Dna Rekombinan

Post on 26-Jul-2015

149 views 2 download

Transcript of Dna Rekombinan

Di dalam bab ini akan dibicarakan pengertian teknologi DNA rekombinan beserta tahapan-tahapan kloning

gen, yang secara garis besar meliputi isolasi DNA kromosom dan DNA vektor, pemotongan DNA

menggunakan enzim restriksi, pembentukan molekul DNA rekombinan, dan transformasi sel inang oleh

molekul DNA rekombinan. Setelah mempelajari pokok bahasan di dalam bab ini mahasiswa diharapkan

mampu menjelaskan:

1. pengertian teknologi DNA rekombinan

2. dua segi manfaat teknologi DNA rekombinan,

3. tahapan-tahapan kloning gen,

4. pengertian dan cara kerja enzim restriksi, dan

5. garis besar cara seleksi transforman dan seleksi rekombinan.

Pengetahuan awal yang diperlukan oleh mahasiswa agar dapat mempelajari pokok bahasan ini dengan

lebih baik adalah struktur dan sifat-sifat asam nukleat seperti yang telah dibahas pada Bab II. Pengertian

Teknologi DNA RekombinanSecara klasik analisis molekuler protein dan materi lainnya dari kebanyakan

organisme ternyata sangat tidak mudah untuk dilakukan karena adanya kesulitan untuk memurnikannya

dalam jumlah besar. Namun, sejak tahun 1970-an berkembang suatu teknologi yang dapat diterapkan

sebagai pendekatan dalam mengatasi masalah tersebut melalui isolasi dan manipulasi terhadap gen yang

bertanggung jawab atas ekspresi protein tertentu atau pembentukan suatu produk. Teknologi yang dikenal

sebagai teknologi DNA rekombinan, atau dengan istilah yang lebih populer.rekayasa genetika, ini

melibatkan upaya perbanyakan gen tertentu di dalam suatu sel yang bukan sel alaminya sehingga sering

pula dikatakan sebagai kloning gen. Banyak definisi telah diberikan untuk mendeskripsikan pengertian

teknologi DNA rekombinan. Salah satu di antaranya, yang mungkin paling representatif, menyebutkan

bahwa teknologi DNA rekombinan adalah pembentukan kombinasi materi genetik yang baru dengan cara

penyisipan molekul DNA ke dalam suatu vektor sehingga memungkinkannya untuk terintegrasi dan

mengalami perbanyakan di dalam suatu sel organisme lain yang berperan sebagai sel inang.Teknologi

DNA rekombinan mempunyai dua segi manfaat. Pertama, dengan mengisolasi dan mempelajari masing-

masing gen akan diperoleh pengetahuan tentang fungsi dan mekanisme kontrolnya. Kedua, teknologi ini

memungkinkan diperolehnya produk gen tertentu dalam waktu lebih cepat dan jumlah lebih besar daripada

produksi secara konvensional.Pada dasarnya upaya untuk mendapatkan suatu produk yang diinginkan

melalui teknologi DNA rekombinan melibatkan beberapa tahapan tertentu (Gambar 9.1). Tahapan-tahapan

tersebut adalah isolasi DNA genomik/kromosom yang akan diklon, pemotongan molekul DNA menjadi

sejumlah fragmen dengan berbagai ukuran, isolasi DNA vektor, penyisipan fragmen DNA ke dalam vektor

untuk menghasilkan molekul DNA rekombinan, transformasi sel inang menggunakan molekul DNA

rekombinan, reisolasi molekul DNA rekombinan dari sel inang, dan analisis DNA rekombinan.Isolasi DNA

diawali dengan perusakan dan atau pembuangan dinding sel, yang dapat dilakukan baik dengan cara

mekanis seperti sonikasi, tekanan tinggi, beku-leleh maupun dengan cara enzimatis seperti pemberian

lisozim. Langkah berikutnya adalah lisis sel. Bahan-bahan sel yang relatif lunak dapat dengan mudah

diresuspensi di dalam medium bufer nonosmotik, sedangkan bahan-bahan yang lebih kasar perlu

diperlakukan dengan deterjen yang kuat seperti triton X-100 atau dengan sodium dodesil sulfat (SDS).

Pada eukariot langkah ini harus disertai dengan perusakan membran nukleus. Setelah sel mengalami lisis,

remukan-remukan sel harus dibuang. Biasanya pembuangan remukan sel dilakukan dengan sentrifugasi.

Protein yang tersisa dipresipitasi menggunakan fenol atau pelarut organik seperti kloroform untuk

kemudian disentrifugasi dan dihancurkan secara enzimatis dengan proteinase. DNA yang telah dibersihkan

dari protein dan remukan sel masih tercampur dengan RNA sehingga perlu ditambahkan RNAse untuk

membersihkan DNA dari RNA. Molekul DNA yang telah diisolasi tersebut kemudian dimurnikan dengan

penambahan amonium asetat dan alkohol atau dengan sentrifugasi kerapatan menggunakan CsCl.

Teknik isolasi DNA tersebut dapat diaplikasikan, baik untuk DNA genomik maupun DNA vektor, khususnya

plasmid. Untuk memilih di antara kedua macam molekul DNA ini yang akan diisolasi dapat digunakan dua

pendekatan. Pertama, plasmid pada umumnya berada dalam struktur tersier yang sangat kuat atau

dikatakan mempunyai bentuk covalently closed circular (CCC), sedangkan DNA kromosom jauh lebih

longgar ikatan kedua untainya dan mempunyai nisbah aksial yang sangat tinggi. Perbedaan tersebut

menyebabkan DNA plasmid jauh lebih tahan terhadap denaturasi apabila dibandingkan dengan DNA

kromosom. Oleh karena itu, aplikasi kondisi denaturasi akan dapat memisahkan DNA plasmid dengan DNA

kromosom.

Pendekatan kedua didasarkan atas perbedaan daya serap etidium bromid, zat pewarna DNA yang

menyisip atau melakukan interkalasi di sela-sela basa molekul DNA. DNA plasmid akan menyerap etidium

bromid jauh lebih sedikit daripada jumlah yang diserap oleh DNA kromosom per satuan panjangnya.

Dengan demikian, perlakuan menggunakan etidium bromid akan menjadikan kerapatan DNA kromosom

lebih tinggi daripada kerapatan DNA plasmid sehingga keduanya dapat dipisahkan melalui sentrifugasi

kerapatan.Enzim Restriksi.Tahap kedua dalam kloning gen adalah pemotongan molekul DNA, baik

genomik maupun plasmid. Perkembangan teknik pemotongan DNA berawal dari saat ditemukannya sistem

restriksi dan modifikasi DNA pada bakteri E. coli, yang berkaitan dengan infeksi virus atau bakteriofag

lambda (l). Virus l digunakan untuk menginfeksi dua strain E. coli, yakni strain K dan C.  Jika l yang telah

menginfeksi strain C diisolasi dari strain tersebut dan kemudian digunakan untuk mereinfeksi strain C,

maka akan diperoleh l progeni (keturunan) yang lebih kurang sama banyaknya dengan jumlah yang

diperoleh dari infeksi pertama. Dalam hal ini, dikatakan bahwa efficiency of plating (EOP) dari strain C ke

strain C adalah 1.  Namun, jika l yang diisolasi dari strain C digunakan untuk menginfeksi strain K, maka

nilai EOP-nya hanya 10-4. Artinya, hanya ditemukan l progeni sebanyak 1/10.000 kali jumlah yang

diinfeksikan. Sementara itu, l yang diisolasi dari strain K mempunyai nilai EOP sebesar 1, baik ketika

direinfeksikan pada strain K maupun pada strain C. Hal ini terjadi karena adanya sistem restriksi/modifikasi

(r/m) pada strain K.

Pada waktu bakteriofag l yang diisolasi dari strain C diinfeksikan ke strain K, molekul DNAnya dirusak oleh

enzim endonuklease restriksi yang terdapat di dalam strain K. Di sisi lain, untuk mencegah agar enzim ini

tidak merusak DNAnya sendiri, strain K juga mempunyai sistem modifikasi yang akan menyebabkan

metilasi beberapa basa pada sejumlah urutan tertentu yang merupakan tempat-tempat pengenalan

(recognition sites) bagi enzim restriksi tersebut.

DNA bakteriofag l yang mampu bertahan dari perusakan oleh enzim restriksi pada siklus infeksi pertama

akan mengalami modifikasi dan memperoleh kekebalan terhadap enzim restrisksi tersebut. Namun,

kekebalan ini tidak diwariskan dan harus dibuat pada setiap akhir putaran replikasi DNA. Dengan demikian,

bakteriofag l yang diinfeksikan dari strain K ke strain C dan dikembalikan lagi ke strain K akan menjadi

rentan terhadap enzim restriksi.

Metilasi hanya terjadi pada salah satu di antara kedua untai molekul DNA. Berlangsungnya metilasi ini

demikian cepatnya pada tiap akhir replikasi hingga molekul DNA baru hasil replikasi tidak akan sempat

terpotong oleh enzim restriksi.

Enzim restriksi dari strain K telah diisolasi dan banyak dipelajari. Selanjutnya, enzim ini dimasukkan ke

dalam suatu kelompok enzim yang dinamakan enzim restriksi tipe I.  Banyak enzim serupa yang

ditemukan kemudian pada berbagai spesies bakteri lainnya.

Pada tahun 1970 T.J. Kelly menemukan enzim pertama yang kemudian dimasukkan ke dalam kelompok

enzim restriksi lainnya, yaitu enzim restriksi tipe II. Ia mengisolasi enzim tersebut dari bakteri

Haemophilus influenzae strain Rd, dan sejak saat itu ditemukan lebih dari 475 enzim restriksi tipe II dari

berbagai spesies dan strain bakteri. Semuanya sekarang telah menjadi salah satu komponen utama dalam

tata kerja rekayasa genetika.

Enzim restriksi tipe II antara lain mempunyai sifat-sifat umum yang penting sebagai berikut:

1.      mengenali urutan tertentu sepanjang empat hingga tujuh pasang basa di dalam molekul DNA

2.      memotong kedua untai molekul DNA di tempat tertentu pada atau di dekat tempat pengenalannya

3.      menghasilkan fragmen-fragmen DNA dengan berbagai ukuran dan urutan basa.

Sebagian besar enzim restriksi tipe II akan mengenali dan memotong urutan pengenal yang mempunyai

sumbu simetri rotasi. Gambar 11.3 memperlihatkan beberapa enzim restriksi beserta tempat

pengenalannya.

Pemberian nama kepada enzim restriksi mengikuti aturan sebagai berikut. Huruf pertama adalah huruf

pertama nama genus bakteri sumber isolasi enzim, sedangkan huruf kedua dan ketiga masing-masing

adalah huruf pertama dan kedua nama petunjuk spesies bakteri sumber tersebut. Huruf-huruf tambahan,

jika ada, berasal dari nama strain bakteri, dan angka romawi digunakan untuk membedakan enzim yang

berbeda tetapi diisolasi dari spesies yang sama.

Tempat pemotongan pada kedua untai DNA sering kali terpisah sejauh beberapa pasang basa.

Pemotongan DNA dengan tempat pemotongan semacam ini akan menghasilkan fragmen-fragmen dengan

ujung 5’ yang runcing karena masing-masing untai tunggalnya menjadi tidak sama panjang. Dua fragmen

DNA dengan ujung yang runcing akan mudah disambungkan satu sama lain sehingga ujung runcing sering

pula disebut sebagai ujung lengket (sticky end) atau ujung kohesif.

Hal itu berbeda dengan enzim restriksi seperti Hae III, yang mempunyai tempat pemotongan DNA pada

posisi yang sama. Kedua fragmen hasil pemotongannya akan mempunyai ujung 5’ yang tumpul karena

masing-masing untai tunggalnya sama panjangnya. Fragmen-fragmen DNA dengan ujung tumpul (blunt

end) akan sulit untuk disambungkan. Biasanya diperlukan perlakuan tambahan untuk menyatukan dua

fragmen DNA dengan ujung tumpul, misalnya pemberian molekul linker, molekul adaptor, atau

penambahan enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik 3’.

Ligasi Molekul – molekul DNA

Pemotongan DNA genomik dan DNA vektor menggunakan enzim restriksi harus menghasilkan ujung-ujung

potongan yang kompatibel. Artinya, fragmen-fragmen DNA genomik nantinya harus dapat disambungkan

(diligasi) dengan DNA vektor yang sudah berbentuk linier.

Ada tiga cara yang dapat digunakan untuk meligasi fragmen-fragmen DNA secara in vitro. Pertama, ligasi

menggunakan enzim DNA ligase dari bakteri. Kedua, ligasi menggunakan DNA ligase dari sel-sel E. coli

yang telah diinfeksi dengan bakteriofag T4 atau lazim disebut sebagai enzim T4 ligase. Jika cara yang

pertama hanya dapat digunakan untuk meligasi ujung-ujung lengket, cara yang kedua dapat digunakan

baik pada ujung lengket maupun pada ujung tumpul. Sementara itu, cara yang ketiga telah disinggung di

atas, yaitu pemberian enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik

3’. Dengan untai tunggal semacam ini akan diperoleh ujung lengket buatan, yang selanjutnya dapat diligasi

menggunakan DNA ligase.

Suhu optimum bagi aktivitas DNA ligase sebenarnya 37ºC. Akan tetapi, pada suhu ini ikatan hidrogen yang

secara alami terbentuk di antara ujung-ujung lengket akan menjadi tidak stabil dan kerusakan akibat panas

akan terjadi pada tempat ikatan tersebut.  Oleh karena itu, ligasi biasanya dilakukan pada suhu antara 4

dan 15ºC dengan waktu inkubasi (reaksi) yang diperpanjang (sering kali hingga semalam).

Pada reaksi ligasi antara fragmen-fragmen DNA genomik dan DNA vektor, khususnya plasmid, dapat

terjadi peristiwa religasi atau ligasi sendiri sehingga plasmid yang telah dilinierkan dengan enzim restriksi

akan menjadi plasmid sirkuler kembali. Hal ini jelas akan menurunkan efisiensi ligasi. Untuk meningkatkan

efisiensi ligasi dapat dilakukan beberapa cara, antara lain penggunaan DNA dengan konsentrasi tinggi

(lebih dari 100µg/ml), perlakuan dengan enzim alkalin fosfatase untuk menghilangkan gugus fosfat dari

ujung 5’ pada molekul DNA yang telah terpotong, serta pemberian molekul linker, molekul adaptor, atau

penambahan enzim deoksinukleotidil transferase untuk menyintesis untai tunggal homopolimerik 3’ seperti

telah disebutkan di atas.

Transformasi Sel Inang

Tahap berikutnya setelah ligasi adalah analisis terhadap hasil pemotongan DNA genomik dan DNA vektor

serta analisis hasil ligasi molekul-molekul DNA tersebut. menggunakan teknik elektroforesis (lihat Bab X).

Jika hasil elektroforesis menunjukkan bahwa fragmen-fragmen DNA genomik telah terligasi dengan baik

pada DNA vektor sehingga terbentuk molekul DNA rekombinan, campuran reaksi ligasi dimasukkan ke

dalam sel inang agar dapat diperbanyak dengan cepat. Dengan sendirinya, di dalam campuran reaksi

tersebut selain terdapat molekul DNA rekombinan, juga ada sejumlah fragmen DNA genomik dan DNA

plasmid yang tidak terligasi satu sama lain. Tahap memasukkan campuran reaksi ligasi ke dalam sel inang

ini dinamakan transformasi karena sel inang diharapkan akan mengalami perubahan sifat tertentu setelah

dimasuki molekul DNA rekombinan.

Teknik transformasi pertama kali dikembangkan pada tahun 1970 oleh M. Mandel dan A. Higa, yang

melakukan transformasi bakteri E. coli. Sebelumnya, transformasi pada beberapa spesies bakteri lainnya

yang mempunyai sistem transformasi alami seperti Bacillus subtilis telah dapat dilakukan. Kemampuan

transformasi B. subtilis pada waktu itu telah dimanfaatkan untuk mengubah strain-strain auksotrof (tidak

dapat tumbuh pada medium minimal) menjadi prototrof (dapat tumbuh pada medium minimal) dengan

menggunakan preparasi DNA genomik utuh. Baru beberapa waktu kemudian transformasi dilakukan

menggunakan perantara vektor, yang selanjutnya juga dikembangkan pada transformasi E.coli. 

Hal terpenting yang ditemukan oleh Mandel dan Higa adalah perlakuan kalsium klorid (CaCl2) yang

memungkinkan sel-sel E. coli untuk mengambil DNA dari bakteriofag l. Pada tahun 1972 S.N. Cohen dan

kawan-kawannya menemukan bahwa sel-sel yang diperlakukan dengan CaCl2 dapat juga mengambil DNA

plasmid. Frekuensi transformasi tertinggi akan diperoleh jika sel bakteri dan DNA dicampur di dalam

larutan CaCl2 pada suhu 0 hingga 5ºC. Perlakuan kejut panas antara 37 dan 45ºC selama lebih kurang

satu menit yang diberikan setelah pencampuran DNA dengan larutan CaCl2 tersebut dapat meningkatkan

frekuensi transformasi tetapi tidak terlalu esensial. Molekul DNA berukuran besar lebih rendah efisiensi

transformasinya daripada molekul DNA kecil.

Mekanisme transformasi belum sepenuhnya dapat dijelaskan. Namun, setidak-tidaknya transformasi

melibatkan tahap-tahap berikut ini. Molekul CaCl2 akan menyebabkan sel-sel bakteri membengkak dan

membentuk sferoplas yang kehilangan protein periplasmiknya sehingga dinding sel menjadi bocor. DNA

yang ditambahkan ke dalam campuran ini akan membentuk kompleks resisten DNase dengan ion-ion

Ca2+ yang terikat pada permukaan sel. Kompleks ini kemudian diambil oleh sel selama perlakuan kejut

panas diberikan.

Seleksi Transforman dan Seleksi Rekombinan

Oleh karena DNA yang dimasukkan ke dalam sel inang bukan hanya DNA rekombinan, maka kita harus

melakukan seleksi untuk memilih sel inang transforman yang membawa DNA rekombinan. Selanjutnya, di

antara sel-sel transforman yang membawa DNA rekombinan masih harus dilakukan seleksi untuk

mendapatkan sel yang DNA rekombinannya membawa fragmen sisipan atau gen yang diinginkan.

Cara seleksi sel transforman akan diuraikan lebih rinci pada penjelasan tentang plasmid (lihat Bab XI).

Pada dasarnya ada tiga kemungkinan yang dapat terjadi setelah transformasi dilakukan, yaitu (1) sel inang

tidak dimasuki DNA apa pun atau berarti transformasi gagal, (2) sel inang dimasuki vektor religasi atau

berarti ligasi gagal, dan (3) sel inang dimasuki vektor rekombinan dengan/tanpa fragmen sisipan atau gen

yang diinginkan. Untuk membedakan antara kemungkinan pertama dan kedua dilihat perubahan sifat yang

terjadi pada sel inang. Jika sel inang memperlihatkan dua sifat marker vektor, maka dapat dipastikan

bahwa kemungkinan kedualah yang terjadi. Selanjutnya, untuk membedakan antara kemungkinan kedua

dan ketiga dilihat pula perubahan sifat yang terjadi pada sel inang. Jika sel inang hanya memperlihatkan

salah satu sifat di antara kedua marker vektor, maka dapat dipastikan bahwa kemungkinan ketigalah yang

terjadi.

Seleksi sel rekombinan yang membawa fragmen yang diinginkan dilakukan dengan mencari fragmen

tersebut menggunakan fragmen pelacak (probe), yang pembuatannya dilakukan secara in vitro

menggunakan teknik reaksi polimerisasi berantai atau polymerase chain reaction (PCR). Penjelasan

lebih rinci tentang teknik PCR dapat dilihat pada Bab XII. Pelacakan fragmen yang diinginkan antara lain

dapat dilakukan melalui cara yang dinamakan hibridisasi koloni. Koloni-koloni sel rekombinan ditransfer

ke membran nilon, dilisis agar isi selnya keluar, dibersihkan protein dan remukan sel lainnya hingga tinggal

tersisa DNAnya saja. Selanjutnya, dilakukan fiksasi DNA dan perendaman di dalam larutan pelacak.

Posisi-posisi DNA yang terhibridisasi oleh fragmen pelacak dicocokkan dengan posisi koloni pada kultur

awal (master plate). Dengan demikian, kita bisa menentukan koloni-koloni sel rekombinan yang membawa

fragmen yang diinginkan.