_

c kt:d: ^ yo

© b ©yjcSScjiB < H^Ujfo] t7 ft y ^ >

> 7kS V "J^-HT,

-25-

ij'xibtiEtcoVNTtix *iiStit$EE5E9rT-e®l,F7j<fiJfflt:J;-5tt«JpSl3B]t6W yffXSSCT H'f X • ->a. "J x h #;v h*¥65#$LTV'^'feCD*afe5o

5KA' ?. ffl*IiBS*§WE - N E T 7D y i ;> i T*@t t Iflti^ $ toiito gt-65.*-*> v xto&TkSSig&Ek UTvH 1 e7k*8tofi fc^Atotc

**g*&Ri'D©-C1 WE-NET7D^’xi> h "Ctix yHTTvxij'Xibl;: SCS,^toCKDIlt?c k*s3$ U'o

U 7k*&SST-E-tiEr-fe^o CfflftEfcto * H )fe i ^ ;v df -1 J; s 7k a « 7k * g Jg 7" D-fe X t it« U T M a ♦-(b As W ^ t *-5

tfru aasr-cff *#tocii#i*m©t©#M6toetffl®. SE^fflillBCou-cii, IIl«|f,W:tifflliSg4i'o RITE -e%#*t:Z67k##am%A^m$ii-CV7 6 c kto^.WE-NETXny

uni, c©M*tctas L/z®.

• ^%m&mi'X:7k#*mR#i±. ##K*##R^-3T©e. mmto»Bk©x z tS\ fob 2~3 #gg®5If^(c J; b, *%@@@@& t-3%#@?get©#-?#-&ititi'J. f ©lo»^*Ka&i7^xto 8E&->x AAOtRcmbAtoT©< iiAi^liiE'St-SE. ffixe*m*siJfg£iiii«. « fc* ^ to £ to © 15tcsflirefrfflMja-trifcete©, f tow#© yxAAibn#<sttk^issneo

• uT©7k*®sfeti«tt, e A t t$m© <?>-c*s® msg*^ ii«t e c fc *s*gt: $. e o

7H7i7k*ttEtt_ *H-C lO^ggA^i-TW^^^oTUfcfcgtineA5, tool7 tc^EktcoycAi—6liil6l&BSTe-i;-$As$>eo

r o i **lf)lttE® ji a ;v ^ -W ffl '> x =r a t; & tf e tR* ® jiig#® ¥*f toW ffl ft *

we-netxd-XiX M;*;lie7k*i®E'6rSg9%® Stoic ce to 5.1*, tlii; <

7k*o&j®T* # e ftE t4-&?£ S b fc v>„Mill 3yxii->3 >'>XrAl;fiUt, 200°C V f, toe A-XAils 7k##mfr6&mv'6m©#m#MREii, #i:%ew#g##&e.

-26-

*IM200°Cfl@)▼

MH

7k S

*- mmmm

<#Wl*l§>• 7kS#%6AC Z © $ $ T tc © 3 © 3 & k c 3 T-$lt £ tiT 6 WE-NET7Dyxi; b T* iS® Tt&M t S-iJBtttt & © © T-tt & © fro S£, #13* 4 Ltz k C5t-®?fflis-SSl'jatfci.• 7kS##^A-C#&&#mf & c kfr B*TW:& < s iffltifiJiiittclftti-So &*k 3in • 31%7o vx^ hr-tiN ^ffiSSt 60°c@@&*#k Iti'fti1, M k ut, 2oo-cg@@BT-fcn«, ^#c#m?###©mAfr 6i±$umm#fr&6.

(2) *sss**<bt)lc k s 7kXif/B&« mza, ##*©#A7kS#*AACtb^T. 7k*Sf»«*tt6tto*# < (3~7 wt%). 7kSib • MTkSibtckS V;7 7i/fr sJSbTStk-e©®1) ft v ©fiscs® & %3o#a#7kS-fb#i# 6&fjK#&a-^T6#^lc^@%3i%7t/f—##t: k &#

SS§#$>fc D ©TkSfgSMfr'J'^V'x kfrSSk&oTUSo TkSib • KTkSibEtBSMffltSTkSIrMftWiix ®«ffl5J*gtt4®*tSt2>SAs*Sft«k^%So

(3) 7kS«Sft«— • 3i7x%l/ — %a >ft#

SIS6k*fflSISJ6©Ba;BJflbx%7V^-»6,07kSSfflffl Ufc7kS«tov% 7, c# %^-e>'>%T-A®Hj*btt*aibfei.'ft«T*fes>o

200‘C ->X%A6#II U& v% 77D*-x^- kft«^*§S@£ii*u ^®HS5Itbffi*ia#t

ktxSo(dia, ^7VtbRffffik7kStcy LT^% h ft-tM ^(/©l&lf^iim

fUffl lfcl&0'>Xfii ') y b#@»kfr&So (2)31 > v >

frv U >3i>y >s-\-xb Ufe3i>i7>iiW^$hti'5, TkSC*L% «a*x>i7>->%%A§lilg-eg-nH, «»«*§»* ki6^7k*f'Jfflftiifr®4-ess„

-27-

flta, LT7 '; —try h >i>y >Asfc2.o LTlis < & o-OfflflJfflSWt* Of#?. nJI6tt*sfe-l.o

kfeiiEia, mtinmsmfc®fctoOSk&StitETrifc D , 7jc*4^+ V y-k vyc6fl($*6i|ji"r5 a if, 4$

*SD 0 ETR^S%ctiy$> b, B*T-«y *Hx*fe«Sf^0r*s*i®LT©^o

T*$>-5o• 7k## ## 90%W._t 14 E : pt Ir02• %### #* 40~50% WE : pt

• ««#*/#«Bjjjs-fe;K;otM:ii, *P£xSS«E%Sf * k^E^Srfforv^ay it*r*iiT*A5oii-HE^c#ipit t,zt'ku-)*#iam%ak&■2> o

• i to * fc 2> Ak **, y k©^t^*#icyyyAkUTfetlH .fcly kt'ylSt'IUttiT-li Utf-y k LTSllTl'So

@7_k*»tt^-e>/F C3 >7W > K+tk 77;vigifeKSHSS * fc 5> SEW $ ft 2> *«d7k* k SS#IS«mf 2,7k#mm^-k>©#^-fbR#ia. w#@A^6. tk*e*y-k>/F c y y y k & E tt 7k * « ffl & E k L r 13 * to t:: -it g & tt E k # x 2,« ->yykS*»tfc^^tg*$n2.li*ff (#*#*. 3tH». kfSEIB«s$@6!IHfcU ^ffl$S3Itgtt6IS$y2.£>g6afe2,o

© ¥Sfto7k#*ffiffiiJfPtt«7k*Ktt$^.©yy-AiflMtc J;2.Ett$W* k7k*Stofffl#lc®t)2>¥SftoSE li, 13 * ffl 7k * * 1ft 9 - f > ^ 7k * y -r - k ;v ® W ffi t£ lb * k »' ¥ * to 7k * x > y > H%fflfcto©Sl@S«k UT. k#i-5o

4.1.2 #^#Wy—y©m&A@Ccy'TE*. i$$&E©ffffitiy WGl; =t2>AHP^ffiofcj*^iffflkgl^t;l5lk2)iffi ffl2®®T-ffffl-f 2>*a&koT $£„ WE-NET7Dyil7 k &y*yk

28-

> h 1--5u®6if©¥iJBK*e>tSSti«©7"7i' tT < 6k@t>ii£oifciiot, m&#M^--7©9z Ds 7dvj.^

€©!§$, ;©^^f ^SIXt^ci:l:L tz o

WGC X5AHP ifffli

-29-

#5$

we-net7dj!x^ fifc-fafctfK WE-NET7U^I^*#(:#% • < o

7k*Ei$te®K'^vi'rid:, TkX©# X &®<fi (#tt, M#. 7k#lb#. f; IP t fe 7k * ® /J' Si 1* ft St v 7. =r a is <tw * S«-> x =r u tc H *> & it * *s J; u» j$ ft * tc -xt'TfflIB* • M^ifyoc

5.1 a$$-c®ffflMl#ft%©#|Ql&%l:@# Lx ?(Dtfii>?)WE-NET7n^x^

ti0tlt®5 k66 Bjfgttfflfe -5 Srft«£Mtij. #»ft If (i L fzo Z © ^S.TkSS'fbftifitco vcii. *^S J; D rESifil$?£C J: 57jcX?$-fbft®®S#ESEj CH

6ck#-c&t. ££. 7k*ESSiffil7ovTttx ¥fiKll^Sic ¥fi£lEifSCtt rf- x x >%7kSE=EE*®ES®i7k*S);E;j ©SHtSfiL. *a&y-X6 *11. 7k*5>E«ia • BfjllSTkXB&StiBrifej'T.X (XxXll) ^#$#^©@1#S 7 & k\ 7k*©19*a* L6irt 5±"C*^*tl$4 xn it*, x 6 c ktftrgfeo

5.2 ^#©#@SHe^T-liWE - NETXDi7iXbX®t)±lf2.£'Btt*V'kfiJBfLfcf)fflT-*.o-C

*. f®#®m%K*©m#i:kc-ci±#ai:%6Mimet&e. fi^wE-NET XD'XxX f©fratt*«-3fc»cti. H*Srj©l6lii]&@tcE8iLTV' < £>BAs$»5o

-30-

Ill ft

WE-NET. f1 2 (l/5)

« B FpI 9t KRB B M w ® t m m

(WE-NET m 12)

:flit 12¥ 5 >1 27 I!

~ 6 H 2 0

#Dd¥(#Wf)

Hilton Hotel:

¥B!t 12 ¥5 n28 B(H)

31 0(A)

l&J ^ ^ ^5 d: WE-NET W$£M%

Dr. Nick BeckDr. Japan Bose $#% ' ^c#%

LT#imM&fr 3 (hAC,rInternationa1 Perspectives on Hydrogen for the New Mi 1lenniumj t b

T, - 7/U* » H — Dy/N - 0AT(7)A#%T¥¥—(D%#6gt@(:OUTm#&3cb¥-t:vS/3>t:j3WT\ WE-NET (Dft^6LTTHydrogen Perspectives in Japanj(DM0T#f:¥BH%# ¥5: & 71 ¥ -o ¥=

3 —Ov/N, A0, &tlC#x

0^^c am;/I'ofc 0

%t!\xo-xATbicAo,

y¥3 >aa#$^#^Te^aa,1 mia<^<-ee6C6%

^(DAT, 3X0%^MA^6#4##%@i/X¥Aa, %>ix> %@^X¥AT(DLCA%7llt^$ri3a^-3^t)(D^0, <-XD-0aL Tii, #4#m¥X¥A77#w:%a/A m^o#%^¥f-(h(7)/wyu

%>^>%#^/X¥A(D^, 3X0%LCAT!l#fiJT&&;:6%

3-Oy/N(DA#%A¥f-m^^mma, mAA#m%(DA#%A¥f-m^(Da:^Aif(D/:^(7)

tZ.'Dtz. o

^(Dmmii, ms^m^mauTiitaAo, #mmc#ipmAa LT##i:#mT^o, ¥#t)^m(7)mmii WE-NET ^mffA^ETW# T&0, ##2#(0#aLT#'#T&aa#A6fl&.

WE-NET. 1 2 S^iaSfcS:#® (2/5)

^ B tn fm % mmu B m * #

(WE-NET m 12)

M :12 ¥ 11 ft 28 0 ~ 12 H 8 B

Wn#±15)1 ^

WE-NET

Kunlun Hotel4tM

% 12 4# ii n28 BW ~30 BW

7KSfSiiS#jS)r6] #/JPlll 25# UK300 £#fin

International Environment, Renewable Energy And Energy EfficiencyConference

143kW/m3 (#@#6 86000kcal/m3 B*TU

y-ik$)<5oi-(D# : UXckO PEBC, IGCC #:^(Da^m$TI:#Jm^#TCD#@6#

1999 mu, i.4xio^t, %#m^i.oxio'"kWh,

70%ia< ^ A&6,

70% , /K# 20%, m?#1%, ^(DW4^TW6. ^###^#11,

UT, L NG^\(D$m^#X%ll/4: $6CllU#yA(Dm#l:=k^ 3000 7T kW

(5 77kw@m ^6(D7k#X%;k^-y%xAK#(D#m,

CryoFuel Systems, Inc ffl:U>nx

W 12 4#12 n4 B(H)

Dr.John Barclay, Dr.Tomaz Wysokinsk Tom HiesterIan McIntyre Dr.Miroslaw

Skrzypkows

University of QuebecTrois-Rivier ##^1 bDUU Ux-lb

% 12 4#12 H6 B(*)

Dr. BoseDr. Chahine UQTR 7)4#X b 5 ^X 7-10K

CD MCE xm^fur W6. MCE (D#i/k#^ll 2 3^, 0,PPMS (Physical Properties Measurement System) SgSrhl (DTuETS

WE-NET. f1 2 (3/5)

m g mm g % # # m gSQUID (af&NHt) ^#J&U, PPMS%m(:ck-3T#j^$^cp (###)

PPMS$3ckU:SQUID^@$:#^L/^:.

' Gd (IBft## 6 U $r t) o T W 6 ^ #(D## 6LW6(7)^6T&6.

y-zmm&gig) Cctome^^^LTie^^^. mfw>x;i/-!±<x^, sgM:E j; 0-^±#V'PW-tM XT, 5 -10mm

dokw) , dkw) ^67;i/*u;k@#7K#mB (2 flE 50001/h, 10001/h) SrfrK EH*®^TEMite4o>7>c#mf6yx7A&#mL, fjffl S #1^ liE ^ ff -D T V ^ 7t 0

3XhXA@w;t#,

>^6UTfw

XU, (S#5cm, m$2-3 cm@j^, ^^^7)1/^!?#^$^# (1= 1.5m@^) (:#AT6. #—

zk#rmi/X7Aai/T, mmwt%:5.8%, ^: 26kg/m3, : 3.5Mpa, 77K &##UT^6.

7k#^mc^LT, d;om$%(:7K#^emTe^fmaL/TX] -^>Xy73.-X#^ff^TV^^, ^#^#)3;o;tkfXoOT

7%7ii(:7^ —

WE-NET. 1 2 #SM-iPIS$5fliEB (4/5)

# 8 ^ HM mm g m kf ffr ft a #WE-NET - ## NREL ?5E13# Ms. Catherine A#XDX7A(D^#7A-7^(7) Catherine (:@eu, WE-NET DOE A#

3m 2 B 7KSPi$SFIf(7)fiff^L E. Gr ego ireas: (^) Padro

X77\- Ph. D. John A. ©Electrochemistry laboratory (Ph. D. Turner) ; AllrA/AXA, tKHS, ####$:Turner (11 TEC Lh, L'< "J. www. h- tec. com) L,7© GaAs/GalnP-

%E 13 3 m 1 B Ph. D. James 12.4%(D^##$^mmc. fBL, m#2:7(C#A- 3m 11 B M. Ohi

Ms. Pamela ©Life Cycle Assessment (Ms. Spath) ; LCA (I0WTl##3c#&L/©#tlP# Spath /wx^x, x^^%^j(7)LCA^m^A#. %=, ^mmm^LCA^mim

Ms. Pin-Ching < , HPLffj© 3 7 x 7 7 7X A A $; LB)ilk© LCAManess ©Scenario Planning activities (Ph. D. Ohi) ; She 11, BP fa£'#110607—77a yPh. D. Paul F. X#(:#mL, @#$(7)#A, A#%A)l/f-7XAA(D#AI:MA6 Blue Print

WE-NET 17^-) Weaver &/© WBCSD Global ScenarioPh. D. Michael 2000-2050 (www.wbcsd.com.) CQti&t^AXLftaSeibert @ BioHydrogen R&D discussions (Ms. Pin, Ph. D. Weaver, Ph. D. Seibert) : SSBOOfePh. D. StefanCzenrnik

^LT#o, A^^xAmm%#(D77 coz@^

©Biomass Pyrolysis/Reforming (Ph. D. Czenrnik) : A©X7X(Z)SBE5FS<L:7j<SxlA7XAA(DM^§§

0, 13 PJ/Nm^-Hz (22. 7t/d M#), 11 PJ/NnP-Hz (75. 8t/d)#KT#, 7WX7X^6(^A##a8:^#$fl:, @3XHI:

MIT «13^ Dr. Mai com A. • 7°yX©U 7?j---5 >XP1 asma and Fusion Center3m 5 B • Plasma and Fusion Weiss MITcoX7X'7U7A-^7Xl© 0. 18kWh/Nm'-Hz6%A)l/A-m#7)%<, Jt$^

•Energy (m) Center Dr. ElisabethLaboratory X7X7 u 7^--^ M. Drake WSs^JI/At-. IWfSWS&LkSliXl^^fro/to Xt$l$itd:7—7 7°yXT'??fill

771:MA5##i|% m^T-5/tAi:X7X7$rmv\ ^•Plasma and *, Dr. LeslieFusion Bromberg 2CH4 + Oz L 2Hz0 GHz + 2C0zT^^. imchLT###© %#,, 7^7,Center •Energy Laboratory m 2& ^m8I$-&TX7X7gB/\#AX^^61:&6(!:#A6^l6.

LCAAS : ##em. m@#mfl:$flTU6X7X7U7A

X7XV ^ -^7X (^#@^fk, CH4^CL 2Hz) COz^A#^/:#, @7Xk^m7 Dr.

Bromberg CQAx y 7 $r§tL<5 ALB©, #B©#f$% A:L: — h -7X/t7>X©jtXp7fib##©immfl:C0MmU(:7UTmBf8^^t)6A6ca(:^"3/=o

WE-NET. 979 1 2 (5/5)

A'i II % §mu 11 m M ^ #• LCA (Energy Laboratory)

wE-NETo9mAB ^*0] LCA M/7A mmL. Energy

Laboratory LCA lloWTmm&MV^.o. LCAf-f#A#7mm%;:6d'6.(hT'gmLTW^e WUA MIT(D#-Acolt^

m 12HNHA

A0 :FA

#8cl3#3 8 7 B (A) - 8 B (A)

T. %^-NEi14*0 270 %#title

m 12f/AAl:#tinL/c.#^*t,uwE-NET

F(:/j<#e®IIydrogen Storage : Is This a Concern? A Technical Comparison of Energy Storage :

Mm3 %(2)IMPC0”s Experience : Leaving DOE Funding to Accelerate Technology Development and

Commercialization of IMPCO’s Advanced Hydrogen St rage : IMPCO 71: B Sti di Ml /KSltr#cAAA(*m%:35MPa#^ 11. 3wt%^ 2000/7 cmht 2001 #^#(:l>Am©^

70MPa#%§ (8wt%) 2000/12 8^#. 2001/9 ^%©Hydrogen Production from Fossil Fuel : A&WACWMBML

*AK F-TM5^^#^/LA#mm(DAD-t:owTmm(7)mm^o/:e #c:. (S3AF(7)mmmm6LT-t:AAv^^>yk> m. ^

©Component Advanced doe More Efficient Hydrogen Liquifiers : AAA? 12 T'A/i;1!1 CryoFuel (7) Barclay

Air Products& ChemicalInc.

A0 : 71/AAA

>

% 13# 38 9 B

(8)

SERP^&U^ITM^C

*1 : Sorption Enhanced Reactor System*2 : Ion Transport Membranes

Ph. D. Venki RamanMs. Dina Shah

^mM7^A#m2:LTmg(h#Ab%.^A^*AamyA#A6LTD0E (7)A$A o %7AoyA FtE# SERP ITM

SERP tiAgK7)A,%*AAmm%m(7Xt#c!:LTe^/m)66%. ^ #%^AD-A©AL^#D2:(7)A(bT^o^ 450%:-500%:T%m^T3

6 A A(1) b-F-vAAAAA om$mm(2)(3) ## (Hi) (KWHydrotalcite) ^(DCQv##^

a/:,$9 30%(7)A#m)B3AH&M^om6$aTV^^6/,©. mifkco

(1) AA7AAU7AA-thfA\ (2)i%m7" AA F (3)LL/ F.

CO

y y

E vftyrv a04

A A

4

90 ^ % ^ ^ 4

' r 55* y°i

MgCT Alt #A

XT4

I)##1

( '?s<■< IfY^ <- iT' «r

4 .. ,—,94* & M^ ^ # A ^E n^8 m tt m 4 fillo* ^o <-

4mayft

#rv4044#8m(ofr

r4ggCy

fW04

& y.r 4m o # 8nr r\

%a8mill"Vi

Erl4

A8BiE

223

a»%8

CTCT

4-04

4-V*o<A85s

>H=%AyfAIrurv w jj> 36

m tr Q 404o

9pftNSHr

Vm y M a4 ft04 y0 8

t±JZ3

lETiPi A^ aJ-f (t8 yf4g ^r \ 4 gg ^ C ^y #s A a8 m!w M# # ' 8 m %E

n # >g # ry )#l>r irB^ r3 Ar 4 y H S ^ nrr r# PXiu$ Vi4 vi,’04 ^

y44

Ol

fty4

# r ft '

S: O S 8M ft# 1%<r fy

M3.a

MS

ct ®^E 3: # " ft

4cA

4

myafty

UT ri^ E nr ^4 @ 04

^ )* ^ # & 5«l!0< r^ bf yi

U'

W f 4

8 ^

084

%

rrry

y Ev^ 4 94o 04 4

^ 4 4 3"} 41 B

3 ^ 4y 4

40) %Pr 4 8 ('\ vi< tti

q: o %

§t cv <3 4' m ^ 8 r #i

m (m4 M A hy '4 ^E 8 # #e m

m E g rf 4

oA

coi-Vcc

+

o

l>co<CD00

OEEBo

y

8

gf 4M#(r483»il

m&MNv>y

1nr04Vj<

m

o< ft% y

y# u,8 m

Li ^Ey #~r fW

>F 044 °

04 r< 8 8 94 # ' * y'

a E: E =$y 8: 8 y

#E #nr Pr& m(4 Or

, y<y f$8 044 4

fv f#^ %y m ft s

y5 <4

044

46 r 4

VjfE.

ft

yaftyy

is

# nS 8

IS

-r5>i ^m 01

vr y

Eyfty

iyPrrE

nr>04

yp<yy

4 E yy,

84

- ^ ^ A ^ 8v y &(-vj 4 04Ml E% 5 SA: mgtait <3- 43 « 3

y '%

*̂s mfi 41iS

<3* Or ^ Pr 8 r is 4

^ ?V'™\Jy H 94' ?Dr $1

m n w: >m 9 ^ y

/L ;%

o 4

E tft TT VZED; ( o< [Y Em 4 S C ft 4 r# V □> y y> 8 55-8 rv rv A 4 &y T4 A fW y

i 4 # iim S h® A4 # y # 4 4 yV 4 n > M y

84

Wr

fVrv

s

04fV

9v #

■.% m

&E Z4CU 8 494nSnO

ft

o<y□ftyy\3

MSiyft

m y 8

#

T,O

35 25-0"f (Mijl5 g0 m>1 \ w

M04 £>

7>‘in

8

M» ~rr 4

& Bf^ % U Ay r

y y 94

r y' SiW r

4 y

m M'8 LU

r^-m t±jolt ^ri S

iOy ^8E q:04 O

m> #=&'mH 9^4 44 4E4 m

I &FF rO 5#:5 Pr^ Cr y 44 SB25- C#

ftrS3

H 3@ 44' Ma 4 l—1 A

ri

4o

yrvry84m8

bj- v 4 !#:04E ^^ RPr %c y- y ^xe gm" yE □y it ^ yc ^

AmE

CT/ W\n>

S cy

H455*1-0/

Si55-CT/mm-SiOkfty<T"04

FS8S

s-QClUi

Q «zilii A am vxlai c-aft- m rv anS >H

<5*i-^//

y45 3fVr r*

CT

*ft

Hr(449^

4*

(utrss

4

to4

m

CO

§? # # ? w © & V 5 ica # * * m it fetLT © %3) Fr L © * ?SF X 7 iv roiijag k: =k 5StSS^©S$l t$B$S©S4) 7°7 X'X©K#*@#K#©FU6##^###©^^ '\ffl^»)J'0^4x.'5.

XX>#%©#.7 h 7-X©ffiffl(I J;5ffit*©ii]aai:'^5tx. btS.5 )

2000.9 — 10'}t\YM'Jii-

Wf9i 3-mi* ct v'x y x y -a]Phase 1 : AXI-©IEa¥f %© $J[6] fc MT 5 PS

XittltSSa-L'thT. XXX'x^bWS, fix'3 /')? m- # © © to |nj a 7> U T P S1~ 5 ,

Phase 2 : V<tV>*S®i68iOtiESk®9l©«IN' : 2000.10 — 12X X 7©jt#*f#£***£7'7X'Xa-#*. (SSM/£ © J$ FS ®. 7°5 X'Xii*3 «k y-'MSSic jytj-5 ifrSrto/SiiW^SStflfWSftS

Phase 3 : #J'l±fcPIT5PSW?E : 2000.10 —2001.1XX 7©aSM&FF 0 5BC£T5^S®-®6g, #jftSic7©T. X'BSSSS:ff-5. -a...nJSgZj:®#©7"5XT-ziM'. fltiS/iMSX7©T. ?#%#

#*©##§ (XRD. HRTEM, Raman, IR) (BET**) #

VtiWrU f ©##. #'&#%% 6FFF3 7 XT, *&©mF*#©-T«#$B6 T5.

Phase 4 : 1% E ?i © :§ © 1C J; 5 sf-fiE : 2001.1—2001.3XX 7XMW.fcck57.kS4"$%©7"7X'xiiXs^y'MKii-©ninmzwffix. *&aGgc«#*#&©*KM#.m©7im#.t:7)v^i:#M'T5.

#- 8 -2

CH4-»C+2H2 \J Raman shift / cm

Raman spectra for NbC

y'M0 2 #Eizk&yy®£fi£

-3-#- 9

12 ¥@Sr®fl$(l2-2)

7kSiiHR14 t K o ffi—fzHz plsgt4i?|gfiif^

ftaxtXlS (*)

I . 7 XX h- 7 X hlAl'tSfEEBI (LEL : 4. 0%, UEL : 75. 6%) £*"457k$£E*4<b "45 X^yLdji—->x

-rAlcfcL'Tli, <(=. $g1±®ffirofcAm*s-b>X"A<:5 rFAtg*7*15= ;«a7kSWcd®@*tlcli#xIz >-y-6<fflL'b*i. ?$#«&:£. St<*Beszt. ^^^zkssseH^iss^tti^KcrfiEL'^Ntb^Tl'5 = C*lbSffllt$nTt-'5-tz>+H4. ffl^cDI^Ic* yffi<DoJ«tt*'XlcJt-r5>7k *CD@®1±£X£< |5]±$"t*ri*U'5*J<DCD, JfitlWIC7k**£lt#8S]-C'#5<fc-5&=fc,cD T?l4*fl'= 5©fcto. tero =JEtt»*xicJ:51816/**frora8H*WE<bttsx<tl.'= *89$ W5EX-I4. 7k#%%7l/f-£/XTA(Dm$^^ >f4">XI=%A3t©6M#"e#57k# SKt±1 0 0%roiz>»<D3egm614£B,flbAMc-45=

jfiE. 7k*i^P h>i:CD^SrE£*$SMlcM5S4-5^ >/^li LTSa b*LTl'5 t K□ -tzlL|S]-r 5BF3£AWt, Sft-£8£*lLttLT+»/*$£t4£g"45fc5fi©t KP4t-tfA<f6Ji;k*U 5"<D*f$ScDiS#ft#. »WSSJS«t5t£ES*i-A:=

tl-- Dfr't-fH 2 ◄---------► 2 H+ + 2 e"

$b(C. 7>X'5o.7 • Xayx'V k (LB) ;£&' £'12* 5«11~<D1I5£ Ib&ffitME $*L-3-7fcU, 'JVSth'JAAglfa (pH = 7) ^Icfc'UT. Xo h>CDa*EI=J:5 7kScD%±fe5l-'-l*7kS<DI$(blL=k5D/n !-.>©£($, l'-f*i<DKfSt g«6i?fc5 - £ A< WbAMcfcofc, c*tlc=k V, t h'nyt—tf£*MJE<t Lfc7k**z >"**<!: LTiffitSf 7<-f x (®mib^M7k*-b>-y-) ro3l$l©WBgt4AC£xP$$*Lfc0

t K □ y*—tr)*E7kticD$6ST-$i y, 7k*<DffiHb • ilSlcfMf 5S|i(ai;S:)§i4(b L TU'5±:#xb*L5= $/:. ®S&&9/*»^(7)ESI;S:ffiET-i65/c4<X tiibKp4t-ATsTOl*»g§Jttd't'5/f.cx-A £yLt>n-y*> (mv).A^oj^X"S)5 (0 1 )«

01. t RnXX—tr'£ffll'fc7k*H45rE (-tz X-y-X'ttZcDSirO

#-11

-e-LT, 7k*-fe>+F£ LTfvWXfffSfcftlCli. t (••PV+--tffcai.MiJ'fVi — 5x tfo-SlMj:. t Fpyi'—tz6 y "r^ ^ UT'S^Ft7)f§SlP!T^ti43£ttiBS-e'lt®±lcllSft-r^A'A^+-7L^y p v-ir^^o Citilcl*.

L B;£ (02) F;ilCj:5e^ay>7KU7-Sttfcst'iit Kny-t—tf

02. t K□ 'fi—if L biSeic =fc•5>«afc¥6<i7kS%*CDES0

Sbic, c©**xto*fclti$$l^ixA/ti@3ipjS-fJ:5(SeiiHS $t) ±"xt 7kS)S^ttro®lg$ff 5 k t t,ic. St. J$Si$t. »Xt4&±froim$$t6L. Hffl<broaT*gt4$B^b6x|z-r-l)„

3. (**ito^*'xeti$±ieyxtoiiE«ici^^x)

#-12

SI-#

minmmig -$$<§31 '$# '=t%??G6^s#m(o%i#mmw

w#w3#jnm*(oa-i ?*<q-** z °.> a>s-s?#

4-4i □ rl q ':!%?? 9-#-KimWII#=IT#m,%c. f=l$(8 1 (&$H % **5-2^ n^/r^D-^q ^sm4.^$$lS2i$S<iS 'sVSim v St+c ? cosit

°9#a.^?2 >pF!=i#8?5WiJ'£ffl.a—^+aq?i q^vii.nifg«qi*$;»!. 1 *a>» q r.> <5§ta. $n3®IiS(»<.4d-^q O|5-9a-tor/'l$03.'i ? (IBiaivs) #t^#^#5#:iT ®S^5«^aK.-4'n-^q'ir^"9«»-iII >M>S@3H c A 3#a.3!@{=is#593K9-^#m=igW«tm 1 >3¥ia.co<24-S0 dl.H f-'iUZH—+4,04 d-pqayjaxAd-^q ?.q—f.4D.h q ia:r °g-#9'K#?\nw^(D9'^D(%zi4: (j?

?/$:'iBSYons-F5S<n) ##m 'mn'* '^?-4-?ii^»in^i.-iSKAd^ qa)2¥l.a— T.-4-d.H q 'nS^WSIgS^d-KqSg?-it (®y4» Bmy# ?*<q-**3T-T.4d.H q

«¥iS^®»¥r# • l

EiiltoSS -n

¥56 12 ¥$$T$fi$(l2-3)

WE-NET 5-X5712 iSZE^USSB ±7 ^ >M7kS!f Eij®Ef*©ESE7k$SSS©SJ^S

1. to $i.i w a

fflESxsti«iPS©-^-+5>->1,^ >g+n rfommmnzfi, WE-NET (World Energy Network) ItHj li. ¥fi£ 5 ¥ <fc 0 M!6 cF 1 0¥®•CSIitfSTltl'J. ^OE©*e7kS«)l$CMLT, fft I fflS+HT-ttStbTk*?: m 1 itffik LTPIj\ LT(b¥S«(*«a7k*lfti£'>;7 5r

S-fb7kS*©-(b¥E(*ti. TkSS**©* S S ❖ *{£#-£> 3 6s65® v U >3£©7\ >k v > ##© A g Ac k©@ A s a b#t#*Ac#i#-c&3 k#x ?.tUofffli'ltbt. i)tB¥5>l® 0 # < ©7k**iS^2>. 2)7k**NxDatfSf6 (7k*tb) k®9 (tiT-Eit. (@i7k*) ASqJStoCSff 3) rgStbeSStitotiAk&v kvdS#

mgkTMVM) 2CH30H = HCOOCH3 +

(-> 7 D -x =£+)-> ) c 6 H 1 2 — C6H(3 4- 3 H(y* V >M) Ci0H18 — C 10H 8 + 5 H(^.;k t k □ T > k 7 -tr > ^) C 1 4 H 2 4 = Cl 4 H ! 0 +

ckt&©7k#Bm#mm&:+#-k% k. 7 57 7 - it Ii3.l3wt%, #57P^Sr+t>tt7.19wt5i. U >li7.29w«. v;vt k n y > h y-tr > kt 7.29wt%fflfiJ19 RjS6Ac7k*66* Ltuj; tic*'), #«7km{bWc*Tr& BWm3wt%t:|a|#t L < tt 2.4(gggcDlftt$f 65.

^ >1, (-> A7 □ -x dr#>, 5=--* V >) taibT, TkSIftairSEftk UT©5Jlbt$41tM1"-i.«

1.2d-7x>HTfc5.'>i'P-xdf'+t>^. ¥* V £,©#

ATtmm u is s s -t- $, 75 *s it ic. ¥«o$ d e * ■’piss *$ - $ © iw # sts a b*¥totc9ttoe,nAc$>3tt$"CLAeji3;Ac©k©7$i]$\i:£::8#5>o ^ffl*l±. 7k*6975 Ui UTfiJffl-T5>IKJtc*S*eSi:&5>o Stt©S?iTii, *St6tei (->57 n^drtt> fcautiT-'* V >) l±¥56# (^>lf >fe5> t'iid-7 57 k >) A^fi-iELTStfStSS

ij+h-57;kSft*slTfcnr^5*k ^©dS-^Ittcx^yv^-AiSMSn. fro StSgsSSm Ac 0 ©7kS%£at>iS< Acs, 7 Ac t> A>. f 6 LAc¥*mm&## U?$ m. ( 1 HOKSiM) T'S©Kj£¥fr?#6h5>¥?£©M%fr, tb¥%#$'im#Z^7k* #imiifm>'%f'A©56S&*&7(k5, C k#Ac6k#A6. $KiST-fc£ v>-tf>fe 5> t'lid- 7 ^ b >©7k*(bSJfet M LT lig$#ilits ft.Aetna!tote®fr$> r, @1 @ IiAc tv

A-7^ >%7k*Bfa<diU*©®i7k*Sl$icfed 5.llSi¥8i$ k It,m 1) tszv* > 7v > v 799-n

1#-15

A (02) 6®D±«f> t7f>j|0K*fSe'\S)li L£li-S©fiJ£flg;iffi»S*k£ % 6 A4:f 6 k t * tSJBv^x AOft^x^WISI+^ff -5 »

0 1 MM7k*fi4ii*KlS?£®JBg 02 J >7u > V T ? ? --&coi$m

i. 3 sis^n^a*1) st6(s«a$

fckSMtStcttirsnSiViR* k It, «SS@i7k*«!ESt6?£k7< >7u > 0 TO f -?£kAsSlj,e.n^0 $r, rMSJ&7k*«E£i6t?3£ti:, M-S-mfflttSfSEfi mss-t-fe 0, #KSn»T®«>*±-e4j® bfc7k«tt, a

=toT, #'SES*li*g- < & 0, gjsna J; D = ynt k ClSI+sns c k#*#^ n^o y >7*v>Vsittene (:$/$* &7kss 71 ^ e -> a MSSHTaEtoicAS VT¥«©$m»ib/8» it, l @®fflffi-CRJt,S^g$-tk ?> c k#?$^, 6 = isjsetc, «$i6@7k*A5S 6h,5. tetoit, <n«±®MRNHbM&f % < g@ W* T # S $J A 6 # f 6 =2) m/mam

I'l ~p 1" 6 ft ¥ « it ffl 7k * It rsS ft £& ■> 7 =r A ('OUT V* HAitt'/S 7 Ti. V

*jfcS7k*fbt) * k ® htR 4 ffi # & KS C X o T iEiS W It It W b T H tz=Ti-V 7k##afrA (7k##m#3wt%kf S) 4 100kg SiiBbfcil^fflSg*

ma.it 3 kg k%6 = c ffl ® ffl lift 3 f M/kg tai45, k£ffcT?l±&i 30 75 M k&(K 7k* 1 kg rn t D I: f 6 k i075Mk 64, c fi tc L T, ->^D^^+k>^© @-e, St.«*7k*M4±mkl5) C 3kg kt5 k, £'S&->^ n AX =k+/->«$<) 4 3 kg k %% = ->7 n 'X*ik>ffl5fe£ 50 M/kg kt5 k, A#T 2150 M k* 1 , 7k* 1 kg 3 tz 0 l;t5t 7 2Mk4D, 7k*lr@Etkffl*it|lBniit Ti-V *© 1/14000 kKfStgc17= x* o >»®ti^iiB]g)*kna*ns =

a±, 17< -D^®^ii$s*ti$>^t)fflffl, f 7^>mffle%%#%@&© Lt. $Me, MciiTpTk k 6*51 #gt:$> 3*6, ^f-rggSfflEfiTfcSST&3 =

2

f-j" —16

1. 4 smite*Smti7 ^-7T->S7kSiliiSlifS!iS(*0$i7j<*fil®©(MVaiiii: lt. anas*

#TX©MSIlS#K45«!!*EE:SSfe3 ©14 4 > 7 v > <) 7 ? $ % i~ 7 t- > mo

E7kX5J£C«fflTr3@iBr©f$ffifa=I!g't$©i@S6fi;'5 ttbiz. gjB 7 7 t- ASSIt*; LT SI lift ft 116 #7,

2. V7L-7V

2000.08-2001.03 MSI&ykXfttEKtSS* J; tf 4 > 7’ L > <) 7 7 f> -# S# 4. 3 7 7 x > ffiffll&zksSKfS C ft15 ®J¥«)i©f3tt4 tSfB ■> 7 7 u©fb^x^wtSit

E2cl*$i]

S«ai4*¥i^gl3i*'(b^?4ag SB #ln(4=162-8601 $Sg|iSrSE#-$iS 1 - 3 TEL 03-3260-4272-3305)

ttPIWJE#S«HI4*¥x¥®I#ft^l4»g feB -« (TEL 03-3260-4272-3369)*Jsai4*?X^®Iil-(l:¥f4M£@ Elf e (TEL 03-3260-4272-3492)

(PB a*(4=305-8565 7) < I2rfi$l-1 TEL 0298-61-4733)

3

#-17

1. W3SSW

^©@c5l#X^ 67k* iC^-IIS-ti, 7mm%1i7,$- H>&,##£it-5 C i:(Ci: 0 fgS?i$£[6]±$ik-5*'X X- tf >XXXA©p$5ff%£fTx. C#(:j:D#e©{k5##XXTA^6#*©7k*##XX'TA^©#e):m

1^JSX # 5 # X X — fc' > yx X A ©£ 1W <tI- §.

2. ets

^tl;J;^T, 700~900'C©?Sj$ji^£'g7tj:XX>®7kSS,55:MM)$X±fijtT57ksS£53xH"f 5C <klc<J;oT7kS9,5$cHES£:iifi:Sli-, 300-500T:

®^xX-H>Sto'xro?aj$«TS@:H*&iS68x#5SE[3iRS#¥1gerM SsSrX-tiXvXxAtffi^-iAti'ii'&CB^SnS^fri:, ^©^kk^S-at- 6#T#%K#g&#MT6.

^¥«sasts$CH4+H20-C0+3H2 (&*&£)

CO+H2O-CO2+H2 (-y7h5£)

CH4, H20

H20 H20, H2n___________ ___ ______ _\_f

akKMtit

C02, CH4, H20 (CO. H2)

Hz, HzO

Air

CH4

HzO

I

/ V

Steam

iMMVWWWWEKtmiri

■K >

500°C Steam

HzO

#-19

-7 h*r##T6.*E2l WLBlfi. ->x x <i 7K?H »4 ->X x A ^ ©#<t € ,tJ,s fc^v^c

b<D-r:\ ^±t£7mm^y7,j-hvmkm^7mmi%i>-\d><nm\'tkm'&\Zt%o

3. M9<^f c?*vXT-A®SXlCj;0**X^-k:>%tt$4¥®ti*<h C02

cts. mm©Eem#^x%-A&md/- H>&*x■tz>zt\z<k<0, #*©7i<*##yX^A^©#Eca^AX:*%?#6.

4. E^Sf-H

<4-20

¥6g 12 !FS|fiMS$(l2-5)

I. WE-NETJg?j?7XX 15? B

X^*S»16®e*$lsliK^n-l:x#ttlc=t:5*Sx*;i-4:-'>X'TASSttltO±©l9e

1.

2 1 ttieicSW-SXjWI^-XiB-h LT©**©Sffle«, /zllL 6MA5 60T65 7 *k 'MMtLZ

mmtz>±TfflRtzgm@(D—D\z. #*'i4©mm*%5.£r. 7j#m$#T&&m7K*n*±x'gm?ip©##^NMR#0E*#*m. #a-wuswh/-■9--KSIC, *fc6 5 -o©|BH£frffl HJ 77A11 fc t, 651/7(lifiV7#*SSt"5T-*5 5 !RttT««#ti#SftTl>5. 8lSB*Ttit. &*&■****9>X*»Sr^TWAUTU 5*7', 6 BJ - |S] fv # » @ IS Si »- P/H % L , )SflT667<2i7f'SZi-biaffl2tE/j<S*SSl)*i: Jlliti T Sr713, 7k *i*©«**7i6$0, tM/7TH;7]<*X7Ml/=t:-->XT-A©jgSi'l4[6]±lc-37d:»''56#x6ti5. t, S7j<**j'X©a*Hl^/j7?Ef3«tel4, 1U y6-M5fcl31300nT6l9, WS.C©S7k**JR!iJ#Tbtl

Ti/>5„ 6L^?^7j<*^i-^$ti5a7kSsgswiciHiiKTsnii, y-siit©sthsss7j<*# x is, ^© ii[Blt;ft'¥«lttK©7j<*iL-TX»MT#, 5©6x©<e«m»S:iW65 5 2:*7T-$5„

S»«K;llT*$t:*msnfc**H6*»l*6K:ldt, toEEteSHtt, ©SSSjb¥St6S- *M£»S ss^s/a -Mifu2 o kcpmmm. ®t7ktta^»a, iooor©A#m©X3*t, - ##*^x5T'$y , 1MXXV y h?;4*7-t|;fe^aiS4.«*7£'S'rilgg#*7>$tf„ ^©T'WE-NET©?;**# X «»*Xt—Xa >rt©7k*«»PSAtC, *SSW*Wp$jf%lTi*fc/\-7X7 A3tWS$/8 l/XcSzk S@iR7''n-t:X$r#inByc<hS©gSrtt[6]±t:©V7Tl*#U, ($7j<SSi$*, S7k*Sffi*©ff«, dM4 #»«xn-fex©ise», ($#ege*ft©ISteSjBXftl/X WE-NET®ES'B[5]±fc*SiV/tV7„

t [”C]

2. S*SlBliKX’n-bXE5$©ii$» 200 100 50 20 0 -20 -50 -7010 FT I

2 o^y,±fc7j<*®)E=^i: =k57j<*l=Hic(*

(#***5 ©« h u 7r7 A) Sfjtt»«©W9E*W'H* '-^T'joXZjioTSfc. *jgSASSM#®65#ififflSf'%

8 Pd o

q— Gleuckauf et al.('57) ■-■ Wicke et al.('64)

......... Andreev et al.(78)—— Boiler et al.(76)

(1

6, Fig.

^iCLaNiAl^AA^ 1 d:

A^r(2MkV h<k^ck^AAm^e^±(D#^ 2.0 3.0 4.0 5.0

1000/T [K"1]

Fig. i

Fig. 2 u/cPd-7;i/a±<

i

#-21

- 7 J —JV^^kS

• SWi$fi5.0L(NTP)/inin

75ml

ttlS^iiltfCDe^kSiSS, xD.i» MFig. 3 S-PdiS&ffl H/ta*S8«^Ej:

Key x.O 0.00996• 0.00015

Fig. 4 fltliSBzksS'BS 1 %il50ppm(C^145® *B Emax iaoil ®*K«0»n A ® «S

k&@A. BB6® »tc =t: 5*55,KT© iSG loSti L, 8**5■AtttttiMWAMU/c,, ®*«©jie*ttli. $*6*-'SfiF=l Pdigii, itfi-aooscfiflTfeS.

r7k$R«S^tc=t:i.7k*iaite*©y-glj Amf6#&#a^%NTSZ 0200043SfllcSffiLfc.3. B7k^[i|iK7,n-fex#ttl;J:57kSx^;i'^-'>X5"AESrtt©;F'ffiffe

Fig. 5 © 2Ssra^[S]SS7k$iBHi#:«'«s«. »%jsb<4)T-#ffi^is u fcSTkS ©SHU. o. ssiBiciiejfcftT-s^sn^^^xgki©PSA7k**fK'>XxA t*0S&tJA A^T'#5. 300Nm,/h©zkSSifiST^S7j:7k* tii A X h (±¥950075 R T$> 0, ISfSWtt 2 (8260075 R 7? £5. XAi:3f LX. ffi**&«■!»-6 21*770075 R

$AI$ !**«:,PSA tc atoM A A (kT: § 5 © 7A A£lwti#uaia/k£A„ yixxXAia#;(bA%A©X\ 3G,#T#. SEOTt^ltc ©oTT^glf % A AA^X#5. #oT#i#■I'iroM-ffiL-iaifis©.

L>u a7k*©H*i;i3it%ait©» gia. tmmtmmmixbr>7r$> o. c©Ki-gkctfT'taykSxTMi^ - ->7,7-A±

(k © 38 $r ft ITS] _t ia-t kUS 2: fta W7? £ ti t'.^HLkca7k*SrCANDUtF©B7kSi$ti'i:OtfifltSi1, #*©#a^*P?B7k#

LTkilCMtS 2i«gi C©ASi#AT.

^S&XTaA/tAAstxTrAS.$ e, icwE-NETCT-y^s-e-sfctotta,

J: 0#%ft©A 1/i##©im%A%mT&6. ^cT0f5wi(i)Ttatisnfctt

T/ta--7XA*6&. 715XXAlA(AxT

itel-fcA ASIxTAS, Fig. 5 Aj#5t;

iS7kiiT$5>„ A ;Xf->3>

Vao. or VENT

ii»H

#-22

^^7KS^6(T)S7KSli]^7pn-bX#iD^«k^>7KSx^;v^-i/X7LAE^^rFl±0g|S

2. 7KSx^;i/^-'>XT"AE^^iFl±(7):PSWM

&^U^WE-NETT

giJ#ie(D7j($3X h(hLT32M/Nm^&5o

yotX$r#A0Lyc(h#(D#^#[o]±^^#b/c. ^$^l/c;j(#X-T-S/3>7X$#^#^300Nm'/h-C& 0, ca^7j(#^m

#E2(77#:12000R/h

(300NmVhX39.9R/Nm3) , ^95007] R

,b%5, ^/cWE-NETTK#$^^^X%%g7K$Xf--^3>m##d2#26009]nT&6.

1 WE-NETr##^^L^7K$mB^Xf-A

7K$#B7^%TkSEiSS

(Nm3/h)/JcS^SnX h

(R/Nm3)

Hft oJ*x^;is%~ 384,000 27.97KSXt""'>3 >

300 39.9PEM7J<MM 300 67.9

v-ymmij^7K$ 6,000 20X^^X7j(#^%M 75,000 203-XX^7fXBJ^7X$ 16,700 15±7th7K#^:%# 50,000 15.1

84,000 24.5

(2) m7K#^@gVDizX!

300Nm3/h7j<9

n -fe x £# jjn b ft tg co StK^

7j($(D/J\% 0 ##H1300R/

U v #7K$^0^ 2 #77007] R/^

(213X1300000R/^) ^7^

^±^iir$aTV^CCiT, C^'L'SrSb^l ‘C iblc/b'$) §o

%o T#x#%A##^mm

l/3^{K^i"6«b, 7j<#3ijei%

igijbf 6 ##95007] M/^ ^ m

7K#&#8mef'& C «bT ^ 6

6. m

7X$lEl4%7''DtX(D/17 77

^x%—>/3 |p]C300Nm3/h^7K##^m^^^3m7X^lEiey[geX'DtX(77|gie$^60%abT213Nm3/^^^5. 3

^2 3X

JSS A# 7X h

A^^X%m^7K$X%- -^3 >07X$^a

zKSSM300Nm3/hr

^##$90%95007] R/<^

A^^X^M^TK^XT-

-i/37K$#ig#300Nm3/hr 2 #26007] R

S7kSm7°ni-feX<DB

7m*kMM

7l<*(jtKie300Mm?>irIS^l7j<*S$150ppmX,D-feX|51lR$60%

¥SMW90%

2 #7700^ R/^

ck 0

a7j<SHliK7’n-fcxmPd£KKI$e#

7j<##^n#300Nm3/hr

m7K$[EieyntxnmMlm3 (SV=300/hr)

^b'7 h^;$$0.5

Pd#tn$0.4

29ffiR

3

EAX9-T >yyo-kXT*SEiSISOONm’/lir® E« R*51

< CACf oT#*X#a. C ©«-&, Effi»6iB«W«LT 057 AfcAS.

(3)

/\"5X7Ati*iM(3l/yi'j3

7f 324l05#f #AWX* y, cnssijtciM-rs. a*©PSATTfc :.3^.i:)tU»'Sr,.1;E:$

2.4g/,cm’£:fl513 5 A, liiifc

y 0/3 7 Tf AgE#!; 152400kg

A&5, 12nPl/g0BM®^l

29<gR (2400

X1211000R) &#5. 706

3 BiHWl* ( h U YYA) ®ifi7‘7> h

la m#

■zk^Si

h2o/h2PtBzk'MS

Norway, Canada "^lOOOt/^

h2s/h2o2

USA, Canada, India 18001/^

h2s@ France, Swiss, India ~20lAf

NH3/H2 France, India

mzK^#h2o/h2

PI/SDBttj*+KX/UMK IBM)

/Y;ft*7kEfiX7> h 10t/^

MJ77A43-SI ?d#

France(Tjl/^7 —)]/)

USA(LANL)USA^/'Of" U A), Russia

3-5g/^-10g/^

man?AixuuDmmn&uz,mzt&xz>tf. >\y9^h,\twMts.E\znLxm'K\±-hm<, mm0m etiOA^yyACSft^Mtltoi'. for, c0/37i/')A0A@Hme}:j:oTm«#@]f6^3 //&<, ssiiemETE. A^yCA&iaKLTmw. ^s^tiH^asx^itj/oTjEsii-rsct*/ TS5. $oT29{SH(a**#Tt A*x. 6415.

3.

'(7 5>j:is]CfflK$6ttieadtiT0-5iBMT$>y, e®mf w#SEOTaA/uAYjXX #oX, E«MSHt7#»3«ii)TK WiS^6fIiCi$XTj3< .

Iift0a*syx0 B*ffll*l0WSia, EiOT AElSSitSffllC^SOOmWSSTS5. B_7k*®JSR6ffl (7 itf A 6 {S50007: R i: A: 5. 70@ - #11, * 3 A g*0S/k (hVfXA) EjfiYyX h0ilts*Ef-BffiBUTSSfff H„ EoT, BSSa-a-tF0ae»s'fiMICiig»A:00T\ EftfflAE

0EO, *rfct»7k*SSfflf 7> h$WE-NHTT#5»ft«^i,i„ ##0# /kSffiSfiti, Yff'MJSftP (CANDUiF) 0fc»0a7Xf#5fc6fc65A#xT60. f nx'n* 3 tsif/tezKgigf^ > hc(4*0MH,6^6-6.

(1) HiO/H.OIBHifrjcjftYD-feXT-tt. #-#,#- 0*EffilW6#£ ti 5fc» 0 BfokttPt-SDBftfcB®a©«!*3x h»t#s!cisv>„

(2) H,S/H2O0 2afi$x^yn-b:Xli, (i)0»/KttPi#S'x0giSto»a/jtfti 1$AYj: 0f*. Jifrlt/KJSfx0se^0@A0Wfflss;)®t" 5£-s»3*5„o) *ss@S(i2OK@i$0effisxaesn5.0T\ iie#f#0s#f'is<, esmt&0.(4) stittsti- f-L'SiS0fi$AnoooKgj$icf y, a/x®fi©jie«»*5«0. cANDutFttfy >wiw»mcD&mvj.<, sixx*®a urwa

T. *671:22*, f ©(^©BtcisSA'jlEfT*^. foT, *5 0 IX/k -%a;k#® EEKtCfSB/kSSf 7>H:fiSBo£150i@?>ie£tieT5 7Af*, B7kS®SBT#Jfc&ST* 5. C0,4UC0ATf^iS, Btdfflf437f0fc0.

/t7y7AJSffflVYc|8Hi[*y'S->Xf A(4, MJfXASrfrirr 5->2f4tLT»A'>tU/t— S5.VR4ffWIHi3BfTtiAj;0f; DX7T'0W%#6fc$>5$TL06?iX$>5.

f5/3 7yy7 0x|BH4ft»»fffifWE-NET07j<*®)fi7°n-feX©R]gM2ft«t-. 7kKE$07XM:AffiXf f 57Af <, 6«fa7X**f0-tt5f AA/XTfWi, 7 7T#X*i|i$ttWE-NET0/k*Xf Jkf-AXf AE'S-|4|8l-hC* <X*d7.

4if-24

(i) zK$xf-c/3c 6^-c#6,

m^(T)7k#6 l/Tm^^Cch^TA-^.(3) ^^A%mmzK$AT-

(4) 7k#:4;oT##^A<%C

4. ^T5fi7kStH]iK7ni-feA<£>m@

(1) 7atA7o—y—F

PETKm^gTTK^^^m-f ^WE-NET I—^;F>/ATA#^i:^V)T, ^mL/:7K$^6#>7< ^EzK^m#

7K$Em7j($(Z)%m%M#^mL/, m#%i:7k$%^;F^-i>AT

WE-NET)—^;F>/ATAi:T^T$#^^^:C#,^cT#^g(i)T#mEg$a/c##^6, tkT3.7-^-7%#mi^RATXT^7AmA

A, CtlF)(DAA(D#m##7k$7K$iRi##:^(Dm$oe(Z)M^^2@M^;k#%m'AA (v%AA6Ti%

AA) ##g| (Fig.6) (D2#^^f^mm7K$lRli&#:^#m^^m#mj-L/TV^.

(2)

&43C;%:3. ^nc#xz)7K#mm^&(D

A^l6fl/i:#A^3UT>(D7K#mmm. mTK##^#^

gf#, StKSSHMA^

WE-NET(D#^#(p]±i:##L/cV\

*##^6 l/Tm^T#, ±:E(D{tmAA (XT:x^A7&$)<5Wl:P:^ >^AA)$)^V417;i/3'>7-/7^KT

7;i/=f>#am2)^gm^//o__y^^77xmT#e

GE, T^#t,|o|{&{$^##^6

(0) ;S1±#AT V 7 (1) # Af^AT v 7 (2) AT v 7

AP#

■hnM RT

(3) m#ATv7A

(4) ^#X7-V 7

EC

±rn% T

RT

sc

I

- waAP#

(3) 6(4) OAT V 7

,t

EC I An##$a

SCI RT

77-f 4^- Foma'A)

0 »t

SCM*#%/\;i/7^ ^ 7<;i/7^

Fig. 6 -^itr@WlS];)ft7kSl5]ti^^m^E

5

#-25

hetp oamexs) Mtu mat ■h©3$g?t,ll#T5„ ?fclp*fctt. ##&*###&*?TSXttffiT*

«£ET©+M7A-Se££©&©, 150ppm»' BM/XSSSS ^TmeyooStoSSMES: B#f T, SS$

T©a«©ll*S*s¥©5ljP>f^>x-^lJ, 77*Xh5^ h ©Fig. 4 CSS J; 5 1C, 4 0 0ffiT*6.

■tH'7-'E£'t|JjnS'8--5©<h!:j;oT**S®^tt*5tlCt8SDUTU5Ai', KtC?iMMfcSWri&&/,WST£

5. j:#xTVi5„ *^@*©a*#ffT$5A#MA#-e. SIS ■ SI •©TISHiMSEibS^i*. a. ff*i»fciJSM7"

nt7ttst»t, 2«3gst®s«;£*®. 2oox#ma$:»t)gu- ^wi:a#*©m7j(*&#

6. RHi#:»g«7n-t7©SSttiS]Xfflfc*, Sraira;£ffl©fceS£timsii-, X

MT-,S8:»SiiWj;:/n-feXffl%EE%lc$TS»T©Sfc©,h5§'xT©5„ ©f4i©*@mtmx&K*-5wa,

5. MmT6BfgE©#m

y.T©«X$##Xit4:UTS#1"%,

(1) ss7k*iRHa#:y-e«f4®w:% (ime#a-«#m©m%ti3]e#x%7'atx©#m)

; Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium

S. Fukada et ah, Journal of Nuclear Materials, Vol. 226 (1995) pp.311~pp.318.

Pd^@l:#3^^7K^%mtK H±(DBonhoeffer-

Farcus##-? & & C: 2: &mE99 L

Imi^d) : A study of isotopic exchange of hydrogen and deuterium in a LaNi]Al2 hydride bed

S. Fukada et ah, Journal of Nuclear Materials, Vol. 195 (1992) pp.191~pp.197.

(#m La-Ni-A](D|!m#:

tfra3^C(3) : Experimental and computational study of hydrogen isotope separation with a vanadium particle bed

S. Fukada et ah, International Journal of Hydrogen Energy, Vol.18, No.3 (1993) pp.227~pp.230.

timX® : The rate of an exchange reaction of hydrogen and deuterium in a Mg2Ni bed

S. Fukada et ah, International Jounal of Hydrogen Energy, Vol. 16, No.12 (1991) pp.809—pp.913.

(2)

lm]5t(5) : Hydrogen isotope separation system using twin beds

S. Fukada et ah, Proceedings of Sixth Workshop on Separation Phenomena in Liquids and Gases, (1998)

pp.457— pp.465.(mm 3mmM#(DPd7;L$f/Nl/'yh&##=L/,

fr-otco

-2oor)M(D-y-</7;i/^m±iooo[E]^-e#omi/,

6#-26

(3)

mX© '■ Possibility of separation of deuterium from natural hydrogen by a palladium particle bed

S. Fukada et ah, Separation Science and Technology, Vol. 34, No. 11 (1999) pp.2235~pp.2242.

lra7!(Z) : Hydrogen isotope separation by displacement chromatography with palladium

S. Fukada et al., Jounal of Nuclear Science and Technology, Vol. 32, No. 6 (1995) pp.556~pp.564.

(4)

timTXD : Hydrogen isotope separation based on isotopic exchange in palladium bed

S. Fukada et al., Fusion Technology, Vol. 28 (1995) pp.608~pp.613.

omm Pd^LaNkjAio.]^

Ini7X9) : Applications of metal hydrides to hydrogen storage and isotope separation processes in a fuel cycle of a

fusion reactorS. Fukada et al, Proceedings of 3rd Krea-Japan Joint Symposium '95 on hydrogen energy, (1995) pp. 161 ~

pp.170.

(##) coco

li&TX# :#^^11-137969(1999)

^ L/c.

Inn 7!© : Hydrogenating rates of twin columns packed with Pd and molecular sieve with an alternately counter-

current flow for hydrogen isotope separation

H. Fujiwara, S. Fukada et al., International Journal of Hydrogen Energy, Vol. 25 (2000) pp.127~pp.132

Ira 7!© : A study of a new hydrogen isotope separation system using a simulated moving bed

H. Fujiwara, S. Fukada, Separation Science and Technology, in printing.

IraTl® : 4-column simulated moving bed process for hydrogen isotope separation

H. Fujiwara, S. Fukada, Proceedding of the 13th World Hydrogen Energy Conference in China, (2000).

7#-27

6. HiS5*plB©£ftSBfc/fc*

( 1 )

(1) H. Fujiwara and S. Fukada • "4-column simulated moving bed process for hydrogen isotope separation" •

Proceedding of the 13th World Hydrogen Energy Conference in China, (2000) in printing.

(2) S. Fukada. S. Morimitsu and N. Shimoozaki • "Experimental and Numerical Study of Hydrogen-ABsorbing-AJloy

Heal Pump Working at Elevated Temperature" * Proceedding of the 13th World Hydrogen Energy Conference in

China, (2000) in printing.

(3) H. Fujiwara, S. Fukada. B. M. Samsum and M. Nishikawa • "Hydrogen isotope separation by self-displacement

chromatography" * J. Nucl. Sci. Technol. in printing.

(4) H. Fujiwara, S. Fukada and Y. Yamaguchi • "Hydrogenating rates of twin columns packed with Pd and Molecular

Sieve with an Alternately Counter-Current Flow for Hydrogen Isotope Separation" * International Journal of Hydrogen

Energy, Vol. 25, (2000) pp!27—132.

(51S. Fukada and S. Morimitsu • "Analysis of Temperature in Hydrogen-Absorbing-Alloy Bed for Heat Pump" • Proc.

5th Korea-Japan Joint Symposium '99 on Hydrogen Energy in Korea, (1999) pp.69—76.

(6) S. Morimitsu, S. Fukada and M. Nishikawa • "Experimental Study on Hydrogen-Absorbing-Alloy Heat-Pump

Working in the High Temperature Region" • Proc. 5th Korea-Japan Joint Symposium '99 on Hydrogen Energy in

Korea, (1999) pp.77-82.

(7) S. Fukada, Y. Toyoshima and M. Nishikawa • "ZrzFe and Zr(Mno.5Feo.5)2 Particle Beds for Tritium Purification

and Impurity Removal in a Fusion Fuel Cycle" • Proc. 5th bit. Symp. on Fusion Nuclear Technology in Rome (1999)

pp.187.

(8) S. Fukada and Y. Toyoshima • "Hydrogen Isotope Absorption in Zr(Mno.5Feo.5)2" * Journal of Alloys and

Compounds, Vol. 289 (1999) pp.306—310.

(91S. Fukada. Y. Miyairi, N. Mitsuishi and A. Takagi • "A Study on Particle Beds of LaNi, LaNi2 and LaNig for

Purification of Hydrogen Isotopes" • Proc. 4th Int. Conf. on Nuclear Energy System and Conversions in Osaka •

(1999) pp.59-64.

(1Q1S. Fukada. and H. Fujiwara • "Possibility of Separation of Deuterium from Natural Hydrogen by a Palladium

Particle Bed" • Separation Science and Technology, Vol.34, No.11 (1999) pp.2235—2242.

(111S. Fukada • "Numerical Simulation of Elution Chromatography for Separation of H2-HD-D2 Using a Palladium

Particle Bed" • Separation Science and Technology, Vol. 34, No 14 (1999) pp.2699—2721.

(121S. Fukada. H. Fujiwara and Y. Yamaguchi • "Hydrogen Isotope Separation System Using Twin Beds" • Proc. 6th

Workshop on Separation Phenomena in Liquid and Gases in Nagoya, (1998) pp.457—465.

(131S. Fukada and K. Tokunaga • "Enhancement of Hydrogen Absorption Rate of Zr2Fe Particles by NaOH

Pretreatment" • Fusion Engineering and Design, Vol. 43 (1998) pp.189—197.

(141S.Fukada, Y. Fuji! and M. Nishikawa • "Mist Formation in a Water Vapor Cold Trap and Evaluation of Its

Removal Rate" • Journal of Nuclear Science and Technology, Vol. 35 (1998) pp. 198—204.

(151S. Fukada and M. Nishikawa • "Hydrogen Isotope Separation with Palladium Particle Bed" • Fusion Engineering

and Design, Vol. 39 (1998) pp. 995—999.

(16) mam mum# -Vol. 22 (1997) pp.1-5,

(17) S.Fukada. K,Tokunaga and M.Nishikawa • "Recovery of Low-Concentration Hydrogen from Different Gas

Streams with Zr2Fe Particle Beds" • Fusion Engineering and Design, Vol. 36 (1997) pp.471—478.

(18) N. Mitsuishi, S. Fukada. S. Sato and Y. Miyairi • "Absorption and Capacity of Hydrogen with a La-Ni Alloy

Particle Bed" • Proceedings of Hydrogen Power, Theoretical and Engineering Solutions, International Symposium,

(1997) pp.710—716.

(19) S. Fukada. Y. Toyoshima, K. Tokunaga and M. Nishikawa • "Recovery of Low-Concentration Hydrogen Isotopes

or Water Vapor from Gas Streams in a Fusion Reactor" ♦ Proceedings of the Fourth Japan-Korea Joint Symposium '97

on Hydrogen Energy, (1997) pp. 118—125.

(20) S. Fukada et al. • "A New Arrangement for the Air Cleanup System to Recover Tritium" • Fusion Technology,

8-28

Vol.31 (1997) pp.175-184.

(21) S.Fukada and M.Nishikawa • "Analysis of Multi-Component Permeation through Gas Separation Membrane and

Its Applications to Atmosphere Detritiation System" • Fusion Technology, Vol. 32 (1997) pp.220-^231.

(22) mm - voi.21 (1996) pp.74-

76.

(23) STukada, H.Minato and M.Nishikawa • "Recovery of Hydrogen Isotopes from Inert Gas Mixtures with a Titanium

Particle Bed" • International Journal of Hydrogen Energy, Vol.21 (1996) pp.741—747.

(24) SiFukada and M.Nishikawa • "Empirical Expression for the Pressure-Composition-Temperature Curve of the

Zr2Fc-Deulerium System" • Journal of Alloys and Compounds, Vol.234 (1996) pp.L7~L10.

(25) S.Fukada, K.Fuchinoue and M.Nishikawa • "Isotope Separation Factor and Isotopic Exchange Rate between

Hydrogen and Deuterium of Palladium" • Journal of Nuclear Materials, Vol.226 (1995) pp.311—318.

(26) K. Munakata, K. Takahashi, S. Fukada. N. Nakashio and M. Nishikawa • "Removal of Tritium Released into Air

by Catalytic Oxidation and Adsorption" • Fusion Technology, Vol 28 (1995) pp.918—923

(27) N. Mitsuishi, S. Fukada and S. Sato • "Absorption and Desorption of Hydrogen with a LaNi3Mn2 Particle Bed" •

Proc. 2nd Int. Conf. on New Energy Systems and Conversion in Turkey • (1995) pp.79—91.

(28) SJrukada, K.Tokunaga, K.Fuchinoue and M.Nishikawa • "Applications of Metal Hydrides to Hydrogen Storage

and Isotope Separation Processes in a Fuel Cycle of a Fusion Reactor" • Proceedings of the third Korea-Japan Joint

Symposium 95 on Hydrogen Energy • (1995) pp.161 — 170.

(2) me,

(i)mam - - %-T ' ' ^^(2000).

1W5 H) #^¥11-137969.

(3) S. Fukada and H. Fujiwara • "Comparison of chromatographic methods for hydrogen isotope separation by Pd

beds" • AIChE J. in contribution.

(4) B. M. Samsum, S. Fukada and H. Fujiwara • "Hydrogen isotope absorption amount and rate of AfzOg-Pd pellets" •

Int. J. Hydrogen Energy in contribution.(5) aELg. ft)#!# • "t-

m.

1.

*T. *«•#AX x A ® giSttMB® fee ® a6]$£:t3a & 7.

tt>. KS7°7>®7j<sS)fi^sic*ti-gi->xxA»ieoAn6nfc#^icoi/7T,

©7k*Sifi*. S7k$S)fil:®ff«. SzkSfllSma^

©pm##ffi:/n-fex®K18t,

(Dseiie*ff®ES

fr**R£HEIP (@1611*6) WA3. W*89lct4. l/y HkU

+K S lilc. ^Sit*®6HSr$oT$"a^ET®tHXXiliES:iiAZj;H,150ppm^bM*7kSSr#5*T®6700E®S58A'-6ES'*giS'ti-ft:t-i.

flxxJl#- #e> S P E7kMSBT'7kS$EiSi'-5WE-NEThi A X x A iiM C £ ® T, ifirl-fc*

*/x6 7k>tH hni;5tt/k*sttse$ffi7Ta7kS^»« ■ set-,j: >J SWrJlc, 39$# X&MSbkSXx-Ag >®PSA7k$#KSBIC#EUfcS7kSME:/n-feXT':8-B

gatssttetot, 7k*t*7k*®amWSrfOTSrffiitb. 8»ai:**X^)V^-y7xAffl*g8 lilCSttU/cA. C#b®#A®#PH##7k#®'&AA#f*M#bx#g#/:t)®X$)0. 7k*IW(*x

9

#-29

®a*#®m%& 2#m®*#m#&A (vs^TiM^s) £bfc<»ru/s!5j®ttESUSrafes.

2. S«Bf5t(cB»5nTKft©W5EX^i?a-;P

7-7iS)WiiTlWU *aEfte7;V3">SH«7'd-7dty7X rtTtto6UZd$, SB 1:56#L, |sH4 ft7}»m 7tit)*,|3Jto#fl'8lffi|SrZ:HETP (S8^a«iO B(2)#%(D®K#$r

MfcU ®E- MttM 7;k£«0EU Xky h®%lbil±Ctt#SiJ2:UTfRi$rffl®3»X SfHSCT/XCttsgfciotttS5®T.*fflfti#JPJffl®1#l&ffl®5/5'£KS&K:ioTftflS, ®t*tl®$6S:1kSii%18t*$>-5®ti:. zK^xET-f- El$®BE*«T%#t"5„

#SS*^SB&ttoT^SttST*«ET®-y-7 7-H/jie&j3®ZtH, 1 5 Oppm*b$iE 8/kS5rf#5$T® 6 7 0 0 (S®Sffi^SIS BitT. i§E3;T®ax ®S*/6$g4s®7^ > t‘*>7"-7 (i, 7 7*X h77 hff)Fig.4t:S5,J;5lC, 4 0 OfgT&S. +M 7 E&iS iJDS-tt^ Z t fcioTi^Sl

*E8**®%*#{f7*"5±#m**T, as • m# • KA®6A7 A-7£X<fc£-&TX?$7k#£JE9®T|sMi#*$M;;£;i<it>. ##E#Af+ SnjIbzWcU 5j-SI&56H75„ fttWlciStMT’o-tiXtTZftsblz. 2 SSSicSSSEKE. 200t: #fiK«£Rf3EU IM@#eax'atX®#%*|Sl±®7ci7), 'J'SiT'i*l*E®ofBb7zx’PEX®H«iEW?St3;Tji®T®

#-3010

#

1^

$w

j+j

# S^ GA s11 m

4-1 ioE AJ

AJ ^S E M G

;ti5

k m R E

H< *

#

M5

K # R R6 m

-K \f

ft-31

WE-NET TASK 12 19SE%$aS

#-33

#-35

^COCOCOCOCOCOCOGOtODODOWDOtOKKKR

$4(V

05 Ul ^ CO M K U1 CO tO P

Bl X9: \ji

8 g" X M IS 4Sm W& ~r

M 4^ 8 & h-f rr g, ^(Y e>i dB ^

iEC/D#m

w- x

i*

Bf

X<|lX

*

X4

I4

I8ffl

xli @x m ^ % X 8 u nrt fYX 9:

r t 9-r ?>i*

wf iIS

e>sIS

mH-F

e>smm##8#53SfY%

aft 94 %#tan8 » 9^

r <^rm

CO to K

^ nn X- zbS

fT4re>i

m

r*

B*

#

rr9re>s

m

s m

B*8S3*

null

mrfY

s&

B?p4#2SXe4

•o

nn*

1.1.1

<b5E#4!3;WP6T$.D, r##tt:foMJTXX©b4£-©l^£'5Pb'5J:X©SS"r$>-E>. 1997 ^OCOP3m®#!II;*^t, C0Z#I±1 ©XtS/MMBg^ISTtS nfc £ i: I' J; y, %$7bf -*^U7<kUT7j<S»iS*E/iie>*$<ff«SflT©-5. gliSTO^SaTbXtH bS

7k#^6#A&##%lilT#rX*ll/f — XX7AX& y, #*©^tcbb^Tx%ite$ic^dL©2 1 ute©:? y->&

x&m#iLT7kmm%M& (sMR^Ptx), s^K-fbs (po^pm) tiEcDim.t frtitlTl^.

X^*'XHHXCPt^'K<, zkSl^OiBKBfri: UTffitlT* D, SfctfX^'J y b'-f >7 7^sffi$nx©?>fcj6- #ieBT*fijT$,y #*©:*:>## by,ILTU5. V^L,4=-£fiJPBLfc7b^6©7k$S3$Ei:ttt$LTxlMbm©6PttiS#5:7"D-bXT$.y. $ MTStitimSS^ii^teexteK tu ^%A*x^6±<x®{l:KmstllSTlC7k* SrEST-tntt*. ^^^x&x-xi:LA%m{tgi!7Km#*exx7A©%##A*w#6»-5o

1#-37

i.2 **Ei6ro$atie

(SMRx'otx), Mftmtii (pox'n-fex) ±&kj&x*—ASIATICS Lfc.

1) ^m^x&6x»6CH4 + H2 0-> 3H2+C0 C0 + H2 0—*H2 ■+■ CO 2

2) g|5#®Htr£CH4 + l/202—>2H2 + C0 C0 + H2 0—»H 2 + CO 2

3)1%^ 2HZ0+ 2e~->2 0H-+H2 tI^Msi 2OH-—*H2 0+ 2e“ + IX2 02 T

3. 3) u->A7k*SiS5?iA LTSB dnd»t. b-XXxX K -f >X5ffiffi*6©ff<eTtt#<©l$li^adtlTAd„-5. THS^ecK^gny-K-lbiilc*ATIS. ttiSiSPi-fto'x (C02) ^SffflT-5.

#ffi. CO2tfX££<£j3L*X^£S#*XAo607.K*Siii LT^7X?»»ffi. «E#)S ATnt)TI5ES$tTlSSh-5±5

R**WfiilTHSt5t)0T8li.CH4—>■ 2H2 +C

i!lx«'*-*>X'5xX. XrL-X'«S*<hLTB$dn^fc«6, R.R'XiSC^C—LAilX £ 6 IttMtttffi © <D njfigtt t> £> -5.

m*cu Ui, y'l -\--trv P if H

ft-382

1.3 ititl

© fr-D. -Wikmmzstliil-tz^z. i^e>.S^AiW©/j;©*Eti7j<mSiS?£j:LT©MBff»s$>5>-

® 9f£S*'X©E8$£0{*l:LT@gg5;i±±±©§m&6{41n«ei4fi©e!l4ii:SfTL± m#4M X±©#jmi:±-5»fm#©mi*A<m#T#^.

@ i$S©^.«A*X«»6*y hV-XOfS/B^pflgTZk-E-.

TSffifftt&fi©, *S)f©Sffl-fbgl6'l4*Bj! 6 ^ teg 5 C t. *Sffi ©IJrfc &"5Jfg'l4 le o l'Tlft5C i&SWi b«T©ittW?5£SU£t©c.

© XBSItj^^^bfcVvJcjgKjgiLT. 2ffl$l©gi£, ttESffl©±®D±Xi7©X'

xx"nlzX©S#}ifflS© X'DizXtc*t4-§{i$to75:giJS^©MSlcnLT. ±©##, ISiS, #{4#©#@M4(#

Iff tttinffill 14lcx> i/>T©ffffi® ±15 2 S©IS$IC$©S, ^^^X^m#6T'5C0,&%±LA±X°OtX©m#im6

m la s © fi@ 6 ± © ifl % itfi © njfiitt ©mm&*, ±I2I*S*', #ESfl!©fcx'D±Xtcx©T©illSE^say V, ±EA*X Sffigli h±-±g\ MBSfSffiOT^m (KR1) iHIHLX, X‘5X'xx"n±XIX©V^T©i@S$ll3 u±c

3{4-39

2. teStejrSTkSSiiB2.1 5^,^ ?

rM®**x©%±&#to&v:>^EA'X6^c97j(*$ijg?£j 6©fn$MI:#LT, %ST^ S-±7aEIS*©3 *T$>5.1. 7kSK®?i^©t)©^6aS63/j:S$*"X®4ESd1itil\

($.5 utt, S^634ESffoTt), ffi&$a#LT3E#l:±El:llL&©. )

#*6©SKA*X©»ttiSg*iSi$ijr5cs. Es©mti_h, s.^ua, t0i«±Tgai:{)E]isti, es->x^a©#i

#&#/kPS#T6.^ni©i8$-m, 2iij3j:y'3 3i$-m, mmmrm'iswwt^izmK), lmiz-D^r

©ffiHlcEST-Eu3rf, 7p5X'x’rit;«fc-57K*®iSffi^i|j|(ci*ftgnT©-5©T. f©a#ai:0WT

ttikST^MTi &. toil&©#&, 3rf, BSto&zkSSiiS&leMLT, SB,ST, 3AB**X (methane) *6tK*S: §S3aT-5 7'DizXitT{ta;LTU-5©tt. WAM& (Thermo Pyrolysis) T$>35. Cfl tea, T##%)e^'ga%*)hf- (f$izE© eq.4, AH= + 75.4 k]/mol) ©liMSOB^tC,murmAmzimtzfctbcDfeiUbz-*)];^-, KfbU&mmt^rz&tDmmik^^

C©)&&a, EAE^#x$)hf-, ©fcli, x>y)H»S^*®v^

&©*>©©, ««teffisU7tsmbx*)V^- GiS) &EA£>ii5>.©•&©iT, J: ye?Mj$T'Srs©3ifT^'6JSgt;ao, -e©@#jaimmi:#5x?)t/f-** smseims. BEWtet), %x?)t/f-, «gx$)l

x*)l/f-#m, SB. tofito&EBS, f©#©%W. ©Xh^OSS *6, BtoEE^itoBStiS.

S6le, XX>»>67k$$S!i£T5ttS5JSl;$#i($>0> RfSI:##LTaiE7K#mttO x^;i^--5 £'##&<, BIJ4E®©#5nto*lx J; 5 n x h lerkSTiS^ati-Ei# SE#&3. $fc, XX>$g^i1"'5MiiST£;©#<tt, ©BRJST&50T. pHt*^ ffiiifSiAl, t©gHtB©i7r©h=P-©#t*ST, BiUSSSSfiS-ti'^ r .k^, fflS ©«ESffi*'gffl wrigita D, 15EXX foT, igBt.'STtt,@Er¥©#E?£&$"fte6l:,

2.2 a#©*E&icz52k*#m&

XXX^JSfikTSzkSSjSyileSliiLT, HffioSJS©#®^* 2. l te, f ©B7i#i)g

/(7A-?iLT, EtlSB2.1 iettKLk, f©*gm, l=ICaS^e.i±t^LTt), *E 7'DtA0IKT, f#6n^>7k*©*, ft, iiJ4Eft©a©, x$)l/f-##, SffiWiSl

#-404

osz 09-

■waiserj rz 12

louj/n/H V uoijaEey ;o ;eew

091 09

ZHE + 00 = OZH + WO

ZHP * ZOO = OZHZ + PHO

ZHZ + OOZ = ZOO 4 WO

ZH 4 (gdej6) 3 = phO

SH (2/C) - 9H90 (9/1 ) = WO

ZH (Z/E) 4 ZHZOIZ/U = WO

HOEHO = 20(2/1) 4 PHO

ZHZ 4 OO = 20(2/l) 4 WO

uouoeey

"W® I/O 1/2 O'ZH >HO oi-ba

I/I 1/2 OO'ZH ZOO'^HOI/I 1/^ ZOO 'ZH OZH '(^HO e-b3

I/O 1/2 OO 'ZH OZH ">H0 l-'b3~i®r >H0 /ZQ3 ?; mom ¥WW~ W5W~~ mws

•*3>w &’W5Ycm'g S29$S*

rz»

i_« -5V?fgi«!ii0»i|i!r/iIfo^S 'SMBS Mn?B,^MEO)X2l-n.z:$fWti^4'/cy-*ir*TS'M?V5-3ifffl 'Ci,$a-S$gS5¥5-4-*S;5

'MyzY&mis '«'=;#°9^4)01? 2 5r»a-313i@@5.0i91S© >

(1) 7^7©TK#©&K Steam Reforming of Methane^-7-y-»mM-fb7j<?l©7.f-AU 7*-5 1960

tl. 1"TtCiiliLSdl/cSSiTS 5„ lmol ©77>^6 3mol ©7KSW£fi£-f-5. L^L, IS&STSVSBA9i:©$ifT&e. f ©%*, HEictt, 9oox:#ifi©fi:sa$TfTtonT*5o, -«*s©fc*tc, 7^>m7f0A777 >*t’©K'ft7K*$JnATt*JSS1i-g> 7ifcffton t©-5= ^fttzmm<Dtz$>\Z‘&%MUEmtf7,(»%.$Lm*otitt-T:ts.<, g@©##l:$ij*tA+±#©. EStt?liiffl7j<S©Sjfi©fin i;tt. CO A+HSISlESESTSfc*. ms; PSA (E©Sli®*?4) , aiSiS^af4S©7K*#l$37‘D-feX7)$ Mi/=t5.

CH4 + H,0 CO + 3 Hz AH,= +205. SkJ/mol ® EndothermalCO + H,0 = CO, + H; AHZ = - 41.1 kJ/mol © ExotharmalCH, + 2H;0 = CO; + 4H; AH3= +164.7 kJ/mol © Endothermal

A ©+»-&, 5+5(1) ©gijffe CO 6S 1 E+k©7Ki;Ef5©$+±T, ^7 lmol 4f@#©*#&&^T-5 A 6 CO, £iM£EUTL$S„ M^iiaio^tzRj$©s. P3it©g$^*5j$© j;O0s+^©T.$fc, S$iES7k*&#5fcs6ICtt, C0#8U;t), CO, ^@©^S@#T&6A TSfc-fe, 7k*j$®Sl© Pd £:£;#, COT^-ffr-SOT, 0t*© CO SPSST-5B69T CO SfeKSJCfeffton-5.

Bta, Rh, Ru. > Ni. Ir > Pd, PI, Re » Co, Fe AStl5= HfflKjlC SRu, Ni Ru »s'f6S?g'ltlC®tlT©5 d:Bit5SlfflI>i7ll tfftidT5Eg»SJ:-E>ttEfgf4©f6TT$.5c f ©#*#Hd©©

BtiSHS, >7 7©eS#SKJ$@Hr> CO ©©iSHtSM?©# jt-5<b£hT©£,,

CH, = C(graph) + 2 H, AH, = + 75.4 kJ/mol ® Endothermal2C0 = 2C(graph) + 0, AHS = + 110.5 kJ/mol © Endothermal

pestitvi-fiifcRmEJSfctoT, mm*#*. $£>

#-426

ALTKttSWAT^S. $61:, jiSiSttiTFSAtk f:t, 6jgfima$i®sK^’ttTti<, ^sae^cDafrATtoss-ftfessTs•So

Example-1 : Ni/7)l/5 71:7 > h (Ni a##* 10-25wl%) BStiS*!*.Example-2: (Ni a## 10-25%) Ni-Z/7A3 ©4:7 > b (Z: MgO, CaO, K,0) ,a#©m#&*A- stsamih©/:©, 7)b*oAm#ft#- 7)b*o±m#a^ft#& SsSQLT^S.Example-3: Ni/MgAl 204, Ni/MgO, Ni/L/ A1Z03 (L: BifiClSUiiS#Ktt©ai$iJl:@.SLTHSoExample-4: KSEtoTFS&X^ >®tijSStT#Vx, %#-7S#@A^&S.(a + 5b)CH, + AH20 + b C,H6 + 3. 5y0, = (2a + 7b) CO + (3a + 13b)H2

AHS = (222a - 240c) kJ/mol ©

2.2 l:5S1~[2.1]. giS-bLT,Ni (l0wt%)-Ce203 (6.0wt%)-Pt(l.0wt%)-Rh(0.2wt)67)l/3 A3- b Lfc± 5 3 "J ISAl:ffl&UT®H Space Velocity (SV) £ jpj, t»StISl:lT, SiiSSdlSSSStit Lfco KiSSStt 700©, SV=730, 000h"’, SWSPbIB 4. 9ms $Bj$T3dS„ CH, £ Hz0 ft 1 : 1 ,& 30mol%, 8 0 B N), WSSftbzkST'6 S„ 7 A >©*Tft, Sib* 44. 2»i, 17 >

SslOT 55. 3%, 7-n A">g?J:0T 78. SiHjaSigBigira^/t. *p|*l©?.a$$'-(bft- -56t, +30X),+7ncia**S^7i*We$,S7i*sjSHL,T^So hi:- SI:7k$8iiSilS%l<]2®$BOB*76- C024J5£B^B0AB<- CO A.bKftSfJT'S bti-ofz*

$©A5l:, «4l*g*©iSf£T. fi£*?£TfcWffiT a-§, 16)1 • A*zkS-BE^**$SLT US.

7

ft-43

80-if□ Conversion.'^

D Z»h2□ 2% CO

CH4 C2H4+C2H6

4=2

C2H4 + C3H8

Additives to methane

Steam Reforming of methane with hydrocarbon

Catalyst: Ni/Ce203/Pt-Rh 7 00°C, CHj 30mol— % , H>0 30mol-%SV:730.000H-1 i=4 93.

C; : 0? :Nz = 3: 10.5:26.5 Cs O? : N, = 3 : 15: 22 STY mol.I.h for Hz, CO, CO: ac.a. Hz = 1 2,000

@2.2

(2) > 7 CO, Reforming of Methane—KCbSStcdc-aScKES© ft 1928 ^irfTfc$Be^'$>^[2.2], C0,©Bt6£f$fcUc

SSigf (C0/H,= 1 / 1) £ COtSOTMA'X t UTtt7k*2F£T$.-5. 7,=f—K 'J 7 *-5 >fcfc®izkt&TZ t.

V*»69CtteE6tiEK^fiJT»5Ct> —E. ftSilTtt, CO,TS5C iiC&S.

CH, 4 CO, = 2C0 + 2H, AH, =+ 246.9 kJ/mol @ Endothermal

SltLTlt Ni, Ru> Pd, Rh, Ir t Sfc, RfSlISi: UTtt, CO,©(Witter DtfcsSLfcPl*®?* 0(ad) Wyy >®:4a8 CHxfadJiKfStT^Bg^XtC^St © 7

8

•ft-44

Example-5 : ME Ni-P 1-Rh/Ce203„ t U mgcojxfclztei.?> (<h®S) &W0LT##*oLT.

2.3 izs-r[2.3]„Ni (10%)-Ce203 (6. 0%)fttE%Tttl<Vfc„ 5J$S$ 600X2, SV 730, 0001VT$>3. Ni-Ce203

$61:.Ni-Pt-Rh/Ce203 i}t£$it3 $ C 5 £T. ME«t6£&«bTlA3.ttSTiitf, #EEI+ • 7'D-fexi^®fiK$^6, t'Ml® Rh £l&M$d!iE&fflV>T.

urv> % M*:=c*s*tr & & 5.

Catalyst

CO2 reforming of CHU

Catalyst were supported on caramic fibers coated with AI2C0 or S1O2

Ni'.IO wt%. CezCb 6.0 wt% Pi:l% Rh: 0.2%OU: CCe: Nz = 10:10:80

SV =730.000h- ’ . CT 4.S3 ms •SV = 73,000 rv ' , CT 49.3 ms

El 2.3

9fa —45

(3) ;<^’>©Partial Oxidation of methane1945 Prettre CO/H, =1/2 ©«6©^J5K*'X»^#

6ti5,©^#eT, ^>Za6O-g-E/JX©SSiifi- A©KB©#fl!tma$KE'r$,5© T, ttEit-TNi, Pd, Ru, Rh. PL Ir©3. EfS»S£LT«, f#S • EESfrtoiiLlAEUT. CO, STto^SEfb^gtS LT C0±fi££8B#TliiKj6EEl3TC0 t&% 2mmti^Z<btiT^%, TAX'S, *£«»© Pd, Rh, Pt.^Tittlt Ni, Fe *Ttt, £tSb£S®,K#£®f»£©K)Si^SnT©-5. $ E, 90orx 90%&iE©K-fb*&#-rv^.

CH, + (1/2)0, = CO + 2 H, AH, = - 36. 1 kJ/mol ® Exotharmal

Example-6 : Ni/Si0„ Ni/Al,0, Ai'Tte, flEJitoAnttifiTttBffcSISSCT NiO ©tt<®, WP#3fiTttNi ^JS©«J®TS-5Ct^6< ATA^ES®) TffefiJtl-fc CO,<k H,0 $ 6 tc CH„ (7) tMl&fcfc (®, ##) SiTL5tt'feft*[2.4]. E©fcA, KiS-ftfSSSSST'i&ST, SOCCttifiT 90%©e-fldS$iiEL-TH5.

CH, + 2 0, = CO, + 2H,0 AH, = - 802.7 kJ/mol ® Exotharmal

[4] y< *7 >©S$XS Direct Decomposition of Methanelc5/«E-5KE®T$-5/yi\ p<^>tS®fPK-ft7K*TS>5

©T\ E7-9-^EffiS^S6@F<hE-57j<*Sjfir$J: 0 Ai-E>/7'©P^attjEtj"^EVittTT&5. V«HtolcttJt«t6SH6ETt)»ipJT. 700CT, 95%6U:*3.>©i%7k*lc j: y , 7X”77^>, L/7+ >4>5?;fK;£7K^ii;fclC'o6!cE-5 StAPRA# 691a tit, +//i5J|gT-S5c n/FolTfclWJIX-5T'tfe-3i>T', zkStS3jl£Eg&9i:U XI • iSfl-SfiKSSHT 3® D, #&©#%(:&*

tKS 2: (HI 2.4) [2.5] fxi^l AH, t) 1 -EJl/CD H275.4 /2 =37.7 kJ/mol

AH)0 -CH, = C + 2 H2 + 75.4 kJ/mol © Endothermal

- 120

- - 100

- +60

- + 40

(AG)

H 2.4 !£*$¥$?

Example-7 : ftfeE A LX Ni/Si0210% CH4/N,. (Pd—Ag) AA Membrane Reac torKssstt 3oory.±^^ST. 7ooG-m¥Ee-nc smears. ssotcTtoSttcDjfNi > Co » Pd > Rh oil. SftOilMC Si02> ZrO, » MgO T\ ff<M

tfr$*tttoEcD 200 (S (Membrane Reactor Oil'S-) ttiV, $<J 30 (B (Sl£f*©#A) CD#-Bi-lS'lS'd -6e><*w*SSK 0. lXlOym O+2MT«i«,Example-8 : J54E Fe203/Al 203 >800GExample-9 : ME Ni/Si02 CH,/He at 55003, Filaments 20% Graphite,Example-10 : ffiSJ C/Ni= 31, CaNi (xK#%%AA)

^BOttEtt. Ni, Co, Pd, Rh, Ir&£'TS>-5^, ttE®jI£Rtt.

(H 2.5) [2. 6], jBft^y'JAiWci^OtCli, W<oMZ&Wi.

11#-47

tat Ni,co roiiiitmm&u&ossor, ^5,>/ss®g-aM*S:fflWcii-S"r$.^©'r,

&!:«. croSiiti-SSJSA^toT. 311tztzv, mmmmimm

SSftfcISStt. ®ftttffiffliS«**5rc©C0iI«£&ppin«TKT5&*i:g'J

40 -Q CH4 conversion ■ C formation ID H2 formation

20 -

Catalyst

CH* Decomposition over M/Si02 Reaction: CH* o C + 2Hz 550*C, W/F = 1 Og-cat.h/mol, CH*/N'2 = 1/9

# Catalytic Activity:Hz and C formation: Ni > Co > Cu > (Fe) 5-wt% Hz formation: Pd, Pt, Rh > Ru 1 -wt%

2.5

{'t — 48

12

(5) /.//©tsD/d-IETKS • Partial dehydrogenet ion-aromatization©©:/n-trxti, 7kS?®ig£±itoit"50"CIS?S<, trUd^fllK-fbzk*®Sigi:$

6S»s'S^>a6fTM7jc$Sjfi7'n-trXT$-£>= 7K*®45£*^'^Vj:HCi:,@tAT#lDffifflroS-5t>®®5-6, KzKStCjrST-fe^l/T-BBKdz^Oif

0At 7fSK-ft:TttPj5:g»tt th6<to/h$<WfiJT$.5>„ S#£fc, **SiS7'D-bxro*fa

7kSSifinx hS*tlt:Ttf5{tfiO«ttt VTto?M$M#TS5^dp %> .

CH, = (1/2) C2H2 + (3/2) H, AH,, = +302. 5 kJ/mol Endothermal ©CH, = (1/6) C6H6 + (3/2)H„ AH„ = + 89.44 kJ/mol Endothermal ©

Example-10 : Mo/HZSM-5 teES WC©#iJ6$>lf3 (0 2.6) [2.7] „ Ttltt, ESSS 700'CT, ^>4f>fc±7/lz69%, 27% (©Ttl.t)K$$2p) iS®. Z(Dm\ HZMS-5, Zn-H/ZMS-5, Mo-HZMS-5 < . «(£,100%^>-fe'>©iiiRti6#T©5.Example-11 : E/S&S 1050‘CT, K*ic2 ®M-ft7k*i^>-fe*>.immtVTm*mvtrnm (n, p, b, omzm%tLT, /^>©K7K*7ft:mSfTz7fcfe© (0 2.7) [2.8]. itmz, ifyyy -T k C60, ap/t)ffl©/c. ->7DA*-9->, ->7n^x*-k>, h 'J 7x—)l/*7.7+ rtieisx7l/>© = e-fl:E6T$.^© i:S4fi)<:^©fiSttStt^6m#iSdn/c.

7txe»H, 7kSESS;<kUTtt, 7k«S*’7©5?^©g^BiT')^—(t7"P-fe7, i LTg»A/iiSi5.

Conposition/%

o o S S o

Benzen

Toluene

Xylene

naphtalen

Methylnaphthalene

Dimethylnaphthalene

HeavierAromatics

g] 2.6 Mo/HZSM-5

13

#-49

Source 1or cat.

Quarlz snand

Activated Carbon

Fulleren C60

a -Graphite

Dimethlyselenide

Tnehyl borane

Dl-n-propylsulfide

triphenyl phosphie

Tri-n-propylphosphine

Di-n-propylamine

Cyclohexane

CH4 Conv. /%

Dehydroaromatization of MathaneE3 8Z □ C2 D Carbon

Quarlz snand-T

Activated Carbon

Fulleren CG0~l a-Graphite-[

Dimethlyselenide Triethyl borane

Di-n-propylsulfide - [ tripheny! phosphie ~

T ri-n-propylphosphine - i_ Di-n-propylamine - i_

Cyclohexan -s

Cyclohexane

Yield Bz base/%

a 2.7

2.3

tS—^'yZfyvZ. ^*577T h#<7)to(C, X'i"KiSffiS, 75-l/>.

m 2.2, @ 2.8) cnsu ^•fnt). 7 7>&H#UT7X*ro%46#7 7"n-fext^ESn5= $ST

If-5014

5S4r^KE*'xsrfl$xT, h m&mz-ou^z, Afsysns.

7 i7^—!Sy.T<9iiOTSd 5.1. ^s©$5c»Ei7*^$)5* (1*$®M©A'7>X) ,

3. r=1S (^fi£^Xgil^©Pfl8BiJ46) A,4. HBtSffiI;: MSST 5 *5 »\5. KS©SE©@fi±T"BJ|g»\ 3i|frJlMA'£'S»x6. zRJSSSii • M*»oiS5S©A-xt, jW$$©BeM8;»i'£i&:"t3A>7. 7X*®jg7X h©(S«l:W-#"f 58©#lD«e^$>5*\

ffi?B©«l*> 6 t JXT©HX'A-7”i:to # Sn <£ -5.1. #*T©m0#g@%#T*#©&©:

*-#>7*7 7?. 7K®affl®*a, -#m#a (®ut, #B8#o ,mamm M ny—, #&#) , estis • mnmm

m»m3-xx{t##, mESMetre, mmmE#)

u^^A'fxxxtx M*m, fdassesszK# • X X Xlr ©@r/IEJ?!l, Of • SSiT/'t'f XfttBSfi

MlBftWiOMiiixxATB, A-tfXX'XyX, 7 5'-l/>S!ii©-Bm*AT, %£' ©«4r, IS#©*RSfE7i:ll«B«Baffi^«fcri5„ Xtitt, 7"

«A«, $JrK*«S©7'6*fl*-#>f 7 fa.-7*©i!|-m. 7'57'74««Ml'J7 0tX07ii'-7 StB: iJSffitcJ: K) tfri, Ato»0x “®ffij!l@P ®tt “i:©5«^T8»SnTVi-50 T&fcS, -&): Fe, Ni, Co#©#KXB,

J: 0 t)fg44»m < , HEfiKy-yf^-TWc&^Smx fiK66Etf, ^5%%©##±#ittiHSUTAf, $fc, &ffl£6tA}liS4’$til::Jl©6:hT©5 m 2.3) TTt;

4-tfxy-Xfi-7'©*S4tft«©laf©HftCAzTliD, MffilfeliA©*Ir)H15£A Xzl—X (##X$^ 1) -3 TVi-5).

15#-51

7&<ths.^<r>mmwnz\t^m<m.ai^ts'^m^$> •5. rn^', 7kS$iiSii®$STttAH$Tfe, h®S]B7)^»EBS:f*fc»-ntZtt#@ICttT;5#-Xt)$>3 5.

MOx + nCH, = MCn + XH,0 + (2n - X/2)H, ©

2.2 gto^:

i m a | # %! ^7 — f 7 7" 7 v 7 . 7 7 5 —1 SA#1. Ff-. <77.i 38% w. mnm| iRHVigfil S%£%, MLS# $5Effl7-7X{t^7

i! <t¥JZV. g.m.l-Z.AKg

g#.3%.%A.?.

ixmmft ! An2*WiS%. frf**%.! 7 77f>'7"J F %. 7Y 7~M

^mN/37

7?-[/>Coo. C?o Sff/HX.C76, C78, CS4, C90, C?4 ««. aEE#

1 M@Cnj#g$77-L/> 1 R-Cn, M-(Cn)mAfD77-U> 1 MmCn

>d~ / ^d.—7 3te38mm 7-A-*-WV7;7mm FD -&%&ism ^S3®7’D-7

VV>VJ I'T/V

aE •7 7 < k ^7 — ^738. 7 -< 37 — .

msa^i7'<7t7F

7"<7^E7 FXM • #*&!g%#

AKA#.##.

—/X-f K = v77. m%% Hzl—-fe 5 5 7 7 XW#%.teEf iz7th^L/7< 7.

1

#-52

16

W2€mi'tC-f/f a-7 /< v* —X—f/ (d - 6nm)

3-f Xt<OCf/f y/«h. 21 h

El 2.8

17#-53

^ 2.3 a. ~ zj^vyv " y'in^ ^ rfPJ iSP MSb. ##fy^:i—y^B%(7)MS

6 * * Kr£/** ***' «/*tt

R K

Ft 7 - 7 /Ar <■ CH. VWCo 7 — V { f i y '1 — * m

n; 7- 7/W*« w

Fc-Ni 7-7 $ Ft: N, = i : i (tttt)

Co-Niu— Y —/Ar.1 200 ’C

V5Co/Ni = 0.6/06

(*f %)

e*K

Rh 7-7/*** m

Ku - I'd 7-7 s

Rh Pd 7-7 sRh ft 7-7 s

*±«Y 7-7 m

Li 7-7 m

Ct 7-7 m

R«Mt± #«S *

Ni-Y 7-7 V1 Ni/Y = 4.2/1 (*f%) or 0.6/1.7 (Kf%)

Nl-La 7-7 ‘N i/La = 1.1/0.3

vs:#S^$l\ s:$V\ w:g|V\ vw:#^tC#l\

L. 1W

y$r^i-67c#

■R c N 0 F Nt

N* My■SI P

♦s Cl Ar

K■

C*■St

■T,

■V

■Cr

■Mil

♦ ( ■Ft

(c)

♦(■ iCo

♦ (■ )Ni

♦Cu Zn Ca

♦Ct A.i

♦St Br Kr

Kh♦ ■

Sr■Y

■Zi

■Nt)

■M.. Tt

♦Ku

♦Kh

♦I'd

16)Ag Cd In Sn

♦Sb Tt 1 Xt

t > If.i ^ '/.-■Ml

■T»

(■)w

(♦)Kv

♦■ Os

♦lr

♦Pi

1 6 1

♦Hj T! Ph 6, Po At Rn

i-1 u\. At■

Til 1';.■V Np l\, An, Cm Hk Cl Kj Fm Md No Lr

■ ■ ■ ■ ■l.ii Lt l*r Nd I'm Sm Lu Cd Tb Dy Ho F.r Tm Yb Lu

•' ( C J i o ? a ( 6 1 6

• y #-XA<7)jgu£i£.• — S-Sy y xy —

...... h)^ ...... m{t%i t

18

#-54

2.4co,o3EfiEttas. m# (®a. zmt>f, -essicustifc©. m

ptmgo^-ft&warsfefeic. co^sscppuktict-s^s^* -5. f ©m#TI4, X^-AUX^-SIX', C02 U 7*-5 >7', aBty-Elbiil 4P6#-’?’ Ill 74-5 „

$fc, j6Z©i$iill4, tffttiSSlc=k <£646X?S141ST©#P8$> <5 14, H4i$#jT$>-£>. tff *TSf%mi:4:^@'l4{&TI:3^T4, fix 14, ££*© Ni/SiO,T« C/M=200 @ST5ci: lc?S'l47x*:fonfcl£:h£„ -#l:R{b7K*0zKmma*.WttiOJSH (®»i£) IWfMffilLT. Slitim Kf*MISB15CiSiI»

Ni/C 300 - 600X2-114 Graphite-like 7 4 57> hT^ticf Sitz. Sfe, iSttitit 1C X 5E-A £$SnT 5 1 mi $> 51 © 5.

—25, tJIJZIXX >*-a©646*T(4, S}JJ Ziegler-Nat 1 a O^BigftW#TilMLfe/01 f ©#, MgC12 jSf# Ti "'©0*6461174 9, 1 © @*646g ©$14 1 HFiW+XhT 4 5 7c », S?K±, immortal (*5E) 1^9, ME-tiTIC^©$$5Bfi£tlll®9il$n7k$$, #&1 UTfijj5snTV775„ z<D7kmmmmmM.mz£z,, (ssm, Rm###©#7x+»T'4 9 (C ScT»25H±) T, f ©mm^mHHK, 0t*7j:tic#7X+l9-4'5l4-f-44-5. $7c, k*5S646S71 X X >©BS^6?HS?gttT2b A 1 SfiJfflTilti', £ticL7c Graphite 4646*1 LT*mT6©T4m4. #12^# 1:4:3646*«m©l@pWa614f T435.

SIEtc, KSE#tffi4IE646X±llticSLfc (O.lxlOym) A-^XZXx'ro-BEfclS SS4lT©-5 (##%# 2). L7P4, lHt4SStc646*»^6g$15 Xl^iJtglLT^§o

Example-ll TS!H7c£%?eXffl646*©f!jl4 i<S$T#»©M*#Ttti£#F o T 4, 646*«i6 7mL5%a$li6*X461©7AT, S©T**SV^S$TS5. tfrtHT S#-A-f H ^£%*^©$$65646*691lE^1-5©Tfelit4', SStfrffiS B691 Ux>x>, a#r$©zK *SSiS?i»sticiET-E)'5JBgtt7s$5)„

Sfc, ##6©MT4@#14#74-&41 SgA-ZW H'64E©18$!liB8LT, XX>7p£.©mm©*m#m7)x, sswsMbfcisdn?, tna, a-ih ©sat, ®-ft;ii$4-i-5iisE©i±iVT©6„ iiTtmti, H*M*©*ffitfttiitf-mzmmm ©f£TSr*#L4j;©l 164g}gT#-5„

2.5

#*6$#i^-m©miX>-kX"h©SS1t :lb¥69lil4, X X >m#l L/T646*m$m ©T, x$'(bM*©BS6<J5E4$:ff-to'f’iC7j<S

&4cl, imeauta- oxtSE, 77>n®, m#, 1121, X49l/f—##) l:4;^x$-fbS*'Stti©*yX—& l'l$T"r#S7X4, 7445,

19ft-55

SS#<W?S»SSfcBJMrmstoSSt©*##t>$> 5. L^L, S«T«, M*^©#* £:£J1T5SrLH8SS16£ ¥SU:: HtST 5 £-$ #'&6. -^©y—X'ttTTt'$>•£>.

M$©#S8® (zKaSS&KiS, -E^K*&«?i©$S±) dfc, KE*"x#tti©S© ws• asf-srir, -ntwrtt&-5^', axt'/'\7>x©g%aT-5%#t)&ci-s-s.

ltofi£®£LT©%$ti©-&j$?42:;6tol7K*©;*:ll-£fi£$-Bi'aS *-§!::#, $fc'$*to 7l’f7^ELTl>5. Lr'oU PiW©#», X'ntX©##ll*:fM:mm&-5V^&L TAD, ^iaS#r©M5SL/fHTH, ^©^Itgttfe* 0t#-5.

IBSUtolctt, **©7K$i:SiJ4^©M$ti (#@,*m##, X'xXT'f bS) ©UPt^E § B Wt L.fcttiSx'a-bXttMI^T#5o

SrSEixSti (75-VX t7fa-7‘, AM*—/W F#) ®^:lSifii:7k$©KiST tt, SS©7X5>X^*$16Exti©„ S#g'l4, KWito, Mitfni to 0:5 5toE©tcH*@31*^ <, fg5$ijSt©£'$SSC6^, |S|-7‘n-bxi: flitoI#©ESllTt>&55,

3t it2. 1.

,2. 2.

2. 3.

2.4.2. 5.

2. 6.

2. 7.

KSfr 5)61$, 40, 243, (1997).F. Fischer, H. Tropsch, Brenntof. Chen. 3, 39, (1928).T, Inui, T. Ueda, M. Suehiro, H. Shingu, J. Che. Soc., Faraday, Trans. I, 74,2490, (1 978) ; ftmr, 55 A)Fx>Xa7 'J >X, 1 8, 673 (1 998)

D. Dissanayake, M. Rosynek, J. Lunsford, J. Catal.,132, 117 (1991) . t-tBtoA, #jn#, %***, ?£jiie„8, 1 09(2000) .T. Ishihara, V. Miyashi la, H. Iseda, Y. Takila, Chen. Lett., 1 999, 93. L. Wang, L. Tao, M. Xie, T. Xu Catal. left. 21, 35, (1 993) .

#-5620

2.8. K. Murala, H. Ushuj ima, J, Chen. Soc., Chem. Comm. 1994, (10) 1 1 57.

1. 01, 2001 ¥ 1 n.2. BS, 2001 if 2 n 25 B.

21#-57

#### 1

v > pq Hr wi !. 7 to

xi ,i~ i —. <h l y6 0 z -3 13 c r 7 n co (ui < va &ss^ 3'6

•ft IS « L1t- I7' <ll T. L 7& ' "" "

\~4 . ,“s|

7(5 % B£7 n n<T) (VI H Jj £ to to OH % (C *lI •© K 7 °

■ 7 7. VL

i r.6 xM —A,7 65 9J rfjS wit: 7 s illBCO i is Iti IC S2 IC

L l'

n fP 7ii to 7 r ffl■■r Wi y 4e s it

ji: 7 to to to& 7 si !'# IS 7 7 to

7 fti 7 yo 7 to 7 7 t:

Tc — © 7 7 %Ii % 7 1 ~2kto"ii CO 7 y 7

& 45 to c? h C0 to3 ui 7 (7 CO7 (3 T u % 7h 7 0 i DO e

13 to L ' 7 to 37 3 (A 1 sw 3'

n - 3 < c je

IS! IVU d: CO% fJ to fu n t yto 7 {% 78S2f

gto

7

i.tiA.,7CObit7!

%itH11sc7Ki:fS]±

o R BtiCO 7

7

:l‘ ay co i h m 77 *

m # m c/1143 W) IC 7 fl 1C (V l \

7- m. t A7 S

-3 ' 7 hi $L. rjr '7 ■"”7 to 7= ¥$

R:s mro icco m to7. 16

to ^

7 iZi R /J'''gER 05it rot?K to

r. 3 7 to to 7 to 3vo 7 o/ co ft m n tz z.17 n it fJ: c IC-] 7> CO 7)kH X 3' fit BS to Jt IS SC!til Vi 0 7 ^ CO % 'co • a (C m ty / < 7 A (L vu t,V, % ii- V y ■(->I’l L m (C IV /j' 7 3 X:,t r: / H /It mi 7 y -<3 D I I . 7 7 A -7 I0 li£j 3 r <© c y <7 7!,".] *IJ I o 6 n 7 (C (C}••! Mi •/)< C VI. f; > to &

w%«#

IS6

it:

to

(37teg

3 I 1J ii 7 is y7 # « 7CO IS] 7 h

7 N 7«:/ I IVJ 7 (C 7 <50 'y y ic it r 7 B3 5* 3 y *u 6(0 7

7 7" C: 7 7 /S IS 3 T- CO

(7CO7 A3

^ IC I # 7 15

7y

to A*1t l 'os:ss*-£> I a

~ 7 cfcX

CO — ep Lai

1: y m T7 A W is

% 0 % Is SIo 7 > (7) L ' ?/;

" r/ V 17 7 7)E ' 3 Si 0 76 « y is y+ RSI 7-

7 7 7 3 S

%3%tM6BS*0*3:71312 U TZ a-77*@E75y h

tJ'

22

5

3.2(1) STN ##

LI : Me t h an e 92145L2 : Carbon 697060

L3:Hydrogen 542324 L4:Plasma 550723

L5:L1*L2*L3*L4 0 L6:L1*L3*L4 85

(2) JlCSmm (-2 0 0 0)Si^6Si4(D^-9-L lj S 2,050 XyX^h-^-[ 2] S 3,152 Al/'X^XX^yH[ 3] s 76,171 AL:"%@:"r 4] s 499 X^XXXn-k^[ 5] s 963 #XyXXr 6] s 1.942 zk^XyXX[ 7] s 50,805[ 8] s 5,147[ 9] s 306,662 mitz[10] S: 1,513TTITs[ 12] S [ 13] S[ 14] S [ 15] S[ 16] S 320,184 7+8+9+10[ 17] S 293,795 11+12+13+14[ 18] S 2,979 15*16[ 19] S 10,142 15*17[ 20] S 1,296 18*19r 21] S 116,871 11+12+13[ 22] S: 691 15*16*21

4,511 X —106,517 AL:^#"

8,493 —/^xXyy^187,968 AL:"zK#" 82,487 1+2+3+4+5+6

25

#-61

K £*$#11, d-y SttisbTji Dy^>©^®T7K*iSiiiM#*a#^©s®^iRiP#irffl^fcW^ff!)affi*T^av^

1 KSis&fc.i ^yfrboyyx^Tkmmi&^mi-z&btewizmmm

MIT Plasma Fusion Center

Thermal ArcPlasmatron

O’Brien,Hochgreb, Rabinovich, Bromberg, Cohn

CH4+02 -CO+H2

MIT Energy Lab. Diaz , Modestino, Howard, Peters

CH4+MgO,CaO:H2+MgC+CO

Energy Center, Ecole des Mines de Paris Gaz de France

Thermal Plasma Fulcheri, Schwob Just

Pilot Plant since 1994N2 or Ar Plasma

SSXi*# ±7b\ /FPL'sPI CH4, H20 JX H2. CH30H SrtEfS

Kverner Plasma ArcCB&H Process

Lynum,Gaudernack

CH4H2 i C

ppm jyr

2 7 7X?iczayy>A^*-d<'^%ia#ta:^Ki-6±%#9Eimm. mm nem

iWlP, 1999ms: A7k, #0 1997ifei&tcmmmm

^ o’—7k

1996

EB@. WJH 1995tsf^IXA: 1994mmmmw ^uP, #PI 1994

mm, ®*, 5? a,5SFmm

mm cvd yyrje>i-

1991,1992Sjsx* Am 1992SjSX* SJU 1991 cvd

yVT^txK

It-62

26

3.3

• MIT • P1 asma Fusion Center (H2, CO)• Ecole des Mines de Paris • Energy Center (H2, C)• Kvernar (H2, 0

a)1^1# : l^iso

CH4, H20, He, H2 CH30H(0.5-0.7 %), CO, H2 CH4+H2O^CH3OH + CO+H2

10-40 torr, Xo-%# 400-480V, X^-X%# 2000V

(2) MIT • Plasma Fusion Center1% :

CH4, Air CO, H2CH4+02 —^ C0+H2

: x^xv^mm 400V240

#1# Pi asmatron^H^ (XX5-20A, 1—2 kW

!4f)L, CH4«hAir^#^L/kX

(3) MIT • Energy Lab.

: CH4 : CO, H2

RFt; : CH4PMg0 CX#Ca0) -^H2PMgC+C0

27#-63

B7‘7X'7\ {SE~£$U±A’XX'-tttoMgO-'pCaOSJlK CH,&#7"9X-7T^@f S

AE

(4) Ecole des Mines de Paris ■ Energy Center (Gaz de France)1*1# : XX >tE%'l±£fXA^6zK#6A—rts>6KiSffiffX'X : CHV N, (XU Ar)

; tj2i £t—7|S>

EfC) : CH<—*H2 + C## : 7-X7‘5X'-7 (1000-2000K)

N, lOONL/min CH< 5NL/min SEAC300-400V, 260-300A

: N2 $ fc ISAr C: <t y 7‘5 X'7 63$ £ £ E, CH,6EfS(1 994^100 kWlSA’X n y h7‘7> h)

(5) Plasma Reforming (M. I.T)1*1# : -ijl-SBgsT, XX>©5fcKEJ£izKtt*‘X'>XbEJ$i:6x"7X'x’7"n-feXlrJ;y

fr7 =EfflX'X : CH,. H20£j&# : H,, CO, C02#a : 7'?x'xv 7^-7-i:^sA#xm6fa#-7-5.

X X > 15 it m 95 % JX _t T , %?)Ff-###14X 106J/kg-H2 (0.35kW/NV-H2)T$)-6 =

3.4 PATOUS##

Q 1 Q It

Kvaerner Kverner 8 #0 B ^#p^fcBll7^£> %><>

28

f'f ~ 64

m

m

K4

00CMin

oCM

ED.4

Hm

CDC\1

CDcdcd

5 4

«;L-

V G 4H r

11 * s * 0?

ss tl lh 3 S 5 4CM -m ill -A§ ^ D ^ ^^ ^ ^ ^ ,TillSiSsE ^ ^ ^

^ g2

CM

m<#

A3

X ^ U U

5®,

hK

COcdCDCD

o

X

$4

A3

00o

uoCDCD

yQ ' AJ A^-H ^ <R %

^ ^4 A

D % 4

<\ 6 A HV 4 JN s>

!>• u H

nm

ilil5"cxi D L2 P 0̂0 CD

'v-R ° e

£a£T£»1$4 494 ^

N

oCDCD

CDX

<4

*

A3 CD

\G 44 44K K)

"f jag "k

^ A ^ #

% x p Gs*s\»u,®S^luSla

aRCD

44 1-R ^

4g ffln ^ %

# f£$

44

CMOOO00

SI<4

44

•RS,\% o

-CN COII,\ r—INr ^ K

PN

?8Jf 59

U

+Xj

XCOt

o

x+

^ %

Big 6

8*K)44AJ

X XO U -£H

44GPmg^ £

aj nn

mp i s# ■?, a p £ v® ««3

^ g * * ^

££

4H

6 U

Bi AJ~RA3El3..

Vj

Xu4<R

oXAJ

6Him•4-ilnn

* ^

glS1^* *■

5%V ->

#

&1*

CDCD

ICDOXSI<4

^ -'J c35 «siq k o

MIH H

KUJ -+r , \"ii -W5 j ^ K) x

hi# ^ ^ ^ ^ ^

* *£ m ^

U2 4$ R

4

^ ^ # X xum^^rK2 U 4~l ^ i

lllsla ‘*SvSliBii t>- u" £ J6 8K

X o- Ki _,

8 w ’c

A<rO <°

O '-^ E6-R ~~

CMo

00CM

XEjC

44

A-6 -^cJ jsij Xu

# li^

uiif

4

H x

OOCDCD

$5«i-X ®

Msllip° , , J/3 4# 4X :|Y Z-Ji .rmO V ^ ^ S ^ ™

1^ <n M -Q K>CM

A-4

n]r»

•kAI

q m

I#a a

ct nis

G G4B4G

c#-•ce:

29#-65

3-2 mm&e*7’y^b—^-tHn

mmm^7— {k##]7°ot%fW

I'—y##

fk#%7°Dt^(D

K—y##y?-*'y7'7y^^ia

(DyhA(D^7A

2893485 2867182 2711368 2593405 2593405 2593405

l4J@A(ttiEQ)

) n-/“7:4' !)t-f

(1993.04.05)W\l£

W7>i'fj\'i-y'/=-7])yf

(1992.12.11)islfc |B]£

LTpHb7kS£r£fi£^7—%Kv;/

$7c. i$£P<£>#$££:£

III, :£ti&l&£'t:5 tc. th 1c: $k M W- it £r A

# —zK^y^yf (D#

m#8Hb

4-x.do

#&#K y^x^jj'—7g'*/<DiiM$:

i/yyf J:7K#(D

h-ym-reA;^^

^$r#iAi-6C^Tm wwf &. i-^

m

f§2 (D J5& Jl: tt| Pd frl ..

iB *D <D&%iyo,g.<D®i

T6.

f&lc&V'-c DK#&K

^6.

h — f - (7) [# 'D # 7)

ir 5 -ft jfe hz. & v 'y. mm&Ki&m

bfo&o

&*h±.\z&m.£Mz

£{ix.> l4#l##7)

m(D9l#c^#^R3:

yy^X^^^yiC

«9, ^7—

#$r#XL^5o

y^x-^i—yy #< it tR M & f}S ftAfi-6^7^lc*5

ic77 — y 7 y ^ iiv

6o

A9-

#

3-3

2572351 2572350

IdJSBA

(111® B)r

(1992.12.11)

[^6

Wfiroiaibv(ESBrolSS)

y^X-^ic

L7c7K#$-yx^—L"

6o

jA "t" 77 — y 7^

6o

%^yyX-7^ —^(C#

Af 62^lcZ^T.. #fj! L T v ^ <3 7? “/jy?7—

6o

Ki^STA Z8^fb^*$ 7clj:Am%^^JmL7c

(2) Kvaerner OB & H process 7°7X7zK#U7^-7-2:l/T# Kvaerner

6^1-5o Kvaerner tiTM, X## (30Nm3/h : 7 J1/7X —CD Trondheim IDIxS)x Pilot SB (SOONmVh ; X7x—:r>c7) Hofers Technical University^UTW&.

i/*r Jl/7°7 > h (77*7*0 Montreal Olxil) OS^iBSb7# 1 250kg C. B/h> zKSMiii5, OOONmYh T^/5c

7—^77*777 (—^iA) 6UTO$#a#{%T#fl#Kvaerner CB&H process#, zKurn###, #7)

4 s<^U'yh7°7>ht=1'^—'>-Y/l'7P7>h(D$l=2 -e—'>y ; V 7°y 1/ B

mm 1992^ 1999¥¥#(5^^S^7*^)270kg/hour (*@?6) 500kg

l,250kg/hour(20,000t/year)

zK#

05$#*)l,000NmVhour

m&9 8%)

SOONmVhour(M*95%)

6,200Nm3/hour(49.5millionNm3/year)

###7 (kW) 1.33 1.25

mnmm Hofors Montreal

«t%

99.99998%^T^$^^jl:^40,000—90,OOOton 07 —

7$V~f:7'y9hi&% 360millionNm3 Sc5S^

Karbomont 300 phase ^b^X-TO^o -200^7^—zP1250kg/hour

Kvaerner %#^7X^ 67-^77*7 v 7 Kvaerner CB&H 7°otX 2:#

33

#-69

CO PyroArcEl 3

y El. PowerPetroleum liomassPyro ArcCB&HProcesS"

MetallurgicalIndustry

WaterSi-metal Distribution

EJ 3 Kvaerner

3.6

Kvaernert±(D;ft —^>£A^LS^#'l4£:i¥{ffiLfcc(KTEHERM) (KCLS) <b(7)2#&, A^L/c.

#-7034

(1) KvarnerthA —#>©$*#14 *5(;SLfc0

S 5 Kvaerner

11 g(SitTL)

KTHERM-1(Kverner)

KCLS(Kverner) (A }±)

—tot)

Bet surface area[m2/g] 9.4684 7.743 3.8-4.2 —

Micropore area[m2/g] 2.8667 2.3032 — —

Average pore diameter [A] 71.4692 91.5706 — —

n m] 0.617 0.638 10.3 —

[cm2/cm3] 97963 85359 — —

— — 1500 1100

(2) SEM9*43 j:Ui"XS@SKTHERM,KCLS©SEM9*Sr, 05(’Stfe„ ©TYlfc, WO^'fi'DS^©*§T»5Ct#lfe^, XiH0#r©feS£, 06 CSlfc. KTHERMte. 1200‘CgJS© ?a$#T4fi£LfcMST'S5©lcyV, KCLStt, HESS*5, <k9is<. 2000‘C@S©SJS @T^aL2hR#T&-5<k##j'r$6.

35tt-71

04 Kvaemertt* —xtt>- (KTHERM) ® SEM

(X 5,000)

(X 10,000)

ft-7236

37ft-73

GOOO

Kvaerner

X

10.0 20.0

)0.0 <0.0

SO. 0

l ( C p s ) l ( C p s )

si-#

COCD

(CO)

d £| ->1A q

Bd MGO S?

&!=C

OQr 4

(V £3

H> _

I 60 □ 4 x a% A X- 4 d M" ^ d ° 0

-X £l (%

0n>miln

SCD4^3D>DT

fYA

© 0 cr @

rv5bA

4AAxr41+n

&

CDCD

$2Ad8*

4AA4nn6

Si#

25.

c>

CD3D>mreraWd£r4r

4%

m

fW4ids!r£#

MDr»e>4

dd

H4T"4

23-

X-

(4

r

4AAxr

Wd044Nf#Mm0n>null

CDcn

5»i=C

G 8 ^

i< § ^ @ ° & -

» 1 SI ^&

25-

2?to

25-

SCOCD3>

CD t—' GO

4

4V

4A4

xr4*

f 4

44e>4

era

d&o

<r*

r 44dcd

CDCD

a?#40o

d

44440

Xrd94

cD3 CD *-t 3 CD

Ifit

(V 2iL5 2CD

d52

4r 4rm|icur 'id W

94GO

CD

£R CDCD

glQ *

$> _

^ 9^

9d q fd 40 q

^ )#

d d cd |Wy 4 X™ ?v d r<A rr

^ d4 S§ & ^

(ffliyi

mrvrd>#

dd4zmt-tree594jlnl-

iB HM A'

4

4

era

xrd 4 0 f eV #

94-4 A 4 A 4

era

nfflMrm

94BH4

r 494- go CD CD

JGO GO

Iccr mr f 4 oq"# QCD CD

H>xr4

4A4A4VSi

0 Mr # f 4 94

AxjiMNA~r%>#

d4d

rvqd05ei

g ^ m &W: Z ° 4 M °^ U, ri d 0 A& 4 4 A° ^ A di d

rF q$: A vj \l^ ^ \I A94 A T

iv T 0 # ^ 1% ^ r ^ I

Cel

l vol

tage

/ V 1.5

1.0

0.5

o.o

0 50 100 150 2^00 250Capacity / mAh'g

KTHERMLiPF6 (EC:DMC=1:2) t = room

Capacity / mAhg

H3 7 Kvaemer >CD 1J ^0 A—

#-7640

(2) Xt*©77°D-7XJJWOJ; DBifiDtti#ffljf©t>£©i LT, rtlilffli LX©i*ii

LXU ®ifi, X'xXT-f HoaiSx^JV^-SStcS

©-&. j: ySV^mto'liESXeST^fcidlcia, *-fX©t§^affiWXXti7j;ixBSRy'H^fS**^ 7”5 X'^SJETKTOftft^iaiS-fS 7 i l; J: 0

£ff 7 7 £ X'pjfg £ % A i> ft 5 „(D fiEfiiX

8ffi©x‘7XXlc J;3XX XX> F©s£SH£X 6 XX XX 7 F ©^SUfiESI:if@A£*&#X%#X&iX'ttlSX fix © -5. S#iLT^'f+t>FXtt*-*>4

t.n-5.© CXXvtUl/

X X XX 6 XX XX7 F ©&f%©C, (TXfVXi) X X*JF©f2J* IcXifSLX©2>„ © 7kX7"XXX

XX XX7 F©£fi£ICia7j<*7°X7XXW$ilT$>5„ x x s © 7X xx <a © a f® x ®t fc » ® tJ £ © x fg tt x * x

&%##©, i*XX7$A##$X#X^7°XXXI:©©X, £ 612, 58$$- U X©, m#©S# IraiEil-fbXttX 0, Si ® X° 5 7X X □ X X £ lx If - Slt5.

if-7842

4.

7jcSe$iST5^?il*MUT, #S£ JlufcJSt^Xv £ © 2 o ©flJj®^ 6EI$$#I$E L fc.

$ :ftfc Sffi T ti: & © 6 © ©, I:, TKS^SifiTS-5il>5£T, ikttfitozkSSijS-XX^Alci£D 5 5^ti6@»fcK®"t$> 9, $61:, P3S • tillt £flz •£> fflfl ©8-5 7j<*l3iS5?iT' $> 3 „5I$ie©t, «T©w^Jis^HiS-r-5©*sa*t©o© A#x'otX©#E+ (««?4l:J:3->Xx£, fiiAi!y5XvltgSisi^MS'X

XtA)© x$©l/^—54¥©|6]i:^i4j3 j:Ui'7k*SSiS3X hl:o©T©E5Stifftt® K$©SfliD«e-(l:

43

ft-79

#

#

m

«-<NrH

is

Q

A

I"K

D'U-

iKS-(mMgliiiB:

xi iym &

& i?m s# # # &

oo

jn

sm

siKW

Knm

¥J£1 2*6 WE-NET ?X<7 1 2

7kSiS^ttt Ka>y>—tfiz>-tJ-(7)

ttffttpniBtelttWSt

ilSE5EWSS

WSEIffllg*® 5JH tl

¥J* 1 3$2A20B

ft — 83

* m m tt t k □ »f -y—tft v <n & « w & it m s w &

i. livable

* * K^f ^ < iSii^TViA'^-eS- D x ;k M 4> X © S 48 SB B li 4.Ovol% (Lower Explosion Limit (LEL): ~F ® ) A1 5> 75.6vol% ( Upper Explosion Limit (UEL):±|Sg) kj£v^ = #Sfc@< T "t <’fc * St(g fcjfeSrf 5 ©f:\ Sis Stott TtUix E < Tt6IS(LEV^'flil©nJEt$*'X <k D t)4t V5$^6S-&t)fe3o L#L, b©$±

ftb©AfX k©Stit#&isi#$©iat'i&tlE'4"-5 M it # is # ^ x zjc ^ © $6 $£ ISzk#ct s*#itm?m

® © P& « m M © S # fc if -5 ¥ ^ it * ^ © g 4) m ? © ii i 0 (in it © M 4>) £ timf &*#ita:%if#&&. sfc. zk#©#Mib#i%#ibc#^mm# £il/£f"3SSt4b^SAifc D s zkiSiSSUSSrE u 3 Si£ k Bit#®* £

^tL^nffSkt-^SSEB^ISg^itAsS) Dx fflj^CtS Ltffi ly^klt e> tit ty 4 o fc/£x ±IBt"^TfflAfX-b>+ttte^ ftltiC i DiliifflnJEttti'XCttl-5*S©lSStt6*S < |6j±£-ti-TU 5 * ©®x SUito KzkS A: It lb S@ £ W T 5 t <t A Ac 4)ffltrii*^o zk$©m#k»sy £ y -;tx y ^ >^-^ibm%%k'(:i±A< m%£^ £ f\ zk S A: It L: IS t -5 kf X -tr > it Asiti$"tiiti:x t?j£ © zk S x #x Zl/ — 1/7? A©y >ft>t "PiSS Ic® *o & ©k 11113

i£^x zk* k rn h > k©#f Kt6£##%l:M#f &ma#k Lt» e>ti-5 t t oy f-4f Cc^-C©m^#m^xSt$$Ht"a$)5a©b h" Dt>*t--4f A^B^tiAco ?6IX ssassi

yic j3V>Tx c©b F n y ± - 4? £H4(® k L TEt^mm,ib#R7k$*&#*m^ti6. c©c kitx ^©mi&f %t, A.zk*©#^toiS4b6tJffl LAc**iltRt4 1 0 0 %©#^t >it (±IB© (@ammib#t >it©-#) ©qL#4£zB#f 5 t©?&6.

f c-Cx $m*#^-citm#a*mA##m%Rr©m*&#-3-3x tf D ^±-Hf ©tfMW*H6mRtS£ffl t> Aczk*-fe >it A^iipjfiiA>k’ A A>£

l#-85

w O

b furtt, m7kt§"C $> & b FD^t-f -(x- $ ( b Fnyt—Bt fll® fig "C ©

-5*^s b FDy^--g&##ca^'fbf j x.-*a^ibf t FD77,k---ifx-$

?>tv?>o -*s #mT% b FDy±-4fl±#BiJ»mmA^dfflfctfb bFDift--tf

{b#t>f-k|B]b#mkT'5 6%x t Fny^-Hf§:E@±icia${b't5 SasSfflt^bbtLfc. #cTx tFDyt-^f -»-> #@au g s A^**m*mgsc#3ik% 4--

y □ y — btt%o$1\ L-c, LTf ©m-fbmm

t Fn>fi---t?k7<5:-*'f ^-^se@±(c@sib fLtzo c©*gm&mm±,>^©^%«@(cb b'avi---v%*7: j X.-? t.#izm%.fcL,>-9-k LTffl!|et$&FfEUfc =

?©g*> -E-fbKsfKcoX r;i/3-;i/^y ^ >» if©nmtt**x tc iiife < >t>-fflnJtitt*sIIET-#fco JtfSTPl (LEL : 4.0 vol%) XIT ©*S4>7ksfl ©f&to S BJIE Hh-otzo — St> — k, oJZ6<)"Cli$)5>A$x — 81-fbj^^©r5t4jS-s©i®#K$eiat-5 k®t>n^iti*ffiT6sl5b 6 3 figE*gge.^c*ofc„ m^mc-DW-ckLtejlibtifrfrofco

2. b Fa'fi---etzte+Z 3tT,ST©W^©i®S

b F D ff ± — 4? [Enzyme Code (EC) 1.12.2.l]tib tK ^ X 7" D F > X 8 :F©KS£fi£$f"3 47 >7i77*-t:fei,0

b FH2 ^ ^ 2H+ + 2e~

f'j" — 862

b F *)©*->:*— 77 —8"C’ difeci D -1" Fffli§-n kit$<bTiSVkH:fotlTb>& [l]o

t Fn^9"—t?©9f^5iin 1931 4^, Stepheson k Stickland AsckSi§i ©tffcTkSfl-^ &XKkt"5glS£%fE bfck k A^ 6 % m 5 [2, 3]. f ©

#^< ©#a&6 k [4, 5]0Voordouw [6]& d; IF Wu k Mandrand [7](i, ?5tt ^F'b fc ’a' S tl 2>&JM

fflffiiSfck t> b MDyd--4f&%-3©/77^(:^mL6. SMtttF'bfc&o [Fe]b F oft t — -if, ftk^liEk — v!r Jll'kfS [NiFelb F P ft ± — -tft?fe 5 . 1982 if, k kl 6 ©###f CM t-fe 1/ >(Se)£rSt$*-bk b T'a'tf [NiFeSe] b F V >f j--VU tz [8, 9]. [NiFeSe] b F D 4/k --tf fct-e © T 5 / As [NiFe] b F Dy-k —Hf kffiftibT V>^k kAa6, k©^ 5XCgi ftTV'So

b FDy^--b©5ik7CiZ:*#mi:-3^-Cl±, 1995 ¥, Volbeda b it Desulfovibrio gigas © [NiFelb F D >f 9"— 4? ©ISia fc O bv T , 2.85 A fflfl-JHE'e [10, 11], $ Ac, 1997 *Ffcfct Higuchi 6 As 1.8 A©^##"C D. vulgaris A> f> 0 [NiFe] b F D ^ i" --b © E * Acii&SjE $ BJJ f> A> \Z Ltz [12]. [Fe] b FD^k—Btob Ttt, 1999 Nicolet ##%© T, Desulfovibrio desulfuricans © k © A #) o b Ac [13].

b F o — -tf ©jfeffl k b"[##Ub#%6 L < iiAfc-fb^to&TkS^* As Eng 6 li, k ^;vb*Dy> (MV) &fb#*SAb A=

*'Jv-$Sffi^ifcSg]tu 7klSi§#T-Cfflb FD^^-dfffl**® fbi: k%#m&#mbt [14]. $ Ac, Okura G k 0 S^SSSt

+ u r-t itmv t'> f t? p a c 3 £fflv, [15, 16].

b F n y-k —-bi±^^ift§As®©T(Sb>/c©fc, iSfflttK b b k £ tlT # tz o b A1 b , Gogotov [17] 4> Zorin 6 [18, 19] (± , Thiocapsa

roseopersicina AP 6 # f 6S S tC 7-f t* 5 k Ac $ 7if tt £ kf b , S )S S. S A5 70 °Cr-$5S^J^b Fnyd--4fS:%BbAc. k © b F D ft ± --tf (i- ■o © +1 7* cl - y F A1 b & 3 As [20], k; "9" 7* cl - y F CrStt $ i|> T'$> & c:

7 friF kEHk, /Jx-y-yci-y FtcttE-BSkkXk—As#£T3o # $^%©aA(:-cVTK#im##A^6ld:f%-C6 6. Miyake G[2i](i, k ©BfiSUS, 6fSM4© b F D -V9" — 4f & LB(Langmuir Blodgett)®]Ab b.

3#-87

oiat&So fcfdU *?S$®SHb • il%KfffflT5rBt$g|5{iZii;, tFo

^ S£fb It 5 t £ tiT V> 4 0 sfc, h MDyf--4fg*i±m:?e##&#L%u6Ax mutvmm® &i?®S§(iHlltfe b> -fe >tf&if®«fUbf:«7-vw x cm^fc

—Fe

si b Mcyf-ift:j;%*m®#{bme®#aigi

3 . t $n>f-)--MG>mm

mM&mm&WMmiipir ®TSl^-r -h ^-* ; —(7) Dr. N.

= £g b, p'>Zorin ^6m2®## • mmmc

Bitt®MSt FP^t-tf (MW 90 kDa)S 3GmgA?Lfe„ucf, #T ti 6fi S 91 |H "(: <fc 5 T. roseopersicina ( B B 8 # ) l-i

Pfenning ® Ai t£ $ Bit js| T"C%#^ flic [22]0zcDb Knyi--ti®SSSt4id:s Miyake ^cfSI: J; 5 L BII[2l]

iD^m®7k*lg^fc iSfStt-efPffibfeo L BflI®6DS (30- 100 °C) (ix ###®3f —y > & 10 fi-HS'17-3 tzoisstts (0.39 mg/cnfo fb#M,®k LT?§?MK® t K oy±--BL Blltp ^»©t P D >f

4(4-88

Thlocapsa roseoperslclna BBS#

iMi* (20 mM U pH7.0) i

*### (jto)A,22KHz,3X15?j>)

St'k (14000 X g ,30 #)

r~

±mI

tom (6S°C, 5#)

)*ati

^ (Suphadex G-25)

***#*□■? w*?-? 4 -^ (Phenyl-sepharose CL-4B)

10% PAGE^ t KoYf-tf/O Ktfltti

I (DEAE-celulosa DE-S2)

tKoy-T— a

2 tFDyt-gffld! W v;

(50 mM ') >m± b V kl&ffim, pH 7.0)(30- 100 -C) Lfe^s ?5ttaiJ/£S:ff -0 feo *£H£® 3 C^-fo

b M nyf-if L 30-70tl'fco <tVL B#*b t # 100 °Ct: fcofc„

1

a* co

• lbr (mat)

o ssa*

03 t fvy-r—-tfcoiag^ti

5#-89

906 — #

f/za.q q

-■xyx.^ ' ( 9 II) 55^5■4-?0:iSI?ft-f Aa.-I qn itr a <* w $ v i q ? * $ $g §? n 43 $ $g m % H- w a> 6 - x > ^ * q a- - q; &

(fS3f*0+AW

((SqHS)+zAIAI

Z"+H

.q---fJ/D,'! q

zH3/l

t c q>© <_£□.£qn^/9-4.4/4,}3 gg<2>±s© 2-811 ©qim

vri c t^^;i f 0 '«r)cs^4-fF) Qifiiq q^*?i»-^qP5iqi-li© mw '(SrV<1^qS§S'e5>±e«.a--4-^a.q q

L - jr

16 -HL

@09fl---^»4a ^ q S/ /?,£-* 2 .f|SF DS^JfiSSI* V^K1

giSto^S-vn^Bri^S^^-T >^yr^a--4;^a q L 0

05rXf'5¥#^#Ss¥^EIffl3--^/'a.'l °2iT3 "%*# ( A 0)

-T >.-£ /qq--q:„4rU q \<2T^ v (90) $ £ 2-I-SE1-IBS 3

4-2.I: Z laStC/ST^B&fflV'TSiJSLfeo tFo

Ag/AgCl US S b V n 7k S zS $ Si £ © it i£> © 7k S it S b i> fc f- *-Z-y^’T "J Ht § © # 7 X SJ£iz 7V b -tz >y h L o zSi&^tffXSil^ffiSSck^&SSSISBLx ctitk -3 T7kS^'X?jitAB5®S;ESSS$iJ£Lfeo ^tefflEpiP* e>t>"fc«i^aij£(±x U 77 h D 7r ’ *;vr i- 7 k if — BAS 100 ### (2.0 ml) l± 20 mM K3PO4 t20 mM KC1 ©EES (pH 7.0) zM£SJ6ti: 30° C t L fc o tKS6SfbEsiUl£m©^ffl6ffll:(uii 0 mV (vs. Ag/AgCl)k-£Sto(c#|ftL

tZo

b h'DifA-if©7kSIS'fb?5t4aiJ£:

4-3. bf*Dif>7kU V-/b PoifA-izmeL B#©#egpm05$)6Vili:ia7fc£Lfcj:d^t P Dif £ — 0££&#A

©^SsLltb LTffofcob A D if > £ V "?—b bt poly-butyl-viologen (PBV) i: polyoctyl-

viorogen (POV) & fP Indium Tin Oxide (ITOfBffiJfiiJstil t b A D

#-928

ft-93

CD

4-X4

X44xr4rH4xji4

HI Current (/i A)CD I

3 3 3

d S' ^ | to ftr 'i to rr m% m

® *

s I

49r

44Mlm0y.SiA.

n>^F 4 (4 to 95 8a, mry ^

to4 ' 9S y- S> 4 44 4 ^ V (4 he $ X SF 4 r u d 4:5 V to 4. fr <z8 ^fv I

4 S' rr | @1 r4

# :S G

to to

rr 4i tti 4

0sS8If4

d oo

ti-

Ok4d

M8#n>f 4 &

<4 «T> 8 8 *

mig

m T4

Ok44

to

8 fv# ^

to

4<̂io

<

4,

CT%

Ok4 S' Io OT toC4 O 8 to

#to

$48 # ~A

^ % n> g^)8 » 4 to A 4 4 (4

o

too<(4

r>

X44<r4Vy.

< v-

# ft8 St­ef S- g crT 8

T #d % rr S~n 9+ n hj4 w4 <

I ^ft 05|m, O

t#8 to#□>

h-1 00Ox

to so

m d

4A V 8 ^

* ^ z i*5;

o<d

f(d

8rr*77

n4S'

Ift111g-tomin#ok4

X

toS'

#44* 8 V 4 rr 4to *77n u rv 4 Irr s- \4 1 rr0 ft “77d 8 a % % 45 S S' to $e I to 4 ft

Mi Sin to #( n> (S' g" # y # #* 8 to 4 a to MT 4 ^ B 4 (4 ii rx 95

H to n 8 cc I 7%" st- S' (4 a OkI 4 rr rr X 8 0 # 4 4 44 to *77 % 4 >crq iff to rT SF A V S'

I 4 □ d a CT > 4 O rr 4 8 o

rr y 4 w 4 to crqr-\ (4 nn>CT(T a *77 o Ms T4to rr S' to V rr v 1H—i /

d t* □ y 9i 8d ■77 1 o

4 *77 8 H St- to 4 4 to# a ft '—. V □ # CD to to S- 4 FS to3B 4 rr I 4 SF rr to I T* (4 M

4-3. bf*oy>saMm&mnmnft'&wm

x — £ (DfrZMM t ElJg-fb L 6@A©##&W 5> A51 ■#■ -2) fc to t fr it o

Se@k©figT"fbf:ln-n ASnJE^f"* —o fcy< ^ A tT :* P >f > L, #ii±tl l ooi^digai^f^TI (SAM

# ) £ ?f$ BK cf •£ fc o ffl t ^ fc fb rT H) (i N-methy -N'-(mercaptooctyl)-4,4' bipyridinium 7: 8> -5 o r-f I — — b l fc t F P t —E iC •§*^SS-fb#ff a S»5tSS£SiJ^ Lfc =,7 zzg/ml ©EiSST'SitoLfc,,

mo e#py>sAM#©#m

e^py> SAM It© 100 mV/s ffiaiNfffl-y-d’ V 7'5A£011 tC/Sfo

HSC.VC

SAM on Au surface

Potential (mV vs. Ag/AgCI)

0 1 1 ttny>S AMJlffliM £ v ^*>^77 A

#-9410

mm O'd-tv'fy-x u v—/1 h' hi

iEtea l/ioMt-fe^t. sam is®s$^fcS6x ezny>a6Ax t'zpy>

k©8gH6ss< % ix c hkeh-t-£x e*Dy>**VT-Zh Hny±--b*SS-

lb i®@^i:ttx Sffitgcttt'-S'fuat: t'z□ y >**#£i!#x ns* «Zfs^*sMfTf -5 & © t #x. e> ti2> o

0 1 2Uix mtiit)&#k-3i\-c#l^ .7j<lS»MRtKJ&^®^AsiitfJ£;ft,fc*sx -€■©{!tt 50 nA g K i: 38'J> f & "3 fc o

SAMIffliilgt

ftifflgSii'ix y< z-f x-^©^^e®tc@S-fbT#?f5S©^T-x S.vi'SSI±l#6ti*v>6©kl3J®rd'ti?)o

4 - 4 . tf*ny>^U V-/t±13©£D < x t h* nzz--b'65teiiresij$7k^-b >-9-ffl«i!rlh ITS

*09C##^#5 6 AClix t B D Zf--K h / Z-f a:-^©M^%#A LtiI±tiSt5 £ btfllffeS tfJSr^tifco —#$]*^*fi«@PSZ^-b yy-COftHSK&tt tItffllv 2 Ii©JSft l'tiyj--t?/btDy>^'jY-

11#-95

SiaS<bLT#ttFfffi$:fTofe0SHStl±5fe©0 8 IfcliJfflbfcib mmwi (2.0ml) 4>t2

mM©y^;vH*ny>s Sin LtSiJo

d) *u y-sg«t KDy^--if*atilffiiBltf 7mm2©X5 y '>-£-tf>±fcs PEGDGE (#U

SES&lb#k Ltx *' V if toyykt h' >--h:©?i£rtJS5g|§IS:£lb Lfc = 0 1 3 C^U E* ny > ( n = 3 ffl!§ n\ ** U Ebt D V > : PBV) J; PEGDGE ©ft?S5ito PEGDGE 20/zg. l')biD'/> 30/zg, hpD^^-Hf 20#g SStriS® 6 /zl S#@±l: 4"CCtKS LT BS-fbbfeo ?lt> Svx bE©E#SK<l:to, iffi4-fe;iD-x 7 x ;ia

fSllfc.

PBV#' Ur fU' tn'r'V)

N—(-CH2-) rr

2m+

—‘m

y T-V x —■$!

P E G D G E <r Ijlf b>r Ij]-* y* )' ijyy* JU-fW tK Of f-f m^^ik#

-CH2(OCH2CH2)nQCH2~~^~yo o

mi 3 ^Vtf^n^>^j;U:PEGDGE(7Xb#^

% X)\ j± 18 © fc to s IS© X 5 >y v — X — ;p' > SI® t PVB Sim X. "C V' &

0 1 4 1:^1 X IJ v X^AXf XX A©$gm&^T„ t l-Dyt-K-

PEGDGE Etrtib ~570mV Cljl'tt K D X X — If B "C ®[4Fe-4 S ]2 + -> [4Fe-4S]1+ h I'D)1 j~ — -fe* — PBV-PEGDGE ETIix ~530/460mV VX PBV2+— PBV1 + fc ;frfS

nJZtoV F'yXXKlS© lift • iSSS'SttfSSaiJ^tifco

il OmV (vs. Ag/AgCl) -SbU zkStfX X

7;i3>fx$xscn-yi)>)/Lts /X * © it it t # o m -at is ^ s ay ^

#-9612

l tz n * * t o m © ? ^ ^ -> - *—* > -e a 7k m m < b t # ? * m a m mLT&x.z>zb&mm£titzo tpnyt-

•y-PBV-PEGDGE j)I©S#h F D y i" — H? — PEGDGE II© 100 {gy

±©Swft*sff G tis Cli^-C©#W0mkl@]ax t Bi: PBVSSirLTSSKBISfb't^Z h^aSt:$>5C

H2ne-PBV-PBODGBH2ax-PEODGE

Potential (mV vs. Ag/AgCl)

014 hh'Dy^--tf-PEGDGEIIjb*J;l>"bFDl7‘>--H-

PBV-PEGDGEI©iH ^ V y y? A

100% H —H2ase-PB V-PEGDGE - - 'naked1 GC electrode

■ ■ - H ase-PEGDGE

50% H

30% H

10% H.2 Ar

Time (min)t. K D y f — if ##CD

13

#-97

(2)£ U-ftr> M >y Koy±--tfg@±IB( 7mm2©^7 v

ffiSMk Lx b K U b *□ tk >$ Sim L fc ? W *4^)1T"9"> FT yfltSSftLfeo t? LT 2.5/ig k*‘ V b'yhny > 10 /zg 5 /zl & jp-V% h Lx b FD^t—tf 60/zg#* 6 /zl K SC 7; lz-f E^©iSSS:*-bX F LTfFKLfco

+ FE©JM£to<-/t6b©-bll'D—;7 7 -f ;tAtt8lf;,H 1 6 C*^**XS7^V >^LfcBe©*atSSSS1"= @5£tk Lfc b

FoyS — -b”©Mi±HI 1 5 ©*• V 7-m##@©#A© 3##V\#x f ©iHifcx F'f iftfflStfiSV'tlfi^fxLfco £fcx 7k* ii X & A * L rn '<fc ts ft f 3 £ T- © iS g Be H3 i) M ^ c k ^ £ ft fe „

100% H.

50% H.30% H,

•10% H,

10 20 30 40 50 60 70 80Time (min)

m 1 6 V LTitv FT yftb

0 1 7 liz^V L6#%4»©7km@l@b###©*#&?"D 7 M fc&ffll:$>%o ® T PS il (S (± 5 vol% tfeStfx S6 LSiMti&Viisss^sifeo <f^;Wx b FDyy---ti@^<bs& 5 c k "C\ JiSS-ttSt & ft # <C ft •& <2 k ii+^F kJI6 k Stfoft 5»

»*5x ##### 12#i@4°c-ri%#L-c@i:gLZ=«m#kx f©#t ;v*-C^ST 40 BeFSsmcSJ£ L fce$fl cES& S-fh ti:H L ii& »> O tz o

Ft-9814

66 —

-M

at

Curent (pA)

00

rA

V“7?-X

SI

0/Im

%fs

3 an

S' S V

ft

*m

z=±□r

ft-o*

%

s #8 ^z

» 0

M M<-'ftv

(V

<33me>in

rv

# 00

cr 94m *M MQO_ 094 £j

oo

r < 9?H>y\Sr#

HIOk

K4

Xl n

8$ 4 ^ & c 5f' I#Vv (^

^ AI

m a S cff*3 H- 0

dk SI d

<3 % St

r> ft % e>(o

*7? -5- o

a rr V.

tztz, njjffifttrtt* 3 & ffl®, tti*®fST6sB5>iifco — #lb#l*# b K n if -f- — -tf fflfSfi 4>il' tc a&^t 6 d kfc|fi0T5 6®h#x.e>iL5o

5.

(1)turn##±:a®?##m®0m&%*faiT7Dl

fei'XiSCt b Pif ;f--b£g|:$-fb UfcfFfflS&^S U 0 1 9 tC/Txf J; 3 %%#k^;t/®t;i/(:$a^m/ut:^@(ii##-bii/b it ■=>fzo Z® b K

i/ ^ if > H-f 7?-S$Sffllfc, 50mm\ b Mny±--b@##|± 0.4mg?&6.

mnwitm d^< f;n;t n^ >£?» tfckci- k 3 p o(ph = 7) tSI>o ff f9@®##l± 0 mV (vs. Ag/AgCl) trfe-So

*i>\ b (ftffl®) ±"Ttt*#®#!b (±*gz 6 Z b§illtfc5= 82 0 (:f bfeo 0*. Dilution air fctp&S L tz K'JS^M® £ t T* fe 5 „ ®#Ab#f ^-xA^*LTU5Ab rlSffll^bSfcittSo

^fL@7L7n»ii

/___ / t KoV-^—

(#xlS)019 ^EluSP-b;i/(i:m(b^to»x-b >tf )®«bK

16#-100

: 50mm2 : -74mVvsRE(0VvsAg/AgCI)*#fc:0.02M KCI, 0.02M K3P04,

2m M methyl viologen,pH=7CE:Pt RE:Af Reetpotentiel WE :>376mV veAg/AgCI RE : +74mV vsAg/AgCI

Room air Dilution air Dilution air Room air

5 -0.05

-0,1

-0.15

0 2 4 6 8 10B#fti]//min

@2 0 t K aV± — Xffiilg

(2) tl&X

>V<D 1 /10~ 1 /100 @2fc, a a 7X * -ii s t it u fc m u *s i# ?> ti tz„

aSS:50mm2 *ti: -42mVvsRE(0VvsA«/AgCI) *#;■$: 0.02M KCI, 0.02M K3P04,

2mM methyl viologen,pH=7

CE: Pt RE:Ag Rostpotential WE :+197mV vsAg/AgCI RE : +42mV vsAg/AgCI

H2 3.85%/air

H2 0.99%/air

-0.05

-0.15

02 1 EiW-fe

17td"—ioi

\ 0. 12

33 0.06

H2 cone. /%

122

am©?#*# (0 i7) ©z -5< H» t> s S%TPSiS@ (LEL : 4vol%) WT©±M***©

815! 6 +*) BJilt ktz-itzo Si0H8"C:©itiA©{STtiS6ii& ft1 ofc0 0 2 3 fcfck h* 0.4s 0.6s 0.8 mg h S-fb SMi" fcUlB-

©tBASaS^-fc^S'Pfe'So

< 0 .08

H2 conc./X

O 0.4mg□ **tt O.flmg A**tt 0.8mg

023 k

#-10218

Sti* b & £ — D >/W > ¥—%

(3) -®ft**<D»*m2 4&-#<bA%#N (CO) 0DB@%m^^)Km"(r^6o

I (018) blsJSs l /10 #®co CO0#4fc cfc D x nTMW^iib Mn/T'f-'bcDTa^A^cDCOCDi^ec^a^^b^x.^^^

0.2

0.15

0.1

< 0.05

\ 0 •R3 -0.05

-0.1

H2 3.85%/air H2 3.85%/airH2 3.83%, CO 0.4%/air'"

-0.15

-0.20 5 10 15 20 25 30

B^fBl/min

HI 2 4 ;jc*J8®£#i£1"—SMbgi; see*

35

n2 5 fcii,7kS-b >-9-ffltll*#t4®-^JSS Lfco 7 -i

So c®#fr, kfti*(ijbDSdiiS =

19'f'l —103

CO CH*

(ppm)

12 5 >»©mti&ftn-m

6. igiij3«ty,4-^®E@

t F D y —Hf StoE <h L fc 7k WHIR'S Asfigtf>T iSlB #X -b >6 frfct @%TPRWT©±M**#©#% t

$ k D , #:©*%*§ -E> r k *#® k a x J; -5 o SStoti^^S^iiSmejiStth F n —-tffflfiSSStoSS-fbic J; D nJfghStotL^c,

(co) aj*©faTAs$3B5= *#m66M£VM$ir\ ®?lJt®-^(bKS"C SIBILS:Sit 3 „ botli

A\ ajZtof-feSC kA^s ^EttWfEhStoiiSo Sfes c©#mSMfcrSffl Ls >y- a tlzcfc 5, 7kSk-SMbMS®atom»^©Jgm amk#x 5>ii3 =

&fx3'j>&< tt> 14Pfm©%####g)R £ft3„ ttfgf£T©$B k LTtts h F n >f t---t? gfrfflgg'fbft bt l 3

# -104

20

7. ##*«;

[1] I. Okura, Coord. Chem. Rev., 68 (1985) 53 99.[2] P. M. Vignais and B. Toussaint, Arch. Microbiol., 161 (1994)

1-10.

[3] M. Stephenson and L. H. Stickland, Biochem. J., 25 (1931)205-214.

[4] C. T. Gray and H. Gest, Science, 148 (1965) 186-191.[5] E. N. Kondratieva and I. N. Gogotov, Adv. Biochem. Eng.

Biotechnol., 28 (1983) 139 191.[6] G. Voordouw, Adv. Inorg. Chem., 38 (1992) 397-422.[7] L.-F. Wu and M. A. Mandrand, FEMS Microbiol. Rev., 104

(1993) 243-270.[8] S. Yamazaki, J. Biolog. Chem., 257 (1982) 7926 7929.[9] S. H. He, M. Teixeira, J. LeGall, D. S. Patil, I. Moura, J. J. G. Moura, D.

V. DerVartanian, B. H. Huyunh and H. D. Peck-Jr, J. Biolog. Chem., 264

(1989) 2678-2682.[10] A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey

and J. C. Fomtecilla-Camps, Nature, 373 (1995) 580-587.[11] A. Volbeda, E. Garcin, C. Piras, A. L. d. Lacey, V. M. Fernandez, E. C.

Hatchikian, M. Frey and J. C. Fontecilla-Camps, J. Am. Chem. Soc., 118

(1996) 12989-12996.[12] Y. Higuchi, T. Yagi and N. Yasuoka, Structure, 5 (1997) 1671-

1680.[13] Y. Nicolet, C. Piras, P. Legrand, C. E. Hatchikian and J. C. F.-Camps,

Structure, 7 (1999) 13-23.

[14] L. H. Eng, M. Elmgren, P. Komlos, M. Nordling, S.E. Lindquist and H. Y. Neujahr, J. Phys. Chem., 98 (1994) 7068 7072.

[15] T. Kamachi, T. Hiraishi and I. Okura, Chem. Lett., (1995) 33- 34.

[16] T. Hiraishi, T. Kamachi and I. Okura, J. Photochem. Photobiol.A, 101 (1996) 45-47.

[17] I. N. Gogotov, N. A. zorin, L. T. Serebriakova and E. N. Kondratieva, Biochim. Biophys. Acta, 523 (1978) 335-343.

21ft-105

[18] N. A. Zorin, Biochimie, 68 (1986) 97-101.[19] N. A. Zorin, O. N. Pashkova and I. N. Go go to v, Biochem.

(Moscow), 60 (1995) 379-384.[20] M. B. Sherman, E. V. Orlova, E. A. Smirnova, S. Hovmoller and

N. A. Zorin, J. Bacteriol., 173 (1991) 2576-2580.[21] K.Noda, N.A.Zorin, C.Nakamura, M.Miyake, I.N.Gogotov,

Y.Asada, H.Akutsu, J.Miyake Thin Solid Films 327 329(1998) 639-642.

[22] L. V. Bogorov, Microbiol. (Russian), 43 (1974) 326-333.

#-10622

o

If■K&m

t 162-8601 *S(SSfSS#*Sl - 3 TEL 03-3260-4272-3305*# mm

tm fe# -#»w e» »

=r 305-8565 d < tiS* 1 - 1 TEL 0298-61-4733

ffc¥'>x^A@RSJRWtAJ')l-7‘i)-r - ## B*

1. HV&lZ

i. i w a

A. WE-NET (World Energy Network) tMBj Hu ¥fi£ 5 *F=k D MteStWfiE 1 0¥*tS iMim7LTv>5. fmii# #6 UTW, m##eLTLb###Mm*$#my%%-A<7)M;CW:b4TX:.

gHt*S5S<9ffc;¥#ttti. **^W*ro*SS-^)$L*:Ta6-5*$$!t(yy V U >#«/\> F

«*LLT, 1) m*5.@0*< 2)*Se@tDjXtrKt£: (*Sft;) iBtDwt-Rje (K*a> ^wsMicsfr-rs. 3) AELfcggsyktti^^v^L^Afteee-r5i, H iitfSJ. feti.

2CH 3 OH = HCOOCH3 +(S//7 C 6 H x 2 = CsHs + 3 H

U >^) 53 It C10H8 + 5 HMo7> h C1 4H2 4 — C14 H10 +

-5 6, y ^/-)L (f my?)l/) «3. 13w«, ->^ da* +)->tt7. 19wt*. x*'J >tt7. 29wt*. ^)Lt K n 7 > f- 7-fe >«7.29wt*»fiJffl nJt£&7k* mLTUJ CitCte D . B#«3wt!U:m#% L < «2. 4fg8#©

f :?*S!ST-tt. cft 6«##«*?%**###*<#7"(->» □ A*1t

ft -109

>. x*u» tcasbr, LT®#m#&## wt.

1. 2 0F5KBHt7r>lT*5'» n's+D-iy*, X* U >«®ElSa*fr*ST£*i'? 6©*lSl

Tt>ilff V#5Bji8S)$:Tafe^7)ieSclc, ¥W-D$imcft® * S £ HX 9 iti lTMMi-a«ro*S-eti- *£««& (yJa^D-^SSUH x*u>) u» uu-'f f^gjsggwamfco®*s%**t>e<tt%> -tut)*,, e^(i@®es ffljs) Tsvisf6*75t#e,ti5#srosa%»s, j:6*##m*=m>/x7A<D&:gZ&JiE-3ttZZtiZt£%t'gXZ' -*. Mg.fcT&Z'<>-e>&ZiAttj-7j'U >^£<0*SftSSCHUTtSKiC«asnyLcI*to8«7)t$ y WHt$6V^#X6tl5.„ fcT*a@Tit u

T, @##m#IK**N#gl*:*a5lj:^7>yix>'J 777- (Membrane Reactor) * a&mO-btf, Sii'Ctittb 5.

2. **#!&##:* LT®*77>m®#»

2. 1 U >*roS(6¥«7)1/* (&*SglS) (AH°>0) fr-Dftrf-&m±

m (as°>o) ®RB-e$5. f ®%®. (ag°=AH°—TAS”) !3iSISfi!lTtt®i*SKf£:lC*|lJT, ttfi#Tti:*Slt;g£C«fiJC*:-5. 02.1 - 1 IC^Ufctott, SE® 7)1/* >E)$itoKj:$BE#*tC'DHT, Vi"f tl t)^S,t$K± ®fi«*C*tt-5S2(S^7XX^;b^-^ftAG- (Mffi) tum T ®HfiVr$>5. AS’® $E6Htt*S*-7®3titX> h □ fc?-T$>5®T. e®8t®43EI$*S 1 #?&#LAtx-r-ssis (7;b-y>4BEss) ic%, 3#? (^>-tf>4BEst£0. $Gtcas^f (*

77 U>:£j$g£) £ffil/A n-r^S^ 77X^)l/f-B#®#e^tg1E"7-6IBS (turning temperature, fei&iBlS<tD?) 15. 7tlb®£fAiT1575? U >4»t7 7 (236.7=0 t)®®#SJ: tmi6< . 7)1/* >®#A#

te&tas± osviseTfftonTjso. gjs®fww^x*;i/^-ifilt*£®R«^S CTV>5„

&Bii«&#ft;T7)l/*>®i$fflM**£fr7 <!:. SsE*^ttHtSiES ^^WCgfSAtjtfT-r?) (gJSSS ‘’). ®ffitcS*h.5 7)V*>, 7)1/-*

#-110

Temperature / t

O -20

0 2-1-1 7iv*>*e-fc •

>43 j; kl&Siffi £ ©MTS951 #$8 £$* 9 ® U T 5 . »BS(tTT-tiSSi,ffl®DTafeS. #&#%*Sti:SSffiT©#6>»tfl:£t'i&v><yT. SSMlfFS®

^Att-S^ttS-rSTkSto^sWti-ew^s^Dj&totcKBI-S. 3u$* sii-tca ^iciitti $ tt •$> itiat), &rt&<Rjsctitfr-t-sctca5. «£$««« t> t & -5 »tWfiJT$i 0. K**S»fe®a-5 fe¥«±ffwtca5.®T$ntf, *sit-K**<fcsiK5t=tttS8ia*frT®*srotiLAmcfi)fflT ssn tca-5.

2. 3«T6^^5.7»t*S0flf)$ • t6X8E*lctea)S5Vi*SI?S86. (D(BVi0rgx* 11/f —, ®$@ - x—□ y y y f|-H 2>. WE-NETff-B” TSSsn^E#*Stt- Klklcgf^xy#»v>, &m*m<t®iitnm.SW W'T S < @«T$ 0 , *SiSSx>y;Pbf-ZS)S#y5 h-toCiSi:®;*, ,#,*• i6tti®EySVtC#5B#<b¥M$*ach'x**flfciSSy UT«±: t>6^<- #»©**«

##Yb6#m,0 2-i-2 tcis-rjts I2*S£j$©S8Fx>yipt?—

#-111

60

T/K

O cis-decalin / naphthalene, A cyclohexane / benzene

O cyclohexane / cyclohexene N □ ethane / ethylene

@2-1-2

2. 1

1 : V.H.Agrede, Chem. Eng. Prog., 86, 40(1990)

2 : TEffl ES) , NTS(1995),183-254

3 : #5, • MM, 21, 26-32(2000)

#-112

O' 9ft hr > eP 4 531 av 4 4 531 4 0 to A 8 4 o or < g sS 4 4 V d 0 0 pi /// X V E d d

531 #1 # 4 r 4 4 v)v 8 St­ z n H % 4 d X (m 4 4 fv d dpl eP gp m V M Si ep X ° •e M □ 9$ V VP Si eft- o% 8 rv % m Si cv 0 D 8 X d o > 531 > 4 cv o •m hr 1 y 4 cv l # X d so r to 531 (4 4 5i 8 4 -m • o& % f4 r eP # Ml d 8 4 cn 4 % Si e>i 94 CO 038 n Pi X s— W- is 1 W> • 3 M %i V cv h- & d MW3 0 m z 0 f eP 4 3 si+ )# d C+ 8 # 0 & rme 4 54 a X 4 0 94 X 94 it 8 as X r^- n rv ep 4S d 0 W; \ d M V rH 8 ra­ * r> H4 ' # ° #

Si d rv 8 4 X V' i M £w le- X 94 4 Ok VPcv C eP rv N X ra a ft ii (4 Ira 531 X m 4 VP 4.

lid # 9ft Pi eff- X 4 > m 8 (4 Si ss % §i n o ~A eP nd 54- vV 4 M Si a 4 4 % H- i# 4 0 4 N M > d 0 ti-□ GOow med

i=t-□4eP

eP

r 4 ° r W.' nMi

r4m+

4 94n1 nun

SiCV i#

# rv 8 4

Pi ^% r # d Si 6y

roXrv

#$5n(KpCMOn9tePV"X□>44Vsm%}i

Conversion

44 V 85 4mn6

r i 4 eP

544

n m

M m54-GO

OOO4hr8

%&

dSVeP

cv#ti;

ZX

r4%0d

8npi%(4

d

V'X□>-H-4VISm%}&8•ft

(D!ICD

O

t—^ & CO d > & r 4 I'd 4 h-*-m 5z trir 4 3 (P 91 m m X

FH % 4 X? 4 r 4 (4 r y 531 XM ii 8 V 4 g 4 531 atft /V to Si eP f 4 ° <?i r 4 >

«■ cv cn cv rv 4 m 6i- 4 4# o # s 4 M- 4 #

rv ti; d 94 to Xv 94 rv eP V 4T Si 4m s O o 94. 4 8 4 8 %

cv VP f 4 o 531 V IS % ASi # 9? cn d & 5# Si Vcv 94 eP (P 4 d m (4 cv ft# ° rv hr 8 (4 # V94 4 % o n X o 531 to rv >to 4 n w X X 531 8o eP 531 CO r □ d X pi S

Equilibrium conversion [ - ]

k) 4 b> co

to

to

CO

fasosjtss-ciisjtsois£iS;L Z Z klfi^ EJtg& r t ififtfrZ o

jctti) f?$x aa. xs. a a: 5?si$- 28,323(1985)

2.3-1 S ffl ?k*= KiS 9t BE* rn »1$ fc?kSSW5

H2 Carrier m.p b.P Volume Density Weight Density Endothermic Heat[•ci [•ci [g-H2/l-car.] [%g-H2/g-car.] [kcal/mol]

O ^0 *3Hz 6.5 80.7 56.0 7.19 49.5Cyclohexane Benzene

(^) (^) *3Hz-127 101 47.4 6.16 51.0

Methylcyclohexane Toluene

OO ^OOt5H2 -125 189 65.3 7.29 75.0Dekali n Naphthalene

CH30H (1) ► CO + 2H2 -94 64.6 49.4 12.5 21.5

CHaOH (1) +H2O CO2 + 3H2 106 18.8 11.7

2CH30H (1) HCO2CH3+H2 12.4 3.13 11.4

NH3(I) ^ 1/2N2 + 3/2H2

( )------------------------

-77.7 -33.4 119 17.7 11.0

H2 (g, 200atm) -259 -253 18.0 100

H2 (I) -259 -253 70.0 100

(Hite)--------------------- --TiH2 (s) ^Ti + H2 150 4.04 34.5

2. 3 7k*em#mm#0#@mamk7k*wimm S-amTkSIftXE*® #3m &* © £ Wt Its L 2.3-1 -eafeSo flfit-ctt

#&%#!:##. 6U*. Lfe„ <k¥MS8f*tis 7>^E-7&R$UTSB?ftf*

#-114

■e&So ^JS7jc*lbtllix UTtt^A^S^nT US A5, zznli Ti *©*£#1?to1) «*©t4ttk$6)S

7k*#m#km#®@%-e&So «,*$>5U|4?S* T-fenii^'f T'^'f >©*JffitiqJ®e6s.EH*k»5i:A> K V ></A:±#&m@k»So Ittfot, r&JSTkjllbWi, issiWiS■ m t L T 7k * # * i M A, T- % «t S * S A3 SR ffi $ ft S t & S -5 o

s-bas&s -5 = ?sft-tn«tfc$trosscato"c-Tbs# x &?isibfciRj#gt&SA3x SlbfiSA3- 2 5 3°CkSffi,S"C657c«)CxftC^lt^CkioaSkgtonSo $ig-e$ttT-6£-fb^iS<*©##$!lias®#v V >kt$l£|5Jt«tt@zt)Siy kktfT-SSitktPSx TkStoSEttk UTfiAj&flsSfflkSA So2)

y^y-n^x t7f>sc£i<»gtt5. y * y-;i/Mi±, 2m?ij* yx £;i/k-#Ybm*k%s#6c^it6As.$6S**S*%*S 3.13% k^*7>c*fttiklal@]a-C-feS*sx -$lbft»©«'&«:7jc*sSamM.Ak%st®):x7k^e©7k#»#Aoksck-c*m#mm(y y -;v»t- 12.5%, TkdSiDiSk 18.8%) $*§ < kfts, UA> U co2©0iiz • ff«rati:?#lR-e&V'<t-5KSkflS. C©7k##ami:E#f S@^7>tz:7^7:& t)x#fb7f% bit 17.7wt%k!\7*g%*&#bx tpost$w6sa*r-6ntfeias-e-s^B^ aicttisatss. LA>L&Ase>, iuaiitsftiisliitss. -s, 7-7

6 ~7wt%fiS®**l6B*$rW Lx y £ 7 -71^7 >^-TMCht^ 3 5-® 1 eST-SSA5, ^«7k*<btIktfc^5k2~3(gl£*S, $Ac, &&%©%**lb^#l± ?a<*-c*bx 7ksstcT7k«)bVT®is(effl'tsckASqjigT-sso3) T7^>*7k##m*#

tt±ffl%SA>5>x 7-7£yMI£to®<b^MW)i8!rM*ktt«tUT«T©<); o %#*&#"tSC kAs^tf 5>nSo

i) SBT-7k*)bto, ^7k#ib##C##t:&Soii) 6 ^ 7 wt%©7k##%^#&#'#"Soiii) r®<b®S6%^ L&l'oVi) aS7k*-7k»-(bnJi£Kf64Wffl Ur»iSffifflT-#So

'f'f —115

3.3. i mmtM'&'znzmg:

u >/±7^k>^(D?K^{k - Ezk^fk^mv^TKmemt:^, &LT#jco&#m

(1) *S 5 U XDTkS^WWiWVX

+ 5H,(3-1)

6##*#####, -en^'n ?.3wt%, 64.8kg-H2/m3t&5 =

E 3*1-1 C^f <£5 C3fcS DOE (D Hydrogen Program ©SM

(6.5wt%.62.0kg-H2/m3) £ 0 t)##*####CM 69.8kg

-H2/m3£3!fe<£>&Vt l/'<)MZ$>Z>o

<DJL#±)V3r — ffiftlt'Pte<. £ blZtiamUBt&Mlb Z>ZLt-C\ UDE*S£#5 Z£b»imT'&Z)o

(3) x*U 1940 l/><D7kmfc\Z&Z>tfiQMft£LT&i£ZnT

%Tz o x*U>, E7^ C > & 6 t)C^#T& 0 E7f i5o*CT3iff'r«, ^t:iiwi:^^r;iig^niiXT^^o

(4) ##d<#hm%Cj:5#&dSEoJ#T&a<Z)C#U, 7"^ U lx>(##±t:OT&aX

200

d Future Carbons

t

AdvancedComp reimpressed

(150 K)Advanced Compressed (ambient temperature)

50.5 2 5 10 20

Gravimetric content / wt%

03-1-1 6-a*sir8;B*®*esf&iie* ® tt&

#-116

7* U f 7 >XftT* 187.3*0, 195.7713, ±77 7>©#l5ti: 217.9<CTa6-5,

(5) gE#®7-S»Jf7>»-, ?>?D-U-&i‘5S*!SiiL, #7'J>X7> FS»i'fK«i*ittttiml 077% h775LT.7$Si/tl:S#'r5

*fc. f-7 7ly7«7C#f*##M±©#5f#mi:j:0f* v ^sis^esscstf^esn,i'T8 D. t7^P>-f*'J >*fflig£W6©g«»&t-7 7 7>©#«&

S6C, t77l/>IW?At7^7>, * 7 7 >, f;fX7i:l7 ofc#««9J(c»U777 hntf-Sil, ^oJ:<SlS1"5„

K±©J;5/j:#Si$W-T5 5r* V >/t777>«*»t • E*S7fcKfS$m^*

#©e» • ItiSy^riiLtli, 0 3-1-2 C^-TJ: 7 &*»•«i«i* • S#8**ftssy^fAim^fti. a*%#©m#**6m#©#7v > x 7 > k - ^>75 x K777zL7&m*^ti#,$5> VHt*S9rttSWt"-5KFS?S6lll*ffl®**7JXWIpX7 > t>3|x. 6tl*. C©*Sgfi* • *Bit7XxA©*ffl-(tlCl3:iaft*ifi«l*frT©x* U 7A^6©*$t«KK#©*a^mKT&-5. r CTti. igSMKttffilC tilts?* U 7©E**K

MsBiSK (KtKSS) ##TT(i,msmu, 2oot;a«fflisit?* u ci#TS5.■€-©1®. K*Sfif6^3S«#7)ij:7^<M#*K(cSiEa v. t: 0tcx-TS-t- h Shfcii^igKttS$*S'rm#**4B£i$«ttfflMC|6i±t-5= E **5)*;©X>7Jft?-*fc«®**«T*i3, SfSii«tiSL< ±#75. E**£f*tl (t771/» ®##&#

KSfi«^*ieHf £, ®#T#Ctl^T®##IK?MKm< &B&#l©EI#lt@:#K%6. corclsb, ia*!i$IEttSC*5ViT**^f$aEti|8i±-75 £%x.6tiz.

ft-117

Hydrogenation reactor Water electrolyzer

Windpower station

Naphthalene hydrogenation by hydrogen charged up *

Transportation of decalin / naphthalene oil by tanklorry

Naphthalene

Decalin

Decalin Stand

Decalin supply to fuel cell car for on­board H2 production

Replenishment of naphthalene from fuel cell car as renewable waste

A moving fuel cell car driven by pure hydrogen

03-1-2

3. 21) MSti«m&#iS®M8ttt®

MSS&e&fSStolBSti:. $ b U SX

aYts&av)®*$«$-§•# 2?-thfcM, ^^SYbzKSf h U C*#iS7C(90C)efTVX MSe#0*#i*6ffiSUfc„ @:9-5mffi@i*S.gJ6$6*£fflVx x» U >K*S$»MYfc#i SSSeiffS-liS:, M&a®MS@#06*#&MlS#gl:mo. #^5#a®x* u >£*Y)OL. fl-BBinflfi^lOt, S«£»»g®*5'C®*BSSS*#TTS»®fTofco

^M*sa®SBis®^ ufc. 0 3-2-1 ia@ttMa#6^#s®asr

0.750g T—fcizL. XRT$-5x* U >®S#ia$ 2.0, 3.0. 4.0. 10ml £Zft;£-ti"TI$i*

SK*£fTofcs!i£'®*S£jjE®iBB#*ftT*-5. x* U >«ttMa®18#li t fe tC*S 2.5 BeffiKW-sssWi:

i«/>f 5>= sss^rtrottsia. 2.0ml ®B-&c(att«a*ffi®*SE»(ate^T&D. bT* IcS o SB SWISS, VWOT"'lIIl®a;5&ttffiT$.o?i. MJSWgiatt fcCx* IJ >&Mt;tMJ68g§®xy HX^-X'XS^U. S«Mfe«*9 1

4.0ml £l±®«-&ia. 2.0ml ®# a i: ttjiYM69IC.

*«iasMi;ssv^«®T$^fc. 2.0ml TMS$iacne>Zc»6-tt. i$#x* u >®ig s#*sa^eTt-5>co42*ssf$aia»fl'%iczj;-3fc^sx.en5.. x# v >®*jd»a^ 3.omi ®#eta. etSB^*MS®#Ta:5^<siBUfc. *###?&ot. c®# ®©££. *S£l$a«ti:*M<k&0, Rjfe^fW 2.5 WWCiSltSCYtStt 26.5%T*M

twu. x*u>minstfmz. mmwmiz&it, *s£<$$«. stsw

rq 2.5 #Mi:ana&eYb#®v)-ffitA5@Tu^.

e 25

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5Time/h Time/h Time/h Time/h

Amount of decalin ( □ : 2.0 ml, O : 3.0 ml, A : 4.0 ml, A : 10 ml )Catalyst: Carbon-supported platinum particles ( 5 wt-metal% ) 0.75 g

Reaction conditions : Boiling and refluxing conditions (heating at 210C, cooling at 5"C )

03-2-1 Mi*fA V >K*SSttlcS.«t"K8

0 3-2-2 ta, u i*t

$5x» V >S»e**#-V>®-SttSTta, MtA'JXOM ( h 5>X#: : 187. 2833,

->Xfr: 195. 7710 HtUCSfU »(*»**»«» £ &JfA U

>«»* a. omi aTic%%t*m#iaata±#u, x# v omi

©*.*i#ffi-r-5«-&cia#(-®#D»fi*t:3fi^aa*T±#Lfc. r©«STia, etssti+H- Maasfttt«c*^ai. aaia*##A<t o eaie.

££:0 3-2-2 4’©fil*-ia&JS=EJ565)-:£r&H75:MSa#:C$KS!$$:$tt U, 0—iD*! #frTT*K$-&R«*^®TiS8iti%aiU, x* U >©«$g«*^ 6S«fflI**KSIS

SlDf 5>S®ES©i9tt^<l: fctcS%aSta*S < *5, *k is * Tta «i«eic^ v »*©*$$»* s-^x^xRssoa^stt-r fnaici*$»aaTta*««S**'S-S$TffiT't-5 Ci:T-*S46Ea«i6iffiTL, $*©S%il «AstSint'5ctic&o. c6A*#i

-6 =

2co

*22o04CQ

ti

Amount of decalm / ml

Catalyst: Carbon-supported platinum particles ( 5 wt metal % )

Reaction conditions : Boiling and refluxing conditions ( heating at 210°C, cooling at 5°C )

Evaporation rate : Measured from condensates for carbon support at the same conditions

B 3.2 - 2 u

2.5 oc 0 -

#-120

BKtSilSIC^ViTlRffSfTVi, «CSt5 >?5 xTfflKfSaxseesfc.

v =---- - - - - - - * . , % k : KJS5$$$86:. a: : @#BS6IS (3-2)1 + A: [±77P>]

X* U >SKi:MLt 0&T& 0. M»t»5t7?l/>o®*l;gi 1~5,KJSIB*£$W--5. -ecDZti*, ly/SStoiSiDIC^ViRSiSS«e-F'1-%. L-^U, B 3-2 - 3 IcSSf Ic, tt fe«ai*»iS»(CJ6

CTKSBWrotiffittWIXg&S. ESttS ($*$#!# : 10ml) tiKf6a#6$/JxS <

f 77 k7B#%Stt^7W©l:l±^. iamSKttffi (*»«»»: 3. Oml) lettx, ±7 7 flTt^a. i@

3.2 -1 csLfc.a16SSKtmti:$($#«<}; <0 fe tt3 *)*«»: k £/Jx£ K £-§■x7c„

0 5 10 15 20 25 30

Naphthalene concentration / mol%

Catalyst: Pt / C (5 wt-metal%) 0.75 gDecalin solution : 3.0 ml (O) (liquid-film state ), 10 ml (#) (suspended state)Reaction conditions • Boiling and refluxing conditions (heating at 21(fC, cooling at 5v )

B 3 2 - 3 ±7^ B#

ft-121

3-2-1fijsasss t RVEWSE

Liquid-film state Suspended state

Catalyst / substrate ratio ( g / ml ) 0.75 / 3.0 0.75 / 10

Rate constant • k ( mmol / h) 27.8 5.4

Retardation constant • K ( ml / mmol ) 2.1 10.9

Catalyst • Pt / C ( 5 wt-metal% ) 0.75 g, reaction conditions: heating at 210CC and cooling at 5"C.

3) V ^KiTkXTlSSUbSJS® 7 WlTUlElb* v>j*z$Kih& (*8Stl5<b*) ii. -®CStB$SCSK&*KWCft*p b, #tii£n

V >®S#eii8k7kX#E$e®meglbfr6 7Rtok::

El6i$S6MttUx V >®IS7k*SBffl,7>7^lK'lb*6a53-1tkLT*mbteo :k 7 j- 1/ a. 1-ifcfc BStSfflMC tilk -E. 7(10.3%) ^BCia««Ktt»J;KStt^t;-3V'X7>7^telb^

®^-7» v>SKto#ttc-3urSltLfckXBx0 3-2 - 4 i:jit J;-5CiSSttST-ii#

77 V yiKfflilfbktit: 7 wixeibWffiT U £tzi'?tuDi-7 $ v >@Si:j3V'T fe¥*$£-(b*y.TT-$E.X k6sfl5= a»«Kttffit:*H'XI±x t7? 1/ >i6S*s«v'Sfft;*5V'T*S7k*£B8)$E • imf * v >s%iSKAs*#e^nT*5 Dx o/^fkib *i±v*eib*6@tEi<i'(iAsf#Bnfc„

4) m#@#AKN#®#&'(btlK7k#e#®0]±**!*«««CiH^T&EjSiSS • i6$ia*y»i%a'tE)®tt- *t«@®jgfSttttCJ; 0

SfSSSSatiZtcib, Sttfbx^lk^-^'**i/'®»!SfBT#¥i)(c*:E> x t.XxhriWf 6tlE>„

(7k*^77 V» ®SSa6E> V>H«ffi^x®K«£i@

>ys#^i-rE>xi;fcssT*5".

#-122

O : Liquid-film state # : Suspended state

as

10 15 20 25

Naphthalene cone. / mol%

Liquid-film state ( 0.75 g / 3.0 ml) Suspended state (0.75 g /10 ml)

Catalyst: Pt / C ( 5 wt metal% ) 0.75 g, A : Eiquilibrium conversion (at 210C, 1 atm ) Reaction conditions : Boiling and refluxing conditions ( heating at 21(fC, cooling at 5“C ) Evaporation rate : measured from condensates for carbon support at the same conditions

0 3 2-4 9 fix >###%#

<fcCi5««SEt#)S6®|ni±**aSTa6 5.-vj7nA*-9->. 5s* U >1t E7)Vil

C-H Hef C .i»tA HOMO-d V -:/ftttSfig*8^l6li;-r5i:#A6.n5. ft. -f 'J*;

U > 21, vi? □A+-y-> jf®E**s:f6i;Wx4T$>5floTHS. ^XtX I/-^AConTSWLfc. 50«*a#iSt)L<ttgJiaai:±oa Sufc. iS»EEAfrTCi5^5*$aEB$«®gBt$fc$H 3-2 - 5 CiRT.

u y<'#i*icd3V)Tt)66aa#sic< bAsstoss. 2.5 B#r<sm® nt)»S|6]±U. *fc. 3-2 - 2 tcSL/fc. nm®/'W ^ V y »66SICt5^Tt)KS®«S$citt-h

ft-123

Pt/C(A), Pt/Re=2 (O), Pt/W=1 (O), Pt/lr = 4 (□)

750 mg, fA'J> 3.0 ml

@3-2-5 u

rovi-rnt)z5s**T$ofc„ i;t,lc7#t-5)®JKS)6«ia®tfc<h6*U, #‘l#;L4:-75#t;¥x*JV^-l;^»£*l-5i>J-&T 85. ®3HSSS#A:fcMLTt$SSa«ei6:^*S-< /j:5»B£*S < &-5 2:tA? .

rneroie$ia, 2iot0#e<z)«T&5*4. SSSS 6IC 280"C $T±SSti-5 2: 6S:S3J6*l*TttSSa*6»»s 400mmol/h tt£ 0 , >27Xx >##(=& 4. 88

3. 2 05115XM1 : G. Glansdorff and I. Prigorine. Thermodynamics Theory of Structure. Stability

and Punctuations, Chap. 3, Wiley, London (1971)2 : 8S*@. gBSft, *#X*;i/f-yXx-A, 24, 13 (1999)3 : inm#$6, MS. 42. 454 (2000)

#-124

3-2-2 U

Pt Pt-Ir Pt-W Pt-Re

[mg/ml] 750/3 750/3 750/3 750/3

StGiSSSSt k [mmol/h] 27.8 56.8 92.3 86.0

an&mmmmm.K [ml/mmol] 2.1 3.3 4.5 3.7

SC6tclt¥(2 5 h) [%] 26.5 32.0 35.8 39.7

V>/<XKlk$"' [%] 10.3 24.6 47.2 46.3

37.8 59.2 74.9 73.3

*1 ?>/<xglk# = SJMKlSaS / #HsK»(«*&)«£ X 100

*2 = «ms(6»a z x 100

#-125

3. 2 & <b(CzK##*&Xf'-7 3 C%o/2a m

3. 3 - H^UfctE^S'd'#, *S£fi£fi300Nm7L MS99. 999% £ £)<£>]$*

03. 3 - 1 ^IMXf-ya >##U

1) E7kS£S'>XT-A0&B§ iKzK#M^S/Xf-A(D#l%0$r03. 3 - 2^^^. E*Sxf-A

«\ i&MJBS

(£XTM*mtk

1/

& S & 5. jKzK SSSvXt- A (:#$&$

T U >(o) #, m

* U > <b d: W:

H(g)

3.3 - 2 EtKS^SSi

#-126

KI6IC j; (H), f A'J >, t7?V> (N)

Sd-tfxti, **£E77W>•x* U>£ij-Hf-SBibles® • S#r8eicA-5. #*iS ilDESEtc =t: 0 25bar$TE$idtifc»ic*sess*ic ± y vresi j7 >/7v\ae,n

&. HIiR^nfciSfBWx* V >1$. fRftx* U >tt t)fCJK**E)6S«^®a CJ ■tn x;v> -rsctciox, u>saas5t«-r^T7K*i^-7^u > t eft-r 5 ^ t niffi i ts s.

2) JS**S*8« *7XxA®±#:£&iri@e«J®tM*S5Sgm. SrSKMSSS tl^ttSARS^SCJ; y . MlGf

#$£ ITPt-Wtt-g-ftkSSmv KSia*£ 28033 £S$LT, #*

**^fi£a«(S2.7ikmoi/i!-h-r* y, wifcitmm. is - iffistUfc^-x X l/>ffl»«86*$100%A Vrc#*iR$®li-*^$S03. 3-31C^-r.

«*&x* U >®K»«370kg/h, ^{$^-7 j- l/>t3343kg/h. 3E6K*Sti27kg/hT$5„ $fc. ^®fc«6IC*SAS)6SaW^*(«B««4. 935 m'T&oit. CtoSSTtt, x* U >®*E*siStt6tUtV)^i6, £ A »tp-Ta,=S tti.%. ®Sx* U >S*^*ft*&x* U >®##&±lsloTI,)5®##meA##@(AC:tlc j=&.

(DK£@ (SttSSiW##*) ®SS5:280n;«*,, SJfe SiSrii'J >®#AmTt:^#i- & C ©SS$l*lEA$#65„ Kftsgtt;* ^CAIT-L, igiix*

561; 784kg/h>*S 3.4wt%f*V> 52.8wt%

43.8wt%558 27.8kg/hTkS 96.2wt% f*V> 2.0wt%

1.8wt%15.2kg/h

EM: 0.472

TkS

P =27kg/h(300Nm3/h)

US: 99.999%

55* 57kg/h^|TkS 47.0wt%x*'J> 27.5wt%

25.5wt%

Rp=414kg/h

0 3.3 - 3 K*SSS8*®##iR$

3) mm ■ Sff8» «lt**iT* 'J > • t7? X< y 5PXX3 >

x>D--®5£®i8* • SffSBSf5l>5. 03. 3 - 4ic^-r J: 5 V- h 7A >##*##§&*» (*<£ : 3*) fflSU, 03.3 - 51:*t4"fAXiry3.-JK- SflfSffSfrS t)®T<65„ SElc#6KS4afcSi64s6Smtlc^$n5E7 5' l/>

EtEifelSSm

TV—hx-

®4 ;

xv—i-x-oaii*#

0 3.3-4 -fv-y-7 4 >fm%#ig©tai8E

B 3.3 - 5 XX >x>X-®}*-ft2XX'X;L-)l-

(ftmie), f * v xiam#:£ft&. #taixeT»*s *vsis£)««0#t*s£

jt«6. xx (ksxbsxixsax a-x) tiottfii-. at#s

s-e-Tswr?. (m#x@). #@JKSsii. $.5B»r=i@r<hicff£tiia<hg$(sxe sa oit, c ro*Si$. xxx iz>mE-(fcicX5#i*xxxS!coSiStc*5t't5iSS

VT®tC*ffl{fcShTV^5ftffiT-a6 5„ ft*. JSftfiS «80T3, SffEft tiASK. »itt«T*'J>S8eL-TU5. B3. 3 - 4IC)SUft#eXl/- h XX

82MJ/m2-ha$T$l52>„S$g-SffSaAnsa$218'C,

mafi«S80‘CtbTS*-S#rlc£'Sft^*tt*3. 3-l®t*0T*0. *# 523M]/h©»®»£#:*gT*£„ £ ©ft«6tc£'Bfte»ffifflttl86 i’TSJ. #%# ^-9UI:20$©Ee (#m# : 15.8m) A4&%#*©e#m#ftl4. 2 o2 £ It ff 2 4a,

186 m2©e#m#&#&ft6K«139i|©E#A4^B?& 0 , Jtt

lmxO. 75mX0. 43mT$>5>„

ft*. XX xE>X3 XfXX-©*». 90#x#«. 8a©t'fXSt'ttS#

as. e#asft£©%##^6*&5!g.Bz)4$,&.

#-128

3-3 -1 mm-

3lEl[kmol/h] mmmm[kg/h] jSSSCMJ/h] S86[MJ/h]

7k* 13.38 27 0 54

"T*U> 2.993 414 116 70

2.676 343 178 105

4) ua&mm S« • S#rg«ifr>e>ffifc*#:tt7k*®B;fric:E# U > • Exi'UxwlSftens. mass, eesssok, ioi.3kPa£bTE*u>-

Ex j' l/>®ffiftS#E^6W-SLfcMff®asEli- 03. 5-3l;SLti^l:*# : 47wt%, EE U > : 27. 5wt%. Ex ^ lx > : 25. 5wt% £tt® 2*1-5. 7k*S£S£S«t> Sfc®, *DES®##$ff Ufc. iOEtt. ItSTk**®#ffiLt0«tSffl:tii:>St®4. ag®##EEE®M«*6**$25MPal: %SEx ICE® US:e6®»IESHy nSfiEti, ** : 96. 24wt%, E* U > : 1. 95wt%, EX7 XX : 1. 81wt%E«-»2tt, MgB^ffltSSgiT^? 6ft5. *fe, »*g«l*ll;:tmSEx7 X > • EE 'J >® «® ^K <*^-S^S 4 . 350Kle&# •SEE V > • E X 7 V>®6S#SMEiaviEtlt>0. 844kPaE&Stole24 L, 360KTtt 1. 38kPa£%:SC£^6%IO'Cto*m%ESe£E#®&B<'C£7)l'rgS.

s) 7kmmmmu 99.999%®#%®7k#&#s^Ai:ia, 7k*fflKS»E&BT&s. msm^tvxit. ®*s, ti®#?stiiissi

SgflHbStlTiAS21. *8le43t4S7kSEX®Me, @%%2:&#aESt##*^ 6tlS. 7k$t«#le®*S£4iJffl IkcEdEXE UTEEXE

(PSA) SASifcS. PSAStt. «»to®»i$$fflV>, SDE®*-«Effii#-A*-E-# Em-y-E x)k$sEs 5-E 5 >Ex##Es e ticE

S„ PSAffi^ffl6^c7k*tt®le*ltS*pDp«*«99. 99 A' 6 99. 99999% $T* ie£J:cE Se^EfclOO-iaENmVh^SeStlTHS. EEXE >E«20~30ata. oiatmtoiSEto®eT*$.S„ ####, B»7k*EXtofflj&tei; O »&S EX ->UA EE, ffittK, tkEa5-y-E/ii'MlEntl>5. 7k*PSAto24*£E:S7k iliLtll. Xf-A'JXt-7, XE l/>tX#X, 7>EX7i4)&EX, XE X>ExEX&£'ES$>y, E®7kSSE4)50%aS*i6 99%CS:^3l„

j)DE$eCE 0E®SElkci«E7k*ExEI:#$nsE* U >. t7*EElEtll. 95wt%43Eyll. 8lwt %T*S fc®. PSA&iTlift < 3ctt nJilXf E — k V xX

skis. ®#¥«e-x£ir*u ggH4$#6v TESl^S-Sx&Brti&S 64as„

#-129

3. 3©5CE1 : it^mm 48# pp. 54 (1993)2:1m = pp. 453, jg x' D -fe X

pp. 31 #±xXX+)-f%>X (1997)3 : Vol. 25 (1), pp7-l 1 (1995)

3. 4 *i»

U SBflmRAfrTTiStttH h^X-zi-t- hSnsifliSiSMttSAiSlS-r?.. SB

Simafl-BMiaa 2loncjs(4•$>¥«$»* (l. 2%) $*s<±@5.c:^75ijssnfc.^oi^tSISfit-f h»tX-/4-b- hd4intf®mM)6Tag,5.K**4bSS« j: 0

#W(cjtff'r?>©Cip^, SttiM K£%#Mt:&C3S%^El:£ 0&)5g#%##®R

B^ffiiisn-So £ D #• < RlS#!^*J <0 S 6ns, fs«fi86*ia«sttsicit^s:L,<ip]±-r5„ e^sx-xtcb^Af

XXV a<fe-X>XX5r>, 6

^-1/ —H (**£f$* 300NmVh) @1**

ssse®#ssaia 5m!ssTsi**KSSg®6«S5ttcMt-

DtbSbSb *M4bHnmT$5. £#x.6ti5„ Sfc. K*SKS£

E£#^6»«US:iSii (UtM X» V >*75*«iSx* U >*£±133 H

Zt„ cnil 7>/U (SS) 85iD$J5< 50%S8ET*-5 C t tgBLTHJ. LfcSbT,

*«tt*g®i6i±^@i**ss$#®x*c£ id r7>Ax$iq*$8fcefn«$aT?* u >

•iaffiT-4-5. u > • 4-xxi/>iav^rn:bss#ieT®s«;ff^e<, suxtv-x

X l/Xtti&SattBfti: t-T8ffl • i$#^6 fcfftti V^-rv>rci6. ** • fXX l/> • J6x» IJ >®44«ia, H#®tt«£ffllxT+»nTfg&«B?S>-5££;btl3„ $fc, £&

tttx?l/>tt77 Xt-IVX-JI/X AIC£-6 44^r.m-&7ii||< , »'XK4b**?SW»S«

®«x$si4a<- iieosKi:£ositffi-r. c®£x%mmAic£o, #T&5£*x5£i5. 4-m. £JS • ^EtoWHCSe-TS^-XtoSaSffVi, £9Si MTkffeSrffx r £^*a$ti5„

If-130

4.

4.iy/? D/\4r'tf>#azkj#MJ&

?x

LX=#o%\ sb

J& &%#:#(:##)& c 2:#-c1 3^ LT m.1-1 / >71'>'JT'7£-Jd5£IZJ:ZNt¥m<DJMm

Sweep

Feed Feed

separation side Pd Membrane

Sweep

reaction side

a) Cocurrent Model b) Countercurrent Model

Feed

separation sidePS Pd Membrane Q

Pure hydrogen

c) One-side uniform Model (Pr > Ps)

m4.2-1 ;Km#m(D/c<&(D

#-131

4. 2S tS M o' t) E 6> 5> 4 Eft tl £ HI % SI

tc i -3 T a JR W f; ft i tB t R ® E SE

©$B®A k LTiSS (E®) IS5*g6s,fc?>6b #®3oHS #ffi£T-$>5o i)iai###i:Z^&Eft#©#m ,-3)

W x. I±V 17 V t> A * 7k * » * BM fc

E ft £/hb T. S E6 @ i: EM A t: 5Mt e> ft 3 6b f © £|B]ET-S-tKJS*"* £4:1^ 11 -XjiZ. (a@b6c7kS£fibj;3 ftfeCffiffift?.) ®8tft#|6]C J: o

hJ /L/......... Calc.

-------- Counter-current

--------- Co-currentz.A’V__ Equilibriur

Conversinon 26.5%

200°C, 1atmFeed 4.3 mg/minDiluent 16.2 cm3/min

o 50 100 150 200

V (=sweep/feed) [ - ]

@4.2-2 kb $%

tv E3 4.2- 1(a),(b)C tj\ b i O IZ (co- current) (countercurrent) %tlhi\Zfr

4.2-2

6#m#kbcf -^Mkb/? -3%,o

KpfTm AT

(i - xd(}+cc+ft+mXiY(4 - 1 )

;;t-, Kp [Pa"] li¥iSS, Pr [Pa] liKESE*. mt±tB%7k#©[b#mmm?&6.2) «E • KSz£ 4)

#(E$.5V'li*S»S§l7£ (0 4.2-1 (c)) IS, EM^KlSejlb# bT«E$>5>V'ISX$ tmicftS b bt-zkSE (S6) £f£ < ku 6 t>®T-$> 9 . 41 > rfttU□ 6> £> ISifttt )$7kS6sf#Bh.5,t, *S©eS. MEflroEft ( = zk*E Ps) C^t. Ml$$X . IS ftSfficfc-5 CfflPSSSItS® bt&2> =

KP! Ps

\+Kp/Ps( 4 - 2 )

#-132

4.2 1 ) N.Itoh, Y.Shindo, K.Haraya, J.Chem.Eng. Jpn., 23, 420 (1990)

2 ) N.Itoh, Y.Shindo, K.Haraya, J.Chem.Eng. Jpn., 24, 664 (1991)

3 ) N.Itoh, W-C. Xu, K.Haraya, J.Membrane Sci., 66, 149 (1992)

4 ) N.Itoh, J.Chem.Eng. Jpn., 25, 336 (1992)

1 10 100 1000 10 4 00

HJ N2 [ - ]

04.3-1

4. 3

aisliSST. 1 cm2 ^ tz 1 51 Fa] (C ail M Q[cm3/cm2/min/atm]"C 3! L fc o L ^

or. SffJR6 S $ afcKx£3®T-. ®btitsu. attx-li. Canute +

X$>5 Lx a®i$S*X§ < &V= HM& 5 £

x^s/^Am©^M"C&5o [M!&##:8$#)o#i&, CVD

^@©8##, H2/N2 iiiK-14 5000 m±x ykSSiiiiS 100 cm3/cm2/min/atm #±T-&3

cvD^t:j:^Pdm(±, m#m&#(ff^#^^W:^^fi,T^^t©©s f^6©fgZ-3T^%m%r©v^^A#:t'C#.

4.3 ©##

1 ) N.Itoh, N.Tomura, T.Tuji, M.Hongo, Mesopor. and Micropor. Mater., 39, 103 (2000)

4.4-1 y>yi/>U7^^

200—300 °C

2—10 bar

300 Nm3-H2/hr

4?IS©^c^cF (^> H )

## ^ @ 2r. 1 cm

# ^ 1. 1 in

m # t. 1 — 200 l± m

a«a»

zkmmmmmp P=l.20x10 7exp(-2000/T) mol/m/s/Pa0 5

k= 0.223 exp(-4270/T) mol/mJ/s/Pa

##?#%& K„ Kb= 2.03x10 10exp(-6270/T) Pa 1

?*£# Kp Kp= 5.06xl035exp(-26490/T) Pa3

4. 4

4. 4. 1 —(300Nm3/hr)

300Nm3-H2/br

#-134

(:cteTmUx f ZoT#V\&o CCC. ^^CZ^T^^cL/:zkm(±, Pp[bar](:#^^^/z#zkmT' inf /r cF h, T l 'i £ ikHUfl1] £ k. Istio

Feed Feed

Type 1 Type 2

E4.4-1 ^T(D#^#CD{iLS

% ^ — 7°# %

©i£32il (Back-permeation) *"(?$)•?) 0

% n#jg-c(a*m^EE^f&W/zAC, mzK#-C#

cTx El 4.4-1 L2z j: 7#j6D7xmgz o fazzAc,

(Type 1)2

6iT&of2-e,

i Type 1

150 T>

I Type 2

i Pr = 2 bar; Pp = 1 bari 300 °C

Preliminary catalyst layer, Li

EM.4-2 m#gpm#u^l:^tm-#-'5A!l!m@#^l:j;^T

(Rsv=100, 3Mm, 1m, 250*)

#-135

riOoO

oe 'a.

H production rate [ Nm3/hr ]

x

[ % ] X UOjSJQAUOQ

G$yyM

| IIIfi

liIsc?'t

0ih

°? AJr}-Tf %g M-

o #44 ^ y G% $ life ^

# ^ IS ^US ®jt$ m

V E^ T^ <N

wj ^

H2 production rate [ Nnf/hr ]o(D

Xo

£CL

0_

[%] X U0ISJ9AU0Q

GmyyM

IIT*-S|1

H

E% <N4j xz iS 4 % ■K U K? # y y %! iSyj Cl0-> tel i« 4) 0 *< iA E K3 «te 22 E 0 d 44 44 ■fx y lid y ii % y 4%J3 G H y) y o 42 E ft- iliu G to p y K? ^J to tti Kd m E xz o00 y Hd

£XH44to

15 xz ■4 E 22 AJ w P Tf K) yy

y m y to # 22 AJ m<in O # AJ R to R S o04 -R % E 4€ y K3 -R y <n y Tf ■K # y44 AJ £ -K AJ #( l K» AJ z ■R AJ G 42 fN # y tT 22 0

if ya y V K3 R G hj 22 o ^J P -S\ ti

P

-# xz 4§ Tf G A_ y Tf EK z2 y -&to % ’< E AJ # M? 'X p

_)■rtJ K? | cy

JC •y to R1J

fJ 22 0 E s y i- o m R\#( iira 44

y±3 XZ hj % 1S 2d i|nn V %5 E AJ X y -K @ 0 44 K? @ yj XJ a-R X K? , H

m ■*) U to xz 13 1^ AJ xzu

xz rH ih m R tgaR

-S44

aR y E yj BK H~6% o 42 y K&

liey

-K y 22 K? to 22 to) o' ■R & lid xz R y f Hd %s K& R) 22y R

•IS y -&) V E <n m -K Id ■R 4Ct 5A J

Bd iS *0 @ R iS -y y 13 aR EK yU2 (N 42 y y fin P P — mi -^j AR m 1^ y C9X) AJ E y

yCDX H m yj

m Tf m A ■R y -§ s 2K 22 ■H -fx o i§ -h5 y y tel o to to Bd ig G Hdy m rt # y $? 0 e EK K) m % P toJ ti O %! # tel n T aR y A3 y E

£2 E y iS

s H M ty AJ -& e G xz § V Y- 2d or*~i E y K3 E m CD K> •W O E o m \&49 E •& hj # y tV to y m -R y z2 $r (N 22 E 4^ y K3 22 4^J -y y y 4^2 22 coco

jz:

H2 production rate [ Nm3/hr ]

[ % ] X U0|SJ9AU03

o

<DCLE0)

um<ucr

«m13iHm*AJ#A3£G

A!-rt

*)mgid

0

EEo

Wj

oinii5tr

—J tn» E

^ UK

H2 production rate [ Nm3/hr ]

E3.

Eofc2

_QE0)E01cO

jCH

G

«m13iHm*AJ

#

G

>t<Mif

inTf

0[%] X U0jSJ8AU03

H:M

z <IE

y iyii iim4 #

^ 0 o ii

KB KB 4^p x/

"K %ifx lit v- M

ii ot#K ^M 4§

G KKB S \z AJ P _3 0 u hj u fj It -AJ*itr' G LO 4iu 0 # U 4 ^7 O or~ -3 G m yE # ■K KB E lA

E K? (N m 4 V 5AJA-A <n E 4 P 1 P1- j E 43 ' u 0 -ii

e z$ & j> -h5 d< P — o ii \zii G 4 S 4= Tf _) P oo KB KB 4U6 p fj p u € Xt" AJ E 1-1 # pm m 0 ii AJ 4: E G 0 #: '&6 AJ \z hP u

# KB JU tj % 4*J rcSo JH raW oin

G P 5 K> G Eti m -Qn -rt cc p (N

E E 4 AJ # E tid Ii % 4^1 1 # iiE p KB \z E 4b @ > x HP pi E aK

oo AJ -& # E S _3 M cd ih # Elit ii o f J ii & M Pi z AJ-M ii HP pi

lit 7 KB E 4 id Q PI IS tife -3 K? b: P @ p #1—4 # z$ 4 KB 15$ E % 4 E ii # 0

CO -&) x/ E ii PN 4@ xp y 4 & G E AJ 1^ X/

fCT. 100— 1000 ###@-eiE<b2-&Tgt#L2:*3^&|g 4.4-7 C^fo 1000 +

5) CD##t—300Nm"/hr

f4.4-8 h

^^L/:o —yaXC&cT, #AT3>;i^ ^

Membrane tu be Rsv=1 00m *1 1 cm(o.d.)250 tubes 3 /im -thick 7.85 m2 23.6cm3-Pd

50cm

l^h

III!1^51111<— 30cm

Hz

---- ©■©■----®-e_-----^gP_

- Q.^D ®. @6q¥s©

l M.34

MWBdBCD'f X

(34.4-8 (SOONrn^-HVhrm#)

4.5 ^300Nm"-Hz/hr

HI IF 2 —5 // m \ Sf$ lOmnu 1 m CD

1 ) Kl&i^ 300"C#U#

2 ) 85%i2l±

> y 1/ > V 7^y250 &c

{'j' —138

3) 80%«±4) i*»S91m3g«

5.

j-y7-zmmts.nv-m&tLT- am«K$K* S#ES)6*Sj3J:0:^>yk>U 7^5'-5S$8iO±tf, ^7x>«®)K**KJ6'v

j:t)C, E«yXf ASftflf »l*i' f ®%M, KTro^i^^tC-rsct^Ti*, 4"#$ 6%

o%*&«##& j:

x* U >JRiaSEKSR*S#ESt£:*Slc^oTx3* U > £» * <£ D * < R*3S*fiS»*' E> ®£*

210~350‘C®e#i/j;fi««T6DS!L-*BaS*frTTK*$"r-e<h. -f7?u>, *ElSx* U x* V > i #•1^6 5£-^®*S/»s#6fl5/ii6, DOE BS*e±$to6= SttjsSzfii#asai*iiS4ffl^>yxf>ji>i/r')Ai^iiiiS2 s ormmT®mm#m

*«STB*sn5»5 okwas* (W-H/hr)0. 51 m2, **«$SX7> FTfl'SiSnii 300 NB!-H,/hr &6 5 i!®®»Sft36

^ i*i«-r ^ «EEffeg* $ nn«s ^ t its ^ nfc.

i wimm*mwm&#-kLT<D7ii<)>/-)-7$i''-'

8#-#* T*U>/-*-75U>

**mm “*** , 6.5*1 7.3

####$ [kg-H2/md] 62.Q*1 64.8m#m« [km/u 15.0 8.0

**RilSS [°c] #s 210 — 350

thS ti [kW] 50 50*2

titlS-077 KEfff&flS&ffl tfy;>x$»H£fflnrisg5;tt«3Slc

®&JSX H20 h2o

*1 : DOE (7/ Hydrogen Program Iff!*Z : t&m Pt-W/C, S0M8t 0.51m2, SS 280‘C®#$liS

if-139

71/>') j: OfifiTT0@i¥«j:ieM«*S®#fS7)iiJ|g*it. 3 0 ONm’-Hi/hr $*-T3 ^ >:/1/>'J 7 »

-®«*Rtf5frofcie*. 5t>®0. SffiRiSl/^UI/lc&SISffS&WCXo'ViZtSIttiigTeWrt;CeKai-tlti, a«6Tn>/^^ h &RtK’&5 C iSSlt.

JS£, *S*ra®i5!St>/J'3<-r5 ££#■?#. M(B^£ LT®##liA±f6C SiSn^. -ttit)*,, affi*«ffl£L-TttS3tlT^-5»+NmJ-H2/hrSS®®ififfi*®

*>7U>') 7 7 j'-S^xfcJS-a, KW*ttS< t#, ;iii«5T*55i'?i, Ett±®liSSIiT^i3. $7W-tasm^ltiT < 5"5mti W±'V&Z>. 7*. <tO)t*W*;fF*^a*n5fc®T*5.

{'j* —140

Q4ihK4

AU

#ijn

S#wm#(N

K

*A*\A &B SJlLTrtx SI

Eh

S

#-14

1

ft -143

-H&

HllTTT ro

*1 #E m

y as

WE

1

V #zm

»3>£

—1

>JCO#

s&w>

m

W itFTy*ni25voj.

v>ro

roHdro

F¥MM

m >i 04

00 imn. aVV

Hi>

Q

1 . iM

imcfl-Es-hh imm&fiT.f-eyzMWizvzztiZ'kvmniihmz

|6J ± $ 1+ £ n X $ - tf > -> X T- A © S3 $ & ft £ 'fs o „

2. ^VEgy/Xy&EtfXX-tfy-yx^ACilFJl

riMFESM^ytfXiS'-t'y-yXxAj <9ttfi£ffi]£0 1 lc;jrfo Bttllc. &H£/£g|3|c;fcl,'T;«'XX-lf

T. E&HJgJt, (l) ic <fc U > * y <h7kSS^67k$»'^f5oCH4+H20-<3 H2 + CO — 2 0 4 k J /m o I (1)

;*ic. ^su^7kSXis'7kS^giE^ia^TtoHJ5j$:.s^bttttisn-5„ c

coitsB. efeHJ5j*a?©7k*^E^<6T-r-5.fc«), js/s d) ic<fc5**y©7k E^roe^»s'S blcilfiT-5.

BEMicii, TE&#£@XT/^ >(D7k*^(7)EmA#iiU. ^iX^-

b:>S^'X^6(7)B7i^Wb^x4--;U4:-<hUT@iRSn-g.<, c4alc#U.

H1.

-1 -

#-145

9VT--W

-Z-

0„S L : ■s/3m z s i: ■

0.81.: gig##-e;e e : C£T|## ■

(Am)E^NZieo>t 0066 : # # % -(SO^jt^SD^Mlilt : # if*

98 o: '06

Gl:qma##3- 68 0:$%/:-a'ir,^##3- %8L<2)#vB$:iiSI^—fr-

0o080l.:glgDY<2l-$-

L#

z ^ °5

^n^o^^sis

-u5Mta£.^$»$S2iE,u$a> ?sis-kw y? s-w

0 21 ? 21 § #S2I tBJ + CO ? ^

#8?o#<.a-4:K!f3#aM%<'f/!#iWa)wwo o £#yw0 P ‘ZWt ‘^0 0 8 ‘Z®$ 'inW&ZWEWM • • ¥MW

BCOMHS3S5 °4^2ie@5S#SS '2| z @5SiaSSM%< 6°YY2i ";^y?

M#2|#W3Z.3-'f'Y!fC0'Z^f MW f5-&W#3 (V E L) X^SSU

e

•5^Ty.s«fKSl '5a.$<X?2?5fl-$¥Sf54:ff!gafiT

AP

25000 -.....

wmm?- 1 i%3/7-f-tf |®*7tM i»my» h

tfx*-fc: >***'*

m3. hm

-3-

#-147

si4

vKSW^^kbiS

: 1 8atm

■ $K£J£&£

■Xu,Fromentb<Dit1)J.Xu and G.F.Froment,

AlChE.J.,35,88(1989)

7kSilililJt • Z1RS: /

-4-

{'j* —148

h2o

HgO.COg

6H-#-s-

0001

00 L 01

0£¥O:?£Sp

a^+asiio l ?j*»s '^5¥f)SKG)SMKa)v^q>a/:^^affl

a:yn«»0^nTl5l^l&ZMO^§fa)*>*962bflSq>3<^/'^^»Q>U

^■ocooooi 'oo i 'o l$ms 0^:isBioc:j§ftG)aoo9'0 0 9 '0 0 frSra«^»KG)vsq>3<^>rQ)^KG)IB*4f#^

mmammm i ■ p

4. 2 3!iB3Sg©ai)S

ykmftmmommmmo*?1 o. ws2. s

m, 5fcHSS5 0 OiC<OJi^lC-DUr@6lC^„ /■ $

Siangan 4mol/S/mVMPa%6eo. 2 5 <t^¥tBsfe#

0.14 1.4 14iSi^iSSE (mol/s/m2/MPa)

@e

4. 3 SiSWftOxfiE

*>&«W:R<7D;< *>3i=tbS'M7)Sli$£i!iiRS 1 0. »ifl&gtf

1 4mol/S/mVMPa. 5fc@;5g5 0 (TCOlieiCOUTia 7 Icijvf „ ibSliWftS 2. 8m&6 5. 6m62#tCLTt0. 1 7^6,0. 1 81is t a, <*: g jra-a-r. w-mtkft-coi&ftm t &mrg> ■? t.

#-150-6-

4. 4

^ V$Mfi7s9 - £' > ->X-rA£/£iZ

tolcli, SiSillt 1 4 mo I /S/m7MPaESCi7kS^iliEA^'ET$)^„

in oC0g3Sf±«liCifiO'tttgcr)7K»«'if^c LTi4Membraiox™^-5o

pElCOimiAppendix 2#SS©Ci;„

-7-

#-151

5.

5. 1 31

s ic^To 3 0.9%

(LHV) .4.0 2MWT‘fo-otz«

0.27kg/s

15.2kg/s

as * : mmm 4.02[mwj^ $ : mmm 30.9[%](LHV)

i4-152

-8-

5. 2 mnmftifiXf-ti'/isT.TA2 31

mnmmjixf-ti'/i'T.TAzm9ic^-t, es*»

%-fAtt. ->>y;i/-b--r^;uicSEnmi»nsnTi,x5„

lc<t U IS5gtlT56£ Ufc*SS£JS*8E#'<i±A-f3.1*3 6. 0% (LHV) . 6. 0 8MWT&oTi.

0.34kg/s13.lata

“Q- 15.2kg/s

titi tl : (%*!») 6.08[MW]» m : (#§*«) 36.0[%] (LHV)

15°C lata

-9-#-153

5. 3 ¥E^^>5fcK*'T.^-t:'>->X7LA2 31

1 Olcjjrf. >%g

^xd'-t'yvx^Aii. y>^;i/tcTE/f >%«##a

maStlTUS, ^%^-k:y#m|cj:vmm##T%^L,^7Kmm(7)-@P&

?E/^ >5fcHS§lcfft^UTiE#4> * >d-g|S€7kKlcG^f •5, &@;Sg

#5 0 0°CS@T$>5>C<!:^b. zkE'xoe&W 1 56S

icffltx/jrUzkEaiSEiSe'xiiAt-S. %tt^x»SdoJ:tXtiti^li 3 9. 4%

(LHV) .6.6 SMWT&oTto

ftfe. E$Hii/xtitlSSn57kSaZ>^>J:tld:3T$>.5„

0.34kg/s

16.9ata

15.2kg/s

titi ±1 : 6.65[MW]% $ : (##%) 39.4[%] (LHV)

#-154

- 10 -

V) U>

Ox

5. 4 #¥«.**>»»*'**-1i'VvXxA

@*R$i o, atiaagi 4moi/s/mYMPa(07km#mm&m(,'%*?%/^1 ICTjrfo 4MFES!;* * >&$!#:**-

t;>'>xxATii,

¥E> f >8(8S8tKEJ$:gBMft$S UTE*4> * >d-gB^7k$lcE^f-5.

m v %7kmm%^fE/^ >%8#§7km^@mg;/\A-i%^%6 ltm

U Ej$;ei5T^fi£LAc7kS$f6ttir50 5 0 0°C@gOcfcH;£glc&UTt7km^(0E%mA(2 5%<t¥E*#J:yg</j:oTl'-S.„

X(l¥te<kz/aj*li4 2. 7% (LHV) , 7. 2 6MWT&?/:.

tifc. %8#E^an^#m$4i-57kmm//^>ttn 3 -c&&.

igmiSWtrf-i'?

18kg/cm21.35kg/s

io%h2, 90%7kmm

•IMFUjM&ffSf

17.0kg/cm22.15kg/'s

0.34ki/s,lkg/cm22kg/s

10.8kg/cm218.7kg/s

18.0kg/cm23.16k^s

l.lkg/cm218.7kg/s

1.033kg/cm23.16kg/s

* : (##m)7.26[MW]%J!j $ : (##%) 42.7[%] (LHV)

11

-11 -#-155

9ST-

#

to

co4^-^aiaio)Q^j^jcnocnobiocnoin

cn

M > & %38

V V > nV % 94 m V GO I Y x * 4X* GO A % # O M IX x Hih 3 00 H E V Hi > E n 4r i 43 4 CD y- Y > 3 y d

3y

9t n£ E x % x * ti­er

\C 2 y 3 Vr 4^ Hi 43 3 V S^f i43 m 1 GO > E rfr m XE w V ®F rr CD

O 3 y 3 H & Yy 5> ff V ro E O' 4 & YVr hr HI IB Y O B y- V ° y X XV d- 4 >h x <j) fY » Ml f 1 Hi» y c Hi N8 Hi -* 1 Y >

« Pr d > GO o m 4 N3 X Y 39t i 94 CD 00 s X 94 V M, erc= O' IT e>4 V' I # ' Y XT 3

tf- jfi V V r^ I Y y 4y SF Y HU.

nr N,CD $il X V Hi A

vy H4 y 43 V CD r V <4 > Y

V Hi E 4 4» cn r> V V* y

3 $11 > y A ro c* x 4 Hunr

yr c r i Y % 3 Hi A 43 mm d 4 V V -vl ~Nl d > Y E am A » f i *

y y Me>4 d » ti­

er (Y ho & Hunr a

m ° & 4 A 4 CD ° 43 m Y 4% fi E X d 0 E » » xs 3 4 E d Mki y s Hhr % 1 y- CW

Tniili 4 ir 94 m rr. % pi V XI X

HUnr >h V <J) ° M » Y

4 43 r V' cn 43 1nr H 1 Yy E x E 4 i X X

y Hi y < x X Y Hi

6.

iliiilS : 1 4mol/S/m2/MPaEJt : 1 Oil

-V&ZZtWmisti', C(7)E5StttSlCifiUtt|gro7k$5j-glE<i: UTIi

Membra lox™^'S>l/btl-5>oSbIc, ±IEttE(D7kilti-SIE$ffll.'^^5FE>f y&Hfi'X*-f >->

x^Aii->>y;u-y->r X7uickt^T%mtiti*i^"s o %, i 1 %fil)T|S]±"r5)<*:E#StUt=

;XOI$8l<t:lyT,

1) E3#i±#lCiai\6#xbfl-57km^E. Membralox™Oiiffltts¥ffi

7kSiSiia®. „

2) ssiirm

3) ^¥E> * >&K£$rot®gSit

4) Ey f -1:>yxTAoyxTA##

5) / f y

6) $gMffik:5;£c>Ertwib\i e.n-s>o

- 13 -#-157

1 . J. Xu and G. F. Froment, AlChE. J., 35, 88 (1989)

2. ¥EB$S, 'J'JII4, JH*i§- £'J->x4,/U4'-, 9(5),

3 2 (2 0 0 0)

3. *4#$^, w-mmm, /Nii4, ;n*;g- 07

016* • A 2 0 0 0 ###%*, C208

Append i x

Appendix 1. : SJ6iiSSi3 JttftoKaijSSCAppendix 2.” Comparison of permiation rate of hydrogen selective

membranes by various method”

#-158- 14-

Appendix 1 . : SJ®j*83tfccfctf«l»3!jfl5£

CH4 + H 20 <^> 3H2 + CO (eqi)

(

1 PhDEN Pch<Pw g

3 X Ph7 Pco

CO + H20 #H2 + C02

y

( e. □ 2 )

PhDENPcoPh7o

V

Ph2 Pco2

~~K

X

CH4 + 2H 20 # 4H2 + C02^2 y

(e n 3 )

z

3 3.5PhDENPcHiP2H20~ 2

4 \

PH-, PcO,

V

D£w = i + kcopco + k„2 p„2 + kc„4 pct< +

^ y

K Prs^H20rH20

^ -25760/^ = 2.84x10me /r kx = 3.711x 10ne

Keq2 = 1.26 x 10 2 e /t &2 = 5.431 x103e

o 21646/Keql = 7.24x108e /r Jk3 = 8.961 x10'°e

'RT

-67.13//?r

-243.9/

K„ = 6.21x 10 V"8 -82'9%T

//^CO -8.23x10"4e 70 6^r

Kcfj ~ 6.65 x 10 e38.28/

3 - /RT **,o =1.77x105e"88'%r

- 15 -

if-159

dF,H, _

dzwcat

(3r, + r2 + 4r3)-flD

dFc/f

dz

= -wrat(r1+r3)-^D NF

dF,CO =

dzw

Ctif(r, -r2)-7rD N

p CO

dF. -«-„,(r2+r3)-®,/Vc<)i

dz

dF _

dzwcat

(r, + r2 + 2r3)-7rDJVp h2o

wCtif

= 7IE^l(j)2 -d2)

r p

dF— = *DpNHidz

dFp,CH4 —

dzdFP'C° = ^co

dz

dF= ^Dptfco,

dzdF

= *DpNH20 dz

#-160-16-

dF---- = 7TD N.

dz p '

% (Pr,H2 PpM2

N; - (p„ : - Pn , )

cKPri pPl

r : p : ^EE D : T :D : z : Dp : *#####:#N : D r : P cat '■Dp:g o :C:#R#

- 17 -ixf" —161

Perm

eatin

Rat

e [ c

m3/c

m2/m

in/a

tm ]

Appendix 2.” Comparison of permiation rate of hydrogen selective

membranes by various method”

C\l

X

1000

100

10

0.1

0.01

0.001

SilicaliteZSM5

Carbon

* Sputter(PdAg) Amorphous

200 400 600 800

Temperature [°C]1000

— Si02(CVD,Morooka)...■ S02/C(CVD.Megns)

Si02(Sol-Gd,Asaeda)Silicalite(Hydroth«rmaUia)

—#— Siiea(PPG fiber}A— Carton(Ube)

1 * ■ lon(Sintered.lmm.lwahara)-Hi— PdAg(sputter.lin)

1 • - PdSi(Amorphou s.40mm, Itch)■“»“"PaAg(Pless plating,20mm.Kikuchi) —■— Pd(E'less Plating.20mm,Dogway).......... Pd(CVD.Morooka)

■ » • - « PdAg(Rolling,50mm,ltoh)—•— Caibon(Kapton, Haraya)— ■ CarbonJSupported, Kotos)—• - ■ 2SM5(Kusakaba,tube,0,15nwn)—■— ZSM5(Gavalas.plat<.0.5mm)

— US fi*er(5nm)—O* Pd/AAO(3 Smmjomura)

Fig. 3-24 Comparison of permeation rates of hydrogen selective membranes prepared by various methods. Uafccocakgr

#-162-18-

\z £ & ® mmn

Fundamental Research of Magnetic

Liquefaction of Hydrogen

CryoFuel Systems, Inc.

WE-NET Phase I Report

WE-NET

Phase I Final Report to the

Institute of Applied Energy

from

CryoFuel Systems, Inc.

with

The Cryofuel Systems Group at

The University of Victoria

The Institute for Hydrogen Research at

The Universite du Quebec a Trois Rivieres

Dr. John A. Barclay, Dr. Miroslaw Skrzypkowski, Mr. Tom Hiester, Dr. Tomasz Wysokinski, Mr. Joel Good, Mr. Darren Morson,

Dr. Tapan Bose, Dr. Richard Chahine

APRIL 22, 2001

stems, hr Institute for Hydrogen ResearchCryofuel Systems Group

1 of 55#-165

WE-NET Pliase 1 Repoil

Table of Contents1 INTRODUCTION........................................................................................................................................... 6

1.1 Background of Phase I project......................................................................................................................... 6

1.2 Principles of Regenerative Magnetic Refrigeration and Liquefaction......................................................7

1.3 Thermodynamic Work of Parallel and Series Configuration Liquefiers................................................ 12

2 BASIS FOR 10KG/DAY H2 LIQUEFIER..............................................................................................14

2.1 Process Stream Specifications....................................................................................................................... 14

2.2 Optimal load temperatures of Six-Stage Parallel AMR Hydrogen Liquefier.......................................14

2.3 Determination of the mass of regenerator material....................................................................................15

2.4 Magnetic liquefier components.....................................................................................................................17

3 MAGNETIC MATERIALS AND REGENERATOR DESIGN...................................................... 19

3.1 Magnetic refrigerant selection criteria for high performance regenerators............................................19

3.2 Adiabatic Temperature Change Data............................................................................................................20

3.3 Rare-earth/transition metal intermetallic compounds: 20 K to 100 K.................................................... 21

3.4 Rare-earth/transition metal amorphous alloys and GdsCSixGei.^ compound: 100 K to 200 K.....23

3.5 Gd5(SixGei.x)4 and other compounds: 200 K to 300 K............................................................................. 24

3.6 Rare-earth elements and rare-earth alloys: 200 K to 300 K....................................... 25

3.7 Material selections and recommendations................................................................................................. 27

3.8 Regenerator design........................................................................................................................................... 31

4 CONCEPTUAL DESIGN OF MAGNETIC LIQUEFIER FOR HYDROGEN......................... 33

4.1 General considerations..................................................................................................................................... 33

4.2 Chain-saw/single belt design of a single-stage AMRR............................................................................34

4.3 Conceptual design of a six-stage magnetic liquefier.................................................................................40

5 EFFICIENCY ANALYSIS OF AN AMRL STAGE AND FOM OF A LIQUEFIER..............44

5.1 Efficiency of an AMRR stage........................................................................................................................44

5.2 Thermodynamic efficiency of an AMRL liquefier...................................................................................46

6 AMRL DEVELOPMENT COST ESTIMATE.................................................................................... 48

6.1 Development Cost Estimate for a six-stage Parallel Magnetic Liquefier...............................................48

6.2 Design improvements.....................................................................................................................................48

6.2.1 Liquid Nitrogen Magnetic Hybrid Liquefier...............................................................................49

6.2.2 Magnetic Parallel/Serial Combination.......................................................................................50

7 SUMMARY AND RECOMMENDATIONS......................................................................................... 53

8 ACKNOWLEDGEMENTS...................................................................................................................... 54

9 REFERENCES...............................................................................................................................................54

CrvoFuel Svstems. In-

fj" —166

Cryofuel Systems Group

2 of 55

Institute for Hydrogen Research

WE-NET Phase I Report

List of Figures

Figure 1-1. Six-stage parallel refrigerator concept.............................................................6

Figure 1-2. Analogies between conventional and magnetic refrigeration cycles...............8Figure 1-3. Stages of a regenerative magnetocaloric cycle................................................ 9Figure 1-4. This schematic illustrates the operation of AMR cycle. The adiabatic

magnetization occurs between first frame and second frame; the hot heat rejection and hot to cold regeneration are combined in the third frame; the adiabatic demagnetization occurs between the third and fourth frame; and the heat absorption and cold to hot regeneration are combined in the fifth (bottom) frame which provides a final temperature profile as in the first (top) frame............10

Figure 3-1. A schematic of the layout of magnetic refrigerants for the six AMRR stages............................................... ........................................................................ 19

Figure 3-2. The ATad of several materials for a AH from 0 to 7.5 T................................ 22

Figure 3-3. ASm of selected compounds in a field of 7 Tesla......................... ................. 22

Figure 3-4. AT%d, for AH = 5 T, calculated from corrected heat capacity data.................24Figure 3-5. Regenerator efficiency compared with that of best-known materials.......... 24

Figure 3-6. Maximum ASm as a function of the transition temperature for the Gd-Y system........................................................................................................................26

Figure 3-7. Magnetocaloric effect for the materials listed in Table 3-4........................ 30Figure 3-8. Regenerator geometries. Typical regenerator geometries include: (a)

hollow tubes, (b) parallel wires, (c) perforated plates, (d) wire screens, (e) parallel plates, and (f) packed particle.............. .......................................... .......... . 31

Figure 4-1. Schematic of a Single-Stage AMRR with a belt of regenerators.................. 35Figure 4-2. A schematic of the rotary chain configuration of the AMRR for the

magnetic liquefier. The porous magnetic regenerator segments are also illustrated on the right hand side of this figure.............................. ..........................35

Figure 4-3. Support for the Chain Design - Single Stage AMRR............................. . 36Figure 4-4. Schematic view of the chain assembly inside a pressure vessel. Piping

carrying helium is not shown............................... ...................... .................. ..........37Figure 4-5. Exploded view of the Manifold/Seal assembly............................................. 39Figure 4-6. Design of a single magnet system................................... ................ ............ . 40Figure 4-7. A schematic of the superconducting magnet array for the six-stage

magnetic liquefier............... ................ ............ .................... ............. ............ ..........41Figure 4-8. Cold box of the AMRL Liquefier..................................................................42

CryoPuel Systems. Inc. Cryo(iie1 Systems Group Institute for Hydrogen Research

3 of 55#-167

WE-NET Phase I Report

Figure 4-9. Dimensions of the magnet cold box assembly..............................................43Figure 5-1. Temperatures and Powers at the Sixth Stage................................................ 45

Figure 5-2. Pressures and flow rates at the Sixth Stage................................................... 45Figure 5-3. Effect of Individual Stage Carnot Efficiency on FOM for a Parallel Six-

Stage Liquefier.......................................................................................................... 46Figure 6-1. One possible magnetic parallel/serial combination....................................... 51

4 of 55

#-168

WE-NET Phase 1 Report

List of Tables

Table 2-1. Specifications of Process Stream of a 10 kg/day H2 liquefier........................ 14

Table 2-2. Summary of optimum stage temperatures for an ideal 6-stage parallel-type AMRL for the input hydrogen pressure of 0.5 MPa and Thot=300 K. Heat loads are given for a lOkg/day liquefier............................................................................. 15

Table 2-3. Specifications of the hydrogen liquefier refrigeration loop. Parameters are:.............................................................................................................................. 17

Table 3-1 Magnetocaloric Properties of Selected Amorphous Alloys in 7T Applied Field........................................................................................................................... 23

Table 3-2 Transition temperature and magnetic entropy change as a function of Y content in the Gd-Y system in 7 T applied field...................................................... 26

Table 3-3. Materials with a big magnetocaloric effect...................................................... 28Table 3-4. Magnetic refrigerants selected for the 10 kg/day AMRL project.................. 29

Table 5-1. Impact of % on the overall FOM [%]..............................................................47Table 6-1. Specifications of the hydrogen liquefier. Refrigeration loop of a LN2/

magnetic hybrid LN2 / Magnetic hybrid. Parameters for r|i = 0.7, i =1-6, AThot=10K, ATwash= 3K, MHz, double pass.......................................................49

Table 6-2. Summary of stage temperatures for a 6-stage parallel/serial-type AMRL . Input hydrogen pressure of 0.5 MPa , Thot-300 K. Heat loads are given for rji = 0.7, i =1-6................................................................................................................ 52

Table 6-3. Specifications of the hydrogen liquefier refrigeration loop for r|i = 0.7, i =1-6, AThot=10 K, ATwash= 4 K, M Hz, and double pass per rotation..............52

5 of 55IT-169

WE-NET Phase I Report

1 INTRODUCTION

1.1 Background of Phase I project

In March 1998, the Cryofuel Systems group at the University of Victoria and the Institute for Hydrogen Research at the Universite du Quebec a Trois Rivieres reported on a feasibility study entitled “Evaluation of the Economic Feasibility of Magnetic Refrigeration Technology for Large-Scale Liquefaction of Hydrogen”. This report comparatively analyzed conventional gas-cycle liquefiers and regenerative magnetic cycle liquefiers for the production of 300 metric tons/day of LH% The results of the feasibility study indicated that a liquefier comprised of six active magnetic regenerative refrigerators in a parallel configuration could potentially offer a figure of merit (ratio of ideal work to real work rates) of 0.5-0.6 with competitive capital costs. The schematic of this six-stage magnetic liquefier is shown in Figure 1-1.

LH2 at 300K, 0.5MPa GH% at 20IK fl <%at 134K GH2 at 40K LHz at 27K

REF 4 REFSREF 1 REF 6REF 2 REF 3

Cooling at 300K Cooling at 300K Cooling at 300K Cooling at 300K Cooling at 300K Cooling at 300K

Figure 1-1. Six-stage parallel refrigerator concept

These results were promising enough to pursue the development of a laboratory prototype magnetic liquefier spanning from -300 K to -20 K for the purpose of liquefying hydrogen. In 2000, a proposal from CryoFuel Systems, Inc. with the two University groups as subcontractors was submitted for the design, fabrication, and testing of a laboratory prototype magnetic liquefier for LH% with a capacity of 10 kg/day was

Cryofuel Systems. Inc. Institute lor Hydrogen Research

It-170

Ciyohiel Systems Group

6 of 55

approved. The Institute of Applied Energy funded the first phase of a four-phase project toward this goal. Phase I has been completed and is the subject of this report.

The first phase of the research development project for the lOkg/day LH2 liquefier has two major tasks. They are:

• Review literature on magnetic refrigerant materials in 20-300 K range to determine the best choices for working materials based on selection templates created from our design experience with magnetic refrigerators. If sufficient published data were not available in the entire temperature range, new samples were to be prepared, analyzed for suitability, and then adiabatic temperature changes were to be measured as a minimum.

• Provide a conceptual design of a magnetic liquefier capable of producing 10 kg/day ofLH2.

A summary of the major results of this phase were to be presented orally to the review committee prior to submission of the draft report. One to two gram samples of the selected materials were to be delivered along with the final report of this phase of work.

1.2 Principles of Regenerative Magnetic Refrigeration and Liquefaction

It is well established that magnetic refrigeration theoretically offers the potential of higher efficiency and lower capital and operation costs than conventional liquefaction technologies1, 2’ 3. This technology has been used in research laboratories for over 75 years to reach temperatures below 1 K, but has only been applied to refrigeration and liquefaction applications in the temperature range from 1 K to 300 K over the past 25 years. The basic principle of the Carnot magnetic cycle is analogous to the basic principles of the Carnot gas cycle as illustrated in Figure 1-2. The four stages of the cycles are self explanatory in the figure. In magnetic cycles the refrigerants are solid magnetic materials whose entropy can be manipulated by an external magnetic field, e g., ferromagnets operated near their Curie temperatures. The rejection and absorption of heat are accomplished by the temperature change upon magnetization and demagnetization, respectively, of the magnetic refrigerants. The adiabatic temperature change of the gas depends upon the initial temperature and the pressure ratios of compression and expansion. The corresponding adiabatic temperature changes in the magnetic material depend on the ratio of the initial temperature to the magnetic ordering temperature and on the ratio of the initial and final magnetic field. Both working materials in Carnot cycles have limited temperature spans.

7 of 55

ft-171

1.3 Thermodynamic Work of Parallel and Series Configuration Liquefiers

In the March 1998 WE-NET report we analyzed both a series and a parallel configuration of a six-stage AMRL capable of 300 m tons/day of LFL In the series configuration it was shown that the efficiency of each stage had to be quite high (-0.90) to achieve an overall figure of merit (FOM) of -0.6 for the six-stage liquefier. The temperatures of each stage of the liquefier were optimized using the minimization of the work rate for the rather large process flow rate. In the parallel configuration it was shown that only the bottom stages had to have very high efficiency (-0.85) to achieve an overall FOM of-0.6 so this configuration was recommended as the superior configuration.In this present project the flow rate of 10 kg/day is much smaller than the 300,000 kg/day in the 1998 feasibility study Thus our initial step was to confirm the optimal stage temperature analyses that we did for the larger AMRL. The smaller thermal loads in the process stream, variable AMRR stage efficiencies, and the effect of the higher pressure assumed for the 10 kg/day process stream (0.5 MPa instead of 0.1 MPa) also had to be calculated to determine the thermal loads of each of the six stages as well as the optimal temperatures for the process stream temperatures of each AMRR.Our initial analysis assumed simple two-stage parallel and series refrigerators (as in Gifford McMahon or pulse tube cryocoolers) and produced some interesting insights This analysis was extended to a six-stage liquefier. We later found a similar analysis had been previously done by Kapitza as reported by Arkharof et al6 The two configurations of the two-stage refrigerators are illustrated in Figure 1-6 where the thermal loads are

parallel

T„i i t k

*?2Q, T,

6c T<:

Two stages

» enr-= '72 = 1 => wP=w,

: % =1 -* #wp<w\

1], =1 rr

In general i

T%>iV-0--%)

serial

Tii

t V

n Hir.i 11t

Qc Tc

Figure 1-6. Work rates for a serial and a parallel two-stage cryocooler.

12 of 55

LL —176

WE-NET Phase I Report

either pumped from a cold temperature to the hot sink temperature directly (the parallel configuration) or from a cold temperature to the next highest stage at an intermediate temperature and eventually to the hot sink temperature (the series configuration). The work required to pump heat from the load temperatures to the sink temperature was calculated for both configurations with the inclusion of relative efficiencies for each stage. The first result, which may not be totally obvious, is that if the relative efficiency of each stage is the same, the total work input for the refrigerators with the parallel and the series configurations are identical. Furthermore, if the efficiency of the upper stage is greater than that of the lower stage, the overall work rate of the series configuration is less than that of the parallel configuration. On the other hand, if the efficiency of the lower stage is greater than that of the upper stage, the overall work input is more for the series configuration than for the parallel configuration. This later case is exactly what we concluded in the WE-NET feasibility study. This analytical result for two stages was extended to a six-stage liquefier with the use of MathCAD.The optimal temperatures can be calculated for the series or parallel configurations with variable stage efficiencies by using the total work input for the liquefier as the parameter to be minimized. This technique was used to obtain both the thermal loads and the optimal stage temperatures as reported in the next section of this report.

Cn ohncl Svslems. hi Cryofuel Systems Group

13 of 55

Institute for Hydrogen Research

#-177

WE-NET Phase I Report

2 BASIS FOR 10KG/DAY H2 LIQUEFIER

2.1 Process Stream Specifications

For the proposed active magnetic regenerative liquefier there are six stages of refrigeration. These AMRR stages operate separately on the process stream of hydrogen gas so it is cooled and eventually liquefied. This configuration eliminates the complications of combining gaseous hydrogen as the working fluid as well as the process fluid as is done in many conventional gas cycle liquefiers. To proceed with the design of the AMRL, the conditions of the process stream must be specified. Table 2-1 summarizes these process stream specifications.

Table 2-1. Specifications of Process Stream of a 10 kg/day H2 liquefier

Feed StreamCapacity 10 kg per day = 1.157x10"^ kg/sPressure 0.5 MPaTemperature 300 KInitial Composition 25% Para, 75% Ortho by Volume

Outlet StreamCapacity 1.157X10-4 kg/sPressure « 0.5 MPaTemperature 27 KComposition 99.8% Para, 0.2% Ortho by Volume

System SpecificationsOrtho-Para Conversion Continuous at each stagePressure drop/parasitic heat leaks NegligibleIdeal liquefaction power 1312 W

This flow rate of hydrogen gas in the process stream can be converted into six thermal loads using the enthalpies of hydrogen calculated using validated cryogenic fluids property codes once the temperatures of the six process heat exchangers are known. The equilibrium ratio of ortho and para hydrogen must also be taken into account in the calculation of the thermal loads.

2.2 Optimal load temperatures of Six-Stage Parallel AMR Hydrogen Liquefier

The six independent AMRRs in the parallel AMRL configuration operate between the intermediate temperatures (Tcoid i, i= 1 -6) of the cycle. Each one pumps the thermal load from the process heat exchanger up to the heat sink at Thot=300 K. The bottom stageCnoFuel Systems. Etc. Ciyofuel Systems Group Institute for Hydrogen Research

14 of 55#-178

WE-NET Phase 1 Repeal

AMRR removes the latent and some sensible and ortho-para hydrogen conversion heat from the process stream at Tcoid 6 and expels it at Thot=300 K. The next refrigerator removes the sensible and ortho-para hydrogen conversion heat from the process stream at TCoid 5 and expels it at Thot=300 K. This procedure carries through the stages of this multistage system. Figure 1-1 shows a simple schematic of the process flow for the parallel AMRL.

By using the techniques described in section 1.3 of this report, the minimization of the total input work was used to calculate the best combination of the six heat exchanger temperatures. The initial estimate of the optimum stage temperatures for an ideal (assuming rj = 1 for all stages) 6-stage AMRL are listed in Table 2-2. It is important to note, that in general the optimum intermediate temperatures depend on the efficiencies of individual stages.

Table 2-2. Summary of optimum stage temperatures for an ideal 6-stage parallel-type AMRL for the input hydrogen pressure of 0.5 MPa and Thot=300 K. Heat loads are given for a lOkg/day liquefier.

Stage Temperature range |K| Load PWl1 200.8-300 161.22 134.4-300 102.83 90.2-300 70.74 60.3-300 56.35 40.3-300 44.86 27.0-300 71.5

The initial estimated thermal loads can be calculated with these temperatures. Once this is done, the efficiency of each AMRR stage can be estimated (our experience shows that -0.65 to -0.85 is are achievable values depending upon the quality of the regenerator design). A second iteration of the optimal temperatures and corresponding thermal loads can be done using these reduced efficiencies. The changes are within -10% of the initial estimates. A more detailed explanation of these effects is in later sections of this report.

2.3 Determination of the mass of regenerator material

To estimate the amount of magnetic refrigerants needed for regenerators in each AMRR several simplifying assumptions associated with the operation of the AMR cycle were required. The temperature difference across the hot heat exchanger, AThot, was calculated from the adiabatic temperature change of the magnetic refrigerant nearest the hot end of the regenerator (see the next section of this report for more details), AT&d, and the effects of heat transfer fluid washing during the AMR cycle, ATwaSh7 :

CnoFucl Systems. Inc. Tnstimie for Hydrogen ResearchCryohicl S\ stems Group

15 of 55It-179

WE-NET Phase 1 Report

ATAThot = AT^-—^ Equation 2-1

The solid-fluid temperature difference and parasitic loss due to residual helium in the regenerator were neglected. The temperature difference across the cold heat exchanger was obtained from:

ATcold-- AT,hot

1 +T TAhot ~ ■‘‘cold

Lcold

Equation 2-2

where q stands for the Carnot efficiency of a refrigeration stage. This relationship is required to satisfy the second law of thermodynamics and conservation of entropy flow.

The helium heat transfer fluid flow rate in each AMRR, m He, can be found from the heatload value calculated previously and listed in Table 2-2. (the helium heat capacity cue is almost independent of temperature for the temperatures used in this AMRL):

m HeCHeATcold Qbad • Equation 2-3

Finally, the mass of regenerator particles, Mmm, is obtained from the equation:

mH=cH,(Tho,-Tcoid) = Qree = mmmcmmATwijih, Equation 2-4

where = 2Mn,m f, f is the rotational frequency in Hertz, Cmm is the temperature andfield averaged heat capacity of the magnetic refrigerants. The multiplicative factor of two is a consequence of the fact that regenerator particles pass through the field twice during one execution of the cycle. Table 2-2 shows the calculations of the AMRL liquefier for a typical set of magnetic refrigerant adiabatic temperature changes (see the section of this report on adiabatic temperatures of selected magnetic refrigerants), densities, thermal loads from the process stream, and related parameters. Heat capacities Cmm were averaged over the temperature range Thot-Tcoid- Helium approach temperatures at the cold heat exchanger were taken to be 2 K below the specified process stream values. Note that the He heat exchange fluid flow rates are relatively small. The amounts of magnetic refrigerants required increase steadily from the first stage to the sixth (bottom) stage. The reasons for this large increase in magnetic refrigerant in the bottom stage are discussed further below.

CrvoFud S\stems. hi Institute for Hydrogen Research

#-180

Cryofucl Systems Group

16 of 55

WE-NET Phase I Report

Table 2-3. Specifications of the hydrogen liquefier refrigeration loop. Parameters are:

y\i = 0.7, i =1-6, AThot=10 K, ATWash= 4 K, f=l Hz, double pass per rotation

Stage

He temperatures at Cold HEX He flow rate

[kg/sec]Magnetic material

mass[kg]Tcoid[K] ATm,d[K]

1 199 5.9 0.00529 1.3

2 132 3.6 0.00546 2.5

3 88 2.3 0.00590 3.8

4 58 1.5 0.00724 5.6

5 38 1.0 0.00878 7.6

6 25 0.6 0.0212 20.0

2.4 Magnetic liquefier components

The proposed magnetic liquefier is composed of many subsystems. The most important components are listed below. The subsequent chapters describe the components in more details. Section 3 of this report discusses the magnetic refrigerants and regenerators. The material selection criteria are itemized before a list of suitable magnetic refrigerants is identified. The methods used to optimize the regenerator design are also summarized in this section.The major components or subsystems of the proposed AMRL liquefier (see the conceptual design section of this report) are listed below:1. Magnetic materials/active regenerators2. Chain assemblies

• chain drive mechanisms (mechanical drive, forces, friction, fatigue issues)• heat transfer fluid housings• fluid transfer systems-plumbing, valves, sealing, insulation, circulators, blowers

3. Magnet assemblies• superconducting magnets• conduction cooling, cryocoolers, compressors• power supplies, high temperature leads, persistent-mode switches• cold box (single-walled dewar) and structure for magnets

OnoFuel S\ stems. Inc. Cryofucl Systems Group

17 of 55Institute Ibr Hydrogen Research

ft— 181

WE-NET Phase I Report

4. System integration, heat exchanger assemblies• cold box for He/H2 heat exchangers• He/H20 heat exchangers• He/H2 heat exchangers with ortho to para hydrogen conversion• H2 supply and LH2 storage

5. Auxiliary systems• GENSET for production of electrical power for the AMRL• vacuum pumping station and cryopump for long-term operation

6. Instrumentation and control• temperature, pressure, magnetic field, velocity, loads, power, and flow rate gauges• safety monitors, process stream control, level and pump controls• control panel, DAQ racks, PC and PC interface/software.

These components and subsystems other than the magnetic refrigerants and regenerators are integrated into the conceptual design for the 10 kg/day AMRL without detailed discussion as they are outside the scope of the Phase I project.

Cn-oEuel Svstcms. Inc. Institute for Hydrogen Research

ft —182

Cryoluel Systems Group

18 of 55

* non toxic" non pyrophoric

2. Material preparation/properties criteriaa) mechanical properties

" high tensile and yield strength,* high elasticity/elongation/ductility

b) magnetic properties* large magnetocaloric effect as in a large adiabatic temperature change » magnetically 'soff- no hysteresis" simple type of ordering

c) thermal properties' high thermal capacity ' high thermal conductivity a low thermal expansion/contraction

d) electrical properties» low electrical conductivity (to avoid eddy currents problem)

3. Regenerator fabrication criteria* high specific area ( - 10,000 m^/nri)" appropriate AT vs. T characteristics* strong mechanically3 should be ductilea should be monolithic to withstand cyclic mechanical/magnetic loads a low pressure drop (low friction losses)° high radial and low longitudinal (axial) conductivity « mass producible

3.2 Adiabatic Temperature Change Data

The high magnetocaloric (MCE) effect directly observed as a large adiabatic temperature change is obviously one of the most important properties of a good AMR material. These data are required to calculate the performance of the ARML as indicated in section 2 of this report. There are three recent, credible and comprehensive reviews of potential magnetic refrigerants. The most recent one appeared8 in October 2000. It mainly discusses the phenomenon of the MCE along with recent progress and the future needs in both the characterization and exploration of new magnetic materials with respect to their magnetocaloric properties. It only lists the most promising refrigerants in the temperature range 10 K to 300 K. The second publication9, which also appeared late last year, is the most extensive review of about 400 papers related to MCE and the materials section is quite complete. The third publication1*5 appeared in 1998 and also identifies the most promising systems in the lower end of the hydrogen liquefaction temperature range. The three reviews propose similar sets of candidate materials for use as active magnetic refrigerants from room temperature down to ~20 K. Their results will be briefly presented in the next sections. Another dozen or so publications related to MCE in the temperature

20 of 55fj" -184

range >20 K appeared after the last review. Five are about the R5(SixGei.x)4 materials (R=rare earth), 3 about pervoskite manganites, 3 about intermetallic compounds, one about a ternary Gd compound. The results from these publications are summarized below in this report for several different temperature ranges (chosen only because of the prior literature selection of these ranges).

WE-NET Phase I Report

3.3 Rare-earth/transition metal intermetallic compounds: 20 K to 100 K

Materials development aimed at more efficient cryocooler regenerator materials demonstrated the high magnetic entropy change of these special alloys in the low temperature range. They are generally RT%, where R = rare earth and T = Al, Ni and Co. The ones with the largest adiabatic temperature changes in this temperature range are:

• RAI2, where R = Er, Ho, Dy, and their alloys DyxEri.x, 0<x<l.

• RNi2, where R = Gd, Dy, and Ho.• RC02, where R = Er11, Ho, Dy, and12 Ero.gYo^.

• GdPd and13 GdPdSi3.

• Gd5(SixGei.x)4, where 0 < x < 0.1.

The adiabatic temperature changes of the above materials are shown in Figure 3-28 and As one can see, the temperature range 20 K to 100 K is well covered with suitable refrigerants (ATad > 5 K with a practical field strength), which show an adiabatic temperature change with field of about 1-2 K/T. The figures also show the reduction of the adiabatic temperature change with increasing temperature, which is associated with the rise of the lattice heat capacity of the materials.

The second evidence of the MCE is the magnetic entropy as a function of temperature and magnetic field (see Figure 3-39). These data are not directly measured but are usually derived from magnetization measurements as a function of temperature and magnetic field These data do indicate potential magnetic refrigerants if the entropy change is large and sharply focused in a narrow temperature range. These data require assumptions to use in the design of an AMRL so it is preferable to measure the adiabatic temperature change directly.

CrvoFucl Systems. Inc. Institute for Hydrogen ResearchCryofuel Systems Group

21 of 55ft —185

WE-NET Phase I Report

0 10 20 30 40 SO 60 70 80 90 10CTemperature (K)

Figure 3-2. The ATad of several materials for a AH from 0 to 7.5 T.

Figure 3-3. ASm of selected compounds in a field of 7 Tesla.

CryoFnel Systems. Inc. Institute for Hydrogen ResearchCryofuel Systems Group

22 of 55

WE-NET Phase I Repon

Notice in Fig. 3-3 the relatively high magnetic entropy of the RC02 series of intermetallic compounds. The MCE extend well above 100 K. The large magnetic entropy change of E1C02 is due to a first-order transition at 32 K, and ATad is about11 12 K for a 7 Tesla applied field. The substitution12 of 20% Y for Er lowers the transition temperature and leads to a reduction of the magnetic entropy change by 20-30%. Similar effects were observed14 with the GdPdSig material relative to GdPd.

Another promising series of intermetallic compounds in the temperature range 20 to 100 K is the Gd5(SixGei.x)4, which also exhibits a first order transition. Recent measurements14 on the composition (x ~ 0.09) show a ATad of about 9 K at 5 Tesla, the transition occurring around 72 K. This value obtained by direct measurement is somewhat lower than what was obtained15 earlier by indirect measurement (via magnetization - magnetic entropy - heat capacity) for the same composition, however it still is much higher than that of the ferromagnetic GdNi], which displays a maximum about this temperature.

3.4 Rare-earth/transition metal amorphous alloys and Gds(SixGei-x)4 compound: 100 K to 200 K

There are very few reported materials that have a suitable adiabatic temperature change in this temperature range Joint studies by the UVic and the UQTR groups show that amorphous ribbons R70T30 (where R = Gd, Dy, and T = Cu, Ni, and FeNi), are not particularly useful magnetic refrigerants in this temperature range because they do not exhibit a large adiabatic temperature range The 70:30 composition was chosen for the following reason: a) this composition is located near a eutectic point on the relevant phase diagrams, thus it is easier to make the alloys amorphous; b) the rare-earth concentration is still relatively high, thus a significant cooling effect can be expected; and c) the transition temperatures are in the range of interest.

Table 3-1 Magnetocaloric Properties of Selected Amorphous Alloys16 in 7T Applied Field

Alloy TC(K)±3K ASm (J/kg K)±10 %

Gd?oFei2Nii8 170.0 7.71

Gd?oCu3o 144.0 8.19

Gd?oNi3o 130.0 11.5

Dy7oFei2Nijg 70.0 9.5

Dy7oNi3o 45.5 107

CrvoFnel $ stems. Inc. Institute for Hydrogen ResearchCn ohiel Systems Group

23 of 55#-187

WE-NET Phase I Rcporl

field from 0 to 5 T—O— x •» 0" # x ■ 0.0375-O— X - 0.0825

Q x - 0.225ti -V- x-0.2525 b —x - 0.43

K —O— x « 0.5

50 100 150 200 250 300 350Temperature (K)

10- 60- 130- 230- 260- 270SOK 90K 1S5K 280K 305K 315KTemperature range (not to scale)

Figure 3-4. ATad, for AH = 5 T, calculated from corrected heat capacity data Figure 3-5. Regenerator efficiency compared with that of best-known materials

Refrigerants in this temperature range can be found in the series of intermetallic Gd5(SixGei.x)4 compounds with 0.1 <x<0.4. Direct adiabatic temperature change data in this range were not widely available so some samples were made and measured.

3.5 Gds(SixGei-x)4 and other compounds: 200 K to 300 K

In this temperature range a family of very promising refrigerants is the Gd5(SixGei_x)4 alloys for 0.04 < x < 0.5 as already shown in Figs. 3 and 4. Recent measurements17 of the direct adiabatic temperature change carried out by the UQTR-UVic group on GdsSiiGe] samples (Tc ~ 276 K) show a large adiabatic temperature change but smaller than previously reported. However, they also showed that the adiabatic temperature change of the 5:2:2 composition lies in the same range as that of Gd. These differences illustrate the complexities of preparing pure samples and the thermodynamics of first order transitions. The nature of the first-order antiferromagnetic to ferromagnetic transition in

CrvoFuel Systems. Inc Institute for Hydrogen Research

f't —188

Cryofue! Systems Group

24 of 55

WE-NbT Phase I Report

the Ge-rich compounds were studied in details18 particularly in the Gd5(SixGei-x)4 system19, 20, 21.

The third class of materials suggested by others as working substances in magnetic refrigeration at sub room temperature are the perovskite manganites. However, recent studies22, 23, 24 on the LaxCai-xMnC>3 and the LaxSri_xMn03 show a small adiabatic temperature change compared to Gd. These are not suitable for the design.

3.6 Rare-earth elements and rare-earth alloys: 200 K to 300 K

Gadolinium is an excellent magnetic refrigerant in this temperature range and has been generally accepted as the reference material against which other refrigerants are compared. It has a simple ferromagnetic ordering temperature of -292 K and exhibits an adiabatic temperature change of-2 K/Tesla over practical magnetic field strengths (up to -8 T). Gadolinium has become the most extensively studied magnetic refrigerant because it is considered to be an excellent refrigerant for refrigeration and air conditioning applications near room temperature. Another excellent rare earth refrigerant is pure Dy with a ATad of about 12 K at around 180 K for an applied field of 7 Tesla. Tb is a third good magnetocaloric lanthanide although it is significantly more expensive than either Gd or Dy. Other potential rare earth elemental refrigerants such as Ho, Er, and Nd have more complex magnetic ordering phenomenon that reduces their adiabatic temperature changes.Introduction of alloying additions of another lanthanide metal reduces the magnetic- ordering temperature of Gd without much effect on the total magnetic moment per unit volume and the change in magnetization with temperature near a sharp ordering temperature. Homogeneous alloys of Gd with other rare earth metals (Tb, Er, Dy, Ho) or Y make superior magnetic refrigerants as well. Despite antiferromagnetic ordering in pure Dy, the Gdi.xDyx alloys generally retain simple ferromagnetic behavior even at x=0.7025 (see also Figure 3-7). The Gd%.xDyx alloys are easy to make and exhibit large adiabatic temperatures changes from pure Gd to pure Dy and therefore provide an excellent range of magnetic refrigerants over this higher temperature range. These are the refrigerants used by UVic in their AMRL-1 magnetic liquefier for natural gas

CryoFucI Systems. Inc Institute lor Hydrogen ResearchCryofuel Systems Group

25 of 55#-189

WE-NET Phase I Report

T(K)

Figure 3-6. Maximum ASm as a function of the transition temperature for the Gd-Y system.

Table 3-2 Transition temperature and magnetic entropy change as a function of Y content in the Gd-Y system in 7 T applied field

Y (at%) Tc (K) ± 3 K ASm (J/kgK) ± 10 %0 293.0 11.84.37 289.0 12.99.62 274.0 12.019.7 252.5 12.925.2 235.0 11.528.8 234.0 9.331.7 216.0 11.536.5 200.0 9.540.1 196.0 10.344.9 180.0 9,547.3 182.0 10.049.5 170.0 7.552.5 165.0 6.557.2 160.0 4.066.9 137.5 2.8

OrvoFucI Svslems. Inc.

ft- 190

Cryofucl Systems Group

26 of 55Institute (or Hydrogen Research

The addition of non-magnetic Y to Gd reduces the adiabatic temperature change of Gd gradually but simultaneously decreases the magnetic ordering temperature so the simple ferromagnetism of Gd is preserved down to about 200 K. Relevant results10 are summarized in Table 3-2. Figure 3-6 shows the maximal magnetic entropy change as a function of the transition temperature for the Gd-Y system. As the figure clearly demonstrates, the magnetic entropy change remains fairly high down to transition temperatures of about 200 K, and then it rapidly decreases.

3.7 Material selections and recommendations

The literature survey shows a wide range of proven candidates that display reversible transitions and significant adiabatic temperature change over the entire range of 20 K to 300 K Table 3-3 lists some of the materials with large adiabatic temperature changes that we considered. Of particular note are the Gd5(SixGei_x)4 alloys have considerable promise as magnetic refrigerants. In addition to their large adiabatic temperature change with modest fields, they are continuously tunable over most of the liquefaction range of hydrogen. There are, however, preparation/fabrication concerns to be understood. These include sensitivity to raw material purity, phase reproducibility, an inexpensive way of preparing large quantities, and the fabrication of the materials into useful regenerator geometries. The brittle nature of these compounds and the narrower delta T vs. T were the primary reasons why we selected the GdxDyi.x alloy series as our preferred choice in higher temperature ranges. The inter rare-earth element alloys are homogeneous and retain the desirable properties of the middle rare earth series. In the intermediate temperature regions, these materials are the best choice by far so more work will have to be done on the fabrication of brittle materials into high performance regenerator geometries.

To down select from this list of good materials we used the criteria listed earlier. Of particular importance was the magnitude of the adiabatic temperature change. If two materials had approximately the same value, we preferred the more ductile alloys that were easier to prepare and fabricate over intermetallic compounds. Table 3-4 includes the materials we recommend for the lOkg/day AMRL project. Of particular note are the GdxDyi.x alloys where the adiabatic temperature changes were measured by UQTR. They are slightly superior in our opinion to the GdxY%.x alloys and the Gd5(SixGei.x)4 intermetallic compounds. Figure 3-7 shows the adiabatic temperature changes for the materials we selected. The only slight gap in the experimental data for the adiabatic temperature span is near 110 K. Zhang26 reported a high value of ASM(AH=5T)=14.3/kg/K for TbA# Although the author did not measure the adiabatic temperature change directly, TbAl] is a potential candidate to fill in the gap in the 100- 120 K region. Another option is to prepare and characterize Gd5(SixGei.x)4 compounds with 0.15<x<0.225.

27 of 55#-191

Table 3-4, Magnetic refrigerants selected for the 10 kg/day AMRL project

Material

Temp, range with

AT(AH=5T) >

5K

OrderingTemp.

Tc

Adiabatictemperature

changeATad(AH=5T)

Heat capacity

CH

Thermalconductivity

at 293 KDensity

P

Effectivemagneticmoment

pelt

[K] IK] [K] [W/nVK] [kg/m3] pB per atom

ErAln 10-35 12 12 30 J/mol/K @ 70K 30 for YA12*** 6208 9.2-9.56

lA’o 25E10 75AI2 10-40 24 8 35 J/mol/K @ 70K 25 ♦** 6119 95 ******

Oyo si>Eru S0AI2 25-50 38 7 35 J/mol/K @70K 25 6086 9.5 ******

nyo.7i>Ei\) 30AI2 35-60 45 7 35 J/mol/K @ 70K 25 *** 6060 9 5 ******___________

DyAl; 50-75 63 7 35 J/mol/K @70K 23 for LuAl2 *** 5966 9.12-10.7

Gd5(Sj0o825(3§3;9r75)4 65-80 75 15 36 J/mol/K @ 300K * 10-20 **** 7955 7.52

80-90 90 7 36 J/mol/K @ 300K * 10-20 +*** 7888 7.52 ******

115-140 120 11 36 J/mol/K @ 300K * 10-20 **** 7801 7.52 ******1

Gd5 (S16 252sGco 7475)4 130-150 135 12 36 J/mol/K @ 300K * 10-20 **** 7774 7.51

Dy 140-200 180 9 173 J/kg/K @293 K 10.7 8551 10.33

Gdo.i8Dyo.82 180-220 195 9 183 J/kg/K @293K** 10 ***** 8443 9.80 ******

Gdo.3oDyo.64 210-255 234 9.5 193 J/kg/K @293K ** 10 ***** 8316 9.25 ******

Gdo.7jDyo 2. 235-315 266 11 215 J/kg/K @293K ** 10 ***** 8075 8.14 ******

Gd 260-350 293 12 230 J/K/mol @293K 10.5 7901 7.63

the value for Gd5(Sio.5Geo.5)4estimated from heat capacities of Dy and Gd (linear interpolation)estimated from thermal conductivities of YAI2 and LAI2the Gd5(SixGei-x)4 series is a relatively new series of compounds.We think that ic~10-20W/m/K.estimated from thermal conductivities of Dy and Gdestimated from effective magnetic moments of ErAl2 and DyAk,Gd5(Sio.o825Geo.9i75)4 and Gd5 (Sio.2525Ge0.7475k Dy and Gd , respectively.

Temperature ranges with AT(AH=5T) > 5K were approximated from ATacj vs. T graphs. Linear scaling was used when AH ± 5T

29 of 55

#-193

In real regenerators internal losses occur. They result from finite heat transfer coefficients, pressure drop, friction, axial heat conduction, eddy current flow etc. To minimize total entropy creation in a real regenerator an extensive optimization of a design has to be carried out. The optimization routine developed by the Cryofuel Systems Group at the University of Victoria be summarized as follows:

1. For a given regenerator geometry variables domain is defined (typical variables: particle/tube/hole diameter, regenerator aspect ratio, operating frequency etc.)

2. For each variable configuration the entropy rate created in loss mechanisms is calculated.

3. The total regenerator entropy creation rate, Sreg, is found:

heat transfer" & i Sno-flow~^~ Seddy currents Equation 3-1

4

5.

The pressure drop term is not included in Sreg, because it is paid for in the fluid pump, not in the regenerator (see Equation 5-1).The efficiency of a regenerator is calculated from:

Ireg ~Wreversible minimum work required

a71hot

\ Tcold J

w actualactual work

Q<L

V Tcoid

Equation 3-2

The optimal design conditions are found to maximize rjreg .

The modeling of thermal efficiency of regenerators with various temperature spans and geometries including all major sources of irreversible entropy production has been done The best results tend to come from perforated sheets geometries giving relative efficiencies of -0.92 in the 200 K to 300 K and the 20 K to 80 K ranges. Other good geometries such as small parallel wires over similar temperature spans have relative efficiencies of -0.90. Particle beds tend to have relative efficiencies of-0.85. Some of these calculations have been validated with tests in small regenerators that allow measurement of the heat transfer, the pressure drop, and the longitudinal conduction contributions to the irreversible entropy. Some other general results of this methodology include that the relative efficiency from the heat transfer irreversible entropy depends linearly upon the temperature span of the regenerator and inversely on the effectiveness or Ntu of the regenerator times the adiabatic temperature change at the cold end of the regeneratorLayered magnetic particle beds have been tested in cryogenic Gifford McMahon refrigerators. These tests have only measured an integral performance of such regenerators rather than a quantitative result. Mr. Andrew Rowe, a PhD student with Dr. Barclay at UVic is doing experiments with layered regenerators as part of his thesis work.

32 of 55

#-196

WE-NET Phase I Repo#

4 CONCEPTUAL DESIGN OF MAGNETIC LIQUEFIER FOR HYDROGEN

4.1 General considerations

The primary goal of this project is to successfully design, fabricate and test a laboratory prototype for the liquefaction of hydrogen at a rate of 10 kg/day. This prototype will have six AMRR stages coupled in an efficient configuration. Note that as a result of this Phase I project, we recommend a series/parallel combination of AMRRs stages rather than the completely parallel configuration that we originally suggested in the March 1998 WE-NET report - see conclusions and recommendations section of this report. To show the analysis of the parallel configuration that led to our conclusions, we summarize the conceptual design of a six-stage parallel configuration AMRL.

The specific design features of a highly efficient AMRR stage were outlined in the introduction to this report. These included high frequency operation to increase power density, use of-6 T solenoidal magnets, use of work recovery mechanisms, use of highly effective regenerators, etc Besides these general design considerations, all subsystems of an AMRR/AMRL previously listed in section 2.4 were considered in an integrated design.

The selected magnetic materials require a magnetic field of ~6 T to achieve large delta Ts necessary for high efficiency AMRR operation. The magnetic refrigerants have to be layered into highly effective regenerator geometries such as fine particles. For continuous operation with persistent mode solenoidal magnets, a belt or chain of regenerators was desirable although there may be other configurations that use a rigid wheel such as used in the Natural Gas liquefier at UVic. We selected a chain-saw type of belt as the case to develop in detail in this report. Some of the components of the regenerator subsystem will be subject to high stresses and fatigue due to the cyclic high magnetic forces as the materials enter and leave the magnetic field.

Low temperature superconducting magnets have to be used until high temperature coils become available; permanent magnets do not provide enough magnetic field strength. The superconducting magnets need to be cooled to -4 K to achieve high effective current densities in the windings providing inexpensive magnets. The magnets will be conduction cooled to eliminate any cryogen use and associated complicated logistics. Proper containment of the magnetic flux requires flux return elements to reduce the stray magnetic field. To thermally isolate the magnets, they must be suspended in a high vacuum to eliminate convective heat transfer. The various components of the cooled magnet subsystem such as leads, persistent mode switches, thermal shields, etc. need to be mounted and held in position using high strength support materials with low thermal conductivity. Superinsulation must be used within the cold box to prevent radiative heat transfer and keep the thermal load on the cryocoolers to -1 W or less. Each cold magnet in the evacuated chamber will be thermally isolated from the housing containing the belt of magnetic regenerative materials and high pressure helium gas operating at temperatures from ~25 K to -300 K.

33 of 55

CryoFucl Systems. Inc Cryofncl Systems Group Institute Tor Hydrogen Research

ft —197

WE-NET Phase 1 Report

To optimize the efficiency of the prototype AMRL, several AMRR stages need to be optimized for the best integrated performance. This means that each stage has to be optimized for its specific temperature span to provide a peak overall efficiency. The AMRR stages combined together provide the required cooling power over the temperature range of -300 K to ~20 K. Each AMRR uses a gaseous helium-circulating loop with process stream and heat sink heat exchangers for each of the stages. The hydrogen process stream links each of the six stages together.

We considered size, versatility, and ease of use, modular design, and reliable construction. Close but practical tolerances within the housing and magnet subsystems were important. Each of the stages of liquefaction is able to run on its own to troubleshoot and modify the individual components. This allows initial testing and a step-by-step buildup of the overall system. To access any of the six stages, only the one stage needs to be removed from the overall housing. This reduces the amount of

The design incorporates a separate vacuum chamber on top of the main stainless vacuum vessel, which is designed to house all of the heat sink exchangers. This separate containment allows easy changes and/or modification of the heat exchanger configuration without modifying the rest of the system. It is possible to run the system either in a parallel or series configuration as well as a combination of these.

4.2 Chain-saw/single belt design of a single-stage AMRR

Figure 4-1 shows the major components of an AMRR stage. The belt of regenerators is further illustrated in Figure 4-2 to show the flow and no flow regions and the way that we envision layering the magnetic refrigerants into the regenerators. This configuration allows the housing and the chain-saw belt subsystem to be separated from the magnet subsystem.

The primary reason for the ‘chain saw’ or ‘belt’ configuration is the use of solenoidal superconducting magnets. The rigid wheel is a good choice for an AMRR if the ’tokamak’ geometry is used (as described in the original WE-NET report) but no one has done that yet. It also requires a ‘split wheel’, bearing, drive, and housing to be installed. These design issues may be solvable. However, the unknown of this choice suggest that it isn’t the best choice for a lOkg/day unit being done with a restricted budget for design and materials/components. The chain style of rotary active magnetic regenerator is expected to present less complex seal problems than a rotary wheel design and it also allows the use of the least expensive magnets.

The seal problems for either the rigid wheel or a belt or chain saw are tough issues. We have learned a great deal about rigid wheel seals at UVic that we think can be applied to belt (straight or linear) moving seals.

CrvoFuel Svslcms. In, Institute for H\drogen Research

f'f —198

Cryofucl Systems Group

34 of 55

WF-NFT Phase I Report

Figure 4-5. Exploded view of the Manifold/Seal assembly

of the device is increased, the effects of hot and cold gas mixing can result in very little cooling power or a lower than expected temperature span.As illustrated in Figure 4-5, the helium flow is restricted to three bins at a time. The design uses a manifold with an internal spring-loaded seal -see Figure 4-6. The seals are held in constant contact with the openings of the bins by four springs inserted between the manifold and the seal. The flow is transferred between the manifold and seal by means of a stainless steel bellows. This design allows the seal to move slightly to compensate for any side-to-side movement of the bins, while not affecting the rigidly mounted manifold.

The exploded view of the manifold, seal, springs and the bellows lays out the locations of each component with respect to each other. The manifold and bellows are made of stainless steel, while the seal is made of G-10 with a Teflon coating.

The chain assembly fits into the magnet bore. The major components of a single magnet system are visible in Figure 4-6. Also shown is a 4 K GM cryocooler mounted on the top

( ryoFuel S\ stems. luc. l ryohicl Systems Group lust mile for Hulro^cu Research

39 of 55

#-203

WE-NET Phase 1 Report

Figure 4-9. Dimensions of the magnet cold box assembly.

CryoFucl Systems. Im Institute ibr Hydrogen ResearchCryofnel Systems Gronj)

43 of 55#-207

L3m

WE-NET Phase I Repoit

5 EFFICIENCY ANALYSIS OF AN AMRL STAGE AND FOM OF A LIQUEFIER

5.1 Efficiency of an AMRR stage

The efficiency of the AMRR stage depends on numerous specific assumptions of the design. Figures 5-1 and 5-2 show temperatures, pressures, and flow rate values for the bottom AMRR stage derived for a packed particle regenerator. Although the most important optimization factor is the individual magnetic regenerator efficiency, a thorough AMRR stage analysis has to include additional effects.The same optimization method used for a single regenerator can be applied to help optimize the design of an AMRR stage with a complete belt of regenerators. The helium fluid flow rates in the “flow” regions of the belt will be the same as in each regenerator from the above design but the flow rates in the external ducts and piping will have to include the total He mass flow rate for that particular AMRR. The pumping power has already been included in the single regenerator optimization. The longitudinal heat leak via conduction will produce more entropy because the temperature differences across the regenerators exist throughout the entire belt of regenerator bins whether there is flow or no flow of heat transfer fluid. There will also be friction between the seals and the moving regenerators in the duct regions of the belt and at the drive sprocket for the belt. There will also be a finite temperature approach in each process heat exchanger that will generate entropy. The efficiency of a stage is derived from:

stageWreversible minimum work required

0C71hot

\Tcold-1

Jyy actual actual work \

x hot

\Tcdd-1 + Thot Samrr

J

Equation 5-1

The calculation of Samrr for a single stage includes terms:

S AMRR — S reg ~h S pressure drop “H Scold HEX 4" Sother ■ Equation 5-2

Sreg stands for the total regenerator contribution to the AMRR entropy creation

rate, Samrr . During a single cycle the entire helium flow passes through the regenerator

two times, and Spressure drop includes helium pressure drop in the entire loop. Scmhex accounts for the cold heat exchange entropy. The rate created by other mechanisms,

Sother includes magnetic work and external heat transfer losses, seal friction terms, chain drive inefficiencies etc.

OryoFuel Systems. Inc. Cryofuel Systems Group Institute for Hydrogen Research

44 of 55#-208

WE-N ET Phase 1 Report

Table 5-1. Impact of % on the overall FOM [%].

ni 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .8

T|2 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .8

*13 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .7

Tl4 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .7

r|5 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .6 .6 .6

ri6 1 .9 .8 .7 .9 .8 .7 .6 .8 .7 .6 .7 .6 .5 .6 .5 .6

FOM 82 78 73 68 73 69 65 60 65 61 57 57 53 48 52 47 52

One can estimate the thermodynamic efficiency (Figure of Merit) of the liquefier from:

FOM =Wu+ %

AMR stages v

* ( *

W p + l S reg+ S coldl HEX

Equation 5-3

where Wid is the ideal liquefaction power (for a lOkg/day H2 liquefier Wid- 1312W),

WP is the helium pump power (we estimated the total W P from the pressure drop

calculations; WP - 500W ). Cold heat exchanger losses ~ 250W were determinedAMR stages

from know temperature distributions For regenerator efficiencies of - 0.8 (total loss of -550 W), Equation 5-3 gives FOM= 0 5,

One primary reason the estimated thermodynamic efficiency for a lOkg/day liquefier is of the order of 0.5 is that the fixed irreversible entropy sources are larger in proportion to the work terms, e g. FOM=Wid/(Wreai+ASirrxThot), and some of the terms in ASm- do not scale down in a linear fashion and tend to become ‘fixed’. Hence, an FOM of 0.52- 0.69 for a big (300,000kg/day) liquefier is much easier to achieve than FOM of 0.5 for a lOkg/day liquefier. This is common for all liquefiers Additional loss sources: helium pump inefficiencies, motor inefficiencies , heat exchangers losses , seals and insulation losses, magnet system losses (GM cooler, power supplies etc ) were not included in Equation 5-3. The relative contribution of parasitic radiative and conductive (e g structural support) heat leaks to the overall FOM of a liquefier diminishes with increasing cooling capacity of liquefiers because parasitic heat leaks do not scale linearly with the magnetic liquefier size.

CryoFucl Systems. Inc. Cryofucf Systems Group

47 of 55

Institute for Hydrogen Research

#-211

6 AMRL DEVELOPMENT COST ESTIMATE

WE-NET Phase I Report

6.1 Development Cost Estimate for a six-stage Parallel Magnetic Liquefier

The preliminary design of an all-magnetic hydrogen liquefier was used for the material and equipment cost estimate. To calculate the amount of magnetic refrigerants needed we assumed the same efficiency for each stage (t|amrr=0.7). Note that the efficiency of the bottom stage drives the overall mass requirement. Under this assumption we need 40- 45 kg of materials. For higher efficiencies we will need less than 40 kg. The overall cost of raw materials, preparation and processing into high performance regenerators can be as high as $5,000 per kg. To operate the six-magnet array power supplies, high temperature leads and at least two cryocoolers are necessary The six-stage AMRL requires also heat exchangers, H2 supply and LH2 storage systems, two cold boxes (one for magnets, one for heat exchangers). A number of instrumentation and control items will be integrated with the unit temperature, pressure, magnetic field, velocity, loads, power, and flow rate gauges, safety monitors, process stream control, level and pump controls, control panel, DAQ racks, PC and PC interface/software) The costs of the most important components are summarized below:

Materials/Equipment:

• regenerator bins/chain assembly $ 25,000• magnetic materials: 40 kg $200,000• HEX fluid subsystems $ 30,000• 6T Magnets: total 6, $150,000• Cryocoolers: total 2, $ 70,000• Power Supplies, high temperature leads (HTLs): $ 60,000• Cold-Box, total 2: $ 30,000• Instrumentation and Control(hardware and software, safety) $ 65,000

• H2 supply and LH2 storage: $ 5,000Total $635,000

We have built several liquid natural gas systems and have significant experience so we know these estimates are reasonable.

6.2 Design improvements

There are several important observations we can make from the conceptual design analysis. The first one is that the magnetic refrigerants are not being used to maximum effectiveness in a fully parallel AMRL. For example, the ATcoid for the sixth stage spanning from ~25K to -300K in only ~1K even if ATad is ~15K . The ATcoid determines

CryoFnel Systems. In Crvofhcl S\ stems Group

48 of 55

Institute for Hydrogen Research

#-212

WE-NET Phase I Report

the amount of magnetic refrigerant in the regenerator (as shown earlier). Hence, it is necessary to reduce the span of each AMRR stage such that (Thot-Tcoid)AMR&/ ATcoid is -25-50 rather than -275 as in the 25K-300K stage. This can be done making some of the AMRR stages in series rather than in parallel.We have done preliminary analysis of two configurations.

• Liquid Nitrogen Magnetic Hybrid Liquefier• Magnetic Parallel / Serial AMRR Combination

6.2.1 Liquid Nitrogen Magnetic Hybrid Liquefier

A hybrid design uses liquid nitrogen supplied from an independent source as the pre­cooling mechanism for the gaseous hydrogen stream. Liquid nitrogen is also used as the heat sink for the three parallel magnetic stages used to cool and liquefy the process stream from 77K to 27K. The cold nitrogen gas produced by evaporation of the LN% can be used to cool the process stream of hydrogen in a continuous heat exchanger.The overall thermodynamic efficiency of such a hybrid liquefier is limited by the efficiency of producing liquid nitrogen (-40%). Thus, even if the magnetic stages were -90 % efficient, the overall efficiency of this hybrid liquefier is less than 40 % of ideal. The advantage of a hybrid design is the small amount of magnetic materials needed (-4- 5kg) - see Table 6-1. Moreover, since the maximum temperature range for a stage is (77K-25K)=52K, only 3-4 different materials can be used. The reduction of the number of magnetic refrigerants simplifies the regenerator design.

Table 6-1. Specifications of the hydrogen liquefier. Refrigeration loop of a LN2 / magnetic hybrid LN2/ Magnetic hybrid. Parameters for rfi = 0.7, i =1-6, AThot=10K, ATwash= 3K, f=lHz, double pass

Stage Load

He temperatures at Cold HEX He flow rate

[kg/sec]

Magnetic material

mass [kg]Tcoid[K] ATcoid[K]

1 46.90 52 6.22 0.001451 0.35

2 36.30 36 4.05 0.001722 0.75

3 66.35 25 2.74 0.004652 2.50

The overall cost of a hybrid liquefier is considerably smaller than the cost of an all- magnetic liquefier. First, only -4-5 kg of magnetic refrigerants is needed. Second, three

CryoFud Systems. Inc. Cryofud Systems Group

49 of 55

Institute for Hydrogen Research

#-213

WE-NET Phase I Report

magnets and one cryocooler would be used. An additional item, namely the LN2 system, is relatively inexpensive. The overall price tag compared to the all-magnetic liquefier is 43% lower:

Materials/Equipment

regenerator bins/chain assembly $ 25,000LN2 system $ 25,000magnetic materials: 5 kg $ 25,000HEX fluid subsystems $ 30,0006T Magnets: total 3, $ 90,000Cryocoolers: total 1, $ 35,000Power Supplies, HTLs: $ 30,000Cold-Box, total 2: $ 30,000Instrumentation and Control(hardware and software, safety) $ 65,000H% supply and LH2 storage: $ 5,000

Total: $360,000

We appreciate the goal of this project is to demonstrate an all-magnetic liquefier so we are not going to pursue to LN2 precooled design further.

6.2.2 Magnetic Parallel/Serial Combination

One very interesting alternative that uses the refrigerant better is a magnetic parallel/serial combination. Figure 6.2 illustrates the combination concept. The bottom (6th) stage removes the process stream heat load at Toid 6 and expels it to the next refrigerator at Thot 6 = Tcoid 5 • Stages 4 and 5 transfer heat from the process stream and the stage directly below them to the stage directly above them. Refrigerators 1-3 expel heat at Thot=300 K - as in the all-parallel AMRL. The most important feature of the design is more efficient utilization of the magnetocaloric effect at the bottom stages. As we recall (Equation 2-1 and Equation 2-2)

ATAT^=AT„—^ , and AT^=—

1+

AT,hot

1 f Thot"Tcold

Lcold J

Since for the stages in series we have Thot/Tcoid ~1.5, the temperature difference across the cold heat exchanger can reach ATcoid - 6K (stages 4-6). By contrast, for the all parallel configuration ATcoid - 1.5K, 1.0K, and 0.6K, respectively (recall Table 2-3). ATcoid determines the amount of magnetic refrigerant in the regenerator The higher the value of ATcoid , the smaller amount of refrigerants needed. Hence, it is beneficial to reduce the temperature span of each AMRR stage.

CryoFuel Systems. Inc.

ft-214

Cryoluel Systems Group

50 of 55

Institute for Hydrogen Research

WE-NET Phase I Report

LH2 at 300K, O.SMPa

Cooling at 300KGH2 at 20 IK

Cooling at 300KGH2 at 134K

Cooling at 300K [GHz at 90K

GHz at 60K

GH2 at 40K

LH2 at 27K

REF 6

REF 5

REF 2

REF 4

REF 3

REF 1

Figure 6-1. One possible magnetic parallel/serial combination

Smaller temperature gradients along the regenerators in the AMRR stages connected in series will lead to smaller thermal stresses and contractions of the bins. The number of magnetic materials per stage will be smaller compared to that for the all parallel case (regenerators for stages in series cover smaller temperature ranges), which in turn leads to a simpler regenerator design and reduced manufacturing costs.

We have also analyzed a series-only AMRL. The heat pumped from two lower AMRR stages has to be pumped sequentially to higher stages and eventually to 300K. This increases the thermal loads rapidly in the upper AMRR stage even though the ATyoid - is 5-6K. The analysis analogous to that presented in section 2.2 has shown that the total refrigerant mass can be -10-20% less than the total mass for the all parallel design. This supports our suggestion that a series/parallel configuration is probably the optimum for

OryoFucl Systems. Inc. Cryofucl S\ stems Group Institute for Hydrogen Research

51 of 55

#-215

WE-NET Phase I Report

lower cost and higher FOM. Tables 6-2 and 6-3 list the parameters for a lOkg/day liquefier for the case when the bottom five stages are configured in series. At stage 2 heat load from the process stream and all the bottom stages is expelled at 300K.

Table 6-2. Summary of stage temperatures for a 6-stage parallel/serial-type AMRL . Input hydrogen pressure of 0.5 MPa , ThOt=300 K. Heat loads are given for rji = 0.7, i =1-6.

Stage Temperature range [K| Load rWl1 200.8-300 161.22 134.4-300 1214.63 90.2-134.4 651.84 60.3-90.2 340.75 40.3-60.3 166.86 27.0-40.3 71.5

Table 6-3. Specifications of the hydrogen liquefier refrigeration loop for r\[ = 0.7, i =1-6, AThot=10 K, ATwash= 4 K, f=l Hz, and double pass per rotation

Stage

He temperatures at Cold HEX He flow rate

[kg/sec]Magnetic material

mass[kg]TcowCK] ATcow[K]

1 199 5.9 0,00529 1.3

2 132 3.6 0.0644 29.9

3 88 5.9 0.0212 2.9

4 58 5.9 0.0111 1.1

5 38 5.9 0.00547 0.37

6 25 5.9 0.00234 0.11

At stage 2 heat load from the process stream and all the bottom stages is expelled at 300K.

The costs of the most important components of the parallel/serial design are practically the same as for the all-parallel liquefier (see section 6.1). The only noticeable difference

LrvoFucl Systems. Inc Institute for Hydrogen Research

#-216

Ciyofuel Systems Group

52 of 55

WE-NhT Phase I Report

is the magnetic material cost - we would probably need ~35kg rather than -40kg of refrigerants - potential savings of ~ $25,000. The major overall cost difference between the two designs will be manufacturing costs. We are convinced that the preparation of regenerators for the parallel/serial design will take less time and will be significantly cheaper, since the regenerator design is simpler.

7 SUMMARY AND RECOMMENDATIONS

During the first phase of the project we identified a set of suitable magnetic refrigerants that span from -20 K to -300 K. Adiabatic temperature change data are available for this set. Other property data are partially available and if required will be measured or estimated from analogous materials. The recommended materials are listed in Table 3-4. 1-2 g samples of magnetic refrigerants chosen for an AMRL project have been prepared forWE-NET.

We considered several improvements to the six-stage parallel AMRR magnetic liquefier. We have learned that a combination of a serial/parallel configuration will reduce magnetic refrigerants, simplify regenerator fabrication, and still offer attractive FOMs of -0.5. As a result of this Phase I project, in addition to the completely parallel configuration that we originally suggested in the March 1998 WE-NET report, we also recommend a series/parallel combination of AMRRs stages.

The overall liquefier efficiency is a function of many variables that require a detailed design to determine final FOM. One primary reason the estimated FOM for a lOkg/day liquefier is - 0.5 is that the fixed irreversible entropy sources are larger in proportion to the work terms, e g. FOM=Wid/(Wreai+ASirTxTh), and some of the terms in ASm- do not scale down in a linear fashion and tend to become ‘fixed’. Hence, when a 300,000kg/day liquefier is discussed, an FOM of 0.52-0.69 is easier to achieve than for a lOkg/day liquefier. This is common for all liquefiers. Secondly, we still may be able to achieve an overall FOM of 0.60 but we did not want to create unduly high expectations. There is a design feature called ‘bypass’ that we have been developing that is an inherent feature of a regenerative magnetic liquefier (AMRL). It promises to increase the overall FOM by 10-20%. It had not been included in the conceptual design. This may be another way that our estimated FOM of -0.50 may increase to -0.60. The serial/parallel combinations will be varied from all parallel to all serial to search for the highest possible efficiencies (FOM). The overall FOM of any combination depends on the relative efficiencies of each AMRR stage. The optimum configuration may depend on magnet field strength, on the amount of bypass heat transfer fluid, on the pressure of the heat transfer fluid, etc., etc.

We identified several important and challenging features of a liquefier. Hexagonal solenoidal magnet array looks very promising. It can be used to build both a parallel and a serial/parallel. AMRL. We concluded that AMRR operating frequencies of at least 1 Hz are desirable and achievable. The most demanding problem to tackle seems to be the sealing of heat transfer fluid duct against moving belt of regenerator material.CnoFucl S\ stems. Inc. Cryofuel Systems Group Institute for Hydrogen Research

53 of 55

#-217

WE-NET Phase I Report

Fabrication of magnetic refrigerants into high performance regenerators on a belt will be a very important design/manufacturing step.

It is our opinion this preliminary design of a 10 kg/day hydrogen liquefier has great potential because it can demonstrate the feasibility of high (-50%) FOM of a magnetic liquefier. We think that the results of Phase I are sufficiently encouraging that the next stage of the development of a magnetic liquefier be initiated. We are convinced that this project will increase our knowledge of AMRLs immensely as illustrated by the conceptual design analysis. The full thermodynamic model for a complete AMRR is an important design tool because of a large number of interrelated variables.

8 ACKNOWLEDGEMENTS

The authors thank their colleagues at UQTR and UVic, especially Mr. Andrew Rowe and Mr. Peter Reedeker, for preparation of Solid Works drawings used in the report. The support of the Institute of Applied Energy work is deeply appreciated.

9 REFERENCES

1 Barclay, J. A., “An Analysis of Liquefaction of Helium Using Magnetic Refrigeration”, Los Alamos Scientific Laboratory Report, No. LA-8991. (December 1981)

2 Barclay, J. A. “A Comparison of the Efficiency of Gas and Magnetic Refrigerators”, Proc. of 22nd National Heat Transfer Conference, Niagara Falls, NY, (Aug. 1984)

3 Barclay, J. A "Can Magnetic Refrigerators Liquefy Hydrogen at High Efficiency?" Paper presented at 20th National Heat Transfer Conference, Milwaukee, WI. Paper No. 81-HT-82. (August 2-5, 1981)

4 Pecharsky, V. K., Gschneidner, K. A, “Tunable Magnetic Regenerator Alloys with a Giant Magnetocaloric Effect for Magnetic Refrigeration from ~20 K to ~290 K”, J. Appl. Phys. (February, 1997)

5 Gschneidner, K. A. and V. Pecharsky, “Giant Magnetocaloric Effect in Gd5(Si2Ge2)”, Physical Review Letters, V 78 No 23, pp. 4494-4497, (June 1997).

6 Arkharov A., Marfenina I., Mikulin Ye., Theory and Design of Cryogenic Systems, Mir Publishers, Moscow (1981) p. 203.

7 Hall, J. L., Reid, C.E., Spearing, I.G. and Barclay, J.A. Adv. Cryo. Eng. 41, Plenum Press (1996) 1653 -1663

8 Pecharsky V.K., Gschneidner Jr. K. A; J. Magn. Magn. Mater., 200 (1999) 44-56.

9 Tishin A. M.; Chapter 4 in Handbook of Magnetic Materials, Vol. 12; Ed. K.H.J. Buschow, Elesevier Sci.B.V. (1999)395-524.

10 Foldeaki M., Chahine R., Bose T.K.; Hydrogen Energy Progress XII; Vol 3 (1998) 1873-1881; Proceedings of the 12th World Hydrogen Energy Conference, Buenos Aires, Argentina, 21-26 June 1998. ISBN:987-97075-2-4

11 Giguere A., Foldeaki M, Schnelle W., Gmelin E., J. Phys. :Condens. Matter., 11 (1999) 6969-6981.Ciy oFuel Systems. Inc. Cryofuel Systems Group Institute for Hydrogen Research

54 of 55#-218

WE-NET Phase I Report

12 Wada H., Tomekawa S., Shiga M., Cryogenics, 39 (1999) 915-919.

13 Sampathkumaran E.V., Das I., Rawat R, Majumdar S., Appl. Phys. Lett., 77 (2000) 418420.

14 Zhuo, Yi., Chahine R, Bose T.K., to be published

15 Gschneidner Jr. K.A., Pecharski V.K., Private communication (1998).

16 Foldeaki M., Giguere A., Gopal B.R., Chahine R, Bose T.K., Liu X.Y., Barclay J.A.; J. Magn. Magn.Mat.; 174 (1997) 295-308.

17 Gigu&re A., FOldeaki M., Gopal B.R, Chahine R, Bose T.K., Frydman A., Barclay J.A.; Phys. Rev. Lett.,83 (1999) 2262-2265.

18 Gschneidner Jr. K.A., Pecharsky V.K., Pecharsky A.O., Ivtchenko V.V., Levin E.M.; J. Alloys and Compounds; 303-304 (2000) 214-222.

19 Morellon L., Algarabel P.A., Ibarra M r., Blasco J., Garcia-Landa B., Arnold Z, Albertim F.; Phys. Rev.B.;58 (1998) R14721-R14724.

20 Choe W., Pecharsky V.K., Pecharsky A.O., Gschneibner Jr. K.A., Young Jr. V.G., Miller G.J.; Phys. Rev. Lett., 84 (2000) 46174620.

21 Morellon L., Blasco J., Algarabel P.A., Ibarra M R; Phys. Rev. B.;62 (2000) 1022-1026.

22 Sun Y, Xu X , Zhang Y.;J. Magn. Magn. Mat., 219 (2000) 183-185.

23 Bohigas X., Tejada J., Marinez-Sarrion M.L., Tripp $., Black R; J. Magn. Magn. Mat., 208 (2000) 85-92.

24 Szewczyk A., Szymczak H., Wisniewski A., Piotrowski K., Kartaszynski R, Dabrowski B., Kolesnik S.,Bukowski Z ; Appl; Phys. Lett., 77 (2000) 1026-1028.

25 Gschneidner Jr. K.A., Pecharsky V.K., Annu. Rev. Mater. Sci 30 (2000) 387429

26 Zhang, XX, Proceedings of Beijing International Conference on Cryogenics Beijing, China (2000) 75-83.

27 Wohlfahrt H. (Ed ), Ferromagnetic Materials 1 (1980) Amsterdam, North-Holland

28 Gschneidner Jr. K.A., Eyring (Eds), Handbook on the Physics and Chemistry of Rare Earths 1 (1978)Amsterdam, North-Holland

29 Kirchmayr H. R, IEEE Transactions on Magnetics Vol. Mag-20, No. 5 (1984)

30 Barclay J.A., W.F. Stewart W.F.,“The effects of parasitic refrigeration on the efficiency of magneticliquefiers”, Proc. IECEC ’82 The 17th Intersociety Energy Conversion Engineering Conference, August 1982, p. 116-1171.

CryoFuel Systems. Inc. Institute for Hydrogen ResearchCryohicI Systems Group

55 of 55

#-219

i. libtotc

1.1 1 WtHB©»

1998 ^ 3 13. e#'-f ^ h iJ7*¥»5’7337j-x* • i'T.T-U • !f )V—7" £&'<'>>

? ■ bvr>) rBS^iSffitc =k6*se7kSi*lbMj©e?S

toffffij tsf-snanji^ia^tco^-tigfebrco c©#@#i±. «ib** (lh2) &

i Es I) 300 h >£)S1-^ig^ro«tt»X'9'i' 77 7W$lb$iekRaB#ivtM ^vitlbse

6tt«fl-#fV7c= Sg$BjfbttSait©ia$ti:. *9<JSBBLfe 6 6©SE»toB#yi:£l$9!!e

•c«ji£^n?.?sibSBttM#WK#*ffl-e o.5~o.6 ©F0M###+m

f^mm%^##©mfr) c© o ®bbs^9S*6bi i-

l ic3S3"o

GHa at.

REF 2 REF 5REF 1

Cooling at 300K Cooling at 300K (Pooling at 300K Cooling at 300K Cooling at 300E Cooling at. 300K

m i i e KBiifi^js^isseESia

7k*?$tb6E3#Jk Ltz 300K frb 20K ®H©Ba?*tbH*©ll*M

7"d h^'f 7®W!m£+i}t)M-CfoZ>C t #tilH Ufc = 1 B SO 10 *uV=?k<n LH2.4

jtib3j£t#x>Bflw$lb3SB3i@W!7'n h >M 7'©ISIt. Sff. 9 z/4 is 71-

—Xlb • y7fii • ^>—T’ticbVklB 2 ±#©t@*# 2000

C©itIC|S](t7c 4 17Dyx7 h©d*>SB 1 %©%#&

SttLXio S lffllitSTL. *«a-)t©i@T'S>3„

1-fat — 221

1 BUD 10 drn^A© LH24etto6S-3r$-fb$ie©$)t%M%7DyaL» bom-

Htc:i4 2 o©£$s$S6!$)-Eio

• t>nbnfflEa^a$*©i9Stg@6Aie,4^tfisnfcSiRffl7i>7'v- hc*-dv'T

2o~3ook % g©Ea^m##c Nf -& ## &##

tio mfrf

7;i/&#«LTe#Lx mz.'Ptz < k*EI<tSS$-fb6SiJ/£-r^,• 103 0 10 *D#7 A© LH2$S|g*6feo«m*<b8e©«^:i§E+6t6#t1--E,o

# 1 )8i©ti6X©S#j£8»t8*£:tmSiT%i$1"5C bC

bTi>t, mim©#*%@#k#iCs 3R##© i~2 ^7A©-9->yiv»sjgaisn

-E>C ktC&oTVfc,,

i.2 #&mm^*amb©ma

^*fflr*ftS«tctb-<T. EatSlS^aiStotijjW# <. ***fflkge*ffl$r§IS

TU^AjEtt&t6#f-a^kii+fl-tcato^n-cv^, c©mm. iK wT©a®&m

mf 75 ipy.±cborE5ES-efflv> 6tit $fcA\ ss 25 im±i4 ik

300K ©S®eHf*|-C-©^!$ • AlW-ES-O-'f ^IbfflX*

i@aa. 1a 1-2 9;t/©%*maam#iLTi\6o #4^

iv© 4 ©p@i4Hfflt£-t--gw*ri:-fc&o Ea-o-i1 ^;v©tt>©)i»W4iiiaifi®atf»-cfeo. ^©Ji>bntf-(4S fckx«4r^-V -SSttfiTSffl iSEtift© 4 o fr^gCEi*

-etifft & d k A5HJIbX-h-5 = #0*#k##i4. E»^a#©fflSyW&Elb;B4ytEa

ns©se$ftT-fibn^„ ^x©E«tss$-fbi4. %ma®b4zfE%amm©E±i:b

^ n C # 1® 4 3 Ettti#© WSfcSg$-fb 14, EMBOSSl74ft"5«ilS@

©#JAb4Tf%%E@km#E@©MA):##f ^,. *;v/- - »4^iv©M####k t)S@S6Bi4iige>n-tv.s„

#-2222

Magnetic

\thereby warm theeoNd.

Remove heal with a cooling fluhl.

Demagnetize, and thereby cool the Botid,

Hot Fluid Out 4^

Absorb heat from a cooling load.

Cool Fluid In ^

Conventional

Compress, and thereby warm the gas.

1 fRemove heat with a cooling fluid.

' tr Expan

the reb the ga

1

d, and y cool s.

rAbsorb heat from acooling load.

Hot Fluid Out

Cool Fluid In

Cool Fluid In

Cold Fluid Out-

si 1-2

gT-feSo 5~8 40

~60K S£ti^n*J:EJSSg£)M'fSZ;»£. mSiMMV-'f Cffl

-y-'f

f w%mmaagA-eaj#cf 6. mmmiM »® e @re£ia vs i:at. cnu*

Wt&o IriiMto. 6®C $> SPhI =toT|Bl-9--i'

^c$-e)t?insn^o *i-,

faj-y-'l' f7;K9)£##i (cold thermal) 6l$$SS(tfiT-fS^®(Sfi'(b*i3$hKd h-tlH.

wm§tsm±&mfr ti, mi:z o sscsgSTifs,,

-So M«/bs@yK£tofc%. l^i|iti'tt#e8»RiSI-Syi'ASfitiCH9iic J;oT|51-9--i' ^;v®

Rmffii:$TSOTitosnso jrjwwk:, ss^umam. &t

3ft-223

xli 4K *6 300K $ t#S c b $ < & 3 WSEttA5* 5 o ESlMyd'X;Wdu ffiSir»

S$$-fb© so 6©sei5Bk -r&fc>i~>lR)y--i,x;i/-e son & ik ©at -t-HET-SSc #

x • y# xivi;:t)i6is&MlsBfis$>£fc#x xx-y >y• y^f xi^^x *— p • vxv

*> • -?m XA/ogy&ti^yx • y^ XM^isug^SMsn'a^o

RegenerationHigh Field Region

Regeneration

(Cold —»Hot)

ta 1-3 *$Em#As-tM x;i/©xb-x

U -XxX V-XIiMS. Xr>hXE *fettie©bx6

B»tiHTifc»o EmA0#©#mii, ##*«m#&yx xy (amr)

-X&MEfliy-i' X;v66fce>'t= AMR y^ Xy©t#Z:tic V -x

kmcttff-rso «e###*m@y#i@iy4'xy©-@y©#&#iRL,

By-'f x;v©fiE@©rti-ciil*6HSbx.i;>S6gettH©®|ig6t.te6>to amr y^

x ;v© yi-t:EM,^®#©)iffl%s Wff bnr By i1 x;u©BS^?>fg ©*■?©##*(;:

SB^hs ^oxAyx©ctym###©@x©yxv> h& amr y

axz&y#e#m*©mw±. ^

%imirnf&m§im£tcimMWiMW,<D^tti£-&z>frc£-3Tgimmzmmzm<o

yksnfflsex-ibicoi'Ttts 1 -xmyi' xy*##2b,&t©k cxia 1-4 ctria

4

#-224

is»roKSH$}SiP8e (amrr) ci§it±jEu<c©+>

%>o

To ---

i Initial state—-« fp

Tc+ATo

Te -X

_____High field, no gas flow ____—------------'—~~

^—Th+ATh — Th

Hot blow through magnetic ——~~ Is^**t**^'**i*~‘ s++++++++£&*

material/regener#m&—_______ ________Heat transfer fluid

1

To

Tf-ATc \

Magnetic field removed, _________________________

no gas now ^

fp

Th-ATh

To —^

Cold blow through magnetic ^

material/regene#^^ ^

------------ Heat transfer fluid

40

Distance

B11-4 cmiiit amr im 4';i/©ejff$OTbfct)©r*$>^„ K#®-fbii*a©7 v-

tt 2 iff I [©7 1/ — A||"|| <30 SSBfflf** klWSA^fiS^xeBStt 3

#EI©7 v-Aetpr-ffl^tiSn^o RMMMSa: 3 #Bk 4 Si®7 v-

A@|9-e%a;t--So ##«a@S&6N@/\©pmkL #% (±@) ®7V-A

klsl«%e$ISS7-n7 4-;v*^-x5 5 SB (T9) ©7 v-Atotf-t-Sfl*^

bSti^o

5ft-225

AMRR • % b V-A&iSite tfcUWbl-

LA'U 7k*ttSS (300K) *6^ffl?$-(b£S (0.5MPa t 27K)

c^insn-sfc©, $ $

timg)*©[i!a±i:ttS'jCx e#LA7D-k^ • * h v - a &SX. fcffli®mE«?$-fb$

■li«#x©$$d’$*E*kpanH6StkAn5ck6sr-$5o AMRR ©&®mtt«ftit

**#:©b‘-^tttbC'n'tHi'reii-fb1-5ci:»sT-S50 H 1-5 li, :£Bto&imSBB,

ttttit amrr ©emm^7Dt%#%##©m^©##aigA^$SK#& <a±tf

^<t^iciB*$nfe 6 mm© amrr (amrd ©m%

T-ifcSo ISlBltt, C©|gl+bllUTeA®fflxl)*4«ffi1"-5X:to, Ti-lVh - X?*## G

mmffl§©m-ef?^n-s b i: tiiftiw urv'-So

*. >300 K COOLING

FLUID RETURN300 K COOLING

FLUID SUPPLY

HEAT EXCHANGE

FLUID CIRCULATORS

COLD BOXESAMR

DRY. CLEAN

GH2 AT - 300 K

(AT PRESSURES <

CRITICAL PRESSURE

OF LH2 ~ 0.5 MPa)PARA LH2 COOLING/LIQUEFYINGAT ~ 27 K HEAT EXCHANGERS

ORTHO-PARA

CATALYTIC

CONVERTERS

m-5

#-226

6

fckxtik $6*0^0-K • amrl

^♦sus-r^wafatt, %T©AA^^b%o

• )Sfi$;m6g^SftTT-0Em^ > h D b‘-$-(b0nJitttt

• Ett0®tiy!)sR'oea««a$0#x.*;i/j?-$g

• y xTMz-

j'S i§tf--$ftf 3!b*

• Ettwwffla&ffiAbts**©?-* ■

• SI9i6Mte6snr«6»i91+tcjb‘y5,WUi*$S0DJSgtt

1.3

1998 # 3 H© WE-NET toiubftti: 1 0M5 b 300 f >© LH2$jS6b*

sito 6tmamrl©aMseekHibMseoMASfl'ff ufc, gyigm?«x 6@m«ib

#a±*0#wm (fom) k vr o.6 smBesmtsfeto-tie

i\ (0.90) £'SAsfe5k kA^frofco S-fbSE0iSeF@0SSttx

•70—• v- l'0ff$U|/MbSEoT*)i-(bd:h,/io *-?iJBB*Ti4. A#Db% FOM k

UT 0.6 Zms$,tZfclbUt, raigm%(t1:mt,'#* (0.85) £<£ZZ&91)S$>

Sck*sEfrb, ebbIfti&SEkb-c*?iJSB*5*ji$tifco

cojarnyii'h© i a>b b 10 *dy?ao&mbl 1998 ^©HUnJt&ttiB*trfc

its l B3b 30 75*0^7A6li^frbTlll5o LZi^oT. *ak»*©##©Xf"^

Ati. toftbiiAUbAS® AMRL iz-onzmMufzSm-Sffi&IgMfJtimMtzet

•Cfcofeo 7DtX • X h b-A0*0cb b'L^ik###. S AMRR PSB©S6*.

1 BSb 10 ^n^5A07"D-bX •T.h'J -ACoVTSSStlte J; b KvE*

(0.1 MPa -m&< O.SMPa) ©S$ito k’6 St#*S b k (C J: o T. A AMRR ©XD-b

x- xb v - Ass©siis@ e i j-c- ^ < 6 @m©emi%©###&*&f

/Zo

M —7 ——y - —7 —k|s|#)

7#-227

6«6u © < zcottfim 6

t;v^7y\D7^-©ffliAsfB6 Lfc J; d tc * h" y y t>mmtcism^fl-rr6frox

Sitaofc, 0 1-6 tc 2 SPgtfiSSB© 2 ■D©|5B67Sf 6sx c©0©T"CI±#ft

^ttttS*6>*B^BSc*658e>n6A1 (365IJBE) ,

©MV'@llC4IISS6"tjSe,n, a#l©t;li*B'>>^B®C«e>tv-5 (W^JBB*) o ft

sssA^^>^sscii6«^A:totc.ft$Ad;tts«tt, e®m©m#%#*&@Da/v

'CM^WlEl’ei+g^tvfeo vE^tcBfls.tp'Tii&V'A1* Uii&vflMJ©IS$tiu 6®B©

ffi*ftoS6$»siacr-$,n«s mmmtmmim(D$ittm9.(D±M±mnAMm-3fc<

IWlbtifci'ack-e&S, $e,tc. ±®®re©yjj*AsT®®|f8ffl3!j*j;btnei'&iSHs

mmam©Am±#mi±#MBEm©f±#mj: o

H©;8j*J;bt>l6ltftl;T ^ftff#tt*«tta6?iJIEBJ;b t)ir?iJIBKffl*As#V'o c©*

#ffl#-XI;t $$ V<bnbtlAs WE-NET fflUasJtmiBl'ClSiii^Ij'AcC fcTfc^o

Cffl 2 @|lgC0V^T©fl-8flS$ttx MathCAD 6<sMLT 6 ®B?*-fbSetc6te*Sn/io

Two stages

parall •f] 1— f}2 """" 1 => ffip— }fy$ seria

Th

r}i< r}2 -1 ==> %<Th

i L k i i ir]i

T, l)2< r]l =1 => Wj?* Ws Q,t]t

T,

w k L

Ingeneral Ws> Wp

Qc Tn Qc

1]2

Tc

m i-6 w?ij k ae?y 2 ®^*#©f±#m

#-2288

tot, *s

9#-229

2. lokg/Bomfcmmomm

2.1 7°D-feX • X b V—AOttS

AMRR CD^Pg&zkS#;X CD 7°D -P X • ^ b 0 — AJiTr^£tz&, i££P£ft> #

cco#^#,

|5)#C, LTCD^^^zk^^^f

&#l#f 6o AMRL ^ b V-ACD^^#^

&^)o #2-1 (j:C^l60yD4z% - ^ b U'-A0f±#$:^L/c'6CD'r$)^o

2-1 *##ibaiOkg/B®yDt^ - ^ b U—AC0{±#

Feed Stream Capacity Pressure Temperature Initial Composition

10 kg per day = 1.157x104 kg/s 0.5 MPa300 K25% Para, 75% Ortho by Volume

Outlet StreamCapacityPressureTemperatureComposition

1.157x104 kg/s = 0.5 MPa27 K99.8% Para, 0.2% Ortho by Volume

System SpecificationsOrtho-Para Conversion Continuous at each stagePressure drop/parasitic heat leaks NegligibleIdeal liquefaction power 1312 W

. % b v-At:#oac#zkm:#;%makL 6

#-23010

2.2 e mmm amr^s-tbssoesiisss

36?|J AMRL ggffl 6 6©#aZ: Lfc AMUR (ilM Xll/©*flS£JglSg (T«.id i=l-6) r*

Mj{ft6O # AMRL ####& Thot=300K X Xn -te X^ScftS/J- L»'> > X X $ X< A

±(f-So T@@m© AMRRtiu Tooide-^rn-fex • x L

VstVl/l' - ;lX**^%#&l#*Lx Th„t=300K -tiStitifSo Tooid 5 t-

Xn-teX • X h 0—h • Lx Th„t=300K Tttitit"

•5„ c©$g^xxxA©A@l%&mLX#hAed 0 11 lix

AMRL ©XD-LX©StlS/jl LfeBSHT**o

*IBS*©-b»'>3> i.3 ktcJ:Ox

LT 6^ffl»*ttSSa©*®**l^-B-Aslt#$nfco SSTO& 6 gH AMRL (t^T©

#mx-x=i 6*s$) ©ma%mmam©%m#&#&* 2-2 cat. -ustotcejg&Eis

ssttflx ©gpg© 16 c t tcffi*-r & c t tfiatii 3 <>

K 2-2 **E* O.SMpax ?MS300KC^tf SJSffiW* 6S365UAMR L©

«iS®mS6fflSi:© Sftflrttx lOkg/B Ubififi e>ft£„Stage Temperature range [K] Load [W]

1 200.8-300 161.22 134.4-300 102.83 90.2-300 70.74 60.3-300 56.35 40.3-300 44.86 27.0-300 71.5

Cffll+#Asffbh.h.l$x 6 AMRR

®PB©x6*$#/St?85 (btit>ti©6Slc=t-E>kx 0L—^©iai+©®KC

o,65 *e> o.85 i±agw#»mx&%)„ mmaatzaWLf ^,###© 2 @g©

soisviix cn<b©fiSx6*6;iU'Tffack*5t!S-E.0 f©#Ai±%m#&#© 10%

UrtX'fe-So cn6©8b$CM1"^,#Sltxxvw:tt*«S#©^©-b^v3 XXrttMT^o

11#-231

2.3

& AMRR ® V is — >&&E fi £ MfeAMR 1M 7

AThoti^ v^j:%L/-^0#M#(:#6m^mm^m#0mm^^bATad

M A Twash

(A: 2-1)

'H x, ^cold )

(A 2-2)

cc-r, Q ^,0 c0g##A#, #±;#0# 2

JL> h D tf— ' 7 D—

=& AMRR (Z)/\ V I>ABl,ASE^0SfimHe(d:N # 2-2 \Zm^tlXm&oTHt^£

(^VtA0##:#CHeU\ C0AMRLl!mi^

m HeCHe ATcol(j Qioad •(A 2-3)

V ##Mmrn(±mT0A^6^(!66

m HeCHe (^hot "^cold) Qreg m mmCmm^wash > (A 24)

#-23212

rnmm=2Mmmf f <0 , cmm s@

kEWVSIASer-fe^,, fg»B7 2 fct. 'jyx^.i/-«w i mvy-j

@#s 2 sati9#m@#K?ss. a 2-3 «.

iase*ft (*«s*®tt]®gKEa^®ti'©BriitsscH-r5-b^^a>6#BB) x m

E. XDtX • X h V-A# (,©###. MlgViXX—XCIMf S AMRL

Si-So SSS cmmttSSKB Th„t-T=„id trbfcoTTBMbSftSo ffiSStSEMiTm-'xV <7

AiiAsgtt, tissnsT-D-fex • x h 'j-Afflesti* 2K TB^kisiRdnfco ^

0 ->AitSi^E*®to1c 4>& v' c k Cii B $ T- S £« Ea^9#®SB*

ts is 1 6®pg (»ts) tas*trt#*t;Ji^s.o

iPWA^S^iixsa*couth, lxt-csv<j4^5„

a 2-3 vkSSHblillS lb — 7"©-f±#. Vi 7 X — X ; rii = 0.7, i =1-6, AThot=10 K,

ATwash= 4 K, 1=1 Hz, double pass per rotation

Stage

He temperatures

at Cold HEX He flow rate [kg/secl Magne tic material

mass[kg]TcoidlK] ATeoidlKj

1 199 5.9 0.00529 1.3

2 132 3.6 0.00546 2.5

3 88 2.3 0.00590 3.8

4 58 1.5 0.00724 5.6

5 38 1.0 0.00878 7.6

6 25 0.6 0.0212 20.0

2.4 ES«-fbSB®3>^-*> h

@%$Mxi'SE*#-fb#ma#<©-X-x'AXTA-c#ia$trct'So B*SE^3>

13ft-233

fs#Y&mnt%o *e

6#©-kX'>a> 3 ttea^Oti-k U y^^V-j'CoVxTil^TVx^o StiJ6:ESi^®

^mc, &#asuc e. v y ^ *v - x ©istteafb c ®

g ycStosnrv-'-E.o

AMRL rS-fbSW (*IBS*©ES;^H-ffl-b»'>a >6#,®) fflign

F*t#EXs/X*A&mECM#f

1.

2. *i — >Ts'-fc>7'U —

• x, e©, mm,

• #MgS$#7\ trV'sV

■ ie^j'XfA^>K>^ wi/X, >■->, mm, mm*, ?D7-

3. 7 7# s' FTs'-fc>7"V —

• ffiSS^T# S' F

• i£)$fi», Sbbi^lS, 3>7l/v»-

• V — F, ik##—F X Y s' *• 77# s' F ffln—;v F ;F s' 7 X kEBSl

4. '>Xri®^, #x#^7 7-k>X'F-

• V 7 3 —IF F# 7 7 X

• 'sD 7 A/TklkstJftfs

■ sTA# ■ 7#7kSe$66ff7'x|J 7A/7k##$#@§

5. ##7X7#

• AMR L^©@m#^m*#t v F

• n^yy’XT—is a > tmmmmmmmt&mtf'sr

6. tfSkfW

• s®, e*, b®, a®, ##, tti*, mmy-x

• S^t-7-, Xn-trxx F 'J-A5OT, F^iFk@®$W

• n > F □ —;F7#;k DAQ 7 7 7, PCY>J-7iYX/V7

cne.*s7x-

#-23414

W: lOkg/B AMR

15

#-235

3. mmntv

3.i M&mfqiimM&MJttomfcMm

C0#^:&g| 3-1 -emmf & (|g 1-4 4b#ea^^/:L,) , ##{bf

%fz&>, t)tlt>tl&, 10 SCDBtoto^il^'M5 27.5K CD^Jg$BB^t)/:-oT^ffl't:§

® 4o(DB^#'r##'r#^o

Tc=25K Tn=300K

Stage 4

Stage 1

Tc= 25K 40K 60K 90K 134K 201K "H=300K

m3! 6^AMRRC0B%##E@^

f^-23616

1. -<Bto6$ip

phfV i®

###3 X I'

&t#e

g2K?8^L&V'

2.

a) #*#%

b) eetett

• * # & Ms@$-fb© fc ©©* s tt&mmmiim

• SSttotCVX ht-tXT-V i>X©6:V'

c) ##@

• SEfiStt

d) *a«tt

• eeaes* («*«©pIg@£®it£fe»)

3.

• (~10,000m2/m3)

• aiE%ATMT#K

• EWitt

• mnwmmwsm$immjL *. s -*#jg

• 6E*#£ ({6»iS#£)

3.2 HfftSfig-fbCx-*

* $ & ttSSSS# k LT USE# £ nfcifli 'i&ESea$ (MCE)

AMR ##©#tm@^:#@© 1 Ot*5o *$SS©-b^3> 2

WcZiC. ARML ©ttl6SI+g1"6fctoi:-i;>S'C*$i5o LT

3 #©#u,W##-?#6&&#&#*####&%. IWU'SSftt 2000$ 10 MC

g@bfco

6#&©mak#*©=-Xk#t:, MCE ®S*S£C16bTv^o 10K

$6 300K osg@H"c***a%^a«/2ij"6vxbr-yrutv^o

®®tfe 2 @g©mR###t&m%#@#-c&o. mce cnavtito 400 ff©is*&

#*LT*b. tt»tcH-r?.-fe^'>3 >ttSt)toT5u/®g*5|@^„ 1998 $t:S$UZi 3

#g©mm#t. **$(bs@<BH©ffisflii'efi6*aft->XT'A$:ESLrv^„ ;n

6 3ff©«S«(is SS$b 20K *?©#mKmMMi@#k LZWBf %-*©|s]@%#

###SS$ VTV'-E.o f fi6©a*&%©t 6. eE®$SS

fflSti. S6®H>20K © MCE CBEeLZrgiJtottlliStJ-fe 10 ftggglg Lfc= 5 fttt Rb

(Si,Gei-,)4 ti14 (R=#±S) . 3 < h3iv>^>Bjg. 3 ttttit?-(b#teK

l Gd {bfr#l:Nf&t©-C&&o ia<o^wH^^SglEH (cbi6©KHI:

Mi-^.*iu®*Kasei46aEiikltsir) cult. cnGmMj©js$6*«s«i

©y.T©-b^->3>T*5Klt"

3.3 #±#/3#^m©#fibA% : 20K$6 100K

$6lcy**©iWu^7d-$^-7- • Vyi*V-*##6gilLfc##@B%ti:. ifi

6©mtoi^:6:©fiSeiH-C©eSvi> bn t"-$-fb#iWi^ kSflKUfco Che,#-

tetoic rt2 (r=#±si%*. t=ai. Ni. Co) -c-fe^o coseeffl-eKESgS-fbA5#

#-23818

• RA12, where R = Er, Ho, Dy, and their alloys DyxEri.x, 0<x<l.

• RNi2, where R = Gd, Dy, and Ho.• RCo2, where R = Er11, Ho, Dy, and12 Ero.8Yo.2-

• GdPd and13 GdPdSi3.

• Gd5(SixGei.x)4, where 0 < x < 0.1

±IBti-SfflREB6$-fbSBI 3-2CtS1-*ss 20Kfr5> 100K $T-

cfttt,tel-2K/T©E»6#d»B@$lb£/TL.TU,5„ che.©E*ii, SS±#T-

6ck6/ncaa##©#f##m©±#a#o t©

T*$)-E>o

MCE ©$ 2 £Sk®#©#MM%i:LT©Em^> hDf-T-fe^, (0 3-3

#,®) o Ane>©7-"-^ttite8jssii%v'6\ amass tm@©mMN# ^ c-c mb

aij$tt*e>'jisaisn5o cm.6©f-f a, Mn;-s(bA5»t'Sgffiiaaaosdk*diLTt^)&:e.a, ea^ayi:LT©BiEtt6*A4csi"o ctie.©?1-

^ a AMRL ©#:t-cm v \ 6 a a, E*®8$ib6efsaisi--5*Asa$ ut\.

19#-239

Temperature (K)

HI 3-2. The ATad of several materials for a AH from 0 to 7.5 T.

Temperature (K)

HI 3-3. ASm of selected compounds in a field of 7 Tesla.

#-240

20

0 3-3 -eli, -*©#SB8-(b-&frefc3 RCoz ©#%%.> b o k

i:iiBt^*t-t).5. f © MCE tt 100K S+fl-CExTU-So ErCo2©®fUn> t-Dt"

32K-e©^?*SST-$>b. A Tad (i 7 rX7fflil«l|t:SLTft

12K T*S>3<= Er 6 20%© Y -C-*ftrh,H3SSBA5f6T U e«3i> h n tf—SHbli 20

~30%«'J>tGdPd mavfc GdPdSi3M#'C*|5]«»yij$AsEaiJSnfco

SS®H 20K C 100K r<I)b'J 1 o©71 '?■ U: J$©6SIb]fbnfelli Gds (SixGevJtT-

*>b. #&©#m-CI±a 5 ^XxTSb 9K ©ATadSSLT

£ba iSSki 72KflST?%SLTv^o S.ig$i]$T»fcA©filtt_ IB]b-(b^rto®®S8J$

(@Yb-mm^.> pnu—-catcsfcfij; b &©<-£/Usva5, ^n-c-

&C© S@ Cl* LT6ibltS4-yI<t GdNi2 © f( £ 14 £ C h II] 3«

3.4 $±m/a#Am©7t;P7 7^^k Gds (Si.Ge,.,),^^ : lOOKfrB ZOOK

va 7 1-07

A^bA^'jO ■ h nr 0 tbx—7"C J:^4±|Bl®f%l:J:-E. k. rtiixy

X • bd?> R70T30 (R=Gd. Dy iiiff T=Cu. Ni, FeNi) (4.

C©SS®BT-|4^C#»&®«}£ai#rl4&(Co ttT©Sti*6 70 : 30

©^s^gfR^n/io

b) fMW±mTc#©#aAWmi:*©6#x +7)-&6d

c) SSSS65H-bi©«Hi*i"Cfc5o

2114-241

3-1 7

Alloy To (K) ± 3 K ASm (J/kg K) ± 10 %

Gd7oFei2Nii8 170.0 7.71Gd7oCu30 144.0 8.19Gd7oNiso 130.0 11.5Dy7oFei2Nii8 70.0 9.5Dy7oNi3o 45.5 10.7

x 0.4 6D-m(DAm^b^#lGd5(SixGeix)4'rM-3^

field from 0 to 5 T

x - 0.0825

x * 0.2525

50 100 150 200 250 300 350Temperature (K)

800

10- 60- 130- 230- 260- 270-SOK 90K 185K 280K 305K 315KTemperature range (not to scale)

|g3-4 E3-5

A H = 5 T u/=

#-24222

3.5 Gdj (Si.Ge, .), Lf ©#0{bfr# : ZOOK &6 300K

fee® 3 t 4 -e^b& 0.04<x<

0.5 0 Gde (SixGei-x)4 t-f t b • l-D/'Jtfx-^?

0^;l/-7"*5 GdsSizGe;. 0-9->f 1/ (T« 276K) &m©Tfi:ofce®0eitBrStgS'$

ft©»IST*(i, *g %#T#BB%-(bAW6 A5 AL ttifdeiBgSftfeg-fbcfc 0 &'J'£©o

LA>U cn^©«i|/Ettt. 5:2:2®fiEfl'©SMS6$-fbAsGd©Brl&Sg$MbLiwLttB

CS>-5CL*'tfrbfco L^ft@#©

lATbtfiMILT©^ Ge 6S < Sti-fb^© G36iBttlc58f 5tt*

Couta, #e Gds (SixGei-,>4 Wf AT-IMI&Bf':??*5®tijxfco

$gB-e©m*^ioem©5###*L u?m©##*$LT©6##©m 3 ©sskt

ikf-j,>C$v>^’>$)§-C6^o LA1 Lx LaxCai xMnOs L LaxSn-xMnOs CMt-511®

©#%Ct5 Lx Ch,G©rrSSBBfbia Gd Cbb^fJ'^©C LA^^ot^^o Ltl

G>ttiSIH:SLTV'6©o

3.6 e±«5E* L$±m^-A : ZOOK &6 300K

tfLorf/xttx c©se«Et'tt*se«nfcEa^inti-e$) o. #©)#»# a it#

15 e w# l l r-estoicsitxngnrv>5 = ^bu-^Aii 292K ©#$mam#

Bi?ij)iss6«iXx nmwmwm (m±~m %±mz zK/x^^oKf^sgs-fb

6/f; to *• l v-tAiix ga® < t © #am 11 am A c m © % % ^@#-e & 5

btiontL?.», a*;A>E*sf'^*5fftitiTv^ea^attc*ofc„ 1 -3©

«nfc#±»i^inti'ttx mmmm 7 fx?®# isok 12K ©AT,d&Ro##» ny

"C$)5o Tb ti® 3 ©8h,fcest#AM5 Gd *fett Dy J; 0

«ffiT-fc-5o HOx Erx Nd tt Lfte©*a**:];«7{;*^9#lix IMSJSgElbtiSG.'f £

6tcitttftemS?iJliSSt(ixTV'5o

i>o 1 -o©7AK#g©^*fb#u#&#At®«x isttisfcwaa?-^

> 0##&tx5CL»<x Gd BM,ltiF'JEBS6«e> Lx S£it![L©iWJ

iisg<a®®Betcj;5Eib$<bt:«bto #©#±m#m (ti>x dVx ho)

Y L® Gd ®i:m ‘tGltfShLifuMitf 'I ®,':; -r . Dy ©!Mi6KMttK5'Jll(;*®

ib*e.f GdvxDy, ^r#ia-«§69l: x=0.70 TSx#$i6^Bt$ffmS«fet5 (0 3-7#

®) o Gdi-xDyx ©-ar^liff *)-Pt<, mtti Gd #6##% Dy ^©t^»m#BBg{b

23#-243

ASM

(J/k

gK)

4 <7 I' V AMRL-l

16

12 -

120 160 200 240 280 320

T(K)

m 3-6

3-2 7 T Gd- Y i> % ir A 2:

h D tf—

Y (at%) Tc (K) ± 3 K ASm (J/kgK) ± 10 %

0 293.0 11.84.37 289.0 12.99.62 274.0 12.019.7 252.5 12.925.2 235.0 11.528.8 234.0 9.331.7 216.0 11.536.5 200.0 9.540.1 196.0 10.344.9 180.0 9.547.3 182.0 10.049.5 170.0 7.552.5 165.0 6.557.2 160.0 4.066.9 137.5 2.8

#-244

24

Gd y zmiiatzi: Gd (DKmu&mtimtriz'ptz<mecm

«s?ijiiss6fiTt-E>fcto. Gd ©$*#mmm 200K c$T-fiTUT«Sf$n5„

3-2 izmmt&o m 3-6 ttN Gd-Y 2/X:rAffl®IS6tSSEke*Em

:x> h D LTV'^o ElfrGfiGAG;,

3.7

Jcllttlt 20K *6 300K $-C©«H^ttCkfcoTqr@iS^k*tS6Br^S6$

m 33 bu fcnfcn^tftfc

*SteElitS@'$-fb6ffa##©-@6 byy y Vfc*©-C8-E>o

t b"C* GdB (SixGei-xb ^^iESUriSPWi: bT#SC;fr3T-S>-5,> iSg&KtStC <k-E>*

6. b*u iss»g©®gs em#

St$, *#©##&smt:#imf HfflW&b yx^U-^«fiSi-N©tffi-©»^a

Aft?>©'(b£'t)©lBiittfc£ 6t;fc>AT # T Ab

Sg«Ht©«^to*SlRKk LT-e© Gd,Dyi-xir&6g^Ufc±6a6-eafe-5o #±

wssFdjffl^ttJSH-efebx 4»0©$±m*©g* &„ *f@sg«0

TI4, cn6.©#l4li»4&©TSK©SfRK'efc^fc©x ma^##&A##© b ^

$ v—^#68ictt5=#att/ztoiciis e>tc# < ©ff**s'£'Stc*^oC© bJX b AlGf8tl£ti14£$8biA/u'eaiK1~-5fctox t>tititUt^clzV ^ b7v7l

&#ip*ffl©feo SCSSicbt E^Sg$-(b©*SS-e$>ofc0 2 c©##©m#

5tbfco # 3-4 ICBb t>tv23il,As[3M 10kg ffi AMRL 7'Di/ii' b iBjIttCfiSg btzUWfi

tSftti'S. fSicffig-r^SWSli, >r^."ji> • boy; tfx:-;i/*#A##agg'(b

£iIJS bit GdxDyi-xn'#T?S)-5o t) tl ib h, ffl B U trlix Gd-Dyi, 6#© A A" GibYbx ftfe

j3Za Gds (SixGe.-x)4 Agimbfr#j; b tAf A4:#h-C©6c 8 3-JI1 bntohAbg

Kbtm###©Kr#@gmb&^bT©-5. K#Sg*micMf 6^%^-^©#-©

llOK^STfei.o 5=-+>liTbAl2tC^b-CASM (AH=5T) =14.3

/kg/K tV'o^©fi&«Sbfeo ©mr#@gg-fb&*@#l& b tk(t-CI±t©

Ab TbAhtt 100-120K ©Sg$gH)CtB6f-V y t>

5 1 offlIKili 0.15<x<0.225©Gd5(SixGei-x)4^Sft^bT^©l#ffi§^tC:i;-t*

^33

Material Temperature range with

AT(AH=5T) ^ 5K

Tc IK1 Arr(AH=r>T) IK!

ErAE 10-35 12 12

15-30 22 8

Dyo.25Ero.75AG 10-40 24 8

ErCo$ 30-35 32 8

Dy0.50Er0.50AG 25-50 38 7

not measured 45 ASw(Al I=7T)=10.7/kg/K

Dy0.70Eru.30AE 35-GO 45 7

DyAG 50-75 63/ % i /ft' /'X \ 05 80 75 1 5

75-85 85 6

GdR(SlaifX.loaB6)t 80 00 00 7.2

TbAE not measured 105 ASM(AH=5T)=:14/kK/K

Gd& (Sio.22f;l tea.77a)-i 115 140 120 1 I

not measured 130 AS;o(Ail-T19=I! 5/kg/K

l klii (Sio,KR2rA >60.747:7)4 130 150 135 12

DyOu% AT(AII=5T) <5K 140 5

(.id A12 AT(al l=r,T) < 5K 167 3.5

140-200 180 9

(kio i-sDyo «2 180-220 105 9

Gdo.08Yo.32 205-235 216 G

: / tMcG(d)yo.iH 210-255 234 8.8

Gd0.75Y0.25 230-250 235 5.5

225-250 240 10

Gdo.73Dyo.27 235-315 266 11

Gdo.oYo.i 250-300 274 8

270-200 285 9

Gcb (S h .08r>Qej .oBsGao.os) 200-310 200 9

260-350 203 12

26

{\|--246

3-4

Materia]

Temp. range

with Ordorin

g

Adiabatic

temperature

change

Heat, capacity

Thermal

conductivity

at 293K

Densit.

y

Effective

magnetic

moment

fkl 1 Kl IK1 iW/m/Kl f k ir/rnJ hu nor .ilnm

ErAis> 10-35 12 12 30 J/mol/K @ 70K 30 for YAI2 * ** *** 6208 9.2-9.56

Dvfi »r>Err, 7fiAl» 10-40 21 8 35 J/mol/K @ 70K 25 *** 6119 c) q ******

Dvfl ~r>Ere so At; 25-50 38 7 35 J/mol/K @ 70K 25 *** 6086 9 5 ******

Dvo ?t>fc,'ro .iftAh 35-00 45 7 35 J/mol/K @ 70K 25 *** 6060 9.5 ******

tiyAL 50-75 63 7 35 J/mol/K @ 70K 23 for LuAlz 5966 9.12-10.7

0580 75 15 36 J/mol/K @ 300K 10-20 **** 7955 7.52

1 )iWHu r,G<a 8000 90 7 36 J/mol/K @ 300K 10-20 **** 7888 7.52 ******

< nMHj > >/><< >> V'°.) 1 115-140 120 11 36 J/mol/K @ 300K 10-20 **** 7801 7.52 ******

(id 130-150 135 12 36 J/mol/K @ 300K 10-20 **** 7774 7.51

Dv 140-200 180 9 173 J/kg/K @293K 10.7 8551 10.33

Gdo.13Dvo.82 180-220 195 9 183 J/kg/K @293K IQ ***** 8443 9.80 ******

(Ido sk [ )vn p.a 210-255 234 0.5 193 J/kg/K @293K IQ ***** 8316 9.25 ******

Gdn 7.1 Dvo s? 235-315 200 11 215 J/kg/K @293K IQ ***** 8075 8.14 ******

Gd 200-350 203 12 230 J/K/mol @293K 10.5 7901 7.63

* the value for GdsCSio.BGeo.sk

** estimated from heat capacities of Dy and Gd (linear interpolation)

*** estimated from thermal conductivities of YAI2 and LAI2

**** the GdsCSixGei x)4 series is a relatively new series of compounds.

We think that K~10-20W/m/K.

***** estimated from thermal conductivities of Dy and Gd

****** estimated from effective magnetic moments of ErAJh and DyAh,

Gd5(Sio.o825Geo.9i75)4 and Gds (Sio.2525Geo.7475)4, Dy and Gd ,

respectively.

Temperature ranges with AT(AH=5T) s> 5K were approximated from ATad vs. T graphs. Linear scaling was used when AH f 5T

27

#-247

AMUR ©MnSItCtiU fp@W©K@L Mrti'ft'IA'/ll^*•£•$ c&&, a 3-4 Hu

$&V„ a^li, |Bj8©fit4©@E1:9 6 tvfcWttSfi* t to £®Hffl =r — 9 & * rs —f •S'*;* h % 2 offlgfii5Wohlfahrt Jp Gschneider -^> Eyring tC J;oT$Z#c‘i3TV<So Ss^tiU ,i t, Kirchmayr

Maanetocaloric Effect at 5 Tesla

1 + \

0 50 100 150

Temperature [K|

250 300 350

kEr A12

Dv.70 Er.30 A12

Gd5fSi.l5 Ge.85)4 IRH

Dv

Gd.73Dv.27

+

k

Dv.25 Er.75 A12

Dv A12

Gd5fSi.225 Ge.77514

Gd.18Dv.82

Gd

Dv.50 Er.50 A12

Gd51Si.0825 Ge.9175)4 IRH

Gd51Si.2525 Ge.7475)4

Gd.36Dv.64

....................TbA12

0 3-7 * 3-4 lc V 7U- ^nZiE9t^SS6$

f\j* — 248

28

3.8 Di>x*P-*©a8ft

ttHESSftf ^.o 0 3-8 ti V yx*v-4'©#Sto6:®JK&SUfc*ffl-Cife5o

a®696 v y v—j'lijy.Tctt**^,

Jfif C x.*;v5r—filtf&V'

#g©#!

##R©%W#6#

H3-8

(a) — ^ (b) Vffr7'f'\7 (c) ^0J!§7"b—h

(d) '7'f^-SS (e) ¥fi7"l/-h (f) «?##

29#-249

P#T, rnK

^)o

2. 'Ztl'Z'tKDnJ^UiglClOMTs i^^*-XAt'IS4l/:X> b U

^) o

3.

S reg — S heat transfer ~^~ S conduction ~^~ S no— flow ™l~ S eddy currents • (^ 31)

E±^T®#g#, V

4. V -5o

Vreg ~- Wreversible _ minimum work required _

& L hot V ^cold J

actualactual work

Q.\ (it 3-2)

’ hot — 1 Tv1 cold y

+7L6"hot u r«5?

5. 7?reg &#;^b"f&#d§)ka&gt#H4^&2R#)&o

^ ^ V ^ ^ 4; 1/##&##;#t^MbkL >

200K 300K

^3 j;U: 20K ^ 6 80K 0.92 & 4b X: 6 f ^ S/- h#R& ^ # 6

0.90 -e&&o 0.85

> h o 6 0m##%w(a v ^ ^ $ 1/ - ^ cDM^a^mmau 1:#

MEfH LT##f 6 C

#-25030

73--K • cti

e-ffllM-eiis ccuo&V 7:n*v-7©$8i2rto&t4Sg£ti';t>s

fl]SdtlTV'-5o 7" 3 7 h l>:7*¥T-A-7 WfS±mWT£7> h* V a- • D7(i,

UTJltKV ^x^i/-^fflU^&fToTV'-So

31#-251

4. *SE9«lb$IB©«lt;S:iStf'

4.1

c®7D>!i!>ifflaggit 7kSr$-fb« iokg/B©S8!Miyn F X 47(7)181+. $

#. i£K&J5Mj£-&£k«fej0 ;:©xn FX^f xti. x6*toCSESh,Zc 6 ®pg©

AMRR tCS:otl'Jo CfflSS 1 JJI7DXMX F©(£*k bt. btlbft*5

1998 * 3 B© WE-NET *@^1 * k * k«* b&S£&#?'JKB-m& < . itFiJSEBk

*?'JSBB£tt*£biFfc AMRR emSrtliBUfckkC&BLTKL© (*$RS#©|gl6

k#®@-b^->3 >&#iS) o *>nt>tifflSI6CSo^c46?iJBEfflfl'flfS^'4"tc(iN bh,

bhii 6 Fsmmses amrl ©#&#;+ufc=

#%(:36*©mu amrr xb—y©*ffto*i9l+±©teatc-3V^TIi. *ES*fflli

t»Cffl-fe?^3>?RgSiLfeo 4S@k bTli. ttlbSS&Mto^illSSuie. 6T ©

V W'f FESfflfiMb ftS*0iKX*-XAfflFgffl. #Stcxi)$to* V X i * b-X ©IS

ctifeffl-*«*a9gmi4*JIkl±giJtc. 5fc©bX->a> 2.4 y v x F r

X X b fe AMRR/AMRL ©b^TfflXXXX* AM|§lglR&§3ltT*1£l4£ii;t2o

aiRbtm###lix 86*© «V AMRR IfeMgftXS^AT s %tzthlZ.

6T©ES£*@kb3o ESti^am. »5*ffl b X &86X© «© V X ^ * v - X fflffXtt

t)Ittcifl*ats£>S*sS>?>c x/x F 'Jy/?yffibnfc/«s*'x*lb8*ffl<tx*ia

$ • K't-frz&mt&mmmiitm <iriEt&i)K *xt-F©vi/xb febc

=t-E.$Kig|K©/2©tCtt V Xi* b-XC^lF h —>©T7 7bsa$ LV'o btxb

htt. *#@#©*y#b<*m$#%#Mk Ltfi-'/V-Sffl^l F SgjRbfco

UXi/b-X • XXi/X*A©-$©n>*-b> Mi. ##4AiE@&toXb*-E>l$©

IS JW W ft 'ft* c b O x milfoil k *Xj t; * $ ft & „

«gnb ii/WJfflT § •£ b X F: & -E, $Tib. ffiigfii«85&®)it3!f}S«3. *

XE5T*li+a-»EW56e6fle.n*v„ $m^E5&mm*-5#^x86*©mi'mm@

B6a/$1"-5fc©Cli. @##E5& 4K lcbx^a*E,/##&^. !$IS#©6ffl*H

It-25232

3«E6Stll6»T5fctoB5&fi2<i)£9t;5o

SilfM?it7 7'yW’ VS-> • x-U^'y hAs£'SX-$>&o BSSfStWCPBgIf

B54«»^4icfi?t'*a*s*^o silica

t— K • Z'f A H &k")$i|]$ EBBS# -£,©£$ S'*

> Hi, Eee*Asffiv«5Se$Sr#6fflVTJRD<tlj-6-i:-BAs$>-E>o n-E R •

X©Etea—ri—TS V l—->a >SfflU"C, %##6#SPA±L,

###s iw wTtc##f *as©*fflSfiSBBiix 25K^e> book ©

S8T-to#"f-5B8,fi4##©^A- h k«E-^V ^AtfXSEIflUZi#—Xfr&tWgtePB

7"D R Si'# AMRL ©#*&mmbf 6 6tot:#, AMRR %f—9S##©R6@#

cgafbf6&a#&6o cm*, sn^ticxs-va, M±e>±MW%t£&t%tc

to, l9$©S6ttBtcejS-(b L&t}nH&e>ftvs kSSttTSo auteffitEB-bti-fc

AMRR XS-ytt, 300K frf, 20K fflfigftBCtfeotiS&^SlASKt-a, #

AMRR a, ^7-^07D-bX - % h V-Akt- h 5v>SSft2tiMsSlix.fc;tfXtt©

-^U *#©7DtX • X h V-AA5 6

Saule V

Bnt>h,a, *$s, ififfltt, ffivx^s, ^ix-asth mma©*u#t@smwi/

to 7't>s:>s‘i;BB-y‘y'>7.T-Ai*iffl}gauTV'^*s3iffl©*fFg^*sMax*$.ofeo

rt-ibxs-ytoSxs-ya, $#-e#BL?ma©3>^-%>b s#$ • »et-sj,

enavxsAife*©toiiasi:@pgto%#Masi3J|gtel"-E.o e %s-^©ufw^©%

s—yters-fexf^fetotea, ^#©7>t>^>s*^e> 1

zu. chttsasfBi9@fdaT-6:<EWt-^e6se,To

ISgtT-tt, f^T©t:-h'>>S5to$SEWf^teto©XS>VX#©E*SSSs©

±$CgiJ©X$$Asl§#|iii"tu?>= c©giJ©E*@@@a, i-XrAffllt)©SESSM

■f^.ci:6<E$#gs©seSEl*5J;tf'/$tittSE'f5ekSSSteT5o *?|JKB

33

#-253

4.2 1 AMRRe^x—>V—/2/>X> • 'WHStf-

0 4-114, AMRR f'&TnLfctjOT-fcBo

®^;vh6H 4-2 7v-’mmt#7n-MM££.V;£>nt>ti&ffi

i'Z2tt9i.i^9#S C®BBmi4, vv>

• »XXXTA&m5»Xi/X^A#6e#TBCk&qT

fgtcf-Bo

icfeB. *£, £n*-ed vri4v^%v\ffl-cfc5*ss * t

(H9 ^®©WE-NET«£®CSHJ£LTIaB) , B$S*-Y-;i/6J;V^aiR-e$>B.o

#i!l4W-;k ^T'J>X, EX-fy, WA^y>ys*sj;

f-B„ Cfflr'if'f >®BSI4, fi¥*fe$ftBfr-£) btl&V'o L#L, C® 10kg/B

®/cA®K:tk###gBai#A®6&#im®&B?#i:Ml/-C. 4kiBRT!l4fckfc©i*

SST-S-BfrttbA^tcW CfflHtetgBWIKa'jyx^v—^©f-i—> • XX 4’;)/14,

0te^4’-;H8lf-4 D 6i*SetoX-;V©ia@ibWj: < %% kffl^$nT45 9, $fc66$

@S*4'-;i/Jp^x-> • ^<11/ H"T 7"®k'*.6 6y-;Ha@l4, Ev®iaar*$>-Bo

ax 14. Uvic tejoUTB/E^—A/®->—IkS^mlC^U1'. h X—MCSfflT*

S-Bk#4.T^Bo

ft-254

34

El 4 1

MAGNETIC REGENERATOR ON CHAIN

DRIVE HUB AND

COLD BLOW REGION DUCT

HOT BLOW REGION DUCT

S/C MAGNET

COLD BLOW REGION DUCT

SELECTED MAGNETIC REFRIGERANTS (eg. Gd,(Si Ge1 x)4) IN POROUS, HIGHLY EFFECTIVE GEOMETRY

(NUMBER OF MATERIALS DIFFERS FOR EACH STAGE)

COLD BLOW REGION DUCT FROM HHEX

FLEXIBLE STAINLESS STEEL (eg. 316) BELT- SUPPORTS MAGNETIC REFRIGERANTS I

HIGH PERFORMANCE REGENERATORS

FLOW PATH FOR HEAT TRANSFER

FLUID (eg. HELIUM) THE DUCT

REGIONS

4-2

35#-255

#2^

2fgCf 6C 3^;i/0^\;i/A^;i/^E@(j:\E^^)$##^(D

^C^^ATcW:, AMRR/AMRL

v ut;v—

Regenerator

wear

Sealing

Manifold

Field

Chain Insertg|4-3 f-^->^#(D#m-##^^-^AMRR

‘f' x. — > r —> • h IC1K t) ft!} 6> j'lfcS’lfc® l) is V — $> • t

>6fixfeX7l>VX$8-e1»di£ft-tl^o ^©HT-EiELfc^dC, Sitxi/^>F

tt, t* > © - * ©S» 6 to©$ t: «*! tc S^USS #±ff Th 3 Ett##© X X

•x;vb©#S$S45J;(>-^h,SE6tc#a^ati*S6li 4-3 tcsto

#-25636

X b MWttX b

d > Vn V 6(4 V y V-j'©iegfll*16ffiSflJ$T*E»E$As*9t-fiV^'aAsfe5 tc

46, zvm^zf-'/uzm (ss) &mt'6cki4-c#6©. t>n*>ni4, 200K ©@g

ffiHCMbt, SS 7, buy '/A "J 6 ©tiSStStlttltJ 400W t-liStiSlto t>tit>

tltt SS ©#* *) C G-10 SSfflfjrtSSSLfe. G-10 (4Xt">VX#4. D

f$is^Ey.±'J'$V'En-##T*$)-E)o

• T-k>y; SJK$rtU6cE*S8s6ia 4-4 IC^fo CM4##t:f ^,/:46|g| 4-

3t;(47pLTV'>&©o

HI 4-4 JDE§tsl*lffl^-i->r y-b>yj— 0 -XIJ ^Amiet&TnSnTU&V

S©$iitASe/hPglcflix-56c46, EAgfstirregtr& o T v 3, E*S$i4$oT<•

yPfrbtl-D-CV'-5o

AMRR fflXA-yirH VTE6SA6iStt±©E5S© 1 o(4, !£9WjSI8SB©'>—;u

?m©Eesi4Ui>’ix.v-^ • H'cmba©^-£'$Asafe 6, v v-j-

£ tiffl4 4 6 ftltv*fc(4 y Xx 1/-*MH©iini4#/WStr#Ji 4,&SS>%„ r ©

37#-257

MANIFOLDSINGLE BIN

■PRINGS

-SINGLE BIN

MANIFOLD'

BELLOWS

HI 4-5A ^31—>hv—;v Fd^lt

{^-25838

0 4-5B

El 4-5A-C|ftWU&idtr, ^AfflEilli-SC 3 offlt>C©J|®$jxTV''5o c

©asfttt, K £$$ LTl^Z (H 4-5B£#

,«0 „ t'>-;i/©ngcifx$txfc 4 o©/^-eit(c;f>fflfflp®t

8*Lti'J. ?miiXx>vx®ffl^D-x-ev^7h";i/H k'>—;E©f@£$llrt-5<,

c@i9W'tt, H:K@£^A6ck%<x '>-;E£*>-f»

» $ ■& T £ > © * 6 © » S £ «IE-f £ .1J: £ Bjiig t;-f £ o

•7-^-ie h\ ->-ik SS6akflfc©$5nk©eB£/il U

TI'^O IE Ek^.D —X©M#liX£> VXIST-S.^,^ V—;E©#|iHix7D

>3-£4 yv^titz G-io^e.*?.o

?x-> • T-feyyjiiEeto/te^Cffl^a^n^o #*8EEXrifflaXcp£

H 4-6 ctf-To cosiciis *ssgs©±®tc®t)Wite.nfe 4K© gm i?74«-7

-6/TisnTV'^= e*sE6i*s ES£fistceoiafB*£W*-(b-r^fe»e*^a

sn-So ^74"^^-?-©# 1 x^-ys, tivsexbu>i?^yt

39

#-259

# 2 60 G-io wm,

SS Vacuum -Vesse

G10Suspension/Positioningmembers

Cu Thermal Shield

rvocooler

oneback

SC Leads

NbTi Solenoid OFHC Cu plate

Ei 4-6

4.3 6

6#0K&3>;^ l ocotv

#T&&o 10K 6-8 7 77m#L&i&#l:b

vi/7d

(tg^ayt:) @mib

f 77777 - u7-> -

fd-260

40

TOP VIEW SIDE VIEW/FLUX RETURN

SUPPORT STRUCTURE,FLUX RETURN & THERMAL BUS FLUX RETURN (SOFT IRON)

& SUPPORT TO CONDUCT IVELY COOL THE MAGNETS —j

MAGNETWINDINGS PROFILE

- REASONABLY UNIFORM ALONG

80% OF BORE

TYPICALLY 8"- 10" LONG

TYPICALLY 4" ~ 6" I D.

FIELD GOING IN

BORE OF S/C MAGNET FIELD COMING OUT

STRAY FIELD IS MINIMIZED BY SOFT IRON YOKE AND ORIENTATION OF

ADJACENT MAGNETS

0 4-7 e x f- ya

T:r-> • r-b>7-|J ©E*S8sti:SS*l6lL8tlMflj'e>h^= A7AAA*

^ne>©$st;:i;t. itemi. si. =t-t>

-. r>AA>A. mm. tmtzwtbZo B7A -

l+SLIi. S@ -E*-b>-9-. S1I+. IM%T6#m#m. 4=*

His, DAQ?v7. PC. PCT>i'-7x-X/V7

41

# — 261

H4-8 AMRL«fb«ffl3-;V FifiytZ

»$n^ii:tC*oTV'5o & AMRR X7L-ytt4:<t'>XTA®ttfbSBia'(bT-E>fcto

ciEiasn^o

6® ##(:#, h-e&6ca. &

#,3—;v K • ©£&#?£&H 4-9 »

#-26242

-nrv .Jin.

iroirgw

El4-9 ^

43

U m

5. AMRL

5.1 AHRLX'r-^©^

AMRL El 51 ^|g5-2(^

AMRR ^f—^(D#gt#^bc%]Ai:6ck^'r^6o

#w#/\ v ^A##:cDmm(6e v ^^$ i/®m#^i@i c^^

h f (D#^(7) AMRR # He

(D^> h D If—6C ^Vk 1^(7)^^ k(7)##^7°D^

v M!##f 6 V V^ U—$ b'>—)\y t(DW^\t^M x-> h D If—

stageWreversible minimum work required

Q. •* hot

TV 1 cold

-1

W^ actual actual workQc

71(j£ 5-1)

hot

TV * cold-1 + Thot Samrr

S AMRR — S reg H" S pressure drop ~i* S cold HEX 4" Sother (^ 5-2)

JV*#, AMRR 0J:>H3lf-^^$6'xjk«R^6^6Vi;^$l/-^(D#!j^A#:^#%

f 1 O0+M f Il/CTW:^ V ^ V ^ 1/-^ 2

#-26444

Spr^un,*,, izu)v-7±#a>'\>)<ybati{&y-h^^ni,o Scouna

-)immmg, ^* ■-> ■ k 7■< ymwn& t*>•#*n*„

302 K

292 K

0 5-1 m6zr-iHz#tfzm&kttj]

s/s

4.95MPa

SI 5-2 356*7-—inz&ttZEtltmM

45

#-265

AMRR SX7"-y©a*tta6^.o

27~300K ©ttBCS&X^-ytiL 201K~300K fflilCWXf-y J; t>

amrr x-%—y©»*

®Btt 0.85 6 0.65 ggtc&S tixlj-f SC fctt#JI©T-feSo

5.2 AMRL #-fb8g©E*^to%*

6 AMRL ©#m#& (FOM) tt. SXf-vfflW {t^XmWv i

i=i-6 ttl@]b"C-$>S2:E/£) k^ceEtotcUSnU 77=1.0 ic# lt 0.8 6)SfiSl1"S (Bl

5-3%#®) o SX7"-y©7?Asi;fflaO 0.65&e>tiL AMRL © FOM li 0.53 C* So

0.7 *

2 0.4

0.950.850.750.650.55Carnot Efficiency of Each Stage

H 5-3 #^|J 6%f—y#bai:AI7S*%©*;i/y—%*©#MC3:S FOM

jt 5-1 lit. 6 Si© AMRR XT-y 77 6 ©a*;t>s*fbS*© FOM

#MLft&©7:&&o 776 l:#f S FOM «n7cUyx*V-%j3

cfcll' AMRR ISI+©MHtt%^19 LTl'So

#-266

46

5-1 A##* FOM (%) iZ&ilZveOBW

m 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .8

112 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .8

113 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .7

114 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .7 .7 .7

115 1 1 1 1 .9 .9 .9 .9 .8 .8 .8 .7 .7 .7 .6 .6 .6

116 1 .9 .8 .7 .9 .8 .7 .6 .8 .7 .6 .7 .6 .5 .6 .5 .6

FOM 82 78 73 68 73 69 65 60 65 61 57 57 53 48 52 47 52

FOM = Wu,( * <. . \\

*«+ Z fr, + 7L aS reg 4* 5* co/d HEX

AMR stagesl < VJ

(i$ 5-3)

:;t> w,d ttHito&Sfbl;* (H2«-(b» iokg/B©*fb«e^ Wid=i,3i2W) -c-fc

0, Wp li^O CA - ^>7©#± (fcnbniiWp ®-BI+SE*BTH-Sfi*e>#SL

& : V Wp ; 500W) tfe-So 250W ttN gMfflSgdlFfrfelfcgL

AMR stages

tzo 0 0.8 (#££1+ 550W) MUTtiU 5$ 5-3 t FOM=0.5 <b

tl&o

0.5 ^ 1 lOkg/day h D

6fl6oFOM=Wid/(Wreal+ASirrXThot),J:> h D tf ——

L^L, ±#^#lb# (30ton/day) "C# FOMO.52

-0.69 lOkg/day #lb#]#^0 FOMO.5 C(DC^

&£') U\ ^ 5-3 Mb#® FOM C#f

47#-267

6. mim%m<Dwm

6.i 6 ZT-pmmm^ffiimmcDfflftncDmm

—yi:#LT|sIC%m (T?AMRR=0.7)

#, 40—45 t)f!t>

40 jpD//^A^Tc^^o m##, mm,

1 ^rD^7A$)X:D 5,000 #E6#7r#%%2fl

-#<&#-C&:5o 6 AMRL #, H2#t^y^f"A, LH2^#y^^A,

(i&(amam m$<

##^m, m#, mm, ##, m^,

^ h V-A###@, ###, DAQ

7y^, PC, PC —7:c—X/V^h^T&^a^^fiac^C&o-C^&o

Materials/Equipment:

• ]) y sr. ^ \y % —■ • tf y/y* %.—y~f y -t y yo —

• ####= 40 kg

- HEX m#:^yy^TA

• 6T SB total 6,

• ^ y ^ ^7 —:?: total 2,

• (HTLs):

• n —)]/ p ft y y X, total 2:

• #t# and $lj#

25.000

200.000

30.000

150.000

$ 70,000

#-268

48

60,000

30,000

- Hg and LHg gf#:

Total

$ 65,000

$ 5,000

$ 635,000

6.2 mtotiti

X.W:, ATad#15K%kLT&, 25K^6 3OOKl:^6#g0^f—i/0ATcoid(d:t»f

ATcoid(±US/zi%l/—(mjxBCOckol:) o

L/i^'oT, 25K-300K (Thot Tcoid) AMRa/ATcoid# 275

25 ^>6 50 CN±,

AMRR 6 C ^Trff^.60

tltltotlteUT® 2 otD^^CD^S^f/fSrff

- w y v v M ^#<b#@

- AMRR

49#-269

6.2.i y kswbgg

"J KS©^l+Tii, L-C*aL^:#

-ru-tx ■ x h v-a£ 77k

27K c^atT«-fb'r-5fcfet;isv'?.n-5*9«a 3

ns„ LNz ©mibi: ji-o-cfg&f 6@aa#^%i±x %##&#@g©4)-e7otx • x h

y<) y H"$r$lbSe©£ttto&lto^6tob*ti\ ###*©&##*

(40%) lcSl®Sja5o L£AsoT, tztxM%XT-i/cr>mW 90%-Cfeofct LT&,

;oa47'J y h’$*lbSfl©5:Aa*ti:aS!ffl 40%&TBI6.

;W y U V Kg##©**#, ^@6mmA@#©a (4 4fD^Afr& 5 ^n^A)

&’ptt<zmtscb-t:&z> (s 6-1 #s.) o $e,tc. 1 -3©%^-y©#±a@%ai±

(77K-25K) =52KT-*S&©. Effl'tStffittfc'f > 3~4 toSS@T-«tt© k"efc3o

6-1 zkXrS-MfflltS

Stage Load

He temperatures at Cold HEX

He flow rate

[kg/sec]

Magnetic

material

mass [kg]TooldfK] ATooi.ilKl

1 46.90 52 6.22 0.001451 0.35

2 36.30 36 4.05 0.001722 0.75

3 66.35 25 2.74 0,004652 2.50

7\-fyo "j Mg#ib#m©A##mii. Amm@#-(b#m©mm<k 0 t)*ti (:'><#%

85—13, t>T>~4 jpoy? A#6 6 4rD^7A©^a]ti-L*'i;.gtCV'o 85—13. 3 fl©

BBk 1 i}©^74,*^-7-LA^lBL*v„ liinSg, T&to*. LN2->XT-A*lt6<

to$fflT$>^>= PM%®it 1 b it Iff (3 it ^ T. ±{kWlf>(4 43% t kAl -,

#-27060

7 V y Hd:,

4-5jrD/7'7Am^##CD#^, 3-3(Dma, LNz

±mt#mW:fb^A#&(±4 3%a±m^o

ccDyD^aL^hcDgm^AmMm^bmm^^mE-c&D. LNs^?#^

W.±^L&^o

6.2.2 MMMm/W'\mm&t>^

lg 6.2 mSB (6 #B) ^7"

-^WlTcoide'tyD-k^ - % h V-A(D###&|#&ly, ThotG^coidB'r###^^^^

&o s; 4 ^ 5 W:yo-b^ - X h V-A^@T0^7^-^A^g±(DX

1 3 #, AMRL Thot=300K T#

(^21^^22) <,

ATAThot=AT.-^^Lad , and ATcoldAT,hotT -T■'■hot J‘cold

Lcold

A •

)

Thot/Tcoid 1.5

^#:0^m^(j:ATcoid GRC^f&####&& (%7"-v4-6) o

fflfflATcoid 1.5K, 1.0K, 0.6K (#2-3) ^^60 A

Tcoidld:, ^D#^ATcoid6D#-c(d:, #)$#

51#-271

LHs at, 300K , 0.5MPa

Cooling at 300K

Cooling at 300K

GH2 at 20IK

Cooling at 300.K EfT

GH2 at 134K

GHs at 90K

GHz at 00K

GHs at 40K

I.H2 at 27 K

16-2 m'i/mz'i&M

amrr xt1-^©1;e>©#&*

feJK®5£'J'£ < tzz tcss, 1 7r—9S t ©et$tt#©SAs,J>* < te D^ H8C: V

Sign* ttfiTt?,.

E^UfflAffl AMRL Lfzo T@© AMRR 2 v!^S)S^±lf 5>

#-27252

So Chid, tz t x. ATcoid ifi 5~6K T-$> o T t., ±»© AMRR Xt—

icMtoSo j; D * 10%A)6 20%'>&vcktt 2-2*tcTSU

fco C©CkW\ nx t-SSIST#, FOM W9U

e> < *ja-cafes> ti'd t>nt)n©te**»fi'(tTV''S>o

* 6-2 a 6-3 a, e@5X7L-y*W!i'e$>s mkg/ a © ^m#©/1 ? x - ^ & #*%

feSo T.f—'j 2 CjoVT, *T©6@©Xt—Xli, SOOKiCTXn-feXX b V—

6-2 6X71-yj6?iJ/E?iJj'-1,XAMRLfflX7L-yc:k©SStoStage Temperature range [K] Load [W]

1 200.8-300 161.22 134.4-300 1214.63 90.2 134.4 651.84 60.3-90.2 340.75 40.3-60.3 166.86 27.0-40.3 71.5

6-3 7ic*?aib«©tt«

Stage

He temperatures

at Cold HEX He flow rate [kg/sec] Magnetic material

masslkgjTools [KI ATcoidlK]

1 199 5,9 0.00529 1.3

2 132 3.6 0.0644 29.9

3 88 5.9 0.0212 2.9

4 58 5.9 0.0111 1.1

5 38 5.9 0.00547 0.37

6 25 5,9 0.00234 0,11

53#-273

XX-X 2 T'tiu XDtXX h ')b AXr-^ttt,300K T#

6S&Sittit'6o

(6.1 $#») #—©3l\#, Etifit4©3X It-to ^ai# 40kg X Oiitf L5 35kg &

i&sttzo nJftffifcUTBu $25,000 ©ffi|\J„ 2o©®g+(7)£%^;ffX hffliiV'

ti\ Stifinx ht-ib-So SX«\ »J/it?iJg*t©iS8t©fc«)©0

BS®69C,>%<T't^ V XxAxX—©g###$T&6k#@LT©&o

7. stokiie

xnyxx bossuttt, t>nt>tut2ok^b 3ookM-s-amiitiJ&EflU'rssw

&Bigbfco xne>fflEa^aiti-©EKts@'$(bciiif •sx-'-xiiA^isjE-cfe^o m©

3o 3-4 (COX l7!»7Ltl'5o AMRL XnXxX MnHj"l:SSUfc

EMAgl#© 1~2 X'XAga©+t->7>£ WE-NETlSCip® LTV^o

bilbblli, 6 XX—-X j6?U$! AMUR Ea?$4b$B®V' < 3*©S(fi;56t&|4 Ufco t>

ftfcftii, L, V Xx/i/-

X©SS6ffi*-(bU tiiifr-D 0.5 ©@*to& FOM CfflSII

IXD^x^ (-©gfblt, bhtontib 1998 WE-NET SSSto^T-bn*)

ti*5attte*bfc5c^*»ijSi!Bt;i)Dx.T, e?ut&\6 la^d* -ti fc amkr xx-x

SftSIL/fco

Ai$-(b%*#, git FOM S?*£'r-Btei6Ci¥SgiSlt&$*"r5iRULl©'$Et:J:^#ll

0.5 tut io©©ainii. iokg/g wbtreiiHSfbsnfc#

qjjMi> bDi;-*s|||lfflf±#ffl*y^rt;iXNTN A#i\ck^±(f

FOM=W,d/(Wre,i+AS,rrXTh=t),3L> h D K—©/Tlfinii, itiBtotCXX"—11/X"X XT' if

*l\ @S-(b$n^(l|qllC6?,« fhKIC, A^%#b# (30ton/B) T-li FOM0.52~

0.69 B\ 10kg/g «fb«illS© FOM0.5 <fc DifcSt-E. X k^HWT-fcSo COCfctt

AT0#-(b#l:3©T#*T&6. T#itc, STttSfc, FOMO.6 Z ttfT

#-274

54

$5*6 Ln&l'/bL SSCRV-Wlflti: Lfc < ft V>„ 8#gLT©3 AMRL ©**

nftmzti^-otztwtttizmiW&Zo -enaa 10-20%^ fom%mba£-£&zt

ZtilfastitZlo CiltiL aX*sfff®Lfe 0.5 & 0.6 lClSin£'ti'3>6 Lil&OSd—o©

^iiT-fe^o 6?iJ/3l6?!lSStt, cfc 0R#*** FOM

k*/u*isic©^ fom #, ^neti© amrr ©m#

to*a*(cttSLTv^o ia*> ;w/^##mm#©m,

fflff*6jf(C-KSLTVx5o

tinbnii, SHbse©©<^©sgA'oPttsuiRiK&ieigi£o

h’EBT v-ti#st:*36: «fcd C@t>n-E.e ctitt, *fij@ AMRL

amrl -sttocffiffl-es-So bn^niix amrr ©ateaasstt^* <

at i Hz #m*Lc ikSB^mx-A^ti^m^ifrco 8iD»$t^setsw>®s

#, vyi*L-4'ti'#©nJ«j^;i/HcMLTBeaE<*y^ b&Sffl-r^ak-efc^J;

■5 CJgfcft^o h ±©Sttl£ 0 ->*x* L-<9 icffifr&ttc a»s#$tce

SftiSIt/SiBfflX f^C44.

t>nt>#x©AIITii, a©zkSrS-fbS iokg/E©f$-fbSe©S*ISS+tt, ESutlbSH

©S FOM (50%) ©SSnrtgtt^HliEXi&tztsb, #StC*$6RJfbtt&@«)TV'5o

KM?6(bliem©&®x^-y£IW5tSfctoffl+5>fo$$;b5ls l mt#

6iifck:ti-TV>-6o t>ii;btitiL #SSS+©^fff"CB96M;:&o/: J;dt;x c©7"n V

xX 5AS AMRL (C|g-r-$.tih,bj%©toI$&*|BCl£lf-E)C a$*«LTV'^)o &$<©

a^fisciisiti^fefe, amrr

x-;©r*fe£o

55#-275

##g 03-3987-9483