Mouse chromosome 3

11
Mammalian Genome 4, $47-$57 (1993). 9 Springer-Vedag NewYork Inc. 1993 Mouse Chromosome 3 Michael F. Seldin, 1 Jan-Bas Prins, z Nanda R. Rodrigues, z John A. Todd, z Miriam H. Meisler 3'* 1Duke University Medical Center, Departments of Medicine and Microbiology, Research Drive, Room 247, CARL Building, Box 3380, Durham, North Carolina 27710-3380, USA 2Nuffield Department of Surgery, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK 3Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA Received: 10 May 1993 Introduction During the past year, more than 80 new loci have been assigned to Chromosome (Chr) 3, including 15 genes and a large number of anonymous DNA markers. This wealth of markers makes it increasingly difficult to represent the genetic maps of mouse chromosomes in traditional formats. In this report, map positions for Chr 3 loci are presented in tabular form. A traditional graphic representation of Chr 3 is available in the first and second committee reports (103, 103a). This report provides an updated locus list and map, updated strain distribution patterns for recombinant inbred lines, recombination data from seven large mul- tilocus crosses, a new map entirely based on PCR- based microsatellite loci that span Chr 3, and primer sequences for a large number of markers that can be detected by the PCR. Locus list and chromosome map The main features of Chr 3 loci are presented in Table 1. Map positions were calculated by Seldin using the methods previously described (103,103a). Entries that have been added or changed since the previous report are marked with an asterisk. The map positions are composites based on a large number of measurements. The 95% confidence intervals for the primary data are in most cases greater than 2 cM, and those for the composite data are greater than 5 cM. As discussed in the previous reports, there may be errors in the indi- cated gene orders for closely linked loci that have not been mapped in the same cross. * Chair of Committee for Mouse Chromosome 3 The map positions that are listed alphabetically in Table 1 are also listed in order of increasing distance from the centromere in Table 2, providing a tabular representation of the Chr 3 map. Data on gene order obtained from seven multilocus crosses are summarized in Fig. 1A. Unambiguous gene order can be determined only for loci that were mapped within the same cross. The data from the seven crosses generate a consistent gene order. The quantitative data from these crosses are presented in Fig. lB. PCR primers for Chr 3 loci The development of PCR-based assays that detect ge- netic variation has greatly reduced the time and effort required for genotyping, as well as the amount of ge- nomic DNA required per assay. PCR primers amplify products of different lengths as a result of variation in simple sequence repeat length. Published gene se- quences have been used to derive primers that detect variation at known loci. In addition, a large number of primers that detect (CA)n repeat length variation have been developed from anonymous genomic clones by the Mouse Genome Center at the Massachusetts Insti- tute of Technology (MIT) (37). Primer sequences for 72 Chr 3 loci of both types are presented in Table 3. Microsateilite map of Chr 3 During the past year, microsatellite markers have been widely adopted by many investigators as convenient and reliable genetic markers. The presence of varia- tion among inbred strains, the reproducibility of as-

Transcript of Mouse chromosome 3

Mammalian Genome 4, $47-$57 (1993).

�9 Springer-Vedag New York Inc. 1993

Mouse Chromosome 3

Michael F. Seldin, 1 Jan-Bas Prins, z Nanda R. Rodrigues, z John A. Todd, z Miriam H. Meisler 3'*

1Duke University Medical Center, Departments of Medicine and Microbiology, Research Drive, Room 247, CARL Building, Box 3380, Durham, North Carolina 27710-3380, USA 2Nuffield Department of Surgery, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK 3Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA

Received: 10 May 1993

Introduction

During the past year, more than 80 new loci have been assigned to Chromosome (Chr) 3, including 15 genes and a large number of anonymous DNA markers. This wealth of markers makes it increasingly difficult to represent the genetic maps of mouse chromosomes in traditional formats. In this report, map positions for Chr 3 loci are presented in tabular form. A traditional graphic representation of Chr 3 is available in the first and second committee reports (103, 103a).

This report provides an updated locus list and map, updated strain distribution patterns for recombinant inbred lines, recombination data from seven large mul- tilocus crosses, a new map entirely based on PCR- based microsatellite loci that span Chr 3, and primer sequences for a large number of markers that can be detected by the PCR.

Locus list and chromosome map

The main features of Chr 3 loci are presented in Table 1. Map positions were calculated by Seldin using the methods previously described (103,103a). Entries that have been added or changed since the previous report are marked with an asterisk. The map positions are composites based on a large number of measurements. The 95% confidence intervals for the primary data are in most cases greater than 2 cM, and those for the composite data are greater than 5 cM. As discussed in the previous reports, there may be errors in the indi- cated gene orders for closely linked loci that have not been mapped in the same cross.

* Chair of Committee for Mouse Chromosome 3

The map positions that are listed alphabetically in Table 1 are also listed in order of increasing distance from the centromere in Table 2, providing a tabular representation of the Chr 3 map.

Data on gene order obtained from seven multilocus crosses are summarized in Fig. 1A. Unambiguous gene order can be determined only for loci that were mapped within the same cross. The data from the seven crosses generate a consistent gene order. The quantitative data from these crosses are presented in Fig. lB.

PCR primers for Chr 3 loci

The development of PCR-based assays that detect ge- netic variation has greatly reduced the time and effort required for genotyping, as well as the amount of ge- nomic DNA required per assay. PCR primers amplify products of different lengths as a result of variation in simple sequence repeat length. Published gene se- quences have been used to derive primers that detect variation at known loci. In addition, a large number of primers that detect (CA)n repeat length variation have been developed from anonymous genomic clones by the Mouse Genome Center at the Massachusetts Insti- tute of Technology (MIT) (37). Primer sequences for 72 Chr 3 loci of both types are presented in Table 3.

Microsateilite map of Chr 3

During the past year, microsatellite markers have been widely adopted by many investigators as convenient and reliable genetic markers. The presence of varia- tion among inbred strains, the reproducibility of as-

$48 M . F . S e l d i n e t a l . : M o u s e C h r 3

Table 1. Locus fist for mouse Chr 3.

New S~'mbol Name A Map T Method

Acrb-2 acetylcholine receptor beta 2 neural 43.0 D L Acts skeletal alpha actin X D S,R Adh-I alcohol dehydrngenase-1 1 68.1 B,D L,R

Adh-lps alcohol dehydrogenase-1 l~eudogene 52.0 D R Adh-lt alcohol dehydrogenase-tempural 68.1 B L Adh-3 alcohol dehydrogenase-3 68. i B R,L

Adh-3t alcohol dehydrngenaae-3-tempural 68.1 B L Adh-5 alcohol dehydrogenase-5 X B S Ahr-I aldehyde reduetase-1 68.1 B R,L Ampd-1 AMP dearninase-I (muscle form) 47.4 D L Ampd-2 AMP deaminase-2 (nonmnscle form) 50.2 D L Amy-1 amylase, salivary 1 49.6 B,D L,R

Amy-2 amylase, pancreatic 1 49.6 B,D L,R Ank-2 brain specific ankyrin-2 58.4 D L Ap2 adipocyte protein aP2 9.7 B,D R,L Arnt aryl hydocarbon receptor nuclear translator X B S Atplal Na, K ATPase alpha-I 47.3 D L Atpa-I see Atplal Bglap bone matrix Gla protein D S B r a n Beta-marmosidese activity (liver, kidney) 68.1 B R BRS-3 see Odc-rs3 Cacy calcyclin 42.9 D L Calll calpactin I light chain 42.9 D R Calla see Mine Capl calcium binding protein, placental 42.9 D R Car-1 carbonic anhydrase-1 6.3 B L Car-2 carbonic anhydrase-2 1 6.3 B,D L,R

$

Car-3 carbonic anhydrase-3 7.5 D L Ccna Cyclin a 15.0 D L Cdl cluster designation I 43.9 D L Cd2 cluster designation 2 46.4 D L Cdl 0 see Mrae Cd53 cluster designation 53 47.4 D L cdm cadmium resistance 61.6 V R Cf-3 coagulatioon factor 3 49.6 D R Cap-2 cyclic nuclentide phosphodiesterase-2 38.8 D R Cnx40 connexin (see Gja-5) coa cocoa 8.3 V L Csfm colony stimulating factor, macrophage 48.4 B,D,V L

(alternative for op) D3Byul DNA segment, Brig Young Univ. 1 (RAPD) 6.9 D R D3Byu2 DNA segment, Brig Young Univ. 2 (RAPD 6.9 D R D3Byu3 DNA segment, Brig Young Univ. 3 (RAPD) 8.1 D R D3Byu4 DNA segment, Brig Young Univ. 4 (RAPD) 45.3 D R D3Byu5 DNA segment, Brig Young Univ. 5 (RAID) 34.4 D R D3Byu6 DNA segment, Brig Young Univ. 6 (RAPD) 42.3 D R D3Byul 7 DNA segment, Brig Young Univ. 17 (RAPD) 30.1 D R D3Dol P40-4 done ? high affinity laminin 76.4 D R D3Hunl DNA segment, Chr 3, Hunter 1 56.1 D L D3J1 DNA segment, Chr 3, Jackson Lab 1 33.1 D R D3J2 DNA segment, Chr 3, Jackson Lab 2 65.6 D R D3J3 DNA segment, Chr 3, Jackson Lab 3 54.7 D R D3Jfrl DNA segment, Oar 3, MJeffers-1 47.4 D P D31knl DNA segment, Chr 3, Ian Jackson 1 69.0 D R D3Lehl DNA segment, Cbr 3, Lehrach 1 17.6 D L D3Leh2 DNA segment, Chr 3, Lehrach 2 10.2 D L D3Lerl DNA segment, Chr 3, Leroy 1 41.5 D L D3Ler2 DNA segment, Chr 3, Leroy 2 41.5 D L D3Mitl DNA segment, Chr 3, M1T 1 7 .0 D L D3Mit3 DNA segment, oar 3, MIT 3 20.0 D L D3Mit4 DNA segment, Chr 3, M_IT 4 20.0 D L D3Mit5 DNA segment, Chr 3, MIT 5 1 24.0 D L D3Mit6 DNA segment, oar 3, MIT 6 22.0 D L D3Mit7 DNA segment, Oar 3, MIT 7 30.0 D L D3Mit9 DNA segment, Oar 3, M1T 9 38.6 D L D3MitlO DNA segmctat, Chr 3, MIT 10 48.6 D L D3Mitll DNA segment, Chr 3, MIT 11 48.6 D L D3Mitl2 DNA segmen4 Chf 3, MIT 12 50.3 D L D3Mitl3 DNA segment, Chr 3, MIT 1 57.7 D L D3Mitl4 DNA segment, Chr 3, MIT 14 61.0 D L D3Mitl5 DNA segment, Chr 3, M1T 15 63.1 D L D3Mit16 DNA segment, Chr 3, MIT 16 63.1 D L D3Mit17 DNA segment, Chr 3, MIT 17 68.7 D L D3Mit18 DNA segment, Chr 3, MIT 18 73.0 D L D3Mit19 DNA segment, Chr 3, MIT 19 1 81.0 D L D3Mit21 see 11-2 D3Mit22 DNA segment, Cbr 3, MIT 22 1 35.0 D L D3Mit23 DNA segment, Oar 3, MIT 23 0 .0 D L D3Mit24 DNA segment, Cb.r 3, M r r 24 20.0 D L

H. s]tmbol

ACTAI ADHI

ADH3

ADH5

AMPD1

AMY1

AMY2

ARNT ATP1A1

BGLAP

CACY

C A ~ CA1 CA2

CA3

CD1 CD2

F3

CSF1.

H. location Notes References

8 11 lp21-qter 8,12 33 4q21-q23 4,5 13,15,20,22,54,

68,150,159 20

13 6,71 4q21 -q23 12 43,67,68,69,72,

112,124 12 66,69

4q21-q25 53 12 43

lp13 1 79 1 79,111,118

lp21 8.10,12 13,15,45,52. 59,86,121. 137,138,156

lp21 1,2 13,14,109,121 12 122 4 61,150

lpter-q12 17 lp13 1.13 77,79,81,109

76 97

1q21-q25 1,12 39,79,109,118 131,151

lq12-q22 39,151 8q13-q22 13 44 8q13-q22 1,7,8,13 15,23,28,44,

47,109, i17,121,156,161

8qI3-q22 13 9 1,2 92,129,134

lq22-23 1 23,110,111,118 Ip13 1 78,79,109,118

1 168 145,146

lp22-p21 98 10

13 117,142 lp13-21 2,8 18,54,86,93,169

167 167 167 167 167 167 167 40

1 73 114 114 114 75 99

2 31 2 31 8 91 8 91 3,4,5 37,150,159 3 37 3 37 3,4 37,150 3 37,150 3 37 3 37 4,5 37,159 3,4 37,150 3 37 3 84 3 37 3 37 3 37 3 37 1,3 37,134,161 1,3,4 134,150,159

3,4 84,150 3 84 3 84

Continued on next page

M. F. Seldin et al.: Mouse Chr 3

Table 1. Continued.

$49

* D3Mit25 DNA segment, Chr 3, MIT 25 30.0 D L * D3Mit26 DNA segment, Chr 3, MIT 26 38.6 D L * D3Mit28 DNA segment, Chr 3, MIT 28 44.9 D L * D3Mit31 DNA segment, Chr 3, MIT 31 73.0 D L * D3Mit32 DNA segment, Chr 3, MIT 32 77.0 D L * DJMit36 DNA segment, Chr 3, MIT 36 53.4 D L * D3Mit38 DNA segment, Cl3r 3, MIT 38 67.2 D L * D3Mit39 DNA segment, Chr 3, MIT 39 53.4 D L * D3MiI40 DNA segment, Chr 3, MIT 40 40.1 D L * DJMit41 DNA segment, Chr 3, M1T 41 46.1 D L * DJMit42 DNA segment, Chr 3, MIT 42 56.1 D L * D3Mit45 DNA segment, Chr 3, M1T 45 75.3 D L * D3Mit46 DNA segraent, Chr 3, MIT 46 9.6 D L * D3Mit49 DNA segment, Chr 3, M1T 49 40.1 D L * D3Mit51 DNA segment, Chr 3, MIT 51 36.2 D L * D3Mit53 DNA segment, Chr 3, M1T 53 35.0 D L

D3Ndsl DNA segment, Chr 3, Nottingham Dept. Surgery 1 27.0 D L

* D3Nds2 DNA segment, C~" 2, Nottingham Dept. Surgery 2 61.0 D L,R

* D3Nds3 DNA segment, Chr 2, Nottingham DepL Surgery 3 63.0 D R

D3Nds8 see II-2 D3Nds8 see Tshb D3Nds9 see Adh-I

* D3Pasl DNA segment, Chr 3, Pasteur Institute-1 20.9 D R * D3Pas2 DNA segment, Chr 3, Pastetw 2 13.2 D L * D3PasS01 DNA segment, Chr 3, Pasteur 501- 8.2 D L

temporary designation * D3Pas502 DNA segment, Chr 3, Pasteur 502- 42.9 D L

temporary designation-FP25 D3$ell DNA segment, Chr 3, Seldin 1 48.1 D L D3Sel2 DNA segment, Chr 3, Seldin 2 30.1 D L D3Tu33 DNA segment. Chr 3 Tubingen-33 57.9 D R D3Tu51 DNA segment, Chr 3 Tubingen-51 42.9 D L,R

* D3Ufl DNA segment, Chr3 Wakeland 1 (RAPD) 43.5 D L * D3Uf2 DNA segment Chr 3 Wakeland 2 (RAPE)) 52.3 D L

de droopy ear 48,4 V L Egf epidermal growth factor I 62.1 D L,R

Emv-27 endogenous r MuLV-27 49.6 D L Es-16 esterase- 16 10.1 B L Es-26 esterase-26 33.3 B L Es-27 esterase-27, serum eholinesterase 23.3 B L Evi-I ecotropic viral integration sited 10.2 D L,R

Fabpi fatty acid binding protein intestinal 54.7 D R Fcgrl high affinity FC gamma receptor 42.9 D L Fgr fibroblast growth factor basic 15.7 D I,L

Fgg gamma fibrinogen 42.3 D L,R

Fire-3 Friend MuLV integration site-3 10.2 D L Fpsl.rsl famesyl pyrophosphate synthetase - like 1 43.9 D L f t flaky tail 42.4 V L Gba beta glueocerebrosidase 1 42.6 B,D L Gbp-1 guanine nuelentide-binding protein-1 64.3 D L,R

* Gjw5 gap junction protein - connexin 40 45.5 D L * Glut.2 glutamate receptor 2 34.9 D L

Glut-2 glucose transporter 2 10.2 D L * Gnai-2 guanine nucleotide binding protein, 48.4 D L

alpha inhibiting activity-2 Gnal-3 guanine nueleotide binding protein, 48.4 D L

alpha inhibiting activity-3 * Gsl.4 globoglycolipid expression-4 X V R

H-23 histocompatibility-23 59.6 B L,R H-28 histoeompatibility-28 79.3 B L,R H-37 histoeompatibility-37 CA") :8 R

* H3f2 histone 3 , family 2 44.9 D R Hao-2 hydroxyacid oxidase-2 (kidney) 40.0 B L

* He3 heterochromatin, Chr 3 0.0 L Hist2 histone gene (2) X D S Hnl hypothalamie norepinephrine level 59.6 V L Hsd3b 3-beta-hydroxy steroid dehydrogeaaase 45.0 D L Hsp86-ps2 beat shock protein 86- pseudogene 2 19.3 D S,L

* lap la l -7 Intraeistemal A-particle al-7 42.3 D R * lapin2-9 Intracisternal A-particle a2-9 (near Fgg) X D R * lapla2-14 Intracisternal A-particle a2-14 74.6 D R * lapla3-13 Intraeisternal A-pariticle a3-13 28.0 D R

ldd.3 insulin dependent diabetes 3 X V L If-1 interferon indneibility locus 84.6 V L,R II-2 interleukin 2 1 15.0 D S,L

II-7 interleukin 7 2.0 B,D L * K v l . 2 potassium channel gene 48.2 D L

BGF

EVIl

FABP2 FCGR1 FGF2

FIM3 F I l L

GIlA

GLUR2 GLIYI'2

GNAI3

H3F2

HSDB3

11.2

4q25

3q24-q28

4q28-q31 lq 4q25-27

4q28

3q27 lq24-q31

lq21

4q25-34 3q26

lp13

lq21-21

1 p l l - p l 3

4q26-q27

3 3 3 3,4 3,4 3 3 3 3 3 3 3 3 3 3 3

4,5,9

3

8 8

8

1 1 3 1 5 5 12,13 1,2,7

13 12 12 12 1,2,6

1,2

2

2,8 1

1,12 12 2 1 2,5 2

2,4

12 12

8,12 6

12 1,3,4,9

2,6 2

84 84 84 84,150 84,150 84 84 84 84 84 84 84 84 84 84 84

150,159

84

3 0

135 123 26

123

162 162 153 118 159 159 32,68,86,87 52,109,112,137, 161,170 148 154,156,158 117,154,156,158 157,158 21,23,27,28, 31,54,62, 92,109,112,141 143 1,12,118,120 23,31,62,92, 102,141 13,31,59,92, 93,94 7,27,54,139 134 85,86 109,118 124 59,94 58 62 166

166

115 4,106 4,106 4 132 54,64,65 21 56 46 5 107,108 95 94 94 95 149 36,106 49,134,149,150, 159,162,163 21,62.137 93

Continued on next page

$50

Table 1. Continued.

M. F. Se ld in et al . : M o u s e C h r 3

* Kvl .3 potassium channel gene 48.2 D L * Kvl.3rs3 potassium channel gene 1.3 related sequence 48.4 D L

Lef-1 lymphoid enhancer-binding factor 1 X D R,S * M6pr-ps cation-dependent mannose 6- 45.5 D L

phosphate receptor pseudo gene ma matted 40.4 V L Mine membrane metallo-endo peptidase 30.1 D L

(neutral endopeptidase) Mrav-2 MCF endogenous viros-2 X D S Mmv-12 MCF endogenous vires-12 X D S Mov-lO Moloney leukemia virus-10 X D S Mpmv-9 modified polytropic murine leukemia virus-9 88.2 D L,R Mpmv-20 modified polytropic murine leukemia virus-20 9.6 D R my blebs 30.4 V L Ngfb nerve growth factor beta 47.4 D L

Nras Nras oncogene 47.4 D L * Nsel-2 see Tau-1

Oat-rs2 orolthine aminotransferase related sequence 2 52.4 D L Odc-r$3 omithine decarboxylase-3 X D R op osteop~rosis (Csfm mutation see Csfm) Otf-3rs3 octamer transcription factor -3 related sequence 3 0,0 D L Otf-3rs4 octamer transcription factor-3 related sequence 4 62.1 D

* Otf-3rs9 octarner transcription factor-3 related sequence 9 16.4 D Oua-I ousbain resistance- 1 X V S Pgk-lps3 phosphoglycerate kinase-1 pseudogene 3 8.7 D S,R Pk-1 pyruvate kinase (may be the same as Pklr) 33.6 B L Pk./r pyruvate kinase liver, red blood cells (see Pk-1) 42.6 D

* Prop-1 peroxisomal membrane protein C/0k) 54.6 D L Pray-26 polytropic routine virus-26 71.8 D R Pray-28 polytropic marine virus-28 42.9 D R Pray-38 polytropic marine virus-38 43.1 D R Pray-39 polytropic routine virus-39 53.8 D R Rapla member of RAS oncogene family 47.4 D L rcm rostral cerebellar malformation 65.4 V L

* Rn7s-3 7s RNA related sequence -3 63.0 D R Rnulb-1 Ulbl small nuclear RNA 42.7 D R Rnulb-3 Ulb3 small nuclear RNA 42.9 D R soc soft coat 43.4 V L spa spastic 37.4 V L suc-1 see Suc- lr Sac-lr sacrase-isomaltase, regulatory 33.3 B L Sac.Is sucrase-isomaltase, structural 33.3 D R sut subtle gray 12.2 V L Tau-1 basic domain helix-loop-helix CoHLH') 50.6 D L

* Thbs3 thrombospondin 3 43.9 D L * Tkr tyrosine kinase receptor (Ngf is ligand) 43.9 D L

Tmevd-2 TMEV induced demyelinating disease susceptibility 8.4 V R

* Tpi-2 triosephosphate isomerase related sequence-2 36.4 D L

Tshb thyrotropin stimulating hormone beta subunit 1 47.4 D L

Va varitint-waddler 71.6 V L

Xmmv-22 xenotropic-MCF leukemia virus - 22 42.3 D R Xmmv-47 xenotropic-MCF leukemia virus - 47 31.0 D R Xmmv-65 xenotropic-MCF leukemia virus - 65 42.3 D L,R

* Ybld YB-I DNA binding protein related sequence d 14.6 D L

2 93 2 93

LEF1 4q23-q25 105 2 94

10,12 85,86,87,106 MME 3q21-27 1,7 23,161

63 63 74,113

11 51 51

10 19,35,45 NGFB lp13 1,2 18,42,52,59,79,94,

109,118,166,171 NRAS lp13 1,2 18,93,118,128

125 126

2,7 137,161 L 1,2,7,137,161 L 7,161

83 1

8 54,139 L PKLR lq21 1,118 PMP1 lp21-22 2 52

5O 50 5O 50

RAPIA lp12-p13 1 41 12 89,90

147 RNU1 96

13,96 10 45,140 10 85,86

12 SI 3q25-26 12

12 88 12 55 1 38 1 80

104

2 138

TSI-IB lp13 1 13,42,79,82,109, 116,118,150,159

10,12 32,43,45,67,68, 86,87,106 13 164

12 164 2 141

The Chr 3 map positions are an estimate of distances, in cM, from the cen- tromere. The position of the centromere is determined by heterochromatin mapping data (21,101). Since recombination frequencies may vary depending on the specific cross, composite map positions may distort gene order when loci have not been mapped in an individual backcross. In deriving the com- posite map, RI strain data was used to determine gene position only as a supplement to backcross data. For a fuller discussion of the generation of map positions, see text and (133). In addition to the references cited for each locus, data used to derive map positions are described in the following "Notes : " (1) Duke University cross: complete haplotypes in 114 and incomplete haplo- types in 338 interspecific [(C3H/HeJ-g/d • M. spretus)F 1 • C3H/HeJ-gld] backcross mice (134); ( la) same cross as above, but fewer than 40 meiotic events examined; (2) Frederick cross: complete haplotypes in 83-198 inter- specific [(C57BL/6J • M. spretus)F1 • C57BL/6J] backcross mice; (2a) same cross as 2, but fewer than 50 meiotic events examined; (3) Rockefeller Uni- versity cross and MIT microsatellite mapping panel: complete haplotype data

in 40-48 (C57BL/6J-ob • CAST/Ei)F 2 intersubspecific intercross mice; (4) Eu- ropean Collaborative Interspecific Backcross [(C57BL/6 x SPR)F~ x SPR] produced by the UK's Human Genome Mapping Project, with the support of the Medical Research Council (15); (5) data from the cross [(NOD/Uf x C57BL/6J)F 1 • NOD/Uf] from the laboratory of E.K. Wakeland. The RAPD polymorphism D3Ufl was detected with the primer GTGCCTAACC, and D3 Uf2 with the primer TGCTCACTGA; (6) RPMI cross: complete haplotypes in 130--140 [(C57BL/6 • M. spretus)Fl • M. spretus]; (7) Duke University cross #2: complete haplotype data in 100-182 [(MRL/MpJ-Ipr • CAST/Ei)FI x MRL/MpJ-lpr] intersubspecific backcross mice (161); (8) Pasteur cross: incomplete haplotypes in 38-74 interspecific backcross mice (J.-L. Gurnet, unpublished data); (9) same as 4 with complete haplotype data in 92-299 mice; (10) included in nine overlapping three- or four-point crosses that derive from analysis of 125-500 meiotic events in each of multiple individual crosses; (11) haplotype data in 75 interspecific backcross mice (W.N. Frankel, unpublished data); (12) three-point mapping data; (13) two-point mapping data.

M. F. Seldin et al.: Mouse Chr 3 $51

Table 2. Tabular map of Chr 3. Loci described in Table 1 are arranged in order of increasing distance from the centromere. The 95% confidence intervals for these composite data are greater than 5 cM. Unambiguous gene order can only be determined for loci which were mapped within the same cross (Fig. 1B).

Map Locus

0.0 D3Mit23 28.0 lapla3.13 42.9 Capl 0.0 He3 30.0 D3Mit25 42.9 D3Pas502 0.0 Otf-3rs3 30.0 D3Mit7 42.9 D3Tugl 2.0 II-7 30.1 D3Byu17 42.9 Fcgrl 6.3 Card 30.1 D3Sel2 42.9 Pray-28 6.3 Car-2 30.1 Mine 42.9 Rnulb-3 6.9 D3Byul 30.4 my 43.0 Acrb-2 6.9 D3Byu2 31.0 Xmmv-47 43.1 Pmv-38 7.0 D3Mitl 33.1 D3JI 43.4 s o c

7.5 Car-3 33.3 Es-26 43.5 D3Ufl 8.1 D3Bynd 33.3 Suc-lr 43.9 Cd/ 8.2 D3PasSOl 33.3 Suc-ls 43.9 Fpsl-rsl 8.3 coa 33.6 Pk-I 43.9 Thbs3 8.4 Tmevd-2 34.4 D3Byug 43.9 Tkr 8.7 Pgk-lps3 34.9 Glut-2 44.9 D3Mit28 9.6 D3MiuI6 35.0 D3Mit22 44.9 H3f2 9.6 Mpmv-20 35.0 D3Mit53 45.0 Hsdb3b 9.7 Ap2 36.2 D3MitSl 45.3 D3Byu4

10.1 Es-16 36.4 Tpi-2 45.5 Gja-5 10.2 D3Leh2 37.4 spa 45.5 M@r-ps 10.2 Evi-I 38.6 D3Mit26 46.1 D3Mit41 10.2 Fire-3 38.6 D3Mit9 46.4 Cd2 10.2 Glut-2 38.8 Cnp-2 47.3 Atplal 12.2 sut 40.0 Hao-2 47.4 Ampd-I 13.2 D3Pas2 40.1 D3Mit40 47.4 Cd53 14.6 Ybld 40.1 D3Mit49 47.4 D3Jfrl 15.0 Ccna 40.4 ma 47.4 Ngfb 15.0 II-2 41.5 D3Lerl 47.4 Nras 15.7 Fgf2 41.5 D3Ler2 47.4 Rapla 16.4 Otf-3rs9 42.3 D3Byu6 47.4 Tshb 17.6 D3Lehl 42.3 Fgg 48.1 D3Sell 19.3 Hsp86-ps2 42.3 iaplal-7 48.2 Kvl.2 20.0 D3Mit24 42.3 Xmmv-22 48.2 Kvl .3 20.0 D3Mit3 42.3 Xmmv-65 48.4 Csfm 20.0 D3Mit4 42.4 f t 48.4 de 20.9 D3Pasl 42.6 Gba 48.4 Gnai-2 22.0 D3Mit6 42.6 Pklr 48.4 Gnai-3 23.3 Es-27 42.7 Rnulb-1 48.4 Kvl.3rs3 24.0 D3Mit5 42.9 Cacy 48.6 D3MiHO 27.0 D3Ndsl 42.9 Calll 48.6 D3Mitll

Amy. l 68.1 Ahr-1 Aray-2 68.1 Bran Cf-3 68.7 D3Mitl7 Emv-27 69.0 D3Jknl Ampd-2 71.6 Va D3Mitl2 71.8 Pray-26 Nscl-2 73.0 D3Mitl8 Adh-lps 73.0 D3Mit31 D3Uf2 74.6 lapla2-14 Oat-rs2 75.3 D3Mit45 D3Mit36 76.4 D3Dol D3Mit39 77.0 D3Mit32 Pray-39 79.3 H-28 Pmp-I 81.0 D3Mitl9 D3J3 84.6 If.1 Fabpi 88.2 Mpmv-9 D3Hunl X ldd-3 D3Mit42 (X) H-37 D3Mit13 X Acts D3Tu33 X Adh-5 Ank-2 X Arnt H-23 X Bglap Hill X G s l-4 D3Mit14 X H&t2 D3Nds2 X lapl a2.9 cdm X Lef-I Egf X Mmv-12 00r X Mmv-2 D3Nds3 X Mov- l 0 RnTs-3 X Odc-rs3 D3Mit15 X Oua-I D3Mitl 6 Gbp-I rcrtz D3J2 D3Mit38 Adh-I Adh-lt Adh.3 Adh-3t

says, and the availability of the MIT primers from Re- search Genetics (Birmington, Ala.) make these mark- ers ex t remely useful. Addit ional microsate l l i te markers have been developed by J. A. Todd and co- workers at the Nuffield Department of Surgery, Ox- ford, U.K. (Nds). Table 4 presents recombination data for 21 microsatellite markers spanning Chr 3, obtained from the European Interspecific Backcross [(C57BL/ 6J • Spretus)F1 • Spretus].

Recombinant inbred lines

Like multilocus backcrosses, RI lines provide a cumu- lative mapping resource. New loci can be mapped by typing the existing RI lines and comparing strain dis- tribution patterns with the corresponding data for pre- viously typed markers. Strain distribution patterns for Chr 3 loci that have been typed on RI lines are pre- sented in Fig. 2.

Anchor loci

In the last report we recommended use of six anchor loci to facilitate integration of new genetic data with the current map. It is too early to judge the effective- ness of this recommendation, that is, the degree to which investigators will type these loci in new crosses. To fill in the gaps in the previous anchor map, we recommend two additional microsatellite markers. Ei- ther D 3 M i t 5 or D 3 M i t 2 7 will divide the 28-cM interval between 11-2 and G b a approximately in half. D 3 M i t 1 9

provides a marker for the distal end of Chr 3; it is located approximately 20 cM distal to A d h - 1 . A subset of these well-mapped anchor markers can be selected to divide Chr 3 into convenient intervals: c e n t r o m e r e -

6 - C a r - 2 - 9 - 11-2 - 9 - D 3 M i t 5 , D 3 M i t 2 7 - I 1 -

D 3 M i t 2 2 - 8 - G b a - 5 - T s h b - 2 - A m y - 1 - 12 - E g f - 6 - A d h - 1 - 13 - D 3 M i t l 9 .

Conserved linkage relationships

Mapping of genes has identified syntenic relationships between mouse Chr 3 and four human chromosomes: 1, 3, 4, and 8. The position of these mouse Chr 3 genes and their relationships to the chromosomal positions of the human homologs are shown in Table 5. These data suggest that rearrangements of chromosomal seg- ments during mouse evolution have resulted in three separate homology groups with human Chr 4 and two separate homology groups with human Chr 3. In addi- tion, the conserved linkage relationship with human Chr 1 spans the centromere of this chromosome. Long-range restriction site analysis has also indicated very strong conservation of some of these relation-

$52 M . F . Seldin et al.: Mouse Chr 3

A I c. " ~ - ~ ~ I I I I

o r - a r ~ [ ] I I I I I I I ~ - ~ i 1 4 1 ) I r I I J I I

.Lt lt

I c-~-1 m m I I I i i-I I Nras I - - ~ I I I I I ~ ~ I I I I I I napla I � 9 I I I I I ] Gt~-2 I �9 I I I I �9 I rst~ I [ ] r I I I �9

�9 I l l I I l l l

IO3Mn111 I I I I ~ �9

Ampd-21 �9 [ I I I I I ~nY-2 i � 9 1 4 9

D~urz I I 1 [ I

~ ' ~ l I1~ I I ~ 1 1 1 'l I D 3 M ~ I ' �9 I I IO~n'~l I �9 I (

~l~r-2 �9 I I I I p,-np-1 I �9 I I I I D3Mt122 I [ ] [ ] D~/1i142 �9 I

o ~ , f ~ , ~ I �9 I D ~ I I ~ I I

,.,,, �9 . i ,.,,,,m". I 1 � 9

U.dl l D3Mtt18 D3Mit31

Cacy D3Mit45 | ' , D3ruS ~ �9 II D3M~32

D3Ufl

o-- II , IIII

B

5 6

I

I_j_ JI

I I m

1 I

CROSS 1: (C3HIHeJ-gldx M. spretuS)F1 x C3H/HeJ-gld (n = 117 to 338)

C a r - 2 - 3 . 5 - Evi-1 - 2 . 6 - 11-2 - 0 - Cyca - 0 . 9 - F g f 2 - 13 .5 - M m e - 4 .4 - G l u r - 2 - 7 . 1 0 -

G b a - 0 . 9 - Thbs3 - 0 - Pk i r - O - F s p h r s l - O - C d l - 0 - T rk - 0 . 6 - D 3 T u 5 1 - 0 - C a c y

- 0 . 9 - F c g r l - 2 . 6 - C d 2 - 0 . 9 - A t p l a l - O.3 - N ras - 0 - C d 5 3 - 0 - Ng fb - 0 - Tshb - 0

- A m p d - 1 - 1 .8 - A m y - 2 - 0 . 6 - A m p d - 2 - 13 .4 - E g f - 11 ,7 - D 3 M i t 1 8 - 9 . 3 - D 3 M i t 1 9

CROSS 9: (C57BL/SJ x M. spretus)F1 x C57BL/6J (n = 83 to 198)

Ot l -3 rs3 - 2 . 0 - 11-7 - 7 . 3 - Evi-1 - 0 - F im-3 - O - G lu t2 - 7 . 6 - Ybld - O - C c n a - 0 - Fg f2

- 2 1 . 8 - T p i - 2 - 6 . 0 - F g g - 6 . 8 - G ja -5 - 0 - M 6 p r - p s - 5 . 2 - N g f b - O - N r a s - 2 . 2 -

K v l . 2 - 0 - K v l , 3 - 0.6 - Csfm - 0 - K v l . 3 - r s 3 - 0 - G n a i - 2 - 0 - Gna i -3 - 1 . 5 . A m y - 2 -

4 , 9 - Pmp-1 - 5 . 5 - E g f - O - Ot f -3rs4

C R O S S 3: ( C 5 7 B L / 6 J - o b x CAST/Ei)F2 (n = 40 1o 48)

D3Mit23 - 6.8 - D3Mi t l - 1.4 - D3Mit46 - 2.4 - 11-2 - 2 .2 - D3Mi t4 - 0 - D3Mit3 - 0 -

D3Mi t24 - 1.1 - D3Mit5 - 0 - D3Mit6 - 4.7 - D3Mi t7 - O - D3Mit25 - 3.4 - D3Mit22 - 0 -

D3Mi t53 : 1.1 - D3Mit51 - 2.3 - D3Mi t26 - 0 - D3Mit9 - 1.4 - D3Mit40 - 0 - D3Mit49 -

4 6 - D3Mi t28 - 1.1 - D3Mit41 - 2 . 3 - D 3 M i t l 0 - 0 - D3Mit11 - 1.1 - D3Mi t12 - 1 .8 -

D3Mi t39 - 0.5 - D3Mi t36 - 1.8 - D3Mit42 - 1.1 - D3Mit13 - 2 .2 - D3Nds2 - 0 - D2Mi t14

- 1 . 1 - D3Mit16 - 0 - D3Mft15 - 3 . 5 - D3Mit38 - 1 . 2 - D 3 M i t 1 7 - 4 . 3 - D3Mit81 - 0 -

D3Mi t18 - 3.1 - D3Mi t45 - 2 .4 - D3Mi t32 - 7.3 -D3Mi t19

CROSS 4: C57BL/6J x SPR)F1 x S P R : D 3 M i t l - 7 ,6 - Ap2 - 10.8 - 11-2 - 7.6 -

DSMit6 - 2 . 0 - D3Mi t5 - 3 . 0 - D 3 N d s l - 8 . 6 - D3Mit22 - 8 . 6 - T s h b - 1 . 0 - D3Mit11 - 1 . 9

- Adh-1 - 1 0 , 8 - D 3 M i t 3 1 - 4 . 3 - D3Mit32 - 3 , 0 - D3Mit19

C R O S S 5: (NOD/Uf x 057BI - /6J)F1 x NOD/Uf

D3Mi t l - 1 9 . 0 - Glut -2 - 4 . 0 - 11-2 - 6 . 1 - D 3 N d s l - 1 8 . 8 - D3Uf l - 7 . 3 - T ~ h b - 4 . 3 -

D 3 M i t l 0 - 3 .2 - D3Uf2 - 14.1 - Adh-1 - 20.5 - D3Mit19

CROSS 6: (C57BL/6J x M. spretus)F1 x M. spretus (n = 130 to 140)

Hc3 - 0 .7 - 11-7 - 6.9 - Evi-1

CROSS 7: (MRLIMpJ-Ipr x C A S T / E i ) F t x M R L I M p J - I p r : Otf-3rs3 - 6.3 - Car-2 -

10 .6 - Otf-3rs9 - 1 4 . 4 - M m e - 2 4 . 3 - Otf-3rs4 - 0 - Egf - 2 6 . 8 - D3Mit18

Fig. 1. (A) Gene order in seven multilocus crosses. Loci are listed from proximal to distal on the chromosome. The filled boxes represent the loci that were typed in each cross. The shaded boxes represent loci that did not recombine with the locus listed directly above. The observed recombination frequencies from each of these crosses are presented in Fig. lB. See Table 1 and Fig. IB for additional information about the crosses.

Fig. 1. (B) Recombination frequencies in multilocus crosses. Crosses 1-7 are described in Table 1 and Fig. 1A. The approximate lengths, in cM, of the intervals observed in each cross are presented here. We included only crosses with at least six markers analyzed in at least 80 meiotic events , with the exception of cross 6, which provides data for anchoring the composite maps with respect to the centromere. (Note: Cross 4, n = 92)

Tab

le 3

. P

CR

pri

mer

s fo

r am

plif

icat

ion

of p

olym

orph

ic lo

ci o

n C

hr 3

.

Lect

m

Sequ

en~

Prim

er fo

rwar

d (5'-Y)

DJN

dzl

GG

AT

CrG

GC

AC

CT

CC

AG

GG

D3

Nd

s2

AC

AC

A']W

GG

AG

ATG

CA

CA

G @

G

D3N

da3

Cr'G

TG

AA

A'IT

f'GC

CA

TCAACT

D3N

dg4

AI -

ITI'

AA

AT

AT

rCA

TT

CA

~

D3Nds5

AGCATrAI-I- I - I'AAACATCTGAATAG

D3N

d.v6

1

1-2

G

TG

GG

AG

TG

TG

TG

CA

AA

AG

A C

D3

Nd

J7

Ca

cylC

~p

l CA

CA

GTG

AG

AC

CA

AA

CTC

D3N

ds8

Tsh

b

TC

TG

AA

GA

GT

ITG

TC

CT

CA

TC

D3N

d.4)

A

dh-I

C

ITA

CrC

,.-C

JGT~

A C

AT

AG

AC

G

D3N

dsll

F

cgrl

G

TO

L~C

AG

'I~A

TC

AG

CI'C

CI'G

D3N

dM2

Glu

t-2

G

GG

CG

CT

GG

AA

AG

CI'A

AT

A C

C

D3N

dM3

Gh

a-2

O

TCTC

L- i T

I C

TAG

'IT]'C

T'G

AC

-C-C

D3N

dsl4

A

p2

TC

CA

TA

GC

AT

FCA

TG

CG

TG

CA

D3N

dsl5

A

p2

TA

TA

AG

AT

rCC

AG

AA

CA

CA

Tr

D3N

dM6

11

-2

TG

TA

C~

AC

AA

CA

C

D3N

dsl7

1

1-2

A

CrA

GC

AA

GA

G~

TC

rCT

G

D3N

dsl8

N

sfo

AG

GT

rCA

TC

CG

GA

TA

GA

CA

CA

D3N

dM9

Am

y-1

A

TGA

AC

ATA

TGTG

TAA

GTA

AA

.ATG

D3N

ds~7

G

ba

GA

AG

GA

AA

GG

AC

rTA

GT

CT

AC

C

D3N

da21

L

y-3

8

GT

GT

A A

AA

TC

A A

CA

CC

A A

CA

G T

AT

DJN

ds22

Ly

-38

CK3G~ I-I-I-I~3T]~G ~'I'FAGT

D3N

da23

* H

~86-

ps2

AG

TGC

CC

AA

TCA

CA

'V['C

TGC

D~N

ds24

**

Cd-

IO

D3N

ds25

***

C, ba

Prim

er re

vers

e {5

'-3')

Prod

tmt s

ize

Con

ditio

ns

TA

TG

TF

GC

~C

AA

AT

AG

AT

G

90

1 laM

/55

TCTG CATG C

CAGGGTI'GTGAT

128

3mM

155

CA

TA

AT

AT

FC

AT

AT

AT

AA

TG

C

165

3mM

f55

CTC

AC

AA

ATA

CC

TTC

AG

AG

GA

I I

0 I r

aM/5

5

TG

GA

GT

CA

CC

TT

CT

TG

AG

Tr C

14

8

AA

GT

AT

GG

GT

CA

GA

TT

GT

GT

GG

G

] 70

2mM

/58

CI'I

'GG

CI'G

'VI'A

TA G

TC.3

"I'V

I'G

117

1.5m

M/'5

5

TG

AA

TA

AA

GG

A C

TC

CT

GA

G C

l"

145

2mM

/55

CC

FIT

CA

TC

CA

TG

TA

CA

TA

TA

C

330

2mM

/55

OG

CT'

FCTA

AC

TTG

CTG

A A

AG

G A

A

184-

188

1,5m

IVl~

3

CA

TA

AG

AG

AG

GG

AG

GG

AG

AT

C

120

ImM

~5

C1T

CA

CA

GA

'~.G

TA

T'IT

GA

AA

CA

G

113

lmM

/55

GT

CT

G~

AC

rAT

GT

GC

14

6 ~

2mM

/55

GA

TA

AG

AG

CA

TG

GA

TT

TA

AC

T

133

2mM

/55

TA

CC

TA C

A C

AT

GA

TA

T]~

A A

C

224

2mM

/55

AT

ITI'A

TA

TG

TC

TC

TA

GT

'I'G

CA

C

232

2mM

/55

TI'

CC

~T

AT

AC

AG

GA

T~

G

232

1.5m

M/5

5

A A

AT

AA

A A

AG

GC

CA

CT

A'IT

rGA

AG

15

3 2m

M/4

5

GG

C cr

TG

GC

TC

TG

'I~i'A

'ITC

TG

T

190

1.5m

M/5

5

GG

CA

GG

TI'T

GA

TFC

FA A

GG

TA

G

166

1 raM

/55

GG

A C

AG

CC

AG

G A

CT

AT

AC

AG

A

164

I raM

/61

GA

TC

CI'G

TA

AT

CT

GT

CC

AT

AG

11

00

2mM

/55

hnM

/55

1.5m

M/5

8

2raM

/60

CFC

CT

GT

AG

GT

CC

AT

CA

A C

AG

C

129

lmM

/55

TCA

TI'/W

CTI

"CC

I'CC

CC

CTC

11

8-14

5 3m

M/5

5

CTA

AG

TC

CT

G C

.A C

C'I~

CC

TC

88

-200

lm

M/5

5

CT

AC

AG

TG

GG

GG

CA

GA

AG

GT

14

0-15

0 1.

5mM

/55

GG

'IT

rCG

GA

AT

G A

GA

TG

AG

C

178-

188

lmM

/55

CC

TGA

AA

CA

AA

GC

AA

CA

GC

A

125-

145

1.5m

M/5

5

D3Nds26****

Gpi-irs

D3N

d~27

1

1-2

G

~T

CA

AC

AG

CG

CA

DJM

itl

M28

T

GT

GC

AC

AG

GG

GT

AC

AT

AC

A

D3M

iB

M25

0 C

L-I !

I-I

C-A

GG

CA

AA

GC

TCC

D3M

iJ4

L40

TG

TG

CC

rGC

AA

GT

FG

TF

CrT

D3MiB

M123

A~

AG

TG

TC

TC

T

D3Mi~

M149

AACTrCAACATGTGAGGGGC

GT

CC

rGG

AG

GT

FCA

TA

AT

G

GG

GA

GA

GA

AA

AC

GC

AA

CA

T 1200

GA

TG

CA

GT

AC

AG

TC

A C

AG

CA

T

CC

AT

CC

AG

TrA

CG

TG

GT

AA

AG

GT

CC

CO

OT

GT

CT

C~T

FI'G

TC

rCT

AA

CA

'IT

TG

AC

CA

CA

GC

GA

ATA

GC

GG

CA

AC

CTA

CC

C

280

Size

var

iati

on

NO

Dff

iNO

N>>

AK

R/J

>B ]

0/W

=B6 J

JL~B

6/$

= DB

A f2

J; S

PE:-

S PE

>> D

B A

/73>

> N

OD

~ N

O N

ffiB

10/W

=B6.

FLfB

6/Jf

fiA K

I~

NO

D~

NO

N-B

10/W

=B6.

PL~

B 6/

J.A

IGT

~>> D

BA

/2J>

>S P

E

N O

N>B

6/J-

B 10

/Wff

iB ~J

L>

DB

A/2

J>N

OD

NO

D>>

DB

A/2

JffiA

KR

/J.N

ON

>B

10/W

ffiB

&PL

=B6/

j" ($

PE d

oubl

et)

SPE

>B6.

PL-B

I 0/W

ffiB

6/$>

NO

N>A

KIT

JJ>D

BA

/2J>

NO

D

SPF-

>>C

57L/

J>>S

WR

/Jff

iC57

BR

fSJL

/Jff

iB 1

0/W

.NO

N>C

3 H

/HeJ

ffi

A/J

~A K

R/J

>>C

BA

ffiB

A LB

/cB

yJff

iNO

D>>

DB

AfP

Lf/

N O

D~A

KR

/J>>

NO

Nffi

B 10

/Wff

iB 10

/Jff

iB6/

J= D

BA

/2I>

>SPE

B I 0

/Jff

iB 10

.BR

>NO

D>A

=C58

~MEV

; SP

EffiB

10/W

>NO

D>B

6.PL

>NO

N

C3H

-DB

A=A

fB6f

fiAK

Rff

iBA

LBff

iB 1

0~C

AST

ffiS

PEff

iNO

N>>

NO

D

B6f

fiB6J

~=D

BA

ffiB

10f

fiAK

R=$

PE>N

ON

fNO

D

B6f

fiBfi,

PLzD

BA

=B 1

0ffiA

KR

ffiS

PF~N

ON

fNO

D

NO

N>C

BA

>B 10

/W=B

6.P

L= N

OD

~SPE

-B 6/

J> D

BA

~J

N O

Dff

iB 10

/Wff

iB 6.

PL~B

6/J-

DB

Af2

JffiN

ON

>SPE

NO

I)=B

10/W

-B 6/

J- N

ON

ffi D

BA

f2Jf

fiSPE

NO

Dff

iB 10

/Wff

iB&

PLff

iB6/

JffiN

ON

ffiS

PEff

iDB

A/2

J

NO

D~B

10/

Wff

iNO

N=$

PEff

iB6/

JffiD

BA

/2J

CB

Aff

iMO

LDff

iYB

Rff

iC3H

=NO

D>B

R~d

J>A

KR

>SPE

SPE

(dou

ble0

>> N

O D

-B 1

0.W

ffiB

6.PL

ffiB

6/Jf

fi DB

A/2

)"

NO

Dff

iB 10

/W=B

KPL

~B6/

Y-N

ON

-DB

A/2

Yff

iAK

R/J

ffiS

pE

N O

D=B

10/W

ffiB

6.PL

ffiB

6/~'

ffiN

ON

ffi DB

A/2

I=A

KR

/3">

>S pE

RFL

I~ H

infl

NO

D-+

; B

I0,B

6. N

ON

ffi-

RFL

P; M

spI S

PE=+

; B

6=-

SPE>

mB

6

NO

D=-

+; B

10=-

N O

DfB

10/

W=B

6/J

=B6.

IK,=

NO

N=D

B A

/2J=

A K

R>>

SPE

OB

>LF>

>BA

LB=N

OD

>>A

=B6=

C3H

ffiD

BA

=AK

Rff

iNO

N>C

AST

; SP

E:-

CA

ffF>

>A=B

ALB

=LI~

OB

ffiB

6= D

BA

fA K

R= N

O D

>> C

3 H= N

ON

>>Sp

E

CA

ST>>

SPE>

>OB

=A=B

6ffiC

3Hff

iDB

A=B

ALB

=AK

R=N

ON

=NO

D~L

P

OB

ffiA

=C3H

=DB

A=B

ALB

=AK

R=N

ON

= N

OD

>>C

AST

=B6=

LP>>

S PE

B6'

ffiL

I~O

B>>

A=C

3 H

=DB

A=B

ALB

=A K

R=N

ON

=NO

D>>

CA

ST>>

SPE

Co

nti

nu

ed

o

n n

ex

t p

ag

e

O C3

L~

(./3

Tab

le 3

. C

ontin

ued.

D3M

it'7

M74

D3M

it9

A85

D3M

itlO

A

34

D3M

itll

L

38

D3M

itl2

A

60

D 3

Mid

3 1,

8

DM

ditl

3 L

37

AT

GC

AA

CrA

AC

r1T

AT

I*G

A A

AA

TC

AA

CT

rCA

~A

AA

C]'

AC

C

CrG

GC

TrG

GT

GG

AA

GT

CC

T

CC

AA

CC

AC

AG

TA

AC

AC

AT

GT

TA

GA

CC

AA

T~

AG

TG

TC

C

CC

TrT

CT

GA

TT

AT

GT

GC

K~ C

T

TFI'CrC, CATFAT~TC, C

~

D3M

itl 4

M

206

A~

GG

TrA

AA

G'I

TrG

CT

T

D3M

itl5

A

55

AA

Trr

G C

A'['

FCC

AG

GA

CC

AC

D3M

itl6

M

159

TG

CT

TG

TC

CT

GT

GT

TA

AT

GA

D 3M

it17

M

235

CA

~ T

GG

2WC

I'I'

G

D 3

Mid

9 M

141

CA

GC

CA

GA

GA

GG

AG

CT

GT

CT

D3M

it21

D

31

AA

GC

rCT

AC

AG

OG

GA

AG

CA

C

D3M

it22

D

122

AAGGATIX3 AAGAATOM3Ti~

D3M

iz23

D

I02

G A

'IT

CC

AG

A A

C A

CA

T'~

TG

GG

D3M

it24

A

636

AG

TI'

FC

TA

G C

CF

CA

GT

G'[

'rcI

TC

A

DfM

it25

A

726

GT

CI'

GG

GT

CG

TC

AG

TG

G C

D3Mi

t26

B332

T

rGG

AT

rCA

TA

TC

AG

GA

CF

GT

AC

A

D3M

i,O8

D62

7 O

AT

G A

GA

GA

TY

C]'G

AT

GT

GG

AG

G

D3M

it29

D

566

GA

TG

AG

AG

A'I

WC

rG A

TG

TG

GA

GG

D 3

MiB

I A

629

AC

AA

CC

CG

AG

TT

CA

GT

CC

C

D 3

Mit3

2 B

128

CA

CC

CT

C~

TrA

AC

TC

AG

A A

AG

G

TA

CA

AT

rAT

CC

GG

GA

GC

rA

TG

TIT

r AT

AT

FG

CC

CT

GT

AT

GT

G C

CC

TA

AG

CC

AG

CT

AC

CA

CC

AC

TG

GA

GA

CC

AA

TG

CG

AA

CA

AC

GG

AA

A A

GC

AT

AA

G A

AA

CA

AC

CG

CC

AC

TG

AA

GG

AT

AA

CC

AC

AG

AA

CC

AC

AG

AT

GA

CA

ATI

X3A

A

TC

CT

GC

AA

AT

I'G

TC

CT

CrG

A

AG

G A

AG

TG

A C

GT

['G

GG

TF

rG

TG

AG

AA

TG

GA

GG

TG

AA

CA

GC

CC

AC

GG

AG

AA

CA

AC

rGA

AG

A

GA

AC

AT

rGG

GG

TG

TIT

GC

IT

CT

GG

GG

AG

'IT

I'C

AG

GT

I'C

CT

AA

TC

AG

CG

A~

'TC

AG

CA

CG

TC

A A

TC

AG

AG

AG

AT

A A

GA

GC

AT

GG

GT

CA

T]'

GT

rTA

TC

AT

A C

CC

AC

AG

G

TG

GA

GG

C~A

CC

AT

CT

CC

A A

G

~A

AT

CA

AG

TG

GT

FF

AG

TC

AA

CC

AG

CC

TC

AG

TA

TC

TC

AA

AA

CC

CC

AG

CC

TC

AG

TA

TC

TC

AA

AA

CC

GT

GC

]W.~

CA

G~r

A A

G ~

'TG

GC

A C

FD

GT

GT

ITC

AT

GT

CA

CFG

D3M

it36

D

SOI

GA

TI'

I'FA

A"f

fI'C

AT

rAA

AT

AA

GG

GT

TA

G

GA

A C

AT

AT

GT

GT

AA

GT

AA

AA

TG

TA

C

D3M

it38

A

674

C'I

~A

AC

CA

GA

AA

GT

rGI -

F 1 -

|-rC

r'G

D3M

it3O

A

86P

C

TG

CC

AC

AG

AG

CI'

AT

AG

CC

C

D3M

i~IO

A

IIlO

C

AG

~T

CT

AA

CT

AT

CC

CC

C

D3M

it41

B23

5 A

AT

I'F

CT

FC

CT

GT

rAC

A C

TG

AG

CC

D3M

iN3

B391

T

G A

CC

I"C

CA

G A

GA

GT

CT

FC

CA

D3M

iN4

B43

9 C

CT

GA

CT

CA

T'f

TA

2~i'A

AC

TC

CC

C

D3M

iN6

D53

4 A

TC

CC

CC

AC

CC

AA

CT

CrA

AC

D3M

iPI8

D

535

TC

r~T

AC

CC

CT

Trc

cccc

D3M

iN9

D56

7 C

ITL

TC

TC

GC

CC

CA

L-t

l- t C

AC

CA

TG

GC

CA

GC

TT

CT

AA

TG

A A

TG

GA

G C

Tl~

CF'

FFC

GA

TG

CC

qTA

TI'

A A

GT

GC

AT

G A

CC

I'F

G C

CA

TG

AG

AG

A A

CT

CC

TT

C C

AT

CC

CT

GT

GC

AT

GA

GA

CC

AC

TA

CC

A

CC

CT

AT

CA

CA

TA

GG

GC

AA

CC

"Frc

ccC

AG

GG

AA

AT

CT

CF

cr

GT

TG

AC

AC

AA

A A

CT

AG

CC

AG

TA

CA

TC

t-I~

I 1

l AG

TIT

ITG

AT

CC

TC

TG

G

142-

147

lmM

/55

OB

~S P

E=B

6= D

BA

>>C

A S

T~A

= C

3H=

BA

L]~

-A K

R=N

ON

=NO

Dff

iLP

214-

238

1 raM

/55

CA

ST

>>

OB

=B6~

>DB

A>I

..P>N

OD

>A=B

ALB

>SPE

-~A

KR

.>>N

OD

; C

3H:-

121-

158

1 mM

/55

CA

$'I'>

>B6=

OB

>> D

BA

>LP>

NO

N>B

AL

B=A

>A K

R=S

PE>>

NO

D;

C3H

:-

146-

204

lmM

/55

CA

ST

>>

A=

C3H

fBA

LB

=A

KR

>N

ON

>>

SP

E>

>O

B=

B6=

DB

AfN

OI~

LP

120-

157

lmM

/55

LP=

AK

R=A

>BA

LB

=C3H

=B6=

OB

>>N

OD

~NO

N=D

BA

>>C

AST

; SP

E:-

228-

240

1 raM

/55

SP

E=

LP

>C

AS

T, N

OD

>>O

B=B

6=C

3 H

=D

BA

-BA

LB

=A

KR

=N

ON

; A

:-

220-

237

lmM

/55

LP>S

t~>N

OD

>>C

AST

>>O

Bff

iB6f

fiDB

A=C

3H=B

ALB

ffiA

KR

=NO

N

12%

198

lmM

/55

N O

Dff

i NO

N~A

KR

fBA

LB

- DB

A=

C3

HfA

>>

LP~

B6f

OB

>>

SPE

>>

CA

ST

145-

212

1 raM

/55

DB

A>

>C

AS

T>

>S

PE

>>

NO

D-N

ON

=A

KR

ffiB

ALB

=C3H

ffiB

6=A

ffiO

B; L

P:-

186-

220

1mM

/55

SPE>

>CA

ST~>

B6=

OB

~LPf

fiNO

D=N

ON

fBA

LBff

iC3H

ffiA

; AKR, D

BA

:-

�9 1

80-2

081

lmM

/55

NO

Dff

iB6f

fiOB

>>C

AST

>>LP

>>N

ON

fAK

RfB

ALB

ffiD

BA

fC3H

ffiA

; SP

E:-

210-

238

1.5m

M/5

5 C

A S

TfA

fC3H

ffiD

BA

ffiB

AL

B=A

KR

fNO

D>>

OB

fB6'

,,,N

ON

>LP>

>SPE

208-

236

1 raM

/55

NO

NfB

ALB

=B6=

OB

>>LP

ffiN

OD

ffiA

K

R=

DB

A=

C3H

fA>

CA

ST>

>SP

E

207-

265

lmM

/55

CA

ST>>

A>>

NO

D>>

OB

=B6=

C3

H=N

ON

>DB

Aff

iAK

R>>

BA

LBff

iLP>

>SPE

138-

162

lmM

/55

CA

ST~.

>LP=

NO

D,=

NO

NfA

KR

ffiB

ALB

=DB

A=C

3H=B

6=A

=OB

>>SP

E

130-

168

1mM

/55

CA

ST>>

SPE

>> N

ON

>>

Lt~

NO

D=

AK

R=

BA

LB

=D

BA

=B

6=O

B>

>C

3H=

A

114-

134

1 mM

t55

B6~

OB

>L

P~N

OD

,=A

KI~

BA

LI~

C3H

fA>

>12

9>N

ON

>D

BA

>>

SP

E

130-

156

1 raM

/55

CA

ST>>

B6,

* O

B>

>L

I~N

ON

>>

NO

D,,

,AK

I~B

AL

B-D

B A

= SP

E; C

3H, A

:-

1.50

-202

I r

aM/5

5 B

A.L

B>

>C

AST

>>

DB

A>

>SP

E>

>O

B>

NO

NfA

KR

=C

3H-B

6-A

; L

P, N

OD

:-

14,4

-2~0

lm

M/5

5 B

A L

B>>

CA

ST>>

DB

A>>

SPE

>>B

6-A

ffiO

B>L

P=A

KR

=C3H

>NO

N>

NO

D

222-

242

lroM

/55

CA

ST

>SPE

>>L

P=N

OD

iN O

Nff

iAK

R=B

ALB

=DB

A- C

3 H=A

>B6=

OB

164-

178

lmM

/55

LP=

NO

D,=

NO

Nff

iA K

Rff

iBA

LB=

DB

A=C

3 HfA

-SP

E>

>B

6=O

B>

> C

A S

T

138-

226

l raM

/55

NO

D>>

CA

ST>>

SPE

; L

P, N

ON

, AK

I~ B

AL

B,

DB

A, C

3H, B

6, A

, OB

:-

122-

142

lmM

/55

CA

ST

>>

Lt~

BA

L B

=C3 H

fAfS

F~K

>>N

OD

= NO

NfA

KR

=DB

A>B

6=O

B

226-

242

lmM

/55

S PE

=CA

ST

>>

Lt~

N O

D,,,

N O

NfA

KR

=D

BA

-C3

Hff

iB6=

A-O

B>>

B A

LB

110-

140

lmM

/55

B6=

OB

>>C

A S

T>>

SPE

.>>L

I~ N

O I~

NO

N=A

KR

=BA

LB

= D

BA

ffiC

3 H=A

210-

236

lmM

/55

CA

ST

~> N

O D

>>SP

E>>L

IX~

NO

N=

A K

/~B

AL

B=

DB

A=C

3 H=B

6~A

fOB

114-

146

lmM

/55

CA

ST>>

BA

L]g=

C3

Hff

iA>>

LI~

NO

D=

NO

NfA

KR

=B

6-O

B>

> D

B A

>S PE

124-

148

l raM

/55

N O

1~ D

B A

>B 6=

OB

>N O

N>>

A K

R>>

LP=

BA

LB

~C3

H=A

>>C

AST

~>S P

E

152-

194

lmM

/55

SPE>

>C.A

ST

>>C

3H,A

>>

B6,

,OB

> B

AL

B>

Lf~

NO

D>

DB

A>N

O N

>>A

KR

247

lmM

/55

108-

148

1 raM

/55

BA

LB

=DB

A>>

LP=

B6=

OB

>>N

ON

-C3H

>CA

ST;

NO

D, A

KR

. A, S

PE:-

Co

nti

nu

ed

o

n n

ex

t p

ag

e

o O

t= g ('3

Tab

le 3

. C

onti

nued

.

Loc

us

Sequ

ence

P

rim

er fo

nvtr

d (5

'-3')

Prim

er re

vers

e (5'

.Y~

Prod

uct s

ize

Con

ditio

~, S

ize

vaH

ltinv

l

D3M

itSO

17

107

168-

198

lmM

/55

D3M

itSl

.I8

GG

CA

CT

GA

T

AG

CA

GG

CC

I'A G

T

CT

CT

YC

I'G

GT

AT

YI'

CC

I'I'

CC

G

230-

258

I raM

/55

DJM

it52

AI0

81

A

GC

CA

GG

AT

AT

GG

AA

TA

TG

CC

T

GA

CC

AG

AT

TG

CA

TG

CA

TIT

19

6-20

4 lm

M/5

5

D3M

iI54

BS

T2

T

I'G

G'I

'FC

CA

CA

GC

AA

C'I

'AC

G

CA

GG

GA

AT

GT

AT

GT

CA

A

TG

A G

G

122-

148

lmM

/55

D3M

it~5

B5

36

C

I'G

GG

A

CC

A C

CA

GT

AG

TA

CC

A

TC

AG

GA

CT

GC

AA

CI~

AG

GC

11

6-14

4 lm

M/5

5

D3M

i66

B71

3 T

CT

AG

CI'A

TG

TG

AT

GA

GT

GT

GT

CG

C

AG

GA

'IT

I'C

CA

A

AA

A C

AT

CC

A

138-

148

lmM

/55

D3M

it57

B4

93

T

CC

AG

TF

A~

TG

AA

CF

CC

.A

AT

AT

GT

GT

AC

AT

GT

YC

AT

GG

TG

TG

14

8-17

6 Im

M/5

5

D3M

it$8

B52

7 A

CA

TC

AG

AA

GA

GT

CA

TI'

CA

'IT

rCA

G

CT

CT

rCA

GT

CA

CA

G

CI'C

I'GC

1

40

-15

2

lmM

/55

D3M

it59

B5

43

G

TrG

AT

GC

CC

AA

GG

AA

TG

AT

L

'I'A

CI'G

CA

TC

CT

GG

CA

CA

GA

20

4-21

2 lm

M/5

5

CA

ST~>

LPffi

AK

Rffi

BA

LB-ff

i DB

A>C

3 H=A

> N O

Dffi

NO

Nffi

B 6=

OB

; SPE

:-

AK

R=

BA

LB~D

BA

>N

OD

ffiN

ON

>>

LI~>

C3H

=B

6ffiA

=O

B>

>C

AST

; SP

E:-

Affi

SPE>

OB

>NO

Dffi

NO

Nffi

AK

Rffi

DB

Affi

C3 H

>L

P~B

AL

I~B

6; C

AST

:-

N O

Dff

iBA

LB

fC3 H

=B6f

fiAff

iOB

>CA

S'I~

NO

N>>

LP.

A KR

= DB

A>>

SPE

C3 H

ffiA

>>L

t~-N

O D

=B6>

A 1C

Rffi

BA

LBffi

DB

A.C

A S

T>>

NO

N>>

S pE

; OB

:-

A>L

PffiN

OD

ffiN

ON

=AK

Rff

iDB

A=C

3n=B

6~O

B>B

AL

B>>

CA

ST; SP

E:-

CA

ST~>

SPE

>>

Lt~

B6>

NO

N=

AK

R.B

AL

B=

C3H

.A.O

B>

>N

OD

; DB

A:-

CA

ST>

>N

OD

=N

ON

ffiB

ALB

=D

BA

ffiC

3H=

B6,

~A=

OB

>>

LPffi

AK

P4

SPE

:-

OB

>CA

ST>L

P=A

KR

ffiB

6ffiN

O N=B

A LB

ffiD

BA

.C3H

ffiA

ffiS

PE> N

OD

Rec

omm

ende

d m

agne

sium

con

cent

rati

ons

and

anne

alin

g te

mpe

ratu

res

are

indi

cate

d fo

r m

ost

loci

. *D

3Nds

23: H

sp86

-ps2

, unp

ubli

shed

seq

uenc

e w

as k

indl

y pr

ovid

ed b

y S.

M

oore

, Foo

d an

d D

rug

Adm

inis

trat

ion,

Div

isio

n of

Met

abol

ism

and

End

ocri

ne D

rug

Pro

duct

s, R

ockv

i!le

, Md.

; the

ST

S an

d po

lym

orph

ism

are

from

N.

Rod

rigu

es. *

*D3N

ds24

: C

DIO

, clo

ne o

btai

ned

from

M.

Ship

p, D

ana-

Far

ber

Can

cer

Inst

itut

e, B

osto

n, M

ass.

; th

e ST

S an

d po

lym

orph

ism

are

fro

m N

. R

odri

gues

. **

*D3N

ds25

: G

ba,

(ref

, 11

9).

****

D3N

ds26

: G

pi-i

rs, u

npub

lish

ed S

TS

from

J.

Jone

s, M

RC

Rad

iobi

olog

y U

nit,

UK

.

t~

Tab

le 4

. M

icro

sate

llit

e m

ap o

f C

hr 3

.

Loc

i R

F D

ista

nce

D3M

itl-

D3N

dsl5

7/

92

7.65

cM

D3N

ds15

-D3N

ds27

10

/92

11 c

M

D3N

ds27

-D3M

it6

7/92

7.

65 e

M

D3M

it6-D

3Mit5

2/

92

2.1

eM

D3M

it5-

D3M

it7

3/92

3.

2 eM

D3M

it7-

D3N

dsl

0/92

0

D3N

da1.

D3N

ds24

3t

92

3.2

cM

D3N

ds24

-D3M

it22

5/92

5.

4 cM

D3M

it22

-D3M

itSl

3/

92

3.2

cM

D3M

it51

-D3M

it9

1/85

1.

1 cM

D3M

it9-D

3Nds

25

0/85

0

D3N

ds25

-D3N

ds22

0/

92

0

D3N

ds22

-D3N

ds8

4/92

4.

3 eM

D3N

dsS-

D3M

itl I

1/

91

1 cM

�9 D3M

itll

-D3M

it42

7191

7.

7 cM

D3M

it42-

D3N

ds9

1219

2 13

.3 c

M

D3N

ds9.

D3M

it38

3/

92

3.2

cM

D3M

it38-

D3M

it31

7/90

7.

8 eM

D3M

it31

-D3M

it32

4/

90

4.4

cM

D3M

it32

-D3M

it19

3/

92

3.2

cM

Dat

a fr

om th

e la

bora

tory

of

J.A

. T

odd

from

the

Eur

opea

n C

olla

bora

tive

In-

te

rspe

cifi

c B

ackc

ross

[(C

57B

L/6

x

SPR

)FI

• SP

R]

prod

uced

by

the

UK

's

Hum

an G

enom

e M

appi

ng P

roje

ct,

wit

h th

e su

ppor

t of

the

Med

ical

Res

earc

h C

ounc

il. D

ista

nces

wer

e ca

lcul

ated

wit

h th

e K

osam

bi m

appi

ng fu

ncti

on. R

F,

reco

mbi

nant

frac

tion

(re

com

bina

nts/

tota

l ana

lyze

d).

Tab

le 5

. R

elat

ions

hips

bet

wee

n m

ouse

Chr

3 g

enes

and

hom

olog

ous

hum

an g

enes

.

Map

L

ocus

N

ame

Hum

an

Hum

an p

osit

ion

6.3

Car

-I

carb

onic

anh

ydra

se-i

C

A 1

8q

13-q

22

6.3

Car

-2

carb

onic

anh

ydra

se-2

C

A2

8q13

-q22

7.

5 C

ar-3

ca

rbon

ic a

nhyd

rase

-3

CA

3 8q

13-q

22

10.2

E

vi-

1

eeot

ropi

c vi

ral i

nteg

rati

on s

ite-

I E

vil

3q24

-q28

10

.2

Fir

e-3

Fr

iend

MuL

V i

nteg

rati

on s

ite-

3 FI

M3

3q27

10

.2

Glu

t-2

gluc

ose

tran

spor

ter

2 G

LU

T2

3q26

15

.0

11

-2

inte

rleu

kin

2 ]1

.2

4q26

-q27

15

.7

Fgf2

fi

brob

last

gro

wth

fact

or b

asic

F

GF

2 4q

25-2

7 30

.1

Min

e m

embr

ane

met

alio

-end

o pe

ptid

ase

MM

E

3q21

-27

33.3

Sa

c-Is

su

cras

e-is

orna

ltas

e, st

ruct

ural

SI

3q

25-2

6 34

.9

Glu

t-2

glut

amat

e re

cept

or 2

G

LU

R2

4q25

-34

42.3

F

gg

ganm

aa fi

brin

ogan

F

GG

4q

28

42.6

P

klr

pyru

vate

kin

ase

live

r, r

ed b

lood

cel

ls

PK

LR

lq

21

42.6

G

ba

beta

glu

cece

rebr

osid

ase

GB

A

lq21

42

.9

Cac

y ca

lcyc

lin

CA

CY

lq

21-q

25

42.9

C

apl

calc

ium

bin

ding

pro

tein

, pla

cent

al

CA

PL

lq

12-q

22

42.9

F

cgrl

hi

gh a

ffin

ity

FC

gam

ma

rece

ptor

FC

GR

1 lq

43

.9

Cd/

cl

uste

r des

igna

tion

1

CD

1

lq22

-23

43.9

F

psl-

rsl

farn

esyl

pyr

opho

spha

te s

ynth

etas

e-li

ke 1

FP

SL

lq24

-q31

44

.9

H3f

2 hi

ston

e 3,

fam

ily

2 H

3F2

lq12

-21

45.0

H

sd.3

b

3-be

ta-h

ydro

xy s

tero

id d

ehyd

roge

nase

H

SDB

3 lp

ll-1

3 46

.4

Cd2

cl

uste

r de

sign

atio

n 2

CD

2 lp

13

47.3

A

tpla

l N

a, K

AT

Pas

e al

pha-

1 A

TP1

A1

lp13

47

.4

Am

pd

-1

AM

P d

eam

inas

e-1

(mus

cle

form

) A

MPD

1 Ip

13

47.4

N

g/b

nerv

e gr

owth

fact

or b

eta

NG

FB

lp13

47

.4

Nra

s N

ras

onco

gone

N

RA

S lp

13

47.4

R

apla

m

embe

r ofR

AS

onc

ogen

e fa

mil

y R

AP

1A

lp12

-p13

47

.4

Tsh

b th

yrot

ropi

n st

imul

atin

g ho

rmtm

e be

ta s

ubun

it

TS

HB

lp

13

48.4

C

sfm

co

lony

sti

mul

atin

g fa

ctor

, mac

roph

age

CSF

1 lp

13-2

1 48

.4

Gna

i-3

guan

ine

nucl

eoti

de b

indi

ng p

rote

in,

GN

AI3

lp

13

alph

a in

hibi

ting

act

ivit

y-3

49.6

A

my

-1

amyl

ase,

sal

ivar

y A

MY

1 lp

21

49.6

A

my-

2 am

ylas

e, p

ancr

eati

c A

MY

2 lp

21

49.6

C

f-3

coag

ulat

ion

fact

or 3

F3

lp

22-p

21

54.6

P

rop

-1

pero

xiso

mal

mem

bran

e pr

otei

n (7

0k)

PMP1

1p

21-2

2 54

.7

Fab

pi

fatt

y ac

id b

indi

ng p

rote

in i

ntes

tina

l F

AB

P2

4q28

-31

62.1

E

g]"

ep

ider

mal

gro

wth

fac

tor

EG

F 4q

25

68.1

A

dh

-1

alco

hol d

ehyd

roge

nase

-I

AD

H1

4q21

-q23

68

.1

Adh

-3

alco

hol d

ehy&

ogen

ase-

3 A

DH

3 4q

21-q

23

X

Act

s sk

elet

al a

lpha

act

in

AC

TA

1 lp

21-q

ter

X

Adh

-5

alco

hol d

ehyd

toge

nase

-5

AD

H5

4q21

-q25

X

A

rm

aryl

hyd

ecar

bon

rece

ptor

nuc

lear

tran

slat

or

AR

NT

lp

ter-

ql2

X

Le

f-1

ly

mph

oid

enha

ncer

-bin

ding

fact

or 1

L

EF1

4q

23-q

25

O~

t~

(3

L~

M. F. Seldin et al.: Mouse Chr 3 $57

Locus AXL Lines Ref. Locus AXB Lines Ref.

1111112222233 11111111/222222 567892346791458978 123456789~/2345789~12345

Cur-2 LALL-ALALAAALALLAA /21 Cor-2 BBkM~BABABABAMAB BB - B BBA 73,1/2 ApZ LAL LLAL~LAN~LALL LA 61 Evi-1 BA-BABABABAA-A-A~BABAA 1/2 Mpmv-2~ LLAALALALLLLLALLLL 51 O3Mit6 BA-ABB-A- BA- BAA-AAA- - BS- 73 Evi-1 L LAALAAALALL LALLAL 1/2 D3Mit7 BB-ABA- B- BA-AAA-A,~,- - BS- 73 Xr~v-47 LLLLLAAALLALAALLLL 164 Fgg BBAABABBBSAB-AAABESB- BSA 13 X~v- 65 ALALLAAALLLLALLLAA 164 Thbs3 BB-ABA- B- BA-AAA- BBS- -BB- 73 I~v-28 ALALLAAALLLLALLLAA 50 Rnulb-1 ABAABABBBBAB-AABBBSB- BBA 13 Colll ALALLAAA- LLLALLLAA ]31 gnulb-3 AAAABABBBBABAAABBBSB- BS- 13 O3Tu51 LLALLAAALLLLA-LLAA 153 D3Mit14 AA-A~-A- BA-AAB-AAA- -AB- 73 Amy ALALLAAAL L LLA~AL LA /21 ~any-l,2 AJ~ue~k~BABBAB -ABSBA-A-A B - 13 O3Tu33 AAL-AN~AL LLLA-AL LA 153 EgF AA~.~BABSAAAA-AA-AA~BB 11Z Pmv-26 AAa_~LA L L LAAALAL LA 50 ~dh-3 AMABA BAABAAAA BBAAABAAB - 13

M;mv-9 BAABAABAABABAAABAAABAABA 51,1@0u O~Mit18 AA-BAA-A-BA-AAB-A-A- -AB- 73 O3M~t/9 AA-AAA-A-AA-AAB-AAA- -AB- 73

LOCUS BXD Lines Ref.

11111111222222222333 /25689/2345689e12345789~/2 Locus BXA Lines Ref.

Car-2 DDDBDBDDDOBBDOBBBBBBDBDDBB 121 Ap2 DDOBDBDDDOBBD- BSB BSBDBDDDD 61 1111111111222222 D3Byu2 DDOBO BDDOOBBDDBBBESBOBDDDB 167 1234567890/234567890/2345 O3ByuJ DOOBOBODDOBSDOBBBBBBDBOD08 167 Con-2 AABB- ABAA- BAABBBAA- - -AABA 73,112 O3Byu3 DDBBOBBDDDBSDOBBBBSBDBDDD6 167 Evi-1 AA- B- B-AABBAAB--- B8- -AABB 112 Evi-i DDBBDBBDBBBSBDBDBBSBDDODD8 112 O3Mit6 AB-B--BBB-BAAB-BB . . . . . . BA 73 I1-2 DDBBDBDDDDDBDDBDBBSBDOBDDB 37 D3Mit7 AB-B--BBB-BAAB-BB ...... BA ?3 D3Mit5 -DBBDDDOBDBBDDBDBBBBDDB--- 37 Fgg A-ABBB-BBABA-B---AB ...... 13 DOByul7 BBDBDDOOBBDBBBBDDBBDOBODB8 167 Tsp3 AB-A--ABB-BAAB-BB . . . . . . BA 73 Cnp-2 BBDBBDODBBDBBBBDO B8 [X)OBDB8 10 Rnulb-1 A-AABB- BB-BA-B-- -AAA-B-- - 13 03_71 BBDBBBOBBBDBBBB- DBSOBDBDB8 114 Rnulb-3 ABAABBABB- BAB8- - BAAA- B- BB 13 O3Byu5 BBDBSDODBSDSBBBODBBDBD6OBB 167 O3Mit14 AA-A- -ABB-AABS-BB . . . . . . BB 73 D3Mit22 - BDBBIBOOBBDBBBBODBBDBDB- - - 37 Amy-l,2 A-ABBB-BBABA-B---AAB . . . . . 13 Xnmv-~ BBDBBBOBBBC6BBBDOBBDBDBOBB 164 Egf AA-A- BBBBAAABA- --AA- -A- - B 112 D3MZt9 -BDBBBOBBBDBBBBDDBSDBOB--- 37 Adh-3 AAAAABABBAABBA- --AAA- B- - B 13 Fgg BBDBBBOBBBDBBBBDDBBDBDBDBB 13 MCTnv-9 AB-A-AA - BAABBA-AAAAA- ABAB 51,100o O3Byu6 BBO~DBB8BO()BOOBDBO~ 167 D3MItI8 AA-A- -AAB-ABBA-AA . . . . . . AB 73 Flnv-38 BBSBSBOBBBDBBSBODBBDBDBDBB 50 D3MIt19 AB-B--AAB-ABBS-AA . . . . . . AA 73 O3MitlO -BBI~BBDSBBBDDBBDBOB--- 37 Copl BBB88B~- BDBBS- - D-BDBDBDBB 39 Colll BBSBSBDBBSDBBS- - DBSDBDBDB8 131

D3Tu51 BBSBSB- BD6DBBS- DDBS- BDBD- - 153 Locus AXD Lines Ref. D3Byu4 BBO6BBOB88D6BSBO BBOOB DBDB8 167 Amy BDBBOBDOOB~BSBDDBBDBDBDBB 121 11111111/2.222222;'2 Amy CB B~BBI)B)OI~OSBSBODB8 DIBDBDBB 13 /23456789012345678e/2345678 Fol~i BDOBDBDODBDSB- DOOBS-BOSBBO 143 Nlpmv-20 DDA- -AAADAAADA- A-AADODADADA 51 D333 BDBBDIg)O(ODBBSO- - BSDSDBBBO 114 I I -2 ADA- -AAADAAADADA-AAADADAADA 60 Adh-lps BDSBDBI)ODSDSBSOODBDDSDSBBD 20 Cnp-2 ADA--AADAAADAADA-A6,ADAt~AAA 10 c~ ~DBDSDBB{)BDBB88 145 O3Ndsl A DA - - AAD/~AI)AADA-AAADADAAAA 30 Peev-39 BDBIg)BODOBDBDBODDDBDBDBBBO SO Rnv-28 DDA - - AA DDAADAADADAAADADDCJu~ 50 Oat-rs2 B~6E~([~I~O(~6DBD6BBO 125 Pmv-38 DDA- -AADDAADAADADAAADDODDAA 50 Egf ~ D B O B D B B B D 112 Tshb DDA- -AADAAADADDA-Ak~ADOODAA 2 O3t4it15 - ~ ~ ~ - - - 37 Pmv-39 DDO- - DDD/~DOADDADADOADODDAD 50 Adh-3 BOSIBDSOD-B88DDDDBDBDSDSB~ 112 Oat - rs2 DDD- -AADAADOADDADADOADO- DAD 125 Aah-3 PJt 8DS~-B~-DBDSDSDSBBD 72 O3Nds2 DDD--DADAADOADDA-ADDAAOOflAD Be Mh-1 BDSBDBDOOBBSDDDDBDSOBDBBBO Ze Egf D DOADDADADDOADDADDOOAADOOAD 112 O3Nds3 BOBBDBDIX)B880000BDBDB~B BBD 30 D311ds2 -088DBDD~88DDDDSDSDBDB--- 37

BDBBDBDO-BBBDO-DB-BDBDB- BO 97 D3Jknl BDBBOBDOOBBSDOODBCBOBDBBBB 99 Pmv-2~ BDBBDO[X)DB88DODOB68DBDBBBD 50 I>40-4 DDBBSDODDBBSDODBDBBDODBB BO 40 D3Nit~ - ~DOBD(O)O~DOBOB~- -- 37 D3Nitl7 - BSCODDBDBB8DODOBBBDBDB- - - 37

Locus BXH Lines Ref.

11111 2345678901249

Cor-2 HBH-BHSBSBSBB 121 Pgkps3 HBH-BHSB8BHBB 1 EvI-I HBHBBHBBSHHBB 112 I~uJb3 BBS-BHBBHHHBB 13 Colll BBB-BHBBHHHBB 131 D3Tu51 BBS-BHBBHHHHB 153

BBS-BHBHHHBBB 121 Ode -rs3 HBH-BHBHBHBBB 126 0at-rs2 BBS-BHBHHHBBB 125 Egf BBSHBHBHHEBHB 112 Adh-3 BB8-BHBBHHBBB 124 6bp-/ BBS-BHBBHHBBB 124 H3f'2 BBB-BHBBHHHBB 132 Mpmv-9 BBB-BBBBBHBHB 51

Locus CXB Lines Ref.

/234S67 Cor-2 CCBBs 47 Cor-2 RE CCBBBCB 121 Xalm, V-65 BCBBEBC 164 H-37 BCCBCBC 4

CCCBCCB 121 /4 -23 CCCCCCB 4 Adh-3 CCCBCCB 43 Ahr-1 CCCBCCB 43 Gbp-J CCCBCCB 124 H-28 CCB~CB 4 I f -1 CCBB(C8 36 /r BCBBCcB 51

Locus NXO Lines Ref.

11 /257~

Xmmv-65 NONOQO 164 Gbp-1 NNOONO $24

Locus SXL Lines Ref.

11111 4724S67

Calll SLLLSSL ]31 LLLLSSL 121

Fig. 2. Strain distribution patterns for recombinant inbred strains. Data from Benjamin Taylor and Beverly Paigen (The Jackson Laboratory).

ships in both gene order and approximate physical length (79).

Acknowledgments. Jane Santoro provided invaluable assistance in preparation of the tables and figures for this report. We thank the

individuals who contributed unpublished data so that this report could be as complete as possible. We would appreciate receiving information from readers regarding corrections and additions. Prep- aration of this report was supported by U.S. Public Health Service Grants HG00101 and DK42923 (M.F. Seldin) and GM24872 (M.H. Meisler).