kurri-tr-418 - OSTI.GOV

154
JP9611 27 ISSN 0287-9808 KURRI-TR-418 KURRl-TR418 JP9611271 Proceedings of the Specialist Research Meeting on Solid State Physics with Short-Lived Radioisotopes 1996# 2 R (February, 1996) mm mm n Edited by S. NASU, Y. KAWASE and Y. MAEDA & pjf Research Reactor Institute, Kyoto University

Transcript of kurri-tr-418 - OSTI.GOV

JP9611 27ISSN 0287-9808

KURRI-TR-418

KURRl-TR—418 JP9611271

Proceedings of the Specialist Research Meeting on Solid State Physics with Short-Lived Radioisotopes

1996# 2 R (February, 1996)

mm mm nEdited by S. NASU, Y. KAWASE and Y. MAEDA

& pjf

Research Reactor Institute, Kyoto University

##:^%!F?&F'5^0f#Technic8l Report (KURRI —TR)Kf$a©KKBE*. SWHfclWS, K*%l*a©K*, W

9, §Euii^0m±tc#^a/:#LV'*A*, liU'm fcAcm©^:*, u-■*?-HcttttftimW&iBfilMtZi ttiZffismm-tZkCD-CihiOZ LTgfBSCTi (CKURR I - K 2, ..........©iIL$•Sr%frSn$t0 tifc> KURRI-TR- (216)jyitij© utf- h©$Sil±, KURR I -TR- 1 ~291Kfg*c$ttTVt-$-o KURRI - TR- 264 ObiJ © U A — h ©$|g(i, KURR 1 -T R-292-399 UffifSc? i\X t' i +»

63# (I)..............................................................1985-KURRI-TR-265T #PW%6#^..............................................................................................1985-• ■-KURRI - TR - 266

........................................................1985-KURRI - TR - 267(E%K%J M9E3E6@^#............................................................... ...................................1985---KURRI -TR -268

t ffFffi IcM-i- 5 i6*8efft£*B6......................................... .......1985- -KURRI - TR - 269....................................................... 1985-KURRI-TR-270

«f SllS«RJt3tXSW3EI9ftR t ©EltfflJS? & tBSIiit* h f y 7 ^icgg-fie ; ±-%msx*..................................................................1985-KURRI-TR-271

mmKM*9#m«e#20............................................................................................................... 1985-KURRI - TR - 272* * yiy*-- x 7 h S»lE3t£IS£............. 1986 -KURRI-TR-273

(VI) ................................................................................... 1986—KURRI —TR-274*7$&S©*-f 7 7 7 V -e-•> 3 y......................................................................................... 1986--KURRI —TR —275@ 7" o t X © 7' -(U-7-©MP6£(£ffl........................................................... 1986--KURRI—TR—276nS96.<frtitif$iJJ #P9eF9t6*fi£ (n) ................................................................................... 1986- • K URR1 - TR - 277

JkW#WaSeS21....... -............................................................................................................1986--KURRI—TR —278- r M«W¥ 1C a u 5 @XHE%&I8£..................................................................... 1986-KURRI - TR - 279

.......................................................1986-KURRI-TR-280TWIEaffiJ ......................................................................................................... 1986--KURRI —TR—281#70^5 7* 7'5 7 .< -£*8E££*fi£.........................................................................1986- KURRI-TR-282

.............................................1986-KURRI-TR-283A 6 IP^SE^BEES^......................................................... 1986- KURRI - TR - 284

........................................................1986-KURRI-TR-28SX® • »tt^ta@lfrlcA-£.V 7 he- K 1986-KURRI-TR-286«AE%#P (KUR) HISE&tiSiliICau*^7 hAV$i])g ..................................... 1986-KURRI-TR-287ifc»MSWaie$l22.......................................................................................................................1986--KURRI-TR -288

T E^lp icfcU* #P9E356@##...................................................................................... 1986-KURRI - TR - 289ssfcic fc U t .........................................1986-KURRI - TR -290HSUHir&H-aiJJ (IB) ................................................................................... 1987 -KURRI-TR-291

.......................................................1987- ku rri - tr - 292........................................................................................ .........1987-KURRI - TR - 293

55 2 0Eg#££J§JWE3E&8£«..............................................................................................1987--KURRI-TR-294r *> u&K*©%#IJ &a$E3t£IB£e.............................................................. 1987 -KURRI - TR - 295

#PW%6$8iS ( I ) (BgfD62i£E) ....................................................... 1987 -KURRI-TR-296BafD62¥$±¥fflmiBA^Wm5(9r*l5lf'JfflE%li6...................................................... 1987-K U RRI - TR - 297tx'j; 7X omf ^a%$±@a#p ).............................i987-kurri-tr-298<P&=Fmr lcJ:5 fflfc#H5IB3i& t ^B%«iSSP5E%6lfiSS............................................... 1988- -KURRI - TR - 299

T #A¥t6J ..................................................................................................1988- • KURRI - TR - 300amm#a:s*#23.......................................................................................................................i988-kurri-tr-3oiFESEffl @^tplcA5 SPIE^SIBS..................................................................1988-KURRI - TR - 302rg^^ftSJJ (IV) ................................................................................... 1988-KURRI-TR-303

Bgto62^ET¥toRS$A¥®W^86E#l9flfflE%IB .̂..................................................... 1988-KURRI - TR - 304IC <fc Z )pto@SI8tJ ..................................................................1988-KURRI - TR - 305

rwmic A &*&##%J ............................................................................ 1988--KURRI—TR —306............................................................................................................ 1988-KURRI - TR -307

rwst&ffij ..................................................................................................1988-KURRI-TR-308ttsib y + *> f - «fc ..................................................................... 1988-"KURRI-TR - 309rWSEKffiJ E3E£IB£S....................................... ................................................................. 1988-KURRI - TR - 310

• XSlHlSrlC j; 5*$<$^ISS©ffiie^a9tSPTO%iE«6S.....................................1989--KURRI —TR—311f$ff IC«fc 5¥S&E£J ..................................................................1989 -KURRI-TR-312

m?4piWL/=mm#e x##t«kui -y 7 .....................................................................1989---KURRI—TR—313

8t»feitSSeS24.......................................................................................................................1989—KURRI—TR—314BBf063^$ WW^|£f................................................1989-KURRI-TR-315r «^^t*S©f ijffl tcMt 6E%J .......................................................... 1989- -KURRI - TR - 316KUR.^idSi^tt^SATeTvv i ^M©tit%toa©SffiiSiJS........................................ 1989 -KURRI-TR-317rmf^lcA6#lb# - #P9E%6#& (I) .......................................................... 1989-KURRI-TR-318

% 3 [UEg^^E^ii'S*.....................................................................................................1989—KURRI—TR—319L/c5b4^m^©M@J -%WW6%^A-#P9E^6$B&.......................... 1989--KURRI—TR —320

B8fQ63^K± • 1989-KURRI-TR-321to'SSIM-lc A 5fiafl4#©a-'J>5l®S«S............................................................................... 1989—KURRI—TR—322TRANSV2 : A Thermal—Hydraulic Analysis Code for Research Reactors—1989—KURRI —TR —323BniSIsiJtW^a 7 - 7 -y a -y 7* T V - 7 y 7 ©ikfcttatoi*J ............................................... 1989--KURRI—TR—324rl*g*%aE3Se y 7 -:+@U (cKIti-y yd?-7 7A..............................................................1989-KURRI-TR-325

^6Ex;^$±^mRSA¥®:P^IIK9r*lil^iJfflE%ia^...................................................... 1989-KURRI-TR-326fi§itt#6fU?*P©@t*y #P9E^6#A#............................................................................... 1990- KURRI—TR —327

# U & I

mnzfti z tizxK), ®%<Dm*®nM%%iz±’cx< -

<btlZo 44^(3, ^i$f ^@E^S/0^^’-<b-r ^ V TT13(W^IWi; < VTM^

n> B^t>t>^<

B^b(iH4 7, ^-i:oi>T3#gc:£^27£©#

%J m##R I ^$jmf 6C(h(:j:-9"C. J:<9jAl'T©ef %

«ia^ c A o. sumr-?

m*ftz>zt*%mt\.T%[m-&tiKo s3@©sra%^¥E

7^12^ 19B> 20B©#BC^#^tl/:o 3 fiW <b UTI;i>

1) >r >e-x/<^t-^

2) ISOL# ^C j: # 6^161 ^/:PAC^ NMR/ONn i/-^'-#^3) R#mf©%^6-e©#m.

SS£SM: LT#%©m^[#)±^(±^6/:^©K#%## 6#LL '0f&j£J&Kot 'T ft

mtu-itzoc ©###*##-#- UT t) jo%(: /cT(f #1 3 .

¥E 8 ¥2 >B

*E*mBX^S mm nee

mm &-BU EB IE

PREFACE

Studies of solid states by observing local electromagnetic fields with radioactive probes play very

important role to understand the fundamental properties of materials. In August and September of 1995,

two international conferences on the Mossbauer effect and the hyperfine interaction were held in Italy

and Belgium where many researchers from Japan participated and showed high potentials in these

fields.The KUR symposium "Solid State Physics with Short-Lived Radioisotopes" was planned to make

an opportunity for researchers of many related fields to discuss about the possibilities of more advanced

use of short-lived nuclides. The 3rd symposium was held at the Research Reactor Institute on 19th and

20th of December in 1995. This report contains the following subjects:

1) M6ssbauer spectroscopy with short-lived sources, involving the in-beam technique,

2) PAC, NMR/ON and Laser spectroscopy with short-lived isotopes obtained by ISOL,

3) production and utilization of slow positrons.

Many valuable discussions were made to develop new methods for the advanced use of short-lived

probes and many experimental results were reported by utilizing them. We hope that this report will

contribute to make great progress in related research fields.

February, 1996

Saburo Nasu ( Faculty of Engineering Science, Osaka Univ.)

Yoichi Kawase ( Research Reactor Institute, Kyoto Univ.)

Yutaka Maeda ( Research Reactor Institute, Kyoto Univ.)

Editors,

(1)

B #

a*% e*#e, m2) -(4)

ficuss, =mmm. m &mm~

3) pn>m-mE7k-±m%-------------------------- (14)m*m f b -br

4) isoLffl u—tr*—r*>m------------------------------------------------------------------------------------------- (20)m m /jv^^, s am

5) SPring-8A 7 <>---------------------------------------------------------------(25)m m m

6) -(32)MJOlh

BF m. SBlS&h # /J'Jjft SSFS27) ii7&i(^ii7CcD, i"Cd(^iiinCcD(DY#&KA#M----------- (36)

m#h #m^2,mStilh Btf Fh M5CE1-3

^fflOT2, mmum^ jiiB#-3, ±®s-38) 117In(*-11 ?Cd) ffi M ck 5 BaRu2sMm03(M=Ca,Cd,Sr)(7) ifi iStBESE^--------- (41)

ip, aetmFF3#B##h B# £2, |59BESm2

ojbessi, ^^csti.3, jbicm-3, jiie#-39) wocs-f F >£ A i;: <k 5 Fe&JlB (44)

^JKfiP, IMili±sm- #[]%#, jiib#-,

10) ^t»tu^E$Ltc£k5iSET77;l^77—ft%------------------------------------------------- (48)eamx sr^hbr

id (57)Riel

12) 7-f VV—^rilLTCO Xtf>7 V -y7, / >X E°> 7 V >y FNMR-ON------------------ (6i)#a±# m

13) -(65)SUUAX, ##*#

@tms> aa mi14) 45Sc(DTio2f@mm#mfB3ffm----------------------------------------------------------------- (?o)

eau, m#iM^nsij, sjhsf> em s, m abiwe, ^bjs-i kb SBB^ini, s?f#- ##Am, mia^Mij

15) l9O©4t>^^4>T0iMWffl---------------------------------------------------------- (74)e a @ a@ m, apsfx, mmmm

sm#-> mm&iy16) HFI of 130 in Pt Anomalous Knight Shift------------------------------------------------------ (78)

EAm, #m±#h mm^ lbl3#m n, ^eb^i®, mmimSJiUF§h BBXA. HCBB8S,A@ #L bp *2., mm #, s^sessf, #mwj

abbee, A^ %i, wb?k-2/j^ E2> MB^±2, /J\###2, #m#^2 J. R Alonso3, G. F. Krebs3 and T. J. M. Symons3

17) Precise Magnetic Moment of 20F(I™=2+,T 1/2= 11 s) and Its Hyperfine Interactions--------------- (83)in MgF2 Single Crystal

e a a mm nxmx,sm#-

18) 7LF sLiOLlIOs. (88)EAa,

auuisef, m, x^s m, &mmifluex, xw m. ra wis, *§eb«

sm#- F&a&flu19) -(92)

EAa SJlISw], S, X% #, AUiA^Fhe^mi,

20) -(%)e x m si$»j

21) ICAME '95(Rimini, Sep. 10-15)#S (I) -------------------------------------------------------------(97)a W

22) ICAME '95(Rimini, Sep. 10-15)#e (II)------------------------------------------------------------(101)IE m EMA#

23) i33Cs 81keV (102)igiNi^w, jew2, sawi ssea< mmx*sv^Aae, mtxx^^m

ws #, x^#^, xba-im M##^2, SEBSH3,

am ^24) XXFC77-%#I:j;'5mfb#^7X®###5%-------------------------------------------------- do?)

-m#a, k—ck^xfuAAa,

P.Kaungi, A^KfiKi,25) HdiWLFA-XAA-l' SX7>l/X8l9SUS304®{SS.XXAt77-:M------------ (112)

SBXA, mxAC mm2###IE, e, SlLi #, ES 3A, JIIM1IJ1# #ffz, E* #2

26) AFe02(A=LiAa)(T)57Fe^ X (118)EA*#X, AXWi

sexsil E# ?&i, m-Si27) Au-TM^(TM=Fe>Co>Ni)0i97Au^XA>^7-^---------------------------------------------- (123)

EA&#X, jaAE^PF1/p#E#, MXSIL IffE Si

28) Xn'JxX'f hM^ET(ffi^Cs2AuiAumx6(X=a,I)®TO^i97Au-------------------- (126)XXA57-#%

%A##, ^CAEf jpi/JnSSII, EF #, lufflSi

29) EERIPS^ F, (D57MnH-A STReX X At7 7-M&----------------------------------- (130)a w

30) 6iNi7Xyl77-MHJ:5XE°^)FllE««E®Ni2+®EAMWSS------ (133)b«sw, awe

esss, Mxid31) 3 7S£ H"7pV^tPV7;F41)VA^-7x>®7XA,77-M------------------------

FAEfF, E^Amxi«ti, EF M, tijffl s> mm#-e mmm#i

(139)

CONTENTS

1) Construction of a Positron Lifetime Spectrometer with Short-Lived 6+ Source -....................... - - (1)Y. Shirai and I. Shishido ( Faculty of Engineering, Kyoto Univ.)

2) Positron Annihilation 2D-ACAR Study of Irradiation-Induced Defects in Si ------------------------ (4)M. Hasegawa,T. Chiba1, Z. Tang, A. Kawasuso, M. Suezawa, S. Yamaguchi and K. Sumino(Institute for Materials Research, Tohoku Univ.National Institute for Research in Inorganic Materials)

3) Short-Lived Nuclear Beam Facility at INS and E Arena at Japanese Hadron Project(JHP)-------(14)I. Katayama( Institute for Nuclear Study, Univ. of Tokyo )

4) Laser Ion Source for the TIARA-ISOL----------------------------------------------------------------------------- (20)M. Koizumi, A. Osa and T. Sekine ( Japan Atomic Energy Research Institute)

5) Nuclear Resonant Scattering Beamline at Spring-8 -.................... -.......................................... ...........(25)T. Harami( Synchrotron Radiation Laboratory, Kansai Establishment of JAERI)

6) Temperature Dependence of Nuclear Resonant Inelastic Scattering-------------------------------------(32)M. Seto, Y. Yoda1, S. Kikuta1, X. W. Zhang2 and M. Ando2 ( Research Reactor Institute, Kyoto Univ.

iFaculty of Engineering, Univ. of Tokyo 2National Laboratory for High Energy Physics(KEK))

7) Gamma-Ray Perturbed Angular Correlation of 117In(*-117Cd) and 111Cd(*-111mCd) - -............ (36)Y. Ohkubo1, S. Ambe'.T. Okada1, J. Nakamura1, F. Ambe13 K. Asai2 A. Yoneda2, Y. Yanagida2, S. Uehara3 and Y. Kawase3 OThe Institute of Physical and Chemical Research(RIKEN)2Univ. of Electro-Communications 3Research Reactor Institute, Kyoto Univ.)

8) Study of Structual Phase Transition in BaRua^MiqG3(M= Ca, Cd, Sr) by 117In(*-117Cd)--------- (41)Time-Differential Perturbed Angular Correlation of y-Rays

Y Yanagida1, J. Nakamura2 Y. Ohkubo2, S. Ambe2,T. Okada2, K. Asai1N. Yamada1, F. Ambe13 S. Uehara3 and Y. Kawase3 OUniv. of Electro-Communications2The Institute of Physical and Chemical Research(RIKEN)3Research Reactor Institute, Kyoto Univ.)

9) Hyperfine Magnetic Field in Fe Foil by 140Cs Ion Implantation.......................... ...............................(44)J. Ishikawa, S. Uehara, A. Taniguchi, Y. Kawase and S. Nasu1,( Research Reactor Institute, Kyoto Univ. faculty of Engineering Science, Osaka Univ.)

10) High Pressure Mossbauer Spectroscopy with Nuclear Resonant Forward Scattering------------- (48)of Synchrotron Radiation

S. Nasu( Faculty of Engineering Science, Osaka Univ.)

11) Binding Surface of Interstitial Impurities in Fe-----------------------------------------------------------------(57)H. Akai( Faculty of Science, Osaka Univ.)

(61)12) Spin Flip and Spin Non-Flip in Successive Decay via NMR-ONS. Ohya( Faculty of Science, Niigata Univ.)

13) Low-Temperature Nuclear Orientation of •44Pm......... ...................-................... ................... ...........(65)K. Nishimura and S. Ohya1 ( Faculty of Engineering, Toyama University •Faculty of Science, Niigata Univ.)

14) Hyperfine Interactions of 45Sc in Ti02 Single Crystal..................................... ..............-.................(70)K. Sato, T. Izumikawa, M. Tanigaki.T. Miyake, Y. Maruyama, S. Fukuda S. Takeda, K. Matsuta, M. Fukuda, Y. Nojiri, H. Akai and T. Minamisono ( Faculty of Science, Osaka Univ.)

15) Hyperfine Interaction of 190 in Ionic Crystal----------------- ------------ -------- ---------- -----------------(74)Y. Matsumoto.T. Onishi, K. Ishiga, F. Ohsumi, M. Fukuda K. Matsu ta, Y. Nojiri and T. Minamisono ( Faculty of Science, Osaka Univ.)

16) HFI of 130 in Ft:Anomalous Knight Schift------------------- ------ -------------------------------------------- (78)M. Tanigaki, K. Matsuta, M. Fukuda,T. Minamisono, Y. Nojiri, T. Izumikawa,M. Nakazato, M. Mihara, A. Harada, M. Sasaki, T. Miyake, T. Onishi, T. Yamaguchi K. Minamisono, T. Fukao.K. Sato, Y. Matsumoto, Y. Maruyama, T Ohtsubo1 S. Fukuda2, K. Yoshida2, A. Ozawa2, S. Momota2, T. Kobayashi2,1. Tanihata2J. R. Alonso3, G. F. Krebs3 and T. J. M. Symons3 ( Faculty of Science, Osaka Univ.•Faculty of Science, Niigata Univ.2The Institute of Physical and Chemical Research(RIKEN)3Lawrence Berkeley Laboratory, U. S. A.)

17) Precise Magnetic Moment of 20F(I”=2+,T1/2=11 s) and Its Hyperfine Interactions -..................-(83)in MgF2 Single Crystal

K. Minamisono, T. Yamaguchi, T. Ikeda, Y. Muramoto, T. Izumikawa, M. Fukuda K. Matsuta, Y. Nojiri and T. Minamisono( Faculty of Science, Osaka Univ.)

18) Hyperfine Interactions of 7Li and 8Li in LiI03 and LiNb03 Crystals--------------- -------------------(88)Y. Maruyama, T. Izumikawa, M. Tanigaki, T. Miyake, K. Sato, Y. Nakayama, T. Ohtsubo1,S. Takeda, N. Nakamura, M. Fukuda, K. Matsuta, Y. Nojiri and T. Minamisono ( Faculty of Science, Osaka Univ.•Faculty of Science, Niigata Univ.)

19) Lattice Locations of 12B Implanted in Si...... .....................................................-......................... ........ (92)T. Izumikawa,M. Tanigaki.T. Miyake, K. Sato, Y. Maruyama,M. Fukuda, K. Matsuta, Y. Nojiri and T. Minamisono( Faculty of Science, Osaka Univ.)

20) Short Report on Xth International Conference on Hyperfine Interactions............ ......................... (96)T. Minamisono( Faculty of Science, Osaka Univ.)

21) Report of ICAME-95(Rimini, Sept. 10-15) (I) - -...........................................- - -................... - - - (97)F. Ambe(The Institute of Physical and Chemical Research(RIKEN))

22) Report of ICAME-95(Rimini, Sept. 10-15) (II)------------------------------------------------- -..............(101)T. Harami( Synchrotron Radiation Laboratory, Kansai Establishment of JAERI )

(102)23) Determination of the Change of Nuclear Charge Radius in the 81 keV Transition-------------of i33Cs by Implantation of i33Xe

H. Muramatsu, E. Tanaka, H. Ishii, H. Ito, M. Misawa.T. Miurai, M. Koizumi2. A. Osa2,T. Sekine2, Y. Fujita3,K. Omata3,M. Yanaga4, K.Endo5, H. Nakahara%nd M. Fujioka7 ( Faculty of Education, Shinshu Univ.•National Laboratory for High Energy Physics(KEK)2Japan Atomic Energy Research Institute(JAERI)3Institute for Nuclear Study, Univ. of Tokyo 4School of Medicine, The Jikei Univ.5Showa College of Pharmaceutical Sciences ^Faculty of Science, Tokyo Metropolitan Univ.7Cyclotron and Radioisotope Center, Tohoku Univ.)

24) Study of the Structure and Physical Properties of Oxide Glasses by the Mossbauer Effect-----(107)— Crystallization of Gallate Glass by the Heat Treatment and Laser- or Gamma-Ray Irradiation —

T. Nishida, S. Kubuki, P. Kaung\T. Yagi1 and Y. Maeda ( Faculty of Science, Kyushu Univ.iResearch Institute for Electronic Science, Hokkaido Univ.)

25) Mossbauer Spectroscopy of He Irradiated Austenitic Stainless Steel SUS304............................. (112)at low Temperature

K. Horii, T. Ishibashi, T. Toriyama, H. Wakabayashi, H. Iijima, K. Kawasaki1 N.Hayashi2 and I. Sakamoto2 ( Musashi Institute of Technology •Tokyo Institute of Technology 2Electrotechnical Laboratory)

26) 57Fe Mossbauer Study of AFe02(A=Li, Na)............................... ........ ................................................(118)S. Tsutsui, S. Nasu, M. Tabuchi1,0. Nakamura1 and I. Matsubara1 ( Faculty of Engineering Science, Osaka Univ

1 Osaka National Research Institute)

27) !97Au Mossbauer Study of Au-TM(TM=Fe, Co, Ni) Alloys--------------------------------------------- (123)Y. Kobayashi, S. Nasu and Yu. Maeda1 ( Faculty of Engineering Science, Osaka Univ.•Research Reactor Institute, Kyoto Univ.)

28) Single Crystal ^Au Mossbauer Spectroscopy of Gold Mixed Valence . ...................................(126)Compounds Cs2Au1Au1nX6 (X=C1,1)

N. Kojima,, M. Seto1 and Yu. Maeda1 ( College of Arts and Sciences, Univ. of Tokyo)

•Research Reactor Institute, Kyoto Univ.)

29) Mossbauer Spectroscopy of 57Fe Using a 57Mn Beam from RIPS of RIKEN............ .................(130)F. Am be(The Institute of Physical and Chemical Research(RIKEN))

30) 61Ni Mossbauer Study of Giant Hyperfine Magnetic Field in Spinel Oxides---------------------- (133)Y. Noro.T. Okada1, Y. Kobayashi1, H. Kitazawa2 and F. Ambe1 ( Image and Media System Laboratory, Hitachi Co.•The Institute of Physical and Chemical Research(RIKEN)2National Research Institute for Metals)

31) Mossbauer Spectroscopic Study of Iodine-Doped Polyalkylthiophene........................ ..............(139)S. Kitao.T. Matsuyama, M. Seto, Yu. Maeda, S. Masubuchi1 and S. Kazama1 ( Research Reactor Institute, Kyoto Univ.•Faculty of Science and Engineering, Chuo Univ.)

Construction of a Positron Lifetime Spectrometer with Short-Lived B+ Source

Y. Shirai and I. Shishido ( Faculty of Engineering, Kyoto Univ.)

1.

>0, «mmmztA;tz.Sti/c#cS!T b yS+- 7 IWftiHiJ iC'kZX't? hny-^©M

-tjrm) ■vvzomifet,

2. 0+-7hny-^

Mz^oEtc^M^n^o.siimcvcdtE^xhu

ta^-C £0.5mm@©Pilot U£$t, Vc. - - oX#8OOkeV0|#%fT#130keVT^)6. 0.511 MeV©

C©#(i, M©W^j368ps (3) J: <9 (iM 1) J;t >irC£>3M

(FWHM=^180ps)(:lt^^6*4:^fLUT^6. C©^b(i, h • '>>

f- L - ^ ^ 6 #^(TOF)cm^* 6 c 6 56#x. 6^16.

— 1

PS

PS: Positron SourceEML: Electromagnetic LensLG: Light GuidePMT: Photo-Multiplier TubeHV: High Voltage Power SupplyCFD: Constant Fraction DiscriminatorD: Nano-DelayTAG: Time to Amplitude Converter FC: Fast Coincidence ADC: A/D Converter MCA: Multi-Channel Analyzer

Fig.l Block diagram of a positron lifetime spectrometer with <3+- 7 coincidence and positron energy selection.

— 2 —

3.

C L/C. #©7

t>m^j^-mmp)mm^m^mmttuf, x zTOFommtitv*^%TAA#6UT0^##B®|Al±^#TA3.

i#m^br-Acmmcm#^^6c6^##L/c^,

l'fca&, mbm<DWi&i/>Z\Z'i:Zx.*jl3p-&M%m'Z>Zt±[st:. MfELTl^ ^g©7'n >y7@^Fig. 1 tr^f. m#6 LTm^6##c^eT, m#i/>x©mm ^^isu, 6. @t, 22Na^m

4. 4-#©m@6mm;i/^-3ijgijkxzmmm<z>£tti±mv\ c ©itmwn^rnwr,

(l) (2) J: <93^/j:^E©fiJffl©26^X 6

##UT^6. ifcoivTli, l^6LTU6. $m

ffl^^-FTB^B^^^Uffit-tlU^CuCn^CuSSir X ^xmm^l:mGBq©^Cu rn^uw^m- zct i)^\mxh z.

x#

(1) : mmx-mmfc® 2. A# - mnx-mwm^,(tt) 0*7^7 b-XB^, A#, ( 1 9 9 3), 75.

(2) W. Weiler, H. E. Schaefer and K. Maier: "Positron Annihilstion", Ed. by P. G. Coleman et al, North-Holland, (1982), 865.

(3) H. E. Schaefer and W. Weiler: "Positron Annihilstion", Ed. by P. C. Jain et al, World Scientific, Singapore,(1985), 584.

— 3 —

Positron Annihilation 2D-ACAR Study of Irradiation-Induced Defects in Si

Utils#jiiss, "FSfiJSi, m m, mmsE&ojpMm,M. Hasegawa, T. Chibai, Z. Tang, A. Kawasuso, M SuezawaS. Yamaguchi and K. Sumino (Institute for Materials Research, Tohoku Univ. iNational Institute for Research in Inorganic Materials )

1.

;% fWt# (ESR) ,

E s <D g#

*t/£Lfcfyy/H)

r >9^(D^^SrWE-t5[l-3]0 L/$>U ^<r>

r t t50

2 2 0 p sT&a. $)6S 0 0 p s j:»9

^ i-6o z j; 19 #v^^

fa 3 0 0 P S <D0$iim^(DXmzW.?£lLX*h%^b$:^£l.X<ft%o 5 6

^KDm^m^tct0 0 P s£fotct1-;M 1 osrmmfrbj&zg.?L (3^)

#iKK (fat,

§t>&<{&^tLT#fcE s Rfi/

?L) r r+¥fM)fML m

— 4 —

:: 5T::fi,&J: 61 (7)^ 5. I##

u-rnsingieParameter"Cifo & 0 HS^M^^S^iL^ftiLOSS^tW#^ LTX (AngularCorrelation of (Positron) Annihilation Radiation: ACAR) SD SPSIE'F' *

7 ^5; @<£>$:$& £'{Z$.t>tlX £ tz0 ~<DkCARM^t otffiW^ft'ife^ 2%7C (Two Dimensinal Angular Correlation of (Positron) Annihilation Radiation:

2D-ACAR) #### 1 ^A<7)7^ #

17-23].

Awwmf #x mfz 9

Tt'Wk ^/5^-M)GaAs^cV^-C(DManuel#(D2D-ACAR#^[17, 19] ^ ^iUcMf^T^Car# [24]^Puska# [25] (7)#+# (Car-

Parrinello^)

LT. %##^P)^?L^<7)2D-ACAR#% [l9,21,22]^fTcTV^o

2.

Floating Zone&-eW^SiLfc^RBBm^l5MeVS^^St (AM) U ###::#

S?L^^AL/to 5<Z)T\(7)AS5>tlSS?L^fctl^?L • #gg?U7)#m##^ tt,

-7^A^2# (Vg-") ^ (Vg-') ^ % (V/)p&fcteBmm (Dopants) (Dmj%&j;$.tc ggfL(k P liable 1

1SS?L(7)2D-acar^^^ h/i/(Dg#m&m^5%aW:A

Watkins tCorbett[26] |^ot, £ V &£1L<D#\*0 6 J!3S Ltz-o 170°C-e (0 1 1) @^Sm-500kg/cm2 <7)J£A fotiteMItt.

rcoiSiM^Aro^ck^E^^f^-eit, (oil)men^cKomcmia:^ (oii)

1.56^#t^)^6 [26] .

— 5 —

Tabic 1. Characteristics of FZ-Si specimens irradiated with 15MeV electrons at room temperature. The Fermi levels were obtained from Hall coefficient measured at room temperature.

Specimen Charge states Dopant cone. (cm-3)

Fluence(c/cm2)

V2 cone. (cm-3)

Fermi level (cV)

Remarks

A V P:1.7xl()16 3.0 XlO16 8XIOI4 Ec-0.17 150T X0.5h annealed

B V P:1.7xl()16 5.0x1017 7 X lQi5 Ec-0.34 250TC X lh annealed

C v2° B:4.0x 1014 3.0X1017 3xl0l6 Ey+0.40 As irradiated

Py |on|

tSI Sample

X C%: Camera 2

P. (100) eP, [01T]

Fig. 1 Sketch of Anger camera type apparatus used for 2D-ACAR measurements (a), and geometry of the 2D-ACAR experiments.C, and C, are Anger cameras. The sample-camera (C, or C,)

C,: camera 1 (a) distance, L, is 7 m.

2D-ACAR#j^ll####(7)Anger Camera^&fBV'TfrbWL,Fig. 1 [23](C7]R-t"o 2 OtDAngerCamera (CL C2) fi'bfe&o -^rtL-^ilCOAnger Cameratt> jlL^40cmJ#££9mm<7)NaI (Tl) i/l/

Loading ? 9 4 *X # v y b *9 Att1“

3. S^7L^2D-ACARyt.^^ h/V

£®$bs (S'MSb) p&fcofiWf • 2*(D

7 (v P 7 2) >6*Anger Camera C, (yj) :fcJ<fctX!2 (7 2) SiT/c k’t'&o7 2 (7)^160^/$ <T)2 7r 6 p <7) x I&'tS p x> y P y\C£XT<D

px = m c 0 x, py = m c 9 y (1)

- C (7)#±Ka, c ttz.6 ytt0 x = (x ! + x 2)

By = (yi + y2) •

2D-ACAR*^ b/Wi2 v ilSl®®# p 2y (p) (Dzjjfaftt&b LT-^XL^tLd

N (p x, p y) = const. * J p2y (p) d p z

Figure 2 J:0,43t41S^TL5r^tpMM<7)2D-ACAR5r7p-f'= Fig. 2(a)

(2)

(3)

— 6 —

b/l'&fp-tv h/Hl, S i COP 0^5 {i® <7? 3 p |/litta*W££'o-f s z 9 &#c c ,> t: a #i- & * * c z

(b)f±^(Z)2D-ACAR*^ (4'#-^,^

Mifrti;<b^) Sr^-to (p x, P y) £N (P x, P y) oRMIWic

(px, py)A (p x, p y) — N (p x, p y) -C (p x, P y) (4)

C (px, p y) = (1/2 n) J N (p r, 0) d 0 (5)

P,= (P/ + Py') (6)(Peak to Valley) (Fig.2(b))^2D-ACAR^-<

Fig. 2(c) IZtpftMQJL (V2°) $r^tf^#^)2D-ACAR%^^ (D—

y> y, >

Fig.2. 2D-ACAR spectra and their anisotropies with [Ol 1 ] xt, projection: (a) unirradiated crystal, (b) anisotropy of the 2D-ACAR

of unirradiated crystal, (c) irradiated crystal containing V,0, (d) o anisotropy of 2D-ACAR of the irradiated crystal, and (e) 2D-ACAR

spectra of divacancy, V2e, component.

- 7

85# V 2 0 M r TriS-t 5 r t (C X 'O x 2D-ACAR##& V #^%(C###&. hyi/OM^tiSr5k*fc^^:#Fig. 2(d)(C7jK$iL"CV^do Fig. 2(d) £

<bx ^ (D#^^(lFig. 2 (b) ^t <D(C(3(^# Lb\cib(i-85^m@fux %"9

MxL(fx Fig.2(d)

ft(D##(Djt^A6<!:40.3%^^6^Tx

59.7%(7)|ssEdLMS?L(cM#$nfc^s#^'m-t-6^#x6n5o mi-6#j^(l. r(D«k5(cLT**fc41't4^^?L(7)2D-ACAR^^<^ F^^rFig. 2(e)(C^-fo ~ (7)^M^LmD-ACAR*^^F £> SABI'S(iTC(D2D-ACARX^ Y)V<D t°— ^ ^ $ <7)fl#l. 0%-?£> <9 x

2D-ACARX^ F;i/(±#^(c#^-e$)6C ^jb'^(c^EL/cSS?L(v2_1> V2-2) (D2D-ACARX/<^ F/V(DS^ttt)l8S(C^^(C/jN$ < (V 2 ~ 1 T'O. 8%x

V2-2T't)0. 8%) x ^rtbb t-^(i>9

jb'^t/S^L (V2\ V2‘\ V2”2) <D2D-ACAR^^^ F/^#

fif&ftc (p x, P y) £Fig. 3(c^rf0 F/WMWc^MC—$H~S2 ^#^-#6. (tx F/WD^BG#Z t##b\

y±(D^mx SSTL(D2D-ACARX-<^ F/Wtx x (ii)####

Perfect Cryst.

Fig. 3. Isotropic parts of 2D-ACAR spectra of the divacancy

components (V2-2, V2-1 and V20) and of thebulk perfect

ciystal component integrated. along [Oil] direction. All the

data are normalized to the same height at zero momentum.

— 8 —

-X:'Z<D£ 5 te^&Oteffi^mbtltcCDlZ. WS?Ld8o(7)IFE^[lll]^r6] \JE&<D15 fo]$r#%-e# %E^ti4o<7)W{ffi^[lll]*"rD]] ^IPILT^pi^^fcfc&tb t)

4. Eft L7cSS?L<7) 2 D - A C A R

±(c^7t j: 9 (c, %^?L(^2D-ACAR%^^ h/wa##(':#;5#rt\

l -Dt UT, h;i/"C

H4OC0^E^[111]^-[p] [Fig. 4(C^-f A-B, A-C, A-D, A-E^fp]] (DW&1

Fig.4. Crystal structure of Si and possible orientations of divacancies. To prepare the sample with oriented V,'1, compression stress was applied along [Oil] (B-C) direction. Divacancies along [111 ](A-D) and [1 lI](A-E) are "in-plane", and those along [111](A-B) and [111](A-C) are "out-of-plane" vacancies.

Fig.5. Anisotropies of 2D-ACAR spectrum of V,"1 obtained by folding as described in the text: (a) after [Oil] and [Oil] folding, (b) after further folding along [010], (c) anisotropy of A„.

— 9 -

WAtkins&Corbet^+i-^

<h£E S R#ij^-e#mLT^6o

^oT, 170oCT500kg/cm2c7)j£;b£ 1 #fW##L/Co Watkins<h Corbet(011)@p^^fo5lSS?L (Fig. 4(DA-Djo j:m-E^"fp])

(OlDB^Se^ComBP^^fc^SSTL (Fig. 4C7)A-B^7tttA-C^"fp|) SSnout(7)ti:(ti.5^^mnm#Ltm4T#z(Dz5(c#^?L^ga^u-cv^^-e,

[Oil] [011];&[p]# W;M3##T#< , 2D-ACAR^^^ h/MC ~ %rt5HSds

(011)@|*U-fcdSS?L(7)2D-ACAR(DS^"tt^Ain-e(0ll)@rt (C&5#g:FL(%:n,& A ^9 o n n5T$>6 2,!:^^, ^#-r#^^,62D-ACAR(^#^e (Fig. 5(a)) im6A^ + 0.4A^ =

0. 2A^ +0.4 (A;„ + A^) ^^6f±-fT$)6o ^joFig.5(D#^#(±/J^V^T.

Fig. 2\Z.7M'gijj&<D&&\Zlk'<X2. 34Ste*divrv^5o Z & (010) a(Cg@ L$)f

'9MteX¥-i%&kZ>kFig.5(b)fr'&btlZ>o rillio. 5Ain +0. 5Aoutt-*j-j£-+5 fi-f T $)6o i-5^:, Fig.5(a)(7)5e [A^ +2 (A,„ + A^J ] d>&Fig.5(b)<D4f&[2 (A,, + A_J ] &^L5l<&A,n##P):iT,5 (Fig.5(c)). CW^OlDMl^lC

2D-ACAR^^<^ b/l%(Dl:°—^(Dl.4% (Fig. 5(a)) , 0.9% (Fig. 5(b))jdj:U(1.8%

(Fig. 5(c)) 6o Z<D j: 9 V^#^fL<7)2D-ACAR(7)#^

Fig. 5(c) [0iI]^iPi*efipx=6mrad#i&(C#^)\ [01l]^-C[l4-6mradMi&|C#^A^I:''-^^^6Z«>.

- <D «t 9 Ki#^?L(D2D-ACAR%^^ V ■£<DM£i£tf/h £V>ZL

5. SS7L(7)2D-ACARX^^ h/V(£>S—MH-S

—10 —

Px along [100] (mrad) Px along [100] (mrad)

Fig.6. Contour plots of the 2D-ACAR spectra of the neutral divacancy component integrated

along [Oil] direction: (a) calculated, (b) experimental.

mt £*1,51 ot)^s^v&50

##{$[pCO^?L(D2D-ACAR<7)#-mm##^ LTfi, [27] , G a A sAs^fL [24] jb'J^U^MELTcG a S7L [25]

Fig. 6(a)

ibnfc2D-ACAR*^ F/K (b) M

, ^&nfo<D6m<Dmm+t&imLK'im-tztii&T'frz? b%z.btiZo m&z

%##^itV'-f 6#+#V 'oo £> 5 0 t-Of^ft$TbB'lC#^b7cV' b © 5 „

l [C2D-ACAR^.^^ F/Wt£7LtC|SfL&5-xT<iL5o

2D-ACARmm^mK 6 <gr# Ac $ 4± a ztizzy).v£*<Dfa<Dm&%fex-\*ffim-rzz.t<Dto&tefr'2it!Ktfk<Dmmj$>n:f-ftm<DWft&mm tf) (c%M £it 5 r b tm& £ tL 5 „ Wx. tfS^F- x t° ttffimtfj\z.bbx.Z>^b<D

i%& b(cn ux, 2d-acar^^# &sf-s-& 1-a-c&5 5»

—11

(1) 46 (1977) 45s.(2) J. Bourgoin and M. Lannoo: " Poiny Defects in Semiconductors II",

(Springer, Berlin, 1983).0) 1990)(4) G. Dlubek and R. Krause•' phys. stat. sol. (a) 102 (1987) 443.(5) S. Dannefaer: "Defect Control in Semiconductors" Ed. by K. Sumino,

(Elsevier, Amsterdam, 1990) 1561.(6) 60(1991)794.(7) S. Tanigawa: Hyperfine Int. 79 (1993) 575, : Mat. Sci. Forum 105-110

(1992) 493.(8) M. J. Puska: Mat. Sci. Forum 105-110 (1992) 419.(9) 1993^2^#- 102M.do) b-ym^

(1993) 64H.(11) M. J. Puska and R. M. Nieminen: Rev. Mod. Phys. 66 (1994) 841.(12) P. Asoka-Kumar, K. G. Lynn and D. 0. Welch: J. Appl. Phys. 76 (1994)

4935.(13) P. Hautojarvi: J. de Phys. IV Suppl. Ill 5(1995) Cl-3 : Mat. Sci.

Forum 175-178 (1995) 47.(14) R. M. Nieminen: Mat. Sci. Forum 175-178 (1995) 279.(15) A. Dupasquier and A. P. Mills, Jr. (Ed.), " Positron Spectroscopy of

Solids", ( I OS Press, Amsterdam, in press ).

(16) 3:1: 9 #535# 1996^2^^ "

mm". (mm###) wgjavnmgK w

(d)^JIIE-S.(17) R. Ambigapathy, A.A. Manuel, P. Hautojarvi, K. Saarinen and C. Corbel:

Phys. Rev. B50 (1994) 2188.(18) J. P. Peng, K. G. Lynn, M. T. Umlor, D. J. Keeble and D. R. Harshman: Phys.

Rev. B50 (1994) 11247.(19) A. A. Manuel, R. Ambigapathy, P. Hautojarvi, K. Saarinen and C. Corbel:

J. de Phys. IV Suppl. Ill 5(1995) Cl-73.(20) T. Chiba, A. Kawasuso, M. Hasegawa, M. Suezawa, T. Akahane and

K. Sumino: Mat. Sci. Forum 175-178 (1995) 327.(21) R. Ambigapathy, C. Corbel, P. Hautojarvi, A. A. Manuel and K. Saarinen:

J. Phys. Condens Matter 7 (1995) L683.

12

(22) M. Hasegawa, A. Kawasuso, T. Chiba, T. Akahane, M. Suezawa, S. Yamaguchiand K. Sumino: Appl. Phys. A61 (1995) 65.

(23) M. Hasegawa, T. Chiba, A. Kawasuso, T. Akahane, M. Suezawa,S. Yamaguchi and K. Sumino: Mat. Sci. Forum ( in press).

(24) L. Gilgien, G. Galli, F. Gygi and R. Car: Phys. Rev. Lett. 72 (1994) 3214.

(25) M. J. Puska, A. Seitsonen and R. M. Nieminen•" Phys. Rev. B52 (1995)

10947.(26) G. D. Watkins and J. W. Corbett •' Phys. Rev. 138 (1965) A543.(27) M. Saito, A. Oshiyama, S. Tanigawa: Phys. Rev. B44 (1991) 10601.

—13

et w-tisShort-Lived Nuclear Beam Facility at INS and E Arena at Japanese Hadron Project(JHP)

Jt 0j - 615I. Katayama(Institute for Nuclear Study, Univ. of Tokyo )

gf 4 If-AM^MF^U:nL'Cv^1)0 EHCA#:@B@El^^to

L-cmLv'o (i) %m^m^(isoL)^%^

SCRFQy T i~y ? (DfflOD tf — A#^^ (60m BT^), (2) IH7 F i~ "J 7 is X V*O) iH

6o El 2 ii60mBTM<7)¥ST*&&o AT(i ISOL<DJjX^6"e#f 0 2keV CtftMLtz\£-&ife±.l.2mfrb23miZ&%±\f&0 BT^T CT* TARN II £

ii, D-eiBFM^d' 7 n h n>s EtT<7)7

F 7 y ^ n > b n-;F^^)*a61d&iii5^lTo TF"r#^±1.2m CJ3 0

SCRFQ 6* EI3 itZEtfLltz IHFFFy ^^%Xhh0 Z.(J)y 4 'fyphZX0 M;$C30&<7) T * > tz 'O lMeV EI4 li IH7 4 i~y 9 tf — Acotf —

CNO-FF^/F^6j&!%LTmv'7C#^<7)m(7)#t»6 '»Ne H-p^^Na + YKlo^##LTV'6o

2. -km^ ynyttmtETut (m#^# if-A mm)

^^~m^mt&m Lxmmitmm*mpzmm-t&'<< 4 o<7)7l/F-<T)|*l<7) 1 OE7 L f(7)l4#izzms&xvm63)0 9g*§ltv^0

(1) m#dmif-A

-14 —

? b-e&s0

(2)1. Katayama, Kmri-TR-386 (1994) p.64.

* , Kurri-TR-400 (1995) p.23.(3 ) JHP 1/ V b (1995^12$), JHP Plan Working Group

Y. Mori and JHP Synchrotron Design Group, INS-Rep.-l 117 (1995).

AMRweio

^ ^ n ho'/t® tODt'n^

liK=67(Ob-vxS!-y->f Yuy-T?$)ZQhn>kf-A5:ffl

WTCAVE 1 -CEiS U CABE2B (DISOL T isoLtr-AUtr-A##

'] y ^TARNII <D±£&x.Ttf-AS3l£fT■S'V'FM/FF-y-'l'^ D bn>trjt*LTS

iLTv^0

CAVB3B I I

****

Fig. 1 Lay-out of short-lived nuclear beam facility at INS

—15 —

A - F «bo 60mBT^Ii#f A ») 2keV <D 1 #(7)^ ^li3<D?7V9 9-, 140^»itib>Xj; t)^^c ^TflI(?)f^^fiLTV>40

Fig. 2 Photographs of 60m beam transport line for ISOL beam

—16 —

Fig. 3 Photograph of IH linac

Recoil Mass Separator

Low Background Nal Detector

EW----| Heavy Ion Linac

Recoil Mass Separatorf Mag. Field

Elec. Field ± 60 kV/11.2cm(1.2 m long)

Mass Resol. 40 Beam Acceptance

Energy 5 %Spot size 6 mm*

Plastic 10 cm 10 cm

Fig. 4 Lay-out of IH-linac beam line and a recoil mass separator

-17 —

50 GeV

K arenaneutrino

M arenaN. arena ^

Heavy loi

muonx

neutrino

Parameters of the 3 GeV Booster

Injection enegy 0.2 GeVMaximum energy 3 GeVBeam intensity 5 x 10" pppRepetition rate 25 HzCircumference 339.36 mMagnetic rigidity 2.15-12.76 TmLattice configuration FODOTune (7.3.43)Transition energyryt 7Total number of cells 24Number of B-magnets 48Number of Q-magnets 48B-magnet length 1.75 mQ-magnet lengthMaximum magnetic field

0.5m

strength of B-magnetMaximum magnetic field

0.95T

gradient of Q-magnet 5.4 T/mNatural chromaticity -6.77, -5.84Hamonic number 4RF frequency 1.99-3.43 MHzRF voltage 389 kVBeam emittance (injection) 320 irmm.mradBeam emittance (extraction) 53.9 irmm.mrad

7; §)>''< K u >BtlI (Japanese Hadron Project,JHP tf%t) tO^EEHo jbai$2?<o±iE

tituzii(1) 200MeVH-(2) 3GeV HHf-> > 7 o h n >0

25Hz <D& *) j& LT200(iA^-f- tf- A £6[]i$o VtW-<D7-V7 KWfcjJr*)

ISIS(3) 50GeV y > ? □ h a

•MxlO14 2o

«ijiSLi±ft6&or;V -7 ^^7‘>E%@fAGSd30GeV,6xl0° ppp&;t# <m*f &. COfcr-Afcfflufc

&T«4o(OBf3£53-» (7Pf) ix~C V' 2> o

(a) K7Iyf ! 50 GeV, lOpA^RI^-bf-A

z:se^- •(b) M7lrt ! 3GeV 200pA<a figrf tf-ACiJ

(c) E71/t, (d)N7 V7li@9#P.?.0(4) t LT50GeV

-n- h ij -^«SiOVf-AtC iSHKttKi

#i5»Parameters of 50 GeV Main Ring.

Injection enegy 3 GeVMaximum energy 50 GeVBeam intensity 4 x 10" pppRepetition rate -1/6 HzCircumference 1442 mAverage radius 229.5 mMagnetic rigidity 12.76- 170 TmLattice configuration 3 - cell DOFO

Tune

x 6 module+4 - straight cell (24.25, 20.7)

Transition energyryt 27 i (imaginary )Total number of cells 88Number of B-magneis 96Number of Q-magnets 176B-magnet length 6.2 mQ-magnet length 1.5 m & 2 mMaximum magnetic field strength of B-magnet 1.8 TMaximum magnetic field gradient of Q-magnet 25 T/mHamonic number 34RF frequency 6.83 - 7.03 MHzRF voltage 200 kVBeam emittance (injection) 53.9 irmm.mradBeam emittance (extraction) 4.1 irmm.mrad

Fig. 5 Lay-out and accelerator spec, of JHP3)

-18

-&tf-A : 3 GeV, 10 |iA Bg-f- If — Ad* * v®: ECRSL 7*7X71Stfc^JSISfasoL): ; NVAM=9000

SCRFQ 'J - 7 7 ^ (2 — 170 keV/^T-)f ^ IH -1 V -7 7 ? (0.17 — 1.05 MeV/^p)

IH-2 V-77^ (1.05 — 6.5 MeV/#?-)tf-A&g: A = 120 e? ±ICh#f Jt 109

A = 40 ir&X\ h±5^iX ft ^ 109 fa/®

3 G e V 3 > h o -;u®

SCRFQI

I-------- 1-------- 1 I 1 Io 50 (m)

E7 l/f S£ttH

Fig. 6 Spec., lay-out and research fields of E Arena at JHP3)

—19 —

Laser Ion Source for the TIARA-ISOL

e m m mm, mmmmM Koizumi, A. Qsa and T. Sekine ( Japan Atomic Energy Research Institute )

1 liUAI:

^>7*1 Iff (ISOL, Isotope Separator On-Line) /MtVOI#

CckDM; £ tojMIzMMfrMtZ>SSThZ>o Cto£M©%t,. 3otff

ntz, ^^©EMt©Si££E%T£6 = TLARA-ISOL[l]T‘(to ¥

Ce, La, Ba#©¥#foTt^[2,3]0 mnmomA

cacj;6/<v^y^o> u^m#±©6 ^ a. c©

tiX # fc[4-6]07-1fW¥7zfiUto m#k©l/-¥-JbTEf^*%#^L'Y¥>{b¥5, 7—tf-^Rl

Z'iJOtzti, Al/5 C 6^TIARA-ISOL^C 7~¥W

¥>m©^#^^rcT©6[9,io]. c©^¥>m©#$(i, i5%eE^mr§[io]N #^©

^7x^7##T^ I/—r^>^<3©^^->I:-A^ISOLT^a:^mL/:o

2 b-f-¥t>SOt77^ >fxh2. i smug

01i:> I,^ 1/-¥—f ¥ >m6lSOL^#^%C¥-9-o Nd:YAG l/—-\f —

( Continuum#^ Powerlight 6050§A #g532nm^ i±j^j70mJ N /’L'l/X^l 0 iS L50HzN /-?;1/X

#10ns) ©m*lto ^-7 $ 7-T 3 ¥tC^SlJ L, ^-©^2^2^©feSU-f- ( Lambda Physikft, FL3001M) ©Ktti feS 7 —tf - © & * t;W; ©N d:

YAG U-^f-CD&tlt'&frikT'fjrymz&A Ltz o ¥ - 7' 7 ¥ C (iNa#m ^#A LTfc

0, 7Y7^ 7 hT^-7'7^jm#^-6C6TNam^&%A^#/:o 7—«f-K«L *) >f to 7

{b$tl/:Na^t7(i, 40keV(C;M ttoc^ ISOLT@S^SU> 7 777-*-^th-A gSL ^7 h □ 7T-h’-A©yx°;VxS^ZllJSL/Co

Na#¥©xf¥7Yk(:(±, EI2}CBbto3 3to7-3XtoyT>m'btotoc0 f^©2Xf

y 7°(ii>, 7—if—ir¥-5>3s2Si/2-> 3p2Pv2-> 4d2Di/2,3/2©®^"C\ SF 3 XT" y 7°"C

Nd:YAG 7-¥-C ¥ toto7fk^to5o fiSlto f lXfy7°0

589.775nmtcn-y $ 7B, f§ 2 Xr -y 7P©568.44nmfCD~¥$ 719£ffH'tz0 4t7ifA

©%A^7-li, Sl> S2, #3Xxv7"#4*y4mW, £j6mWN 325mWT*o/c0

—20 —

Continuum, Poweilight 6050 70 mi (532 nm), 50 Hz

IP 4.16 eVNd:YAG lasery—^ Lambda Physik, FL3001

Dye laser-C^i Laser ion source

Dye laser

ce rationCurrent meter Osciloscope

Fig. 1 Schematical diagram of the experimental setup.

4d2DV2M

3P2PV23P2PV2

s

3s2S,,

9*1

Fig. 2 Atomic energy levels relevant to the ionization of sodium.

2.3 l/—bJ^t ti-AEM/g

m 3 (is feSL/--WWCLTc&cDT&So A)*<s 2 Xr v y©Sfi^568.44nmir@S UTS 1 Xr y U-If-©$;§:£}§51 L/C tAs B)#&1 Xt- y 7P©zfcE£589.775mniC@;t UTS 2X^-7 7"©^% b —tf-£}§3 I L f;<kA©*>©T'&ao ##l:-^©#(:&&/]'*Ut:-^ (a',b') (2,

ZM&X'&Zo z&Cs Sis S 2 X^ y y^^-^589.158ran, 568.98nmfr@^ LT b—tf-##^*3IT6 6s X^? 5o C©X/<f(:#% LT<^- b<k^ A /: 0

ISOL©7 7 7f-*7^i:fel>Tii$^Mt>S5!tlSs 2(7@SL/c^ST150pA, b-if-£#>B£l<k9-f bLTcAAVOpA, b—

A#L^U6A60pATfe-o/Co l/--f-ms-r4- Wk£HfK£ Uov<5^ 7 > FWfc

(±s ic7f7^>i'W-y>*#:-e©#@mm(:ji'5 6#xy^s cw<A%^©40%

^yzb—tf-T####(:7%@jgo/<y^/7 7b

bx

^-(CctO^^n-So NaJi^b-fkx^U^-rtM'St'fca&s UW©^s tt#N»©/J^$ (,^ c 6(: ck 0 s i; a/< y 7 /x 7 b K

C <!:#-?A a. %4(is KW^irigffi L J; 7 <k%

XTfcO (Xd-Z/fkJLjVt/f------5.5 eV) N C © A A^-7'>®^Jg(il700K^A T»

£tia0 #&s 7k-7'>©mmcRe -s.oev) ^mu-c©a^s c

n^Mo (<t> -4.6 eV) ^^Cftxac A&#siU-C^ao

—21

Nd-.YAG U —!f—CD&A^^M^—frA# Wci6 <h#X- btLSo ^ < -#-5 3^iOfefU-if-0S*A£te

it ur o'So cficao, f3xfv ^ % s ©t\L/--S c 6#T#, ^IT'CD b-If-^ x„

SC6*<^So

A) Xo = 568.44 nm

a) 59.775 ~

- a-) 589.158

Wavelength [nm]

B) Xj = 589.775 nm

b) 568.44 -

b’) 568.98

Wavelength [nm]

Fig. 3 Resonance ionization spectra of stable sodium measured with the TIARA-1SOL equipped with a laser ion source. The wavelength of each of the two dye lasers is scanned. Main peaks (a, b) aretransitions relevant to the 2Plyn level; small peaks (a', b') are to the 2P3/2 level.

2.4 /<;!/%ix—tf—fcjgo'TfctK

x^tctliij-rWTSSo LTWSC££<tti5£

So l/--So Ztumm^-Ai: Lr#^tlS/cSb, L/--!f-6(±immu^0'o U —tf-i

So

-22

~9"hfzl6(A %OiC^r— KT©-i?7 h n ytti*^ ->nx 3--/TSS U/c &

®tW, c©^ST(ix v°;i/xStfcV y/UTU

a. cof^'jy^'ossiLtv -r ^-ycD^imLcie^e^Te®^ a /:(3\ i?5 hnycD-BS^j;^^©

;bX{3:> A#^$^3^sT\50Hz%COT\ f^7l/^-^Af 6C6-C/<y^yy^y K^lO 'cmi®i-r

3#/?(iy—f-^^y#cD^#(:jo^-c, §j£Ufc0 4-%,

La^©*n,|-f tyftOfX h^ffo/c^, ““Mo (35Ar,xp yn) ^La#0^TAE5%T54

LaT^v h-yc-DU-cy—y^x h&^T7f^T&6o34B06my—tf-6^4-y

7 1/-(f- (#^mU400Hz) Af 5 C 6 ^#at U T ^ 6 [8]. 3^10-fefb-t-O#Au, ^ 3 x4 v yT##m#o#L^ v ji- v ##-14 g<Dm&£ ^C460TM, ##^Ay{b®##0[m±6#^, y-4-^Ay^o&A^^vi/4- T(f5C6i6<T#6CDA\ ^'llAOy—?W4 y<!:£$J$fJf £ - i^sgcr^So ^ y?y-4'-0*A(^, Nd:YAGy—tf-j:t)mD^U0^^C6T. %#^8fgf^±^tr5 C6^T#6[8L -6#y—6(D-c, a#m$0^a#&mv:4'd-y#yK c^^-coy—tf-T^^^y^TA^

7 y^^-0#A(:o^T6#M-L/T^3o

1 ps/div

Fig. 4 Pulse signal of Na+ ions from a laser ion source.

■@»"5 A ran.[1] T. Sekine, S. Ichikawa, and Y. Hatsukawa, Proc. of the 2nd Int. Symp. on Advanced Nucl. Energy Research -

Evolution by Accelerators-, 1990 (Mito, Japan) p.520.

[2] T. Sekine, A. Osa, M. Koizumi, S. Ichikawa, M. Asai, H. Yamamoto, and K. Kawade; Z. Phys. A349

(1994) 143.

[3] A. Osa, M. Asai, M. Koizumi, T. Sekine, S. Ichikawa, Y. Kojima, 11. Yamamoto, and K. kawade, Nucl. Phys.,

A588 (1995) 185C.

[4] S. Ichikawa, T. Sekine, H. Iimura, M. Oshima and N. Takahashi, Nucl. Instr. and Meth. A274 (1989) 256.

[5] M. Oshima, T. Sekine, S. Ichikawa, Y. Hatsukawa, I. Nishinaka, T. Morikawa, and H. Iimura, Nucl. Instr. and

—23 —

A p?v

Meth. B70 (1992) 241.

[6] R. Kirchner, K. Burkard, W. Huller, and O. Klepper, Nucl. Instr. and Meth. B70 (1992) 56.

[7] V. S. Letokov, Academic Press Doc., "Laser Photoionization Spectroscopy", 1987.

[8] F. Scheerer, V. N. Fedoseyev, H.-J. Kluge,V. I. Mishin, V. S. Lethokov, H. L. Ravn, Y. Shirakabe,

S. Sundell, and O. Tengblad, Rev. Sci. Instrum. 63 (1992) 2831.

[9] M. Koizumi, T. Sekine, and A. Osa, Proc. of the 6th Int. Symp. on Advanced Nucl. Energy Research -

Innovative Laser Technologies in Nuclear Energy - , Mito, Japan (1994) 358.

[10] M. Koizumi, A. Osa, T. Sekine, T. Horiguchi, and M. Asai, JAERI Ann. Rep. 4 (1994) 187.

-24-

SPring-8©1$#«6i8gLt"-A5H >Nuclear Resonant Scattering Beamline at Spring-8

mmT. Harami( Synchrotron Radiation Laboratory, Kansai Establishment of JAERI)

1 . (i L a6 (cuasrd

MWi&mM (»S1 nmSSLlT) BAM^MSS P r i n g - 8 (Super Photon ring-8GeV) ©$ilS:£x WilATVBo Cornell, m • t

Hi:, HIRWW^«Eo«t LT^g|©W^#K fegaft-r sB

iS5*iffi©^wmLT, c6. @^^icecB%%©®fkS»Jt%5f©^#f*-f 4C t<Et*7lciSo^sa5^S?©§afl5**JW^sn

Tt'Jo c©m%(i. ^ *:r* / □ y-N STI^. fk¥> ESW:v#

SPring-8IL 4 ± y ? •

<c*o ##v y£§£tfT$im%icmi-Za wmv y y©

x*,P4---l± 8 G e V. 1 0 OmAT, SAtBSSE {T'yi?~U-?m £

3 8###fT& B„ 2 3®fllf©{Biaia«E*»&i*«:ffi5lii*So T y y' - 1 0 ~2 0 k e Vgg©Xi^I$ST-H4J •£ B £ tfrX'% B„

jtisicfivii$(DmirimmtyT'tin&zmtt zmsm m 9 a m$tl, *©x* A/^'-fr'lASBBtcbABMx^* h^T, . fMia]t£**<kV

f©Wffltt^<i‘^}s#sn,n'fco is^xii©®«T?ttaK«i'»

K£8o:fcfi©ffiK£ffl?rrsW!£#®ja#aK fcoTfcfcos P r i n g - 8 ©«t o a-o -yy«

©/^/-y^OESRF (European Synchroton Radiation Facility) 6 G e V, 3|fi 7;l/:f y 5tgj£9f%Bfr©A P S (Advanced Photon Source) 7 G e V t>PI L gMTBSgS iT,7=m^T&6o

2. SPring-8 ©##SPring-8li, *A%5tgU7±7y V - * ££ A 5 )t;Z@ t~t l B§£T' * 5 o

f ®*©M|f®**J:<}BlSItt**«ki.'s (DWMTzSSltpJ

~r y 'J *- y-*©M£^#»cfg»atfB Aa6{cii% %©@gA*^## V y^fr'AM; f-Bo CD 7 y y'» y-*)fc©x * yp**- lif?x * yp*'-© 2 ^icJt^JA B ©T\ *-©3

10ke V&lJh©X#t%Aa#.t 9 tt5t, (fix *;P*'-£iS< A Sjftgj&s

*B0 ©ST h* - A ©$|yiMl2>'t) tm®©g;A(t) X 5 y ^ y XU(5|S]S

—25

S£5©ffc©3 ^ ; y^vx^Bnm - r a d © <k ? lc/j\$ <t5^fe

<citfiS5E^J©S*Sti (-bvv) ®ry*» v-9*\nag*.'fifcS&Srtta&g***!). <5 5o

^S3t®©fcB^ic«fcoT, u-c(D^*.'7t?m&#w#- a%/j\%

ma • (**

m#m. @a. mm. ism®####. ^. f#%)tlT V-5o

«. A%00f%cgf L i'#mtarn ut#*#©%m^a#$ n

tv'50 ¥#*. me#*. #*. mm. *m*.m. m%%?. mbs. Aim#?# corns. M&^&®t£m%.&$>Zo *kmm$L#&-e<±. >0gist?®i^i5s

So at. $rLvef%#sc lt. ###^a. ma###x#*&B:#a. m. va0

3 . S P r I n g- 8MWC<D&mFig. llcJSif'f h^to

(1) m&mSPr i ng-8li, 8 G e V i XlftM't ZAM&MtSt tM?* 8 G e V©a a

g#^ (mi b> #a.a#av ^^b<i5o AW^m&ii. (u ± y ^) c> V ? n h n y 5rE*^*)-tirTV'5o S' V ? n h □ y&&## V y

- (8 G e V) -eAlftSo ESRFIi^?^fiLT^S)5iAPSIiiimiiLT V5o SPring - Ltl'So Sd^ tf - A T ht b' - ARJtig&fr'SiSi! 3 nr v a E S RFTlitiaiB^^Ci^Lti'^^tcigT

&> a o(2) e~A5^

SPr i ng-8Tli. 61 *© b*~ A 5 -f y*$lt@i5 ir©(43 8 ###A

7tmx$><0, 2 3*:iffllSlM5**BiC-r5o t-A5O0iffJ-tLT, #1%$JM. #m. m@f. @9f. R&D, -7-y y^ti^nob*-A7-f y*$*5o &E*Ufflb*-A5 0B, m%M-a©6#tfT^. e.- A 5 -f y&ltf$g£-e©SS8£gTE9f • S9F ?##?*&*#?a feffltiSo #ffi f- A 7 J yfctx Am.

fS^ffllLifgtS &©?&a. EL bf-A7>f y©R%Mm%*#M%K*M##A TfitScti^ioti'So mm. @9f(i®eotf-A7W y£t>oc £/=. «SM*

^^JfflW^I-SSt^^moTR&D^^o^Oia t>©tt. R&DP-A70^io 7^yMfflC2$0P-A7'f y^Eoo

^i5i^jfflb'-A7'f y-eti. ?sS9#maTcA*a#?ea*is##T #). ikxgm*#^ (@*©m^tAS) . cmm^ yy p y*

a> . #*#»a. (%#^#r. xmmm#$o . skxm^b#.ttBffi&MVr xAFsof-A^y^tScTable l {C^t|aj|ijfflb'-A y J ycD{±®£&-t0

—26 —

4. :-A5^ y

7^ ytdU A 7^ yiLTgftCAoTi'io MtiUmmms 2 mm©7 y y - *-eE5*^*$<cAorV5X$£titS£Siffl L r v * „SiiT'6keVi>f>l 7keV0X^^4§t5Cti5T§5o Fig. 2 (C S P r i n g - SSfc&Bfcx^* h Si (111) ©2*SBBH£{gv%

?y ? mommac<Dftmzm&l

TlT9o f i g. 3 &#*#%&tf-A? 4 4- y*;i/t^i"o 2emS^aoft*l4F-A(l||g/N9fCA8o 2 ££»*£©£ DtiX

»*»©*: -y f T'ffl)oV f ©*(i. SWE9 ©#g^###(cm^±(ffi6<A 9 <czRJ8B©£5£a$£

=f-* ^ - 9 t T--^yi/^r^S-rSo Fig. 4lcii^'7f^to

5.ltr i mm^m^r * * * Tmg&wi&wzzt LTfurnsn-c

SPr i ng-8lilt|fX^MSSTi^ x^* A/*'- ti$7GSt T©K

RjRStf j&»Q-efc< * X/*9 T^Olg^W&jei* Zb*-* «>*'<- LTl'So E#©%#^m#&Tx JSclt5fcl!:«koTiae*nfcSatts 87 F e „ ‘"S nx 1 ** T mN 1,1 T a . “‘Dy. "KrT^io 7 y OTS, &S*JE, y<A/X*©#a&

lew#6%5o «£#«. ^Aga *©»W«i6tflff£4ii&£ L^gf^^ltELTV-Bo #%m@H(D^Age%(cj:5X#

y-f-ic«k5^Ag,o#?*«meea@©@f

%x <3>'* * x£ <k 5BMEfoi§@©Bf * 5 0

6. &fj 9 tcb'- a 7 4 y fi> spring - 8 fUMSEB&£ (^B@S$Aitg*iiSWS

y^-icg&g) o^^A-ywiciioTt-A^ y#%y;v-yt aaiTos. ^iMb'-A,^ yr*-rottse<k<£^tl'50 ###lis P r i n g-8«©®Rfi§fTJb«0 / X'«

9 7W&&I8SS-fr* c ifcSJg-ra.-•*-«□:£*:J44>tti.'o SU'if^f-v*g&+ y x T'&z0

—27 —

mm

wnn

mn

Brill

ianc

e (pho

tons

/sec

/mra

d2/m

m2 in

0.1 %

b.w

.)i—r-rrrra

HX in-vacuum undulator Xy = 3.2cm, N = 140

SX helical undulator

Elliptic wiggler

Bendingmagnet

Photon Energy (eV)

S P r i n g - 8 WV

Fig. 2 SPring-8 Synchrotron Radiation Spectra

29 —

XU2 (09XU): Nuclear Resonant Scattering

Section 4 Section 3 Section 2 Section 1Double-crystalmonochromator

Down stream shutter

W View portBe window

(FE)Mirror Y ray-stopperBe window Slit

Gate valve , Bellows Vacuum Pump gauge

Fig. 3 Nuclear Resonant Scattering Beaaline

Top view

vinyl plastic vinyl plastichutch hiitrh

X-ray i

high-precisiorgoniometers

room temperature controller

Side view

X-ray

1.4 m

EBBS

i

UJ lim,2.5m 3.5m

anti-vibration table

Fig.4 Nuclear Resonant Scattering Experiment Hutch

—31 —

Temperature Dependence of Nuclear Resonant Inelastic Scattering

jKAMX Fx JllAXlx rlX^J^-12

EF m, m. 'M2> $:MjEM2M. Seto, Y. Yodai, S. Kikutai.X. W. Zhang*and M. Ando*( Research Reactor Institute, Kyoto Univ.

1 Faculty of Engineering, Univ. of Tokyo ^National Laboratory for High Energy Physics(KEK))

iyy'p Fnv&amctix LT/Fi/xt4<bo lx,

n5«kaic/j:-oTS/-c1-3)o Ltzmmtltix si^y^ny-^TmeVfIJt$T^ Lfcifcftftfc<b57 * y h;KDPJ$MW^n^0

@(7)gf^lcfc'UTx p-U9Sny * S(ji,&mi'tz7 * s ym&m&vMffismMZl

l'TlEWutz4)o C(D«hStix Siey ^ay-^(7)^##gA#50meVT%o^

/ctfx 7 * y U*\U^A<6x Si^y 0 □y-^(7)5>jWt^6.7meV$Tf6]±$-ti-5 CcblCjcUx Ltzcr57Fe-J J\,(D7 * / h Jl'&W'ltZ Z tlZf&Tfi U BU@(7)9F^icfc'LNTW^L7c5-6>o -teiCx x

SL&$ijmLTFo#^x ESH&i^cb fti(c#LTx Lfd^XlxMFLfcam^DilUSA^tET^d <k%x.F>n5o ^-^Sx K-F^n/cEFFXm^(7)jl3(7)fm«S(7)gf^m^b^(7)^(D^5^$<7)5ES/-cFIC!ig^U/-cm«Sm#a#(cw%T&66#&6;fi,ao co^oiCx

m^fcommmm3pm.TT%

I'TH'X-S/ctox 57Fe(D^itP|®^E^-fiJ^ L/ca-Fe? * >f VKZ>7 * yhU/c(7)Tx ^0^#(COL^T#e^6o

SlJStix Hx*;l/F-^i$W^FC9 h VX^VA##mU y^'(AR) A(Z)NE3 Li-A5-fVTlr^fCo ARlix mfx^;i/f-6.5GeV, #%mm20-40rnA, /'Ul/^Fi1.2msec(Z)'>>^';LM>^t-~ KrZEStlx A§lXij®[;lNE3[cl£M$ft/c^§lLhM7

—32

LT^y ft£ftfc7)o 1 (C^fo

lix ^BBBa-57Fe7*^;iz(1.91 mg/cm2)£ffl(,'fc0 Si 4 2 2 jgft <hSM 2 2 2 Ly^ny-^lC^y, AI^XEli57Fe #(D#—614.4 keV

ICfcUTil6.7 meV (FWMH) d^^ft/Co A31Xfc|<7)x*;i,#-|d\ Si12 2 2 mi(D v Vft 5 C cb fC J: y mt^tzo Fe7^<V!/X)\6oma,(^ T/<7>v%7f h

^>f^- K(APD) f$ftti£fflUT;l$L/c8)o Ism^BlfcSL^nS X^te^'iifcSLfCj:

7 * y yx^i^-X^ Hl/£;li:rr5 /•c^ici^ ym?mwvoho

(DA#6R;#IC^C60(C^L, ^%P|mA^(7)®^S(7)W^IC^UTiinTm5

frofCo fg;ST07^/>^^ h;U»JS-r§/c^ mm? u-^=y< v h£E

ffl L/io S'JSli 1 5 0 K t 3 0 0 KTtto fc0

Ionization chamber

In-vacuumundulator

Beam flux monitor\

Si(12 2 2)

\

APD detector

if \*%u) I Si(4 2 2) Slit

SlitSlit

Fig. 1. Experimental setup.

a -57Fe foil

«^C *7 55"

1 5 0 Ki 3 0 0 KTPJS;* ttfcx 7,^0 hVl/^Fig. 2 ICijVTo A^X#(7)^*ji,¥--iz57Fe(Dm-m&mtL(b^%j^- (14.4 kev> UTi'-So m

h;HcfctNT,

EPJ^n^K iSx^;iz^-{SiJTEiaiJ5n5^P|^5lli7 * y y^fiKlc. #x*,W-# T(Z)mti7 * y LTLZ<D&m<Dmifo\Z 3 0 0 KflJ&CZMCjt&LT 1 5 0 KT^ElC&oTl'-So Z(DZtlt, ? * S * S ><D&ICitmtzci<i:ts;STId:#^-rdy <fc y, "7*y-cm&tZZtlcftmiTl'Zo £tz, IF5¥Bi[5L^^t)tS;STIi^LTU-5K C

niiii^oy x/x^T-^mpJSicgb'UTx feiSTSJSSito-Witfiat-5c <^ic^sur 1 ^

5o

#4 cmmcx -10) 6Fem^o1 >

*NBf#Bn/c7 * y >fx#mm^EoT#t#$fiycx^w-%/</7y ^ y yxjvHf-x/tf F VI/6A#%icm < 6 C 6 ^ L,

33

300 K150 K

>* 400

£ 200

Incident Photon Energy (meV)

Fig. 2. Energy spectra of «-57Fe foil measured at 150K and 300K. The solid lines are the spectra calculated from the phonon energy distribution function of «-Fe.

@15 0 Kh;Hc«k<™ mLTl'6. h;i/£

Fig. 3(CTjxlf o4"@x crfey * j JbO? * / HU£1 5 0 K<b 3 0 0 K TPJS1"

sccbiCcku, $is<h'fcv

---------10K*—* - - 150K --------- 300K

-40 -20 0 20 40

Energy (meV)

Fig. 3. Calculated phonon energy spectra of «-57Fe.

—34 —

# o l ^#0 C <t: ic J: U SB7 * / >m<Z>/&££

1 -7 f / >meicjmLT%#/j\z < ^6C(bA^6fcA. mmmizmtzvmtem $g *<f# b n § *> 0 «t % x. e> ft s o

[1] E. Gerdau, R. Buffer, H. Winkler, W. Tolksdorf, C. P. Klages, and J. P. Hannon,

Phys. Rev. Lett. 54, 835 (1985).

[2] J. B. Hastings, D. P. Siddons, U. van Burck, R. Hollatz and U. Bergmann, Phys. Rev. Lett.

66, 770 (1991).

[3] S. Kikuta, Y. Yoda, Y. Kudo, K. Izumi, T. Ishikawa, C. K. Suzuki, H. Ohno, H. Takei,

K. Nakayama, X. W. Zhang, T. Matsushita, S. Kishimoto, and M. Ando,

Jpn. J. Appl. Phys. 30, L1686 (1991).

[4] sf m, mmwsu. m# n, /mu-Sx m FJnm,

EBBtlSx m ']'M, ted! $SESx

KURRI-TR-386X 84 (1994).

[5] mf m, msm /Mx sbe&x

KURR-TR-400 x 108 (1995).

[6] M. Seto, Y. Yoda, S. Kikuta, X. W. Zhang and M. Ando, Phys. Rev. Lett. 74, 3828

(1995).

[7] S. Yamamoto, X. W. Zhang, H. Kitamura, T. Shioya, T. Mochizuki, H. Sugiyama,

M. Ando, Y. Yoda, S. Kikuta, and H. Takei, J. Appl. Phys. 74, 500 (1993).

[8] S. Kishimoto, Nucl. Instrum. Methods A 309, 603 (1991).

[9] K. S. Singwi, and A. Sjdlander, Phys. Rev. 120, 1093 (1960).

[10] Yu. Kagan, Sov. Phys. JETP 40, 211 (1961).

[11] V. J. Minkiewicz, G. Shirane, and R. Nathans, Phys. Rev. 162, 528 (1967).

-35-

H7In(^ll7Cd), liiCd(^nimCd)@Y$8S*l)A1iMGamma-Ray Perturbed Angular Correlation of 117In(<—117Cd) and mCd(«—lllmCd)

mmk fi^2,

m#ism2, mmum*. jhs#-3x ±mm-3

Y. Ohkuboi, S. Ambei, T. Okadai, J. Nakamurai, F. Ambei.3. K. Asai2 A. Yoneda2, Y. Yanagida2, S. Uehara3 and Y. Kawase3 OThe Institute of Physical and Chemical Research(RIKEN)2Univ. of Electro-Communications 3Research Reactor Institute, Kyoto Univ.)

1. ctdpao iPPb m&<nmwmLvm

TDPAC (1$ 61:. U(7)

c e* u tdpac i^in mn.W'eoMffliMmmom'fezftb'iTZtco ^hk UT&B{NBu4[M(IDFe(ra)(ox)3]}3oo (M = Fe, Ni: ox = CgO^) [6],LiNb03 lcn7Cd(^M 2.4 h) & a I'li ™™Cd («48.6tn) J1AU fiKra H7ln &avliiiiCd(7)TDPAC)|IJS^fi:o/c(7)T\ a 0 t/c.

btht n7In £ inCd UTffll'6ft£<7)T'&a p|#<7) TDPACftmz&ntzztizMV' n7cd if ii7In t,zm%istc^<D winL'T(7)4*$gAf# 6 fi a oT#B1±& a z 6: l: t)#a o

M = Fe t Ni Z ft ■? ti 43 K, 28K iiTFT' 7i'J Bt£ifcT * a 0 HI 1 1C3 [6], i2CM = Fet Ni l:#f a MC204-2H20iIiB£

^t{7]0 LiNbOs «ba0 117In £ mCdCD^^mKD^b’Xj:^ti-ftl3/2, 5/2T&U, ¥Mli 60 ns. 85 ns T&ao ti117In £ mcdtC^UT, -fft-ftU iB* 14.5, 0.1eVT'&ao

2.a. Kmoam

—36 —

H'kw^fpnmm kur t ii6cdcx n°cdo zm^^mbx, tn-ftu^cd, mmcd £$4iBL/co eumm^m

h7(n-?>;U)T>^-ES8&<fc 5 -y 'rJlsty&'S U £)&L£>£JM) {NBu4[M(IDFe(in)(ox)3]}3oo (M = Fe & 5u#Ni) j:oT^#U/jo fcfik M ICMLTCd £^2mol% ^t'0 4'*5. ^MMte{NBu4[Fe(n)o.98Cd(n)o.o2Fe(in)(ox)3]}3oo OE'fbO^Jtftc#^*' b, cd e#2moi% $/c, mm

5 VI* EE- -y tNUOA'b U CIStb* M =Cd <7Mb£t)£IB§4 btz0$ e>ic, ±:B(7)%#^&#=&#tr^b*AK^A(^5uttEi-7^rH vji^T7^-t7A<b>I-£U CdC204-3H20 (& 3 L \ (1 NiC2Q4 2H2Q) ^t o LiNb030J§£v H6CdO, ::QCdOO#^i±f

1100°C T#^cUT##U/=o Li CMLT Cd % 0.5mol% St'0

b. TDPAC mfe1.5in.V>x lin. BaF2 v lx-v a >*$i±i§5 4 & ”7In CM L T 90-345 keV,

mCd CMLT 151-245 keV 07? 7 4- K y SO Mm *8 Hi N(9, t) S)M^L/co

A22G22(t) & KOLA'S# At:

A22G22(t) = 2[ N(jt, 0 - N(jt/2, f)]/[N(jt, t) + 2N(ji/2, f) ]. (1)

{NBu4[M(H) Fe(III) (ox)3]}3oo (M = Fe, Ni, Cd) WOvi') EiSC O lA T li 4 K b £ a1 ATSuSO^/tTN LiNbQ3^ nicdCOL'T(i4K<7)^, UTIn COU\TU4K, S

573 K V TDPAC Mfe £ ?T-otz0

3. SEb#§l m3 C^r 4 K TO {NBu4[Ni(n)0.98Cd(ID0.02Fe(m)(ox)3]}300 4^ 117In OTDPAC HUd.6n5=t: aCn 2 @0^f E%f$0 7 /x 7 Mulct* 4K Cl Vc3 s xmwi&i&Ki? i^u*4<> yp-lio # u b ltdmmmm'.mm£ti4A>o*:0 El 3 cmSfi3mm^m#6|SBC =b360T&U,&JSBO>£/t^btd:($ b A b4 i '0 El^omW. 117In ^ETOE^iEiiA'-'^ii^ET &3 b U. 2% O Gauss fitting L£&OT&30 4xU-

yp-~TW5EC^ttiLo &#%#&#A<#6f 3 b m# L A:AC tl)HJ £ ft 4 A' o tz C o i > T g T$$#[# T & 3 0 Tc = 240 K O 7 x V (Cr(n)3Cr(III)2(CN)12]-10H2O [9] COVTS TDPAC m^£fr4l\ A''WW^ft 3 A> b A# 1 C {NBu4[M(II)Fe(in)(ox)3]}300 (M = Cd, Fe, Ni) b'yjL^BS (M = Cd, Ni) 4>

iiTin £ mcdOTDPAC 7^7 FVl/A' S#S ##^@BO*Mfft7N‘^ ^ 7 — r/s a^(117In) b tOQ(mCd) O.bb£^‘t'o tztzb^ a^(117In) £5}<A3Bj|nx 77 =0 tifcfcbtz (Z¥>i?3/2<7)i%£, ?; £^A3CLb(iT^4l\ inCd CMLT;^#)

-37 —

v ^oic&lt&s

^(D coQ(117In) £ (1 + 772/3)1/2 T'flJ^'j'mtf&Zif. 2 (7) 1.15 T 77 =0 tifcfc(21 1 £ m 2 />> e>, {NBu4[M(IDFe(ni)(ox)3]}300

£ vi^SSi4> Cd(7)$ftU <7)lftSl0)a5&»lill U6?*a^7 (7)?^##^ (7) ti)Q, 77(T)ffitiM4'5 UA'L, M = Cd(CMraa^2 (117In) ^##^?(7) (tiQ, 77 (DiEU&£h t:-$fcL T l'a 0 MC204*2H20(M = Fe, Zn) £ {NBu4[Zn(n)Fe(ni)(ox)3]}3oo tC7U'Tftn7In £ lnCd CO TDPAC (7)#1± £ UTMrfU/c^0

LiNb03 41 Cd (* Li £E&fa [10]0 TDPAC $!15e!<£ U 117In £ mCd £&f3 (7)%##U4KT% -tftTft, 67.4, 30.0Mrad/s T&U, 2<7)bb(i 2.3 1:43#, 2<7)&fil

'!*§&)§£ vzz #—dSC#5t(7)«b 7 C 7"n - C j: a ^ 7"o - (7)

lil3<7H*>lc<baiI<7)*aT'i5M£fta :

^ZZ = (1 ' ^ )(1Zzz)val + (1 " yoo)(^ZZ)L- (2)Z Z.V R T&Xf (i ft T ft Sternheimer shielding factor, Stemheimer antishielding factor £Wft, 7’P - 7 JiFP& 3 lUiJUHOT TX^oTT’d- (7)^%#?-(7) ftftitfmtfafi' 6mtr%m$mVAft/c#T&3o mcd2+ UF^40TEl ig<7)^& 4u\ HTln (7)#&/)f+3 aTftWT, ^liUF^4c7)T'|gl HO^U4 < , <* Btc<yzz)L a* 1 ncd2+ aoaimua ssr ft u:,

vzz (117In)/Vzz (Hied) = (1 - y00(In3+))/ (1 - y^(Cd2+)) (3)

fc43o 117In fcincd<D4>ra«®<7)^tr>3/2, 5/2ft<£ ty#MES@#T-/ > b -0.64 b, +0.77b Sffll'T,

ojq (n7In)/ cuQ (mCd) = 2.77 (1 - y^(In3+))/(l - y^(Cd2+)) (4)

t4«, fc/iu cuQo i- y^(cd2+)30.3,1 - y^(In3+) 30.3 £ 23.3 <D&\,'tc(DiiT*&V [11], n7In c+3 V (VZZ)L A*mCd <7)i§-£ £ |5] U T' & ft (£, (n^n)/a^, (HiCd)(i 2.77 & 2.13 <7)&l'/c<7ME£ £ a 0

LiNb03 ^OU'T2C7)Ft(i 2.3 T±IBc0fSC7)^(Z^U, n2Cd2+ LU 4n7In mm&kt +3 T (VZZ)L U&S U^fbUTv4v£:#X 6ftao Cd(N03)-4H20 ft t (Dck 7 4tfiJT & a : bb = 2.4 [8]0 LA'L, #K:^U fcb b(i £ ft ft 2.77 j: V±e(,'„ #(:, {NBu4[Cd(n)Fe(ni)(ox)3]}300 UlO^T(i7.0 2(7)ck7K:±e4##mi

6 f, Cd^In(7)j:7 4±S(:cu,\Tft^5fta : bb = 3.8 (Cd ■ft) ; bb = 4.0(In =ft)[8]o i^Cd^^HTfn 3^, (Vzz)L*^bUT, <7)bbA''±£ < 4 a 2 £ ft#*_ b ft a A'\ [NBu4[Cd(n)Fe(ni)(ox)3]}3„ ^ CdG>04-3H20 ICOl'T (iflitS LTM L/c n7In (Dm/)'1' +3 T4 < , +2 T'&aWIbltft^&T^ v0 %%?

38 —

Zti£T':+2iffi(7M >v^7 li *a 6 ft T ' 41' (7) T' Z.(7)ov'

T^ri$ET5o 4*>\ rnm^'+l (7)%^x 5s2 £4 5<7)T';t (2) <7)SglH£&UT<7)m

i§&jSe"\cD^li4 < , < 4u^#x6ti5o

[1] Y. Ohkubo, Y. Kobayashi, K. Asai, T. Okada, and F. Ambe, Phys. Rev. B 47,11954 (1993).[2] K. Asai, Y. Ohkubo, T. Okada, Y. Yanagida, Y. Kawase, S. Uehara, S. Ambe, and F. Ambe, J. Phys.

Soc. ]pn. 63,1677 (1994).[3] Y. Ohkubo, Y. Kobayashi, K. Harasawa, S. Ambe, T. Okada, F. Ambe, K. Asai, and S. Shibata, }. Phys.

Chem. 99,10629 (1995).[4] F. Ambe, Y. Ohkubo, S. Ambe, Y. Kobayashi, T. Okada, Y. Yanagida, J. Nakamura, K. Asai, Y.

Kawase, and S. Uehara, /. Radioanal. Nucl. Chem. 190 215 (1995).[5] Y. Yanagida, J. Nakamura, K. Asai, N. Yamada, Y. Ohkubo, S. Ambe, T. Okada, F. Ambe, S. Uehara,

and Y. Kawase, J. Phys. Soc. Jpn. 64, 4739 (1995).[6] H. Tamaki, M. Mitsumi, K. Nakamura, N. Matsumoto, S. Kida, H. Okawa, and S. Iijima, Chem. Lett.,

1975 (1992).[7] R. Deyrieux, C. Berro, and A. Peneloux, Bull. Soc. Chim. Fr., 25 (1973).[8] H. Haas and D. A. Shirley, ]. Chem. Phys. 58, 2339 (1973).[9] T. Mallah, S. ThiSbaut, M. Verdaguer, and P. Veillet, Science 262,1554 (1993).[10] B. Hauer, R. Vianden, J. G. Marques, N. P. Barradas, J. G. Correia, A. A. Melo, J. C. Soares, F. Agull6-

L6pez, and E. Dieguez, Phys. Rev. B 51, 6208 (1995).[11] F. D. Feriok and W. R Johnson, Phys. Rev. 187, 39 (1969).

—q— 0-|-------O——O----------- O-—(2

h2o h2o

h2o h2o

Fig. 1. Possible three-dimensional network structure of {NBu4[M(II)Fe(III)(ox)3]}3K, (cited from Ref. 6).

Fig. 2. Structure of MC^O^ 2H;0 (M = Fe, Ni) (Ref. 7).

—39 —

Time (ns)

Fig. 3. TDPAC spectrum of n7In in {NBu4[Ni(II)0.98Cd(II)o.o2Fe(III)(ox)3]}30t, at 4 K The solid curve is the fitted one.

Table 1. Results of analysis of TDPAC spectra of u7In and mCd in various organometallic compounds.

{NBu4[M(II)0 98Cd(II)0 02Fe(III)(ox)3]}3a)

M 117In (<- 117Cd) mCd(«- lllmCd) ratioWq (rj = 0 £ T 5) V

Cd 4 K 66.1 (Mrad/s) 9.5 0.5 7.0

77 K 66.4293 K 64.6 9.8 0.5 6.6

Fe 4 K 62.7 20.3 0.2 3.177 K 62.6

293 K 61.9 19.3 0.2 3.2

Ni 4 K 97.6 27.0 0.7 3.677 K 97.2

293 K 98.3 27.0 0.7 3.6

M(H) oxalate

M n7In (*- U7Cd) luCd («- lllmCd) ratiocoq (77 = 0 £ T 5) r1

Cd 4 K 9.8 0.5293 K 46.7 (Mrad/s) 10.0 0.5 4.7

[ Ref. 8 46.6 10.2 0.5]

Ni 4 K 25.7 0.8293 K 96.9 25.9 0.8 3.7

—40 —

117In(«-117Cd)yH jgWlftffl W\Z&5BaRuMMI/303(M=Ca,Cd,Sr)0Study of Structual Phase Transition in BaRu2/3Mi/3Qj(M=Ca, Cd, Sr) by H7In(-*-n7Cd)Time-Differential Perturbed Angular Correlation of y-Rays

SfflSSl, 12,±es-3> jus#-3

Y. Yanagidai, J. Nakamura2. Y. Ohkubo2, S. Am be2, T. Okada2, K. AsaiiN. Yamada1, F. Ambei.3. S. Uehara3 and Y. Kawase3 (lUniv. of Electro-Communications 2The Institute of Physical and Chemical Research(RIKEN)3 Research Reactor Institute, Kyoto Univ.)

oi±mmkmaRu2/3MW3o-.m=Cci, cd.srmmfaTawm^ o fct&m & 5= & m

s<Zfztblz, h0—^^n7CdOTS^ILfen^Mco^Tii7In(<-

n7Cd)nenf]0^>M r mmwiftmm ctdpao £ mm u /t ^ ̂m mM = C<l

(77K)

•' 0.2

(100K) .

(773K)

Time (ni)

tiMJsnr, 0 z.<d

(Dum^im, tMxsimrrTBzisn

TDPAc<h^)^xs®rr<£ra'j^L, mmtmmmm&t mffiwt'Z&zf-(D&wz nu o fz.

* Cdo Ca♦ Sr

— 150

o — —

Temperature (K)lFig.l TDPAC spectra of

BaRu2/3Cdi/303-Fig.2 The quadrupole interaction frequency co0 and <u0 of

BaRu2/3Mi/303(M=Ca,Cd,Sr).

—41 —

(a) T=300K (b) T=77K

2 1000

i ■ ws:ss!»i i *n ■■ «

Fig.3 X-ray powder diffraction profiles of BaRuz/sCdmOs (a) at 300K and (b) at 77K.

(DOTcDpM

98%enrIch(Dii6CdO%3mg^KURT^%fm#L, CltttiSSlC&S«fc <5 tlBaC03, Ru02i5i:IZfSCTCaC03» CdO, SrCOy&fg&L, £*16 £:/l/X ^

(DTDPACOSiJ^0° *5^-t-EEUT/Xffi0

RX x X FX-X-6i%E#E. fSESE$:E^t)ti:T 2 Q SEX4=-^ >teTzM/i? &*5 d Zj; o /t „ f# bn/tfyirrXn X y d* ;W2Rietveld&T?Stfr£frZj:oA„

#6n/tTDpAcnenflx a x b)V(D-^m\\z^tz.a ^'fn<Dm'&$>-mo<dm'&»T7X7 h$n, ##^E(7)XD-X^E(:%#^E^#%LTV^c:6^ij^

so M=sr(DU,nr\r7n-'?mtm.&znz>sr&(Dit>uomu5fc«>i:t ^^)Etc^S^6nZc(DT. ^E-cD^MrhSr^SLTXd y h^nU^/t. ##(: j;oT # 6 fUcm#%E(: ct (D&5 JS-erti^e-cDtl' ,5#^o )£g|2t^LZc= T

C L/trf-DT~A$ < U-oTte 0 > M-d A®

###ET3gA,T^5C<b&^LTU5.

El 3 (:M=Cd0^#'r#J%U^77K63OOK(:^^6fmxmini^Xnx y < )V^L fee ^fctRietveldiWl: =k 5ItSllil$T & 5 „

£@4a<h4bC:^L*:„ M=CaTti77K$TAXd&TMffT£A/(A M=Cdti300K/4E^6(Cg/uTV^. M=SrIld^TCDT##£tl/za

—42 —

OQt1tofHp<Dfem£i\:\*m®k<»mih&7frt, Z(DZ£& WTBaRua/sMi/sOsCtVhCa, Cd,Sr)0#B%#6#A^TDPAC0i^m^ t S 6, M=CaT«4^ t>77K<Dffl. U= CdT?$j300K, M=SrT^J600K<he,n^c„

Ca2+£Cd2+(D^ Cd(Djjtflfc&U%.tf&< , d'Oztuzcd<Dm:T‘/Ammtfca\zft.'<T^^frtbtn7Lt>nz>. m

T< WM=SrTH±#?km#^g2, l4^/3^WJ^nTi5 0,

2 5.94

«■ 91.2

o °o

> 5.86

* Cd •

90.2 -

00 300 4<

Temperature (K)

Fig.4 Temperature dependence of lattice parameters of BaRua/gMi/sOa; (a) N=Ca, Cd and (b) Sr.

—43 —

i40Cs'f*>ftAl:±3Fe:&ME[t,®@MllE#

Hyperfine Magnetic Field in Fe Foil by t4°Cs Ion Implantation

^BJilStil, ±Mil—, JUS#—,J. Ishikawa, S. Uehara, A. Taniguchi, Y. Kawase and S. Nasui ( Research Reactor Institute, Kyoto Univ. i Faculty of Engineering Science, Osaka Univ.)

1 ltUsblz

f ybixi> RI iWMSo RImi. c t X'&A-t 5 i% $ £ frlfflx- f 5 ,£ tc i? v, t x

235u ^ h t 7-< y|BH6*###@ (KUR-ISOL) $ ft. [1,2], c. ft tc J: 0 fp ft Z140 Cs A ir y t' - u £ jg&&

(tdpac) imm+hcC t ZZj%±X-f7%iXZ ft [3,4]o

-^■[11It, i> tc$>K^ £ ft 1zXr<D 4-detector system 3-detectorsystem *fflK TDPAC oflO^Srff *o fc0 t fc, SJtlc J: 5 Cs A * y<D&&&Mrpe>i&mt:

b£WU fy&At TDPAC3fe$ J: $fS»®3fc&*fT*ofco

2 (tdpac) <dmj&KUR-ISOL xmbtlb 30keV <0U0Cs

RI kf-A£x Fe<D&mffi^&Ai-Z C. k Ki 9, vm*mStL^o &Afofo£t>>

%^i#5*5^24icx 7^^y(c5%800° C,

tt2BSra©*5«!3*fT*ofco 140Cs t'- AK*LTig#tCx 5mm</><DfiS Fe ?gtg#, &A£ftfc140Cs Aitv^ -<-*ffimKi 9 n !40Ba.i40La ©ftfcpFtf |c * 5 ©-C,

* < zb ^ <b ft 5140ce * yn-y i C 12},'tB5fe5o

$IJ5e• A x y — Kit,

1 641

0* IZBd

5rtBa 3 40.3 h

La

41%

20%

10%

3*

3.4 ns

1596.2 keV

2412.3

2063 .J

1596.2

0.0

140La (D^-f 329-487keV »Cc* ^ y — K"C'€> 5o filt %■£ Fig. 1: Simplified decay mode of mass=140 isobars5*.5t*ic, %/f y ^ ^0.4T ^0 ESb##g@OiaiJ^Kt±x 135°, 90\ lSS^&glCg^ft/k 3 X><D BaF2

±1350<£>* /f 2,X<? v A,% t ofco k KWz

—44 —

3 74:fxf y HDKfp

qmKgk-o tztt mwwM t me* £ti3fc5 J: 5 tc, *7^ Jr*?v V £8^ L/co Fig.2 © X 5 ic> ®od? Ko^feSS K#W%mO#tN t 5-#©%&#*fg^-Ci^ip-f 5o 4 tc^ C<D cold fingericw:Au-Fe#W#t%0#ifT:$0, S*n<Dmmz*-fi-i-z> c t*t±i*5=

mOTtc*^: t'*#*t^ i 5 ^ 4iWSSh:L-C*ib> #£P£H3&L®J£ *-5SKtctt C5-C, HR*tZmttHL

BEAM DEWAR

SAMPLE

BELLOWSGATE VALVE

Fig.2: Schematic drawing of the cryostat.

tco ISOLdiJt 9 yAir^Z ? HM© 2 ©gficlfc »> f*tt biiltY- Y^^^KX D, fco^K$tfflli«o^iiitjsf<:iS!)tatci«5o i^i|] L Zc t 4 ic £ S © £^o-C, off-line * MlE L fco

4

4.1 SiST'OD Fe

*aBB©*aEtt&3;'0-£*. bn*,,

4 C(+135°,t)-C(-135°,t)W 3 ' C(+135°,t) + C(-135°,t) w

~ —A22sin(2tV£t) (2)

c©arc, C(0,t)HtftJK0»c*tt5*>f A22«tft*fflB8«ft> watt?-<7«»*-ewa = -flMjvS/A-cSSiL5o c©£ 5Jc«*gMfc**FS8 %ict5©-c. W£it* ^-T5 C £ #tB5fcS<,

®R©Fe§W©#fflittSI5OT©:£|6F©M««:Sl -<5t©K, Fig.3 K^-fX 5 KtMRnfaZi&jLX

KLLfc*o-Cjaa*fT*o*|g*SrFig.4lc^r#-„5z9K. n«na#*K»©®»c3pfTtc^jtib#tfeJfr&ttw** 1 ##-C&5©K*fL,©BlCStS^Sn-fl^1 < ■Ofa<Df$,frfc*)i>0

Fig.3: Geometry for TDPAC measure­ment. The circular sample is placed at (a)transverse and (b)parallel directions with the external magnetic field.

—45 —

n■ R(t)=A + Y,Bi sin(Cit) (3)

i=i

y 1 £ff4ofco Cfl/K J: 0, Fig.4 -c-SH-e^LfcffiH-c*5o 4fe> ®'h—ffc7zf 7 b 't'$#<bfrvfca;B:Sf ^ i £>4 i> <Difi Table.1 X'$>6 o Table. 1 KHimJHk 4-detector Xmm l tm* pj * gnt-ck® l -c a s „Table.1 5:^5 t> &##%&&

#45wM:,Fe Ce

|SltOjS^'C||4 5|glllc4o-CV'5 c t <D%m% 4## * <k < ##j- 5 rkg# $>5o t/c> wB = 1.9 x 109rad/s 1C*}

t-i7TK4&„ toffittNMR/ON-CWkfifc—41T[5] i, iSaEo&V'tMIt 4 ^4 0 'h£ t^0

0.1

Time/nsecFig.4: The TDPAC spectra for Fe foil at room tem­perature. See Fig.3 about experimental arrangement.

Table.1: Hyperfine interaction frequencies at 140Ce site in Fe (109rad/s)

Wl U>2 U3 UJA4-detector 5.97(7) 5.0(1) 3.88(3) 1.91(2)

3-detector {Hext || sample) 1.92(2)

3-detector {Hext±. sample) 2.00(2) 0.99(1) 0.41(2)

4.2

Fig.5 KFe ima, 150 KOfijgrcifcofco imMltb'fi't? b'l'fci 0> x —^5t4 7 —e T $ ti 4 ^ otzo Cs'U-s^ IEL < Fe&JRff«IC&

*>o4o SSJS^Ew

0 10 20 30Time/nsec

Fig.5: The TDPAC spectra observed in the presentexperiment at low temperature.

—46 —

tL4cT^^i%tf)ii5o ffiiS-COSiJ^Kio^-Cfl^ igfloM* i'trff * ^ HHS&Srfr & 5 5o

5 Stft

3-detector system K <£ 5 SOS K Z 0 t 5Ci Cs fK?#Fe4’-r£*5tfc@n^-ctrv'^v>0 $ ncflojgtr,

ic o -c ©ina * a a * s»fiffl-c©iilHglcov»-cMU 4#%aAf5 RI 5?

S-c$>5o 5 <btc, MfitTt?fly*<r^fc«-*rfll5e‘et5J:5. ^ y h©efr£*fTiJA'f t^O^ftcowtiL < M-<5 C 6 SrffELTV'So

[1] K. Okano, Y. Kawase, K. Kawade, H. Yamamoto, M.Hanada, T. Katoh and I.Fjiwara, Nucl. Instr. & Meth., 186, 115 (1981).

[2] A. Taniguchi, K. Okano, T. Sharshar zmd Y.Kawase, Nucl. Instr. & Meth., 351A, 378 (1994).

[3] /ii*#-,-hues-,mm%sRnczswraj (u), kurri-TR-400, p.42

[4] Y. Kawase, S. Uehara and S. Nasu, Proc. 10th Int. Conf. on Hyp. Inter.(HFI-10), Leu- ven(1995)

[5] W. van Rijswijk, F. G. van den Berg, W. R. Joosten and W. J. Huiskamp, Hyp. Inter., 15/16,325 (1985).

—47 —

m * « bu * mi \z j; s ss ahr ^ x a v r -&%High Pressure Mossbauer Spectroscopy with Nuclear Resonant Forward Scattering of Synchrotron Radiation

S. Nasu( Faculty of Engineering Science, Osaka Univ.)

1. UU&t:mmzmm± * y t

^ l±BEl:1974#Rubyl:«k 1978# <?) Cohen ill:: X h %W\ GerdauillC X h

1985# (7) Wfl: «t o «fc 6##^ •

Vatr>tZo <0 , /<>#g a f 6 mf &fB V' -Hi 9 £

& y 7-#r&a"Fe

eO^lO"9eVigET-$> &o Lri'U t'KZ^XZti

b<dt:&*x #m##%^fAR

? NE3 £ ffl Wz y > 77W-* y f- • t- K T* c7) k <fc o TMl& •

9 Kfcofco

fL^)(7)^#(7)M(7)—o ^ LTiilf 5 tvE^LZc^-1' Tty K • 7 > kf 7V • -tr;l/

(DAC)^fflv^T%X5-ti:Z:EiliETT*coy 7/^7-|S7Fe(0|Iife •

cT^ ^ g % a LT o 2 (D#^^E -

* o tziL1^bbb^ n 7A;M h Mi£<7)b#JSrFe03t5*74 GPaOi^ETT(i

%ml-cctmnftxwbfrtztc-otzt\ ns#j%m&%KZ6mm&■ m&mmit±

#rLT £Wt± l^tionS £Ltz* ti£ < £* o fc

Mu - %mnmfrbmftX''m$iix^z>%\L^im/frwxh

&. ^ax.(fx

S@lb&L*5bbb ^ £ ® 9 i§ S* £ c: fc ^ o tro&X£ M; $ -tiu t<7)3k-yy h%$3

maL-c#u<@<Ak:-K7yy$^

yy v y^t-uy h&f-^y*7F^WJ$tL^>4,5)o *£bbb £ ffi V> TM $ tL /.: meV <7) yt y Kijig(7)^ 17^^157S <7) *e, *<D

^*)\'¥-fcm£frbmev^x)i'*'-ffit£x<Dmmmi<vmmn\\-b ? * / y#am&^

<7)EM^dTIEKLTv^0 $ 6 //eV-%t <7)$m±#3L(7)

—48 —

##, i:lo»j0 t L /.zWtm a '* *> 7 t t±^c £

< #& o 7& #r L& L6Kim &v^

2. i^ETco ”Fe>

DAC t %##7 m-y (RI) y « t £fflv tzMlET'CMn-situ * X ^ * 7 ~fr%

m%^X<D7n-£ k**-cis/;fe, i%ET 7 <7)#^%#^ ^ X o - XJ^E 7)%E^# tfX%Z>^U)0 #A(A SSto^iSET57Fe>t xy^7-yiiMJS7i^E*B^llrSh L

7, O-Fe, a -Fe203, Fe304, Fe,.,0^ FeCl37(0mE#$E%, CaFe037C9

Fe*(D^^ k? >i&A k: 'y$m% $ E7 & 0 CfibW^K, ft^oSEET^

A/^7"M9JJ^T*(±, li fc As¥<D&m'tk®llii&1£ft%W?J±jJ£J:&&%&&&&<?)

&J±TT<DS A^'yr-frmmt, * < [±ymme^#& L7Drickamer5!iiS5E^£

ne&fflv'fciHi< Kuzina<tvrv^,0-i3)o dac*^

KZ6m%KR@L7t?titv^M1',210 LfrL&^b, DAC^fflvVz$ijaT-(iMf4S(±S*T/h$ <, RIy ^ |f •) x SWySMH

?)'£ btL73il£7b 0 , fio, ^<##[o]#^#V'(7)7, X^&tz tt 7>$ V> y S £ S£F|-^ & z 9 K.

X £ Pi fig fc fr r 0 E £ < L 7 < K SB® L &*# I

^7)^'^7 z> o—^ %#^7»^7(0##r7»^^:a L7, WXJtM jyy 3-l'-?frb<D 14.4 keV

f ^ ^ t"Fe##-#mmK J.7 7^fJ:

(D^mm

m± (2)a#m (3)myt (5)wwbti&^\ tKb^em^^bLtHES L & v^DACK ct 6^K#t B Lfc jfc7

*60 <t . #*#m&^mm ^ E% %Km$M 7)#^7# w#

###&#. (10*~ 109eV)^IR'9tB7^^^, y y 77V/V/77- K 7> / X J&lfafc £ fflv\ #&#7(omet:^':6mEmL&it^7#^#m&^#imm^^^ft *mmt60 mm& • W4:$ fL6 n%gi#;i]b mE#m^ ^ #m 7 & 0 x

b iit^ t (D#m

3. 4%E#a v y x frb n b ti * %#% t± x m# t \m l 7 it m v* k 5^5 ^ x mm 7 b 0,

2 b K Ri m 7 u ^fm7 (o y mMm$ t± # L < ^ ^ 1% & #- L % v' f) t:, Xmmi±@A7i^v^|o]%^# L, iwif-A7lto7«^7^^o $ b t:%#%

^ a, mm%x' hh<D xmtr L7%###^#Eib# & t&E-r^7

—49 -

Uy h If- K7 7 TSti&V'WTdecayUItSttifc*^4-$',4)0 797nk-un^sroiatc 1

x\i~Y7 yzi\z-vy Yta ####{[&## * y * ;i/jWSU $K6. UMth Sr^L-CV'*

^A##mi±T#/<^ Hwcfl^tr- h£/Tt5,1\

%T##v yy&yyy^xyft- ± 9Ev'B#r-9<7)

\*~w±b,

§> s^tf-bvmm2titum&mmm&mm

h v * * >- a r Kis® ? 7 > v * y - 9 mmz® mn ^>k-7 y fcfT • TTCDAQ^O’TeSt- .t &OTil2S*M^$J;E£MAAotu 1 K7)mmt:gK#L, e-

h&bmmm<nis

ev\ L-c. mj±Ttii^wt$,o/;

SrFe03ti74GPa<7)i^ETTl±3M^$MBi|£^ LT V'* £ t & tt i:*6THJWc Ltza

Si(lll)

Fig. 1 Schematic arrangement of a first experiment with a nuclear forward scattering of

synchrotron radiation using a DAC at TRISTAN-AR in KEK.

Fig. 1K7 y y i y- i ztmmrniimimfcvm 1 hu^^es®*^

to j. ^;v T"6.5 GeV<7) 7'S'J 3-y-9 t&MJt it siJl'Z H9R5l.4 \isec<D'sy 7)V/*y7X-

K-eiI|5$K> $rsi (1 1 1)^ISbbb H-fc o T1 eV i 77^#}^% £ tlSi (10 6 4) K l 2>

x o x Ay KW38meVi -cJ&frffcS ma c: ^iijEiSSE^M/d’ Tty K • 7'y ti;v ■ -t: A £ tiT & KOT <T)57Fe$tc J; £$&!§

rn^atautmmwM% ^ ^ h ^ t Km L i ns^A&yy a T 7

tvyty-tzm^xmfeLtzo ffl Wz SiWi * -;WMtn= 140 it N^^nyx*4 h Sit(7)M5i6S1±^: SrFeOj(96%"Fe#ib) #^bbb$>AT$) 6 0 Cl ?)#A ^ 6

^fXT7 H7)A (g#0.15 mm ^ ) TTbf-«>AS.tfEAS-ftt£tz

WAliMti^.lAo tPJJS^<7)EAli¥#J44GPaThi>0 #TtLAj$Enf n9x^? HV£

—50 —

TIME / nsFig. 2 Delayed time spectrum of the 57Fe nuclear resonant forward scattering of synchrotron

radiation by SrFe02 97 at 44 GPa and 300 K, obtained in a DAC on the NE3 beam line of KEK-PF

at Tsukuba.

Fig. HZTFto L /:"Fe*%#m@:L T V' 6 .

8 mevtcs^k^

&mH~BurckiII7)K j; o Tfej&£ ftX «£ i iX &P,§MWlWM'tS. f o /: jm$fT$n(w)T t cT ^ L T < . -O ^

n(w) = 1 + Pr r4tg 7i(w0 - w) + iV / 2

to0l±*n.$jH^-e* * o ZtiC? L £d 0%3L#&

-e<7)E(DSipMt±

A1 (w) = A(w)exp [ - i n{w) k0 d ]

T*>Z>o A(w)liA#tr-A(7)#B-C& *K 8meV(D/<y K$MTX#LX^(DWm

<D(i#V'OTA((0)= lT* o h

8titz<nA'((D)<0 7-')j^$£&izjLvr£7F$ti, Wbfr^l¥£d izfcffir^z0 7 - v

—51 —

Fig. 3 Delayed-time spectrum as functions of an

effective thickness and a delay-time for a nuclear

forward scattering.

?ee M

Fig. 5 Delayed-time spectrum as functions of an

effective thickness, a delay-time and a change in

magnetic quantum number for a nuclear forward

scattering.

Hex,// E

E

444-:H.

♦ 3/2♦ 1/2

m,m, 41/2

Am = ±1

E

Am = 0Fig. 4 Selection rule of 57Fe nuclear excitations

by the direction of electric vector of photon and

an external magnetic field.

60

Fig. 6 Delayed-time spectrum of nuclear forward

scattering obtained from SrFe02 97 at 44 GPa and300 K.

—52 —

l{t)~e-'\j]{{4v)

l&W-ZXtb t)d ^A!\ir(0mtLX^LX^ho % (!##$#:

L*B#pa^^to Fig. 3 ic57FeOTESMM5£E£Mil#<7W2 tmmwmWit LT^L^o Bessel $W:

&%mixx>tmm± ofo fcj|v^MsJ^Ltv'40 ^ tm%<v^y rots

5io-7evicit^r^^r^:i <, mm$mmmx#giuz: o '>7 k

L£*? 6<7)T, f Kt,

^ (0 ^ ^ ;F f - # KMB L ^ f # 1: Z 6 k: - k (#E? ^ 0) t

k ^T-^lEkf- k Qfl i±

♦ ■#Og = 03„„(n, m, r) - 0)„.m.(rt', m\ r')

cvl±^q|ji-«-e*^ n, rnlt#m#&^f K#T r

M&TFto itz, Su&L/.: Z d ^Ti£ffl Ltzt&^%\±%%mi%f£(r>X.

totitii^zmij^, tl

Tm^$fL6o rig. 4

•7 yfrU L ±130 Z 9 ^/7^((7)^f6] 1b \m<7)'M&UMiMS&<9T\ Attz = ± t>> TMXll hzkw.%bl£Am = 0<Dm®tf&Z>o Fig.

5 K^firfiAm = Q, Am = ± 1 <7)3#1:MBL^"Fe##S#^%3L3Ai^&%&###$Lxvf'Ltzo *?

C: Fig. &/<7>-?(±18 ^m<7)K#g$ t:23T<7)

mmmx&zz. tmmLtz0 M&^&Fig. zxmfrbFig. 2 <p T25nsX) \*—9 l±#f-kT- k-Clii<, Mtix^^x # tzfAM^t^ Z h 7"n > y k -e£>& -T t <>

$'J%L/:o

Fig. 7 tcH 2 El B c7)^SB£EE^TFto mZ^^$^^l:Z6#6ib<D#$^#ElZ 0% 7^/i I'-^jtltftiiSiO 1 1)MMbbb tc Z o T^StotC^ £ tiSi (4 2 2),(12

2 2) 1: Z 6 ##M#K# tc Z o X m El Z *? M W® * ' * > K ^8meV t rt*

T#6o c#%(Z#EIEHK xxy V • jy\£)V • tu-tr^i*jtcfliAK#41 o57Fe^KZ 6####^0:31^:oMEH#Pb^x^7 k ;v£

tL /:#R^M#0.3 ns<7)v 'J n y • %/<? >?- • 7 * k *- K(APD)$r fflV>T$IJ^LTV^0 s 1 EJB<7)^S^^SrFe03Hil;ETr*EWaS^EPJ^tL, *-

LtzZLt m#j LTV^ i)X SrFe03ii« • ^'ETTti^ V * )V

—53 —

14.4 keV X-rays Slit Si(lll)from U#fNE3 Illllllllllllllllllllllllll |Illlllllllllllllllllimn

I Si(lll) I. Chamber

DiamondInJ m 1

Fast Detector

PermanentMagnet

syAK

■------- —-------------- 1 i i i20m 24m 25m 26m

Fig. 7 Schematic arrangement of the second experiment with a nuclear forward scattering of

synchrotron radiation using a DAC at TRISTAN-AR in KEK. Permanent magnet for the external

transverse magnetic field is also shown.

Time 77 ns

Fig. 8 Delayed-time spectra obtained from nuclear forward resonant scattering of S7Fe in SrFeO, at

74 GPa and 300 K as a directional dependence of electric vector of incident radiation and the

external magnetic field.

—54

^et-e i± ee t- ± ^ r2*l

2>aJM±tf*)2>0 & &% W'Cf&E&CFig. 4 (C tf l tzt&Mit X> EM £

m ^xmmws z #&# k tm i £ n o e 0Fig. 8 ten 2 BS#T# ^ EEDACE (DSrFeO,C ± &S7Fe#®jl3 SU E BSL<DZ&H#Fal

h ;V£7Fto ^ <7)D#(7)$IJ^Et±iPIJ^Jt300 K> EE 74CPaE <£>&<,

(±0.78 T<0jW## £ / 4 -V X y K • 7 > tf E • -te 6 K#C frEQ UTfPJJS^tL*

k<r>X$)Z>0 HW±Hext=0, E£x(±Hext<7)E[6](± i&ME<DUWi^? Y )WZmi, ste<t)x^7 h

liHiotv»T, Fig. 4(CMS LX^hLt EEiJrnttioSrFeO,t V> ? (±#1^300 Kt (±«##E* 6 AETT X - ;F&%^300 K^EC±#U t £,EL

ibWlV'TV'&C: 1l±, ^^ET-C(±K%#'I1#T^ c ESrFeO,(±74 GPaP)i^EE-C(±gam##c+a$^#lx\,'2>tm$itact&x#60 Fig. 8 omMnm*^* mm*$>74

GPaT<D"Fei@mm#(±23.5 TT&& C %%im#E#E^M(±(± ^ A, E#T$) 0 , K# !$.Z\±fol2vmX&Z>L t fc^LFig. 6<D% 1 © g t — 3fcLTV'&«, R I Mzm^tz* %/^7-^T(±^gm#TT(D#m(±(± t eee^rttx*> >9, %#%## m• »), ]±-mmmmm^mm\z7^LX^ho

4 . fcbU tcy 4* -v ^ y K • 7 y bf ^ ;v(DAC) £ ffl v' E i^ET > X /1 -7 7 - £hE $'JS. £ (c

± srFeo3oE*ii^-EMtt • gamma#mm#:

tiltoTMJlEo %#EC ± 6DAC^m W:mi%EE#A#mgL^mm(±, 'S'&vmifm&itm r 1 ze^tzmfext±imdeb-ce ^ /eg •^(±{m^#y-7$mc±im%<n■ \n^^mmyttK

styf%Ev£^emoto(csjet^<7)(±mznz&mm m#^c±6##m-#m#m&(±#maE&EG%2-ti\ mev

pf -<0#gm%^L^^ evx^ ;v^-#mr^mg$#%SL<xmmn^ &\

n%r>tz%\L^nM*$f^, m&, mffi • mmmm'*>&*!)xitBstix^z&ut'ffl%KWtXhho

Wf%l±3K/J'0 (KEK-PF) , EpM (bE^p) > (SEE) ,(KEK-PF) , ft)W*£& (SEE) , SgA- (SEE) > ^EtSJfe (SEE) , %m$)N (EESEE) , am#- (lEIPS-ty^-) , ^SE-S (KEK-PF) , R. Riiffer

(ESRF)(7)#^m a (DTRISTAN-AR NE3^fflv> $ 6 0

55 —

1) S. L. Ruby, J. Phys. (Paris), C6, 209 (1974).

2) R. L. Cohen, G. L. Miller, K. W. West, Phys. Rev. Lett., 4 1, 381 (1978).

3) E. Gerdau, R. Riiffer, H. Winkler, W. Tolksdorf, C. P. Klages and J. P. Hannon,

Phys. Rev. Lett., 54, 835 (1985).4) Yu. Kagan, A. M. Afanasc'cv and V. G. Kohn, J. Phys. C: Solid State Phys.,

12, 615 (1979).

5) J. P. Hannon and G. T. Trammell, Physica B, 159, 161 (1989).

6) S. Nasu, Hyperfine Int., 90, 59 (1994).

7) S. Nasu, K. Kurimoto, S. Nagatomo, S. Endo, F.E. Fujita,

Hyperfine Int., 29, 1583 (1986).

8) M.P. Pasternak, S. Nasu, K. Wada, S. Endo: Phys. Rev. B 50, 6446 (1994).

9) M. Takano, S. Nasu, T. Abe, K. Yamamoto, S. Endo, Y. Takeda and J. B. Goodenough,

Phys. Rev. Lett., 67, 3267 (1991).

10) H.G. Drickamer, S.C. Fung, G.K. Lewis: Advances in High Pressure Research, vol. 3,

edited by R.S. Bradley, Academic Press, 1-39, 1969.

11) M. Pasternak, R.D. Taylor: Hyperfine Int., 4 7, 415 (1989).

12) R.D. Taylor, M.P. Pasternak: Hyperfine Int., 53, 159 (1990).

13) W.B. Holzapfel: High Temperature - High Pressure, 2, 241 (1970).

14) 62, 683(1993).

15) S. Yamamoto, X. Zhang, H. Kitamura, T. Shioya, T. Mochizuki, H. Sugiyama, M. Ando,

Y. Yoda, S. Kikuta, H. Takei: J. Appl. Phys., 74, 500 (1993).

16) S. Kikuta, Y. Yoda, Y. Hasegawa, K. Izumi, T. Ishikawa, X.W. Zhang, S. Kishimoto,

H. Sugiyama, T. Matsushita, M. Ando, C.K. Suzuki, M. Seto, H. Ohno, H. Takei,

Hyperfine Int., 71, 1491 (1992).

17) U. van Bvirck, D P. Siddons, J.B. Hastings, U. Bergmann, R. Holiatz,

Phys. Rev B, 4 6, 6207 (1992).

18) T. Takeda, S. Komura and N. Watanabe, FERRITES: Proc. Int. Conf. Sept.-Oct. 1980,

Japan (Cen. Academ. Pub., Japan, 1981) p.385.

—56 —

«mmoi sut® wBinding energy surface of interstitial impurities in Fe

^ #H. Akai( Faculty of Science, Osaka Univ.)

1. KU&1:

imztitz»-ocit,o<. tuboizmmmmx'&'Dtz v^tzt)tz>

bcc t LtAf#fts (Oct) twmfc&K (Tet) b*ia.< (DMWstf&z. aumns®

C & 4?»< t iy&mMOgtt'ofziiWlZitZ'O'&ZZ-tltm*%n%ixwbfrx&z>. L*ti&±.comn*nzn ^ m l <, 'd-stztfsgizitzz.t*, xzk, -anztz-trvmzMLi ltv^. ww§M%m&frbz.nb(Dmzt t§, mw^mzizz><D\$, JFmyam<vizw*5-z.fzt$<D£j.*fr*r-x*>z>. #n,<7)15; fi fc -E-fU:#ffcv^ £ Ai$<7)m#^-^Aa;<7 * - * -e^t, fia^lHJ Haifa###

• ^###<7)fm^, tttz, 2&7c£®pwj&

##m^-rm^f a. mj?&tm<7)*tzttb&ztifzu, Be, b, c, n, o,

F/F###T*a. C(7)Z 9 ^mf#-&(0/J^$v^mf-C&,

&<%\btirao, %?#%]&—cuo/i?*~*\ztot# x. tbtia.

pac ^/3nme z am#(f±n@mm#s#m 4-mcT#ibfLa. 7/v7-y7i't¥&*>a**, <i hximmMm<DJ»a 2 a.

2.

V tz$)\Z bet Fei6N2M^3a^' t O^,—y't— • -tr /i. /F

—57 —

id-?v(r)i t ro X uq^t/W£8i?& 9 4.n.

m#® ?- h (7)#%f 6* - 9 &ih(±wr#BTI±*6^,

x, y v->w(LDA) £fflV'T-tr;i/7 • n>y^f >M:imifti^

:f#f 6. 8S<7) fc£>fflV'T, l(T7Ry «HStM

"t" •?> ;$ "C LDA <7)^f) 1H Zz. LDA LTti Moruzzi, Janak, Williamst(Z) [1] £/8vVz. rr, s*7 * - ? , EE##

o <^ <0.2 a10x10 ^ snov^r^EcottS^ff o £.

3.e 1 i:#m%»eua lt, Li, b, n, f ^#@E<z)#/w EE##

m*6l± AE###T%?#% 7,^8%~lO%?WzI)H£DTV'£. meerJMo

(B, C, N) T(±AE##«^%/j4:»c 0a%<Z)E*| (Li, Be, O, F)

"CWEE##md*#/N:&o TV'&. tzfzL O <

%^6E<7)##%#(±EE##m-AE##m-EE##mK

fcT##LTvX d hM#? &i, d t. f&69htz£>\z\$, 0.2~0.5

eV tztzL, #UR%t: t c 11J:t-

6^&(±EE##m^K##^bcc (D7 dtx&t), (d*Ui N <nm&HottiltsUJ:orts^*r), d<D%^^#AfUf

Li ^ F (± (± 6 ^ 1:## t: EE##m<0 R &- ^ &.

i<7)j:9%%mxm±E<7)iisi)(i,(SWS6E(±v^ 5-e<)^ < )

V'TV'6AT*&. i(7)i (h (±, tzh z. r? t-oX^fzt LX $> ^A&d ttab-6^, 'E-iL/ztt'eii^ < —^t-7/ $4^E<7)^-t kti-eS&vx

^#»^<Z)EB*”T7'y-v;i/^#lTWz(7)-eti+^a:(j:Wx.^v\ ddT#x_^^#@

E£-H&lt£*'i/z*°f- 7 v^)\'t%z_y\Mm%fr&t£ ^fflv^d-htU^TJ: 0

t ><7)E&£5-;i£ d

^i:aiffli:o^-cpc^e^ti3<. g+##mcz ^

y>}m<oim&*c$<m-t&. Ltzt^x, Ltib<DmmiEL<^fr

titt tmmfflmmmm-ta±x^xx^>%. d ir^^maE^m/Nmc-e^mm

mmmvfe*t9^i-r^tz (ztut&i*Li>&w%Ltxit%^). E2ci#.Mt=

Lr%biitzMm&m*nmmz%ibtitzmt 11 £#s

[2] (:< %/<&&, <%A$fLTv^i), #K N,

—58 —

3

% %S'

& V^ V

4r< v rv rS; i^v q:eil di r 5+^ 9»

✓X94 ±[r> S

# ^

B ^a 443g

D>& r PS r>cf- r trv t*a-ft

M-

% - m ^

B nk# ?S r>

# S'3 V

-fi-3-M

wHurv1

E # r» rvoftrvw3

anuji#

4*3

4vJ>

W

94Or3

W9 4J StMg*

^ # |g-, r^v /x

m & at

m#stvf»rv vJ1-9-r\ <reX

1

94-

-3

m4-

FIG. 1. C

ontour plot of the binding energy surface of Li, B

, N,

f omm

®. a^(i^^w

^<7)fitt-eEg@^5s-yvEM

m-izg@

#

Relaxation (%) Relaxation (%)

Relaxation (%) Relaxation (%)

Impurities in Fe™0— Theory

A Exp.

fig. 2.z c -cm ^(o) &«t v%mz i^xnbnx^zmmsiMm

(A).

i), ^tuzx<oms.^mx<DV^i-^^7,, @

##£i*

[1] V.L. Moruzzi, J.F. Janak, and A.R. Williams, Calculated Electronic Properties of Met­

als, Pergamon, N.Y., 1978.

[2] M. Akai, H. Akai and J. Kanamori, J. Phys. Soc. Jpn 54, 4246 (1985); 54, 4257 (1985);

56, 1064 (1987).

—60 —

W —^:alLT0 X t£ >7 U y 7\ >7'J y y°NMR-ONSpin Flip and Spin Non-Flip in Successive Decay via NMR-ON

BS. Ohya(Faculty of Science, Niigata Univ.)

lo^LillfcTrtDNMR — ON (Nuclear Magnetic Moment on Oriented Nuclei) SMS L fc%i

m\-tzm&b, ni#

b&v&bhz-ztb'iito 4-ink

cililfco bb£<DM&*®bftX\'Z>(D’Z\ C(DZ.bl$m*¥>

(x^yyu^y) , (/yyv^y)

<DM\/'KteZ>c Z.<DCb%fflV'%b,

&c t\z.tz v), *>74 xD-mKfc<###$&vtc0

2 o ^mStDy^^^^SS^rilLTtDNMR-ON

©Xbfyy L> 7/©^i LT89Zr-89mYS

Fig. 1 tC89Zr<D$S$5££^ Vfc= 89ZrfiiJ

2:/u^i8 (D909keV 74 >7

74y7-(D*®,fflte

16.1 ST (SM ( 7 m K)37s bmmmt'&zo

(D*4#v f'ny£fflV'T$HykLfc„ Zr&4:<D*tL&*Knib&&bmmb1&&Ltc

9> ^ L-^i'V^T-SrcD##T&689Nb^#%mcfTt)l&/u^:. Y(a,

4n)89Nb£j£<D£i$£*ljmy£$;?itKJT

$r#cT

fi7mk t£#rip Ltc.

89y

89Zr

Fig. 1 Partial decay scheme of 89Zr

—61 —

y-ra

y cou

nts (

105)

320 324 32*frequency (MHz)

Fig.2 NMR-ON spectrum of 89mYFe

by detecting 909-keV y rays.

^ 3.60

° 3.55

frequency (MHz)

Fig.3. NMR-ON spectrum of 89ZrFe

by detecting 909-keV y rays.

^ h/HSr^-f. m C909keV<D y L7h.

Fig.3X>t^<DyBr'n±ti:2'D(Dm^mmhtc(DZtl tm&T-Z'&z. Fig.2tFig3%tmt%xzy

tfMteteoTis'Z Z y EClcountttXtf yO^ip]^)^LT 0 Jg2: 1 8 0j$<D

Fig.2-etty EOM^teTb^PS-e^tircC

£ £ L#> IT43 <9, ilSONMR-ON £ *5&

LFig.3tffj:##TfRC y #< *otV'5. CfUi

89Zr-89mY<7)S"trX bf y TV'5 t

<. Fig.4

mmzftLT"zroa&t

-/>b<D®n&fkktz.Fig.4(D±Og|(Dj:

^oTV'^.

^B(DE^IJ^g)<D41^:<DStZ:^oTV>do

definition >> /i(89Zr) < 0 +9/2:

89Zr FeT)/2=78.4h

-9/2--------- ------—| P+/EC decay

p(89Ym) > 0-9/2 -....—.........=——-

1H ^..89YmFe+9/2- , T|/2= 16.1s_qn . ! relaxation

. ' - T (reorientation)

Ijt

+9/2 .....—----------

Fig. 4. Change of the spin polarized direction.

—62 —

^rsi?89zroE^j&m v-mi£&z>b, 0(DE^^Rb^7k6. JgrcDflgH, 4^Wcmi6.1s-e##@f6 ^##^mc LT#v\Fig.4(cHy<!:m< ^6. #mh:*£ < &5^89zro

itnStt y t & £ (DTriib 5. eft, & ^ ^ NMR-ONf

i>mm.htc. ^>h-i.09(2)^n^^l/c. z<dz b X *989mY<£>a^e-* V h

©^.kf > / >7 9 y LT^s-^Ir^mFig.5191Osfi 1 0 0 % 0 SS"??191mIr(D171keVMT-f 7^r-\l1

feedLTV^. £7tT >f y-r-<D^M8m4.9s l:M£n5EfniWfim2l.lslr^<Z)S1$ti:

^^A'em<D^Os#(D##^9l#'f-o'CV\6. K0.2%UOs%&Astm% E*lte^ l/c.

2.385 -

P (100%) 2.380

OsFeMl+13% E2

frequency (MHz)

Fig. 5 Partial decay scheme of ,91Os. Fig.6 NMR-On spectrum of 1910sFe by

detecting 129-keV y rays.

129keV<£> y M<D%m* 0 mt 180^1^1?^Ltc. 171keW

(DjtRltiT'^ESJ£ ;M& 9 > ^Rlx^y 9

STftttDXXy h;F-e$)6. k>tlt>tlfemtl29keV<Dy ~Ktiz^mOs1&<Dm%zuvtc.

Fig.6^#^tifc#n,l^^-r. ro^Hlti191mIri:|W|bJ: 5 fcTfat

&5. Z<DZb ti:89Zr-89mY& bmteoX\/'Z>. Z<DZ blZ7¥>/ >7 V y~f^7L^b

WKZ<Dm%Bt. Os^Ir^^tptDrtSEScD^^WSSS^^LTiS

—63 —

-ST®(DikM\z.tzz>. LmOsXm%%®z.is&z>bfiSSSIfc

©«^£T#$HrttH*K:jfi<ft»K r^.l<D%<Db\t^X, ft*.

^oTSS@miS< * y>, ^^*5.

191Os(^*iStt /? E^EEiJ-f’d &

NMR-ON-e t##^E#*tL %<DM%+0.962(28) ix N £

&£L/c. CtlL(DCLZ ^ 191mIr<DBilv£ -yy h LJE t L/c.a±(Dz 9

£BLTONMR-ONXtf y y D yy"<D#A

t LT89Zr-89mY, Xkf yy y V vy<D#A

5 '^y^Uc. lcolLIc j; 9EiEve

- y y h

SL/Ce

definition

spin1il|S

So IShf

l| t

i| I

M(,91Os) > 0

-9/2

+9/2"

-11/2

+11/2

-11/2

+11/2

191Os FeTi/2= 15.4 d

| P~ decay

/i(,9,Irm) > 0

T|/2 = 4.9 s

x relaxation * (reorientation)

Fig.7 Change of the spin polarized direction.

d-yy/On-line NMR-ONSm-C1MfUlWBmLUSt;:&OTL& 5o 'ktcftbA,¥&0}&mx

^ftLteA^LoTV^/ctf),

—64 —

Low-Temperature Nuclear Orientation of 144Pm

SOJ^X,mi

K. Nishimura and S. Ohyai ( Faculty of Engineering, Toyama University

1 Faculty of Science, Niigata Univ.)

1 - fTim

RNi (R=##±EX#)i v R=ce, Pr. Nd. sm(Dit^<Dmm^m-r#< , ^(TDEMmii<k <^^LlTV^5[i-4]0 -j'LtbtDik&yy'PV$r±M'f *yii 3 +

4fiTOM5^Ce(l), Pr(2h Nd(3)x Sm(5)T'fc5„ fc&VPm/f xy«4 WMfSX£j$-oz)L Lolttli:TWlt\

s±Etes<ds^x

5<7)T\ 4f«X^E14^p-<5 ^ ttfT*$50 r(7)9f%tt4fSX<7)Eto^^E6<]^P^ 5 SWT'fTofCo

2. 3mNdNi(7)^^BttRF^^fflV'fc[H|$E5l#±tffe^j: >9fTEL/c0 fei,#mi±CrB

STy a x c 2{ST'fc5 [5]0(a-cffi)

'yf — VWV ttSLfdo 1M Xtt3x0. 2x2mm (axbxcto)Nd^xtXdPm

(DsstiippmsSTfo^o ux■tirfco

{6SM^mj^ttSrS*^<D3He/4HeS^M^fflV^rffofc0 EX h OE^ft £ ME5fcfcx 0.4T^^ES^E'fLWSI6^l6]lc:F(iA|] Lfc„ K#Wli60Co(hep) H-^fflV'TSJ^LAc0

3 . jpev (0) tl® ig.tcjoU5H-Sc*5riEiB. (4. 2K) lcjoU6#tm#xm#

4kLT#*5. #xk°yL 7MM^f6](7)ticX^iS^e<bX5 <bx W (8) =l+fZBx (^ BHF. T) Ux (Ajp) Ax (L?) Qx?x (cos@) T#E#T# 6 [6,7]. @x f

(i-f)ii^Dm#xKm^-cw5 6iK%f5. #^mfBiiix #m^^-/yb//x @mmE#BHFx a#TF:##i-a. m^jist-u xfi^wi^s^i 5E3W ^ tai” 5rSEXdo A%g@BXA 1 il»##(DmE##m*K*#X6. QUiM

-65-

P A y F'/WI9#re£>-5o @ 1 lzi44Pa<Dffim&x£&* Lfc0

BHFX AJ0Xfc5o @2Hf = lx u =1.69/i N [8] x BHF= 426T[9]x A J /2 = 1 x 697keVy#(DW (0) Srlfil'fcfc©-efcSo t°y;tffa<7)y*&fH3fc4sas*'>-f5

@ 3 b 5 y Lfc„ 9 ttctt^fjjUJoXfcSoMf28. 5mK0 ^^tfy^c#^66l(5)° #fat2il® LTl'5 2 £

riLttPm-r y Lfc*"faTfc5o HMfi.

2 6061° Xfatbmvm. os 9 bffilcMfcffiK*3f*5 y!8Sfcl+M^rtfe*>5o A&»ttb@7)^$ijofc0 fa#(261° -ef|-ft$©f/J'*^Lx 2(D^fa(C#^lf^^m@L Tl'Sri^LTV'S.

( 8 =61° ) tmllL^fa (0=151° ) T'SJ

^L0 5j2^Lfco :®f^i>f)AJ(!, fx BHF&#mTS. 144PmO^SSti | A 1 = 1 i c#-#.±ag#T&5. .totPT0 f>tt<DfimmmA j 0tt 112^or

6^X#6. U1 ( A J 0 = 1) 6UA (A J 0 = 2) <DJ&#ifc£ 5 2 t~t -5 <b U4 t U2

(vitaU4/Ug= (U4 (1) +6^U4 (2) } / (Ug (1) +6^Uz (2) }

T&5. f U2 6 f U4i&r/<7^—f (CLT477keVy%(DT —f (C7^ y H Lx 8 2 =

0. o(+o. 02) t 0 v^£#7c0 rtifix a j /? = 1 «jfc#fls±-ea!,5 <t v' 5 2 t ZWMt?>. Suffix f =0. 76(3) t/iofc. y b £l. 69(14) /z N [8] <b Lx

#E#^m12 B HF = 395 (48) T t * ■o fc.

4.144Prn(DPrNicHc##5@*m#2M=mf)#%#x PmX ;2 y/)* b ® ±X c «3&>b

60(5)° (DI&falcEMd-'-y LTk'5 &#^LTV'5[10]. ^tsI144PmC7)NdNi't'T'Hx Pm -f yhy ^ b E±X C m> ^61 (5)° ©£fal2ES5*-yLTV'5£V'5e*£#fco

■9 x HDNdNi^PrNi<DEM#m<D#k4J:tA^^^-f x PmX ^-y T12

EI6 UPrNix NdNix SnNiWE^tWiSSr^ LTV'5„ PrNitt^r^. 0 —M20KT c $6^E

0 NdNi (228KX a #KEM^—^ L^:#x 15K2 X b ®_b"CX b°y|el$g^ Lx 15KJ^TT'ttb@±x a #^623. 5° 50 SmNiti45KT b 05rWSW L

o 2 ii <b 5„ bttoo»^»^a*32tfctt2 Dd»/j:l9^:#V'fc»x b#^ MxJfx faC*&fi#)SS:t^oRGa^Ttx PrGax NdGax SmGaX<fc < #j£ LfcE^E«i££^5 2 £ flSX #5[llh

*&*#3*imfi-jRf2 * r- w -:/ y * o im t 7 * - * v im£i'-r ^tet5o b0£ b fflcoEMS^tt^S^-r5S-S-tt2^(7)JS^e^x-fc >9 X 2 &<7)x7"-f"-'^y^H'f'^roJi: LXxHcEF=«j (VOQO + V^O^)

=ajVg {3J/-J (j + 1) } +ajV^ (j/-j/)

tlE3£T#So x x y x z c x a, bW^LT

^ $ £ V20~-140Kx V22—60K<b & 9 x 2<D#(2PrNix NdNix SmNiXfct

—66 —

9 ioT, b b a JOlf «J (Pr3+)

= -2.1x10-:^ aJ (Nd3+) =-0.64x10-:' aj (Sm3+) =+4. lxlO"2 [12] Tfc *9 B$J £ ft

j: < L-CV'6.a J (Pm3+) = +0. 77x10':?$) "9 ' Pm/^-/(±b#K#^^-—^i^#^ft6^'

i) ±E<7)^HBBsss-m^^(7)Ji5rMufc^' Pm/2) L-CV^S-^o NdNitf (DPmTft' Nd

^Pm/*y^l$^|5]C^|6]^EM^—^LTjol)'

5 ^@ftft5. LA^L' PrNitfCDPm^tt' Pr/^c $|il£[p]# . Pm/Tpy^/rft/5> b

60° (D*fB]^[p]V^TV^Or\ 3) Pta^^y(DM 'O <D&Ay-CV^dSa1 o Pm/ ^y^Nd/ ypy-^Pr/^yGD/^ y 4M$ M ft <5 £>' ^

F—yLfcPm/ ip <77^1!,/^MU h<Dt><DTV'^pI^^fcSo

£Sbft' SmNi^Pm/

^-y^MNitpcDSm^

[##^#]

[1] S. C. Abrahams et al., J. Phys. Chem. Solid 25, 1067 (1964)

[2] R. E. Walline and W. E. Wallace, J. Chem. Phys. 41, 1587 (1964)

[3] G. Pillion et al., J. Magn. Mag. Mater. 44, 173 (1984)

[4] Y. Isikawa et al., J. Magn. Magn. Mater. 52, 434 (1985)

[5] A. E. Dwight et al., Acta Cryst. 18, 837 (1965)

[6] K. Krane, in "Low-Temperature Nuclear Orientation", eds N. J. Stone and H. Postma,

ch.2, North-Holland (1986)

[7] N. J. Stone, Hyp. Int. 34, 91 (1987)

[8] "Table of Isotopes", eds. C. M. Lederer and V. S. Shirley, app. 61, Wiley (1978)

[9] B. Bleaney, in "Magnetic Properties of Rare Earth Metals", ed. R. J. Elliott, ch. 8, Plenum Press

(1972)

[10] K. Nishimura et al.. Hyp. Int. 78, 475 (1993)

[11] N. Shohata, J. Phys. Soc. Japan 42, 1873 (1977)

[12] R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. A218, 553 (1953)

—67 —

W(0

)349 d5

T=1K

lOOmKuSOmK\UOmK

Fig. I Simplified decay scheme of 144Pm.

Fig. 2 y-ray anisotropy of 144Pm.

477keV

0.4 -697keV

0 (degree)

Fig. .1 Angular distribution of y-ray anisotropy of 144Pm in the b-plane.

■68-

(e) m

477keV

697keV

<j> (degree)

Fig. 4 Angular distribution of y-ray anisotropy of 144Pm between the b-axis and the orientation axis.

0 = 61

477keV

697keV

b(z)-axls

SmNi

---- a(y)-axls(NdNI, T<15K)

c(x)-axls

0 20 40 60 80 100 120 140 Fig. 6 Magnetic structure of PrNi, NdNi and SmNi.1/T (1/K)

Fig. 5 Temperature dependence of y-ray anisotropy of 144Pm in the b-plane.

—69 —

45Sc©Ti02‘P«»ffl*ififflSf£fflHyperfine Interactions of 45Sc in 710% Single Crystal

mmi

mmm-v sbb mmytm. em#-

K. Sato, T. Izumikawa, M. Tanigaki, T. Miyake, Y. Maruyama, S. Fukuda S. Takeda, K. Matsuta, M Fukuda, Y. Nojiri, H. Akai and T. Minamisono ( Faculty of Science, Osaka Univ.)

mmmm,

[1], ^(Dfztb,

ttz

z>tztb\zmm%%% mnrn*-*> hb**bz> <nx.

&bbb*xom^mm^z mmi:6z>ltb

& v x ^mz> mmm&M<Dj&$) kx-? xmmm z&<ftmx£&X7iz%vz<DmMi>m^&TV^ [2],^mx, *&#& Ti02 h Sc £ dope Ltz Ti02 |gBaB|;ov't, Ztim49Ti, 45Sc O#

mW3E£&£L£. zti\zx *), ram41Sc(r - l~,Ti = 0.596sec) om^M®

7 btfjfrkbtltz.

*a#(:oV'T H.Akai KKR&I:Z6/OK## [3] &4f&V'%#4gEO©i^/:. ###."t" 6.

Ti02 COSST£5e&*£0bhSitl±,BBB^-e MX2So£:S®Hfct/> 7vfk%o-K

(0,0,0),(|,±,±) VfcEU

70f$6 tfptf/vtz 8 gtrv^. ss^vofcgti,Su Sr^oT, (1 ±u,l ±ti,0),(i±u,i =Fu,|) c mi^y)(D 90 JS0ecDE(|,i,|)#(:&o"CV'&. CO j: -) t6 t'*MBSO±$4(i Ti ^gtcov>T, (001), (110), (110)^il, iW(J20i7);'!7^-^ql:,-cm-t. cok ft<D-k$z<Dm.m*

\Vzz\ > \Vyy\ > |Vxx|Vzz + Vyy + Vxx = 0

ttzhXnrJM/vX.

q = VzzV = {Vxx — Vyy)/Vzz

oz 7B^-K. Ti024>0 Ti HWlZtt LTtita UZtf LtzX ^ l:%#^EO±W%#T# 6. * tzL, Ti024IO Sc figllov'T li|U lO <fc llzmm%*tz>t. I Vyy | > \Vzzi > I Vxx | tt£& Ztff'n'M<7)%$fcXt>t)''3tz. X'DX^

Z#tY$6^AtL^x.TltSLTV^.

^#c(i;ov% FT-NMRj&em V'fc[5]. tm^-7V>T(d:, Ti02S^BBBW^Bf K Sc203 £iSB 131 § _ktf £ C k -C, 0.5%O Sc £^tr Ti02#m^^#^: [6], 49Ti (±#% it# h.

—70 —

TitaniumTiQ, (rutile)

Oxygen

=4.59373%

c=2.95812%

Figure 1: Unit cell of Ti02 (rutile). The princi­pal coordinate system for the electric field gra­dient at the Ti site is also shown.

49Ti(7 = \) <h45Sc(7 = \) -5-n-rfUCov'T. = =b| <_»

$|I2 Lamor b's 7 h "t" a. <1COv7

tiL&ommnmm t&zt xmm&wmIn eqQ/h t ###/ ° 7 7 — £ —& C # & [7],

& mm l ^.;$#&Ti02tCOV>Tti (110) $6£, Sc ^An * Ti02 i:ov>Tli (100) ft\zm'tz.

b&S1" a £ t d*f & a.

TTesla t 9.4TeslaTtr&ofc. Ctui'fk^v7 b «£ a##m):/7 bfrhtztbXhh. ftbtLtz45Sc<D&mWL<Dftfe ###^9.4Tesla (0#^1:CV'TB|2

*l£®iM<7)^x b 7 tv b r*a.Ti02^<D49Ti CoV'Tiff^o

9-e*a.

9721245Sc In TK)2(0.5 % Sc)

at 9.4Tesla97210

.—. 97208

97204

97202

97200

S 97198

2 97196

97194

97192

97190 80 100 120 140 160 180

rotation angle (deg)

Figure 2: Resonance frequency as a function of crystal orientation. The m=±| *-► =F^ tran­sition frequencies are shown.The crystal was rotated about the axis near (100) .

## 49Ti £45Sc 7 b Q

q (m i).* x b t

#agR(9#;t<0±### q7-f-ttWjz§

^fttH'iiz. H.Akai b\ZX. ^X^mttz KKR &K X a /<> K tm *ft% n £ h 7* dr ;U 7 rr

Table 1: Experimental results of electric fieldgradients at the Ti,Sc sites in Ti02(rutile).

46Sc in Ti02 4yTi in Ti02WXV71

0(fm2)1

-23.6(2)I

+24(1)Bk#W(mm)

mmH0 (Tesla)

5 x 7 x 20 (100)7, 9.4

10 x 10 x 2 (110)9.4

eqQ/h(MKz)11

11.02(1)0.983(3)

14.00(3)0.192(8)

|g|(xl016V/cm'<)9

240(10)(110)

193(2)(001)

—71

Figure 3: The supercell for which electric field gradients were calculated. The body centered Ti atom of the unit cell was substituted for Sc atom.

h f <%>*&Ti02*<V

# t , P.Blaha StSS [2] tO.Kanert b [9], C.Gabathuler b [10] (2 «£

Ti024]<7)SS^8e(7)ttS^'3V'T>lx

KKR&l:

[11].#14 T *' T'y-y^v

lb, ^OMJ-e-SC)*’t 'y y 1* ;b £S t TiO:?)Z

x^ht^x.bKh.12 empty sphere £ Atl-2> 2. £&z>z ttm'&ztib [i3].

sc faroms^E^stst-

lid 3 ^ x 9 12 Ti02#f&%?-(0 (I, i I) to Ti mf£ sc mf (2m##x.^%/j\o6%

T-12 ^ L T 'y K Its £ It & o £ [12].o * 21 112 X b #&#<%##€#

ffiS u £ M#^ Ti02<9# Uo = 0.3053 frbs*7 £{sEoT

u{z = 0) = tt0(l — A)

u(z =-) = u0 + (- —u0)A

A<7)B#, ESf5S<i(l±u(z =0), 1 ± u(z = 0),0),(| ± u(z = |),i T u(z =|),|) 12##f 6. ^^ib^-OSt^Mtd:BI40Z 9(2^6.TES*?M^a LTv^h#x.ibtL^^?, Hi 4^ ib, mmmt2#LT5%@m<o#w*7'm$ fib. |s]S12ESoRS^^xT ScftE^Smmz&WKLt (@5). ^^ib^-oits

$ tLZ2ESEE-emWEcoSSS*5A tztzL, I3 5^6%^^^Z 9

12, 2m-&T&b'&#E#<9#flHWHBB<7>ab 5FEl*lt2E'btLTL$oTV^.ScfiE<7)S^E12ov>T t MWM£^2t2$ b£>h.

tZ.bX^ 41Sc (20t't'li, T.Minamisono biZX'DX Ti024>t*ceqQ(41Sc)lh = 7.31(7)MHz t^tbbflX^b[8]. Z.flfrb, Q(41Sc) = -15.6(3)(/m2)t'ltz.

ttn> Ti02l2ov^r, ** M£(Ti)fiEt (Sc) &E<D%#^E^^%K j: i) %

teU ^(7)^M#12± # 6 A £ ^frfr'itz. KKR&12Z 6#gWEOltS-eJ: ES<0tirEl2ov>rmmnmmsTjkv&ztitz. tztzL, a mfnxmi'tzmWfW'ZMtro^ab 5FMAl2PStbtlTV>^,(Z)-e, i ^§ & 12 x b ft n im t n &.

Table 2: Experimental and theoretical electric field gradients in the unit of 1015 V/cm2. The signs of electric field gradients are not known experimentally and are assumed to be the sameas the theoretical predictions.

Vxx Vyy vzz *Ti 1Z1 (experiment)Gabathuler +79(3) +147(6) -226(9 ) 0.303(8)Kanert +97(4) + 143(6) -240(10) 0.19(1)

~WE +97(5) +144(8) -241(11) 0.192(8)Ti 1ZE (theory)Blaha +60 + 149 -209 0.43

~¥I +44 +222 -266 0.67Sc (£B (experiment)4-0 -1.64(2) | 193(2) -191(2) 0.983Sc (SH (theory)

14 255 -269 0.895

■72

V •

-0.275

J, -0-285

ti -0.295A =0.047

-0.305 -

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1A

Figure 4: Change in the total energy of TiOg(Sc) as a function of the displacement of nearest neighboring 0 atoms. The minimum is obtained at A = 0.047.,

Vyy(exp.)

Vxx(exp. ) Vxx

Vzz(exp.)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A (O site relaxation)

Figure 5: Change in electric field gradients at Sc site in Ti02 as a function of the displace­ment of O atoms. The experimental values are indicated together.

References[1] E.N.Kaufmann,R.J.Vianden

Rev.Mod.Phys.51 p.161-214(1979)

[2] P.Blaha,D.J.Singh,P.I.Sorantin,K. SchwarzPhys.Rev.B46 p,1321-1325(1992)

[3] H.Akai,M.Akai,S.Blugel,B.Drittler,H.Ebert,K. Ter akur a,R. Zeller,P.H.DederichsProg.Theo.Phys.Supplemental, p.11(1990)

[4] R.W.G.Wyckoff ’’Crystal Structures” 2nd.Ed.(Krieger,1986)

[5] C.P.Slichter ’’Principles of Magnetic Res­onance” (Springer-Verlag,1989)

[6] Earth Jewelry Company, Ikeda, Osaka, Japan

[7] M.H.Cohen,F.Reif Solid State Physics 5 p.321-455(1957)

[8] T.Minamisono, et.al.Nucl.Phys.A559,p.239(1993)

[9] O.Kanert,H.Kolem J.Phys.C21 p.3909- 3916(1988)

[10] C.Gabathuler,E.E.Hundt,E.Brun,p.499 ’’Magnetic Resonance and Related Phenomena”, ed V.Hovi (North Holland , Amsterdam, 1973)

[11] J.M.Ziman ’’Principles of The Theory of Solids” (Cambridge,1979)

[12] H.Akai, ’’Interatomic Potential and Struc­tural Stability”, ed. K.Terakura and H.Akai (Springer-Verlag,1993)

[13] P.Blaha,J.Redinger,K.Schwarz Z.Phys.B57 p.273-279(1984)

—73 —

1900-f TtofiaMffiHfPfflHyperfine Interaction of i90 in Ionic Crystal

E e%#-«£«*, ma&m'jY. Matsumoto, T. Onishi, K. I shiga, F. Ohsumi, M. Fukuda K. Matsuta, Y. Nojiri and T. Minamisono ( Faculty of Science, Osaka Univ.)

<D&&mmm$rpm^w9o(r=5/2*, ti/2=27.o sec) <D&m%

y f tmmMx-^ y h y v srmtct&eu $ w: f t y

- * y h Sr ifejfcl* & £ & Icnmr * ^ ^ > b Sr^t6 Tt:

3 /:NMR hyAJrl) #%#gSr%^ L Z:0

ilJSti^- ?NMR ^ fi.Sr%AL/:#

#0S###(NNQR) &[1] SrfflV'Tfro fcQ

C(7)^#Srif f tz*b<D'*~- ?NMR

Eli (1) m#(2)

mmmuwms, (3) (4)

X If y#f^#E 1: Z c T#^c $ ilT &(Fig. 1) o

±E±#/<y rry-yl)m%*i~ i o TEd=3.25MeV Hjbnil 5nZ:S^fF-^180Stot:reML, #

RSl80(d,p)l9o 1: i o /?%###"o

(r=5/2+, Tl/2=27.0 sec) SrMlfco KKA Sr40 Jt

l:m^f 6 f (0#g#(P~3.0(2) %)Sr#

tZo

tkf&Ztitz'9O Sri-<7)KmJ:^;F^-Sr#m L

TX h -7/<-T*3CaO (NaCl S), Ti02 (;Ff-;HS)

Beta-Counter

P ray

Stopper

Recoil Collimator

Reaction TargetIncident Beam

Fig. 1 Schematic Picture of Experimental Setup

Oxygen

IVZZI>IVYYI>IVXX,

Fig.2 TiOj routile (tetragonal)

—74 —

" ci $

w ^-

a ^ °4

-&z\

T

[Si (5

)898

-0?}

'O

T19r

^%lf9

#*m

a#

<? I|3

I

oTTw00 'vi1rv

c>v

f «£ mo w= E? PB

<s-w

to5

d 3

5&

|fvj> -d- ■=»y 3?*■«— IVlr * •—1s ^O

rid*m*m

pdid

Nrv

iiiS*

a

' 3# d

1 >. |a|i ^ 4 -r

<4i>rda09

M

2" \r ^ ^id

** w#8 $

s a g i

Pd r^v# 4m 4r v id A 3 v !» 3 d Dr# # ^ #

i*© i=i-D<rd

0id

. zX-1ow 9d *#&% m m *nk ).

OPdriP-frMB

IPX

oONto-joo"w

. 3 ffimf» /V

4^ #. 3

4 ^ ^

vV'<4

14-

Ulu>sUl

u>

73%M9-r

o<

?v rvbfS

c“

to

m2pd rv

sitM w ' pd ^ n = ^ 6 d- *

0d<T

U>-J&B

r*414

& -4

<4-*3sI

fritid 73

Pd pr Ma ^ ^

U) r

<rid

id

r i £ s id

d" M> _g.

% c ^o o' 3

r7OS™ croft} 03 3 41 % 3

c<P9-rO

-frr-

0

3§ -B-

d 31yi>. r <4- d -r3= vi,2 >

sf

sclti-vt

%

f» lo-

Asymmetry Change(%)

4 o" #H JjD- Bg

Asymmetry Change (%)

w

- M51

I*|irV

1V.V-rrr#m&s

#*

ivV

ii#op*v 1%)Se J4c" dd 94-A ^

1 fT.<4 V

3%W-

^fl

#n

id

id

S3m um4

S82

II

4 oi

m m3!»3mm%

8p^m5Hc~

M 5$0 EE# %hf1 #

B SS Jffin # M <r

p^

40*404u

vPd

m

Iddrv.v#

Fd

O3

3mM)PdM-'i0id

rd<rid

bts3h-4r <

mr*idM.<4,

S'A.vi<>

EttdXIVrSB#r»

d*X

^ # 9id Pd w

iow id

3#%£mPdE

Z

Q &O m94-

00

cT

Z

Is%??;

i

idio

Ul

ft«B

3 ^ 3 &

-o. ».

w sb a* S4i|

oXt

g 5Pd

5+ e#: ti± cw a

r H rid a d# H B

o* Si

r <

CaO ^T^NMRX^? b 7A (£M) LJt

tat, ^m«MSii^2f&nW*ot:v'40 i

fttiMStBEftffi tT^mT&a t #x. <b it,y-r%kHzT*&0 <0

&H/10 *Cr| £ v-> ,r t tt/B L& v'Q $,

Tio2^mmaw^(Dmm^mi, a*<7>w%

ST*$m So

3) 15 *)V'>7 b

30 3733 3740 3745 3750rf Frequency (kHz)

Fig.5 l90 in TiOz y9 -NMR Spectrum

TiQ2 fy'90 (7)CaO -frb<n>r 5 * )V '> 7 b £ ftjgf 6 CaO &t/Ti02 4>T0NMR 7. ^

7 b 7 A j: % , #^^I*IT(7)"0 CaO)=3740.62(l 1) kHz, f(in

T102)=3738.54(21) kHz Ztlb0M<D'ftH*'r $ %)l '> 7 b H «t a fc<7) t LT,

^ 6-tt, Ti02 <7)CaO frbft'r 5 * ;V'> 7 b t LT+556(64) ppm

(McJ§^FSj£IE) -r tUiii*<7)170 <7)|miW+884(4) ppm[3,7] t^U-gcta kO<7), %####& 3 o (7)#%#r#a KTl^O, (ONMR 0 , t

^ *)V'>7 b 2 flT V' & o

4)

l90(D 4* y^aBBCaO, TiOz, MgOb 7AZ 0, #7 1^7#^### 280

240

mz&fcLtzo v^ftLtm+#<7)m##^m# _%»

bfl, lsO[8], 20F[9](7)Shit^(Fig.6) LT^Ib] i i«Lt-/-T*ao ^

805) ##mm

mmztiz&mmm d) ,

(2) mxm-m, (3)

(4)

Bf a@Wm##i:j: at<DtU (1) ~ (3)

ZWLftlt LT (4) *m

(ffi LtZo l90 (7) CaO t X

(7)NMR 7.^7 b 7 A^ # $g t LT

FWHM T 2.92(38) kHz t

Wzo ittiT (4) £IHffiL, ,7F [2,11], 20F [10,12] <D‘%%mtSm.1-Z>tztb, Q-T-7 7 b TSS

l90 in CaO l7F in NaF mF in NaF

FWHM 2.92(38) kHz 15(2) kHz 6.1(3) kHz

2.8(5) kHz 15(2) kHz 6.1(3) kHz

Q-esmibL/c 0.75(1) 0.15(3) 0.09(2)

Table l

MgO

SampleFig.6 Nuclear Spin Lattice Relaxation Time

it Ltz (Table l)o6) NaF 4JT<Dl90^-7NMR

—76 —

mmmmm'9o^NaE^-*NMR LZZo ^j9SES<7)J^^ST±10 % <7)|6@TNMR Srfro #:t

im<D$mr'&mimm $ *i* ^

££$>

EWifc /? &M14W 9o > h fiffil[i(,90) 1=1.53195(7) gN , IQ(190)I=3.8(5) mb £ t&^L£0

#KSKZ 6'90(7)^RK#, #mmaij:#yn-ya LTmv'61:+^T*6^^4'#

[1] T. Minamisono et al., Hyperfme Interactions 78 191 (1993)

[2] T. Minamisono et al., Hyperfme Interactions 78 111 (1993)

[3] G.L. Turner, S.E. Chung and E. Oldfield, J. Mag. Res. 64 316 (1985)

[4] P. Lazzeretti and R. Zanasi, Phys. Rev. A 33 3727 (1986)

[5] C. Gabathuler, E.E. Hundt and E. Brun, Magnetic Resonance and Related Phenomena,

(North-Holland, Amsterdam, 1973) p. 499.

[6] R.A. Kamper, K.R. Lea and C D. Lustig, Proc. Phys. Soc. London 70B 897 (1957)

[7] T.J. Bastow and S.N. Stuart, Chem. Phys. 143 459 (1990)

[8] M. Tanigaki, M. Th., Osaka Univ., Japan (1993)

[9] K. Minamisono private comunication

[10] K. Minamisono, M. Th., Osaka Univ., Japan (1996)

[11] T. Minamisono et al., Nucl. Phys. A236 416 (1974)

[12] H.J. Stockmann et al., Z. Physik 269 47 (1974)

-77-

HFI of 130 in Pt:Anomalous Knight Shift

M. Tanigaki, K. Matsuta, M. Fukuda, T. Minamisono, Y. Nojin, T. Izumikawa,

M. Nakazato, M. Mihara, A. Harada, M. Sasaki, T. Miyake, T. Onishi, T. Yamaguhi,K. Minamisono, T. Fukao, K. Sato, Y. Matsumoto, Y. Mamyama, T. Ohtsubo*, S. Fukuda**,

K. Yoshida", A. Ozawa**, S. Momota**, T. Kobayashi", I. Tanihata**,

J.R. Alonso"*, G.F. Krebs'" and T.J.M. Symons'"

Department of Physics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

'Department of Physics, Faculty of Science, Niigata University .Niigata, Niigata 950-21, Japan

"RIKEN, Wako, Saitama 351-01, Japan

""Lawrence Berkeley Laboratory, Berkeley, California 94720, USA

1. Introduction

The Knight Shift K and the spin relaxation time T, for interstitial impurities implanted in

metals are important clues to investigate the electronic structure of the metals. Because Pt has very

low local electron density around the Fermi level for interstitial impurities, Pt is known as the unique

implantation medium in which the implanted nuclei show small K and large T,. The recent

development of the technique of polarized radioactive nuclear beams widen the variety of probe

nuclei. In the present paper, we have studied the hyperfine interactions of 130(7* = 3/2", Ttn = 8.6 ms)

and l2N(/* = 1 \ T,n = 11.0 ms) implanted into polycrystalline Pt (fee) by means of 6-NMR technique

for the systematic study of the electric structures of interstitial impurities.

2. "O in Pt

The experimental procedure in the case of l30 is similar to the previous one[l]. 130 nuclei were

produced through the projectile fragmentation process in the l60 + ’Be collisionwith a primary beam

of 135A MeV l60 from the K540 ring cyclotron at RIKEN, a 481 mg/cm2 thick Be target was

bombarded. The nuclei emerging from the target at the reaction angle 9L= 1.5 ± 1.0 degrees in the

laboratory frame were selected by a slit and were separated by RIPS (RIKEN Projectile Fragment Separator). The momentum window was set at Ap!p^nm = 2.0 ± 0.5 % for the optimun yield and

polarization, here Ap is the relative momentum. Typical obtained polarizaton was -2.3 %. The

polarized nuclei were implanted into a 50pm thick Pt foil or a 2 mm thick single crystal of MgO. In

both cases a strong magnetic field H0 of 4 kOe was applied for maintaining the polarization and for

the spin manupilation. Hg was monitored by proton NMR throughout the experiment. 6-ray

asymmetry change was detected by a pair of 6-ray counter telescopes placed above and below the

implantation media along the direction of H0.

—78 —

6-ra

y Asy

mm

etry

(%)

6-ra

y Asy

mm

etry

(%)

Time(ms)

Fig. 2 Polarization of 130 at room temperature as a function of time.

Fig. 1 NMR spectra for 130 in Pt and MgO. Data were taken at Ho = 4 kOe and T=300 K. Solid lines are the fitting results.

Typical NMR spectra are shown in Fig.l. The

resonance frequency for 130 in Pt is shifted from

that in MgO due to the Knight Shift. The Knight

shift was obtained to be K= +(4.23 ± 0.14) xlO 3

by correcting the chemical shift for l30 in MgO as

shown in Table 1. The polarization was measured

as a function of time at the room temperature as shown in Fig. 2.7)7 = 2.90 ± 0.65 Ks is obtained.

The result is summarized in Table 2.Comaparing with other interstitial impurities in Pt, the T,T for l30 is unusually fast and K for

l30 is unusually large. The Knight shift Kc calculated from the observed T,T with Korringa relation is

Kc = (1.8 ± 0.3) x 103. This fairly good agreement implies that the main cause of both the spin-lattice

relaxation and the Knight shift is Fermi contact interaction. The present results, the large K and the

short T„ strongly suggest the electronic structure around 130 in Pt is unusual compared with other

light impurities and the local electron density at Fermi level must be huge. In order to explain the

present results, the electronic structure was calculated for the second period main group elements in Pt

in the framework of the local spin density approximation of the density functional theory using the

super-cell method in the Korringa-Kohn-Rostoker (KKR) band-structure calculation. In this

calculation, impurities are assumed to settle in the octahedral interstitial site under an external fields

corresponding to the electron Zeeman energy of 103 Ry with the 10 % local lattice relaxation as is

—79 —

Table. 1 Knight shift of 130 in Pt

130 in MgO 130 in Pt, 7= 300 K

Resonance frequency (kHz) 2823.1(2) 2835.1(3)

H0 drift = //0(i3O in Pt)/tf0(MgO) - 1 - + 5.8 x 10-5

Frequency shift (MgO ref.) - + 4.19(13) x 10-3

Chemical shift - 2.87(15) x 1(H [3] -

Diamagnetism - 3.3 x 10-4 [4]

Knight shift (K) - + 4.23(14) x 10-3

Table 2. Spin-lattice relaxation time of '30 in Pt.

130 in Pt7 (K) 300

+2.67 9.7 ms

-1.77,7 (Ks) 2.90 ± 0.65

NinPt

1740 17Frequency (kHz)

Fig. 3 NMR spectra of l2N in h-BN & Pt. Datawas taken at H 0=5kOe, T=300K. The c- axis of h-BN was placed perpendicular to",

experimentally determined for 12B and 12N in fee Cu.

The calculation result is well reproduced the present

large K for 130. From this calculation, the Knight

shift of N in Pt is expected to be large, 5 xlO 3.

For the systematic study of the electronic

structure of light impurity in Pt and to see the validity

of the KKR calculation, the measurement of K and

7,7 of N in Pt was employed. The procedure was

essentialy the same as that in the case of l30, except

for the production of probe nuclei. 12N was produced

through l0B(3He, n)12N reaction with 3.0 MeV 3He

beam from Van de Graaff accelerator at Osaka

University. The polarization was obtained by

selecting the recoil angle of l2N to 0L = 20 ± 7

degrees in the laboratory frame. Applied H0 was 5

kOe in this case. The Knight shift was measured as

the frequency shift between the resonance of 12N in

h-BN(hexagonal) and that in Pt. The c-axis of h-BN

was placed perpendicular to H0. The double

quantum transition(DQ) frequency was observed in

the case of l2N in h-BN since the resonance of single

quantum transition is split into two frequencies due

to the existence of a certain electric field gradient at

3. N in Pt

80-

the substitutional site of N where l2N is expected to

settle. The second order shift of DQ frequency is

estimated to be +84 Hz for this configration. The shift

between these two resonances are roughly the Knight

shift of N in Pt because the chemical shift of N in h-BN

is expected to be about 1/10 of the predicted Knight ^

shift, from the systematics of chemical shifts in nitrogencompounds. Typical NMR spectra are shown in Fig. 3. ^

<uThe observed Knight shift K = (5.8 ± 2.1) x 104 is as ^

small as 1/10 of that expected from the KKR calculation. 5^cd

The spin relaxation time was also measured at room2temperature. Typical spectrum is shown in Fig.4. T, for

N in Pt was also obtained to be T, = 66 +* ms. The

calculated Knight shift from obtained T, with the

Korringa relation is Kc = (1.4 ± 0.1) x 104, which

shows good agreement with the measured Knight shift.

Knight shifts obtained from experiments including

the present results and the KKR calculaton are shown in Fig. 5. A large discrepancy between

experiment and KKR is found only in the case of N although KKR reproduce Knight shifts of other

impurities. More precise calculation should be employed for explaining the discrepancy between the

KKR calculation and experiment because the fixed lattice relaxation rate, for example, was taken for

the preliminary KKR calculation. The Knight shift must be determined precisely for l2N in Pt from the

experimental view point by determining the chemical shift of h-BN, which is the main ambiguity of

the present Knight shift.

Table 3. Knight shift of^N in Pt

12N in h-BN 12N in Pt, T = 300 K

Resonance frequency (kHz) 1742.49(37) 1743.49(1)

H0 drift = tf0(i3O in Pt)/H0(h-BN) - 1 - + 1.2 x 10-5

Second order shift (kHz) +0.084 -

Frequency shift (h-BN ref.) - + (5.8 ±2.1) x 10-4

Knight shift (K) predicted by KKR + 4.9 x 10-3

N in Pt

Time(ms)Fig. 4. Polarization of "N in Pt at

T=300K as a function of time.

81-

Table 4. Spin- lattice relaxation of |30 in Pt

,2N in Pt

T(K) 300

T, (ms) 66

TjT (Ks) 20 + 2

-O- KKR Calculation ■ Experiment A Present Result O From measured TJT

0.004

0.002

0.000

-0.001Li Be B C N O F Mg A1 Sc

Nuclei

Fig. 5. Experimental and theoretical Knight shifts for impurities in Pt. Closed triangles are the present results. Closed squares are the previously known experimental values for Knight shift. Open rhombes are extracted from measured T{T using Korringa relation. Open circles are the theoretical calculation[2] for the main group interstitial impurities in the second period. An octahedral interstitial site and 10% lattice relaxation are assumed for this calculation.

References

[1] K. Matsuta et al., Proc. Of Int. Symp. On Physics of Unstable Nuclei, Niigata, 1994,

Nucl. Phys. A 588(1995)153c.

[2] H. Akai, private communication.

[3] a(MgO, H20 reference) = + 47(2) ppm; J. Mag. Res. 64(1985)316

g(H20) = - 334(15) ppm; J. Chem. Phys. 60(1974)2574

[4] Phys. Rev. 187(1969)39; Paramagnetic direction is taken to be positive.

—82 —

Precise Magnetic Moment of 20F(/*= 2\ Tm = 11s) and Its Hyperfine Interactions in MgF2 Single Crystal

K. Minamisono, T. Yamaguchi, T. Ikeda, Y. Muramoto, T. Izumikawa, M. Tanigaki,

M. Fukuda, K. Mastuta, Y. Nojiri and T. Minamisono

Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan

Hyperfine interactions of (Remitting 30F(7 ' =2*,Tm = 11 s) in NaF and MgF2 single crystals have been studied in order to establish the spin manipulation technique for the ground state of “F. For the purpose, its nuclear magnetic moment was measured detecting the JJ-NMR in which the asymmetric (1-ray angular distribution was observed. The obtained magnetic moment is /x(20F ; IK=2* Txn = \\ s)= 2.093421(73) /iN. The precision of which was improved compared with the previous data. Applying the AFP technique in NMR technique to the **F implanted in MgF2 single crystal, we converted the

nuclear spin polarization of 2.0%, which was obtained through nuclear reaction, into positive and negative nuclear alignments of approximately ±1.0%.

1. IntroductionThe Alignment correlation term in a (1-ray angular distribution is a good probe for the weak nucleon

currents in nuclear P-decay and for the pion exchange effects inside nucleus. For such studies, we

have established a technique to convert nuclear spin polarization into alignment using hyperfine

interactions of the P emitters implanted in a single crystal where a well defined field gradient is

available [8]. As the first step towards the study of the alignment correlation term in the p-ray angular distribution of XF(J* = 2+, Tm = 11 s), we have studied hyperfine interactions of XF implanted in NaF

and MgF2 crystals and developed a spin manipulation technique.

2. Precise measurement of the magnetic momentBefore trying spin manipulation of XF, we remeasured its magnetic moment using an NaF single

crystal as an implantation medium, a catcher of XF. As a result, the accuracy of the magnetic moment

was improved [1,2,3]. The experimental apparatus and techniques were basically the same as the one

used in the previous work [4]. In the P-NMR technique used here, the NMR effect was detected by measuring the change of the asymmetric angular distribution of P-rays emitted from the implanted XF

as a function of applied RF magnetic field in a static holding field H0. The angular distribution is

given as W(0) ~ 1 + AP(v/c)cos 0. Here A is the asymmetry parameter, P the nuclear spin

polarization and v/c the P-ray velocity divided by the light velocity. The angle 6 is the polar angle of

the direction of an emitted electron relative to the polarization.XF nuclei were produced through the nuclear reactions BF(d , p)xF. The deuteron beam was

provided at an energy of Ed = 3.5 MeV by the Van de Graaff accelerator at Osaka University. The beam bombarded a CaF2 (~200 pg/cm2) reaction target evaporated on a thick Cu backing. The XF

83 —

RF on Cycle RF off Cycle

Beam

RF

Count j

riO sec 1iii

r-----------1T---------------^1111

11 f

i■ 20 msec

_________

1------------------I

i !1 16 sec 1

i r n ii gfr

Asymmetry Changes B 2A(P0„ -PoU)Ucg §U<0

Fig. 1. Time sequence of the NMR of 20F

nuclei, ejected at the recoil angle 30°

relative to the incident beam were

selected by a recoil collimator made

of a thick copper and were

implanted into an NaF recoil catcher. It was a 20x20 mm2 plate of ~~ 1

mm thick which was sliced from a

balk NaF crystal. The fl-rays emitted from the stopped SF were

detected by two sets of plastic-

scintillation-counter telescopes

placed above(U) and below(D) the

stopper relative to the polarizationdirection. Polarization of the 30 F

nuclei was extracted from the {1-ray asymmetry detected by the pair of telescopes. A strong magnetic

field H0 of about 4.5 kOe was employed for the NMR detection. An RF magnetic field H, was applied

perpendicular to the static magnetic field. The RF strength was 0.1 ~ 0.25 Oe. In the present

condition, typically 2.0% of polarization was obtained.

As illustrated in fig.l, pulsed beam method was employed where a beam-on production time of 10

sec was followed by a 16.02 sec beam-off time which was further divided into two, an RF time of 20

msec and a counting time of 16 sec. To detect the NMR effect in the asymmetric (1-ray distribution, a

pair of beam-count cycles, one with the spin manipulated by RF magnetic fields (RF-on) and the other

without spin manipulated (RF-off), was repeated. Then we obtain [(U/D)m / (f//D)rff - 1} ~ 2A (POT - Poff). Here A =—1/3 is the asymmetry parameter for ^F decay.

SP -0.2

6 -0.4 -

Frequency (MHz)

Fig. 2. Typical NMR spectrum of 20F in NaF. The solid line is the Gaussian best fit to the data.

The external field H0 was calibrated by detecting the NMR of 12 B(/* =

1 *,Tm = 21 msec) implanted in Pt metal following the uB(d , p)l2B

reaction. The uncorrected value of the magnetic moment of the 12 B implanted

in Pt metal, the value without

correction for the chemical shift and

Knight shift, was precisely given [5]

by us and R.E.McDonald et.al. as ^.(“B in Pt) = 1.00274(2) ft,.

A typical NMR spectrum of $F

implanted in NaF is shown in fig.2.

—84

By analyzing the obtained NMR spectrum, the center frequencies of the resonance was determined as

listed in table 1 for each RF field strength. From the resonance frequency, uncorrected magnetic moment was given as : 2+) | = 2.092559(56) fJ.N. The precise values of chemical shifts that

should be used here are available from NMR studies [6,7] on the stable isotope 19F as shown in fig.3.

From the figure, the chemical shift for F ions in NaF is obtained as a = +378(10) ppm. Correcting for the chemical shift, we obtain the magnetic moment of20F as (^(aF : 2*) |= 2.093351(70) The

present magnetic moment is in good agreement with the previously known data[l][2][3], furthermore

the accuracy was improved by a factor of 10 because of the present good [3-ray counting statistics and the new data on the chemical shifts for 19F compounds.

<?i = -270(8)

Bare F ^2

CT(Standerd <-> Compound) = zJi£)/(S)

o(20p in NaF) = 1 - (1 - aj)(l - 03)

= 378(10) ppm

(1 - Q4)(1 - 02)

Fig. 3 Chemical shifts for F in NaF.The starting point of an arrow is the standerd material.

Table 1. Magnetic moment of 20F We observed NMR spectra in three different H, strength.

RF magnetic field H, (Oe) —0.1 -0.15 -0.25

Implantation medium (single crystal) NaFi2B resonance frequency in Pt (kHz) 3442.23(3)Atuncwr(12BinPt)(/zN) 1.00272(2)

Magnetic field H0 (Oe) 4503.44(11)“F resonance frequency in NaF (kHz) 3591.45(19) 3591.79(12) 3591.92(13)

AWo2.092375(123) 2.092573(85) 2.092649(94)

Average 2.092559(56)

Chemical shift for F in NaF*(ppm) +378(10)

2.093351(70)

* Diamagnetic direction is taken to be positive.

—85 —

3. Spin manipulation of 20F As mentioned above, the aF ions were implanted

in an ionic MgF2 single crystal following the

nuclear reaction and the alignment was converted

from polarization. For this conversion we used

hyperfine interactions between the quadrupole moment Qof30 F and the electric field gradient q

of the single crystal besides the one, between the

nuclear magnetic moment (I and the external

magnetic field H0 ~2.3 kOe. A MgF2 single

crystal which is tetragonal in its crystal structure provides an electric field gradient q for 21F and

Fig. 4.Newly developed LC resonator system the coupling constant is known to be IeqQ/h I =

5.77(2) MHz with the asymmetry parameter rj = 0.317(2) [8].

Since the quadrupole coupling is as large as the magnetic interaction, four transition frequencies

distribute over a wide range of ~~ 1.5 MHz. As shown in fig.4, a single LC resonance circuit can not

provide a sufficiently strong RF field H, to all of these four transitions. From this difficulty, the spin manipulation of20F has not been realized until now. In order to establish spin manipulation technique

for ^F, a new LC resonator system was developed. This system consist of four variable capacitors,

which can be selected by mechanical relays, and an RF coil. Selecting one of the capacitors, one can

tune the system to a specific frequency and provide a strong and equivalent H, field for all of the

resonance frequencies. Since the switching time from one frequency to next one is as quick as

approximately 50 msec including the switching on and off of a relay, this system can be basically used

for the nucleus with a half life longer than

1 sec.

With this capacitor switching system, we converted nuclear spin polarization of20 F

into pure alignment with no polarization

successfully using Adiabatic Fast Passage

(AFP) method in the NMR technique.

The time sequence is illustrated in

fig.5-(a). After the production and the implantation of20 F, initial polarization was

measured in the count section marked I

and then a set of H, fields was applied in

a suitable sequence of the frequencies to

convert the polarization into a sizable

10 sec

Beam

RF

Count

100 msecSZZ 200 msec

MJ2 sec

II 10 sec

I

Initial Pol,irization I II

HWWMbiip nos•XUJJfJL WWW WWW

2A >0.P = 0

III4 sec

ill

Fig. 5-(a). Time sequence of spin manipulation and the change of the magnetic-sub-state populations

—86 —

alignment with a small residual polarization in the count section II. By changing sequence of the

frequencies, both positive and negative alignment were produced from the same initial substate

populations. The alignment was then converted back again to the polarization in the following count

section III. The resultant polarization in each count section is shown in fig. 5 (b). Here the solid and

the open circles are the polarization in the alignment sequence as explained above and solid square the

polarization in the sequence which shows the spin-lattice relaxation of the polarization. From the

polarization in each count section, one can see that polarization was converted into alignment in the

section II. The alignment was converted back to polarization in the section III which show the

symmetric distribution of (Trays in count section II is due to the pure alignment not to a uniform

substate populations. From the populations in count section I and III, the obtained alignment was

deduced to be approximately

±1.0% .The spin manipula­tion technique for 30 F was

thus established. The degree

of achievement for this

conversion was 96% of the

one of the ideal conversion.

The relaxation time for alignment T* was deduced to

be 34 ± 6 sec. The meas­

urement of the alignment

correlation term in (Tray

angular distribution is in

progress using present spin

manipulation technique.

• A+ o A- ■ P+

Fig. 5 (b). The result of spin manipulation The solid and the open circles are the populations in the alignment

sequence A+,A ", respectively and solid sqare is those in the polarization sequence which detects relaxation of polarization.

References[1] A.D.Gul'ko,et.al.,Sov.J 6(1968)477.

[2] Tung Tsang and Donald Connor, Phys.Rev. 132(1963)1141.

[3] Atomic Data and Nuclear Data Tables.

[4] T.Minamisono.et.al. ,N ucl.Phys. A516( 1990)365.

[5] K.Sugimoto,et.al.,J.Phys.Soc.Japan 25(1968)1258.

R.E.McDonald,et.al.,Phys.Rev.C10(1974)946.

[6] M.R.Baker,et.al.,Phys.Rev. 133(1964)1533.R.E.Sears,J.Chem.Phys.61 (1974)4368.

V.Wray.Ann.Rep.NMR Spectroscopy 10B,ed.G.A.Webb (Academic Press, 1980).

[7] M.Mehring,et.al.,J.Chem.Phys.54(1971)3239.

[8] H.-J.Stockmann,et.al.,Z.Physik 269(1974)47.

—87 —

7Lu SLiOLlIOs,Hyperfine Interactions of ?Li and 8Li in LilOg and LiNbOg Crystals

, sjiish, ss m, WiJ< H1

e, em#-, mm&mY. Maruyama, T. Izumikawa, M. Tanigaki, T. Miyake, K. Sato, T. Ohtsubo1S. Takeda, M. Fukuda, K. Matsuta, Y. Nojiri and T. Minamisono ( Faculty of Science, Osaka Univ. iFaculty of Science, Niigata Univ.)

TF-t'W-I3rc<fc<9> 5'7u--7X'hz>0

mmm 8U{I« = 2+,r1/2 = 838ms) (i. 2MeV (, V:4;/\o-ybimm^btztiZo 8li©q^-^

> OTct *9 2 «©#*£& LiI03. LiNbOg^oeS^E^ffll 'T&MzfliJEW[1] [2], 2 oo^jiicotcT—

U/Co <9> LiI03 * ©7Li ftS C It 6 E#%E©#^fWm ^ T O'5C(!;«$n/;K 1tE£±l:fS C ch^T^/j^/Co 4-[hK #lc7Li © LilOg't-cDfBEfb

»^E©^tS^±tf-E,ccbtCfifc#L8Li ©EMM®^- y > b^##

mm mm^TpiAmmeu it, Liio3[4]. iiNbo3[5]£>£6LU 7Li ©B&tmciE&Mftx /3-NMR U/c NNQR & [3] fc J; D ^©EMES

a/:o 8Li li 3.5MeV deuteron beam 'Tt£El£7Li(d,p)8Li 1: <t!9£j££tis= 13 m:mu\ ##u/c8Li ummto(4koe) ^trs^n/c 2-cornea

^@©E$uii, mm^iPii:/=u u-c±T©{&my U-?-KJ: Z/immiiiKJ:*) ft Oo NNQR 4 @

m<D RF ^ i ia LTzHiJEih 5 =m±© NMR#*^mmuux c © 6 ^o##im#m =k omm

<Dl£-fPil3£/3 = cos-^l/x/S) KtSSTf £C<i:l::J:<93j<a6£o#a^©7Li i&mc & If 6 E#4gE©#^l: (i, faWM (41\ 7T), S^TTO FT-NMR

2 -cO##a LilOg. LiNbOsCA^a^CRL. »N°7^-^-li0ti^o 7Li(r = 3/2-) O^a^roEMMStBS^ii^cDEmOTfPffilc^LT—^©ES6<h LTJROffi^tms iM c-$lh<l*b

lt> fm = + (1/2)J/Q(m - l/2)(3cos2/? - 1) T^bn-So (11 Lf/g = eqQ/2h) m = —3/2 *-+ m — —1/2^ m = +3/2 <-> m = +1/2 M#©1WI##

-88 —

p = 0 (DmKWZtltzX^? YJV^C Fig.la). Fig.lb) fc^t*0 LiNb03iCot,'Tfi. 3iS^XW&xm\^ri> c tic± 0 *©*'i>#fc5rc£ 5«

—LiiOsMi'Tti. m = ±3/2 <-> ±1/2

C0#aa</<vl/XfbL/: RP U.FID (g&ffiMMW.0 OT4* < = 0

tlTl#bn^X<^ h;l'&0‘-f£-&ZMM<tte-?Tijltl;5fc£>V#>Zo C.<DU‘T&<Dtzl6 m = ±3/2 <-+ ±i/2##(:^g;^6mm©'±±^^i'6c±a<@m±^^i:u5a\ ±©2o©#Iii|;|i, C ±a<TA= 6o LilOa©

Fig.2 i:/7Ltfc<o ?Li ± c T©5o d©/ca6 ^> h ±©%sfpmI:«t3-3©##%(i#^a<#MI#l:7^i:ilt£^M4W B^«-r-E>c±(c±0> 2 (klc. *M±{cMa6*iti6

tKJ: IQ Ltio ##1:^©/:##^#^. Fig.l.c) I:iF-to «Li a^6©^t^AT$,6o mau$n^.mMitii-©ct9ic±< miU ^ = 0 CjSUTf 3.3(kHz). f ©4@(il.3(kHz) Tto. @#A±©%@fmsfpm1o Fig.3 c. ##^%»©m©mmi&#

^±i±=Yi©#^C"3L± tc^o

o5 O.o

-60 -40 -20 0 20 40 60V-VL(kHz)

V—VL(kHz)

Fig. la) 7Li in LiNbOa : FT—NMR spectrum at high mag­

netic field of 4.7T. The crystal c—axis was parallel to the

external magnetic field. The experimental data shown by

a solid curve is fitted with 3 Gaussian curves.

Fig.lb) 7Li in LilOa : FT—NMR spectrum at high mag­

netic field of 7T. The crystal c—axis was parallel to the

external magnetic field. The experimental data is shown

by solid curve. The theoretical best fit to the data is shown

by dotted curves, for the 3 transitions.

Fig.lc) Theoretical curves for 7Li in LilOa: Each compo­

nents of the theoretical best fit function (dotted curve )

are shown separately. Each resonance curve is a sum of

7 dipole—splits ( dotted broken curves) due to the nearest

two 7Li, and 4 dipole—splits (solid curves shown close to

the zero line) due to the nearest 7Li and 6Li. At the mid­

dle region around ul, we added a function as shown by a

thick solid curve given by s = {a{v — j/£,)4 + b(i/ — vi)1 4- c) discussed in the text.

—89 —

0 SO 100 150 200Rotation angle /} between q and Ha (degrees)

Fig.2 Crystal structure of LiI03: The crystal structure is

hexagonal. Lattice constants are uq = 5.469A, co = 5 155A.

Fig.3 Separation frequency between m — —3/2 *-* m — — 1/2 and m = +3/2 <-+ m = +1/2 transitions: The sepa­

rations between the two transitions are shown, open circles

are for LilOaand open squares for LiNbOa , as a function

of crystal orientation angle /? relative to the external mag­

netic field. The theoretical curves are proportional to the

function (3cos2/? — 1).

7u 2 Liio3>LiNbOal-ol 35.8±0.2(kHz). 53.3±l.l(kHz) X. 8LiOl^[gl«S

29.24±0.36(kHz). 44.68±0.88(kHz)8Li © Q t-/ y Hi. 8Li ^B^-rcD^i MtcfctiSSS

7Li CDQ^6-y y h (g(7Li)=40.0±0.6(mb)[6]) ^fflO^T^TCDxti{Cj:tl^J6^n>So

\Q(8Lt)\eqQ(8Li)

egQ(7^)

ZLtUCj; 4~Hl©SWE£ffltyT. 8Li CD Q ^6-y y Hi LiI03KoHTIi 32.7±0.7(mb)s LiNb03KoHT(i33.5±0.9(mb) t&ibbtl, CTCD##CD^%%^^li(3(^Al:# #uy=0 :tlbCD^STO*^. 8Li©Q^-y > b i UT g(8Li)=33.0±0.6(mb) £f#/c0 ^

-M©E££*>{:: Tablel fl^fo

fifc$>© 2 o©/&9dc#ii t>fts0

Q(/V„ /V,) = [E . ^(0,)) + E (e^(| - . wn,))]

^ dTtzliwmx te y iW#WZ-1/2 £i+zL5o <h|#f D, H.SagawatlTHSE 0.5e> 1.3e [7] Cohen-Kurath ©BE'btiS/o'cb Woo ds-S axon M© potential

$•&< #^L/d#f©#@ic/cu lt g^(3)=8.s(mb) $nxi?t). C©E64'im©mil%E^m^T. f Q^(5)=43.9(mb) 6ARteZtiZo c©E(i. #—#fr©#25(mb)

©m#E(i Q(5)=39.4(mb) C ©#E1MI£ =k<m^UTL^o

—90 —

[8] [9] X. C6#&tlSa## Q^(^Li)=30.7(mb) fcN 40©^*HI<t <£ < — Sfe LXw*tven2.75(fm);&

2.20(fm) £ftlT£*U > h^b> 11 < LS> yX-ftt-Ttr J:

Table 1: eqQ/h and Quadrupole moment of Li Isotopes

Nucleus Catcher zqQ/h{ kHz) Method Q(8Li) (mb) Ref.7Li LiI03 44±3 NMR [10]8Li LiI03 29.24=0.8 /7-NMR 244=2 [1]7 Li LiNb03 54.5±0.5 NMR [2]8Li LiNbOa 434=3 /7-NMR 43±3 [2]7 Li LiI03 35.8±0.2 FT-NMR present8Li LiI03 29.24±0.36 /I-NMR 32.7±0.7 present7Li LiNbOa 53.3±1.1 FT-NMR present8Li LiNbOa 44.684=0.88 p-NMR 33.5±0.9 present

Reference

[1] T. Minamisono, J.A. Hugg, D.G. Mavis, T.K. Saylor, S.M. Lazarus, H.F. Glavish, and S.S. Hanna Phys. Rev. Letters 34 (1975) 1465-1468

[2] H. Ackerman, D. Dubbers, M. Grupp, P. Heitijans, and H.-J. Stockmann Phys. Letters

B52 (1974) 54 3 4 5 6 7 8 9 10

[3] T. Minamisono, T. Ohtsubo, I. Minami, S. Fukuda, A. Kitagawa, M. Fukuda, K. Matsuta, Y. Nojiri, S. Takeda, H. Sagawa, and H. Kitagawa Phys. Rev. Letters 69 (1992) 2058-2061

[4] LilOa; Provided by Dr.R.S. Feigelson, Institute of Material Reserch, Stanford University.

[5] LiNbOs; Provided by S. Toyota, NGK Insulators, LTD. 2-56 Sudachou, Mizuho, Nagoya 467, Japan.

[6] II —G. Voelk and D. Pick Nucl. Phys. A530 (1991) 475.

[7] H. Sagawa and B.A. Brown Nucl. Phys. A430 (1984) 84.

[8] H. Sagawa and H. Kitagawa Nucl. Phys. A551 (1993) 16.

[9] H. Kitagawa and H. Sagawa Phys. Letters. B29 (1993) 1.

[10] V.M. Sarnatskii, V.A. Shutilov, T.D. Levitskaya, B.I. Kidyarov, and P.L. Minitskii Sov. Phys. Solid State 13 (1972) 2021

91-

si pl & * n & 12B ©e®Lattice Locations of 12B Implanted in Si

e * s sjiufbi. ss se. h? m. &swmu. Amae?SB)£E, »R#-. HmffiBJT. Izumikawa, M. Tanigaki, T. Miyake, K. Sato, Y. Maruyama M. Fukuda, K. Matsuta, Y. Nojiri and T. Minamisono ( Faculty of Science, Osaka Univ.)

Introduction

The lattice locations of implanted 12B in the semiconductor Si has been studied by use of /9-NMR technique. The implanted sites of 12B consist of at least three components. The main fraction of 12B is known to be located in the substitutional (Bg) site [1,2], while some fraction is located in a nonsubstitutional (Bj|g) site [3]. The B^g site is supposed to be no simple interstitial site but a substitutional B combined with a interstitial Si with (111) axial symmetry [4], migrating quickly between four such identical locations. A resonance corresponding to another location (B%) was found in the early stage of the present study [5]. Fractions of these three different sites were measured in detail as a function of temperature in a range from 100K to 550 K.

Experiment

The experimental procedure was similar to the previous works on 12B in Si [1,5,6]. Polarized 12B nuclei were produced through 11B (d, p) 12B reaction initiated with a deuteron beam of 1.5 MeV, by selecting the recoil angle at 40° ±2.5°. The recoil nuclei with energies distributed between 0 keV and 400 keV were implanted in a Si sample placed with its (110) axis set parallel to the applied magnetic field H0 of 6 kOe, which was sufficient to maintain the 12B polarization [1]. Two kinds of samples were prepared. One is p-type silicon with boron concentration of 7 x 1013 B/cc and the other is with higher concentration 7 x 1017 B/cc. After the production and recoil implantation, an rf oscillating magnetic field Hi was applied for ~10 ms followed by the j3-ray counting period. Beta rays were detected by two sets of plastic-scintillation-counter telescopes placed at 0° (up) and 180° (down) relative to the 0 axis. The polarization change was determined by the counting asymmetries in these counters, AP = (r - l)/(r -f 1), where r — [Won(0°)/A^on(180°)]/[A^off(00)/A,off(1800)] is the counting rate ratio normalized by that at far off resonance frequency. The modified /9-NMR technique (NNQR) was employed for the measurement of the electric quadrupole coupling frequency Uq [7].

Results and Discussion

—92 —

0

T T~>-y n i r | i i ■ i

" . r

100 K200 K300 K400 K500 K

i.i i I i t„i i I i i i i I i J—L I I I .1 I I.4588 4590 4592 4594 4596

Frequency (kHz)

Figure 1 NMR spectra of 12B in p-type Si(7xl017B/cc). The solid lines are the Lorentzian functions best fit to the data.

(a) 350K :

(b) 250K ;

(c) 150K

v split (kHz)

Figure 2 NNQR spectra of 12B in p-type Si(7xl017B/cc). The range of the frequency modulation for Avq split is ± 10kHz.

Fig.l shows the observed resonance lines at the Larmor frequency z/%, which come from the 12B nuclei located in the substitutional site. At low temperature below 100K, the resonance is too weak to be noticeable. As the temperature becomes high, they become gradually strong.

Two resonance lines are clearly seen in the observed vq spectra (Fig.2) of NNQR tech­nique around the i/qjsplit of 270 kHz and around 0 kHz. Here the t'g-split means the frequency between the two resonance frequencies split by the quadrupole interaction, or twice the distance between vi, and the resonance frequency. The resonance at Pg-split = 270 kHz corresponds to the Bns site. The (111) axial symmetry of this resonance was confirmed by the separate experiment [3]. This component disappears at 350 K as seen in Fig.2-(c), while it is clearly observed at lower temperatures 150 K and 250 K (Fig.2-(a,b)). The broad resonance around t/g jsplit = 0 kHz corresponds to 12B nuclei settled at B% site. As will be discussed later, this site is most probably the modified substitutional site. Although the resonance line for this site overlapped with the sharp resonance line for the substitutional site, these two were separated clearly based on their much different linewidths.

Fractions of these three sites Bg, B%, B^g were measured as a function of temperature. The fraction of Bg site was determined from the amplitude of the sharp resonance in each NMR spectrum. The fraction of B^g were determined from the NNQR with wide rf modula­tion; vq .split = 270 ± 100 kHz. Sum of the fractions for (Bg + B%) was determined from the polarization destruction method in NMR with wide frequency modulation z.e., v = vi, ± 50 kHz. The total maintained polarization P0 was determined with wider modulation; v — zfc

—93 —

'-type Si (7x10 Boron/cm )

Temperature (K)

m Total o E?x+ Bg O Bns® Bg

Figure 3 Fractions of three different sites for 12B implanted in Si (7xl017 B/cc) as a function of temperature. Fractions are normalized at the maximum polarization observed in this measurement.

200 kHz. Inner consistency of the present procedure was checked by comparing Pq with (Bg 4- Bx) 4- Bns- The fractions were then normalized by the maximum polarization observed in this work (11%), which is in good agreement with the reaction polarization derived from the measurement of 12B in Pt. Fig.3 is the fractions as a function of temperature for the sample with the higher dopant concentration, 7 x 1017 B/cc.

While almost 100 % of polarization of 12B is detected at temperatures below 260 K, the total fraction decreases to about 60 % at temperatures above 300 K, mainly because of the decrease of the Bns component leaving the fraction (Bg + Bx) constant. At temperatures above 260 K, the fraction of the Bns site rapidly decreases and disappears at temperatures higher than 350 K.

The fraction of (Bg + Bx ) stays nearly constant in the temperature range from 100 K to 450 K, although that of Bg increases with temperature. It is natural to conclude that i2B in the Bx site, which is the majority at lower temperatures, moves to Bg site at higher temperatures.

Above 450 K, total fraction start to increase and completely recovered 100 % at 550 K. It is seen that the total fraction in this temperature range is composed of just Bg + Bx The results for the sample with lower dopant concentration of 7 x 1013 B/cc showed basically the same trend.

In order to check the effect due to migration, BNs(Single) was measured by applying only one frequency of the two transition frequencies split by the eqQ/h in the similar procedure to that for Bns fraction. For Bns, the transition frequencies of m = —1 <-> 0 and m — 0 *-* 1 are symmetric about vi due to quadrupole interaction. So, when only one transition frequency is applied, the nuclear polarization is not completely destroyed. If 12B in Bns is stayed still at least within the rf period, the asymmetry change is expected to be 1/4 of the one in the case of complete destruction. As shown in Fig.4 by Bns (Single), at low temperatures below 200 K the nuclei are indeed immobile. Above this temperature, however, the migration between four identical locations become effective to make a peak at 275 K as was also reported by

—94 —

t—% T|—f—r ’r~nr

□ HD

I K 1100 200 300 400

Temperature (K)

Figure 4 Asymmetry change for the 12Bns- Asymmetry change is defined by twice of the polarization change. Open squares (□) repre­sent the total polarization maintained by Bns nuclei, closed circles (•) represent the polariza­tion change when only one transition frequency is applied.

O T=300K□ T=200K• T=285K

Time (ms)

Figure 5 Spin-lattice relaxation time T\.

Frank et al. [8].The decrease of Bns above 275 K is attributed to the spin-lattice relaxation time Ti for

the fraction Bns was measured at three temperatures 200, 285 and 300K as shown in Fig.5. The effect of the migration is considered as the main cause of the present relaxation. It should be noticed that the behavior of the relaxation time with temperature for the highly doped sample is slightly steeper than the one for the low doped sample.

Since the present fraction for Bs+Bx is consistent with the fraction of substitutional site in a channeling experiment [9], it is concluded that the present B% site is also the substitutional site with additional interaction. The most possible cause of the line broadening in Bx site is a small quadrupole interaction due to the crystal defects or the radiation damage.

Theoretical model calculations with the effect of migration and/or the annealing effect is now in progress to explain these phenomena quantitatively.

References

[1] T. Minamisono et al., Hyperfine Interact. 15/16, 543 (1983).[2] H. Metzner et al., Phys. Rev. B42, 11419 (1990).[3] B. Fischer et al., Mater. Sci. Forum 83-87, 269 (1992).[4] E. Tarnow, Europhys. Lett. 16, 449 (1991).[5] T. Izumikawa et al., to be published in Proc. Int. Conf. on Hyperfine Interactions,

Leuven, Belgium, Aug. 28-Sep. 1 ,1995.[6] T. Izumikawa et al., JHP-Supplement 16, 1 (1995).[7] T. Minamisono et al., Phys. Rev. Lett. 69, 2058 (1992).[8] H. -P. Frank et al., Mater. Sci. Forum 143-147, 135 (1994).[9] G. Fladda et al., Appl. Phys. Lett. 16, 313 (1970).

—95

Short Report on Xth International Conference on Hyperfine Interactions

T. Minamisono( Faculty of Science, Osaka Univ.)

Impressions on the Xth International Conference on Hyperfine Interactions held at Katholiek University, Leuven, Belgium are briefly given.

c^B mmwBSfmsmAmiv w -m*-* vk&z uso^m^m

2 8 0-9^1 0 iZftfrtltz0

250&©###©#. 0. EUjfiBBEhN7,

trs9\ Ml-rvi)'<b^'<Dtehtzi9£z.X fr6fr, 0#^£>2O££< ©#jf|D

C (h o -€■ © fife Switzerland, England, France,

Sweden, Hangury, India, South Africa, Check, Poland, Russia, China, U.S.A B o

Russia 7. XU.S.A. t>

(?*-■/7yMg©:M) 3fcft?elcB#0ffift£JS-rSo

Instituut voor Kem-en

Stralingsfysika©#%#m6©W^#m^ff9 C630<m$/:o £T£Str(;tllfoX283S

c©-p-F>0^^bi26sr^/Co L,^tc©m©8m(im

###btlr>Tis*)AfB###49©m©17%T&Bo CW10>£T©C©^5©##^-

rauri'^o tu

eh^S^f-Bo J:6

nr^B>©Tcn^S^-ir$nBck^^-ELT, Bo

^m30Bc^^/cEi^###m6T©mm©A^—

Proceedings ©flJtri {±1®^ A#^©##%r*-7'^6©K%mX%©$jP&. &&XII

®-3 y^o xi@ (iS77'J A Durban}:: £> -B Univ. of Durban-Westville "C

Professor Dr. K. Bharuth-RamCD*>E^tlB C £o tza (±1998^(:

Hrl^tlB#^ ##(i#8^^©ck *5 T£>Bo Proceedings }CO^T(i> Hyperfine Interaction

Magazine £<£©£ 9 KMiJjfBK C©/t-^:

X> C©Proceedings B£^9#

E&3$ < A#©%#©me£ #AQ#©^©/:C ^@#XAT^#m©

mm-tB£i>?Bo fcgc#m^#b*>£>^institute^^

V 'T'#) o /Co S^t"^k?k@©AS(-(i> A® & Professor Dr. Gottipatty N. Rao U T

l VcAdelphi Univ. NY, U.S.A. ©iiJfgB & h Bo

—96 —

I CAME '95(Rimini, Sep. 10-15)# tr ( I )Report of ICAME-95(Rimini, Sept 10-15) (I)

m #F. Ambe(The Institute of Physical and Chemical Research(RIKEN))

ICAME-95, International Conference on the Applications of the Mossbauer Effect (1995¥) 9)1 (7)100^615BT ^ U T FUTStCMU

(Prof. IdaOrtallD##&#^TeatroNovem,

0 $>$D$ai<hoTco

SSticn$TS0'>>^;VE^'>g >T> Fig. 1 <D<k 5 f(D#(D

f $T1aI§H(C^A 0 > ittbfcOWafc „ 14 0 iz it Special Session: Complementary Techniques <kLT, NMR, juSR, #3d:LKquasl-elastic neutron scattering ckV^WTS-o A<h@%5o tti

(Z) m A e A T408 ^ T & o A.

Fascinating electronic games in iron complexes: P. Gutlich et al. (Mainz, Germany) d: < £0 G tlfz LIESST (Light-Induced Excited Spin State Trapping, Xlf>^DX

:L-X-&^T#(IDmm:j3WT, MMC<L D«T0SjS^lAi^Git^Sbig#;

Mossbauer studies related to the solid state dynamics of Coo : R. H. Berber et al. (Jerusalem, Israel)

C60#fl#JHFe(CO)4 L^:f k^#(: O T X X/i C; 7-/^ 7 ^^

Application of 6lNi Mossbauer spectroscopy to chemical problems: N. Jansen et al. (Mainz, Germany 13

-97

Fig. 1 Invited talks and oral presentations at ICA

ME

-95

liiiii9.00 fpSpKf Opening

ICAME-951. s.

0. IakovlevaI.S.

W. KeuneI.S.

A. FreemanI.S.

J. Arthur9.00

9.4510.0010.15

I. S.P. Gutlich

C. HawkinsH. WinklerG. Pedrazzi

Ph.BauerE. GiesseS. Ambe

A. ItoS.M. Dubiel

A. Block

A.l. ChumakovR. RufferM. Seto

9.4510.0010.15

1030f PU<A"U Coffee Break W. SturhahnM. Lippmaa

10.3010.45

11.00 J. Ladriere Yu. F. Krupyanskii G.S. Collins H.J. Hesse Coffee Break 11.0011.1511.30

R.H. HerberN. Jansen

F. CavatortaA. Simopoulos

J. DesimoniF. Studer

1. NowikK. Latka

H. MehnerM. Gracia

11.1511.30

11.4512.0012.15

liiff

\ > /:

A. KramerY.K. Sharma

A.M. Van Bavel

I. S.V. Huyinh

I.S.B. Niesen

I.S.G. Hearne

G. VoglT. HinomuraH. Kuwano

11.4512.0012.15

Lunch Time r 12.30

14.00 Poster Topics:

1,5, 6,8,9,13

Poster Topics:

4,7, 10,11E

Xcu

Poster Topics:

2,3, 12, 14

E.H. du Marchie F.J. Litterst

I.P. SuzdalevR.C. Thiel

14.0014.1514.3014.45

... .* I.S.E. Tronc

15.00

R

s Concluding Remarks: R. Coussement

16.00

5 V-e. • ••.A- Coffee Break I Coffee Break 17.00

17.30 '$*'■**; i' I. S. M. Drodt0 Special Session 17.30

17.4518.0018.1518.30

'&y-: ;■ G. Preparata V.P. IvanitskiyG.J. Redhammer

R.B. ScorzelliG. Neyens

N

ANDCOMPLEMENTARY

TECHNIQUES

1. Bertini

17.45 18.00 !

18.15 18.30

I. S.Y. Kagan

D1

18.45 J. Odeurs N C. Bucci 18.4519.00 N W. Retry 19.0019.30 Get together party E21.00 Concert

Teatro Novell!R Banquet 21.00

NiS4 Knyy—fe\ rh KDW—tf*5j:miF3(7)6lNi/X/t^7"

Kinetic and spectroscopic properties of diiron-cluster intermediates in biological oxygen activation: V. Huyinh (Atlanta, USA)

Mossbauer, x-ray fluorescence and paleomagnetic studies of deep-sea sedimentsfrom the Peru basin: two million years of sedimentation history: M. Droht et al. (Liibeck, Germany

20cmT, ^©E<b^^USS7^Fe(II)(7)f|jba^E$iJ$nTV^= ^(7)^<$:WW<D7

Structure and composition of iron containing Langmuir-Blodgett films studied at temperature down to 4.2 K: E. Giesse (Erlangen-Nurnberg, Germany)

(^##&20<Dmm*;l/^>m) <0^# Langmuir-BlodgettFe-Fe^0.3nrnmT

Man made materials - an exciting area for hyperfine interaction investigations: A. Freeman et al. (Evanston, USA)

#@h #@> E<Dl&'AnM&'>X wA £7> UTCD full potential linearizedaugmented plane wave (FLAPW) U<5 local spin density functional (LSDF) ab initio electronic structure calculations CO|g0 , S@

u v^xy Ae^T, < <wm - o&.

151 Eu-Mdssbauer study of a first-order valence transition in EuM%Ge2: H. J.Hesse et al. (Paderborn, Germany)

EuNi2Ge2<bEuPd2Ge2 (A 5^ E25GPacDffiySrfrUS d h Hi DEu2+ G Eu3+ '\(£>Wc<7)^fb7^£5C 0, h(0±#V^fb^##l$TtTU6.

How do atoms jump in ordered alloys? The model system Fe-Al: G. Yogi et al. (Wien, Austria)

#f#c] A Fe-Al Ip-fnHUroUT XX/t'Xy—H(D quasielastic diffusional broadening 6## L, Fe Fe- sublattice <fth.fl. 0 UIt-ZrO0^c(ft site Al-sublattice CO antistructure site £>

mmUTU6.Iron nanoparticles grown in a carbon arc discharge: E. H. du Marchie van Voorthuysen et al. (Groningen, The Netherlands)

-99 —

'AM (1997# lt797JlV □ (±##: Dr. E. Baggio-Saitovitchh '&%@ (1999# « H-f7TlI$tlSfm5o 2lM0fgHII@ <h&£2OO1^0&* ^

(8^0^-v >X?)o

BEtc ICAME 0BESM^&B£nfc0-£\

International Board on the Applications of the Mossbauer Effect (IBAME)m£3m<Dmnmmzjfc£T, earn - 3 ^0#m&mmT#,

mzmz5i*, 2, 4, 6^mmz

SbELifco IBAME 0 Executive Members <b L-Tti Prof. P. GiitlichChairman \Z, Prof. G. Langouche <h Prof. F. Berry ^ Vice-Chairman icStifrl/to

100-

I CAME '95(Rimini, Sep. 10-15)#e (H)Report of ICAME-95(Rimini, Sept 10-15) (II)

E ffi EM±#T. Harami( Synchrotron Radiation Laboratory, Kansai Establishment of JAERI)

A E/E J&i I 0 „ x */!/*'-** 5 ~ 3 0 k e

tziz&iMmmibmt&wt'tZo asstsfWbfcMti, ctucisjvccn*,, spr

ing — 8, 3 — a y s<(D ? Jl// — ~f )\><b E S R F (European Synchroton Radiation Fa

cility) 6GeV, 3fci|7 v % A P S (Advanced Photon Source) 7 G

e V»i-etve*5odgi-eBtk #x)-t?23ff (#m?^(i

3 2 #?&-?%) ESRFI11 9 9 4 o #%©

AP S til 9 9 ^ofibofifcSTO&IS:(TR1 STAN — AR% SPEAR, HASYLAB) $ tlfco

j. Arthur uy=MS#mi#m©#m

Chumakov £ 1,1 T a MffcfilRueffer E S RF?©MS#^-^6#%©%#

zUF h/t/S t u r h ahn K .y ^7 - ->7 1®^

tiofcod?x^--eti, 3K a g a nSIfiiOjfcE. "K r <D®mB. MS IS

j:6me h K-lz VfciSEim*

U e V’t y ) o / - f ©B8#» 1 6mm^7^5y*/*7* h *- KOfifttf $ -?tz0^>©MS#S#m#ao#l^#mL/:o £&SS*4-e$iJ5EL*:tS

ifclfcfTfcBIli!!© C ©£!Bl?© P roceedlngsll, ’ II Nuovo Cime

n t o D” JCjffgSil^o

—101 —

i33Cs 81keVDetermination of the Change of Nuclear Charge Radias in the 81 keV Transition of i33Cs by Implantation of i33Xe

jIlawfa mmm*4

#> h*rs;£u he*-1 s wb*. mm&w*. sebshs, ^^*3

mm #?H. Muramatsu, E Tanaka, H. Ishii, H. I to, ML Misawa, T. Miurai M Koizumi2, A. Osa2, T. Sekine2, Y. Fujita?, K. Omata?M. Yanaga4, K.Endo5, H. Nakahara6 and M Fujioka?( Faculty of Education, Shinshu Univ. i National Laboratory for High Energy Physics(KEK)2Japan Atomic Energy Research Institute(JAERI)3Institute for Nuclear Study, Univ. of Tokyo 4School of Medicine, The Jikei Univ.5Showa College of Pharmaceutical Sciences ^Faculty of Science, Tokyo Metropolitan Univ.7Cyclotron and Radioisotope Center, Tohoku Univ.)

i. (au&ic

msmnomm

7m (S n, Sb, Te, I, X e) &T/S 6 M<7) (C s , Ba) izltZfi?

L t V , M& O fc jnSET-itlSir £ fc ti> tc ti: x &%S<7) A R/R E SE^E<D^SW¥Ed)^)

T*&£. Sttl*:i/7h (5) tt,

AR/Ramt LTESOS tl>

5 = (4/5) 7tZ ezR2(AR/R)A p (0) (1)

i:i*ARIL AR = R.-R„ (R.) E&E#E<D■en (R.) fb^miiid>iiutcj: UEfb*E#A.-bit,Sa^StifcM

—102 —

$vfe&mizli'oy b*fe&fttmm?&zktfnin14»J, k6#y%X077C#<Dfb^#MmftKtFTmk46.

#t#S^< :©AR/R^^«05»-t" 4 *> ■&*;*.H 0)#% 6 . 133C s ©81keVMl«&tc

fc tt 6SfriEttBh£Ett® <Z>ffl*m^SW¥E©il,£fr4ofc.

2. flR/R®^(DiI

(l)^J: UBJ36fr4«kc>tc5ti:, MtitSi (AR/R) A:#E^©%m«?©% StcMt--2.fi (A p (0)> #RtctiRjR#k#»#*^©y%X07@E&gT©fi:f%S© s<bs> oiuttm m#kUT#tc*m$ii6. ufe^t, w

5 A: Ap (0)&#%t-fi#A R/R&^f6Ck *(T#6. tctim?#mmtc%f%S%t30)td:s«f T&6C k4 6Ap (0)tiAps(0)Tm<aT#

(#s«^<D^4tt~|gC%) , $6tc, J:^T##^tf 6*16 64 61^, 133X e ®i§£\ Ap s(0)tiA p 6S(0)T*iE<tit-6 Z k^bT«BT**60 —133Xe® 81.0keViptettt$trMl^tcM lS^tcJ:^TSE^Stc mmt60 M im#Tt*mgg#6#mEt*tk u-r s%E^mm$*i,,»%art©#*T^tf«4t6Z k^S#iTt'6[l].

as(i,=C • ps(0)u>, j=K, L, M, • • • (C : %&) (2)

LfeA'ot, fb##mmmutcj:6##m(7)6 s%?<DSfbW\ ^-ffl«««»«« (aes)tcfiBftt-6. n©r, m#*?©egmbe#@©m:fktc±#<^#g*i4uki^&%©tktc, rt«*^©rt»fc#l«fcfc©Jtfc«Hr*-*i

tf, zmjtm^tc<b^^mtiM%g*t6. ifeA^t, (l) aiittTffl<fc o 6*16 „

5 = (4/5) 7t Ze2R2(AR/R)p6l(0),h.o,A[p e. (0)/p 5. (0)]

= (4/5) 7i Z e2R2(AR/R)p5.(0)th.or. A[aP/aoi] (3)

5 %######& P,/ 0, (f4t>6, ap/ao^a.s/ass) £fsH!-m tcovxrfi:4x.tf> (3)^«fc V AR/R&^A6 Z A: A^T#6.

3. m K

LMRI (75>^) *'6#AUt"2 X e j$J 4 cms^t/133X e (## m5.25 8) tf*£ift4 U-/ MUtcA rt*«U **i£ B *SE*0f9e0ngfOT3eBr<7)IW

4 *>*£»«L, MmE20kVT*a^©v hV y * X (fijfi) 4»tc>f f

103 —

>&AUfP§SLfc„ f U, CsCl (133C s T‘360mg/cm2S) &#%it, m#/\u0AmmcT'33c sotzAvr**'? hjb£$i5£u,

s e>tc, no/-fTAatAafmamma/tf h;u^sB^ufc0 v ^ h*g«0.5mm, rtv7JbZV v b<D«£*-£* T\ 0.03%tLTSOSLfc. &gj®BMJt^JSt$c<W(PSPC)h#S7.V ? h (3mmMBS, 49*'J* h) h&MRUTM^fc. **itc<fc oT, vxti^S^-XU «y • X51 »>/JtxTm#&i&l±^6zk^r#6. £fc, t^-#(DPSPCt^#m*(D#^k:mATtt/ h L, Zkk:JccTXv

h s %&#?###?#&*$/? h©gtfT*£S£ttl£^Sg0iC

A 1 , Zn,Mo £ jgtf H§*£fr&o fc.

4. ###<&*##

-Y «kf 3%kM#t >f *>EASEroEE5SXtt^Sdtl5S<7)l/3MT*$>ofce h;i/±T*A = i33tc^mt/h$ V'

t£ V, 0Be£>f y-Uy h £*ifcfsrtJrt't<t oT133X e *(%X 'V 2 y >'/■£*!, BE^JE$*t®;< 4ofchS8!lSti5o Fig. 1£ Z n&tfM o £ ** b ® KkUtkgm**X07*/<^ Zn^li, Mtf^StcUvx&'tf'D,

hvt/^ LTS#fd*l5 = -0.16mm/s ^#6fb fee Mo»i, M±-1.28mm/si:#A»D*ifctf, HIIStf)y*>j h;utctictiJM<Z)8iK*t& V$$■&Mo** H*kK#&6iM Hc>f y^=y y

X e-»Z n

./ .

0.996 -

Velocity (mm/s)

Fig.l Mossbauer spectra obtained from the sources of 133Xe implanted into Mo and Zn with a CsCl absorber. The spectra were measured at liquid helium temperature.

—104 —

T—1 2

Electron Momentum (Gauss - cm)

Fig. 2 The L-, M- and N, O+P-conversion lines of the 81 keV(Ml+2.8%E2) transition in 133Cs implanted into Mo. The solid curves indicate the result of least-squares fittings using the conversion line shapes shown by broken curves.

yn^y e

H+ (A =133) k#/ia MStifc 3 X e mX3Ui/&ama133Xe, Xe;^;^ai'(JI^I:Mot0fcffli#(:#ftta133Xe,

&KIZ, ZtiZ'tiW'f h tcfctta X e ^©population* jiss a ktcj:h (T) ktf&mTr, C#K#Cot'TW:-0.02mm/s&#&.

Fig. 21c, Mo$^ > NStlfc133X e ZUMk. LT895£Lfc L®, M#N, O, Ml/£^Lfc0

~0.05%T*$>ofc„ P,fc Oi©M£’X*A/J¥-©|gfcJ:«Jb'23eOfftasisMf £ fcttT-tTi'4'^ MntMn.iJ<tr5

N,i: 0£#g§LTg{!)5£Lfct>©*: L T © i: ®*>*ia. 3racsempj [2]^mu, #'h§§H7>r v ht^im

a h^-A. 6tia M* (D&^tpT*(D133C s CDMB<*2/7 S £!E'<fc Leuven^cT*(DW^csitCcfcah, feai0iiT*ttitt<t'>7 i:

Nirt»te»c»-rao*t},ti;p«!rt»c#i©atjKit [(o+p)/Hi]tc&e»^tiaMi^l^acttioTt-AR/R^^t^a.

(2)a&e, f:#E&@T, anJj=C ljP nlj(0)hrtL

fcfx y-oftffi©rt*MS^££©fc****(o.s.)©«fiMrc©( p -. ,(o)= p5.(o)+ p 5,(0)+ P 6.(0)) «, ^<7)<fcdtc^$tia.

105 —

P o. ». (0)/ P 4 » (0) — ( CL o~P CL v) / 0! N 1 (Cp/Cs 1 ) P 5 p (0) / P 4 s (0) . (4)

3 114 a. SSH-StcJ: a fc «WC©AMf%A[5]©m&mnak(Cp/Cs-l)W4.3T$>U, £fcaH[5]KJ:a p5,(0)tt, 6s°, 6s ^^BESK^L T-etl-e*14.79, 4.75 a.u. T*fcS ©T*, (4)A©^ 2 WAS tlSEHti:Po. .. (0)/p4.(0)©±lXlO-48ST-, m*IRm<D#6B9A?&a. LfcA'o T, (l)&tt¥ 19© 5 (T) k (ao+ap) /amfetont, &©<fc 3 A'A 5 £ h A^T-g 5„

5 = (4/5) 7t Z e 2R2(AR/R)P4.(0)theor. A [ a o+ a pZ a m] + const. ( 5 )

I3T-, 4[ao+aP/aNi]i:i[p..,.(0)/P4.(0)]^f Ktl'H'a. Z© j: 3 4^i&TAR/R&*aa#e, {k^^E©$fbtc^jeuTiE{i:ra(ao+ap)/aN1©E<btt,(3)Atcfctta aP/aoi©^<btcti:^TA'4' y/J'S < , <fc U i®)fWS4S8^*^ti) e> *15. LA' L —77T*, LeuvenA^©Pattyn«^[6]A^^f aj: d tc, &a@©^#4*T©#%# ^7 h A^MStcA^C , htc&ac s fct A' 4 U S V' Rl4 E A £ S rt T fc U ,6 s^5 P©*4e>r 5 sm^S5«{c^*^fcAt&A,TH'aii-rtitf,

H$)ofct>©^SAaA':bL*i4v'„^tl^T'Ci^fflT^fcZnfcMoto^T, %*#%### p 4 .(0) t r. =1344. 7

a.u. J:tFR=1.2XA 1/3 fm£flb', /%X07*%A'6©#%#$/7 h g( = (ao+aP)/a,i) kA'S, %%^4#

i: L T A R/R~+0. 5X10"4A't3|A'*lfc.

References

[1] I. M.Band, L.A.Sliv and M.B.Trzhakovskaya, Nucl. Phys. A156,170(1970)[2] M. Fujioka and M.Takashima, J. Phys. 40, 02,32(1978)[3] I.Dezsi, H.Pattyn, E. Verbiest and M. Van Possum, Phys. Rev. 839,6321(1989)[4] F.Rosel, H.M.Fries, K.Alder and C. Pauli, Atom.Data and Nucl.Data Tables, 21,

91(1978)[5] I.M.Band and V.I.Fomichev, Atom. Data and Nucl. Data Tables, 23,295(1979)[6] H.Pattyn, P.Hendrickx, K. Milants, J.de Wachter and S. Bukshpan, Hyp. Int. 79,

807(1993)

—106 —

* X A* ^ T - a s t c J; £ $ ft ft # 7 X © !& 14 32-MS. V—l)AK#*?X®SS(b-Study of the Structure and Physical Properties of Oxide Glasses by the Mossbauer Effect

— Crystallization of Gallate Glass by the Heat Treatment and Laser- or Gamma-Ray Irradiation—

BffltPJA P.Kaungi,T. Nishida, S. Kubuki, P. Kaungi, T. Yagil and Y. Maeda ( Faculty of Science, Kyushu Univ.1 Research Institute for Electronic Science, Hokkaido Univ.)

« $

:©LbbM7X (#5x-t?5 iy ?x) cittEi;57Fe-yX/<^7- (Mossbauer) FT-IR> (DTA) &

tAr+-L/--YAG jo <£<7 60Co-7 S

mzn -o 'T itz0

t, Bfflb(i:c

^{CLTtoSo 60CaO*39Ga2O3*Fe2O3 jo<m' 60CaO*40Ga2O3 A^XTI^

1) CaGa204W{ti1"£o C 0##® Ca0/Ga203 Jfcte 1.0 T'£> 0 N CaO

SS^50mol% 0*7XiM^t^o CaFe204 (M’>7A

7x7^ h) A^X^T Ga3+ (bttSUTLVc Fe3+

2) Ar+-L/-f-mN:j:Kk CaGa204

Ca3Ga409 5o CCDMbbS© Ca0/Ga203 Jtli 3/2 CaO jftK#

60 mol% ®K*<DiSy*(bMt—1ktZ>o

3) ^Co-7#.W^9 CaO <t Ga203 BPS GaG4 0@^<hGaO6 A@#^3

#7e££UTY*>&££S$U Ga04M#©£

Ca^+ A#ib#^7Xf- CaO CORK Ga^ Sm{k#^7X

7- Ga04 ZMf&tZ o

—107 —

4)

Ga04 C6(:«t6 t&t>ti20

5) i *ju%®mm£t&'tf'j 'ymm^xTn, ca-o xu pe-O f.t, Ga-o Xli Fe-O b® 91 # Af:

uzt^XbtiZo mmMMtzjji'i yrnmyxiJSti/Co 3~5)

y-v-mm

ZMWtZZtli. ####%(:40CaO-

59Ga203*Fe203 40CaO*60Ga2O3 #7 XMl \

60CaO'39Ga2O3'Fe2O3 #7Xjo«tCf 60CaO*40Ga2O3 jfyX<Dl&%t<Dik$t%'ft^tz0

1) MSt:J:3^mS£c>^b

2) #mat: j; 5#^b##0#B 6$^m#$0m{b (FT-IR> DTA)

3) (xrd)

4) Ar+- is&u YAG U—7-EMtC (SZ'<V7-m) <tm&m (FT-

IR) <D$$

5) 60co-7mtticj:zmffi& (yx/<77-«) (ft-ir) WM

^ #

CaC03x Ga203 & =k Fe203<D&M£ffiW U<£ <M&Lfc&®£ fi ASolf+fCf:

SMiPtT% 1550oCT2-3S#«il^ Ztl&H7k?%%tZ Z t\Z X *) Jj?xm®Wm zn^tzo ctiznmm® KBrWH6«t<#&uy:i/xu, <

V>y 4300-400 cm"1 OfSfflT FT-IR#fRX^^ Y)\'®M%%'ttr>iz0

ft-irssx^^ h;i/6D$u^i:{i,

(DTA) m tSBCUzif7XmtWm%(a-M203)m*®&&tkKhtl, 900

°c oraTaij^#^/c0 xmmim cu-Ka 2 deg-min-1 omMmxnm^n^/:o ^X/<07-X<^ h;l/0K(^ mCi (3.7xl08

Bq) ®mzm'xmux^mmK<* t> m \ rnmyy h d®mmtixitm& w-Fe) %m'tzo y%/<77-%<^ hVl/0V^Vl/3>If:L-f 'T&/JC:m&KWtt'itZo 60Co-rSMm> ifymm$Vxf-1/'ygCAft,

E£> 1.6X103 Gy/h 104-106 Gy (106—108 rad) OfSETilS fc0

—108 —

Ar+- ly*--|f—488 nm '

TMJj 1 wT\ £ /: YAG-l/-f-,W# 530

nm (#&? VX^VL/#M, SHG#) Tit}* 1.5

~2.4 w 0f&ffiT\

40Ca059Ga203*Fe203# 7 X ^ISal^igE

®T#i Udi$4©57Fe-/%/ <07-X<

X h^Fig. 1 Crvfo #a#0#7X0/

X/<77-/^y-7l^ Fe3+ (:OUT#6 =

0.25 mm*s_1> A= 1.28 mm's’b F = 0.85

mm’s-1 ~Qh D \ Fe2+ # 5 = 0.81 mm*

s~b A= 1.80 mm's"^ F = 1.12 mm's'1 T

7 h (g) ©#^^Fe3\

Fe2+ ©ivffi&EE# (rd *#) £MLT

b5:<!;»^o EME (A) ©#^6, E

*mm cr>£ Fe~O o'

S-^3 0—Fe—0 loyn^^Hj7 ( frlpC

^1: LT Ltf UMliJSft,

5©#^/j^Fe-0 < x

fe2+©

mmm. # 26.8 %-c wcQ Fig.

Velocity / mm - s

Fig. 1. Mtissbauer spectra of 40CaO* 59Ga203*57Fe203 glass heat treated at 760 °C for (a)0, (b)30, (c)60, (d)100, and (e)300 min in the dry N2 atmosphere.

i Fe2+ ©sj^wl, 760 °c *c 30 fru±mmuzm(Fig. l(b)-(e)) Tli, Fe3+ ©£© WWlJdtm^o %oTlllCX >0ES«>0&Zft>

Fe2+-»Fe3+ ©BttMlSil £ t%?L bft£0 760°CT©«aiC <k Q <5, A, rC^ftlWU

200 £h©j$iSZ!i$Sb 5 = 0.18 mm*s-1> A= 1.13 mm*s""\ F = 0.80 mm's"1 ~C$b-otz0 StollSt #©X#@^f (XRD) Ot 40CaO*59Ga2O3*Fe2O3 Jf77.1340CaO*60Ga2O3 #7%©

l'ffl©#^C6 CaGa407 t-^©Wil$tl/;0 C© CaGa407 ffifCfe^TCaO/

Ga203 ©It# 1/2 CaO BE£< 33 tVl/%©#7X©W(:%^f 6o Scolis et al.8>

—109 —

Ca0-Ga203 ^©tBEdckS

6, cao 40

1000 "CR^^^MTIiCaGa^OyfB^CaGagO ̂

(Ca0/Ga203 it^ 1.0) v^StiSirefficb L

T##f 5 : 6 g, ^TC ^ 5. 6:5*< 760

°CT©Xf7 Tsommt^rnitxn CaGa407

: tmfrz o

h;i/ (ft-ir) TliWSt:

670 cm'1 6 810 cm'1 #

iSl: GaD4 ESffctDMK 530 cm'1 #&l:

Ga06 A@# t: J; 5 W(CE$|JS n/co

X7 7Xtf£^©£M£UcS^ilii/W HI/

mmmvimmm'v&momim

mzntzo$1 LT, Johnson-Mehl-Avrami (JMA) 0^9)

zm'Ztm&fewtk bm^M2-5’^ ©t,

Arrhenius ~f&"j h b> In Hi f fc© ffitt'f fc 71/

4^-> Ea -£©1^ 40CaO• 60Ga2O3

*7X0 £a 12 7.2 eVT Avrami HE zz liftJ

1.7 6<Ct),

Velocity / mm-s’1

Fig. 2. MOssbauer spectra of 40CaO* 59Ga203 *57Fe203 glass irradiated with the

YAG laser under the output power of 2 w for (a)0 and (b)3 s, (c)under 2.2-2.4 w for 3 s and (d) under 1.5 w for 60 s.

: tfrfrfr-otZo CDTA Kfct 'TKissinger:/P v

h2'5>7)*^#bn/cn> 7.iev6-muT^D,

40CaO'59Ga2O3*Fe2O3 X77XT12, ftCffoA 60CaO• 39Ga203 • Fe203# 7 XO^6’7)6#%

*), Ar+-l/-f-WT(m^Yb^#*a>: 6mmL/:o YAG l/--f-mZfS'iiz

6:5, Fig. 2 j:9C Fe2+ ©*^< U6^tm^tz0 2.2~2.4 w "C

3 /^7/ —f (i Fe3+ ifi 8= 0.27 mm's'1, A= 1.29 mm's'1 F =

0.94 mm's'1 T<£> ty, Fe2+ 12 5 = 0.90 mm's'1, A= 1.90 mm's'1, F = 0.73 mm's'1

Xh'otZo CaGa2G4 Ca3Ga409 *B©$U7^M£ tlfc, 60CaO'39Ga2O3'

Fe2G3 JfyZ<DAi+-U-*f-m6>7)tmi9, YAG 1/$tlti

fr-iiZo YAG l/-f-,IMlTo/;^0/X/<*7-X/<^ hJUXitFe2+ L,

12.6-16.1 % :n« 1) 1/“-Fe3+©«m^»®, ftSLSft-5, £>5

—110 —

UK2) jfyzKxs—cttmmt%

x.bn^>0 hmzmm^mumm$n#>-?#0

:nc^u^ 105 GyJ^±© h;HrjoUTSiSWiS

Ttzz.tmmztitz0

$%m#mL3iiac 6(: =k6 t©6#x.6 C 6^T#6. ^/:#^#©#r HI(: J:»)t-^ >bfiWtt?) C 16#X btl£o 50CaO*40Ga203*10Fe203 #7X^ 6 60CaO*39Ga2O3 ’Fe203#

7X^,7) ®7 mm# (105-107 Gy) TK> ^CaO<!:Ga2O30^BHBWXm®tfrT5ll’^tl/co

t Z 6 WE^T'K 40CaO*59Ga2O3*Fe2O3 #7X1: 5X106 Gy ©M#£fiST k&alifflKM

stoUo cqc^k^xs^cml/cmmo^x’k WMmmm&mmTT'&z

t£t), Ca-o fc«fcV Ga-o ^©SJBn&^UX U£#X.£ftSo *©*S^ IgJlJfcgifcB&M'

£<&*)> ^©^^xwdu^^x-bti^o xm@ifr©M£1\ yx/<#T"X<^ h;u

Tfc^^kKmaij^n#'u©T% %f#YXK 10 nm j^rt^nso

1) T. Nishida, M. Yamada, T. Ichii, and Y. Takashima, Jpn. J. Appl. Phys., 30, 768-774 (1991).

2) T. Nishida, T. Ichii, and Y. Takashima, J. Mater. Chem., 2, 733-737 (1992).3) T. Nishida, M. Yamada, T. Ichii, Y. Matsumoto, T. Yagi, and Y. Takashima,

Proc. VII Int. Conf. Phys. Non-Cryst. Solids, Cambridge, 1991, Taylor & Francis, London (1992), pp. 392-396.

4) T. Nishida, S. Kubuki, and Y. Takashima, Proc. Japan-Russia-China Int. Semi Struc.

Form. Glasses, Kyoto (1992), pp. 91-97.5) T. Nishida and Y. Takshima, Nucl. Instrum. Methods Phys. Res. B, 76, 397-402 (1993).6) T. Nishida, S. Kubuki, Y. Takashima, M. Mikami, and T. Yagi, Hyperfine Interact., 94,

2125-2130 (1994).7) T. Nishida, S. Kubuki, and Y. Takashima, J. Non-Cryst. Solids, 177, 193-199 (1994).8) Yu. Ya. Scolis, V. A. Levitskii, L.N. Lykova, and T.A. kalinina, J. Solid St. Chem. 38,

10-18 (1981).9) S. Kubuki, T. Nishida, P. Kaung, T. Yagi, and Y. Maeda, J. Non-Cryst. Solids, to be

published.

—ill —

Mossbauer Spectroscopy of He Irradiated Austenitic Stainless Steel SUS304 at low Temperature

mmmz«#»se, e# slu mm

# #ff2. #2K. Horii, T. Ishibashi, T. Toriyama, H. Wakabayashi, H. Iijima K. Kawasaki1, N.Hayashi2 and I. Sakamoto2 ( Musashi Institute of Technology iTokyo Institute of Technology 2Electrotechnical Laboratory)

1. liCtfXz

x, LTjsxfflvibtvtvs. #ic, x#.y zxx(D*~xTi--( b y$

£ Z6T, sussed—by-xyyx mu, #60K-emM%#L, -yyy^(D#T&

azcjvi/df-ft&fIC#L-C*:#^(n, a)S He^4y&£*VM-<, *<DX

t t/ioTV'2).x-r-J-y b^xy y^mic#i-6Hem

#%mil, -v/uxyib-r bll (fcc##A»& bcc#m^o$#) (zovr, m&X(0/ X/< '}7'-ft%\Z.£.'0£<<Dm9Lfr'ufrhX%tz..

fc^/t'Xy-^y b^co^fe^S-^-^coy vt-yR^p) ^ 3

^ y/\—y y±#(D Johnson blzl 19 #% $ # TV5 (Fig. 1) [2-3].

L^L, HeRS.ltLfc^co^lzil-r/wxyf- y b$S^-en$iJSLT^v^5H^/L^yib

xx-ry 2f izyr<Dj^s^fc6bm:,

yr(D^#$rm#JT# 6(DTI1^

(High energy e">

r9.4% K)" He*/cm1 (High energy e")

-- too

(Middle energy r)£ 104

(Vow energy e*l

rriiiiiiliiiiiiit

Velocity lmm/sec)Fig. 1 CEM spectra from 304 stainless steel after irrad­

iation of A) 4.7x10nHe+/cm2 and B)-D) 9.4x1017 HeVcm2. B)-D) are depth profiling with energy selection of emitted electrons in high (>1 OkeV : surface - 20nm), middle (6 - 9keV : 20 - 60nm) and low (2 - 5keV : 60nm - inside) ranges. [2]

—112

2. He mMtmofttfL2-1. un

-Y SUS304 tf-— x b ^ xir y y x m («m=73|) e#

Lfc. TablelKTjk-t.

Table! SUS304 sample propertiesChemical Ni Cr Mn Si FeComposition 8%-l 1% 18%-20% <2% <1% BalanceDensity 7.9 g/cm3Thickness lOjtm

2-2. mtt&ftif y Table 2 Conditions of He irradiation

ymMmk*m'Xftr>tz. roit, mmic He Energy 500 keVS^-x bgrm9 YrO±lc3R9c(t, %<D± Current Density 1.2 IxA/cm2\z.\tom4><D'K<Db^tz.mWLX*h$>tc. (D^zc. y/<—^(D%^j$114xlO »Tori

MB#r"C#> o

Dose

oX He+ions/cm2

It. HeM^M^Table 2K^T. Table 2(0m###-eTRIM3- K*fflV'TSUS304rt©HeCOfRS**J!)fcJ|$*l/imt>S:ofc.

3. usmmoais3-1. jfcimst, EMSit3|$4lcov>T(DS;Sy X/<l7T™X^e7 HUtDiHS

<Sffl(14K)'Ci<Dfy/<VT-y'<i' b/V£Fig. 2 1 Zm-f. 10 L, Fig. 2 t^LfcNMitiS (width) ti, emT-#su/cx^ i4K -m,

0.03nm/sec Fig. 3Fig. 3 ± 0 He MW-CIi, E^MO&V5 ^ t

3-2. tf—'7;i/X4-Y>S&(Cj:

Et^toM5r^iO-5fcA(c, 111$& 0 mm/sec £ LT 40K ;&»£> 90K $"C2K ^icS^fHI'dotf^y bL, *m#,

olt. t^,P)(0##$rFig. 4 \t7fk-r.bm.m<Di&Tt t tit,

2# biD^TXi^y b»as&*fc:«'>U #)65K

\t X % *mt<Dfct* ov*; ? y b mmMvrv'd.

As received

Width: 0.60 nan/sec

Irradiated

•Width: 0.63 mm/sec

-10 -8Velocity [mm/sec]

Fig. 2 Mossbauer spectra obtained at 14K for as received sample and the He irradiated one.

113 —

y^ —77 HO####

iH^rtf^ofc. SUS304 h^ry 77

jC#[l] 1 19 450K t L, BOKT*?)

y T-/<yy-f innateftAL-CBWf

64K 7)^ 90K #%—? &#o

TS/hre&tc19 m<d #t>nfc

ALe (1) it^-ftALT, 40K?)^ 90K$-eH-SL

/tMhl Fig. 4 a), b) \zmmX'7HLXh%.

0.60 ■

0.55 ■

Irradiated

A* received

Temperature [K]Fig. 3 Temperature dependences of the widths

for as received sample and the He irradiated one.

40 9050 60 70 80Temperature [K]

a) As received b) He IrradiatedFig.4 Temperature dependence of the g-ray counts accumulated during 300 sec for as-received sample(a) and He irradiated one(b) between 40 K and 90K when the 57Co source was stopped.

the

N(v,T)=Na

fTt

1-6(1)-

(1)

%)V

(2)v2y

v2;v-^T)-

r \r(2)

V2y

(1)

n„ : hfifnfdltro*yy h<?(7) : 2% titrj y^-yy h

r(1), r(2) : <r>% 1, % 2£d), fi(2) : 8ok tea#51, m2 mm%k<om£

—114 —

aeq : 8oki

« =

Fig.5a>,b) n, t d)Xtz, 40KA^62K$f (Df—f &M#K# t ZM’tl62. 6K(+1. 5K-1. 3K), 66. 0K(+1. 6K, -1. 5K) k ft V , Z<Dm$t0ki$v}tffinm&&r>m.4K±#lxv^-6. ::t,

mu, mmmomfcx&ztcib, x f> ^ He87%^tB^t-?>^^^nTv^(7)-e, He

iHoi i«< KZijfDt^TLblxZ).

50000

40000

20000

67.6KU 10000

66.0K-ftm* r iitim fin 1 i ^iiifn -ftiiif" i tn i iViilft r i *u iff -4, ifiiiiPtnifriiiffurliii iiIThiiHi-10000

40000

30000

8 20000

64.1 K3 ioooo

61.3K 62.6K-10000

40 50 60 70 80 90 40 50 60 70 80 90Temperature IK] Temperature [K]

a) As received b) He IrradiatedFig. 5 Temperature dependences of the zero velocity y-ray counts for as received sample and the He

irradiated one after correcting the second order Doppler shift.

3-3. X SHiyTfctkl/Ei&SM

^m<D He miti^MLx, T/vTW't \'7g.nftfk\ix\'Z>frEiFig. 6 H@(fcc

SiS) <7)y L7)WJ5tL7k^oyt5)$, MB(bcc SiS)<D<x fcT-*7)5E$'j5iL7t. Fig. 7

12.s?At&o, xj&3 My<7)t(D jr-ScLfc.

tL-C, XB!sm> b ItEft (DfyiE/S* h 'O , -r/l/7"y-th>fvmmrn* xs'Vr- - wi/£$'J$l, ^(o^m^^tz. Fig. s^M-e^n-

%. do7*^y h) ^<0^yiM jcEsroBM^-igcLfc^, , ftimian 32T t * 0, xtikzn 2st~29T XK>±^ Lfc.

-115 —

As received

Irradiated

29 [deg]

Incident Angle:0|=4'

§ 600Incident Angle:@i=8'

U 200

Incident Angle:0|=12'

40 41 42 43 44 45 4620 [deg]

Fig.6 X-ray diffraction spectra for as received sample and the He irradiated one.

Fig. 7 Glancing angle X-ray diffraction spectrum for the He irradiated one.

1.0010

1.0005

.1

.3 i.ooooI=C 0.9995 H>

"5 0.9990 1

0.9985

0.9980-10 -8 -6 -4 -2 0 2 4 6 8 10

Velocity [mm/sec]

1.06

1.05

I 104|a i.o31 1.02

1100 .i i ]• i . y.f0.99 i 1-------1 * .•

-10 -8 -6 -4 -2 0 2 4 6 8 10Velocity [mm/sec]

, i

Fig. 8 Highly accumulated Mossbauer spectrum for Fig.9 Conversion electron MOssbauer spectrum for the He irradiated sample. the He irradiated sample.

3-4. menemm?-/

3-3 '9±% < tv, fcFig.9 Fig.9

'M^^SS'J5tL33. 2T t a-Fe MVv[fi£^L/t. Lfc^oT, He MW,t)L< L> y'ffr&'ifc [4] 9 L

—116 —

3-5. X/t^y-X^

HeEltttf>ie®£g:ltXV'SI®#«:§|£tU-ttMZ-, TRIM n-KJ:9 He (Dfttt tmUteMtc 6Z6, fRBht 1 n ra X'h'itc. 1 n m t LfctZ,

b£B5> (1 u mfrb 10 u m£X') <7>Mj&frh£, *R8#X^f87%-efc5

* 87% $T#L9|V'X^^. Fig. 8 (C 40K *3 ZfF 60Ktvv (H$) , F/wd 87% mm RTfZtib(D£(Dx^? hyu (imc<%%X&6a*, M/$v>Vj:v'*)(£>) £ Fig. 10 a),b)

H 0.8

Velocity [mm/sec]

> 0.7

-2 0 2 Velocity [mm/sec]

a) 40K b) 60KFig. 10 Mdssbauer spectra at 40 K(a) and 60K(b) for the He irradiated sample.

Fig. 10 frb, 40KXii*MM5|55>(7)^L5l^i-^Yc«l: 5tca,x, < £ X* He <D&m>mXX t fftjfr'ofc. 1

4

[1] A. Nakamura, T. Toriyama, T. Inamura and H. Iijima,Nucl. instr. and meth., B76 (1993) 48K. Umeda, Y. Obata, T. Toriyama, T. Inamura and H. Iijima,Hyperfme Interactions 49 (1991) 485

[2] N. Hayashi and I. Sakamoto, E. Johnson, L. Gr&baek, P. Borgesen, B. M. U. Scherzer, Hyperfme Interactions 42 (1988) 989

[3] N. Hayashi, I. Sakamoto, N. Kobayashi and E. Johnson,Nucli. Instr. and Meth. in Phys. Research B59/60 (1991) 897E. Johnson, L. Grabaek, A. Johansen, L. Sarholt-Kristensen, P. Borgesen,B. M. U. Scherzer, N. Hayashi and I. Sakamoto, Nucl. instr. and meth., B39 (1989) 567

[4] S. Nasu, private communication.G. Klingelhdfer, private communication.

—117 —

AFe 02(A=Li, Na) CO 5 7 Fe ^ X A' ^ 7-57pe Mossbauer Study of AFeC>2(A=Li, Na)

####, mmytmK #1,S. Tsutsui, S. Nasu, M. Tabuchii, O. Nakamurai and I. Matsubara1 ( Faculty of Engineering Science, Osaka Univ iOsaka National Research Institute)

l. l± C&t:

li t (DMityd'Ch 2> UM02 (M = Fe, Co, Ni^) (±NaClSlSit£W U g£SOtii:, uta®\±t- vwMom't&A##

umo2o#£bbSoS£Fig. oUMQ2<D~^imMt±a-LiFe02ES^ (Fig. l-(a)) £#o0 $fz> £;6&il.Ml±LiCo02

(a) (b) (c)

Fig. 1. Crystal structure of AFeOz (A = Li, Na)1,2>.(a) a-LiFeOz type(b) y-LiFeOz(c) a-NaFeOz type

-118

£LiNi02T (±Li <!: Co ^(±Ni^f TB^'J U

a-NaFe02MSiS (Fig. 1(c)) Xbha CL fib CL £ frb') TV

ycmmniEmtmt Lxmmztix&'o. cunl?^zcl£b Anderson<01£ ng L X V"1 h RVB (Resonating Valence Bond ^##%E#u'u'4X0) 3)<7)

M$lXIt & ^^ £ <D&&t &B 2fiTw6 WC&64,5-6>7)0— Jj, LiFe02CO&MJ.1Uffl (±LiCo02, LiNi02<7) «£ 9 & JittSitZWtzte V'y-LiFe02

(Fig. l-(b)) t%&o IfrLKtfb. $) 6 a-NaFe02gl!#]& #OLiFeQ21£7 K%vX£tz')o 2blZ^ Fe tfCo*?Ni\Z ft^ X£ffiXb 2> CL t fr b , MVi

Sit£3foLiFe02(± V f - 9 A C (c 6

T-1±S* <7)AFe02 H o v^ T57Fe^ X y <17 7 -M £ It v\ AFe02?)#KM#@ WSa iz:„

2.Kf4ti^:n:ec>Ba^bKi>o*i>bzfrtz\ K#(±6#m

<D£m^<Dy)i-'/i<zfti}btiz>o(I) /IifcJiag (cc-LiFe02iMM)

(i) a-LiFeOz Wlffl, alRM,

(ii) P-LiFe02 jE^jbei (c/a = l.Ol)

(iii) P*-LiFeOz iERMi (c/a =1.05)

(iv) y-LiFe02 MMiERm (c/a = 1.08)

GD M tRSil: (a-NaFe02m#m)

(i) a-NaFe02

(ii) Ii0.,Na0.2FeO2ttz, /gWSii£j$OAFe02<7) 0 ^(ii)tc^ LT(ia-NaFe02£*B^6£?££ffl v\ Na+<h

u+ £ 4 * y&Sk£ -£Tf£M$ ti/i *> (?)-e$> £0

7 7**77- (iiliS&'ClTV\ (iRh^t-i^E^tLZ-^Co^fflvVco

3.(I) 1 'WM& *Wtz%^AFe02 (a, (3, (3*, y-LiFe02)

<b K J: o Tfffc4> *Lfc$tffcSiJ5£5&' <b£T<7)f&|S|4~ &40-50K

iti&fc£-7 *Wb, 2blzMUf®XM<DV-7&&ffl$titz0 ^rO\d~ 7 ita-LiFe02X (±90 K, p-LiFeO2'C(±100K, p*-LiFeQ2f (±140K, y-LiFeO2-C(±300 K(C&\t'X&M2 Htz0

a-LFeOz> p-LiFeO,, p*-LiFe02R Zfy-L iFe02 O300K, 77KiZ£if Z> 7 7 *7 7 -7 *7

H^SrFig. 2, Fig. 3C^fo a-LiFe02, (3-LiFe02, (3*-LiFe02 C: £ V' T (iSzUTM'ttOE

—119 —

3^ 9HI

77

V* P^ 9+tv 21 r ?» d ^j#» r *# eu

d uL, O' ? 77

EEd ^<r r^iA 3r< v

II

>iV/*

33fl)

R$ ^

3>4>.VI­

ST3x-nH-

&$77KPr >+ # 3n>h' B ** F?

#0

2?O

z63a?pr

9?1

a °vP rvc ^ vP (V 779^077

rr%

-6-to£776S:-?&*-HS3S

<?-a?|m3MMhiMM3EBX774%0dti­esHePr<Or

3% . W|S 77 \P tfr d <+ tvt>4 9%V

0

77

rr PO. I

-B-°

ijs#

|eW9+afgm3MMhiMM3>+

nK

77! at0# r<

2" <p<h 3tf1- 8?3 Me d ^& vP

y

rrStSa

V ft}|ni d

f%%

eu ^r 77 d 34 5 w

fri Sr< r< 3 rr fv rr.

Xf i

d34yx(lS

w

X

tf*- y.a s ^vP vP 94- id- id- <>Pr Pr d9h »7V r\«0 0 d

>4 *ft. H V &d

meh ^ f< H

Sin > % xn#1

W>1 ^ S1S5$ b!r 77 5 tfr d 5 dj %B 2

OOLAH

o #m #X ^ 41

ii!#» T-1 md %S|7

A vp 73d d % ^ 77 ^

s> Cp

94-

<r77>4

AVj-

6'~oH

r <

^ 3

I«i4m O' ^vP 3 bhdp 77 g %0 S ^

3 vP# % ° X w

^ ^ 77 d d "M- y #

W77

to

Relative Transmission

a

m

d A Vloo o tt » H

H

W-rd

g*g“® ^ 3 F $ W- o S 3 ^ d , m dgs*ss

i |si|11 £ 1

n

*?sil d d

f

Ҥ

94- cf- # jEH 9^

1d

O'

#d<r

<Vc

d

8jo#a

r<a>4

>.

94-

Xi5-vJ>

O*

a ^

1!m

i■%-. a>

(TOVtM3149-rv>n-j

tod94-d»a

# »% (nfr

£ s Sa ^ 4 S ^

n £ 3Ssi®Sir ~ 3®

d * !Z5 Ev ^ 5

94- ^ ►v >5

a w i@ # #54. s: rv r- r*

o 5 ^

1? #t a m i® C" f$

94*=o

m£4-✓430)B

ax>.

Vd

Relative Transmission

Relative Transmission

£ $ d Ork> |M ^ ^ ^ H PI s 31 31 danc'd-

si tfr d a15 I i ^2 ^ d d* JJ* nfr 41 ° -$ ^ tr w s

£ s ffl a fi

1 % \r ^ $ 5 )i9 77 .(.m S

o?»

K ^ s- »Xi '

d

E 5111uni

EE

N>a

d<3- y

<tt 4x

d W^ aI

to ^

7? 31te rM-69 r< rr n1-le a si P

^ ^3 ^ M rxa a n> d m b & ^^ Vjtr rye t>4 S 7* r<

. £ ftI* *

S' to 4,vjv - a

If?in# d |fn

a ^ piS o- 54. Z ' to

■Nsss #

II

g;^~ f<III

<5 r< g

g a ad tfv ^

d ^ Vj- 77 9d -7* 3 0^

U k Na £<£>&<> <7) & <7) THi, 0 Ifrl, Z <7)%mi 2 3 4 5 6 7 8 9 10P?'20Kk 10K<7)

ktmg. 5& *>&&£*$ n. mvtm&

a-NaFe02<7)^tS^:lKS* k-&LX^Z>0 ffl$J K J: o iifzmmfefr ^Uo,Nao2FG02^#%$E#i&%U20 KT*#) 0 , ^t £k titf—

|i:Ltv^0

4. £ hZ 9 ##$ fb /:#Xr (7)AFe02 (A = Li, Na) o ^T57Fe> * J-fr%

to li k Fe * fl rti&m $: K E £0 L^: ^ a-LiFe02 E 0 LiFe02

a-LiFe02, (3-LiFe02^ p*-LiFe02, y-LiFeO, k J# 6 (0C & t ^ c <&& £ 4.2K-e<7)TO^i5M^±iint^- £„ ifc, %;i/* VA

M (Li&t/Na) kFe^ttirtl&WE £01/>:AFe02Tt±cc-LiFe02E^ It ^-fg;V\ 10-20

k $ t, *i & i t« b fr k & o tz o e: ti t <n z k fr t,, LiNiO^-e$fLTv^6 j: ^ && 9#

1. A. R. West, p.241, Wiley(1984), "Solid State Chemistry and its Applications".

2. T. A. Hewton and B. L. Chamberland, J. Solid Chem., 65, 100 (1986).

3. P. W. Anderson, Mat. Res. Bull., 8, 153 (1973).

4. G. Filoti, M. Rosenberg, R. J. Zhou, S. Kemmler-Sack and V. Klein, Hyperfine Interact. 85,

548 (1994).

5. M. Rosenberg, P. Stelmaszyk, V. Klein, S. Kemmler and G. Filoti, J. Appl. Phys. 75, 6813

(1994).

6. H. Yoshizawa, H. Mori, K. Hirotaand M. Ishikawa, J. Phys. Soc. J.,59, 2631 (1990).

7. J. P. Kemp, P. A. Cox and J. W. Hodby, J. Phys.:condens. Matter, 2, 6699 (1990).

8. T. Shirane, R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama, and F. Izumi,

Solid State Ionics,7 9, 227 (1995).

9. M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama and O. Nakamura, Solid State

Ionics, 79, 220(1995).

10. T. Ichida, T. Shinjo, Y. Bando and T. Takeda, J. Phys. Soc. Japan, 2 9, 795 (1970).

—122 —

Au-TM'a^(TM=Fe, Co, Ni) (D197 Au X X/t^7197Au Mossbauer Study of Au-TM(TM=Fe, Co, Ni) Alloys

fluEB #1Y. Kobayashi, S. Nasu and Yu. Maedai ( Faculty of Engineering Science, Osaka Univ. iResearch Reactor Institute, Kyoto Univ.)

1. itA#T * & Au # OFe, Co, Ni£ < fr b & $ flX V'* 0 #

AtfAuFe^AUFe#mt:##LT^*%t:#m%^% LT&kK0, f

<7)5Jf%tim^< ^$tvcv^0 L ^ L4- 5 X t: 5- tiT e%(7) ti h A ^ t*E14ET

tt:&g

tmu$n^< &v'„ -a, <ht se s k

zc-cgiztL&znyfrmLtz

*ot:tx &gu-cw^t:z3

M-%tiAutt<d-£&^-c<d

AuOtt^ £197Au^ XA? 7TlA v^j^lEHt: £> fc o T<DTh h 0

2.,97Au^ x/x*^ 7-^MM<7)«t:tj:,96Pt^SO^oSIbLZzPt^Mfl^EX-^F (KUR) "C

l96Pt(n,7)197Pt®t«l/:Pttl^«1,7Pt^w/:o £OiiMti^$18

B#F5*ep"^SU = i/20197Au<7)®]|a^St: & & D ^ Km = 3/2ommt#t:i&t> 6 & #t:

377.345 keVO y Wl£ > X A £ 7 - y l& 11 & o £ (±Ml3# t: Jn 1

-C#J11% OE23#t & * 08SE Oj## L Ltz*s<? h ;Wi8o tf) kf -L7^L®taW£<7)^rm.9 b < 55

£izfrUL/z\'-? zmmt&z ti±®M-?&2>o '97Au> %/<"> %f 9 -r ^

94 SJj^fMt±SzEs lit# & & AuNi^Ar (±16 K, AuFe, AuCo^A

-etill Ktib^o R v X7-ilj$O^Xtia-Fe(7)57Fe> X/<-77-X^ WM't>^0£0 i/«:197Au^ Ts/^^r-Ts^ b L^o &AK#(±^

"em#£L, K#t±xmi3!fft:Z OM-C&a:: &&W2Lto

—123 —

2 $ 9> > 64 3 At vP % dm At H 0 r^ 9-r >.4 a B rv # V% 9d O% M. 4 zttiC 3 M d' <r*S R* -r9-r a >v » 9-r id 0

M Vyx vs f70 3i 6< 0 d< SfF 3m s

sA3ff rv. 3 rv d Fit

% -X # )ii 1 d Atr V }*' vr B rv 64 %d M & < HI 3 S 3 rv v>V4-<r yx "4 «—» Fi 3 % V f6>rv

rvtf“-

1X'

M4

Ci-O

m$fcd-13Vj-^4-#

y- 9+E

rv vl 4- 9+ n 3 Pa i#t% [5 r v -r 0 # s W fU 4tt-dtx

94-ipvP

33MJX

rvmCTSo

§94-

fm

S

<•

bt

S3Vr

d-dtJtr

gno d" TTTv*. i^

2 3 3 d o 9-rfvSM

9d<rrv

<^4-#3>4

0

rd3CLM9-r

rv.1

Vf

nSX

sXM

rv3

64cf-3v>V4-

rrvd >.

VJ-3#

0

d9-ro

MA

41

9-rvj'

dS'-

a?*

vP ~T“r

B# IS

$cf-4

1X'

Vvl

nim

64iF

% p*v 3 0* l& vS ~r 4 n>VOL/i 9-r 4 % ~r rv # %s # A At r

f> d & @ %9^- $| I^V z 3 uZO2S # <r

« [g Sa # o rv. t=ha rtv 4 5d-CL 94- 4 d- 1 4 s y

4t fr> o d- 04 0 rv3TlV ht rv rv 00 3 id a0>MV 4 V V 2 bt n> 3 % StR£ 4 % n C/D

H % 09-4-ct“ d 9-r M, 4 3 B V 94-i £ w o a aw m $ 9+ x# 4 6< M- ✓X B 3 <j^$r M 0 aw Mi 9^ iF H

L^-^

yyL '

1 ^W

#m9g

W^#

:inm

o)%

#^

-XyL

inm

^m®

°4-^

34H

^^y-

Z4K

% <

"V,«

,0^3

jnV

^#m

#^"V

:U g]

*e197Au> xvt 7 7-x^ 7 b ;i/

bittedo zzfrb$i£>tz

¥%W74 W - v 7 b , MSBB#<7)Fe#

El:#f ^Eik^l2l2K^fo 7 4 V-?- 77 b,TESto^iijjaLTv^ ^,97Au7 X/t 7 7~X ^7 b IE

^ffi^T'f V7->7 b OEIbtiW^ET

AuKJt^

V^Fe(7)#jg^i#tQf 6 C t

iu»), Au<7)W£E-e<7)ss7^±tfin

f H 2 (c)tc

iliM* h tic v4&P3c#(7)a#%N\&^ K6o

EKZ 9 E7^)£

** i? *>*/* $ < i: 9 ^teg-eoETWEriLk# < icckE#l^fL^.

Fe-lat%Au T Ij0.996

-10 0 10VELOCITY v/mms1

Fig. 3 197Au MOssbauer spectra of AuFe, AuCo

and AuNi dilute alloys.

H3KNi,Fe,Co*H#?iK:[IE§Lk197AuCD7XA77-X^7 b Ni, Co lit

t Felibcc^UrT &>2>0 4E- X ^ 7 b b A'Sr/F

LTfc 9, j: ? E A/E'#%LTv^v^ E MM^^IifiFe4,^AuT*I26T, Co*^)AuT86 T, Ni*(7Au T29 TT*6o <T <D^ li&'M

*/: 9 > b <D7z% 2

4. $ tub

Aua%m%3#^#^)^, # t: AuFe'B-i; ^ o v* TJa v^JES&gB ^t>tz^ T 197AuX X '<7 Zio AuFe^-#TUFe(7)^E^)#AnE & tjJHU 7^f 7 "7-77 b 6o 197AuX X/<7 7-^T*(±E^f6]

(D74 7 "7-77 b tiSISST 7) E7-SEcO±i*n £• &M L, C: Z 9,n.=^<D &i>* 9 *>7* $ < i: o /z fz *6 £ E # A b it & a Ni, Fe, Co* K ## £197Au <D

&i)&im?&k o -7 > bo*# 21:#mm

t&o

1) ^Ul— "X L'7f'7X" (*#, 1991)

2) R. A. Brand "Habilitationsschrift" (Duisbrg, 1998)

3) J. G. Stevens and V. E. Stevens "Mossbauer Effect Data Index 1974" (New York, 1975)

—125 —

^nyxA'f bS$-S-S^«®#;CS2AulAumX6(X-Cl, I)©WiSSlOTAuXXA’^T-^j'e

Single Crystal 197Au Mossbauer Spectroscopy of Gold Mixed Valence Compounds Cs2AuiAuWX6 (X=C1, I)

/hSS51> SF m,N. Kojima,, M Setoi and Yu. Maedai ( College of Arts and Sciences, Univ. of Tokyo)

1 Research Reactor Institute, Kyoto Univ.)

i. ta u * cA* mu-by?- (A'^-?Dy) #

b iittE #-7uy<Dmmiz£2>Mfcmv:m<DM&*mwznzKt\ mmiz

;\oys 2 a U2x6 (x = citBr,n i:tsu a=-3 T# /c. #iC C s 2 A u 2 I eU&t/MTx A ufbA#

-cia@A-c#^Au"mfau'^'-au11®? I® is & ** & -r a ff * o fg m x a u jm=f ffi <d fffi m m\ z m ® t a ^ © t> n a m m m m & % suif:o '-4) cmd:^i:, c s2Au2XGia;%gT?#i*8gum#^^T^x ~ne>

acia -au'-x-au1" - #mc3^T#u#accs2au2x6®i9,a ua?cku'1291 ?(/>x 6 Z k frXZtz*

a za?x a:

0 & C £ftr*g&fz #x A u - XOYk#MA(:Mf

ai##&#ac a^rga. x ta> Au^^yiasr, E*§2E{5c>M:5M&gH *y£BETa«, SS2Efi^EI5BS^rS^ft:5-ti-aEmt LX AuJ X y<7)^j5EHl)l (5 d 6 s igfi£i£ feta 6 s 6 p'Mf$) m^ha« 5 d6 sg^rnmAx 5 dHiiit- hole ^-e#a/cAmA#F[a]om#^Eci##(aiE(:^ a. -F 6 8 6 p#R%o#Ax Ef6?^e,0o#^l: j: 0MA#^lS]O%l#^Eiami: &a. zntx\ kau (c n) 2ica>,ua^Al6^n6]o®St7)^-^tamT'$>a ^ t »*s LBa,97Au ? «h 0 nx A u !cdHy ayff^iui 5 s 6 pSEWi

Ea^EW'c&a t-znxzfzo -f Auia#^m*#M#mi:«k o s d - 6 s#tmm</hd <4oTi9, s d 6 s#gE**^EM?&a^^a#%#t

#<x ll*£5 d 6 silfiKi: 6 s 6 pM0if^Ii/'T^ao

126 —

4® a u % friz %\j zmmttfti&znz zt zswk it, #*ea

C S 2 A u2 Xe ( X = C 1 , I) 60197 A u ^ XA 9 *3 fe. 5 ’ <T Fi g . 1 l=^?<k -5 D. [Au‘X2] '. [Au,[r X<] '

t fc—ttttofS-i’ * >-e* 5.

■ **«ll

o Au• Au1

F i g. 1 Crystal Structure of C saAuzXs

2. mm197 A u* Xn+)T-ft%m<!mW.lZ-\*, 19 6 P t ( n, y ) ,97P t ©«RiE£«k 0 ISM

L/i,97P t BP*k 9 8 %i*2g^Lfe,96P t (7)fU^^£EIilf1 ifiow!iJitT',97ptis,pt*i,9,Au0igtt

me1 8nmT&a%*x *mLM%mm*>\zMxmz?pmmme>*

XrtVT- ftftmiZgkW.£ ffl (A TSJ jt £fr o fz. iHiJSSSti 1 6 K"C*&.r c S 2a u2Xs ( x = c 1, i)

3. mm&^t^mC s2Au2 I efccfct^C s2Au2C le(D197Au^XA'’i7T — A-*? hJU&F i g . 2 #

=fc F i g. 3i:^to 197 A u<Dmm& ( I (3/2)- I (1/2) ) i:il, (M

1) (e2) tm^^x^srzsb, ®0*:F^si:j:»)dsufe2*©e-^©3fiiSlttt. 1 jEST'ihSLKESi: E 2 L

1 iBi^CJ:D^IIL,fc2*Ok-^0®flEJttt, I (±3/2-*±l/2)/I (±1/2-± 1/2) = 3 ( 1 + c o s 2 6 )/ (5 — 3cos20) E 2 I (±3/2-*±l/2)

/ I (±1/2 -* ±1/2) = (5-3cos20)/3 ( 1 + c o s 2 0 ) ’

c? 0 ttcmt rm<D XtttU fat (Dft&r&z* M l a^i:E2l^fii;ort'S«^ 2*<7) tr-f na=

—127 —

Tra

nsm

issio

n

1 (±3/2 -> ±1/2) / I (±1/2 ±1/2) =

2 ( •fT' + S ) 2 - 3 ( 1 + 2 lZ3"5 - 5 2) s i n2 0

2(1 - VTd ) 2 + 3(1 + 2 /3* 5- 52) s i n 2 0 (1)

0.990

Velocity (mm/s)

Fig.2 Single Crystal 197 Au Mossbauer

Spectra of CsaAua Ie at 1 6K.

Velocity (mm/s)

Fig.3 Single Crystal197 Au Mossbauer Spectra of CsaAuaC le at 1 6 K.

—128 —

F i g. 2.3 £ -5IC, Au,fe«kyAu1,IODl»)0M^ECl?ttt5t'(=m=%?TL'5. E 2 9 ^rSSLfclfStC J: Ox Au'fe^Au"'®®!)

®«#«3Eo^ti-€-njpna*«fct;iH*C*Sii:**W*»i:4ofe. C<0 " k m#2EtiZO [ A u ! X 2 ] ¥S4E{5(7) [Au"'X4] -«-f * VOJ&fltKfclAT,Auffl6 pHLiUtffigfc&il&lifc l/Tt'5 Z fzo

1) N. Kojima, H. Kitagawa, T. Ban, F. Amita and M. Nakahara, Solid State

Commun. 73, 743 (1990).

2) H. Kitagawa, H. Sato, N. Kojima, T. Kikegawa and 0. Shimomura, Solid

State Commun. 78, 989 (1991).

3) S.S. Hafner, N. Kojima, J. Stanek and Li Zhang, Phys. Lett. A192,385 (1994).

4) N. Kojima, M. Hasegawa, H. Kitagawa, T. Kikegawa and 0. Shimomura.

J. Am. Chem. Soc. 116, 11368 (1994).

5) N. Kojima, M. Seto and Yu Maeda, Proc. Int. Conf. Applications of the Mossbauer Effect (Rimini, 1995) in press.

129 —

a®fRIPS^6©S7Mntf-ASfflV»S57Fe^^A^r-»316j£Mossbauer Spectroscopy of 5?Fe Using a 57Mn Beam from RIPS of RIKEN

m mF. Am be(The Institute of Physical and Chemical Research(RIKEN))

>vESrESiJt*5^f>H-A^X;X^7—?i&<D2.XDXnt?yZU

w)tomm*mm<DmzfLz'r~)]s<Dmm&i\:<DWt. mmmota^huyxx^TcDx

IW^<hLT, #&T:B(D3@#CD<>t:-AmiCj;6"Fe^XXAC77-^(D#^

1) X-D>E)©$n^57Fe*^«<hf^E^

2) (d,p) KST£l&T357Fe*£SM<bT5ef^3) 57MntX-A£m>5W5

(57Fe* «57Fe (D®)E'-KS^^T)X-5IC, vi'rn%s^w(c«57Fe©d'>if-

Coulomb Excitation & recoil implantation

(d, p) reaction 1-2 ns

Fig. 1 Experimental setup of three kinds of in-beam 57Fe Moss­

bauer spectroscopy at RIKEN.

PPAC stands for parallel plate

avalanche counter (See Fig. 2).

driver

driver

130 —

AtZrt'yr-ftftT&r), #(;:$iJ/£©tfT>F<h&5

©«> McMn<Djiy'7'yy'y>F<D^mf%-eM^s/'N&zmm'v&z>&mj3>'?i&<D

#m§§T& 0 . 77M7SbmzmiTZ PPAC (ParallelPlate Avalanche Counter) LTV>5(02).% 6 n^c57FeSEX t- > 1/X fgT*Rl®iR $ *1, 57Fe % if 3 <h

(4mm)

T >-/

Fig. 2 Parallel plate avalanche counter. The counter gas is isobutane.

7 d >sfog£nfc57Fe£i$M<hT5#ma/<ui'u y<b)\-y F7-emmx,

^E, Sielemann £ lei «9 F >J y 27lZ-O^X<D®f9£T£< ©fifcHjWtff>nx5j5TVis^, a9fc$3v^xiim?©s;t f

U y^A(:'OV^T©^#A^A^'- F LTV^.(d,p) M^xe^T6'7Fe^mm^T&^Tll, e^T6"7Fe^o^%%4;;Ff -

F^##m4cmAT6c<u;mmT&6:K si/mitmwsT,

^m^^-^vFlCCWT©#^, /\->-X<Ff- Fc>'V F^;FF©7v^%y9>^Am#f^t)^A/h#R#!%<hL

T#m$aTV^6. 031:#^,^%^^ F;F(Dm$:^T.

Backgrounds 342.95554

Velocity (m^s]

Fig. 3 A Mossbauer spectrum of 57Fe after the (d,p) reac­tion in metallic iron at room temperature. The unit of ordinate is count.

57Mnb'-A£JBV>5^BTki:, Wffi') 7 □ F □ >TMIbfc59Co (80MeV/u) ©yDyx^^^jV77^>f^ '>3 > (-2p)Te^T§57Mn (T1/2=1.45 min)£ RIPS (RIKEN Projectile-Fragment Separator, 0 4) (CcFcX#©^U

—131 —

01 ID 2 dipole magncis Q1 • Q12 Quack upote magnet! SX1 SX4 Mitupote magnett

Fig. 4 RIKEN Projectile-frag­ment Separator (RIPS).

12.00

18.00

.00-

2.08

0.00

-12 ' -10Velocity Imm/k1

Fig. 5 A Mossbauer spectrum of 57Fe arising from 57Mn im­planted in an Si wafer at room temperature. The unit of ordinate is count. Both the data and fitting are pre­liminary ones.

T%. ^#«hLT#$500^m(7)vU3>C7%/\-

pure-Ge####Bg§

T&a#» '7Fe$r< b

t&iOX$>Z) : ^BS. fr¥S-> ¥JH-£ (## B

bma #B ###. mmm. mm^A, wi^, ###, smiE

—132 —

6iNi Mossbauer Study of Giant Hyperfine Magnetic Field in Spinel Oxides

mwk 2

EEUFiti-i, imnWK SGrZR#!Y. Noro, T. Okadai, Y. Kobayashii, H. Kitazawa2 and F. Ambei(Image and Media System Laboratory, Hitachi Co.iThe Institute of Physical and Chemical Research(RIKEN)^National Research Institute for Metals)

1. K U A C4Eti<7) Ni2+fct*E#C* 2 fcmSiEtSIlBEiS £ Wf 5, @#mE#(7)*# <* £ 1 0 IziEMlk

bz&mtz t&$;<n'm®£mizib® l loecav '#c » 5 0

Z(7)B*»^@BE#(7)#^W:K)R#Cd: 0 (i ti/c[l]0 NiCr A'+’ONi <7)I*3§BEiSti: 450k0e T, *<7)I®U: NiFeA’t'O 6E& (B ■tf-f h) <7)N1 OfigBEiSOft lOOkOe <D 4-£LLh<7) ±ZZZtbr>tzQ coring 4E1£01ftg0 Ni2+Ogg#L£$fiiIA)I

e^'7i,££lSL/c[2,3]0Love jsJztfObenshain (iNiFe A-NiCr A%<7)* t T—&ffu\ NiCr1.5Feo.5CkCAV'TM 600kOe <7)F*3gBEiS^##1L/c[4]0 C 5#mcd:Vc#aamohk ( c/a ) Af0.99CISM^ LTi'3 £318l<* nTu-5 [5,6], ChSOm#

LA'L, Giitlich #W:C(7)f f VI/(:# U^m U t [7], ##(£, 5SESO NlCrA*<7) Ni2+<7)rtSBE iSC^^5^W6)BiJ5£L, tom#&Bertaut(7)*% U tNiCr2Ck<7)ER#m11aC##fLt#**##%#*?** a*a*u&. ±150

EC, NiCr A t !W<7)i£||fS&tbo NiRh AT t>* OrtSBEiSliM' <* i' &a 9$g#AfZfiTL'a[8], NiRhA« 15KC*-;i^£&0&5iEte#:T** 0 [9], 1Y^>"E 5*J\,U.Z

*zz, m*f*}&m®<n>dt®*wz>t>Hztzmigauc, wm4m&m2+<n*zt tbtco *kmanE&f#<7)m*c«kv^ctc*eu,^7H7pv/ f*<7) ni <Dft&m®tmM,w*<r>t&mi%mtoizmfetsz ttbtz0 c/a >1 o nicy a£ ## <t L, c/a< 1 CO Cuo.9Nio.1Cr201 £<£1/ c/a= 1 (7) COb.9Nio.1CrA, Mn0.9Nio.jCrA, Zn0.9Cr2Qt * <£ t>*Nl^CuAA%<7)E%£ ff o T1' -5 „ CU0.9Ni0.jCrAO BOOkOe (7)m±»^SBEtScO'HS^&

c/a=i(7)Km<7)m^m#&$g#f^11 t>c, cti*?*S6n

f(7)#@*. rtM*!7)* # ? tSSiDI^tc/ajailcSitl: L feJrtf/htf'lftitAMliSS® (7)l^SBESTE^bti^5ztim^mz*-?tzo mcm§BEm<7)##OMm, NIRhZOt <7)R9ecBILTt> mmtZo

-133-

2. ms&m2.1 mvmiim

Lt. CoO,NiO,Cr A fc £ <7)JmWS£, ESSfflSi

f MtmcaiEfka titewcmm moorc~ 1300*0 -?2bfsmmu*:o ft 6 <7)imit *kf * JUStET' * a S»f$18S £ ft fc0 *SlliE<fr fcSTSSilSilti: (c/a) lilt 1 M#(i±T7%V«*&U*-fo ztx6<7)^-;u-Z®5Wllcmic^U/co

2.2 y ^/x'I/T-SE61Cu(-61Ni)iBZti 58Ni(«,p) 61Cu ft.fctf 58Ni(a,n) 61Zn-»61Cu (7)#Sl8?fmaft&o Ni-V

RIKEN AVF 1M?n M3><7)2 5MeV (7)a%f ? f <7)%T>%-;U#f Cf <D

Y ;v f - li 67eV * <7) T*') a < )V u aft% £ £ < m a tc toWM t tt# * ^ 0 ^ V 0

XZXtT-#** ( Wissel*±$!) liSAt- KT'OT)5ft/co

#Sft/=%^i7 (FACOMF-1800) TWrUt.

3.Mn0.9Ni0.1Cr2Qt,Zno.9Cr2a. Cob.9Ni0.1CrA,Cu0.9Nio.iCrA<7)7< T.i^T-7,^'7 h)U£Hi 1 0

Ni %<7)*g##ft j:(f^ if > It -( ft f

ft 3/2, 5/2 * <7) T' * ^ 0 F 7 A (il*)@E#<7)R#?

12*#kT-?C*5M-a. @ 1 <7)SSmii 12

ic-smu/c^t F ;F 6: 0 W:4#FvA/PSREaza/fb**. H143

j: u12*<7)bf-?£^31U/c&<7)-?, 7 -1- '7 7- -f >7<7)3Smtiiljt 0 ^UXT-^S-T'15 t><7)T'&a0 3

F7Ali'Jx3fci*9®Si&*5-?iatf,

zfutB-tK F(DNic.ta&oamagzh&oZfie

<T)ZS«7 F7A&##UT#6ftt^%E*<7)#tmltC$k«>T^U/co c(04>T'CUo.9Nio.1CrA<7)1*3®

E1§ SOOkOe l m& tT'lcSgSSft t Niz+(7)A®ES

<7)S<7)7^s*T'*a0 m 1 ckmmtax^A#*ik%*(7) Niz+<7)^®E##(7)m & RUSC^ L t. Z

<7)E»‘ 6 JiTFco c a /m#? # a 0(1) A-y-Y F<7)Ni ommWttB iM F<7)Ni (7)1*9

(2) A 1H K7) Ni <7)|*3®ESirSB r a £• EMESZS^<7)4g|l9(iiSuv

• SSS<7)H*$Er c/a fc<7)tBIW$au

MnCr204390 kOe

ZnCr20451 0 kOe

CoCr204530 kOe

CuCr204800 kOe

~*v 0 20 VELOCITY (MM/SEC)

Figl 6lNi Mossbauer spectrum of various spinel oxides

at 5K

134 —

o) rtwo»fcc/atB2icMLTjrcTo zKbttw*ZZX\ ti5 c/a-1 CftJfcT* Cob,9Nio.1Cr2Q,ll<7)SF<7)m

samples IHYl(kOe) c/a %(K)

CuCr204 800 0.92 130NiFe0^Cr13O4* 631 0.99 370CoCr204 540 1.00 100ZnCr204 510 1.00 12MnCr204 390 1.00 43NJPe0 i5Cr i£s04* 506 1.02 170NiCr^04 450 1.04 80

* J. C. Love and F. E. Obenshain; Reference*

Table 1 Magnetic hyperfme field (Hv), Curie

Temperature(Qc) and ratio os lattice parameter (c/a) in

various spinel oxides

x=0.15

Fig 2 da dependence of the hyperfine magnetic field of

Ni2+ ions in the A-sites of the spinel oxides

4. <fc 5

Wi+mz kf > Fermi H (JJf) , ^ (ff^){hl ) emtbxs-xbhz,,

H = Hp + Hdipale + Hp .................................................................. (1)m 1 m ^1 u #- 100kG6 S. NiFe2Q,<7)B 1H H7)f*l$BiSli;:<7)W±E@T'S^^t*fs<»e>fiTux50 #2m, maim B2H, E3li(l*(7)<j:ot^xe>*L5[10,11]0

- fty/3<l/r3)3rf(-l/21)x[L(L + l)IS-3/2(LI)(LS)-3/2(LSXLI)] ... (2)

x2P(1^3>«LI .................................................................................................... (3)

zhb(Dm<r>*$£Zfim>ztc&, Ni2+ <7)-A6«jnas[$^sb5o Nv^am^&ra/'S/l h~T>&

^ ™ ^o^^aibfc^^spto-orWr^'^ief^'tievdiange *************** (4)

—135 —

aSK*><rySm<F> Ni2+(3d8) ii 3FtfW?&ZoZ(vmbk) CckummcD 1

mm (A2g> 12 o(7) 3sm (t1u,t28) t,

Bf < H7) Ni2+(i lMiMr*&5Z>lZttL AVI h <7) nf+ot3mm?*&,z <D##

tTlftC t^z&o T3EC4

m+Zo zofa+zm 2 IZTikbtzo c/a>l <r> NiCr2C4 Ni #&&#&# lliT**), Gtiling l± 2(OtkS£S&ttBfc UT 1*3SEES**

Cubic Held Spin-orbit Tetragonal fieldInteraction (with no spin-orb It

Interaction)

thtzo c/a>1^3j:(/c/a<l^awm?3

SUlif* U£TluUTztMtzmtf

&Zo

c/a=1 c/a>1 c/a<1

(a) (b)Fig3 Energy diagram of Ni2*

Tlu(7)ycSU:W®AZlbaL*=l ( a (4-3/2) nvmtLxmmmT'&z [i2]0 *&&&#c/a>1 »6c/a<i

$^Tlu<7)^sf ctDmtcMUTE^brsfc#), j*=l*+s <7)mm&?smT

to SE«st*j*=oT&^0 r/<-ac_bH(D8mm nmm-ftm#.zt#*E

u a) , (3)

»v=-1, Sy=1> ILZW=Q Sg=0> ILZ*#1, Sg=-1>

exchange X Xfield -l*BHeff 0 +MBHeff

distortion X X X(c/a>1) +IDI -2IDI +IDI

distortion X X X(c/a<1) -IDI +2ID1 -IDI

<Lz> 3/2 0 -3/2

xy-piane *

xy-pfane

Distortion ratio

Table 2 Effects of the exdiange field and the ligand distortion on

the ground state and their diagonal matrix elements Fig4 Theoretical Evaluation of the relation

between Hyperfine field and ligand distortion

n-g^maiiSB&u rfe&mzm 2 tc^r0 SEt*#ESfriiAfBi&i*JL * - ttS4><7)IL*=l,Sz=-l> ;i3l?S£^UTu'50ff!l;U;£, NiCr204 <D <fc 9 fc c/a >1

w L*,=o<Dw#&L , l*z=cb 1 z =<&v, 2fU:^U, c/a<l(7)iS^,

3*mammcf#mu, Lz(D^B<7)st)*#»iL*=i,sz=-i>yes$M<brd0

i*jv*-*xb?(omelet u,

^ t u T a A mm# # 6±ue**#&m#(7)±@ <* t^At.l*WL&Aillfc$<7)iitcti:S$U8t#<7) 1 t'^fritzo ZtitiCkiji *$ J:t>’Kanamori ftf Fe2Wd6gi:- abti'So <esx>y-ju) tEZSEti^ji<7)/N-7A<-5(7)HE^@4ic^fo F*3BBES<7)g*1iaii lOOOkOefi/tlector5o c/a<l, c/a>l CMf6L7c#, cMtP§%®t

Sau*rmJ<7)*l£S5o

s. mwamo##Efi^jSSHA' B^A/c^m (IH4) KBRf-* (112) fc6<-StT30

MnCr A<7)$!l$eU;BSA' 'hZi'i&Z tZ0 ZfiW MnCr2Q,(7)X 0 V ^-BmtSiE^IUBSUMn <7) X £ >(7)^iS]lim@±* @I96Dic${bUV zl-t8iE£BSiT50 2<7)/cA, %

bf><7)Z[5]ttcm=t:U3t^±AfofcZlfinc|S]vNTi,'5„ MnCrzO^tT) Ni <7)2 t> c @A' e>35:S±»f V * <7)*am® 3 6 TO £ ft 5 <£ 9 ICMf&JfflEii li/JvS < ft o T t' i h <7) t MM <* ft S «

^Hl<7)i^m(i Gutlich (7)$I^^^U®^(7)[5]^(*^.xrv*V'0 UA'U, Gutlich <7)*aitt± mUTL'6 j:91:NiCrzQ,(7)E%#a m%E<kZA) CSKftfcfSo k f &Bertaut*$(7)Emtmii, »»WMU:*jrf**4:<, KWjA (7) 6%fflt£ BET 5 <£ ?30 Bertaut <7)E*l8S&<7)£S6U}fe£<7) t, t tta-otz Prince (D9- TPj&ITf 3#W& 3h#x30

NiRh2(*<BM»7)#<> fl-attfTofclWOttlSiaiJfee*^ NiRh2Qt<7)S5SEte£$tBiassed-2 ZV&IZMB UE£f£*tt?iait«froTi.'So 2(7)%

Ht±Rh3*Afte*^>MT'£iBH4'f *>t:£oTl'5£AEtt<Ni2+<7)*T'fc3„ EMM^W A im K7)Nim±AfBD-'f h<7)Rh3+ $E6ut:<kuator3„ %??, '>m<7)B 1M H^(7) Ni < T>(7)#%(: j: o T. t><Dt&frtiS0

e. sais*e*7uss*□ v< h+<&Ni2+c7)^gBEisa£*2x177*-**$**&«fctfEttfasi*

#t# l: j: V L kiT(7)$a# ^ t o1) Ni2*<7)mmEaaeam*(7)mi:ii#m(7)NH$#f#%fto

c/a AfBfc/h5 £ Cu0.9Ni0.1Cr2QtT'S*(7)F63gl$Ea ; SOOkOe £5-x3„2) ±IB<7)HS[S]ti^gBEa*fllLBAEi!iS(cEiar5^(7)h VTSiB^^tiSo

3) ^«<7)wh : ±:B«7)^m(7)#(7)*?m@ma(7)^4<7)ma, NUU1204<7)/j\<*£ AgBEacofsiMiis?-;*

3ftfci\ 4-%2ft5(7)ma&#i,L'«jikA'6#^&iioTe#tv\

—137 —

[1] H. Sekizawa, T. Okada, S. Okamoto and F. Ambe, J. de Physique 3 2 (1971) Cl-326.

[2] J. GOring, Z. Naturforsh. A26 (1971) 1929.[3] J. GOring, W. Wurtinger and R. Link, J. Appl. Phys. 49 (1978) 269.[4] J. C. Love and F. E. Obenshain, AIP Conf. Proc. 18 (1973) 513.[5] J. B. Goodenough, J. Phys. Soc. Jpn., 17, Supp. B-l (1962) 185.[6] T. R. McGuire and S. W. Greenwald, Proc. Intern. Conf. Solid State Physics, Vol. 3,

Brussels 1958 (Academic Press, New York, 1960).[7] P. Gutlich, H. Rummel and H. Spiering, J. de Physique, 41 (1980) Cl-185.[8] P.Gtitlich, K.M.Hasselbach, H.Rummel, and H.Spiering, J. Chem. Phys. 81(1984)

396.[9] G. Blasse, Philips Res. Rep. 18 (1963), 383[10] A. Okiji and J. Kanamori, J. Phys. Soc. Jpn., 19 (1964) 908.[11] F.Hartmann-Boutron and P.Imbert, J. Appl. Phys. 39(1968) 775

[12] Abragam and Bleaney, “Electron Paramagnetic Resonance of Transition Ions” (Clarendon Press, Oxford, 1970).

—138 —

Mossbauer Spectroscopic Study of Iodine-Doped Polyalkylthiophene

S. Kitao, T. Matsuyama, M Seto, Yu. Maeda S. Masubuchii and S. Kazamai ( Research Reactor Institute, Kyoto Univ. iFaculty of Science and Engineering, Chuo Univ.)

1. liUtolc

iZM&ZKtCt-cm&ZMisbTl'Z* U 5^-7 x XCI* K - tf>7'icJ;IU aomiztf'j

Btmtut^^hwiicastmz.sns. cnicstut#u7;u+;u^7xu a tL&mmttezztw^mznZo zorab.

K-7p$nfca'7S^C<7)^^lcMUT<h'(DJ:e>lCEiaUTVx5Ci^lSi*»WcnTlX'5. n Ex a7S F- try^lc^ USS£^5^x SUK-U>7'T

S£oT, Z<DW>tt=?-*-C(03SElfilcD^lix TMVM7x>6im^:Vx S^ldilcjPtUTEttlCietiUTlx^WI^^^[2]0 %* (3#U (3-^^^;i^^-7x%*T(DaS^-2>SST129| ^ K-yUx $6lCx S^'PTCD/H'J a7*0K(S]^

m#U^/MU(3-^7i:;i/M7x7)(caC7*e F-yUx7-SdI«t^^fc.

2. HR5&

U (3-*7^;F^7x7) li FeCI3 Zf&mt UTfb^^UfctXDTx Cft£*^A F UT7-f ;kMbU/tfc<D£fiHxfc0 3 7S129(Z) F-F-U>7’M

(03(y) <bUTx y=0.07fed:tfy=0.49T&3£0 $7cx 7< M$»2eciftb> K-try^ufc’btotix Hxzo-e&^zi. 1291^7/^7-^cDjU

20 K lc&oTfro7t„ E3i<h UTti KUR%™EMBj3IW (1.93x1013 n/cm2Sec) (CfctxTZni 28je <D 60ttH<D*1<m8»tl:: <fc U ?# 6*1.75: Zni 29Je £ RUxfc (i29je : 70 tt)„

139

0.98 -

0.96 - y=0.490.95 -

y=0.07

Velocity (mm/s) Velocity (mm/s)Fig. 1 Mossbauer spectra of 129l-doped poly(3-octylthiophene) measured at ca. 20 K at the doping concentration (a) y = 0.07 and (b) y= 0.49.

3.

3. 1;!£ £ U (3- x» h^Fig.l lc

Tjkt. B;fliJ£nykc3e7SS^ti<n(coixTi29|^8*ciS^<ytBMS«!:M^S^57T -Bb-ttT^UfCo aymmm(Dm\J9->zf)Hy=0.07)<DX*'7 hJUTliE/cE5(e2qQ) 2ft‘D4mm<D3$m<Dttm (Ub,lcfe'«t^ld) ^'$tE£nfc„7 + v h UT^Btlfc/XA'^T'—vt:?/—£ Table 1 (C^U/c. Townes £ Dailey <D¥- ;Slc«fctJfWtfrt-5<h [3]. 5sEWB9^f ntfcne><DtRBf3-eto-€’n;fcJ;

-0.5,-0.35,+0.1 *5<fctf-0.6 6tV6-

Table 1 Mossbauer parameters of1291-doped poly(3-octylthiophene) obtained at ca. 20 K.

Dopingconcentration3)

Iodineatom

e^qrQ b) [MHz]

<5c)

[mm/s]Linewidth

[mm/s]Upd) hpe) Relative

area

y= 0.07 la -1180 0.14 1.3 0.51 0.46 0.95

lb -1430 0.34 1.2 0.62 0.58 0.33

lc -2580 1.42 1.0 1.12 1.31 1.00

Id -852 -0.05 1.1 0.37 0.33 0.20

y= 0.49 la -1180 0.16 1.2 0.51 0.47 0.28lb -1480 0.32 1.2 0.65 0.57 0.62lc -2590 1.37 1.0 1.13 1.28 1.00

■d -765 0.04 1.1 0.33 0.39 0.41

>2 -2340 1.08 1.2 1.02 1.08 0.27

a) Molar ratio of iodine atoms per unit monomer. b)Quadrupole coupling constant converted to 127|. c)lsomer shift relative to ZnTe. d) Up = e?qQI (- 2292.7 MHz) and the charge is estimated from Up, where charge = -1 + Up. e) hp= (<5 (mm/s) + 0.54) /1.5.

-140 —

Table 2 Abundance ratios of iodine species in poly(3-octylthiophene).

Iodine concentration Abundance ratio of iodine atoms(%)

y l3" Is" <2

0.07 65 35 00.49 19 71 9

/KV30* (Ig'fc'cktXls")|3- : |a-0.5 - |c+0.1 - la-0.5|5- : |b-0.35 - |c+0.1 - |d-0.6 - |c+0.1 - |b-0.35

avmmmomi'y-'szffr (3^0.49) <dt,^ b)vx\t^n^\zm?LXB^m^=f- (i2)

<D'\mz^th<Dhmw>zntc0 ^n^tvDavmmmztttz a liable 2 izo C CT l3" <h I5' «UU<h(S$ Ufc„ /K u (3-^WT7x»

l2<hUT#S-r5SJe^i8t-c:<kW^5, c <91551 ti\ 7t<U^7XXDHIIS55I [3,4] <bt <k<-StUTU5.

3. 2 $$# Ufc /H U (3- *75L;U^^-7 x »37^(0>7/t77™7^7 Hl/lCll4a£ 8*<9i|Riim<93£SJ±l*miS£JiB(EFG)02.®

ttf>^m<DAm*fa£<Dts:tnic-g^L-cmt-a, ng. 2 ic^u/t.7 -r ;i/A(om# ic <t o Tiii^m^Ef*^fS] ics e> ztiz^y .MttmizmtLtztf V3omM(DXft*>7>?AVte<UZ£2$Zt>nZ0&oT7 4 Ji'A<Dmto*falZtf>vm&mm&i£

bjuom*. a

123456785/2

<±1/2±3/2±5/2

Y (27.7 keV)

7/2

1 29|

±1/2±3/2±5/2±7/2

1 2

T

4 35

T

768

randomIz/8

0.6II 'Y ray // EFG 0"I IY ray J_ EFG 1.2

II 1

Fig. 2 Schematic description of 129| quadrupole splitting spectra. The values /2/8 indicate

the intensity ratio of line 2 to line 8.

—141

1.00

- (b) v ray// stretch direction

(a) y ray-L stretch direction

y = 0.20y = 0.20

0.92 -

Velocity (mm/s) Velocity (mm/s)

Fig. 3 Mossbauer spectra of stretched poly(3-octylthiophene) (y = 0.20). The direction of gamma rays is (a) perpendicular to the stretch direction and (b) parallel to the stretch direction.

toMte V2 8UTStfi U£„A»t;tfUTTft V assic^f^2S</)i!aMj$j:b(iz/q) \to.e-e$>z>B

I.ZIC/S* (Fig. 2). feU/H'J 3 Z>t. Mi*? 4 JUATtt

ftHiicTOicA&t-rzt. iz/8omzwm.\zA%r?z>m&om&vi\^<uz>\$-f-?&&Btz.

Uz>tz (Fig. 3). ZLOZ.tftib. /KU aO^tiE^lilcMUTt/UdSElCifiLx^iaj^iSllxTU 5fm5]IC$,5C<h^UTfcU. aV(3%» *Tti^7-l6lC>C4U SElcA^^lx^^^U^MU^Lx^cfcU^BKDiiiJS-etiilS^^IC^^OTMJibcOjSn

nnfcggu-cumsw&gTifcv, imm#em#Tua<!:c5-r&a.

References

[1] M. J. Winokur, P. Wamsley, J. Moulton, P. Smith and A. J. Heeger, Macromolecules 24, 3812(1991).

[2] K. Tashiro, Y. Minagawa, M. Kobayashi, S. Morita, T. Kawai and K. Yoshino, Jpn. J. Appl. Phys. 33, L1023 (1994).

[3] R.V. Parish, in G. J. Long, ed., "Mossbauer Spectroscopy Applied to Inorganic Chemistry" Vol. 2, Chap. 9, Plenum Press, New York (1987).

[4] S. Kitao, T. Matsuyama, M. Seto, Yu. Maeda, Y. F. Hsia, S. Masubuchi, and S. Kazama, Hyperfine Interact. 93, 1439 (1994).

[5] S. Kitao, T. Matsuyama, M. Seto, Yu. Maeda, S. Masubuchi, and S. Kazama, Synth. Met. 69, 371 (1995).

[6] S. Kitao, T. Matsuyama, M. Seto, Yu. Maeda, S. Masubuchi, and S. Kazama, Nuovo Cim. in press.

142

r(zj;6J 7°n^A

M7^12^190 (*) 13:30- 17:00 (#B#^%A)

dif) hn/-^do)(Iff)

M#*I%(DE3% (20)(rih-a) (30)(Rie-A) isom u-v-'fi-ym (20)(%#m SR-ing-8t^mt*“A7^ > (20)(Moss) ##%##%%3L(Dmm^fk(20)

(PAC) ii7in(^ii7Cd), niCd(*-nimCcD0Y^M^fBM (20)(PAC) liTin^inCcOYSEiD^tBM^^-SBaRuzyM^

(M=ca,cd$r)(Dmmm&ffin (20)(PAC) (20)(Moss) (15)

12^200 (tK) (9:30-16:55) (GA$£!M)

(H#) (15)(NMR) 7l'V7-^ItT©Xt”>7lJ7A 7 >XH>7 V vF

NMR-ON (15)(NMR) Pnvf*>0Ett (15)(NMR) Ti02(Sc)<DW£JK (15)(NMR) HFI of 190 in TiQ2 (15)(NMR) HFI of i3Q in Pt:Anomalous Knight Shift (15)(NMR) Magnetic Moment of 20F:HFI of %)F in NaF (15)(NMR) (15)(NMR) izBCOSi^COfitxjA^-M (15)(^o-) HF1-10(Leuven, Aug.28-Sep. 1)#'&(30)(Moss) ICAME '95(Rimini, Sep. 10-15)M ( I) (30)(Moss) ” (H) (10)(Moss) i33Cs SlkeV (15)(Moss) / X A9 7 K: j: 3#fb## 7 X(Z)#i$E^ (20)(Moss) HeBWLfc*—X7:H F%X7> l/XSUS304£>

i&mXXA^7-^% (10)(Moss) AFe02(A=Li,Na)57Fey X(15)(Moss) Au-TM^(TM=Fe,Co,Ni)C0i97AuXX;t'XT“^ (15) (Moss) An7X*K #0B#:Cs2AniAuiHX6(X=a, I)

C0SMBBBi97AuXXA,'y7"M(15)(Moss) HERPST^6(D57Mnb*-A£)W;557FeyXA,r77-#-yfc&(15) (Moss) XH*;i^B«<Z)E**®BiS(15)(Moss) 3 Vm* V 7JV^;V7^Xx >(7)

/xA^y-^ do)

8##% 0?C*X)ok^*:£E)

M-lU-BIS (m*#E) /h&TtX GEE) iEM*# GEE)EF 0 (F*!EfF)

(HE)#BB#m mm*)

SIMM 0K*IE^F) mmxais (E^xsx)

(K*H)*^e m (#m*H)

mr^M (Slu*x) femmi (K*H)

(R*H)(R*H)mm m mxm)

iuhtoU? (R*H) juiiifL^ mxm)

ge*h) oie)

mm*# gee)(#^*#W)

mm&w (**h)Bill (SEX*)

(E*S«X)

smmm (E*s#x) me*##)

(HE)(01£B*SE)

immm ok*iet&)

143 —

rH!E& • ............................................................................ I990-KURRI-TR-328StSfSWSEEas......................................................................................................................1990-KURRI-TR-329r<£SE5t • $|J®E948E®tJ !/, -vT-gieS............................................ 1990-KURRI-TR-330

166#................................................................. 1990-KURRI-TR-331rJl>Plp»tiP<7) j; owstf'Jffl©/■;»©$S:SitoS^ei%6J me#.................................... 1990-KURRI-TR-332

#pw%&me o...........................................................i99o-kurri-tr-333(SSfltitWffl r k - 7 a e&fc £ t; *■ n £ ®#p t- a

..................................................................1990-KURRI-TR-334r*tm6ig$6i£ffl* #PTO3££«e#.................................................... 1990-KURRI-TR-(335)$30 9f£6TREE RINGS-»*^lftf»«lfflfiIffllcMt5W3£-«e............. 1990-KURRI-TR-M^fiST^EBfF^MJRffi^ISiP ....................................................... 1990-KURRI-TR-337rttmtml-»«iiK.k*4#i*#©*«-#pwF£##e......... i99o-kurri-tr-338

WWIt#«€*.................................................................. 1990-KURRI-TR-339P AP AS®-^ti:^dSS>XTA^O(c>ffltt...................................1990-KURRI-TR-340

¥je$ 2 ........................................................i99i-kurri-tr-34ir&PSIr&SfflJojSgm&W^J .......................................................................................... 1991—KURRI — TR —342

52ti26...................................................................................................................... 1991 -KURRI-TR-343rSttfiglF^jfPOl^SU UPW3S6me#............................................................................... 1991 -KURRI -TR-344

%E2%g #P9W^6me#................................................. 1991-KURRI-TR-345SScSteESUgflliSEIt.................................................................................................................. 1991-KURRI-TR-346

((HMMio^toiS) ................................................................................ 1991—KURRI —TR-347rmm<2<*#*t§6Bspireme cn.......................................................i99i-kurri-tr-348^bK2^$ rj me#.................................................................i99i-kurri-tr-349

-fly##tieEttP»#-sp^^eme............ i99i-kurri-tr-3so¥b$2^e$ r9-?■>*■>rises

................................... i99i-kurri-tr-3si$40 rm*emj entree RiNGs-mPpmsm^fumuMf 6m%-me..................... i99i-kurri-tr-352p® 2 ..........................................................i99i-kurri-tr-353r*9%it&to<o\t¥t'0»3 0#nw?£#me........................................i99i-kurri-tr-354

(kur) tgu*..................................i99i-kurri-tr-355........................................................................1991—KURRI—TR-356

t ....................1991-KURRI-TR-357reii»iaifflsefflj wrwseeme (in (p®3pi&)...................................i99i-kurri-tr-358r t/77f tttfii: *®ISPJ #Pl«f5E^»e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1992--KURRI—TR —359

p®3p® rttsm©*ipj wnwseeme#...................................................................... i992-kurri-tr-36of«3^s me#................................................................... 1992--kurri-tr-36i\r 9 *P7 A®PU -t®PB ......................................................... 1992 -KURRI-TR-362

l -dn Ainsitte r $n*%eme.... 1992-kurri -tr -3531t ®e-mj 9ns%&me (in........................................................ i992-kurri-tr-364

l>~ 7#lke#®lk^ t10 B $ 4 ..................................... 1992-KURRI-TR-365p® 3 p®##*#mpnp#m%#iBj|iimm%me...................................................................i992-kurri-tr-366

....................................................................1992--kurri-tr-367«cW»»e«®SHfc (II) .......................................................................................................... 1992-KURRI-TR-368P® 3 pit rffiiS..a«S-t • 7-?->3 .................................. 1992-KUR RI-TR-369j8ltt*Gettdl«tfflV'fc®#iS®Sa)^#jE..................................................................................1993-KURRI-TR-370IST-iP tS • JScWSttffiWdl^ ..................................................................................... 1993-- KURRI-TR-371p®4p* r«»inai¥j #pm%&#e#.............................................................i993-kurri-tr-3?2«C*fS#aieii27.......................................................................................................................1993- KURRI-TR-373h h Ei4.»fefltsr 5 fi$®-en-E-'7uzt=nr-1 ..............................1993- kurri - tr -374p®4p$ r»sti4«*ftis:aifHW5E^j me#...................................................................1993-kurri-tr-375

Gin......................................................................................................... 1993-kurri-tr-376rT'«-i«Ef-AUi 6 KWH • ttIMtj #I"I«SSSS (P®4 p$) ......................................1993 " KURRI -TR-377

L^eftiJiSlWOfl^cOK^j -X4 > / ftm h - X - s...........1993 - KURRI - TR-378p®4p* t&Wj 7-?x3•/r«s#.................................................1993-kurri-TR-379ik<HBW9Udl*28.......................................................................................................................1993— KURRI-TR-380P® 4 PfrS'^WtMlr.............................................................................. 1993—KURRI-TR-381

‘“Bipffi /-MttWtiij $ 5 A........................................ 1993-KURR1-TR-382nmmmm'&mt uv>...........................................................................................i993-kurri-tr-383t® 5 f-« me#................................................................... i994-kurri-tr-384p® 5p® ux#fW4#f#j #rmi%6me*.............................................................i994-kurri-tr-385

#HW%^me............................................................................. 1994-KURRI-TR-386p® 5 f-« wnfr&^we#........................................................................i994-kurri-tr-387

f-PWh®e5cti>Bffl (1) 'Ml t'..................................................... 1994" KURRI-TR-3887 - ^ > 3 y 7’ rW^*P (KUR) me#................................................. 1994-KURRI-TR-389

.............................................................1994-KURR1-TR-390

$20 m-f-tp-mmmimtii me#........................................................................................... i994 -kurri-tr-39i

rK U R$./KBPttT,&fiB®i5USU J: J:P®5P®7-^-> 3 yrwe#........................................................................................... 1994-KURRI-TR-392

(QENliXvT-p)

WHE3£i?$6S.............................................1994-KURRI-TR-393mmw&m&mt m............................................................................... 1994-kurri-tr-394

¥$54$...........................................1994-KURRI-TR-395

'Htf WHflf^SWSe .........................................................1994 -KURRI-TR-39629 (19934-:$)............................................................................................................... 1994 - KURRI - TR-397

i #FW%^¥$4 4$#5#................................ 1994- KURRI-TR-398r-n l %###$ 'i 7>v^ rntm+mnj #n*%^¥$ 5 4$#^#............................. 1994 - kurri- TR-399

r@#$R I (II) (¥$64$).................................................. 1995 -KURRI-TR-400¥$6 4$ r7?4- #HBf5E^5S.......................................................... 1995 -KURRI-TR-401

........................................................................................................................... 1995-kurri-tr-402aw# h 14 A 6 h 14 A ..........................1995- KURRI-TR-403

P®tt*fett<7>)SKWj!&+144M«*i£<7>|trj£.........................................1995-KURRI-TR-404¥$ 6 4$*^gW%m7D>f < ............................................. 1995-KURRI-TR-405

(II) -¥#¥#%*$:-............................................................ 1995 -KURRI-TR-406¥$6 4$ .............................................................................1995-KURR1-TR-407

s*................................................................................ i995-kurri-tr-408r u r ic a it b 7 -f >v 9 ism lt................................1995- kurri- TR-409$3@ 14ft5■ #5*............................................................................................ 1995-KURR1-TR-410

(Vi) ........................................................................................................................1995—KURRI-TR-411*%±$:14ft5^#E*0MmE%%^## ¥$6 4$ ..........................................................1995 KURRI-TR-412r* 7 mt&VscHVZ t -»B Ttt4m£li£j $6-7 ..................................... 1995-KURRI-TR-413

¥$74$ .............................................................................i996 -kurri-tr-4h

$ 4 014ft5 • ................................................................................................ 1996 -KURRI-TR-415¥$7 4$ r77f-K3c*»(tftIfj SHE%3r$B£f#..................................................1996-KURRI-TR-416hnyh-e t 14 ............................................................. 1996 - KURRI- TR-417rffi#^R I I: j: & #%E%j (m) (¥$74$)..................................................1996 KURRI-TR-418

(OEPliX^-r-t)

TECHNICAL REPORT OF THE RESEARCH REACTOR INSTITUTE

KYOTO UNIVERSITY%'nm mmmWriB « 8 ¥ 4e m

ma ftm (0724)52-0901mm wiR^tt ui # w m pi?E ff Ht5cSi£*I483c08