KAERI/TR-2166/2002 - OSTI.GOV

252
KAERI/TR-2166/2002 ]I#XIgAj JW& 0^ Study on Improvement of Technical Specifications for the Plant Protection System (PPS) in the Korea Standard Nuclear Power Plant (KSNPP) KAERI 2002. 3 ^ n <a ^ i

Transcript of KAERI/TR-2166/2002 - OSTI.GOV

KAERI/TR-2166/2002

]I#XIgAj JW& 0^

Study on Improvement of Technical Specifications for the Plant Protection System (PPS)

in the Korea Standard Nuclear Power Plant (KSNPP)

KAERI2002. 3

^ n <a ^ i

*11 #

S-ZLAil- 2001 “ ^lS)i 7]H> $7} 7l#7flW’ 7]5. *\]%

2002 # 3 € 31 <g

<r ^ : #"&#^ X1 ^j- :

J8_ 4

i lll-

£#41 #l7i#ni ?Vd 1#(Study on Improvement of Technical Specifications for the Plant Protection System (PPS) in the

Korea Standard Nuclear Power Plant (KSNPP))

n. If 71)^4 -l-l ^

7}## 414 4% ##1 11 4 #2# #51-2 H H 7)7l#4 HI#

H#7l 4144 #4711# #l7l#7lH (TS)* #44 44 #414711 #14|6}5 4 (lco), 4#4444 (AOT), l7in#7l (sti) #4 4# *# 21## #444 &14-. 80 44444 451 14#4 444 44 #7}41! 11 #14 44 4s.#

44 44## TS 21*4 144 7fl#4 444 141 #7}» 7>mu, 4# 44 2 l7> 4## 4# 7]# #44 4411 *142 ##1-2 411 #411ts 4 4# 41 #14 #114 4:11-. ts 4 111 5#1* 41 7}l #141 - 4* #1, 1# 11 #5, 1* 144 111 11 is. #7>, 14 # 4###s #

7>, 14 * 7l7]Hfll 2.#, 14 # 1^11 ## 7}#l #7}, ## - 414 #42#

#12.5. 1*14 411 14^44^ so 14 4# 4414 45.7111 1 4^1125

#4 7]1# 5.H 414 111# ts 2.14 14 #11 41 #111 #1# *

#2.5 1114 412., 44 ##4 111 114 #11 41# 2 411 *2.11

#14 41 #414 #1# #1 # 12# 11 ts 2.1## 41 41 41#ll2I 1# 24# 7] #4 asai.

4#4 ##41 (ksnpp)4 41s. 5x4# (RPS)l #41 1144 1*4# (esfas)4 1# #15 111 #1414 #2125 14 4#4 #4 14 1 2 #II 1542 ##12 4# 5#11 #44#111 4 44 #412 *1. 4-2#

#4# 115 #144 #14 4 #1 141 211 111# 141# 214 41, 44 # #141# KSNPP 1 #1 3,4 271# 4125 !##! HI 47} (PSA)

714# 4114 RPS/ESFAS #47l#lll 14 AOT 4 STI * 4141254 ##

1 £#414 111 #1 * 2#1! #4# 224-27} a}%4.

in. ifl-g- « ^

£ 1#4 21* RPS/ESFAS 4- 111 &# *#7l#7]#4 (NUREG/CR-1432)4

Atilri: 5*41 (#1 3,4 X7])o)] #** ## 4#2 4# ^7>o)) SUM, 4# 5

# *^##4^44 m# #i 7]#4 *#* &*n 2*4 442 @-4 #42*

4 414# 4# 4414. °H1 44 111# 44 44 4 4*# 4#4 44.

• KSNPP# #4 3,4 £7] 4 RPS/ESFAS * 4#22 #H4£4.

• 44 3,4 XtMa] SUfl 14/*# 431 #* (as-designed/operated) 7] 4

as #42 3144 rps/esfas 2# 44 2.14 7)114 $4 24 44 2#

4 41 #£-2 4444 44 442 #2# 24 44 4# 44 44 #4#471 444 #4 3,4 27)^1 44el- 4# 3,4 £44 rps/esfas 7]7j 2#

11 7}&4 424^4.

• rps 31# #44 1# 2 7114 441 lx# 211 11 7fl *}# #4 141s.

47}^ 44 4-4-4(TCB)iA-1 #4 #444.4 #41 21# 44 424, 44,

7>l7l 2 #44 1# 414. 141 4# M 4# (dps)4 41 44

1x2 214 214-14. li 71)4 14-2 !!!#4# 7>l7i #/2 #4, 7}

1 4#4 (VOPT), 2 4t#4 (LOG PWR), 2 #f#4l2 (LPD), 4 M*

411 (DNBR), #7ll/g7l (SG) 4 14 1 4/2 #4, 14-2 "3441 Til#

(RCS) 4 41, 411# 2 144 2114. rps 4# #4# 124 224

[KAERI/TR-2164/2002]44 #4)4 4#44 14-

• ESFAS 2# ##4 1* 7 71)4 ESP ##1X4 44 24112 #414 4

414 144l4x 71)14441 #47)44 #4 21# 44 14. 1 #4 esf

##1XH 11#4 ##!x (sias), 411# 4 4 lx (CIS), 411# 1# ##1X (CSAS), 7]] £1 ##!X (RAS), #*7) 4 4 lx (MSIS), 221#

##!X (AFAS) #1 1 221# ##!X #2 7} 2#14- 2# 2, #4 221

# ##1X4 4# DPS <4 41 221# ##-!X (DAFAS)2 214 2#4

#4. ESFAS 4# #4# 124 224 [KAERI/TR-2165/2002]44 #4# 7)#

44 44.• rps/esfas4 sti4 aot 144 4# 41# 44 #7>* 4# 4^2 #22

4# 7ll#4###2 (UA), 2l##l2 (CDF) # 4#27)##12 (LERF)#

4 *4554.• CDF # LERF 47}* 41 2$2#* #1 3,4 X?) 41# #444 #4#

44 7)11-4 4 1# 442 #4 (RM) [KAERI/TR-2134/2002]* 21# 4*4

924, 4# 1991 1*4 1998 144 *1 3,4 X# 1Ht)H4 #^4 H

~ II ~

PSA S-li- 4&5 JL-a- 319- 997}5 4 9 71)444 £€ 944949##

999 995 3i£4 psa 2.1i 4994

• LERF ^7>» 49 5l£ 9£#4 444* 49£# (CET)-a- 7)) 9 4##^

54 99 4#£ #54 531 A] [KAERI/TR-2025/2002]°fl 7) #44

%14.

• £ £9°H4£ #9 3,4 3L7l 4£ A>y *4 5#£ £944 #94.

• RPS/ESFAS 4 9# STI 4455. 99 99- ££4 444 He)=M 4# £4

4 5*44, 44 3,4 i7l ^ *9 3,4 5L7H tifl^A^ 94-4 47] 44 94

* 4955. £4494. 444, £ £4£ 445: 4?H 49455. 444

54=5 *4# 4 53la]4 449 £ £444 #54, 154 53ia]

[KAERI/TR-2167/2002]* 4&44 4 44-

iv.

4£4£5. £4 £97]#44a] (sts)9 ££44 rps/esfas 4 44 44 £94

£494 (Cts)4 aot/sti-E ££ 4#4944 5455 494 995 49£9 44

£ 99# 971-494. 4* 4&D 995 #5 (4# 4###5, £££945, 4 &4

49=949- 4# 95) 95 71199 psa 59## 4455 ££94 (#9 3,4 £4)

RPS 4 esfas 4 499 STI 495 97}* £94 94 4*4 44 44# 4t11 49

4

• 99 rps 4 esfas 4 4449 £7)£ 995 #944 99 1 7# 7]£9A]

3 71)9 7]£55 49 7}£9 455 9994 (£, ££ 4#4944 9499

£4 99- 7}£). 3 71)9 4£554 494- £ CDF £ 7.88E-06/RY (A 1.42%), £

LERF £ 1.31E-06/RY (A4.05%)5 44 97>444-

££94 rps 4 esfas 4 499 aot 995 £44 94* usnrc 4 aot 4

9 £9 4£# 44 9)49 £ 44 4*4 9£ 99# 94 4#4.

* aot 49 5 9 7} 94 RPS 4 9-f 945. 94497] (tcb)4 £94 2 7]] 4)

94 9£#£ 44* 4)44-31 £ sti 4 44)&9 9^ 9 ££ 4 #4 9 7^4

AOT £ 99-4 £ 9* 497} #54, *9 ££ 7l#9^A]4 rps £4 59

4 4)9 aot (48 a)9)£ 4* 5*455 9949 9*# 9 £ 994.

- m -

• RPS 7lH5l #41 271) 4N 5#4 3 7# 1*1 STI 7} l## #441

1 TCB 1 7l 7l# 5#oH 4# AOT 4 4#4# 4## 7)# 1-8-7} %}4_ 4#

4 * #41 447} 4# 5*14 AOT 1#5 #4 114 l2#44# 4

* e#l H44-4 14444 #4.• aot 1#5 1?} 14 esfas 7} rps 4 44 aot !#54 54 1144,

ESFAS 71445.1 -5-14 2 7l 71# 511 14# 41# 5# LCO 4 4#

41 54 £t TS 11 AOT # STI 1 #1(3 7# 7)*)4 44&I 1141

414 7}!44

• STI 4 44^4 ESFAS 11411 2 7l 51, 44 TS#41# 44131 &# 4

1 5# 4 7l 71^ 5# ^ 44 14 411 411 2 7l 71^ 544 4#

AOT 1 1444 144 7l# 157} 154, AOT 141 4 #41 144 4

4 5441 AOT !#5 #4 414 7]a# 144 4# 444 3114-14 4

4.• RPS/ESFAS #1# #4 71# 11444 144 LCO (#4.4#51) 7]7] 41

#4## 5* 7l#!444 14 4# 4-4# ## 414 1#*4 # #4#* 1# 54 LCO 11 41 #4* 5l45 #1 44. 4, #4 !#!!!

1 7}# # *11# LCO #11 414 414 44. 44# 4# #1, 4 4 41 714 15 7}#4 1 7fl 7141 3i#l 4## 4111 454 2 711 #4

4 7in 5#4 441 # 1-8-## 114 aot #1# &4 °1 1*1 5l 7}#55 4# 6 14 14 5#41 5# 41-5 11* 5*4# 155 41

41 #4# AOT 4#5 #1 444 41 14# aot * 7}4 1 ##45 #?#5 4414 el 4# 5# #7}5 115 14 #451 5*1 #1#

14#4 #4 5 4# 4* #4, 41 5#1 1# #4 ts #414 LCO 5455 6 71 7l#e 4 7l 7141 51(11# AOT# 48 14) IM4. #1 #4

1, #1 5# 1 71 714 5l 5# 4# ##5 4# 3 7l #1 5# 714 5l

4- 4# LCO 7l 1 41 #44 441 #4 ts 41# 11# #15 #4#

* ^4. 1 1# 14# 5l§H 4**44*55 4111 1-8-444, 4# #4# aot 1457} 2,4# #5 #** 4441# 414

#ei55 5*441 RPS/ESFAS 4 4# #44#5# # 144# 5455 5

* leim 54# 541 i### ii i#m *11 #15 e#, ±#i

4 44 *1 44 (#441 *1 14, #4 4141 141 #4, ##) 4 #45

1#5 e441 4#1# 155 4#44.

V. %-%-m ^ ARV

# 41 #44 2001.12 1 414(1)4 41#3711(1kH 444 “41^ &i 444 aot/sti .a.# 4# 44-” 44 1*§4^5L 4444 #4 3,4 2:7] ^ 44 3,4,5,6 21711- 44-^5. RPS/ESFAS 4 AOT/STI 43& 44 44 7} 444 7H# e>l4-5.3. #-§-4 4SM4 (^# S-1 #2:). 445), &1#4 rps/esfas 4444 HJi#4 #14(1)3. 4444 i:# 3,4 217] ^ 4# 5,6 21714 -£-##7)- 3_4&44# -rps/esfas 44e 44 14 14 4# - 4 41 4433 #-§-# 44 44 (n# s-i

r N

OL 222X1 Af#f XtE 5ti^(E2 3,4. SS 5,6 S3I)

L )

RPS/ESFAS 3IEXIS! A) S3

£!SP161S

3# tiSJE @71 eg 7HH

e,xla,„ p---------- ---------

H

3^ <hl£JE DB 3Hii £3X1 Drift E<^

10(aaasm mm)4

131 jgii §J3I6XIS

#5! 9 10 (#S:I M

s-i. 41 7M #44 %■%- 43

- v -

4- *}

JEL 4 5:.............................................................................................................................................. i

^ ' i •««•••••• . ...» ............... • ♦»*•••••••* • • ••••••• . • • •• • • . .,. . IX

& xi

(Abbreviation) ^ -§-°| (Nomenclature).............................................................................xiii

afl 1 # 7M _8_...................................................................................................................... 1

all 1 ̂ ^9 4^.................................................................................................... 1^ -* *- "T1 ^l| 0 7s ^ »»•*» »«<•••••• • ♦••«*•♦•# ••*•*••*«• »* ««• • • • •••♦•♦♦•♦••♦•*• 1

^1 3 1 ## ##.......................................................................................................3^ 4 1 #ag.............................................................................................4

*11 2 # ## #4...............................................................................................9

*11 1 ̂ 43 <9# 9^1 2 ~ (!) d" ********* * .**•« *.. « * ******************** - * ********* *••••• ******* ■. 1 %

all 3 # all# ##............................................................................................................. 13

all 1 3 #45. jiSLAll# (RPS)........................................................................... 13all 2 ̂ #43 44#til 4#3l# (ESFAS).........................................................19all 3 1 ##;£-:$: 4# (DPS)....................................................................................31

all 4 4 ##£ 3§7>-g- 7l#£# #21............................................................................33

all 1 # ^1# c,l###£o11 41# 7l#at ##............................................... 331. RPS 3-4## #4.......................................................................................332. ESFAS 3.4## #2}..................................................................................37

all 2 # i###al3E4l 4|# 7l#£.! #2}.......................................................41all 3 # 414 &7l #$ #£4) 41# 7l#al #21...........................................45

all 5 4 7l#x)#Al £l#4(#)4] 41# #l£ #24.................................................. 49

all 1 4 RPS/ESFAS 7l#4#2) ###................................................................ 49all 2 1 47l41#7l (STI) #l£ ##.............................................................. 54

1. STI #4£ #21 tij-tg#..............................................................................542. 41# <>l#l-#£4l 41# STI 4l£ #21 #4..........................................59

all 3 1 lc###«l£4l 41# STI #4£ #21 ...................................................61all 4 1 414 &7l ## #£41 41# STI 4#£ #21.......................................63all 5 # ^#4444 (AOT) #4£ ##.............................................................64

1. AOT #4£ ## 43#............................................................................642. 5##4 RPS 41 41# AOT 44£ #21.................................................. 673. a### ESFAS 41 41# AOT ##£ #21............................................. 74

41 6 4 14 5fl2l 4 1#..............................................................................................81

#5Z##....................................................................................................................................83

- vii -

A. RPS/ESFAS ^ ^ If ..................................................................85

B. RPS/ESFAS *}£. ................................................................193

- vlii -

^ 4-4-

X^ 1-1 (KSNPP) RPS/ESFAS 444#4#4 7]]H ## 4#

i 14 X#S..............................................................................................................6

x^ 1-2. 4-R 14 #4 ^ 1# an^ 14^.................................................................. ?

X^ 3-1. #31 3,4 3:7] RPS 4 17

X^ 3-2 44 3,4 X7l 4.441 RPS 4 7]45E................................................................ 18

X%] 3-3 Ur'S 3,4X7] ESFAS 4 7]] 45=-.............................................................................. 29

X^ 3-4 44! 3,4X7] 4441 ESFAS 4 7] IS......................................................... 30

X^ 3-5. 44 3,4X7] DPS 4 1-4 7]4£..................................................................... 32

X^ 4-1. 41 4444 4414........................................................................................ 46

x4 5-1 !4t 41# 44# STI 444^ 7]]#£.......................................................... 56

X^ 5-2. AOT##! H.......................................................................................................65

- ix -

5 -Sr*}

3 3-1

3 3-2

3 3-3

X 4-1

5 4-2

5 4-3.

5 4-4

5 4-5

5 4-6.

5 4-7

5 4-8.

5 4-9.

5 5-1.

5 5-2.

5 5-3.

5 5-4.

5 5-5.

5 5-6.

5 5-7.

5 5-8.

5 5-9.

5 5-10.

5 5-11.

5 5-12.

5 5-13.

5 5-14.

5 5-15.

5 5-16

5 5-17.

-§:1 3,417] RPS 4 41 !$4 !14...............................................................16

irl 3,4 3171 ESFAS 134 !ll$l 414 .............................................. 22

irl 3,4 317] 7)]l7]l ESP 7] 7] 4#.................................................... 23

5# 11 RPS 4$ #3-54 4# 5# (BM)4| 14 #4................. 36

3$11 RPS 4###54 7]f£f (BM)4 tflfb 145 $4 44........37

5^ 11 ESFAS ol-S- #454 7]# fi.f (BM)4 tfl! $4 #4........... 39

3^11 ESFAS 4 -§-$!54 7]#5# (BM)4 445 $4 44 ....40

4! 3,4 3.7] OL-CDF 514 RM-CDF 3#4 45 441..............................41

&! 3,4 317] OL-CDF 514 RM-CDF 344 44=4 44 4 5.................... 43

#1 3,4 317] 5l$!l54 7]# El RM-CDF 4 14 444 44 ...44

i-4 3,4 17] RM-LERF 314 OL-LERF 314 444 44 4 3............47

#1 3,4 317] LERF4 7]$311 44 444 44....................................... 47

STI 145 4-4-Ir 44 TS 34 141..............................................................50

STI 145 4-4 414- 441 11 44 44 444 44............................so

#1 3,4 1 14- 3,4 317] 1 H 44 44 4441 STI 141................51

RPS/ESFAS 1 #4#!# LCO 514 4# AOT 31................................... 52

3#11 RPS/ESFAS 4 AOT 145 $4# 44 4# LCO 3l 44..... 53

STI 14-5 4-44 33141 ^3 14 14....................................................... 56

RPS/ESFAS ##4 3$4 34##1 tfl! STI 144 44 47)1! 14.57

3# 11 RPS/ESFAS STI 1411 1! RPS 441-454 145 $4

14................................................................................................................................ 60

3# 11 RPSESFAS STI 1414 cfll ESFAS 441-4-54 115 1

4 44.......................................................................................................................... 61

311! RPS/ESFAS STI 1414 41 CDF 145 $4 44................. 62

4-1 3,4 3.7] RPS/ESFAS STI 1414 41 LERF 145 $4 14...... 63

3#!! RPS 4 tfll AOT 415 (ACDF) 44 14....................................69

3411 RPS 4 rfll AOT 415 (ALERF) 44 44...................................70

3111 RPS <>H 411 AOT 415 (ICCDP) 44 14 .................................71

3#H RPS °fl 411 AOT 415 (ICLERP) 44 44.................................72

3#11 RPS 4 AOT 115 $4 44...............................................................73

3#11 ESFAS 41 cfll AOT 415 (ACDF) ^7} 44.............................. 76

- xi -

g_ 5-18 Mil ESFAS 4 41 AOT 11^ (ALERF) ^7> 14..............................77

5. 5-19. Ml! ESFAS oil 4# AOT Hi (ICCDP) ^7> 14..............................78

5. 5-20. MU ESFAS 4 41 AOT Hi (ICLERP) ^7> 14 ...........................79

S. 5-21. Mil ESFAS 1 AOT Hi 14........................................................ 80

- xii -

4"4 (Abbreviation) 5 ~§* °] (Nomenclature)

4^4 (Abbreviation)

4.16kV 'F'eA}:?l (LOKV, loss of a 4.16 KV bus)

4*5^ (VOPT, variable overpower)

7}y*l (VSP; variable set-point)

7}^-7] JL (Hi PZR PR; high pressurize* pressure)

7}<y-7] 7] (Lo PZR PR, low pressurize* pressure)

#A1 5.^ (AFM; annunciated failure model)

TflF (CIS; containment isolation system)

Ti'd’tiir (CIAS; containment isolation actuation signal)

31 cQ-^ (Hi CTMT PR; high containment pressure)

^117] (CPIAS; containment purge isolation actuation signal)

A}ti4^F (CET; Containment Event Tree)

(CS AS; containment spray actuation signal)

2) #4^/41 F (CSS; containment spray system)

^^■-§-7] ^e|M- (CIONB; containment isolation or not bypass)

1M1# 43 ^11 F"WA}31 (ISLOCA; interfacing system LOCA)

7)1^ 7l]o| (I&C; instruments and control)

7^1 $\ 7j ti] (O/H; overhaul)

31 (Hi LPD; high local power density)

31 4]##^ (Hi LOG PWR, high logarithmic power)

31^4^ (FT; fault tree)

(FTA; fault tree analysis)

31^^^ 7] (FSP; fixed setpoint)

-^ y 31^ (CCF; common cause failure)

^F-^IF (ESFAS; engineered safety feature actuation system)

(LPD; local power density)

7] 7} 43 ^1 -F (CCWS; component cooling water system)

7] 7] 43 zhT'F'M Al -ti (LOCCW; loss of component cooling water)

7] #32. # (BM; base model)

Iel^ £15; <9 4^7] (CPC; core protection calculator),

- xlll -

(CDF; core damage frequency)

*4# 3L5:-g*# (DAFAS; diverse auxiliary feedwater actuation signal)

(DPS; diverse protection system)

4M# 32.5* (SFM standby failure model)

41^ 57] ## Si(LERF; large early release frequency)

4|##^ (Log PWR; Logarithmic Power)

4^*MMl#^A}31 (LLOCA; largeLOCA)

41 Si °] a}# 5-4}"a}31 (LSSB; large secondary side break)

5}E. 5415 415 ^#^1 (RSPT, reed switch position transmitter)

5 # 417} 5 41 41(USNRC; US nuclear regulatory commission)

#5.5 ti.:§:Ml# (PPS; plant protection system)

#55 5 5 5 31 (SBO; station blackout)

#5 #571#A)^a] (ATS; alternativeTS)

315 i^# ##55 (AFAS; auxiliary feedwater actuation signal)

##715#55 A}5 (LOCV, loss of condenser vacuum)

# 4) 5 7] Ml ^ (ARC; auxiliary relay cabinet)

Jr5’H' x}xfl (NCR; non-confirmation report)

^5-5 (STC; shunt trip circuit)

A}5## (ET; event tree)

5554}55A}5 (LOOP; loss of off-site power)

5lH47ll##A}j7 (SLOCA; small LOCA)

7] 5 55 31# (TFM; time-related failure model)

7] 5 ^ 31# (T&M; test and maintaneace)

55# tl ##55 (SIAS; safety injection actuation signal)

55 #5 5 31 (AOO; anticipated operational occurrences)

3L#7] 31# 5.# (DFM; demand failure model)

#<§7] #7] 415 (TSIP; technical specification improvement program)

#C§71#^] 7] 7l#7l^Ai (TS; technical specification)

#55 (LCO; limiting condition for operation)

#55# (OL; operating license)

415^ 55 Ml# 55 (RCSDP; res depressurized)

57}31 ^ 5-71] 5 ## (Lo RCS FW; low reactor coolant flow)

#7}#5 Ml# (RCS; reactor coolant system)

#7}5. 315 41# (RPS; reactor protection system)

- xlv -

%-?] A}3- (RVR; reactor vessel rupture)

-§-7] 4-^ a] zj -§-7] (NCFVB; No Containment Failure at Vessel Breach)

%7] 4^^. #7] (CDAVB, core damage arrested without vessel breach)

7>^7) (TCB; trip circuit breaker)

a^a]71°1 4# (RTSS; reactor trip switchgear system)

41# (PCS; plant control system)

4] ^4. A}^ A} ZL# (WOG; Westinghouse owner’s group)

413 51 #7] (RM; risk monitoring)

^}A] 2.^ (RM; risk monitor)

41351 d]-§- Tf-^l ^ ## (RIR&A; risk-informed regulation and application)

413^. 7g±i-fj- o]^-^ AjA]- (RIDM, risk-informed decision making)

°1 4]# (UA; unavailability)

^ti>^5.A}y (GTRN; general transients),

-TL^ -2_# (RFM; running failure model)

44 44Ai (TR; trouble report)

4]lr4 a)-^a1^_ (RAS; recirculation actuation signal)

7] o] (Lo DNBR4 low departure from nucleate boiling ratio)

4 44 — 4 44 (under-voltage trip device)

t| 4 4-3. 4 (under-voltage coil)

a]44—4451 (UVC; under-voltagetrip circuit)

4.4 7] 7]^ (EER, electrical equipment room)

4 714 4-^-4 (SR; surveillance requirement)

4444^4 (STI; surveillance test interval)

Aliilir 4^ A}4 (ATWS, anticipated transients without scram)

471 4-44, 4 7} 5. 471444 (TCB; trip circuit breaker)

414# ## 44 (CEDM; control element drive mechanism)

4|4# 447] (CEAC; control element assembly calculator)

Tile's 44 #7] 4# 4^. (CREVAS; control room emergency ventilation actuation signal)

n^#4^4444 (LOFW, loss of feedwater)

^41 4 4 (MCB; main control board)

^#7] 4*4 4 7^ (MSIS; main steam isolation signal)

^1! 414**1144451 (MLOCA; medium LOCA)

#7] 4A34 (SG; steam generator)

#7] iHS7! zl (Hi SG LVL; high steam generator level)

- xv -

4^ (NISGT; no induced steam generator tube rupture)

4^: A}^ (SGTR; steam generator tube rupture)

1^7] xi (Lo SG LVL; low steam generator level)

#7| a^7| xi (Lo SG PR; low steam generator pressure)

A>5 (LODC; loss of DC)

&7] -g-^ 3^4 (NPFEF, No Potential for Early Fatalities)

3:7] (IE; initiating event)

5)-t- ^ (MLE; maximum likelihood estimator)

^ S-3IA-] (FSAR, final safety analysis report)

3# 5 4^ A1 (MTTR; mean time to repair)

ILir 7] #7] ^ A-] (STS; standard technical specification)

(KSNPP; Korea standard nuclear power plant)

^ n] >§- o] (DNBR; departure from nucleate boiling ratio)

(FBEVAS; fuel building emergency ventilation actuation signal)

X1A1 (AOT; allowed outage time)

TS (CTS; current TS)

y:^.Aj ^ 7} (PSA; probabilistic safety assessment)

BURD (Bayesian update for reliability data)

CE (Combustion Engineering, Inc.)

CE iW A}^7} Zi# (CEOG; CE owner's group)

ICCDP (incremental conditional core damage probability)

ICLERF (incremental conditional large early release probability)

ILS (interposing logic system)

KIRAP (KAERI integrated reliability analysis code package)

PLC (programmable logic controller)

4M

7}fe (mable)

#7.) 7] (sensor)

7flA] 3] #7] (initiationrelay)

?])A] 3)3. (initiation circuit)

4) #7) (relay)

7)1 #7] ^ 4J (contact)

7)]# Loop ## ^ h"7] (instrumentation loop power supplies)

2L# -^fe (incipient)

(fail-safe)

2.# 4) 7>l£b (failure exposure time)

fefeT] ## (engineering judgment)

Ho) (staggered)

52. t§ #S) a|#7] (calibrated average power calculator)

#fe#"s JI)"5cA}?i (loss of feedwater flow transient)

7] 4] -1 fe# (mechanical binding)

7)fe ## (complete failure)

7] 7} (contributor)

y u" fefe ## (override probability)

(core damage)

iifi] ‘t'ty Xj-^ ^ #7] (ex-core neutron flux detector)

feed'll- (logic matrix)

fee]fe^}- 3) #7] (logic matrix relays)

4#^ (diversity)

4)7]# 51## (standby failure rate)

4)fe # fe5L (log-normal distribution)

4)fe ^4+7] (logarithmic power calculator)He] = E (drift)

(population variability)

feU# (no failure)

(bistable)

7)] #7] (bistable relay)

ilfefe Hfe 7}_g_# (plant-specific data sources)

- xvii -

(plant-specific)

^ ^ (plant-to-plant variation)

-r-^r OOS (partial out-of-service)

^-5. (shunt trip device)

(shunt trip coil)

#7}%- (disable)

(de-energized)

(ET/FT linking approach)

A}H 3l (pre-trip human oror)

a} 31 f (post-trip human error)

A}^ 5-5. (prior distribution)

■§• i (posterior distribution)

A1 <9^7] (sub-channel power calculator)

A)'tE 5^4 (screening analysis)

4^2 (selective2-of-4logic)

(as-designed/operated)

(setpoint)

^ 7-1’s} (degradation)

—-rl (manual pushbutton)

(acceptable risk)

^lir7] (level transmitter)

A1 ^°\7](test-causedrisk)

A1 5) tI) ^5) ^ 5. (test-limited risk)

'JIJl ^|^7] (signal processor)

^.^7] (pressure transmitter)

(energized)

4 (energized state)

<9^ (sequential)

<9^3 312)- (stuck open)

ulir (no impact)

-§r5L #^7) (temperature element)

(completeness)

OOS (complete out-of-service)

-§-<9 (permissive)

- xvlli -

(unknown)

^7] (RCP speed sensor)

(reactor trip signal)

(hysteresis)

°]^ (binomial process)

°1’9* irJSL (binomial distribution)

y b] o") 71} ^7] (interface relay)

^91 (generic)

7.}^-^ (generic data sources)

^ti} 3.7^ (general topical report)

(constant)

(invariance)

<33} 2:^ y]-^- (critical combination ratio)

3)-^ (failure probability on demand)

# (in-service)

(top event)

*1] o] ;£) 5. (control circuit)

2:7] a]^> (completion time)

3:# 7^7] (matrix relay)

(redundancy)

^]^7] (interposingrelay)

^1^7] (differential pressure transmitter)

3)2: (minimal cutset)

^5, (control circuit)

3 <3 (f0id over)

## (pooling)

(train)

(specialization)

^5 A]^ A]?l (test duration)

^4|4| ^1^7] (lock-out relay)

(Poisson process)

5.°}^ #2. (Poisson distribution)

5.6}- (saturation)

(hunting)

- xix -

*11 1 ^ 7H.fi-

*11 1 1 3? ^

# ILtryJxi (KSNPP; Korea standard nuclear power plant),^ t^JsL 2L3L $]

# (RPS, reactor protection system)^ (ESPAS; engineered safety fea­

tures actuation system)#

(D (TS; technical specification) - ## 3,4 3l7) A|

#4 (FSAR; final safety analysis report) 16 3/4 3 1 # 16.3/4 3 2 i - 4#

XI# (STI; surveillance test interval) ^ £)#^7)a]# (AOT, al­

lowed outage time)# ^1 y4# tl^ll ^ ## ^

7} (PSA; probabilistic safety assessment) 7]^-=^ 7}sj-H,

© PSA #4* TS 4 /il### TflXlf- - If #^7l^x]^Ai

(STS; standard TS) [USNRC, 1995c] Sl£Sl^*\ ^ 7}#^# - 4 °>#^>

(3) 4# ti^7Hl 44# 4#4 4& x}^* 4#

4#4 3i #4°1 Xl4.

41 2 ^ ^

7}*# **4 4# ### #4 4 #3* #3*3 ## ## *#*-§: #$1*4 4]#4 *47l## TS* *44 €4 *47H4l ##4#4(SL; Safety Limit), *4

4#3#(lco) aot, sti *4 4* #* 3##* *444 so 44444 43 1 4*4 444 441 *7>4^^ €4 *44 44 4s.* 44 44#* ts 3#t4 44 4 7fl*4 $144 444 *7>» 7>4&$l3, 4* 4*3 ^7> 4*ir 3## §# 4# *44 4444 444^ #*4-3. 44# *444 ts 4 4# #4 *44 #444 & 44. ts4 444 **4# 44 7>4 #444 - 4* #4, 4* 44 4*, 4"* 4#4 44* 44 434 *7>, 4* * 4***3 *7>, 4# * 444^ 3*, 4# # 4-3 44 ** 7}*4 *7>, * - ** *44 #*3# *#33 4**4 &%*.

#^3^43 so #4 44 ^44 4^4*4 * 44433 *4 4## 3## *4-

4 *44* TS 344 44 **# #4. *44-4 *#* #*33 44*4 44

**4 444 *#4 #44 4#* #4*4 #3#* *44 #4 *^44 *## #4

* $13* iM TS 34## #4 44 4#4#3* ** 34# 4*4 £$*. 44#

“ 1 “

58# 1982 8 8] 58 4*5 44 A}8 7} 5# (WOG; Westinghouse owner’s group)0)] Ai PSA

488 7]5# RPS 4 <g* 7]^-°ll cfl* STI 4#* 8* #7}8*8444 (USNRC, nu­

clear regulatory commission)^] 7)] S#48A] A] #4 845 # t 84. °]4 # 5#* USNRC

5. 48* TS 7%# 5* 444 AOT 1 STI * 4444 4# PSA 4 8 #4 8* 1 *4

*8s4 %-g-oi] cfl# #8* 8** 44471] 48-9-4, =L 44 USNRC 4 iM 44*

PSA 7144 4 A# TS 4 7H#55 44 4#4 44 4#S7} ** 44 8 #55 *7}4

4 &#* 844* 4 psa 18* #4 44 444 84145 4444 4s* *#4*

455 444 484- 444 84* 5^8 5* *8417]4a] (STS; standard TS)

[USNRC, 1995a~ e]4 7fll5 8885, 444 4*8 854 #44 8*45 8* 4#s

4S 44 44 4 #4 (RIR&A; risk-informed regulation and application) [USNRC, 1998a ~ d,

2002] *4ss] #^o)] Ifl# A]#48 484 444 #444 #444 44# 4#4 4

4.

© #44 458 4#5 47} #4* *7}#S58 ## 4444 44 45. 444

4 4444,© #557} e ## #4 8*#4 444 44 44 #4 444 ##* #4 #4

5*4 1 54 444,

© 44 48444 444 4s# 44 **4 if# #s

*4445 444 *444 *4 5*4 444 44 *4 # 44 *84 44 44

444 844 psa #4# ##457} 4* #484 #444. 8* #4, ‘5* 3,4/81 •1,2 57] #7}5S54# 1 *44 8444 4444 54 44 8*’ [484, 1998]* #

48 44 #45* ts 54#8 #4#5s 71)84 4 84. 444, 4# 44 4 #48 #584*57}8 #4 (5* 3,4 4 8# 1,2 54)4* 4# #84 5*44 rps/esfas

8* 445 #4 A}#* KAERI/TR-486/94 [48#, 1994] #57} 4484. KAERI/TR-486/94

55#* 5*44(44 3,4 57])* 4#55 RPS/ESFAS 4 #7]4# A]#54 448 54 4 1*8 *84854, 84 *4 3,4 57]* 4# 448 88555 #41 #4 8 #4 848 4814 #4)8 44 psa 518 85# 4884. 4 8*4 48 rir&a 4 ts 7i 48 4# #*4 8#* #55 4# 4* 88# 8# psa 51# 4#44 #4. 44 4,ts 7H48 #*4 8#* 44 444 5*44 rps/esfas8 848 #44 #4 4# 8 484 5# 445 #8 514 71118 #548, 8#4 ts 848 4# 4#s *s 8 8# #448 44# 448 #45 5*4 psa 51 7fl!8 5*44. 5#, 4 8* 44* 4#55 5*44 (#4 3,4 57]## *84 8# 3,4,5,6 57] 5#) rps/esfas 4 4848 4# #*4881 *#8 45 #* 84 aot/sti 7])4* 44 887} 848 1 5# 7]*4 A}5* 48457} #4. 7] 14 7}54]# aot/sti 848 4* 4#5 8#

- 2 -

97> 44 4 44 RPS/ESFAS 4 *44 STI #94 4# -€44 (drift) 4# #

4 #4*3 3## #37} 94

4] 3 ^

rps/esfas * #4di 444 444)44 #3433 44) 4*9 #4- 44 4 3-4

44 4-34)3 #94-3 44 3*49 ts 4 44 9443 94. 4-3# 949 #43

9444 944 4 #4 °H4 3#4 444# 4449 344 44, 44 9 9444

9 psa 44# 494-4 RPS/ESFAS TS44 aot4 STI* 44##334 #9# 394

4(KSNPP)4 949 94 9 3999 #9# 33#3# #94. 4 494 399

RPS/ESFAS 4- 49# STS [NRC, 1995c]# AOT 9 STI*# KSNPP 9 RPS/ESFAS 4 4##

999 493 9# 944 94. 49 4# sts 4 39* 44 9*9 4994 94*

ksnpp 3*9 493 *9 443*4 44494 #4.

39 i-i * 70999 4* 4* 9 94 94## 4444, 9#933 44 #9#

4* 949 4*4 94 3#* * 94.

• KSNPP 9 *9 3,4 37)9 rps/esfas * 49*33 *9494

• *9 3,4 37)44 #7}) 94/#943 99 (as-designed/operated) 93## 7]#3

3 ##3 3*9 RPS/ESFAS 39**(FT; fault tree) 3## 70 ##94- FT 3#4

94433 4*49 ## 943 #3.* 34 94 99 *4 #4 94* 94

444 *9 3,4 37) 494 9# 3,4 344 rps/esfas 7)7) 3# 9# 4

39 43#94.

• rps ft 9 9* 2 7))4 44# 93* 3## 117fl 4* 94#*#3 443 94

4-#7) (TCB; trip circuit breaker)# 4 *# #9 7) #4 #M) 319 44 #3#, *#,

7}9-7) 3 9-44 9# 499 9# 949 4*3391# (DPS; diverse protection

system)4 4# 94933 3#l) 3##94. ii 709 94-3 94#*4* 7>9-9

4/3 94, 7}# 4# # (VOPT, variable overpower), 3 4**4 (Log PWR; loga­

rithmic power), 3 4**493 (LPD; local power density), 4 44*4## (DNBR,

departure from nucleate boiling ratio), *7) #97) (SG, steam generator) 4 94 9 9/3

*9, #4-3 94^OtO# (RCS; reactor coolant system) 9 *9, 494# 3 944

3#44-

• ESFAS 3# **# 9* 7 7fl# ESF 4*934 cfl# 3319 (train) #3 *9 #7)

7)14 ^(ARC; auxiliary relay cabinet)# 9444— 497) (interface relay) 4 4 947)4

4 941 3*9 44 94. 7 *4 esf 4*434* 94^9 9*43 (Sias;

safety injection actuation signal), 494# 44 4*43 (CIAS; containment isolation ac-

- 3 -

tuation signal), 344* #t 4*42 (CSAS; containment spray actuation signal), a}]#

4 4*42 (RAS; recirculation actuation signal), ^*7] 41 42 (MSIS; main steam

isolation signal), 22## 4*42(AFAS; auxiliary feedwater actuation signal) #13 2

5## #2 7> 2414 -ij-4 25** 4*423 4* DPS 4

5) 4 4# 25#* 4*42 (DAPAS; diverse auxiliary feedwater actuation signal)2 5.

13 244534.• RPS/ESFAS 3] STI 4 AOT 143 4# 342 34 ^4* 442 *22 A]

#3* °) *#*2 (UA; unavailability), 24 *4-42 (CDF; core damage frequency)

4 34 57] *# 33c. (LERF; large early release frequency)# °] *45$4.

• CDF 4 LERF 44# 34 #4 3,4 2.7)3 3332 #3 33 *4*33 7)143 442 23-3 3332 44 5.t (RM; risk monitor) [444, 2002]& 3

3-45$23, 34 44 4333 -M3 PSA 324 [4^43^4, 1995]* 3422

442 2*3 24 7>s. 4 4*11443 44 1444** 4343 333^4

434.

• #4 3,4 24 34 44 44 3214 4 *333* 2444 444.

• RPS/ESFAS 3 43 STI 4422 44 44 343 444 3=452 eg# g-43

2343, 34 3,4 27] 4 0.^1 34 3:714 4^3 47] 44 44* 44

22 *34^4. 444 2352 43 4*4 4 444 423 223[441,2002]2 7] #422 4 22331 a] ^ 7] #43 &&4.

41 4 4 S.S.a-1^ ^

* 22A]3]3* KSNPP RPS/ESFAS 3] 34 44 AOT ^ STI 3 143 442 44

3423 43* 44 44 44* 4*2 7]##2, 44 *3 4**3 44 3434 *

3 4*** 423 22343 3#42 44. 24 1-2 * 4- 22a]3- 434 12 22

3*3 *3* 23*4 RPS/ESFAS TS 71)4 44* 23] *3= *3, 31* 3***2 4-3, 433 2352 4-3, CDF 4 lerf 3 44 AOT/STI 442 4-352 3# *7} 44. 3

# # RPS 3***2 43* KAERI/TR-2164/2002 [441, 2002a], ESFAS 3***2 4-3

* KAERI/TR-2165/2002 [444, 2002b], 443 53 = 2 4-3* KAERI/TR-2167/2002 [4*

1, 2002], 4 4333 3*4 CDF 213 44 *344 41** KAERI/TR-2134/2002 [4*

4,2002], LERF 213 34 3* 3** KAREI/TR-2025/2002 [43*, 2002] 33 43 33

7]#3-2 44. * 22333* *5A] 44 44 2234 44** 4*43 4#4^

43* 442 44.

- 4 -

KSNPP RPS/ESFAS TS 7l)H 41 413 4 #4 4444 7)^4 ^ 44 5.JL4# 4 2 444 44 114 444 1# #4# #7fl43, 4 3 #44# #44 4# 4## - RPS, ESFAS, DPS - 4 14 1 #14 44 7)) @4 5.3 7)^4-JL H. 4 4

#44# RPS/ESFAS 1114 41 413 11# 7} (115 #4)# 4)44 7flH 41 5 #7)-# 7)e3l (BM, base model)4 11 4# 1 £4 14## 4# 3 ^4- 4444 7)^3141 RPS/ESFAS 41 14 TS 3144 415 #7> 313.4 415 #54 4

4 4#4 44 4w # 44.® 4# 4###5 (UA) 31,

© E'a ^ «1E (CDF) 5-1,

© 44 3,7} ## 15 (LERF) Ef4] 5 #44# aot 1 sti 141 - #4 sts 4 7) #4 4 1# rps/esfas 4 aot/sti 31-4 44 1#5 #4 #414 444 #4 44## 4#44, #33. 4 6 444 # 1#5 #4 44## 445.5. 5}# 414# aot/sti 71)414 44 #41 415 45.## #443.4 14.

- 5 -

emtaupdate

RPS/ESFAS ysiE XF5 eg

RPS/ESFAS SflIXFS 9E

RPS/ESFAS xiexiaxi ye SWi

RPS/ESFASaot/sti gay as

xi#xiaxi >H§y e

RPS/ESFAS

Hess RPS/ESFAS AOT/STI %9E SXF

isiSE egi

gas eg am c«g

rz.^ 1-1. (KSNPP) RPS/ESFAS &

g £f£

- 6 -

ESFASJlg MKAERI/TR-2165/2002

HESS RMS CDF Hi!KAERI/TR-2134/2002

\ ,/

KAER!/AR—577/2000KAERI/TR-2166/2002\; - '

HESS RMS IERF HE E4KAERI/TR-2025/2002

KAERI/TR-2167/2002 ■/

1-2. 444 4 ^4 ^ 4Aj-E

7

*11 2 # ^

*11 1 4 ^

7}## 414 44 ##4 41 4 #5* 45# 5 41 11 7) 7] #4 HI# 1

44-7) 4144 #411# TS # #44 €4 #<M44 SL, AOT, STI #4 1# ## 5

1## 4444 &^4 8044114 4)5 4444 441 #44 444 #444 #7}

144 44 #14 44 45# 44 44## ts 5l#l 444 7fl#4 444 444

#7}» 7>4145, 44^ 17} 1## 54-4 4# 444 4444 4145 ##

4-5 o]B)i 5#14 ts 4 4# 44. #44 4444 144. ts 4 141 5#1# 4

4 7>4 #444 - 4* #4, 4# 44 15, 4# 444 7]4# 7)7) 42.4 #7}, 4

4 # 4###5 #7}, 44 # 4444 5.#, 14 # 4-5.44 #4 7}#l #7}, # -

44 #44 #^54 #455 4#44 144.

44^145 so 44 4# 444 4^714-4 4 44155 #4 7]4# #44 €4

4 444# ts .9-44 44 #44 44 #444 #4# ##55 4444 445, 44

##4 444 444 #44 4## &441 &541 #44 44 #444 #4# #4

# 45# 14 TS .9.4## 44 44 444457} H 5l# 4#4 &44. 444

54# PSA 4-4# #4 445 454 #444 TS 4 #44454 (LCO, limiting condi­

tion for operation) 4 4 7] 4 4 5-4 (SR; serveillance requirement)0!] 4 4 71)4# 4 444, 44

nrc 4 ts 71)44 444 44 #4 #4# #455 4451 4#4 #4

• 1983 4 TSIP (technical specification improvement program)! #4# 4 4 USNRC task

group 4 445)4 4# 44 (NUREG-1024 [USNRC, 1983]).

• 1980 44) #4 4##4 USNRC # ##455 PSA 144 #7)4 TS 71)44 4)

44 #444 44-# 44

• 1992 4 NUREG-1366 [Lobel, 1992]# #44 TS 4 HHXl# 4#5 4454

#7)44 44455 7l)#4 4# €544 4-#4 544 x# ts (nureg-1340 -

1434) [USNRC, 1995a-e]* 444-

• 1993 4 TS 71)44 44 1# 44 44 (58FR39132) [USNRC, 1993]# 4^44 4

47}44 PSA 14-5#e) 444# 445 454 4# 4-9-4 4# #44. °11

4 44# 1995 4 TS 4 44 4#4 10CFR50.36 [USNRC, 1996] 4 71)1445 4

• 1995 4 USNRC # 1414 (60FR42622) [USNRC, 1995f]# #4! PSA H# 5

# #4 #45 44 4# 7}#4# #X4. 4# 445 15 #4 4 ##

- 9 -

(RIR&A) # 41 PSA4 *1# 441-

• 1998 1 TS4 191 *499 (RG 1.174, RG1.177) [USNRC, 1998c ~ d] 4 4*99

(SRP Ch. 16.1) [USNRC, 1998a]-§r 4 9 4-71 4 9 #,

ts 71)44 494 991 USNRC 4 *4 *#* 1982 4 11*94** 94 444

*f- (W0G)94 psa 444 4at rps 4 94 444 49 sti 94* *#9* !1

44 *317) (general topical report)* USNRC 44 4*994 4449431 1 * 94. 9

5)4 22.3149 4#* usnrc s. 44^- ts 7H4 s* 444 aot 9 sti * 9444 4

9 psa 4 9#4 4* 4 94 *934 #94 44 99* 94* 4444 494. *

44 nrc 4 94 94* psa 494 4&9 ts 4 7))1*3 94 994 49 99*7}

49 94 9921-51 97>94 *#* 444* 9 psa 99* *9 94 444 444si

9999 4£* 9-8-4* 4*3. 444 494. 444 94* *91 a# *19*99

4(sts)4 7)19:3. 945)31, 49-7} 4e4 9*9 #14 94431 9* 49* 9* 9-8-

94 9 #4 (RiR&A) 443.S) 149 44 4*49 494 [usnrc, 2002]. 449 *4

94 9449 44* 44)4 94.

1) 4 #4 44*4 *4 14 ** 944 #94 *49 44 19 494

44* 97> 14* *7}1*3.*1 94 9499 44 ** 4449 44

49* 7}*47)) 4-31,

2) ***7> * 94 #9 94*4 444 94 99 94 444 99* *

1 94 Jl*9 9 a49 94)414 9*4,

3) 94 44997)1 *44 4*1 9*11 ##4 *1* #9 *9 9194.

• #31494* woo 94 rps/esfas 4 ts *4 7))4# 44) *91 1* 4* %

*** * *31494 4#44 9*4. 9* ‘3i4 3,4/99 1,2 *7) 94***4* 9 9

44 94*4 97194 *4 44- 99' [9971, 1998]9 944 7)#49 9*4, # *31

44 *4 4)49 **94 rps/esfas 4 94 9 ts *4*9 4*94**44 944*

41* 994-7) 41*94-. *44 *#944 rps/esfas * ce 9 944 rps/esfas 4 7)

4 *94*3., 994* CE 94 444 nf- (CEOG; CE owner's group) 94 *11 RPS

^ ESFAS 4 AOT/STI 7)19# 41 9* *91* 9*17)5. 14.

• 1983 1 2 4 44 Salem Unit 1 (41*94**1 94)94 191 943. 4* 44

** 44 (** 99 9*)* outage * #4*4*34 41 # **99 4*4

4 (loss of feedwater flow transient) 9 1949*4 943 4* 949 94)49 *4

94 44) ** 994 449 1949*. 9 44* 4141 943 99 **

4349 (ATWS; anticipated transients without scram)4 19 7}*9* 3_4# 44*

3 USNRC 94* 99 91 #4 - 9* 449 911 ml 944 949 *1

- 10 -

(mechanical binding) 3 3 44# - 4" ##] Generic Letter 88-28 [USNRC, 1988]# 1F4

#. GL 88-28 5] *3 4#* 3* 3## #4*)] c]]41 #7}3 ^x] ^]*2] 3 a]

#3* #143 STM] 4# 4^4 ^7H tfl# 3*1.

• USNRC # GL 88-28 3*1 44 1984 4 12# CE-NPSD-277 [CEOG, 1984] #4 CE

47} **4 4 7}x] rps #7il #41 441 44 44*7) (so 4) 4444 44

3 *44# *W.

• 1986 4 6# CEN-327 [CEOG, 1986]# 33# 1 4 4 CE-NPSD-277 4 3#

# 4433 RPS/ESFAS 44 *7] 444 44 #43 14 47}* **8#-. 3 4

4 44*11* (dnbr), 44 #4 13 (lpd)* #44 44 rps 44444 4

444 7]# so 444 60l 7]*4 sti 3 44# *4443, 44# *ll#4 3#

rps/esfas 44 444 444 4# so 4 4*4]4 90 4 4*0.5, sti 44# *

44. (usnrc 444 3* 47]#*4 44 90 4 4#4 sti 4#4 #47} g}*

4-#3. #4:44 417} 2] 44 4443. #44)

• 1989 4 3 # CEN-327A [CEOG, 1989] 4 4* CEN-327 3.3144 44 USNRC 4 4

314# 444. 3* RPS/ESFAS #4 3* STI * 90 4 7] *33 444 4*2]

#43 14*4# #44 4* rps 444*4 44)^1 # 90 4 H4(staggo-ed)4

4# *44. 1989 # 12# USNRC *4 4#-

• 1990 4 4# CE-NPSD-576 “RPS/ESFAS Extended Test Interval Evaluation for 120 Day

Staggered Testing” 331 A] [CEOG, 1990] 44. 120 4 3444*7] 2} 7] #2] 90 4 4

#(sequential)44*7]4# #43 4# #3 47}* *44 14 #43 *447)

#44 120# 34a]4*7]4 4## *44-43,USNRC *1 4*.

• 1996 4 3# CEN-403 “ESFAS Subgroup Relay Test Interval Evaluation” 3 3a] [CEOG,

1999]# 44. #4442] a]4*7]* 2 7]]* 3444*7] (14 CE 4 #433 4

7]] #4°1 #4413, 44 #44 4=4# 444 e4)#)4l is 7fl# 34*43

14# #4 #43 #4 *^_ usnrc 3*4 34* *1 (4434 4# 7}*#

1 *7)144 4# 114 442] 44-4 43 #3) 4*.

41 2 4 ^

4-4143 4-7)4 ##]#1 ##1 3*# 4#4 44 #H 1 44 *1# #a} 14

444 14a] psa 14* 1*4-37} 4* *414 1144- 4# #4, ‘34 3,4/11

1,2 27] #43334# 1 #44 1414 47]41 34 #4 1*’ [117], 1998]* #

41 41 143# ts 34*1 4-4433 71141 4 14.

- 11

4% 31# 43] ^ #44 ^7-144^44 44 (2-4 3,4 ^ 44 1,2 3L7])4*

4* 444 M44 RPS/ESFAS H# 441 44£ 44 4415.* KAERI/TR-486/94 [44

e, 1994] 4 £7} 4444. KAERI/TR-486/94 2.2.4^ &*44(#4 3,4 3:7])* 44-2.5.

RPS/ESFAS 4 SR 44-2-4 444 A4-& 444 444S-2-4, 44 44 #4 3,4 A7lfe

44 444 %} 4-222 44 44 ^ *4 444 444 4*44 44 psa 2-14 7]&#

4444

4 444 44 RIR&A 4 TS 7M4 44 444 44* #X2 44 44 14 psa

2-14 4444 #4 444, ts 71144 4#4 44* 44 444 &*44 rps/esfas

4 444 444 *4 444 444 2* 4l£ 44 £14 7i|#4 1-2-44, 4*4

ts m 4# 44£ #£4| 44 4144 47}# 444 444 £*4 psa 2.# 7H#

4 -2.944.

- 12 -

*11 3 # ^1#

71] 1 1 (RPS)

443 337||# (RPS) [##44 #4, 1995]# 143 337)1# (PPS; plant protection system)5)

##34 41 #4 4"3 (AOO, anticipated operational occurrences) 144 14 *1] #4 (SL)# 34

44 #3# 443 4443 (reactor trip signal)# *1]#43, 4-34 #44 1444 4#4#

(esfas)# 3344 43. 441- 444# 44# 4#44. RPS # 1437} 44 34# 4#

44 44 1#43 444 443 44# 444 4441(instrument channel), 3433117]

(CPC; core protection calculator), 4°1—4 °]# (bistable), (logic matrix) 1 7]) 4 4 3 (initiation

circuit)^. 4444 %14 (rz.^ 3-1 4 4# 44 44)

4434 44 44# #444 ## 44 444 o-iov 4 44 134# 4#4-4 9 7)14

ll3n 43:4 CPC 3.#4 4#4i 2 ;H4 441 43. (44#41# 1 ###4#3)3 4

#4 1# # 11 #4 145. 44 434 44 #414.

• 41 4# 4 (VOPT; variable overpower)

• 3 44# 4 (Hi LOG PWR, high logarithmic power)

• 3 ###413 (Hi LPD; high local power density)

• 4 4til#41# (Lo DNBR; low departure from nucleate boiling ratio)

• 444 4 44 (Lo PZR PR; low pressurizer pressure)

• 444 3 44 (Hi PZR PR; high pressurizer pressure)

• #4144 4 44 (Lo SG PR; low steam generator pressure)

• #4144 4 #4 (Lo SG LVL; low steam generator level)

• #4144 3 #4 (Hi SG LVL; high steam generator level)

• 444# 3 44 (Hi CTMT PR; high containment pressure)

• 443 444 4 #4 (Lo RCS FW, low reactor coolant flow)

a#44 (#4 3,4 34 4#)4 443 44 434- 44 414# #44(setpoint)# a 3-

1 4 414 44 14.

1 44 !#44 4 7114 4#414 134, 44 437} 4444 144 4# # 2 7fl 4

4-4 414 #44 44 444# 34-444 14. 44414 111# 44^4413 4#

44 4 441 4444 43441 44, 4 4 44 4444 3141 41 414 4-43414

# #4 4447} 444(de-energized)14. 44344# 444# 41434 2/4 #43#

# #44#4 4-## ^-1 444 143 134## #44 44 a# 43 43 ^ 44##

4443S- s)o) oj4. cpc 4 44 ##4# 44 #34 4## 443914# #4 444 4

4 (contact)# 44 71111334 411 414 44 43* 1444711 44.

- 13 -

44 3*44 4 43 33514 2/4 4 *44* 4* *3s3* #44-7) 41 #4 4

34 44st)l4#4 44 3 44stlMl- #4 344* 444^ 44, 4s3 rz.3 3-24

44 6 7>44 2t 34 (AB, AC, AD, BC, bd4 cd)7> 33€4 44, 44 *43 34 3*4 44 2 4 44 444 44^^141-44 144 34 334* &4444 *4s34 3344,

444 *4s# «34s* 43S444SS. 4144 34- 444 3 71)4 *4s* li*

44 4 7114 4)3- 2:4 444(matrix relay)## 4444471) 44 (4* #4, ^4 3-2 44 1

4 314 ab 14 S3 35:4 444 2:3 444 ab-i, ab-2, ab-3, ab-4 4 4*1 443). 41 2:3 444## 44 4 7fl4 71)445.4 ^3 444 44# 334-tII 4*4, *4&3 4

4714 444* 43 &3 4444 341 7l) 33553 7^145.4 447)7} 4*4524 44

34.

4 71)4 71144s. 444* 41s. 6 71)4 S3 444 34 4 1 7])4 71)4 4)444 #3.

(4* 14, ki 7)14 4)44011 4)44 6 71)4 *4 &3 4)47) 431 abi-aci-ADI-bci-bdi- cdi), 34 s44 3334 4* 33 14 34* si S3 4)444 3 311 14 34 7)) 4 4)44* 44 34)1 14341 44. n4 3-2 44 51 44- 44, 33 *4 34314 4) 4) 43 2 71)4 34S4I414 *334(4* 14, a 4 b 43) 4)3 *4s3 4)44#4 4 4443 - 1, abi, AB2, abb, AB47} 44443 - 71)445.34 43 14*3 4)47l 4314 71)344) 44, 41 *4s3 4)47) 3314 7))31 43 4)3 7l)4 4)47)1 (*, ki, K2, K3,

K4)* 44444 34-S 5.3 S44 4 4 (RTSS; reactor trip switchgear system)# 4*341 44- rtss 4* 4 71)4 344-34 (tcb)7> 354 43433 3 7)144 71)3457} 3444

33- 43 7D4 41344 71)31 RTSS 3 S# *33* *553h4 (STC; shunt trip coil)4 43 5* 433s4(UVC;under-voltagecoil)4 444* *34 33 3 4 337)# 7)1334) 4*

44* 3*3- TCB 7} 71)343 MG Set °)14 44# 3* 34 (CEDM; control element drive

mechanism) a <35 7}* 334 3344 5* 4)4*11 *34 43 S3 3*21 3334) 3

3.

1*34 (#4 3,4 54)4 RPS 4 433 3*8 1441444(CTS; current TS)* *4 34

4 34 5* TS (STS; standard TS) [USNRC, 1995c]4* 41 455, 53, 34 414 34 44

1 134 4* &41 5* TS 4 5414 5*344 4*3 414 43s 43 37H &4

4)14, 5*444 RPS 4 333 3*8 ts 5411 1# a 43 5* ts [USNRC, 1995c]1 4

*55 4H4434 &4. 41 # 44 *53 34411 4*4 44.

• 5*44 RPS 4 333 33 ts 4)3 4444*7) <sti)7} 345 4)34 *4(18 7#)

4 44 5411 5* ts 4 344.^54 (1* b 4 5 B-7 3S), 1 71)3 4#3 4

4 5311 5* TS 4 41 3 71)3 7)#55 44%14 (1* b 4 5 B-8 4 5 B-9 %

*)•• 3*4434 (A0T)43* 347} ^54, 414 4*3 144]3s4 (lco; limiting

condition for operation)4 41 33 4 5* TS 344 4*4 41 *5 34414 * ' 71)34 (5 55 3S).

- 14 -

I I

Icn

i

bbkk

bkb

#b

&7T

mk k

/E bt

o Ibfb

kbk)

&TC

kR

k kl ^

klbS

I#5

-ho-

to |ok

b bk I

b-ki

r kbk

k fr bk

lb si

kb#

s -6-

k kbb

k^

bb# k

bks b

klb

si &

b kkk

#b b

^b bi

b si

#

3 bkb

cm bk

b-kir t

obk k

1 kk

>b bk

bk kk

^kb &

^kkk

5. 3-1. #4 3,4 3171 RPS4 4444# 444

44^ 4444 44 444m 44 #2 4 2;}44#4 Ceiling: 109.4%

Rate 14.6%/minStep- 13.6% band

NR-JR-001A,B,C,D

2. 44 #444 4#44 ooi8% NR-JI-001A,B,C,D2. 44 #44t 21 KW/ft NR-JI-003 AB,C,D44444## 1.30 NR-J1-004 A,B,C,D7>°j7l 2#-4 2384 psia (167.6) RC-PT-101 A,B,C,D7>#-7] 4%M 1762 psia (123.9) RC-PT-102 AB,C,D#7l#/g7l 444 WR 42.8% FW-LT-1113A,B,C,D

FW-LT-1123A,B,C,D#7l#/g7l 2-44 NR 93.0% FW-LT-1114A,B,C,D

FW-LT-1124A,B,C,D471^7] 4 #4 885.4 psia (62.3) MS-PT-1013A,B,C,D

MS-PT -1023A,B, C,D44-41- 2 #4 1.9 psig CM-PT-351 A,B,C,D414-7]] 4-fi-f: Floor: 10.47 psid

Rate- 0 030 psid/secStep: 9.1 psid

RC-PDT-115A,B,C,D RC-PDT-125A,B,C,D

N/A RP-HS-100A,B,C,D4-4^.27111- 7}4-71 244 2397 psia (168.5) RC-PT-199 X, Y

(t) €510J:* kg/cm2A °J.

- 16 -

i SignalInitiation Signal Inittatlo

Actuati )n signa

ESF/ S-Aux. Relay Cabinet

Interface Relays

2/4 Matrix Logic

Initiation Circuit

Subgroup Relays

Initiation Circuit

BPS Blstables

Trip Circuit Breakers

RPS/ESFAS Blstables

Core Protection Calculator

NSSS. Containment & Tank

RPS/ESFAS Measurement Channels

PPS Cabinet

3-1. #3! 3,4 s. 7} R ps ^ 7|i

- 17

inputs from nsssMEASUREMENTCHANNELS 1 2 3 4 5 6 7 0 9-N 1 2 3 4 5 6 7 8 9-N 3 4 5 6 7 8 S-N 123*567

CHANNELS A CHANNELS 8

LOGICMATRICES A-O LOGIC B-C LOGICA-C LOGIC 8 0 LOGIC

TO 120 Vac VITAL INSTRUMENT

BUS ATO 120 Vk

VITAL INSTRUMENT BUS C

TO 120 V*c VITAL INSTRUMENT

BUS 8TO 120 Vac

VITAL INSTRUMENT 8 US 0

INITIATIONCIRCUIT

A01 ^

601 cE

INITIATION

NOTES:1. STC « SHUNT TRIP COIL2. UVC - UNDER VOLTAGE COIL3. OPS « DIVERSE PROTECTION SYSTEM

3-2. ir^l 3,4 5:7] KPS ^ 7]^£

(%A\ ir^l 3,4 ^^.31A](FSAR))

18

41 2 11 <£4^1 ^41# (ESFAS)

*99 9444 (ESFAS) [4*44*4, 1995]* 49 4# 454 =L Aj-^o) 44

* 4-§-4 41^44 444 A^slfe 44 44 4# 441:4 4* 44-& 41444

ESFAS fe 55 44# 994*4 454 44 44 4 4a.* 5444 444 554#4 4 9*55 7)1444 95* 34 3-3 44 54 44 44 ^-* 4455. &.*]& 4-444, RPS 4

f&4 4444 4* 45* 95.14 444 447]* 5.444 495991, 44 45 €

7)14 455 944444

44.5 94494:1:4 445 55 4*9 4445, 44-5 55 494 447>45 41

497} 944 4444 49454 444# 54494* 444 9 94497} 494* 54

44 7B4457} 44444 zz.94 444 71)445414 494 457} 4)9 44497) (tcb)

* 4*495 RPS 45 94 esfas 5 7)1445o)l4 999 45* 4)9 95 5* €5*9

4447} 549 €5 4444 9* 2 71)4 9444 44€ (ARC)* *44 49 7)44 94-

45* 4944.

esfas 4 44 4*4- 4* 4* €57} 2)1944.

• 94.99 9*45 (SIAS; safety injection actuation signal)

• 4441 44 4*45 (CIAS; containment isolation actuation signal)

• 9441 99 4*45 (CSAS; containment spray actuation signal)

• 4) 99 9*45 (RAS; recirculation actuation signal)

• 9*7) 4 4 €5 (MSIS; main steam isolation signal)

• 5599 4*45 (AFAS; auxiliary feedwater actuation signal)

°ll 45 4€5 445 91 49 #7) 9*45 (FBEVAS; fuel building emergency ventilation ac­

tuation signal), 9441 9)71 44 4*45 (CPIAS; containment purge isolation actuation signal) 9

2)199 99 #7) 9*45 (CREVAS; control room emergency ventilation actuation signal)* 9* 45

19 #54 9 9494* 94 499 4455 9994 #14.

44 *44 9444 4*4514 *949 9 4 9991* E 3-2 4- 94. 491 7}*

9 7}971 494, 4441 594, *4#97) 594 ^ 2)^44 #9 *9 9914 999

1* rps 4- **44-. 545, 91 *949 4494 999 549 49 4* 4*45 94

o)) 444 ESP 4*451* 92)194 4€4 9.7)7]7)4 (EER; electrical equipment room)0)! 4*

arc 94 *4.99 49 9* 4*9 7}*44

5^ 3-4 4 9999 esfas 7)150)14 5*9 rps 4 144 71)455 4 €45 *9 9

944 4 7)14 9-4-55. 2)1401 ojod)) 4- 444 91 45* *9541919 9449 4

494 4944- 454-7)1 94-. 49 esf 4* 457} 4947) 949 9* 999 4141 2 ;H

944 999 *49 494* 594-94 44. 99 4949 594-9 4)9 494 495

- 19 -

441 ## #47)7} #0)24°) 1 #4 #4719 *11 # 424 2/4 9#2#1 9

4 #94 #94 J£# 4## #42 #2 #91 9#4 #2 # #491 ###2# 5^ o}

4.

rps 4 49# ##7}#5. >t44i i# 4944 4 ;))4 44 *11 #294 2/4 4 9441

49 94&#1 444-7] 444 #4 —4 4 H 44 3 ;D4 #42441 e# 444

* #9#22# 6 7M4 2:4 441 (ab, ac, ad, bc, bd4 cd)7> 4444. 444 9# 2#

4 4 71)4 -942:# 4144 (AB 2#4 49 AB-l, AB-2, AB-3, AB-4)11 7}##, 4# 94s#

4444 441-9 ;))4454 495. 4444. 9, 5# 3-4 44 5.94 esfas 711445. 44

9 4#5 6 71)4 2# 4471 44 (4* #4, *11# i 4 4442# 444 abi-aci-adi-bci-

bdi-cdi)9 rps 49 #4 2 7114 7U4 4471 (44 49, ia 4- ib)2 9444, 4# 94 9

49 5-9 7H4 447)94 4#### 944-5 44.

#4 94 #9°fl 44 44 2 71)4 4-429)4#4 2444 (4* 14, a 4- b 44), 4

9 942# (44 49, ab 2#) 4#7)#4 4445. 4# 942% 494 4414 4# (4

4 49, 44 ABl, AB2, AB3, AB4 4 7fl#)9 29 7fl4 71)47) (1A, IB, 2A, 2B, 3A, 3B, 4A, 4B)1

9 44447)4 44 444#7) 4414 4#9 arc 4 244 A, b 12 24#1 D4#9

44442 4#7) #4 (244 A4 494 1A, 2A, 3A, 4A, 244 b4| 494 ib, 2B, 3b, 4B)

19 29 7i)#4422.4 #2 4 12 999 #5# 4#4#4 447}* 94-4 4# esf

7)7)99 494-4 44. ARC4 44442 44499 444 2/4 94929 £5 424, 4

9 94 2411 #4#9 1-3 29 2-4 441 44# 29 2 4 4#4 44 24 427} #

2 4 12 499 92# 4#7)4 4944 491 44 59# 1 44#4. 5 3-3 9 14 3,4

27)4 esf 4942I 95# 4444 44 esf 94 7)7)94 999 24 94-.

ESFAS 71)4 4249 44 4471 (lock-out relay)?} 44 #9 427} 99 444 444

429 24 #41 94##. 55)4, 2249 #94244 #7)117) 944 141 444

#2, #294 4922. 49, 44444 #4 494 44 447)7} 9444 44 &#. 2 #, 94144294 1H# 4219 4# #2, 12 14 94)44 #2 2444 2 ;1|4 2#

(ESF-l 4 ESF-2)22 #44 494#. ESP-1 22 994 7)7) 4942.19 ESF 49427}

4)24 942 PPS 41# arc 44 esf #9427} #41444 99 244 ^24 29# #

4) 4)4" 7)7)4 2#4 7}H #22 7)7) 1j#4 49 (CCWS; component cooling water system)

42, ##41 #949 (CSS; containment spray system) #2 94 47)4 9##. ESF-2 2#4 7)7)19 944444 99 2444 4#) #4 2#4 ?}9# 7)7)27) 2219 #2 94 4

2# 4#.

2944 (14 3,4 27))4 ESFAS # #4# #*8 TS 9 94 ##4 44 29 TS #9 4

9 #25, 2#, 44 4#4 4# 44 9 144 44 249 2# ts 4 2414 29444

#91 444 4#2 4# ^7H) #7) 4)94, 29444 esfas # #4# #1 ts 2419

4# A 44 29 TS [USNRC, 1995c]l 7)#22 #2 ###4 ##• 4144 92# #441

9 #1# 4#.

- 20 -

• A#€4 ESFAS TS 44 4444^71 (STI)7> 4^5. ^7] (18 7^)4

^A4 (SR)#^r It TS 4 A-AA ^A4 (f# B 4 SB-7 %VS), 1 7fl^ 7]^^ 4

^A4 (SR)#^r A# TS 4 3 7# 7]eAA 44^4 («.s. B A| A B-8 4 A B-

9

* 4 -§- 4 44 4( AOT)oil4 ^ 444 g%A4, 41:4 34^ ^444^4 (LCO)4 44 %

^ 3 A# ts 4-44 414- 44 4A 44414 #444 (A 5-4 #&).

- 7flA]^5. ^ 44444(TCB)4 #44 2 7fl 4) 4 4 37 44/ti 4 LCO A4

A A# TS4# &A4 A#444 TS44# #7^x] #A4.

- Tg-o A#44 TS 44# 4 7fl 444 J7^-o)1 cfl^ A 4 4 &A4 &e

ts 44A 1 7fl 444 - 4.4414 4# 3 7i 44 314- A# - 4

4# A44 4144

- 21 -

& 3-2. 44 3,43171 ESFAS 4^4 44444 444

4443 #4^1 7^71 WjX

44^4 444x7} ^71 Xl»J-q 1762psia (123 9 kg/cm2A) RC-P-102A,B,C,D RPS 4 #4444# 244 1.9psig (133.0 cmH20) CM-P-351AB,C,D RPS# #4

4444 4443:7><y-7l Xj^.^ 1762psia (123. 9 kg/cm2A) RC-P-102A,B,C,D RPS 4 #4444# 2#4 1.9psig (133.0 cmH20) CM-P-351 AB,C,D RPS 4 #4

4444 44 4443. 444# 2-244 20.2psig (1424 cmH20) CM-P-352AB,C,D^He% 4443 xH444 442 444 7.5% of span CV-L-203A,B,C,D

^#4 4443

444471 #1 X-joJ-^ 885.4psia (62.3 kg/cm2 A) MS-P-1013A,B,C,D RPS 4 #4^7l#/g7l #2 Xiy-q 885.4psia (62 3 kg/cm2 A) MS-P-1023AB, C,D rps 4 #4444# 1.9psig MS-P-1023A,B,C,D RPS 4 #444444 #1 2^4 NR 93.0% FW-L-1114AB,C,D rps 4 #4^71^x37] #2 NR 93.0% FW-L-1124A,B,C,D rps 4 -§"4

35#^ 4443-1 ^7M^7l #1 X)^ WR23.5% FW-L-1113 AB,C,D rps 4 44, tiH24i °1## 44x132-g-^ 4443-2 #7l^Xg7l #2 Xl^ WR 23.5% FW-L-1123 A3,C,D RPS4 44, 40l^°ll-4 444443244 4443-1 DPS #7l#xg7] #1 44^ WR 22.2% FW-L-1115X,Y Hi 44444432 y^ 4443-2 DPS 44 4^4 #2 xl^^l WR22.2% FW-L-1125X,Y til 4444

5 3.3. -M 3,4 517] fZL# ESF 7]7] 44 (1/6)

4J5: Relay 7)14^ 7] 7] 44 391 ti] J7SIAS Trmn A

K-409 ESFAS-CREVAS train AACU fan VC-AH03A StartACU damper VC-Y0015A CloseACU damper VC-Y0017A CloseACU damper VC-Y0177A Close

K.-4Q8

CVCS (CV) Letdown CIV CV-V5I6 CloseCCWS (CC) CCWIso V/VCC-V08L VOSS Close

SFP cool. HX Iso V/VCC-V133 OpenAux Bldg HVAC (VA) PAB Iso damper VA-Y0019A. Y0020A, Y0023A, Y0024A CloseESW (SX) ESW cross tie V/V SX-V080 Close

K-401 Safety injection (SI)HPSI header isol v/v SI-V627 OpenSITisol v/v SI-V634 OpenSIT fill & drain line isol v/v SI-V681 Close

K-403 Safety injection (SI) HPSI header isol. v/v SI-V617 OpenSIT isol. v/v SI-V644 Open

K-410 CCWS (CC) CCW pump CC-PP01A StartK-412 CCWS (CC) CCW pump CC-PP02A Start

K.-302Safety Inj. Sys. (SI) Isol v/v SI-V635 Open

Isol v/v S1-V637 Open

MCR HVAC (VC)Acu. make-up fan VC-AH03A StartDamper VC-Y0015A CloseDamper VC-Y0017A Close

K-301 Safety Inj Sys (SI) Isol. v/v SI-V645 OpenIsol v/v SI-V647 Open

MCR HVAC (VC) Isol damper VC-YOl 77A CloseK-308 DG load sequencer Actuation

K-102

ECCSRm HVAC (VY) Acu. fan VY-AH01A Start

ESF Rm. HVAC (VE)Supply fan VE-AH01A StartReturn fan VE-AH03A StartClass IE Batt Room fan VE-AH05A StartIsol damper VE-Y0071A Open

K-101 ESF Rm. HVAC (VE)Supply fan VE-AH02A StartReturn fan VE-AH04A StartClass IE Batt Room fan VE-AH06A Start

K-108 Traveling screen and screen wash (SW) SW pump SW-PP04A Start 1

S. 3.3. e# 3,4 5171 7)1^71^ ESF 7] 7] 4# (2/6)

i

1 SW discharge VZV SW-V035 OpenK-109 Safety Inj. Sys. (SI) HPSI pump SI-PP02A StartK-UO Safety In}. Sys. (SI) LPSI pump SI-PP01A StartK-103 CCWS (CC) CCW Isol v/v CC-VI05 Open

Traveling screen and screen wash (SW) SW pump SW-PP03 A StartSIAS Train B Acu fan VC-AH-03B Start

K-409 ESFAS-CRJEVAS train B Acu damper VC-Y0016B CloseAcu damper VC-Y0018B CloseAcu damper VC-Y0178B Close

CVCS (CV) Letdown CIVCY-VSIS CloseSFR cool. HX Iso. V/V CC~V 134 Open

K-408 CCWS(CC) CCW Iso V/V CC-V082, V084 CloseAux BMg.HVAC(VA) PAB Iso damper VA-Y0021B, Y0022B.Y0027B, Y0028B ClosehSW(SX) ESW cross he V/V SX-V081 Close

HPSIHDR Iso V/V SI-V636 OpenIso V/V SI-V628 Close

K-401 Safety Injection (SI) SIT fill & drain V/V SI-V621 CloseSIT Iso V/V SI-V614 OpenIso V/V SI-V322 CloseHPSI HDR Iso V/V SI-V646 Open • - - .............- ---------

Safety Injection (SI) srr iso v/v SI-V618 CloseSIT fill & drain V/V SI-V6U CloseSIT Iso V/V SI-V624 Open

K.-410 CCWS (CC) CCW P/P CC-PP01B StartK-412 CCWS (CC) CCW P/P CC-PP02B Start

Iso V/V SI*V6IS OpenSafety Injection (SI) Iso V/V SI-V626 Open

Iso V/V SI-V648 CloseK-302 SIT F&D V/V SI-V641 Close

Acu make-up fan VC-AH03B StartMCR HVAC (VC) Acu damper VC-Y0016B Close

Acu damper VC-Y0018B CloseIso V/V SI-V625 OpenIso V/V SI-V616 Open

Safety Injection (SI) Iso V/V SI-V638 CloseSIT fill & drain V/V SI-V631 CloseIso V/V SI-V332 Close

MCR HVAC (VC) Damper Iso VC-Y0177B Close

£3.3. i-2 3,4 517] 7H&7]% ESF 7jyj ## (3/6)

KL-308 DG load sequencer Actuation

K-102

ECCS Rm. HVAC (VY) Acufan VY-AH01B Start

ESF Rm. HVAC (VE)Supply fan VE-AHO1B StartReturn fan VE-AH03B StartClass 1E Batt Room fan VE-AH05B StartIso damper VE-Y0072B Open

K-101 ESF Rm. HVAC (VE)Supply fan VE-AH02B StartReturn fan VE-AH04B StartClass 1E Batt Room fan VE-AH06B Start

K-108 Traveling screen and screen wash (SW) SW P/P SW-PP04B StartK-109 Safety Inj. Sys. (SI) HPSI P/P SI-PP02B StartK-110 Safety Inj. Sys. (SI) LPSI P/P SI-PP01B StartK-103 CCWS (CC) CCW Iso V/V CC-V106 Open

Traveling screen and screen wash (SW) SW P/P SW-PP03B Start

CIAS Train A

K202Primary Sampling (PX) CIV PX-V001, V004. V007 CloseProcess Sampling (PS) CIV PS-V031, V033 1 CloseCombustible gas control (HG) CIV HG-V003, V007 Close

K201Combustible gas control (HG) CIV HG-V001, V005 ClosePrimary Sampling (PX) CIV PX-V015, V035 ColseProcess Sampling (PS) CIV PS-V035, V257 Close

K208Radiation monitoring (PR) CIV PR-V431 CloseGaseous radwaste (GW) CIV GW-V001 CloseRadioactive drains (DE) CIVDE-V001 CloseService air (SA) CIV SA-V001 Close

K209 CNMT monitoring (CM) CIV CM-V001, V003, V007, V009 CloseCNMT purge (VQ) CNMT purge Iso. v/v VQ-V011, V031, V013, V033 Close

K210 SGBDS (SD) CIV SD-V005. V007 Close T "A7rAl‘9-M"7]K213 Fire protection (FP) CIV FP-V030 CloseK206 Instrument air (1A) CIV IA-V020 Close w ^ “2 ir A) yNitrogen system (NT) HP SUP iso V/V NT-VMM CloseK205 Plant chilled water (Wl) CIV WI-V054, V056 CloseK204 CVCS (CV) RDT discharge line CIV CV-V560 Close

RMW supply v/v to RDT CV-V580 CloseK203 CVCS (CV) Letdown CIV CV-V516 Close

CIAS Train BK202

Combustible gas control (HG) CIV HG-V004, V008 ClosePrimary sampling (PX) CIV PX-V002, V005, V008, VO 16 CloseProcess sampling (PS) CIV PS-V032, V034 Close

K201 Combustible gas control (HG) CIV HG-V002, V006 Close

5 3.3. 3,417] Jfn# 3M71! ESF 7)7] ## (4/6)

Primary Sampling (PX) CIV PX-V052, V036, V038 ColseProcess Sampling (PS) CIV PS-V036.V258 Close

K208Radiation monitoring (PR) CIV PR-V432, V434 CloseGaseous radwaste (GW) CIV GW-V002 CloseRadioactive drains (DE) CIV DE-V002 CloseCondenser vacuum (CA) CIV CA-V013 Close

K209 CNMT monitoring (CM) CIV CM-V002, V004, V008, VO 10 CloseCNMT purge (VQ) CNMT purge Iso, v/v VQ-V014, V034, V012, V032 Close

K210 SGBDS(SD) CIV SD-V00& VOOS Close 53*3543*7)K205 Plant chilled water (Wl) CIV WI-V0S3, V05) Close *3*3543*7)K204 CVCS (CV) ROT discharge line CIV CV-V561 CloseK203 CVCS(CV) Letdown CIV CV-V523 Close *3*3543*7)

RAS Train A

K309 Safety injection (SI) HP mini-flow line isol v/v SLV667 CloseLP mini-flow line isol v/v SI-V669 Close

CSS (CS) CS mini-flow v/v CS-V025 CloseK312 Safety injection (SI) LPSI pump SI-PP01A StopK405 CCWS (CC) SDC Hx A inlet isol v/v CC-V073 Close erne 3543*7)K104 Safety injection (Si) CIV SI-V675 Open

Mini-flow line isol, v/v to RWT SI-V659 Close

RAS Train B

K309 Safety injection (SI) HP mini-flow line isol v/v SI-V666 CloseLP mini-flow line isol, v/v SI-V668 Close

CSS (CS) CS mini-flow v/v CS-V026 CloseK312 Safety injection (SI) LPSI pump SI-PP01B StopK405 CCWS (CC) SDC Hx B inlet tsol. v/v CC-V074 CloseK104 Safety injection (SI) CIV SI-V676 Open

Mini-flow line isol. v/v to RWT SI-V660 Close

CSAS Train A

K304 CSS(CS) LPSI pump discharge isol v/v CS-V033 Close*3*354 3*7).Spray isol v/vCS-V035 Open

. SWGR ALT FD PCB NB-SW02M TripKill CSS (CS) CS pump CS-PP01A Start

K114CVCS(CV) CIV CV-V506 Close

*3*3543*7)CCWS (CC) CIVCC-V16L V163 Close- D/G load sequencer ActuationCCWS(CC) Spray Hx A inlet isol v/v CC-V141 Open

CSAS Train BK304 CSS(CS) LPSI pump discharge isol v/v CS-V034 Close

53*3543*7)Spray isol v/v CS-V036 Open- SWGR ALT PD PCB NB-SW02N trip

Kill CSS (CS) CS pump CS-PP01B Start

£3.3. ir^l 3,417] fzL# 7il^7]t ESF 7]7] (5/6)

K1I4CVCS (CV) CIV CV-V505 Close

*9 & 3*43COWS (CC) CIV CC-VI62 Close- D/G load sequencer ActuationCCWS (CC) Spray Hx A inlet isol v/v CC-V142 Open

MS1S Train A

K404 MSS (MS) MSIV bypass v/v MS-V163, V162 Close

K306 Process sampling (PS) CIV PS-V031, V033, V035 CloseSample isol. v/v PS-V257 Close

MFWS (FW) FW v/v FW-V138 Close

$005MSS (MS) MSIV MS-V152. V154 CloseSGBDS (SD) SG 1 blowdown isol v/v SD-V007 CloseMFWS (FW) MFIV FW-V12L VI23 Close

K303MSS (MS) MSIV MS-V 151. VI53 CloseSGBDS (SD) CIV SD-V005 CloseMFWS (FW) MFIV FW-V131. V133 Close

K105 MFWS (FW) Booster pump FW-PP04 Stop

MSIS Train B

K404 MSS (MS) MSIV bypass v/v MS-V 163, VI62 Close

K306Process sampling (PS) CIV PS-V032, V034, V036 CloseProcess sampling (PS) Sample isol. v/v PS-V258 CloseMFWS (FW) FW v/v FW-V139 Close

$005MSS (MS) MSIV MS-V 152, VI54 CloseSGBDS (SD) SG 2 blowdown isol v/v SD-V008 CloseMFWS (FW) MFIV FW-VI22, VI24 Close

$003MSS (MS) MSIV MS-V 151. VI53 CloseSGBDS (SD) CIV SD-V006 CloseMFWS (FW) MFIV FW-V132, VI34 Close

KI05 MFWS (FW) Booster pump FW-PP04 Stop

AFAS-1Train A

K211 SGBDS (SD) Isol v/v SD-V005. V007 CloseD/G load sequencer Actuation

K113 Process sampling (PS) Isol. v/v PS-V031, V033 CloseAFWS (AF) Modulating v/v AF-V036 Close/Mod

K402AFWS (AF)

AF pump AF-PP01A StartAF isol v/v AF-V043 OpenAF turbine start v/v MS-V110 Open

Process sampling (PS) Isol v/v PS-V035, V257 CloseAFWS (AF) Modulating v/v AF-V035 Close/Mod.

AFAS-1Train B K2tl SGBDS (SD) Isol v/v SD-V006, V008 Close

D/G load sequencer ActuationK113 Process sampling (PS) Isol v/v PS-V032, V034 Close

a 3.3. 3,4 3:71 71] *1711 ESF 7]7) (6/6)

K402AF pump turbine (AT) AF turbine (TA01B) start v/v AT-V010 OpenProcess sampling (PS) Isol. v/v PS-V036, V258 CloseAFWS (AF) AF isol. v/v AF-V044 Open

AFAS-2Train A

K112AF pump turbine (AT) AF turbine (TA01A) start v/v AT-V009 OpenAFWS (AF) AF isol. v/v AF-V046 Open

Modulating v/v AF-V038 Close/ModK3I0 D/G load sequencer ActuationK413 AFWS (AF) Modulating v/v AF-V037 Close/Mod

AFAS-2Train B

K.112 AFWS (AF) AF pump AF-PP02B StartAF isol. v/v AF-V045 Open

MSS (MS) AF turbine start v/v MS-V109 OpenK310 D/G load sequencer Actuation

AFAS-1 Channel A cycling K635 AFWS (AF) AF isol. v/v AF-V043 Cycling AFAS-1 Train AAFAS-1 Channel C cycling K635 AFWS (AF) AF isol. v/v AF-V044 Cycling AFAS-1 Tram BAFAS-2 Channel B cycling K736 AFWS (AF) AF isol. v/v AF-V046 Cycling AFAS-2 Train AAFAS-2 Channel D cycling K736 AFWS (AF) AF isol. v/v AF-V045 Cycling AFAS-2 Train B

Core Protection Calculator RPS/ESFAS Measurement Channels

NSSS, Containment & Tank

I

¥BPS Bistables

IRPS/ESFAS Bistables

1

2/4 Matrix Logic

ESFAS Blstables

I

Initiation Circuit PPS Cabinet

2/4 Matrix Logic............♦Initiation Circuit

Inltlatlor Slgna initiation Signal

Trio Circuit BreakersActuation

Signal

Interface Relays=t............Subgroup RelaysI

I -------------------------- Ii ESFAS-Aux. Relay Cabinet i

3-3. 3,417] ESFAS 2]

- 29 -

Containment w*es$u«E

2 « lOC'C MATRICES

U VOC»owe» sup»lv 17 VOCPOWER SL*»LV 13 VOC •C%vE« 17 VOC►OWE# Supply

to AuxivaRV ' v',REuav CABINET a $IAS GROUP RtUkv LOGIC

TO AUXIU*#V RElAv CABINET 6 $1*1 GROUP RELAY lOCiC

ESFaS AUXILIARY RELAY CABINET ~A *SEPARATE OC POWER SUPPLIES NOTE

AUXUARY RELAY CAfiaCTS *A* AMO "B* ARC OCKTiCALfor cawnet tr mtiationRELAY CONTACTS REPLACE TX ‘A* ON THIS ORAWWC

PP$ INITIATION RELAY CONTACTS

PPS INITIATION RELAY CONTACTS

manual TRIP MANUAL TRIP

LOCKOUTCONTACT

MECHANICALCARRIER

CROUP ACTUATION RELAYS

CROUP ACTUATIONrelays

valve groups PUMP CROUPS

3-4. 3,417] ESFAS ^ 7]^£

(#7]: 4^1 3,4 ^^.J7A](FSAR))

30

*11 3 4 4-^3:41# (dps)

4#323M# (DPS)* RPS 4 7>-g-7l 3H44 ESFAS 4 S2*# 4*42:4 444 #4-4 7fl4o)i d^efl 444 4144#S5_, 10CFR50.62 44 4*4 44s. 44#? 4-s

4-s (atws)4 44# 4^4431, 4714^714 ^47]- 444 44s 144 44

44444 4*43:* 44-4# rps 4 esfas 4? 44 l7l)4 4#44. 3-5 44s*4 dps * rps/esfas 4? #44, #714 0.5. 444 444 2 7114 41s 4444

4-^-4, 4" 4144 #444 44714 PLC (programmable logic controller)0)! 44 4 2- 4444 441 14s 44 1 S2:*#4#4 7l4 4*4s* 444-711 14.

dps 1 4-S-4 4# 47>4 # #7>xi sl44 2 # 2 4**47} 1## 4-4 44

45 (controlcircuit)0!! 44 MG Set #4 44# 7H1#S5_4 14S* 4447)114-

• DPS 7>l7l 374-4 444 (2397psia) 44

• #711444 “41444 14s 44” 2444 v}* (enable)’ 444 4444 4

# 4 4SI 444 44 4*4 44-5.* 4414. (4##4 4# ^44444# ‘#7># (disable)’ 444).

• #4.4 4 41 ##44

5E# DPS * #41-737144 2 7114 #4#4 41!s*4 #4Is* 124, #4#4

4 #47} 144 (#4 22.5%)S4 4-# 4* ss*# 4*# 4# #4# #417344-3 7)14 # 6 7)14 4*1 s* 14414. #414711 3 7fl4 #442 7}#4 2 7H* *#7i)#4 42*# #*4-441 4s44, 444 4 7D* 44- #414944 5.^**

4 = 1# 4*4441 1S44. 4# dps °ll 41 ss*# 4*42 (dafas)* *1

3,4 S7l4 4* PCS (plant control system) - 41 3,4 27) 4 4 ILS (interposing logic system)4

411 - sL 4444 ss *#^1*4 1# 1 is## *4444 44.

- 31 -

NOlIS/GLEVE SENSOR 1'

NO. 2 S/G LEVEL SENSOR 1

PRESSURIZER PRESSURE SENSOR 1

CONTROLCIRCUITS

,r

OUTPUTCONTACTOR

DPS DPSCRT CH2

SIGNAL SIGNALPROCESSING PROCESSING

CEIM MG1 CETM MG2

CfflMCS

REACTOR TRIP AID

TURBITitTRIP

NO. 1 S/G LEVEL SENSOR 2

M12S/GIEVE SENSOR 2

PRESSURIZER PRESSURE SENSOR 2

w AUXIUARY r FEEDWATER

J PUMPS & VALVES

CONTROLCIRCUITS

OUTPUTCONTACTOR

3-5. 1:^1 3,4 3L7) DPS 4 ##

4^ 3,4 (PSAR))

- 32 -

XI 4 # 447|ea#

TS Tg^^4] cfl^l- 3^2 °§-% ^7>» ^#4 7] #*22 ^JEofl rfl

# 7] #21 (BM)#1 12#4 47M 7] #214# ## RPS/ESFAS # TS

2# #4 7] A# #^2 ^7} 21271, 1^2 #24 ## # #4471# 4# <4-§-!-#

2(UA), t^MtiJ2 (CDF) # 4# 27] ## HJ2 (LERF) 2l#4 2#1# ##, TS

2# 1#7] #cfl7}Tl cfl^l [##7l##, 2000] ^ USNRC 1 #44^4 1.174 # 1.177

[USNRC, 1998c ~ d]44 CDF4 LERF 4 44 44 47]-# 2##2 14- 2^ 1-2 44 2

# 44 #4 4442 #21 7]#21## 124 227147] m 71144 #222 #

1-44# #4 444- 14 112 #21 7]#214 44#1 414 2# 4414.

X 1 1 X# °l-g-«-^so)l tfl* 7152-1 54

4# 4-§~ii*ir^(UA)fe 4 #4 “44F ^-9"4 m 4"# (failure probability on demand) ”

# 44#4, 4^-4 NUREG/CR-2300 [USNRC, 1982]44 444^- 4^ ^4

(FTA; fault tree analysis) 7] #4 4^ RPS/ESFAS 4# ir4 3,4 5:

444 ^#4 %7]] “414^ t|]5. -nr4.4 47]jl (as-designed/operated)"

& 7#4^l^-4, TS 4# 41^32 ^7H 4## ^44%4.

Tn-^1 4^## 444 K1RAP (KAERI integrated reliability analysis code package) 44:

^[4^4, 1997]# 44434.

1 . RPS 31^4 ^4

rps jl# 444 44 ii 44 44 44 ^^4 44 7443^-4,

44 7}#7] ji #44 4€4 jl4^44 dps4 44 44^- 44 ^4^ s#4ti #4

• 7}^ 4# 4 (VOPT; variable overpower)

• JL 4"^r#4 (Hi LOG PWR; high logarithmic power)

• .31 4-r-#4 4^ (Hi LPD; high local power density)

• 4 44^4 4& (Lo DNBR; low departure from nucleate boiling ratio)

• 7}#7] 4 #4 (Lo PZR PR; low pressurize pressure)

• 7}#7] JL #4 (Hi PZR PR; high pressurize pressure)

• ^7] #^71 4 4*4 (Lo SG PR; low steam geneator pressure)

• #7]#/*g7] 4 "r4 (Lo SG LVL; low steam geneator level)

• ir7]#/^7] JL "r4 (Hi SG LVL; high steam geneator level)

- 33 -

• 4H# 3 14 (Hi CTMT PR; high containment pressure)• 14-3 x) -^-^= (Lo RCS FW; low reactor coolant flow)

RPS Si#### RPS 4# #4 3SA) <y KAERI/TR-2164/2002 [144, 2002]°)1 4#44 134, 4 #4- 4# 4^ 1 7M44# ##4.

• a4##4 4^41 (top event)# 44 1#1S 3#4 Ixj-S 44 443 4444

• RPS 4 S### ^ 44 1#13 4-47)d))A)3fE) 1#3 444-47)443 CPC, 4-13Z1 4)# #43#, 7flA]^s. f-i: 3441, CEDM 44 #1 bus 34 CEDM #44 4# 4?)) 14) 1# 433 4# 44 7}l7) JL

144 4#4| S5)4fe DPS 4 4)1- 44# 447HA)Jf4 4|o)-B- ^ 44 (CEDM)4 44# 444# MG Set 44444 I/O 7>H, PLC ## 3444.

• #3343# (shunt trip coil)# 444 3# RPS 4 4)1 1 47} #H)o|]Al #44#3 44#17) al# 344 4# 444 AH# 44-3 444a4 144- #14 £41 4#4. 444, RPS a4##iA)^ s#4! 4447) 44 7] ##4 1# 4# 44 ## 444# a44l4. #4, 444 444 44 4SS44a(STC; shunt trip circuit) 4 4# 44# 4413143 (UVC; under­voltage trip circuit)4 44 44s 444 4## 414-as (4s 411 a)-1), #3 31 44# 44 44 #4 44# ae)44 ##4| #4444 44.

• 414 #44- ^4# 4#4 4# I^a) 44# 1#4. #, 4 7il 4)14 44 #4 3144 4 7i) 4)44 #4# 4-#433 3 # 2 #34 #43 44444, 4 7fl ^#4 34# 3 # i #34 #43 144# 4444-. rps a4#4 #4 4 #444 #44 3#4# 344-7) 444, 7)7)4 3#4 3# #4 a4444 4 7i) 444 #4# ts 44 #44# 44 44 #4 14 44 #44# 4#3 4# 44.

• 2 71)4 441 431 dnbr 4- lpd # 444# cpc 4# RCS a#4 1 4#4 #3, 4)4# 44, 4344 #44-#, rcp #3, #4- 14 4# 444 14#4 3#44. a4##4 414# 444 444 434)4 #44-#!# Has 1

#44.• dnbr, lpd 1 7}#7) 4114 4# 4-# #4 4#4 ## 4^4 7>##4. 4

4 #4 #4# ‘#4 (permissive)’ 44M4 #44# 44 14444, 4 1# 3

4#4 44 434 #43 14) 44 71114 4###47)1 1 7}#44 S^llM dnbr, lpd 1 7>47) 4144 44 #4 #444# 44- 44 #4 41 34

44 444 4# £4-1- a444.

- 34 -

• TS*44 444 i### 7]*#Sl 44* 44 *# [USNRC, 1998d]4 cfl«]■§}-<^*4 ^a.d)l *#44 7]# x}4#^ 7}*# # #4^4 7}-g-^}4 #7} 3=L =

4** 44 4M4* 4*4^4.

RPS jl# *#4 4### 444 *44# 44* 4444# 7i7ijvg-

(independent failure), ## 4 Si *#-(CCF; common cause failure), Si 4 *# (human error), 7] 4

^ *#(T&M; test and maintanence)i 7]Si# 4###* ^ 44 #4#4 4*# 4 5. #4

4 44* 444# *4 3,4 ^ <9# 3,4 5.7]q *# 4## #«9# #4S JL* 7}a*

4*#%4. RPS/ESFAS JZ4Hr*4 44=## 44 4#* *4* # **44 44 B 44 44#7il 7l44$54.

4 44#41 rps *4-## 4 44=4 444 3E. 4-i 4 4444 &4. 4# 44#4 71^5-14 4# 4# 4*##** 4444, ###4 *4 444-4 *44-* 44

ts #44 44- *4. #S> 5#44 rps 4 4###*# 7}<y-7] jl 4-4(Hi pzr pr)4 4 -f* 444-4 4# 9.0E-6 #4 5.0E-6 4-7] a] 4401] Si# #** ^7}s|44-. 4# 44

4*#4 4# 444 4* (dnbr ^ lpd)4 44 4 4##4 aii (vopt, log pwr)4 4-§-##327} 4s ** 4 si* *4 #44# 4# 414 44*7} 4-44^ 4-Til 44

^7} 4*44. *4*, 7}SJ-7l jl 44(Hi cmnt pr)4 44 *44# #7}s 444 44

4## 4* 44 4*4 44 1/10 #*S1 5E-7 s* 47}4%s4, ol* 4#**4#

(DPS)4 7}S}7l JL 4-44 4# #4* 44 44# #4 jl4# 4444. 4# M44

44 dps 4 #44 44 47}5. 44## 4*44 (Atws)4 #4 7}#4 4 3##- W4

44# 4# 4444.4 44 4*4 444 #4 44S1 4s 4# 4# (minimal cutest)*4 4# 4*#

RPS 4# #4 *JL7)Sl KAERI/TR-2164/2002 [444, 2002b]4 7)#44 Sl*4, Sl*#4*444 4*4- #* ### 4# * S14.

• 44 4*# #4* 44 *#4 #4 4# - 4# ##* - 4 4# 444Si # * 7] Sl4 (contributor)# #7}* 44447](TCB)4 ##4Sl*4 (CCF) ** 44 )**4, 4** *4 LPD 4 DNBR 4 4# 61%, VOPT 4 LOG PWR 4 4* 480%, 44 47) 7i3:<>i| 447]^ 99%* 4# ##*4 44 4*## 444# 4

s* 44114.• 444Sl #* 7]sl4# #4#4 44 ##44 #44 #44 *# 4# 44 4

7} ### - 4# #4, 7fl7) 71)47] (initiationrelays), #4 447] (interposingrelays), #4*4 4471 (logic matrix relays) * - 4 CCF* 4444.

- 35 -

5 4-1. €4 RPS 4* *§34 7)§ 3€ (BM)o)l 41 *4 44

14 1§ 4 §14 (45)

*411 *4* 435% 50% (§4§) 95%

VOPT 6.45E-06 5.54E-07 3.03E-06 2.14E-05Hi LOG PWR 6 78E-06 6.06E-07 3.23E-06 2.26E-05Hi LPD 8 97E-06 7 86E-07 4.26E-06 2.93E-05 441 lxLoDNBR 8.97E-06 7.86E-07 4.26E-06 2.93E-05 41*Lo PZR PR 5.53E-06 3.13E-07 2.13E-06 2.06E-05Hi PZR PR 5.01E-07 9.51E-09 1 13E-07 1.86E-06 DPS 34LoSGLVL 5.52E-06 2.99E-07 2.10E-06 1.99E-05HiSGLVL 5.52E-06 2.99E-07 2.19E-06 1.92E-05LoSGPR 5.52E-06 3.14E-07 2.20E-06 2.01E-05Hi CTMT PR 5.52E-06 2.96E-07 2.19E-06 1.98E-05LoRCSFW 5.53E-06 3.09E-07 2.20E-06 2.07E-05*) S.^1- 3.71 10,000 2} Monte Carlo

31, RPS 4 #3 #4 cfll 441* §71444 4*4 44 4 141§1 4*414 444 lco 471 Hi4444 §444 4# 143 §§44 7}§1* 3414 #%* 4 §4 44 143*4 447}- & 4-2 4 4444 14

© BM-1F (1 7i 4# 414 3.4)

© BM-2F (2 7i 4# 444 34)

® BM-1B1T(l 7i 44- 41* §4, §7>44 17fl 4# 444 31)

@ bm-he(§44°11 44 143. §§44 44)

§4, BM-1F, BM-2F, BM-1B1T 4 LCO 7) 7] 4#44§ § 3344 4 5 444 4*41

AOT 443 §4 444 1**4 41444.RPS 44444 LCO 7l7l Hi ^§4141 4# rps !4!§! 441-434 §7}* 2 7i

44 444 34 (444 4414, ‘44144 34’* 7}l)l 1*7)- 7>4 3.4, vopt, log pwr, lpd 4 DNBR41 ti^ll* 44 2044 §7>§ 4-4-43, 444 141§4 4

44§ 4= 644 4§1§3 §7>* &411* 433 47>44.

*114 143 §§44 14* 14 7}4# 1* (bw-he), rps 141§4 4** §3§ ioo 4 4§4 §7>e 7>4333 4§#§3 31* 143§4 §4 144 4-4 141* 1 § 44. 444, *414 44 143 §§144 44* 7>H4 4443 7>°0-7l 3*4 (Hi pzr PR)4 4§ DPS 41 4% ** 4413 4# 141§*4 44) §4 433 §44 433 44434 (4 12 Hi4 4§#§3 §7», 4§ s§444 44

- 36 -

ATWS 4 o. ^o. ^-a-g.

& 4-2. &#44 KPS ol-g-l-^d] 7] #12.# (BM)ofl 4# 44"^ #4 #5?)-*

""———4^4 CASE**44 44VOPT

LCCBM-1F

1.66E-05

) 7]7] Bflt ' BM-2F1.23E-04

44BM-1B1T9.30E-06

BM-HE

1.93E-03

4 31

Hi LOG PWR 1.78E-05 1.26E-04 9.80E-06 3.17E-03Hi LPD 2.12E-05 1.35E-04 1.23E-05 5.38E-03 44# 4xLoDNBR 2 12E-05 1.35E-04 1 23E-05 5.38E-03 44# #31LoPZRPR 6 99E-06 3.13E-05 6.02E-06 1.39E-03HiPZRPR 5.60E-07 3.77E-06 5.20E-07 6.95E-06 dps 314LoSGLVL 6.24E-06 2.35E-05 5.76E-06 6.94E-04HiSGLVL 6.24E-06 2.35E-05 5.76E-06 6.94E-04LoSG PR 6.46E-06 3.04E-05 5 83E-06 7 07E-04Hi CTMT PR 6.46E-06 3.03E-05 5.83E-06 7.07E-04LoRCSFW 6.82E-06 3.86E-05 5.96E-06 7.28E-04*) 4 #4 <r*H=- °l-8- ^2-41 4% ^4-4*14**) BM-HE fe 2)Q *T%- ^4# %%-& 4-f.BM-lFfe 1 7fl m#, BM-2F fe 2 7l| 71]

Ji^.BM-iBiT^fe i 7pM -f3 ^ i i *t4. 4M4 ilfe 44#

2 . ESFAS 3_4^r4 #4

ESFAS 3%44^4 #4 3,4 3L7] ESFAS #7fl cfls. #4431 4^-*

ti>%o.s. 4-44 7 7>4 ESP 4-^4S:1!5. 444-58^-4, 44 4#43i(AFAS)4

4# dps 4 4# is.### 4443i (dafas)4 #4js ^44-^4.• 444 tj 4" #4 3- (SIAS; safety injection actuation signal),

• 44"4# 4 4 444S. (CIAS; containment isolation actuation signal),• 444# #4 4#43L (CSAS; containment spray actuation signal),

• 444 4#4s. (RAS; recirculation actuation signal),• 4#7] 4 e) 4i (MSIS; main steam isolation signal),

• ti-2:#4 444 2L (AFAS; auxiliary feedwater actuation signal) #1,

• #4 44431 (AFAS; auxiliary feedwater actuation signal) #2

ESFAS 3144444 ESFAS 3]# #4 12-3144 KAERI/TR-2165/2002 [444, 2002]44#44 551^-4, 4-#4 44 44 4 7M44-& 444.

• 314444 4444 (top event)# ESP 7]7]4 #4# 4# ESP 4#43 ##]5.

- 37 -

4444, esfas ^ 4 42*4 4# 54*4* 144 44 244 a 4 b 2

##44 #44^4. (# #44)7)* #4# *4 2444 44 44?} &* 4

ESFAS 43:4 44#^^ 244 A«}Bt4 #4 244°ll7i 4)4 43:*4444 5:4 4** 4444.)

• ESFAS 4 54-*# 44 14* 44441s. 447)4)444 5-44/1 4tiH (ARC)4 44445 447)444 412:2 7))!, *424, 71*142 #* 544 4, 7)7)1# 4.^4 4^4 arc4 *5* 41444- pcs - 44*4 45- ils 4 4)4 4 - #* 41# 44) 44 %1# 452 4*44. dafas 4- 444 dps 4 41#441# 447)4]A)5-4 DAFAS 4)445. (control circuit)444 I/O 45 4 PLC *

-§• 5444.

• 5# ESFAS 4 7W 1 5-### 47} 44H4 #4422 44##7) 2.4* 5

44 41# 444 44# 4)4 esf 4x4 444- #44 M* 4*4. 44 ^

44 44## 44)# 4)4 ^D4#4 24 4, 4#### 44*52, »)* 44)

4471 =4#4A14 4# 4#- 44## 44)4# 5444. (RPS4- #44 7}4)• 444 #44 54# 4#4 4#4#4)4 44* 4*4- 4, 4/1) 7)144 *4*

4-#452 3 # 2 #24 *45 44 444 4/1) 7))^4 ^ 3 ^ ^ *24

*45 444* 4444. 44-7) 2*452 7)714 2## 2* *4 544 4 4 4 7fl 7)|^4 E^* 44 71)^4 4* 1 2*» 44 ts 4)4 5*4* 44-

44 4# #a) *44* 452 4*44. (RPS4- #44 7}4)

• is544 444 4144* 4*4# 445 44 5* [rg i.i77]o)) 11)44-4 jl#

*#°fl *444 4* 7)4 A}4## 7*4 4 444)7) 7}**^ 44 5-4 43.

* 4* 414-2 7}#4%4.(Rps4 #44 *4)

esfas #4 *#4 444* 444 5*4* 445 5)444* rps 4 4*4 44

7>A)2 #4 7)7)5#, ##4#5#, 445#, 4* 2*0)1 7)0)4 4***5 4 44

#44# #5#4 #444. 4**4 445 444* *4 3,4 4 44 3,4 3*14 *4

#4* 444 44* 5* A}5* A}**^4. rps/esfas 54**4 #44* 44 445 #4* # 55A)0) H.S. b4a) #-444 71*4554.

4 43:1 ESFAS 5#*#4 ### 14* 5 4-3 ofl 1444 554. o]# 44##

7l*5lo)i 44 4# o)^#^5# 4444, *441 *4 1444 544-5 44. 41

TS 4-47) 4# #4 #o> 5*44 ESFAS 43:1 o)*i-e£- afas * 4445 44

7.0E-6*4 5.0E-6 444 144 1* 452 47>414. afas #1 (5* #2)4 44 4## 4 2.0E-7 52 47>£)^54, »)* 154 DPS o]) 0)4 22#* 4#45 44# 44 5

44 44-44.

- 38 -

ESFAS 45:4 4# 44 4# (minimal cutest)#4 4)4 4 s# ESFAS 4# #4 AS

44 KAERI/TR-2165/2002 [4^4,2002]«fl 7) #44 ^sy, 4 #44 A4#4 4#4- 4#### y# # say-.

• ESFAS 45:4 °1 -§-##5.<>i] cfl4 4x14 o] 7] 4 x} (contributor)# ARC 4] 4]44- yyyyx: i6i]o]i-^ ccf s. yy^sy, 4#A A4 msis 4 4# 4

78%, 4# 45:4 4# 4# 96% 4 4 AS ESFAS 4-§-l-#3E4 44 cfl-T-^-i: x>

4## 4as. 44>*4. y# arc 4’iyyy 4)4 esfas y:M ##4## s

y 44-yy 4i4 y $7) y#yy.

• yy-yy 4a 7)yx>^ ^yy^yy #yyy 4% =##44 yyy- 444

44 4) 4.7} ### - y# #4, 7))x] 447] (initiation relays), #4 447] (inter­

posing relays), #s]S# 447] (logic matrix relays) # - 4 CCF S 4444

5. 4-3. 44 esfas y# ##s4 7)# £f (bm>4 44 44 44-

ESFAS 45: 4 #4 4 l-S-44 #4* a]i(W) 5% 50% (#4#) 95%

SIAS 5.18E-06 2.81E-07 2.12E-06 1.96E-05CIAS 5.18E-06 2.78E-07 2.06E-06 1.86E-05CSAS 5.03E-06 ^ 2.01E-07 1.91E-06 1.79E-05RAS 5.04E-06 2.04E-07 1.94E-06 1.84E-05MSIS 6.28E-06 4.85E-07 2.98E-06 2.09E-05AFAS #1 (or #2) 1.76E-07 6.37E-09 5.91E-08 6.12E-07 DPS SB)*) 5,-g- 37] 10,000 2. Monte Carlo A] *§: 3) °] 'S

A4, esfas 7]es#y 44 yyt- #7]yy-y 4#4- #y 4 444f4 447^

4- 444 lco 7]7] 4)^444- 45:4 #444 44 ##4# 7}#4# sy#x]

4#4 44 4 #£#4 447} 5. 4-4 4 4444 44.® BM-1F (i 7)] 4# 444 s4)

© BM-2F (2 7H 4# 444 A4)

© BM-iBiT (l 7)1 7# 44# #4, #7>4y 1 7)1 4# 44# £4)

© BM-HE (#444 44 ESF 4# 431 44) rps 4 4#4 4-47MS #y, bm-if, bm-2f, bm-ibit 4 lco 7]7] 444-4# # as

44 4 54-44 4#y# aot yy-A #4 4)4-4 y##4 4444ESFAS 4#4 44 LCO 7] 7] 444-4)4 4# ESF 45:4 y###S4 #7># RPS

- 39 -

4 4*4 2 7fl 54 ('44 44)4 54’* 7>4)! 4*7} 7>4 e

455 44tf4. 4-44, 1*5 *4 414 %144 4M 444 5* *44**4 4)

441441 4)4) 2 7)) ^44 54* 7M447] 4)44), 45:1 4***54 *7)-* 4)445:4 444 *41*°)] 14)441 *4444 44. 4, 4)* #1, msis 4 4* 5 7)M *

41*4 4441 &555 4# ESP 4*45:4 44) 4*#*54 *7>*4 °1)* *5

444. 444, lco 7)7) la)) 144)4) 4# esfas 45:1 4***54 4)4 445 4-4 £ rps4 44 45:1 4s 4-4 244 444-2-5. 4^ # 447} 14.

*444 **44 44* 44 7M4 4* (bw-he), esf 4*45:1 4***5*

e *7}* *4)4-55 rps 4 4*4 4471-43. esfas 4***5 51* 445*

4 *4 444 4* 444* 4 * 44 tie)4, 52** 4*45: (afas)4 4* dps 4 44 4# 52** 4*45: (dafas)4 *4 445 4# esf 4* 45#4 44 *

444 **4* 44)4 44)455 4* *44 455 441*4 (4 5 «))4 4***5 *7}).

3 4-4. 5*44 ESFAS 4***54 4*51 (BM)4 4)4 4*5 *4 44*

'~^~~~--~~-_^4case**ESFAS

LC<BM-1F

0 7)7) til] <3)7BM-2F

8-4)BM-1B1T

BM-HE 45

SIAS 1.13E-05 9.88E-05 7.15E-06 2.20E-03CIAS 1.13E-05 9 88E-05 7.15E-06 2.20E-03CSAS 6.01E-06 3.09E-05 5.35E-06 7.06E-04RAS 5.95E-06 8.10E-06 5.34E-06 6.75E-04MSIS 2.64E-05 2.10E-04 1.22E-05 4.48E-03AFAS #1 (or #2) 2.05E-07 2.45E-06 1.86E-07 9.28E-07 DAFAS 54*) 4 #s) =r*lfe °l-§- #*S I#e4l 4#**) BM-HEfe gr##4 2}# ESF 4^ AJit a# 3*1 #%* BM-lFfe 1 7fl a#-, BM-2F te 2

7H 444^4 J14-,BM-1B1T^ 171] sfl# ^4 4 17]] 5111 s# 49M 4t“& 44#.

- 40 -

*11 2 4 4# 71^5-1

##11 RPS/ESFAS 4 TS #1 1114 4% #4#H# (CDF) 1# #7>-i- 41# 4 14 CDF 7l#2.314 s]###. # #444# CDF 7]##l2A] &1 3,4 317)4 4#

44 4^# 44 (RM)* 4# 3)e 7#4 CDF ^7} 2.1 (RM-CDF 2.1) [1##, 2002]# 4#4-4#. RM-CDF 2-1# #1 3,4 317] 41 4444 #447} (OL; operating license)

11##2 a}#1 CDF ^7} 2.1 (OL-CDF 2.1) [4444#4, 1995]# ###2 TS 7fl4

# #44 44 44 44# 4# #4 ^ ## (rir&a)1 44###- #4/#44 #14

1. rm-CDF #1# 7)#4#2 7)7] 411 44H 4# cdf 4 444 7}####- #44

#14 #2 7]7] 4)!# #44 44 #4 #!#4 411 #4- ##41 cdf #14- #

14 #1# 7>1 # 1#. 5. 4-5 fe OL-CDF # RM-CDF #144 #4 4 #44# 41

#2 !#4, 4# 1# OL-CDF #14 144 (generic) PSA #11 44 RM-CDF #1#

4## 2#4 (plant-specific) PSA #11# 444#. #4#, 1#1## #4### 2#

11# 41## 4441 (ET/FT linking approach)# #### PSA #1 44 CDF 4 4#

#!2*i rm #1# 41# o]^-^ rps/esfas ts #11:4 441 4)14 444#

4#41 4## 44 #1 [USNRC, 1998c - d]* #^444 44)4 rm #14 ## 44

4 4## 4444 4#4#.

# 4-5. #1 3,4 3L7] OL-CDF #1# RM-CDF #14 ^r# #41

4# 4# OL-CDF #1 RM-CDF #1 #244 44 141 41 1441 44# 14

#415. -§-14 1994. 9 2001 7 4#1 4f 890 114 44 #1 4# I2f 14

44# a}2 14 44# #2 41# ## 44# a}2 KINDI###, 2002] 1##14 le#4 ET/FT linking Integrated FT (one top FT -S-H)

7)7) tiil# 44 7}#A}#-3. ^## 4b] 7}x] ###-& OL-CDF #14 #14 4#

7} ### 444 #4 RM-CDF #14 4 4414 ### cdf 7]# #1#a] 4# ##

#4 #2 4444 1#. # 4-6 # OL-CDF #14 RM-CDF #114 CDF 11# 14#

4#4 #4#. # 4-6 4A] ## #4- #o] OL-CDF #14 RM-CDF #114 CDF 1 1

4 8.25e-6/RY, 7.77e-6/RY #2 4=14 #41 $4#4(1 5.8% 1#), #7] Af#if CDF 4

144# 1#4 414 ## e #41 1# 4## ##)*#. 444 cdf 41# 144

- 41 -

411 4% ^ €4#^ 4*4 4* 111 4 44.• 4*3 3*1 2:71 A>y til£ 7}&* A>*

• 443 3*1 7}7] 34 1^ 7}&* 41* 7} 7] Al5|£ *3 A}*

• 411 *1# 44-0.3 PSA 1*A}4 *1 311 4^113

• TS 7fll* ID 7|H4 RPS/ESFAS *£|3 *4 311 *7}

• 471 44 314 2:7] *H 444 (OL-CDF 32-14 1* 13 41 1# 1*1

”114 414 *1* 1*4434 RM-CDF 3111* 6 7H4 has. 34 3 414 44 *1* 144. n 14 143 11 a}3L (SBO, station blackout) 4 5.44 loop »ll 7l4# cdf 4 #7}* 7>14)

414 CDF 44 47}* 44 7le 32-11 RM-CDF 32-14 14

44* 3444.

5. 4-7 * TS 4144

4 11-3.1 *411 *1

- 42 -

& 4-6. ir^l 3,4 5L7] OL-CDF 2-14- RM CDF 2-14 #4 ti]H ^

EE Zl^- ie^2)RM CDF 2-1 OL-CDF 2.1

4 2.IE 42

(/RY)CDF IE «12

(/RY)

CDFw W

LOCA ZL#

LLOCA 1.70E-04 6.80E-07 8.76 1 70E-04 1 05E-06 127MLOCA 1.70E-04 5.96E-07 7.67 1.70E-04 6 33E-07 7.7 ^3)SLOCA 3.00E-03 1.13E-06 14.56 3 00E-03 1 86E-06 22.5SGTR 4 50E-03 1.16E-06 14 99 4 50E-03 1.14E-06 13 8 <t4)ISLOCA 1 77E-09 1.77E-09 <0 1 1.77E-09 1.77E-09 <0.1RVR 2 66E-07 2 66E-07 3 43 2 66E-07 2 66E-07 32

3.84E-06 49.43 4 95E-06 59 9

Transient

LSSB 1.50E-03 1.72E-07 2 21 1.50E-03 1 46E-07 1 8LOFW 1 75E-01 3.91E-07 5.03 5.50E-01 1 14E-06 13.8LOCV 1 01E-01 1 80E-08 0.23 2.30E-01 2.53E-08 0.3LOOP 3.13E-02 2.21E-06 28.46 6.15E-02 8.77E-07 10.6 SBO^#LOCCW 4.28E-01 5.57E-07 7 17 1.54E-01 1.25E-07 1.5LOKV 1.31E-03 4.07E-10 <0.1 1 75E-03 5 48E-10 <0.1LODC 2 62E-03 2.94E-07 3 78 3.50E-03 3.17E-07 38GTRN 7.79E-01 1.59E-07 2 05 2.98 3 59E-07 44ATWS 8 40E-06 1.27E-07 1 63 2 04E-05 3.15E-07 38

^4 3.93E-06 50.57 3.30E-06 40.1

7.77E-06 100.00 8.25E-06 100l)IE 5 34-^21

T 2) LLOCA (large LOCA), MLOCA (medium LOCA), SLOCA (small LOCA), SGTR (SG tube rupture), ISLOCA (interfacing system LOCA), RVR (reactor vessel rupture), LSSB (large secondary side break), LOFW (loss of feedwater), LOCV (loss of condenser vacuum), LOOP (loss of offsite power), LOCCW (loss of component cooling water), LOKV (loss of a 4 16 KV bus), LODC (loss of DC), GTRN (other transients), ATWS (anticipated transient w/o scream),

■t 3) ATWS ^ ^ PSV (stuck open) £ MLOCA ofl S.^

^4) ATWS ^ ^ consequential SGTR SGTR^l 3L##

- 43 -

3. 4-7. iry 3,4 3L7] 5-1 RM CDF 1 cR!

IE n# ie^2) IE«]3(/RY)

CDF ^3)ti]31

5% 50% 95%

LOCAnl-

LLOCA 1.70E-04 6 80E-07 8.76 1 83E-07 4 97E-07 1 64E-06MLOCA 1.70E-04 5 96E-07 7.67 1.44E-07 4.28E-07 1 51E-06 t4)SLOCA 3 00E-O3 1.13E-06 14 56 7 08E-08 4.79E-07 3 72E-06SGTR 4 50E-03 1.16E-06 14.99 1 35E-07 6.15E-07 3.68E-06 ^5)ISLOCA 1 77E-09 1.77E-09 <0 1 2 02E-13 1.07E-07 1 81E-09RVR 2.66E-07 2 66E-07 3.43 N/A 1.00E-07 N/AiilTjl 3 84E-06 49 43 1.13E-06 2.78E-06 9.12E-06

Transient

LSSB 1 50E-O3 1 72E-07 2 21 1 73E-08 9.61E-08 5 41E-07LOFW 1 75E-01 3 91E-07 5 03 2.36E-08 1.72E-07 1 35E-06LOCV 1.01E-01 1.80E-08 0 23 7.59E-10 6.66E-09 6.32E-08LOOP 3.13E-02 2.21E-06 28 46 1.20E-07 9 05E-07 7 74E-06 SBO 3#LOCCW 4.28E-01 5.57E-07 7 17 1 20E-07 3 6 IE-07 1 51E-06LOKV 1 31E-03 4.07E-10 <0.1 4 63E-11 2.07E-10 1 19E-09LODC 2 62E-03 2 94E-07 3 78 7 75E-08 2.18E-07 7.17E-07GTRN 7.79E-01 1.59E-07 2 05 1.74E-08 8 3 IE-08 5.01E-07ATWS 8.40E-06 1.27E-07 1 63 1.51E-08 7 40E-08 4 04E-07rhTfl 3.93E-06 50.57 8.96E-07 2 48E-06 1 05E-05

7.77E-06 100.00 2.72E-06 5.93E-06 1.71E-05T 1) IE S15E ^^r 2) LLOCA (large LOCA), MLOCA (medium LOCA), SLOCA (small LOCA), SGTR (SG tube mpture), ISLOCA (interfacing

system LOCA), RVR (reactor vessel rupture), LSSB (large secondary side break), LOFW (loss of feedwater), LOCV (loss of condenser vacuum), LOOP (loss of off-site power), LOCCW (loss of component cooling water), LOKV (loss of a 4 16 KV bus), LODC (loss of DC), GTRN (other transients), ATWS (anticipated transient w/o scream),

^3) 5,-g- 3.7} 10,000 ^ Monte Carlo 44*9^4) ATWS 4 PSV ^3^ (stuckopen) MLOCA4 5##.

5) ATWS ^ A}J7^ ^ consequential SGTR'B- SGTR i 3^.

- 44 -

1 3 i t(l^= 3,7] ^r# rfl^t 7] ^2-1 ^

2*44 RPS/ESFAS 4 TS 2# #4 #4 4# 4)4" 27] *# #2 (LERF) 4##

47}#7] 44H* LERF ^7} 214 12*4. # HlA)* LERF 7]*212A] CDF 4

1#4 4*7}7]2 *1 3,4 27] 4 #*44 4^2 ^A] (RM)* 414 4# 71114 LERF

47} 2-1 (RM-LERF 2.1) [#**, 2002]# A}####. RM-LERF 2.1# NUREG/CR-6595

[Pratt, 1999] 4 a] 4H 1# 444* 4#f4 (GET; Containment Event Tree)# 7] #2.5. *

1 3,4 3L7] 11 1444 #447} (OL) 7)1 #22. a}*4 LERF 47} £1 (OL-LERF 2.

1) [KEPCO, 1998]a] ** 44## 4444 LERF* 444 * %}2* 4*44 lerf 2.

144. 4# GET a] A}## 44- NRG a] RG 1.174 [USNRC, 1998c]4 A] 44#2 ## *4

22 TS 7fll* 24# 4 4 7}x] *#2 42 #4| 4 ## (RIR&A)4 ##22 A}* 7}

RM-LERF 214 4# 44 4#* KAERI/TR-2025/2002 [#4*, 2002]4 7]*44 4

222 # 444# 22A] 1 44** 1*44 RM-LERF 214 4# LERF 4-4

1 144 ti]3E *4# 4444 4*4-27} 44. 44 RM-LERF * 4# NUREG/CR-6595

4 1* GET * 24 4-1 4 #44 14 [Pratt, 1999]. 2# 4-1 44 2*4 4 4* GET*

4*4 1* 44* 4* 7 71)4 242 #444 14.• 21*4 (Core Damage) • 1 44 PSA 144 CDF 4 7} 14.

• 14*7] H4 #414 (CIONB; Containment Isolation or not Bypass) : 44 1*4

#4 ^ 14 4*1 4# #71]• #7}2 44 Tilt- 44 (RCSDP; RCS Depressurized ) : 47}2 44 711*4 44 4*

4 4# 24

• #7}2 #7] 4*1 2# *4 #7] (CDAVB; Core Damage Arrested without Vessel Breach) ■ 2# *4 44 4 #x}2 #4 4* o]H 2# *44 *7] 4*4 tfl

* *71]

• #7] 14 7] 44 41 (NISGT; No Induced Steam Generator Tube Rupture) : 2# ##

A] 1, 2 7} 4*4 1*444 2422 *7] #Ag7] 424 creep failure 4 #1 4

*4 tfl# 271]• 4 7}2 #7] 4*a] H*7l 4* (NCFVB, No Containment Failure at Vessel Breach) :

#7}2 #7] 4*A] 44 4* 4* 4*4 4# 24|• 27] ** 44)4 4-71)4 (NPFEF; No Potential for Early Fatalities) : 27] ##2 ##

44**4 4* (4-A}# #44 *4 A] 4* 4# 4 a}#*#* 4H#)4

4# 24]

- 45 -

H^3 4-1 4 4! CET 33 4^34 #4, #8, #10 4 #12 7> LERF 343 314434 4

4^341:34-. 42.34 #4 * 34413 344 LOCA 2* (ISLOCA 4 SGTR 4 *114),

#8 4 #10 4 34-41-4 344 4^44 2-f, «o 4 3441 33 44 S4 44

(bypass) 5LH (ISLOCA 3 SGTR)4 444 LERF 4234*34. 3* 42344 434£

4 l 43 PSA4 44-4 CDF (4 43434% rm-CDF 2.44 37} 44* 444)4

&314 *334 3)44* 2=4* *##& 444224 344 * 44. * 4*33*

34 344 14 3,4234 2 43 psa 34* 4422 4* cet 4 X33 34 *43-

4*1 4444-^4 2.4 4-i 3 *43 44. 4713, &*il “Cionb”4 “RCSDP”* 344

1 33 3* (CIS; containment isolation system)! 5=44 1 43 PSA 444 CDF 3 4*4

55 on- x3!4 S3* 4*#! rps/esfas 4 is 433 44 34! 43 43 *4

434 44.

Core Damage

Level 1 CDF

Containment Isolation

or Not Bypassed

CtQNB

RCSDepressurized

RCSOP

Core Damage Arrested without

Vessel BreachCDAVB

No induced Steam

Generator Tube Rupture

MSGT

No Containment Failure at

Vessel BreachNCFVB

No Potential for Early Fatalities

NPFEF

SEQ#

PDS(Large Early Release)

LOCA group

Transient group

0.6753

0.6329

Bypassed (ISLOCA, SGTRl Failure of containment Isolation

0.008506

0.03260.01027

09674

0.8676

0.6209

0.6209

1.0

1

2

34

56

7a

9

10

11

12

NO

NO

NO

YES

NO

NO

NO

YES

NO

YES

NO

YES

zz.3 4-i. 4! 34-8-71 43*4

- 46 -

S. 4-8 3 OL-LERF 214 RM-LERF 7]# 2114 334 44* 42* 344- £

4-8 44 21 44 14 OL-LERF 2-14 RM-LERF 2144 LERF * 44 1.24e-6/RY,

1.29e-6/RY2 44 444 1* 422 44444, 42 343 LERF *1 42 444 1

* 422 4414. 4* £ 4-6 4 444 45-4 loca 54 42Aj-ji #<>]] 4^- CDF ^

44 444 4444. 44 444 5. 4-6 4 ol-cdf 444 rm-cdf 44* «li«S 21,

LERF 4-244 #4 4 444 LOCA af (ISLOCA 4 SGTR 44)4 CDF 5 OL-CDF 7>

RM-CDF 4 441 41 42 *1 41, 4-2 44 #8 4 #io 4 444 4241 zi#4

cdf * 44 44* 244. 24 42 34 #12 4 444 sgtr 144 cdf * ol-cdf

7> rm-cdf 4 441 41 42 *1 422 4414 44 44 £ 4-9 4 lerf a>j7 ^

44 444 2#1 cdf4 441 7114# 1 * 14.

2 4-9 1 TS 1311 14 LERF 34 17>A- 44 7le 211 RM-LERF 211 tfl

4 *443 *4 34* 24*4.

£ 4-8. *1 3,4 27] RM-LERF 214 OL-LERF 214 33=4 34 4 2 ^

LERF 34 RM-LERF 21 OL-LERF ^2) H]2CDF(/RY) LERF(/RY) CDF(/RY) LERF(/RY)

LERF-SQ#4

7.77E-06

1.09E-8

8.25E-06

2 02E-8LERF-SQ#8 1.16E-8 1.08E-8LERF-SQ#10 7.17E-8 5.69E-8LERF-SQ#12 1.17E-6 1.15E-6

Total LERF 1.26E-6 1.24E-6^ 1)LERF^ ig-SSHI 4^-? 2) 3,4 5L7] 2 ’ST]] PSA [KEPCO, 1998]

£ 4-9. *3 3,4 27] LERF 4 7] #211 11 33=4 34^°

LERF 34 LERF (ZRY) *433 *4 ^2) ti]25% 50% 95%

LERF-SQ#4 1.09E-08 2.57E-09 7.26E-09 2.69E-08LERF-SQ#8 1.16E-08 2.16E-09 6.87E-09 3.37E-08LERF-SQ#10 7.17E-08 1.49E-08 4.45E-08 1.95E-07LERF-SQ#12 LITE-06 1.41E-07 6.34E-07 3.76E-06Total LERF 1.26E-06 2.03E-07 7.30E-07 3.80E-065 1) LERF T7^2) 37] 10,000 S] Monte Carlo A]#;^# ^2)-^

- 47 -

4 5 #M

^11 1 i RPS/ESFAS &?$<£

7}## 441 4# ##4 44 4 #5* 454-5 *£4 4% 7]7l#4 444# 4 014-71 4#4 ^7144 TS * #44 44 #44441 444194 (SL), *441434 (LCO) 444444 (aot), 4444^4 (sti) #4 4# 44- 34** 44#44 44 4 #44 444 44 4# 3*453 44-44 499 ts4 444 3*4)* 44 7>4 #444 444 44-9-4 #4-9.5. 4-8-44 $94. 41* #4, 4# 44 45, 4# 4 41 444 4^1 v\5L 4 4###54 #7>, 4544 44 7>*4 #«1 4-#4 #4-9-54444 4^4. 4^^4t115 80 44 4# 44M 45444 4 4^)453 44 94-#

344 4*94# ts 541 44 #44 44 #944 *9# ##55 4444##%, 44 ##4 444 444 #44 44# 2:4)44 #544 #44 44 #94 4 #4# #4 * #5* 91 ts 54## 44 44 494454 4# 54# 4#4 &%4. 444 544 4454 #m &* 444 #5 444 ce 4 444 4445 5.e #44#444 (STS; standard TS)7> 7#44 #14 4#45 ## 4444.

# *44A1# #4 a#444 rps/esfas 444 aot 4 sti #4 cfl^o) STS 34 ## 44455 4445, 45 44 195 4# #4# #4444. #4 3*144

RPS/ESFAS 0)1 414 44 TS (CTS; current TS)4 STS 54#4 444## ## A^Mi 444-tII 444-94. rps/esfas 4 sti 54# 7>#4 993 *4 cfl# 4-44 44# #4 *4 (#4. 55 1) #4 4*4# sti 54#* 4455 45354, 4# * 4^5)31 9# 4119 4#### &3)144 4# 4# 4444 is 7l)l #7)4 4)^44 7144 #44# 44## 44 4#4 #444 ##4. 54 esfas #5# 444# 54##4 514 5447) 9&.05.3 145 #4 4444 71)444.

3 5-1 # 4#453. 444 sti 445 *4 44 444 194# 4414. ## 44. rps 1 7)1 #44 47>5 97)447)4 444# #4544 *#4# 44# #4 4 49 4444. 5 5-1 44 5# 44 44 445 #4 4# 4#4 99 sti 54# 1 7ill 4*9 44 sts # 3 7B1 7)*35 44 44. 4 #444# 49 71*49 sts 544# 153 6 7)11 71*4 STI 494 (ATS; alternative TS)5 444 445371 3449 4- 5 5-2 47i* sti 495 #4 49 9#4 494 #4 3,4 57)4 9<@ 49 444

- 49 -

#4 4##^ & 5-3 e 5 5-2 4 4^ tfl-S-43 ^ 3,4 Jl4 4*M

Si5:4 4^)1 a]4 ^7li- 44^4.

& 5-1. STI Sl4£ @r4# 414 TS -8-3 444

44 CTS STS ATS H]2t

4444 (44^44#) 1M 3M 6M44 2:4(7)14 si33 44, tcb 34)

1M 3M 6M

CPC 1M 3M 6MDPS 3M &-§- (3M 43) 6MESFAS 47)147] 1M(32B)4^) 3M(H4a14) - #44] 46|| A) 41S)

3. 5-2. STI 44-E 44 444 44 44 44 444 44-

A]4 4- A]4 44

s- -?e4-41 43

44/44 44S3 43

#4 47] 4447)Ai*

ti) 31

4°1—Efl°ls:

7>4 444(VSP)

7)4-71 44-4,SG-i(-2) 44-4SG-i(-2) 444 434

44-4-12 RPS

7)4. 4#444-7)1-12, 44-7)1-04,4 7] -7)1-05, 44-7)1-08

RPS

(FSP)

7)4-7] s4-4,44 4* a4-4,SG-i(-2) 4t4 4 3134,

44-7)1-12 RPS

n 43 #444-4-12, 44-4-04, 471-4-05, 471-4-08

RPS

so-i(-2) 434,44 4# 31-33 4-4 44-4-14 ESFAS

444t 4a 434 44-4-14, 44-4-27 ESFAS

34 2:44a)s. 44 44-4-13 RPSCSAS, RAS, AFAS-1 (-2), SIAS, CIAS, MS IS

44-4-is ESFAS

CPC 4 443 4##,31 4-3 *4 4s

47]-4-04, 44-4-05, 44-4-os

RPS

DPS#43. 3*1,DAFAS

44-4-18 DPS

- 50 -

5 5-3. *# 3,4 # ## 3,4 24# ## *4 4^ STI #*#

444 4*#47- #2 71# *4 (7D1) «lJ7

*4 3,4 27l #4 3,4 271 CTS STS ATS2# f*7l* oV47fl^ 7l*A]Tg Tg 71-4-04 44-94 1 3 62* *44# *44# *4#4 #4 471-4-05 44-93 1* 3 6CPC/CEAC 7l*A]^ 44-4-08 471-108 1 3 6RPS #o]^m. 7l*A]^ 44-4-12 44-73 1 3 6RPS 2# #4 7]*A]^ 44-4-13 44-80 1 3 6ESFAS #°l2Tll* 7l*A]^ 44-4-H 44-203 1 3 6ESFAS 2# *4 7l*A]-y 44-4-15 471-204 1 3 6DPS 4*4# 44-4-is 44-72 3 3 6rwt *4444# 4*44 44-4-27 471-205 3 3 6*) 444 if 17M ^714 3 *7] 44

&*## RPS/ESFAS °11 4# AOT ## &* *#4## #Al(STS)* AOT 4" ##1 **

A o)l 7]#401 ^2#, o]# # 4# #4 LCO 2#** CST 4 STS 4M #2 44

* *###. s 5-4 * AOT ##2 *#* 4* -¥-4 a 5.44 *#4l#2# (lco)* 4

7l bH4 444 4# aot * 44# *2.2 44 crs 4 sts 44 *44°1 #7)1 7]#4

4 %14 40] 40. 4^-jz). qo) 37H4 4-^2 -a.<>M * ##.

• RPS/ESFAS 7)1*41#* 2 7H 41# 3144 CTS 4 4* 44# 24* 4-7] 4)44

^A]^44 442 1 7114)#* 44444 #4# sts 4 44 4-71 444444

-g-#7>4# *22 44 44 (# aot ##2 *## #4# 2* *4 4#44 44 7}*# 42s. 7M#*-.)

• RPS/ESFAS fee} 2## 4* CTS * 4 7fl* 2.4-011 4414# LCO 4hH 2#2-2

#444 #24, sts 4 4* 17fl 41# (4# 44M1 4# 37H 7^4 314 2#) 4 441 lco 242-5. 7l#44 #4. 4^ sts 4 4-t- 4# ##4 *3- 2 7fl

4 41#* 246 ^a>s. 44* 44#22 cts 4 if44 41* ##44 #* 4*2 * * ##.

• RPS/ESFAS 4 ** # *-* rz.42 7flA]^5. 41#o)l cfl# CTS #4 LCO if

44* 4-4- *444 2 711 41 loll 4# 24-4 4# 4#4 2#44 #4 &#.

444 #44& s4#4 # *4444 aot #4-2 *4 4422 & 5-5 4

#4 4* #4*55#. 5. 5-5 4 aot * #42 44 *4 4 # 7l) 444 4*44 #4

4* lco 44 44 444 44 ***** 44 *4*44 ##. 4*, 4* #4, 2*

- 51 -

1)4 ^ViLls. 44 # 4]# 24-# 4 s & 5-5 4 4°1 1 44 4# 44 44

## ## s# Gig 4^ 444 # 44 444444 44 44# 4 44# 4444.

s#, rps# esfas 4 ## ^.^4 tfl^ 27^4 ^44 44 3.4# cts 4 sts4 444

4 44 &####s 4 #44# aot 44s e# 444 s##^4. 242, 4#

AOT 44 444-4 444 *547] (CEAC; control element assembly calculator)# RPS 24##

#44 4444 44 *4 4#4 44s ## 4444 44#44-. Rps/esfas 4# 4

4 2 7il 244 44 aot 44s #4 #^4 #44 444 cts 4- sts 4 lco s44

44 4#-§514 444 s4# 4-7) 4#4444 4# #4 444 4ss ?M#44.

X 5-4. RPS/ESFAS 4 #4#4# LCO S44 4# AOT -8-4

LCO 7)7) H])<1 4^" 5S)1W AOT#4 H)2

CTS STS

RPS/ESFAS

(4444 4 4, cpc £. 4)

AH'S i 7i 2#44 44 #S) 5E r ^ f 4#■£••4 7}^

l 44, ® ©

7W 2 7)) 2#1 7D ADM -r-S) $ l 7D ADM S4 f4# 7>#

l 44 ® ©

CTS 4 4-t- 4-7) ADMM^M 4-4 i 7D4l\fi ##

RPS/ESFAS

#42# 17)1 4# 214 (4# 445. 44 3 7)1 aDM 24 S4)

48 44 44 ## 48 44 N/A ©

fee)2f 4 7)| ADM244

48 44 44 ## 48 44 © N/A

CEACCEAC 1 7)) 44 24

7 4 44 ## 168 44 © ©

RPS 4444

1 7)1 44 2444 TCB 7D4 # 4# #4 7)-#

l 44 © ©

ESFAS 44 44

1 7H ADM 24 48 44 44 ## 48 44 © ©

rps 7)1445. % TCB

1 7)1 aDM 2444 tcb tD4 f 4# #4 7>#

l 44 © ©

2 7i) 4M4 4)4 24

44 tcb ?D4 f 41# #4 7)-#

<rA](lhr?M),

N/A ©

ESFAS 7))A)4&

1 7)1 aDM 24 48 44 44 ## 48 44 © ©2 7H -S-M4 ADM 24 48 44 44 ## 48 44 N/A ©

■T l)LCO 7)7) tiBl 44X % 71) 0)^-2) RPS/ESFAS 7)^-4) t) el) 4-§- 7}^#.

- 52 -

S. 5-5. £§€4 RPS/ESFAS 4 AOT 41# 4# LCO #4

LCO%-4 7ls

LCO 7)7) #41^ ^ 2^1 A># AOT(Am>

#4 4 2CTS STS

RPBI-1RPS 41# 41#. 1 7H 2*j- (CPC, 4-514171 A|1S £#)

41# 41# 4-2) 2e E 4i

i © ©

RPBI-2RPS 41# 41# 2 7fl 2# (CPC, 4-514171 A9# 3£#)

i 79 41# 4-51 ^ l 79 41# E#f 41# 4r# i © ©

FSBI-1ESFAS 41# 41#- 1 7fl 2# (4-44M 41# &#)

41# 41# 4-5) ae e 4i #e# i © ©

FSBI-2ESFAS 41# 41S: 2 79 2# (4"5| 417l ABS 5#)

i 79 41# -f5) # 1 79 41# E#f 41# £# i © ©

RPLM-1RPS eel E# 1 7B 32# 48 A) #°)4) S.# 48 ©

RPLM-2RPS eel a# 3 7B 32# 48 4 #4 4) ## 48 ©

RPLM-3RPS eel 2:# 4 41 31# 48 4 #4 41 ## 48 ©

FSLM-1ESFAS eel 2ih 1 7fl 32 #

48 4 #4 41 ## 48 ©

FSLM-2ESFAS eel 2#: 3 79 2 #

48 4 #0141 ^ 48 ©

FSLM-3ESFAS eel 2#: 4 7fl 2 #

48 4 #4 41 48 ©

RPMW-1RPS ## ## 41#: 1 7B32#

W TCB1 © ©

RPMW-2RPS ## ## 41#: 2 7B

#) 32#TCB 7)1^

RPIR-1RPS 794S)E AflS: 1 7fl 32#

TCB 7^f 7)1^xrti 1 © ©

RP1R-2RPS 7945)2 AflS: 2 7fl (#S 3») 32#

4# TCB 7)14xrti

1 4-2) ©

RPTB-1 RPSTCB 41#: 1 7B 2#TCB 7)14

"Sr^l 1 © ©

RPTB-2RPS TCB 41#. 2 79 (e’M 39) 2#

41# TCB 79 #f 41#e#

1*2) ©

FSMW-1ESFAS #-§-#§- 41#. 1 7fl 2#

48 4 #4 41 ## 48 © ©

FSMW-2ESFAS #### 41#. 2 79 (## 39) 32#

48 4 #4 41 ## 48

FSIR-1ESFAS 7942)2 ABS. 1 79 2#

48 4 #4 41 ## 48 © ©

FSIR-2ESFAS 7942)2 Afl'd: 2 79 M-# 39) 2#

48 4 #4 41 ## 48 ©

# i)lco 7)7] mis #£fle a.e rps ae esfas 7ie°B 4##2) 44| M*]##2! #2 4# (completion time = AOT)e ‘#Al’£. #4 #2# 1 A]#o^ 7}^.

- 53 -

*11 2 (STI)

1. STI *4 413

3* 11 RPS/ESFAS 1 STI 143 *** 9^4 !#4 44 #4 STI 1^4 4#

443 14 ^7>» 4444, * 444Ai4 143* ^l7>4 *3 - 4# 1***3

(UA), CDF, lerf -4 44 47}44 11*53 ni 5-1 4 #4 RPS/ESFAS sti 4 #7}

* ua cdf 4 lerf 4 44 47}4* 4431 444 444 4# - 443 15*33A] 4 °}7]443(test-caused risk) [Samanta, 1994] 45.5 4-4 *44 44 - 445 #7}*33 a] 444445 (test-limited risk) [Samanta, 1994]*35 4 - * *a]o{| 4^] 44. 444

4*453 4*8 sti 7} 445<4 4# 115 #4 443*4 13**1 sti 11 - *

44 141 *44 4% 344* 44 [Samanta, 1994] - 44 4444 44 4 STI *

44.44 #1 * 44". 4# 445 4^-t 4-§*4 44 44(RIDM; risk-informed decision

making) 4444 44 1#441, sti * n4 5-1 44 3* 44 #4 4 *7>4 44 4

44 44 444 4*4 ** 7}*4 445 (acceptable risk)* 44 &* 4444 &#4

4 STI 44 - *14 4#4 *44 4## 4-4444- 3444 #45 44 [Samanta, 1994]- 44 444444= 4# 44#4. 34 44|4 4** KAERi/AR-577/2000 [44*,

2000]4 4444 151, 444* ts ;H44 414 445 ** 4-4*4 4* 57]]5 54-4-3. 914.

sti 443 *44- 4444 *444 4# 1 *444 14=* 444* 4A}#* 3

5-6 4 444 434, 4#* 443 431 44 *44 47>4444 1 4*44. 44

4, * *444* 4^4 44 7)7) 434 44 3* (7]7] 1^, a]^ Hi)! 4* ^■

* 44)* 14 34# 5E* 34 4** 7M433 *4 44 4*44 4414. 34,

A]41 4# 4-3 a>4 *4 14* 443 47} 444 cdf 4- lerf 44 144* 14

44-.

3*44 rps/esfas 4 sti 441 (3 5-i~3)4 44 443 4# 47}* 7]*453

14 444 443 #34 4*31* 41=44* 414- *144. 44, 3 5-6 4a] ^

44 14= 14#* sti 4414 44 rps/esfas 4* 34***4 #4 7]* a}^] 144* *1-4- s7]A>y 134 14 44!44| 14* *4 44. rps/esfas 34**4

4444 4* 443 *4 11 1 *4 14* ** B 4 *14 13, 1# 7}*4 sti

4 4*3 *44* 143 43** 7]**53 sti 4 1411 44 aM44! 453

47]a]^ #* 7]#* 444. 344, * 4ia]*sti* 111 14 14 47}* 4*fl *

- 54 -

7H®£ $ aj-8- 7l#^7ls. #4

- 55 -

HIS!*! STI ««

-L^ 5-1. 4-ti-l: 4-8-4 STI 4444

5. 5-6. STI 444 210)44 f A 4# 44

44 44* 44= 44 44s S-44 44 4 aUA CDF LERF444 4#(4 44 441! £)

7)7)4 44 214 © © ©444 44 %4 © © ©

444 44 (4 4 44 4 4 £)

44on 44 4-e 44 4# 7>^4 © ©444 44 7)7) 4s.44 JL# (7)7) SL4, 4=^4 7i)Hi)4 49- 44)4H°fl 7)44 7)7)4 4-8- © © ©

*) sti #?M 4e =?§-.

- 56 -

7>. 7] 7] 32# #7} A] STI #44 ## 3#A] 3##14 4###

1# 3# #14 &44 STI 4 ### 4# 34# 3##11 414 3# #1;# 3#1#4 ‘invariance’ 411 7}### 4 54 4 #4 t])## d\) d]Sfl #7} 7}4#o)l ##

#44 #4 [USNRC, 1982].

l’Pt'=\-{\-PtY (4 5-1)

444, Pr4 7]54 sti(x) 44 444 3# #1-44, Pr.l #31 sti (%’) #44 44

444 "t 3##ll ####. 4 5-i £ #14- 11 7>4 4-44 4#444 41 41

#4,RPS/esfas 4 44 4# #4 4-##4 44# #444 #33. ####.0 444 3.4-11 44 (constant)##.© 114 2.41 sti 4 4444 4# 7>###

0 411 344 44 14 44 SEl 3444 'in-service' ##.

STI 4444 ## RPS/ESFAS 4 414 344 34##4 44 44-1 4 5-7 4 4

44 &#

3 5-7. RPS/ESFAS 414 3#a) 3L##14 4# STI #44 #1 #41 #4

« =L 344 3# 41 4 31CTS STS ATS

Trip Circuit Breaks- 1.52e-4/d 4.51e-4/d 8.94e-4/dUV Trip Device 1.87e-3/d 1.87e-3/d 1.87e-3/dShunt Trip Device 1.92e-3/d 1.92e-3/d 1.92e-3/dInitiation Relay 3.51e-5/d 1.04e-4/d 2.07e-4/dInterface Relay 7.86e-5/d 2.33e-4/d 4.62e-4/dInterposing Relay 4.36e-5/d 1.29e-4/d 2.57e-4/dLM Output Relay 2.23e-5/d 6.63e-5/d 1.32e-4/dBistable Output Relay 2.89e-5/d 8.58e-5/d 1.70e-4/dHand Switch 1.85e-5/d 5.49e-5/d 1.09e-4/d

- 57 -

4. i%4 4^ 4-1 n ^7> n

RPS/ESFAS 4 ## 7l##4 A]«s)^ #1 RPS 4 3#4 3# ESF 7] 7] 4 #

#44 4% 14s. 44# 4#"# 7}#%o] 14. °14% 4-3A}i#4 44 44% 4-0-

347} 4444 &# 1# 34 £13.3 444 =tS 44. 44 rps/esfas 4 sti 7}

#4444 4% Itc 444 #4#4 431, 4s. 44 4%#4 RPS 4 -$-#4 s# 4

1414 #4#4 4% 44S 4sa>44 1113# #4# 3:4# 7}1#4 44 44

3%£113# 4£44 44-

114 #3 34£113* 444-7] 444 5 4-6 4 444 4#4 44 7}4 &?]

44## 442. 14. 44 3,4 4 1# rps 4 3#4 3# esf 444 ^-4# 134 4

% %a}s 44$#- 3# 44 4-311 (Gtrn)Ss #444, 4# rps/esfas 44 44

#4 rps s# esfas 3134 4% 44-3. 44c gtrn S444. I34 4### 44

4-n 1#* 44 %4. 4-4-4 4:4 1*1 44 4-4 rps/esfas 4 sti #7}# 445^

4 4#4 7144-4 gtrn &7]A}i4 134 43* 7}44 #4 (4-44 #4-). 44#

143 %a>3 44## 4-S44 (atws)4 1# rps/esfas 4 sti #7}# rps 4 es­

fas 4# 4###s4 #7>* 34%33a] atws 37]a}1 #4 7}#l* 4# #4 #

s 14 (#44 3:4). # #444# # 4-6 4 444 1#°1 atws 4 4# psv 14 3

4 (stack open) 4 RCS 31144 4% #7] 147] 44 41 (SGTR)4 7}#1# 44 #4

loca4 #41171 44 44 (sgtr) a}34a] 344-3 1-Se.s, rps/esfas 4 sti 1

4°il 4# atws 14 134 #7># 4# &?1A}4 14 134 #7}* &4%4# 44

#4441 %4.

14 #44 3:41 rps/esfas 4# 4 ###s4 #7>3 1% atws 134 1#

47} 11# ATWS 4 S7]A}4 137} RPS/ESFAS 4 7}o}7] 3144 4% 17}3 4A]

#44 4% 3l#4! l-g-44 41 4143, 1a] m 44 #4 ## b 44 sti

144 4# rps/esfas 4-0- ##3 14 17} 11# 44 444 #14-3 &7] 4#4

47]4# #4 7]## 4443 %4.

rps/esfas 4 sti 114 4-# #14 3:4, 4, gtrn &7]A}i 1^ 134 11 1

7}# 414 ^ j4 44 11433 4#4 1# 44 44 l7}l # 14 4314.

gtrnn = (gtrnt -J^gtrn,) +2 gtr/v, •>• >■ 4

(4 5-2)

47]A], GTRNn# RPS/ESFAS 4 11% A] 11:4 STI 111 (r')4 4# 43# GTRN

- 58 -

&7| 44 19 9S 494, GTRNr # 944 & GTRN 999S (=0.779/RY), GTRN, # 49 i 4 49 99 STI (rj914 49 #9 S43:9| 49 94-s 94 43* 499

4. 4 5-2 * 49 i 4 999 ^Lw°tl 4914 4-§-7>w44, s9 ##4- i 9 949# s

9 ^i°11 99 9€-45.^ 44 4444. 3i94, 4 94414 jib) 4# sti 491# 9

9425. 3-E 444 414 i 7B1 994 sti * 3 ;W £9 6 z# 49^4 99# s

4425. 994 i7> il2$# 9 5-2’ 41 441 494 97>9 4 94.

GTRNn - (GTRNr ~GTRNrps/esfas) + GTRNrps/esfas~

— GTRNT GTRNrps/esfas94V #7

(4 5-2’)

494, G:7WfiJ,s/£SFy4S(=^G77Wi)9 94 sti 4414 rps/esfas 49#41 ?144 4

s49 14 9s# 4494.

9 99414# 4 5-2’41 44) rps/esfas 4 sti 4941 4# 4 s# gtrn 199s

# 994-71 444, 94 rps/esfas 41! 0,3. 94 94-s 44 59* *9 3,4 37) 9

<9# 3,4 *4* 49-25. &4434. 2 44- # 8 69 44 49 94 49 9 rps/esfas 4925. 99 945. 94# 1 49 94434. #, G77?/VRPSiESPAs= 1/8-69 = 0.1150/RY.

444, sti 4 99941 4# 4)s# 99 4-S4-94 9S(GT.K/VN)# 3 4# 4 #9 sts

4 99 0 7023/RY (= 0 779 - 0.1150 * 2/3), 6 7fl-i 7)## ATS 4 99 0.6832/RY (= 0 779 -

0.1150*5/6)25. 44 4994.

2. 91 ^ <99-1:^5.41 49 STI 94^ 9:4 14

s*94 RPS/ESFAS 4 STI 9994 4# RPS 94 941 99 #*s4| 49 94 3 #4 #4^ s. 5-8 9 4 #4 4 34. 94 94 9 Lo sg lvl, m so lvl, lo sg pr, 9

Lo rcs fw# SGls 44 #4449 2-19 49 44925. #4 94# #144. 2 42. Lo pzr pr 4 9444# dps 4 49 94-2. 94s 9^1 31449 94. rps 94 941 9#*#so)l 49 94s £4 14, 4###s# 4711 sti7> #44# 9#4) 4 49# 4-25. 4444. 44 194, 99 1 7})S 7] #9 cts 94 9# ##s°il 4^ sts 4 9* 3 9) 9s, ats4 9* 6 91 9s #7}4# 425. 4444.

- 59 -

& 5-8. M 44 RPS/ESFAS STI 44 SH 41# RPS 4###5P) 43-5 14 44

44 41 4-g- ##5*45CTS STS ATS

VOPT 6.45E-06 1.77E-05(2.74)

3.52E-05(5.45)

Hi LOG PWR 6 78E-06 L83E-05(2.70)

3.63E-05(5.35)

Hi LPD 8.97E-06 2.49E-05(2.78)

4.99E-05(5.55) 444 45

LoDNBR 8.97E-06 2.49E-05(2.78)

4.99E-05(5.55) 444 45

LoPZRPR 5.53E-06 1.65E-05(2.98)

3.34E-05(6.05)

HiPZRPR 5.01E-07 1.49E-06(2.98)

3.03E-06(6.04) DPS Tie)

Lo SOLVE 5.52E-06 1.64E-05(2.98)

3.34E-05(6.05)

Hi SOLVE 5.52E-06 1.64E-05(2.98)

3.34E-05(6.05)

LoSG PR 5.52E-06 1 64E-05 (2.98)

3.34E-05(6.05)

Hi CTMT PR 5.52E-06 1.64E-05(2.98)

3.34E-05(6.05)

LoRCSFW 5.53E-06 1.65E-05(2.97)

3.34E-05(6.04)

*) W£0-5. CTS4^ 4^: #7} B^-g. sHf-

5##4 RPS/ESFAS 4 STI 4444 4# ESFAS -#3:4 41##54 4# 4 #5

## 44c 5. 5-9 4 4 #4# $A4. 5 5-9 4 44c 45:15. 5^14 A 4 E^]y B Al

S. #4 1444 Srr 414 4)4 44 4444. 54 a. afas 4 41 4;DSl I/M

4s: (afas-1 4 afas-2)7> si54 4M 44s. #4 44c 1444 dps 4 44 afas

<dafas)5 4-71) 544S14. si45 1# 44c rps4 444 444-7)1 4^ l 7)11 7)1

4 cts 44 44 #454 44 sts 4 1t 3 »fl 45, ats 4 4-4 6 4 ^5 ?7)4r

^55 44>t54, 4# sti4 #7> 41-4 7)4 4444. 444, msis4 41 4445

5 <g#4 47)1 444 4# 4# esfas #^#4 441 4# #441 (5 7fl)4 4444

Sl5, 4# #4414 4441:1 4^14 is 71)155 sti 4444 4# 4#& 44 #

7) 4#44.

- 60 -

& 5-9. 44 RPS/ESFASSTI 4144 4)4 ESFAS 4-§-^1^1 44;e 44

ESFAS 11 44 1-45L* 451CTS STS ATS

SIAS 5.18E-06 1.51E-05(2.91)

2 98E-05 (5 75)

CIAS 5.18E-06 1.51E-05(2.91)

2.98E-05(5.75)

CSAS 5.03E-06 1.49E-05(2.95)

2.95E-05(5.87)

RAS 5.04E-06 1.49E-05(2.96)

2.96E-05(5.87)

MSIS 6.28E-06 1.62E-05 (2 58)

3.10E-05 (4 94)

AFAS #1 (or #2) 1.76E-07 5.19E-07(2.95)

1.03E-06(5.85) DPS 51B)

*) ^1***5* ^33):°. 3. ^^444,0^ CT8 44 «l-§-#*^4| 4% *7} 41:* 44f-

ll 3 1 rflt> STI ^1^-52 ^

&#41 RPS/ESFAS 4 STI 41 HI 4# CDF 4| 4)4 44^ f4 14™ 5. 5-10

41 f 4! 44- 44^ #-4 life & CDF f 3 7# STI 7l#l STS 1 If 7.88E-

06/RY, 6 711-i 7l#l ATS 4 If 8.08E-06/RY5. 4^ 171)4 STI 1#! CTS 41 44 44 1.42% 4 3.99%! CDF f 7(3. 4444.

CDF ! #7M1^ 4^ 44 TZ.f-41 44 LOCA ZZ.#! CDF 7} STI 4 47H iL4 4

44 433 44^34, 4fe STI 4 #7M1 4# 444 a44 4^44 zz.f-41 f3 5.

444 44 4^-33 4444. 44 4-3444 14 sti 4 f7}f 37)44 ^ 4^4

433 cdf 4 43f 4* 4444. 444 atws 4 37) A} ^1 ^13 444 rps 51444

i 7)^433 sti 4 #7M1 4# 4ffl-34 #7}3 44 cdf 4 life 144 4f

# 4444- ATWS 4 7144 CDF f STS 4 1-9- 1.42E-07 (11.81% f7», ATS 4If 1.73E-07 (36.22% f7»3 l7>4$4. ATWS #143f CTS, STS, ATS 7} 44 8.40E-

6/RY, 9.41E-6/RY, 1.15E-5/RY3 4444. 414 4# 37) A)-^) 44 ATWS 4 144 3

If4434 14f4 #4433 4f 44 4)f4 HI 3lf4434 414 144

14 44.

LOCA zf 41!^ 31 LOCA 4 SGTR 4 7144 CDF 7} RPS/ESFAS 1 STI f7>

1 444 433 4444. 31 loca 4 If crs, sts, ats 4 44 44 i.13e-06/ry,

- 61 -

1.19E-06/RY (5.31%), 1.28E-06/RY (13 27%) S. 7>4 4444, SGRT 4 ^4 44 1.16E-06/RY,

I.21E-06/RY (4.31%), 1.28E-06/RY (10.34%)S. 4444 44, SGTR 4 44 5. 5-10 4 444

4444 45-4 ATWS 43.44# 4 ^(consequential SGTR)4 SGTR 5. 444-H-S

atws 4 &/144 #44 4# 544 1841 4 4444

5 5-10. &#44 RPS/ESFAS sti 4444 41# CDF 44^ 44 44

iEn# IECDF (/RY) ^!) 43

CTS STS ATS

LLOCA 6 80E-076 85E-07 (0.74%)

6.93E-07(1.91%)

MLOCA 5.96E-076.01E-07(0.84%)

6 08E-07 (2.01%)

#2)

SLOCA 1 13E-06 1 19E-06 (5 31%)

1.28E-06(13.27%)

loca rt* SGTR 1 16E-061 21E-06 (4 31%)

1.28E-06 , (10 34%)

#3)

ISLOCA 1 77E-091 77E-09 (0.00%)

1.77E-09 (0 00%)

RVR 2 66E-072.66E-07 (0 00%)

2.66E-07(0.00%)

^h7l| 3 84E-063.96E-06(3.13%)

4 13E-06 (7.55%)

LSSB 1.72E-071 72E-07 (0.00%)

1.72E-07 (0 00%)

LOFW 3 91E-073 91E-07 (0.00%)

3.91E-07(0.00%) SBO

LOCV 1.80E-08 1.80E-08(0.00%)

1.80E-08(0.00%)

LOOP 2 21E-062 21E-06 (0.00%)

2.21E-06(0.00%)

4&4S LOCCW 5 57E-075.57E-07(0.00%)

5.57E-07(0.00%)

nf- LOKV 4.07E-10 4 07E-10 (0.00%)

4.07E-10(0.00%)

LODC 2 94E-072.94E-07(0.00%)

2.94E-07(0.00%)

GTRN 1.59E-07 1 43E-07 (-10 06%)

1.39E-07(-12.58%)

ATWS 1.27E-071 42E-07 (1181%)

1.73E-07(36.22%)

^4) 3.93E-06 3.93E-06(0.00%)

3.95E-06(0.51%)

Total CDF 7 77E-067.88E-06(1.42%)

8.08E-06(3.99%)

^ i)CDF^ Igs-SAS. 4,OH’S- CT8 44^2) ATWS 5) A>J2^^| §. PSV MLOCA°H^ 3) ATWS Si 4^2 4 H # consequential SGTR -£L

CDF«H rflH ^7>i:5.Al 44^iH.SGTR 4 a.#.

- 62 -

4 4^ 4%= ^71 Y# STI ^

RPS/ESFAS ! STI 14#! 4# LERF 4 4! 44\EE 4! 44fe £ 5-11

°fl ^44 %!!. #4 4!fe 4 LERF 4 3 7111 STI STS ! 44 1.31E-

06/RY, 6 7l)l 7l#l ATS ! 44 1.38E-06/RYS 1 7l)l STI 7]trl CTS 4] u|S)) 4-4-

4.05% 4 9.68%! LERF ^7\S. 444^-4, !!! LERF 1 #7^4 7^ 144# 4!2.

h 4}%^! #i2)°D 4an 441 & 4 4 %1! !4 4! 141 44 #! sti 1 !#o)i

144 ATWS 1 4JZ.144 444 (consequential SGTR)o] SGTR 3. lo]5)0^7]

4114 (5. 5-10 %3).

!444 lerf 4 ^7Hl* 3! cdf 1 44! !!!!3 !£ 41 zz.# (44 #s, #10)0)1 4an LOCA 3L# (A>3L 7§4 #4) ^ 144# 44 szz (a}jl ^4 #12)4 lerf 7> sti 1 47H j£4 144 3I43 44>*4. !& 41 zz.#! lerf 4 sts 1 44 47}

7> §LM, ats 4 44! 1% 4#! #7}* 4414. 44 LOCA 3.#! lerf 4 sts 1 44 2.39%, ats 1 44 6.33%! #7}# 3^3!, 444# 4! 33! 44 lerf! 4 7}/l]4 4.02%! 9.9i%3 44 4Hel44. #ai 44 4^5-E.! 44 sti !

4# SGTR! CD#7>7> 4! 4135. 4-444 ! 4 !4

5. 5-11. 44 3,4 3L7l RPS/ESFAS STI 44!! 4# LERF 4 #3 4! 4!

LERF SEQ. LERF (/RY) ^ 0 4 J1CTS STS ATS

LERF-SQ #4 1.09E-8 1.12E-08(2.39%)

1.16E-08(6.33%)

LERF-SQ #8 1.16E-8 1.16E-08(0.09%)

LITE-08(0.86%)

LERF-SQ #10 7.17E-8 7.17E-08(-0.03%)

7.22E-08(0.68%)

LERF-SQ #12 1.17E-6 1.22E-06(4.02%)

1.29E-06(9.91%)

Total LERF 1.26E-6 1.31E-06(4.05%)

1.38E-06(9.68%)

4 1) LERF 4 =1551:0.5. ^4-^^0lD),()S>’8- CTS a)-2) LERF 4) 4 4 ^7>i-SAl 41^

- 63 -

*11 5 € (AOT)

1. AOT

&#44 RPS/ESFAS o)l 4ft AOT 445 44 c 1) fM Sc St TS 44 44€

4# LCO 7)7) 41 4-4 (5. 5-5)4 44 AOT 4^5* 2) ^7} 14* 445

5. USNRC 7]#44 44- 44 7}^# 44 AOT # 9^#c f44^4. 4

4 USNRC 44 AOT 44i- 44 5^44 AOT 445 ^7} (RG1 174, RG1.177)3-c

ACDF (CDF #7}4), ALERF (LERF #7}4-), ICCDP (incremental conditional core damage probabil­

ity)!- ICLERP (incremental conditional large early release probability) H"°) 44. 4# AOT 445

#5#! 444SS. 4-5-4 #4 4444.

ACDF = (LCO 7]7] 41 4-4444 CDF)-(4# CDF) (4 5-3)

ALERF = (LCO 7)7] 41 44444 LERF)-(7]e LERF) (4 5-4)

ICCDP = ACDF x AOT (4 5-5)

ICLERP = ALERF x AOT (4 5-6)

471)4 44- S44rS. 44 (completion time)-2-5. 444c AOT 444 544-44 4

^41 44-44 7)7] 41 4-454 49-* 44^4-. ^44, rps/esfas ts 4-4

4- 444 444 lco 444 444 s4 f4 44 444 44- £4 ^4 7)7) 414

c 4* 4 1&4 c44°W 44 M4444c rps/esfas 4# 44, rps 4 ^4

& 7fli, 71)445. ^ tcb 4 444 aot 414s 47} 44t4 444 4444. 444

4-f ^4 5-2 44 5c 44 44 24 A}4 =444 (ACDFa, ALERFa, ICCDPa, ICLERPa)4

<=r4 f (ACDFb, ALERFb, ICCDPb, ICLERPb)4 445 ^7>7> !_R#4, 44 4 5-5 4 4 5-

6 4 44) 44-4c iccdp4 iclerpc 44 4 5-5' 4 4 5-6’4 44 44444 #4.

ICCDP = (ACDFa) x AOT + (ACDFb) x (44c44 4) (4 5-5')

= (S4 44 lco 7)7) 41 441 acdf)xAOT

+ (S4 ^ 7)7) 41 4-44 acdf) x (4^ 4-4 44)

ICLERP = (ALERFa) x AOT + (ALERFb) x (4!444 4) (4 5-6’)

= (S4 44 LCO 7)7) 41 444 ALERF) x AOT

+ (54 * 7)7) 41 444 ALERF) X (7# 44 7)4)

- 64 -

CDF (or LERF)

3IS GDI (LERF)

£trUJ<COLLQO<1

: - o'f.f

‘ ICCDPa (ICLERPal

; iCCDPb (ICLERPb)

--------- ►4 AOT * 4i*ea;izi *

=L% 5-2.

44 5. 5-5 °114 444 AOT 44* *4 44°11 AOT 44* ^7}4 4*4 4

* *4#4 4*444.

• AOT sl #5. *4* STI 44* *4 4^4* 44 5 5-5 4 *4 4*4 AOT 44*» ^7>tl4.

• LCO 7]7l nl]<ti 4 El)* ^^o_5. RPS ** ESFAS 4 4-4 7l*c>l o}L|4 JE.-E-

7l*°114 4^5}* 4** 7>4f}4. 41* #4, RPS ^1* 444 l 7ll *44 4*

4* 44 444*7} 444- S-* ^*1^41 44 1 7fl *1114 Tl4* 7}4t}c}.

• 4* LCO * a## 7)11^ -9-5) BE* B^4 4* 444 *4 * ^7] 7-1* 44

444 ^1* 71*51-4. 71-71 4* 44444 4-g: 714 (7114*47l 4)**4 3,4 4 <34 3,4 5L7l 4* *4 # *4 44 %** 8.69 44 14 5)5. 3L7l 4 44 2 S] 4b 44 s}* 4*5. 7>4444. 4 4* 4*44* 44445. 4

4 1 s)# if-sH %- 3 S)4 4*4x17} 44. 444 44*4714* 4S4*5

0.167 4 * 1 4/3 4 * 0.5)4 4-5-5. 7}4%}c}.• lco 7i7i nil4 4EH4 44 aot * *71 44a] 45. 4444, SM *44

*4 44* 414 71144 *S|g. 7} 4 44.

- 65 -

• LCO 4 444 4M4 44### RPS/ESFAS 4 3L^-a] (fail-safe) #4 7)144

44 til4^(de-energized) 44444 2422 444# ^#4 cfl-?-£-§- 4444

4442 2# 4^(energized) 44444 244 44) 4^4# 422 7^44.

4# AOT 442 ^7>A) *1)40) 44##4 44 jz44#44 ^4 *)l\t4 ‘jl

4’(2# 44##)# ‘True’2 4444, 4# 2#44 442 ^7> AA

* 47)1 €4. 2# lco 244444 4#4# ‘-44’ 4 ‘24 2# 7)14’# 44

‘True’4 ‘False’2 7)4^^.

• a 5-5 4 LCO 2:44 4)4 AOT 442 #4# 1 7}|-i 7)e STI (CTS) 4 3 7fll

7ie STI (STS)4 44 444 AOT 4^2 *%A% 2444.

t£2, a#44 RPS/ESFAS 4 AOT «fl 44 44 44# #7) 444 44 LCO 0)1

444 44 7>44 AOT 4 4414# 4#4 44 4444.

2:4 1) Max { ACDFa, ACDFb ) < (ACDF 4#4) 444

Max { ALERFa, ALERFb } < (ALERF 7)#4) 4 4#

Max AOT = Min { [ (ICCDP 4 #4) - (4 ^#44 4) x ACDFb ] / ACDFa, (4 5-7)[ (ICLERP 7l#4)_ (7)( d~£47l 4) x ALERFb ] / ALERFa }

24 2) Max { ACDFa, ACDFb } > (ACDF 4#4) 2#

Max f ALERFa, ALERFb } > (ALERF 7)#4) 4 4#

Max AOT = 4^ AOT (4, AOT 44 #7» (4 5-8)

444, AOT 442 #2#4 cfl^ 4 #4## 44 4444# #4422 444 44

44444 44 4#4 [444, 2002], 4 #444# usnrc 4e [usnrc, 1998c ~

d]# 4-0-4S4.acdf 4 44 usnrc 4#4# #4 4# 44 1 (44 #7}), n (444 44 7) #), ni

(44 7>#)4 44- 44 1.0E-5/RY 44", i.oe-5 ~ 1.0E-6/RY, 1.0E-6/RY 44-2 444 44.

alerf 7l#4# #4 7l# 44 1, n, hi 4 44 44 i.oe-6/ry 44, i.oe-6 ~ i.oe-7/ry,

1.OE-7/RY 442 ##44. # #444 4 5-7 4 4 5-8 4 2:44 444 acdf 4

ALERF 7l#4# 44 1.0E-5/RY, 1.0E-6/RY 2 4 #4^4- 444, 4 5-7 4 2# 1 #

usnrc #4 7l# 44 ii 2# iii 4 44 4-f-# 4444, 4 5-8 4 2# 2 # usnrc #4 7|e 44 io)i 4## 444:4.

- 66 -

USNRC 4 ICCDP 5.0E-7 44, ICLERP 4 #4* 5.0E-8 4 #5 **44 ojrf

n4s, 34 *#* 44 *-°l Til****** 0.167 444, h***4 7]# cdf 4 4#

LERF* 44 7.77E-6/RY, 1.26E-6/RYS *7>42l4-. 5*, RPS/ESFAS 4 AOT **-S *4

44 444 5. 5-5 44 48 444 aot * 44 lco 7)714*4 444^ &444M #

*714*4 **-*-44:05. 4444444 0(zero)44 #44-44= 44-

2. &e^4 RPS 4] 4)4 AOT ^-4

5#** RPS 4 AOT 44s 444 44 4*4 4-4 44#"4 44 5. 5-5 4 44

44# RPS 4 444 lco 444 44 aot 44s* 4* *7}*-*4- rps 4 444AOT 4^S *7} *4* #S (ACDF, ALERF, ICCDP, ICLERP)*5. 5 5-12*4 5. 5-15 4

44 *4 usnrc 4*444 4s *44 44 *44 214 ^4 4 54*4 lco s

*4 44 #44 4*44 ** 4 a# ts 44 rps 4 4* lco s*4 44** * * 2ls*, 4s *4 aot 44s4 44 4s *44 4*44.

ACDF 0)1 44 47} *4 (5 5-12)* S* RPTB-2 (TCB **4 2 7fl 4* 5*)* **

cts ^ sts 4 sti 4 44 44 2.320E-03/RY, 2.216E-03/RY 4 acdf 5 *7}44 aot ** *7> 44 (USNRC 7l* *4 I: ACDF > 1.0E-5/RY)O_ 5 4*444. 4444 ACDF *

ACDFa 4 ACDFb # *4* 44*4- &*, RPIR-2 (RPS 71)44S **4 2 71} 4* 5*)

4 *#4* CTS ^ STS 4 STI °n 44 44 3.375E-06/RY, 3.345E-06/RY 4 ACDF 5. *7f

44 44* AOT 4* 7>* *4 (USNRC 7]# *4 n: l.OE-5/RY > ACDF > 1.0E-6/RY)4 *4* *S5 *7>444. *4, rptb-1 (tcb i 7* 44 s*)4 *44* 3 7)1* 4#4

sti 4 444 aot (i 44)4 444 acdf 7> i.H9E-06/ry 3, ** n 4 444* 4=4

4* *ss *7}421-#-4 *44-44 44 *-7)4 *** 444-s 5*44 rps 4 44

4 s* LCO 4 cfl* *7114 AOT (1 *4 £* 48 *4)* 4# 4444 2l#

* 4 # 214.ALERF oil 44 *71- *4(5 5-13) 44 34 4*4 acdf *7> *44 ***• *4

* -ti-45 214. #, RPTB-2 4 *** *7>Al *t* STI 4 44)214 ALERF 4 44 AOT 4*S7> 4* *4 *o_5. *71-44 NRC 71*0.5. AOT 4* *7> *4 I (ALERF > l.OE-

6/ry)o)1 *44^4. rps 4 LCO 4## rpir-2 4 3 7H* 7)* sti 4 *44 rptb-i 4 *

* ALERF 4 cflfl aot 4*S *7> *4* ACDF 4 tfl* AOT 4*5 *7> *44 *4

4-tII 44* aot 4* *4 n (i.oe-6/ry > alerf > i.oe-7/ry)4 44# * ss 444rs

4, 444 LCO 4 44 ** aot * alerf 4 #444 4# s#*S5 **44 21#

* 44^4.

- 67 -

1 5ICCDP (S 5-14) 4 ICLERP (S 5-15)4 4# AOT ##5 47} ##1 51 LCO 7)7)

41 4-4)7} 4-44 usnrc i# 7ieyy 5.0E-7 444 s.oe-s 44* ##441 455

444:4. °11 si## rps 4 51 lco 4 44) 4444 aot 4 iccdp 4 iclerp 4

4°))4 51455 4444 14# 4444.

4-7)4 ACDF, ALERF, ICCDP 4 ICLERP 4 44 AOT 4 #5 47} 44#& 4444

5-7 4- 4 5-8 # 444 aot ##5 1-4 (41 7}## 44 aot 4 4#1 444)#

4##4. 4#4 44## a 5-i6 4 144 44- usnrc 14 7)i# 44 s 5-16 4

AOT ##5 14 145.14 414 n 111 4444

1) STI4 44^4 TCB4 #14 2 71) 414 %44 4# aot! ##-€ 1 14-

2) TCB 4 #14 2 7fl 4)# 544 41# 444 51 LCO 4 4# #4 51 SI

ts 44 aot l sti 4 #4(3 7i)l 7)1)4 4414 aot 4454 441 444

41 455 47}# 55 #444 144 7>#44.

3) RPS 7D4454 #44 2 7)| 54(RPIR-2)4- 3 7)14 7)14 sti 7} 4#4 4-

4)444 tcb 1 7l) 41 54(RPTB-i)4 411: aot 4 4#41 1## 7)# 45

7} 154, 1#A) 1 144 44-7)- 41 5141 AOT 4#5 14 #14 7)&

#4-1 1# 54444 #4.

4) #4 7)#4^44 7}# e 14# 14 441 rps 4 44# lco H#4 s

1 14 7) lx) #a) 4 44 41 1## 1# 444 lco 144 #4#

(completeness)^ 4444 441 444. 4* #4, 15)5#-# 41 #4 TS #4

A)1 LCO 5455 RPLM-3 (6 7)) 7))#1 4 7)) 444 5#55 AOT 1 48 4#)

144- ## RPLM-3 4 41# AOT 4#5 #7) #45 USNRC 1# 7)1444

1# #55 44454, 41 si ts 4 l45#i 4# lco 544 aot 1 4

1 51455 ##44 4## 44#4 44#, RPLm-i (14 5# l 7i) 4)# 5

4) 51 RPLM-2 (## ##5 ## 3 7)) 14 5# 5#-)4 #1 LCO 7)7)

flliy #44 444 ## ts 441 44# 145 ### 1 #4. 4## 54#

4 4# 1# 7>155 44# 15 #54 4 41 44# aot 4#57}

15 ### #4# 1 44. 441 4444 4)54 7))4#5 51 !#4# 1

44 ##4 2 7l) 4)4 s44 4# lco 144 ts 4)41 #4- 4 414

544455 4# 6 4# 44 5144 51 #x}5 44# s##! 455 4)

44)4 #4# aot ##5 1444 44#r#4 44# AOT# 7}# 1 %)#4|5

#14-5 1444 #4 4# 51 #x}5 445 ## ##54 544 14# 4

«D 4-7)1 44.

- 68 -

5. 5-12. RPS 4| 44 AOT 4^32 (ACDF) ^7> 44

LCO 44 4-8-44-STI* AOT NRC 44

7]$ 44**His |

CTS STS ACDFa ACDFb

RPBI-1 © ©CTS 1.000E-09 1.000E-09 m

STS 1.160E-07 1.160E-07 ra

RPBI-2 © ©CTS 7.800E-08 < e mSTS 1.910E-07 1.150E-07 m

RPLM-1 ©CTS < 6 N/A raSTS 1.150E-07 N/A ra

RPLM-2 ©CTS 1.000E-09 N/A raSTS 1.160E-07 N/A ra

RPLM-3 ©CTS 3.900E-08 N/A raSTS 1.530E-07 N/A ra

RPMW-1 © ©CTS < e < e raSTS 1.150E-07 1.150E-07 ra

RPMW-2CTS 5.900E-08 < 6 raSTS 2.280E-07 1.150E-07 ra

RPIR-1 © ©CTS < 6 < e raSTS 1.160E-07 1.150E-07 ra

RPIR-2 ©CTS 3.375E-06 < 6 n *1144 <34 44

STS 3.345E-06 1.150E-07 ii 444 44 71-4

RPTB-l ©CTS 3.590E-07 < e raSTS 1.119E-06 1.150E-07 n 444 44 7>4

RPTB-2 © CTS 2J20E-03 < e i AOT 44 1-7}-

STS 2.216E-03 1.150E-07 i AOT 44 471-*)CTS 1 7D1 ST17] STS (5-^7] ^-x] ^ : 3 7l| ^ STI ?!#)**) RG 1 174 .sL^E) y-g-. ^ I (no changes allowed), ^ ^ II (small changes, track curmulative impacts), ^ III (very

small changes, more flexsible with respect to baseline CDF, track curmulative impacts).

- 69 -

5. 5-13. 5### RPS AOT (ALERF) ^7> #4

LCO #4 SIT* AOT fMS NRC ^<y7i§ °m**

H]JICTS STS ALERFa ALERFb

RPBI-1 © CTS < e 2.800E-08 mSTS 4.700E-08 4.700E-08 m

RPBI-2 ® © CTS 7.000E-09 O.OOOE+OO mSTS 5.400E-08 4.700E-08 in

RPLM-1 © CTS < 6 N/A mSTS 4.700E-08 N/A m

RPLM-2 © CTS < e N/A mSTS 4.700E-08 N/A m

RPLM-3 © CTS 4.000E-09 N/A mSTS 5.100E-08 N/A m

RPMW-1 © © CTS < e 2.800E-08 mSTS 4.700E-08 7.500E-08 m

RPMW-2CTS 1.90GE-08 2.800E-08 mSTS 7.3G0E-08 7.500E-08 m

RPIR-1 © © CTS < e 2.800E-08 mSTS 4.700E-08 7.500E-08 m

RPIR-2 ©CTS 3.880E-07 2.800E-08 nSTS 4.310E-07 7.500E-08 ii <51-

RPTB-1 © © CTS 4.000E-08 2.800E-08 mSTS 1.660E-07 7.500E-08 n <51 7}%-

RPTB-2 © CTS 2.734E-04 2.800E-08 i AOT -El 1-7)-STS 2.700E-04 7.500E-08 i AOT Sll l-7>

*)CT87]#X|^a] i 7M 8TI 7]#), STS(&eM ^4:3 € STI 7}$)**) RG 1 174 <y-§-; ^ I (no changes allowed), ^ ^ II (small changes, track cumulative impacts), ^ ^ III (very

small changes, more flexsible with respect to baseline CDF, track cumulative impacts).

- 70 -

S. 5-14. RPS °fl 4)# AOT (ICCDP) ^7> 44

LC0 44 STI*AOT NRC 44

44**4 ji

CTS STS ICCDPa ICCDPb ICCDP

RPBI-1 © © CTS 1.142E-13 I.671E-10 1.672E-10 44STS 1.324E-11 1.939E-08 1.940E-08 44

RPBI-2 ® © CTS 8.904E-12 0.000E+00 8.904E-12 44STS 2.180E-11 1.922E-08 1.924E-08 44

RPLM-1 © CTS < e N/A < 6 44STS 6.301E-10 N/A 6.301E-10 44

RPLM-2 ©CTS 5.479E-12 N/A 5.479E-12 44STS 6.356E-10 N/A 6.356E-10 44

RPLM-3CTS 2.137E-10 N/A 2.137E-10 44STS 8.384E-10 N/A 8.384E-10 44

RPMW-1 © © CTS <e < e < 8 44STS 1.313E-11 1 922E-08 1.923E-08 44

RPMW-2CTS 6.735E-12 < 8 6.735E-12 44STS 2.603E-11 1.922E-08 1.925E-08 44

RPIR-1 © © CTS < 8 < 6 < 8 44STS 1.324E-11 1.922E-08 1.923E-08 44

RPIR-2 ©CTS 3.853E-10 < 6 3.853E-10 44STS 3.818E-10 1.922E-08 1.960E-08 44

RPTB-1 © © CTS 4.098E-11 < 8 4.098E-11 44STS 1.277E-10 1.922E-08 1.935E-08 44

RPTB-2 © CTS 2.649E-07 < 8 2.649E-07 44STS 2.530E-07 1.922E-08 2.722E-07 44

*)CTS(^^ 7]^x]^jA-]: 1 7l)^ STI 7]5),STS(E^7)^a] A1 >i:3 7f|4j STI 7)§) **)RG 1.177 3.fBj °l-§-ICCDP 7|^S|fe 5e-7 °14

- 71

& 5-15. RPS 4| 4# AOT 44^ (ICLERP) ^7> 14

LCO 44#4

STI*AOT -S43E NRC

44!§**

ti] 31CTS STS ICLERPa ICLERPb ICLERP

RPBI-1 © © CTS < 6 4.679E-09 4.679E-09 4#STS 5.365E-12 7.855E-09 7.860E-09 44

RPBI-2 © © CTS 7.991E-13 < 8 7.991E-13 44STS 6.164E-12 7.855E-09 7.861E-09 44

RPLM-1 © CTS < e N/A < 8 44STS 2.575E-10 N/A 2.575E-10 44

RPLM-2 © CTS < 8 N/A <8 44STS 2 575E-10 N/A 2.575E-10 44

RPLM-3 © CTS 2.192E-11 N/A 2.192E-11 44STS 2 795E-10 N/A 2.795E-10 44

RPMW-1 © © CTS < 8 4.679E-09 4.679E-09 44STS 5.365E-12 1.253E-08 1.254E-08 44

RPMW-2 CTS 2.169E-12 4.679E-09 4.682E-09 44STS 8.333E-12 1.253E-08 1.254E-08 44

RPIR-1 © © CTS < 8 4.679E-09 4.679E-09 44STS 5.365E-12 1.253E-08 1.254E-08 44

RPIR'2 © CTS 4.429E-11 4.679E-09 4.724E-09 44STS 4.920E-11 1.253E-08 1.258E-08 44

RPTB-1 © © CTS 4.566E-12 4.679E-09 4.684E-09 44STS 1.895E-11 1.253E-08 1.255E-08 44

RPTB-2 © CTS 3.121E-08 4.679E-09 3.589E-08 44STS 3.083E-08 1.253E-08 4.336E-08 44

*)CTS (%% l 7fl1i STI 7] §), STS (S. $ 7l ^ 7-1 #d A1.3 7lll ST I 7l §•)**) RG 1.177 S.-t’E) <?]-§- ICLERP 7le^l-b 5e-8 °H.

- 72 -

5. 5-16. RPSS] AOT S13-5E #4*

LCO STI** €s3 AOT (hr)

44 AOT (hr)

NRC7]fr 44***CTS STS

RPBI-1 ©CTS 1 4378536 mSTS 1 7855 m

RPBI-2 ©CTS 1 56154 mSTS 1 6837 m

RPLM-1 ©CTS 48 00 mSTS 48 9319 m

RPLM-2 ©CTS 48 4380000 mSTS 48 9319 in

RPLM-3CTS 48 109500 mSTS 48 8588 m

RPMW-1 © ©CTS 1 00 mSTS 1 5840 m

RPMW-2CTS 1 20895 mSTS 1 4496 m

RPIR-1 © ©CTS 1 00 raSTS 1 5840 m

RPIR-2 ©CTS 1 1023 n 4^ 7)4^STS 1 761 n 7|]t)3 4^" 7)-^

RPTB-1 © ©CTS 1 9925 mSTS 1 1977 n 44- 7)4

RPTB-2 ©CTS 1 1 iSTS 1 1 1 #7)

*)AOT 44c- 44 7)44 AOT a]4M3.A] 4 (5-7)4 4% 31443)4**) CTS (H4 7) #4^ A) 1 7H1 STI 7] g), STS (S.^71 #A] ^ A]: 3 7])^ STI 7]#)***) ACDF 4 ALERT 4| 44 #4 aj-g-'t 7)^-8- RG 1.174 5.4-6] 4-§-: 44 I (no changes allowed), 4 4 II

(small changes, track cumulative impacts), 4 4 III (very small changes, more flexsible with respect to baseline CDF, track curmulative impacts)

- 73 -

a*44 ESFAS 4 AOT 41a #1# RPS 4 1#4 "}^WS SM 4#4 *1

11 *4 44 5. 5-5 4 *1 4)4# ESFAS 4 444 LCO %4°H 4)4 AOT 44a* 4 4 l7}4$4. ESFAS 4 44# AOT 44a 17} 14* #a (acdf, alerf, ICCDP,

iclerp) la a 5-17 #4 a 5-20 44 4 44 usnrc 4#444 451 444 44 4°)

4 44. 3.4a, 4 a444 lco al4 44 *17} ^1^44 44 9) a* ts 44

RPS 4 44 LCO al4 444# # 4 4-M, $a 44) aot 44 a4 4)4 «la *1 °1 7}^-44.

ACDF 4 44 47} 44(a 5-17)* FSIR-2 (ESFAS 7))a)3)^4 *44 2 7» 44

a4)4) 44)A)* CTS ^ STS 4 STI 4 44 44 3.517E-05/RY, 3.531E-05/RY 4 ACDF 5. ^7>44 aot 44 l-7> 44 (usnrc 4*44 p acdf > i.0E-5/R)as. 11414. 44

44 ACDF * ACDFa 4 ACDFb # 4^)44. £4, FSBI-2 (ESFAS 44 44 2 7))

a#)4 sts 4 sti 4 444 fsmw-2 (esfas 4444 444 #44 2 7fl alaa 44

4 a* TS 44 444 $4)4 4444 i.064e-06/ry 4444 i.449e-06/ry 444 ACDF 5. 3§7>44 1)41 aot 41 7}# 44 (USNRC 7)# 44 II: 1.0E-5/RY > ACDF >

1 oe-6/ry)4 #4# laa 47>4$4. #7)4 4** 444a a*41 esfas 4- 44

4 a# lco 4 44 414 aot (i a)! a* 48 a)#)* *D* a*laa 4444 4#

# 1 * 44.

alerf 4 44 47} 14- (a 5-18)* acdf 17} 14-4# 44 4# 44# 444 a $4. 40II* 44 ts4 44 4*4a $* fslm-3 4- cts 4 sti 4 444 fsmw-2 4 1 't'7]- ACDF 4 414 AOT 44a 47HM# USNRC 7)e$$ III (ALERF < l.OE- 7/ry)4 4M^4 alerf 4 44 aot (44# ‘^1’5. 4°) $a4 #444# i 4la

a 7>44) 44a 17} 14# 444 aot 41 7}* $4 n (loe-6/ry > alerf > i.oe-

7/ry)4 44444# 1°14. ae)a, fsir-2 4 fsbi-2 4 1* alerf 4 44 aot 44 a *4 14# acdf 4 #4 144 4l7}ia 4-71 nrc 7)*4 4# aot *7} 41 1 (ALERF > 1.0E-6/RY)4 4)44 AOT 41 7>* $1 (11)4 #4# ALERF * 4# laa 17>4$4. 444 esfas 4 444 lco 4 4)4: 44 aot # alerf 4 4444 4* a*laa 4144 $4a 4444.

esfas 4 444 iccdp (a 5-19)4 iclerp (a 5-20)4 44 aot 44a 17} 14* 414 usnrc #4 71*44 5.OE-7 0)44 5.0E-8 0)4* all* 41 RPS 44 lco# $# laa 4414. °1# a*41 rps 4 a* lco 4 441 1-8-4# aot * iccdp 4 iclerp 4114 cfl-f a*! aa 4140) $*# 4444.

3. ESFAS o)1 4)4 AOT

- 74 -

Kb

op

#7)4 ACDF, ALERF, ICCDP 5 ICLERP 4 Pit AOT 4lE l7> 14## ##44

15-744 5-8 # 4## AOT HE #1 (lr #1°H1# 1# 7)-## 14 AOT 4 t))

1# 44#)# #^4^4- E#ll ESFAS 4 41# AOT HE 41 14# E 5-21 4

41 #4. usnrc #4 7]## 44 E 5-21 4 aot He H 145. #e) 4-g-4 1

1## 4711 444.

1) STI oil 44144 ESFAS 711 Ai45.4 #!1 2 7H 7HM Mi 414 aot # HI

# 44.

2) esfas 71)443.4 #41 2 71) l# 34-4 1#* 444 E# lco 4 44 gig

E# E# TS 44 AOT # STI 4 44(3 7fl4 7)#)<>fl 4144 1144 M4

7}444.

3) STI 4 41 & 4 ESFAS 4#7HM 2 7ll 34, 44 TS 4444 44432. #4

M 4 7H 4|4 34 4 -4444 #44 #11 2 7fl 44 341 414 aot 4 4

444 1## 7l# 437} 434, AOT 441 4 #44 14-4 oil# 5-411

aot He #4 411 4&414# 4# 3444°> 44.

4) rps 4 1#4 o>47>43 ESFAS 4 444 419 #47l#iH4 7}4 # ^

4 #4 44# esfas 4 444 LCO e4#4 e# #44#4444 44 1#

444 #4 °V44 LCO 414 441 (completeness)0! 1444 44# 144-

44, LCO if!4 441 144 44 1&1# 4:1 rps 4 !#! 44 4##

44 14 esfas #4 344 44# lco Ml fslm-3 (6 7H 14# 4 7H 14

4 34EE AOT # 48 11)4 ESFAS 71)145. E# ##1# #44 #11 2

7H 11 314 4# lco #1# # # M4.

- 75 -

5 5-17. ESFAS 4 4% AOT (ACDF) ^7> 44

ECO 44 STI*AOT NRC

7]^ <9^**ti)ji

CTS STS ACDF a ACDFb

FSBI-1 © © CTS 3.000E-08 3.000E-08 m

STS 1.470E-07 1.470E-07 m

FSBI-2 © ©CTS 1.064E-06 1.000E-08 n 934 7>^-

STS 1.217E-06 1.260E-07 n 4%^ 7>4

FSLM-1 ©CTS 1.000E-08 N/A m

STS 1.260E-07 N/A m

FSLM-2 ©CTS 3.000E-08 N/A mSTS 1.470E-07 N/A ra

FSLM-3 © CTS 5.410E-07 N/A raSTS 6.760E-07 N/A ra

FSMW-1 © © CTS < e N/A m

STS 1.150E-07 N/A m

FSMW-2 - CTS 8.450E-07 N/A m -

STS 1.459E-06 N/A n TfltH yy- 7)-^

FSIR-1 © ©CTS 1.000E-09 N/A m

STS 1.190E-07 N/A ra

FSIR-2 © CTS 3.517E-05 N/A 1 AOT #7)-

STS 3.53 IE-05 N/A 1 AOT #7}

*)cts (tH i;m sti7]e), sts7] ^ xi *]*\:3 7H1 sTi ?ie)**) RG 1.174 -sL-tr-E) ^-S*: ^ ^ I (no changes allowed), ^ ^ II (small changes, track cumulative impacts), ^ ^ III (very

small changes, more flexsible with respect to baseline CDF, track cumulative impacts)

5. 5-18. ESFAS 4) 41% AOT 4M3E (ALERF) ^7> 44

LCO#4

STI*AOT NRC 471

44 44 **

tilJLCTS STS ALERFa ALERFb

FSBI-1 © CTS 1.500E-08 1.500E-08 fflSTS 6300E-08 6.300E-08 m

FSBI-2 © CTS 4250E-07 5.000E-09 II 71144 44 71-4STS 4.840E-07 5.200E-08 II 71144 44 7>4

FSLM-1 ® CTS 5.000E-09 N/A mSTS 5.200E-08 N/A m

FSLM-2 © CTS 1.500E-08 N/A mSTS 6300E-08 N/A ra

FSLM-3 ® CTS 2170E-07 N/A n 71144 44 71-4STS 2 710E-07 N/A n 71144 44 71-4

FSMW-l ® © CTS < B N/A raSTS 4.700E-08 N/A ra

FSMW-2CTS 4.940E-07 N/A n 71144 44 7>4STS 7.650E-07 N/A n 4144 44 7>4

FSIR-1 ® © CTS 1.000E-09 N/A raSTS 4.800E-08 N/A ra

FSIR-2 © CTS 8.575E-06 N/A i AOT 44 1-71-STS 8.633E-06 N/A i AOT 44 1-7)-

*)CTS(tH!l 1 7# STI 7]^), STS(£fr7l^^l^)A^3 7l]l STI 7]#)**) RG 1 174 5.-^-6] °l-g-: ^ ^ I (no changes allowed), ^ ^ II (small changes, track cumulative impacts), ^ ^ HI (very

small changes, more flexsible with respect to baseline CDF, track cumulative impacts).

- 77 -

& 5-19. ESFAS 4| AOT (ICCDP) ^7> 44

LCO 44 STI* AOT 4445. NRC 4444**

til5CTS STS ICCDPa ICCDPb ICCDP

FSBI-1 @ © CTS 3.425E-12 5.014E-09 5.017E-09 44STS 1.678E-11 2.457E-08 2.458E-08 44

FSB 1-2 © © CTS 1.215E-10 1.671E-09 1.793E-09 44STS 1.389E-10 2.106E-08 2.120E-08 44

FSLM-1 © CTS 5.479E-11 N/A 5.479E-11 44STS 6.904E-10 N/A 6.904E-10 44

FSLM-2 © CTS 1.644E-10 N/A 1.644E-10 44STS 8.055E-10 N/A 8.055E-10 44

FSLM-3CTS 2.964E-09 N/A 2.964E-09 44STS 3.704E-09 N/A 3704E-09 44

FSMW-1 © © CTS < 6 N/A < e 44STS 6.301E-10 N/A 6.301E-10 44

FSMW-2CTS 4.630E-09 N/A 4.630E-09 44STS 7.995E-09 N/A 7.995E-09 44

FSIR-1 © © CTS 5.479E-12 N/A 5.479E-12 44STS 6.521E-10 N/A 6.521E-10 44

FSIR-2 © CTS 1.927E-07 N/A 1.927E-07 44STS 1.935E-07 N/A 1.935E-07 44

*)CTS(^^ 1 7(11 STI 7|g), STS(g.#7]#7|^Ai 3 7M STI 7]§)**)RG 1.177 5.^-E-l y-g-: ICCDP 7]^^^ 5 OB-7 4#

- 78 -

5. 5-20. ESFAS 4 44 AOT (ICLERP) 44

lco 44*4

STI*AOT NRC

4471^**

HljiCTS STS ICLERPa ICLERPb ICLERP

FSBI-1 © © CTS 1.712E-12 2.507E-09 2.509E-09 44STS 7.192E-12 1.053E-08 1.054E-08 44

FSBI-2 © © CTS 4.852E-11 8.356E-10 8.841E-10 44STS 5.525E-11 8.690E-09 8.746E-09 44

FSLM-1 © CTS 2.740E-11 N/A 2.740E-11 44STS 2.849E-10 N/A 2.849E-10 44

FSLM-2 © CTS 8.219E-11 N/A 8.219E-11 44STS 3.452E-10 N/A 3.452E-10 44

FSLM-3 © CTS 1.189E-09 N/A 1.189E-09 44STS 1.485E-09 N/A 1.485E-09 44

FSMW-1 © © CTS < 8 N/A < 8 44STS 2.575E-10 N/A 2.575E-10 44

FSMW-2CTS 2.707E-09 N/A 2.707E-09 44STS 4.192E-09 N/A 4.192E-09 44

FSIR-1 © © CTS 5.479E-12 N/A 5.479E-12 44STS 2.630E-10 N/A 2.630E-10 44

FSIR-2 © CTS 4.699E-08 N/A 4.699E-08 44STS 4.730E-08 N/A 4.730E-08 44

*)CTS 1 7H1 STI 7)§), STS(£^7l^^]^Ai;3 7)|1 STI 7]§)**)RG 1.177 5.^B] <3-g- ICLERP 5 OE-8 4#

- 79 -

X 5-21. ESFAS ^ AOT ^

LCO #4 STI** AOT(hr)

aM AOT (hr)

NRC <^y7i§ yy***

ti]jiCTS STS

FSBI-1 © ©CTS 1 27736 hiSTS 1 5488 hi

FSBI-2 ©CTS 1 1013 11 4i#y y# 7P5-STS 1 748 11 41SM y# 7V%-

FSLM-l ©CTS 48 87600 inSTS 48 8423 hi

FSLM-2 ©CTS 48 29200 hiSTS 48 6952 hi

FSLM-3CTS 48 2018 II 4iy-y yy- 7f^STS 48 1616 n 4i%y y# 7}?

FSMW-1 © ©CTS 48 00 hiSTS 48 9319 in

FSMW-2CTS 48 887 11 4i yy- 7>^STS 48 573 11 4i#y yy 7}^

FSIR-1 © ©CTS 48 438000 hiSTS 48 9125 hi

FS1R-2 ©CTS 48 48 1STS 48 48 1 #71-

*) AOT xziy-s. #4 7}?^ AOT a|tfl^ls.^ 4 (5.7)3}. (5-8)°f| 4% ^#44^**) CTS (€^ Tj^XI^A] 1 71) y STI7} ^), STS (5.^7} £4 A}: 3 7ls STI 7] $)***) ACDF 4 ALERF 4| 4% 7)£- #4 4-g-# 7}^^- RG 1 174 5.^-E} ?]-§-. °§ 4 I (no changes allowed), °| 4 II (small changes, track cumulative impacts), 4 4 III (very small changes, more flexsible with respect to baseline CDF, track cur- mulative impacts).

- so -

*11 6 # ^4 ^ 4€-

7) #155 5# #47)*H1 (STS)4 &#41 rps/esfas 4 4# #D *41#

111 (CTS)4 AOT/STI » 5# ir^7l#x]^Ai (STS) 5#55 4H 1*5 44^4

41* 11* 17}#5M 4* ID 445 #5 (7))* 4***5, 51*145, 4 &

7] 4)1 ip# 45) 15, PSA 5<##4 414 14 ^ *1 *5* 441-4 7fll 5*

71)1144-. It) o)* 5##* a}fos ##4# RPS 4 ESFAS 4 #11 STI 4D5

H* *D1 14 4*4 1* 4* 1** 44 s)&4.

• ID RPS 4- ESFAS 4 17)11 *4* 415 #141 ID 1 7M 7)#41 3

7i)i 7)#55 ii 7>#i 155 mi (#, &e ^:47)#i4a)4 mi

#7l 1# 7}*). 3 7D1 7)#554 114 %- CDF * 7.88E-06/RY (Al.42%), #

LERF * 1.31E-06ZRY (A4.05%)5 H l7>5)44.

5*41 RPS 4 ESFAS 4 HI AOT 145 #14 14* USNRC 4 AOT 41 #1 7)#* 44 4)14 # 14 4*4 4* l#i 14 414-

• AOT 443E. 17> 14 RPS 4 1-f 145 14417) (TCB)4 *44 2 7)) 7D1

4 441-1- 44* 144:2.* sti 4 1414 ID ^ a# #l7)#4H4

AOT (‘#1’, 1, AOT 415 #11 1 1155 7>1 *)* HI * 4* 417}

S54, *1 5# 7)44114 RPS *45#4 41 AOT (48 11)* 4-t- 5#

155 1144 4** 1 * 444.

• RPS 7)11154 #41 2 7)) 7)11 514 3 7)1! 7)#4 STI 7} 1*4 14414 TCB 1 7| 14 514 41 AOT 4 4.14* Hi: 7)# #57} 44. HI # #14 14-7} 4# 5*11 AOT 4^5 #1 114 7)5444* 1* 1*153)44 11444 44.

• AOT 4D5 17} 14 ESFAS 7} RPS 4 44 AOT 4^54 54 1144, ES­

FAS 71)1454 #41 2 7l) 7H4 514 I** 444 5* lco 4 44 4D 5* 5* ts 14 AOT * STI 4 41 (3 7# 7)#)4 #4&4 <4114 414 7}*44

• STI 4 1711&4 ESFAS 4*44 2 71) 51, #D TS 1414 1*45 4* *3)

2f 4 7)1 7)1* 51 * *#!# *3)4 *41 2 7)1 7))* 514 4# AOT 4 4

14* Hi: 7)-# 157} *54, AOT 411 # #14 14* 4* 5*14

- 81 -

AOT !!* #4 414 7) *45^4^ 4& 4*1 *1144 14

• rps/esfas 141 149 7)# 44444 141 -£-441*4 (lco) 44 41

&e ei4#4^44 44 4-f 4-41 el 444 4444 # #4I # 1* lco 44 41 44* *41* 14 #4. #, €4 *14#4

444 44" * *44* lco *44 444(completeness) 144 14444- 1

II 4* #1, 4 414 44 4s 7>*4 i 7fl 414 si-4 41* 1444

1*4 2 44 *14 414 sl4 144* 4*1* 141 aot *1* 14-.

4 1*4 *441*5 4* 6 41 41 s*14 ** 14-5 14* s^l*

4*s #4 #4 141 aot 11* *4 1444* **°l 411 aot * 4!

* 1*4* **4* 4141 #4 11 ** 14-s 445 11 11*4 si:

4 *1* 44)4-4 14- * 4# 4* 1-1, *4*14 1-f- If ts 444*

LCO *1*5 6 7)) 414 4 7H 414 *4" (°1 1-T- AOT * 48 41) ^14- i-

I 441 lco 4 4# aot 44* 44 14* usnrc 7)e! aot 11 ?b*

14°)1 44 4*s 47>41 4141, *4*1 17fl #1 *4 ** 11 415II 3 7l) *4*1 41 *14 1* lco 7)7) %))! 14)4) 4)4)4 If ts 44

* 441 fl-4* 111 * 9)4- 4 14- 411 *49)4 444471-4*5 #

444 4*14-1, 4-r- 441 aot 11*7} *41 4* 1** 44#4* 1

14

1*4*5 &#14! rps/esfas 4 4)1 -£r441*4(LC0) 1 47)44*4(SR)*

5 *47)#7)14[USNRC, 1995c]! -&4# *44 441* 44 *47)#117] ^

4! 14* 41, sir41 14 4! 41 (441! 41 44, 14 4!7>i 144 4

1, W) 1 14* 11* 4144 4441 4*5 1114.

- 82 -

[##9##, 2000] ##7]#^-, “449443: ##4it4#," 2000.

PJ4tt, 2000] 944 9, “9#:e 4S-* 444 44# 4 4 4444.” kaeri/ar-577/20oo, 44449443:, 2000.

[444, 1999] 444 4, “^4 3,4/44 1,2 37] 44^-313:## ^ 444 44.44 44 44 -fi-4 4# 49 (##32.n4),” 444494,tr95ZJH.ii999.351, 1999.

[494, 2002] 494 4, “94 3,4 &4 4#9 444 44 4^Ed 44,” kaeri/tr- 2134/2002, 44449443:, 2002.

[9 #4, 1997] 4419 4, “KIRAP9 499 4^94 49# 99,” kaeri/tr-848/97, #4 449443:, 1997.

[994,2002a] 994 4, “4#5L 4494: S949 44^-313:##,” kaeri/tr-21 64/2002, 444944441,2002.

[994, 2002b] 994 4, “44£ 4494: &#44 944 4444 49#9,”KAERI/TR-2165/2002, 44444 443, 2002.

[994, 2002] 494 4, “44 9995. 9 945L#hL #9 4949 494 44 449 # 7D9,”kins/rr-h7, 44444949#4,2002

[991, 2002] 991 4, “S944 94 49 ##999 999 h4he. 4-4,"KAERI/TR-2167/2002, 44449 443:, 2002.

[49e, 1994] #4# 4, “949 9419 4### 9 44s. SL3;#* 9944 44A 4 4#,” 44449 443:, KAERI/TR-486/94, 1994.

[444994, 1995] Ulchin Units 3&4 Final Probabilistic Safety Assessment, 4449 44, 1995

[444, 2002] 49-4- 4, ‘4# 44 99 4#3E db #91* 44 7H4,”KAERI/TR-2130/2002, 44449943:, 2002.

[49#, 2002] 44# 9, “44^93l#-§-& 44 #9&99#4^ #99 44# 94,” KAERI/TR-2025/2002, 44449 443:, 2002.

[CEOG, 1984] CE Owners Group, “Reactor Protection System Test Interval Evaluation,” CEN-NPSD- 277, Final Report, Combustion Engineering, Inc., 1984.

[CEOG, 1986] CE Owners Group, “RPS/ESFAS Extended Test Interval Evaluation,” CEN-327, Final Report, Combustion Engineering, Inc., 1986

[CEOG, 1989] CE Owners Group, “RPS/ESFAS Extended Test Interval Evaluation, Supplement 1,” CEN-327A, Combustion Engineering, Inc., 1989.

[CEOG, 1990] CE Owners Group, “RPS/ESFAS Extended Test Interval Evaluation for 120 Day Stag­gered Testing,” CE NPSD-576, Combustion Engineering, Inc., 1990.

[CEOG, 1996] CE Owners Group, “RPS/ESFAS Subgroup Relay Test Interval Extension,” CEN-403, Final Report, Revision 1-A, Combustion Engineering, Inc, 1996.

[KEPCO, 1998] "Full Scope Level II PSA for Ulchin Units 3 and 4", KEPCO, 1998.

[Lobel, 1992] Lobel, R. & Tjader, T.R., “Improvements to Technical Specifications, Surveillance Re­quirements,” NUREG-13 66, USNRC, 1992.

- 83 -

[Pratt, 1999] W. T. Pratt et al, “An Approach for Estimating the Frequencies of Various containment Failure Modes and Bypass Events/’ NUREG/CR-6595, B.N.L & S.N.L., 1999.

[Samanta, 1994] Samanta, P.K. et al., “Handbook of Methods for Risk-Based Analyses of Technical Specification,” NUREG/CR-6141, USNRC, 1994.

[USNRC, 1982] USNRC, ‘PRA Procedures Guide,” NUREG/CR-2300, Vol 1, 1982.

[USNRC, 1983] USNRC, “Technical Specifications - Enhancing the Safety Impact,” NUREG-1024, USNRC, 1983.

[USNRC, 1988] USNRC, “ Required Actions Based on Generic Implications of Salem ATWS Events,” Generic Letter 88-28 Documentation, USNRC, 1988.

[USNRC, 1993] USNRC, “Final Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors,” Federal Register, Vol. 58, p.39132 (58FR39132), 1993.

[USNRC, 1995a] USNRC, “Standard Technical Specifications, Babcock and Wilcox Plants,” USNRC, NUREG-1430, Rev.l, 1995.

[USNRC, 1995b] USNRC, “Standard Technical Specifications, Westinghouse Plants,1’ USNRC, NUREG-1431, Rev.l, 1995.

[USNRC, 1995c] USNRC, “Standard Technical Specifications, Combustion Engineering Plants,” USNRC, NUREG-1432, Rev.l, 1995.

[USNRC, 1995d] USNRC, “Standard Technical Specifications, General Electric Plants, BWR/4,” USNRC, NUREG-1433, Rev.l, 1995.

[USNRC, 1995e] USNRC, “Standard Technical Specifications General Electric Plants, BWR/6,” USNRC, NUREG-1434, Rev.l, 1995.

[USNRC, 1995f] USNRC, “Use of Probabilistic Risk Assessment Methods in Nuclear Activities: Final Policy Statement,” Federal Register, Vol. 60, p. 42622 (60FR42622), 1995

[USNRC, 1996] USNRC, 10CFR50.36, “Technical Specification,” Federal Register, Vol. 61, p. 39299 (61FR39299), 1996.

[USNRC, 1998a] USNRC, “Risk-Informed Decisionmaking Technical Specifications,” SRP Chapter 16.1, NUREG-0800, USNRC, 1998.

[USNRC, 1998b] USNRC, ‘Use of Probabilistic Risk Assessment in Plant-Specific, Risk-Informed Deci­sionmaking: Genereal Guidance,” Draft Revision 1 of Chapter 19 of the Standard Review Plan, NUREG- 0800, USNRC, 1998.

[USNRC, 1998c] USNRC, “An Approach for Using Probabilistic Risk Assessment in Risk-Informed De­cisions on Plant-Specific Changes to the Licensing Basis,” Regulatory Guide 1.174, 1998.

[USNRC, 1998d] USNRC, “An Approach for Plant-Specific, Risk-Informed Decisionmaking: Technical Specifications,” Regulatory Guide 1.177, 1998.

[USNRC, 2000] USNRC, "Reliability Study: Combustion Engineering Reactor Protection System, 1984- 1998", USNRC, NUREG/CR-5500, V.10, (INEL/EXT-97-00740), 2000.

[USNRC, 2001] USNRC, “Reactor Oversight Process Initial Implementation Evaluation Panel Final Re­port,” ADAMS ML011290025, USNRC, 2001.

- 64 -

4^ A.

RPS/ESFAS ^1

izk

A. 1 Xir-iS^ 3,4 3l7])A|

A.2 [NUREG/CR-1432]

A.3 5# ^ ^ til32

A3 1 RPS f #7/#-^#^ y/-5?A3 2 E&R4^ w/JZ

- 85 -

a.i 3,4 jl71)^ ^

— 87 —

3/4.3 INSTRUMENTATION

2Z4JL1 REACTOR PRQTEC.TWRraSXRUMfiNTATTON

9-005-Z-442-001

u JG CONDITION FOR OPERATION

3.3.1 As a minimum, the reactor protective instrumentation channels and bypasses of Table

3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each reactor protective instrumentation channel shall be demonstrated OPERABLE

by the performance of the CHANNEL CHECK, CHANNEL CALIBRATION, and CHANNEL

FUNCTIONAL TEST operations for the MODES and at the frequencies shown in Table 4.3-1.

4.3.1.2 The logic for the bypasses shall be demonstrated OPERABLE prior to each reactor

startup unless performed during the preceding 92 days. The total bypass function shall be

demonstrated OPERABLE at least once per 18 months during CHANNEL CALIBRATION

testing of each channel affected by bypass operation.

4.3.1.3 The REACTOR TRIP SYSTEM RESPONSE TIME of each reactor trip function shall

be demonstrated to be within its limit at least once per 18 months. Each test shall include at

least one channel per function such that all channels are tested at least once every N times 18

months where N is the total number of redundant channels in a specific reactor trip function

as shown in the "Total No. of Channels" column of Table 3.3-1.

N029I-RB-TS060-00 DDS 1 Rev.01

- 89 -

Appendix A Page 122 of 547

9-005-Z-442-001

SURVEILLANCE REQUIREMENTS (Continued^

4.3.1.4 The core protection calculator system shall be determined OPERABLE at least once

per 12 hours by verifying that less than three auto restarts have occurred on each calculator

during the past 12 hours. The auto restart periodic tests restart (Code 30) and normal system

load (Code 33) shall not be included in this total.

4.3.1.5 The core protection calculator system shall be subjected to a CHANNEL

FUNCTIONAL TEST to verify OPERABILITY within 12 hours of receipt of a high CPC

cabinet temperature alarm.

N0291-RB-TS060-00 DDS 1 Rev.01

- 90 -

Appendix A Page 123 of 547

3/4.3-124

TABLE 3.3-1 (sh. lof8)

REACTOR PROTECTIVE INSTRI TATTON

MINIMUM

FUNCTIONAL UNITTOTAL NO. CHANNELSOF CHANNELS TO TRIP

CHANNELSOPERABLE MODES

APPLICABLEACTION

TRIP GENERATION

A. Process

1. Pressurizer Pressure - High 4 2 3 1,2 2", 3'

2. Pressurizer Pressure - Low 4 2(b) 3 1,2 2*, 3#

3. Steam Generator Level - Low 4/SG 2/SG 3/SG 1,2 2',3'

4. Steam Generator Level - High 4/SG 2/SG 3/SG 1,2 2*, 3*

5. Steam Generator Pressure - Low 4/SG 2/SG 3/SG 1, 2, 3‘, 4* 2#,3#

6. Containment Pressure - High 4 2 3 1,2 2', 3'

7. Reactor Coolant Flow - Low 4/SG 2/SG 3/SG 1,2 2',3'

8. Local Power Density - High 4 2 (c)(d) 3 1,2 2#,3'

9. DNBR - Low 4 2 (c)(4) 3 1,2 2#, 3*

Page 124 of 547

3/4.3-125

TABLE 3.3-1 (sh. 2 of 8)

FUNCTIONAL UNITTOTAL NO.OF CHANNELS

CHANNELS TO TRIP

MINIMUMCHANNELSOPERABLE

APPLICABLEMODES ACTION

TRIP GENERATION (Continued)

B. Ex-core Neutron Flux

1. Variable Overpower Trip 4 2 3 1,2 2', 3*

2. Logarithmic Power Level - High

a. Startup and Operating 4 2(i)(d) 3 1,2 2*, 3'

4 2 3 3", 4*. 5* 8

b. Shutdown 4 0 2 3,4,5 4

C. Core Protection Calculator System

1. CEA Calculators 2 1 2(e) 1,2 6,7

2. Core Protection Calculators 4 2 (c)(d) 3 1,2 2', 3*.'

D. Diverse Protection System

Prcssurizer Pressure - High 2(g) 2 2 1,2 9

Page 125 of 547

3/4.3-126

TABLE 3.3-1 (sh. 3 of 8)

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

FUNCTIONAL UNIT OF CHANNELS TO TRIP OPERABLE MOPES ACTION

II. RPS LOGIC

A. Matrix Logic 6 1 3 1,2 1

6 1 3 3*. 4*, 5* 8

B. Initiation Logic 4 2 4 1,2 5

4 2 4 r, 4", r 8

m. RPS ACTUATION DEVICES

A. Reactor Trip Breaker 4(f) 2 4 1,2 5

4(f) 2 4 3\ 4*. 5* 8

B. Manual Trip 4(0 2 4 1,2 5

4(0 2 4 3", 4*. 5* 8

Page 126 of 547

9-005-Z-442-001

TABLE 3.3-1 (Sh. 4 of 8)

TABLE NOTATIONS

* With the protective system trip breakers in the closed position, the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.

# The provisions of Specification 3.0.4 are not applicable.

(a) Trip may be manually bypassed above 10*% of RATED THERMAL POWER; bypass shall be automatically removed when THERMAL POWER is less than or equal to 10*% of RATED THERMAL POWER.

(b) Trip may be manually bypassed below 400 psia (28.1 kg/cm3A) ; bypass shall be automatically removed whenever pressurizer pressure is greater than or equal to 500 psia (35.2 kg/cm2A).

(c) Trip may be manually bypassed below 10"*% of RATED THERMAL POWER; bypass shall be automatically removed when THERMAL POWER is greater than or equal to 10"*% of RATED THERMAL POWER,

(d) Trip may be bypassed during testing pursuant to Special Test Exception 3.10.3.

(c) See Special Test Exception 3.10.2.

(f) There are four channels, each of which is comprised of one of the four reactor trip breakers, arranged in a selective two-out-of-four configuration (i.e., one-out-of-two taken twice).

(g) There are two channels, each of which opens one Control Element Drive Mechanism Motor Generator output contactor arranged in a two-out-of-two logic, thus removing motive power to the Reactor Trip Switchgear System.

ACTION STATEMENTS

ACTION 1 - With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and/or open the protective system trip breakers.

N0291-RE-TS060-00 DDS 1 Rev.Ql

- 94 -

Appendix A Page 127 of 547

9-005-Z-442-001

ACTION 2 -

TABLE 3.3-1 (Sh. 5 of 8)

ACTION STATEMENTS

With the number of channels OPERABLE one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may continue provided the inoperable channel is placed in the bypassed or tripped condition within 1 hour. If the inoperable channel is bypassed after 7 days, the desirability of maintaining this channel in the bypassed condition shall be reviewed by PNSC within the next 24 hours in accordance with Specification 6.5.1.6.g The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.

With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or trip all associated functional units as listed below:

Process Measurement Circuit

1. Linear Power (Subchannel or Linear)

2. Pressurizer Pressure - High (Narrow Range)

3. Steam Generator Pressure - Low

4. Steam Generator Level - Low (Wide Range)

5. Core Protection Calculator

Functional Unit Bypassed/Tripped

Variable Overpower (RPS)Local Power Density - High (RPS) DNBR - Low (RPS)

Pressurizer Pressure - High (RPS)Local Pbwer Density - High (RPS) DNBR - Low (RPS)

Steam Generator Pressure-Low(RPS) Steam Generator Pressure 1-Low (ESP) Steam Generator Pressure 2-Low (ESP)

Steam Generator Level - Low (RPS) Steam Generator Level 1-Low (ESP) Steam Generator Level 2-Low (ESP)

Local Power Density - High (RPS) DNBR-Low (RPS)

N0291-RB-TS060-00 DDS 1 Rev.01

- 95 -

Appendix A Page 128 of 547

9-005-Z-442-001

ACTION STAMPfflS

ACTION 3 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE requirement, STARTUP and/or POWER OPERATION may continue provided the following conditions are satisfied:

a. Verity that one of the inoperable channels has been bypassed and place the other channel in the tripped condition within 1 hour, and

b. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/tripped condition as listed below:

TABLE 3.3-1 (Sh. 6 of 8)

Process Measurement Circuit Functional Unit Bypassed/Tripped

1. Linear Power(Subchannel or Linear)

Variable Overpower (RPS)Local PowerDensity - High (RPS)DNBR - Low (RPS)

2, Pressurizer Pressure - High (Narrow Range)

Pressurizer Pressure - High (RPS)Local Power Density - High (RPS)DNBR - Low (RPS)

3. Steam Generator Pressure - Low

Steam Generator Pressure - LowSteam Generator Pressure 1-Low (ESF) Steam Generator Pressure 2-Low (ESF)

4, Steam Generator Level - Low (Wide Range)

Steam Generator Level - Low (RPS)Steam Generator Level 1-Low (ESF)Steam Generator Level 2-Low (ESF)

5. Core ProtectionCalculator

Local Power Density - High (RPS)DNBR - Low (RPS)

N0291-RE-TS060-00 DDS 1 Rev.01 Appendix A Page 129 of 547

- 96 -

9-005-Z-442-001

ACTION 4

ACTION 5

ACTION 6

TABLE 3.3-1 (Sh. 7 of 8)

STARTUP and/or POWER OPERATION may continue until the performance of the next required CHANNEL FUNCTIONAL TEST. Subsequent STARTUP and/or POWER OPERATION may continue if one channel is restored to OPERABLE status and the provisions of ACTION 2 are satisfied.

With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, suspend all operations involving positive reactivity changes.

With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, STARTUP and/or POWER OPERATION may continue provided the reactor trip breaker of the inoperable channel is placed in the tripped condition within 1 hour; otherwise, be in at least HOT STANDBY within 6 hours; however, the trip breaker associated with the inoperable channel may be closed for up to 1 hour for surveillance testing per Specification 4.3. LI.

a. With one CEAC inoperable, operation may continue for up to 7 days provided that the requirements of Specification 4.1.3.1.1 are met. After 7 days, operation may continue provided that the conditions of Action Item 6.b are met.

b. With both CEACs inoperable operation may continue provided that:

1. Within 1 hour the DNBR margin required by Specification 3.2.4b (COLSS in service) or 3.2.4d (COLSS out of service) is satisfied and the reactor power cutback system is disabled, and

2. Within 4 hours:

a) All CEA groups must be withdrawn within the limits of Specifications 3.1.3.5,3.1.3.6b, and3.1.3.7b, except during surveillance testing pursuant to the requirements of Specification 4.1.3.1.2. Specification 3.1.3.6b allows CEA Group 5 insertion to no further than 127.5 inches (323.9 cm) withdrawn.

N0291-RE-TS060-00 DBS 1 Rev.01

- 97 -

Appendix A Page 130 of 547

9-005-Z-442-001

ACTION 7

ACTION 8

ACTION 9

TABLE 3.3-1 (Sh. 8 of 8)

ACTION STATEMENTS

b) The "RSPT/CEAC Inoperable* addressable constant in the CPCs is set to indicate that both CEAC’s are inoperable.

c) The control element drive mechanism control system (CEDMCS) is placed in and subsequently maintained in the "Standby" mode except during CEA motion permitted by Specifications 3.1.3.5, 3.1.3.6b, and 3.1.3.7b, when the CEDMCS may be operated in either the "manual Group" or "Manual individual" mode.

3. CEA position surveillance must meet the requirements of Specifications 4.1.3.1.1,4.1.3.5, 4.1.3.6, and 4.1,3.7 except during surveillance testing pursuant to Specification 4.1.3.1.2.

With three or more auto restarts, excluding periodic auto restarts (Code 30 and Code 33), of one nonbypassed calculator during a 12-hour interval, demonstrate calculator OPERABILITY by performing a CHANNEL FUNCTIONAL TEST within the next 24 hours.

With the number of OPERABLE channels one less than the Minimum Channels OPERABLE requirement, restore an inoperable channel to OPERABLE status within 48 hours or open an affected reactor trip breaker within the next hour.

- With the number of OPERABLE channels one or more less than the MINIMUM CHANNELS OPERABLE requirement, place affected channel(s) in bypass and restore all channels to OPERABLE status prior to entering MODE 2 following next MODE 5 entry.

N0291-RE-TS060-00 DDS 1 Rev.01

- 98 -

Appendix A Page 131 of 547

9-005-Z-442-001

TABLE 3.3-2 (Sh. 1 of 4)

I.

REACTOR PROTECTIVE INSTRlIMlMCl. :ahon RESPONSE TIMES

FUNCTIONAL UNIT RESPONSE TIMETRIP GENERATION

A. Process

1. Pressurizer Pressure - High s 0.55 seconds

2. Pressurizer Pressure - Low s 1.15 seconds

3. Steam Generator Level - Low £ 1.25 seconds

4. Steam Generator Level - High £ 1.15 seconds

5. Steam Generator Pressure - Low £ 1.15 seconds

6. Containment Pressure - High £ 1.15 seconds

7. Reactor Coolant Flow - Low £ 0.70 second

8. Local Power Density - High

a. Neutron Flux Power from £ 0.55 second*Excore Neutron Detectors

b. CEA Positions £ 1.35 seconds”

c. CEA Positions: £ 0.75 second”CEAC Penalty Factor

9. DNBR - Low

a. Neutron Flux Power from £ 0.55 second*Excore Neutron Detectors

b. CEA Positions £ 1.35 seconds”

c. Cold Leg Temperature £ 8.55 second##

N0291-RE-TS060-00 DDS 1 Rev.01 Appendix A Page 132 of 547

- 99 -

9-005-Z-442-001

TABLE 3.3-2 (Sh. 2 of 4)

functional unit

I. TRIP GENERATION (Continued)

d. Hot Leg Temperature

e. Reactor Coolant Pump Shaft Speed

f. Reactor Coolant Pressure from Pressurizer

g. CEA Positions: CEAC Penalty Factor

B. Excore Neutron Flux

1. Variable Overpower Trip

2. Logarithmic Power Level - High

a. Startup and Operating

b. Shutdown

C. Core Protection Calculator System

1. CEA Calculators

2. Core Protection Calculators

D. Diverse Protection System

Pressurizer Pressure - High

N0291-RE-TS060-00 DDS 1 Rev.01

- 100 -

RESPONSE TIME

<, 8.55 second##

s 0.30 second#

< 1.15 seconds###

s 0.75 second”

< 0.55 second*

s 0.55 second*

5 0.55 second*

Not Applicable

Not Applicable

<1.15 seconds

Appendix A Page 133 of 547

9-005-Z-442-001

TABLE 3.3-2 (Sh. 3 of 4)

FUNCTQWALiflgl

n. RPS LOGIC

A. Matrix Logic

B. Initiation Logic

m. RPS ACTUATION DEVICES

A. Reactor Trip Breakers

B. Manual Trip

RESPONSE TIME

Not Applicable

Not Applicable

Not Applicable

Not Applicable

N0291-RB-TS060-00 DDS 1 Rev.01

- 101 -

Appendix A Page 134 of 547

9-005-Z-442-001

TABLE 3.3-2 (Sh. 4 of 4)

TABLE. NOTATIONS

* Neutron detectors are exempt from response time testing. The response time of the neutron flux signal portion of the channel shall be measured from the detector output or from the input of the first electronic component in channel.

** The sensors measuring CEA position are exempt from response time testing.Response time shall be measured from the output of the sensor. Acceptable CEA sensor response shall be demonstrated by compliance with Specification 3.1.3.4.

# The pulse transmitters measuring pump speed are exempt from response time testing. The response time shall be measured from the pulse shaper input.

## Response time includes the response time of the resistance temperature detector (RTD) sensor. RTD response time shall be measured at least once per 18 months. The measured response time of the slowest RTD shall be less than or equal to 8 seconds.

### Response time includes the response time of the pressure transmitter. The pressure transmitter response time shall be measured at least once per 18 months. The measured response time of the slowest pressure transmitter shall be less than or equal to 0.6 seconds.

N0291-RB-TS060-00 DDS 1 Rev.01

- 102 -

Appendix A Page 135 of 547

3/4.3-136

TABLE 4.3-1 (Sh. 1 of 5)

I.

REACTOR HB1NSTR1 J51MSTATTON SURVEILLANCE REQUIREMENTS

CHANNELFUNCTIONAL UNIT CHECK

TRIP GENERATION

A. Process

1. Pressurizer Pressure - High S

2. Pressurizer Pressure - Low S

3. Steam Generator Level - Low S

4. Steam Generator Level - High S

5. Steam Generator Pressure - Low S

6. Containment Pressure - High S

7. Reactor Coolant Flow - Low S

8. Local Power Density - High S

9. DNBR - Low S

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MODES IN WHICH SURVEILLANCE

REQUIRED

T M 1,2

T M 1,2

T M 1,2

T M 1,2

T M 1, 2, 3*, 4*

T M 1,2

T M 1,2

D (2, 4),T (4, 5)

M, R(6) 1,2

D (2, 4),T (4, 5),M (8), S (7)

M, R (6) 1,2

Page 136 of 547

3/4.3-137

TABLE 4.3-1 (Sh. 2 of 5)

FUNCTIONAL UNIT

I. TRIP GENERATION (Continued)

B. Excore Neutron Flux

1. Variable Overpower Trip

2. Logarithmic Power Level - High

C. Core Protection Calculator System

1. CEA Calculators

2. Core Protection Calculators

D. Diverse Protection System Pressurizer Pressure - High

CHANNELsing

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

S D (2, 4), M (3, 4) MQ(4)

S T (4) M and S/U (1)

S T M/R (6)

S D (2, 4), T (4, 5) M(9)/R<6)

M (8), S (7)

S T Q(ll), R(12)

MODES IN WHICH SURVEILLANCE

REQUIRED,

1,2

1, 2, 3, 4, and 5"

1,2/ 3,4

1,2/3, 4

1,2

Page 137 of 547

3/4.3-138

TABLE 4.3-1 (Sh. 3 of 5)

FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MODES IN WHICH SURVEILLANCE

REQUIRED

H. RPS LOGIC

A. Matrix Logic N.A. N.A. M 1, 2, 3‘,4\ 5*

B. Initiation Logic N.A. N.A. M 1, 2, 3‘,4‘, 5*

m. RPS ACTUATION DEVICES

A. Reactor Trip Breakers N.A. N.A. M, R (10) 1, 2, 3‘,4*, 5*

B. Manual Trip N.A. N.A. M 1, 2, 3*,4*, 5*

Page 138 of 547

9-005-Z-442-001

TABLE 4.3-1 (Sh. 4 of 5)

TABLE NOTATIONS

* - With reactor trip breakers in the closed position and the CEA drive systemcapable of CEA withdrawal, and fuel in the reactor vessel.

(1) - Each STARTUP or when required with the reactor trip breakers closed and theCEA drive system capable of rod withdrawal, if not performed in the previous 7 days.

(2) - Heat balance only (CHANNEL FUNCTIONAL TEST not included) above 15 %of RATED THERMAL POWER. Compare the linear power level, the CPC delta T power, and the CPC nuclear power signals with the calorimetric calculation and if any are less than the calorimetric calculation by more than 0.5 % of RATED THERMAL POWER, adjust them to be greater than or equal to the calorimetric calculation. During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.

(3) - Above 15% of RATED THERMAL POWER, verify that the linear powersubchannel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.

(4) - Neutron detectors may be excluded from CHANNEL CALIBRATION.

(5) - After each fuel loading and prior to exceeding 80% of RATED THERMALPOWER, the incore detectors shall be used to determine the shape annealing matrix elements and the core protection calculators shall use these elements.

(6) - This CHANNEL FUNCTIONAL TEST shall include the injection of simulatedprocess signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.

N0291-RE-TS060-00 DDS 1 Rev.01

- 106 -

Appendix A Page 139 of 547

9-005-Z-442-001

TABLE 4.3-1 (Sh. 5 of 5)

TABLE NOTATIONS

(7) - Above 80% of RATED THERMAL POWER, verify that the total steady-stateRCS flow rate as indicated by each CPC is less than or equal to the measured RCS total flow rate determined either from the reactor coolant pump differential pressure instrumentation or by calorimetric calculation. If necessary, adjust the CPC-addressable constant flow coefficients such that each CPC-indicated flow is less than or equal to the actual flow rate. The appropriate flow measurement uncertainty for the measurement method used for this surveillance shall be included in the BERR1 term in the CPCs.

(8) - Above 80% of RATED THERMAL POWER, verify that the total steady-stateRCS flowrate is less than or equal to 137.4 0106 lbm/hr (62.32 QO6 kg/hr) by calorimetric calculation with the measurement uncertainty included and that the total steady-statd RCS flow rate as indicated by each CPC is less than or equal to the measured RCS total flow rate determined by calorimetric calculation.

(9) - The monthly CHANNEL FUNCTIONAL TEST shall include verification that thecorrect (current) values of addressable constants are installed in each OPERABLE CPC.

(10) At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervoltage and shunt trips.

(11) - The quarterly CHANNEL FUNCTIONAL TEST shall include the entire channelexcept the Control Element Drive Mechanism Control System output contactors which remove motive power to the Reactor Trip Switchgear System.

(12) - Hie once per 18 months CHANNEL FUNCTION TEST shall include the entirechannel, including the Control Element Drive Mechanism Control System output contactors which remove motive power to the Reactor Trip Switchgear System.

N0291-RE-TS060-00 DDS 1 Rev.01

- 107 -

Appendix A Page 140 of 547

9-005-Z-442-001

1NSTRI 'ATJOn3/4.3.2 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM

INSTRUMENTATION

wimcG CONDITION FOR OPERATION

3.3.2 The engineered safety features actuation system (ESFAS) instrumentation channels and

bypasses shown in Table 3.3-3 shall be OPERABLE with their actuation setpoints set consistent

with the values shown in the actuation setpoint column of Table 3.3-4 and with RESPONSE

TIMES as shown in Table 3.3-5.

APPLICABILITY: As shown in Table 3.3-3.

ACTION:

a. With an ESFAS instrumentation channel actuation setpoint less conservative than the

value shown in the allowable values column of Table 3.3-4, declare the channel

inoperable and apply the applicable ACTION requirement of Table 3.3-3 until the

channel is restored to OPERABLE status with the actuation setpoint adjusted

consistent with the actuation setpoint value.

b. With an ESFAS instrumentation channel inoperable, take the ACTION shown in

Table 3.3-3.

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each ESFAS instrumentation channel shall be demonstrated OPERABLE by the

performance of the CHANNEL CHECK, CHANNEL CALIBRATION, and CHANNEL

FUNCTIONAL TEST operations for the MODES and at the frequencies shown in Table 4.3-2.

N0291-RB-TS060-00 DDS 1 Rev.01

- 108 -

Appendix A Page 141 of 547

9-005-Z-442-001

MSmVMEKX&nflH

SURVPMANCEJSQUmmffiNTS (Continued)

4.3.2.2 The logic for the bypasses shall be demonstrated OPERABLE during the at power

CHANNEL FUNCTIONAL TEST of channels affected by bypass operation. The total bypass

function shall be demonstrated OPERABLE at least once per 18 months during CHANNEL

CALIBRATION testing of each channel affected by bypass operation.

4.3.2.3 The ENGINEERED SAFETY FEATURES RESPONSE TIME of each ESFAS

function shall be demonstrated to be within the limit at least once per 18 months. Each test

shall include at least one channel per function such that all channels are tested at least once

every N times 18 months where N is the total number of redundant channels in a specific

ESFAS function as shown in the "Total No. of Channels" column of Table 3.3-3.

N0291-RE-TS060-00 DDS 1 Rev.01

- 109 -

Appendix A Page 142 of 547

3/4.3-143

TABLE 3.3-3 (Sh. 1 of 12)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

ESFA SYSTEM FUNCTIONAL UNIT OF CHANNELS TO ACTUATE OPERABLE MODES ACTION

I. SAFETY INJECTION (SIAS)

A. Sensor/Bistable units

1. Containment Pressure - High 4

2. RressurizerPressure - Low 4

B. ESFA System Logic

1. Matrix Logic 6

2. Initiation Logic 4(c)

3. Manual SIAS (Actuation Buttons) 4(c)

C. Automatic Actuation Logic 2

n. CONTAINMENT ISOLATION (CIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High 4

2. Pressurizer Pressure - Low 4

2 3 1,2, 3, 4 13* 14*

2 3 1, 2, 3(a), 4(a)

13*, 14*

1 3 1,2, 3,4 17

2(d) 4 1,2, 3,4 12

2(d) 4 1,2, 3,4 12

1 2 1,2, 3, 4 16

2 3 1,2,3 13*, 14*

2 3 1, 2, 3(a) 13*, 14*

Page 143 of 547

3/4.3-144

TABLE 3.3-3 (Sh. 2 of 12)

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

ESPA SYSTEM FUNCTIONAL UNIT OP CHANNELS TO ACTUATE OPERABLE MQDEg— ACTION

E. CONTAINMENT ISOLATION (CIAS) (Continued)

B. ESPA System Logic

1. Matrix Logic 6 1 3 1,2,3 17

2. Initiation Logic 4(c) 2(d) 4 1,2, 3,4 12

3. Manual CIAS (Actuation Buttons) 4(c) 2(d) 4 1,2, 3,4 12

4. Manual SIAS (Actuation Buttons) 4(c) 2(d) 4 1,2, 3,4 12

Automatic Actuation Logic 2 1 2 1,2, 3,4 16

El. CONTAINMENT SPRAY (CSAS)

A. Sensor/Bistable Units

Containment Pressure -High - High 4 2 1,2,3 13*, 14*

Page 144 of 547

3/4.3-145

TABLE 3.3-3 (Sh. 3 of 12)

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

BSPA SYSTEM FUNCTIONAL UNIT OF CHANNELS TO ACTUATE OPERABLE MODES ACTION

CONTAINMENT SPRAY (CSAS) (Continued)

B. BSFA System Logic

1. Matrix Logic 6 1 3 1,2,3 17

2. Initiation Logic 4(c) 2(d) 4 1, 2, 3, 4 12

3. Manual CSAS (Actuation Buttons) 4(c) 2(d) 4 1, 2, 3, 4 12

C. Automatic Actuation Logic 2 1 2 1,2, 3,4 16

MAIN STEAMLINE ISOLATION (MSIS)

A. Sensor/Bistable Units

1. Steam Generator Pressure - Low

4/steamgenerator

2/steamgenerator

3/steamgenerator

1,2, 3(b), 4(b)

13*, 14*

2. Steam Generator Level - High

4/steamgenerator

2/steamgenerator

3/steamgenerator

1, 2, 3,4 13*, 14*

3. Containment Pressure - High 4 2 3 1,2, 3, 4 13*14*

Page 145 of 547

3/4.3-146

TABLE 3.3-3 (Sh. 4 of 12)

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

BSFA SYSTEM FUNCTIONAL UNIT OP CHANNELS TO ACTUATE OPERABLE MOPES ACTION

IV. MAIN STEAMLINE ISOLATION (MSIS)(Continued)

B. BSFA System Logic

1. Matrix Logic 6

2. Initiation Logic 4(c)

3. Manual MSIS (Actuation Buttons) 4(c)

C. Automatic Actuation Logic 2

V. RECIRCULATION (RAS)

A. Sensor/Bistable Units

Refueling WaterTank- Low 4

1 3 1, 2, 3, 4 17

2(d) 4 1, 2, 3, 4 12

2(d) 4 1, 2, 3, 4 12

1 2 1,2, 3,4 16

2 3 1,2,3 13*, 14*

Page 146 of 547

3/4.3-147

TABLE 3.3-3 (Sh. 5 of 12)

ESFA SYSTEM FUN ALJJ1SHT

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE OP rHANTNKT.S TO ACTUATE OPERABLE MODES. ACTION

ESFA System Logic

1. Matrix Logic 6

2. Initiation Logic 4(c)

3. Manual RAS 4(C)

Automatic Actuation Logic 2

1 3 1,2,3 17

2(d) 4 1,2, 3, 4 12

2(d) 4 1, 2, 3, 4 12

1 2 1, 2, 3, 4 16

VI. AUXILIARY FEEDWATER (SG-1)(AFAS-1)

A. Sensor/Bistable Units

1. Steam Generator #1 Level -Low 4

2. Diverse Protection System Steam Generator #1 Level -Low 2

1,2,3 13", W

1,2 19

Page 147 of 547

TABLE 3.3-3 (Sh. 6 of 12)

TOTAL NO. CHANNELSMINIMUMCHANNELS APPLICABLE

ESFA SYSTEM FUNCTIONAL UNIT OF CHANNELS TO.AGXUAH OPERABLE MODES ACTION

B. ESFA System Logic

1. Matrix Logic 6 1 3 1,2,3 17

2. Initiation Logic 4(c) 2(d) 4 1,2, 3,4 12

3. Manual AFAS A(C) 2(d) 4 1,2, 3,4 15

C. Automatic Actuation Logic 2 1 2 1,2, 3,4 16

AUXILIARY FEEDWATER (SG-2)(AFAS-2)

A. Sensor/Bistable Units

1. Steam Generator #2 Level - Low 4 2 3 1,2,3 13*, 14

2. Diverse Protection SystemSteam Generator #2 Level - Low 2 2 2 1,2 19

Page 148 of 547

3/4,3-149

TABLE 3.3-3 (Sh. 7 of 12)

MINIMUM

ESFA SYSTEM FUNCTIONAL UNITTOTAL NO.OF CHANNELS

CHANNELSTO ACTUATE

CHANNELSOPERABLE

APPLICABLEMODES ACTION

B. ESFA System Logic

1. Matrix Logic 6 1 3 1,2,3 17

2. Initiation Logic 4(C) 2(d) 4 1, 2, 3, 4 12

3. Manual AFAS 4(c) 2(d) 4 1, 2, 3, 4 15

C. Automatic Actuation Logic 2 , 1 2 1, 2, 3, 4 16

vra. LOSS OF POWER (LOV)

A. Emergency Bus Under­voltage (Loss of Voltage) 4/Bus 2/Bus 3/Bus 1,2,3 13*, 14*

B. Emergency Bus Under­voltage (Degraded Voltage) 4/Bus 2/Bus 3/Bus 1,2,3 13*, 14*

IX. CONTROL ROOM ESSENTIAL VENTILATION 2 1 1 All Modes 16*

X. FUEL BUILDING ESSENTIAL VENTILATION 2 1 1 All Modes 16*

Page 149 of 547

3/4.3-150

TABLE 3.3-3 (Sh. 8 of 12)

MINIMUMTOTAL NO. CHANNELS CHANNELS APPLICABLE

ESFA SYSTEM FUNCTIONAL UNIT OF CHANNELS TO ACTUATE OPERABLE MORBS_ ACTION

XI. CONTAINMENT PURGE ISOLATION 2 1 1 All Modes 16*

XU. CREVAS

A. Sensor/Bistable units, control room IntakeRadiation - High

2 1 1 All Modes 16*

B. BSFAS Logic

1. Actuation Logic(Including Auto Actuation) 2 I 1 All Modes 16*

2. Manual CREVAS 2 1 1 All Modes 16*

FBEVAS

A. Sensor/Bistable unitsSpent Fuel Pool AreaRadiation - High

2 1 1 All Modes 16*

Page 150 of 547

3/4.3-151

TABLE 3.3-3 (Sh. 9 of 12)

MINIMUM

BSFA SYSTEM FUNCTIONAL UNITTOTAL NO.OF CHANNELS

CHANNELSTO ACTUATE

CHANNELSOPERABLE

APPLICABLEMODES ACTION

B. ESPAS Logic

1. Actuation Logic(Including Auto Actuation) 2 1 1 All Modes 16*

XIV. CPIAS

A. Sensor/Bistable Units

1. Containment upper OperatingArea Radiation - High

2 1 1 All Modes 16*

2. Containment Refueling Machine Bridge Area Radiation - High

2 1 1 All Modes 16*

B. ESFAS Logic

1. Actuation Logic(Including Auto Actuation)

2 1 1 All Modes 16*

2. Manual CPIAS 2 1 1 All Modes 16*

Page 151 of 547

9-005-Z-442-001

TABLE 3.3-3 (Sh. 10 of 12)

TABLE NOTATIONS

(a) In MODES 3&4, the value may be decreased manually, to a minimum of 100 psia (7.0 kg/cm2A), as pressurizer pressure is reduced, provided the margin between the pressurizer pressure and this value is maintained at less than or equal to 400 psi (28.1 kg/cm2A); the setpoint shall be increased automatically as pressurizer pressure is increased until the actuation setpoint is reached. Actuation may be manually bypassed below 400 psia (28.1 kg/cm2A); bypass shall be automatically removed whenever pressurizer pressure is greater than or equal to 500 psia (35.2 kg/cm2A).

(b) In MODES 3&4, the value may be decreased manually as steam generator pressure is reduced, provided the margin between the steam generator pressure and this value is maintained at less than or equal to 200 psia (14.1 kg/cm2A); the setpoint shall be increased automatically as steam generator pressure is increased until the actuation setpoint is reached.

(c) Four channels provided, arranged in a selective two-out-of-four configuration (i.e., one-out-of-two taken twice).

(d) The proper two-out-of-four combination.

* The provisions of Specification 3.0.4 are not applicable.

ACTIONS!ATE

ACTION 12 - With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

ACTION 13 - With the number of channels OPERABLE one less than the Total Number of Channels, STARTUP and/or POWER OPERATION may continue provided the inoperable channel is placed in the bypassed or actuated condition within 1 hour. If the inoperable channel is bypassed, the desirability of maintaining this channel in the bypassed condition shall be reviewed in accordance with Specification 6. The channel shall be returned to OPERABLE status no later than during the next COLD SHUTDOWN.

With a channel process measurement circuit that affects multiple functional units inoperable or in test, bypass or actuate all associated functional units as listed below.

N0291-RE-TS060-00 DDS 1 Rev.01

- 119 -

Appendix A Page 152 of 547

9-005-Z-442-001

TABLE 3.3-3 (Sh. 11 of 12)

ACTTOM SX&lnizis&w.

Process Measurement Circuit Functional Unit Bypassed/Actuated

1. Steam Generator Pressure - Low

Steam Generator Pressure - Low Steam Generator Pressure 1-Low (ESF) Steam Generator Pressure 2-Low (ESF)

2. Steam Generator Level - Steam Generator Level - Low (RPS)Low (Wide Range) Steam Generator Level 1-Low (ESF)

Steam Generator Level 2-Low (ESF)

ACTION 14 - With the number of channels OPERABLE one less than the Minimum Channels OPERABLE, STARTUP and/or POWER OPERATION may continue provided the following conditions are satisfied:

a. Verify that one of the inoperable channels has been bypassed and place the other inoperable channel in the actuated condition within 1 hour.

b. All functional units affected by the bypassed/tripped channel shall also be placed in the bypassed/actuated condition as listed below:

Process Measurement Circuit

1. Steam Generator Pressure - Low

2. Steam Generator Level - Low (Wide Range)

Functional Unit Bypassed/Actuated

Steam Generator Pressure - Low Steam Generator Level 1 - Low (ESF)Steam Generator Level 2 - Low (ESF)

Steam Generator Level - Low (RPS)Steam Generator Level 1 - Low (ESF)Steam Generator Level 2 - Low (ESF)

N0291-RE-TS060-00 DDS 1 Rev.01

- 120 -

Appendix A Page 153 of 547

9-005-Z-442-001

ACTION 15 -

ACTION 16 -

ACTION 17 -

ACTION 18 -

ACTION 19 -

TABLE 3.3-3 (Sh. 12 of 12)

ACTION STA'i i:<7/1 veils'

STARTUP and/or POWER OPERATION may continue until the performance of the next required CHANNEL FUNCTIONAL TEST. Subsequent STARTUP and/or POWER OPERATION may continue if one channel is restored to OPERABLE status and the provisions of ACTION 13 are satisfied.

With the number of OPERABLE channels one less than the Total Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.

With the number of OPERABLE channels one less than the Total Number of Channels, be in at least HOT STANDBY within 6 hours and in at least HOT SHUTDOWN within the following 6 hours; however, one channel may be bypassed for up to 1 hour for surveillance testing provided the other channel is OPERABLE.

With the number of OPERABLE channels one less than the Minimum Number of Channels, restore the inoperable channel to OPERABLE status within 48 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

With the number of OPERABLE channels one less than the Minimum Number of Channels, operation may continue for up to 6 hours. After 6 hours, operation may continue provided at least one train of essential ventilation is in operation, otherwise, be in HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

With the number of OPERABLE channels one or more less than the Minimum Channels OPERABLE requirement, place affected channel(s) in bypass and restore all channels to OPERABLE status prior to entering MODE 2 following next MODE 5 entry.

N0291-RE-TS060-00 DDS 1 Rev.01

- 121 -

Appendix A Page 154 of 547

3/4.3-155

TABLE 3.3-4 (Sh. lof6)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION ACTUATION VALUES

ESFA SYSTEM FUNCTIONAL UNIT ACTUATION SETPOINT ALLOWABLE VALUES

I. SAFETY INJECTION (SIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High

2. Pressurizer Pressure - Low

B. ESFA System Logic

C. Actuation Systems

< 1.9 psig (133.1 cmHjOG)

2r 1762 psia (123.9 kg/cm2A)<,)

Not Applicable

Not Applicable

s 2.1 psig (147.1 cmHjOG)

5 1747 psia (122.8 kg/cnW1’

Not Applicable

Not Applicable

H. CONTAINMENT ISOLATION (CIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High

2. Pressurizer Pressure - Low

B. ESFA System Logic

C. Actuation Systems

s 1.9 psig (133.1 cmHjOG)

i 1762 psia (123.9 kg/cm2A)m

Not Applicable

Not Applicable

< 2.1 psig (147.1 cmHjOG)

% 1747 psia (122.8 kg/cm2A)m

Not Applicable

Not Applicable

Page 155 of 547

3/4.3-156

TABLE 3.3-4 (Sh. 2 of 6)

ESFA SYSTEM FUNCTIONAL UNIT ACTUATION SETPOINT AIJUjWAB^BVALTOS

m. CONTAINMENT SPRAY (CSAS)

A. Sensor/Bistable Units

Containment Pressure High - High

B. ESFA System Logic

C. Actuation Systems

s 20.2 psig(1424.0 cmH%OG) s 20.6 psig (1453.8 cmH,OG)

Not Applicable Not Applicable

Not Applicable Not Applicable

IV. MAIN STEAMLINE ISOLATION (MSIS)

A. Sensor/Bistable Units

1. Steam Generator Pressure - Low

2. Steam Generator Level - High

3. Containment Pressure - High

B. ESFA System Logic

C. Actuation Systems

> 885.4 psia (62.3 kg/cmW

s 93.0% NR®

s 1.9 psig (133.1 cmHjOG)

Not Applicable

Not Applicable

2: 877.8 psia (61.%kg/cm2A)®

5 93.5% NR®

s 2.1 psig (147.1 cmH^OG)

Not Applicable

Not Applicable

Page 156 of 547

3/4.3-157

TABLE 3.3-4 (Sh. 3 of 6)

V. RECIRCULATION (RAS)

A. Sensor/Bistable Units

Refueling Water Tank - Low * 7.5 % of Span

B. ESFA System Logic Not Applicable

C. Actuation System Not Applicable

ESFA SYSTEM FUNCTIONAL UNIT ACTUATION SETPOINT ALLOWABLE VALUES

> 7.0 % of Span

Not Applicable

Not Applicable

VI. AUXILIARY FEEDWATER (SG-1)(AFAS-1)

A. Sensor/Bistable Units

1. Steam Generator 1 Level - Low > 23.5% WR(4)

B. ESFA System Logic Not Applicable

C. Actuation Systems Not Applicable

D. Diverse Protection System

Steam Generator 1 Level - Low 2 22.2% WR<4)

2 23.0% WRw

Not Applicable

Not Applicable

2 21.7% WR(4)

Page 157 of 547

3/4.3-158

TABLE 3.3-4 (Sh. 4 of 6)

VH. AUXILIARY FEEDWATER (SG-2)(AFAS-2)

A. Seosor/Bistable Units

ESFA SYSTEM FUNCTIONAL UNIT ACTUATION SETPOINT

1. Steam Generator 2 Level - Low

B. ESFA System Logic

C. Actuation Systems

D. Diverse Protection System

Steam Generator 2 Level - Low

% 23.5% WRw

Not Applicable

Not Applicable

2 22.2% WR(4>

vra. LOSS OF POWER

A. 4.16-kV Emergency Bus Undervoltage(Loss of Voltage) s 2800 volts

B. 4.16-kV Emergency Bus Undervoltage £ 3920 volts (Degraded Voltage)

ALLOWABLE VALUES

% 23.0% WRw

Not Applicable

Not Applicable

i 21.7% WRw

s 3000 volts

5 3945 volts

Page 158 of 547

3/4.3-159

TABLE 3.3-4 (Sh. 5 of 6)

IX. CREVAS

A. Sensor/Bistable Control Room Intake Radiation - High

B. BSFAS Logic

X. FBEVAS

A. Sensor/Bistable Units Speit Fuel Pool Area Radiation - High

B. BSFAS Logic

XI. CPIAS

A. Sensor/Bistable Units

1. Containment Upper OperatingArea Radiation - High s 2800 mR/hr

2. Containment OperatingArea Radiation - High <; 12.5 mR/hr

B. BSFAS Logic Not Applicable

KEA SYSTEM FUNCTIONAL UNIT ACTUATION SETPOINT

s 1.0 x*s /xCi/cm3

Not Applicable

£ 20 mR/hr

Not Applicable

5 1.15 X 10*3 tzCi/cm3

Not Applicable

£ 23 mR/hr

Not Applicable

5 3220 mR/hr

s 14.38 mR/hr

ALLOWABLE VALUES

Not Applicable

Page 159 of 547

9-005-Z-442-001

TABLE 3.3-4 (Sh. 6 of 6)

TABLE NOTATIONS

(1) In MODES 3&4, value may be decreased manually, to a minimum of 100 psia (7.0 kg/cm3A), as prcssurizer pressure is reduced, provided the margin between the pressurizer pressure and this value is maintained at less than or equal to 400 psi (28.1 kg/cm2); the setpoint shall be increased automatically as pressurizer pressure is increased until the actuation setpoint is reached. Actuation may be manually bypassed below 400 psia (28.1 kg/cm3A); bypass shall be automatically removed whenever pressurizer pressure is greater than or equal to 500 psia (35.2 kg/cm3 A).

(2) Percent of the distance between steam generator upper and lower level narrow range instrument nozzles.

(3) In MODES 3&4, value may be decreased manually as steam generator pressure is reduced, provided the margin between the steam generator pressure and this value is maintained at less than or equal to 200 psia (14.1 kg/cm3A); the setpoint shall be increased automatically as steam generator pressure is increased until tire actuation setpoint is reached.

(4) Percent of the distance between steam generator upper- and lower-level wide- range instrument nozzles.

N0291-RB-TS060-00 DDS 1 Rev.01

- 127 -

Appendix A Page 160 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 1 of 4)

ENGINEERED SAFETY FEATURES RESPONSE TIMES

INITIATING SIGNAL AND FUNCTION

1. Manual

a. SIAS

Safety Injection (ECCS)

Containment Isolation

Containment Purge Valve Isolation

b. CSAS

Containment Spray

c. CIAS

Containment Isolation

d. MSIS

Main Steam Isolation

e. HAS

Containment Sump Recirculation

f. AFAS

Auxiliary Feedwater Pumps

g. CRBVAS

h. FBEVAS

i. CFIAS

RESPONSE TIME IN SECONDS

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

N0291-RE-TS060-00 DDS 1 Rev.01

- 128

Appendix A Page 161 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 2 of 4)

BNITIAIINQ SIGNAL ANP FUNCHQN

2.

3.

4.

Pressurizer Pressure - Low

a. Safety Injection (HPSI)

b. Safety Injection (LPSI)

c. Containment Isolation

1. CIAS actuated mini-purge valves

2. Other CIAS actuated valves

Containment Pressure - High

a. Safety Injection (HPSI)

b. Safety Injection (LPSI)

c. Containment Isolation

1. CIAS actuated mini-purge valves

2. Other CIAS actuated valves

d. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFTVs

Containment Pressure - High-High

a. Containment Spray Pump

b. Containment Isolation Valves Closed on CSAS

response TIME IN SECONDS

5 30

s 50

3 5

3 70760”

5 30

< 50

s 5

< 70'/60*s

3 5

5 10

3 33.5723.5”

350740”

N0291-RE-TS060-00 DDS 1 Rev.01

- 129 -

Appendix A Page 162 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 3 of 4)

HillATING SIGNAL AND FUNCTION

5. Steam Generator Pressure - Low

a. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFTVs

6. Refueling Water Tank - Low

a. Containment Recirculation Sump Recirculation

7. Steam Generator Level - Low

a. Auxiliary Feedwater (Motor Driven)

b. Auxiliary Feedwater (Turbine Driven)

8. Steam Generator Level - High

a. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFTVs

9. CREVAS

Control Room Air Intake Radiation - High

a. CREVAS Actuated Isolation Dampers

b. Emergency Makeup ACU Fan

RESPONSE-)MfilS IN SECONDS

s 5

5 10

< 60

5 45

s 45

z 5

z 10

< 8.2 sec

< 4.2 sec ***

N0291-RE-TS060-00 DDS 1 Rev.Ol

- 130 -

Appendix A Page 163 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 4 of 4)

iCIJfJ [AUNG SIGNAL AND FUNCTION

10. FBEVAS

RESPONSE TIME IN SECONDS

Fuel Building Spent Fuel Pool Area Radiation - High

a. FBEVAS Actuated Isolation Dampers < 8.2 sec

b. Emergency ACU Fan < 4.2 sec +**

c. Normal ACU Fan < 4.2 sec ***

11, CPIAS

Containment Upper Operating Area/Refueling Machine Bridge Area Radiation - High

a. CPIAS Actuated Isolation Dampers < 8.2 sec

b. High-Volume Purge Fan NA

12. (4.16 kV) Emergency Bus Undervoltage (Degraded Voltage)

Loss of Power 90% System voltage < 5 min

13. (4.16 kV) Emergency Bus Undervoltage (Loss of Voltage)

Loss of Power < 1 sec

TABLE NOTATIONS

* Emergency diesel generator starting and sequence loading delays included. Response time limit includes movement of valves and attainment of pump or blower discharge pressure.

"* Emergency diesel generator starting delays not included. Offsite power available. Response time limit includes movement of valves and attainment of pump or blower discharge pressure.

*** Fan motor run-up time is not included since building volume is too large to make a substantial change to pressure compared to the isolation function.

N0291-RE-TS060-00 DDS 1 Rev.01 Appendix A Page 164 of 547

- 131 -

3/4.3-165

TABLE 4.3-2 (Sh. 1 of 10)

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRI CATION STTRVRTT .T.ANPR RKOI

CHANNEL CHANNELCHANNELFUNCTIONAL

MHBSINWHKHSUKVHLLANCHS

I. SAFETY INJECTION (SIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High S T M 1, 2, 3, 4

2. Pnessurizer Pressure - Low S T M 1, 2, 3, 4

B. ESFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3,4

2. Initiation Logic N.A. N.A. M 1, 2, 3, 4

3. Manual SIAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(I) (2) (3) 1,2,3,4

Page 165 of 547

133

ESFA SYSTEM FUNCTIONAL UNIT

n.

I

I

W

V*S

CONTAINMENT ISOLATION (CIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High

2. Pressurizer Pressure - Low

B. ESFA System Logic

1. Matrix Logic

2. Initiation Logic

3. Manual CIAS

4. Manual SIAS

C. Automatic Actuation Logic

TABLE 4.3-2 (Sh. 2 of 10)

CHANNEL MCDBSINWHKHCHANNEL CHANNEL FUNCTIONAL SURVHLLANCHSCHECK CAT JRRATTQN TEST REQUIRED

S T M 1,2,3

S T M 1,2,3

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1, 2, 3, 4

N.A. N.A. M(l) (2) (3) 1,2, 3,4

Page 166 of 547

3/4.3-158

TABLE 3.3-4 (Sh. 4 of 6)

BSFA SYSTEM FUNCTIONAL UNIT ACTUATION S

VH. AUXILIARY FEEDWATER (SG-2)(AFAS-2)

A. Sensor/Bistable Units

■•11**BjT

1. Steam Generator 2 Level - Low

B. BSFA System Logic

C. Actuation Systems

D. Diverse Protection System

Steam Generator 2 Level - Low

Vm. LOSS OF POWER

A. 4.16-kV Emergency Bus Undervoltage (Loss of Voltage)

B. 4.16-kV Emergency Bus Undervoltage (Degraded Voltage)

> 23.5% WR(<)

Not Applicable

Not Applicable

a 22.2% WR(4)

5 2800 volts

5 3920 volts

ALLOWABLE VALUES

2 23.0% WR(4)

Not Applicable

Not Applicable

2 21.7% WRw

<, 3000 volts

5 3945 volts

Page 158 of 547

3/4.3-159

TABLE 3.3-4 (Sh. 5 of 6)

ESFASYsiia*. FUNCTIONAL UNIT ACTUATION SETPOINT

IX. CRBVAS

A. Seosor/Bistable Control Room Intake Radiation - High

B. BSFAS Logic

X. FBEVAS

A. Sensor/Bistable Units Spent Fuel Pool Area Radiation - High

B. BSFAS Logic

XI. CPIAS

A. Sensor/Bistable Units

1. Containment Upper Operating Area Radiation - High

2. Containment Operating Area Radiation - High

s 1.0 x'5 AtCi/cm3

Not Applicable

s 20 mR/hr

Not Applicable

s 2800 mR/hr

s 12.5 mR/hr

B. BSFAS Logic Not Applicable

ALLOWABLE VALUES

s 1.15 x 10'1 //Ci/cm3

Not Applicable

s 23 mR/hr

Not Applicable

<: 3220 mR/hr

s 14.38 mR/hr

Not Applicable

Page 159 of 547

9-005-Z-442-001

TABLE 3.3-4 (Sb. 6 of 6)

(1) In MODES 3&4, value may be decreased manually, to a minimum of 100 psia (7.0 kg/cm2A), as pressurizer pressure Is reduced, provided the margin between the pressurizer pressure and this value is maintained at less than or equal to 400 psi (28.1 kg/cm1); the setpoint shall be increased automatically as pressurizer pressure is increased until the actuation setpoint is reached. Actuation may be manually bypassed below 400 psia (28.1 kg/cm2A); bypass shall be automatically removed whenever pressurizer pressure is greater than or equal to 500 psia (35.2 kg/cm2A).

(2) Percent of the distance between steam generator upper and lower level narrow range instrument nozzles.

(3) In MODES 3&4, value may be decreased manually as steam generator pressure is reduced, provided the margin between the steam generator pressure and this value is maintained at less than or equal to 200 psia(14.1 kg/cm2A); the setpoint shall be increased automatically as steam generator pressure is increased until the actuation setpoint is reached.

(4) Percent of the distance between steam generator upper- and lower-level wide- range instrument nozzles.

N0291-RE-TS060-00 DDS 1 Rev.01

136 -

Appendix A Page 160 of 547

9-005-Z-442-001

ENGINEERED SAFETY FEATURES RBSPONSB TIMBS

TABLE 3.3-5 (Sh. 1 of 4)

mmAjiNgj^iONAL anpjfunctqm

1. Manual

a. SIAS

Safety Injection (ECCS)

Containment Isolation

Containment Purge Valve Isolation

b. CSAS

Containment Spray

c. CIAS

Containment Isolation

d. MSIS

Main Steam Isolation

e. RAS

Containment Sump Recirculation

f. AFAS

Auxiliary Feedwater Pumps

g. CREVAS

b. FBEVAS

i. CPIAS

RESPONSE meB IN SECONDS

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

Not Applicable

N0291-RB-TS0G0-00 DDS 1 Rev.01

- 137 -

Appendix A Page 161 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 2 of 4)

ffffnA.mQ-SIQNAL ANDfUNCHDN

2. Pressurizer Pressure - Low

a. Safety Injection (HPSI)

b. Safety Injection (LPSI)

c. Containment Isolation

3.

4.

1. CIAS actuated mini-purge valves

2. Other CIAS actuated valves

Containment Pressure - High

a. Safety Injection (HPSI)

b. Safety Injection (LPSI)

c. Containment Isolation

1. CIAS actuated mini-purge valves

2. Other CIAS actuated valves

d. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFIVs

Containment Pressure - High-High

a. Containment Spray Pump

b. Containment Isolation Valves Closed onCSAS

BEsuLiiiiaH TIME RLSECQMPS

s 30

s 50

5 5

5 70760"

s 30

s 50

s 5

£ 70760**

* 5

s 10

s 33.5723.5”

s 50740"

N0291-RE-TS060-00 DDS 1 Rev.01

- 138 -

Appendix A Page 162 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 3 of 4)

lilllATING SIGNAL AND FUNCTION

5. Steam Generator Pressure - Low

a. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFIVs

6. Refueling Water Tank - Low

a. Containment Recirculation Sump Recirculation

7. Steam Generator Level - Low

a. Auxiliary Feedwater (Motor Driven)

b. Auxiliary Feedwater (Turbine Driven)

8. Steam Generator Level - High

a. Main Steam Isolation

1. MSIS actuated MSIVs

2. MSIS actuated MFIVs

9. CREVAS

Control Room Air Intake Radiation - High

a. CREVAS Actuated Isolation Dampers

b. Emergency Makeup ACU Fan

RESiMJigE TIME IN SECONDS

< 5

< 10

< 60

< 45

s 45

* 5

5 10

< 8.2 sec

< 4.2 sec ***

N0291-RE-TS060-00 DDS 1 Rev.01

- 139 -

Appendix A Page 163 of 547

9-005-Z-442-001

TABLE 3.3-5 (Sh. 4 of 4)

UPJU[AUNG SIGNAL AND FUNCTION

10. FBEVAS

RESPONSE TIME IN ass*ms

Fuel Building Spent Fuel Pool Area Radiation - High

a. FBEVAS Actuated Isolation Dampers

b. Emergency ACU Fan

c. Normal ACU Fan

11. CPIAS

Containment Upper Operating Area/Refueling Machine Bridge Area Radiation - High

a. CPIAS Actuated Isolation Dampers

b. High-Volume Purge Fan

12. (4.16 kV) Emergency Bus Undervoltage (Degraded Voltage)

Loss of Power 90% System voltage

13. (4.16 kV) Emergency Bus Undervoltage (Loss of Voltage)

Loss of Power

< 8.2 sec

< 4.2 sec ***

< 4.2 sec ***

< 8.2 sec

NA

< 5 min

< 1 sec

IA9L8 NOTATIONS

Emergency diesel generator starting and sequence loading delays included. Response time limit includes movement of valves and attainment of pump or blower discharge pressure.

Emergency diesel generator starting delays not included. Offsite power available. Response time limit includes movement of valves and attainment of pump or blower discharge pressure.

Fan motor run-up time is not included since building volume is too large to make a substantial change to pressure compared to the isolation function.

N0291-RE-TS060-00 DDS 1 Rev.01

- 140 -

Appendix A Page 164 of 547

3/4.3-165

TABLE 4.3-2 (Sh. 1 of 10)

mmiCLMMyae SAFETY FEATURES ACTUATION SYSTEM INSTRI patton simvrm.TANCE requirements

BSFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MCEBSIN WHICH SURVHLLANCHS

REQUIRED

I. SAFETY INJECTION (SIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High S T M 1,2, 3,4

2. Pressurizer Pressure - Low s T M 1,2, 3,4

B. ESFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3,4

2. Initiation Logic N.A. N.A. M 1, 2, 3, 4

3. Manual SIAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1,2, 3,4

Page 165 of 547

3/4,3-166

TABLE 4.3-2 (Sh. 2 of 10)

CHANNEL MOCESINWHKH

ESFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

FUNCTIONALTEST

SUKVHLLANCHSREQUIRED

H. CONTAINMENT ISOLATION (CIAS)

A. Sensor/Bistable Units

1. Containment Pressure - High S T M 1,2,3

2. Pressurizer Pressure - Low S T M 1,2,3

B. ESFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3, 4

2. Initiation Logic N.A. N.A. M 1,2, 3, 4

3. Manual CIAS N.A. N.A. M 1,2, 3,4

4. Manual SIAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1,2, 3, 4

Page 166 of 547

3/4.3-167

TABLE 4.3-2 (Sh. 3 of 10)

ESP A SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MODES INWHHZH SURVEILLANCES

REQUIRED

m. CONTAINMENT SPRAY (CSAS)

A. Sensor/Bistable Units

Containment Pressure - High - High S T M 1,2,3

B. ESFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3,4

2. Initiation Logic N.A. N.A. M 1,2, 3,4

3. Manual CSAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1,2, 3,4

Page 167 of 547

144

I

I

ESFA SYSTEM FUNCTIONAL UNIT

IV.

wI

MAIN STEAMLINE ISOLATION (MSIS)

A. Sensor/Bistable Units

1. Steam Generator Pressure - Low

2. Steam Generator Level - High

3. Containment Pressure - High

B. ESFA System Logic

1. Matrix Logic

2. Initiation Logic

3. Manual MSIS

C. Automatic Actuation Logic

TABLE 4.3-2 (Sh. 4 of 10)

CHANNEL MCDES IN WHICHCHANNEL CHANNEL FUNCTIONAL SURVHLLANCHSCHECK CALIBRATION TEST REQUIRED

S T M 1, 2, 3, 4

S T M 1,2,3, 4

s T M 1, 2, 3, 4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1,2, 3, 4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M(l) (2) (3) 1, 2, 3, 4

Page 168 of 547

3/4.3-169

TABLE 4.3-2 (Sh. 5 of 10)

ESFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MODES INWHKH SUKVHLLANCHS

REQUIRED

V. RECIRCULATION (RAS)

A. Sensor/Bistable Units

Refueling Water StorageTank - Low S T M 1,2,3

B. BSFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3,4

2. Initiation Logic N.A. N.A. M 1, 2, 3, 4

3. Manual RAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1,2, 3,4

Page 169 of 547

3/4.3-170

TABLE 4.3-2 (Sh. 6 of 10)

ESFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MGEB5INWHKHSUKVHLLANCHS

REQUIRED

VI. AUXILIARY FEEDWATER (SG-1)(AFAS-1)

A. Sensor/Bistable Units

1. Steam Generator 1 Level - Low S T M 1,2,3

2. DPS Steam Generator 1 S T Q 1,2

B.

Level Low

ESFA System Logic

1. Matrix Logic N.A. N.A. M 1,2, 3,4

2. Initiation Logic N.A. N.A. M 1,2, 3, 4

3. Manual AFAS N.A. N.A. M 1,2, 3,4

C. Automatic Actuation Logic N.A. N.A. M(l) (2) (3) 1,2, 3, 4

Page 170 of 547

147

ESFA SYSTEM FUNCTIONAL UNIT

VH. AUXILIARY FEEDWATER (SG-2)(AFAS-2)

A. Sensor/Bistable Units

1. Steam Generator 2 Level -W ^Ay 2. DPS Steam Generator 2 Level -2 Low

B. BSFA System Logic

1. Matrix Logic

2. Initiation Logic

3. Manual AFAS

C. Automatic Actuation Logic

TABLE 4.3-2 (Sh. 7 of 10)

CHANNELCHANNEL CHANNEL FUNCTIONALCHECK CALIBRATION TEST

MODES INWHECH SURVEILLANCES

REQUIRED

s T M 1,2,3

s T Q 1.2

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M 1,2, 3,4

N.A. N.A. M(l) (2) (3) 1,2, 3,4

Page 171 of 547

3/4.3-172

TABLE 4.3-2 (Sh. 8 of 10)

ESFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

vra. LOSS OF POWER (LOV)

A. 4.16-kV Emergency Bus Under- voltage (Loss of Voltage) S R R

B. 4.16-kV Emergency Bus Under- voltage (Degraded Voltage) S R R

DC. CREVAS

A. Sensor/Bistable Units ControlRoom Intake Radiation - High s R M

B. BSFAS Logic

1. Actuation Logic (IncludingAuto Actuation) s R M

2. Manual CREVAS s R M

X. FBEVAS

A. Sensor/Bistable Units Spent FuelPool Area Radiation - High s R M

MCDB5INWHKHSURVHLLANCHS

REQUIRED

1,2, 3,4

1, 2, 3, 4

1, 2, 3, 4

1, 2, 3, 4

1,2, 3,4

1, 2, 3, 4

Page 172 of 547

3/4.3-173

TABLE 4.3-2 (Sh. 9 of 10)

ESFA SYSTEM FUNCTIONAL UNITCHANNELCHECK

CHANNELCALIBRATION

CHANNELFUNCTIONAL

TEST

MC03SJNWHEHSUKVHLLANCHS

REQUIRED

B. ESFAS Logic

1. Actuation Logic (IncludingAuto Actuation) S R M 1, 2, 3, 4

2. Manual FBEVAS S R M 1, 2, 3, 4

XL CFLAS

A. Sensor/Bistable Units

1. Containment Upper OperatingArea Radiation - High S R M 1, 2, 3, 4

2. Containment Refueling Machine Bridge Area Radiation - High S R M 1,2, 3,4

B. ESFAS Logic

1. Actuation Logic (IncludingAuto Actuation) S R M 1,2, 3,4

2. Manual CPIAS S R M 1, 2, 3, 4

Page 173 of 547

9-005-Z-442-001

TABLE 4,3-2 (Sh. 10 of 10)

TABLENOTATIONS

(1) Each train or logic channel shall be tested at least every 62 days on a STAGGERED TEST BASIS.

(2) Testing of automatic actuation logic shall include energization/ deenergization of each initiation relay and verification of proper operation of each initiation relay.

(3) A subgroup relay test shall be performed which shall include the energization/deenergization of each subgroup relay and verification of the OPERABILITY of each subgroup relay. Relays listed below are exempt from testing during POWER OPERATION but shall be tested at least once per 18 months during REFUELING and during each COLD SHUTDOWN condition unless tested within the previous 62 days.

(4) They will be changed, if required, based on vendor specification pre-operational testing, failure rate data and qualification test results at the time of plant operation.

ACTUATION DEVICES THAT CANNOT BE TESTED AT POWER

3BAMA TRAIN BESP ACTUATION ESF ACTUATION

FUNCTION DEVICE FUNCTION DEVICE

SIAS A K408 SIAS B K408SIAS A K308 SIAS B K308CIASA K210 CIASB K210a AS A K206CIASA K205 CIAS B K205CIASA K203 CIASB K203

RASA K405 RASB K405

CSAS A K114 CSAS B K114

MSIS A K305 MSIS B K305MSIS A K303 MSIS B K303

AFAS-1 A K211 AFAS-1 B K211AFAS-2 A K310 AFAS-2 B K310

N0291-RE-TS06000 DDS 1 Rev.01

- 150 -

Appendix A Page 174 of 547

A.2 | NUREG/CR-1432]

- 151 -

RPS Instrumentation—Operating (Digital)3.3.1

3.3 INSTRUMENTATION

3.3.1 Reactor Protective System (RPS) Instrumentation—Operating (Digital)

LCD 3.3.1 Four RPS trip and bypass removal channels for each Functionin Table 3.3.1-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.1-1.

ACTIONS

...................................................................................... NOTES.....................................................................-............1. Separate Condition entry is allowed for each RPS Function.

2. If a channel is placed in bypass, continued operation with the channel in the bypassed condition for the Completion Time specified by Required Action A.2 or C.2.2 shall be reviewed in accordance with Specification 5.5.1.2.e.

CONDITION REQUIRED ACTION COMPLETION TIME

A. One or more Functions with one automatic RPS trip channel inoperable.

A. 1

AND

Place channel in bypass or trip.

1 hour

A.2 Restore channel to OPERABLE status.

Prior to entering MODE 2 following next MODE 5 entry

B. One or more Functions with two automatic RPS trip channels inoperable.

B.l ...........—NOTE....................LCO 3.0.4 is not applicable.

Place one channel in bypass and the other in trip.

1 hour

(continued)

CEOG STS 3.3-1- 153 -

Rev. 0, 09/28/92

RPS Instrumentation—Operating (Digital)3.3.1

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

C. One or more Functions with one automatic bypass removal channel inoperable.

C.l

OR

Disable bypass channel.

1 hour

C.2.1 Place affected automatic trip channel in bypass or trip.

1 hour

AND

-

C.2.2 Restore bypass removal channel and associated automatic trip channel to OPERABLE status.

Prior to.entering MODE 2 following next MODE 5 entry

D. One or more Functions with two automatic bypass removal channels inoperable.

ICO 3.0.......... NOTE................................4 is not applicable.

D.l Disable bypass channels.

1 hour

OR

D.2 Place one affected automatic trip channel in bypass and place the other in trip.

1 hour

E. One or more core protection calculator (CPC) channels with a cabinet high temperature alarm.

E.l Perform CHANNEL FUNCTIONAL TEST on affected CPC.

12 hours

(continued)

3.3-2CEOG STS- 154 -

Rev. 0, 09/28/92

RPS Instrumental!on—Operating (Digital)3.3.1

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

F. One or more CPCchannels with three or more autorestarts during a 12 hour period.

F.l Perform CHANNEL FUNCTIONAL TEST on affected CPC.

24 hours

G. Required Action and associated Completion Time not met.

G. 1 Be in MODE 3. 6 hours

SURVEILLANCE REQUIREMENTS

....................-................................................................NOTE...................-.............................................................Refer to Table 3.3.1-1 to determine which SR shall be performed for each RPS Function.

SURVEILLANCE FREQUENCY

SR 3.3.1.1 Perform a CHANNEL CHECK of each RPS instrument channel except Loss of Load.

12 hours

(continued)

CEOG STS 3.3-3- 155 -

Rev. 0 09/28/92

RPS Instrumentation—Operating (Digital)3.3.1

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.1.2 ............................. -........... NOTE..............................................Not required to be performed until 12 hours after THERMAL POWER £ 70% RTP.

12 hoursVerify total Reactor Coolant System (RCS) flow rate as indicated by each CPC is less than or equal to the RCS total flow rate.

If necessary, adjust the CPC addressable constant flow coefficients such that eachCPC indicated flow is less than or equal to the RCS flow rate.

SR 3.3.1.3 Check the CPC autorestart count. 12 hours

SR 3.3.1.4 ............................................NOTES............................................1. Not required to be performed until

12 hours after THERMAL POWER£ 20% RTP.

2. The daily calibration may be suspended during PHYSICS TESTS, provided the calibration is performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.

Perform calibration (heat balance only) and adjust the linear power level signals and the CPC addressable constant multipliers to make the CPC AT power and CPC nuclear power calculations agree with the calorimetric, if the absolute difference is £ [2]%.

24 hours

(continued)

CEOG STS 3.3-4 Rev. 0, 09/28/92

- 156 -

RPS Instrumentation—Operating (Digital)3.3.1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.1.5 ...................... -.................. NOTE...............................................Not required to be performed until 12 hours after THERMAL POWER s 70% RTP.

Verify total RCS flow rate indicated by each CPC is less than or equal to the RCS flow determined by calorimetric calculations.

31 days

SR 3.3.1.6 ............................................NOTE...............................................Not required to be performed until 12 hours after THERMAL POWER * 15% RTP.

Verify linear power subchannel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the CPCs.

31 days

SR 3.3.1.7 ............................................NOTES.............................................1. The CPC CHANNEL FUNCTIONAL TEST shall

include verification that the correct values of addressable constants are installed in each OPERABLE CPC.

2. Not required to be performed forlogarithmic power level channels until2 hours after reducing THERMAL POWER below lE-4% RTP and only if reactor trip circuit breakers (RTCBs) are closed.

Perform CHANNEL FUNCTIONAL TEST on each channel except Loss of Load and power range neutron flux.

92 days

(continued)

CEOG STS 3.3-5

- 157 -

Rev. 0, 09/28/92

RPS Instrumentation—Operating (Digital)3.3.1

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.1.8 —.....................................-NOTE—........... -............................Neutron detectors are excluded from the CHANNEL CALIBRATION.

Perform CHANNEL CALIBRATION of the power range neutron flux channels.

92 days

SR 3319 -r -r - -NOTF - ..... -

92 days

Not required to be performed until2 hours after THERMAL POWER £ 55% RTP.

Perform CHANNEL FUNCTIONAL TEST for Loss of Load Function.

SR 3.3.1.10 ............................................NOTE...............................................Neutron detectors are excluded from CHANNEL CALIBRATION.

Perform CHANNEL CALIBRATION on each channel, including bypass removal functions.

[18] months

SR 3.3.1.11 Perform a CHANNEL FUNCTIONAL TEST on eachCPC channel.

[18] months

SR 3.3.1.12 Using the incore detectors, determine the shape annealing matrix elements to be used by the CPCs.

Once after each refueling prior to exceeding70% RTP

(continued)

CEOG STS 3.3-6 Rev. 0, 09/28/92

- 158 -

RPS Instrumentation—Operating (Digital)3.3.1

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.1.13 Perform a CHANNEL FUNCTIONAL TEST on each automatic bypass removal function.

Once within92 days prior to each reactor startup

SR 3.3.1.14 ............................................NOTE...............................................Neutron detectors are excluded.

Verify RPS RESPONSE TIME is within limits. [18] months on a STAGGEREDTEST BASIS

CEOG STS 3.3-7- 159 -

Rev. 0, 09/28/92

RPS Instrumentation—Operating (Digital;3.3.1

Table 3.3.1 -1 (page 1 of 3)Reactor Protective System Instnmentat ion

FUNCTION

APPLICABLE MOOES OROTHER SPECIFIED SURVEILLANCE

CONDITIONS REQUIREMENTS ALLOWABLE VALUE

1. linear Power Level - High 1,2 SR 3.3.1.1SR 3.3.1.4SR 3.3.1.6SR 3.3.1.7SR 3.3.1.8SR 3.3.1.10SR 3.3.1.14

2. Logarithmic Power Level —High^a* 2<b> SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.13SR 3.3.1.14

3. Pressurizer Pressure - High 1,2 SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.14

4. Pressurizer Pressure - Lot/c* 1,2 SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.13SR 3.3.1.14

5. Containment Pressure — High 1.2 SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.14

6. Steam Generator #1 Pressure — Low 1,2 SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.14

7. Steam Generator #2 Pressure - Low 1,2 SR 3.3.1.1SR 3.3.1.7SR 3.3.1.10SR 3.3.1.14

< (111.31% RTP

< C.963X RTP

< C23891 psia

> [17631 psig

< (3.14) psig

£ [7111 psia

> [7111 psia

(continued)

(a) Trip may be bypassed when THERMAL POWER is > [1E-4]X RTP. Bypass shall be automatically removed Wien THERMAL POWER is < (1E-41X RTP. Trip may be manually bypassed during physics testing pursuant to LCO 3.4.17, "RCS Loops - Test Exceotions.11

(b) When any RTCB is closed.

(c) The setpoint may be decreased to a minimus value of (3001 psia, as pressurizer pressure is reduced, provided the margin between pressurizer pressure and the setpoint is maintained S (400] psi. Trips may be bypassed when pressurizer pressure is < [4001 psia. Bypass shall be automatically removed Wien pressurizer pressure is > (5001 psia. The setpoint shall be automatically increased to the normal setpoint as pressurizer pressure is increased.

CE0G STS 3.3-8 Rev. 0, 09/28/92

- 160 -

RPS Instrumerrtati on —Ope rati ng (Digital)3.3.1

Table 3.3.1-1 (page 2 of 3)Reactor Protective System Instrumentation

APPLICABLE MOOES OftOTHER SPECIFIED SURVEILLANCE

FUNCTION CONDITIONS REQUIREMENTS ALLOWABLE VALUE

8. Steam Generator #1 Level - Low 1,2

9. Steam Generator #2 Level - Low 1,2

10. Steam Generator #1 Level - High 1,2

11. Steam Generator #2 Level-High 1,2

12. Reactor Coolant Flow-Low(d* 1,2

13. Loss of Load (turbine stop valve 1control oil pressure)^6*

SR 3.3.1 .1 > [24.23]%SR 3.3.1 .7SR 3.3.1 .10SR 3.3.1 .14

SR 3.3.1 .1 > [24.23]%SR 3.3.1 .7SR 3.3.1 .10SR 3.3.1 .14

SR 3.3.1 .1 < [90.74]%SR 3.3.1 .7SR 3.3.1 .10SR 3.3.1 .14

SR 3.3.1 .1 < [90.74]%SR 3.3.1 .7SR 3.3.1 .10SR 3.3.1 .14

SR 3.3.1 .1 Ranp: < [0.231] psid/sec.SR 3.3.1 .7 Floor: > [12.1] paidSR 3.3.1 .10 Step: (7.231) paid

(SR 3.3.1 .13]SR 3.3.1 .14

SR 3.3.1 .9 > [1001 psigSR 3.3.1 .10

CSR 3.3.1 .13]

(continued)

(d) Trip may be bypassed when THERMAL POWER is < [1E-4]X RTP. Bypass shall be automatically removed when THERMAL POWER is > (1E-43X RTP. During testing pursuant to LCO 3.4.17, trip may be bypassed below 5X RTP. Bypass shall be automatically removed when THERMAL POWER is > 5X RTP.

(e) Trip may be bypassed when THERMAL POWER is < (55)X RTP. Bypass shall be automatically removed tfien THERMAL POWER is > [551% RTP.

CEOG STS 3.3-9- 161 -

Rev. 0 09/28/92

RPS Instrumentation—Operating (Digital)3.3.1

Table 3.3.1-1 (page 3 of 3)Reactor Protective System Instrumentation

FUNCTION

APPLICABLE MOOES OROTHER SPECIFIED SURVEILLANCE

CONDITIONS REQUIREMENTS ALLOWABLE VALUE

14. Local Power Density - High^ 1,2

15. Departure From Nucleate Boiling 1,2Ratio (DNBR) - Low(a)

SR 3.3.1.1 < [21.0] kV/ftSR 3.3.1.2SR 3.3.1.3SR 3.3.1.4SR 3.3.1.5SR 3.3.1.6SR 3.3.1.7SR 3.3.1.10SR 3.3.1.11SR 3.3.1.12SR 3.3.1.13SR 3.3.1.14

SR 3.3.1.1 > [1.31]SR 3.3.1.2 SR 3.3.1.3 SR 3.3.174 SR 3.3.1.5 SR 3.3.1.6 SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.11 SR 3.3.1.12 SR 3.3.1.13 SR 3.3.1.14

(d) Trip may be bypassed when THERMAL POWER is < [1E-4]X RTP. Bypass shall be automatically removed tfien THERMAL P(A^R is > [1E-4]X RTP. During testing pursuant to LCO 3.4.17, trip may be bypassed below 5X RTP. Bypass shall be automatically removed when THERMAL POWER is > 5X RTP.

CEOG STS 3.3-10 Rev. 0, 09/28/92

- 162 -

RPS Instrumentation—Shutdown (Digital)3.3.2

3.3 INSTRUMENTATION

3.3.2 Reactor Protective System (RPS) Instrumentation—Shutdown (Digital)

LCO 3.3.2 Four RPS Logarithmic Power Level—High trip channels andassociated instrument and bypass removal channels shall be OPERABLE. Trip channels shall have an Allowable Value of 5 [.93]% RTP.

APPLICABILITY: MODES 3, 4, and 5, with any reactor trip circuit breakers(RTCBs) closed and any control element.assembly capable of being withdrawn.

............................................-...................NOTE...................................................................Trip may be bypassed when THERMAL POWER is > [lE-4]% RTP. Bypass shall be automatically removed when THERMAL POWER is 5 [lE-4]% RTP.

ACTIONS

...................................................................................... NOTE....................................................-...............................If a channel is placed in bypass, continued operation with the channel in the bypassed condition for the Completion Time specified by Required Action A.2 or C.2.2 shall be reviewed in accordance with Specification 5.5.1.2.e.

CONDITION REQUIRED ACTION COMPLETION TIME

A. One RPS logarithmic A. 1 Place channel in 1 hourpower level trip channel inoperable.

AND

bypass or trip.

A.2 Restore channel to Prior toOPERABLE status. entering MODE 2

following next MODE 5 entry

(continued)

CEOG STS 3.3-11 Rev. 0, 09/28/92

- 163 -

RPS Instrumentation—Shutdown (Digital)3.3.2

CONDITION

ACTIONS (continued)

B. Two RPS logarithmic power level trip channels inoperable.

B.l

REQUIRED ACTION COMPLETION TIME

..................NOTE-------LCD 3.0.4 is not applicable.

C. One automatic bypass removal channel inoperable.

C.l

OR

Place one channel in bypass and place the other in trip.

1 hour

Disable bypass channel.

1 hour

C.2.1 Place affected automatic trip channel in bypass or tri p.

1 hour

AND

C.2.2 Restore bypassremoval channel and associated automatic trip channel to OPERABLE status.

Prior to entering MODE 2 following next MODE 5 entry

D. Two automatic bypass -------------------- NOTE---------------------removal channels LCO 3.0.4 is not applicable,inoperable. ------------------------------------------------

D.l Disable bypass channels.

1 hour

OR

(continued)

CEOG STS 3.3-12 Rev. 0, 09/28/92.

ACTIONS

RPS Instrumentation — Shutdown (Digital) 3.3.2

CONDITION REQUIRED ACTION COMPLETION TIME

D. (continued) D.2 Place one affectedautomatic trip channel in bypass and place the other in trip.

1 hour

E. Required Action and associated Completion Time not met.

E.l Open all RTCBs. 1 hour

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.2.1 Perform a CHANNEL CHECK of each logarithmicpower channel.

12 hours

SR 3.3.2.2 Perform a CHANNEL FUNCTIONAL TEST on eachlogarithmic power channel.

92 days

SR 3.3.2.3 Perform a CHANNEL FUNCTIONAL TEST on eachautomatic bypass removal function.

Once within92 days prior to each reactor startup

(continued)

CEOG STS 3.3-13 Rev. 0, 09/28/92

RPS Instrumentation—Shutdown (Digital)3.3.2

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.2.4 ............................................ NOTE...............................................Neutron detectors are excluded from CHANNEL CALIBRATION.

Perform a CHANNEL CALIBRATION on each logarithmic power channel, including bypass removal function.

[18] months

SR 3.3.2.5 Verify RPS RESPONSE TIME is within limits. [18] months on a STAGGEREDTEST BASIS

CEOG STS 3.3-14 Rev. 0, 09/28/92

- 166 -

CEACs (Digital)3.3.3

3.3 INSTRUMENTATION

3.3.3 Control Element Assembly Calculators (CEACs) (Digital)

LCD 3.3.3 Two CEACs shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTIONS

CONDITION REQUIRED ACTION COMPLETION TIME

A. One CEAC inoperable. A.l Perform SR 3.1.5.1. Once per 4 hours

AND

A.2 Restore CEAC to OPERABLE status.

7 days

B. Required Action and associated Completion Time of Condition A not met.

OR

Both CEACs inoperable.

B.l Verify the departure from nucleate boiling ratio requirement of LCO 3.2.4, "Departure from Nucleate Boiling Ratio (DNBR)," is met [and the ReactorPower Cutback System is disabled].

4 hours

AND

(continued)

CEOG STS 3.3-15 Rev. 0, 09/28/92

- 167 -

CEACs (Digital)3.3.3

ACTIONS

CONDITION REQUIRED ACTION COMPLETION TIME

8. (continued) B.2 Verify alI ful1length and part length control element assembly (CEA) groups are fully withdrawn and maintained fully withdrawn, except during Surveillance testing pursuant toSR 3.1.5.3 andSR 3.1.5.4 [or for control, when CEA group #6 may be inserted to a maximum of 127.5 inches].

AND

4 hours

B.3 Verify the "RSPT/CEACInoperable" addressable constant in each core protection calculator (CPC) is set to indicate that both CEACs are inoperable.

AND

4 hours

B.4 Verify the ControlElement DriveMechanism Control System is placed in "OFF" and maintained in "OFF," except during CEA motion permitted by Required Action B.2.

AND

4 hours

B.5 Perform SR 3.1.5.1. Once per 4 hours

(continued)

CEOG STS 3.3-16 Rev. 0, 09/28/92

CEACs (Digital)3.3.3

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

C. Receipt of a CPCchannel B or C cabinet high temperature alarm.

C.l Perform CHANNELFUNCTIONAL TEST on affected CEAC(s).

12 hours

D. One or two CEACs with three or more autorestarts during a12 hour period.

D.l Perform CHANNELFUNCTIONAL TEST on affected CEAC.

24 hours

E. Required Action and associated Completion Time of Condition B,C, or D not met.

E.l Be in MODE 3. 6 hours

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.3.1 Perform a CHANNEL CHECK. 12 hours

SR 3.3.3.2 Check the CEAC autorestart count. 12 hours

SR 3.3.3.3 Perform a CHANNEL FUNCTIONAL TEST. 92 days

SR 3.3.3.4 Perform a CHANNEL CALIBRATION. [18] months

(continued)

CEOG STS 3.3-17 Rev. 0, 09/28/92

- 169 -

CEACs (Digital3.3..

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.3.5 Perform a CHANNEL FUNCTIONAL TEST. [18] months

SR 3.3.3.6 Verify the isolation characteristics of each CEAC isolation amplifier and each optical isolator for CEAC to CPC data transfer.

[18] months

CEOG STS 3.3-18 Rev. 0, 09/28/'

- 170 -

RPS Logic and Trip Initiation (Digital)3.3.4

3.3 INSTRUMENTATION

3.3.4 Reactor Protective System (RPS) Logic and Trip Initiation (Digital)

LCD 3.3.4 Six channels of RPS Matrix Logic, four channels of RPSInitiation Logic, [four channels of reactor trip circuit breakers (RTCBs),] and four channels of Manual Trip shall be OPERABLE.

APPLICABILITY: MODES 1 and 2,MODES 3, 4, and 5, with any RTCBs closed and any control

element assemblies capable of being withdrawn.

ACTIONS

CONDITION REQUIRED ACTION COMPLETION TIME

A. ....................NOTE....................This action also applies when three Matrix Logic channels are inoperable due to a common power source failure de-energizing three matrix power supplies.

A.l Restore channel to OPERABLE status.

48 hours

One Matrix Logic channel inoperable.

(continued)

CEOG STS 3.3-19

- 171 -

Rev. 0 09/28/92

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

B. .................... NOTE....................RTCBs associated with one inoperable channel may be closed for up to 1 hour for the performance of an RPS CHANNEL FUNCTIONALTEST.

B.l Open the affectedRICBs.

1 hour

One channel of Manual Trip, RTCBs, or Initiation Logic inoperable in MODE 1 or 2,

C. .................... NOTE....................RTCBs associated with one inoperable channel may be closed for up to 1 hour for the performance of an RPS CHANNEL FUNCTIONALTEST.

C.l Open all RTCBs. 48 hours

One channel of Manual Trip, RTCBs, or Initiation Logic inoperable in MODE 3,4, or 5.

D. Two channels of RTCBs or Initiation Logic affecting the same trip leg inoperable.

D.l Open the affectedRTCBs.

Immediately

(continued)

CEOG STS 3.3-20 Rev. 0, 09/28/92

RPS Logic and Trip Initiation (Digital)3.3.4

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

E. Required Action and E.l Be in MODE 3. 6 hoursassociated Completion Time of Condition A,B, or D not met.

AND-

ORE.2 Open all RTCBs. 6 hours

One or more Functionswith more than one -Manual TriMatrix Logic, Initiation^ Logic,, or RTCB channelinoperable for reasons other than Condition A or' 0.

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.4.1 Perform a CHANNEL FUNCTIONAL TEST on eachRPS Logic channel and RTCB channel.

[92] days

SR 3.3.4.2 Perform a CHANNEL FUNCTIONAL TEST, including separate verification of the undervoltage and shunt trips, on each RTCB.

[18] months

SR 3.3.4.3 Perform a CHANNEL FUNCTIONAL TEST on eachRPS Manual Trip channel.

Once within7 days prior to each reactor startup

CEOG STS 3.3-21 Rev. 0, 09/28/92

- 173 -

ESFAS Instrumentation (Digital)3.3.5

3.3 INSTRUMENTATION

3.3.5 Engineered Safety Features Actuation System (ESFAS) Instrumentation (Digital)

LCD 3.3.5 Four ESFAS trip and bypass removal channels-for eachFunction in Table 3.3.5-1 shall be OPERABLE.

APPLICABILITY: According to Table 3.3.5-1.

ACTIONS

...................................................................................... NOTES..................................................................................1. Separate Condition entry is allowed for each ESFAS Function.

2. If a channel is placed in bypass, continued operation with the channel in the bypassed condition for the Completion Time specified by Required Action A.2 or C.2.2 shall be reviewed in accordance with Specification 5.5.1.2.e.

CONDITION REQUIRED ACTION COMPLETION TIME

A. One or more Functions A. 1 Place channel in 1 hourwith one automatic bypass or trip.ESFAS trip channel inoperable. AND

A.2 Restore channel to Prior toOPERABLE status. entering MODE 2

following next MODE 5 entry

(continued)

CEOG STS 3.3-22 Rev. 0, 09/28/92

- 174 -

ESFAS Instrumentation (Digital)3.3.5

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

8. One or more Functions with two automaticESFAS trip channels inoperable.

8.1 ..................NOTE.....................ICO 3.0.4 is not applicable.

Place one channel in bypass and the other in trip.

1 hour

C. One or more Functions with one automatic bypass removal channel inoperable.

C.l

OR

Disable bypass channel.

1 hour

C.2.1 Place affected automatic trip channel in bypass or trip.

1 hour

AND

C.2.2 Restore bypass removal channel and associated automatic trip channel to OPERABLE status.

Prior to entering MODE 2 following next MODE 5 entry

D. One or more Functions with two automatic bypass removal channels inoperable.

LCO 3.0-------- note........... ....................4 is not applicable.

D.l Disable bypass channels.

1 hour

QR

(continued)

CEOG STS 3.3-23 Rev. 0, 09/28/92

- 175 -

ESFAS Instrumentation (Digital)3.3.5

ACTIONS

CONDITION REQUIRED ACTION COMPLETION TIME

D. (continued) D.2 Place one affected 1 hourautomatic trip channel in bypass and place the other in tri p.

E. Required Action and E.l Be in MODE 3. 6 hoursassociated Completion Time not met. AND

'

E.2 Be in MODE 4. [12] hours

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.5.1 Perform a CHANNEL CHECK of each ESFAS channel.

12 hours

SR 3.3.5.2 Perform a CHANNEL FUNCTIONAL TEST of each ESFAS channel, including bypass removal functions.

92 days

SR 3.3.5.3 Perform a CHANNEL CALIBRATION of each ESFAS channel, including bypass removal functions.

[18] months

(continued)

CEOG STS 3.3-24 Rev. 0, 09/28/92

- 176 -

ESFAS Instrumentation (Digital)3.3.5

SURVEILLANCE REQUIREMENTS(continued)

SURVEILLANCE FREQUENCY

SR 3.3.5.4 Verify ESF RESPONSE TIME is within limits. [18] months on a STAGGEREDTEST BASIS

SR 3.3.5.5 Perform a CHANNEL FUNCTIONAL TEST on each automatic bypass removal channel.

Once within92 days prior to each reactor startup

CEOG STS 3.3-25 Rev. 0, 09/28/92

- 177 -

ESFAS Instrumentation (Digital3.3.

Table 3.3.5-1 (page 1 of 1)Engineered Safety Features Actuation System Instrumentation

FUNCTION

APPLICABLE MOOESOR OTHER SPECIFIED

CONDITIONS ALLOWABLE VALUE

1. Safety Injection Actuation Signal*8*

a. Containment Pressure - Highb. Pressurizer Pressure - Low*6*

1,2,3 < (3.14) psig > [1763] psia

2. Containment Spray Actuation Signal

a. Containment Pressure - High Highb. Automatic SI AS

1,2.3 < [T6.S3] psiaHA

3. Containment Isolation Actuation Signal

a. Containment Pressure ~ Highb. Pressurizer Pressure — Low*6*

1,2,3 < [3.14] psig > (17631 psia

4. Main Steam Isolation Signal

a. Steam Generator Pressure - Low*c*b. Containment Pressure -High

1,2<d>,3<d) % [711] psig < (3.14] psig

5. Recirculation Actuation Signal

a. Refueling Water Storage Tank Level — Low 1,2.3 C> 17.73 and < 19.27]%

6. Emergency Feedwater Actuation Signal SG (EFAS-1)

#1

a. Steam Generator Level — Lowb. SG Pressure Difference - High

[c. Steam Generator Pressure - Low

1.2.3 > (24.231%< [66.25] psid > [711] psig]

7. Emergency Feedwater Actuation Signal SG (EFAS-2)

#2

a. Steam Generator Level - Lowb. SG Pressure Difference — High

(c. Steam Generator Pressure - Low

1,2.3 > [24.231%< [66.25] psid > (7111 psig]

(a) Automatic SI AS also initiates a Containment Cooling Actuation Signal (CCAS).

<b) The setpoint may be decreased to a minimum value of [300] psia, as pressurizer pressure is retkjced,provided the margin between pressurizer pressure and the setpoint is maintained 3 [400] psia. Trips may be bypassed when pressurizer pressure is < [400] psia. Bypass shall be automatically removed pressurizer pressure is > [500] psia. The setpoint shell be automatical ly increased to the normal setpoint as pressurizer pressure is increased.

Cc) The setpoint may be decreased as steam pressure is reduced, provided the margin between steam pressunand the setpoint is maintained < [200] psig. The setpoint shall be automatically increased to thenormal setpoint as steam pressure is increased.

(d) The Main Steam Isolation Signal (MSIS) Function (Steam Generator Pressure - Low and ContainmentPressure - High signals) is not required to be OPERABLE when all associated valves isolated by the MSI Function are closed and [de-activated].

CE0G STS 3.3-26 Rev. 0, 09/28/S

- 178 -

ESFAS Logic and Manual Trip (Digital)3.3.6

3.3 INSTRUMENTATION

3.3.6 Engineered Safety Features Actuation System (ESFAS) Logic and Manual Trip (Digital)

LCO 3.3.6 Six channels of ESFAS Matrix Logic, four channels of ESFASInitiation Logic, two channels of Actuation Logic, and two channels of Manual Trip shall be OPERABLE for each Function in Table 3.3.6-1.

APPLICABILITY: According to Table 3.3.6-1.

ACTIONS

...................................................................................... NOTE..............................Separate Condition entry is allowed for each Function.

CONDITION REQUIRED ACTION COMPLETION TIME

A. .................... NOTE.....................This action also applies when three Matrix Logic channels are inoperable due to a common power source failure de-energizing three matrix power supplies.

A.l Restore channel toOPERABLE status.

48 hours

One or more Functions with one Matrix Logic channel inoperable.

B. One or more Functions with one Manual Trip or Initiation Logic channel inoperable.

B.l Restore channel toOPERABLE status.

48 hours

(continued)

CEOG STS 3.3-27 Rev. 0, 09/28/92

- 179 -

E5FAS Logic and Manual Trip (Digital)3.3.6

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

C. One or more Functions with two Initiation Logic channels affecting the same trip leg inoperable.

C.l Open at least onecontact in the affected trip leg of both ESFAS Actuation Logics.

AND

C.2 Restore channels toOPERABLE status.

Immediately

48 hours

0. One or more Functions with one Actuation

D.l ------------- NOTE.....................One channel of

Logic channel inoperable.

Actuation Logic may be bypassed for up to1 hour for Surveillances, provided the other channel is OPERABLE.

Restore inoperable channel to OPERABLE status.

48 hours

E. Required Action and associated Completion Time of Conditions for Containment Spray

E.l Be in MODE 3.

AND

6 hours

Actuation Signal, Main Steam IsolationSignal, or Emergency Feedwater Actuation

E.2 Be in MODE 4. [12] hours

Signal not met.

(continued)

CEOG STS 3.3-28 Rev. 0, 09/28/92

ESFAS Logic and Manual Trip (Digital)3.3.6

ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETION TIME

F. Required Action and associated Completion Time of Conditions for Safety Injection

F.l

AND

Be in MODE 3. 6 hours

Actuation Signal, Containment Isolation Actuation Signal, RecirculationActuation Signal, or Containment Cooling Actuation Signal not

F.2 Be in MODE 5. 36 hours

met.- — -

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.3.6.1 ............................................ NOTE...............................................Testing of Actuation Logic shall include the verification of the proper operation of each initiation relay.

Perform a CHANNEL FUNCTIONAL TEST on each ESFAS logic channel.

[92] days

(continued)

CEOG STS 3.3-29 Rev. 0, 09/28/92

- 181 -

ESFAS Logic and Manual Trip (Digital)3.3.6

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.3.6.2 ............................................ NOTE..................................... .........Relays exempt from testing during operation shall be tested during each MODE 5 entry exceeding 24 hours unless tested during the previous 6 months.

Perform a subgroup relay test of each Actuation Logic channel, which includes the de-energization of each subgroup relay and verification of the OPERABILITY of each subgroup relay.

[184] days

SR 3.3.6.3 Perform a CHANNEL FUNCTIONAL TEST on each ESFAS Manual Trip channel.

[18] months

CEOG STS 3.3-30 Rev. 0, 09/28/92

- 182 -

ESFAS Logic and Manual Trip (Digital)3.3.6

Table 3.3.6-1 (page 1 of 1)Engineered Safety Features Actuation System Logic and Manual Trip Applicability

FUNCTION APPLICABLE MCOES

1. Safety Injection Actuation Signal

a. Matrix Logic 1,2,3b. Initiation Logic 1,2,3,4c. Actuation Logic 1,2,3,4d. Manual Trip 1.2,3,4

2. Containment Isolation Actuation Signal

a. Matrix Logic 1,2,3b. Initiation Logic 1.2.3,4c. Actuation Logic 1,2,3,4d. Manual Trip 1,2,3,4

3. Containment Cooling Actuation Signal*®*

a. Initiation Logic 1.2,3,4b. Actuation Logic 1.2,3,4c. Manual Trip 1,2,3,4

4. Recirculation Actuation Signal

a. Matrix Logic 1,2,3b. Initiation Logic 1,2,3,4c. Actuation Logic 1,2,3.4d. Manual Trip 1,2,3,4

5. Containment Spray Actuation Signal****

a. Matrix Logic 1,2,3be Initiation Logic 1,2.3c. Actuation Logic 1,2,3

*d. Manual Trip 1,2,3

6. Main Steam Isolation Signal

a. Matrix Logic 1,2,3b. Initiation Logic 1,2,3c. Actuation Logic 1,2,3d. Manual Trip 1,2,3

7. Emergency Feedwater Actuation Signal SG #1 (EFAS-1)

a. Matrix Logic 1,2,3b. Initiation Logic 1,2,3c. Actuation Logic 1,2,3d. Manual Trip 1,2,3

8. Emergency Feedwater Actuation Signal SG #2 (EFAS-2)

a. Matrix Logic 1,2,3—be Initiation Logic 1,2,3c. Actuation Logic 1,2,3d. Manual Trip 1,2,3

(a) Automatic SIAS also initiates CCAS.

(b) Automatic SIAS also required Tor automatic CSAS initiation.

CEOG STS 3.3-31 Rev. 0>: 09/28/92

a.3 ^

A.3.1 RPS ti]H

A.3.1.1 RPS 3]#HM - 1,2)5# TECH SPEC 59 34 TECH SPEC '

3.3.1 RPS Til### 545 (5#S.3 1,2) 16.3/4.3.154414s LCO 3.3.1 4 7)5o)| 4# 4 7114 RPS H# $ 5# 47)71115 LCO 3.3.1 £ 3.3-14 5.49 #49 9#7}5#i4 #.(LCO) 99# £. 3.3,-z oq 4-9-9 5 #7)

95 7>4jl 997)544 94-#997) i 17]) 0)44 450)14 171)4 4# RPS E# 7D14 5-4 1- 1 (44 #5)

7}?# 95i 44 °M &H9 444- 5-4 s^J!

- 4-7) 4597)5 4594 49 71)15 5971-59^5. 95

2 17]) 444 4501)4 2 7114 4# RPS E# 4*4 5-4 4 27}^# 4-71 4#7l57)#44 (4

144 44) 17114 71)15 5-44-Ji 444 7M5 5 94

£ 1 4# 95)

3.17]) 444 450)14 i 7])4 7)4-44414 ^^4 54 #7) 4# 45

l 7)4 44 414 5si 71145 414444l 44 441 49 7}5s# 71)45 59444 H#4sitM 49445 4594 5944 7))14 49 7}5 E# 7])15 597>544S 45

3. (4-4 05)

4.171) 444 454M 27)14 7)55944 ^^4 59 #7} 5% 95

- 149 441 54 7W#5 444-44l 49 44 17114 99 7>^S9 7)) 15 5943 4 -& 4 #5 e^t

4.(44 05)

5 171) 0)4-4 cpc 7i)\gol)A) 444 49^ ji59S. #49 95

12 49 44 99 cpc 4 71)17154# 5#

5 (44 05)

6.171) 0)4-4 CPC AflloDz) 12 4959 3 9 49 7)5 7)59 95

24 49 44) 99 cpc 4 71) 17)57)# =5#

6.(44 #5)

7. 3:4-2-47}9 # 4949 99546 7)9 414) ji54)71

7. (9905)

##£57) 1 12 4944- 9 #7)33. S. 7)19 ^157fl 1 of| 441 7fli#9 1.(44 09)9(SR) 2 12 7)944- 4 cpc 4 7)7)45 rcs 559=4 Res # 9

94497) 4-99^-7), cpc 7>9959 59S.997I-9 &944 9 cpc 4 7)7)45 99=5 rcs 5944s. 4#

2.(44 09)

3. 12 49o>4 cpc 7157)5 55 99 3. (44 09)4. 247)944 99*9*4, cpc at #94 cpc #7)3.#

943.5 ##4 ^197)4- 9344 444 94 1## 7)1993.4 94##94 o.5%5 344°) 4-2.4 917>4 #445 ##9494 49-° 3

4.(44 09)

5 31 #o}4 4 cpc 9)7) 7]7)45 5 RCS 594 24# # 5.(44 09)#9 494 44 994 47}3. rcs 994494 49

e. 31 #44 ^494#7)4 9### 54#4#4 cpc # 5s.^ls^7 Rif 99# nfl 7>59 44 #7)4-54 4#

6 (4-4 09)

7. 92 #44 4 RPS 4#4) tflsfl 7H17154# 59 7.31 # 448. 92 #44 99*9 3#a)7)1#714 44 7)1139 59 8 31# 44 1

- 185 -

9. 92444- -T-4-71H14I *11171143 9. 31 4 44-10. is 7^344- -4-3)471 a.#44 4 414 44 41

z4io. is 7fl3 44-

li. 18 7834-4- 4 cpc 414 44 417H43 =r4 li 18 783 4-4-12. 4 345-414-4 f- 441#4(RTP)4 70%* &4-44 4

l 4 h:4^7}& 4*4* 4-8-44, cpc 44 4-8-% ^4-s.4 4S4^ 44

12 (4-4 &-§-)

13. 4 47}a. 711-4 921 444 l 4 4" 4-1 -t-4 44 4 14 44r 414^-4^

13 (44I 14.18 711-344- S44%7]*0.5. rps -8-1-7144 444 o)tn

44 ^4i4 (44 a*)

- 186 -

A.3.1.2 RPSTECH SPEC *4 34 TECH SPEC

3.3.2 RPS ^)#^4 - 4#* 16.3/4.3.1£3 aims LCO 3.3.2 4 7fl2} RPS 4*#4*^-2l5#AH#4 44 447)4 S *^|4|7)AH#* *47}*3flo} y.. E# Afl#* 0.93% 44(LCO) ##4^4 4* 4*A|* 4*4 (*45~E. 3,4,5)#4*4 1. 1 7))2} RPS 4|*#4*4M^ AH#o) *# #-7}*l 4* 1 (AM 0*)36 *l 1 Ala »im 8fl# AH#* *3] £*

a>7) 4*Ajx)* 7)*# 4) an# Afl#* *#7>*4eH& 4*

2 2 7H# RPS tfl*#4**EiD *H#o) £3 #7}*# 4* 2. (A}°) 0*)1 44 o)#| 1 7i# AH#*- *43}Jl 4°M All#* 5.

3 171)2) 4**s)xH7) All#*! *4 *?}*% 4*1 A)4 *M a## *4 AH#* 4) 7) 3} 7) 41 A)# o]vD ## X>*E# ^1)#*- *3) 3} 7) 4 E#S)J2A>7) A)*##* 7l*#ofl *3)71)7) AH#3)- 44 7}* H# A))#*- *47}*#tflS. #*

3. (AM 0*)

4 2 7fl2) 4**5)417) Afl#o) *# #7}*# 3*- 1 A)# o)q) 6fl# *5) AH##* 7H7)3)-7)<4

1 A)# *)H) 44 1 7fl2) 44 7>*S^ AH#* *3)3}-52 4@ AH#* HW

4 (AM 0*)

5 SA)PL*A># 5 4)444 ###A)1*14 “I'D S-* #x}5LH*?)x}#7l(RTCB)-t 7fl#

5 (3M 0&)

4411* A} 1.124444 4 4*#s) AH#4) tflafl Afl#44 *3) 1 (AM &-§-)2.92 #44- 4 4)*&4 AH#4) 4M aH#7)*-a)*i **g 2.31 -a o}4

(SR) 3 4) *7}S. 7)*# 92-a 0)4)4) 1 3] 4 x}* *3) 4)7) 7) *4) 4)4 AH#7)*A)*j *«g

3. (AM 0*)

4 18 7H144 *3)417)7)** 5L#3}4 4 4)*#^ Afl#4) rflsfl AH#HAj *T$

4.18 7H^ 44

5 18 7H144 a#A)f 7)*o.S RPS *#A)ao) 444 *)4) 44 ##

5. (AM 0*)

- 187 -

A.3.1.3 CEAC3.# TECH SPEC ## 34 TECH SPEC |3.3.3 CEAC 16.3/4.3.1 |ECO 3.3.3 *7]|4 CEAC * *47>*S||4: #. (*53.E. 1,2) CEAC 4 DPS 7H1

1.17# CEAC 7} *5 #7}*# 5# 1. (#4 a*>4 7.15 D>q. SR3.1.5 1 *543i7 5 vflofl CEAC# 5-47}*#Bll3. 4*

2 2:4-8-# 7}# # 4^44 &5#44 CEAC S.* #4 #7}?# 5*

4 4# Wj41 DNBR 4 LC0 3 24 5 DNBR A## 4##-& #445, 57}&*4##@4^-(ReactorPower Cutback System)# 444314 4# 4H 55^-745 3.15 3 4 3.1.5.4 4 4* 55# *54* ##* *1445 44 4 *## cea7> #44 4*44 #31 #44#4eH1- #44*# #4 5* #444# 444 44#4#43.# #6#atfl 127.5in(323 9cm)5 #4 € =r 44 314314 4# 44 4 cpc s} 7>4#«r7> ceac2 4 3.* * ##7}*-& 444s# 444s “RSPT/CEAC #41-*" 44* 444*4 #444. ZL451

- 4 44- 44 44*4*44 444*4 “off* 444¥4 @a n #45. *44*4 #444. 4, 543. *4# 2.24 44 44*4444 #*4 4-8-4*

2.(44 a*)

5*4* 445 #. nelJi445 4# 1 S) sr3.1.5.1 *4

3. lc#55##7l 71)1 “B”S* “C”4 444 31*557} 14# 5#

124# 4 #4 ceac 4 4i7i*xif *4

3.(44 a*)

4 1 4 &* 2 44 ceac 7} 12 7.1#*# 3 4 4# 7}# 471 *1 5*

2445 44 #4 CEAC 4 414* A) 5 *5

4 (44 a*)

5. 27ii.f4f # ## &# 2.3,4 4 4444 1-441 5*6 44 44 31*44

5 (44 a*)

1.12 7.1444 71)155 *5 1444 a*)* 2.12 t-1444 ceac 44*#* 44 2 (44 a*)

3.92 444 -4471*7.15 =*5 3 31 4 44-4. 18 71)144 71)1 32# *<9 4 18 711-1 44

| 5.i8 7i]-i44 7H 171*7.)5 *5 5.18 711-1 44

| 6.18 71)144 4 ceac 4#*#7)e) 44453} ceac<44CPC 5 444 5*4* # #5#7) 44

6. (x}°l Sir) J

- 188 -

A.3.1.4 RPS -feEj ^ 5^^I 3.3.4 RPS fee) % 5949 16.3/4.3.1 144493= LCO 3.3.4 RPS fee) 6 7fl 4 9, RPS 7gA]^s) 4 7fl Xfl RPS fee) 5 51494 M, RTCB 4 7fl 49, f#59 4 71) 494 e^7}%-@D4 #.

(■gr^S-H 1,2; RTCB 7} <9^S)J1 &fe ^M-S-rh0]9#e)# 5#9 5:4S-H 3,4,5)

9944 1 1 7flfi) Matrix fee) 4 9 °] 49 #7}?% 94 1. "JS^Afee) 494 4549&A (9"5-49 4"93. 94 3 71] Matnx fee)490l £9 #7}%- 7}949(3 7fl)s.q- 1 7fl 4fe 94

% 945 54) 48 A)44 497}944|5. I- 48 4# °14 499949 44 4?

2. 493-5 1,2 4)4 4951, RTCB, 5fe 7flA)^2) i 7fl 494 49 #7}%-# 94

(1 7l)e) 49 #7}%- 4M4 999 RTCB fe 9?}55&49 497)94%444 94 14#?M 997}%-)

l 4# 44 99 tcb 7fl4-

2 (44 8)9)

3. 493.5. 3,4,5 44 495.1, RTCB, Sfe 7^4444 1 A 3. j499 49 #7}%-# 94 48 44-44 ^4-7)4-

(i 44 49 #7}9 494 499 RTCBfe rps 4 9 7)%-a) o}49 49 RTCB 1 A)1 4 <8* 44 i 4#44 9-47}%-)

48 A) 44 2_fe RTCB 71)9-44 7l)9

4 #-4 51 44 91=4 49 2 7fl 499 RTCB 5fe 7flA) fee) 7} 49 #7}%-# 94

#A] g}<8 RTCB 7fl9

4 (94 89)

5. 5 4 •2-44-1- S #4 59 1,2,4 4 4 #4# #9}## 9 5. (44 8)4)44 #4#4-4 i,4 o)44 o)4a. 4951, 454^44, 7fl4^e), 5fe 995.5 Hl^s} #44 i A 0)9-4 9%-4 a) l 7fl oi^-o^ 49°1 49 #7}%-% 9-f

6 4#<>M .z-8-4 7) #Ji6 A) 9ro] 4 s.€- tcb 71)9

l 92 444 4 rps fee) 494 rtcb 444 4^7)941 1.31 4 449 ‘T^

2.18 7^44 4 RTCB 44 undervoitage § shunt EiH tfl2.18 7l)-§l n}t}

9 5-4 994 419 494949 413. 4 945 7)99 7 4 44 94 4 RPS 4951 494 499941 41

3 (94 8*4)

- 189 -

A.3.2 ESFAS ti]H

A.3.2.1 ESFAS 4144M&e>U7i>4^7)(% >4 3,4 5L7] ><97)^4^4 |3.3.5 ESFAS 4## 4 16,3/4.3.2 1

>4442: LCO 3.3.5 4 4o|| 44 4 71)4 ESFAS HU ^ >444 Xfl HU44M> >44^-44 # |

>U#4 1.171) 0)4-0) ESFAS 7)>ti||4 1 71)4 4>HU4)\I4 >4 # i.(44 a»7»1& 4>

l 44 44 44 4M> >4 H> HI 44s. 4# 4a

- 44 4>44> 4>4 >^7»44^ 4>2 1711 444 ESFAS 71^-0)14 2 71)4 7»HU4I14 5.4 # 2.4># 4> 4-7) 7i)^7)>7)U44 (4

- 1 71)4 4)4> 4-e 44> HU £ l 414 4»3 I7i) 0)4-4 esfas 7i^o||4 i7l)4 4»44|4*ll,i4 >4 l-7»4 4>

l 7)4 n)4] >S)4M* >4»44a. 4 #44 41 44 44) UU ?}>HU4^-& >4 Hfe HU

3 (44

- 44 4>44> 4>4 >44)44)44 44 4>BU7W-& >47»44)H »

4 i7i) 0)4-4 esfas 7)44)4 2 71)4 4»3)X|]44)44 >4 l-7»t 4>

4 (44 &»

1 44 4)4) >444* >4»44H 4 #4 4414^- ^ -f4#'cr

5. CSAS, CIAS, RAS, AFAS 7) >4) t}]4 2:4.5.>444. 4U"44-& #### 4>

6 7)4 v))4| jz>4)7)4ji12 7)4- iflofl ji>44

5.(4>&»

6. SIAS, MSIS 7)4-4 tflU 2:4H>7>44- 4Ur7)4i- #4#t 4>

6 7)4 4)4) J7>4)7)4a.36 7)4-4 tifl 4-^44

6.(4>S»

U4-9->4 1 124444- 4 ESFAS 4)44| 4)4) *1)1444 >U 1.(44 &»* 2.92 U44 4 ESFAS 4)#7]47]U >u 2. 31 U o>4

3. 18 71)144 >S)4|44» H#4 4 ESFAS 4)^j2-4 > 3.18 Tfll 444.(44 &-§-)

4 247)U7)^4) 44 is 7flU44 esfas >U-714°1 4440)4445. 4 U4-H 4>4 31 44)4) 14 4 4»5)4|4*1|i|e] 41

5.(44 &»

444-7)4 >4 n- - ■ ^---------rj

- 190 -

A.3.2.2 ESFAS £^1 ^l££!4#4!4(t) £4 3,4 37l £44*414 j3.3.6 ESFAS £4 8 H^4£ 16.3/4.3.2 j

£441434

LCO 3.3.6 ESFAS aflH43 -fee) 6 7l| 44, ESFAS 7||7|te) 47fl 44, ££ £4 2 76 4^, ££it 2(4)76 411£ 4 4£ 4 4)414 £47>£4°> 4-

£4 % Htt*

l.i 7fl ol44 4444 l 7t)a| Matnx feel 4114 £4 #7} 4# ££

(£-§•44 £43 4% 3 ?6 Matnx feel761°l £4 l-7> fet 4 £3 it)

48 44 44 411* £47>££43 49

l. =6HtSfee) 4114 ^t£4 7>£76l(3 76)S4- i 76 4* 4£

48 Alt 41 £47>££4)3

2 l 7fl 4£4 4t°6a6 i 7fl4 £fesi 3fe l 764 76Aifee)414 £4 #7}£t 4£

- 48 4 4 44 41-& £47>££43 49

2 (4-4 &*)

3 1 76 4£4 4£44 £0) St 44 It* £fe 2 764 764£4 414 £4 *?}£% ££

#A) 2 764 ESFAS ££-fe44 It* £fe It 4# 434 1 4 4£4 444- 76£4-3148 44 44 41-t- £47>££4s 2^9

3 (t4&*)

4.176 4£4 £t£44!4££-76£-7l£44 i?64 £*fe4 414 £4 #7}£# 4-f

(4§-fe44 t *61£ 471444- 444 44 1 44 £4 £^7> 7f£t4- 4 4-S-411I-* tl7)-£t- £4444 t-4)

48 a)4-44 £41-7>£4 411* £l7}£* £4349

4 (44 &*)

5. 34S£a>£4 44-44-8: *14t 4£6 a) 444 32-8-4714-ji36 Alt: 4Ml £££4

5-(4-4 0*)

Its* a} 4

1.92 4 44 t ESFAS £4 764 ^ £* Et411°6 4*67614 £41 £12.184 4 44- 4 ttfee) 7614 £nf- 444 41* *1 44- 4 41* 4 £nf- 4444 44a? S 4 £nf- 41 444 £47>£Aj t4£ itt-4

1 31 t- 4*fe4* 321414*

43 62 1442 31 t 1

S 0.99^ 0.99<0.99 ^ 350 ’F (177 t)<0.99<0 99

1 £41 4|42 ae t7}5.-§-4 afli t£-|-E£ 14#7l| 344 a43 44 444 445.-6-71 4ls 4#-tH7> 444-711 3:44 14

- 191 -

32

B 1 7fl -Q- ............................................................................................................................................ 195

B.2 ^ 4#.................................................................................................................196

42/ ^ ^ 1# 3? -2-^ f ^ ^.......................................................................... /P&

B.2 2 f# JZ^F/JZ^- W 4-2' r-f ^..................................... 200

B23 1# 2# *}£,.................................................................. .... 200

6.2 4 f# /(/f rl.................................................................. 206

B.3 4^! ^ 514) 7)## o]%- #15......................................................................................209

B3 l 7]t!& c/f #i!5 ................................................................................... 209

45 2 M*r°// 7/£/g/ o]-§- -g-^£ . .. ....................................... 2/6

6 • 4 1 1 ^ ■ l| | • * • # # a •••••»•••«••■••»«« • •••«* •«•*••• • ••«•«•••• ••• • »• « ••«•»«• • • •• ••• • • ♦ • • • • • • • t # » • • « • 218

B41 /i/J? ^ g/^5# 2/4

4 4 2 -1J7 # £/-2£21.................................................................................. ........ 223

B.5 2#"........................................................................................................................... 226

#24#................................................................................................................................................229

2-4 B-l. 11 2# 1# 71#......................................................................................................206

5. B-l. 4$)5 14 & #4) 44^ T-& ..................................................... 195

5. B-2. 4# 4# 1# 44....................................................................................................... 199

5. B-3. CE# ### RPS/ESFAS 1# 2##/24 ##4| 4# 4# 45.................. 200

5 B-4. 445>i 4-4 44....................................................................................................... 202

5 B-5. Ill 1 4444 4 41 -S-151........................................................................204

5 B-6. 1# 5# 444 4-^4 24-1-/24 4141 4)4 4444 444................ 208

5 B-7. 5444 RPS/ESFAS 44 18 71)4 17]# 44 ^ 24 444 44.............. 214

5 B-8. 44 4)44 44 44 4444 44 <r4 ^ 13! 44................................... 215

5 B-9. 14 3,4 27] 4#4 7)1# o)-@. 1-4-5 14 44............................................ 215

SB RPS/ESFAS £!£|2 1#

- 193 -

5. B-10. RPS/ESFAS JLfi 4" 5 44 54.....................................................................224

& B-ii. i44 44 S9 4# 44 44...................................................................224

& B-12. RPS/ESFAS H4 -£-4 44 44 95.....................................................................225

5. B-13 RPS/ESFAS 4" 5 4 94 -2-4 4# ......................................................................225

& B-14. 44 49 2.44 414 5-44................................................................................. 227

-4*4 HVomeclatures)

Fm 54 954 43 5-4 95

/V #99-8-4 ^4

P 3i9 4#Ta 244 5-&4 497m 44 5,4 497, 44 43 947, 44 43 49(/ 494 49 995Um 5.44 49 49995Ut 434 49 4999S% 3/9 ^4

A 54f; 449 39#

- 194 -

B.l 7fl _3_

2# RPS/ESFAS ^ M]# ##2# ^^=##71 44^-4^ 7)1# JL^J- ^#4M2 3)8} 2 ^£)2 a}2 °) ^4. 4)# o)-g-

# 3)4| 12# f# #3)2 4&4 ##4# 1) 2# ##, 2) Alia ^ ^0)1 7)44»]-§- !-^5L, 3) ## 2# ##, 4) ## ## 2^ ##, ^ 5) o]#4 ### ###^ ^

2#4 2#2Mo) 44- 24 RPS/ESFAS 4 4#4^4 (TS; technical specification) 4^4

44 442 44 47H- 444 rps/esfas a^oiI ^-44 4-2 44 424 44

4-5.7} 5.444. 4 44 442 a}5 44& 444 444 a}5.4^ 24 # 7}4 #42,

^4 a}54 (generic data sources)4 442 24 a}il# (plant-specific data sources)2Ji. 44

^ %14 & B-i4 444 444 ^2 a}5.4 ^ 44 444 44 42# 4^-44 s B-M14 24 44 4°1 4 442 45. 4444^ 44 3,4 4 #4 3,4 244

RPS/ESFAS 44 4##4 444 f 44 44 7>4 442 24 A}&#-& 4422 44

24, 4^4 A}&#4 #4 44! ^ 44#4 4 44 B4M 4e4^4.

2 B-i. 442 a}5.A| 44# 44 4#€ 42 45.£

454 ## #5 A>4- s-4 «1 JL

41 A}&4 CEN-327[B-1] 1) #1 54-1-4 44 45.2) 5# 44 54-1 4=4 (p-factor)

NUREG/ C R-1278 [B-2] 41 44 51 11 314 THERP 114-a 4$m (tr) 5 #41 44 5.5 A) (NCR)

1) #1 54- It 4=42) S.-T 45 4 44 4=4

NCR 1 14 3,4 5444 14 544 tr4 11^4 41

44 44 9 24 4am1) 44 4 54 452) 44 51 143) 414 444 44 #45 14

JL-rr

44 44 4 AM 1«0 4 4 l) 4% 55 44. 4.4 11 44# a>5

4454 44 44 1) 111 14 44 5 41 51 44 142) 1451 #4 44 44

KTRIPDB [B-3] i) rps/esfas 44 444 7]44 45 44 45 14

^*1 °]^ DB

KIND [B-4]1) 44 7)4 444 #1 54-1 4=4 (4, 44 144, 444 541)2) RPS/ESFAS TS 445 #41 41 145 51 415 51 #1 (CDF % LERF 51)

4 a} 4 41 141 5# 445

DB

- 195 -

B.2 5L& 4#

**9 29 19# *4433 494* 941# #1433 * 7>x| 2# - 3*4

39 3tS (DFM; demand failure model)4 a]# H 39 3# (TFM, time-related failure model)

- 4 A}#*4 4# # DFM 4 9* 29 111! 41 49 (binomial process)#t4 = r #33 7}944, 33a)129 99# 444 #97H7)1 3*4* 4# 39 41-p - 3#Ai 29 4*4 4# #*3l 444 - 4 44 #44 44 44. 3-4 1#4

444# 444 4 (B-i)4 44 #444, 4# #44 444 4# #44 (mle; maxi­

mum likelihood estimator)0!! 4 44.4-

xp = — 4 (B-l)

444, X* 34- 5#43, # # * 4* 3# #*» 44#4 4 31# ##4 4# 4- 44 4444 #4-4# 3# ##4 4# 7}*44, rps/esfas 4 4# 44-3 44 4-4-71 (-TCB;-trip circuit-breaker),- 4# 444 (relay) #4 4# 4 33 *-g- 7(*1 4# 4 4 4 3K4.

44 44, RPS/ESFAS44 44 ##! TFM* 444# 4# 344 14 444 4 4 4#4 * 7>4 2.14 34# * 14 (* 1*144 44# 3*4 145. 44 444 44 ** All 444 44 4*41 &33S 4## 34 2Ll (REM; running failure

model)# 4)9! A) 4144.)

0 47) # 24 31 (SFM: standby failure model)

@ 44 34 2.1 (AFM: annunciated failure model)

sfm # ##4 434 714-1 44 34-4 4"944- #44 4# 3*1 4449 1

4 7>*1 4*1 4*1 * 1* 435., 934 44 144 4 (B-2)l 41 4* 4*3

* *4-7)1 44.

U = - A, - Ts 4 (B-2)

4714, (/# **4 4# #*3 (919 11 a), 121 41 7}# 9*1 4* **2), 1# 4)71* 3** (standby failure rate), Ts * 4# 49 94 (test interval)33 TS 1 71*44 1# 9 7l 94 *7) (STI; surveillance test interval)* 9994- #941, l7)# 29 144 STI 4 114 391 3#9 A) 9 (failure exposure time)4 4 1 * 14. DFM 1 4# 7}* 1 #*# sfm 1 4143 2.194 7}*941, SFM 32*4 4# #*3# 7)19471 4 14# 39## #94-44 14- 4 9* 11433 29# 191 39*1 41 19 1# 9(Poisson process)33 7>944, 39# 14 191 41 39 19# *4433 *

- 196 -

44 €444# 4" 514. 5#** 4 (B-3)o)) 44 *444, o]7& 4 a) MLE o)) 4)€€4

444, x$= 54- 4*45, T~ #*€ * #4 4*# 44'54.

AFM # *#4 54-4 €€ €445 51# 4-T-4 4-§-5)4, 444 4 (8-4)4 44 **4 4* ## * 514

U = A-Ta 4 (8-4)

444, rab JL44 5#€ 4*53. <944-5-5. 4* 44 44 (MTTR; mean time to re­

pair) 4 44. atm * rps/esfas 4 4-t- 444 (sensor)#4 44 4^44, 4# 44 *

4# ^D€€ 444#4 #4 €4# 444 4 (MCB; main control board)444 514 44

€ 444 ** 444 #4-4 4^4 44) 4**4 54* #4 €€€ * 514 4*44. 4-44, 444# 4#4 444-5 51# €4444 #4# 54 *47} #4-##4 Ta7\

4*453 4 (b-2)4 0.5-7; 4 4-4 44:5) 4o> 4.^ 4*4-13 o) 44 afm 4 sfm 4

*€€ 44# 441 44-. ##, €44 rps/esfas 44# 44 44 **!:* 44 (ener-

gized)4 €-4)0)14 #4 44 4*o)l mcbo))a) <34 ##4 54#, 45, 444 ## #4

4 54 #4 #4 4## 444 4##°]4. rps/esfas 4# 44 ##°)1 5144 54-

44 €444 #5 4€o)l 444# €44 * 51# 4^4 #44 44 (fold over) #4

54- (saturation) €€[8-5] #* cfla^jos 44€ * 51-5-4, €44 ** 5# 44 4-3

0)14# €444 &514-. ^°)l£ ##4-5, # #4414 444# 444-5# 44 sfm

5# DFM* #5. 4#4-5a#4), 4# MTTR 0)1 44 STI 7> #€ * 4455 54 3*4

4 *# 54 51# 44# 444.

**4 *€ 5€o)l 4# 4# ##5# 4#4# 5€°)1 44 54# s# 5# 4#

4 #4 #45 4444. 44 €, €44 #454 €4. #4 ###* 41# #* €45*

44 41*o)l 4€ €-§- *#4# €4 54 44 4&4 4* 44. #4 4€ *#4 4#

4* *4 54 4€ 450)14 712:44 54# a# 54 4#* #4 (544 #4 44

7M)€ 4# #444 4€ 4451# #4 #4 €4# 444-4 444- 44# *4*

4)14-71 4# €€55 44 4444 #4 44 7)4[b-6]4 44) 5€# 5# 34 4#

# 4€4-44 €4. 41444 44* €€4 €4)7-) 4145 444 4444 ** 5€#

0)1 4)4 44 *5 (prior distribution)* 4)€ **4 €4 7}g_4 €4) 4 442=4# #4)4

4453, 4* 4€ *5# #4 4€€ *4 **41 441 #44 (specialization)4# 54

4 €4 #444 44 *4€4 €544 34 €4. *4, * *44 *# 34#4 €*

5*o)l 44 A}4 47}) €4.571 4* (plant-to-plant variation)* 444# 455, o)

# €4#4 *4, 44 54, ** 44 #4 444 44 €444 444 544 4*

(population variability)6)) 44 €# *55 *444 44- €4 4444 44 #5 4*4

# €4, 4444 *4 444 4# 44-54 44 4# 4€ **4 5€# *44 € €

€ *€€€ 45# A>* *5 (posterior distribution)^ #*44, 4 5# 4# *54 44

- 197 -

3. H##4.5M9# 99 9 9 5] 4# 99 34# m# 39- 4#4 ^94 # #4 #444

93# <971 #44 494 #9 944# 434 #45] 45] 4949# #4.® 94 m f# 49

© 9# 34# (3# 39- ##)5] 5)4 4^ #34 #9

© 9# 3.4 9^8 4-3 44 (34 54, 9 44 44 # 49 344)

© 49 34# (39 34 4#)51 44 44 95. 94

B.2.1 4-4 4i^ 4# ^ 3-4 -91! 5 4^

94 44 99 # 34 945 944 3949[b-7,b-8]5]ai 344 7] 9 A}^#4 993] 7] 49 93 $134, 7]7] #9 #54 49 #4 44 7] #45 4444 #944 #9 4 rps 4 esfas 44 7]7]/9##4 54 #4.3# 34 94 7}3#9 9#

(pooling)^ 94444.94 44 499 rps, esfas, dps# 9449 39 49 3l4(i&C)9 491-9 44

33 944. 94 44 me 994 4 94 #4 #9 99 944 4949 9444^

94 97}3 Ji_5 —99 7]4 (RTSS; reactor trip switchgear system), 45]9.7]9 $]4519 —

5]47], MG-Set 3# 44 (MG-set trip contact)9 4 37]44 3# I&C 991# 4433 4

5§4- 3# 3# 33 447](CPC; core protection calculator), 5149 447] (CEAC; control ele­

ment assembly calculator) # 49 5]#7]7)3 3#4#4. 3.5)4 4949 94 93 #94

949 97] 4# 7]# - 4* 14, 93 5)9, 4# ha] 7)9, 4^ 43 9 - 4 494 i&c 999 445171 5]44#4. 94 44 999 H B-24 #9 9 26 7)]4 99 493 3 9-9494.

- 198 -

& B-2. cflAj » = 5.S.

^ 32= tilJLU)'0)^E1) °1 (bistable) -BI-40^44# 31*! 7) (bistable relay) -BR-■fcr^l C1)H^ — 7]]^ 7] (logic matrix relay) —LR-

^1^7] (interposing relay) —QR-7flAl ^l^7) (initiation relay) -KR-o]E]^lo]^i ^)^7] (interface relay) -XR- ESFASDPS -t]3L t] 7] (signal processor) -PSK- DPSDAFAS % ^ (control circuit) -TC- DPSMG Set #%) SjjiL (control circuit) --TC- DPS,7})^ Loop '^"u*7"| (instrumentation loop power supplies) -ML-t1-^ ^^7] (manual pushbutton) —MW-ic.^] .ti-3L y vi7] (core protection calculator) -CC-alM# ‘St>7l (CEAcalculator) -RC-52^ ^ t}7] (calibrated average power calculator) -ED-LP-

^t^7] (logarithmic power calculator) -ED-GP-(sub-channel power calculator) -ED-SP-

2c^ #7] (ex-core neutron flux detector) -NE--9^7] (pressure transmitter) -PT-

*}‘S’ -9^7] (differential pressure transmitter) —PT--9^7] (level transmitter) -LT-

£:5L ^^7] (temperature element) -TE-Si*} 5. y|47tl gs. 7j-z]7] (RCP speed sensor) -SS-^1— £)t| ^^7] (RSPT, reed switch position transmitter) -OT-71^9^} (under-voltage tnp device) ~UV-■@■5. 5.^ -9" 7] (shunt tnp device) -ST-•^7} 5. ^7] 7}-^ 7} (TCB, trip circuit breaker) -RB-

- 199 -

B.2.2 ##4] 41# ## £5.

i&c 44 a.## 24- 4#4 44 4^4 44 44 ^ 444 44 4H 444 444 CEOG (CE owner’s group)* 44 44 42.44 CEN-327[B-1]44 444

44 4€€ 4& 4444^4, & b-34 4444 %14.

& b-3. ce 4 €44 rps/esfas 4# 2##/2€ 4#4 44 44 45.*

5#^ ji# 22 € *>5.-9 #44

fo

^2** 4JI

Tnp Circuit Breaker Fail to Open IEEE-500 1 0E-4/d 3 1 25E-4/dUnder-voltage Tnp Devices Fail to Actuate WASH-1400 1.0E-3/d 3 1 25E-3/dShunt Tnp Devices Fail to Energize WASH-1400 1 4E-4/d 3 3 73E-4/dK-Relay Fail to De-Energize WASH-1400 4.0E-6/d 10 1 07E-5/dLogic Matrix Relay Fail to De-Energize WASH-1400 4 0E-6/d 10 1 07E-5/dBistable Relay Fail to De-Energize WASH-1400 4 0E-6/d 10 1 07E-5/dBistable Fail to De-Energize Relays "WASH-1400 L0E-6/hr 10 2.66E-6/hrInstrumentation Loop Power Supplies Low Output IEEE-500 1.4E-6/hr 5 2.26E-6/hrSensor/ High Pressure Low Output WASH-1400 3 0E-5/hr 10 7 99E-5/hrRCS Temperature Detactor Improper Output IEEE-500 1.5E-6/hr 6 2 71E-6/hrAux. Trip Contact Fail to De-Energize WASH-1400 4 0E-6/d 10 1.07E-5/dAux. Bistable Relay Fail to De-Energize WASH-1400 4.0E-6/d 10 1 07E-5/dEx-core Detector Improper Output IEEE-500 1 4E-5/hr 2 1 53E-5/hrAxial Offset Calculator Improper Output IEEE-500 2 0E-6/hr 2 2 19E-6/hrPower Calculator Improper Output IEEE-500 2 0E-6/hr 2 2 19E-6/hrTnp Comparator Improper Output IEEE-500 2 OE-6/hr 2 2 19E-6/hrCore Protection Calculator Improper Output IEEE-500 2.0E-6/hr 2 2.19Er6/hrCEA Calculator Improper Output IEEE-500 2 0E45/hr 2 2 19E-6/hrManual Pushbutton Failure to Transfer WASH-1400 1 0E-5/d 3 1 25E-5/dBattery Fail to Provide Output WASH-1400 3.0E-6/hr 3 3 75E-6/hrBattery Charger Fail to Provide Output IEEE-500 5.6E-7/hr 20 2 94E-6/hrDiesel Generator Fail to Start WASH-1400 3 0E-2/d 3 3.75E-2/d

*) CEN-327, **) 5-5. (log-normal distributions. 7>^^-Jl, 3|tHM 4^44

(= Median x Sr^>jo 5 x [(in Median)/1 645]2 j) -

B.2.3 4-w 31 # 4^

4 4444^ 444 dfm4 tfm4 44 444 ^4 44 444 444-^-S. 44 "t 4 Xl-8-4, 444 -8-444 44 24# A 24 41- p 4 44)44 444 4

- 200 -

1 34- 44 03314 4#4 ## 437} 3104.0 H 3# 50

O 1 #0 7)0

® 1 41 31 #1

#100 RPS/ESFAS 4 00 ^0\] cf)0 30-1 001 44] 3141 ^7]A) /)] 7}

*1 43 7}# 4 #1# 1 #0004 1 4# -8-4 #1# #03.4 #4 44 44, 44 s#33le| 44 5)4 11 7)14, 47) 44 14, 1-4 44 51 i# #44 4443

s. 444 7}i#4. 4-44: 114 2.4- #44 4#"# 30 44 7} 3# #-§-#4 #3!

44# ##4 &4. 144-7)13 444714 44 &1 444 rps/esfas 44 #-##4

tfl# 341- 3# 4#4 44# 44 4? 444 44 443 db 44)5. 7}i# 4&7} 44 $7] 4)1-0]], 404)44 7)4 5 444- 444 444 4)4 7)iA-)<y 4-4# 04

44 45)7) (TR; trouble report)! #03310 4# 1403, TR4 7)# 011 7)033

4 314 14# #44 1# 314 #11 144^4 44 3,4 5 14 3,4 3:7)0) 45. 3

7} 4)4 7)44 4 444 4<y -14 41 4# 44(0/% overhaul) 7)4# 4#4 #4 7)

4# 4033 43^-4, 4 #4# #s. 4s #4444 TR 4-5.# 0444 144534.45 144# 44 3,4 3.7)4 7§o_ 1999 4 ?€, #4 3,4 37)4 40 20004 5 #3 4#

43(4.

B.2.3.1 0# # 14 44 si 4# #0 50

11 #4# 0 #4 471 5 41 -8-1 #01 #43# 4)0 114 7)10, #4 #440, 41 7)g 50, 1444 #0 4&## 7)^3 4#4 0# 444 44) #43 1

5. 440 444 #4 44 44 1404.

1 #4 7)0 =(1! 71)0)* (#4 #4 40) 4 (B-5)

1 41 311 #0 = (11 7)10)* 4 (B-6){(#4 #4 00) *(110 04 00 50)+ (14 44 50)}

444, *4 #4 44# 440 4444 ‘(4s. 14444 44 #4 7)0) - (4# 44

7)0)-(14 04 7)0)-3s 4404. 5i5)4, 403,4 0 14 3,437)4 44 #4 4^ 7>s 14444 14 44 50 (A)0)6|| 40 24 44 44 6 4 (80.64 40), 6 j) (216.18 7)0), 2 4 (40.5 7)0), 0 4 (0 40)33 40030, o)!# #00 4 7fl 37)6)01

1 14 44 14 443 337.32 400 003 44 400 444 033 4404. 04337.32 7)00 003 !4 44 7)0# 1 37} cf)0 7)0o]]Al 040! «)## 0.44%3

14# 1 %1# 434 4# 04-2.3, # 100114 #4 #0 a)04 406))41 #4 4

- 201 -

*1 4#* t44-31 114 *34 7144 2.4444. 5. B-4* #4^# *4 444 4* *1 2S 1144 # #4 *4 44# JZ-4 #4. 71 14 44*1 44 444 44 3,4 ^ 44 3,43:4°n 444 44 3.674, 3.164, 161 4, o.244*5. 1)444*4, 444 4#*

44 8.69 4 (3172 4)4 # *4 -8:4 44 (44)7} 44.

sl B-4. 14*1 44 44

£1^7) 1* 3 317] 4 3:7) irl 3 3:7) irl 4 3:7]44a fS.a Alia #&a iia *&a 11a *&a

1 l^M 95/4/1 96/1/29 96/1/1 96/11/13 98/8/11 99/6/22 99/12/31 00/3/41 x>0/H 96/1/30 96/5/2 96/11/14 97/1/17 99/6/23 99/8/27 00/3/5 00/5/72 l*! 96/5/3 97/2/5 97/1/18 97/10/20 99/8/28 00/5/26 00/5/8 01/2/82x>OZH 97/2/6 97/3/31 97/10/21 97/12/3 00/5/27 00/7/8 01/2/9 -3 *1*7) 97/4/1 98/3/29 97/12/4 98/12/23 00/7/9 -3 *>0/H 98/3/30 98/5/19 98/12/24 99/2/54*HM 98/5/20 99/6/2 99/2/6 -4 *}0/H 99/6/3 99/7/165 *>^7) 99/7/17 -24 #aa 99/7/31 . - -99/7/31 - 00/5/31- - - - - -00/5/31- " -£1 a# 1340 1155 589 89317)1 5:1 3.67 3.16 1 61 0 24*7)1 £1 1* 6.83 1.86

8 69

*4, 4# *41 # 44 ** 5*4 4441 444s #4 44 5** 444 4

7>4 44471 3144-71 ^4:4

© #4 *4# 1#1 444 44 4* ** 4*4 44 * 14 44 #4 44 5

** *4# * %1* 4*4 4* 4* 4:44.

(2) i-A) ^x] 5*# 44 4*4 44 rps/esfas ##4 44-4 44)714 31444

4 #4-.

© **4 4* *# 5** **4 4* 4 44) 44* 44# 4 4* 4*4 4)41 44 31B) 44°) 444 #4. RPS/ESFAS #7)] 444 #44 (redundancy) 4 4

44 (diversity)* 4* 4*4 44 1*7} 4444 444* 4*4 4#

a.* 7)*4 44-5. 44 44 444 4* 4*4* 4*# ** &*4, 4

44 4* 4* *#4 4* 444 4)47) #4 #444-2* # * 84.

tr 4 2:7} 44-6)1 ^#4 *#4 7))** 44244# 4 44 #4 4#7)4 4**

4442* 44- 3,4 4 #4 3,4 3L7)6)i x}°l7} &4. 44 44 3,4 3:4 rps/esfas #1)

4 4* ir# 3,4 31714* 44 #44 /}31 *714^71 (SG; steam generator)4 4* 44

# 444 sg #1 4- #2# 44# 44 4** 4# 44*44# ^ Hx)7i#4 4

- 202 -

444 #7j nfl-g-oft).. #4; A]^ H! TS 44 STIofl 7^# 144* °l-§-tf-%-°vj, STI

! 4 B3 44 *}$ # 3lofl 7)91$: 4-§-#^4^1 413 #4 If- 34# 31 3

4 4#4 14# 444 4# 4141 111 %- 14 444 4# 34 5tr i b-54

1#4#4.

B.2.3.2 4-# 34 44

rps/esfas 44 44 7l711-0)1 4# #43 344 If 34 ^4°H cfl# 444 4

4 3,4 4 #4 3,4 3710)1*1 44 44 4444 4431 7}3 441 (444 4-4 1999

4 7 1 3i 1, 144 41 2000 4 5 4 3i 1) 444 4441 1*84 tr 4 7lfo)i 4^4

34. #4, 14 3,4 344 41 414 # 4314 34o)i tr 4- 14# 7>*n 33

4 (NCR; non-confirmation report)# 444 4444 4141 471 41141, 1 14 4a)3

NCRl 34 44 4-3.44 44-3 4143 NCR4 7l#o)i cfi^- 34 141 544^4

44 4-4 RPS/ESFAS IS 11 11 44 7}3.1314 4s]3 14 144 144

1 If- 34- #1* 3#47l 444 34 144 4344, 41 341 444 41 14

(screeninganalysis) 44, 44 34 14 1 1# 4433 414 1S)4#4.

41 14

#430)1 A) if/7)lf-4 #444 44 # 444 44 31 %fl tr°)1 4 41 414

433 tr 4 41 41 #444-. 444, 4s)3 144 #44 444 44 4* 1 4

4 4443 4Ml tr 314 44 4Ml 34 144 444 41 tr 111 44433 4

4- 44 44 4Ml TR o)la) 140,1 i#s)oio> f tr i 44-4! 44 4 41 144 4)

444 RPS/esfas/dps 4 4S4 TR 4 A)T# #4 4-4! i) TR 14 44M144 a)^ 4-

44 2) 11 144 tr 314 34- 14 44# 444! 4433 4# 1 #34,

444 11 14 4444! #4# 1# 414 #44| 444 1^4#4.

- 203 -

204

2. B-5. -rf-l %■ ^

i

i

£?lf 7]7lf* f f 3,4 £7) -S-f3 4 £f til_nirfff(yr) £3f£(yr) fW-f -S-fff(yr)

Tnp Circuit Breaker 4 2,434 661 3,095UV Tnp Device 4 28 12 40 ***Shunt Trip Device 4 28 12 40 ***Initiation Relay 60 4,922 1,337 6,259Interface Relay 56 6,890 1,873 8,763Interposing Relay 32 2,625 713 3,338 1LM Output Relay 168 13,780 3,745 17,525Bistable Output Relay 388(356) 31,827 7,935 39,762Bistable 80 (72) 546 85 133.74 680 59Hand Switch 50 4,101 1,115 5,216Instru. Loop Power Supplies 64 437.48 - 437 48 ****Pressure Transmitter 26 177,73 48.30 226 02Differential Pressure Transmitter 8 54 68 14.86 69.55Level Transmitter 24 164 05 44.58 208 64Temperature Element 8 54.68 14.86 69 55RCP speed sensor 16 109 37 29 72 139.09Reed Switch Position Transmitter 73 499.00 135 60 634 60Neutron Flux Detector 12 82.03 22.29 104.32Calibrated Average Power Calculator 4 27 34 7 43 34 77Logarithmic Power Calculator 4 27.34 7.43 34.77Subchannel Power Calculator 4 27 34 7.43 34.77Core Protection Calculator 4 27.34 7 43 34 77CEA Calculator 2 13 67 3.72 17 39DPS AFAS Control Circuit 6 41.01 1U5 52.16DPS MO Set Control Circuit 2 13 67 3.72 17 39DPS Signal Processor 6 4101 11 15 52 16*) *£ ®>f ff# aa €-^4^4 fa 7Hf* feHf, #i7} Sfe ffb f#f 7flf7> «3,4^ a^) 3,4 £7)7} 5Lf sg*a 2Mf **) -St 3,4 % m 3,4 £7]f &. ***) X^-Q- ^ #B B=D fffe -fee)°(!Bf <h ff 9! Bf fff z}z}f .izf f f# 9jz § q. f# f4|f Jiff ff f7>w°a, ff afff fi-g-A] f#f $f# .Bejff %a. &4xif fa aafa ff ?ifft xR’iis. ff i ff as. sf ff afa -zf #4 Off) x (fif f«i 5fH f *n

*♦**) 4 t 3,4 4 4) an AM 2f fa# ff/af

41 f-fti

1 445 14 4 7)1 #4 3,4 # #4 3,4 3:714 RPS/ESFAS/DPS 4 ### 44 TR

44 414- #1 411 7]# # 444 44- 41 14# tr #11 51 316 42.2. 4

# 511 444 44^#4^4.

© 7}# 15# 14 44444 41 4H rps/esfas 44 41 (ixj-s. 44 #

44 44 #1 431)44 44 4124, 44 414- 44 §14 1-1-4 tr 44

#«]# 414# 44##4. 14 444 s. B-24 11 444 44 #4 #4 (2) DPS 4 2.4- 41 (#7}2 44 # DAP AS 431)4- 4:44 tr 44 14 444

5#4#4.© &4 3,4 3144 41- NCR 4 4H TR 4- 432 45.4-4 1-14 324 4452.

#441 NCR 4## m 444 44 44414.

© 444 5l/2#-4 44 ;D4 tr 2 1-444 11 441 111 444 444 TR #1 444 2.-1/3242.2. #44^4

© 444 TR 4 44 114 5-1/32# 44# 5##2 41, 44 7}&t||DOS (out-of-service)0!] 4)4444 114 24-4 4)441 411 51 1444 44 7i)4 trs 4114.

41 144 TR 214 441 2# 14 414# 444?) 444 414 41 4# 41 441 4!4#54, 2 #4 4 99 44 tr 4 #4) 2# 14 4452 #44%

© TR4 414 #4452 RPS/ESFAS 4 §>4414 ^ <£#3. n]^x| °>i #1

2 #444 #4 2# 14 4444 44##4 (4* 14, 444, 414, 4 # 42 14 2#52 ##41 41).

© tr 4 7)1 414 4# #1# 41 4# 54# #7) 444 #54 #4 4# 444- 42 #£##4.

© 41# 4#4# 41 #4 4#4 #1# 2#! 44##4.© 44 44 7)#4 ### tr 1 24-4 #a§ a)#3. 71152 #4 5# 14 4

#4 44 41-1- #4434. 4, 413 44 4# 14 <W# tr 4 44 14# 51 444 4445 32 24-4 4# 1# 14 #444 44 44 4#4 4# 51# 412 #44# #4 2# 14 44-52 11##4.

4-4 2# 14 4 1144 24 14 4452 11# 4 tr 4 41 4)14 4)4 24 55, 24 445,

oos 4#, 414 441 ##=, 24 ## 4# 14 4152 24 141 !###4. 4# 24 14 #4$ 7>14 11 2# #14 144 44=1 441 #11 2# 44-54

414 441 4# 14 44-44. 2# 44-51 41 44(complete failure), 41 4#

- 205 -

(degradation), 34 45 (incipient), 53# (no failure)5] 4 7fl -53-3 5*444 4#o)l 4

45 44 54 S# 44 OOS, 55 OOS, 4 45 4 (unknown), 44= 45(no impact)5] 4 7fl 533 5#4%4 4# #3354 55 3# #5* 5444 4# 3# 5# 4*5 3

4 B-i 4 #4 3* 445.4 4# 714-ofl 4*]^ 4# ^.4 44-7} 34 B-1 4 9!4-3

44°H 445 tr 4 4444 45433 3.40.5. 5*4414. 4# 4 444 4 44

34 #44 44 *4# 7>44 (i.O)# 55 455 ?M43154, 44# 44 34 5-4 44 # 99 44 441 34 54 44 5 44 3455 @-44 445 4 66 455 44)*

4. 44 3,4 37] 4 54 3,4 57]4 4 7l| ##* 544 &5 #444 4 55 34 #5

5 5. B-644 34#4 44 41444 54454 #4 4444 314-.

34 45(incipient)(complete

failure) (degradation) (no failure)

^-5- OOS(partial oos)

(unknown)

(no impact)

(34 54 34-7} 4 554 445 45* 3455 544)

34 B-1. 5# 34 55 7] 5

B.2.4 5-# 4# 4f 5-5

55 34# &5 344#°)1 41# 4444 5445 44 454 44 54 34# ofl tfl# a>4 454 3#4 34 4# 4-5* 7]&3 444 44, 4* 441 5 54445 44 7)144 BURD (Bayesian update for reliability data)[B-9] 4433* 45444- 4444 54 444 45 4444 454 45 ?}44 44## 45484.

© 44 3,4 4 *4 3,4 37] rps/esfas 4 45 #4, 44 ##4-, 544, 54 3 4, 45 44 # 54 4# 54 #4 35.444 44 5444 454, 4# 3

- 206 -

444 3# 44 #3 444 4444 #?H#4 #4 #2-3. 44#4 454 #

4 44 SH 3# 4^ 4&#& #4 (data pooling)# 4 4

© 2:4 4# 444 3.4 4# 4 44 8314 4#4 4444 3444 4444 44 4 3# #4* 44 433 7>4#4#.

© 4444 ^4 4444 #43 344 34" 44 4-3#4 34" ##4 e444

4 44- 453444 5453, 34-1:4 f4444 5#-$ *33^4 4#4

5433 7>4#5514.

3444 RPS/ESFAS 44 ^-##4 44 3## 34 34- 4-1-4 4444 ^44t

4 ##44 434- #4 3 b-64 7l#44 44. 34444 3#l 3* 34- ##

4 444 3^44- #45 37] 44 44 7}K7} 44- 44 #-§-£) 4-B-4 5 ###3, 4

44 CE 444 4# RPS/ESFAS 445 #4 44 (CEN-327[B-1], NUREG/CR-5500[B-10])

4 43# 4 ### 453 #-#&#.

- 207 -

208

$ B-6. a-i-ofl 41#

4#4

44 H ^a. jzf 41 : 44 5-5. 4S,44 a##/ all# (45)

^.4 a# 4# 44(hr)

41 J»4-fr>

(45)

44 a«/

(45)

^4- 5th 50th 95th

Trip Circuit Breaker 1.25e<5/d 3 *0 3095 1.52e-4/d 2.72 4 52e-5 1 26e-4 3 35e-4UV Trip Device 1.25e>3/d 3 *0 40 1 87e-3/d 1 60 5 08e-4 1 5 le-3 1 30e-3Shunt Trip Device 3.73e-4/d 10 *0 40 1.92e-3/d 8.72 9 24e-5 8.67e-4 7.03e-3Initiation Relay 1 07e-5/d 10 *0 6259 3 51e-5/d 7.17 2 30e-6 1 91e-5 1.18e-4Interface Relay 1.07e-5/d 10 2 8763 2 28e-4/d 7.86e-5/d 4 84 9.37e-6 5.51e-5 2 20e-4Interposing Relay 1 07e-5/d 10 *0 3338 4.36e-5/d 7 87 2 47e-6 2.18e-5 1.53e-4LM Output Relay 1.07e-5/d 10 *0 17525 2.23e-5/d 6 03 1.91e-6 1 38e-5 6.95e-5Bistable Output Relay 1.07e-5/d 10 2 39576 5.03e-5/d 2.89e-5/d 3.85 4 84e-6 2 24e-5 7 19e-5Bistable 2 66e-6/h 10 1 5961984 1.68e-7/hr 2.92e-7/hr 3 17 6 53e-8 2 42e-7 6.58e-7Hand Switch 1.25e-5/d 3 1 5216 L92e-4/d 1 85e-5/d 2.93 5 04e-6 1 49e-5 4.34e-5Instru. Loop Power Supplies 2.26e-6/h 5 *0 3832320 5.56e-7/hr 2.59 1 70e-7 4.82e-7 1 14e-6Pressure Transmitter 7.99e-5/h 10 4 1979952 2.02e-6/hr 2 67e-6/hr 2 02 1 13e-6 2 47e-6 4 64e-6Differential Pressure Transmitter 7 99e-5Zh 10 *0 609216 3 58e-6/hr 2 87 9 3ie-7 3.07e-6 7.66e-6Level Transmitter 7.99e-5/h 10 2 1827648 1 09e-6/hr 1 90e-6/hr 3.36 6 53e-7 171e-6 3 64e-6Temperature Element 7.99e-5/h 10 1 609216 1 64e-6/hr 3.58e-6/hr 2 87 9 31e-7 3 06e-6 7.66e-6RCP speed sensor 7.99e-5/h 10 5 1218432 4 10e-6/hr 4.90e-6/hr 1.94 2.20e-6 4.56e-6 8,30e-6 **)Reed Switch Position Transmitter 7.99e-5/h 10 3 1 5559096 5.40e-7/hr 8 72e-7/hr 2 09 3.54e-7 8.03e-7 155e-6 **)Neutron Flux Detector 1.53e-5/h 2 10 913824 1.09e-5/hr 1.21e-5/hr 150 7 60e-6 1 16e-5 1 71e-5Calibrated Average Power Calculator 2.19e-6/h 2 4 304608 1.31e-5/hr 3.60e-6/hr 1 89 1 75e-6 3 34e-6 6 23e-6Logarithmic Power Calculator 2.19e-6/h 2 3 304608 9 85e-6/hr 3.11e-6/hr 1.90 1.50e-6 2 87e-6 5 40e-6Subchannel Power Calculator 2.19e-6/h 2 1 304608 3.28e-6/hr 2.28e-6/hr 192 1.07e-6 2.08e-6 3.98e-6Core Protection Calculator 2.19e-6/h 2 13 304608 4 27e-5/hr 1.14e-5/hr 173 6.l5e-6 L08e-5 1.84e-5CEA Calculator 219e-6/h 2 12 152304 7 88e-5/hr 1.27e-5/hr 1.82 6 45e-6 1 19e-5 2.14e-5DPS AFAS Control Circuit N/A *0 456912 2 19e-6/hr 2 19e-6/hr 10 **)DPS MG Set Control Circuit N/A *0 152304 6 57e-6/hr 6 57e-6/hr 10 **)DPS Signal Processor N/A 3 453593 6,57e-6/hr 6.57e-6/hr 10 **)*) j*4 5^7} §}^ 4f 44 e&4 44-i- 444 l 4 J140.S ?M4a^4 7}# &44tl 47> 4-l°f| sfl-g-f

[B-10] **) 414 44£-£4 goj jzf 411^ 7]as 4-7849-2.4, -2.447}^ 10 £ 7)41

B.3 4^ ^ a*4l 71^1# o]-g-

44 ^ a*4 44% 4* #*a* till 4*4 1*4 2*1* 4444

till **4 41 a* a* ItiM 1*22 414 1* 44% 1## 4444, 44 4

(B-7)4 4 (b-8)4 44 4444

U, - Ft T, 4 (B-7)

Um =Fm'Tm 4 (B-8)

444, C/,4 C/m* 44 44 4 a*4 4% 4*#*a, F,4 Fm* 44 44 4 a

* aJ£, 7,4 7m* 44 W 44 44(test duration) 4 44 44# 4444 44

4 41 4 a* 4 714% 4# Ha* *4 #7) 444 4#4 4# 444 a.# 4%7>s.7> 2*44.

0 44 4a

© 4% 44© a* 4a

© IS- a* 44

B.3.1 4^4] 7144; o]-g- 4^5.

44, 444 44% 4# **24 #4# 44 *^1 44 4-5-4- 214 4444

%-§-% 44 4 7M4%# 4*4 44

0 44 4# til *4 44# *# - 444 ^ 4*424 44 is 7M 4# *4* 4* 4# - #* 44 44 444 41# *1%22 4122 4% 4* #*2 4 €-4 4444 4444. s. B-7* 4% 3,4 ^ %4 3,4 317H4 is ;W 4# *4* 4* 44 44 444 ^ 44 **#4 ### a4 *4.

© rps/esfas 44 4-71 1 %4 44-24 4*422 41 1 a*41 714% 4# %

*24 21% til44 44 *** 2711 444 411 (CPC), 4422 11(44^

til4#), 44 4# (44 1 7H4 4a), ^IjH* la *4 1*7144, 1* 3,4 4 *4 3,4 2444 0H-74 444 44 44 44 444, 4% *4 4 444

*1 444 til% 4a#4 a b-84 *44 #4. s. b-84 444 *1 444

44 #4 4471-4-4 4444 44] 444 #44 %% (engineering judgment)°l]

#7)% 71-244 *4444 %4.

- 209 -

© DPS 4 til o>4 ** *43 4* *4J*H 6]30 4** 1** &24 3 70

* *7)2 70H2 PLC (programmable logic controller) 4 MG-set 5 DAFAS #4

*2*4 4^* *^*22 214 3*414.

© 4*4 qy* o]-g. #*24 2*4* *44 *q 2# #4 y#i 301 442

#4412* 4*A} ##24 q*o)i 12* *** 4^ *44 4* 4*

* «01 7§ 7] qq **qq ** 4*# 71*0.3. #444 70#q q# 7}#*y

4.

© *q qq *qq *^ 4*4 *44 304 *** ##q #* 1 Ai*4 442

*41- 244^4. (4* #4, *0424] 4 #4 q* 44 3,4 1 &* 3,4 ±714

RPS/ESFAS 4 ¥ 3.70 * ##4 *43414* _ 7>* *q4(VSP; variable set-point)

q 34 444 (FSP; fixed set-point) - 5. 444 4" I24, *#4 3A> 14 ‘44

3 2.370# 301 7l# 4# *444 4.30 44 44 # 6 44 vsp 7} 4444

4^ 4*4 44 *44 4*4 2/3 4 411*4.)

© 2*, qq ** *444 <M 4* 1-44 *44 41-8-4] 44 **** 4# #

* 4-4* **** 4^4 443 24*14. (4* #4, 34 #*** 1* 7]

* 444 *^§4¥ #1 44"* °1 *4 (DNBR; departure from nucleate boiling ratio),

44 #4 *3 (LPD; local power density), 7>* *#4, t0* #4 #4 41* 301*

-9-4 4414 ¥441 *q.)

© 4^ *3# a]i *7)4 4©2 70**4.

© 3* **44 #*** #q# 444 3* 4* q 3*4 qy* 4-8- #13#

4* **#3-1- 4 = 4 2*y* 3.0 & *# *22 7}*3}14.

© 4* q 2*7} **q2 q* 301* *44 4# 4* 2* - 4*2 ** 2#

** *til *# #2 *4 _ *qo|] A0 4 *# (override probability) * 24*a] *

*q. 44 1304, 4* 1* 4* ^ 4^-2 2.022 7}**1 44*4.

#714 *4 4 7}** 7] 423 ir* 3,4 2714 A)#o0 714* 4* #*2* *X|

34 *q ***2 4-g-q *4 70*4124, 2 *4* 3. b-9°04 *444 *4.

vsp 4 ti>42E04* 7l# A) *60 7] 44 4* #*3

1) 4* -fr* 1: 7}*-7l 414, #7] l*7l#i (#2) 414 1 "34-70 4*1

** **A} 1 *41 A]* :RPS ti}42414# 4* 4* (*i@ A]* 3 A]*)

4* *7] : 1 701 (744 All)

a]* A]* =[vsp ** **4 *^ 4*]/[vsp ** 1*4 #*]/[30i*]

- 210 -

= [3* 2/3] /[6]/[4ch]= 0.08333 44

444 7]o]^- 1-^3E = [1/744]*[0.08333] = 1.12e-4

2) 44 ttH 2 : 7>4 4*4

44 44 44-4 5 44 . RPS 4^- 44 44 3 44),

4 44 44 44441 44 ^ -r-4 :34 #44^ 44 44 7]^ 44 (3 44)

32] *44^ 44 41! *4 ^4 (3 44)

3-4 jL3:/4H-S- 447] 7] 4 44 (5 44)

44 t7] • 1 7# (744 44)

44 44 =[VSP 44 444 44]/[VSP 44 4*4 *4-]/[7H4*]

+ [4 4444 441 7^4 4^ 44 44]

= [3 * 2/3] /[6]/[4ch] + [(3+3+5)/4ch]

= 2.833 4 4

444 7]44 o]-§- ^3 =[l/744]*[2.833] = 3 81e-3

FSP 1! 4-4^414# 7]4 444 7]914 4-3- 1-4-31) 44 -44 1. 7>y-7] 34-4, #7] 444#1 (#2) 4*4 4 3*4, 44 4# 3<44

44 444 3 *4 44 .rps 44^414# 4^ 44 (*444: 3 44)

44 *7] : 1 71)4 (744 44)

44 44 = [FSP 44 444 *4 44]/[FSP 44 4*4 *#]/[7W*]

= [3 * 1/3] /[7]/[4ch]

= 0.03571 44

444 7]44 0}-%- #^3 = [1/744]*[0.03571] = 4.80e-5

2) 44 *4 2: 3 rf|* #4

44 44 444 ^ <r1544 RPS 44^414# 4^- 44 (<M44 3 44),

4 44 44 4444 44 7fi 4-4 ■

3.4 #444" 44 7M 4^ 4^ (3 44)

34 *4*Hr 44 7H^ 44 #4 3R4 (3 44)

34 *2-/4144- 447] 44- 44 (5 44)

44 *7] : 3f 1 7D4 (744 44)

- 211 -

7] 4 a] 4 =[FSP 44 4"4 4^]/[FSP#g 414 1#]/[411]

+ [Hf *UH°)1 4^0 9)11 44 4lr= [3 * 1/3] Z[7]/[4ch] + [(3+3+5)/4ch]= 2.786 A] 4

7)44 7)14 o]-g- H£ = [l/744]*[2.786] = 3.74e-3

3) 9)1 #4 3: #7] ^7l#l(#2) 7]^, 4# 3-31444 4^H <Mtiti : ESFAS 443911# 7]^ A]« (1^)44 ltiti)44 f7] • 1 ;t)4 (744 A]ti)

A] 4 a] ti = [FSP 44 4aM i*g a] ti] / [FSP 44 414 ##] / [91 11]

= [1] /[4]/[4ch]= 0.0625 44:

7]4 4 ,7] 44: 4-g- 1#3 = [l/744]*[0.0625] = 8.40e-5

4) 44 44 4: 4444" ^3 41444 444 ^ 4"47]ti : ESFAS 413911# 7]# 44 (1^44 144)

4- 47] 44 14-7)4) 44 4)4 -9-4 :7)14-44" 14 471 41 7]# a]^ (i.s44)

714 17] ;ESFAS 4434011- 7ll A]44 41 : 0.0625 Al4,

44-44" ^3 14 ?fl7i 911 7]! 44 (3 7i)l)

714 44 :ESFAS 443914! 7]1 44 (0.062544)

711441 43 14 44 44 7]! 44 44 = [44-a] 1^ 4 4]/[411]= [1.5] / [4ch]= 0.375 7] 4

7144 414 o]-g- H5E = [l/744]*[ 0.0625] +[l/2208]*[0.375] = 2.54e-4

CPC44 449] 7] 14 oil #13

4* 7>14 44 41 : 4 41# 41#, 3 41 #4 #3

44 144 1 1*8 A] 4 :

34 #47}1 Iti 9)4 4# 44 (3 44)

- 212 -

iM °JM -tM ^ (3 a]#)iM ^-y-7] 7]fe Ajy (5 A] {})

AM ^7l : JSLfe 1 7# (744 AM)

*M AM = M*M aM]/[71M^]= [3 + 3 + 5] /[4ch]= 2.75 AM

AMi 7]<?M 4fe = [l/744]*[2.75] = 3.40e-3

^ 7]fe AM41 719M 4-8- 1-^

1) 3M 1 : RPS

€4-4 ^ am RPS 4^4^ fe4 4fe t-M (i AM)

AM ■ 1 7lM (744 AM)

*M 7-M = [€4-4 4€]/[fee] 4E4fe

= [l]/[6ch]= 0 1667 AM

AM4 7l<£M 4fe = [1/744]*[0.03571] = 2.24e-4

2) 44 -frig 3 : CSAS, RAS, AFAS-1 (-2)

Ag7] 4^ €4*4 ^ ^4€ : ESFAS 4-^®M fee) 7]fe 4« (2 a)^>)

AM ^7) : 1 (744 AM)

4^ 7-M = [€4"4 t4 4€]/[€5M A)^ A)^4 fe&]/[fee] =€]

= [2]* [1/10] /[6]= 0.03333 A]

(47)A], A]ig AM feirfe A]^0] 444)4 A]^ 3lM Altij ^4

4 4x1 €4 444-4 €€#)AM4 7]<?M 4-g- 1-fei = [l/744]*[0.03333] = 4 48e-5

3) TIM -ttM 2 • CIAS ^ SIAS

Aj7l €€ €4"4 ^ 4=(@A]^ : ESFAS 4^®M fee] 7]fe 4U (2 AM)

A)€ ^7} : 1 7l)S (744 a]#)

AM 44: = [4*>4 ^M]/M^ 7M A]^} fei-] / [fee] 4^4fe t]

= [2]* [2/10] /[6]= 0.06667 a]

- 213 -

AM 4 7)^1# o]-g- = [l/744]*[0.06667] = 8.96e-5

4) 9|3: f 3 : MSIS

3 7) ^ gMaM : ESFAS ^ ?M AM (2 a] 3)

All! ^7] 1 7fll (744 a]3)

AM AM =[4aH A]#]/[33ng am 33 "1e®1a ^= [2]*[5/10]/[6]= 0.1667 a] 3

AM 41 7M# 0}-%- = [1/744] *[0.1667] = 2.24e-4

DPS 7|w AM41 7l?M ol-a-#€ *MA1 ^ A] 3 : 4^31^1 ^ 7)^AM (0.5 AM)

AM ^7l :3 ;H€AM AM :0.5 AMAM41 7M# »13- ^Sl =[l/2208]*[0.5] = 2.26e-4

3 B-7. RPS/ESFAS #3 18 71)1 AM ^ 5M 43M ^4

494 4)4 941 3,4 5L7)

49414 3,4 5L7l

494 ti] J7

3c4#494 9449 4)f#4 34 4 7)-4-06 471-91CPC/CEAC 34 471-4-09 471-109PPS 4 4-4-10 49-74PPS 9944 #=4 A)g 47)-4-ii 471-77ESFAS ARC 7) 944 (4444) 47)-4-16 471-69DPS 9)4 34 4 7)-4-i9 4 7)-81RCS 99/9S 7)17)Till 34 471-4-24 471-2207)9-7) 99/t9 47)41 34 471-4-25 471-219 471-221 44 944S/G 94/t4 47)41 34 4 7|-4-26 471-78/221444f 43 4^147)41 34 471-4-28 471-205 49-205 a. #-94444-7) 94 9 4-r4 =9147)41 34 471-4-33 49-218s/G 99 47)41 34 (471-4-26) 471-79/221 49-221 44 944

- 214 -

5. B-8. 41^4 ^1 ^ *tA ^ 4^ A#

=a*M 44AM?4(M)

&8 3,4 X7l <8 # 3,4 X4si ji4M4

(hr) ^ X =2 (hr)xa]f-^7>^ <984 ii 7l^-A)^ 1 tS 7l-^]-04 3 "8 7l-94 1

887W 8^#^ 2=8 1 7j7M)-05 3 "8 7)-93 1 5*& 2**

*)1 711-1, »*) 3 4=SAMf4 *8-S-

CPC/CEAC 7]%-A|sj 1 7g 7)-^)-08 5 7J 71-108 5RPS ti>°lXeHl- 7] Ml 1 84-4-12 3 84-73 3RPS 4S4i= =fc4 7lMM 1 84-4-13 1 7871-80 1ESFAS ti>olXBl)l- 7] MM 1 7§ 71-^1-14 1 7j 71-203 1ESFAS ?1MM 1 84-4-15 2 =871-204 4ESFAS ARC 4 MM (£88>) 1 7).^-17 4 =871-68 4 J2^A]fDPS 7l=MM 3 7^71-^1-18 05 7871-72 05RWT t447)Till 7]Ml*] 3 84-4-27 1 5 7871-205 2

5. B-9. ir^I 3,4 5.7} 7^^ o]-§- £-^ 44

AM 84/?8 =24 =871 42 4-8- «1 SLAM 4# #4 =?# afe 7iv 44-aI*

7>^ 3=34 (VSP)

7}°J-7l 4<3M,SG-l(-2) AM SiSG-l(-2) ^44 AM 4

7871-711-12 1.12e-4 RPS/ESFAS

7>^ 7j 4-4-12, =871-4-04, =871-4-05, =871-4-08 3 81e-3 RPS

Hj-oliEflolf.7M-71 x<9^,4V 4# -=44,SG-i(-2) 44^4 4 -2^4,

=8 71-4-12 4.80e-5 RPS/ESFAS

38 8871 (FSP) 3 4<r #4 871-4-12, 871-4-04,

871-4-05, 84-4-08 3.74e-3 RPS

SG-l(-2) 4t4,44 4# -2-JZ 44 84-4-H 8.40e-5 ESFAS

484!^ 8a 4«r4 84-4-14, 84-4-27 2.546-4 ESFAS€4-s =8a1 84-4-13 2.246-4

"flsix fcel CSAS, BAS, AFAS-1 (-2) 84-4-is 4.486-5 ESFASSI AS, Cl AS 84-4-15 8.96e-5 ESFASMSIS, 84-4-15 2.24e-4 ESFAS

CPC 4 441- °ltf-,3 #4 ■as.

84-4-04, 84-4-os 84-4-08 3.40e-3 RPS

DPS DAFAS 84-4-is 2.266-4*) &8 3,4 X4 Six **) J2.7>°1^fe S-f- 3 0 XX 7}8#

- 215 -

B.3.2 J22r#l 7l«y^ ol-g-

243) 4## 4* *42# 44# 43) 24 #24 45 44 7)#^- #44 #4.

4*4 #* #44 7M44# #*##*3)2 444 4# 4s.# tr 244 244 4

2 # 44ir #44 #*314431}5 #27} 4###4.

© 4# 4# 444 44# 4# - 4* #4, 444 4 #442# ^7fl is/fit 4

# 47)* 44 4# - #4 44 44. 44 44 *7}*# 40.5. 7}# #-22 (31

4 44 4# 2* 44^ 44 4 44), 4# 4*3) 4# 242 4# 4-8- 4

*2* 44 4444 4444.

© 4711 rps/esfas 44 444 2.4 444 #4 4*4 244, 42, mcb4 44

4 44 44 4711 #4 444 4 #* 447} 44** 444442 444 2 444 444 444 4414# #444 425. 7}#4-2. #25.5. (4 b2 4 #

2), 3.4- 4*4 #444 224* 4 4-8: 4144-2 44# 4444## 24# 4 #44<>14.

© 444 ##31 #44 47114 44 44# 4-2 #44 44*22 2 3) #4 4*

# 44 44 # 4 #414 44 # 444 44444 44444 44-7} 4#4

422 444 4444 #44 4#4 4-4422 nfl-f ##.

© #7} 4*4 *## #A14# *# (hunting) 24 4 4 #4" (hyst crisis) o) #4#

© #24, #4# TR 47}2 #4 #444- 4# #4- 44-22 #44* 4-9-7}

## 44* #4##. 44# 4-9- 44 #44 #4 31# 4#4 447} 44 4

44 4^-444# 444 44# 7)#4 242 ## 0)4 44 4 #4 31###.

#4#r *71)4 4## tr 2444 44 #44 4# 427} 4*44 44# 2

©2 4# 44- 4# 44:4 %##?! 444-.

4-44 24 #4 4# 4# #%* 2444 243) 44# 4# ##2# 4

4-4 #4r 7}44 444 44 4 #4.© #3)422 £§ #4 44- 4*4 3^5 45) ### 4 7)#-g- 44 g** #22

7}4 #4.

© 2©#2fe tr4 ## @-4 #44 4-4 2# #4 tfl# #4 (99#)* #3) 4#

2)5 24* #31 31 #4# # 7H ^H#4 44* 44 #4 422 7}# #4. 24

2, 0)1- * 4* 2#22 **# #44 66 #0)22 24 #2# 4# 2##4

1.5 HU 3) 31 ##42 * 4 #4.

© 4*422 4*1 2431 7)01# o)£ 442# 4*4 ### 2##3| 6 * *

# & (= 2#lVhr*l.5*4/hr)22 47}#4.

- 216

© 0,5. 4# 4# ##37} 0.5*3l#*STI (SFM & 41# 41)

44 STI 7} 1 ?W (744 44)711433, 3#i 7}## 4! ##3#

JL^oj] <>]# 4# ##34 1.61% (=6/[0 5*744]* 100 %)4 ^^4^1 # # S4".

z#, sti 4 3#t-l 444-33 sti 4 #/H 44 3# 4 ^°ll

1134 7]4#i 4^ 344 41 4-8- 1134 44 44 44=444.

1 #444 #14 3#4 444 4-8- 113# 444 §4 44-1- 4433 4!

4 #1 413 3.444 &&4

© 3# 4 444 41 Us# 344 44 4-8- 1134 iei%3 41 44

© 41 #44 1444 444 sti4 44 (44 l zij# 44 3 44)4 ^4 44

3 #34 414 #4. 344, #14 341-4 444-3 441 #44 344

4443 #4441 4444 44444 4#3 #44 414433, sti ;]]#1

44 443 #4441 3#i 444 4-8- 113* 3441 41 4434 #

7} 41! 44i441 341 4-434 44.

© 3#4 444 41 113# sti 341 aot 4 4#4-3 4 # 44. 14 45

3# 441 AOT 4 44441 44 4444 4444. 444, 44 ts 4 41

444 44 aot 344 444 434# 4 4 31 1 4 444 41 114

414 34 (14, 33, 44) 1 44 11 4444 14 4-144 41 444

3#4 4141 #144 41 433 44 #4 341 4414 7}##43 1

143, 3# 441 #44 TR 1 344-3 41 #1 433 44-44. 41 4

444 4441 44 rps/esfas 4 41 444 #4 441 aot 4 4144

4141 41 3411 444 43)4. 344 rps/esfas 4 11 4#3 #44

4 4341 41 4144414 #44 44 1114 #11 144437} 4.#

344 44 444 MM! #441 #34 3433 414#4 41 ##, 34

4 4# #44# #4 #14 1# 444 1444 3#4 44 4133 344

1 447} TR 443 ## ##44. #1433 RPS/ESFAS Hi! 3# 4 7]#

4 °1! 1134 4*8 aot 44 #4 447} 41 4=4 #33 4444.

- 217 -

B.4 21# -2.#- 4#

&#94 (#9 3,4 3:71) RPS/ESFAS 91# #4# 444 91# a9 *#9 #944

9* 99 a* 49#4 944444 #4 a9 *#44 2^2 9* 99 a# 44

#4 a Til 4 a 4 44 a*(pre-trip human error)# 4 a 4 44 a*(post-trip human error)

& 4# 4 44. 4a 4 44 a#a* 44, a* ^ a9 44 49144 9^4* 44 a#aAi rps/esfas 4 44444 4444 44 a4 a## a.4444. 4a * 44

4a * 444 a4 4444 4444 44 a#a/1 44&4 *# 44 44 a

4 4# 44 44 4* 4a4 *# 4* 991* a944.

B.4.1 a>ji 4 44-2Jr

4 44444 4a 4 44 a#a rps/esfas 4# 44 4444 444 44 44

4 m4 a#4 444 hra * *^49a9, 4444 therp[b-2] 99# 4*494.

rps/esfas 44 a4if 444 44 444 5. B-109 4444 9a4, 44 44 44

4** 4*4 44.

B.4.i.1 414 H4^4 44 7fla71144 a949* 444 9*4* a4 9444 44 *#44, 24 49

* 414 4^14 ^99a *W4. 2^ 9-4°fl* 4#9 * 44 4444- 4444, a4 4444- 494# 44a 44 a49 h99* 49494 a^ 44* 4944 44 9 4. 4 44 494 * 4 49# a4 49 9 44 49*, 4# 4 49* 44 944 7l# 4 49# 44.

47I h4 a.# #4 44* 4*4 49 3 991a #4# 4 94. 4*1 9*1 a4 4

44* 49aa 4-9- #4# *^44 4* 94* #*44. #*1 there 994 *44

4 919 a4 499 44 a# 4** 91444. 44 4*44 4* 3# 49 aa 94

a* 4# 7}*4* a444. ^*1 * 7H 444 a4 a*7> %-*)<)] 944* 4* a4

4*44 9*9* a444 4* a* 4## 91444.

B.4.1.2 419 51^ 4**4

919 a9 a## *449 944* *9 #9 a9 444* *9a a9 4* 44

* 444a 419 449a 9^34 4 9* a# 7}*9& 97>444 44. 919 19 4

44* 944aa 4* #94 #43 44* 944 9#4a &a4, 91*4aa* 9 ?H

4 #44 44 944 a9 49 aa *949 94. 9999 9171 44* 4*9

- 218 -

I/V (V/I, V/V) 1#7| 9S TlMM #/9 S 7]vj *o.S

19144. H^l} ^]7l 57^ £* #147]# 711715] 7] 94] 999o_S Hi £41 41 s9 s#i# 9114 444, 4 4117]* 4*7] ^ i/v l#7]i 4% m9 4

-9-4 7111 7)17] 574 7]#47] &841 44 47] 5744 sll# 44 9#4,

ti>o]>2Eii»mi 574 4-9-41 447]s s# 94# 99484. £4-4 #* W 4^ 9 47144 447> 44. £7>ls.9 5744 isi 44 ^ 444 574 440] 45.44,

19 14-9 514 444 #49- 4A>4 4 7H4 19 44 lias 9914. 9 B-114

rps/esfas 574 a* 4 44-0] 4^ 44 574 4-9-4 44 !1 9S4 441 i7}^4

44 9S* 94484.

44 574 494 39, 444 1*113. 9 &4 49- 44s. 9444 817] therp 414 4-8-7] 4«. 4# 1:4 4-4- 4-4-* 7]* 495. 444-7] 414- 4A1 1

4-1 574 447-14 7]#i 49- 14- 4-4-1- there 1144 14-1 14 49s 444

4 44 a* 4*1 41# 39-, 1149 14 114 ^4 4# 8* 14 44.

447] 374 14* S4 9 14s 9944 9-4484. £4# s9 149 H4SS- 39 4-4# 144s 5144 la* a>4 94 41# 49 39 94 14, 14 39# 4s. 94# 4#49 519 41 14, 39 41 9 579 94* *44s £4* 144

49 39 Is 14s 9*14. 4 1141 s9 499 9.7}4 ##4 1481 944

9 14.44 519# ^£1 9 11 9944, 1 49 39 41# 41# 4# 1 99 4#

1 #1 419 9914 44-7] 7]# ^ *01 4i7>7> 574 417}5] a#» 414s 49# 7>#9# a.41 9 14. al 44 39 41 9 4# 414 494* 441 =£71-51 #9 44* 41# 9 8ai, 447] o] #447] 39 a** #14s 4

9# 7>#9s s4484. 4944 39s 4# 41 14449 1114 94)3 #4* 4 1444 39 a## 111 9 Isas 7]# 41# #4 a## #9# 7}#9 1 1 4s 971-184.

B.4.1.3 47] H.99.-* 91*444 529 a# 1# 419 144 1914s 49#s. 39 97}* 411 9, £7}

4 41 a# ### £7>9 1# #14 1*484. 1* 444 91 £44 41 4* a* 4*9 4144 14. £4-# s9 49* 14si 4441 14 149 4s4i, 9-95] 449- 519 *4 99, 519 41, s9 9 144 4-1 ss. 9*14- 1 # 4 49* 44 14 49s is 1# 49 914 41 a# 1*1 there data* 7} 944 97>484. 194 3#1 41 £41 41 44 £* 4*9 £44 9*4 111 81 44 39 a# 4# 414 7}#a}%4

- 219 -

f.iL ohL

7>^-7l H ^17](PZR Pr Hi/Lo)* 42 3)7) 32 #* *4 44* 2;))41 4

*4 44.

44 244 44 3&4 44 #4

7>47l 44 ^7HM 24 2** 44423. **4* 4* 4*7), i/v 43M, 44

**7], 4S7](B/I) 24°fl 44 324 4*44. 4* *4 ^ 4*7] 244 Cfl4 71* 32

2* 4** ^144-71 44 574 44* 4£4-44. *4 3,4 271 7}*7) 44 444

*7l(PT) 244 34 44* 4*4 44(44-4-25).

lo.i.i.i 32444* 4*7)* 4*4 44.

PT-101A PT-101B PT-101C PT-101D PT-199X

PT-102A PT-102B PT-102C PT-102D PT-199Y

PT-103 PT-104 PT-105 PT-10610.1.1.2 4*44 44 44 #2* 444 4*410.1.13 4*44 4)4 #4n* 444 444 4*44 44# 444 #* a]

4# 4*4.10.1.1.4 4*44 4444 44 44 l=t 4444.10.11.5 4*714 @;D* 44.101.16 4*7)4 44 4441 lmA’ 444 * 42* 4*4* 4444.10.1.1.7 44 44 444* 444-3. 44* 4*4.10.1.1.8 5R444* 4*44 43. 44* 0%, 25%, 50%, 75%, ioo%7> 45.4 &

7M1444 ‘mA’*4* *4 14 4 ':z44'44| 4#4410.1.1.9 32444* 4*714 431 44* 100%, 75%, 50%, 25%, o%7> 4 £4 4

27)4iA) ‘mA’*4* *4 14 4 '3244’44 7]#44.10.1.1.10 43i 44* o%4 444 4*3% 4*7)4 44 2:44* a}*^ 44

* 2:444-10.1.1.11 43i 44* ioo%4 444 4^22. 4*714 2$ 244* 4*44 2

4* 2444.10.1.1.12 444 244 444 4# 444 10.1.1.1044 10.1.1114* 4444.10.1.1.13 32444* 4*7)4 431 *4* 0%, 25%, 50%, 75%, 100%2 *7}a)7)4

4 4*44 444* *4 14 4 ‘324#’44 4*^4.10.1 1.14 32444* 4*7)4 42 44* 100%, 75%, 50%, 25%, 0%2 42444

4 4*44 444* *4 144 '^4#'44 7)##4.10.1.1.15 4*4* *444.10.1.1.16 4*7)4 §7))* 4*4.10.1.1.17 *4 44 42* *444.10.1.1.18 4*7)4 *44 44 #2* 444 44.10.1.1.19 4*7)4 4)7) *e)n* 14 **4 47^)4 # 4a) 4*4.

- 220 -

#■#71 ^4 4* 3431#! 4*

144 7]## 4^7l(pt) 44* 4-44 441 34*4 a.4 41#

*o) 4 #4* 1**3 therp 444* **#4 44 444 4# 3l#ll 47}*

4*. therp 4441 11*33. 4444 444 4* 41*33 ##44 4**14.

-mi.i2~ioi.i6- 34 *4. e«l 44 (44714 44 4H. 44 4)- 10.1.1.7 ~ 10.11.14 34 44 (44& o%~ioo% 4*3 44 1 7li, 4434, 1

41 o%~ioo% 4*3 4 4# 4 4#)

-10 1.1.15-101.1.19: 524 i 44 444 (414 4-4, 4# 4= *4, 4-4*3 7fl

4, 44 1-4 n 44 1 #1)

therp 444* 414-4 *4# 3*4 4# 5.# #1* 3.75E-3 44. *44

414 #4 4*-7} & b-ii4 4444 %14.

7}** 4-444 3431 #1 44

7}#4 14 44 524 .2-1 4# 441 7><y-4 14 4714 3#4 524 di*l #4# 4, 444 41# 3*1 4# 31 #11 4# #14 4**1*. 3*3

524 444 4-7>ll 1 #4 4444 4# 31 41 7}**1 3**13*, 41 44

44444 31 41 71-14s 32444 41 24 31 #11 *1*14

- #4 3*4 tfl* 1 444 524 31 #1 : 8.75E-3

- 1 4444 -2-1* 1 #4 4447} 144-4 5.# 7}*4l 3.4# 524 31 #

1 : 8.75E-3 * 0.1 (1 #4) 444 #4 #4), THERP Table 20-22, #1) = 8.75E-4- 7}<y-7l 14 4* 414 3#4 3* 11 3-4# 34 31 #1 : 8.75E-4 * 4 (4#

1#4, 414, ##4, #5271)= 3.50E-3

- 711 44 14* 33)# 524 31 #1 : 3.50E-3 * 0.05 (7)1 44 #4, THERP Ta­ble 20-6,#6) = 1.75E-4 (7)1 44 *41 7i#44 l^g 444 4# 47>7> #44-

41 444# 41 #** 4143 0)44.4 #1 3144 47})

- 7)1 44 1 47) #44 141 34# 41 524 31 #1 : 1.75E-4 + 0.003 (#4

4 #4, THERP Table 20-12, #13) * 0.05 (414 #3# 14 #4 #4, THERP Table

20-6, #6) = 3 25E-4

B.4.1.4 4171# 52.4 3*- ## 41*

7>44 14 44* 43 *## 34 31 #1 41* 44* 4# 4443 11*41

- 221 -

4*44 441 s# 2# ##* 4#414 3)711 2# 2* ##* 4##4 444

4 4412 m?§ 2*4 44422 444 244 ** #4# 4 444 44# 1

44- 444 44- 2* #** ^7}#14.

esfas #2# 444 44 4 4=4 #4 44# 2* 24 *7} 4 4(4*4, 444,

4 #*^4, 4a4)a_4, 144 44# 7}14 #4 444 34 2*4- #4# 2* 4#

* 4-* 4-#5. 47}414. ## rps 4- #44 414## 4-7] 414 #44 #4 27} 4=

7} 1# 4# #444 2# 2# ##* 4#*1#. 4)41 #4 444 ^#4 4

4 27} ** 5. B-124, 4711 J24 -2-4 #4 #4# S. B-104 4444 44

B.4.1.5 -2# 2* A>#4 ^4 #4

34 -2-4- a}# #<>11 42 #444 4# 4= 44. # #4# 4427} 444 a# 4

** 4^1 4#, 44 4444 2#* 4^44# 4# 4444£ 4.4* 4-2.4 7}* 44 #4 4 44. 44# 4444 444 4# 444# therp 4 4# 5 7M^_ ## _

-r(zero), 4(low), 2*(moderate), .2.(high) 4 #4 (complete) #44 - 4-2-4, 4*4

1# *4*4 44- 47>€4.

- * #44 (ZD) : P(A/B) = P(A)- 4 **4(LD) : P(A/B) = (1+ 19*P(A))/20- 2* #*4 (MD): P(A/B) = (1 + 6*P(A))/7- JL #*4 (HD): P(A/B) = (1 + P(A))/2- #4 #*4(CD): P(A/B) = 1.0

47lA-(,p(A)= H4 2* A}# a7} *H422 #Ag-f

P(A/B) = 2# .2.# B7> #4# 24 444 57#:$.# A 7} #4# ##

# #4471# ### 4714 4# 41 #4 a# 4# A}o]ofl^ jl 4L#4 (high de­

pendency)# *4#* #22 7}4#l*. 444 4144 4* **2 44=4 #, 42 #4

4#4 4# 44 2# g-* #3144 *## 42 #4 4# 414 *1 444 #41 *

7fl #4-4 2732*7} 441 4* 5i ##44 4# therp 47} *4* 4*44 44=#

#12# 24* 44 2* #}#, p(A/B),# 44 0.5 4 7}#4. #1 4 7|) 4## 2# 2

* 4-44 *4# 4# #4 4#4 441 4*, * 44 24 2*7} #4# 24 #4#

4 #4 57# 2*7} 14# ### 1.0 22 47}# 14. # #4 *44 4 143. 7}##

14.

- 222 -

B.4.2 A>JI ^

# €444 € rps/esfas €4 4444 43. f 44 3#^4 €43 €€ 4

4 €44 4 €44 44 €4 4€ 4^4 44 €€ 4€ €4* 344%4 4#4 &

4 3,4 3:7] psa 334[b-ii]344 44 €44 44# 444%34 a b-13 44

44 44.

- 223 -

5. B-10. RPSZESFAS 43 44 34

24 5* 43^') A>3 41 ti]jzRPOPH>J601 VOPT 4 13E-4 10RPOPH>J602 Hi Log PWR 5 44E-4 10RPOPH-*J605 HiPZRPr 3.25E-4 10RPOPH-*J606 LoPZRPr 3 25E-4 10RPOPH>J607 Lo SGI LVL 3 25E-4 10RPOPH-*J608 Lo SG2 LVL 3 25E-4 10RPOPH-*J609 Hi SGI LVL 3.25E-4 10RPOPH-*J610 Hi SG2 LVL 3 25E-4 10RPOPH-*J611 Lo SGI Pr 325E-4 10RPOPH-M612 Lo SG2 Pr 3.25E-4 10RPOPH-*J613 HiCNTPr 3.25E-4 10RPOPH-*J614 Lo RCS Flow SGI 3.25E-4 10RPOPH-*J615 Lo RCS Flow SG2 3.25E-4 10FSOPH-*J617 Hi-Hi CNT Pr 3 25E-4 10FSOPH-*J618 Low Lvl SGI 3 25E-4 10FSOPH-*J619 Low Lvl SG2 3 25E-4 10FSOPH-*J620 Lo Lvl RWT 3 25E.4 10RPOPH-*J625 Lo PZR Pr Bypass 3.25E-4 10RPOPHCPC* CPC (DNBR & LPD) 5 44E-4 10RPOPBGPCBY-* Hi Log PWR Bypass 3 25E-4 10RPOPBSPCBY-* DNBR & LPD Bypass 3 25E-4 104l)‘*’& 11* 4441* 14 5414 2) -S.*}!*}* 5* 10 55. 7>4

s. B-ii. ri-44 44 H4 J2.fi- ## ^4 44

No 41 m-6-HEP

(3"9#(Table U)

HEP(*§^) ti] JL

1 10.1.1.2 - 6 34)0 003

(Table 7, #3) 000375

2 10 1 1.7-14o%~ioo% 44-g.

41 5 7]4, 14&4, 14* 0%~100% 445. 7fl 44 1 7]#)

0 001(TablelO, #2) 0 00125 4454 44* 45

4 5*5. 7)4

3 10 1 1.15 - 19

H4 4- 7fl7l (1*4 5-el,31 45. £4 4-115 ufl7) #eizz. H]J 7] 4 1*)

0.003(Table 7, #3)

9^(Tablel3, #2)

0.003754* 4# 5fe

4* 154 5* 441 ?M

000875

224

5. B-12. RPS/ESFAS A>^ ^

TlM ## A>y A>5

Pressure2^ 3fr

RPOPH-*J605 Hi PZR Pr ^71-^1-25 4

d$7i, g#7i, si27]

RPOPH»*J606 Lo PZR Pr. 7j7]-T]]-25 4RPOPH-*J611 Lo SGI Pr ^7]-3]-26 4RPOPH-*J612 Lo SG2 Pr =g7]-5fl-26 4RPOPH-*J613 Hi CNT Pr 71-^1-32 4RPOPH-*J614 Lo RCS Flow SGI 7j7l-^.26 4RPOPH-*J615 Lo RCS Flow SG2 7j 7)-711-26 4FSOPH-*J617 Hi Hi CNT Pr 71-31-32 4

Level

RPOPH-*J607 Lo SGI LVL 71-31-26 4

@#7l, ^%f#7], tilB7]

RPOPH-*J608 Lo SG2 LVL 71-31-26 4RPOPH-*J609 Hi SGI LVL 7j 71-31-26 4RPOPH-*J610 Hi SG2 LVL 7| 71-31-26 4FSOPH-M618 Low Lvl SGI 71-31-26 4FSOPH-*J619 Low Lvl SG2 71-31-26 4FSOPH-*J620 Lo Lvl RWT ^71-31-27 4

Neutron flux SL^

RPOPH-*J601 VOPT 7j 7)-31-05 6 4M##7i(3), ^41431, #^€-#71

RPOPH-*J602 Hi Log PWR 71-31-06 9£^-3-7], DD-1, LCR1, MSV,CC1, y^tilS?!, Log ti]227l, m Buffer, "@#7l

CPC 2=9 RPOPHCPC* CPC (DNBR&LPD) 7j 71-31-09 9 Pulse shaper(4), X|

4# ^4 ^^,CPC,CEAC(2)

-f4| 7>2 # % 2^R#

RPOPH-*J625 Lo PZR Pr Bypass 7J 71-31-25, 7^71-31-10 4

45171 Si#, 4H7l, HysteresisRPOPHGPCB Y -* Hi Log PWR Bypass 7j 71-31-06,

7j 71-31-10 4

RPOPHSPCBY-* DNBR & LPD Bypass 7j 71-31-097J 71-31 -10 4

5 B-13. RPS/ESFAS 4^1 f 44 ##

yy--2.^t-V95)

4 SL

RPOPVTRIP Operator fails to manually trip reactor 1 OOE-03 10FSOPVAFAS1 Operator fails to manually generate AFAS1 3 68E-03 10FSOPVAFAS2 Operator fails to manually generate AFAS2 3.68E-03 10FSOPVCIAS Operator fails to manually generate Cl AS 1 87E-03 10FSOPVCSAS Operator fails to manually generate CSAS 1.05E-03 10FSOPVMSIS Operator fails to manually generate MSIS 1 87E-03 10FSOPVRAS Operator fails to manually generate RAS 1 87E-03 10FSOPVSIAS Operator fails to manually generate SI AS 1 87Er03 10^ 1) R^f- 10 0-3. 7>^

- 225 -

B.5 ** 3-$

## 44 544 41 RPS/ESFAS 44. TR 14 44 44 4 5L7MM 1996 4 10 4

o)] #44 54 #444 4#44 44# i 44 4# €4 54 444 (4#44 #4

44* 44 plateau test 44 44 3?fl 4444 spike #144 0/H444 54)* 444

3i# 4# 3144 **)! 4444 ##4- cen-327[B-i]4 444 444 CE 4 7}4#*

5.4 rps/esfas 44 7l7li-4 44 4# 3i4 44#4 44 51144 44 1# 44

441 5545 ^4. 445- 44 a#444 14 ce # 7><y-;§*54 rps/esfas 54 4

541 7154 4* 54 4444 444 444 #711455, 4 *4444 *44 544

* 444 *# 44 54*4 *44 444 4* 54 44 45# 4 4 #5 cen-327 4

4 444 5*4 (13-factor) 11 4*444 (H. B-14 45).

514# RPS/ESFAS 44* 444 4# 2 *4 (selective 2-of-4 logic) *54 44 41

4* 1**4 :84 4, fi B-14 °)1 444 414 tcb, 44^ 54 44, *5 54 44,

71)4 k-444, 44445 444, 44 444 14 44 4444. 444 4*2 *4 *51 4* 4t !#*! 4 711 71)1 (A, B, C, D) * 44 5##4 54- (4 71)4 54 51 55 AB, AD, BC, CD)! 4*4 7)# #^(-@7}5 44 5* 44 44 4# *5 14)4

o}*4 44* *4 &*4. 444, 1# #4 54-14 4*4 44* 5# 5#4 1*

44 54- (11 71)57) AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, ABCD)1 7>14 Tjj*

7)14 11H 44* *4 4* 4 7)14 541 44# 444 7 71)4 54 544* 4)4-5

5 47>444 44. 444 1 #444* 44 *1 4$1* 4-14-55, *-F 44 54

# 71)44 4- 54- 544 44 457} #<44-4-5 7>444 444 44) 54 5# 4* (critical combination ratio) [B-l], 7/111 #44 7)|4#4-

4*4* 4*44 54# 5# 544*1 4-14 4*44 44 4*44 5 44*

5. B-i4 4 *44 si4-.

**44 54-# (5# 54-4*)

= [°J4 54- 5# 4 *] x [P-factor] x [14 5*# (5! 54#*)] (4 B-9)

4 7) A], 44 54 5# 4*1 TCB, under-voltage trip device, shunt trip device, initiation K-relay,

interface relay, interposing relay 4 41 7/11 4 4* 7)-x| 4, -1 444 1*4 444* 10 5

5 4444-.

- 226 -

5. B-14. ^ 2.44 4)4

7]7] ## 414 S.^r3b* ^3-ti/hr)£t ti|jl

Tnp Circuit Breaker 0 0556 5.37e-6/d 2-of-4 telUnder-Voltage Tnp Devices 0 2529 3 02e-4/d 2-of-4 telShunt Tnp Devices 0 1917 2 34e-4/d id ^14 2-of-4Initiation K-Relays 0 1 2 23e-6/d id 4 3 2-of-4 telInterface Relays 0 1 5 00e-6/d id 2-of-4 telInterposing Relays 0.1 2 78e-6/d -94^ 2-of-4 telLogic Matnx Relays 0 0159 3 55e-6/dBistable Relays 0 1 2.89e-6/dBistable 0 0444 1 30e-8/hrHand Switch 0.1 I 18e-6/d id^ 2-of-4 te)Measurement Loop 0.1 5 56e-8/hrPressure Sensor 0 0878 2.34e-7/hrDifferential Pressure Sensor 0 0878 3.14e-7/hrLevel Sensor 0.0878 1 67e-7/hrEx-Core Neutron Flux Detectors 0.0316 3 81e-7/hrSubchannel Power Calculators 0 1 2 28e-7/hrCalibrated Average Power Calculators 0 1 3 60e-7/hrLogarithmic Power Calculators 0 1 3 lle-7/hrCore Protection Calculator 0 4928 5 64e-7/hrDPS Signal Processors 0 4928 3 24e-6/hrMG Set Control Circuit 0.1 6 57e-7/hr*) 5^.CEN-327 **) -2-4‘?]4:& af- 10 0 as 7>^-f

- 227 -

B-l. C-E Owners Group, RPS/ESFAS Extended Test Interval Evaluation, CEN-327, Final Report,

Combustion Engineering, Inc., 1986

B-2 Swan, A D. and Guttmann, N.E, Handbook of Human Reliability Analysis with Emphasis on

Nuclear Power Plant Applications, NUREG/CR-1278, USNRC, Sandia National Laboratory 1983. b-3 y1v^is|) AM 44444^ 4^4 ##

#9. KAERI/TR-2131/2002, 2002

B-4 #4"^, 4^#, 441, 7} 7] 4451 DB 44* 44 i = 7m,

KAERI/TR-2130/2002, 4^444 49^, 2002.

B-5. ISA, Setpoints for Nuclear Safety-Related Instrumentation, ISA-S67.04, Part I, The International

Society for Measurement and Control, Instrument Society of America (ISA), 1994.

B-6. U S NRC, PRA Procedure Guide. NUREG/CR-2300, 1982.

B-7. 444, 4^4, 44#, 44$, 44-n-, 44£ 4444: ^#44 4444

4*4*. KAERI/TR-2165, 44444 2002.

B-8. 444, 4#!, 44#, 444), 444, 44S. 4-4*4: &#4444a_ 4*.

KAERI/TR-2164, 2002.

B-9. 444, Bayesian 44$ BURP 7flt, KAERI-ISA-MEMO-PSA-2001-024, 4

444-4 4#i, 2001.

B-10. Wierman, T.E., et al., Reliability Study: Combustion Engineering Reactor Protection System,

1984-1998, NUREG/CR-5 500, Vol.10, USNRC, Idaho National Engineering and Environmental

Laboratory, 2000.

B-ll. -Br?} 3.4 3171 444 14. 4444 #4, 1997.

B-12. Bailey, R.T., “Estimation from Zero-Failure Data,” Risk Analysis, Vol. 17, No. 3, 1997.

- 229 -

M XI § M gf B¥SX|#e3A1@S S#X|SE3AiaS HESHAiaS INIS ¥X1|3E

KAERI/TR-2166/2002All# / ¥X1I HESS B4S4:SSX|IS2J SgXISXISAl XHS S¥

#¥#sxi(AR.TR 3?

Q.I Ajg ¥1-1X1)

BE# (BSESSXIil)

3 ¥ X) §J ¥ AH g SB#, 21SE, SIS, 6OT ygyssxii!)

e xi CHS styxia E#SX1#3¥£ wh# 200215 31

01 XI 229 p. E H 21B(0), 24SU 3 XI A4

BEAU)tilSOI! IXH(O), CH£|til( ibl# S3AHS4 XISE3AH

0¥S#XIS 31§1Xh XII# as

£#(15-20 § LH2I)

9¥2| ##g E#g HESS (KSNPP)2| SX1E SSXIIS (RPS)31 SEB aS#dl BBXIIS (ESFAS)E CUBES ##EB #SB gXI (PSA) X|@@ OlgSIOI gf SgXISXISAIOIIAI XIIA|6)3 24b §X|§S¥X| (STI) 8! 61SBXIAIB (AOT)#£J SSOII IDE SS# SHE gSS @36)3, Sty STI 81 AOT 2| XUS# SE X|#B Xl£ XIHgoissibcii 2ta. on ssu g seouahb xieses aiixixi see #e - xus oigggE.EBEBEE(CDF) 81 CH§f£X| gA1B ¥#EE(LERF) - II A1B61%C1. 0|# ##011 CUE El°| XHWE 3¥ ¥S SSOII HB3DI, 0|# SIBS E 3¥01IA1 ¥HE EE LHB2| XISX1 BO. E 3¥°| SSE HESS RPS/ESFAS OIIAH HE EgXI#XI§A| (NUREG/CR- 1433)011 AH XIIAl613 SJ.E AOT/STI SEES ESAI SEE SS SX101I ¥01X4 21 Cl. SB 131, HESS RPS/ESFAS 2J XISXISA1 2218 gg°| #S31 ##011 DIXIE gif 8401 HE XISXISAH SEES SS X1BE 3ES UEItiCI. Olfe STI °l #¥ EH 1 XUS XIEOIIAH 3 XUS XIEESE SS X1BE# SjDIECI. 51XI# Ely31 HE XISXISAH Q#0| X1£| BSE AOT 2| §? TCB Oil CUE AOT (1 A|# EE =A|) fi DI2I613 OE ¥##011 CUE EH AOT (1 A|# EE #A|, 48 A|#) g 0H¥ B¥B# S#ES ##9240. g S¥2| S31SE SB 3,4 SXI S# 01 LI El git 3,4,5,6 SXIOII CUSH AH Bg X1B61C1.

¥X||g 3ISE (10BOILU2J)

XIS XI § AH (Technical Specification), SX15 EmX||#(RPS), BE# #Sgfc|| BBXIIS(ESFAS), EB§ HESS(KSNPP), #SEB #SB SXI(PSA), SEE §fi StS(RIA), ##E SB (Sensitivity Analysis), OIB SBE(Unavailability), EBEBSE (CDF), CUBSXI gAH§ ¥#A13 (LERF)

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Report No.

Sponsoring Org. Report No.

Standard Report No. INIS Subject Code

KAERI/TR-2166/2002

Title / Subtitle Study on Improvement of Technical Specifications for the Plant Protection System (PPS) in the Korean Standard Nuclear Power Plant (KSNPP)

Main Author S.C. Jang (Integrated Safety Assessment)

Researcher and Dept. S.J. Han. M.K. Min. K.Y, Kim. J.J. Ha (Integrated Safety Assessment)

Publication Place Daejeon Publisher KAERI Publication Date 2002.3

Page 229 p. Fig. & Tab. Yes(O), No( ) Size A4

Note

Classified Open(O), Restricted( )Class Document Report Type Technical Report

Sponsoring Org. MOST Contract No.

Abstract (15-20 Lines)

The study was performed with the purpose of evaluating the impact of extending STI (surveillance test interval) and AOT (allowed outage time) of the RPS/ESFAS (reactor protection system/engineered safety feature actuation system) in KSNPP (Korean standard nuclear power plant) on plant risk To do these, three measures for plant risk - unavailability, CDF (core damage frequency), and LEAF (large early release frequency) - were basically used. This activity included development of the detailed fault tree models for RPS/ESFAS in KSNPP and the plant-specific CDF and LEAF models. These models formed the basis for the work reported herein. This study focused on evaluating the risk impact of changing current TS (technical specifications) for the RPS/ESFAS of the KSNPP into standard TS (NUREG/CR-1433). The results of the study showed that the current TS for the RPS/ESFAS of the KSNPP might be modified or restructured so as to reduce the burden on plant operation in terms of manpower problem, exposure to test-induced transients, impact on equipment life and unavailability due to test, and so on. The results of the study are applicable to Ulchin units 3 & 4, as well as Yonggwang units 3, 4, 5, and 6.

Subject Keywords (About 10 words)

Technical Specifications, APS, ESFAS, Korean Standard Nuclear Power Plant (KSNPP), Probabilistic Safety Assessment (PSA), Risk-Informed Application (RIA), Sensitivity Analysts, Unavailability, Core Damage Frequency (CDF), Large Early Release Frequency (LEAF).