Observed Galaxy Distribution Transition with Increasing Redshift a Property of the Fractal

13
Observed Galaxy Distribution Transition with Increasing Redshift a Property of the Fractal Blair D. Macdonald First Published: November 20th 2014. Updated: June 13 th 2016 Abstract Is the universe a fractal? This is one of the great – though not often talked about – questions in cosmology. In my earlier publication – where I inverted the (Koch snowflake) fractal – I showed the fractal demonstrated: Hubble’s Law, accelerating expansion, all from a ‘singularity’ big bang like beginning. Surveys of the universe – the most recent and largest, the 2012 WiggleZ Dark Energy Survey – show, galaxy distribution on small scales to be fractal, while on large-scales, homogeneity holds. There appears to be new anomaly to explain: there is a galaxy distribution transition from rough to smooth on cosmic scales. From my ‘fractspansion’ model I derived a Fractal-Hubble diagram; on this diagram measurement points along the curve are clustered near the origin. This clustering was not addressed in discussions or part of the conclusion of my earlier experiment. Can this clustering of these points the on fractal Hubble diagram account for the observed galaxy distribution transition – from rough to smooth? Could this transition be another property of fractals, and therefore could the universe – itself – be fractal? It was found, yes they – the points – do. Clustering of measurement points (and of galaxies) is as a result of observation position in the fractal. On small scales – relative to large scales – the cosmic surveys are what one would expect to see if one were viewing from within an iterating – growing – fractal. If trees – natural fractals that have also been found to grow at accelerating rates – are used to demonstrate this fractal: the large-scale smoothness maybe akin to a tree’s trunk; and the rough (fractal) on small-scales, to its branches. This discovery unifies the anomalies associated with the standard cosmological model. Together they are – through the mechanics of the fractal – inextricably linked. Keywords: Fractal Cosmology, WiggleZ, Hubble’s Law, General Relativity, Galaxy Distribution, Cosmological Principle

Transcript of Observed Galaxy Distribution Transition with Increasing Redshift a Property of the Fractal

ObservedGalaxyDistributionTransitionwithIncreasingRedshifta

PropertyoftheFractal

BlairD.Macdonald

FirstPublished:November20th2014.

Updated:June13th2016

Abstract

Istheuniverseafractal?Thisisoneofthegreat–thoughnotoftentalkedabout–

questionsincosmology.Inmyearlierpublication–whereIinvertedthe(Koch

snowflake)fractal–Ishowedthefractaldemonstrated:Hubble’sLaw,accelerating

expansion,allfroma‘singularity’bigbanglikebeginning.Surveysoftheuniverse–the

mostrecentandlargest,the2012WiggleZDarkEnergySurvey–show,galaxy

distributiononsmallscalestobefractal,whileonlarge-scales,homogeneityholds.

Thereappearstobenewanomalytoexplain:thereisagalaxydistributiontransition

fromroughtosmoothoncosmicscales.Frommy‘fractspansion’modelIderiveda

Fractal-Hubblediagram;onthisdiagrammeasurementpointsalongthecurveare

clusteredneartheorigin.Thisclusteringwasnotaddressedindiscussionsorpartof

theconclusionofmyearlierexperiment.Canthisclusteringofthesepointstheon

fractalHubblediagramaccountfortheobservedgalaxydistributiontransition–from

roughtosmooth?Couldthistransitionbeanotherpropertyoffractals,andtherefore

couldtheuniverse–itself–befractal?Itwasfound,yesthey–thepoints–do.

Clusteringofmeasurementpoints(andofgalaxies)isasaresultofobservationposition

inthefractal.Onsmallscales–relativetolargescales–thecosmicsurveysarewhat

onewouldexpecttoseeifonewereviewingfromwithinaniterating–growing–

fractal.Iftrees–naturalfractalsthathavealsobeenfoundtogrowatacceleratingrates

–areusedtodemonstratethisfractal:thelarge-scalesmoothnessmaybeakintoa

tree’strunk;andtherough(fractal)onsmall-scales,toitsbranches.Thisdiscovery

unifiestheanomaliesassociatedwiththestandardcosmologicalmodel.Togetherthey

are–throughthemechanicsofthefractal–inextricablylinked.

Keywords:FractalCosmology,WiggleZ,Hubble’sLaw,GeneralRelativity,GalaxyDistribution,CosmologicalPrinciple

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

2

1 INTRODUCTION

Theuniversehasbeenarguedtobe,andobservedtobe,fractalonsmall-scales,and

homogenousoflarge-scales.InthispublicationIwouldliketoprovideanexplanation

tothisobservedgalaxydistributiontransition,andshow–basedonmyearlierfindings

–theobservedhomogeneityatlargescalesisapropertyofthefractal.Myexplanation

willunifythegalaxydistributiontransitionswithotherobservedanomaliesofthe

ΛCDMmodel.

Inmyrecentpublication,‘FractalGeometryaPossibleExplanationtotheAccelerating

ExpansionoftheUniverseandOtherStandardΛCDMModelAnomalies’[1]–Irana

simpleexperimentonafundamental(KochSnowflake)fractaltomodelitsexpansion–

asitwouldbeviewedfromwithinit,andfromafixedposition.Ishowedtheiterating

fractalexplainsanddemonstratesmanyoftheobservationalanomaliesassociatedwith

thestandardΛCDMmodelofcosmology–asingularitybeginning,increasing

recessionalvelocity,andacceleratingexpansionoftheobserveduniversewithrespect

todistance.Iconcludedtheuniverseisafractal.Frommy‘fractspansion’(fractal-

expansion)modelIdeveloped–whatItermed–aFractal-Hubblediagram(figure1

below),andconcludedtheclusteringofmeasurementpoints(crosses)neartheorigin

ofthediagram–followedbytheincreasingwideningofthem–demonstratedwhy

universeishomogeneousonlargescales.Thewideningofthespacingbetweenthe

measurementpoints(withdistance)wasconsistentwiththecosmologicalprinciple.

Themorethefractaliterates,thesmootheritbecomesatlargescales.WhatIneglected

toanalysisordiscussinthediscussionswas:whytherewasclusteringofmeasurement

pointsclosetotheorigininthefirstplace?

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

3

Figure 1. Measurement point clustering on the Fractal-Hubble diagram. Measurement points (crosses) are

clustered near the origin, and spread out as distance between triangles geometric centres increases.cm=

arbitrary length unit. cm = centimetre.

Independentofmywork,thequestionofwhetherornottheuniverseisafractalhas

indeedbeendebated–andstudiedoncosmicscales[2][3],[4]–thoughthisdebateis

notoftenmentionedinmainstreamorevenpopularscience.

Theproponentsoffractalcosmology(LucianoPietronero,FrancescoSylosLabini,and

others)havebeenarguingtheobservedhierarchiesofclusteringandsuperclustering–

basedonsurveyssimilartothe20032dfRedshiftSurveymap(figure2below)–are

directevidenceofauniversethatisfractal[5],[6],[7],[8],[9],[10],[11].Thecurrent

consensus,however,is–afterevendeepercosmicsurveys–theuniverseonlarge

scalessmoothensouttobecomehomogenous–andisoverallnot(a)

fractal[12],[13],[14].

y=0,6667xR²=1

0

10 000

20 000

30 000

40 000

0 10 000 20 000 30 000 40 000 50 000 60 000

velocitycm

-1i-

1

distancecm-1

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

4

Figure 2. 2dF Galaxy Redshift Survey [15]

Itwasthe2012WiggleZDarkEnergySurvey[16]–thelargestsurveytodate–that

settledthefractalquestion,andalsocaughtmyattention.Theyconcluded–with

increased,butsimilarconfidenceaspreviousteams(namely,the2004SloanDigitalSky

Survey[17],[18])–theuniverseshowsevidenceoffractalgalaxydistribution–with

clusteringandsuper-clustering–onlyonsmallscales(lessthan70to100Megaparsecs

away)–beyondthisdistance,thepatterngoesthroughtransitiontohomogenous

galaxydistribution.

OnviewingtheWiggleZDarkEnergySurveyresults–particularlyitsfigure13(figure3

below)ofchanginggalaxydistribution(fromfractalatsmallcosmicscalestosmoothat

largecosmicscales)IquestionedwhethertheinvertedFractal-Hubblemeasurement

pointclusteringneartheoriginmayofferexplanationandinsighttothedecreasing

‘ScaledN(r)’transitions(andincreasingsmoothness)withdistance.

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

5

Figure 3. WiggleZ Dark Energy Survey figure 13, page 16. Revealing changing galaxy distributions from

small-scale to large-scale.

InthispublicationIshallinvestigatewhethertheresultsfromtheWiggleZDarkEnergy

Survey(anditscontemporises)matchaviewofwhatonewouldexpecttoseeifthey

viewed,notatafractal–asisimpliedintheirstudies–butfromwithina(growing)

fractal.TotestthisIshallreturntothefractspansionmodelandanalysetheoccurrence

ofthesaidclusteringofmeasurementpoints.Fortheclusteringinthefractspansion

modeltohaveanysignificancetocosmology,itwouldhavetodemonstratehowthe

distributionoftriangles(intheinvertedKochsnowflake)changesoverdistancefrom

theobserver(section4.1and4.2).

2 METHODS

Toanalysisandexplainthepointclusteringonthefractal-Hubblediagram,relevant

tablesinfractspansionspreadsheetmodel[19]wereanalysed–particularlythetable

fromwherethefractal-Hubblediagramwasderived.Calculationsweremadeand

diagramscreated–thesemayalsobeviewedinthespreadsheetmodel:

1. Thequantityoftrianglesizespertotaldistanceincrementonthefractal-Hubble

diagramwascalculatedby:countingthequantityoftrianglesizes(indistance

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

6

columnintable2)anddividingthisbythedistanceincrementsmeasuredinthe

sample.SeeTable2aofspreadsheetmodel.

2. Thequantityoftrianglesateachincrementwascalculatedbytotallingthe

quantityoftriangles(fromtable4)foreachrespectiveiteration-distance.

3. AnamendedFractal-Hubblediagram–combining(recessional)velocitywiththe

quantityoftrianglesateverydistance–wascreated.Seetable7ofspreadsheet

model.

3 RESULTS

Theresultsareasfollows:

1. 8ofthe10measurementpointsarelocatedinsidethefirst(1.20E+4cm-1)

incrementdistance.Theremaining2measurementpointsareoutsidethisrange.

2. Figure3belowshowsthequantityoftrianglesbydistance–betweengeometric

centresfromtheobserver.Thequantityoftrianglesdecreasedexponentially

from7.86E+05,atiteration-distance0,toaquantityof1atdistance51800cm-1

(iteration-10).

Figure 3. Quantity of triangles at each distance (point) from the observer on the inverted Koch Snowflake fractal. As the distance between triangle geometric centres increases (exponentially) with iteration, and so

increasing the distance from the observer, the quantity of triangles per iteration decreases exponentially to a

quantity of one – at time 0. cm = centimetre.

y=3E+06e-1,373xR²=0,99973

0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

800 000

900 000

0 2 7 23 70 212

639

1920

5760

17300

51800

quan

tityoftriang

les

distancecm-1

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

7

4 DISCUSSIONS

4.1 ClusteringofMeasurementPoints

Atthepointofobservation(theoriginontheFractal-Hubblediagram)thereisa

quantityof786,432triangles,allofwhicharethesamesizeastheobserverstriangle

viewingposition.Theclusteringofthemeasurementpointsneartheoriginofthe

diagramisduetothelocationtheobserverwithinthe(inverted)fractal,andthe

relativesizeofthesetrianglesneartheobserver.Theobserverwill,inprinciple,be

surroundedbythesesizedtriangles.Theobserverwillnotseeallthesetriangles,how

manytheywillseeisbeyondofthescopeofthisinvestigation,butitwillbemany.As

weviewfurtherout,thequantityoftrianglesdecrease–whiletheareaofthe

respectivetrianglesincrease.Thispropertyofclusteringneartheoriginisscale

invariant:nomatterthedistance,thispatternofclusteringneartheoriginwillremain.

4.2 ClusteringandtheFractal-HubbleLaw

Figure4(below)combines–ontheoriginal(Kochsnowflake)fractal-Hubblediagram–

thequantityoftrianglesateachdistancepointwiththe(recessional)velocityatthe

samedistancepoint.Thediagramrevealstherelationshipbetweentheclusteringof

measurementpointsclosetothe(lowrecessionalvelocity)origin,andthesmooth

distribution(highrecessionalvelocity)atlargedistances.

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

8

Figure 4. The inverted (Koch snowflake) fractal, Fractal-Hubble Diagram combined with the quantity of triangles at each distance from the observer . As distance increases with respect to iteration-time: the

recession velocity of distance between geometric points increases; while the quantity of triangles at each

distance decreases. cm = centimetre.

4.3 Treemetaphor

Iftheobservationfromdeepwithinasnowflakefractalissubstitutedwithobservation

fromhighwithinacommonbranchingtree(alsoanaturalfractal):theclusteringof

pointsontheFractal-Hubblediagramwouldequallycorrespondtotheclusteringof

self-similar(sized)branches–inthetree–surroundingtheobserver.Iftheobserver

weretolookdown,inwardsfromtheouterbranches–towardsthetrunkofthetree–

thebranch(nodes)quantitywoulddecrease,thevolumeofthesinglebrancheswould

increase,andthebranch‘clustering’wouldsmoothout.

4.4 TheUniverse

Thedistributionofmeasurement-pointclusteringalongtheFractal-Hubblediagram

matchesthetransitionsfromroughtosmoothasrevealedin(recent)galaxysurveys.

Thedistributionofgalaxiesintheuniverse(shownaboveinfigure1)isofanature

expectedifonewasviewingfromwithinafractaluniverse:lookingbackthroughthe

y=0.6667xR²=1

0

5000

10000

15000

20000

25000

30000

35000

40000

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 10000 20000 30000 40000 50000 60000

velocityu

-1t-

1

quan

tityoftriang

les

distancecm-1

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

9

universe–intermsofdistanceandtime–toits–nowexpanded–origin.Thesmooth

outerreachesoftheuniverse–outneartheCMBoriginoftheuniverse–isthe‘trunk’

oftheuniverse,andtheroughfractalclustersare‘thebranches’oftheuniverse.Using

atreeasametaphoroftheuniverseisnottosaytheuniverseisafractaltreestructure:

itistosay,justasatreeisafractalstructure,theuniverseisafractalstructure.It

shouldbenotedtreesgrowthhaverecentlybeenfoundtoalsoincreaseataccelerating

rates[20],[21].

4.5 RaisedQuestions

Therearemanyquestionsandissuesarisingfromthisfinding–allofwhich,atthis

point,arebeyondthescopeofthisinvestigation,butnotbeyondthescopeofreason.

4.5.1 Super Clusters

Proponentsoffractalcosmologyareexpectingtoseeevenlargergalacticclusters

furtheroutintothelarge-scalehomogeneousregion.Thefractspansionmodelwould

concurwiththis,onlythatthedistance(inprinciple)tothenextcluster(nextlarger

branchornode)maybebeyondtheageoftheuniverse–andormaynotexistatall.

4.5.2 Emergent Structure

Afractaluniversewouldimplyanemergentstructure–thewholemadeofmanyparts

–justasthetreeismadeofmanybranches.Itmayforceustoquestiontheinitial

conditionsofthebigbangbeginning.Namely,whetherallmass(intheuniverse)was

togetherinoneplaceandatonetime.Itcouldnowbeargued–fromtheprinciplesof

fractalemergence–theuniversedeveloped/evolvedmassfromthebottomup,withthe

passingoftime.

4.5.3 Growth Explanation

Ifthebranchesofthetreeareakintothesmall-scalegalaxyclustersoftheuniverse,we

mayfinditprofitabletosearchforgrowthexplanationstotheuniverseinthebranches

too.Givenitisatthebrancheswheretreesgrowformandthetrunkandfirstbranches

areonlyinfrastructuretothetotalemergentstructure.Thiswouldsuggestgrowth

beginsatthesmallestofscales:atthesub-atomiclevel,thePlanckscale.

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

10

Thequantumnatureofthefractalhasbeenaddressedinmyoriginalpublication–and

mustbefurtherinvestigated[22].

4.5.4 Dark Matter

Beyondthescopeoftheinvestigationiswhetherthisfractalstructureoffersinsightto

thedarkmatterstructureoftheuniversealso?Giventhecurrentmappedstructureof

thedarkmatter,andthestructureoftheobserved‘fractal’universe,Iwouldsuggest

yesitdoes.

4.5.5 General Relativity

WhatafractaluniversemeansforthefutureofGeneralRelativitytheoryisunclearand

beyondthescopeoftheauthor–thoughitisconceivableitmayhavetobeadaptedto

takeaccountthegeometryofthefractal.Workhasalreadybeguninthisarea:from

notedtheoristLaurentNottale[23],[24]andothers[25].

4.5.6 Fractal Dimension

Recentstudieshaveshownfractaldimensiondecreaseswithincreasedzvalues[26].

Thismayalsocomplementmystudy.

4.6 Conclusion

Themodeloffractspansion(fractal-expansion)demonstratestheuniverse’sgalaxy

distributiontransitionfromrough(fractal)onsmall-scales,tosmooth(homogeneous)

onlarge-scales.Thisdemonstrationcannowbecombinedwiththemodelsoriginal

demonstrations:asinglebeginning;aCMB;Hubble’slaw;andisexpansionatan

acceleratingrate–lambda.TheresultsshowstrongagreementwiththeWMAP+ΛCDM

modelsoftheuniverse.

Thepropertieslistedareallpropertiesofthefractal,andareinextricablylinkedwith

eachother.Fromobservationsoftheuniverse–atallscales–itcanbeconcludedthe

universeis–byitsnature–fractal.Itlookslikeafractal,andactslikeafractal–itisa

fractal.

Acknowledgments

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

11

Iwouldliketothankmywifeandchildrenfortheirpatienceandsupport.This

publicationonlycameaboutafteranemailexchangewithDr.TamaraDavis.

References

1. MacdonaldB.FractalGeometryaPossibleExplanationtotheAcceleratingExpansionoftheUniverseandOtherStandardΛCMBModelAnomalies[Internet].2014[cited28Sep2014].Available:https://www.academia.edu/8415112/Fractal_Geometry_a_Possible_Explanation_to_the_Accelerating_Expansion_of_the_Universe_and_Other_Standard_%CE%9BCMB_Model_Anomalies

2. DickauJJ.Fractalcosmology.ChaosSolitonsFractals.2009;41:2103–2105.doi:10.1016/j.chaos.2008.07.056

3. ChownM.FracturedUniverse.NewScientist.21Aug19992200.Available:http://www.newscientist.com/article/mg16322004.500-fractured-universe.html

4. GefterA.Don’tmentiontheFword.NewSci.2007;193:30–33.doi:10.1016/S0262-4079(07)60618-6

5. PietroneroL.Thefractalstructureoftheuniverse:Correlationsofgalaxiesandclustersandtheaveragemassdensity.PhysStatMechItsAppl.1987;144:257–284.doi:10.1016/0378-4371(87)90191-9

6. LAURENTN.THETHEORYOFSCALERELATIVITY.1991;Available:http://luth.obspm.fr/~luthier/nottale/arIJMP2.pdf

7. BernardJ.T.JonesVJM.ScalingLawsintheDistributionofGalaxies.2004;doi:10.1103/RevModPhys.76.1211

8. JoyceM,LabiniFS,GabrielliA,MontuoriM,PietroneroL.BasicpropertiesofgalaxyclusteringinthelightofrecentresultsfromtheSloanDigitalSkySurvey.AstronAstrophys.2005;443:11–16.doi:10.1051/0004-6361:20053658

9. NottaleL,VigierJP.ContinuousincreaseofHubblemodulusbehindclustersofgalaxies.Nature.1977;268:608–610.doi:10.1038/268608a0

10. MandelbrotBB.FRACTALASPECTSOFTHEITERATIONOFz→Λz(1-z)FORCOMPLEXΛANDz.AnnNYAcadSci.1980;357:249–259.doi:10.1111/j.1749-6632.1980.tb29690.x

11. LabiniFS,PietroneroL.Thecomplexuniverse:recentobservationsandtheoreticalchallenges.ArXiv10125624Astro-PhPhysicscond-Mat.2010;Available:http://arxiv.org/abs/1012.5624

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

12

12. GefterA.GalaxyMapHintsatFractalUniverse.NewSci.2008;Available:http://www.newscientist.com/article/dn14200-galaxy-map-hints-at-fractal-universe.html?full=true#.VFkQGfTF_WR

13. CooperK.BraveNewUniverse.AstronomyNow.Jul2005:28–31.

14. SlezakM.Giantfractalsareout–theuniverseisabigsmoothie-NewScientist.[Internet].24Aug2012.Available:http://www.newscientist.com/article/dn22214-giant-fractals-are-out--the-universe-is-a-big-smoothie.html#.VFxd2PTF_WQ

15. PeacockJA,ColeS,NorbergP,BaughCM,Bland-HawthornJ,BridgesT,etal.Ameasurementofthecosmologicalmassdensityfromclusteringinthe2dFGalaxyRedshiftSurvey.Nature.2001;410:169–173.doi:10.1038/35065528

16. ScrimgeourM,DavisT,BlakeC,JamesJB,PooleG,Staveley-SmithL,etal.TheWiggleZDarkEnergySurvey:thetransitiontolarge-scalecosmichomogeneity.MonNotRAstronSoc.2012;425:116–134.doi:10.1111/j.1365-2966.2012.21402.x

17. YadavJ,BharadwajS,PandeyB,SeshadriTR.TestinghomogeneityonlargescalesintheSloanDigitalSkySurveyDataReleaseOne.MonNotRAstronSoc.2005;364:601–606.doi:10.1111/j.1365-2966.2005.09578.x

18. HoggDW,EisensteinDJ,BlantonMR,BahcallNA,BrinkmannJ,GunnJE,etal.Cosmichomogeneitydemonstratedwithluminousredgalaxies.AstrophysJ.2005;624:54–58.doi:10.1086/429084

19. MacdonaldB.FractspansionModel[Internet].2014.Available:http://figshare.com/articles/Fractspansion_Model/1168744

20. StephensonNL,DasAJ,ConditR,RussoSE,BakerPJ,BeckmanNG,etal.Rateoftreecarbonaccumulationincreasescontinuouslywithtreesize.Nature.2014;507:90–93.doi:10.1038/nature12914

21. MacdonaldB.FractalGeometryaPossibleExplanationtotheAcceleratingGrowthRateofTrees[Internet].2014.Available:https://www.academia.edu/8583206/Fractal_Geometry_a_Possible_Explanation_to_the_Accelerating_Growth_Rate_of_Trees

22. MacdonaldB.DevelopmentoftheKochSnowflake:SpiralandPulseWave[Internet].2014.Available:http://figshare.com/articles/Development_of_the_Koch_Snowflake_Spiral_and_Pulse_Wave/1170165

23. NottaleL.Scalerelativityandfractalspace-time:theoryandapplications.FoundSci.2010;15:101–152.doi:10.1007/s10699-010-9170-2

ObservedGalaxyDistributionTransitionwithIncreasingRedshiftaPropertyoftheFractal

BlairD.Macdonald November2014

13

24. NottaleL.FRACTALSPACE-TIMEANDMICROPHYSICSTowardsaTheoryofScaleRelativity.WorldSci.1993;283–307.

25. RozgachevaIK,AgapovAA.Thefractalcosmologicalmodel.ArXiv11030552Astro-Ph.2011;Available:http://arxiv.org/abs/1103.0552

26. Conde-SaavedraG,IribarremA,RibeiroMB.Fractalanalysisofthegalaxydistributionintheredshiftrange0.45<z<5.0.PhysStatMechItsAppl.2015;417:332–344.doi:10.1016/j.physa.2014.09.044