Progress in Landslide Science

16
Progress in Landslide Science Progress in Landslide Science Sassa · Fukuoka · Wang · Wang (Eds.) 1 1 3 This book presents current progress in landslide science and consists of four parts: (1) Progress in Landslide Science, (2) Landslide Dynamics, (3) Landslide Monitoring, and (4) Landslide Risk Assessment. It provides useful information to academics, practitioners, and government officers working on landslide risk-mitiga- tion planning. This book can be also used as an introductory textbook for college students who wish to learn fundamen- tal scientific achievements in the field of landslide disaster reduction. Kyoji Sassa · Hiroshi Fukuoka · Fawu Wang · Gonghui Wang (Eds.) Progress in Landslide Science ISBN 978-3-540-70964-0 springer.de Professor Kyoji Sassa is the first President of the Interna- tional Consortium on Landslides which consists of 45 organizations from 30 countries, and is supported by UN organizations and the national governments of Japan, USA, Italy, and others. He is Professor and Director of the Research Centre on Landslides of the Disaster Preven- tion Research Institute, Kyoto University. Dr. Hiroshi Fukuoka is an Associate Professor, and Dr. Fawu Wang and Dr. Gonghui Wang are Assistant Professors at the Research Centre on Landslides of the Disaster Prevention Research Institute at Kyoto University. Kyoji Sassa Hiroshi Fukuoka Fawu Wang Gonghui Wang (Eds.) Cover: Air photo of the 17 February 2006 Guinsaugon Landslide on Leyte Island, Philippines, which killed more than 1,000 people. This photo was taken by Kyoji Sassa from a chartered helicopter in March 2006. Inserted photo in the back cover: A flow-mound found in the runout area of the Guinsaugon Landslide. Sassa and his colleagues are taking soil samples from the base of the flow-mound.

Transcript of Progress in Landslide Science

Progress in Landslide Science

Progress in Landslide ScienceSassa · Fukuoka · W

ang · Wang (Eds.)

1

1 3

This book presents current progress in landslide science and consists of four parts: (1) Progress in Landslide Science, (2) Landslide Dynamics, (3) Landslide Monitoring, and (4) Landslide Risk Assessment. It provides useful information to academics, practitioners, and government officers working on landslide risk-mitiga-tion planning. This book can be also used as an introductory textbook for college students who wish to learn fundamen-tal scientific achievements in the field of landslide disaster reduction.

Kyoji Sassa · Hiroshi Fukuoka · Fawu Wang · Gonghui Wang (Eds.)

Progress in Landslide Science

ISBN 978-3-540-70964-0

springer.de

Professor Kyoji Sassa is the first President of the Interna-tional Consortium on Landslides which consists of 45 organizations from 30 countries, and is supported by UN organizations and the national governments of Japan, USA, Italy, and others. He is Professor and Director of the Research Centre on Landslides of the Disaster Preven-tion Research Institute, Kyoto University.Dr. Hiroshi Fukuoka is an Associate Professor, and Dr. Fawu Wang and Dr. Gonghui Wang are Assistant Professors at the Research Centre on Landslides of the Disaster Prevention Research Institute at Kyoto University.

Kyoji SassaHiroshi FukuokaFawu Wang Gonghui Wang (Eds.)

Cover: Air photo of the 17 February 2006 Guinsaugon Landslide on Leyte Island, Philippines, which killed more than 1,000 people. This photo was taken by Kyoji Sassa from a chartered helicopter in March 2006.

Inserted photo in the back cover: A flow-mound found in the runout area of the Guinsaugon Landslide. Sassa and his colleagues are taking soil samples from the base of the flow-mound.

Kyoji Sassa

Hiroshi Fukuoka

Fawu Wang

Gonghui Wang

(Editors)

Progress in Landslide Science

First Edition

Progressin Landslide Science

Kyoji SassaHiroshi FukuokaFawu WangGonghui Wang(Editors)

With 431 Images, 349 in Color

Library of Congress Control Number: 2007920433

ISBN-13 978-3-540-70964-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broad-casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of thispublication or parts thereof is permitted only under the provisions of the German Copyright Law ofSeptember 9, 1965, in its current version, and permission for use must always be obtained fromSpringer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Mediaspringeronline.com© Springer-Verlag Berlin Heidelberg 2005Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does notimply, even in the absence of a specific statement, that such names are exempt from the relevantprotective laws and regulations and therefore free for general use.

Cover Photo: Guinsaugon landslide, Southern Leyte, Philippines

Cover design: de’blik, BerlinTypesetting: Stasch · Bayreuth ([email protected])Production: Almas SchimmelPrinting and binding: Stürtz AG, Würzburg

Printed on acid-free paper 32/3141/as – 5 4 3 2 1 0

Editors

Sassa, Kyoji

President of the International Consortium on LandslidesResearch Centre on Landslides, Disaster Prevention Research Institute,Kyoto University, Uji, Kyoto 611-0011, JapanTel: +81-774-38-4110, Fax: +81-774-32-5597, E-mail: [email protected]

Fukuoka, Hiroshi

Research Centre on Landslides, Disaster Prevention Research Institute,Kyoto University, Uji, Kyoto 611-0011, JapanTel: +81-774-38-4111, Fax: +81-774-38-4300, E-mail: [email protected]

Wang, Fawu

Research Centre on Landslides, Disaster Prevention Research Institute,Kyoto University, Uji, Kyoto 611-0011, JapanTel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: [email protected]

Wang, Gonghui

Research Centre on Landslides, Disaster Prevention Research Institute,Kyoto University, Uji, Kyoto 611-0011, JapanTel: +81-774-38-4114, Fax: +81-774-38-4300, E-mail: [email protected]

Natural disasters are increasing in terms of frequency, complexity, scope and destruc-tive capacity. They have been particularly severe during the last few years when theworld has experienced several large-scale natural disasters: the Indian Ocean earth-quake and tsunami, Hurricane Katrina and Hurricane Rita; the Kashmir earthquakein Pakistan; floods and forest fires in Europe, India and China; and drought in Africa.Images of these events have shocked us all and will remain with us for a long time.Numerous landslides and mudflows have also occurred, causing deaths, injuries andmaterial losses. The most recent tragic ones were the large-scale landslides which struckthe Philippines in 2006, hitting the Albay province on 02 December and the Leyte Is-land on 17 February respectively, resulting in terrible loss of life, suffering and dam-age. National authorities and the international community, of course, should continueto provide the practical support needed by the affected communities. At the sametime, it is important to quickly learn appropriate lessons that may help individuals,families, communities and whole societies to be better prepared for other disasters,whether caused by natural forces or otherwise.

The time has come for putting more emphasis on pre-disaster action rather thanremaining content with post-disaster reaction. We must mobilize scientific knowl-edge and technological know-how to assess natural hazards and to strengthen disas-ter mitigation measures. We should promote a better understanding of natural disas-ters. We must promote and enforce sound scientific, engineering and constructionprinciples. And we must promote education and public awareness about natural di-saster reduction.

Landslides pose considerable risks to people’s livelihoods and to the environment.They cause great disruption and economic losses by the destruction of infrastructureworks such as roads and other communications and utility lines and of cultural heri-tage and the environment. Today there is a need more than ever before to address theproblem of landslides in an integrated and internationally concerted way. These arethe purposes of the International Consortium on Landslides (ICL) and the Interna-tional Programme on Landslides (IPL). Both initiatives encompass research, educa-tion and capacity-building in landslide risk reduction. They both enjoy the participa-tion and support of numerous international, governmental and non-governmentalorganizations and entities. They contribute to the International Strategy for DisasterReduction (ISDR) and to the implementation of the Hyogo Framework for Action2005–2015 which was adopted at the World Conference on Disaster Reduction held inKobe, Japan in January 2005. The 2006 Tokyo Action Plan on Landslides, which wasadopted during the Tokyo Round Table Discussion on Landslides in January 2006,provides a roadmap for strengthening international collaboration and identifying fo-cus areas for reducing landslide risk worldwide.

UNESCO had the privilege to accompany from the very beginning the establish-ment of the ICL and the launching of the IPL. In so doing, the Organization enjoyspartnership with a large number of stakeholders including the World MeteorologicalOrganization (WMO), the United Nations University (UNU), the Food and Agricul-ture Organization (FAO) of the United Nations, the UN/ISDR Secretariat and the In-

Foreword

VI Foreword

ternational Council for science (ICSU) and its Unions. I am glad that the ICL and IPLhave also been marked with the establishment of a UNITWIN Cooperation Pro-gramme on Landslide Risk Mitigation for Society and the Environment in the frame-work of the UNITWIN/UNESCO Chairs Programme, at Kyoto University (KU). ThisProgramme is now hosted in the UNESCO-KU-ICL UNITWIN Headquarters at theResearch Centre on Landslides of the Disaster Prevention Research Institute in KyotoUniversity. Furthermore UNESCO and ICL have established in August 2006 a Memo-randum of Understanding for cooperation. Finally I am especially pleased thatUNESCO will serve as co-organizer with ICL of the World Landslide Forum sched-uled to take place in 2008. This Forum will constitute a milestone in our efforts tostrengthen global risk preparedness.

The “Landslides” Journal of the International Consortium on Landslides plays akey role for the progress of landslide study as an integrated research field by puttingtogether knowledge and technologies in many related fields of natural sciences, engi-neering, social sciences and culture. The present Publication “Progress of LandslideScience” comes in this context to provide an overview of the current status of thisscience. The diversity of subjects which are presented in this publication represents arich collaborative work regarding landslides. I wish to commend the editors and thenumerous authors involved in it. My particular greetings go to Professor Kyoji Sassa,Chairperson of ICL who continues to spare no effort in promoting ICL and IPL. It iswith great pleasure that I praise the edition of this publication as a means of dissemi-nating good knowledge in the area of landslide risk reduction.

Koïchiro MatsuuraDirector-General of UNESCO

A series of extremely high-profile disasters – the Indian Ocean tsunami of Decemberin 2004, Atlantic hurricane season, the South Asian earthquake and the East Africandrought in 2005 underscored the importance of how better cooperation between Gov-ernment authorities and the international community including scientific commu-nity would have played a critical role in helping people make life changing decisionsabout where and how they live before the disaster strikes, in particular high-riskurban areas.

Landslide, floods, drought, wildfire, storms, tsunami, earthquakes and other typesof natural hazards are increasingly affecting the world. In the decade 1976–1985, closeto billion people were affected by disasters. But by the most recent decade, 1996–2005,the decade total had more than doubled, to nearly two and a half billion people. In thelast decade alone, disasters affected 3 billion people, killed over 750 000 people andcost around US$ 600 billion1. We cannot let this trend continue. Disaster risk concernsevery person, every community, and every nation; indeed, disaster impacts are slow-ing down development, and their impact and actions in one region can have an impacton risks in another, and vice versa. Without taking into consideration the urgent needto reduce risk and vulnerability, the world simply cannot hope to move forward in itsquest for sustainable development and reduction of poverty.

The Hyogo Framework for Action 2005–2015: Building the Resilience of Nations andCommunities to Disasters, adopted at the World Conference on Disaster Reduction(WCDR, Kobe, Hyogo, Japan, in January 2005), represents the most comprehensiveaction-oriented policy guidance in universal understanding of disasters induced byvulnerability to natural hazards and reflects a solid commitment to implementationof an effective disaster reduction agenda. In order to ensure effective implementationof the Hyogo Framework at all levels, tangible activities must be carried out. For thelast two years as post WCDR, we have seen many activities and initiatives developed toimplement the Hyogo Framework in various areas. As a concrete activity in the area oflandslide risk reduction, the International Programme on Landslides has maintainedthe momentum created at the WCDR and has been moving forward, led by the Inter-national Consortium on Landslides.

This publication is a valuable contribution to the implementation of the priorityarea 2 of the HFA – “Identify, assess and monitor disaster risks and enhance earlywarning”, by gearing landslide risk assessment, both hazard identification, monitor-ing and vulnerability analysis, as well as preparedness and landslide risk manage-ment. The combination of landslide scientific knowledge and risk reduction measuresare essential to reduce the impact of landslides. The Hyogo Framework calls for theinternational coordination and collaboration among different actors dealing with di-saster risk reduction. In this sense, the Global Cooperation Platform for research andinvestigation for landslide risk reduction in the 2006 Tokyo Action Plan consist of very

Foreword

1 Data derived from the EM-DAT: The OFDA/CRED International Disaster Database, www.en-dat.net,Universite Catholiqué de Louvain, Brussels, Belgium.

VIII Foreword

important activities to promote the thematic coordination to research and reduceimpacts of landslides. This initiative also contributes to the priority area 3 of the HFA,which emphasizes the importance of education and public awareness of the disasterrisk reduction. Education and public awareness about the hazards, in this case land-slide, are also key for people to be able to reduce risks and their vulnerabilities.

I welcome the work of the Global Cooperation Platform for research and investi-gation for landslide risk reduction and the International Consortium on Landslides.I look forward to collaboration with them, in particular through the InternationalProgramme on Landslides (IPL) and its Global Promotion Committee.

Sálvano BriceñoDirector of United Nations Secretariatof the International Strategy for Disaster Reduction

Fig. 0.1.Comparison of the numbersof victims in Japan from1967–2004 due to landslidedisasters, earthquake disas-ters including deaths byearthquake-induced-land-slides, and volcanic disastersincluding deaths due to volca-nic gas (The data on victimsdue to landslide disasterssince 1967 were published bythe Sabo Technical Center)

Large and small landslides occur almost every year in nearly all regions of the world.However, the number of landslides is difficult to ascertain, and even the number oflandslide-caused casualties is not correctly counted worldwide. Most casualties causedby rain-induced landslides are included in those tabulated for hurricane or storm di-sasters, and casualties caused by earthquake-induced landslides are often included inthose for earthquake disasters. Thus, the casualties due to landslide disasters are oftenextremely underestimated. Japan has statistics of casualties by various types of land-slides (small and large debris or rock slides, debris flows, rock falls, et al. since 1967),even though they occurred during typhoons, earthquakes, or volcanic activities. Fig-ure 0.1 shows the statistics of casualties caused by landslides, earthquakes, and volca-nic activities in Japan for the period of 1967–2004. Casualties by earthquake-inducedlandslides are included both in the landslide disasters and earthquake disasters. Land-slide disasters in Japan for this period have occurred every year; the total number ofdeaths (3 285) due to landslides is about one half of the deaths (7 008) caused by earth-quakes, including the catastrophic 1995 Kobe earthquake. Extensive landslide preven-tion works have been constructed in Japan. Thanks to those preventive works, thenumber of casualties has gradually decreased as seen in Fig. 0.1 in spite of progress ofurban and mountain development all over Japan during those years. Although thereare no reliable data for damages, or even for casualties due to landslides in many coun-tries of the world, Fig. 0.1 provides a clear evidence of the strong negative impact oflandslides to society. One clear difference of landslides, as compared to earthquakesand volcanic eruptions, is that humans can prevent or mitigate many landslide phe-nomena, while earthquakes and volcanic eruptions can not be prevented. The hazardassessment of landslides is very effective for disaster reduction because of relativelysmall affected area comparing to earthquakes and typhoons. Therefore, we can domuch for landslide disaster mitigation. In addition to human damages, landslides of-ten destroy cultural and natural heritage, and the natural environment, which cannot

Preface – Aims of This Volume

XIV Preface – Aims of This Volume

be recovered. Landslide disaster reduction, protection of cultural and natural heritagesites, and the invaluable environment are vital factors for human society. However,studies of landslides have not been conducted in an integrated manner, although thephenomena are targets of many scientific and engineering fields. Landsides are a tar-get of application of many technical fields, but they are not the major interest of anyindividual field. Therefore, no national landslide society has been established, exceptthe Japan Landslide Society (JLS), and the very recent Nepal Landslide Society. Nointernational society on landslides has been established because there are only one ortwo national societies.

The Japan Landslide Society was founded in 1963, and the society organized thefirst International Symposium on Landslides (ISL) in Kyoto in 1972, and the secondInternational Symposium on Landslides in Tokyo in 1977. The Japan Landslide Soci-ety also initiated the International Conference and Field Workshop on Landslides (ICFL)in Tokyo, 1985. The society started to publish the International Newsletter “LandslideNews” in 1987. Five thousand copies were printed in three colors and 2 000 copies weredistributed free of charge over the world. Landslide News It continued to be publisheduntil 2003 with supports from the United Nations Educational, Scientific and CulturalOrganization (UNESCO), the Food and Agriculture Organization of the United Na-tions (FAO), the United Nations Secretariat for International Strategy for Disaster Re-duction (UN/ISDR). This long-term activity gradually built up an infrastructure ofinternational landslide community. It led to the formation of the International Con-sortium on Landslides (ICL) in 2002 and the new journal of ICL, “Landslides”, in 2004.The publication of journal is the essential and necessary platform to create an inde-pendent field of science dealing with landslides. This book “Progress in LandslideScience” aims to present an overview of the current status of research by major land-slide researchers worldwide. This volume can be a part of series of publications of ICLthat may contributes to the education system of landslide science and landslide disas-ter management in the future.

The International Consortium on Landslides (ICL), United Nations Educational,Scientific and Cultural Organization (UNESCO), World Meteorological Organization(WMO), Food and Agriculture Organization of the United Nations (FAO), United Na-tions International Strategy for Disaster Risk Reduction (UN/ISDR), United NationsUniversity (UNU), United Nations Environment Programme (UNEP), United NationsDevelopment Programme (UNDP), World Bank (IBRD), International Council for Sci-ence (ICSU), World Federation of Engineering Organizations (WFEO), Kyoto Univer-sity (KU), and the Japan Landslide Society (JLS) have jointly been organizing the FirstWorld Landslide Forum for Strengthening Research and Learning on Earth SystemRisk Analysis and Sustainable Disaster Management within the UN-ISDR as Regards“Landslides” which will be held in November 2008 in Tokyo. This forum will be amilestone in developing research and learning on landslide disaster reduction. Tan-gible progress in Landslide Science is foreseen during this process. It is hoped that thisvolume will be read by partners working for landslide risk mitigation and that furtherworks will be published as increasingly wider support is obtained.

Kyoji SassaKyoto, January 2007

Contents

Part IProgress in Landslide Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Landslide Science as a New Scientific Discipline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.1 Definition of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Landslide Science as a New Scientific Discipline

and Landslide Dynamics as its Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Foundation of the International Consortium on Landslides . . . . . . . . . . . . . . . . . . . . 61.4 Development of the International Landslide Community:

the 2005 Letter of Intent, the 2006 Tokyo Action Plan,and the 2008 First World Landslide Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10The First World Landslide Forum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 An Overview of Landslide Problems in the British Isles,with Reference to Geology, Geography and Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 Strong Rocks and Discontinuity-controlled Slope Instability . . . . . . . . . . . . . . . . . . 142.3 Weak Rocks and Strong Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.4 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.5 The Coastline of South Eastern Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.6 Bedding-Control of Slip Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.7 Slides in Strata with Low Angle Dips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.8 Grabens and Graben Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.9 Perched Slip Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.10 Slip Surfaces at or close to the Base of a Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.11 Identification of Slip Surface Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.12 Three Dimensions and the Plan Shape of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.13 Conservation and Conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Considerations about the Mechanics of Slow Active Landslides in Clay . . . . . . . . . . . . . 273.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 General Features of Slow Active Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.3 Considerations about the Mechanics of Active Slides and Mudslides . . . . . . . . 283.4 Consideration about the Mechanics of Active Lateral Spreads . . . . . . . . . . . . . . . . . 393.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Dynamics of Rapid Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2 Mechanisms Causing Strength Loss in Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

XVIII Contents

4.3 Types of Extremely Rapid Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Progress in Debris Flow Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595.2 Processes of Initiation and Development

in the Erosion Type Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.3 Criteria of Debris Flow Occurrence for Erosion Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 615.4 Processes in Transformation and Stoppage

of Landslide-induced Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635.5 Simplified Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645.6 Models for Debris Flow Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655.7 Single-phase Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665.8 Two-phase Fluid Flow Model (Mixture Theory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Part IILandslide Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Undrained Stress-controlled Dynamic-loading Ring-shear Testto Simulate Initiation and Post-failure Motion of Landslides . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816.2 Comparison with Triaxial Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836.3 Structure and Control System of Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.4 Testing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876.5 Undrained Shear Behavior on Sands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.6 Geotechnical Simulation of Earthquake-induced Landslides . . . . . . . . . . . . . . . . . . 916.7 Slide-triggered Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Influence of Shear Speed and Normal Stress on the Shear Behaviorand Shear Zone Structure of Granular Materials in Naturally DrainedRing Shear Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997.2 Ring Shear Apparatus and Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.3 Samples and Their Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.4 Testing Conditions and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.5 Test Results on Mixed Sands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Rockslides and Their Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138.2 What is a Rockslide? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138.3 Size Distribution from Grain Crushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218.4 Block Slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.5 The Waikaremoana Blockslide Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

XIXContents

9 Residual Shear Strength of Tertiary Mudstone and Influencing Factors . . . . . . . . . . 1359.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359.2 Properties of Tertiary Mudstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369.3 Shear Strength Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1409.4 Factors Influencing the Residual Shear Strength of Mudstone . . . . . . . . . . . . . . 1439.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 On Failure of Municipal Waste Landfill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14710.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14710.2 Failure of Waste Leuwigajah Landfill in Bandung, Indonesia . . . . . . . . . . . . . . . . 14710.3 Significance of Landfill Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14810.4 Proposals for Better Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14910.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11 Experimental Study with Ring Shear Apparatus on the May 2004Landslide–Debris Flow at Bettou-dani Valley, Haku-san Mountain, Japan . . . . . . . . 151

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15111.2 General Conditions of the Jinnosuke-dani Landslide

on Haku-san Mountain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15411.3 The May 2004 Landslide–Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15511.4 Ring Shear Tests on the Initiation and Traveling Mechanisms

of the Landslide–Debris Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15911.5 Ring-shear Tests on Soil Samples Taken from

the Landslide Travel Path in the Bettou-dani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16211.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12 On the Pore-pressure Generation and Movementof Rainfall-induced Landslides in Laboratory Flume Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16712.2 Properties of the Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16812.3 Flume Test Apparatus and Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16912.4 Observed Phenomena in Flume Tests and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 17112.5 Double-cylinder Apparatus and Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17712.6 Pore-pressure-maintaining Mechanism during Movement . . . . . . . . . . . . . . . . . . 17812.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

13 Ring Shear Tests on Clays of Fracture Zone Landslidesand Clay Mineralogical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18313.2 Features of Fracture Zone Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18413.3 Experimental Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18613.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18913.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

14 Landslides Induced by a Combined Effect of Earthquake and Rainfall . . . . . . . . . . . . 19314.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19314.2 Combined Effect of Rainfall and Earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

XX Contents

14.3 The 2006 Leyte Landslide Triggered by a Small Near-by Earthquake (M2.6)Five Days after a Heavy Rainfall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14.4 The 2004 Higashi-Takezawa Triggered by the Magnitude (M6.8)Earthquake Three Days after the Typhoon No. 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

14.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

15 Landslide Experiments on Artificial and Natural Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20915.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20915.2 Landslide Fluidization Process by Flume Experiment . . . . . . . . . . . . . . . . . . . . . . . . 21015.3 A Fluidized Landslide on Natural Slope Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Part IIILandslide Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

16 Enlargement of a Failed Area along a Sliding Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22916.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22916.2 Field Monitoring of Deformation Area Enlargement

in a Landslide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22916.3 Study of the Formation of Sliding Surface in Laboratory Tests . . . . . . . . . . . . . . 23216.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

17 Airborne LIDAR Data Measurement and Topography Classification Mappingin Tomari-no-tai Landslide Area, Shirakami Mountains, Japan . . . . . . . . . . . . . . . . . . . . 237

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23717.2 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23717.3 Airborne LIDAR Data Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23817.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24117.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24217.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

18 Integration of Remote Sensing Techniques in Different Stagesof Landslide Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25118.2 Contributions to Landslide Inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25118.3 Improvements to Landslide Hazard Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25318.4 Basin Scale Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25318.5 Landslide Modeling Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25418.6 Landslide Monitoring by Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25618.7 Innovative Early Warning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25718.8 Support for Emergency Management and Scenario Analysis . . . . . . . . . . . . . . . . 25818.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

19 Rock Deformation Monitoring at Cultural Heritage Sites in Slovakia . . . . . . . . . . . . . 26119.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26119.2 Works and Techniques Employed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26119.3 Spis Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26219.4 Strecno Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

XXIContents

19.5 Skalka Monastery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26919.6 Lietava Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27019.7 Lednica Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27019.8 C̀́achticky hrad Castle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27119.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Part IVLandslide Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

20 Extracting Necessary Parameters from Real Landslide Massfor Mitigating Landslide Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27720.2 Estimation of Velocity of Fluidized Soil Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27720.3 Extracting Parameters for Estimating Travel Distances

for Coherent Mass Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28020.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

21 Landslide Dams Formed by the 2004 Mid-Niigata Prefecture Earthquakein Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28521.2 Characteristics of the 2004 Mid-Niigata Prefecture Earthquake . . . . . . . . . . . . 28521.3 Distribution of Landslides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28621.4 River Blockage by Landslide Dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28821.5 Emergency Operations against Collapse by Landslide Dam . . . . . . . . . . . . . . . . . 29021.6 Monitoring and Observation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29121.7 Successive Landslides Caused by Snowmelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29121.8 Remarks for Mitigation of Future Disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

22 Shear Behavior of Clay in Slope for Pore Water Pressure Increase . . . . . . . . . . . . . . . . . 29522.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29522.2 Pore Water Pressure Loading Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29522.3 Consideration on Landslide Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29722.4 Stress Controlled Ring Shear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29922.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

23 Static and Dynamic Analyses of Slopes by the FEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30523.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30523.2 Finite Element Analysis of Slopes and Slope Stabilization . . . . . . . . . . . . . . . . . . . . 30523.3 Dynamic Elasto-plastic Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30923.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

24 Debris Flows in the Vicinity of the Machu Picchu Village, Peru . . . . . . . . . . . . . . . . . . . . . 31324.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31324.2 Preliminary Field Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31324.3 Triggering Factors of the Debris Flows in the Machu Picchu Village

and Surrounding Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

XXII Contents

25 Engineering Geology and Cultural Heritage:the Conservation of Remaining Bamiyan Buddhas (Central Afghanistan) . . . . . . . . 319

25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31925.2 Meteo-climatic Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32025.3 Geological, Mineralogical and Petro-geophysical Setting . . . . . . . . . . . . . . . . . . . . 32125.4 Scanning Electron Microscopy (SEM) of Siltstone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32225.5 Physical and Mechanical Properties of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32425.6 Geomorphological Setting and Most Unstable Areas . . . . . . . . . . . . . . . . . . . . . . . . . 32625.7 Seismological Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32625.8 Geomechanic Characters of Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32625.9 Structural Analysis of Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32725.10 Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32825.11 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32825.12 Previous Restoration Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33025.13 Long-term Conservation Strategy for Repair, Enhancement,

Research, and Risk-preparedness for the Preservation of the Site . . . . . . . . . . 33325.14 Identification of Most Unstable Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33625.15 Emergency Measures in the Upper Eastern Part

of the Eastern Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33625.16 Completion of Emergency Intervention

in the Eastern Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34025.17 First Interventions in the Western Giant Buddha Niche . . . . . . . . . . . . . . . . . . . . . . 34125.18 The Back Side of Both Buddha Niches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34225.19 Manual Crack Gauge Monitoring System: Current Results . . . . . . . . . . . . . . . . . . . 34425.20 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

26 Debris Flow Hazard Defense Magnitude Assessment with Numerical Simulation . . . 34726.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34726.2 Literature Review on Flood Hazard Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34826.3 Assessment of Debris Flow Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34826.4 Land Utilization within the Influenced Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35026.5 The Expected Disaster Loss in the Influenced Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 35026.6 Case Study – Assessment for Taipei 021 Debris Flow Potential Stream . . . . . 35526.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

A.1 The Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363A1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363A1.2 Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364A1.3 After the 2006 Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

A.2 MoUs between ICL and Global Stakeholders to Promotethe 2006 Tokyo Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

A2.1 MoU between ICL and UN/ISDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367A2.2 MoU between ICL and UNU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368A2.3 MoU between ICL and WMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369A2.4 MoU between ICL and WFEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370A2.5 MoU between ICL and UNESCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371A2.6 MoU between ICL and ICSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373