Field Manual - Forgotten Books

421

Transcript of Field Manual - Forgotten Books

FIELD —MANUAL

RA I L ROA D EN G IN E ER S ,

J. C . NAGLE,M.A.

,

P rofesso r nf C ivi l Emm ineerina in the Ag ricu l tura land Mecha m ca t Co l lege of Texa s.

SECOND ED ITION,ln

E VINED.

SECON D THOUSAN D.

NEW YORK:JOHN WILEY 85 SONS.

LONDON :CHAPMAN HALL , LIMITED .

1 903.

Copy r ight , 1897.

BY

J . C . NAGLE .

ROBERT DRUMMOND ELECT ROTYPER AND PRINT ER, N 1

PREFACE .

EASE of reference and uniform i ty of notat ion are essent ial in a

book that i s to be consul ted in the field. W ith this in m ind an

effort has been m ade in the fol low ing pages to secure a system at icarrangem ent of the subject-m atter and uniformity of term s andno tat ion. Except for a few cases G reek letters have been avo idedand a s ingle letter i s used to designate an angle. In so far as

self-explanatory, so that

the explanat ions necessary in connect ion w ith the problem s havebeen reduced to a m ini m um . Algebraic equat ions stand eac h ina dist inc t l ine, thus rendering them m ore easi ly read.

A know ledge of the elem ents of geom et ry and trigonom etry has

r heen assum ed,and only in the derivation of a few form ulas in

“?connec tion w i th the theo ry of trans i tion-curves w i l l any h igherm athem at ic s be needed. But these form ulas m ay be accepted bythe reader who is unfam i liar w i th the calculus withou t in any

way affec ting h i s abilitv to understand the i r appl ications or tofol low subsequent reasoning.

One can m ost readi ly turn to what he wants in a book after hav6 ing becom e fam i l iar With i ts contents in the c lassroom . K eep ing

ha; this in m ind this book has been Written so that i t m ay be used as

a text as wel l as for reference in the field. Wherever prac t icableKNi

soiut ions to problem s have been g i ven in a rigid, general form ,

S fo llowed by i llustrat ive exam ples,so that the student need not

10 8 8 s ight of the princ iple involved wh i le fo l low ing the solut ionfor a particular case. Wherever approx i m ate solut ions seemedpreferable they have al so been gi ven and thei r l i m i tations pointedFree use has been m ade of the T able of Func t ions of a One

degree Curve,thus reduc ing the labor of field com putations . By

defining the degree of curve w i th reference to short chords foriii

PREFACE ,

sharp curves— and,wi th tab les of Radi i

,Long Chords

,Mid

ordinates, et c based on appropr iate equations— the errors resul ting from assum ing the radius to vary inversely w i th the degreeof curve wi l l generally be found to be qui te sm al l .Chapter I g i ves briefly the general m ethod of m ak ing Re

conno i ssance; Chapter II treat s of P rel im inary Surveys ; whileChapter III relates to Location.

Chapter IV ,on T ransi tion- curves , fol lows the m ethod adopted

by P rofessor Crandal], and enables one to locate the transit ioncurve wi th rigid accuracy where such i s necessary . Approx i m atem ethods are al so given by m eans of wh ich the curve m ay be as

easi ly located as any of the m ore l i m i ted easem ent curves ordinarily m et wi th .

Chapter V ,on Frogs and Swi tches , contains all that i s necessary

for thei r locat ion. The form ulas have been arranged to give thedes i red quant it ies in term s of the frog num ber whenever the re

sult ing equat ions would be eas ier of appl icat ion than the tr igonom etric ones usua l ly gi ven. T he turnout tab les are unusual ly ful land give not only the theoret ical lead but the stub lead as wel l

,

from wh i ch the pract ical lead can be at once found when the

length of sw i tch - rai l i s known.

Chapter V I,on Const ruction,

tel l s how to set slope-stakes,and

gives s i m ple m ethods for com puting areas and volum es ei therdi rectly or by the use of tables . A short table of pri sm o idalcorrect ions is given for end sect ions level , and al so a form ula forthree- level sec tions , by m eans of wh i ch a su i table table m ay be

com puted if des i red.

T he tables at the end of. th is book have been arranged w i th av iew to ease of reference,for

,whatever the character of the text ,

the ch ief value of a field-book m ust depend upon the ease w i thwh ich the tables m ay be consul ted and upon thei r extent and

accuracy . T ab le IX— Func t ions of a One-degree Curve— separates the logar i th m ic func t ions on the one side from the naturalfunct ions on the other and w i l l be of ass i stance in locat ing thesetables . T able XV I— T rans i t ion-curve T able— reading lengthwiseof the page , l ikew i se serves t o separate the trigonom etr ic tablesfrom the m i scel laneous tab les that fo l low .

Som e engineers object to the use of logar ithm ic tables in the

field,but for them the natural func t ions are at hand ; wh ile for

those who prefer logarith m s the fi ve-place tables of logarith m icS ines , cos ines, etc w i l l be found easy to consul t and interpolatebetween.

PREFACE. V

All trigonom etric tables are five-place , and others were carr iedto as m any dec i m a l places as the i r charac ter dem anded.

T ables I , III, IV ,and V have been com puted to agree w i th

the definit ion of the degree of curve requi ring curves sharperthan 7

°

to be run wi th chords less than 100 feet in length ,as

desc ribed in the text . T ables XV I I and XV I I I were al so com

pa ted expressly for th i s book .

T ables V I and XXVII are from elec trotypes fro m t art ’sField Bookfor Civil Engineers and were furni shed by (n ul l St Co .

Electrotypes of Tables II, X ,XII

,X II I

,X IX

,XX

,XXIV

,XXV

,

XXV I, and al so XVI — th i s last being from Crandal l ’s book,

The Transition Curve— were furni shed by John Wiley Sons .Of the o thers

,som e were arranged from standard tables and

o thers adapted in part and extended t o increase thei r usefulness .It w i l l be not iced that vert ical l ines have been om i tted wher

ever pract icable, thus render ing i t easier to refer to the tables .Acknow ledgm ents are due m y assoc iate

,Professor D. W.

$ ‘pence,for aid inm aking the tabular com putat ions and in reading

proof.

J C . NAGLE .

COLLEGE STAT ION , T m s , May , 1897.

PREFACE TO THE SECOND EDIT ION .

IN this edition some of the typographical and other m inor errorsthat appeared in the first edi t ion have been el im inated. T ablesXXV III and XXIX have been added in order to inc rease the usefulness of the book

,and are from elec t rotypes of tables in T i'autwine’s Pocket Book. A suggest ion has been m ade by one who

has had occasion to use the tables qui te freely that T able XIX be

extended so as to gi ve quant i t ies for variat ions of one tenth of a

foot in center heights, but such extension would have inc reasedthe s i ze of the book unduly . When c loser approx i m ations arewanted than are given by T ableXIX the area for the gi ven centerheigh t can be taken from T able XVII and by entering T able XXw i th thi s as argum ent the quanti ty can be at once read off. For

center heights greater than those given in T able XVII we m ay

refer to books devoted exc l usively to earthwork computations .J C . N .

COLLEGE STAT ION , T EXAS , January, 1899.

CONTENTS.

CHAPTER I .

RECONNOISSANCE .

ART ICLE 1 . OBJECT S OF RECONNOISSANCE— HOW MADE .

SECT ION PAGE

1 . Relat ive Im portance of theWork of Reconno issance and Location 1

2 . Ob jec t ofRec onno issance 2

3. The Instrum ents 2

4 . Use of Maps 4

5. Mak ing the Reconnoissance 4

CHAPTER II.

PRELIMINARY SURVEYS.

ARTICLE 2. OBJECT S ; T HE FIELD CORPS ; DUT IES OF T HE CH IEF.

6 Ob jec ts of Prel im inary Surveys7 . T he Exp lora t ion8 . Data Sought in Mak ing Prel i m inary Surveys9 . The F ield Corps .

10. The Ch ief of Party , Dut ies ofART ICLE 3. THE TRANSIT PARTY}

A . DUT IES OF THE MEMBERS .

11 . Co m position of the T ransit Party12. The T ransitm an

13—17 . Other Mem bers of the Party18 . Instrum ents

B . TRANSIT ADJUSTMENT S— THE VERNIER.

19 . K ind of T ransit20 . T o Adjust the Plate Levels21 . Paral lax . .

22. T o Adjust the L ine of Co l l im ation.

23. T o Adjust the Standards .

CONTENTS.

SECT ION

24 . T o Adjust the Level on Telescope25 D irec t and Retrograde Verniers26. T he Least Count of a Vernier

T o .Read a Vernierc . ACCESSORIES .

The Gradienter.

28 . Descr ipt ion and Method ofUsing Gradienter .The S tadia , or Telem ete‘r.

29 . Princ iple of the Stadia30 . Form ula for L ine of Sight Horizontal31 . Form ulas for L ine of S ight Inc l ined

The Instrum enta l Constant , T o Find33. Reducing the Notes

D. FIELD-WORK .

34 .

35. HUb S OP PlugS o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

36. Reference-po ints37. A l ignm ent38 . Form ofT ransi t Notes39. Stadia Methods for Prel im inary

E . OBST ACLES ix TANGENT .

41. To Pass an Obstacle by Means of Para l lel42. T o Pass an Obstac le by Angular Deflec t ions43. T o Measure across a River

ART ICLE 4 . T HE LEVEL PARTY.

44. Make-up and Instrum ents45. Work of the Leveler46. Work of the Rodm an

ADJUSTMENTS OF THE LEVEL.

47. To Adjust the L ine of Com inat ion

48 . T o Adjust the Level-bubb le49 T o Adjus t theWyes .

B. THEORY OF LEVELING .

CONTENTS.

SECT ION PAGE

56. T he Level Notes 28

57 . Prec autions when Using Level 29

58 . 29

ART ICLE 5. TurnTOPOGRAPHIC PARTY.

59 . Instrum ents Used; Area to be Mapped60 . Methods ofRecording Data61 . T opographers‘ F ield-sheets62. Use of the Slope-level .63 . C ross-sec tion Rods64 . The T ransit and Stadia in Topographica l Survey ing .

ART ICLE 6. PRELIMINARY EST IMAT ES.

66. Map of Prel im inary L ines . 32

67 . T he Profi le . 33

68 . Prel im inary Est im ates ofQuant it ies 33

69 . Report of the Locating Engineer 34

CHAPTER III.

LOCAT ION .

ART ICLE 7. Paom crm o LOCATION.

70. Problem s Involved in the Paper Locat ion7 1 . H ints Regarding Methods of Projec ting the L ine72. T he Curve-protrac tor73. Work in the Field.

ART ICLE 8 . SIMPLE CURVES .

A. DEFINIT IONS AND FORMULAS .

74 . Definitions

75. T o Find the Radius R, the Degree ofCurve Being K nown76. T o F ind the Length of Curve77. The Func t ions ofa One-degree Curve .

79. To F ind D, R and 0 Being K nown80. To Find the Tangent Distance

_T , I andR Being K nown

8 1. T o F ind R, G iven 1 and T

82. G iven l and D, to Find the Long Chord83 . Ordinates from Chord84—86. T o F ind the Ex terna l E87 . T o F ind R, E and I G iven88 . T o F ind T , E and 1 G iven89 . To F ind the Deflec t ion Offset from Chord Produced90. T o Find the T angent Deflec t ion Offset91 . The Sub -tangent ia l Deflec t ion Ofi'

set . .

92. T o F ind the Tangent Offset z93. D ifference in Length of A re and Long Chord

CONTENTS.

B . LOCAT ING SIMPLE CURVES.

SECT ION PAGE

94 . T o Locate a Curve with the Cha in by Ofi sets from Chords Produced 55

95. T o Locate a Curve by Ofifsets from T angent 57

96. T o Locate a Curve by Offsets from a Long Chord 58

97 . T o Locate a Curve w ith T ransit and Cha in . 59

98 . T he Index -angle 60

99 . Subdeflec t ion-ang les 60

100 - 101 . T ransit Notes 61

C . OBSTACLES.

102 . T o Pass an Obstac le on a Curve103. T o Locate a Curve when the R C . is Inaccessib le104 . T o Pass to Tangent when the R T . is Inaccessib le105—107 . T o Pass a Curve through a G iven Po int .

108 . T o Locate a Tangent to a Curve fro m an Outside Po int109 . T o Run a Tangent to Two Curves of Contrary F lexure

D . CHANGE OF LOCAT ION .

110 . T o Locate a Curve Para l lel to a G iven Curve 73

111 . T o Change B C . in Order'

to Make R T . Fa l l in a Paral lel T angent . . 74

T o Change R and R C . t o m ake P . T . Fal l in Para l lel Tangent. onSa m e Radial L ine

113 . To F ind Change in R C . or R for a G iven Change in I .

114 . Required t he Change in R C . and R for a G iven Change in I , the1 15. T o Find New Radius for a Given Change in T116. T o Find New R to Connect P C . with a Para l lel T angent

ART ICLE 9. COMPOUND CURVES .

A . LOCAT ION PROBLEMS.

117. G iven Both Tangents and One Radius , t o Find the Other Radius 80

1 18 . G iven One Radius. the Long Chord and the Ang les i t Makes withT angents , t o Find the Other Radius and Centra l Angles

119. G iven the Rad i i and Centra l Ang les . t o F ind the T angents , the LongChord. and the Angles i t Makes w ith T angents

120. Given the Long Chord and Ang les Made w ith T angents , t o F indBoth Radi i when Com m on Tangent is Paral lel t o Long Chord 83

B. OBSTACLES.

121. To Loc ate Second Branch whenR C. is Inaccessib leC . CHANGE OF LOCAT ION .

122. TO Com pound a Sim p le Curve so P . T . shal l Fa l l in a Paral lel Tan123 . To Find Change in Necessary t o Make P . T . Fa l l in a Par

a l le l T angent .

124 . T o Change P . C .C . and Sec ond Radius so P . T . sha l l Fa l l in a Par

a l lel Tangent , on Sam e Radia l L ine

CON T ENTS.

sm c'ro m en;

25 To Change F .C .C . and Second Radius to Cause P . T . t o Fa l l at a

New Po int in Sam e Tangent 9 1

126. To Subst itute a Three-c entered Com pound Curve for a S im ple One. 94

127. TO Substitute a Curve for a Tangent Uniting Two Curves 95

ART ICLE 10. TRACK PROBLEMS .

28 Reversed Curves, Where to Use129 . T o Connec t a Located Curvewi th an Intersec ting Tangent .130 . T o Locate a Y131. A Reversed Curve between Para l lel Tangents13° A Crossover b etween Paral lel T rac ks when a F ixed Length ofTan

gent is Inserted .

133. A Reversed Curve with Unequa l Ang les134. A Reversed Curve between Fixed Po ints135. T o Connec t Two D ivergent T angents by a Reversed Curve136. T o Change P .R.C . so R T . shal l Fa l l in a Para l lel T angent137. To Find theRadius of a Curved T rack .

CHAPTER IV .

TRANSIT ION -CURVES.

ARTICLE 11. THEORY OF THE TRANSIT ION-CURVE .

138 . Eleyat ion ofOuter Rai l on Curves .

139 . Requirem ents of the T rue T rans ition-curve140 . Notat ion Em ployed .

141 . Equation of T ransit ion-curve142 . T ransit ion-curve Angle, I143. Coo

’ rdinates of Po ints144 . Deflec t ion-ang les145. Exp lanation of T ransit ion-curve Tab les .

146. T o Unite the Branches of a Com pound Curve by a T rans ition147. Length of T ransit ion-curve to be Taken

ART ICLE 12. FIELD -WORK .

A . FIELD FORMULAS.

148 . When to Use the Sim p lified Form ulas149 . Sim p lified Form ulas for T ransition- curves150 .

151 . Com pound CurvesB. SET T ING OUT T RANSIT ION ° CURVES .

153 . Locat ion by Offsets .

154 . Location by Deflec t ion-angles155. Form of T Iansit Notes for T rans i tion-curves. .

CON TENTS.

ART ICLE 13 . T RANSIT ION CURVE PROBLEMS .

SECT ION

156. T angent D istances and Externa l for Equa l Offsets .

157 . T angent D istances , Offsets Unequa l .158 . T rans it ion-curves Inserted without Changing the Vertex of Cir

cula t Curve159. T ransition-curves Insertedwith Least Deviation f1 om Old T rack" . 133160 . T r -ansit ion curves Inserted at Ends of Long C ircular Curve, Centra l Port ion Undisturbed161 . T ransition-curve Inserted at P . by Changing Radius of Sec ond

PAGE

162. T o Insert Transit ion-curves a t the Ends of Two C ircular CurvesUnited by a. Com m on T angent

163 . T o Unite a T angent and C ircular Curve when the Ofi set Cannot beD irec t ly Measured

164. Inserting T ransit ion-curves in Old T rack165. Rem arks on T abular Interpo lations

CHAPTER V .

FROGS AND SWIT CHE S.

ART ICLE 14 . T URNOUT S .

A. TURNOUT S FROM STRAIGHT LINES

167 . T o Find the Lead, l , and Radius, R, in Term s of the Frog Num ber.

168 . G iven R and g , to F ind N , l , and Frog-ang le, F

169 . To Find Theoret ic Length of Switch-ra i l170. To F ind Lead and Num ber of Crotch - frog for a Doub le Turnout t o

Oppo si te S ides ofMa in T rack171. T o F ind Turnout Radius and Lead of Crotch-frog in Term s of

O O O O O O O O O O O O O O O O O O O O

172. T o F ind Radius of Curve from Po int of M iddle Frog to Po int ofMa in Frog, G iven N , , N . and N

173. Doub le Turnout t o Sam e S ide ofMain T rac k174 . T o Find Radius of Curve b etween Frog-po ints for a Doub le Turn

out t o Sam e Side of Ma in T rac k175. T o Unite Ma in T rac k with Siding . Reversing Po int Opposite Frog 152

176. T o Lay Out a Ladder-trackB . TURNOUT S FROM CURVES .

177 . To F ind Lead and Radius for Turnout t o Concave Side of MainL ine

178 . T o F ind Lead and Radius. T urnout to Convex S ide179 . T o F ind Theoretic Length of Switch-ra i l .180 . T o Unite Ma in T rack W i th a Concentr ic Siding

CONTEN TS.

0 . THE STUB LEAD.

SECT ION

18 1 . Definit ions

182. G ivenN , t , and g, to Find the Stub Lead183 . T urnout T ab le and Explanation184. T o Stake Out a Turnout185. Carving Rails .

ART ICLE 15. Caossovm as.

186. Crossover between Para l lel Stra ight T racks. 8. Tangent betweenFrog-po ints

187 . A Crossover in t he Form of a Reversed Curve188 . A Crossover with F ixed Length of Interm ediate Tangent189. A Crossover between Curved Ma in T racks

ART ICLE 16. CROSSING-FROGS AND CROSSING-SLIPS.

A . CROSSING -FROGS.

191. Length of Rai l Intercepted between Two Intersec ting Straight192. Ang les ofa Set ofCrossing frogs , One T rack Curved193. Ang les ofa Set ofCrossing -frogs. Both T racks Curved.

B . caose e -sm p s .

195. Length and Radn of Sl ip -ra i ls, Both T racks Stra ight196. Length and Radi i of Sl ip-ra i ls, One T rack Curved197. Length and Radi i of Sl ip -ra i ls , Both T racks Curved]

CHAPTER VI.

CONSTRUCT ION .

ARTICLE 17. DEFINIT IONS ; GENERAL CONSIDERAT IONS VERTICAL

CURVES ; ELEVAT ION OF OUTERRAIL .

199. The D ivisionEng ineer200 . The Res ident Eng ineer201 -204 . Definit ions

205. To a“ind the Grade-point , Long itudina l Slope Uniform "

206. V ertica l Curves207 . E levat ion ofOuter Ra i l on Curves .

208 . Easing Grade on Curves .

ART ICLE 18 . EARTHWORK .

A . SETT ING SLOPE-STARES.

209 . The D istance Out for Level Sec t ions210. T o F ind Posit ion ofSlope-stakes for Surface Inc l ined211 . Cross ~ sec tion Notes212. Irregular Sec tions213. Stak ing Out Openings

CONTEN Ts

SECT ION

214 . Manner ofMark ing Stakes .

215. Shrinkage— Growth216. Borrow-pi ts, Dra inage of,

B. AREAS OF SECT IONS.

218 . Areaof~

T hree- level Sec t ion .

219. Area ofFive- level Sec t ion .

220. Genera l Form ula for Areas221. Exp lanation of T ab le of Areas of Leve l Sec tions and the Three

C . VOLUME OF EART HWORK .

222. Where Cross-sec tions should be Taken223. Vo lum e by Averag ing End Areas .

224 . T he Prism o ida l Form ula226. The Prism o ida l Correc t ion227 . Com putation of Vo lum es when Passing from Cut t o F i l l . .

228 . Use of Tab les ofV o lum es in Mak ing Prel i m inary Est im ates229 . Side D itches . .

230. Earthwork on Curves231 . Overhaul

ART ICLE 19. GRADE AND BALLAST STAK ES , CULVERTS , BRIDGES,AND T UNNELS .

232 Grade and Center Stakes233. Ba l last-s t-akes .

235. Openings of, for Culverts. T restles, etc236. Bridge P iers and Abutm ents

ART ICLE 20. MONTHLY AND FINAL EST IMATES.

238 . Monthly Esti m ates239. Measurem ents for Earthwork240 . 0 1assificat ion of Earthwork2 11. The Progress 207

242. Masonry Esti m ates .

243 . Bridge Est im ates .

244. T rac k Materia l245. B lank Esti m ate Sheets

TABLES.

Tab le Showing Length ofT ransition-curve to beT akenTab le ofV a lues of g Vgt for Stub LeadT urnout Tab leTab le of Co rrec tions for Vert ica l Curves

CONT ENTS.

T ab ie of E levation ofOuter Ra i l on CurvesT ab le of Prism oi’da l Correc t ions for Leve l Sec t ions

I . Radi i o f CurvesII. M inutes in Dec i m a ls of a DegreeIII . T angentia l OffsetsIV .

V .

Long Chords and Ac tua lMid-ordina tes to Long Chords

VI. Logarith m s of Num bers

VII . Logarithm ic S ines and CosinesVIII .

IX .

X .

XI .

XII .

XIII .

XIV .

XV

XVI .

XVII .

XV III .

XIX .

xx .

XXI .

XXII .

XXIII.

XXIV .

Logar i thm ic T angents and CotangentsFunc tions of a One-degree CurveNatura l Sines and CosinesNatura l Secants and CosecantsNatura l Tangents and Cotangents '

.

Natura l Versines and ExsecantsCo6rdinates for T ransi tion-curvesDeflec t ion-angles for T ransition-curves. .

T ransition-eurve Tab leA reas of Level Sec tionsCorrec t ions for T hree-Ievel GroundCub ic Yards per 100 ft . in T erm s of Center HeightCub ic Yards per 100 ft . in T erm s Sec tiona l AreaRise per M i le of V ar ious GradesS lopes for T opog 1 ap hyMa te1 ia1 Requi1 ed for One M i le of T 1a . .c kMutua l Conversion ofFeet and Inches into Meters and Cent i »m eters ” 388

XXV . Mutua l Conversion ofMi les and K i lom eters 389

XXV I . Length of 1’ A 1 0 ofLat itude and Longitude 389

XXVII. T rigonom etric and M iscel laneous Form ulas 390

XXV III . Square Roots and Cube Roots of Num b ers from . 1 t o 28 395

XXIX . Sq11ares. Cubes , Square Roots , and Cub e Roots , o f Num bersfrom l to 1000

2 A F I ELD -MANUAL FOR RAILROAD EN GIN EERS.

grasp and weigh all the com plex features of the question. A

passing reference only can be made to i t in this l i ttle vo lu m e,

which is intended to furnish hints and aids to the better executionof the second part. For the benefi t of the beginner who has todo w i th the location and constru c t ion a few definit ions and hintsrelating to reconnoissance wi ll b e gi ven before go ing on to the

special problems arising in the wo rk of the rai l road engineer.

2 . T he Reconno i ssanc e i s a rapid, general survey of the area

through which the proposed rail road m ust pass,m ade only with

such instrum ents as can be easi ly carried, and—which should ena

ble the engineer to rest ric t the m ore accurate instru m ental workthat fo llows to one or two general l ines . T he ti m e required forthis part of the work wil l in general be only a smal l fraction of

the ti m e consum ed in location, involving the service of very fewm en:yet there i s no par t of the work m ore rapidly and im

p roperly ( lone— no t always because the engineer in‘

charge underest im ates i ts i m portance. but because he i s not usual ly al lowedsufficient ti m e in which to study thoroughly the area under consideration.

Properly the reconno i ssance inc ludes the determ ination of the

term inal po ints of the road,but the locat ing engineer is usually

rel ieved from the necessity of selec ting these points , and thequestion reduces t o that of finding the best available line which

adm its of being built, m aintained,and op eratedfat the least cost

between two given points.

T he reconno issance m ust b e m ade over an area— not a l ine or

l ines . Even what seem s the m ost unprom i s ing port ion shouldbe careful ly studied

,for the engineer can never be sat isfied he

has selec ted the best route unt i l he has conv inced h i m self by careful study that a ll others are inferio r . T oo m uch haste on reconnoissance m eans e i ther a poor l ine or a m uch greater expenditureo f t i m e and m oney on the prel i m inary . N o am ount of notes ortopography can take the place of an int i m ate personal knowledgeof the problem s to b e encountered,

and hence the reconno i ssanceand prelim inary survey should be m ade by the engineer who i st o locate the road.

3 . T he Inst rum ents needed wi l l rarely be m ore than a pocketcom pass , hand- level

,anero id barom eter

,field-

glasses , and som e

ti m es a pedom eter or an odom eter.(ft ) T he P o ck et - c o m pas s i s used to obtain the m agnet ic bearings of l ines and the angles they m ake w i th each other .

RECONN OISSANCE .

(b) T he H and-lev el enables one to obtain differences of ele

vation between po ints not far apart .(0) T he Aneroid Barometer gives approxim ate heights of themercury colum n,

and serves to rough ly determ ine the difierence

of elevat ion of g iven po ints . In addi tion to the scale givingreadings in inches , it should have al so a scale graduated to g i vereadings in feet . If two anero ids

,wh ich have been previously

com pared,are read sim ul taneously

,one at each of the po ints

whose difference of elevat ion i s desi red,or if the same anero id i s

read at each success ively at a short interval of t im e,during wh ich

the atm ospher ic pressure has not sensibly a l tered, we m ay find

the difference of elevat ion by the form ula !d 60000 (log H log 71) (1 M ),900

in Which d i s the difference of al t itude in feet , H and h the

barom etric readings in inches— the logarithms being of the com

m on or Briggs k ind, T and t the tem peratures of the two stat ionsin Fahrenhei t degrees .If the sum of the tem peratures, T t, i s taken as formula

(1 ) reduces tod 63000 ( log H log h).

EXAMPLE .—The reading of the barom eter at the foot of a

mountain i s inches , and at the top inches . Requiredthe height of the m ountain.

By d 63000 ( log log 2071 feet .T he effec t of tem perature on the m etal of the instrum ent

should be considered in the barom etric form ula when very pre~

c ise work is to be done but th i s correction, being sm al l , m ay be

neglec ted in the rough work of reconno i ssance, particularly sincethe m akers of the instrum ent construct i t in such a way as to

com pensate,as c losely as possible,

for such changes of tem

perature.

(d) T he P edomet er i s an inst rum ent which au tom at icallycounts the num ber of steps m ade by a person when the instru

m ent i s attached to h i s bel t ; then, know ing the average lengthof step

,the distance passed over can be readi ly com puted.

T he Odom eter registers the nu~

nber of revolutions of a wheelt o which it i s attached,

and the num ber of revolut ions m ultipl iedby the c i rcum ference of the wheel g i ves the space passed over .

See P ly m pton’

s Anero id Barom eter, {1 38. for form ula

4 A FIELD-MANUAL FOR RA ILROAD EN GIN EERS.

4 . T he M ap .— Before beginning the reconnoi ssance the engi

neer should prov ide him self w i th the best ava i lable m ap of the

region to be t raversed ; if th is i s a topographic one,he can at

once determ ine from it the l ines that are l ikely to justify an

exam ination '

and even if i t is only a sketch -m ap ,he can get

material assistance by observ ing the courses of the stream s and

rem em bering that thei r posi t ions indicate the relat ive elevat ionsof the port ion of the region through which they flow . T hus thelarge stream s fo l low the l ines of least elevat ion, and the m annerin wh ich the lateral stream s uni te wi th the princ ipal one indicates the general t rend of the terrain. T wo st ream s flowingnearly para l lel approach or recede from each other according as

the intervening land di m inishes or increases in al t i tude. Two

stream s flowing away from each other on opposite s ides of a

div ide,and hav ing thei r source therein,

approach each o therc losest at the po int of least elevat ion,

and indicate the posit ion of

a pass or the lowest point of the di v iding ridge. T he study of

any good contour m ap covering sufficient area will i l lustrate thelaws governing the courses fo l lowed by stream s .The elevat ions of a few correctly m apped po ints , when obta in

able,from the m ap or otherw i se

,serve as a guide in tentat ively

fixing on the m ax i m um gradient to be em ployed and the am ountof developm ent needed.

A sk i l lful eng ineer w i l l thus be enabled to

.

project h is l ineswi th suffi c ient accuracy to enable him to select on the ground them ost feas ib le route or routes for h is prel im inaries in the leastpossible t i m e. He should guard aga inst the conv ict ion

,however

,

that i t i s unnecessary for him t o look el sewhere than a long the

projec ted routes for the inacc uracies of the m ap ,local pecul iar i

t ies , the nature of the excavation and em bank m ent , the num berand cost of bridges and o ther m echanica l structures ,— all thesem ay consp i re t o m ake the m ost prom is ing m ap

- l ine infer ior tosom e other whose advantages have to be sought for on the

ground.

5. Hav ing tentat ively dec ided on the l im it ing grades and cut

vature t o be em ployed,the engineer goes careful ly over the

ground , exam ining the enti re area that seem s l ikely t o afiord

passage,in order to determ ine whether a sui table l ine m ay be

secured for the grades and curves previously assum ed. W i th hispocket-com pass he takes the bear ings of l ines , and by m eans of

the hand-level and anero id determ ines differences of elevat ion.

RECONNOISSAN CE.

Di stances are esti m ated by the eye,paced,

and the count takenfrom the pedom eter

,or

,if the country adm its of the use of avehic le

,taken from the odom eter readings . If a wel l -ga i ted

saddle-horse i s used, very good resul ts m ay be gotten by t iminghim ,

or by the use of the pedo m eter if h is str ide i s uniform .

But in all cases m uch dependence must be placed on the ab i l i tyto est im ate w i th the eye difi erences of elevat ion and distances .T he abi l i ty to do th is wi th even reasonable accuracy com es onlyfrom long pract ice and careful observat ion, even to the mostgifted in th is respect . New and unexpected condi t ions som et im es deceive even the m ost pract iced eye,

but under ordinarycondit ions alm ost any one can tra in hi s eye to estim ate hor izonta ldistances fai rly wel l . V ertical heights are m ore deceptive , pos

sib ly because we have less pract ice in th i s l ine,and the m ind

seem s natnrally to exaggerate the vert ical as com pared wi th thehorizontal ; prac t ice, however, wi l l enable us to m ake al lowancefor the natura l tendency to overest imate heights and slopes .The ground should be gone over in both di rec tions , for the ap

pearance m ay be qui te different when approached from differentquarters . Rul ing points , such as a pass in the m ountains , thecrossing of a large stream ,

or a town or c i ty through wh ich theroad m ust be bui lt , serve to reduce the problem to a number ofspec ial ones

,each hav ing i ts own sol ut ion.

In a m ounta inous region offering a l im ited number of possibleroutes

,but heavy construction work , i t m ay often happen that

the locat ion of a l ine i s a much less difficult operation than in an

open,rol l ing country offering a score of possible l ines

,between

which the engineer making the reconno i ssance must dec ide;selecting only those that in his j udgment seem to just ify an

accurate instrum ental survey.

T he engineer m ust keep constantly in mind all the factors ofthe general problem of econom ic locationand m aintenance,

and

successful operat ion of trains . One l ine m ay cost m ore for construc t ion and m aintenance than another

,but less for operation ,

or m ay inv ite less t raffi c . In all cases , however , the quest ionof grades , curvature,

length of l ine, earthwork , and m echanicals truc tures are the contro l l ing elem ents to be cons idered.

Hav ing dec ided upon the route or routes over which to run

prel i m inaries , these are m arked on the m ap ,and the engineer ing

party organi zed and put in the field,with all the necessary

instrum ents.

CHAPTER II.

PRELIMINARY SURVEYS .

ART ICLE 2. OBJECT S; T HE FIELD CORPS ;DUT IES OF THE CH IEF .

6. T he Objec ts of the prel im inary surveys are to secure all the

data necessary to determ ine which one of the routes selected on

reconno i ssance i s the m ost feasible,all things considered,

and the

approxi m ate cost of construct ion. In rough country it wil l beeconom ical to m ake two

,or even th ree

,surveys over the route se

lected for location before beg inning t o place the l ine in the pos i t ioni t i s finally to occupy. T he first of these is often omitted

,and is

cal led an explorat ion- l ine i t wi l l frequently save the m ak ingof the m ore expensive “ prel iminary over one or m ore of the

routes .

’7. T he E x plora t ion-line m ay be made w i th ei ther transi t or

com pass , and consists of a rap idly run l ine,m ade for the purpose

of determ ining the m axi m um curvature and gradients with whichto project the prel i m inary . It w i l l not be necessary t o m ake a

detai led study of the region at th is t i m e , the di stances and elevat ions

,wi th such sketch topography as m ay be eas i ly taken

,being

all that i s needed. T he m agnet i c bearing of l ines i s taken bythe com passm an

,and the chainm en al ign each other with the flag

set by the fiagm an. As the progress of the level party w i l l beslower than that of the com pass party

,i t w i l l be econom ical t o add

an extra_rodm an

,and som et im es a recorder . T he com passm an

m ay sketch in the features adjacent to the l ine wh i le wa i t ing forh i s chainm en

,who m ay be ei ther in front of or beh ind the com

pass .T he stadia m ethod of surveying— to be spoken of later— wouldseem to offer except ional advantages for th i s work— only three or

four m en being needed in addi t ion to the ch ief. W i th it , by sett ing the transi t over al ternate stat ions , very rapid progress m ay be

m ade, and obstac les avo ided w i th as m uch or greater ease thanwith the com pass .T he exploration- l ine wi l l m ore than pay for i tself in showing

PRELIM INARY SURVEYS.

what routes i t wi l l be unnecessary to m ake prel im inaries over,

and in indicating the m ost feas ible one. It should be run over allthe routes selec ted on reconno issance.

8 . T he P rel im inary Surv ey fol lows the exploration,or

,when

this i s om i tted, com es next after the reconno issance . It m ay ,w i th

advantage,be m ade in two parts— first and second prel i m inary.

It i s m ade wi th such instrum ental accuracy as the nature of the

case m ay dem and,suffi cient data being obta ined to determ ine the

best l ine on wh i ch to locate and the approx im ate cost of construet ion. T he rap idi ty wi th wh ich th is work can be done wi l l dependon the care wi th wh ich the reconno i ssance was m ade. T he pre

l im inary l ine should approxim ate,as c losely as the eye can deter

m ine,to the posi tion the located l ine should occupy

,and form s the

base on wh ich the topographic work rests . In reasonably easycountry , where explorat ion- l ines have been run

,one prel im inary

should suffice for each route,but indifficul t regions i t w i l l be best

t o run a second prel i m inary . If portions of the route are easy , followed by difficult parts , i t w i l l often be suffi cient to back upand re-run the difficult portion unt i l a reasonably sat i sfactory l inehas been obta ined.

9 . T he F ield C orp s consists of a chief of party,t ransitm an

,

leveler , rodm an ,two cha inm en

,rear rodm an or

“ back -flag,

stakem an,and two or m ore axem en. If a topographic party is

added,as i t should be in any but the easiest country, there wi l l be

al so a topographer wi th two or m ore ass i stants . A cook and

team ster wi l l be needed w i th the cam p outfit .

T he corps i s usual ly di vided into the fo l lowing part ies(a) T 11E T RAN SIT PARTY.

(D) T HE LEVEL PARTY.

(0 ) T HE TOPOGRAPH IC PARTY.

1 0 . T he C hief of P ar ty receives h i s orders from the chief engineer, or such other officer as m ay be in charge, di rects the m o

t ions of the surveying corps , and i s responsible for thei r conduc tand progress . He prov ides accom m odat ions and suppl ies

,pays all

expenses , taking receipts or vouchers for all outlays - in dupl icate when requi red. In the less th ickly populated sec tions hem ust prov ide tents , wagons , “

cook , and all necessary cam ping outfit

and suppl ies . He must di rec t the field operations in person,keep

ing in advance of the transi t , establish turning-po ints or hubs,

and direct the t rans it m an in the proper course. He should keep

8 A F I ELD -MANUAL FOR RAILROAD EN GINEERS.

a record— or di rect the trans i tm an and topographer to do so— of

the character of earthwork likely t o be encountered,the placeswhere dra ins

,culvert s , br idges , cat t le-

guards , etc . ,are needed;

the nature of m aterial for em bankm ent,p i l ing,

etc . ,adjacent t o

the line the probable am ount of c learing and grubb ing,and all

other features l ikely to affect the cost of construct ion. He shouldsee that the nam es of propert y owners and res idents along thel ine and the posi t ions and bearings of property lines

,

' whenposs ible

,are noted.

He should have authority t o dis charge assi stants— except transi tm an leveler , and topographer— whose serv ices are unsat i sfactory ,

and in m any cases it wi l l be best for him t o have ent ire contro l,

engaging or discharging any m em ber of the corps as c i rcumstancesm ay require.

ART ICLE 3. THE TRAN SIT PARTY.~

A. Duties of theMem bers.

1 1 . The T rans i t P arty should consi st of a transitman, headchainm an , rear chainm an , rear fiagm an

,stak em an

, and as m anyaxem en as m ay be requ i red— rarely less than two even for opencountry .

12 . T he T rans i tman cares for h i s inst rument , keep ing i t in ad

just m ent ; di rec ts the cha inm en into l ine; notes the angle betweensuccessive tangents as read on p lates ; notes also the bear ings oftangents , of highways , stream s , and property l ines (on locat ion) ,w i th the plus at which the l ine c rosses them . If there i s notopograph ic party he m ust m ake sketches , on the right -hand pageof note book , of the surface features adjacent to the l ine; thered l ine down the m iddle of page represents the trans i t l ine,whether st raight , broken,

or curved,to wh i ch the sketches are

adjusted. He must see that the axem en keep in line, in orderthat no unnecessary chopp ing m ay be done. Large trees needrarely be fel led on prel im inary, even when a given general coursehas t o be fol lowed

, for sm al l angles m ay be turned t o avo id them ,

the deflect ions t o r ight being m ade to approx im ately balance thoseto left .XVhen the chief of part y is absent the trans itm an i s ranking

m an, and wi l l take tem porary charge.

1 3 . T he H ead C hainm an carries a range-pole or“ flag ,

and

drags the chain, which he m ust see i s straight and hor i zontal

1 0 A FI ELD -MANUAL FOR RAI LROA D EN GIN EERS.

scope,a vertical c i rc le, a level on telescope, stadia w ires ,

and a

gradienter ; the so lar attach m ent w i ll rarely be needed.

2 0 . T o A djus t the P la te L ev els .

—T he ax i s of the instrum enti s set at right angles t o the plates by the m anufac turer

,so thatwhen the ax i s i s m ade vert ical the plates w il l be ho rizontal .

In m aking adj ustm ents rem em ber that a com p lete Teversal

always doubles any existing error .

P lace the bubble- tube paral lel to a diagonal pai r of level ingscrews , and bring the bubb le to the centreb fsits run. Revo lvethe instrum ent 180°

on the vert i cal ax i s,and the level - tube wi l l

be paral lel to the sam e pa i r of level ing-screws as before,but

reversed. If the bubble has m oved from i ts central pos i t ionbr ing i t haZf-way back by m eans of the capstan-headed screws at

the ends of the tube. Relevel and repeat unt i l the bubble rem a insat the centre after reversal . Do the sam e for the . o ther bub b le.

Both bubbles should rem ain at the cent res of thei r tubes during a

com plete reversal .2 1 . P arallax i s an apparent m ovem ent of the cross -w i res withrespec t t o the object sighted when the eye i s m oved from s ide t os ide of

o

the eyep iece,and shows that the i m age does not fal l in the

plane of the c ross-w i res . In prec i se m easurem ents i t should berem oved before m aking an observat ion wi th the telescope. T o dothi s , first br ing the c ross-wires clearly into v iew . when the objectglass i s turned towards the sky, then,

when s ight ing an object ,note if there i s any relative m ovem ent of cross -w i res and i m agewhen the eye i s m oved from side to s ide at the eyep iece if therei s , refocus the object-glass unt i l th is m ovem ent disappears .

2 2 . T o A djus t the L ine of C ol l i m at ion i s to m ake the l inejo ining the intersect ion of cross-w i res and opt i cal center of objec

t ive describe a plane perpendicular to the horizontal axis of instrum ent .FIRST METHOD .

— Level the instrum ent and c lam p the m ovem ents on vert ical axis . Sight som e wel l -defined object di stantabout the length of an average sight , and in the sam e hor i zontalplane as telescope; Reverse the telescope on i ts horizontal ax i s

,

and fix a po int about as far from instrum ent as first po int,and in

the sam e hor i zontal plane. Revolve the instrum ent on i ts vert i calax is and s ight the first po int ; then reverse the telescope and noteif l ine of s ight cuts t he second po int . If not

,loosen the capstan

headed screws holding c ross -w i re r ing and m ove the vertical wi re

PRELIM INARY SURVEYS.

over onefourth the apparent error— s ince there were two reversal s— rem em bering that the im age of the c ross -wires is inverted,

wh i lethat of the objec t appears in i ts true posi tion. T est by repet it ion.

SECOND MET HOD .

— If the l i m b graduat ions can be rel ied on

they m ay be used in adjust ing the vert ical w i re. Wi th the instrum ent level sigh t a wel l-defined po int , then revolve 180° by vern ierplate, reading both verniers ; reverse telescope,

and note if l ine of

sight cuts the po int . Ifnot , correc t one ha éf the apparent error bymov ing diaphragm ; then test by repet i t ion.

T he m anufacturers adj 11st the object -glass sl ide so that the ob

ject ive t ravel s in the telescope ax is,and this adjustm ent i s not

l iable to ser ious derangem ent . It is wel l,however

,to som eti m estest by adjust ing the l ine of co l l i m at ion for both near and di stant

objects . Ifno t correc t for both , m ove the r ing wh i ch gu ides therear end of object-glass sl ide unt i l the adjustm ent is correct forboth pos i tions .Next m ake the vert ical w i re vert ical by not ing if i t co inc idesth roughout i ts length with a plum b- l ine

,or by observ ing if it de

viates from a po int, onWh ich the intersect ion has been fixed,when

the telescope i s elevated or depressed. Any erro r i s corrected by

turning the r ing after sl ightly loosening the screws holding’

it .

T he horizontal w i re should also be adjus ted so that the intersect ion of the c ross -w i res w i l l be in the ax i s of the telescope if

thetrans i t is t o be used as a level ing instrum ent th is adjustm entis essential .Drive a stake c lose to the instrum ent , and w i th the telescope

c lam ped as nearly hor i zontal as can be conveniently done read a

rod held on top of the stake about 300 feet distant,and in l ine

with first stake and instrum ent,drive a second stake and read the

rod on it . Revo lve 180°

on vert ica l ax i s,reverse the telescope and

br ing the horizontal w i re to the form er reading when the rod is

held on first stake if the reading on the second stake i s not thesam e as before

,correc t one ha lf the apparent error by m ov ing the

c ross-w i re r ing. Repeat as a test . The vert ical w i re should aga inbe tested lest the m ovem ent of the ring m ay have caused i t tochange.

2 3 . T o Adjus t the Standards i s t o m ake the plane desc ribedby the l ine of col l i m at ion vert ical . Set up the trans i t about as farin front of som e high bui lding ,

or o ther tal l objec t , as the highestpo int that can be s ighted i s above the base. Level the inst rum entand fix the intersec tion of the c ross -wi res on the h ighest po int that

12 A FIELD -MANUAL FOR RAILROAD ENGIN EERS.

can be easi ly sigh ted. Depress the telescope and fix a point nearthe base of the bui lding at about the height of the telescope. Um

c lam p and revo lve on the vert ical ax i s unt i l the telescope reversedcuts the lower po int . C lam p the plates and rai se the telescopeunti l the cross-w i res are at the height of the upper po int . If theycut i t the standards are in adjustm ent . If they do not

,bring

them halfway back by m eans of the adjustable screws at the topof one of the standards . Repeat as a test .2 4 . T o Adjust the L ev el on T elesc ope i s to make the bubblestand at the center of i ts run when the l ine of sigh t i s horizontal .Bring the telescope as nearly hor i zontal as m ay be convenient , andt ake readings on the tops of two pegs in the sam e vertical planewi th

,and equidi stant from

,the instrum ent— say 300 feet . T he

difference of readings w il l equal the difference of elevation of the

pegs ; th is difference m ay be obtained w i th the wye-level if preferred.

Move the instrum ent t o a point beyond one of the pegs and inl ine with both . Set up as c lose to nearer peg as convenient , butnot so c lose that the rod cannot be easi ly read. Bring the telescope as nearly horizontal as possible, and read on both pegs . If

the difference of readings equal s thei r difference of elevat ion thel ine of s ight i s hor i zontal , and the bubble m ay b e brought to thecenter by m eans of the adjustable screws attaching the leveI- tubet o the telescope. If th i s i s not the case

,we m ust set the telescope

so the reading on second peg equal s the reading on first peg plusthe difference of elevat ion ; then read again on first peg and pro

c eed as before unt i l the condi tion i s sat isfied. Or we m ay proceedas fo l lowsIn Fig. 1 let the transi t be at 0

,and A andB be the pegs . AO

i s a horizontal through A ,so that GB i s the difference ofelevat ion

FIG . 1 .

ofA and B . Suppose l ine of s ight to cut the rods at E and D,

we m ust find DG so that the target m ay be set at the proper read

PRELIM IN ARY SURVEYS. 13

ing to m ake the l ine of s ight horizontal . Let OF : a, FG

EA DE CB 16. Draw DE paral lel to CA and 0 G;then EH : 7'

+ k

From sim i lar triangles

a + bDG z EH b = (fr+ k

Set the target at a reading GB G1) s ight to G,and t i .

l ine of sight w i ll be horizontal . Bring the bubble to the center o fi t s run while the telescope is in thi s posit ion

,and the adjust .

m ent is com plete.

If des ired,a correct ion for the curvature of the earth and re

fract ion m ay b e introduced, but for shor t s ights th i s i s a uselessrefinem ent .

2 5. T he V ernier i s an auxi l iary scale for m easuring sm al lerdiv i sions than those graduated on the l im b . T here are two

c lasses , the di rec t -reading and the retrograde,according as the

frac tional parts of l im b readings are taken on that side of thezero of vernier scale towards wh ich the vernier has moved withrespec t to the l im b

,or the reverse. On the direct vernier a cer

tain num ber of div isions on the vernier equal s the same num berofdiv i s ions on the l i m b

,less one on the retrograde there i s one

m ore div i s ion on l im b than on vernier when the sam e space i scovered by both .

26. T he L east C ount of a vernier i s the sm al lest subdiv is ion of

l im b graduat ion that can be read by it,and equal s the difi erence

of one space on l im b and one on vernier .Let I value of one space on l im b

o value of one space on verniern 2 :num ber of spaces on vernier.

T hen for the di rect vernierne = (n — 1)l ;

from which we get the least count ,l — e

For the retrograde vernierno r:(n 1 )l,

14 A F IELD - MAN UAL FOR RAILROAD ENGIN EERS.

from wh ich the least count i s'v — l

the sam e resul t as found for the di rec t vernier .So

,t o find the least count D ivide the ealue of one lim b space by

the num ber of sp aces on the eernz’

er .

For exam ple If the l i m b of a transi t i s div ided to half-degreesand the num ber of spaces on the vernier i s 30

,the least countwi l l be di vided by 30, or 510 of a degree— that is , 1 m inute.

2 7 . T o Read a V ernier,take the num ber of the last div i s ion on

l i m b back of the vernier zero,then look along the vernier unt i l a

l ine i s found t o co inc ide w i th a l ine on the l i m b ; add the num berof th i s vernier l ine, m ul t ipl ied by the least count , t o the scalereading,

and the resul t w i l l be the required reading .

0 . Accessories .

T he Gradienter .

2 8 . T he G radienter consists of a tangent - screw hav ing a

m icro m eter-head, attached to one of the standards of the transi tand capable of being c lam ped to the hor i zontal axi s of the telescope . It i s used— as i ts nam e indicates— in running grades , andi t accurately m easures a sm al l ver tical angle in term s of i t s tangent . T he screw i s so cut that one revolut ion m oves the telescope through an angle whose tangent at one hundred feet fromthe ins trum ent has a certa in value,

usual ly one foot . T he gradua ted head i s div ided into 100 par ts, so that one divi sion corresponds to ft . at 100 feet from instrum ent .T o run a g iven gradient , b r ing the telescope level and read the

m i c rom eter -head of screw ; then turn the sc rew as m any div i s ionsas there are hundredth s of a foot r ise or fa l l in 100 feet , and w i th

1arget set at the height of the horizontal ax i s , po ints on the

surface corresponding to the given grade can be found.

For exam ple T o run a per cent grade,m ove the m icrom

eter m i lled head 75graduat ions from the hor i zontal .“'

hen used as a T e lem eter,we m ay ei ther m easure the space

on the rod m oved over by the l ine of s ight for a given num ber ofrevo lutions of the screw

,or we m ay note the num ber of revolu

t ions requi red to m ove the l ine of sight over a certa in space on

m e

tau“

PRELIM IN ARY SURVEYS.

T he Stadia , or Telem eteo'.

J

2 9 . T he S tadia Is an instrum ent for determ ining the distanceof a po int fro m the observer by no t ing the space intercepted on a

rod by a given v i sual angle,as deter m ined by two aux i l iary w i res

paral lel t o ,and equidistant from ,

the ho r i zontal w i re of the trans i ttelescope.

When used wi th an o rdinary level ing-rod the wi resshould be adjustable ; if they are fixed (which for som e reasonsi s preferable) , the rod m ust be graduated t o correspond. In

addi t ion to the distance o fa po int from the instrum ent,the differ

ence of elevation i s determ ined by observ ing the angle m ade byl ine of s ight wi th the horizontal when the m iddle horizontal w i recuts a po int on the rod as high above the ground as i s the cent reof the telescope.

T he horizontal pos it ion of the po int i s deter m ined from i tsmagnet ic hear ing, or the az im uth of l ine of s ight w i th referenceto som e fixed l ine,

usual ly the north -south l ine .

30 . L ine of Sight H or izontal . — In Fig. 2 let a and b be thestadia w i res , AB the intercept on the rod. T he secondary axes

FIG . 2 .

(LA and bB pass through the opt ical center 0 . Let h ab,

r AB. d di stance of cross -wires from objec tive,D di stance

of rod from ob jec tive.

From sim i lar tr iangles ,From optics ,

1 1 1

( l D f

in whichf i s the focal length of object ive.

El im inat ing d from these two equat ions,

16 A F I ELD -MANUAL FOR RAILROAD EN GI N EERS.

Let 0 be the m ean di stance of object ive from center of instruim ent". Adding th is to 1) gives , for the di stance of the rod fromthe center of the instrum ent

,

m ay be made constant , when (2) becomesl = a + kr.

3 1 . L ine of Sight Inc lined.— When the line of s ight i s not

level i t i s diffi cult to hold the rod perpendicular thereto ; hencethe rod i s held vert ical , the angle of inc l inat ion m easured, and a

correc t ion appl ied. In Fig. 3

let r CD be the reading on rod held vert ical7"

2 FE ,the reading perpendicular to l ine of sigh t

H : AG,the horizontal di stance from A t o B

V : BG , the difference of elevat ion between A and B ;

n BAG,the angle of inc l inat ion of l ine of sigh t .

Assum e angles A PB and AER from wh ich they rarelydifier m ore than 15’ to T hen, since FBC z

. n,

7"

z; 7'

cos n.

3 4 . Station N um b ers should begin w ith zero for the ini t ialstake

,and are m arked on rear side of stake,

from the top downward,the num ber of the prel im inary , A , B , 0 ,

et c . ,being-

m arkedonithe forward s ide. T he m arking should be w i th k iel , or c rayonthat w i l l w i thstand the act ion of sun and rain. Stakes m ay be

set every hundred feet or only at even stations,as preferred.

35. H ub s ,or P lugs , are transit turning-po ints . and are short ,

fiat -topped stakes dr iven into the ground flush w i th the surface.

T he flag i s held on the top and careful ly al igned,the pos ition of.

the po int being m arked by a tack . A spec ial tack w i th concavehead offers a foothold for point of flag when used in backs ighting.

! About 10 inches to the left of and with .num bered sidf

fac ing the hub i s driven a guard-stake t o m ark i ts posi tion.

36. Referenc e-

p oints are two or more hubs , w i th guard-stakesin each of two l ines m aking a good intersec tion angle at the

po int whose posi t ion they serve to locate. T hey should be driver.

beyond reach of di sturbance, and are used in replac ing a dis

located hub .

T hese need rarely be used on prel im inary.

3 7 . A l ignment .— It i s not intended that the prel im inary and

locat ion l ines occupy exact ly the sam e position ; hence considerable lati tude i s al lowab le in the size and num ber of anglesturned

,care being taken,

however,that the m axi m um curvature

need not be exceeded on locat ion. Large trees and other obstruct ions m ay be avo ided by turning a sm al l angle until the obstac lehas been passed,

then m ak ing a deflect ion in the opposite sense.

Bearings of tangent s are taken w i th the needle,to serve as a

check on the angle read on the plates .In easy country not requi ring a topographic party large angles

should no t be turned,a success ion of sm al l ones w i th short inter

vening tangents being subst ituted in o rder to m ake the prelim inary profi le approxim ate m ore c losely to the locat ion p rofile.

T hese short tangents m ay convenient ly be the long chords of thecurve that i s to fo l low .

Such a tack is m anufac tured by the A . S . A loe Co . , St . Louis.

PRELIN INARY SURVEYS.

3 8 . T he T ransit N o tes m ay be kept in the form below ,wh ich

shows both pages of the note-book . T he notes run from the

bottom up , the right-hand page being reserved for sketches the

red l ine up the middle of the page represents the transi t l ine,whether straight or broken,to which the sketches must be

adjusted.

Sta . Angle. nggfid '11

1311

53221;

Rem arks and Sketches.

68G

EQ 20° 0'L . N . 1° 48’ W. N . 1° 45’ W.

6656463 0 6° 2’R. N . 18° 12’ E . N. 18° 15

’ E .

6261

3 9 . Stadia M ethods for P relim inary Surv ey s.— P rel im inary '

l ines are usual ly run w i th the t rans i t, but the com pass w i l lanswer nearly as wel l in m ost cases , besides adm it ting of m orerapid work . T he transi t and stadia m ethod migh t wel l be em

ployed,and would effec t considerable saving in the cost of pre

l im inary s urveys . For som e reason rai l road engineers have notregarded it w i th favor

,though i t i s extensively em ployed in

topographic surveying where the m ap i s t o be used for work thatis often m ore prec i se than needed for rai l road prel im inaries .Part icularly is this m ethod appl icable to explorat ion l ines .W i th the transit and stadia the ent i re surveying corps need not

exceed five or s ix m en,the instrum ent m an act ing as t rans i tm an

,

leveler , and topographer all in one. T he only objection wouldseem to be in the am ount of reduct ion the notes would need ;

however, w i th tables and sl ide-rule (see 3 3 ) th is work m ay be

very rapidly done. For vertical angles of less than one degreethe horizontal reduct ion can be neglected,

and wi th side readingsfor topography the angle m ay be 5or 10 degrees without necessitat ing the correct ion. Vertical heights are found by the sl iderule or

'

by charts .T hi s m ethod would real ly necessitate the m aking of a topo

graphic m ap along a narrow str ip of country, from which theprofile could readi ly be taken. W ith a ski lled observer and twoto four rodm en the progress m ay ;be m ore rapid

,and ful ly as

good for the purpose intended as the m ore expens i ve m ethodusual ly em ployed.

20 A F IELD -MAN L’

AL FOR RA ILROAD EN GIN EERS.

T he t ransi t need only be set at al ternate stations (wh i ch m ay be

any length w i th in the reading l im its of the Wires) , the bearings too ther stat ions and po int s ofi the line be ing taken w i t h the need le.

T he hor i zontal angle should al so be read on the p lates for pointson stadia l ine

,as a check on the bear ings .

E. Obstacles in Tangent .

4 0 . Obstruct ions to vis ion and m easurem ent in tangent m ay be

avo ided in a num ber of ways , a few of wh i ch are given in the

fo l low ing problems . Other m ethods of avoiding t hem w il l suggest them selves in spec ial cases .T he sam e dev ices m ay be used on locat ion,

but i t i s m ore impo rtant to m a inta in a c lear sightway then so , when possible, we

should rem ove the obstruct ion.

4 1 . T o P as s an Ob stac le b y M eans of P arallel Lines .

— In

Fig. 4 , 0 i s the obstruct ion,AB the obstructed line. At B set

FIG . 4.

t rans i t turn 90 °

and measure BF long enough to c lear ob struc~

t ion.

Q

Set t rans i t at F,m ake BFG and m easure FG .

Move to G and backs ight to F ,m ak ing FGC Measure

GU: FB ,and m o ve t o C, where the angle GUI) i s made equal

to Cl ) i s the des ired l ine,and BU: FG.

Otherwise, at A and B erect perpendi culars ; take BF : AE ;

produce EF,and at G and H , beyond 0 ,

erect perpendiculars m ak

ing GU HI) FB . CD wi l l be the des i red line, andBU: F64 2 . T o P as s an Obs ta c le b y Angular D efiec tions.

GEN ERAL CASE . Angle anythm g less than

At B (Fig . 5) on the obstructed l ine deflect an angle a to one

side and m easure BC,taking 0 so that after deflect ing 2a t o the

other s ide CD w i l l c lear the obs t ruct ion. Make CD =BC and

deflect an angle a t o the sam e side as at B ; D E Wil l lie in ABproduced. Draw CH perpendicular to BD ; then

BD = BH+ HI ) z 28 0 cos a .

FIG . 5.

EXAMPLE .— Suppose a 14

°

BC CD 520 ft .

BD 2 X 520 x 2 feet .SPEC IAL CASE . A ngle60 degrees.

_

In th i s case the tr iangle BDF (Fig. 6) is equilateral and BF

BD DF

Should i t be inconvenient t o run to D we m ay stop at 0 ,having

m easured BC. At 0 deflect 60°

and measure CE at E again de

FIG . 6.

fiec t 60°

and make EF : BC'. At F a final deflect ion of60°

in the

opposite sense will put the telescope in the dwired l ine, PG, and

BF = BC+ CE . (5a )

4 3 . T o P ass an Obstruc tion,such as a River, when the Pre

c eding M ethods are Inapplic ab le.

Fm s'r CA SE . P oint beyond obatm tabn a

In Fig. 7 let BC be required.

FIG . 7 .

At B erect and m easure the perpendicular BD set inst rum entat D and m easure angle BBC : (1 then

BU: 3 1) t an a .

22 A F IELD -MANUAL FOR RAILROAD ENGINEERS.

Or,if a trigonom et ric tab le i s not at hand,

m ake ODE : 90°

and

fix the po int E where DE intersec ts AB ; m easur ing EB thereresul ts

,from sim i lar triangles

whence

Otherwise, if a right angle at B i s not convenient, measureangles CBD b, BDC

’a,and s ideBD . T hem e 180

°

From triangle BB 0 ,

BC B1)S111 6

EXAMPLE .~— a 0 B1) 400 feet.

sin 56°

By BO: 400sin 54

.feet.

SECOND CASE . P oint beyond obstruction invisible.

At B (Fig. 8 ) m easure angle b and l ine BE ; m ove to E and

measure angle y ,and set hubs on line EC so the l ine EUWi l l pass

FIG . 8 .

between them . Angle z z:ECB 180 (b y) . T hen from triangle BEG

BC: BE

Produce EB to D ,where D0 wi l l be sure to c lear obstruction;

PRELIM IN ARY SURVEYS.

T he sum and difference of a and {c are now known, so both m ay

be readi ly found.

At 1) set ohethe angle a w i th the transi t , and have the chainmen

stretch a cord between the hubs set on l ine EUat C’. Now signa l

the fiagm an to m ove h is rod along th i s cord unt i l the vertical w i recuts i t at 0 . Set a hub here and place the transi t over it . Sightto D or E ,

reverse telescope and deflect into OH .

ART ICLE 4 .—T HE LEVEL PARTY.

4 4 . T he L ev el Party consi sts general ly of two members, theleveler and a rodm an ; som et im es an axem an i s added to keep theiodm an suppl ied with pegs for turning-po ints and in c lear ing thel ine of sight for the level . As the party fo l lows the transi t l i ttleor no c learing wi l l be needed. T he instrum ents used are a level

,

a rod,and a hand-axe or hatchet .

4 5. T he L eveler m akes all necessary observat ions with h i sinstrum ent

,keeping a neat

,accurate record of readings and ele

vat ions also the pos i t ions and elevat ions of benches and turningpo ints . He should work out elevations of s tations wh ile the rod

m an i s going from one stat ion to the next he must see that therodm an gives him readings at points where the longitudinal slope '

changes suddenly , recording the plus . He m ust plo t h is profileatnight , or at such t i m es as the ch ief of party is l ikely to need it .The rodm an

’s readings at turning-po ints should be checked.

46. T he Rodm an holds h is rod at each station, cal l ing out the

number . Ifstakes are set only at even s tations , he must hold hisrod midway between stakes , the point being found by pacing thedi stance. T arget-readings need only be taken at tu rning-

pointsand benches , and the rodman should keep a record of these inhis “ peg-book ,

”checking the calculations of leveler for heights

of instrument and elevations (if turning-

points . At any‘

m arked

surface change he will hold his rod, cal l ing ont the plus to leveler.He must assist the leveler in plott ing up the notes.

4 . Adjustm ents of the Level.

4 7 . T o Adjust the L ine of C ollim ation i s to bring the intersec tion of the c ross-w i res into the op tical axis of the telescopeSet up and level the instrum ent . then bring the vertical wireinto coinc idence wi th a plumb - line or vertical edge of a building ,

24 A F I ELD -MANUAL FOR RAILROAD EN GIN EERS.

at the mean length of sight , and note if the vertical w ire i s t rulyparal lel thereto . If it is not , loosen the capstan-headed screwsho lding cross -wire ring and turn sl igh tl y so that the wire i sparal lel to the vertical line.

Loosen the wye-c l ips and bring the vertical wire into co in

cidence wi th the l ine and clamp the instrument . Rotate the

telescope in the wyes 180° and note if the wire coinc ides w ith thel ine. If no t , correc t one ha the

'

error by loosening one and

tightening the opposi te ,of the capstan-headed sc rews that hold

the c ross-wire ring in place,remembering that the image of

the cross wires is inverted by the eyepiece.

T urn the telescope unti l the horizontal wi re i s paral lel to the

plumb - l ine or edge of building, and make the same test andcorrection. Repeat for both wires . T he horizontal wi re i s theone on which the accu racy of level ing depends , but i t i s wise tohave both adj usted. T hei r intersec tion should remain on a pointduring a complete rotat ion of the telescope in the wyes .4 8 . T o Adjust the L ev el-b ub b le i s to bring the axis of the

level o tube into the same vertical planewith the l ine ofcol l imat ion,

and to make the bubble stand at the center when the l ine of sightis horizontal .Since the axis of the telescope co incides with the l ine joining

t he center of the wye-r ings (which requires these to be of the

same si ze) , i t i s sufficient to make the axis of the bubble paral lelto this l ine.

(a ) W i th the telescope over one diagonal pai r of level ingscrews and the cl ips loosened, bring the bubble to the center ofi ts run then turn the telescope, in thewyes , a l i ttle to ei ther sideof the vert ical plane through the telescope and note if the bubbleremains at the center . Ifnot , correct the error by means of thescrew at endof the level -tube case arranged for lateral m ovement .Repeat unti l the tube m ay be rotated half an inch or more to

ei ther side of vert ical w i thout movem ent of the bubble. T hisadj ustment is made m erely to prevent error from fai l ure to set

level - tube vertical ly beneath telescope.

(b) W i th the wye-cl ips opened wel l out , again bring the bubbleto the center of i ts run ; rem ove the telescope fro m wyes andturn it end for end,

then careful ly replace it in thewyes . Shouldthe bubble fai l to rem ain at the center , bring i t ha lfway back byrai sing t he lower o r depressing the high er end of tu be at the.

po ints of attachment to telescope. Relevel and repeat as a test .

26 A FI ELD -MANUAL FOR RAILROA D EN GINEERS.

sensibly from that obtained by dividing by 21? 0 . T hereforewe wri te

For t 1 mile R 3963 m i les, 0 abou t 8 inches . Hencefor any other d1stance in miles we have, for c,

e z 8 X t 2 inches .

The correct ion for refrac t ion is abou t a, hence we have,from

or, closely enough( 10)

EXAMPLE .

— Wh11t i s the correc t ion for a half-mile sight ?For one eighth of a mile ?

By c 8 X (39 2

”for first case,

and e 8 x (t )? z 0 . 125for second case.

By (10) the hual correction i sc x 2 z 1 . 7 for first case,

a z X for second case.

52 . T he D ifferenc e of E lev ation between two points not sofar apart but that a rod m ay be read on each from some intermediate po int m ay be readi ly found from these rod-readings .

In Fig. 10 let the instrument be at 1 ,A and B the points

whose difference of elevat ion i s desi red. Let r AD, 7" B 0 .

Since the l ine of sight , DO,i s horizontal , the difference of

FIG . 10.

elevat ion wil l evidently be fr’

fr . When the distance fromI to A equals that from I to B the errors due to curvatureevidently balance.

PRELIM INARY SURVEYS.When the points are so situated that the rod cannot be read

on both from one intermediate posi t ion of the instrument, an

FIG. 11.

auxil iary point or po ints must be used and readings taken on

t hese po ints in pai rs . T hus in Fig. 11 suppose the differenceof elevation ofA and B requi redW i th the inst rument '

at I read on A and some intermediatepoint E . Considering the backsights as plus and foresights as

minus, the difi

erence of elevation ofA and E i s AD FE.

Again,with the instrum ent at I the difference of elevat ion ofE

andB i s GE 0B. T he sum of these differences equal s the difference of elevat ion ofA and B , and m ay be writ ten (AD GE)

(E17 44 GB) , or, in general , the sum of the bachez’

ghts less the sum

of theforesights equals thedz'

fl‘

erenee of eleea tz'

on.

C. Fie/d-work.

53 . A D a tum i s a level su rface so taken that it shal l lie belowthe lowest po int l ikely to be reached by the profile, to which thesurface elevations are referred. I t i s often spoken of as the

datum -l ine or datum -plane, and is the zero ofelevat ions .54 . A Bench- m ark i s a permanent mark ,

such as a copper orother bol t let into the top of a sol idly fixed stone, whose heightabove the datum is known; it m ay be simply a mark on a stone

,

or a tack driven into the projec ting roo t of a t ree,upon which

the rod m ay be read. In any case i t must be so si tuated that i tcannot change . its elevation nor i s likely to be di stu rbed wi thinthe time for which it is intended to be used as a standard ofreference.

T he elevation should be m arked on some object adjacent tothe bench , with the letters B. M. indicat ing the nature of the

po int .

28 A F IELD -MANUAL roe RA ILROAD ENGINEERS.

55. T he F ield-work consi sts in finding the elevat ion of a

number of points on the l ine establ ished by transit party suffi

c ient to give, when plotted, a fai rly correct outl ine of the surfaceas seen in profile.

A bench -m ark is taken at the beginning of the l ine, and its dis

tance above mean sea- level or other datum is known or assumed.

T he level is set wit h one pai r of level ing screws in the line to be

run (ih order that any change in the posi tion of the bubble m ay

be easily correc ted) , and the rod i s read on the bench . T his reading plus the elevat ion of bench gives the height of instrument(H . I . ) above the datum .

Readings are taken at every hundred feet along the line, or

oftener if the surface changes greatly, unti l a point i s reachedbeyond which it i s desi red to move the level . A peg i s drivenfirm ly into the ground and the rod read on th is ; the height ofinstrument less the rod reading wil l gi ve i ts elevation, as i t wi l lfor the. i11 term ediate points . T his point i s a tem porary .

benchand is cal led a t urning-po int . I t should be marked by ,

a guardstake if i t i s desi red to use it again. T he instrum ent i s now car

ried beyond the turning-point,set up , and the whole process

repeated. Benches and turningp oints should be read to hun

dredths or thousandths of a foo t , interm ediate points to tenths .T urning-points are marked Q or T . P . in the notes

,and thei r

posit ions , as al so the b ench -marks, noted by both leveler and

rodman in thei r note-books.56. T he L ev el N otes m ay be kept in any convenient formthat i s easily understood. T he fol lowing i s used more extensively ,

perhaps , than any other:F . S. E lev . Rem arks.

{B M. on root of L . O . tree 60’ tor ight of line.

B era the elevation of the datum was taken 200. 00 feet belowthe first bench -m ark . T he instrum ent was set up near Stat ion 2 ,

g

qc

oo

-qoo

co

00

e

m

9

<0

.

vuo

so

1Ou p eg at 4+30’ 20’ to left of l ine,

by sm al l P . O . tree.

trac ted from the yields an elevat ion of T he elevations of other points were determined in the same way . A l i ttlebeyond Stat ion 4 the rodm an drove a peg and held the rod on it ,

y ielding a reading of and an elevat ion of T he

instru m ent was then m oved to a po int near Station 7 and a reading of taken on the peg ; th is added to made thenew H. I . and the process continued wi th thi s H. I .

In most cases i t w i l l be suffi cient to read benches and turningpoints to hundredths and intermediate points to tenths .It will be seen from the notes that any error in ea turning-point

causes the same error in all succeeding po ints . T o guard againstthis the rodman i s requi red t o keep a pegb ook ,

”in which the

heights of instru m ent and elevat ions of turning-points are re

corded, and which must check wi th the leveler ’s record.

57 . Wind and sunsh ine affect the accuracy of the work withthe level , as i s also the case wi th the t ransi t . For very greataccuracy a cal m , cloudy day i s the best , but the rail road engineercannot always choose the best ti m es for his work , and must takesuch precautions as m ay be possible while he exercises the greatest care to prevent and detec t errors . T he adj ustments shouldbe tested at least once a week , even when the greatest care hasbeen taken, for unequal expansion and other causes m ay con

sp i re to cause them to change.

By making foresights and backsigh ts to turning-points abou tequal the error due to cu rvature w i l l be eliminated; the readingsof rodm an at these points should al so be checked. T he rodmanshould hold his red ver t ical

,which is som et imes accomplished

by m eans of a level attached to rod; or the leveler can tel l by hi svertical w i re when the rod is in the same vertical plane w i th theinstru m ent , and by causing the rodm an to wave hi s rod back andfo rth slow ly, after clam ping the target, he can tel l if the hor izoulai w i re j ust bisec ts the target at i ts highest posit ion.

58 . T he Rod should he graduated to feet and tenth s , readingby tartret at turning-points and benches ; interm ediate readingsare m ade by the leveler at his instrum ent . S t rength and dura

b ility are essential qual i ties . T he Philadel phia rod seem s to

30 A FIELD-MAN UAL FOR RAILROA D EN GIN EERS.

answer the purpose as wel l as any other now m anufac tured; theT roy rod m ay be used in the same manner as the Philadelph iarod, bu t i s l ighter and less able to stand rough usage.

ART ICLE 5. T HE T OPOGRAPH IC PARTY.

59 . T he T opograc P arty fol lows the level and secures all

the data necessary for making an accurate contour-m ap of a stripof country extending as far each side of the prel iminary as m ayb e needed for the intel ligent projection of t he locat ion- l ine.

T hi s distance m ay vary from 50 to 300 or 400 feet , i ts w idth depending on the diffi culties to be encountered and the degree of

prec is ion wi th which the prel iminary approximates to the final

locat ion-l ine. T he lateral slope of surface is obtained at the

stations of preliminary by m eans of the hand-level and tape, bythe slope-level or c l inometer, by cross sect ion rods

,or by the

transit and stadia. St ric t ly speak ing the topography incl udes allthe surface features , but for rai l road work the surface elevations,strea m s , and nature of surface are the most im portant y it m ay

be necessary to note the posit ions of roads , buildings, etc . , and

should always be done when prac ti cable w ithou t undue loss ofti m e. A p ocket eom pass will be of use in observing the bearings of l ines .

60 . T here are two m ethods of recording the data ob tained;one by means of notes and sketches in a book , the other bydraw ing the contours di rec tly on the field- sheet as the data are

obtained. Stat ion elevat ions can be taken di rect from the leveler’

s

notes , and consti tute the base on which the contour elevationsrest .Suppose the hand- level to be used and the no tes kept in a book ,

to be afterwards t ransferred to the m ap . Starting wi th the

known center elevation, the topographer notes the heigh t ofhiseye above the ground and cal culates the heigh t of center aboveor below the next contour ; from this the reading of the rod whenheld on th i s contour is found,

being the height of station abovecontour plus the height of eye. He direc ts the slopem an in or

out on a l ine at right angles to prel iminary unti l thi s reading isgiven by the hand-level ; the distance out is then measured and

recorded, j ust as in setting s10 pe-stakes , and the slopem an di

reeled into posi tion on the next contour , in the same m anner.

T hus if5-foo t contour- interval s are employed, and the station

PRELIM IN ARY SURV EYS

elevation is feet and the height of eye feet , we shal l havefor the reading at the 320-foot contourMotion the slopem an down the slope unti l hi s rod reads and

measure the distance out , suppose 21 feet . T he 315-foot contourwil l be 5 feet lower , giving a reading of Wh ich m ay be

found in l ike manner at , say , 80 feet out . As the rod reads onlyto abou t 12 feet the topographer must m ove out to this las t point ,and with the reading 5 find the 310-foot contou r inthe same way . Ou the uph i l l side the 325-foot contou r wil l befound wi th a reading of (325 feet, and othercontours in l ikemanner .T he notes m ay be wri tten thus

Left . Center E lev . Right.305 3 10 315 320

321 6325 330 335 340

80’

21 27'

56’

80’

1 12

T he number; above the l ine i s the contour elevat ion,the num

ber below i ts distance out from center .If preferred the elevation can be taken at regulardistanees out

and recorded as above:the .p osi tion of the contour wil l then befound by interpolat ion when mapping the work .

61 . If the topography is to be plotted in as the work progressesthe topographer must have a l ight drawing-board wi th a pocketand flap on back for holding the sheets on which the transit-l inehas been plot ted the night before ; the station elevat ions are

marked on the l ine and the contour posi tions spotted in as oh

tained by slopem en, after whi ch the contours are sketched in.

Po ints where contours cross transi t -l ine are found in the samemanner as side po ints . T he size of the sheets wil l depend on the

taste of topographer and si ze of drawing-board; 17x24 to 19x28i-aches are good sizes .T he topographer wil l soon learn to guess at the position his

contours wi l l occupy at the nex t stat ion ahead, and wil l sketchthem in l ightly , to be erased and

correc ted when necessary . I t isoften sufiic ient to take lateral readings at every second or thirdstat ion.

62 . If the Slop e o lev el i s used, the inclinat ion of the su rface i sobtained; then by the use of a scale construc ted to show the

32 A El ELD—MAN UAL FOR ' RA I LROA D EN GI N EERS.

ho rizontal distance apar t of contours , for the given contour ihterval, for slopes varying fro m 1

°

to the posi tion of contourscan at once he spotted on the m ap . W

'

el l ington recommends theuse of the al t azi m u th as perm i tt ing the em ployment of ei thermethod at will— the al tazimuth being merely a haud- level w itha c l inometer a t tached.

63 . C ross - sec t ion Rods are measuring- rods 10 or 12 feet longcarrying a level -bubble. By plac ing one end at the center ,bringing the rod horizontal , and noting the height of the end of

rod on the down hil l s ide, the slope ll l’

tty t'

eadilybe obtained and

the contours worked in as before. For very rough ,broken

ground this m ethod m ay be preferable to either of the others .64 . If the T ransi t and Stadi a are em ployed,

very elaboratetopography m ay be taken with very li t tle field work ,

but the oh

servations requi re considerable reduct ion. W i th a su itable topographic protrac tor and the sl ide-rule m entioned in 3 3 , the large.nu m ber of points that m ay be obtained from each set ting of thetransi t m ay be readily plot ted and thei r elevations m arked on the

plot , after which the contour- l ines can be worked in,and other

features mapped. For smal l vert ical angles nohorizontal redue '

t ion is needed.While not general ly favo red by railroad engineers in the past ,this m ethod i s p robably the m os t rapid and economical of any so

far employed in topographic work .

ART ICLE 6. PRELIMINARY EST IMATES.

65. After co m pleting the field-work of the prel i m inary surveythe par ty is usual ly disbanded , only the transi t m an,

leveler , andtoliographer being retained to assist the chief of party to completethe m ap , profile, and esti m ate of cost .

66. T he M ap m ay b edrawn to any su i table scale, but less than400 feet to the inch is no t to be reco m m ended where i t m ust beused in pro jecting location. T he transi t - line is laid down first

and the to pography worked in afterwards fro m the field-m ap or

topographer’s no tes . If i t i s wanted on a continuous sheet , the

transi t- l ine m ust first be drawn on a succession of sm al l sheets ,which are

'

adtled as the plo t ting progresses, a new sheet beingsl ipped under the edge of the preceding and tacked down when

34 A F IELD-MANUAL FOR RAILROAD EN GIN EERS.

Engineering expenses and unforeseen outlays that are sure toarise should have a l iberal al lowance.

69 . T he Report of the chief of party should set forth the advantages and probable cost of each of the several l ines run

when there i s more than one. Ou this report frequently dependswhether or not the l ine i s to be located, and it should be clearand exhaust ive,

though plainly and concisely worded. The m ap

and profile form an integral par t of the report and show fromwhat data the estimates were derived.

CHAPTER III .

LOCATION

ART ICLE 7 . PROJECT IN G LOCAT ION .

'70 . After the prel iminary has beenmapped and the topography

worked ih , the engineerproceeds to m ake a paper location for hisguidance in the field. T he sol ution of the varied and co m plexproblems that confront him are more or less interdependentT he guiding princ iple, appl icable to all departments of engineering, that the best structure is tha t whichfor the least cost best an

steers the purposefor which it was intended, should cont rol , eventhough the resul ting struc ture be inferior , in po int of scient ific

design, to some o ther . T he best road as regards construc tion and

grades m ay be a fai lu re because of excessive first cost , whilethe cheapest construc tion w i l l entai l such heavy operat ing ex

penses that i t m ay be equal ly unprofi table. T he al ignment mus tb e as free from curves as possible,

while heavy grades are at the

sam e t ime exc l uded; these two requi rements conflict and m ustbe as wel l adjusted as possible. T he amount of earthwork , ofbridging and other structures must be kept down to the lowestl imits .

'71 . Starting at the sum m i t of the most diffi cult port ion of the

route. assu m e a starting-po int and elevat ion; with the dividers setat such a distance to the scale of the m ap as will give a fal l of onecontour -space— or half space— for the assum ed grade,

step down'

the slope in such a way that the div iders fal l each time on the

next lower contour. o r half-space, according to the fal l assumed inset ting dividers . If curve compensat ion i s al lowed, the di vidersmust be reset for each curve, for the same fal l , since the gradew il l be slackenetl on curves . T he po ints at which the dividers

fal l are l igh t ly spo t ted on the m ap and connec ted by a grade

c ont our , which represents the surface- l ine having the requi redgradient . T his l ine wil l b e too broken t o be used as a location

36 A F I ELD -MAN UAL FOR RAILROAD EN GIN EERS.

l ine, so we have then to draw on the m ap a succession of curvesand tangents that Wil l approx i m ate suffi cient ly close to it , at thesam e t i m e that a proper balance i s m aintained between earthworkand curvature.

Hav ing l ightly plotted the proposed l ine, the elevations aretransferred to profile

-paper , thus giv ing a profile of the l ine.W i th a fine thread stretched along the p rofi le, to represent thegrade- l ine, adjust the cuts and fills to sui t the nature of the work .

In general , fi lls are cheaper - than cuts bo th in construc t ion and

maintenance; and espec iall y is this true where a shallow surfacelayer of earth i s underlaid by rock . I t m ay happen that them aterial from excavat ion must be used in embankment , whenthe cuts and fi lls m ust be made to balance by sh ifting the gradel ine unti l this appears to be the case on the profile.

At the stream crossings the grade- l ine must be kept safelyabove high -water mark , so that suffi cient waterway i s provided,

and al lowance made therefor.After locat ing the m ost diffi cult portions pass on to the easierwork , returning later on . to study the effec t th is w il l have on the

part first located. It m ay be necessary to go over the projectionseveral t i m es before you can be reasonab ly su re that the bes t locat ion has been pro jec ted; even then the study of the l ine inthe

field will cause many of the detai ls to be al tered,someti m es

materially .

Long grades are to be preferred to shor t ones , bu t questions ofeconom y m ay necessi tate the latter in order to l ighten work °

carem us t be taken that the grades are not so badly chopped thatthey interfere with the easy riding of the train.

In projec ting the l ine i t w il l general ly be best to s trike the

curves first and draw the tangents afterwards , though i t somet i m es happens that long tangents w i l l contro l the curves ; whenthi s is the case the tangents are drawn to intersection and the

c urves afterwards put in.When t ransi t ion-curves are employed. a sl igh t ofi'

set should bemade at the beginning and end of curves to al low for thei r insertion in the field. T hese offsets w il l be so smal l that i t is uselessto attempt to show them to scale.

'72 . A Curv e-pro trac tor wil l be of m aterial assistance in find

ing the degree of curve requi red to uni te two tangents that havebeen laid down on the m ap . I t consi sts of a transparent , semic ircular protractor having a ser ies of enwes from 30

’ up to 8°

LOCAT ION .

plainly cu t upon it . T he cu rves are on both sides,those on the

reverse side having thei r concavi ties turned in an opposi te sensefro m those on the face. T he scale i s usual ly 400 feet to the inch ,and in any case the m ap and prot rac tor m ust be drawn to the

same scale. Sometimes a set of cardboard or hard-rubber curvesare used,

but they are inferior to the curve-protractor. T o use

it,simply prolong tangents to intersec tion and then place the

protractor so that the curve admitting of the best grade i s tangent to the two straight l ines . Mark the points of tangency ,

which w i l l be the beginning and end of curve. When the curvei s requi red to pass through a given point the proper curve m ay

be i m mediately found by trial , whereas the calcu lat ions wouldrequire som e l i ttle ti m e.

should never be al lowed on main lines . Suffi

c ient tangent should be interposed to al low space for easingo

the superelevation of outsid rai ls , or for the insertion of transi tiou -curves when these are t be employed.

7 3 . T he F ield C orp s is substantial ly that required on the pre

l iminary survey , and the methods ofwork pretty much the same,except that curves must now be run m and this necessi tates moreclearing. Iffi t st and second location ltnes are to be run (and i t i sreal economy to run both ) , i t wil l not’ be necessary to have the

stationing continuous on the fi rst, so the pluses ari sing frombacking up

”need only be noted and el iminated when the final

location- l ine i s r ou-curves are to be inserted, theyneed not be run the fi the proper offset being made at

t he P . T . or P . 0 . o f the c i rcular curves, which latter are t o be run.

On the final locat ion- l ine the stat ioning must be continuous,beginning wi th zero. T he stakes are m arked as on the pre

l i m inary su rvey , and all hubs that are l ikely to be used againmust be referenced in, the reference hubs being set wel l out ofthe way ofdisturbance by the plow or scraper.T he levelet should make bench m at ks evet y 1000 0 1 2000 feet ,

to be used 111 running check level s and in giving gt ades later ou.

From the paper locat ion the notes should be m ade up in theothee, to serve as a guide in the field; however , no at temp t shouldbe made to adhere rigidly to them

,since sl igh t errors in the

mapp ing wil l afi ec t the pro jected line, . w11ile in the field the l inem ay be sh ifted here and there so as to fi t the ground more snugly1nd accord more c losely w ith what the nature of the earthworkdemands .

38 A FI ELD -MANUAL FOR RAILROAD EN GINEERS.

T he highest skil l of the engineer i s requi red to secu re the bestlocation-l ine, and he should have al l the t i m e he needs. Unduehaste on location— as on reconnoissance and prel iminary— isalmost sure to resul t in increased cost of construct ion.

ART ICLE 8 . SIMPLE CURVES.

4 . Definitions andForm ulas.

7 4 . T he C ircular C urv es that are usually employed to uni testraigh t reaches of the rai l road m ay be simple,

‘ compound, or re

versed. T he use of reversed curves should, however , be l imi tedto turnouts and cross -overs .a . A Sim p le C urv e i s the arc of a circle.

b. A'

C om pound C urv e consists of two simple curves, ofdifferent radi i , both on the same side of a comm on tangent .c . A Rev ersed C urv e is made up of two curves of contrary

flexure having the same or different radi i , and a. common tangent .d. T he P oint of C urv e (P . is the end of tangent and begin

ning of curve, as at A , Fig. 12 .

FIG. 12.

e. T hei

P oint of T angent i s the end of curve and be

ginning of tangent , as at B ofFig. 12 .

f. T he P oint of Int ersec t ion is the po int where thetangent at the R C. and R T . intersect when produced. (D of

Fig.

g. T he Intersec tion Angle (D i s the angle at the PI . between the tangents meeting there, and equal s the angle at the

center .It . T he T angent D ist anc e ( T ) i s the length of the producedtangent measu red from the P . 0 . or P . T . to the R I . T he term

LOCAT ION . 39

tangent i s appl ied to any st raigh t portion of the l ine,bu t the letter

T will be used to designate the produced portion only .

T he M id-ordinate (M ) i s the portion of the radi us intercep ted between the arc and chord when i t cuts the chord at i tsmiddle point.j . T he E x ternal (E ) is the part of the radi us p roduced to theP . I . , intercepted between curve and the R I .

h. T he L ong C hord i s the chord joining the R C. and

R T . Frequently the term is appl ied to any chord longer thanthe uni t chord.

l. T he Radius wil l be denoted by R.

m . T he P oint of C om pound C urv e i s the point ofcommon tangency of the two branches of a compound curve.

(See Fig.

P .C .C . P

FIG . 13.

n. T he P oint of Rev ersed C urv e is the point of

common tangency of the two branches ofa reversed curve.

0 . T he D egree of C urv e (D ) i s the angle at the center subtended by the uni t chord. In the Uni ted States thi s chord i s 100feet , in England 66 feet , and where the metric system is employed i t i s taken at 20 meters . Any convenient chord lengthm ay be taken, but for uniformity American engineers haveadopted the chord of 100 feet, and unless otherwise stated it isalways so understood when we speak of the degree of curve.

Half the degree of curve i s cal led the defiec t ion-angle, sinceit i s the angle to be deflected from the tangent to the chord.

If there were any pract i cal method of measuring around the

curve instead of along the chord,an accurate and convenientrat io for expressing the radi us in term s of the degree would be

had. T hus ifD i s the angle at the center subtended by the a rc

of uni t length , we have, where a is this uni t are,

40 A FI ELD -MANUAL FOR RAI LROA D EN GIN EER

27zR= a

Hence

When a equal s 100 ft . this becomes

R varies inversely as D,so that knowing the radi us for a

curve, we should have only to divide thi s by D to get the radiusfor a D

°

curve.

Since the chord i s em ployed instead of the are, we determineR by means of the fol lowing problem

'75. G iv en the C hord O', and D egree ofC urv e D

,to F ind the

Radius R.

In Fig. 14 , AB i s the chord 0 , OE a perpendicular from the

center upon AR

FIG. 14.

From the right triangle AEOwe haveR sin 5D 2

R % 0 1 0 1Whencesin 2

1Dg cosec ED.

When Ois 100 ft

50 cosec 1D.

sm $ 1)15

42 A FIELD -MANUAL FOR RAILROAD EN GIN EERS.

76. The L ength ofC urv e (L ) is found by div iding the angleat the center (which equal s the intersec t ion angle) by the degreeof curve, the resul t being in chains and dec imal s of a chain. T he

number of P . 0 . L w i l l give the station number ofP . T .

EXAMP LE — T he P . 0 . ofa 4°

curve having I : 96°

30’ i s at sta.

104 Find L and the number of the R T . Here

L4

chains .

hence the number of P. T . i s

7 7 . U se of the T ab le ofFunc tions ofa One-degree C urv e.

In the locat ion of rai lway curves geometrical accuracy w il lfrequently be of less importance than rapidi ty of field work ,

so

long as errors are kept within cer tain l i m i ts .Ou tangents sl ight errors of al ignment m ay readi ly be detectedby the unaided eye, but on curves these are no t so apparent .Moreover i t is not l ikely that the trackmen wil l keep them up in

the exac t position of their location.

T o simpl ify and shorten the field computat ions engineers makeuse of a table of funct ions of a 1

°

curve , and assume these funct ions for other curves to vary inversely as thei r degree, or di rec tlyas thei r radi i . T able IX gi ves values of the tangent distances ,long chords , m id-ordinates, and external s for a 1

°

curve, the

radius ofwhich is taken as 5730 feet . T o find these func tionsfor other curves , div ide the tabular values by the degree of curve.

T he error result ing from this assum ption wil l , in any practicalcase, amount to no more than a few tenths or hundredths of a

foot .T able IX m ay also be used as a metric curve table, the tabularval ues being taken as meters instead offeet . If the uni t metricchord is 20 meters long, th is m ay be taken as one fifth of thetabular uni t chord; so to use the table m ul tiply the metric degreeby 5and enter the table with the result as a val ue ofD .

For instance, a 2° metric curve having 1 40° would have a

m id-ordinate equal to 3456 2 meters .

For the approx i m ate radi us of a m etric curve divide 5730 by 55730

t imes the degree. T hus a 4 ° metric curve would have R4 X5

fillifit" :

fl

LOCAT ION . 4 0

meters . For the exac t radi us make use of formula10

T hus for a 4°

curve having 20-meter chords Rsin 2

0

meters , a difference ofonly .04 meters .If a metri c curve i s to be retraced wi th a 100-ft . chain, we

convert the metri c degree to the degree referred to lo0 ~ ft . chordsby the relat ion that a 100-ft . chain chains of 20 meterseach ; a 20-m eter chain ft one foot meters ;one meter ft .

I t will som etimes be a suifi ciently close approximat ion to takethe 20 meter chain as two th i rds of a 100-ft . chain ; this wil l makethe metr i c curve nearly two thi rds of the degree the same curvewould have when laid out wi th a 100-ft . chain, and the curvewith100-ft . chords nearly three halves of the degree as laid out wi ththe 20-meter chain. T hus a 4 ° metric cu rve would be equ ivalentto a 6

°

curve laid out with a 100-ft . chain.

In the problems that fol low two m ethods of solu tion wil l begi ven when prac t icable— the first being rigid, while the second.is based on the use of T able IX . T o shorten the formulas thesubscript 1 wil l be,

written after the letters T , L . O. , M, and Ewhen these are the func tions ofa 1 ° curve. T hus T ,Zfi 28

° meanst he tangent distance for a 1

° curve when 1 : 7; 16°

the long chord for a 1 ° curve when I etc .

7 8 . T ables ofN atural and L ogarithm ic C ircular Func tions.

Many engineers prefer to work al together by tables of naturalsines , cosines . etc . , and t ime m ay often be saved by thei r use.

Nevertheless logari thmic tables are offrequent advantage, even inthe field

, and t he m ore im portant ones , such as the logarith m i csines , cosines , tangents , and cotangents, together wi th the logarithm s of numbers , are gi ven in the back of the book along withthe tables ofnatural functions.7 9 . G iv en R and C to F ind D .

From equat ion

8 0 . G iv en I and R (or D ) t o F ind T .

If 1) i s gi ven,find R by then in Fig. 15 from triangle

GAB we get

44 A FI ELD -MANUAL FOR RAILROAD ENGIN EERS.

'

BY T ABLE IX .

— Fiud the tabular val ue of T the givenangle I ; then

FIG . 15.

EXAMPLE.

— I 35°

D required T .

By T : t an 17°

50’

feet.By ( 14a ) , T feet

, a resul t differing from the

value found by the rigid method by only foot .8 1 . G iv en I and T to F ind R or D

FromT COt 1 1:o o o 0

tan g]15

T hen by T able I the degree m ay be found.

BY T ABLE IX.

8 2 . G iven I and D t o F ind the L ong C hord L O.

First find R by ( 12) or or by Table I ; then from thet riangle OAF ofFig. 15,

AR : R sin %1AG HAF : L . 0 . 2R sin (16)

LOCAT ION .

BY T ABLE IX .

—Find the tabular L O. for the given angle 1 ;then( 16a )

8 3 . G iv en the Radius R and any C hord (7 to Find t he

Ordinate t o the C urv e at any P oint .

FIRST MET HOD .

— In Fig. 16 let HE be the chord 0 ; B K : a

and K E b,the segments into which i t is di vided by the ordi

FIG . 16.

nate y . D raw the radius through K ; call the portion betweencho rd and curve y'. By geometry,

(2B y’

)y'

ab,

from which

2R —y"

But y' i s smal l compared with 218, and hence we write

N ow 3/ does no t diiIer sensibly from y in the cases m et with inprac t ice, so we wu‘ te

46 A F I ELD -MANUAL FOR RA ILROAD EN GIN EERS.

Ifwe writeR z5

750,formula becomes

2 X 573OH

LetE0

m,

100z n

,and subst l tute ln gtvm g

10000y

'm nD 0 .8 73m nD ,

or very nearly31 z gm nD .

y i s given in feet when m and n are in chains and dec imal s ora chain.

A t the mid point F ,m n

, and y M.

M z gni’D ,

CAUT ION .

— Fortunlas (17) and while very convenient forfield use in passing obstruc tions , are l iable to error when verylong chords or large values of D are used

,since they give resul ts

that are too smal l .Ifwe write the arcs HN , NE for a and b

,we shal l get resul ts

that are too large, yet about as near the true values as by taking772 and n to b e the segm ents o f the cho rd. T o i l lustrate we w i l lfind a few values of Ill and compare w i th the t rue values takenfro m T able V

0 0 0 0 0 0 0

From this i t appears we m ay use form u la (18 )— ai td ( 17 ) as

wel l— tak ing ei ther the segm ents of the are or chord fo r curvesnot exceeding 4 ° w i th ares up to 600 ft . ; for curves from 4

°

to 6

LOCAT ION .

they m ay be used up to 500 -t i . arcs, while for curves between6

°

and 8°

no t m o re than 400 feet of arc m ay be taken.SECOND METHon.

- First determine the m ido ordinate. In

triangle OEF,

OF : VRi — i fp ;

M Z FG Z R — VRi — i ci

.

T o find ordinate A C distant d from the m id-po int of EH, drawOB d paral lel to BE ; draw AR at right angles to HE. T hen

BA VB" d’ .

T herefore

CA y 2 VR? d e VR‘

(20)

T HIRD ME THOD .

— If the cho rd C is short , we m ay regard theare as an arc of a parabola,

for which i t i s known that ordinates vary as the produc t of the segm ents into which they dividethe chord. T he m id- o rdinate being known,

we have

From form u1a ( b) we have for y M a b 111 0 ,

T he m id-ordinate for any o ther chord C’ is

Hence

If 0'

10 , this gi vesM1 %M o o o o o

48 A FI ELn-MANUAL FOR RAILROAD EN G IN EERS.

T his last relat ion afi ords an easy m ethod of stak ing out a curvewhen the m id-ordinate of a given chord has been determ ined.

Firs t erec t the ordinate M at the mid point of the chord; thenj oin the ends of chord with the extremity of the ordinate j ustmeasu red; the lengths of these chords do not differ m uch from715 0 ; at their m id-points erect ordinates equal to %M, giving po intson the curve. Proceed in l ike m anner for other points unti l asuffi c ient number have been located.

8 4 . G iv en R and I t o F ind the“E x ternal E.

In Fig. 17 E : GE : OB 0 G.

But OB : R sec 4] and 0 G R.

E :R(sec % l (24)

BY T ABLE IX .

—Fiud E for a 1° curve for an intersect ion

angle I then

8 5. G iv en T and I t o F ind E .

In Fig. 17 draw BC perpendicu lar to AB, and produce AG to

FIG . 17 .

intersec t BOht C. BC is parallel to AO, and the triangles AGOand GBC

’are similar ; hence BC : BG E . In the right tr iangle

ABC,angle BAG: éBAF z

1 I . T herefore

E Z T taD %I . . o o o o oEXERCISE .

— Bel'i ve equat ion (25) from

50 A FIELD -MANUAL FOR RA I LROAD EN GINEERS.

When 0 z

d 200 sin5D .

1 0Ifwe wr1te sm gD

Rfrom (12)

'

1n formula there results

For curves up to 0 hence

10000

For curves from 7 ° to 0 therefore

ForR wri te 5JD30

’ and for C 100 , becomes

10000d

57301 .745D

and for 0 z 50. (30 becomes

2500d :

5—

730D _ .4363D 873

EXAMPLE .

— Find d for a 6° curve, 0 100 feet .By d 200 x feet .

0

By d feet .By d x 0 feet .9 0 . G iv en the C hord 0 and D egree of Curve D to F ind the

T angential D eflec t ion Offset t.

In Fig. 18 m ake EF (tangent at E ) equal to EA , and join Fwith A . D 1 aw EG to the m id-point of FA . Angle AEGGER :“D hence, i t om the figur ,e

LOCAT ION .

When 0 100 feet,t z :200 sin 4D .

Since 4D i s smal l,we m ay wr i te, without m aterial error ,

sin 4D 5sin %D ; then,writing sin 5D as in 8 9 , we get

Making 0 100 11. and writing R 123-

0gives

D 0 .873D .

When 0 50 feet , (33) yieldst z:

.

2 18D z. 436x

EXAMPLE .

— Find t for a 6° c urve, 0 z 100 ft .

By t 200 sin 1°

30'

ft .

'

By (33'

. 873 X 6 ft .

9 1 . T o F ind the Sub tangential D eflec t ion Offset t'

for a

Sub chord C"

FIRST MET HOD .— By form ula ( 13) find the angle at the center

subtended by the subchord ( J' ; cal l th is angle D'

. From

t'

2 0'

Si! ) ;}D (34)

SECOND MET HOD .

— In Fig. 19, with E as center str ike the arcsPG and AH , taking EF C

”and

EA 0 ; prolong EG to B . Now

assu m ing that the chords 0 'and 0

are propo rtional to their central.angles we have

From the similar sectors EFG FIG. 19.

and EAR, since EB C,

52 A F IELD-WIAN UAL FOR RAILROA D EN GIN EERS.

Mul tiply ing (a) and (6) together , term by term

Whence

EXAMPLE .

— Find t' for a 7 ° curve when 0 z 60 ft .

Here D’ x 7

°

(very nearly) 4°

By t'

2 x 60 x ft .

By z z ft .

By z' x ft .

9 2 . T o F ind the T angent Offset 2 .

In Fig. 20, EB : z i s the requi red ofi set . Let AE : n chainsl 00n feet . AE : FB

, the half-chordhaving the m id-ordinate AF : EB ;

hence we have, by formulaz gu

‘zl ) . (36)

In this formula we m ay take 71 to

be either the length of AE or the arc

AR,in chains . If taken equal to AE

the ofl’

sets will b e slightly too s m al l ,while if taken equal to AR they w i l lbe a l i ttle too large. T he use of the

formula is l im i ted to smal l values ofn and D

,as was po inted out in 8 3 .

(See CAUT ION . )

Formula (36) is easy of appl ication and of frequent use inlocat ing curves by offsets from the tangents . For curves up to4

°

71. m ay be as great as 3 , but for sharper curves it shouldbe less .EXAMPLE .

—Find six offsets to a 4°

curve at points 50 ft . apart ,measured around the curve.

FIG . 20.

LOCAT ION .

'

By successive appl ications of (36) we havez z gx X 4 : 0 .88 feetz :

n g, § _ X 4 :

Z : % X 4 X 4 = 14 00

z : % x - X 4 = 21 . 88

T he last value of z is in error by about ft , but for sett ingstakes on

“construc t ion th is difference i s no t material so long as

the al ignment beyond this po int does no t depend on it . In

setting track -centers the completed road- bed i s avai lable and the

stakes m ay be set wi th the transi t , in the usual way .

9 3 . D ifi'

erence in L ength of a C ircular Are and its L ong

C hord.

FIRST MET HOD .

—Let the central angle be a degrees . By

o0

3m 1a. 2R

Changing degrees to circular measure, a ( ia 7:meas . )

O

T he length of arc i s Eh R5? 3 . T hen

Arc chord Ra

c .

'

SECOND METHOD .

— Ah easy approximat ion m ay be found as

fol lows:

Referring to Fig. 17 , AE : 0, OF : 211 . Let AG b

From the righ t triangle AFG

From which

54 A F IELD-MANUAL FOR RAILROAD EN G IN EERS.

N eglecting the a:in denominator as smal l compared with 0

gives

T hen will 26 c 2 :

From Huygens’ approximat ion to the length of a circular are86 0

( see VVilliam sou’

s D ifferential Calculus, p . are

3

T herefore

Arc chord c g(2b c) . (e)

Insert ing the val ue of 2b c from (38) gi ves'

Arc chordWhen the arc i s not very great we m ay wri te 0 l 00m where

n. is the nu m ber of chains contained in the arc AE . Fromremembering that n. 212,

M I

Insert ing these values ofe and M in (d),

13 2

100m 800m D neat ly . (39)Are chord g

EXAMPLE .— Find the difference in length of arc and chord of

0. 4°

curve when n, 6stat ions .T he central angle is 4 x 6 then, from T able IV ,

C

By

Are chord X ft .

By

Are chord —6X 6X 6X 4 X 4 — 4 .32 ft

REMARK .

— F0 1'm ula (38 ) i s interest ing as showing what a co m

LOCATION .

paratively smal l increase in length of l ine is caused by a consitl

et able lateral deflec tion in al ignment . For instance, a lateraldeflec tion of 2000 feet is made at the mid point of a l inefeet long what w i l l be the increase in length ?

2(2000)Q

By (38 ) the 1ncrease 13 200 feet , giving for the

increased length feet .8 . Locating Sim ple Curves.

954 . T o L ocate a C urve with t he C hain by Offsets fromC hords P roduc ed.

In Fig. 21 let the P . 0 . fal l at B. IfB0 is a ful l chain, prolong

FIG . 21 .

the tangent AR to H,m ak ingEH EU EUwill equal t, which

m ay be calculated by or With B as center , strike an

arc with radius EH , and with H as center and t as radius strikean are . at 0 , where these arcs intersect, set a stake. P roduceBC to K ,

m ak ing OR BC CD ; strike the arc K D from C as

center ; make the chord K D z d, cal culated from or

Set a stake at D and proceed in l ike manner for the o therpoints unti l the P . T. i s reached,

'

where FP i s m ade equal to t.Usual ly the R C. does not fall at a full stat ion then RC t

,

which m ay be found by (34 ) or Using this value of t’

, we

locate 0 as above. At B make DR t'

, and prolong R0 to

L ; make LD t and set a stake at D . EM will equal d, and

m ay be located as before .

We m ay regard K D as equal to K L t, and, finding, XL ,

56 A F IELD -MANUAL FOR'

RAILROAD EN GIN EERS.

measure K D and set D without locat ing R. T o do this we havethe similar t riangles BBC and CK L,

from which

and therefore,since X C CD ,

XL t

In l ike manner at Fwe haveEF

PN _ tED

, and FP : t ,

henceNF : PN + t 1

Make EQ prolong QF, and we have the tangent at F.

EXAMPLE .

—Gi ven the R C. of a 5° curve at 106 20 and the

angle of intersection to locate the curve.

Here L?

53 stat ions.

T herefore the number of the P . T . i s

sta. 1 10 60.

BC in this case i s 80 ft . ,and by

t X 5 ft .

By z'

x a.

Set offH 0 ft . , and at D makeED x E

8

0

0

0ft .

At E make ME d by T h i s w il l be at sta. 109

at 1 10 set a stake by offsett ing ft . The last chord is 60 longand hence the offset

/60

Make EQ ft and p ro long QF , the terminal tangent .

NF : x —l x z: ft .

58 A F IELD-MAN UAL FOR RAI LROAD EN GIN EERS.

EXAMPLE .

— Locate three stations of a 4 °

curve by ofi sets every50 ft . on curse.

Referring to T able V ,the required offsets are

and By Tab le IV the distances measu redalong tangent are andWi th these val ues we can set out the curve ei ther way from A .

Had we used formula (36) we should have had for the valuesof the ofi sets and

96. T o L oc ate a C urv e b y Ofiset s from a giv en L ong

C hord.

F IG . 23 .

Let FK , Fig. 23 , be the given chord. We m ay compute theoffsets y . y, M by the methods of 8 3— o i which formula

y gm nD ,

i s the mos t convenient , with in the l imi ts of i ts appl icabil i tyand setting off these ordinates , locate the curve.

Or we m ay set 0 11 the m id-ordinate M : R v ers FOA at A

and at 0 set 0 11 y ? M R vers D ,making

AC z fl L s in D .

GE wil l be

y. M R vers 2D ,and AE R sin 2D .

AN OTHER MET HOD i s to find the angle K OF at the center, and

by T able IX determ ine BA 111 ; then by T ables V and IV

LOCAT ION .

determine BL, BN , LII , and 1 70 . T hen HO M BL , whichset off at C,

and other points in l ike manner .EXAMPLE .

— G ive11 the R C. of a 4° curve at stat ion 160 75,

the angle between tangent and chord requi red the offsetsnecessary to locate the curve.

I z:2 X 9 180

.

L1

4

8 stat ions .Hence the R T . fall s at sta. 165 25. T he

m id-point on c urve B fal ls at sta. 163 . By T able IX

70 5417 .64 ft .

By T able V the m id-ordinate for two stat ions of a 4° curve 18

BL

Hence H0

By T able IV . HL AO ft .

Measure A 0 ft . , and set off OH : ft . , and drive astake at H; In l ike manner find

GE : and A E : ft .

T he points P and Q are also located by means of the coordi

nates just determined.

If B had fal len at an odd station,the curve could have been

located in the same manner , H and P being 100 ft . from B, G'and

Q200, etc .

9 7 . T o L ocat e a Curv e With T ransit and C hain when the

D egree D or Radi us R is K nown.

If R i s given, determine D by then, since the angle inthe c i rcumference of a c i rcle is half the angle at the center subtended by the sam e chord, we m ay locate points on the curve bysuccessive deflec tions from the tangent .In Fig . 24 let the P . 0 . be at A , at which point set the transi t,

and wi th the vernier -plates c lamped at zero place the telescopein tangent either by sight ing the B ]. or by backsighting to somepoint in the tangent Defiect from the tangent half the angle atthe center for the sub-cho rd or chord, and direc t the head chainm an into l ine whi le the rear chainman holds h is end of the chain

60 A FIELD-MANUAL FOR RAILROAD EN G IN EERS.

at the transi t , the chain being kept taut . T he stakem an drives astake at the point where the head chainm an

’s flag rested, and the

rear chainm an advances to th is point . Deflect 5D from the chordAB j ust run, and while the rear chainman holds h is end of the

chain at B di rec t the head chainman into l ine at 0 . O ther pointsare located by deflec t ing an addi tional «

.e for each chord lengthmeasured, unti l a point E is reached to which i t i s desi rable to

F 1G . 24 .

move the transi t . T he angle FAE should not exceed abou tMove the transi t to E , backsight to A ,

and deflec t FEA EAR,

when the telesc0 pe w i l l be in tangent , and the curve can be continued unti l i t i s again necessary to move the t ransi t . At the

R T . pu t the telescope in tangent by backsight ing to the pointlast occupied by transi t and deflec ting the tangent ial angle as at

E . T he l ine m ay now be continued.

9 8 . T he Index -angle is read on the vernier -plate, and i s theangle between the tangent to the curve at the P . C. and any otherl ine passing through a po int on the curve when the telescope isdi rec ted along this l ine. I t i s most frequently taken as the anglebetween the ini tial and any subsequent tangent to the curve.

T hus at E the index -angleequal s EFP 2FAE . A t any pointon the curve the index -reading in tangent m ay be found by thefol lowing rule, which m ay be easi ly deduced from a figure:From double the index-angle tha tfixed thepoint subtract the index

( 171gle t'

u tangent a t the last point; the rem ainder is the index-angle

required.

9 9 . Subdeflec tion-angles m ay be found by 13) rigidly , or

approximately (and with sufficient accuracy except whenD i s verylarge) by assuming the central angles to be proportional to thei rcho rds . T hus on a 4

°

curve the cent ral angle for’

a sub -chord of

25ft . would be and the subdeflec t inn-angle

LOCAT ION .

EXAMPLE . : Loca1e a 4° curve to left when the P . C. i s at sta .

8 1 25and I : 32°

chains .

Hence the R T . wil l fa il a. sta. T he

first sub-chord i s 75ft . long, and the first deflec tion-angle wil l befound by

SID %6 I

216 1

°

By the approximate rule,‘ since 4D

whence 46 2 X 4 1°

30'

as before.W i th transi t at R C. deflect 1°

30'

from tangent , measure 75

feet , and set sta. 82. T hen a deflec tion of 3°

30' wil l determ ine

83 , 5°

30’

sta . 84 , 7°

30'

sta. 85. N ow rem ove transit to 85, andw ith - vernier at 7 ° 30' backsigh t to 8 1 25. Reverse telescopeand set vernier at 15° when the telescope will be in tangent .Ah index angle of 1 7

° wil l fix 86, and so ou.

T he last cho rd will be only 40 feet long,for which the sub

defiec tion-angle is T4505 of that is, T he index -angle fixing

the R T . is therefore 23 °

T o get in tangent at 89 40 backsight to sta. 85, wi th vernierat 23

°

48' then by the rule of 9 8 the index -reading i s (23° X

2 15°

32°

36’

I . Set the vernier a t th is reading and run

tangent .CAUT ION - It i s not good pract ice to set more than 4 or 5stations on curve from any one point . MR. SHUNK gives the l imiting angle to be deflected from tangent as and says 15° shouldrarely be exceeded. (Field Engineer, p .

1 00 . T he T ransit N otes m ay be conveniently kept in the formbelow , which shows the notes for the last example.When possible the tangents should be run to intersec tion,

the

angle 1 measured, and the tangent distance calculated. T hen

62 A FIELD -MANUAL FOR RAILROAD EN G IN EERS

Station. Rem arks.

Deflecti

on

ang

l

e

Index

readi

ng

Cal

cul

at

ed

Co

urse

Magnet

i

c

Course

l l

.

l l I l

+40 0 P .T . 0° 48 ’

33° 48:32° 36’ N E N E

21° 0’

19° 0’

17° 0 ’

15° 0’

5° 30 ’

2° 0’

1 ° 30'

4° C .L . ; P .I . set .

+25 0° 0 ’0° 0’ 0° 0’ 1 : 32° T :

ft .

N 60 12 E N GO° 10 E

m easure along tangents and set B C. and R T . from the P . I .

When the curve i s run ih , the posi tion of the R T . thus foundshould agree with the one set from the B I . If the error isgreater than the c i rcumstances of the case permit, the curvemust be rerun and tangents rem easure‘

d.

1 0 1 . Ano ther F orm ofN o tes, and in som e respec ts a bet ter onethan the above

,i s given below . T he index -readings are com

'

puted as though the enti re curve were run from the R C. The

notes for the las t example would appear as below

S tat ion.

+40 (DR E. 0° 48' l6°

é8 ’ 32° 36’ N 27°30’ E

15° 0'

5° 3C’

2° 0’

1 ° 30’

4° curve left ;+25 0° 0’ 0° 0’

T : ft .

N 60° 10’ E

T he computat ions are all made before beginning the work , and

the notes have the advantage of perm i tting the trac ing of the

curve ei ther way from the instrum ent withou t addit ional comp u

LOCAT ION .

tations. Suppose the transi tman to have run the curve from the

B C. to sta. 85, to which po int he removes the instrument . He

there sets the vernier at 0°— the angle on l imb when telescope

was in tangent at the P . 0 .— then sighting theR C . he reverses

the telescope and deflec ts to 9° which wil l fix sta. 86. Had

the tangent at 85been desired, a reading of 7°

30’— the angle that

located that point— would have put the telescope in the plane desi red. A reading of 11

°

30 fixes 87 , and so on to the R T .

Rem oving to thei

P . T . , the plates are c lamped at 7°

and a

backsight to sta. 85 taken ; then deflec ting to 16°

the telescope is in tangent at the P . T Had i t been desirable to set 84from 85, a reading of 5

°

30’ would fix that po int ; others m ay

be found in the same manner .~Any convenient fo rm of notes , which are intel l igible to another

engineer who m ay have to retrace the curve, m ay be used, bu t iti s desirable that some general fo rm should be employed. Eitherof the p receding forms seems to meet ordinary requirements.

0 . Obstacles.

1 0 2 . T o P ass an Ob stac le on a C urv e.

FIRST . S upp ose the obstacle to be one obstructing vision a t one

sta tion only .

1 11 Fig. 25 suppose transi t set at A , and B and 0 located fromthat point , bu t t he nex t ful l stat ion

,E

,to be invisible from A .

FIG . 25.

Set a plus stat ion at E , as near the obstruction as m ay be conven

ient,then set F 100 feet from E . Nex t make FG 100 CE,

and locate G with the corresponding deflection-angle. Otherstakes m ay be set beyond G, or the transi t m ay be removed tothat. point and the curve beyond traced.

SECOND . Suppose the line of sight obscured for m ore than one

sta tion,as in Fig. 26.

64 A F I ELD -MANUAL FOR RAILROAD ENGIN EERS.

If transi t i s at A , deflect an angle HAB that wil l clear all oh

struc tions, and at the same ti m e cause B to fal l at a ful l stat ion.

T hen by T able IV , T able IX , or by formula ( 16) calculate the

long chordAB measureAB and move t ransi t to B then deflect

FIG . 26.

the angleABC: BAH when the telescope wil l be in tangent .T he curve m ay now be run both ways from B.

If it happen that some stations, as E and E in the figure, are

st i l l inv isible, they m ay be located by offsets from chord or tan

gent .EXAMPLE .

- Let the curve be 8. 3° curve to right angle HAB

: 7°

the defiec tion-angle for 5 stat ions. By T able IV the

long chord is feet, which can now be measured and a hub

set at B ; then making angle OBA 7°

the telescope will bein tangent and the curve can be traced ei ther way .

T o L oc ate a Curv e when the P . C. is Inac cessib le.

In Fig. 27 let theR C. at B b e in

accessible i t i s desi red to reach a

point B on accessible ground.

FIRST METHOD . Assume a

point B on the curve such that al ine AH from an accessible pointA , on tangent , will clear the oh

siacle ; for convenience H shouldbe at a ful l station. T he are EH

and central angle, which equalsHOF, are then known. CalculateBC : T by ( 14 ) or (14a) ; thensince AB i s known, A 0 , AB+BC,

is known.

Now in triangleACH , from trigonom etry ,

tan g(h a) AC OH

tan g(h a ) A 0+ UH

66 A FI ELD-MANUAL FOR RAILROAD ENGIN EERS.

SECOND METHon.

— If F , any assumed point in tangent , i svisible from A ,

AF m ay be measured by some indirect method;then AR AB T . T he tangent for 8. 1° curve having same

intersect ion angle, K FG, is T , T X D ; find this val ue of T . in

T able IX“and take out the corresponding value of I . Wi th

transi t at F deflec t the angle K EG, m easure FG FB T and

set hub at G. The stat ion number of G is found by dividing thecentral angle, K EG, by the degreeofcurveD . Move to G and

t race the curve.

EXAMPLE .

— Let AR m easure ft . from sta. 139 of the lastexam ple. T henAB 9 25ft and BE : 225 ft .

x 4 1062 ft . , which by T able IX is the val ue of T 1 for

I : Set transi t at F , deflec t and measure FG ft .

L chains ;

hence G wil l fal l a t sta. Move to Gand run the curve both ways .T HIRD METHoo .

— In Fig. 28 let the inaccessible P . C'. be at B,

and let i t be required to reach E from a po int C on the curveprolonged backwards from B .

E At a given point A on tangent cal

culate the tangent offset by (36) orthe m ethods of 9 5,

then set th is off atright angles to AB ; set the transi t at

. a i 0 and turn off A OL 90° COB,

when the telescope will be in tangent

4b

at G. COB m ay be found from T ableY

IX by multiplying AG by the degreeof curve and taking half the intersec

FIG . 28 . t ion-angle corresponding to the m id

ordinate that equals this produc t . N ow deflec t and measureE CL ,

then by (16) or (16a) calculate CE , which measure. Moveto E and deflec t LEG EGL and the telescope wil l be in

tangent . The central angle BOE 2LEG BOG,from which

the arc BE and number of sta. E m ay be found.

EXAMPLE .— T ake the same example as in the last two cases .

.4 i s at sta . 139 , B at 141 25; hence AB stat ions .By z AO gX X 4 ft .

139ofthelast

llovetoG

Or by T able IX the angle co rresponding to the long chord(2 X x 4 z 1800 ft . i s 18 °

for which the m id-ordinate is4

ft . ,which equals A C and agrees closely enough wi th the value

for 2 above.

Make angle BAG: and measu re A 0 ft . Moveto C and sight to A , then make angle ACL 90

°

5 (9°

80°

Suppose an angle LGE 16°

1'

to clear the obstac le.

By formulaCE 2R sin ( 16

°

2 X X ft .

ft . For our 4° curve the m id-ordinate wil l be

Measure along GE ft . and set a hub ; move to E and run

the curve.

CE might have been found by means of T able IX ,for the long

chord of a 1°

curve having I °LGE 32°

2’ i s ft . ;

divide this by 4 and there resu lts GE ft .

1 0 4 . T o P ass t o T angent when the P . T . is Inac c essible.

T his i s just the reverse of the preceding problem , and m ay be

accom pl ished by reversing the processes desc r ibed above.When the P . T . , however , fal ls in or beyond a ri ver or lakeobstruct ing the ordinary methods of indi rec t measurement

, the

case meri ts a spec ial so lut ion.

FIRST MET Hon .

— Iu Fig. 29 let the transi t be at A , and B the

P. T . From the known stat ionnumbers of A and B the length of

curve and angle I m ay be foundthen, by AG: R tan %I , or

by ( 14a ) , AO

Move to C and deflec t the angleI ; set a stake F , and one at someother accessible point E ; measureangle ECc . Move to F and

measure the angle EEG and the

side ER; then in tr iangle ECF

angle e 180°

(c+f) ; by trigonom etry

FIG . 20.

sin 6

sin 0CF EF.

68 A FIELD -MANUAL FOR RAILROAD EN GIN EERS.

Since BG AG, there resul ts BF CF AG; and as the stat ion number at B is known, that at F becomes known, and the l inem ay be cont inued.

IfB is not the P . T ., measure back the distance FB, set transi t

at B, and continue the curve.

EXAMPLE .—Let the P . T . of a 2

°

CI . fal l at sta. 205 50— an

inaccessible point ; suppose A at sta. 200, angle 0 fEF 310 ft .

Here I x 2 1 1°

and e 60°

By (14a ) , T ftf

From applying logar ithms,log CF

Whence GE : ft . T hen BF : ft

therefore the num ber of F will be 206SECOND MET Hon.

- In Fig. 30, with the transi t at any po int Aon the curve, assume a long chord ABand calculate the angle GAB; deflec tthis angle from the tangent AG, and set

a point E beyond obstruc tion; set alsoa stake at G in tangent .Move to E and measure AEG and

'

s ideEC. Compute AE from the triangle AEG. If this is greater or lessthan the length of the long chord AB

,take thei r difference BE and set a hub

at B. W ith the t ransi t at B trace out

the curve.

EXAMPLE .— l en A at sta. 210 of a

C . L .

,angle a z l 2

°

,6: E0

F‘G 30 18 1 ft . T hen 0 and by sol vingthe triangle A EC, AE : ft . By T able IX the long chord of

a 1° curve for I : 24 ° i s ft thereforeAB

3

ft . N ow will EB : ft . ,which is the dis

tance along EA that transit must be moved back from E .

LOCAT ION .

1 0 5. G iv en the P erpendic ular p from a P oint to a T angent ,

to Find the 'P oint on T angent at which to Begin a C urve of

G iven Radius which will Pass through the G iven P oint .FIRST 8 0 1.UT 10 N .

— In Fig. 31 let P be the point, BP the perpendicular. We have to find

From P draw PC paral lel toAB then in triangle OPO’

It 2 7° (R

From whicha: 4/2Rp (43)

“L" ‘

u,SECOND SonUT 10 n.

— Conside1' 2

p AO as the m id-ordinate for 5a long chord 273:then p x D Ethe m id-ordinate for a 1 ° curve V0

for a central angle equal 2a .

FIG ~ 31.

T he corresponding long chord m ay be taken from T ableT hen

- (43a)

EX_AMPLE .— Gi ven p z:30 ft D 4

°

(R to find 73.

By a: V85,962 900 feet .By the second method

30 X 4 120,

the m id-ordinate for a 1° curve corresponding to an angle of

23°

for which the long chord is Now,by (43a )

2: feet .1 06. In F ig. 3 1 , G iv en a:and p to F ind the Radius of a

C urv e T angent to AR at A and P assing through P .

2 -z

From (43)a: p

70 A F I ELD -MANUAL ron RAILROAD EN GINEERS.

1 0 7 . G iv en the L ocation of a P o int P referred t o the R I .

to F ind th e Radius of a Curv e through P which will Unitethe G iv en T angents .

FIG . 32.

In Fig. 32 suppo se BC Z, BP m known

,and angle a cal

culated or P C and a m ay be measured on the field.

From triangle 0 1 1 0 ,

b 90°— (a -l- g-I ) , and 0 0 : R sec é I .

N ow from triangle F CO,

COs in g ROsin b.

Insert ing val ues ofP 0 and 0 0 ,

sin y :

an equation from which the unknown R has disappeared. N ex t,

from the same triangle,since 2: 180

°

(b -l

P C .

When I i t can easily b e shown thatR Z + 7n t

'

2lm .

LOC ATION .

1 0 8 . T o Loc ate a T angent to a Curv e from an OutsideP o int .FIRST Mensou — In fi g. 33 1et P be the point and ABB the

curve. Run a trial - l ine PA cuttincr the cu rve in A and B.

Measure PA and AB :or m easure PA and angle 0 between the

cho rd AB and tangent A L . T hen

14 13 2 221 4 0 : 212 5111 0 ,

OC = R co s a .

By geomet ry ,PE t

’PA x PB, PE being the required tan

gent. From the figure,

tan n

tau m

At P deflec t the angle I m n from PA and run the tangent.SECOND hIE T HOD s

— In T able IX find the long chord for a

cent m l angle then

and CO = R — CH

We m ay now proceed as before.

72 A F IELD-MANUAL FOR RAILROAD'

EN GIN EERS.

1 0 9 . T o Run a T angent t o Two L oc at ed C urv es ofC ontraryP lexure .

FIRST CASE .

— In Fig . 34 let EX and LE be the curves,'

and

K L p measured on the ground.

FIG . 34 .

Let FE t be the required tangent .Draw parallel and OQH perpendicular to FE from thetriangle O.H0 2 since FII R.

(Ex' i‘ R2 + 1 0

2 (Ex’ i‘ R2 )

2 t?

whence

R1 + R2

Also , cos aB i +R2 +p

The arcs EX and LE m ay be found from the angle a and theknown curvatures, after which the points F and E m ay be set.

If t i s given and 1) requ ired,it m ay easily be found from

SECOND CASE . p not known.

Set the transi t at a point A on one curve and note the bearingof the tangent to the curve at that point (see Fig. the bearingof the radius O2A difi ers from this by Run a line ABC of

one or more courses to intersect the o ther curve at 0 . Note thebearings and lengths of these courses and the bearing in tangentat G,

from which cal culate the bearing of R. and R2 beingknown , the lat i tudes and dep artures are nex t calculated. Let 0 22V

(49) Cllit 't ‘

74 A FIELD -MANUAL FOR RAILROAD EN GIN EERS.

whence

R. R+p 2EF _ 100R

_ 100R +

R). (50)

Had EFG been the located curve, with radius R,we should

have had

AB = 100 o o o o o o o

1 1 1 . T o C hange the R C. ofa L ocated C urv e so that P . T .

will F all in a G iven T angent P arallel t o T erm inal T angent of

L oc at ed C urve .

A C G P Let AR,Fig. 36, be the 16

cated curve ; FE , the tangentin Which the P . T . m ust fal l .Let the distance between tan

gents be HE p .

Draw BE and 0 0’ paral lel to

AR ; evidently AO 0 0'

:BE ,

F101. 36.

0’ being the new position of

center.In triangleBEH,

LOCATION .

1 1 2 . T o F ind the C hange in Radius and P osition of P .G. if

P . T . is Required t o fall on the sam e Radial L ine but on a

T angent distant p from ,and parallel to , T erm inal T angent to

L oc ated C urv e.

In Fig. 37 let AB be the located and GE the required curve.

Draw the paral lel chords AB and

CE . Draw OH andBF perpendicularA C K

toAB . T heangles FBE:GAH=%I .

From the figure

CH : AC Sin 41 ,

' BF z BE cos eI z p cos alI.

Equating,. AG sin 4I : 1) cos {?I ,

whence Em . 37.

A0 = p cot §-I .

In the triangle GPO) , OiP AO, OP R 5 R1 and

(R — R1 ) tan I = AG z p cot g-I ,‘

or R

T hereforeR. = R — A 0 cot I z R —

p cot g—I m ot 1 . (54)

From trigonometry,sin I

1 — cos land cot Icot {51

Inserting these val ues in (54) gi vesR — R

sin I cos I cos IR

cos‘

Ip '

l — cos l'

sin 1_

l — cos I.

iyet s I

'

From trigonometry, ex see I

ex see I'

76 A FIELD -MANUAL '

FOR RAILROA D EN GIN EERS.

EXAMPLE .

- 4A curve strikes 25 ft . inside 11 tangent inwhich the P . T . must '

fall . Find the necessary changein radiusand

position'

ofP C. when IBy (53) the change in P . 0 . i s

AO 25x ft .

By R, ft .

By Tab le I we find this to be the radius of 5 2° 47' 41" curve.

1 13 . G iven a L ocated Curv e uniting Two T angents t o

F ind the C hange in P osition ofE U. or in Radius for a G iven

C hange in the Intersec tion-angle.

FIRST CASE — Radz‘

us unchanged.

InFig. 38 let BOE I be the origi

nal intersect ion angle, FCE I the

new angle. F rom the figure,

AG r - AU G0 ,

AG R (tan §I tan (55)

BY T ABLE IX .

— From the table, forangle I ,

E101. 38 .For I

'

T —

7;

T hen AG T T’

SECOND CASE .— P .C. unchanged.

Here the tangent T for the two cu rves IS the same, and

therefore

LOCAT ION .

BY T ABLE IX ,

T 1 4 Io

T 1

D D .

whence D ,M ! £ 4 1

T .4 1° T

1 1 4 . T o F ind the C hange inRand P . 0 . for a G iven C hange

in I , the T rem aining unchanged

FIG . 39.

In Fig. 39, from the tr iangles OBG and 0 1BH

0 G R cos I

and O.H z R1 cos L .

NOW GA HF ; henceR,

— ~R. R R cos I .

VVhence

1 cos I vers I .

R' R1 cos

_

I , TRvers I ,

'

Also , FA HG EH BG.

Insert ing values of.EH andBG, there resultsFA R sin I . (58)

1 15. G iven a L ocated C urve to F ind the C hange in R for

a G iven C hange'

in T ,I rem aining unchanged.

In Fig. 40 , from the triangles OA O and sinceEA 2

" EU AC ,

78 A F IELD - MAN UAL FORR

RA ILROAD ENG IN EERS.

R1 tan QI - R tan —gs A T'

T .

Whence R. R+ (T’ T) cot £1 .

FIG. 40.

BY T ABLE IX .— EA being known, 7

”T EA . T hen, by

T , 54 1°

1”

If the change in vertex of curve i s wanted,there results, from

E : CG T tan i], E'

CH : T'

tan il .

T herefore 0 151 E'

E : (T'

T ) tan (60)

GE can be found from T able IX after finding I) , as above.

IfR. is given and EA wanted, (59) y ieldsEA : T

T = (R,

1 16. T o F ind the Radius of a Curv e hav ing the Sam e P .U.

as a G iven C urve,but ending

'

in

a P arallel T angent .

In Fig. 41 let the perpendiculardi stance between tangents be p , and

AB be the located curve ; A O, R1

i s required.

FIRST MET HOD .— Draw OH atr igh t angles to 0 1E ; then

0 1H + HG + GE,

FIG . 41. R1 (E 1 R) COS I + R 1)

From which R1 12+1 —

p

cos I ves ’

LOCAT ION .

SECOND METHOD .

— A , B , and E lie on the same straight l ine,

since I is the same for both curves. In triangle BGE angleEBG 11 , and

pcosec 1 I .

em %Ip 3

From T able IX , ABL ' a t 4 1

AE’

AR BB i s the long cho rd for curve of degreetherefore

If desired R m ay be found by or T able I.

T HIRD METHOD .

-B l'

aw FL paral lel to OIE ; then

p cosec I .

Fro m T able IX A0

AF : AO CF , the tangent distance for second curve ; hence

A _fl i l

REMARK .

— Ii transi t. i s set up at B, i t wi l l be wel l to set E

by m easurement from B, to serve as a check when the curve isrun in from A .

80 A FI ELD -MAN UAL FOR RA I LROA D ENGIN EERS.

ART ICLE 9 . COMPOUND CURVES.

A. Location Problem s .

1 1 7 . G iven Two Unequal T angents, their Intersec tion-angle,and One Radius, t o F ind the O ther Radius of a C omp oundQurv e uni ting T angents .In Fig. 42 , AH : T 1 and BIZ : T , are the known tangents,

AO, R. the known radi us . B 0 2 R2 and the angles I , and I 2must be found before curve can be located.

FIG . 42.

Extend first branch to F , so that tangent FL is paral lel to EH.

Draw EX and BG perpendicular to FL draw FB and extendto E ; i t wil l pass th rough the because the cent ral anglesE0 ,F and EG21? are equal . T hen

8 2 A FIELD -MAN UAL FOR RA ILROAD ENGIN EERS.

By T able I th is i s seen to be the radius ofa 3°

7 -5'

curve.

T he length'

offirst branch i s feet , and of the secondfeet ; hence the P .C.C . fal l s at 112 while the P . T . i s a tsta. 120

1 1 8 . G iv en the L ong C hord from P C. t o P . T . of a C om

p ound C urv e, the Angles it m akes w ith the T angents and

OneRadius, t o F ind the O ther Radius and the C entral Angles.

In Fig. 42 AR i s known, as also the angles HAB a and

HBA 6. T wo angles and one side of the t riangle HAB are

known, and the sides HA T 1 and BB T 2 m ay be found,

after which the solu tion i s the same as in the last problem .

A sol ution m ay be reached in a difi erent manner. I z a b,

HAF : 4I : g(a b) , and BAF : 1}(a b) a z 40) a ) ,AF r: 2R, sin %L In tr iangle BAF two sideS '

and the inc l udedangle are now known, so BF and angle EFA m ay be found;GFB z. 41 2 4I BFA .

T hen EF 2R, sin 4L

and EB 2 EF BF becomes known.

T hen EB 2R2 sin 41 2 2R, sin 4L BF ,

whence R2 R1

Evidently I , I I 2

1 1 9 . G iv en the Radii and C entral Angles of a C om pound

C urv e to F ind the T ahgent L engths, the L ong C hord from

B C. t o P . I .,and the Angles it m ak es with T angents.

In Fig. 43 draw AE and BE from the

R C. . and P . T . to the thencalculate AE and BE by ( 16) or byT able IX . In triangle AEB angleAER 180 g(I , I 2 ) . T wo sidesand the inc l uded angle being known,

the triangle AER m ay be so lved forAR and the angles ABE and BAE ;then

LOCAT ION .

AB i s known, the sides AF : T 1 and RF : T 3 m ay be com

pu tca.

12 0 . G iv en the L ong C hord from B C; t o P . T . of a C om

pound C urv e and the Angles it m ak es with T angents t o

F ind the Radii When the C om m on T angent is P arallel to L ongC hord.

In Fig. 43 let GE be paral lel to AR, and GAB a

known. T hen

BAE RAG GEA 4a,

ABE EBB HEB 4b.

AER 180°

%(a b) .

In triangle AER, remembering thatsin [180 Ma. b)] sin 1}(a 4; 6)

Since AG1 1? a and E0 23 b, the radu R1 and R

found from formula or ( 16a) .

1AE AR sin 46By R:

sin .1c 2 sin %a sin % (a b)

.

R:133 5

”AR sin %a

sin 3126 2 sin %b sin % (a. b)

EXAMPLE .

-Required R. and R2 or D , andD , when AR900 feet , a bBY

By

From T able I, D . 2°

22'

50"

and D 22: 3

°

42’

8 4 A FIELD -MAN UAL FOR RAILROAD EN GIN EERS.

B. Obs tac/es.

1 2 1 . T o L oc ate a P oint on ..ne Second Branch of a C oni

pound C urv e when the P .C. C. is Inac c essib le.

Ordinari ly the second branch is located by setting transi t at .

the

P . C. C . and running the curve from that point . An obstac le on

ei ther curve m ay then be passed by the methods given for simplecurves.

FIG . 44.

are readi ly found thenEL R2 vers b R, vers a ,whence

vers b

AB = R1 8 in a +R2 sin IL (68 )

Deflcct FAB a from tangent at A measure out AR set thetrans i t at B and locate the second branch .

BY T ABLE IX .

— T ake the m id-ordinate in table for an intersect ion-angle 2a then

M1 4 2a.D

T hen EL x D , i s the m id-ordinate.

for a 1° curve having

I 20,from which 1) becomes known. From the table now find

AL and I R, the half- chords for angles 2a and 2b, and proceed as

before.

SECOND METHOD .

— By m eans of tangents .

From Fig. 44 , AF : FE R. tan 33a .

When the P .C.C. IS 1naccessible,

locate thefirst branch from theP .C.

and the second branch from the

P . T . ,if this lat terpoint i s known.When this 'i s not the case proceed

by one of the following methods:FIRST . By m eans of a long

chord.

In Fig. 44 let E be the.

A some known point on first

branch , EF a tangent at E , and

AR parallel to FE. T he stationnumbers of A and E beingknown, the arc AE and angle a

86 A FIELD -MAN UAL FOR RAILROAD EN GIN EERS .

Ri— Rc

—p

Rx— RQ

T hen a divided by D , gives arc BA .

If desi red, BE m ay be found from the right triangle BE G,in

Wh ich the side B0 p and angle GEB 445 are knownA ,H

,and B lying in the same straight l ine ; then

COS a

P 1cosec a .

$ 111 450p 75

Or BA andHA m ay be found from T able IX ,after which

EXAMPLE .

— A 3° curve ends in a tangent at sta . 160 50

,

35ft . outside ofdesi red tangent . Find the po int of compounding with a 4

°

50’

curve.

From T able I , R for 3° curve equal s ft . , and for

50' curve ft .

T hen,by cos a 1

From table of cosines angle a is found t o be 17 ° D ividingthis by 3 gi ves sta tions for the arc BA . Hence the P .

number is sta. 154 and the new P . T . i sat sta. 158

1 2 3 . G iv en 21 L oc ated C ompound C urv e ending in a

T angent P arallel t o, and a G iv en D is tanc e from,a T angent

in which the C urv e is required to end. T o F ind the N ac es

sary C hange in P .C’

. 0

FIRST CASE .— Term z

nal branch ham’

ng shower radius.

In Fig . 46 let ABC be the locatedcurve, ABE the one required ; angleB0 1 0 a known, and al so MN r:19 .

If angle EOM b can be found, the

8angle of retreat from B to E wil l equalb a .

C Draw O.

’K and OJL perpendicular

to ON , which is paral lel to 0 , 0 .I

K L M T hen OE Z (R — R1 ) COS b,

FIG . 46.

0 L (R R.) COS a .

LOCAT ION .

Now EM: R, K L R, MN , from which XL Ms .

Hence

(R — R1 ) cos a —p .

From whichcos b cos a

Divide b a by D , the curvature of first branch , and moveback that number of stat ions from B to the new P . a t E.

Join evident ly F0 and angle K 0 1

'

0 , 0 170 ;

2 90°

% (b a) , 0 0 .

K 90°

b. Hence

CFG K 0 ,

'

0 , [90 g(b a )] (90 b g (b a ) (72)

From triangle OGE,

29

sin 20) a)p cosec g(b a ) . (73)

Or, from triangleF0 1: 2(R R1 ) Sill %(b a) .

Bad AEF been the original curve, b would haye been knownand a requi red.

From cos a cos bCF and angle CFM are given by formulas (73) andEXAMPLE .

— A 2° curve compounds wi th a 4

° curve at sta.

82 30 ; a 20°

p z:40 feet . Find number ofnew P . 0 . 0 .

and distance between P . T .s.

40From cos b

T his y ields b 24°

and b a 3°

The change in P . is3

233 stations; the P .0 . 0 .

number is therefore sta . 80

88 A FIELD-MAN UAL FOR RAILROAD EN GIN EERS.

By CFG 20’ 20° z 22

2

By F0 40 X feet .

SECOND CASE .— l

F IG. 47.

0 ,'0M and 0 .0L ,

(R, R) cos b 0 .

N + (R, R) cos a .

Bub Og

'

N z KB p ; therefore(R,

— R) cos a .

Whence cos b cos a

a — bT hen

Dwill be length of curve from A to E.

Angle K FB NO1 0 1

'

0 0 1 0 1

,1170 1 0 .

Bnt 90°

4m b) and N 0 , 0 90 a .

K FB [90°

t (a b)] [90 a] g(a b) .

From triangle K FB,

sin( 76)

Or, from t riangle since 0 , 1

'

FB,

FB 2(R, R) sin g(a b) .

term ina l branch having longer radius.

Let CAB, Fig. 47 , be the locatedcurve wi th P .C.C. at A , and let

EX be the tangent in which thecurve is requi red to end.

T he di stance BK z p , the radii0A R, 0 1A R1 , and angleA 0 1B = a being known,

i t w il lbe suffi cient to find angle EO,

F

in order to get the angle of ad

vance, AOE a b. Draw 0L

and 0 ,N perpendicular to 0 ,

F

and 0 ,B . From the triangles

90 A FIELD -MAN UAL FOR RAILROAD EN GIN EERS.

From tn'

angles K FH and E CG ,

HK GE GE1 l p

tan °b _

FH“

Go+173

tau °a +FH

But FH : (R R1 ) sin a .

(R B l ) Sin (1

From triangles and

(R R2 ) sin b (R R1 ) sin a .

When R9 R (R Rx)

Had AEF been the first curve located, b and R, would beknown,

a and R, requi red.

From the figure, reasoning as before,

(R Ra) Si ll b,

R, : R - (R — Rg)

SECOND CASE .- Second branch having longer radius.

FIG . 49.

In Fig. 49 let. AB be the located cnrve, EF the curve requim d,

0A 2 R, 0 1A 2 R1 , OQE : R2 , FB 2 p .

LOCAT ION .

R, and angle b are wanted, angle a being known.

We can show,as in first case , that

1120, HBL ia,

0M : K F : LB : (R.— R) sin a ;

and hence

tanEX HL p

Or insert ing values,Pltan gb tan 4a

(R, R) sin a.’

Angle b now becomes known and AE in chains,which

i s the change in posit ion of P . 0 . 0 .

From triangles and

(Rg

— R)

'

Had thenew tangent fal len ou tside the old one, we should havehad

_ L _ _

(Ra— R) Sin b

’ Otan tan 4b+

— R) c o o1 25. Having a L ocated C om p ound Curve

,to F ind the

C hange in P . and Radius of Sec ond Branch in order to

C ause P . T . t o F all at a N ew P oint in T erm inal T angent .

FIRST CASE .

— Second branch lea ving shor ter radius.

92 A FI ELD -MAN UAL FOR RAILROA D EN G IN EERS.

In Fig. 50 let NAB be the located curve, and C the po int whereP . T . i s required to fal l . Let B 0 k , 0A R, 0 ,B R1 , and

angle 0 ,OH a be known; angle b and R2 are required.

FIG . 50.

Extend fitst branch to F ,m aking OF parallel to 0 ,B. A

, B,

and F lie on a straight l ine, for angles A 0 |B'

and AGE are equal ;l ikewise E , 0 ,

and F lie on the sa m e st raight l ine.

From triangles GBF and 0 CF,

cot gb .

But GF EM (R R1 )(I cos a) (R R, vers a .

1 1

(R — R,) vers a'

From triangles and OOQL , since OIP k,

(R R,) sin b (R R1 ) sin a k.

Whence

k ‘ (R — E j ) sin a

sin bT hen b a di v ided by D gi ves arc AE . Wi th radius R2 locate

the curve E 0 fro m 0 or E .

94 A F IELD - MAN UAL FOR RAILROAD EN GIN EERS.

Had NEG been located andNAB required, the equat ions wouldhave been

kcot 4a z cot .

‘gb

—t—(Ra R) vers b

Rg— R SIn b k

In either of these two cases ifk i s unknown and the new radiusgiven or assumed, the desi red angle and the val ue of It m ay be

found from the foregoing equations . Or, knowing the new angle,

the new radius and value of 16 m ay be found from the sam e

equat ions .1 26. T o Replac e a C urv e of G iv en Radius

,which unites

Two T angents with K nown Int ersec t ion-angle, b y a T hree

c entered C ompound C urv e.

In Fig. 52 let 0A R be the radi us of located curve

FIG . 52.

0 2 0 2. Og

'

A R, the radiu s of terminal portions of the threecentered curve,

and the other notat ion as shown in the figure.

D raw and draw FOH perpendicular thereto . From triangles 0 20 13 and 0 20 11

0 211 : (R2— R,) sin 5

1 1 ] (Ra R) sin é I . (a )

SupposeR, and R, to be assum ed then equat ion (a) y ields1

SID f ]: o 0 O

LOCAT ION .

T hen x 4a L ) .

Suppose AOQ’E, 0 0 2 0 ,and R2 to have been assum ed. From

( 95) find I ) then,fro m equation (a ) ,

sin 712 1

R. R2 (R. B) sin $1 1.

EXAMPLE .

— G i ven a 4°

curve, I : and the terminalb ranches composed of a 2

°

curve for two stat ions, to find R. and

D , for the central portion.

Here I . 38°

From T able I, R:z: 2865ft .,R ft .

Whence R, R ft .

Log 1432.3

sin 19°

Sin 15°

0'

log

T herefore R1 2865 1063 3 ft . , and, by T able I ,

1 5°

nearly enough .

1 2 7 . T o Sub stit u te a C urv e of G iv en Radius for a T angentuniting Two Curv es.

In Fig. 53 let the tangent B0 : t, 0B = R, R1 ,

and

0 1A R; be known.

Angles a ,b,and a must be found in o rder to substi tute curve

AE for the system ABOE .

Draw OF paral lel to EU, then R,

R, and , from triangle

t c osec ( l 1/ (R,R)

2 t’ . (98 )

96 A FIELD -MAN UAL FOR RAILROAD zEN GIN EERS .

Now in triangle three sides are known and the anglesa and 6 m ay be compu ted. T hus if 3 i s the half-sum of the sides ,

cos 50 2

FIG . 53 .

Angle 6 m ay be found in l ike m anner , then b 180°

(6 d),and a z c b.

Po ints A and E m ay now be located and the curve t raced.

EXAMPLE .—A 3

°

and a 5°

curve are uni ted by a tangent 500feet long. Replace by a 2

°

curve.

Here RI

R z 1910 1 146 764 feet .

By tan d tan 33°

12'

By 0 0 1 feet .

In triangle 0 0 ; and 0 0 2

feet . So lv ing for e and c,

e 2 133°

o 23°

T hen b 13°

a 2 9°

56'

ART ICL E 10. TRACK PROBLEMS.

1 2 8 . Rev ersed C urv es should never be employed on mainl ines because of the shock due to sudden reversal of curvatureand superelevation of outside rai l . A short tangent should beinterposed between the two cu rves, which m ay ordinari ly bedone by changing the end-points of t he curve, or sl ightly al teringthe radius . If, however , transi tion curves are em p loyed to ease

98 A FIELD -MAN UAL FOR RAILROAD ENGIN EERS .

EXAMPLE .

- A 1°

curve i s cut by a tangent that makes an angleof64

°

32' wi th tangent to curve. Uni te by means ofa 4° curve.

By cos b cos 76°

07'

and therefore b a

1 1° mak ing AF, of figure, stat lons.

SECOND CASE .

— Joim‘

ng curve tangent° internally to loca ted

curve but on app osite side of cutting line from center of loca ted

curve.

In Fig. 54 let arc ME ,wi th center 0 2 and radius R2 , be thejoining curve. From the figure

cos d :

T hen arc AE a d divided by D ,and o 180

°

d.

Had the po int E been given and R2 requi red, it would havebeen,

from (101)R(cos d cos a )

1 cos d

EXAMPLE .

-T ake the sam e example as in first case. Here,

By cos d cos 24°

T hen 64°

32’

24°

56’

39°

equi valent to stations around curve from A to E .

T H IRD CASE .— Joining curve tangent externa l

ly to loca ted curve,

with center on sam e side of cutting Zine.

FIG . 55.

In Fig. 55let arc B0 ,with center 0 1 and radius R, b e the join

ing curve. Draw 0 .E parallel to CF , and 0 , 0 and OF perpen

dicular thereto .

LOCAT ION . 9

From the figure,

— R1 ;

T hen d 180 b, and AOB b a . T he curve m ay now betraced on the ground.

IfAO i s wanted,we have AO (R R, ) sin b R sin a .

If the point B is fixed and R1 requi red, there resul ts ,’fromR (cos a cos b)

1 cos b

EXAMPLE .— T ake the example given for the first and second

cases .

By

5730 X

5730COS 8 1 44

b a z 8 1°

44’

64°

32’

17°

to

stat ions on located curve from A to B. Angle d _r: 180

°

8 1°

44'

z 98-0

equ ivalent to stat ions from B to 0 on the

curve .

FOURTH CASE .

— Joz’

nz‘

ng curve tangent externally to located curve,

with center on opposite side of cutting Zine.

Let 0 2 , Fig 55, be center of jo ining curve, R2 its radius .From the figure,

R cos a + R2

R + R2

o 0 0 0 0 0 0 0 O 0

It'

M is fixed andR2 required, (105) yieldsR(cos c cos a ) E(cos c cos a)

1 cos c versin 6

EXAMPLE — T ake same exam ple as in preceding cases.

By cos c cos 57°

100 A FIELD -MAN UAL FOR RAI LROAD EN GINEERS.

cal l ing for a distance of stat ions;from A to M around

1° curve. From M to H on 4

° curve is stations.

1 30 . T o L ocate a Y

A Y i s made up of a system of tracks so arranged as to admitof turning an ent i re train. T hree of the most used arrangementsare gi ven below .

Fm s'

r CASE .

— 0ne branch of Y a straight line.

T his is only the spec ial case of the last problem in which thecu tt ing line becomes tangent to both curves . In Fig. 56, if any

FIG. 56.

one of the points A , B, or 0 i s given, the others m ay be locatedby finding the angles 6 and b. Draw 0 ,E paral lel to CA ; thenin triangle 0 0 1E

—.R1 .

R — R.

R+ RJ

T his fol lows at once from ( 103) by making angle a 0 . T henangle 6 180 .

b. If AB were a located curve and the pointB gi ven», formula ( 107) would furni sh us a value for R) .

Another solution is to produce the tangent at B to cut A0 at F ;

then AF F0 BF. Join F with 0 and 0 , it can easily beseen that angle OFO, and, by geometry

BF Z VR X Rl o o o o o 0

T herefore tan %b _

tan %0 0 0 o o o o o

thefts! 1'

102 A FIELD -MANUAL FOR RAILROAD ENGINEERS.

is the same as for second case. T hen b i s the central angle forcurve AB

,a'

1 80 a, the central angle for AO, and c

180 c , the central angle for curve B0 .

FIG . 58 .

EXAMPLE .

— If A i s at sta. 820 on the 1°

curve AB, AO an

curve, connec t wi th a 6° curve 0B. Here we have5730 7 17 z 5013 , 0 . 5730 955 4775,

955 717 1672.

Solv ing this t riangle, we get 6 88° b 19

°

anda 72°

T he number of B i s therefore 820

839 the length of 0B is stat ions, and

ofA 0 i s1078 stat ions .

1 3 1 . T o L oc ate a Rev ersed C urv e b etw een P arallel

T angents .

FIRST CASE .— Radt

'

z'

equa l. F’f .

r;

(a ) T he equal radi i R and distance p between tangents known.

In Fig. 59 draw OE paral lel to A 0 to meet 0 ,B produced.

From tr iangle GEO) ,

COS G

OE : OR sin a

LOCAT ION .

From triangle ABG,

p cosec 40. MOE ?p’

FIG . 59.

(b) AG and p known,R required.

Here AB VAG" p" k . Draw OH to the mid point of

AO. T i'iangles AOH and AEG are similar and AH 416.

T herefore

whence

EXAMPLE .— Connect two paral lel t racks , 30 ft . c . to c . by a 7

°

reversed curve. From Table I , R 8 19 feet , and, bycos a 1 cos 10

°

By OE 1638 x . 19052 feet.By AB feet.If p 30, OF or AB had been given, we

should have had, by (1 15)R

1208 19 feet.

104 A FI ELD -M’

ANUAL FOR RAILROAD ENGINEERS.

SECOND CASE .—Radiz

°

unequal.

(a) Suppose the radi i R 0A and R1 G,B (Fig. 59) to beknown. We must find central angle a and AB h. From thetriangle

COS a

T hen AB will be given by(b) Suppose AB: k

, p and R known, to find R, and angle a .

T riangle ABG y ields

0 ,LB i s similar to AGB. Hence

But A 0 2R sin 4a ,and LB 401: A 0) 40 1 . Insertingthis val ue ofLB and solving for R1 ,

From similar tr iangles,R k 0 1

from (118) and solving forInsert ing th e value of 0 1

R1 we get

EXAMPLE .

— AB p R 8 19 ft . , to find angle

a and R1 .

By sin 42 sin 5°

T herefore angle a 1 1°

By R1 8 19 z 68 1 ft . , an 8°

25' curve.

106 A F IELD -MANUAL FOR RAILROAD EN GIN EERS.

1 33 . T o Find the Radius of the Rev ersed C urv e AFE ,F ig.

61 , G iv en Angles I and I’

, and

EU 2 70.

From the figure,

R tan %I BF ,

R tan OF

Adding,

R(tan 41 tan B0 : 70.

VVhence

ktan é I —k tan i l

"

EXAMPLE — GIVGH I 130 700 feet, to find R.

1 3 4 . T o L oc ate a Rev ersed C urveb etween Fix ed P oint s.

In Fig. 62 let AB k, and angles 1 and I be known. We

have to find R and the angles a and b.

LOCAT ION .

We now have a = I + w and

T o find Rwe have AE+ EF + FB : 1c,

R sin 1 + 2R sin fc + R sin I’z h.

Whence sin 1 + sin 1 ’

+ 2 sin cv”

Another exp ression for R can be found by drawing AN and BL

perpendicular to and EN paral lel thereto. T hen,since

4 BAN = 9 3

R sin a + R sin b = k cosw.

h cos w

EXAMPLE .-T ake the example of the last problem ,

k 700, I : I'

By

cos {3 g(0.98481 cos 15°

We now have a 25°

48’

and b 35°

700 xBy ( 128 ). R

m 523 3F0

1 35. T o C onnec t Two D ivergent T angents by a Reversed

'3‘urv e .

FIRST CASE .

—Adbancing towards theR I .

G iven the radu R and R) , the angle I and AO k, to find the

angles a and b (Fig.

ft an 8°

41'c urve.

L

FIG . 63.

Draw 0 0 paral lel to the tangent B0 to meet 0 ,B produced.

'l‘

hen EF B0 AF AE.

T herefore B0 R cos I k sin I .

108 A FIELD -MANUAL FOR RAILROAD EN GINEERS.

From triangle 0 0 ,G,

R1 + BG R1 + E COS I — k SIn I

R+ R. R + fl

T hen a MOJV'

b I, 0 ,M being paral lel to 0A .

SECOND CASE .—Recedz

'

ngf7'

0 m theR I .

In Fig. 63 we have B0 k , angle I , R, andR. given, to find

angles a and b.

P roduce 0A to meet 0 ,L drawn paral lel to CA . AL equals0 1M : G.H cos I .

Oxfl l — m l — k1 tan l .

AL : 0 1M = (R,— k, tan I ) cos I .

cos b ._

Hence

0 13 R —i— (R, k, tan I ) cos I = R+ R1 cos I k, sin I .

From triangleGE R+ RI COS I — k l sIn I

om R + fl

Evidently , b a I .

1 36. T o Change the RR. 0 . so that Sec ond Branch of

C urv e shall E nd in a T angent P arallel to T erm inal T angent

and D istant p therefrom .

In Fig. 64 let MAB be the located curve, EN We must

FIG . 64.

determine the angle COA , after which the desi red curvem ay be located.

Draw HO,

and LO. parallel to EF and NO.

HL 2 o |s .

CHAPTER IV

TRANSI TION -CURVES .

ART ICLE 1 1 .— THEORY OF THE T RANSIT ION -CUBVE .

1 3 8 . E levat ion ofOut er Rail on C urv es .— T o counteract the

efiec t of centrifugal force on curves the outer rail must beelevated above the inner one. It is shown in mechanics that thecentr ifugal force is

where W i s theweight , 0 the veloc i ty in feet per second,

an average val ue of the acceleration of gravi ty in feet per second

per second, and R the radius in feet .In F ig . 66let the vertical HL represent W, the horizontal K H

the centrifugal force, AB the plane of the rai l s , and CE e

the superelevation of outer rai lK H‘ From simi lar tr iangles ,

eF 2 W oW

AC

Equate th is value ofF to that given8

above and solve for e, gi ving

e

FIG . 66.32 . 16R

T he gauge AB should be greater on curves than on tangentsto al low for flange clearance and the efiec t of a r igid wheel -base.

AO feet i s abou t the righ t val ue for the horizontal distancebetween centers of rai l -heads for standard gauge. In formula(133) 0 is in feet per second , but the train veloc i ty is usually gi venin m i les per hour. Let V veloci ty in miles per hour, then the

110

TRAN SIT ION -CURVES.

22

15V. Insert m g theseveloc i ty in feet per second wil l be 0

val ues in ( 133) gives

><484 V°

I’

Z near]32 . 1ex 225R 3R

’ y'

T his elevation will be required from the P . 0 . to the P . T . , bu tobviously it cannot be introduced suddenly , so that for easyriding the rate of increase of e should be uniform . From ( 134) itis seen that e varies inversely with R, which requi res that whene 0, R infinity . Hence R m ust dec rease from infinity to

the radius of the circular curve, whi le e increases from to itsmaximum value.

1 3 9 . T he T rue T ransition-curv e should satisfy formulabu t so far no such curve has been found that w il l at the sam e

t ime admi t of the sam e case of locat ion as the si m ple c i rcularcurve. According to Rankine the first use of any other thanthe c i rcular curve was made by Gravatt about 1828 or 1829 ,

the curve employed being the curve of sines . Another methoddescribed b y Rankine i s attributed to Will iam Froude about1842 ; th is c urve was worked up in the Engineering N ews byA . M. Wel l ington in 1890. Other approxi m ations are the Ra il

road Sp ira l, developed byW. H . Searles in 1882, and the cubicparabola, described by C . D . Jam eson and E . W. C rel l in in the

Railroad and Engineering Journa l, 1889 .

In 1880 El l i s Hol brook described in the Railroad Gazette the

true transi t ion- curvc app l icable to s m all angles and short lengthsof the cu rve. In 1893 C . L . C randal l publ i shed form ulae andtables appl icable to large central angles for both the ofi set and

deflec t ion methods .

1 4 0 . T he N ot ation here employed will be explained w ithreference to 'Fig. 67 . T he curve 0BB’

0’ is the c ircular curve

ofi set at 0 and 0'

from the tangents by the am ounts OH and U’

H’

.

AGB and B'

G’

A'

are the transi t ion-curves . A is theor point of transi tion-curve, 0 the R 0 , B the B

the

P . T 0 . 0 the P . T . , and A'

the T he co-ortliuates of Gare A l l : as

'

,HG y

; of 0 , 23’

and EU F ; of B , AM : 1171

and MB T he length of curve from P. T . 0 . to any point Pis l, and theWhole length from P . T . 0 . to P i s 11 .

1 12 A F I EL D -MANUAL FOR RAILROA D EN GIN EERS.

1 4 1 . E quation of T ransit ion o curv e .

— ~ Since the rate of

change ofe must be uniform , (134) m ay be wri tten .

e z c

FIG . 67.

in which 76 i s the rate of rise of outer rai l along curve, and p thevarying radi us of curvature. From the calculus p dqb dl,

whencedl

2160 o o o o o 0

Insert this . in ( 135) and solve for d¢.

3kdgb 7,

2l 2777l .

2m is dependent upon V and k, and i s constant for any one

curve.

Integrat ing( 138 )

the constant of integrat ion being zero, for l i s zero when (b iszero

1 14 A FI ELD-MANUAL FOR RA ILROAD EN GINEERS.

Substi tut ing m l 2 for (p and integrating

m°l‘ 772418

10+

216(B:

Replac ing m l 2 by 0? reduced to degrees45 (P (b

x32828

“L2328 x 106 33114 x 10

(142)

E varies w i th and m ay be taken from T ableXIV wi th 05°as argument .1 4 2 . T he T ransition-curve Angle I , i s the val ue assumes

at the FromI ) m ll

zo o 0 o o o 0

From (137) and ( 136)

At the P . p R and m ay be taken equal to 57fl so thatD ° ’

whence

2l tR 1 146051.

T his value of m in ( 143) gives

Reducing th is to ci rcular measure by wri ting I , z I .

z. D°

l.1 .

200.

1 4 3 . T he C oordinates of any point on the curve are given by( 140) and T he length of the t ransi tion- c m

'

ve being known

TRAN SIT ION -CURVES.

or assumed, y. and re. (the cob rdinates of the P . m ay be

found from these equations by the help of T able XIV ; thecoordinates of the P. 0 . (see Fig. 67) wil l be

E z y , R(l cos L ) z y , R vers L , (147)w

,

z 12 8 111 I ) . o o o o ( 148 )

1 4 4 . D eflec t ion—angles .

— W i th the t ransit at the P . T . O. (or

P . T . . in backing up ) the tangent of defiec tion-angles m ay be

found from the telation tan 6 D ividing ( 139) bym l

tan 6 —

30 09523771316 .000167m 5l l o ( 149)

From trigonometry the expansion of the angle in terms of itstangent is6 tan6 T

1,

- tan3 6+ % tan56— etc . (a)

In (149) wr ite m l2 z and subst i tute in (a)3

o o o 0

From (138 ) and<2 m l?

L m l le l l?

O 0 0 0 0 0

in whichz

l71 . From (b), 05z Ln", and this in (150) gives

1

6 .002823I 1 3n6 (0)

Both 6and I , are in circular measure ; to reduce to degreesmultiply by

120 . T hi s gi ves, neglect ing term s invo lving higherpowers 0 1 1 , than the third,

I lo

3n°

T he second term is qu ite smal l , and in most cases m ay be en

tirely neglec ted in practice.

1 16 A F IELD -MANUAL FOR RAILROAD EN GIN EERS.

Wi th the instrument at any intermediate po int ce"y the deflect ion-angle for any point m y, measured from init ial tangent, wil l betan 6 i ZH % (m l

‘2m l

”?m ll

l l

) +T 0 5(m316 m

3l"5)

maufl s)+ 145111

3141” (152)

inwhich powers ofm l‘2 higher than the third have been neglected.

Subst itu te the value of tan 6from (152) in (a) , write m l2 z

L 779, m l

"9gb” by (b) , and reduce circular m easure to

degrees, giv ing80 % (n’ n

'”nn

”) a smal l correction. (153)

For instrument at n 0 then (153) y ields(60

—n° correction,

( 154) is the same as as it should be.

For the transi t at the quarter-point of transition-curve—l"

49 11111311 053) elds

1,5“

+ ln 417) correction,

— Bi o o o 0 o o o o o oFor t ransit at m id-

point of transi tion-curve n” 4, and, from

% (n’2 1+ 4 477) correction,1 1

°

'

H’

é‘ Ai

— B} o o o o o o 0 0

1 18 A F IELD-MAN UAL FOR RAILROAD ENGINEERS.

T able XV gives the values ofA and B for the five posi tions ofinstrument for which equat ions ( 154 ) to inclusive

,were de.

duced. T he val ue ofA must bemul t ipl ied by but B is taken

di rect from the table in thousandths of a degree.

Ifdefiec tion-angles are wanted for o ther posit ions of the instrument

,or for o ther po ints on the curve, they m ay be compu ted

from equation1 4 5. T ab les.

—T hree tables are given for use with transit ioncurves .T able XIV was computed for usewi th formulas (140) and (142)

in determining 0 and E (1) being assumed and 0 and E com

puted.

T able XV gives A and B for compu ting the defiec tion-anglesby and ( 159) for 20 equidistantstations on the transi t ion-curve. For points not given in thetable A and B must be interpolated. L inear interpolat ion wil lsuffice in most cases, though when I 1 ° i s quite large second differences m ay be preferable for A . B is gi ven in the table in thousandths of a degree.

T able XVI was cal culated by assuming I, in lengths varyingby increments of 20 feet, then computing I 1 ° by y , by731 by F by and az

' by y , and (0 , will also begi ven more di rectly by (140) and (142) with the aid of T ableXIV .

The excess in length of transit ion- curve, measuredfrom P . T .0 .

to the point on offset at P . 0 . ,over (13’ i s tabulated as e; l

is

found by trial such that when inserted in ( 141 ) or (142) the sameval ue of cc

' will be obtained as in T his m ay be done by as11

2

trial s wi l l rarely be needed to find a sufii ciently close val ue of l’

then e l’

cc'

. y’ i s found by (139) after finding l

, or 05

m ay be found from (b) of 1 4 4 ,and used in (140) in connect ionwith T able XIV . Z 1 l

’ i s the length from 0 (Fig. 67) to the

th'

e difierence in length between this and the length of

circular curve from P . 0 . to P . is tabulated as e’ that is

, e’

( l, l’

) arc . T hen e e'

Z 1 (z’

c i rcular arc) .For values of Z, interm ediate between those gi ven in the tablel inear interpo lation wi ll suflice,

though second differences m aybe used for F and y , if preferred.

sum ing l’

a l ittle less than then com puting x‘. More than two

TRAN SIT ION -CURVES.

1 46. T o Unite the Two Branches of a C om pound C urv e by

a T ransition-curv e.

T he sam e ob ject ions hold to compound cu rves as to simplecurves uniting with a tangent ; i.e. , where there i s a suddenchange of cu rvature there should be a sudden change of superelevation of outer rai l , which of course is not al lowable. Insteadof compounding the curves , we m ay offset them at the P . 0 . 0 .

and unite them by means of a portionofa transition-cu rve tangentto each of the simple c urves .In Fig. 69 AB and CELM are the simple Curves that are to be

uni ted by the transi tion-curveANE . Extend the transition-curveH W P

FIG . 69.

to G, where i ts radius of curvature becomes infinite, and let 0 8

be i ts tangent . Cal l the length of transition-curve from G to Al, from G to E la , and from E to A lg. E and A are po intsof tangency of simple and transition curves . T hen 1; l , —

ls

T he cobrdinates of A are GS £13, SA z y . and of V (WVperpendicular to GW WV F.; of E

, GP x1

EP ya of L (LH perpendicular to GB HL F3 .

Let B0 F2 .

T he radius of curvature of t ransi tion-curve i s inversely proportional to i ts length from G ; hence the curvature i s proport ional to the length of curve; therefore la l, D 3 D , whence

120 A F IELD -MANUAL FOR RAILROAD ENGIN EERS.

D , D , D 3

T hen Z2 l l 63 l ) 1D 1

Z 1 D 10 (161)

By ( 138 ) 0 1‘

I I

Equating the value of I s from this equat ion to that resultingfrom (146) gives

WV : F , and HL F , m ay be taken from T able XVI wi thl, and I, as arguments . T hen 0 1W: R, F , 0 33 : R3 +F1 .

Draw 0 , T paral lel to GS, then 0 1 T WH hence

0 3 77 : (R3 F 3) (E 1

"i“ F1 ),

Ot T 931,

TB'

.

Therefore(U1

, — m a'

(Rs F 3) (Rx’ i‘ F 1 )

(x,’

fes’

) cosec a 1/ 0 1 T2

T O,2

(164)

Fz s o o o o

The lengths ofAB and 0E are

Lo

_ ao

a° — I 3

The excess of transit ion-curve length over AB CE is

eq z lg

122 A F I ELD -MANUAL FOR RAILROAD EN G IN EERS.

When only a sho r t tangent intervenes between two cu rvesshorter transitiom curves must be taken, requi ring larger val uesof If

, so that overlapping m ay be prevented.

For i l lustrat ion suppose 11 5°

curve to be eased offwith a transition-curve, the highest t t'ain-speed being 45miles per hour and

h z —1

By the table the value of Z 1 will be 7 1 X 5z 355feet600

so that we should probably take a 360-ft . t ransit ion-curvc, re

quiring an offset of feet by T able XVI.

ART ICLE 12 .

— FIE LD -WORK .

1 4 8 . For the cases most frequently present ing themselves inpractice the forego ing formulas m ay be sim plified so as to admi tof the rapid location of points on the transi tion-curve with all theaccuracy needed on location, though i t i s best to use the exac tformulas and tables in setting t rack -centers on the finished roadbed. When the t rans it ion-curve angle i s qui te large i t w i l l bebetter t o use the accurate methods on locat ion al so ,

but for the

more com m on cases the following formulas will answer .

1 4 9 . Sim plified P orm ulas .

— In (139) and ( 140) neglec t , as

smal l , all the terms fol low ing the first , givingl :

In (141) and (142) retain only the first two terms53 l 1 l (171 )

in which the las t term i s smal l for short t ransitione curves and

m ay often be neglected,(1:being tahen equal to l.

T he values of m and I remain as before

2RZ, 1 1460l ,’

o o o

TRAN SIT ION -CURVES. 12

1 1°

1 1 4

24 72 0"

But R by (145) Subst i tute this for R and neglect all1

But 3y, ,by since qb I , and y y , when I l,

hence

L 3

Rw m ‘6 120

11andwrt ttng R z: as above,

21 ,

l l l l l-

lg

w w) 5 12o o o

1 1 2 z 7,

m'

z,‘

16 12

2

2(nearly) . ( 173,

By

m3

m

X413 F

3 3 8 8 2

In and (159) neglect the correet ion; then

124 A F IELD -MANUAL FOR RAILROAD ENGIN EERS.

?A4) 0

?A} ) o 0 o o o 0

2 —'A 1 0 o o 0 o 0 0

(5c°

)

1 50 . Ofi'

set s.

— Formula (170) shows that offsets from transit ioncurve to tangent vary as the cube of thedistance from the P . T . 0 .

and i t can be shown that offsets from the circular curve to transit ion-curve fol low the same law, reckoning from the P .

Formula (36) m ay be wri tten2 f(l

Q-D) ’ o o o o o o o

inwhich D i s thedegree of curve if offset i s from tangent, and thedifference ofdegrees ifoffset is between two curves having a com ~

m on point of tangency , I being reckoned from the tangent-point .From (136) and

dl 1'

dgb 2m l’

and the degree of transi tion-curve at any point is114607721 Cl. 0 o o 0

Formula ( 18 1) shows that the degree of curvature of transit ioncurve at any point is a funct ion of its length . If the D in (a) i sthe difference betweendegrees ofcircular and transi tion curves, i twil l equal D , D , , which i s al so a funct ion of the length ; soin (a) write D f(l) , giv ing

o

which shows that the offset between circular and transi t ioncurvesvaries as the cube of the distance from T he offset at theP . 0 . is known,

being half ofF , and m ay therefore be found for

126 A F I ELD -MANUAL FOR RAILROAD ENGIN EERS.

(see formula ( 173) and set a stake, marking i t P . T . 0 . From the

P . 0 . measureforward around the c ircular curveadistanceequal towhich approx imately equal s Set a stake marked

At the quarter-point offset from tangent an amount equal to 414 1?

for, by the ofi sets areproport ional to the cube of the dis

tance from so thatF (4l, )3 1

2 (41, )3 16

A t the three-quarter point offset the same amount from circularcurve. If the transi tion-curve is not over 400 feet long, these areall the po ints need it longer , other ofi sets are similarly found.

EXAMPLE .

-At sta . 412 an offset of feet was made from atangent to a 5° curve. Requ ired the data for a transi t ion-curve

to connec t tangent and circular curve.

By T able XVI i t is seen that a 340-ft . transi t ion-curv’

e is re.quired. From the table it i s seen '

that az'

ft . , I ,°

and excess of curve over tangent is . 02 ft . , which we neglec t assmall . Drive a stake ft . from offset hub and mark i t 412 ;measure back along tangent ft . to 4 10 and drive a

stake m arked P . T . 0 . Measure forward around circular curvechains 170 ft . , and set a stake marked P . at sta.

413

T he approximate ofi sets areAt m id-point

,sta. 4 12,

one-eighth points , stas.fig1£2 t

quarter-points, stas . figi t z 0 , 033X23z

41 13three-eighths po ints , stas .

Stakes at the one-eigh th and three-eigh ths points were not

needed,bu t were worked out for i l lustrat ion

154 . L ocation by D eflec t ions.

— The nu m ber of chord-lengthsbeing taken as an al iquo t part of20, the deflec tion angles for the

TRAN SIT ION -C URVES. 12

transi t at any one offive posi t ions m ay be taken from T ableXV bymul tiplying the tabular values ofA by I ,

° being found from

Table XV I or form ula If the nu m ber of chords is not anal iquot part of 20, or it‘ the transi t i s at some point other than one

of the five for which T able XV was calculated, then the deflect ion-angles must be computed by The curve i s then run

out in the usual way .

When I , is not more than 15or 20 degrees the curve m ay be

run from the P . T . 0 . or P . T . by neglec ting the correc tionB as

s m al l . Even when I , i s greater than 20°

the correct ion m ay be

neglected,provided half the transition-curve i s run from the

P . T . 0 . and the remainder with the transi t at the m id-po int , thetelescope being first placed paral lel to original tangent .EXAMPLE .

— T akc the example of the last sec tion:I, 340 ft . ,

340 X 5F ft D : By formula I ,

200the

sam e as given by T able XVI . T henI

S), 2 D iv ide 11 into

5parts of68 ft . each , which wil l b e the chord- length to b e used.

Fro m T able XV for transit at P . T . 0 . the deflections will be

For“

sta . 410 0.

410 x .04 0°

68 .

41 1 x . 16 0°

4 12 x . 36 1°

12 .

4 13 x .64 1°

413 x 1 2°

Having set out the transition-curve, move to P . at sta. 413

backsigh t to and deflec t I ,°

2 8°

30'

50 5°

and run out the circular curve to the

which suppose to fal l at sta. 420. Set the transi t at this point , andcause the vernier to read zero when the telescope is in tangent tocircular curve. T hedeflections taken from T ableXV wil l now be:

For sta. 420 68 , x .56 1°

35-2'

u u 421 36. X 2 2°

422 04 , x 4°

u 422 72, x 4°

a u 423 40, (60°

)o X 2 5°

128 A FIELD -MAN UAL FOR RAILROAD EN GIN EERS.

Set transi t at 423 40, the P . T . ; backsigh t to 420 and deflec t8°

30'

40’

2° when the telescope wil l be in tangent .

155. F orm of T ransit N otes .-The fol lowing will i ll ustrate

a form of notes that will be found to answer .Let the P . 0 . of a 4

°

curve be at sta. 160 50 and a 200-ft.

transition~ curve be employed. Let the intersection-angle I beBy T able XVI , F ft .

, L°

a," z 100 ft . , so that

P . T . 0 . is at 159 50. T ake four 50-ft . stat ions on transi tioncurve and determine the defiec tion-angles as in the last section.

Deflec Calcu Map;tion (231m

l?! lated netic Rem arks .

angle.

gCourse. Course .

+50 O 12° 0'

5° 0 ’

3° 0’

1° 0’

+50 0 C .L . 4 ° 0' Set ver. at 2°

0° 45’ B S . to 159+ 50 , and0° 20

deflec t t o Run0° 5’ c ircular curve.

+50 9 P . T .C. 0° 0’ I1 200 . F

20 — 2 X 4

the central angle was W i th transi t at 161 50 set the

vernier to 2 ° backsight to 159 50,and deflec t into tangent

w i th the vernier reading zero . W i th the transi t at 164 50

cause the vernier to read zero when the transit i s in the tangent toc ircular curve, and run the last transit ion~ curve by deflec t ionsfrom this tangent . Wi th the transit at 166+ 50 backs ight to164 50 and deflect 4

°

2°40

1° when the telescopewil l

be in tangent and the l ine m ay be cont inued.

1 30 A FIELD -MAN UAL FOR RAILROAD ENGIN EERS.

By (186)

E , sec 13°

15’

ft.

T able XVI gives 1 2 hence the c i rcular curve will cover26

°

30’

2 X 6°

14°

or stat ions , so that the numberof the P . T . l wil l be (2 x 96

1 57 . T angent D istanc e , Offsets Unequal .

In Fig. 71 , 0 ,N , and K do not lie in the same straight l ine.

FIG . 71.

Draw PS perpendicular to NB,PQ perpendicular to LE Let

— K Q,

T'

T + F' cosec I F cot

'

I °

— T + F’

cosec I — F cot I ; (18 8 )

( 18 9

T 2 <6" T F

cot I F cosec I . (190)

EXAMPLE — Two tangents intersec t at sta. 820 and are to b (

united by a 6°

curve havingF c F’

and I : 31°

By T able IX ,T ft .

By T ab le XVI , l , 9 00, l, 260, x’

100, 27"

TRAN SIT ION -CURVES.

By

T. 100 x cosec 31 ° 48 ’ cot 31°

By

T 2 cot 31°

48' cosec 31 ° 48 2 400 5.

1 58 . T o Insert T ransition-curv es without C hanging the

P osit ion of the V ert ex,B .

In Fig. 72, ABC i s the located curve, FGHK the curve after

FIG . 72.

inserting transi t ion-curve. T he radius of the c ircular portion hasbeen changed from R to R

’in order to make room for the offset

PS F . BM : E i s the ex ternal to located curve, BL E'

the external to ci rcular curve having radius R '

and central angleI . In the t riangle LNM, LM LN see 41 : F see hence

E’z E — F see gl .

E m ay be found by (24) or by means of T able IX ; then E ’

becomes known, and from the same tableD’ is found by dividingthe tabular E by E ’

. D’

will be larger than D.

I t i s sometimes more convenient to assumeD'

and calculate E '

in the same manner as E ; then, from

F = (E'

( 192)

If this val ue ofF is too large or too smal l for the condi tions ofthe problem , a new D

’can be assumed and F recom put-ed.

1 32 A FIELD -MAN UAL FOR RAILROAD ENGIN EERS.

EXAMPLE .

— T he P . 0 . of 3. 5°

curve i s at sta. 182 , and angleI Compute the data for a new curve to al low for at ransition-curve with ft . offset .From T able IX, E 1 for I 40

° thereforeW F sec 20

°

x

then, by (191)E

say 55

7

By T able XV I , for z, z 200,D z 5

.

7,

F : 2

For lx 220

F :

T hen for F : D 5°

7’

AD x

200 2002 5 8 .By 1 1

°

T he central angle for circular portion of curve is 40 — 2 X29 . equ ivalent to feet around curve.

In Fig. 72, B i s at sta . 186on the 5°

curve, and are BG

ft . on the 5°

7'

cu rve. T he P . 0 . 1 i s at 186 sta. 183

the P . T . 0 . at sta. 18 1 the

P . T . at 188 and the P . T . ; at 190

Had 17 been assumed equal to 5°

6'

or 51°

to begin wi th ,

we should have had E" z 36” then,by

F : X .93969 ft .

l, m ay be found by interpolation from T able XVI as above.

1 34 A FIELD -MAN UAL FOR RAILROAD EN GIN EERS.

R — R’

R — R"

T his is the same as (69) in 1 2 2 . I being known, set the transi t

at 0 , run out the curve ON , and inser t transi t ion-curve in the

usual way .

If I'

had been assumed in the beginning, R' could be found

fromSECOND METHOD .

— When the circular curve is flat , and shorttransit ion-curves are employed,we m ay compound the transit ion

curve with the c i rcular at the P . taking care that the difi erence of curvatures is not greater than 1 ° orAssume the posit ion of the P .0 . 1 from 100 to 200 feet from

the P . 0 . ; measure the perpendicular let fall from the P . 0 . ,

upon the tangent at the P . 0 . produced ; this w il l be T he

central angle I , can be calculated. knowing the length of

c ircular curve from the P . 0 . t o the assumed P . or the

angle between tangents m ay be measured wi th the transi t .T he coefiicients 0 and E of (140) and (142) m ay be foundfrom T ableXIV with I , q) as argument then,

from (140) and(142)

$3 1 = lj (1 — E ) .

Measure back from the foot of the perpendicular let fal lfrom the P . a di stance 2 , along tangent , and set the P . T .

Interm ediate points can be located, if needed, by 0 11t

from tangent , computed by (140) or thus at the m id

point the offset is §yhT HIRD METHOD .

— From formula ( 170)

0058 181 1

and from (36) y ,

T herefore8 70 71 21)

15071 21)

nearly .

. 0058 18Lo

1 1

TRANSIT ION -CURVES

But nD hence

1 : 150n ; ( 197 )

and as 10071 i s the length of c i rcular curve from P . 0 . to P .

l , is once and a ltalf as grea t.

From ( 146)200n1) 4

z. 1505 1505 ED ( 198 )

From this equat ion i t i s seen that if the break in curvatures isl imi ted to this method i s admissible up to D independentof the length of transition-curve.

EXAMPLE .— A 4

° curve is to have t ransition-curves inserted at

each end; compu te the necessary data.

BY FIRST MET HOD — Assume a -ft . offset , and the curvature to be changed from 4 °

to 5° by compounding . In T able I

find R R'

then, bycos I 1 99494 cos 5

°

5

267

stat ions, and, by T able

XVI , I ,°

so that the P .O. , wil l fal l ft . back of the

P . while the P . 0 . will be moved forward.289 stat ions or ft . ; the P . T . 0 . being, by Table XVI , 100 ft .back of the new P. 0 . will fal l 100 ft . back of old

P . 0 . T he t ransit ion-curve m ay now be located in the usualmanner.BY SECOND METHOD .

— Assume the P . 0 . 1 to fal l 150 ft . fromthe P . 0 . ,

mak ing I ,°

X 4 From T able XV , 0

.03488 , and, by y, z x 4 ft .

By

T he length of 5° curve is

Now, by

1 36 A FIELD -MAN UAL FOR RAILROAD EN GINEERS.

from which D '

5° which differs less than 2

°

from D .

BY

561 .001 1 ) ft .

T o find the posi tion of P . T . 0 . wi th reference to the old P . 0 .

consider that the distance from P . to foot of perpendicular fromthe P . 0 . 1 i s half the chord for angle 2L and can be taken from

T able IX , being equal to X T hen

2 feet i s the distance from old P . 0 . back to P . T .O

BY T H IRD MET HOD .

— Assume the P . to be 150 ft . from the

old P . (1 ; then, by Z , 225 ft . , and, by the curvatureof transi tion-curve at the P . 0 . 1 i s gx 4

°

giving almostthe same resul ts as by the second method. Had we taken the

P . 160 ft . from P . 0 . we should have had l l 240,D

'

561 by interpolation from T able XV I ; the length alongtangent from P .0 . to foot of perpendicular from P . 0 . 1 ft . ,

and therefore ft . as the distance from P . 0 .

to P . T . 0 .

161 . T o Insert T ransition-curv es at the E U. and P . 0 . 0 . of

31 C o m pound C urv e b y C hanging the C urv atures of the F irstBranch .

In Fig. 74 let ARV be the located curve compounding at B.

Two cases occur .FIRST CASE .

— Second branch ha lving shorter radius.

T he ofi set at P . C.C. must be to outs ide of located curves ; let itbe EB F

2in the figure. Let OP F be known or assu m ed.

D raw the tangent BG, and draw EH paral lel thereto. Let OE

be the changed c urve, and CQ paral lel to tangent AH . Angle Im ay be computed fro m the known station num bers of A and B,

or m ay be measu red on the ground. T he new tangent distance i sEQ BG

’GK HQ(or L 8 ) . From the righ t triangle GHK ,

GK 2 BK tan GHK : F2cot I .

Simi larly , LS LWcosec I F cosec I . T herefore

T‘

EQ T F2 cot I F cosec I . (199)

T can be found from T able IX or fo r m ula then T' i s

known from T he degree of new curve, D ’

,m ay now be

found by m eans of T able IX , or from T able I by fi rst finding

TRAN SIT ION -CURVES.

F and being now known, the transit ion-curves m ay be

located.

EXAMPLE .

-A. 6° curve and a 4

°

curve are uni ted by a tangent540 ft . long; EH for 6

° curve ft . ; CG for 4° curve 3 ft . ;

B i s at sta. 180, 0 at 185 40 . Find F and F'

By tan a z:.0139 tan 0°

B wil l be m oved forwardgz . 133 stas . ft . to sta.

180 and 0 wi ll be moved backwards 2 stas. or 204

ft . to 185 20.

By F 1: ft .

By F’

ft .

T hese values cal l for l, ft . for 6°

curve, and l.for 4

° curve.

REMARK .— It wil l frequently be found that thi s problem

allows the l ine to be thrown "

on better ground. Should the

ground require tangent to be sh ifted inward,the curves must

be sharpened by compounding to admit of the necessary offsets .163 . H av ing Run a T angent which F alls Outside 51 L oc ated

C urtie,t o F ind the Offset F for a T ransition-curve Unit ingthem .

In Fig. 76let the tangent beAR ; CE the located curve. Set

transi t at some point 0 , and bring telescope into tangent tocurve. Measu re 0B and move toB , where angle ABC must bemeasured ; or measure OH per

pendicular to AR ; then

Now EG : R vers a or it isthe m id-ordinate for twice a

, and

m ay b e found from T able IX ; m g , 76,thenF = CH — EO = OH — R vers a .

T he point E is found from C’ by the relat ionEU

T he t ransition-curve m ay now be located.

140 A FIELD -MAN UAL FOR RAILROAD EN GINEERS.

164 . Insert ing T rans i t ion-c urv es in Old T rack .— Sec t ions

1 59 and 1 60 afi ord the means of inser ting transit ion-curves,of

which 1 59 is theoretical ly the best , though from the am ount oftrack disturbed i t m ay b e better to em ploy 1 60 . Som eti m es them ethod of 1 62 m ay be employed to advantage when the connec ting tangent is short . For easing the curves at point of com

pounding, the m ethod of 161 m ay be made use oi .T he offsets must necessarily be smal l if the new track is re

qui red to occu py the old road-bed. I t m ay be profitab le to add

to the road-bedwhen snflicient offset cannot b e secured for sharpcurves , though ordinarily much good can be accom pl ished evenwhen the new track is restr ic ted to the old road-b ed.

Unless the theoretical P . 0 . , and P . T . have beenmarked by monuments it m ay be diffi cult to retrace the old

l ines . If there i s plenty of room,the terminal tangents m ay b e

prolonged to intersect ion and I m easured, after which the degreeof curve m ay be found by measuring around curve and by approxim ate measurem ents of t he tangent distances ; then one or.

two assumptions and com putat ions w il l general ly suffice.

In cuts and rough country the curve m ay be run out by settingtransi t in center of road-bed and measuring the defiection-anglesfor a few po ints around the curve.

After the transi t ion-curves have been inserted per m anent monuments should be placed at each end of t t

'

ansition-curve to guidethe trackman in keeping up the proper superelevat ion of oute'rai l .165. Remark s on T abular Interp o lat ions . —Thegeneral inter

polat ion formula gi ven in algebra i s

Z z a + pdl +p (p - 2)

d

P(p ”( Z9 2X1? 3 )

in which t i s any term ,a the first term taken, p the number of

term s from a to t , d, the hi st from a of the first o rder ofdifferences, d? the first of the second order ofdifferences , etc .

In ordinary l inear interpo lation all terms after the second are

neglected ;‘

in interpolat ing by second differences all after theth ird,

etc .

In T able XIV l inear interpolat ion wil l answer for O and ordi

142 A FI ELD —MANUAL FOR RAILROAD EN GI N EERS.

Again, supposey ; to b e wanted when I, z 430 . By the form ula

33 x 2

1 0 1 0

49, +

W<2 ° 1 )

CHAPTER V .

FROGS’

AND SWITCHES .

ART ICLE 14 . TURNOUT S.

A. Turnouts from Straight Lines .

166. A T urnou t is a track used in leaving the main l ine. A.

F rog is placed at the intersect ion ofmain and turnou t railsfia . T he G auge

-line i s taken as c oinciding with inside face ofrai l . In making m easu rements between t racks the distance between corresponding gauge- l ines i s what is wanted.

b. T he G auge of track is the distance between gauge-lines ofthe rail s of that track .

0 . T he P oint of Switch i s the point at which the turnou t curvebegins for a point sw itch (spl i t sw i tch ) this is at the head-block ,whi lewith a stub swi tch i t i s the l ength of the swi tch-rai l backof the head-block , which is at the toe of swi tch .

d. T he F rog-p oint i s at the intersec t ion of the gauge-l ines of

intersect ing rai ls , and l ies a few inches in front of the bluntpoint offrog as manufac tured.

T he angle formed by the intersec t ing gauge-l ines is the F rog

angle.

6. T he P rog-num b er, N , i s the rat io of the axial length to the

width of base offrog.

FIG . 77.

In Fig. 77,

144 A FI ELD -MAN UAL FOR RAILROA D EN GIN EERS.

Letting the frog-angle BA 0 be F ,the figure yields

1 70 1t 1 2 L :angF

15 MV

11:0 0 12 22l

f. T he L ead, l, i s the di stance from point of switch to point of

frog , measured along that main rail in which the frog i s placed.

In Fig. 78 , CB l.

g. T he Stub -lead , s. l. , i s thedi stance alongmain rail from frogpoint back to a point where the turnou t ra i l diverges from mainrai l an amount equal to the throw . In Fig. 78 , K B llength of switch -rai l .

T he T hrow,t, of switch-rai l i s the di stance the point of a

spl i t switch, or toe of stub sw i tch , i s moved in opening or c losing

the swi tch . A distance of from 5 to 5% inches i s needed to gi venecessary c learance for flanges.

15. T he P rog-distanc e

, f.d. , i s the length of the chord of ou terrai l of turnou t from the point of a spl it switch,or toe of stub

swi tch,to the point of frog.

167 . G iv en the F rog-num b er

, IV, and the G auge, 9 ,of a

T urnout from a S traigh t L ine,' to F ind the L ead

, l, andRadius,R,

of C enter L ine ofT urnout .

FIG . 78 .

In Fig. 78 , AO 9 , CE l, angle ABC 1}F.

From the figure, I g cot 1517.But , (206) cot 4F 2N .

146 A FIELD~MANUAL FOR RA I LROA D EN G IN EERS.

1 68 . G iv en R (or D ) and g,t o F ind N ,

'

l,and F.

From (208) andR 5730

291) V517

From (207) andl : 29N : 2g‘/ V291? 107

107

9 ME. 0

F m ay al so be found from tr iangle OB C, Fig. 78

169 . T o F ind the L engt h of Switch-rail, 8 , when the F rog

num b er, IV, the T hrow of Switch, t , and the G auge, g,

are

G iv en.

In Fig. 78 , by geometry,

Neglec t ing the HG in denom inator as smal l

In like manner XL

Wri ting AG AB : CE S,and t aking the mean of de

no'

minators

whence S 1/ 2RiON Vy t .

5730W "

t'

R1 1 m g.D

Int:1,

FROGS AN D swn cnns. 1

1 7 0 . G iv en the M ain F rog-num ber, IV, to F ind the N um

b er, N . and L ead,l, of C ro t ch-frog for a T urnout from Bo th

Sides ofStraight M ain T rack .

In triangle OOH, Fig. 79, re

m em bering that RR 4N °

1: 1f 4N °+ 1

°

111155 , byN 1 = % COt é F] . o (218)

cos 11171

Fm m the figure and

9R 1L; (219)l l t an é F l

2N l

= gN l

(220)

Equat in’

g these values of l , and so lving for IV, gives

If the 71, in denominator be neglected as small compared with

21V”, (221) becomes

0 .707M

If in (220) we neglec t the 3, under radical , there‘i'esults

l , gN V2 1 . 414gN = 0. 707l. (223)

T he distance between main and crotch frogs measured alongma in rai l i s

l

or, approximately,1 z. 2gN 1 .414gN z 0 .586gN :

148 A FIELD -MANUAL FOR RAI LROAD EN GINEERS.

1 7 1 . T o F ind the Radius, R,

of T urnout and L ead, l, of

C rot ch-frog in T erm s of the C rot ch-frog N um b er, N 1

From N 2 2N 12.

Inser t this in (208 ) and giving

R : 29 . 2N 1" 4gN 1

’,

o o o oREMARK .

— In general the frogs kept in stock by manufacturersdo not afford su itable combinat ions of nu m bers for double turnouts . For instance, the theoret ical number of c rotch-frog for anu m ber 8 main frog is, by (221 ) or N , andwe shouldbe com pel led to use a nu m ber 51} or 6 for the c rotch -frog; th iswould necessi tate a different rate of curvature from c rotch to

main frog than from head-block to crotch .

1 7 2 . G iv en the N um bers of M iddle F rog, N 1 and ofM ain

F rogs,N and N t o F ind the Radii R, from P oint of Sw it ch

t o C rot ch-frog, and R and R’

, from C ro tch t o M ain F rogs.

In Fig. 80 we have, by (226)0 11V: R1 -N 1

2,

and,by (227)

N ow ifF , F , and F'

are the an

gles of the frogs N . , N , and N'

,

the angle

COH z -" F —" é Fx ,

COt (5217 + £17 1 )

Since CG 139 , the triangle (JE Gy ields

GE 419 cot 1}(F + é Fx) (228)

But , by trigonometry1 tan é F . tan iF,

tan gF—f tan iF,

150 A FIELD -MAN UAL FOR RAILROAD ENGI N EERS.

o 9By RS |6

'

C S 7,

ft

a 10°

28' curve.

m m 60

22 )ft .

1 7 3 . G iv en the N um b er, N ,of the Two M ain F rogs and the

G auge, 9 , t o find the C rot ch-frog N um b er,N 1 it s L ead,11 and

the Radius, R1 of C urv e through C ro tch when the D oub le

T urnout is to Sam e Side ofStraight M ain T rack .0

In Fig. 8 1 the frogs at B and G are of the same number, andm ay be taken as fal l ing on the same straight l ine through thecenter Angle OIGO 90

°

OGL F, and the t riangle

0 0 ,G i s therefore isosceles ; hence

OIG 0 1 0 0A

whence

FIG. 81.

b the same reasoning as in 167 , whence

N 137 51

‘/R 1

.

2g 4g 8

FROGS AND SWIT CHES. 1

Neglecting theaunder radical and writing R 291V“2gives

.707N ,

V2

which is identical w ith (222) for turnouts to opposite sides . For

EC and EB, as in 167 , l. 2gN , and l 291V. Hence

OB z z (237 )

EXAMPLE .

— Find N 1 , R1 , and l l , where N : 9 and

g ft .

By R x 81 ft . , 3. 7°

27’ curve.

1 ft . , a' 14

°

56’ curve.

N . . 707 x 9GB z z. x ft .

REMARK .— It m ay now be seen that the proper combinat ion of

frogs for a double turnou t to opposite sides appl ies also wherethe turnouts are to same side of straight main l ine. A lso theyapply to tu rnouts from opposite sides of curved main l ine when itsradius is not less than that required by m ain frog for straight1 7 4 . G iven the Num b er of M ain P fogs, JV, and of C rotch

frog, N , t o F ind the Radius ofCurv e. b etween P rog-points of

a Doub le T urnout to Sam e Side ofStraight T rack .

Fm . 82.

In Fig. 82, OQG 2 R2 159 , and the chord (JG must be determined. T he frogs at B and G being of the sam e number,0 2 0 0 GOO]

2 F and F].

52 A FIELD -MANUAL FOR RA ILROAD EN GIN EERS.

Draw GH perpendicular to EB ; then in triangle BGHG’H 9 cos F.

Draw OQL perpendicular and GE paral lel to EB ; from t riangles 0 2GK and 0 2 017,

(R; éc os F, cos 2F ) XL GH 9 cos F,

g cos F

cos F l— cos 2F

'

From triangle OQCG, since UOQG 2F

CG 2(R2 3139 ) sin %(2F F 1 ) . (239)

whence R2 39

EXAMPLE .-Given N 8 , N 1 r:6, and g to locate theturnou t.

By R 608 ft . ; R. 342 ft .

By R. 39 ft .

By CG ft .

1 75. Given the P rog—num b er, N ,the G auge, 9 ,

andD istanc e

29, b etween C enters,t o Unite M ain L ine with a Parallel Siding

when the Reversing-point is at P rog-point .

FIG . 53.

In Fig. 739 and BE are requ ired.

In triangleB0 ,E, B0 ,

R, 59 , E0 , R

1 + 139angle BO,

E F . By trigonometry,

154 A FIELD-MAN UAL FOR RAILROAD EN GIN EERS.

or, since cosec F N +4_

1

N’ (see

FIG . 84.

BK : (p — 29 )N +

EXAMPLE .

—For a No . 8 frog findB0 andBK whenp ft .

and g r: fi.

By B0 x 8 ft .

By EX 2 X 8 1: ft .

8 . Turnouts from Curves.

1 7 7 . G iv en the Radius of M ain C urv e,the P rog

-num b er,

and the G auge, t o F ind the Radius and L ead ofT urnout fromC onc av e Side ofM ain Line .

In Fig. 85, AB is the outer rail of tu rnout , CB the inner rai l ofmain track . In triangle OAB,

since OQBA OAB

OBA F,

OAB 180°

9,

and 0A 13 44 455 0 13 : R 49 .

FROGS AND SWITCHES. 1

T hen,by trigonometry ,

(R 119 ) (R 99 ) cot 46

(R 19 ) (R 49 ) tan tan

FIG . 85.

2B RR d t 46= — tan 1Fe ucm g co g 4 gN

T hen l r:B0 2(R 4g) sin 46.

If the length ofAB i s wanted,we can show that the angle

ABC 4F ; and by solv ing the tr iangle ABC, since A OB :

90° —M O

,

AB

T o findR, from triangle O,AB,

2(R2 49 ) sin 4(F + 6) AR.

Or, in triangle BOQC,

(R. 39 ) tan 41180 ( 17 + co t 9 17+ 9)

(R. 49 ) (R3 4g) tan 4F tan 4F

156 A FIELD-MAN UAL FOR RAILROAD ENGIN EERS.

Reducing and solv ing for R, ,

_ 9 9 1 1

2 tan 4F 5cot 4F . cot 4 (F + (249)

But, from trigonometry1 tan 4F . tan 46

cot 4(F+ 6) cot (4F+tan 4F + tan 46

Sub st itu te this in (249) and writeCOt é—F Z 2M tan iF :

ZN,

and reduce then

For 291V wr i teR1 , the radius of turnou t from straigh t track ,

and neglect the 49 in numerator as smal l compared wi th R ; then

R R

Now write5730

R.

5730

1) D 1

and reduce, yielding(252)

Formula (252) affords an easy m ethod of finding the degree ofturnout curve, or, if preferred, the radius m ay be first found by

Draw OE to the m id-po int of 0B ; OE does not differ greatlyfrom DE or 0 0 so, ifwe wri te OE R 69 , there results

gNQJV

z= 2<R — 391R

291VR

(253)

T he last term is qui te sm al l, even in the most extreme caselikely to arise in prac tice ; for a turnout from a 6

°

curve with

158 A F IELD-MAN UAL FOR RA ILROAD EN GIN EERS.

We m ay now fo l low the same l ine of reasoning by which ( 251)was derived, or more si m ply by assu m ing the tangent of the

difference of two smal l angles equal to the difference of thei rtangents ; that i s , tan 40 2 tan gF tan %6

Now i t can be easi ly shown that tan §0 2 él—éZ-V; therefore9 1V 1 9

_

1_

V

Ra 2N R

1 1 1 1 1whenceR2 R R, R

from which R9

R R,

5730Write R2 R1

5439

, and solve for D 9 .

D 2 D

D 2 I D 1 D ,

in which is the degree of turnout from straight track .

EXAMPLE .

— T urnout from outside of a 4°

curve, .N 8 ,zBy R, 1: x 64 r: 608 ft . , a 9

°

26'

curve.

By D 2 9°

26’

for which RBy l x X 8 z 76ft .

From ( 255) we have, by invert ingz 0

1 31

m m , by

l : 2870 X sin 1°

31’

ft

a difference of only ft . from the val ue given by

1 7 9 . T o F ind T heoretic al L ength of Swi tch-rail when the

T urnout is from a C urv ed T rack .

A com mon tangent being drawn at the swi tch -point, we shal lhave, as in 169

, for offset from tangent to main curve,

FROGS AN D SWIT CHES. l

the offset from tangent to turnout is

When the turnou t i s fr‘om concave side ofmain line,I y 3;

therefore

whence

5730 5730Writing RD

R2

D 2

and reducm g,

S 107 ID D 1

°

When the turnou t i s from convex s ide ofmain line,

15+

whence S

from whichS : 107

In (262) and (264) D ; is the degree of turnou t from straigh ttrack , and, as these formu las are ident ical w i th i t is seen thatthe theoretical length of swi tch - rai l on turnou ts from curves isthe same as on turnouts from straight l ine.

EXAMPLE .— Find 8 when t N 8 , g

By (208 1 608 feet, for which D , 9°

A FIELD -MAN UAL FOR RAILROAD EN GINEERS.

By or

feet .1 8 0 . G iv en the D istance p b etween C enter Lines ofCurved

M ain Line and S ide T rack,the F rog

-angle,F (or N um b er, Nand G auge, 9 , t o F ind the Radius and C entral Angle ofC urv eb eyond P rog

-

p oint .

FIRST CASE — Turnoutfi'

om outside of m ain line.

In Fig. 87, 0 is the center of main curve, 0 ; the center 0

FIG . 87.

curvewhose radi us is required. In triangle B0 0,0 0 : R + p BO = R+ %9

By the same reasoning as in 1 7 7 ,

212 19 2B p1: tan 1 17 :p 9 2N<p 9 )

In triangle OOIB,OIB RI é g; then, by the law of sines ,

sin 6Rl

— é g o

Also,

162 A FIELD-MANUAL'

FOR RAILROAD ENGIN EERS.

sin 63 1 4- 11? si

_

n(6— R)(R (272)

BE 2(R. 19 ) sin t (e F ) . (273)

0 . The Stub Lead.

1 8 1 . When the frog-num bg

er exceeds seven,the length of

switch ~ rail required to give the necessary clearance at heel becomes greater than is al lowed in practice. T o overcome this .

ditficulty sl ightly more cnrvature i s gi ven the switch -rai l ; moreover the physical point of sw itch is necessari ly some di stance inadvance of the theoretical po int . T he distance from heel of

switch to point ofmain frog wil l then be the same as from headblock of stub switch to main-frog po int , and i s

‘ termed the StubL ead. If to this di stance the length of swi tch -rai l be added, we

get the distance from the head-block of a point swi tch ‘

to the

point ofmain frog , Which is the Short L ead requ ired in pract ice.

1 8 2 . G iv en the T hrow , t , the G auge, 9 ,and the P i'og-num b er,

IV, to F ind the Stub L ead, 8 . l.

In Fig. 89 , K B i s the stub lead required; GN =XL ,the throw.

FIG. 89.

From (207) l 0B

and from (215) S

From the figure,

or 21V

FROGS ANn SWITCHES. 16

Formula (274) m ay be einployed for turnouts from curves aswel las straigh t l ines , since it was shown that the formulas from whichit was derived m ay be employed evenWhen the curvature ofmaintrack is considerable.

Below is a table of values of (g V9? ) for some of the morecommon values ofg and t.

T ABLE OF VALUES OF 9 Vyt .

3 Feet Gauge. 4 Feet Inch Gauge. 4 Feet 9 Inch Gauge.

Throw. g Vgt . Throw. g Vg—

t . Throw. g Vb} .

Inches. Feet . Inches. Feet . Inches. Feet .3 5 5

3} 54 3 .239 54 3 .275

4 5} 54

EXAMPLE .— Find the stub lead for N 8 , g ft t : 5

inches .

From the table, 9 V5 ft

and, by 16x ft .

1 8 3 . T he T urnout T ab le on thenext pagegives the frog-angles,the radi us of center l ine of tu rnout from a straight track and i tsdegree, the theoretical lead, the theoret ical length of swi tch -rai lfor t z 5 inches and the stub lead for certain values of t . T he

frog-numbers given cover all the usual cases .Suppose it required to find the short lead for a No . 9 frog and

5- inch throw when the gauge i s 4 ft . 9 inches and the length of

swi tch -rail 18 feet . From the table the stub lead i s feet ;hence the short lead is 18 feet , as againstft . for the theoret ical lead.

Inspec tion of the table w il l show that it makes no very greatdifi

'

erence in the tabular quantit ies whether the gauge be takenas 4 feet 85inches or 4 feet 9 inches . However, the nu m ericaloefiic ients in the form ulas involving y are somewhat s impler forthe latter val ue.

A FIELD-MAN UAL FOR. RA ILROAD ENG IN EERS .

TURNOUT TABLE FOR STRAIGHT TRACK .

4 FEET 85é INCH GAUGE.

DeTheoret Stub -l ead for a. Throwgree

Fro FroTheo Turn

of10 3 1

N0g

An 1g ret ical out

T urn Switchg 6.

Lead. Radius . ra i l for0“

t 5In. 5In. In. 534 In.

4 FEET 9 INCH GAUGE .

Degree Theoret Stub —lead for a ThrowF30 3 g

rog; $ 3331

T3??

0 ° “g e .

Lead. Radius . rail forout .

t = 5In. 5In. 534 111 . 534 111 .

0 feet feet feet feet feet feet4 . 14 15 37 42

5 11 25 24 8

10 23 19 56

6 9 32 342 0 16 468 48 61 75 14 16

8 10 12 19

7 38 10 44

8 7 9 76 00 9 25

6 44 80 75 8 21

9 6 22 7 27 58 95954 6 2 6 4 1 62 “3

0 5 44 6 2

1 1 5 12 4 59

12 4 46 4 11

3 4 24 3 34 84 294 4 5 3 4

5 3 49 2 41

166 A FIELD -MAN UAL FOR RA ILROA D EN GINEERS.

When the turnou t i s from a curve com pu te M from and

the m id-ordinate for a rai l 30 ft . long on main curve bythen the m id-ordinate for turnou t rai l w ill be the sum or difference of these values according as the turnout i s from concave orconvex s ide ofmain curve

ART ICLE 15. CROSSOVERS.

1 86. T o L ocate a C rossov er b etween P arallel StraightT rack s when the F rog

-num ber,the D ist anc e

, 17 , b etw een C en

t ers,and the G auge are giv en, insert ing ia T angent b etween

P rog-points.

FIG . 90.

In Fig. 90 i t is requ ired to find GB K 0 2, ME and

In the triangle BPM, BM : p 9 ; thenBE k BP EP

k = ( p —g) cosec F —

g cot F,

MK : (p g) cot F g cosec F .

From triangle OBO’ ofFig. 78 ,

0 0 R — 3g zR — gOB R + 3g 2B + g

°

FROGS AND SWITCHES.

In (a) write R 29117 2 by giving

4gN2 —

g 4N 2 — 1COSF —

4gN2 —l— g 4N 3

+ 1°

From Fig 78, triangle 03 0 ,CB 1 21

“ E "

013

"

R+ 3g 2R+ g'

Wri t ing 1 2gN and R 291Wgives4gN 4N

S’nF _

4gN2

+ g 4N 2 1‘

From trigonometry , tak ing theabove values of sinF and cosF,

1 1cosec F

sinF 41V"

cosF 1COt F

SinF E. o o o 0 o

Inserting theseval ues in (280) andk = ( p

MK = ( p — 2g)N

By GB XC z 291V; therefore

NO: 2z+ ME : 4gN + (p 29W4g,

Por NU

4N— l+ p

EXAMP LE .

— Find k andME for a No. 8 frog when p 13 ft .

and g ft .

By k x 3 T r . feet . ’

By ME x 3 feet.

168 A FIELD -MAN UAL FOR RA I LROAD EN GIN EERS.

1 8 7 . T o L ay Out a C rossov er in the F orm of a Reversed

C urv e.

Whenp is large, or for other reasons it i s desi rable to get awayfrom main track m ore rapidly than by the foregoing method, wem ay lay out the crossover in the form of a reversed curve.

FIG. 91 .

In Fig. 91 i t is required to fina GB HE and LE .

Find GB HE l by and the radius 0 0T hen, from we have

ME QR sin a .

The angle a i s gi ven by T hen

LH 2R sin a 2l. (285)

1 8 8 . T o L ay Out a C rossov er when a F ix ed L ength of T an

gent m ust b e Interposed b etween P oints of Rev ersal of

C urvature .

From the given frog-nu m ber determine the radius by (208 )then the p roblem m ay be sol ved by 1 32 .

1 8 9 . T o L ay Out a C rossov er in the F orm of a Reversed

C urv e when the T rack s t o b e Joined are C urv ed.

.In Fig . 92 let the no tation b e as shown. Let GH : R,

0 1M = R] , 0 2P = 0 20 : R2 .

0 0 9 2 R + p

1 70 A F IELD-MANUAL FOR RAILROAD EN GIN EERS.

ART ICLE 16. CROSSING-FROGS AND CROSSING -SLIPS .

A. Crossing-frogs.

1 9 0 . When two tracks intersect each other feur crossing-fi'

ogs

are required at the intersection of the two sets of rail s . T he fourfrogs are sometimes cal led a set of crossing-frogs.

1 9 1 . T o F ind the L ength ofRails Intercep ted b etween two

Intersec ting Straight T rack s whenthe Angle of Int ersec tion and the

T wo Gauges are giv en.

In Fig. 93, from triangle ABHAB E 0 g cosec F (288 )

and from triangle AEG,

AE B0 g, cosec F . (289)FIG . 93.

1 9 2 . G iv en the Angle of Intersec tion, a ,m ade by the C enter

L ines ofa St raight and C urv ed T rack , the G auges g:and 9 ,F ind the A ngles of the Set ofC rossing-frogs .

In Fig. 94, from the triangles OBK and OAH,

(R+ é g) cos F = R cos a+ §gu

R cos a1

cos F+ 5

In l ike manner,R COS a %9 1

cos F 1 :R —l-

lg

"

2"

.RCOS a £0 1

FIG . 94.

From triangle B0 0 to find the chord EU.

B0 9 03 3 ) sin 3041 F ) (294)

FROGS AND SWITCHES.

Sim ilarly ,GE : 2(R 4g) sin 4(Fg F3 ) .

From triangles ROM and COL , we have

E 0 ML (R 49 ) sin F , (R 4g) sin F2 . (296)

In l ike manner,

GB NR (R 49) sin F (R 4g) sin F 3 . (297)

1 9 3 . G iven the Angle of Intersec tion,a , m ade by the C enter

L ines of Two C urv ed T rack s.their G auges, g and 9 1 ,t o F ind

the Angles of the C rossing-frogs.

In Fig. 95, 0A R, R

and angle 0 11 0 , a of the triangleGAO, are given; whence 0 0 , m ay

be determined.

In triangle OBOI the side 0BR 39 , 0 13 : R 119 1 , and

0 0 1 z k are known, from which0 , we can determine the angle OBO,

Fm . 95.F .

In l ike manner from the triangle 0 00 1 determine F , , and

from triangle GEO, findF 2 . F 3 m ay be foundfrom triangle 0 0 0 1 .T o find the chord GB first find angle

B0 , 0 from triangle B0 , 0 , and angle0 0 1 0 from triangle GOI O; then

GB 2(R, 49 1 ) sin 40 0 13 (298)

In l ike manner ,E 0 2(RI 4g.) sin 4E0 , 0 , (299)

BC 2(R 49 ) sin 48 0 0 , ( 300)

GE 2(R 4g) sin 4GOE . (301)

When the tracks intersec t, as in Fig,

96, the sol ut ion i s evidently similar to Fm . 96.

the foregoing ,

1 72 A FIELD ~ MA N UA L FOR RAILROAD EN GIN EERS.

B. Crossing- s/lps .

1 9 4 . A C rossing-slip is an arrangem ent of sw i tch -rai l s in

connec tion w i th a set of c rossing-frogs , to connec t two t racksintersec t ing at a smal l angle.

1 95. G iv en the A ngle of Int ersec tion of Two StraightT rack s

, to F ind the L engt h and Radii ofCurv ature ofSlip -rails .

In Fig. 97 determ ine EA and

AR by 1 9 1 ; then assum e GE or EH

(ac cording as EA is less or greaterthan AR) as s m al l as the c rossingfrogs w i l l permit . Draw the radi iHO and G0 ; AH : A G k i s theknown tangent for the central angleF . Hence

0 0 13+ 39AH cot 4F : 9 76117, (302)

F m . 97

For the theoret ical length of rai l sz 1 l 304‘GB ><F

1LM (R 72 9 ) X

1 96. G iv en the Angle of Intersec t ion made by the C enterL ines of 3 Straigh t and a C urv ed T rack

,t o F ind the Radii and

L ength of Slip-rails .

FIRST CASE .—Slz

'

p -7'

ails inside m ain curve.

In Fig. 98 determ ine the angles F and F 1 at B and b 1 9 2 .

T hen assume K 0 as smal l as const ruc t ive reasons will perm i t .

1K Usm

1 K OO5

R + 39

5 BOK (F, F ) K OO, (307)

174 A F IELD-MAN UAL FOR RAILROA D EN GIN EERS.

Deter m ine angles 0 0 0 1 , and side 0 0 , by'

1 9 3 . MakeEM 2 K O) then

(R (E 1‘ 1‘ 59)

LOO —f 0 0 0

FIG . 99.

triangle MOO, two s ides and the inc luded angleknown

,and the triangle m ay be solved. 0 2 i s the center of

sl ip- rai l curves .

0 22110 1 MOO1 MO1 0

and M0 3 0 1 180 20 2510 1 .

From the isosceles tr iangle in which 0 1 111 and the threeangles are known

2 sin 41110 2 0 1

T hen

R, 49 R. 49 M0 2 , (315)

R2 z R, 4g M0 2 . (316)

T he central angle K OQE MO2 0 ; being known, GE and K L

m ay be found as in 1 96.

FROGS AN I) SWIT C H ES.

SECOND CAsm .-8 { z

p-m ils on convex side of curves.

Let the dotted l ines of Fig. 99 represent th is case. AssumeA0 and compute angle AOQ produce 0 0 to the center ofsl ip - rai l curve make Og

N Reasoning as before, find

0 2'

N after which 0 2 38 , 0 2'

P , and the lengths ofTS and

QP m ay be found as in‘

the fi rst case.

Should the curves intersec t as in Fig. 96, no difficulty wil l befound in compu t ing the radi i and length of sl ip - rai l s by fol lowing the m ethods used above.

T hese methods furnish the theoretica l length of sl ip - rai ls ; bu tas the theoretical and physical swi tch -points do not coincide, theac tual length w il l be considerab ly less .

CHAPTER VI.

ART ICLE 1 7 . DEFIN IT ION S ; GENERAL CON SIDERAT ION S ; VERT ICAL CURVE S ; SUPERELEVAT ION OF OUT ER RAIL .

1 9 8 . T he work of locating the center l ine having been com

p leted, the field corps is usual ly di sbanded and a new one organized. T he C hief E ngineer st i l l remains in charge,

direct ing thework of construct ion,

passing on bids and estimates , arranging:contrac ts, and attending to such matters of im portance as his assistants are unprepared or unau thor ized to sett le.

1 9 9 . A D iv ision E ngineer is placed in charge ofa considerablelength of line, made up of several residenc ies . T o him the res ident engineers make reports , and from him receive di rect ionsand orders relating to construc tion. T hese reports wil l inc ludemonthly estimates, which are forwarded to the chiefengineer forinspec tion and approval . Pay -rol ls for the m en employed are

made out in the othee of the division engineer, and forwarded tothe chief.

2 0 0 . A Resident E ngineer i s placedin charge of a few miles ofline, called a Residency , and has direc t charge of the construotion.

He should have at least two assistants — a rodm an and an

axeman— and i t will be true economy to al low him also an

assistant who can take h is place at the instrument and assist insuperintending construc tion.

T he resident engineer i s usual ly requi red to set slope-stakes ,locate t restles and o ther bridges, tunnel s , culverts , c rossings, ando ther features preceding track- laying, and to m ake all measurements upon which esti m ates are based in determining the com

pensat ion of the contrac tor .Many roads prefer , espec ially on maintenance ofway,

to transpose the ter m s used above, so that the di v ision engineers report tot he resident engineer, whose residency m ay embrace severaldiv isions .

178 A FIELD -MANUAL FOR RAILROA D EN GIN EERS.

T he notes are recorded,however, in order that the contents

m ay be correctly calculated2 0 4 . A G rade-point is a point on the intersec tion of the p lane

of the road-bed with the ground-surface. If the ground i s levelt ransversely, a single stake at the center, marked will suffi ceto locate the point of passage from out to fill. When the groundi s no t level transversely , the l ine of intersectionwill be oblique tothe axis of the road and three grade-stakes areneeded, one at thecenter and one at each side.

If thewidth of road-bed in excavat ion differs from thewidth inembankment, the stake should be set at the edge of the widé stbase.

205. T o F ind the G rade-point when the Ground Slopes

Uniform ly b etween Stations .

FIG . 100 .

In Fig. 100 1et AB be the ground-l ine, F 0 the grade-l ine, and

E the grade-point . T he horizontal distance, x, from A to E is

requi red. Let the cut at A be h. the fill at B , 712 and the lengthof prismoid l.

,

Draw BG paral lel to CF. From the similar tri~angles ABE and ABG

IL! ha. 0 0 0 0 O 0 Q

If the ground does not slope uniformly , the point E m ust befound by trial , ’ such that the rod-reading equal s the differencebetween height

'

of instrument and elevat ion ofgrade.

206. V ert ic al C urv es.— T he angle formed by the junc tion of

two grade-l ines should be rounded off ei ther by substi tut ingseveral smal l changes for the one large one,or, preferably, by in

CF

CON STRUCT ION . 1

serting a regular curve. Where the a lgebraic dzjfi‘

erence of gradients i s less than no curve will be needed, while for largerdifi erences the length of vertical cu rve should vary with thatdifference, unless the c i rcumstances of the case— such as the

proximi ty of other ver t ical curves , or a bridge— should prescribei ts length . In any case the length m ay be either assumed, or a

gi ven rate of'

change per stat ion fixed upon and the length compuled.

The parabola i s espec ial]y wel l adapted for vert ical curves, because of the ease with which any correc tion m ay be found whenone i s known, since, as will presently be shown, the correct ionsvary as the square of the distance from the point of tangency .

A second property of th is curve enables us readi ly to find the

correc t ion at the vertex , or meet ing-point ofgrade-l ines . .

FIG. 101

In Fig. 101 let AOand 0B be the intersecting grade- l ines, andAFB the curve substi tuted for them . P roduce A O to E to

meet a vertical through B. Draw the vert ical CG. T hen willCF FG m by the second property referred to . Sincemeasurem ents are made hor izontal l y, the similar figures AUGand AEB furni sh the relation GE : 40 0 = 4EB. Cal l ing the

a lgebraic dtference ofgradients d,and the length of curve 21,

If the rate ofchange ofgradient per stat ion be a, it is evidentthat

T he equation of the parabola referred to A as origin m ay be

wri tten772

y '

l?(Qlw 0 o

1 8 0 A F I ELD-MANUAL '

Fon RA ILROA D ENG IN EERS.

T o find the co rrec tionEX 2 a t a distance a:from A , wehavefrom the s im ilar triangles AHL and A UG

But XL y, and 2 HL K L ; or, inserting val ues

2771513 27713 m a"

1 l 12

z m

g. 0

Insert the val ue of d from (0) in (a ) and the resul tant value ofm in then

12 15 x2 a

X2 l‘ 2

When a: 1 station, 2 . z 111 :when a; z 2 stat ions, 2 2 2a , etc .

I t wil l only be necessary to figure corrections for one-half thecurve, as they are the sam e for corresponding po ints each side of

the vertex . If preferred,however , al l correc tions m ay be com

puted fro m the first tangent produced.

EXAMPLE .

— A ~ l meets a grade at sta . 181 , the ele

vation of which is ft . Requi red the correc tions , and cor

rec ted grade elevat ions for points 100 ft . apart .Here the algebraic difference of gradients is

Suppose at be taken as or the length of curve as 6stations .Fo rm ula ( a) gives m 4 x 3 X feet .A t the P . 0 . , sta. 178 , z z 0 ; at 1 79 , (3 18 ) or gives 2 ,

at 180, 2 2 4 X .50 . T he original and correc tedgrade elevations are as fol lows

173 179 130 131 132 133 134

Origina l e leva tion. 89 2

Correc tions 0 0

Correc ted eleva t ’n 89 875 89 20

If a c irc le b e taken as the jo ining c urve we m ay derive by finding

R in term s of a ,then writ ing D 5730 R,

and n x,in form ula

EXAMPLE .— What wil l be the value of 71. when 6 .46, the

base being 14 feet ?By It x 7 x feet. T he outside i s thismuch higher than the center , the inside edge this much lower .T he superelevation of ou ter rai l should be com puted for thehighest speed at which trains are to be run over the curve; themaximum al lowed in pract i ce rarely exceeds 8 inches , since a

greater elevat ion would endanger the slow-running freigh t t rains .Even when the theoretical superelevation i s given the outer rail ,i t is more worn than the inner one, either because there are otherforces ac ting,

or because of the sliding ac t ion of the ou ter wheeldue to imperfect adjustment where the original coning has beendestroyed by wear.

Engineers sometimes elevate the outer rai l 1 inch per degree upto and make a z 34 inches for a 4

° curve, 4 inches for a 5°curve, and 44 inches for a 6

° curve. St i l l other rules are in use.

If transi tion-curves are not employed, the difference of elevat ion is the same from P . 0 . to P . T . , fading out to noth ing ontangent. T he elevat ion begins on tangent from 50 to 200 feetback of P . 0 . , depending on the amount the ou ter rail is to berai sed.

2 0 8 . E asing G rades on C urv es .— To compensate for the

increased resi stance due to curvature, i t is customary to reducethe grade on curves . T his resistance is taken to vary di rec tly asthe curvature; a rule often used is to reduce the gradientfoot per degree of curve

ART ICLE 18 . EARTHWORK.

A. Set ting Slope-s takes

20 9 . Slope-stak es are set at the points where the side slopesmeet the ground-surface, to mark the li m i ts of the excavat ion or

embankment,and to show the construc tor what the cut or fi ll

must be. In Fig. 102, KAE represents the ground-surface, HBOthe grade-su rface. Let AR h be the center height . Let

HL

XL

material ; for earth -excavation the side slope wil l average about 1to 1 , so tha t 3 z 1

,while for ordinary earth -em bankm ent it will

3 b e the side slope, which var ies with the nature of the

1 86 A F I ELD -MAN L’

AL FOR RAILROAD EN GIN EERS.

reading further out will be less, giving a correspondinglys m al ler d. o. ,

we try a reading at feet out . Suppose the reading to be the fi llwil l be cal l ing for a distanceout of feet , which agrees almost exac tly with the t rial distance. T he stake is marked F. and the result recordedin the c ross-section book .

On the other side of the sect ion suppose we est imate the fal l tobe feet in 15;weshould t ry a reading at 1 .5Xsay feet . Let th is reading be the fill wil l be

feet , cal l ing for a d. o. 7 X which showsour reading was taken too far out . T ry a reading at whichsuppose the fill is and the d.o. 7 +X 15. 4 , which agrees exac tly w ith the trial distance.

In excavation the method of proceeding i s the same as in em

bank m ent , except that 3 has general ly a different val ue. For sol idrock 3 is usual ly 4, that is, the slope is taken as 4 to 1 ; for looserock , gravel , and ordinary earth the slope m ay be taken as 1 to 1 .

T he stat ion constant in cuts i s always posi tive,and the rodreading has to be subtracted from it to obtain the out . In fi lls

,

when the HJ . i s grea ter than the grade height , the fill equal s thedifference of the rod reading and the station constant . Whenthe H I . i s less than the grade height the rod reading plus the

gives the fill.

2 1 1 . T he N o tes m ay be kep t in the form below, which represents one page of the c ross-sect ion book . T he cut or fill is writtenabove the l ine. the distance out below . A plus sign indicates acut , a minus sign a fill

S ta . Ground. Grade. Right.161

162

20 132 2 3;

43

66

163 185°1 1-6

CON STRU CT ION . 1 8 7

2 1 2 . Irregular Sec t ions— VVhen readings are taken only at

the center and sides i t is termed a th ree- level sec tion.

”Very

i rregular ground m ay require several more readings in o rder todetermine i ts area in th is case a reading is taken at each changeof su rface in the sec tion,

and the cut or fill, together with the distance out recorded— the distance being measured from the centerto the now t where the rod was held in tak ing the reading.

When the base cuts the ground- surface the sect ion i s partly inexcavation and partly in em bankm ent, but each side will bestaked out in the manner desc ribed above. T he distance of

grade-point from center must be found and recorded.

2 1 3 . St aking Out Openings .

— Where openings are to be leftfor trestles, cul verts , and other structures, stakes must be set to

mark the l imits of the embankment . Stakes marked T . B. are

set at the center and sides to fix the place where the top of bankis to end other stakes , marked F . S. ,

are set at the foot of slope,

the plus at which they fal l — together w i th the distance out fromcenter— being recorded in the note book. T he slope of the toe

ofdump should be the same as the side slope.

2 1 4 . M arking Stak es . — All slope and toe stakes that l imi texcavat ion or embankment should be dr iven with tops incl inedou tward from the center . T he cut or fill i s marked on inside inplain figures p receded by the letter C . or F . as being moreeasi ly understood by the contrac tor than the pl us and minussigns used in the notes . The reverse side should bear the stationnumber.

2 15. Shrink age— G xowth.

— It must be rememberedthat earthwork in embankment w i l l settle, or shrink in vol ume, even afterhaving been com pacted by the feet ofthe team'

s during construct ion. Where the fill i s not great , allowance m ay be made forshrinkage when set ting grade-stakes, but in heavy fills al lowanceshould be made when the stakes are set for construct ion. T he

proper al lowance wil l vary wi th the nature of the material, bu tabout 10 per cent wil l be a fai r average. T he contrac t shouldalways specify the amount of shrinkage to be al lowed on par

t icular works . If the earth is measured in the borrow -pi ts,an

equ ivalent al lowance should be made, since earth is more compac t in em bank m ent than before excavating.W i th rock , however. it is found that the vol ume increases

trapezoids whose area is positive, and one triangle whose area isnegative and equal to 4 hn(dn b) .

Writing out the area, we hav

'

e

761 )d1 (h; 11.2 )(d2 ( Z 1 )dn _ 1) hn(d,,

Perform ing the indicated operat ions and s impl ifying,

AR 20 o dn — lkn) ,

which is the same resul t obtained inEvidently 71 m ay have any posi tive integral value.

Ifpreferred, the c ross-sections m ay be plotted on cross-sect ionpaper and the area read off by means of a planimeter .2 2 1 . T ab les of A reas of L ev el Sec tions

,and the T hree

lev el C orrec tion .—Formula (322) m ay be employed in com

put ing the areas of level sections for any val ues of b and 3 .

T able XVII gives the areas for a few of these val ues. Whenmany sections are to be figured it wil l be wel l for the engineer tocompute the necessary tables, prov ided he is unable to securepubl ished ones for the particular bases and Slopes he is workingwith . It i s not wi thin the scope

,of th is volume to give the

variety of tables needed; they are publ ished elsewhere.

T he area of three-level sections m ay be found from the areas oflevel sections by the aid of a sui table correc t ion. Let the heigh tused in entering the tables of level sec t ions be the mean heigh t of

H 1 201 0the three-level section,

hm the correspondingarea, by is

A'

hm (2b hm s) 2bhm hm’s.

T he true area i s given by (321)A l hl

hob hoH l

H ) 2

4

710 761 271 0 Il l

2bhm 2kohm s ho2s.

3 71 028

From equat ions (a) and (b) the correc tion i sa z A’

A (hm? 2hohm (km (325)

1 94 A F IELD -MANUAL FOR RA ILROAD ENGIN EERS.

Adding (a ) , (b) , and the to tal volume isV z 7) +6 ’D

"

”0

6_ A l

a m + a m

l

+ a m 2 A.

“2 ‘ i” ( 1 2,

‘ 1" a s"

2 14 2°

therefore V : (A 1 i zim A 2) _

6’

the same asStated in words there resul ts the followingRULE .

-To the 371-771 of the end areas addfom' tim es the 'm t

'

d-area ,

m ultip ly by the length, and divide by 6. The result will be the

bolum e.

T o reduce to cubic yards , div ide by 27 .

Formula (327) contains three term s, the middle area beingderived from the c ross-sec t ion notes for the end sec tions at theexpense of so m e l i ttle trouble. In the attem p t to si m pl ify th isfor m ula Dr. George Bruce Hal sted in 188 1 publ ished a two - termpris m o idal formula , giv ing the Vol ume in terms of one base and

a sec tion at two thi rds of the length of the prismoid, the form ulabeing

(323)

In 1894 ProfessorW. H . Echol s showed by the aid of highermathemat ics that an indefinite nu m ber of two -term for m ulaemight be derived. T he same resul ts were establ ished in 1895byP rofessor T . U . T aylo r by elem entary mathemat ics .None of these two-ternzi fo r m ulae have so far been placed in a

fo r m sui table for appl ication to earthwork measurem ent, owingto the difficulty of finding the area of the auxi l iary sec t ion.

In fac t the only objec tion t o the use of (327) i s the loss of timerequi red in obtaining the m id-area and the uncertainty as to itsaccuracy in the case ofvery i rregular sect ions .For three- level ground we m ay construc t a section having

heights that are means between co rresponding end heights , butfor very i rregular sec tions there m ay b e uncer tainty as to wh atheights must be averaged to ob tain the m id -sec t ion heights . For

any other than the m id-sec tions the heights are obtained withmore difficulty.

CON STRUCT ION . 1 95

2 25. F orm of N ot es .

— T he record of areas and volumes m ay

be kep t in the form below , which represents the cross -sectionbook ,with the necessary columns added.

Sta . Ground Grade. L ' C ' R' £32918; £12223. 071

3

23675

+I30 .64

+2 4

180 0

179 0

If the method of averaging end areas is em ployed,the column

of m id-areas’

will not be needed, and m ay even be om i ttedwhencomput ing by the pris m o idal formula. In this case the notes form id-sec tion and the m id-area should be wri tten in red ink.

Ah othee record should be kep t in addition to the record in thec ross-sec tion book, to which it wil l not be necessary to t ransferthe elevations ofground and grade. If preferred, the areas andvol umes m ay be kept only in the othee record, omitting them inthe cross -section book .

2 26. P rism oidal C orrec tion.

— T he t ime and labor requ ired toobtain the area of the m id-sec tion m akes the use of the prismoidalformula objec tionable ; for th is reason the method of averagingend areas i s m os t often em ployed. The difference in the two

methods wil l no t be great , provided the difference in end heightsi s not over 3 or 4 ft . ; i t should never exceed 5ft .When the difference exceeds this a considerable error i s introdaood by t he use of I t wil l general ly be sufiic ient to

average end areas and then apply a correction if the resul t mustbe free from large errors .

(a ) C o rrec tion for L ev el Sec tions.— Between two level end

sec tions the vo lum e i s m ade up of one prism , one wedge, and two

pyram ids. For the pris m and wedge the true vol um e i s given by

CON STRUCT ION .

as wel l as transverse slope. Whatever method is employed, the

excavations and embankments must be separately computed.

2 2 8 . T ab les of V olum es for L ev el Sec t ions and E qual E ndAreas m ay be used in m aking prel i m inary esti m ates . T he average center heigh t for one or more stations is taken from the p ro

fi le and the vo lume at once read 0 11 fro m tables , such as T ableXIX

T able XX m ay be used in finding the volume, after hav ingaveiaged the end areas, and a co rrec t ion made by 2 26 ifdesi red.

2 2 9 . S ide D itches in cuts have a constant c ross - section, and

hence a constant volume for each ful l station. T hei r contentsare separately co m puted and added after the other computat ionshave been made. T hey need no t be shown in c rosso sec t ion notes .

2 30 . E ar thwork on C urv es . — In com puting quanti ties on

urves the end sec tions are assumed to be parallel , and the axia ldistance between sec t ions taken as the length of the prismo id.

If the vol u m e be taken as generated by a moving sect ion, and the

eenter ofgia vity of th is sec tion lie always on a vertical l ine pass ingthrough theaxis , this m ethod gives correc t resul ts otherwise not .The resul t w il l be too smal l or too large acco rding as the center ofgravi ty fall s w ithout or with in the center l ine of curve.

If thevol umes are com puted by averaging end areas , i t wil l beA useless refinem ent to apply a curvature correc tion:but if theprism o idal for m ula is employed, and accuracy is des i red,

itshould be appl ied, especial ly if the work be in rock .

T o find the curvature correct ion consider Fig. 107 whichrepresents the m ean sect ion of the pn

sm oid.

200 A FI ELD -MANUAL FOR RAILROAD EN GINEERS.

T he portion ABIIEG has i ts center of grav i ty on the l ine BF( BH having the sam e slope as BA ) hence the path of i ts centerof gravi ty wil l be t he sam e length as the axis of the prism o id,

and there will be no error in the computed volume generated bythis portion. In the triangle BCH draw BK to the mid po int ofOH . T he center of gravi ty of this triangle i s at M, two thi rds ofthe distance BK from B . N ow , by Guldin’

s rule ( theorem of

Pappus) the volume generated equal s the area m ul tiplied by thepath of the center of gravi ty , the center of rotation being in the

plane of the area.

Draw BL hori zontal and takeN on a vert ical through M let

the angle in degrees at the center be 6.

T he vol ume generated by the tr iangle BOB i sV B (R BN ) .

But the cal culated vol ume is776

°

180R'

Hence the curvature correc tion wil l be776

°

180V V0 z BCH RN .

_

2 2 d.+ d. d.+ d.

a o.

510130533. d.)0°

.006BCH (d1 + d3 )6°

. (332)

When the sections are 100 ft . apar t 6° D and the correc t ionbecom es

.006B CH (d1 dg)_D.

T he area of the t riangle BCH is easily seen to beA 761 ) 71. 0 (d2 (333)

If the triangle BCH is on the coiivex side of curve the correc

t ion must be added,if on the concave s ide i t must b e subtrac ted.

For l ight work the correc t ion is s m all , but for heavy work wi thsteep tranéverse m pe on sharp curves i t m ay be considerable.

In prac tice we m ay use the middle for the mean area withoutmaterial error .

EXAM PLE .

— Find the correc tion per station on an 8°

curve, 28

202 A FI ELD -MAN UAL FOR RAILROA D EN GINEERS.

300 ft and the price paid for overhaul 1 cent per c ubic yardper 100 ft .

T he addit ional co m pensat ion above the contrac t price wil l bew x 5000 x .01

ART ICLE 19 . GRADE AND BALLAST ST AKES, CULVERT S,BRIDGES, AND T UNNELS.

2 32 . G rade and C ent er Stak es .

— After the excavat ions andembankments have been brought approximately to the levelcal led for on the c ross - sec tion stakes , the engineer must gocareful ly over the road,

setting center stakes every hundred feeton tangents and flat curves , and every 50 or 25 feet on sharpcurves— the di stance between center stakes depending on the

sharpness of the curves. On tangents it will be suflicient to drivea grade-stake beside each center stake, so that its top w i l l be at

t he heigh t to which the finished surface must co m e, due al lowance being made for shrinkage.

On c urves grade-stakes must be set at each side a distanceequal to the half-base fro m the center ; the proper elevat ion or

depression of these stakes must be found by 2 0 7 ,form ula

T he P . C.

s and P . T .

s are recovered by means of the referencepoints set during location.

2 3 3 . Ballast -st ak es are set on the completed sub -

grade at theproper width of bal last -base— j ust as in slope- staking— with theirtops at the level of the final grade. T hey should be set at interval s of 50 ft . on tangents and flat c urves, and at 25ft . on sharpcurves .

2 34 . T rack C enters are set for the guidance of trackmen as

soon as the road-bed i s ready to receive the c ross - ties and rai l s .

2 35. T he Op ening left for a culvert , drain, or trestle bridge i sm easured from top of bank to top of bank ; the manner inWhichit should be staked out i s desc ribed in 2 1 3 .

A note of the si ze ofdrain and the m aterial ofwhich i t is to bebuil t , whether glazed earthenware pipe, b ox drain, stone culvert ,etc . , should be made in the note book opposi te the notes for theopening.

A fter the culvert or drain has been buil t the earth is filled in

CON STRUCT ION . 20

over and around it , and face or wing wal ls bu il t to protect thebank at the points where cul ver t or drain meets i ts face.

For trestle bridges it must be remem bered that the bank-si l l sset back from the top of bank a distance suffic ient to give firmbearing, usual ly about 6 ft . for o rdinary earth , and al lowancemade therefor in staking out the Opening. T he length of Opening is designated by the number of bents between bank-si l lsthus a 12-bent opening, where the distance between bents i s 14ft . , would be 13 x 14 12 170 ft . T he bent spacing dependsUpon the size of t imbers avai lable and upon the weigh t of locom ot i ves to be run over the road.

Whatever the nature of the structure , amplewaterway'

should

always be provided for the heav ies t storms ; fai lu re to do th is isf;he cause ofmany a costly wreck .

Center stakes are set for each trestle-bent , and ifpiles are to bedriven a stake should mark the posi tion of each pile. If the

bridge i s not at righ t angles to the stream it wil l often be best toset the bents askew, bu t this should be avo ided whenever possible.

After the piles have been driven cut -off levels are given by theengineer, for which a tack is set in the pile at a definite distancebelow the,

point of cu t-ofi , al lowance being made for cap ,

stringer , et c . If the bridge i s on a grade, the rate of r ise per bentmust he figured out. and al lowed for. On curves the propersuperelevat ion of ou ter rai l must be computed by the method of

20 7 .

For details of trest les see Foster ’s TrestleBridges.

2 36. The Piers and Abut m ents for truss bridges must be veryaccurately located, the spacing being done with a steel tapewhose constants are known, and the center and l imi ts beingmarked by stakes. Ou tangents the centers are easi ly locatedand referenced, bu t on curves this is not so easy, as the center oftrack cannot be taken as the center of pier on account of theclearance necessary for trains .Bridges on curves should be avoided whenever possible, butwhen they cannot be avoided the centers of piers are to be p lacedat the intersect ion ofpier-axis and bridge-chord.

In Fig. 109 ABC i s the center l ine of track , AE and CF the

pier-axes. A t the m id-point of the arc A O the tangent EF,

paral lel to AO, i s drawn; makeAN : N E CL LF , and drawN E

, which i s the bridge-ehord. T he points N and L are the

centers of the piers

CONSTRUCT ION 2

2 4 1 . A Progress P rofi le should accompany the monthly estimate to exhibi t graphically the amount ofwork done dur ing themonth , different colors being used for the different months . T he

final profile should show approxi m ately the progress of the work .

The colors m ay be laid on with a brush , or hatchings made wi th apen; in nei ther case should the color obscure the l ines oi- the profile-paper. A dupl icate progress profile should be retained in thedivision engineer ’s othee; if transparent profile-paper i s employed,

one m ay be simply traced through from the other. A fur theradvantage of the transparent paper i s that blue-prints of any portion of the profile m ay be readi ly made when duplicates are

desired, provided the drawings are in black or any color admi tt ing blue printing.

2 4 2 . M asonry i s to be measured in cubic yards, and any

material on hand, bu t not in place, i s to be measured and est imated. T he classification

_oi masonry must be according to

specifications. Foundat ion-pi ts for piers or cul verts must bem easured as soon as comp leted, and before the masonry has beenput in place.

2 4 3 . Bridges must be est i m ated by measurement , or bycheck ing up material in place and that on hand but not in place.

For trestle bridges, or foundations requi ring pil ing, the actualnumber of l inear feet below cap mus t be measu red; th is necessitates the constant supervision of the engineer or an assistant

,

someti m es known as a“ pile- recorder, ” whose duty i t is to seethat all piles come up to specifications and are driven in accord

ance therewi th .

All framing-t imber in place,or del ivered bu t no t in place, i s

to be inc luded in the estimate, the amount being obtained bymeasurement .Steel spans or trestles are to be estimated, in the same manner

as wooden trestles , by checking up or m easuring the material onhand and in place.

2 4 4 . T rack M aterial must be checkedup ei ther by the“‘

m aterial clerk or the engineer in charge of t rack . Bal lasting properly belongs w ith the graduation , but m ay be pu t in place afterthe rails have been laid; in ei ther case it i s est imated in accordance with the specificat ions.

For prel iminary and monthly est imates it wil l be sufficient to

208 A FIELD -MAN UAL FOR RAILROA D E N G I N EERS.

estimate track m aterial by means of tables showing the num berof eross - t ies for a given spac ing and the weigh t of steel for a

given rail sec tion, but before the final estimate is m ade all mater ial must be m easured or counted.

2 4 5. B lank E s t i m ate-sheets are sent out from the ch ief engim eer ’s ofiice to be fi lled out by the engineers m aking estimate,

who should retain a copy of each est im ate rendered . On thesesheets should appear the total quant i ty est i m ated

,the amount of

theilast preceding estimate, and the esti m ate for the month ,which

will be the difference of the other two .

T he division engineer’ s esti m ate must show not only the quan

t i ty of m ater ial , but i ts val ue in dol lars and cents com puted fromthe contract price. T he foot ings of the several col um ns thenserve as a check upon each other .2 4 6. T he M onth ly P ayments are not m ade for the ful l

amount estimated but about 15or 20 per cent i s retained unt i lafter the final estimate has been made,

in order to insure thecompletion of the work by the contractor

, and to be used as a

fund from which to withhold the am ount of damages provided inthe contrac t for fai lure to comply w i th all i ts provisions .

E x tra s inc ident to minor changes , or to the protection or

drainage of thework , are usually shown on the final esti m ate, but

a better way would be to requi re the cont rac tor to present h is bil lfor extras at the end of each m onth , and to

.

incorporate them in

the monthly est imate when they are j ust . -T he engineer shouldtake measu rem ents upon any extra work at the tim e of i ts comp let ion , and should keep a record thereof. If the ex tras are of a

nature no t admitting of measurem ent , he should note the com

pensation to b e al lowed at the ti m e the extra work is done.

24 8 . T he Final E st imate must include all earthwork moved,all material in bridges , all masonry in foundat ions, culverts, piers ,and tunnels , and all other material supplied or work done incompliance with the contrac t . T he engineer should keep hisno tes ful l and complete during the construc tion of the work , in

o rder to be able to meet the contractor ’s c lai m s for extras or com e

plaints as to classification. Any i tem s that m ay have been overlooked in making up the m onthly est i m ates must b e includeo.

here.

TABLE I.— RADII.

Deg . Radius.l Deg . Radius. Deg. Radius . Deg . Radius . Deg.

00 O’ Irninite 1

°

343775.

17188 7 .

4911o. 7 l

38 197 2 I

2644 4 2 1

0'

2° 0' 3

° 0'

1 1 1

2 2 2

3 3 34 4 44

5 5 5

6 6 67 7 7

8 8 8

9 9 9

10 10 10

11 1 1 1 1

12 12 12

13 3 13

14 14 14

15 15 15

16 4523 44 16 16

17 17 17

18 18 18

19 19 19

20 20 20

173648

O/

co

oo

-ra

owm

oo

wu

HO

wHH

HHH

t-AHt-J

u

o

co

oo

-t

cu

ona-co

wv-A

TABLE II. —MINUTES IN DECIMALS OF A DEGREE . 215

. 01667

.06667

. 11667

. 16667

.21667

. 23333

.26667

. 31667

. 41667

. 45000

.46667

.51667

.61667

. 71667

. 75000

. 81667

. 86667

. 91667

. 96667

10”

. 01944

.0361 1

. 0861 1

. 1027

. 11944

. 13611

. 18611

. 21944

. 2361 1

. 25278

. 26944

.28611

. 30278

. 31944

.38611

.4 1944

.43611

.46944

. 4861 1

.51944

.5361 1

.5861 1

.6027

.65278

.68611

. 71944

. 73611

. 8 1944

.8361 1

. 91944

. 03611

.95278

. 96944

. 98611

10”

15'

. 004 17

. 03750

A N

.U l

. 10417

. 13750

. 154 17

. 18750

.237505417

. 30417

. 33750

. 35417

. 38 750

. 404 17

. 43750

. 45417

. 47083

.554 17

.57083

.58750

.60417

.62083

.63750

.654 177083

.68750

. 70417

. 73750

.854 17

. 90417

. 92083

. 95417

15"

. 03889

.08889

. 13889

. 15556

. 18889

7222

.30556

. 32222

. 35556

. 40556

.45556

.50556

.53889

.55556

.58889

.60556

.62222

.65556

. 93889

.95556

30”

.04167

.24 167

.34 167

. 44167

.59167

. 01111

.61111

.62778

. 71111

40”

.52917

.62917 .

45”

.01389 0. 02917 .03055 1

.04722 2.06111 . 06389 3.07778 .07917 .08056 4

.09 167 5

. 10833 . 11111 . 11250 . 1 1389 6. 12917 . 13056 7

. 14167 . 14444 . 14722 8. 16111 . 16389 9

. 17500 . 1777 . 18056 10

. 19167 . 194 44 . 19583 . 19722 11

.21 1 11 .21250 . 21389 12

.22917 . 23056 13

14

.26111 .26250 15

. 27500 .2 7778 . 27917 .28056 16

. 29167 .29444 .29583 .29722 17.31111 .31250 .31389 18. 3277 . 33056 19

20

.36111 . 36389 21. 37500 . 37778 .37917 22

. 39167 . 39444 .39583 23

. 4 11 1 1 .4 1389 24

. 42778 . 42917 .43056 25

.44583 26

. 46111 .46250 27

. 47778 .47917 28. 49167 . 49444 . 49583 29

.51111 .5138 9 30

313233

.58056 3435

.61339 3637

.64 167 .64722 38

.65833 .66111 39

.67500 .67778 .67917 40

.69167 .69583 41

.71389 42

. 72917 43

.74583 44

. 76111 . 76389 45

. 77778 .77917 . 78056 46

.79167 47

.80833 . 31111 .8 1250 48

. 82778 . 82917 49

.84 167 50

. 85833 86111 . 86389 51

. 87500 .37917 52

. 89167 . 89583 . 89722 53

.91111 . 91250 . 91389 54

.92778 . 92917 . 93056 55

. 94167 . 94722 50

. 96111 . 96250 57. 97500 . 97778 . 97917 58

99167 50

218 A F IELD -MAN UAL FOR RAILROAD EN GINEERS.

T ABLE IV .

— LONG CHORDS .

hDegree Ac tua l Arc ,

Long C O l ds

of one 1 2 3 4'

5CUFVG Station. Sta t ion. Sta t ions. Sta t ions . Sta t ions . Stat ions .

T ABLE V .

— MID-ORDINATES TO LONG CHORDS.

Degree of 1 2 3 4 5

Curve. St a t l on. Stat ions . Stat ions . Stat ions . Stat ions . Stat ions .

TABLES. 21

TABLE V .— MID-ORDINAT ES TO LONG CHORDS .

Degree of 1 2 3 4 5 6Curve. Stat ion. Sta t ions . Sta t ions . Sta t ions . Sta t ions. Stations.

1 24

1 0

1 2

2 69

TABLE V I.

— LOGARITHMS OF NUMBERS .

I

O{

3 T ABLE V I .

— L‘OGARITHMS OF NUMBERS.

'

23 £3 41 £5 ( 3 7'

25 S)

47712 4 7727 47741 4 775647770 47784 47799 478 13 47828 47842

78 71 78 85 790078578001

8 144

828 7

8430

8572

8 714

8 855

8996

8015

8 159

8302

8444

8586

8 728

8 869

9010

8 029

8 173

8 316

8458

8601

8 742

8 888

9024

3044

3 137

3330

3473

36153 756.83979 033

79 14

8058

32028344

8487

86298 770

8 911

9052

7929

8073

82 16

8359

850 1

8643

8 926

9066

7943

808 7

8230

8373

8515

86578 799

8 940

9080

7958 7972 7986

8 101

8244

8387

85308671

8 8 13

8 954

9094

8 1 16

82598401

8544

8686

8 827

89689108

8 130

8273

8416

8558

8 700

8 841

8982

9 122

4913649150 49164 8 49192 4920649220 49234 49248 492629276 9290 9304 9318 9332 9346 9360 9374

,9388 9402

9415 9429 9443 9457 9471 9485 9499 9513 9527 9541

9554 9568 9582 9596 9610 9624 9638'

9651 9665 9679

9693 9707 972 1 9734 974 8 9762'

9776 9790 9803 98 17

9831 9845 9859 9872 9886 9900 9914 9927 9941 99559969 9982 999650010 50024 50037 50051 5006550079 500925010650120 50133 0 147 0 161 0 174 0 18 8 0202 0215 0229

0243 0256 0284 02970379 0393 0406 0420 0433 0447 0461 0474 0488

5051550529 50542 5055650569 50583 5059650610 50623 506370651

0736

0920

10551 1331322

14551537

1720

0664

~

0799

0934

1068

1202

1335

1468

1601

1 733

0678

08 13

0947

108 1

1215

1348

148 1

1614

1746

069 1

0 326

0 961

10951223

1362

14951627

1 759

0705

0311_0325 0338 0352 0365

0 718 0732

0840 0853 08660974

1 108

1242

1375

1508

1640

1772

098 7

1 121

1255

138 8

1521

1654

1786

1001

1 1351268

1402

1534

1667

1 799

0745

0880

1014

1 148

1282

14 151548

168018 12

0759

0893

1028

1 162

1295

1428

1561

1693

1825

0501

0772

0907

104 1

1 1751308

1441

1574

1706

1 838

51851 5186551878 51891 51904 51917 51930 51 943 51957 519701933

2114,

2244

23752504

2634

2763

2392

3020

1996

2 127

2257

238 8

2517

2647

2776

29053033

2009

2140

2270

2401

2530

2660'

2789

2917

3046

2022

2 153

2284

24 14

2543

2673

2802

2930

3058

2035

2 166

2297

2427

2556

2636

23152943

3071

2048

2179

2310

2440

256926992827

2956

3084

2061

2 1922323

24532532

2 711

2340

2969

3097

2075.2205

23362466

2595.

27242353

29323 1 10

2033

22 13

2349

2479

2603~

2737

23662994

3122

2101

2231

2362

2492

2621

2750

28 79

3007

3 135

53148 53161 53173 5318653199 532 12 53224 53237 53250 532633275

3403

3529

3656

3782

3908

4033

4 158

428 3

3288 3301

34 15

3542

3668

37943920

4045

4 170

4295

3428

3555368 1

3807

3933

4058

4 183

4307

3314

344 1

3567

3694

3820

3945

4070

4 195

4320

33263453

.

3580

3706

3832

3958

4083

4208

4332

3339

3466

3593

3719

38453970

4095

42204345

3352

3479

3605

3 32

3 57

3983

4 108

4233

4357

3364

3491

3613

3744

3370

3995

4 120

4245

4370:

3377’

3390

3504? 35173631 3643

3757. 31769

3882 52895

4008.4 020

4 133 4 145

4258 4 270

4382 4 .394

54407 5441954432 54444 5445654469 54481 54494 54506545318

226 TABLE VI .

— LOGARITHMS OF NUMBERS .

TABLE V I.

- L6G’

ARITHMS OF NUMBERS .

O l 2 3 4 5 6 7 8

227

9

6532 1 65331 65341 65350 65360 65369 65379 65389 65398 6540854 18 5427 5437

5514

5610

5706

5801

5896

5992

5523

5619

5715

58 1 1

5906

6001

5533

5629

57255820

5916

60 1 1

6087 6096 6106

618 1 619 1 6200

66276662856629566304 66314 66323 66332 66342 66351 663616370

6464

6558

6652

6745

68396932

6380

6474

65676661

67556848

694 1

6389

6483

65776671

6764

6857

6950

7025,

7034 7043

71 17 7127 7136

67210 67219 67228 67237 67247 672566726567274 67284 672937302

7394

74367573

7669

7761

7352

7943

3034

731 1

7403

7495

7587

7679

7770

7861

7952

8043

732 1

74 13

7504

7596

768 8

7779

78 70

7961

8052

5447

5543

5639

5734

5830

5925

6020

61 156210

6398

6492

6586

6680

6773

6867

6960

7052

7145

7330

7422

7514

7605

7697

7788

7879

7970

8061

5456

5552

5648

5744

5839

59356030

6124

6219

6408

6502

6596

6689

6783

6876

6969

7062

7154

7339

7431

7523

7614

7706

7797

78 88

7979

8070

5466

5562

5658

5753

5849

5944

6039

6134

6229

6417

651 1

660566996792

68856978

'

707 1

7164

7348

7440

7532

762477 15

7806

7897

7988

8079

5475557 1

5667

5763

53535954

6049

6143

6233

6427

6521

6614

6708

680 1

6894

698 7

7080

7173

7357

7449

754 1

7633

7724

78 15'

7906

7997

8088

5485

558 1

56775772

5868

5963

6058

6153

6247

64366530

6624

6717'

68 1 1

6904

6997

7089

5495559 1

5636

5732

5377

5973

6063

6162

6257

64456539

6633

67276820

6913

7006

7099

5504

5600

5696

5792

588 7

5982

60776172

6266

64556549

6642

6736

6829

6922

7015

7108

7182 7191 7201

7367

7459

7550

7642

7733

782579 16

8006

8097

7376

7468

7560

7651

7742

7834

79258015

8 106

73857477

7569

7660

7752

7843

7934

8024

8 1 15

68 124 68133 68 142 68151 68 160 68 169 68 178 68 187 68 1966820582158305839584858574

8664

8 753

8 842

8 931

3224

3314

3404

3494

3533

8673.

8 762

8 851

8940

8 233 8242

8323 8 332

8413

8502

8592

868 1

8 771

8 860

8949

8422

851 1

8601

8690

8 780

8869

8958

8251

8341

8431

8520

8610

8699

8 789

8878

8966

8260

8 3508440

8529

86198 708

8 797

8 8 868975

8269

8359

8449

8538

8628

8 71 7

8 806

8 895

8984

8278

83688458

8547

8637

8 726

8 8 15

8904

8993

8287

8377

84678556

8646

8 735

8824

8 913

9002

82968 386

8476

8565

86558 744

8 833

8 922

9011

69020 69028 69037 690466905569064 69073 69082 69090 69099

9 108'

9197

92859373

9461

9548

9636

9 117

9205

9294

938 1“

9469

9557

9644

9723 9732

98 10 98 19

9 126

9214

9302

9390

9478

9566

9653

9740

9827

9 1359223

931 1

9399

9487

9574

9662

9749

9836

9144

9232

9320

9408

9496

9583

9671

9758

9845

9 152

924 1

9329

94 17

9504

9592

9679

9767

9854

9 161

9249

9338

9425

9513

9601

9688

9775

9862

9 170

9258

9346

9434

9522

9609. 9697

9784

9871

9179

9267

9355

9443

9531

9618

9705

9793

9880

9 18 8

9276

9364

9452

9539

9627

9714

9801

9888

69897 6990669914 69923 69932 69940 69949 69958 6996669975

2 8 TABLE V L— LOGARITHMS 10 1? NUMBERS .

TABLE V I .

— LOGARITHMS OF NUMBERS .

60 778 15 77822 77830 77837 77844 77851 77859 7786677873 77880

6

9

O1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

01

2

3

4

5

6

7

8

78 8 7 7895 7902

7960

8032

8 104

8 176

8247

8 3 19

8390

8462

8604

8675

8 746

8 8 17

8 888

8958

9029

9099

9 169

9309

9379

9449

9518

95889657

9727

9796

9865

7967

8039

8 1 1 1

8 183

8254

8326

8 398

8469

861 18682

8 753

8 824

88958 965

9036

9 106

9 176

9316

9386

9456

9525

95959664

9734

9803

9872

7974

8046

8 1 18

8 190

8262

8333

84058476

8618

8689

8 760

8831

8 902

8972

9043

9 1 13

9 183

9323

9393

9463

9532

9602

9671

974 1

98 10

9879

7909

798 1

8053

8 125

8 197

8269

8340

84 12

8483

8625

8696

8 767

8 838

8 909

8 979

90509 120

9 190

9330

9400

9470

9539

9609

9678

9748

98 17

9886

79 16

7988

8061

8 132

8204

8 276

8347

84 19

90

8633

8 704

8 774

8845

8 916

8986

9057

9 127

9 197

9337

9407

9477

9546

96169685

9754

9824

9893

7924

7996

8068

8 140

821 1

8283

83558426

8497

8640

8 7 1 1

8 78 1

8 852

8923

8993

9064

9 134

9204

9344

9414

9484

9553

9623

9692

9761

9831

9900

793 1

8003

80758 147

82 19

8290

8362

8433

8504

8647

8 7 18

8 789

8 859

8 930

9000

9071

9 14 1

921 1

9351

9421

949 1

9560

9630

9699

9768

9837

9906

7938

8010

8082

8 154

8226

8297

8369

8440

8512

8654

8 7258 796

8 866

8937

9007

9078

9 148 \

9218

9358

9428

9498

9567

9637

9706

9775

9844

9913

7945

8017

8089

8 161

8233

83058 376

8447

8519

8661

8 732

8 803

8 873

8944

9014

90859 155

9225

9365

943595059574

9644

9713

9782

9851

9920

7952

80258097

8 168

8240

8 312

8383

84558526

78533 78540 78547 78554 78561 78569 7857678583 78590 785978668

8 739

8 8 10

8 880

8951

9021

9092

9 162

9232

79239 7924679253 79260 79267 79274 7928 1 79288 79295793029372

9442

9511

958 1

9650

9720

9789

9858

9927

6 0 79934 7994 1 79948 7995579962 79969 7997579982 79989 79996

1 80003 80010 800 17 80024 80030 80037 80044 80051 80058 800652

3

4

5

6

89

01

2

3

4

5

6

7

8

9

0

0072

0 140

0209

0277

0346

04 14

0482

0550

0079

0147

0216

0284

0353

0421

0489

0557

0085

0154

0223

029 1

0359

0428

0496

0564

0092

0161

0229

0298

0366

0434

0502

0570

0099

0168

0236

03050373

0441

0509

0577

0686 0693 0699 0706 07130754 0760 0767 0774 078 1

0821

0889

0956

1023

1090

1 158

1224

0828

0895

0963

1030

1097

1 164

0835 0841 0848

0902 0909 09 16

0969 0976 0983

1037 1043‘

1050

1 104 1 1 1 1 1 1 17

1 171 1 173 1 134

010601750243

0312

03300443

0516

0534

0720

0737

03550922

0990

0 113

0 132

0250

0313

938704550523

0591

0 120

0 18 8

0257

0325

0393

0462

0530

0598

0127

0 195

0264

0332

0400

0468

0536

0604

0726 0733 0740

0794 0801 0808

0862

0929 0936

0996 1003

1057 1064 1070

0868

1 124 1 131 1 137

1 191 1 198 1204

0875

0943

10 10

1077

1 144

12 11

1231 1238 1245 1251 1258 1265 1271 1278

0 134

0202

027 1

0339

0407

0475

0543

0611

80618 8062580632 80638 8064580652 80659 8066580672 806790747

08 14

0882

0949

1017

1084

1 151

1218

1285

8 1291 8 1298 8 13058 1311 8 1318 8 13258 1331 8 1338 8 13458 1351

670am

TABLE V I.

—LOGARITHMS OF NUMBERS .

O 1 2 3 4: 5 ( i 7 8

235

9

92942 92947 92952 92957 92962 92967 92973 92978 92983 9298 82993

3044

30953 146

3197

3247

3298

3349

3399

2998

3049

3100

3151

3202

3252

3303

3354

3404

3003

3054

3105

31563207

3253

3303

3359

3409

3008

3059

3110

3161

3212

3263

3313

3364

3414

3013

3064

3 115

3 166

3217

3268

3318

3369

3420

30 18

3069

3 120

3171

3222

3273

3323

3374

3425

3024

30753125

3176

3227

3278

3328

3379

3430

3029

3080

3131

318 1

3232

3283

3334

3384

3435

3034

30853 136

3186

3237

328 8

3339

3389

3440

3039

3090

3 14 1

3192

3242

3293

3344

3394

3445

93450 9345593460 9346593470 9347593480 9348593490 934953500

3551

3601

3651

3702

3752

3802

3852

3902

3505

3556

3606

3656

3707

3757

3807

3857

3907

3510

3561

361 1

3661

3712

3762

38 12

3862

3912

3515

3566

3616

3666

3717

3767

38 17

3867

3917

3520

3571

3621

3671

3722

3772

3822

3872

3922

3526

3576

3626

3676

3727

3777

3827

38 77

3927'

.3531

358 1

3631

3682

3732

3782

3832

3882

3932

3536

3586

3636

368 73737

378 7

3837

388 7

3937

3541

359 1

3641

3692

3742

3792

3842

3892

3942

3546

35963646

3697

3747

3797

3847

3897

3947

93952 93957 93962 93967 93972 93977 93982 9398 7 93992 93997

4002

4052

4 101

4 151

4201

4250

4300

4349

4399

4007

4057

4 106

4 1564206

4255

43054354

4404

4012

4062

4 1 1 1

4 161

4211

4260

43 10

4359

4409

4017

4067

4 1 16

4 166

4216

4265

43154364

4414

4022

4072

4 121

4 171

4221

4270

4320

4369

4419

4027

4077

4 126

4 176

4226

4275

43254374

4424

4032

4082'

4 131

4 18 1

4231

4280

4330

4379

4429

4037

4086

4136

4 186

4236

4285

43354384

4433

4042

4091

4 14 1

4 19 1

4240

4290

4340

4389

4438

4047

4096

4 146

4 196

4245

4295

43454394

4443

94448 94453 94458 94463 94468 94473 94478 94483 9448 8 94493

4498

4547

4596

4645

4694

47434792

4841

4 890

4503

4552

4601

46504699

4748

4797

4846

4895

4507

4557

4606

4655

4 704

4 753

4802

4851

4900

4512

4562

461 1

4660

4709

4758

4807

4 856

4905

4517

4567

4616

46654714

4763

4312

4361

4910

4522

4571

4621

4670

47 19

4768

48 17

4866

4915

4527

4576

4626

46754724

4773

4822

48 71

4919

4532

458 1

4630

4680

4729

4778

4 827

48 76

4924

4537

4586

4635

46854 734

4783

4832

48 80

4929

4542

459 1

46404689

4738

478 7

4836

48 85

4934

94939 94944 94949 94954 94959 94963 94968 94973 94978 949834988

5036

5085

5134

5182

523 1

5279

5328

5376

4993

5041

5090

5139

5137

5236

5234

5332

5331

4998

5046

50955143

5192

5240

5289

5337

5386

5002

5051

5100

5148

5197

5245 5250

5294 5299

5342

5007

5056

51055153

5202

5347

5012

5061

5109

5158

5207

5255

5303

53525390

'

5395 5400

95424 95429 95434 95439 95444 95448 95453 95458 95463 95468

5017

5066

51 14

5163

521 1

5260

5308

5357

5022

5071

51 19

5168

5216

52655313

5361

5027

5075

5124

5173

5221

5270

5318

5366

5405 54 10 54 15

5032

5080

5129

5177

5226

5274

5323

537 1~54 19

2361

17

TABLE VI .

—LOGARITHMS OF NUMBERS.

1 . 23 £3 4 . 55'

6 7'

£3'

5)

900 95424 95429 95434 95439 95444 95448 95453 95458 95463 954685477 5482 548 71

9

wwr-‘Q

(Q

CD

'Q

Q

UI

NP'

OO

IQ

5472

5521

5569

5617

56655713

5761

5809

5856

5952

5999

6047

60956142

6190

6237628 4

6332

6426

6473

6520

6567

6614

6661

6703

67556302

68 956942

0 6988

7035708 1

7 128

7 174

7220

7267

7359

7405

7451

7497

7543

7589

7635768 1

7727

5525

5574

5622

5670

5718

5766

58 13

5861

5957

6004

6052

6099

6147

6194

6242

6289

6336

6431

6478

65256572

6619

66666713

6759

6806

6900

6946

6993

7039

70867132

7179

72257271

7364

74 10

7456

7502

7548

7594

7640

7685

7731

5530

5578

5626

5674

5722

5770

58 18

5866

5961

6009

60576104

6152

6199

6246

6294

634 1

6435'

6483

6530

6577

6624

6670

6717

6764

68 1 1

6904

5535

5583

5631

5679

5727

5775

5823

5871

5966

6014

6061

6109

6156

6204

6251

6298

6346

6440

648 7

6534

658 1

6628

6675

6722

6769

68 16

6909

5492

5540

5588

5636

5684

5732

5780

5828

58 75

5971

60 19

6066

61 14

6161

6209

6256

6303

6350

64456492

6539

6586

6633

6680

6727

6774

6820

6914

5497

55455593

564 1

5689

5737

57855832

58 80

5976

6023

6071

61 18

6166

62 13

6261

6308

6355

64506497

6544

6591

6638

66856731

6778

6825

6918

6951 6956 6960 69656997

7044

7090

7137

7183

7230

7276

7368

74 14

7460

7506

7552

7598

7644

7690

7736

7002

7049

7095

7142

718 8

7234

7280

7373

74 19

7465751 1

7557

7603

7649

76957740

7007

7053

7100

7146

7192

7239

7285

7377-7424

74 70

7516

7562

7607

7653

7699

7745

7011“

7058

7104

7151

7 197

7243

7290

7382

7428

7474

7520

7566

7612

7658

7704

7749

5501

55505598

5646

5694

5742

5789

5837

5885

5980

6028

6076

6123

6171

62 186265

6313

6360

6454

6501

6548

6595

6642

6689

6736

6783

6830

6923

6970

7016

7063

7109

7 155

7202

7248

7294

7433

7479

75257571

7617

76637703

7754

5506

5554

5602

5650

5693

5746

5794

5342

5390

5985

6033

6080

6128

6175

6223

6270

6317

6365

6459

6506

6553

6600' 66476694

674 1

6733

6334

6923

6974

7021

7067

71 14

7 160

7206

7253

7299

7437

7483

7529

7575

7621

7667

77 13

7759

551 1

5559

5607

5655

5703

5751

5799

5847

5895

5990

6038

6085

6133

6180

6227

62756322

6369

6464

651 1

6553

66056652

6699

6745

6792

6339

6932

6979

70257072

71 13

7165721 1

7257

7304

7396

7442

7488

7534

7580

7626

7672

7717

7763

5516

5564

5612

56605708

5756

5804

5852

5899

95904 95909 95914 95918 95923 95928 95933 95938 95942 95947

59956042

6090

6137

61856232

6280

6327

6374

96379 96384 96388 96393 96398 96402 96407 96412 9641 7 964216468

6515

6562

6609

6656

6703

6750

6797

6844

96848 96853 96858 96862 96867 968 72 96876968 8 1 96886968906937

6934

7030

7077

7123

7 169

72 16

7262

7303

97313 97317 97322 97327 97331 97336 97340 9734597350 97354738 7 7391 7400

7447

7493

7539

7585763

7676

7722

7768

97772 97777 97782 97786 97791 97795978 00 97804 97809 978 13

TABLE V II.

— LOGARITHMIC SINES AND I

COSINES.239

9 7240 TABLE V IL— LOGARITHMIC S INES AND COSINES.

09101 9966

99655

15596

15770

15944

9953299727

99701 12799

99695

9968 1 13994

Cog ne

Sine38519

1.

F 1a

17

TABLE dIQQm GARIT fhflc SINES ANbQJOSINES . 243

15°

Sine

1 11 m

j .

1

244 TABLE V IQ§ LOGARPI% fiIC S INES AND

49844

51702

9 52705

53161

53370

Cosine

97558

97541

97532

7439

7408

97363

Sine

53578

53647

53922

54635

54702

54836

55169

Cos ine S ine

g 1 1 1 R 1 143

246 TABLEL 7 1 — LOGARI

’1‘11MIC S INES 111131 COSINES.

726°

Sine Cos ine0

1 96067

2 60988

3 61016 96056

4 61045 96050

5 96045

6 6110 1 96039

7 61 129 64365

8 61 158

9 61186

10

1 1 61242 9601 1

12 61270 96005

13 61298

14 95994

15 95988

16 61382 9598 2

17 61411 95977

18 61438 95971 6464719 61466 95965

20

2 1 61522 95954‘ 2 61550 95948

23 61578 95942 64775

24 61606 95937

25 6163 4 95931 64826

26 1 61662 95925

2728 61717 959 14 95192

29 61745

30

31 9589732 61828 95891

33 61856 958 8534 61883 95879 6505435 6191 136 61939 958687 95862

38 95856 636100

40 . 9584 44 1 62076 95839

42 9583343 62131 9582744 6215945 62186 958 1546 62214 958 1047 62241 9580448 9579849 62296 95792 95059

50 .6232351 62350 9578052 62377 9577553 62405 9576954 62432 9576355 62459 95757 95397

56 9575157 62513 95745 9538458 9573959 62568 95733 95372

60 62595 95728

Cos ine S ine S ine

S ine Cosine Sine S ine Cos ine

90072

79224

9 . 90043 9 79256

900 14

Cosine

256 TABLE V III .

—LOG . TANGEN T S AND COTANGENT S .

21102

218 14

2 197 1

22670

'

23435

23661

78898

7818678 107

77484

7656576490764 14

24926

26372

28323

30457

30975

32498

32623

Co t an

69674

69478

69348

69025

Tkzn

TAB"

TABLE V III.

— LOG . TANGENTS AND COTANGENTS.263

3 1 °

268 A FIELD-MANUAL FOR RAILROAD ENGIN EERS.

TABLE IX .

—FUNCT IONS OF A ONE -DEGREE CURVE.

The Long Chords , Mid-Ord inates,Externals, and T angent

D istances of th is table are for a curve of 5730 feet radius . T o

find the correspond ing fp nc tions of any other curve d iv ide thetabular values by the degree ofcurve.

For m et r ic curves hav ing 20-metre chords , m ul tip ly th e degreeby 5and enter the table w i th the resul t as a value ofD

, the tabular values being taken as m et res instead of feetT hus for 3. 1 °

30’

m et ric curve hav ing I : 45°

the tangent d ist ance i s T metres . Again,

suppose I 38°

and the long cho rd m . known and D required. T he

tabular L . C . is 3731 m . ; therefore I)

IX.— FUNCT IONS OF A ONE -DEGREE CURVE. 27 1.

13.

23 23

23 68

Tl

518 12

523 16

550 06

IL ( 1

1108 3

40 59

277c)N

12 CL

IL ( 1

1647 .

1677 .

DI .

43 .

43 .

44 .

44 .

44 .

45.

45.

46.

46.

47 .

59 .

57 .

57 .

58 .

74

98

22

59 19

59 92

IX .

—FUNCT IONS OF A ONE -DEGREE CURVE .

74928 7

w v.)

7s4f35

856 35

DI.

'

55.07

63 9364 18

52 13

52 36

53 51

54 6754 . 9 1

65 6765 0 3

773 .

re» .

~1

-1

-1

33

8

8

8

8

4

793 -39

798 . 49

80 1 . 89

887 m

888 . 7

890 . 44

895. 56

897 . 27

898 .98

902 . 40

905. 8 1

IX .

— FUNCT IONS OF A ONE -DEGREE CURVE.

IL CL 11 . 13.

IL ( 1

2843 5

150 2

157 5

-A03

00

03

40

36

omnocnwoo

fik

CD

OI

H'Q

WQD

CJU-‘Q

CO

CI

A

O

Q

CO

«1

-J

-1

-1

«1

-1

HHh—du—ly—AHH

p-lv-A

H

u—JHHH

'

H-A—AH

—A—n

u-au

co

co

oo

oo

R)

388

182 5

F"

1

R1

-1

‘I

Q

‘1

“Q

R?

H

-Ai—AH

HH

HHH

HHHM

“1

CD

m

wh

h

b

a

b

d

~

q

wm

a

.

n

UP.

1354 5

1358 0

GP.

148 1 9

2 7 °

275

[ 1 CL

2914 5

2966 1

61 . IE. 11

166 1

167 4

17 .617 . 0

17 . 4

BI . 13. 11

18 3 3

194 4

IX .- FUNCT IONS OF A ONE-DEGREE CURVE. 279

IL ( 1 BI . IE.

4 147 3

4162 8

11 ( 1

4296 1

38 ? 4

386 0

386 5387 2

398 0

Bl .

425 4

428 6

435 6

420 8

Tfl

'2249 4

2255 2

43 °

[ b (1

1“ CL

4462 44465 5

B4 . EL

3

7

439 2

408 5

409 8

4 12 2

4 15 3

437 8

31 . 13.

4766

446 4

449 5

450 8

453 4

Tfl

Tfl

2410 6

2428 3

WG

Q

MO

'

10

14

16

18

2022

24

262830

32

34

36

38

40

424 4

46

48

52

545658

I » ( L

4 77 .

91

459 . 4

461 . 3

467 . 9

468 .6

469 . 3

470 .6

471 . 2

471 9

472 .6

473 .2

91 .

501 .5

502 . 8

507 .6508 . 3

509 .6

IE.

549 .6

55239

563 . 7564 .5

565. 3

566. 2

Ti

2449 . 9

2469 .

2471 .

2473 .

2475.

2477 .

247

248 1 .

2483 .

2485.

248 7 .

2489 .

2491 . 01

0

01

0

01

0

03

03

03

05

'

Q

2551 .

2553 .

2555.HHy—L

2559 .

2561 .

2563 .

2565.

2567 .

2569 .

2571 .

73 .

2575.

2577 .

257 .

2581 .

2583 .

2585.

2587 . 2

2589 . 2

HHL

MH

L

Hp-AHHHU—‘p—tund

280 lX — FUNCT IONS OF A ONE -DEGREE CURVE .

4 7 °

4569 .

4572 . ~1

-4

IL ( L

DI . IE.

4 9 °

BI. 13. Tfi

282 IX.

— FUNCT IONS OF A ONE-DEGREE CURVE.

I4. Cl 91 . FL TP.

7

2974 4

645 9 728 0

647 4 729 9

91 . IE.

'

P.

7

7

77 . 8

13. (P.

730 9

745 7

749 .

750 .

751 .

752 .

753 .

754 .

—1

TflB

3 1 13:3 115.

3 117 .

3 1 19 .

3 131 .

3124 .

3 126.

3 130 .

3 132 .

3 134 .

3 137 .

3 139 .

3 141 .

3143 . O‘

fi

NJ

O

QO

-7cb

80718

820 .

IX .

— FUNCTIONS OF A ONE-DEGREE CURVE .283

IL ( 1 Bl . IE. flfl

BI , 13. 11

9 1517

In ( 1 Dl .

7

05

03

05

0?

Q

Q

Q

U!

QCD

O

‘Q

BI .

IE.

853 5

13.

1 2

328 1 6

11

53614

I“ CL

5930 9

5945.

5947 .

5950 .

5953 .

5956.

5959 .

5962 .

5965.

5967 .

5970 .

5976.

5979 .

5982 .

5985.

5987 . oo

o

v—‘oo

wx

Q

CD

O

NJ

OO

Ol

m

wQO

t-fl

IL ( L

10

k:

cncn

éo

99

QO

(I)

Na

‘T

U‘

UP

O

(D

O’b

v‘k

31 . IE.

1054 .

1055.

1056.

1057 .

1059 .

1060 . (O

O

‘J

U'

hD

O

'

3645

'

3634 .

11

3456.6

3167 .

77 0

11

3617 .

3620 .

3622 .

3624 .

3627 .

3629 .

363 1 .

"Q

WO

"

3636.

3638 .

3641 .

3643 .

3648 11

IX .

— FUNCT IONS OF A ONE-DEGREE CURVE .

IL ( L

60 19 - 0

IL ( L

6157 .

6160 . 3

DI .

845. 3

846. 2

847 . 9

848 . 8

855. 8

856. c

85 .6

858 . 4

859 . 3

860 . 2

862 -8

868 . 9

869 . 8870 7

DI .

IE.

990 .3

99 1 .5

992 . 7

1004 . 4

1008 4

1009 .6

1013 2

1024 . 2

1025. 4

1026 7

108 9 . 4

1090 .6

11

3552 . 7

3662 . 2

3669 . 2

286 IX .

- FUNCT IONS OF A ONE -DEGREE CURVE .

IL ( 1

IL ( L

6789 8.

DI .

1058 4

1094 3

1095 2

13.

13.

11

TE

4222 0

In ( 1 11 .

1 77 .

1 133 8

13 . 11

18

CD

CNQ

MO

IX .

— FUNCT IONS OF A ONE -DEGREE CURVE . 28 7

11 ( 1

IL ( 1

7 134 0

7 4°

DI . IE.

'

76°

11 .

1238 4

1239 51240 5

1243 6

13.

15465

1590 0

11

I1 ( 1

7 178 2

7204 2

11

1253 9

1255 0

13. 11

4609 .8

9[d 8 8 IX.

—FUNCT IONS OF A ONE-DEGREE CURVE .

79 °

1 1 ( 1

11 ( 1

7368 9

7417 1374 19 8

1803:

11 . IE. 11

11 .

HH

t—Ah—AH

H

-1

~J

OE

CD

OE

G

U'

UV

UY

O'

O‘

17

3

71

Nah

OD

-I

QO

O

AD

Q

U‘

Q

CD

O

1

1805.

11

4885 3

53

11 CL

I1 ( 1

1 1 .

1333 0

DI .

F4

0

0

2

8

8

8

O

WG

A

MO

QD

N

O'

WH

(

0

0

00

0:

172

b

um

m

q

wuwwq

wo

w

13. 11

'

4975. 1

290 IX .

—FUNCT IONS '

OF A ONE -DEGREE CURVE .

8 6°

7

7

BI . 13.

1

0

N.

)

00

03

2

0'

10

10

05

00

5377 .

h fi fl

I“ CL 11 . 11

IX .

— FUNCT IONS OF A ONE -DEGREE CURVE .

IL CL

8 117 6

1 1 C1

DI . 13 .

13.

11

11

29 1

IJ. ( L

8376 8

838 1 3

m

v-tb-A

u-tu-nu-A

N

O

O

CD

-1

03

3UZO

-)Q

HHHHH

D—‘HHH

H

m

q

uwuc

q

m

wb

wq

m

a

wo

m

H ‘I(O

N)

G

OV

17

172

173

173

173

HN)

10

1-40

23

00

9 3 9

91 . 13. 11

6094 7

6144 7

IX .

— FUNCT IONS1 06°

IL ( L

In CL

DI . 13.

1 0 8 °

DI . 13.

4109 3

OF A ONE -DEGREE CURVE .

1 0 7°

Tfl

fll

7

8023 3

c)N 95

13.

3964 2

1 0 9 °

2443 4

Tfl

8 178 2

296 IX .

—FUNCTIONS OF A ONE -DEGREE CURVE .

1 1 0 °

4268 3

9393 2

2451 6

2459 8

1 1 2 °

8559 4

460624610 8

8635.

8640 .

8646.

8651 . O

t

~l

i

O

1 1 1 °

DI . 13. (P.

8378 9

8394 6

1 1 3°

DI . 13 . TP.

HHHHHH

H

l

Gb

OI

AOO

Mv-fi

Oto

m-QQUUA

OO

MHO

59

Sine Cos in. 08716. 08745

. 08774

.08803

. 08831

. 08860

.08889

.08918

. 08947

. 08976.09005

. 09034

. 09063

.09092

.09121

. 09150

. 09179

.09208

. 09237

. 09266

. 09295

.09324

. 09353

.09382

.09411

. 09440

.09469

. 09498

.09527

. 09556

.09585

.09614

. 09642

. 09671

. 09700

. 09729

. 09758

. 09787

.098 16

. 09845

.09874

109903. 09932

. 09961

. 09990

. 10019

. 10048

. 10077

. 10106

. 10135

. 10164

. 10192

. 10221

. 10250

. 10279

. 10308

. 10337

10366. 10395. 10424. 10453

Cosin S ine Cosin S ine Cos in S ine

. 99619

. 99617

. 99614

. 99612

. 99609

. 99607

. 99604

. 99602

. 99599

. 99596

.99594

.99591

. 99588

. 99586

. 99583

. 99580

. 99578

. 99575

. 99572

. 9957

. 99567

.99564

. 99562

. 99559

. 99556

. 99553

. 99551

. 99548

. 99545

. 99542

J99540

.99537

. 99534

. 99531

. 99528

. 99526

. 99523

. 99520

. 99517

. 99514

. 99511

.99508

. 99506

. 99503

. 99500

. 99497

. 99494

. 99491

. 99488

. 99485

. 99482

99479

. 99476

. 99473

. 99470

. 99467

. 99464

.99461

. 99458

. 99455

. 99452

TABLE X.

—SINES AND COSINES.

S ine Cosin Sine Cosin. 10453

. 10482

. 10511

. 10540

. 10569

. 10597

. 10626

. 10655

. 10684

. 10713

. 10742

. 10771

. 10800

. 10829

. 10858

. 10887

. 10916

. 10945

. 10973

. 1 1002

. 11031

. 11060

. 1 1089

. 1 1 118

. 1 1 147

. 1 1176

. 1 1205

. 1 1234

. 1 1263

. 1 129 1

. 11320

. 11349

. 1 1378

. 11407

. 11436

. 11465

. 1 1494

. 11523

. 1 1552

. 11580

. 1 1609

. 11638

. 1 1667

. 1 1696

. 1 1725

. 1 1754

. 1 1783

. 118 12

. 1 1840

. 1 1869

. 1 1898

. 11927

. 1 1956

. 1 1985

. 12014

. 12043

. 1207 1

. 12100

12158. 12187

. 99452

. 99449

.99446

. 99443

. 99MO9 9 37. 994349 9 8 1

. 9942 8

. 99424

.99421

. 99418

. 994 15

. 99412

. 99409

. 99406

. 99402

. 99399

. 99396

. 99393

. 99390

.99386

. 99383

. 99380

. 99377

. 99374

. 99370

.99367. 99364. 99360

. 99357

. 99354

. 99351

. 99347

. 99344

. 99341

. 99337

. 99334

. 99331

. 99327

. 99324

.99320

. 99317

. 99314

. 99310“

99307. 99303. 99300

. 99297

. 99293

. 99290

. 99286. 99283

. 99279

. 99276

. 99272

. 99269

. 99265

. 99258

. 99255

8 3 °

. 12187

. 12216

. 12245

. 1227

. 12302

. 12331

. 12360

. 12389

. 12418

. 12447

. 12476

. 12504

. 12533

. 12562

. 12591

. 12620

. 12649

. 12678

. 12706

. 12735

12764

. 12793

. 12822

. 12851

. 12880

. 12908

. 12937

. 12966

. 12995

. 13024

. 13053

. 13081

. 13110

. 13139

. 13168

. 13197

. 13226

. 13254

. 13283

. 13312

. 13341

. 13370

. 13399

. 13427

. 13456

. 13485

. 13514

. 13543

. 13572

. 13600

. 13629

. 13658

. 13687

. 13716. 1374 4

. 13773

. 13802

. 1383L

. 13860

. 13889 '

. 13917

. 99255

. 99251

.99248

. 99244

399240

. 99237

. 99233

. 99230

. 99226

. 99222

. 99219

. 99215

. 99211

. 99208

. 99204

. 99200

. 99197

. 99193

. 99189

. 99186

. 99182

. 99178

. 99175

. 99171

. 99167

. 99163

. 99160

. 99156

. 99152

. 99148

. 99144

.99141

. 99137

. 99133

. 99129

. 99125

. 99122

. 99118

. 99114

. 99110

.99106

. 99102

. 99098

. 99094

. 99091

. 99087

. 99083

. 99079

. 99075

. 99071

. 99067

. 99063

. 99059

. 99055

. 99051

. 99047

. 99043

. 99039

. 99035

. 99031

. 99027

82°

I 8 0

S ine Cosin. 13917. 13946. 13975

. 14004

. 14033

. 14061

. 14090

. 14119

. 14148

. 14177

. 14205

. 14234

. 14263

. 14292

. 14320

. 14349

. 14378

. 14407

. 14436

. 14464

. 14493

14522

14551

14580

146081463714666146951472314752

14781

148 1014838148671489614925

14954

14982150111504015069

150971512615155

1518415212

15241

1527

15299

15327

15356

15385154 1415442

15471

1550015529

155571558615615

. 15643

Cos in Sine

. 99027

. 99023

. 99019

. 99015

. 99011

. 99006

. 99002

. 98998

. 98994

. 98990

. 98986

. 98982

. 98978

. 98973

. 98969

. 98965

. 98961

. 98957

. 98953

. 98948

. 98944

98940

98936

989319892798923989199891498910

9890698902

98897988939888998884988809887698871988679886398858

98854

98849

98845

98841

98836

98832

98827

98823988 1898814

9880998805

98800

98796

98791987879878298778

98773

. 98769

S ine Cosin. 15643. 15672. 15701. 15730

. 1575815787158 16158451587315902

15931

1595915988

1601716046160741610316132161601618916218

16246162751630416333163611639016419164471647616505

16533165621659116620166481667716706167341676316792

16820168491687816906169351696416992

17021

17050

17078

1710717136

17164

7193

7222

7250

1172 791730811 336. 17365

. 98769

. 98764. 98760

9874698741987379873298728

98723

9871898714

98709

98704

98700

9869598690986869868 198676

98671986679866298657986529864898643

9863898633

98629

98624986199861498609986049860098595

98590

98585

98580

98575

98570

98565985619855698551

9854698541

9853698531

9852698521

98516985119850698 501

. 98496

. 98491

. 98486

. 9848 1

Cos in S ine CHNa

OO

fi

CJI

GQ

CD

CD

0

1

23

45

6789

10

11

40'

59

89

3

9915

93

93

859

99

992

19

899

8

1 0 °

S ine zCosin Sine Cosin S ine “

Cosin. 98 163. 98 157. 98 152

. 98 146

. 98 140

. 98 135

. 98 129

. 98 124

. 981 18

. 98 112

. 98107

. 98 101

. 98096

. 98090

. 98084

. 98079

. 98073

. 98067

. 98061

. 98056

. 98050

. 98044

. 98039

. 98033

. 98027

. 98021

. 98016

. 98010

. 98004

. 97998

. 97992

. 97987

. 9798 1

7365

. 17393 98476

. 17422

18395

18509

1853818567

185

95

18624

18652

1868 1

18710

18738

18767

18795

1882418852

1888 1

18910. 18938. 18967

. 9848 1

98471

98218

98212

98207

98201

98 196

. 98 190

79°

TABLE X — SINES AND COSINES.

. 1908 1

. 19109

. 19138

. 19167

. 19195

. 19224

. 19252

. 1928 1

. 19309

. 19338

. 19366

. 19395

. 19423

. 19452

. 1948 1

. 19509

. 19538

. 19566

. 19595

. 19623

. 19652

. 19680

. 19709

. 19737

. 19766

. 19794

. 19823

. 19851

. 19880

. 19908

. 19937

. 19965

. 19994

.20022

.20051

. 20079

. 20108

. 20136

. 20165

.20193

.20222

. 20250

. 20279

. 20307

. 20336

. 20364

97975

9796997963

. 97952

. 97946

97940

97934

97928

97922

97916

97910

97905

9789997893

97887

9788 197 75

9786997863

. 97857

78 °

. 20848

. 20877

0 . 97496l

124164.24 192

Cos in. 97437

. 97430

. 9718 9

. 9 7 182

. 97162

. 1 155

. 97148

. 97127

. 97120

7113:971069

7

100

97093

072

l. 96756

'

. 25713

. 25741

. 25769

.257

96793967869677896771

|

OHNJ

OO

Q

OI

O>

9 9 » Q

gHHHHH—lMM

H

10

20

10

CO

MM

Sine Cosin. 42262

. 42288

. 42315

.42341

. 42367

.42 394

. 42420

. 42446

. 42473

. 42 199

.42525

. 42552

. 42578

. 42604

.42631

.42657

. 42683

. 42709

. 42 736

. 42762

. 42788

. 428 15

.42841

. 42867

.42894

. 42920

. 42946

. 42972

. 42 999

. 43025

. 43051

. 43077

. 43 104

. 43 130

. 43156

.43182

.43209

. 43235

.43261

. 43287

.43313

.43340

. 4336643 392

. 43418

43445. 43471

. 43497

. 43523

. 43549

. 43575

. 43602

. 43628

. 43654

. 43680

. 437063733

.43759

.43785

.438 11

. 43837

. 90631

. 90618

. 90606

. 90594

. 90582

. 90569

. 90557

. 90545

. 90532

, 90520

. 90507

. 90495

. 90483

. 90470

. 90458

. 90446

. 90433

. 90421

. 90408

. 90396

. 90383

.90371

. 90358

90346

. 90334

. 9032190309

. 90296

. 90284

. 9 1271

. 90259

. 90246

. 90233

. 90221

. 90208

. 90196

. 90183

. 9017 1

. 90158

. 90146

.90133

. 90120

. 90108

. 90095

. 90082

. 90070

. 90057

. 90045

. 90032

. 90019

. 90007

. 89994

. 8998 1

. 89968

. 89956

. 89943

. 89930

. 89918

. 89905

. 89892

. 89879

Cos in Sine Cos in

TABLE X K‘ SINES AND COSINES.

Sine Cosin Sine Cosin.43837

.4386343889

.43916

.43942

. 43968

.43994

. 44020

.44046

.44072

.44098

.44124

.44 151

.44177

.44203

. 44229

. 44255

. 44281

.44307

. 44333

.44359

.44385

. 44411

. 44437

. 44464

. 44490

.44516

. 44542

. 44568

. 44594

. 44620

.44646

.44672

.44698

. 44724

. 44750

. 44776

. 44802

. 44828

. 44854

. 44880

.44906

. 44932

.44958

. 44984

.45010

.45036

.45062

.45088

. 45114

. 45140

.45166

.45192

. 45218

.45243

.45269

. 45295

. 45321

.4534745373f45399

. 89879

. 89867

. 89854

. 89841

. 89828

. 89816

. 89803

. 89790

. 89777

. 89764

. 89752

. 89739

. 89726

. 89713

. 89700

. 89687

. 89674

. 89662

. 89649

. 89636

. 89623

. 89610

. 89597

. 89584

. 89571

. 89558

. 89545

. 89532

. 89519

. 89506

. 89493

. 89480

. 89467

. 89454

. 8 9441

. 89428

. 89415

. 89402

. 89389

. 89376

. 89363

. 89350

. 89337

. 89324

. 89311

. 89298

. 8 9285

. 89272

. 89259

. 8 9245

. 89232

. 89219. 89206. 89193

. 8 9180

. 8 9167

. 8 9153

. 8 9140

. 8912 7

. 89114

. 89 101

.45399

. 45425

. 45451

. 45477

. 45503

. 45529

. 45554

. 45580

. 45606

. 45632

.45658

.456@

. 45710

. 45736

. 45762

.45787

. 45813

.45839

.45865

. 45891

. 45917

.45942

.45968

. 45994

. 46020

. 46046

.46072

. 46097

. 46123

. 46149

. 46175

.46201

. 46226

. 46252

.4627

. 46304

.46330

.46355

. 46381

. 46407

.46433

.46458

.46484

. 46510

. 46536

. 46561

. 46587

.46613

. 46639

.46664

. 46690

. 46716

.46742

.46767

.46793

.46819

.46844

.46870

.46896

.46921

.46947

Sine Cos in ~

Sine

. 89101

.89087

. 89074

. 89061

. 89048

. 89035

. 89021

. 89008

. 88995

. 8898 1

. 88968

. 88955

. 88942

. 88928

. 88915

. 88902

. 88888

. 88875

. 88862

. 88848

. 88835

. 88822

. 88808

. 88795

. 88782

. 88768

. 88 755

. 88741

. 88728

. 88715

. 88 701

. 88688

. 88674

. 88661

. 88647

. 88634

. 88620

. 88607

. 88593

. 88580

. 88566

. 88553

. 88539

. 88526

. 88512

. 88499

. 88485

. 88472

. 88458

. 88445

.88431

.88417

.88404

. 88390

.88 7 77

. 88363

. 88349

. 88336

.88322

. 88308

. 88295

2 8 °

Sine Cos in Sine Cosin. 46947

. 46973

.46999

. 47024

.47050

.47076

.47101

.47127

.47153

.47178

.47204

.47229

.47255

.4728 1

.47306

.47332

.477 7

8

.47383

.47409

.47434

.47460

. 47486

.47511

.47537

. 47562

.47588

.4 7614

. 47639

. 47665

.47690

.47716

.47

1 741

W677793

24731847844

.47869

. 47895

7920

.47946

.47971

. 47997

. 48022

. 48048

. 48073

. 48099

. 48 124

. 48 150

. 48 175

. 48201

. 48226

.48252

. 48277

. 48303

.48328

. 48354

.4837948405

.48430

. 48456

. 4848 1

. 88295

. 8828 1

. 88267

. 88254

. 88240

. 88226

. 88213

. 88199

. 88185

. 88 172

. 88158

. 88144

. 88 130

. 88117

. 88103

.88089

. 88075

. 88062

. 88048

. 88034

. 88020

. 88006

. 87993

. 87979

. 87965

. 87951

. 87937

. 87923

. 87909

.87896

. 87882

. 87868

. 87854

. 87840

. 87826

. 87812

. 87798

W841~ f~w1 “

. 87756

.SW

. 877297715

8 77018 76878 7 7387659

. 87631

. 87617

. 87603

.875891 0 1 0

75617546

. 87532

. 875187504

. 87490

. 87476

. 87462

Cos in Sine

.4348 1

. 48506

. 48532

. 48557

. 48583

. 48608

. 48634

.48659

.48684

. 48710

.48735

. 48761

. 48786

. 48811

. 48837

. 48862

. 48888

. 48913

. 48938

.48964

. 48989

.49014

. 49040

. 49065

. 49090

. 49116

.49141

.49166

.49192

. 49217

. 49242

.49268

.49293

.49318

.49344

. 49369

. 49394

. 49419

.49445

. 49470

.49495

.49521

.49546

. 49571

.49596

.49622

.49647

.49617

2

.49697

. 49723

.49748

.49773

. 49798

.49824

. 49849

. 49874

.49899

. 49924

. 49950

. 49975

.50000

. 87462

.87448

. 87434

. 87420

. 87406

.87391

. 87377

. 87363

. 87349

. 87335

.87321

. 87306

. 87292

. 8727

. 87264

.87250

.87235

. 87221

. 87207

. 87193

.87178

.87164

. 87150

. 87136

. 871217107

.87093

. 87079

. 87064

. 87050

. 87036

. 87021

.8 7007

. 86993

. 86978

. 86964

. 86949

. 86935

. 86921

. 86906

. 86892

. 86878

. 86863

. 86849

. 86834

. 86820

. 86805

. 86791

. 86777

. 86762

. 86748

. 86733

. 86719

.86704

. 86690

. 86675

. 86661

.86646

. 86632

.86617

. 86603

Cosin S ine

Gb

‘Q

CO

O

O

(N

OV

10

63

HHHHv—LHb—H—lN

MMMN

MMIO

MM

00

00

03

00

00

03

03

00

00

A

A

1k

Q

Q

Q

Q

Q

07

0?

TABLE X .

— SINES AND COSINES.

30° I 3 1°

Sine Cos in S ine

(0

10

N)

MMMM

?O

HHHHHHHHs-s

H

gwmfia

g

a

wwv-o

o

co

oo

q

ca

owfi-mm

v-soco

oo

qcs

onnwwuo

'

CO

g

g

fi

fi

“Q

OV

A

vA

flk

dk

yh

u-A

A

A

Q

O

fic

m’Q

Q

Cfl

fi

O‘D

MH

.50000

.50025

.50050

.50076

.50101

.50151

.50176

.50201

.50227

.50252

.50277

.50302

.50327

.50352

.50377

.50403

.50428

.50453

.50478

.50503

.50528

.50553

.50578

.50603

.50628

.50654

.50679

.50704

.50729

.50754

.5077

.50804

.50829

.50854

.50879

.50904

.50929

.50954

.50979

.51004

.51029

.51054

.51079

.51104

.51129

.51154

.51179

.51204

.51229

.51254

.51279

.51304

.51329

.51354

.51379

.51404

.51429

.51454

.51479

.51504

. 86603

. 86588

. 86573

. 86559

. 86544

. 86530

. 86515

. 86501

. 86486

. 86471

. 86457

. 86442

. 86427

. 86413

. 86398

. 86384

. 86369

. 86354

. 86340

. 86325

. 86310

. 86295

. 8628 1

. 86266

. 86251

. 86237

. 86222

. 86207

. 86192

. 86178

. 86163

. 86148

. 86133

. 86119

. 86104

. 86089

. 86074

. 86059

. 86045

. 8603086015

. 86000

. 85985

. 85970

. 85956

. 85941

. 85926

. 85911

. 85896

. 8588 1

. 85866

. 85851

. 85836

. 85821

. 85806

. 85792

. 85777

. 85762

. 85747

. 85732

85717

Cos in S ine

.51504

.51529

.51554

.5157

.51604

.51628

.51653

.51678

.51703

.51728

.51753

.51778

.51803

.51828

.51852

.51877

.51902

.51927

.51952

.51977

.52002

.52026

.52051

.52076

.52101

.52126

.52151

.52175

.52200

.52225

.52250

.52275

.52299

.52324

.52349

.52374

.52399

.52423

.52448

.52473

.52498

.52522

.52547

.5257

.52597

.52621

.52646

.52671

.52696

.52720

.52745

.52770

.52794

.528 19

.52844

.52869

.52893

.52918

.52943

.5296752992

Cos in

tu-k

“kw

co

m

m

00

00

0)

C0

10

10

10

10

10

10

10

10

MHHH

HHh—l

fi

wwr-to

wg-Qm

ot

sf

wwa

0

9

576

-405

01

»;

moco

oo

sz

ca

oms

s‘ o

z

:Sco

oo

-at

koo

wuo

l

Aor

UY

OY

OY

U!

U

fi

g

flk

fi

CD

CD

“QC?

UV

OI

£886

3

3

TABLE X .

— SINES A-ND COSINES.

S ine Cosin S ine Cosin.64279.64301.64

3

23.64346.64368.64390.64412.64435.64457.64479.64501

.64524.64546.64568.64590.64612.64635.64657.64679.64701.64723

.64746

.64768

.64790

.648 12

.64834

.64856

.64878

.64901

.64923

.64945

.64967

.64989

.65011

.65033

.65055

.65077

.65100

.65122

.65144

.65166

.65188

.65210

.65232

.65254

.65276

.65298

.65320

.65342

.65364

.65386

.65408

.65430

.65452

.65474

.65496

.65518

.65540

.65562

.65584

.65606

. 76604

. 76586

. 76567

.76548

. 76530

. 7651 1

. 76492

.76473

. 76455

. 76436

. 76417

. 76398

. 76380

. 7636176342

. 76323

. 76304

. 76286

. 76267

. 76248

. 76229

. 76210

. 76192

. 76173176154. 76135. 761 16. 76097. 76078. 76059

. 76041

. 76022

. 76003

. 75984

. 75965

. 75946

. 75927

. 75908

. 75889

. 75870

. 75851

; 75832. 758 13

. 75794

. 75775

. 75756

. 75738

. 75719

. 75700

. 75680

. 75661

. 75642

. 75623

. 75604

. 75585

. 75566

. 75547

. 75528

.75509

. 75490

. 75471

C—

os in S ine

.65606 .75471

65628 .75452

.65650 . 75433

.65672

.65694

.65716

.65738

.65759

.65781

.65803

.65825

.65847

.65860

.65891

.65913

.65935

.65956

.65978

.66000

.66022

.66044

.66066

.66088

.66109

.66131

.66153

.66175

.66197

.662 18

.66240

.66262

.66284

.66306

.66327

.66349

.66371

.66393

.66414

.66436

.66458

.66480

.66501

.66523

.66545

.66566

.66588

.66610

.66632

.66653

.66675

.66697

.66718

.66740

.66762

.66783

.66805

.75414

. 75395

. 75375

. 75356

. 75337

. 75318

. 75299

. 75280

. 75261

. 75241

. 75222

. 75203

. 75184

. 75165

. 75146

. 75126

. 75107

. 75088

. 75069

. 75050

. 75030

. 75011

. 74992

. 74973

. 74953

, 74934

. 74915

. 74896

. 74876

. 74857

. 74838

. 748 18

. 74799

. 74780

. 74760

. 74741

. 74722

. 74703

. 74683

. 74664

. 74644

. 74625

. 74606

.74586

. 74567

. 74548

. 74528

. 74509

. 7448974470

74451

74431744 12

.66891 . 74334

166913 . 74314

Cofl n Sine

S ine.669 13

.66935

.66956

.66978

.66999

.67021

.67043

.67064

.67086

.67107

.67129

.67151

.67172

.67194

.67215

.67237

.67258

.67280

.67301

.67323

.67344

.67366

.67387

.67409

.67430

.67452

.67473

.67495

.67516

.67538

.67559

.67580

.67602

.67623

.67645

.67666

.67688

.67709

.67730

.67752

.67773

.67795

.67816

.67837

.67859

.67880

.67901

.67923

.67944

.67965

.67987

.68008

.68029

.68051

.68072

.68093

.68 115

.68 136

.68 157

.68 179

.68200

Cosin

X I.

-NATURAL SECA’NT S AND COSECANTS.

0 0

00000

00000

00000

00000

00000

. 00001

00001

00001

0000100001

'

00001000010000200002

. 00002

00002

00005

00005

00008

00009

00010

00010

000 12

00012

00014

00014

00015

SECANTS

1 0 2 0 3 0

00016 00062 00 139

00016 00063 00 140

000 17 00064 00142

00065 00143

00018 00066“a 00 145

000 18 00067 00 147

00019 00068 00148

00020 00 150

00020 00070 00151

00021 00072 00153

.00021 .00155

00022 00074 00156

00023 00075 0015800023 00076 00159

00024 00077 00161

00024 00078 00163

00025 00079 00164

00026 0008 1 00166

00026 0016800027 00083 00169

. 00028 . 0017100028 00 17300029 00087 00175

00030 00088 00176

00089 00 17800031 00090 00 180

00032 00091 00182

00033'

00183

00094 00 185

00187

.00035 . 00 189

00036 00190

0003 00 192

00037 00 194

00102 00 196

00103 00198

00041 00106 0020100203

00108 00205

. 0004300044 001 1 1 0020900045 00 113 0021 1

00046 001 14 0021300047 001 15 00215

00117 1 0021600118 . 00218

00120

00050 00 12100051 00122

00053 00125‘

00127

00128

00 130

00057 00131 0023600133 . 00238

00059 00 134 00240

00060 00136 0024200061 00137 00244

COSECANT S .

4° 5°

00246 00385

00392

0039500397

0026100405

00265 00408

. 0026700413

00271 004 1600274

00276 00421

.0027800280 0042700282 0042900284 00432

00287

.00438

00291 00440

00443

00296 0044600298 0044900300 00451

00302 00454

00305 0045700307 0046000309 00463

. 00312

00314

00316 00471

00318 00474

0047700480

00326 0048200328 . 00485

00333

.00335

00337 0049700340

00503

0050600347 00509

00512

00352 0051500518

00521

0052700364 00530

0036700369 0053600372 0053900374 0054200377 0054500379 0054800382 00551

60

00554

0055700560

005690057300576005700582

005920059500598

00604

.00617

0062400627

0063400637006400064400647

.0065000654

00660

00667

0067400677

0069 100695006980070100705

00708

00712

00715

00722

00726

00730

00737

00740

00747‘

510

. 07 1157 12607 13807 150

07174

07 1867199

072 11

07223

7235

. 07247

07259

0727 1

07283

07307

07320

07332

07344

07356

.0736807380

07393

07405

07417

07429

07442

07454

07466

07479

. 0749107503

07516

7528

07540

07553

07565

075707590

07602

.076150762707640076520766507677076900770207715077

.077400775207765077780779007803

078 1607828

0784107853

COSECANTS

X I . -NA'

1‘

URAL SECANTS AND COSECANTS .

SECANT S .

23 ° 24 ° 25° 26° 2 7°

09478 10353 1 127 12249

08663 09492 10368 11292 1226608676 10383 1 1308 12283

08690 09520 10398 1 1323 12299

08703 09535 10413 1 1339 1231608717 10428 1 1355 12333

08730 09563 10443 1 1371

08744 0957 10458 1 1387 1236608757 09592 10473 1 140308771 10488 1 14 19

. 08784 .09620 . 10503 . 1 1435 . 1241608798 10518 11451 12433

088 11 09649 10533 1 146708825 09663 10549 1 1483 12467

09678 10564 1 149908852 09692 10579 1 1515

08866 09707 10594 1 1531 1251809721 10609 1 1547 12534

088 93 09735 10625 1 1563 12551

08907 09750 10640 1 1579 12568

. 08921 . 09764 . 10655 . 1 1595 . 12585

08934 0977 10670 1 161 1 1260208948 09793 10686 1 1627 12619

08962 09808,10701 1 1643 12636

08975 09822 10716 1 1659 1265308989 09837 10731 1 1675 12670

09851 10747 1 1691 12687

09866 10762 1 1708 12704

09880 10777 1 1724 12721

09895 10793 11740 12738

. 09058 . 09909 . 10808 . 1 1756 . 127

55

09072 09924 1 1772 1277

09086 09939 10839 1 1789 12789

09953 10854 1 1805 12807

09968 10870 1 1821 12824

09127 10885 11838

0914 1 09997 10901

09 155 100 12 109 16 1 1870 12875

09169 10932 1 1886 12892

09183 10947 1 1903 129 10

. 09197 . 10055 . 10963 . 1 1919

09211 10071 10978 11936

10994 1 1952 12961

09238 10100 1 1009 1 1968 12979

09252~

10115 1 1985 12996

10 130 1 1041 12001 13013

10144 11056 12018 1303 1

09294 10159 1 1072

09308 10174 1 1087 12051 13065

09323 10189 11103 13083

. 09337 . 10204 . 111 19 . 12084 . 13100

10218 1 1134 12 100 13 117

09365 1 1150 121 17 13135

09379 10248 1 1166 12133 13 152

09393 10263 1118 1 12150 13170

09407 11197 12166 13187

09421 10293 1 1213 12183 13205

09435 10308 1 1229 12 199 13222

09449 10323 1 1244 12216

09464 10338 1 1260 12233 13257

66° 65° 64 ° 63 ° 62°

418 °

13275

13292

133 10

133 37

13345

13362

13398

134 15

13433

. 13451134681348613504

'

13521

13539

13557

13593

13610

. 136281364613664

1368213700

137 1813735

13753

1377 1

13 789

. 1380713825

13843138611387913897139 1613934

13952

13970

. 13988

1402414042140611407914097141 15

14 134

14 152

. 14170

1418814207

1 4225

14243

14262

14280

14299

14317

14335

61 °

119 °

14354

14372

1439 1

14409

14 42814446

1 1465

14483

1 1502

1 152 1

. 14539

14558

14576

14595

14614

14632

14651

14670

1 4689

14707

. 14726

147451476414782148011482014839

14858

1487714896

14933

14952

1497 1149901500915028

1506615085

. 15105

1512415143

151621518 115200

152191523915258

15277

. 1529615315

15335

15354

15373

15393

15431

15470

60 °

COSECANTS .

SECANTS .

30 ° 3 1 °

15189 1668 4

15509 16704

15528

15548 16745

1676616766

16806

15626 16827

15645‘

16848

15665 16868

. 15684 . 16889

1&w915724 1693015743 1695015763 1697 1

15782 16992

15802 170 12

15822 17033

15841 17054

15861 17075

. 1588 1 . 17095

15901 17116

15920 17 137

15940 17158

15960 17 178

15980 1 7 199

16000 17220

1601916039 17262

16059 17283

. 16079 7304

16099 17325

16119 1734616139 1736716159 1738816179 17409

16199 17430

16219 17451

16239 17472

16259 17493

. 16279 17514

16299 17535

16319 1755616339 757716359 759816380 1762016400 1764 116420 1766216440 1768316460 17704

. 1648 1 177261650 1 177 716521 1776816541 7790

16562 1781 116582 1783216602 1785416623 17 75

16643 17896

16663 179 18

59 ° 58 °

32 °

17939

1796117982

18004

18025

18047

18068

18090

18 11 1

18 133

. 18 155

18 17618 19818220

1826318285

1830718328

18350

. 1837218394184 16

184371845918 611850318525

1854718569

. 18591186131863518657186791870118723187451876718790

. 188121883418856

188781890 118923189451896718990

19012

. 1903419057

190791910219124191461916919 19 119214

19236

57°

233 °

19259

1928 1

19304

1934919372

1939 4

194 17

19440

19463

. 19485

19508

19531

19554

1957619599

19622

1966819691

. 197 13197361975919782

1980519828

19851

19874

1989719920

.19944

1996719990

20013

20059

2012920152

. 20176

20222

202462026920292

20316203392036320386

.2041020433

20457

20527

20575

2059820622

56°

XL— NATURAL SECANT S AND COSECANT S. 7

3 4 °

20669

20740

20764

208 12

208 36

20859

.208832090 42093 1

20955

20979

2100321027

210512107521099

. 21 123

2114721 17 12 1 195

21220

21244

2 126821292

21316213 41

.2136521389

214 14

21438214622148721511

21535

215602 1584

.216092163321658216822170721731

217562 178 1

21805

21830

.2 1855

21879

21929

2195321978

22028

22053

22 77

55°

$31 1

o

—dm

wa

ct

ca

q

oo

co

l

XI .

— NATURAL SECANTS AND COSECANT S.

SECANTS .

56° 57° 58 ° 59 ° 60 ° 61 °

78906 83690 88796 94254 0010 1 06375

78984 83773 88884 94349 0648379061 88972 94443 06592

79138 89060 94537 00404 06701

79216 84020 89148 94632 0680979293 84103 89237 94726 00607 06918

79371 84 186 89325 94821 0 7 027

79449 84269 894 14 94916 008 10 07137

79527 84352 89503 9501 1 009 12 0724679604 84435 89591 95106 01014 07356

. 79682 . 89680 . 95201 .

79761 84601 89769 95296 01218 07575

79839 84685 89858 95392,

01320 0768579917 84768 89948 95487 0 1422 07795

79995 84852 90037 95583 01525 07905

80074 84935 90126 95678 01628 08015

80152 85019 90216 95774 01730 08 12680231 85103 90305 95870 01833 0823680309 85187 90395 95966 01936 08347

90485 96062 02039 08458

. 80467 . 90575 . 96158 2 0856980546 85439 90665 96255 02246 0868080625 85523 90755 96351 02349 0879180704 85608 96448 02453 0890380783 85692 90935 96544 02557 0901480862 85777 91020 96641 02661 09126

80942 85861 9 1116 96738 027

65 09238

8 1021 85946 9 1207 96835 02869

8 1101 86031 91297 96932 02973 0946281 180 86116 91388 97029 03077 09574

. 81260 . 91479 . 97127

8 1340 86286 9 1570 97224 03286 09799

8 1419 86371 91661 97322 03391 09911

8 1499 86457 91752 97420 03496 10024

8 1579 86542 91844 97517 03601 10137

8 1659 86627 91935 97615 . 03706 10250

8 1740 86713 92027 97713 038 1 1 103638 1820 86799 92118 978 11 03916 104778 1900 86885 92210 979 10 04022 10590

8 198 1 86990 92302 98008 04128 10704

. 82061 . 92394 . 98107 . 108 1782142 7142 92486 98205 04339 10931

82222 7229 9257 98304 04445 1 1015

8 2303 87315 92670 98403 04551 1 1159

8238 4 87401 92762 98502 04658 1 1274

82465 87488 92855 9860 1 04764 1 1388

82546 8757 92947 98700 04870 1 1503

82627 8 7661 93040 98 7 99 04977 1 161782709 87748 93133 98899 05084 1 173282790 87834 93226 98998 05191 11847

. 82871 . 93319 .99098 . 1196382953 88008 93412 99198 05405 1207883034 88095 93505 99298 05512 12193

83116 88 183 93598 99398 05619 12309

83198 8 8270 93692 99498 05727 1242583280 88357 93785 99598 05835 1254083362 88445 938 79 99698 05942 1265783444 88532 93973 99799 06050 1277.

83526 88620 91066 99899 06158 128898 3608 88708 94 160 06267 13005

3 3° 32 ° 3 1 ° 30 ° 2 9 ° 2 8 °

COSECANTS .

10

62 °

2 1300513 122

13239

1335613473

13590

13707

13825

13942

14178

. 1429614414

14533

1465114770

14889

1500815127

1524615366

. 15485

15605

15725

15845

15965

16085

16206163261644716568

. 16689168 10169321705317175

1729717419

1754 1

1766317786

17909

18031

18 154182771840 1

18524

1864818772

18895

19019

. 19144

1926819393

19517

19642

197671 9892

2001820143

20269

2 7°

31 8 XI .

— NATURAL SECANTS AND COSECANT S .

XL— NAT URAL SECANTS AND COSECANT S.

8 4 °

59332

62002

6468767387

70103

72833

75579

78341

8 1119

839 12

89547

92389

95248

98 123

03923

09792

12752

18725

21739

2477

278 19

30887

33973

37077

4020 1

43343

4968552886561065934662605658856918672507

75849

825968600189428

92877

99841

0689410455

176462 127724932

2861032313

4356947371

50

85°

51 199

55052

58932

6283766769

70728

74714

7 727

827

6886837

99214

076101 1852

16125204272476129125

3794842408

46900

51424

55982

605765197

6985674550

84042

8884 1

9367798549

08040

13388

1841 123472

33712

38891441 12

49373546766002 1654087083876312

8739192999

98651

10096

217302762033559

4 0

SECANTS .

86° 8 7°

19 10732

39547 21397

45586 32182

51676 43088

578 17

640 11 65275

70258 76560

76558 87976

829 13 99524

89323

95788 23028

08890 47093

15527 59341

22223 7 1737

28979 84283

35795 96982

42672 21 0983849611 22852

56614 3602763679 49368

78005 7655585268

92597

99995 1865333050

14999 4763522607 624 1330287 7738638041 92559

5377'

23520

61751 3931669808 5532977944 7156386159 88022

9445621637

1 1297 3880219843 56212

37 196 9 1790

4600554903 28414

63893 47134

72975 6613282152 85417

91424

2486910262 45051

29501 8636039274

49 153 2898 1

59 139 5080472978

79438 95513

8 7554 1700

10732 65371

3 ° 2 °

COSEC ANTS

8 8 °

89440

388 12

6413789903

42802

699607607

83623

4367 174554

38 118

70835

38232

44539

81452

57633

96953

78185

51855

97797

92963

9277‘

9757 1

64980

8 4026

74997

89 156

1 0

8 9lo

319

320 TABLE K IL — T ANGE'

fi Ts AND COTANGENTS.1 0

Cotang Tang;

42 9641

42 4335

40 435839 965539 505939 056838 617738 1885

36 9560365627

32 49 1332 118 131 82053 1 528431 2416

30 959930 683330 411630 144629 8823

29 624529 3711

29 1220

Tang

.03492

.03521

.03550

.03579

.03609

.03638

. 03667

.03696

. 03725

.03354

.038 12

. 03842

.03871

. 03900

.03929

. 03958

. 03987

.04016

. 04046

.04075

.04104

.04133

. 04162

. 04191

. 04220

. 04250

. 04279

.04308

.04337

. 04366

. 04395

.04424

. 04454

.04483

. 04512

.04541

.04570

.04599

. 04628

.04658

.04687

.04716

.04745

.04774

.04803

.04833

.04862

. 04891

.04920

.04949

.04978

.05007

.05037

.05066

.05124

.05153

. 05182

.05212

.05241

Cotang

27 489927 2 71527 056626 8450266367

26 030725 834825 6418

24

24

24

24 195724 0263

23 371823 213723 057722 9038

22 751922 6020

£5253

Tang0 . 14054

1 . 14084

2 . 1 1113

3 . 14143

4 . 14173

5 . 14202

6 . 14232

7 . 14262

8 . 14291

9 . 143210 . 14351

1 1 . 1438 112 . 144 10

13 . 14440

14 . 14470

15 . 14499

16 . 14529

17 . 14559

18 . 14588

19 . 1461820 . 14648

21 . 1467822 . 14707

23 . 14737

24 . 1476725 . 1479626 . 1482627 . 1485628 . 1488629 . 1 4915

30 . 14945

31 . 1497532 . 15005

33 . 1503434 . 1506435 . 1509436 . 15124

37 . 15153

38 . 1518339 . 15213

40 . 15243

41 . 1527242 . 15302

43 . 15332

44 . 1536245 . 15391

46 . 15421

47 . 15451

48 . 1548 149 . 15511

50 . 15540

51 . 1557052 . 1560053 . 1563054 . 1566055 . 1568956 . 157197 . 1574953 . 1577933 . 15809LO . 15838

TABL E XII .

ANUENTS AND COTANGENTS.

7 115377 1m %7 085467 070597 055797 041057 026376 911746 997 186 98268696823

6 953856 939526 925256 911046 896886 882786 868746 854756 840826 82694

6 8 13126 799366 785646 771996 758386 74483

75

Gotang Tang_

15838

15868158981592815958

159881601716047160771610716137

16167. 16196. 16226. 16256. 16286. 16316. 16346. 16376. 16405. 16435

. 16465

. 16495

. 16525

. 16555

. 16585

. 16615

. 16645

. 16674

. 16704

. 16734

. 16764

. 16794

. 16824

. 16854

. 16884

. 16914

. 16944

. 16974

. 17004

. 17033

. 170637093

. 17123

. 17153

. 171837213

. 17243

. 17273

. 17303

. 17333

. 17363

. 17393

. 17423

. 17453

. 17483

. 17513

. 17543

. 17573

. 1760317633

Gotang Tang Gotefi Tang

80°

10 °

g ang Cotang Tang Cotang

. 17633 . 19438

. 17663 . 19468

. 17693 . 19498

. 17723 . 19529

. 17753 . 19559

. 17783 . 1958 97813 . 1961917 19649 5 08921

. 17873 . 19680

. 17903 . 19710

. 17933 . 19740

. 19770

. 198015.54851 198315.53927 19861 5 03499

. 19891

. 19921

. 19952

19 982 5 0045120012

. 20042

.20073

. 20103

.201335 44857 20164

.20194

.20224

. 20254

. 20285. 20315

5 39552 .20345

5 38677 .203765 37805 .204065 36936 .20436

. 20466

.204975 34345 .205275 33487 .20557

5 32631 .205885 3177 .206185 30928 .20648

5 30080 .206795 29235 .207095 28393 . 207395 27553 . 207705 26715 . 208005 25880 . 208305 25048 . 208615 24218 .208915 23391 . 209215 .20952

5 .209825 .210135 .210435 .210735 .211045 .211345 16863 .211645 16058 .21195

. 21225

.21256 4 . 70463

79°

Tang Cotang Tang7?

8

8

3

33888!

[

OHMCO

A

O'

Q'Q

CDQO

TABLE X11 .

-TANGENTS AN! ) 323

Tang Cotang Tang Gotang Tang_

Cotang Tang Co tang

0 .21256 4 . 70463 4 . 33148 .24933 4 . 01078 .26795 60

1 .21286 23117 . 24964 3 . 72771 59

2 .21316 .23148 . 26857 58

3 21347 23179 4 31430 3 . 99592 57

4 21377 . 23209 . 25056 565 21408 . 25087 26951 55

6 21438 .23271 25118 26982 54

7 21469 25149 27013 538 21499 25180 7044 52

9 21529 . 25211 51

10 21560 50

11 21590 .27138 49

12 .21621 . 25304 . 27169 48

13 .21651 .25335 . 27

201 47

14 .21682 .23516 . 25366 .27232 46

15 .21712 .23547 .25397 .27263 45

16 23578 3 93271 3 .66376 44

17 .21773 . 23608 .25459 43

18 .21804 . 23639 . 25490 42

19 .21834 4 .58001 .23670 25521 3 . 91839 27388 41

20 .21864 . 23700 . 25552 40

21 .21895 .23731 . 25583 3922 21925 23762 4 . 20842 25614 3 90417 27482 3 638 74 3823 . 21956 . 23793 . 25645 27513 3724 .21986 . 25676 27545 3625 .22017 .23854 .25707 27576 3526 . 22047 . 23885 .25738 27607 3427 .23916 . 25769 7638 3328 . 22108 . 23946 . 25800 27670 3229 22139 4 51693 23977 4 17064 3 87136 27701 3 60996 3130 .22169 .25862 .27732 3 60588 30

31 .24039 .277 2932 .22231 . 24069 .25924 .27795 2833 22261 . 24100 4 14934 25955 3 . 85284 3 59370 2734 . 24 131 .25986 2635 .22322 .24162 .27889 2536 . 24193 . 26048 .27921 M37 26079 .27952 2338 .22414 4 .46155 .24254 . 26110 .27983 2239 . 24285 . 26141 .28015 2140 .26172 2

4 1 .24347 . 26203 1942 .22536 .24377 26235 3 .55761 1843 24408 26266 28 140 1744 .22597 . 24439 .26297 1645 .22628 4 . 4 1936 .244 70 4 .08666 3 . 79827 1546 . 22658 4 41340 .24501 6359 3 79378 14

47 22689 .24532 6390 3 . 78931 28266 13

48 .22719 4 40152 .24562 4 07127 6421 28297 12

4 39560 24593 4 06616 3 . 78040 28329 11

. 24624 .26483 .28360 10

.26515 3 . 7 7 152 . 28391 3 .52219 926546 8

24717 2657 3 .51441 74 . 36623 4 04081 26608 3 .51053 64 36040 2477 4 .03578 26639 28517 3 .50666 54 35459 26670 3 . 74950 4

22995 4 34879 26701 3 74512 3

.23026 .24871 .28612 2

.23056 4 . 33723 .26764 3 . 73640 .28643 3 . 49125 1

.23087 4 . 33 148 3 . 73205 .28675 3 48741

Gotang Tang Cocang Tang Conan

77° 1 76°

Tang Cotang Tang74°

324 TABLE XII .— TANGENTS AND COTANGENTS.

Tang

. 33266

. 33298

. 33330

. 33363

. 33395

. 33427

. 33460

. 33492

. 33524

. 33557

. 33589

. 33621

. 33654‘

. 33686

. 33718

. 33751

. 33783

. 338 16

. 33848

. 3388 1

. 33913

. 33945

.33978

. 34010

. 3 4043

. 34075

.34108

u34140.34173

.34205

. 34238

. 34270

.34303

.34335

.34368

. 34400

.34433

Ootang

8

8

83

3

33

2

3

32

I

8

882

3

3

2

32

2

TABLE XII .

— TANGENTS AND COTANGENTS.

28 ° . 29 ° 0 30 °

Tang Cotang Tang Co tang Tang Gotang Tang Gotang53171 1 88073 1 80405 57735 1 73205 60086 60

.53208 1 . 7941 55469 57774 1 . 73089 .60126 59

.53246 1 87809 .55507 1 . 80158 57813 1 72973 60165 5853283 1 7677 55545 1 . 80034 57851 1 72857 60205 1 66099 57

.53320 1 7546 55583 1 . 79911 57890 1 . 72741 56

.53358 1 87415 55621 17

9788 57929 1 72625 55

.53395 1 87283 1 79665 57968 1 72509 54

53432 1 87152 55697 1 79542 1 72393 1 65663 53

53470 1 87021 55736 1 . 79419 52

.53507 5577 1 72163 60443 51

.53545 .55812 1 . 79174 .58124 60483 50

53582 1 . 86630 55850 1 . 79051 58 162 60522 1 .65228 49

.53620 1 . 86499 1 78929 58201 1 . 718 17’ 60562 1 .65120 48

53657 1 86369 1 78807 58240 1 71702 60602 1 65011 47

53694 1 86239 55964 1 77

8685 58279 1 71588 60642 4653732 1 86109 1 78563 58318 1 71473 6068 1 1 64795 45

.53769 1 56041 1 78441 1 71358 1 .64687 44

53807 1 85850 56079 1 78319 58396 1 71244 60761 1 .64579 43

.53844 1 85720 56117 1 78198 .58435 1 . 71129 60801 42

53882 1 85591 1 78077 58474 1 71015 .60841 1 .64363 41

.53920 .56194 58513 .60881 1 64256 40

53957 .56232 58552 1 . 70787 60921 39

53995 1 85204 56270 1 . 77713 58591 1 70673 60960 38

54032 56309 1 . 77592 58631 1 70560 61000 37

.54070 1 84946 56347 58670 .61040 36

.54107 56385 1 . 77351 .58709 61080 35

.54145 1 . 84689 56424 1 .77230 58748 1 . 70219 61120 1 63612 34

.54 183 56462 61160 33

54220 1 . 84433 6501 l 76990 1 6999 61200 1 63398 32

54258 1 84305 6539 1 76869 58865 1 6987 61240 1 63292 31

.54296 -1 84 177 6577 58905 61280 1 63185 30

54333 1 . 84049 .56616 1 . 76629 58944 1 69653 61320 1 .63079 29

z5437 1 83922 58983 1 6954 1 61360 28

.54409 56693 1 . 76390 59022 1 .69428 61400 1 .62866 27

.54446 1 83667 .56731 1 76271 59061 1 .69316 61440 1 .62760 26

.54484 1 83540 56769 1 76151 59101 1 69203 61480 1 .62654 25

54522 1 . 83413 56808 1 76032 59140 1 69091 61520 1 62548 24

.54560 1 83286 56846 1 75913 .59179 1 .68979 61561 1 .62442 23

.54597 1 83159 1 75794 59218 1 .68866 601 1.62336 22

54635 56923 1 75675 59258 1 68754 641 1 62230 21

54673 1 82906 1 75556 59297 1 68643 681 l 62125 20

54711 1 . 75437 59336 1 68531 61721 19

54748 1 82654 57039 1 75319 59376 1 68419 61761 1854786 57078 1 75200 .59415 1 .68308 .61801 1 61808 17

54824 7116 1 . 75082 .59454 1 68196 61842 1654862 57155 1 74964 59494 1 68085 61882 1 61598 15

54900 1 82150 57193 1 74846 59533 1 .67974 61922 1 61493 14

54938 1 . 82025 57232 1 . 74728 59573 1 67863 61962 1 61388 13

. 5497 1 . 8 1899 57271 .59612 1 .67752 .62003 12

55013 1 8 1774 59651 62043 1

.55051 1 . 8 1649 .59691 1 67530 62083 0

55089 1 81524 57386 1 74257 59730 1 67419 62124 1 60970 9

55127 1 81399 7425 1 74140 5977 1 7309 62164 8

55165 1 81274 57464 1 74022 59809 1 .67198 .62204 1 .60761 7

55203 1 8 1 150 57503 1 73905 59849 1 67088 62245 1 .60657 6

5524 1 1 8 1025 57541 1 73788 59888 1 66978 1 60553 5

55279 1 80901 57580 1 73671 59928 1 66867 62325 1 60449 4

55317 57619 1 73555 .59967 1 66757 62366 1 60345 3

.55355 1 . 80653 .57657 .62406 2

.55393 1 . 80529 57696 1 73321 1 66538 62446 1 .60137 1

.554'

$1 1 . 8 0405 .57735 I 1 . 73205 7 60086 1 66428 .6248 7 1 .60033 0_

COLang Tang Gotang I Tang Cot ang Tang Got ang TangI

58 °

330

H

HHMHHHP‘

H

76

13

g

eo

gq

ca

m

ux

oo

wfl

oco

oo

-ccws

wwr-to

l

8288

233

12

2

8

8

TABLE X11.— TANGENTS AND COTANGENTS.

40°

T ang | Cotang £21952 . Cotang l .Tang | Go tang

847

85912

8596386014

861158616686216

N

7

86318

MM

HHHHMMHHH

HH 19175

19105

19035

87955

. 88 1 10

. 88 162

. 88214

. 88317

4 1 ° 42°

90040 1 1 106190093 1 1099690146 1 10931

90199 1 1086790251 1 10802

14699 90304 1 1073714632

"

7 1 1067214565 90 41 0 10607

90463 1054390516 10478

9

. 90674

9104691099

9115391206 1

91259 1

91313 191366 1

91419 191473 1

91526 1 09258

91580 1 09195

1 91633 1 09131

1 9168 7 1 7

1 91740 1 090031 917 1 089401 91847 1 088 7

91901 1 088 13

91955 1 08749

1 1 1975

1 1 1909

1 1 1844

1 1 1778

1 1 1713

1 116481 1 15821 1 1517

1 11452

1 1 13871 1 13211 1 12561 1 1 191

1 1 11261 1 1061

Co tang j Tang Go t ang | Tang Cotang Tang

47°49° il 4 8 °

TABLE XII.— TANGENTS A ND COTANGENTS .

0 0n

. 98 327

. 98384. 9844 1. 98499. 98556. 98613

7 1

. 98728

. 98 786

. 98843HHHH

HHHH

. 01642

. 01583

. 01524

.01465

. 01406

. 01347

. 01288

. 01229

Gotang Tang

43

39

8

8

852

. 99362

33 1

Ver s ine z Exsec a n‘

r‘z f e c q nf - I

TABLE XIII .

—VERSINES AND EXSECANTS.

TABLE XIII.— VERSINES AND EXSECANTS.

Vers. Exsec . Vet s. Exsec . Vet s. Exsec . Vers. Exsec .

02240

02291

03347

02935

03407

TABLE XIII .— VERSINES AND EXSECANTS.

Vers . Exsec . Vc rs . Exsec . Vers. Exsec . Vers. Exsec .

TABLE XIII .~— VERSINES AND EXSECANTS.

Vers . Exsec . Vers. Exsec . Exsec . Vers . Exsec .

13257

12566

13793

13368

. 15470

. 15489

. 15509

. 15528

. 15548

. 15567

. 15587

. 15606

. 15626

. 15645

15665

156841570415724157431576315782

15802158221584115861

158811590115920

15940

159601598016000019039

059

. 16079

. 16099

. 16119

. 16139

1617916199162191623916259

1627916299

. 16319

. 16339

. 16359

. 16380

. 16400164201644016460

16481165011652116541165621658216602166231664316663

. 14283

. 14298

. 14313

. 14328

. 14343

. 14358

. 14373

. 14388

. 14403

. 14418

.14433

. 14449

. 14464

. 14479

. 14494

. 14509

. 14524

. 14539

. 14554

. 14569

. 14584

. 14599

. 14615

. 14630

. 14645

. 14660

. 14675

. 14706

. 14721

. 14736

. 14751

. 14766

. 14782

. 14797

. 14812

. 14827

. 14843

. 14858

. 14873

. 14904

. 14919

. 14934

. 14949

. 14965

. 14980

. 14995

. 1501 150265041

5057. 15072

. 15087

. 15103

. 15118

. 15134

. 15149

. 15164

. 15180

. 15195

. 16663

. 16684

. 16704

. 16725

. 16745

. 16766

. 16786

q16806

. 16827

. 16848

. 16868

. 16889

. 16909

. 16930

. 16950

. 16971

. 16992

. 17012

. 17033

. 17054

. 17075

. 17116

. 17137

. 17158

. 17178

. 17199

. 17220

. 17241

. 17262

. 17493

. 17535

755675777598

. 1762076417662768317704

1772617747

1776817790178 1117832

178541787517896

17918

TABLE XIII.-VERSINES AND EXSECANTS.

Vers. Exsec . Vers . Exsec . Vers. Exsec.

342 TA BLE XIII .— VERSINES AND EXSECANTS.

Vers.

TABLE XIII.

— VERSINES AND EXSECANTS.

Vers. Exsec . Vers. Exsec . Vers. Exsec . Vers . Exsec .

. 43956. 31821

44304

44391

42293

33087

TABLE XI II.— VERSINES AND EXSECANTS.

Vers . Exsec . Vers. Exsec . Vers .“ _ cfl

TABLE XIII .— VERSINES AND EXSECANTS. 347

Vers. Exsec . Vet s . Exsec . Vet s . Exsec . Vers. Exsec .

1 . 00607.51697

52259

Vers .

T ABLE XIII .- VERSINES AND EXSECANTS.

Exsec . Vers . IExsec . Vers. Exsec . Vers. Exsec .

T ABLE XIII .— VERSINES AND EXSECANTS .

Vers. Exsec . Vet s. Exsec . Vers. Exsec .

96510

. 98371

. 98575

. 9691775 39655

. 96975

20 .62876

97324

99186

99244

39 44820

40 42266

. 9 7615

.960 16 99505

96103

. 99651. 97935

99709

2565546

. 98051. 99825

96510 56 29869

359TABLE XVI. —TRANSIT ION CURVE TABLE.

owo

ooc

O

Sowe

coo

own

com .

0

3can

con

cmv

owv

0

3omv

0

9.gm

com

9m

own.

com

own

own

oww

cum

com

o

fo

f0

2cc”

cm

co9.

v-Q H H F 'I v-‘N N N N 50 °0 v W IC IO QD QD

Q

wvm

o.

cmm

o

dmm

f

ir.

N

dom

amu

cwm

.

hN

ccm

n

mam

c

mv

wmmm

8

m

g

N.

gm

5

aom

wmam

wmm”

ma

m

?

m

an“

a

m

E

a

omfl

mm“

a

m

:

F i r i H v-‘ CN OI N N

Ac w v so sv

v-‘ v-i 0 2 0 2 0 2 00 03 v v v m no co w u v-cc

0 2 0 2 00 673 00 w w w w w n m w zo b v

02 63 0 2 09 63 t v m w b b (D O)

v-1 r-4 fi fl v-QC‘QN

C73 0:0 50 3 0 50 3 0:oo co ao oo cs b w w co m

M v-t v-‘v-l

O

c:czoo co u p o n v oo v-«o co CD fi ' v-‘ b 00 0 5 00 0 3 V O AO O AO

wm

v

ww

w

v

o

w

ww

fi

mfi

fi

mv

o

Ra

2

m

bv

w

mm

“.

mm

» .

mo

w

mfi

o

mw

n

3m

mm

3

cm

v

gm

wm

m

ma

m

8m

wm

m

cm

3”

gm

3a

3tum

mv

mm

0 2 02 0 ? Ot O‘DOO Q ‘IO ( D &D b- l‘ w

0 2 8 2 c v n co L- c z

fl v-( v-Qfi r u n0

F ‘F ‘ “0

w30

m ..

wuw

m

cow

w

89

flCo

vnow

Eb

a

ban

flmmn

m

m

5

m

mmv

N.

m

g

m

wmv

o

mmv

a

m

2.

wmam

m .

mum .

v

mam

m

own

c

2m

h

mam

m.wmam

wmmm

3m

a

$3

a

o

fova

om"

0

2cm

on

co

m

G O O C3 0 0 0 O0 1 9 0 v oo m sg $ 8 0 2 8F ‘H N N N CO CO V ‘ V V IO IO

TABLE XVI.— TRANSIT ION CURVE TABLE .360

000

000

0v0

000

000

000

000

0

3000

000

00v

009

0

3.00“V

00V

000

000

00

0

000

000

000

000

0

0000

000

o0m

0

20

300H

00~

00

00

01

r-O Q CD CD IQ Q ‘CQ v-t a

v-q v-nr-i v—CQ 0 2 0 2 00 CO V ‘ V V LO AO QO ( 0 1> w ® O O v-1 0 2

0 5 0 0 0 0 0 m v v m cx

b

0

00

00

v

0

00

0b

00

0v

2

00

0fi

v0

2

00

ma

z0

50

0~

fi fi fl 0 2 0 2 0 2 213 00 V ‘ 10 10 0 0 0 GJ O O v-n

C'O V fi ‘V l-O 0 0 5 00 0 O H N OO JOfi Ol3m v—i1-1

v-I Vfl

0

1 4 0 2 0 2 60 0 3 V AC IO QD N G O fi C’O'

fi ‘

0 2 0 2 0 2 0 2 09 0 0 03 0 -er

v-fl fl v—n0 7 0 2 0 2 0 2 0 2 0 2 60 60

v-nv-i v-c v-nr-c 0 2 0 2 0 2 03 60 CO V V AO IO IO QG QD l ‘ b 00 00 0 0 0

0 5053 50 50 ) b- CD AO IO Q‘ C0 0 2 0 2 F ‘ O b m fl h

fl v-c v—0 2 0 2 0 0 0 0 0 0 0 0 0 0

v-i v-nfl 0 2 0 2 0 2 00 60

v4

0

02

00

00

0

02

2

00

.

n~

02

2

00

.

0H

0v

.

0

ow

.

n

00

6

00

.

0q

0v

.

0

00

A

TABLE XVI.

— TRANSIT IOJ CURVE TABLE .362

ooh.

owe

9

30

3com

own

cum

cv

m

0

3con

cmv

oov

0

30

30

2Vown

cum

ovm

0mm

com

owm

com

Ov

a

omm

com

0

2o

fova

0

32:

cm

ow

_

ov

v-q v-( v-i v-NN CQ OO CO V 'QH O AO CD ca b oo cm m O H N W V V AO QD E GD

CD G Q w w i ~ 1 ~ © AQ V OO CN O Q I ‘ IQ CQ v-fl G QD V v—w ID H I‘ OO OJ

mm

mm

mv

om

em

vm

5mm

vm

cm

vv

mu

ow

mm

mm

vm

2mm

3

5

mm

2

ma

ma

w Q O v-‘CQ V IO CDH v-i N OI OO 60 m 1~

GJO fl CO fi “ (D QDO C‘O LQ 5 0 60 5 0

fl v-q v-i fl H v-HN CN N N O‘DO

‘DOO Q ‘

P i v-‘ F-i v-i r" N CN CO CO V V V ID QD CD b b-w GDOQ

v-i v-il v-‘N CQ CQ C’O W V V LO IO co w b oo oo Q O v—fl v-‘ CV co vn o co ts

w b l‘ CD IO V O‘

DCQ v-i c b b tb fi ‘ m o w m co O h V O b( 33 0 50 5

fi v-n—«m oz CO V ‘GHO QD

ts oo cz fi cv 00 10 5 0 0 2 v c m m v

0 2 0 2 0 2 00 60v—i fi r-i v-« v-I CQ C !

0 2 0 2 09 00 00 m v v m uo CD (D b o b wCD Q fl CO AO

v-fl F 'l v-C

363TABLE XVI.

— 'I‘

RANSIT ION CURVE TABLE .

co»

owe

owe

ev

e

owe

coo

own

own

cvn

own

com

owv

oov

Ovv

cmv

cow

owm

com

cv

m

0mm

oom

owm

own

own

cum

com

owfl

ow”

Ova

own

00"

cm

owcv

m v co oo v-c ODQD ONN O O v ao oo oo

1—1 v—l r-u-q r-NN N N CQ GO CO v v v ao no

C00

CO QO ODN lOH r-‘v-l CN

toao

“3l0 3 0V QD

co ao v fl c sfl r-n m m m

w o o1—1

0 2O1 V CO b-Cb

(N CO CO V ‘V IO lO CD b b-w Gb O v-UR OOfi

fl

a

m

up

an

um

mm

mm

w~

av

~

m

cv

ohfl

m

mm

mm

fl

u

mfl

vm

mo

nu

mm

mm

mm

am

mm

uv

mv

fi

m

fl

u

mo

mm

”a

mm

mm

mm

mv

mv

om

mv

hm

mm

mp

mm

mv

ma

mm

mm

cwfi

m

unc

o

owe

o

vmw

flbow

o

cam

wmum

v

non

wumm

flown

m

mom

m

www

0

www

wuvw

m

mmv

m

o—v

w”mm

o

mum

flwmm

o

mmm

wnfi

m

m

mom

m

bum

hbmm

m

wmm

Ow

cm

om

mm

mm

mm

w“

um

w”

on

kw

ma

_m

vfi

mm

ma

hm

mfi

av

”a

mo

ofi

vw

a

no

9

mm

w

an

5

um

e

am

0

mm

n

ma

v

mv

vco

m

cvm

mm

m

on

m

wwww

m

www

wvmm

a

mfi

m

a

mom

a

wow

v

www

wcum

New

w.unm

b

uvw

o

mmm

m

wm

w

vwfl

m

w

mom

wwmfi

o

awfi

flaha

m

mcfl

v

mmfl

m

mvfl

wmm“

b

awn

n

o~

c s ob cm o (D

O N V CD GD O m lO d -t v oo v-uno

v-4 v-c v-1 v-i v-1 GI N OI GI CO M M V V AO

7-4

0 2 (N OO ODV V ID IO QD CO IN w o w

0 2 0 2wV IO CO b w

m o vfl u n g

2 03 $ 30 w “ 03 10 00r—c v—i v—l r—l

V-Q

7 -1

CD” 03 m0

fi fi fl cO

mm

«am

we

mmfi

mm

ow“

mv

mm”

mfi

om”

wfi

mmfi

cm

vfi

a

om

oofl

mv

mo

cv

mm

um

mm

ma

mv

vw

an

on

ow

.

mp

ow

mfl

mm

mm

mv

uh«v

mm

am

ow

mm

om

fi

m

cm

hm

uv

mm

fl:om

m

moo

m

owe

m

mmw

v

van

wohm

0

man

o

fl

wn

o

mmm

w«on

v

www

0

wow

v

av

v

womv

fi—v

o

mam

o

«um

a

wmm

b

nmm

v

ofi

m

o

ham

wbbw

a

wmm

m

wmm

XV I.

—TRANS IT ION CURVE TABLE. 367TABLE9

88m

com

0

;own.

cum

o_m

25

can

own

9

5owm

emu

ova

emu.

own

o

5com

o

fcma:

o

fem;

o

zo

fon;

c

:oca

cc

cm

cu

ow

en

Ov

v-u -4 v-nv-u -n -«CQ N N N OO G’DOO V

co v v v n lD lG © ¢O b w c=

c m v n b a co c oo v- V b -o

N C I fi C'DCO v v ac zo co (O b b w db G Q O v-n v-c N OQ

v-u -4 w4 y-4 v-1 0 2 0 2 0 2 00 02

v-i v-fi v-i v—d q I

N C I CQ V 'AO QDv-l v—iO

2mo

am

3

mo

3

5aw

cc

5

mm

an.

a

5

me

o,“

8cc

m,e

5

an

S

cv

no

em

mv

gmv

a

3

5mm

mm

an

we

am

mm

mm

3cm

vm

mm

8cm

a

o

;

H

mar.

mum .

2m .

aom

5m .

mam

vwm

m

ggm

mam

N.

avm

w0

5

a

Sm

wm»,

b

2m

a

8m

m

o

f

9

c

f

m

we;

k:

my

b

f

m owe r:b O QZ G‘DN

m.

3

Y

on

c

u?

a

dv

w

év

v.

mv

a

dv

m

dm

m

ug

f

em

o

hm

e

dm

w.

om .

v

dm

o.

wm

9

am

m

dm

wém

o

gm

c

g:n

i

m

g:

co ~ =s c>(O CO E- l - CDAO L”:

c sw cav cwn-a v a m oc oo co n co c t » cvb oo co ce cz c c v—w m w w w w w

5 ”

v-fl v-u—i v 0 2 0 2 03 0 3 9:v v v n no co c b b co Q Q Q O O v—Q

© 1

CC CO IG V C‘O 0 2 " w IO CQ v—c é b o v N Q b fi —wcz a c':

nu

ma

ma

3mm

cm

8

m

x

cm

cc

2

mm

.

2

m8

2

no

a”

cc

3

em

nu

8

a

S

2

g

2

ga

ga

omwc

a

b

b

e

ao

w

vv

n

mm

v

«m

v

aw

n

v—w LQ c O O’ V CO G v—‘v

v-4 H v-‘ v-w-‘ v-c N N C I N C I O‘J

‘JD

m m m v v lO tO CO b t - t v iv-nv-Q 0 2 0 1 0 2 69 62v-t v-t ‘N czm m v n co co a —un

3ma

g«a

mm

mm

mu

m

m

aa.

mo.

E

2oh.

mm

8

co

5

8

E

S

3

kw

m

gcmn

mm .

8m

m

5mom

mam

mwm

“8

Q

5

own

Em

o

mam

C ? ? L’z iAv-4 c ab-v O u.

fl

Iv

wcv3

l_v

cv

mm

um

em

on

mm

_m

C’DCD Q C ’ IDw v-‘ V i‘ o

G7 F

:

HH

HMHfl

H

co

m

fiwwr—‘c

wmuacn

as

cmm-tc

to

bi

di

n

wq

N)

wwwm

m

fiww~

[0

59

lQD

WN

Q

to

m

b?

HHHH

H

ti-‘HH

(0

10

59

Na

h?

QQQ‘

(QtQ

CO

W

TABLE XV II.— AREAS OF LEVEL SECT IONS.

S ide slopes to 1 .Base, 26 14 feet .

978 7

2771.

.0

.2

. 4

11 155

. 0

178 5

3465

1208 6

1490 6

Base, 26 15feet .. 1 . 2 . 3 . 4 .5

S ide slop es t o i .

.6

776 8

13855

1 130 1

374 TABLE XVII .

— AREAS OF LEVEL SECT IONS.

.0 F

flq

to

to

wmwmwm

t-nd

Hm

HHHHI—i

ca

m

tH—Qco

m

co

m

us

cmm-o

wmuc

wn

$03

c

m

mWk)

wwmwm

wwwwwHHb-‘HH

i-n-n-n-u-t

Base , 25 16feet..0 . 1

Base,26 18 feet .

A) . 1

.2 . 3 .4 .5

Side slopes to 1 .

.6 . 7 .8 ».9

.2 .3 .4 .5

S ide slopes t o l .

.6 . 7

494 0

735 5

497 .

. 8 .9

XVIII.— AREA CORRECT IONS FOR THREE-LEVEL GROUND. 375

( SeeC orrec t ion ( km ho) 93 .

su m:SLOP ES 11 T o 1 .

2

46

8

1rd

Ow

Ov

10~

0

9

8

7

10s

75673 5

92

5

8l

08 .

8

11

1613

20

S IDE SLOPES 1 T o 1 .

sum :SLOPES 4 T O 1 .

. 4 .5.3km — ho

2

34

5

0

13

6

1

11

1

0

1

3

6

10

9

8

0

12

5

0

864

0

0

2

5

0

74

1

0

02

5

67

89

0

12

3

05

7667

111

1

1

1

1

1

0

5

1

8

65

5

6

112

2

3

4

5

6

765

4

3

2

1

0

94

w7

5

9

4

9

6

4

3

3

1

1

2

3

5

6

85

29

63

0

7

839

5

2

2

2

1

1

2

4

5

6

0T3SEPOLSEDIS

0hmh

376XIX .

— CUBIC YARDS PER 100 FEET . SLOPES g:1 .

Depth Base Ba se Base Base Base Base Base Base12 14 16 1 8 22 24 26 28

XIX.

— ~CUBIC YARDS PER 100 FEET . SLOPES 1 7} 1 .379

Dep th Base Ease Base Base Base Base Base Base12 14 16 1 8 20 28 30 32

1050 11161296 1593

1487 1813

1511 1600 168 91806 1902

2126

4296 4592

4628 49394970 5133 5296

566556896065 6250 6435

6644 68376050 7050

76748 109

9717

11467

1528 9

20117

21494

23961 2480522126 24704 25563

25457 263322311 1 26222 26067

TABLE XX . YARDS IN 100 FEET LENGTH . 38 3

Area Area . Area . 7 Area . Area .

1 Cub lc Cub lc Lub le Ouhlo Cub lcN 1. Yards , g‘g Yards. 253; Yards. fig; Yards. Yards.

. 32

. 33

. 34

. 35

. 36

. 37

. 39

.528

lkise‘

p er

Cent

.61

.62

.63

.64

.65

.66

.67

.68

.69

. 70

. 91

. 93

. 95

. 96AI»

0 l

. 98

. 99

Feet p er

33 - 264

51 744

Risep er

Cent .

90 U

. 24

. 25

. 26

. 27

. 28

. 29

. 30Mi—LHHH

HHH

uHHHH-au-‘Huu

Ln0)

Feet p erMi le .

Riseper

Cent

H

8

338 8

322

8

2

28

2

e

wwwwwwwww

8

8

963

8

8

8

8

8

8

XXL— RISE PER MILE OF VARIOUS GRADES.

Feet perMi le.

179 520

Incl

i

nati

on

.

Angle

of

TABLE XXII. —SLOPES FOR TOPOGRAPHY.

ertical

i

n1

00

Kor

i

zo

ori

zontal

Dl

stance

a

Rl

se

of

11

30

13

387

d o

.9 s u—l o q.‘“3

0 0 a Q:Q “0 0“c: “d “ 0 “

a

8 41 8 8 55315255; 2 3 £13 255

5 m 13:o Q os c u c s

TA BLE XXIII .— MATERIAL REQUIRED FOR ONE MILE OF TRACK .

RAILROAD SPIKES.RAIL WEIGHTS.

Pounds

per

Yard

.

gq

g

wa

a

wwwwuu

O

Q

MO

U‘

O

U‘

O

G

NJ

hort

Tons

2000

l

bs.

Long

Tons

2240

lbs

.

39 286

Si

ze

und

Head

.

"'o

rd

w3w3wwww°wW

W

M

M

X

X

X

X

Y

X

X

X

X

X

X

“P ”WWW!“

NUMBER OF CROSS-TIES.

D istance apart, 0 . t o c . , in Feet .

360400

450530

600680720

900

10001 1901240

1342

Requi red forT ies 2 ft . Apart .

pFor Ra i ls

£ 2 u go Weigh ingo <0

0

3 3 z

5870 45to 70 lbs.

5280 40 564690 35 40

3980 28 353520 24 35

31 10 20 302930 20 30

2350 16 252110 16 25

1770 16 20

1700 16 20

12 16i1570

NUMBER OF SPL ICE -JOINTS .

Two Bars with Four Bolts andNuts t o Each Jo int .

Length ofRai l in Feet .

TR'

IGO'

NoMET‘

RIC FORMULAS.

TABLE XXV II.

— TR1GONOMETRIC AND MISCELLANEOUS

FORMULAS.

T RIGONOMET RIC FORMULAS.

FIG . 98 . FIG . 99 .

In Fig 99 , let D C'E be the arc of a quadrant , ABC 9. right

triangle , the angle BA C sub tended by the arc CE A,and

consider the radius A C uni ty. T hen

Using the smal l letters a , b, c , to represent the s ides 0

right triangle in Fig. 9 8 or 99 , we m ay write

a bsm A = cosecA = sm A

cosA = secA = . . cosA .

b secA

tanA = . . tanA =

SOLUT ION OF TRIANGLES.

TABLE XXVII.— TRIGONOMETRIC AND MISCELLANEOUS

FORMULAS.

SOLUT ION OF RlGHT T RIANGLES .

Requi red. G iven. Form ulas.A , C ,

c a,b —

a) a

A, C ,

b a,c tanA = cot B = -Q

;c

C',b, c A , a C = 900 — A ; c = a cot A ; b = a cosecA .

C , a , c A , b C = 9OO — A ; a = b sinA ; e z b cosinA .

C , a , b A , c C = 90° — A ; a = c tanA ; b= c secA .

SOLUT ION OF OBLIQUE T RlANGLES.

Requi red. G iven Form ulas.

b A , B,a b

B A,a,b a

fi f454 4- 13) — 0 ) 1

/5 0

404 B) a , b, tanfl A B) Za b

tafi m B)a + b ’

— B)B = HA + m

— MA —

m

If sin4A = (E Mbc

cos4A'=

3“ a),

tan 1}A

A reaA rea A

,b, c A rea. 4bc sih

'

A

A rea A, B, c A rea. M

B)

GEN ERAL FORMULAS.

TABLE XXVII.— TRIGONOMETRIC AND MISCELLANEOUS

FORMULAS.

GENERAL FORMULAS.

sinA cos2A tanA 0 OSA .

sinA = 2 $ in 1}A 0 0 54 14 .

sinA1

cos2A ) .0 0 50 0 1 4

1 J l sin2A cotA sinAse0 1 4

cosA

cosA 1 2 sinHA 1 versA .

tanAsinA

~/ sec_

2A 1 .

0 0 3 1 1

tanAcos

‘Z A sin2A

0 OSA 1 COS2A

tan'

A1 1 cos2A

cot A sin2 A

cotA1 0 9 8 A

~ / cosec2A 1 .tanA sm A

sin2A 1 0 0 3 2 11cot A

1 8 111 2 11

the rec iprocal of any express ion for 0 0 511 .

cosec A the rec iprocal ofany express ion for sinA .

versA 1 cosA = 2 sin2 1}A .

verszi

0 0 3 1 4exsecA s

ecA

5111 4 14

39 1 MISCELLANEOUS FORMULAS.

TABLE XXVIL— TRIGONOMETRIC AND MISCELLANEOUS

FORMULAS.

M ISC ELLANEOUS FORMULAS.

G iven. Fo rm ulas .

{ egular Polygon

Radius of base r

Slant heigh t s

Rad ius r,he ight h 2nrhRadius r 4

He ight h2 7rrh

Rad ius of its sphere r

Volum e ofPr ism or Cyl inder

A rea. of base bHeigh t 2 h

Pyram id or coneA 1 9 3 Of base bHelght r . h

Frus tum ofA f b b d b’ hPyram id or conerea O ases an

(b b’

~/ bb‘

Height h 3

Sphere Radius r 47579

Parallel s ides m and n pPerp . d ist . bet . them = p 2

Length of s ide = l 1 80°Numb er of s ides 2 n T nRad ius r m

“?

Sem i-axes= a and b‘

fl ab

Base 0,height h gbh

TABLE XXVIII .— SQUARE AND CUBE 110 0 1 5. 395

Squa re B oo t s and C ub e Ro o t s o f N u m b ers fro m .1 t o 2 8 .

No errors.

Cube. NO. Sq. Rt . Sq . Rt . C . R t .

396 TABLE XX IX .

—SQUARES,CUBES

, AND ROOTS.

T ABLE of Squa res . C ub es , Sq ua re R o o t s , and Cub e Boo ts .

o f N u m b ers fro m t o 1 0 0 0 .

REMARK OH T H E FOLLOWIN G TAB LE . Wherever the effec t ofa fifth decim al in the roots would beut dd 1 to the fourt h and final decim al in the tab le , t he addi tion has b een m ade. No erro rs .

Squa re. Cube. Sq . B t . Square. Cube. Sq . Rt . 0 . B t .

3721 22698 1

3844 23 8328

3969 250047

4096 262144 4 .

4 225 274625

4356 2874964489 300763

4624 314432

4761 328509

4900 343000

5041 357911

5184 373248

5329 389017

5476 405224

5625 4218 75 8 6603 4 2172

4 3267

8 28 1 753571

8464 778688

8649 804357

8836 83058 4

9025 857375 9 7468

12321 1367631

12544 1404928

1 2769 1 44 289 7

1 2996 1 48 1544

13225 1520875

13456 156089613689 160 1613

139 24 1643032

14161 1685159

14400 1728 000

?

Bl'i

fl

3151

35

398 TABLE XX IX .— SQUARES

,CUBES, AND ROOTS.

T AB LE o f Sq u a res , C ub es , S q u a r e Ro o t s , and C ub e R oo t s.o f N u m b ers fro m 1 t o 1 0 0 0 — (CONTINUED)

Square. Cube. Sq . R t . N o . Square. Cube. Sq . B t . C . R t .

6300 1 158 13251 316 99856 3155449663504 1600300 8 31 7 100489 31855013

64009 16194277 318 101 124 3215743 264516 16387064 319 101 761 32461 759

65025 1658 1375 320 102400 32768000 1 7 8885 68399

65536 16777216 16.

66049 1697459366564 1 717351 26708 1 1 7373979

67600 1 7576000 161 245

6 8894

336 1 1 2896 37933056337 1 13569 38272753338 1 14244 38614472339 1 1 4921 38958219340 1 15600 39304000

341 1 16281 39651821342 1 16964 4000 1688343 1 1 7649 40353607344 1 18336 40 707584345 1 19025 41063625

346 1 19716 41421736347 1 20409 41 78 1923348 121 104 4214 4192

349 1 21 80 1 42508549350 122500 428 75000 18 7083

8 1796 233936568 2369 23639903

8 2944 2388 78 72

83521 24137569 1 7 .

84 100 24389000

8468 1 24642171

85264 248 97088

85849 25153757

86436 2541 2184

87025 256723 75

8 7616 25934336

88 209 261980 73

8880 4 26463592

8940 1 26730899

90000 27000000

90601 27270901

9 1204 27543608

91809 2781 8 127

92416 28094464

93025 28372625

93636 28652616 371 137641 510648 1194249 28 934443 372 138384 514788 4894864 29218 1 1 2 373 139 129 518951 1 79548 1 29503629 374 1398 76 5231362496100 29 791000 375 140625 52734375

96721 30080231 376 141376 5315737697344 303 71328 377 142129 5358263397969 3066-429 7 378 14288 4 540 10152

98596 30959144 379 1 4364 1 54439939

99236 31255875 380 144400 548 72000

TABLE XXIX .—SQUARES, CUB ES, AN D ROOTS. 399

T ABLE o f Squ a res , C u b es , Sq ua re R o o t s , and Cub e R oo t s .

N o .

441

442

Squa re.

19448 1195364196249197136198025

o f N u m b ers fr o m 1 t o 1 0 0 0 — (CONTINUED )

Cube.

857661218635088 8869383078 7528384

88 121125

Sq . Rt .

21

21 0238

21 0476

N o.

446447

448

449

450

451

452

453

454

455

456457458

459

460

461

462

463464465

466467468469470

Square.

198916199 809

200704

201601202500

203401

204304

205209

2061 16207025

2079362088 49

20976421068 1

211600

212521213444

214369

215296216225

217156218089219024

219961

244036

8871653689314623

8991539290518849

9 1 1 25000

917338519 2345408

929596779357666494196375

94818816

9607191296702579

97336000

9797218 1

98611 128

9925284799897344

100544625

101194696101847563

102503232

103161709103823000

( l . 11 t .

400 T ABLE XXIX — SQUARES, CUBES, AND ROOTS .

T AB L E o f S u

559

303601304704

305809

306916308025

309 136310249

31 136431248 1

313600

314721315844316969318096319225

320356321489

322624

323761

324900

3260418 27184

328329

329476

330625

167284151168 1966081691 123771 70031464

1 70953875

1 718796161 728086931 73741 1 1 2

1746768 791 75616000

17655848 11 775043 281 78453547

1 79406144

180362125

1 813214961 8 2284263183250432

1 84220009

1 85193000

1 8616941 11 8 7149248

1 88 1325171 89 1 19224

190109375

8 .2670

61661 7618619620

621622623624625

626627628629630

631

633

635

636637

639

37945638068938 1924

383161

384400

3856413868 84388 129

389376

390625

391876393129

394384

395641396900

398 161399424

400689401956403225

40449640576940 7044

408321

409600

233744896234885113

23602903223 7176659238328000

239483061240641848241804367242970624

244 140625

24531437624649 1883247673152248858 189

250047000

251239591

2524359682536361372548 4 0104

256047875

257259456258474853

25969407 22609171 19262144000

25.

a res , Cub es , Sq u a r e Ro o t s , a n d C u b e R o o m ,

0 11Nu m b ers fro m 1 to 1 0 0 0 - (CONTINUED )

402 TABLE XX IX .- SQUARES, CUB ES

,AN D ROOTS.

T AB LE o f Squ a res , C ub es , Sq ua r e R oo t s . a nd C ub a R o o t s ,

O f N u m b ers fr o m 1 t o 1 0 0 0

774

775

779

790

79 4

795

796

797

798

80 1

802

803

8 04

806

809

8 10

8 11

8 12

8 13

8 14

8 15

8 168 17

8 18

8 19

8 20

8 21

8 22

8 25

8 268 27

8 28

829

830

831

832

833

834

Squa re.

594 44 1595984597529599076600625

602 176603 72960528460684 1608 400

60996161 1524

613089

614656616225

61 7796619369

620944

622521

624 100

62568 1627264628849630436632025

633616635209

6368 04638 401

640000

64160164 3204

644 809

6464 16648025

649636651 249652864

65448 1656100

657721659344660969662596664225

66585666748 9669 124670761

672400

67404167568467732967897668 0625

6822766839 29

685584

68 7241

688900

690561

692224

69388 9

695556

697225

Cube.

45831401 146009964846188 99 1 746368 48 24

46548 4375

4672885764690974334709 10952

4 72729 139

4 74552000

47637954 14 78 211 7684 8004868 7

48 1890304

483736625

48558765648 74434034 893038 72

491 169069493039000

494913671496793088498677257500566184

5024598 75

504358336

506261573

508 169592

51008 2390

51 2000000

513922401

5158 49608

51778 1627

519 7 18 464

521660 125

523606616525557943

5275141 1 2

529475129

53144 1000

53341 1731

53538 7328

537367797539353 144

541343375

543338496

545338513

547343432

549353259

551368000

553387661

5554 1 2248

55744 1 767559476224

561515625

5635599 76565609 283

567663552

569722789

571 78 7000

573856191

575930368

578009537

580093704

58 21 8 2875

Sq . R t .

2719464

28 .

28 6531

28 7054

28 14944

28 8617

N o .

836837

838 .

839

840

841

8 4 2

8 43

8 44

8 45

846

8 4 7

848

84 9

850

85

852

853

854

855

8718 72

8 73

8 74

8 75

8 76

8 77

8 78

8 79

880

88 1

8 8 3

8 8 4

8 85

886

88 7

88 8

88 9

8 90

8918 9 2

8 93

894

895

8 968 97

8 98

899

900

Square.

698896700569702244

703921

705600

70728 1

708964

7 10649

712336

714025

71571671 7409

719104

72080 1

722500

724201

725904

727609

729316

731025

75864176038 47621 29

7638 76

765625

767376769 129

77088 4

77264 1

7744 00

7761617 77924

77968 978 1456783225

784996786769

788544

790321

792100

793881

7956647974 49

799 236801025

8028 16804609

8 06404

808 20 1

8 10000

C ube.

584277056586376253588 4 80 472

590589719

592704000

594823321596947688599077 10760 1211584603351 1 25

60549573660764542360980019261 1960049614125000

6162950516184 70208620650477622835864625026375

66077631 1663054848

66533861 7667627624

6699218 75

6722213766745261336768 36152

679 151439

68 1472000

68379784 1686128968

68846538 7690807104

693154 125

695506456697864103

700227072

702595369

704969000

70734 7971

709 732288

7121219577 14516984

71691 7375

719323136721734273

724 150792

726572699

729000000

Sq . R t .

29 .

551 0345

251 0689

29 1 719

29 1890

521 5296551546658 1 5635551 5804

29 597329 6142

29 631 1

21 8496

2928664

151 883 1

551 899 8

29£HG6

551 9333

29A¥fl¥3

30 .

9 4912

£1 553751 5574

51 5647

9 5756

£1 58 28

51 5865

9 .5937

$L6010

116190

£163 70

£16406£1 6442

£164 77£16513

TABL E XX IX .

— SQUARES, CUBES, AN D ROOTS . 403

T AB L E o f Sq u a res , C u b es , S q ua re R o o t s , an d C ub e R o o t s ,o f N u m b ers fro m 1 t o 1 0 0 0 — (Com m u n )

Squa re. Cube. Sq . R t . N o . Squa re. Cube . Sq . R t . C . Rt .

81 1 80 1 73 143270 1 951 904401 860085351

8 13604 7338 70808 952 906304 862301408

8 15409 736314327 953 908 209 865523177

8 17216 738 763264 954 9 10116 868 250664

905 8 19025 741217625 955 9 12025 8 709838 75

906 8 20836 743677416 956 9 13936 8 737228 168 22649 746142643 957 9 158 49 8 76467493

8 24464 748613312 958 9 17764 8 7921 7912

8 2628 1 75108 9 429 959 9 1968 1 88 1974079

8 28 100 753571000 960 9 21600 8 8 4736000

8 29921 75605803] 961 923521 887503681831744 758550528 962 925444 890277128

9 13 8 33569 761048 497 963 927369 893056347 31 .0322

835396 763551944 964 929296 8958 41344 31 .0483

9 15 8 37225 7660608 75 965 931225 898632125

768575296 966 933156 901428696 31 .08058 408 89 77 1095213 967 935089 9042310638 42724 773620632 968 937024 9070392328 44561 776151559 969 938961 9098532098 46400 778688000 970 940900 91 2673000

8 48 241 78 122996] 971 942841 91549861 1 31 .1609850084 783777448 972 94478 4 9 18330048851929 786330467 973 946729 921 167317853776 788 889024 9 74 948676 924010424 31 .2090855625 791453125 9 75 950625 926859375

857476 794022776 976 952576 929714176 31 .2410859329 796597983 977 954529 932574833861 184 799 178 752 978 956484 9354413528630 41 80 1 765089 9 79 95844 1 938313739 31 .2890864900 804357000 980 960400 941 192000

866761 80695449] 98 1 962361 9440761 4]868624 8 09557568 98 2 964324 9469661688 7048 9 8 12166237 983 966289 94986208 7 31 .35288 72356 8 14780504 98 4 968 256 952763904

935 8 74225 8 1 7400375 985 970225 955671625

8 76096 8 20025856 986 972196 9585852568 77969 822656953 987 974 169 961504803 31 .41668 798 44 8 25293672 98 8 976144 9644302728 8 1721 8 27936019 989 978 121 967361669883600 83058 4000 990 980100 970299000

8 8548 1 833237621 991 98208 1 97324227188 7364 8 358968 8 8 992 98 4064 9761914888 89249 8385618 07 993 986049 979 1466578 9 1 136 8 4123 238 4 994 98 8036 98 2107784 31 .5278893025 8 43908625 30 . 7409 995 990025 9850748 75

946 894916 8 46590536 996 992016 98 8047936 31 .55959 47 8 968 09 8 49278 1 23 30 . 7734 99 7 994009 99 10269739 48 89 8 704 851971392 998 996004 99401 1 992 31 .591 19 49 900601 854670349 999 998001 997002999 31 .6070950 902500 857375000 1 000000 10000000001000

'

1 0 fi n d t h e sq ua re o r c u b e o f a ny w h o l e n u m b e r en d ingw i t h c i p h e r s . F i rst , ow l t. all t he final c iphers. Take from the tab le thesquare or cube ( an t he case m ay be) of the res t of t he num ber. T o this square add twice as m anyc iphers as t here were fina l c iphers in t he original num ber. T o t he cube add three t i m es asin t he original num ber. T hus , for 90500 2 ; 9052 2 8 190 25. Add twwe 2 C i p hers . o b taim ug 8 1.

-30250000.For 90500 3 , 9053 2 74 12 17625. Add 3 tunes 2 c iphers , ob ta ining 74 1217625000000 .