THE CRYSTAL STRUCTURES Or SOME TRANSITION METAL ...

280
THE CRYSTAL STRUCTURES Or SOME TRANSITION METAL COMPLEXES A Thesis submitted for the degree of Doctor of Philosophy by Andrew Quick H.Sc. Department of Chemistry, Plymouth Polytechnic, Plymouth PL4 8AA. February, 1973

Transcript of THE CRYSTAL STRUCTURES Or SOME TRANSITION METAL ...

THE CRYSTAL STRUCTURES Or SOME

TRANSITION METAL COMPLEXES

A Thesis submitted f o r the degree

of

Doctor of Philosophy

by

Andrew Quick H.Sc.

Department of Chemistry,

Plymouth Polytechnic,

Plymouth PL4 8AA. February, 1973

PLYf::OUTH P 0 L Y T E C K : ! ! C

HQ,

CLASS No.

ZSU-^ Q U I

Summary

A b r i e f t h e o r e t i c a l background t o c r y s t a l structure analysis i s

given i n Chapter 1. The remaining chapters describe the determination

of f i v e c r y s t a l structures, one using photographic data, and four using

diffractometer data.

(1) Glycyi-L-tryptophanatocopper(II) t r i h y d r a t e , i s orthorhombic with

u n i t - c e l l dimensions a - 7.74, b = 13.78, c = 14.81 2 , space group

P2^2j^2j^ and Z = 4. Least-squares refinement, using 1119, v i s u a l l y

estimated, independent r e f l e c t i o n s gave a f i n a l R of 0.106. In t h i s

complex the peptide molecule behaves as a tr i d e n t a t e chelate via i t s

terminal amino group, peptide nitrogen atom and carbonyl group. The

single peptide nitrogen i s deprotonated. The C u ( l l ) atom has a coordination

number of 4. The peptide donor atoms and one H O molecule form an

approximate square.

(2) CN-N '-Diacetyldiimine-N-0]bis(dimethylphenylphcsphlne)plaxinum(IX),

crystals are monoclinic with u n i t - c e l l dimensions a = 11.450, b = 22.120,

c = 9.013 8 , 6 = 103.01°, space group P2^/a and Z = 4. Least-squares

refinement, using 2644 independent r e f l e c t i o n s gave a f i n a l R of 0.128,

The central platinum atom i s square planar coordinated by tv/o phosphorus

atoms, and an oxygen atom and a nitrogen atom of the azodiacetyl group.

The two phosphorus atoms are cis to each other. .

(3) OxodichloroCacetone N-benzoylhydrazonato(l-)-N',0]-tri-phenylphosphine-^

rhenium.(V), crystals are mpnoclinic with u n i t - c e l l dimensions a = 15.610,

b = 18.510, c = 10.550 6 = 114.68°, space group P2^/a and Z = 4.

Least-squares refinement, using 2678 independent r e f l e c t i o n s gave a f i n a l

R of 0.052. The rhenium atom has distorted octahedral coordination.

The chlorine atoms are cis to each other, and trans to these two atoms are

the phosphorus atom and the nitrogen atom from the ketone hydrazonato

group. The remaining two positions which are trans, are occupied by the

single oxygen atom and the oxygen from the keto hydrazonato chelate

r i n g .

(4) Chloro(dimethylphenylphosphine)[N-£-tolyl-N*-benzoyl-diimine-N-0]£-

to l y l i m i d o molybdenum, crystals are monoclinic with u n i t - c e l l dimensions

a = 8.995, b = 19.090, c = 17.860 8 , 6 = 104,15°, space group P2^/c and

Z = 4. Lecist-squares refinement using 2279 independent r e f l e c t i o n s gave

a f i n a l R of 0.056. The molybdenum atom has distorted octahedral

coordination. The chlorine atoms are c i s to each other, and trans t o

these two atoms are the phosphorus atom, and the nitrogen atom from the

ketone hydrazonato group. The remaining two positions, which are trans

to each other are occupied by an oxygen atom from the keto hydrazonato

chelate r i n g and the nitrogen from the phenylimido group.

(5) [N-N'benzoylhydrazidoC2-)(-N,0)] benzoylazo-chloro-bis

(dimethylphenylphosphine) molybdenum(IV) crystals are t r i c l i n i c with

u n i t - c e l l dimentions a = 8.710, b = 23.000, c = 16.370 8 , a = 97.43*^, o o

B = 89.21 , Y = 101.33 , space group PI and Z = 4. Least-squares

refinement using 3489 independent r e f l e c t i o n s gave a f i n a l R of 0.066.

Both independent molecules are essentially i d e n t i c a l . The molybdenum

atom i n each has distorted octahedral coordination. The phosphorus

atoms are trans t o each other. Cis to these two positions are the

nitrogen and oxygen from the keto hydrazonato chelate r i n g . The

nitrogen of the second keto hydrazonato ligand i s trans t o the oxygen of

the chelate r i n g , whereas the oxygen of the second keto hydrazonato

ligand i s thought t o be hydrogen bonded to the nitrogen coordinated t o

the molybdenum of the chelate r i n g .

4

Acknowledgements

I am deeply g r a t e f u l to my supervisor Dr. S.A.A. Jayav;eera and

especially my external advisor Dr. M.B. Kursthouse, f o r t h e i r help,

advice and encouragement throughout the course of t h i s work. I should

also l i k e to thank Dr. G.H.W. Miiburn f o r se t t i n g me on a fir m basis.

Thanks are also due to Dr. J.R. Dilworth and Dr. A.S. Kasenally

fo r the g i f t s of c r y s t a l l i n e samples, and to Dr. J. Braven, and Dr. R.

Hanson for t h e i r help with the organic syntheses.

I am also indebted to Dr. A.B. Meggy, and a l l my colleagues of the

Chemistry Department f o r t h e i r f r i e n d l y and helpful discussions.

I v/ish to express my sincere thanks to Mrs. G. Murray f o r her

patience i n deciphering my hieroglyphics and f o r her s k i l l e d v;ork i n

the typing of t h i s thesis.

The technical assistance of Mr. R.P. Seaton i s recognised, and the

use of the GE XRD6 manual diffractometer at Queen Mary College, through

Dr. M.B. Hursthouse, i s also g r a t e f u l l y acknowledged.

The Plymouth Education Authority are thanked f o r the award of a

research assistantship. The S.R.C. are s i m i l a r l y thanked f o r the use

of the ICL Atlas Computer.

Finally I should l i k e to express my gratitude f o r the unselfish

support and encouragement that I have received throughout the whole

of my education from my parents.

"If a man begin with certainties^ he

shall end in doubts; hut if he will be

content to begin with doubts^ he shall

end in certainties,"

Frmcis Bacon,

6

TO MY PARENTS

Table of Contents

Page

Abstract 2

Acknowledgements 4

Chapter 1: A Summary of the Theory and Techniques used 10

i n X-ray Structure Determinations.

Chapter 2: The Crystal and Molecular . Structure of 34

Glycyl-L-tryptophanatocopper(II) Trihydrate.

2.1. Introduction 35

2.2. Experimental 37

2.3. Results and Discussion of the Structure. 47

Chapter 3: Nitrogen Fixation. A general introduction

to Chapters 4, 5, 6, and 7.

80

Chapter 4: The Crystal and Molecular Structure of 88

CN-N'-Diacetyldiimine-H-03bis(dimethylphenyl-

phosphine) p l a t i n u m ( I I ) .

4.1. Introduction 89

4.2. Experimental 92

4.3. Results and Discussion of the Structure. 100

Chapter 5: The Crystal and Molecular Structure of 130

Oxodichloro[acetone N-benzoylhydrazonato(1-)-

, 0]-tri-phenylphosphinerhenium(V).

5.1. Introduction 131

5.2. Experimental 134

5.3. Results and Discussion of the Structure. 138

8

Page

Chapter 6: The Crystal and Molecular Structure of Chloro 169

(dimethylphenylphosphine) C N-£-tolyl-II * -benzoyl-

diimine-N-0]£-tolylimido molybdenum.

6.1. Experimental 170

6.2. Results and Discussion of the Structure. 17U

Chapter 7: The Crystal and Molecular Structure of 205

CN-N*benzoylhydra2ido(2-)(-N,0)3benzoylazo-chloro-

bis(dimethylphenylphosphine) molybdenum(IV).

7.1. Introduction 206

7.2. Experimental 206

7.3. Results and Discussion of the Structure. 211

APPENDIX:

A. Molybdenum and zinc cysteine complexes 250

B. The crystallographic study of trimethylplatinuin(IV) 256

thenoyltrifluoroacetonate (Me^PtTTA).

C. Computer programs used in s t r u c t u r a l analysis. 266

D. Other metal complexes of amino acids or 272

peptides investigated.

"Read not to contradict and confute^ nor

to believe and take for granted^ nor to

find talk and discourse^ hut to weigh and

consider."

.... Francis Bacon,

10

CHAPTER 1

A Summary of the Theory and Techniques used i n X-ray

Structure Determinations

11

Most solids are c r y s t a l l i n e and t h i s i s due to the fact that the

atoms, ions or molecules of which a c r y s t a l i s usually composed, t r y

to pack as close together as possible. In doing t h i s , the lowest

po t e n t i a l energy of the system i s produced when the units are arranged

per i o d i c a l l y i n three dimensions with the environment of each unit

i d e n t i c a l . The difference between c r y s t a l l i n e and non-crystalline

substances i s basically a question of the range of orderliness. Whereas

in non-crystalline substances orderliness extends over few atoms or

molecules, i n c r y s t a l l i n e substances i t extends over very large numbers.

By replacing each repeating unit i n the array by a point, a space

l a t t i c e is produced. The u n i t volume of the repeating pattern i s

called the unit c e l l and i s defined by three non-parallel l a t t i c e vectors

a, b, £, and corresponding angles between them a, 8, and ' ^ u n i t

c e l l can be chosen i n d i f f e r e n t ways, eg* a p r i m i t i v e l a t t i c e , which has

l a t t i c e points only at the corners of the unit c e l l . There are seven

d i f f e r e n t types of p r i m i t i v e l a t t i c e (Table 1.1).

Table (1.1)

Angular re l a t i o n s

a = 6 = Y = 90°

a = 6 = Y = 90°

a = 0 = Y = 90°

a = Y = 90° ^ 0

Linear re l a t i o n s Symmetry

a ^ 0 ?i Y 90

a = 0 = 90° Y = 120* a = 6 = Y 90°

a = b = c

a = b ?J c

a ?J b ? c

a t h ^ c

a ?! b ?; c

a - h t c

a = b = c

cubic

tetragonal

orthorhombic

monoclinic

t r i c l i n i c

hexagonal

rhombohedral

In the monoclinic, orthorhombic, tetragonal, and cubic systems, there

are also seven other l a t t i c e s which have more symmetry than the p r i m i t i v e

12

l a t t i c e i n the same system. These seven l a t t i c e s possess points at

the centres of the faces or the body diagonal, i n addition to those

at the corners. They are known as centred l a t t i c e s . The fourteen

l a t t i c e s are often referred to as the Bravais l a t t i c e s . V/hen considering

the sjmimetry of atomic groupings around every l a t t i c e point, i t i s found

that there are t h i r t y - t w o possible combinations v;hich are observed in

crystals without involving t r a n s l a t i o n s , these are knom as the 32 point

groups. I f t r a n s l a t i o n i s considered, there are 230 possible symmetry

arrangements f o r c r y s t a l structures, the so called space groups. I t i s

often necessary to consider projections of c r y s t a l structures, and then

those combinations of symmetry elements that produce a regularly

repeating pattern are called plane groups.

D i f f r a c t i o n by a c r y s t a l

The regular arrangement of l a t t i c e points i n a c r y s t a l can be

considered as a three dimensional grating i n i t s behaviour tov/ards

X-rays, because the separation of the l a t t i c e points i s of the same order -8

as the wavelength of X-radiation, ie. 10 cm, Laue, i n 1912, derived

the rules governing the formation of the d i f f r a c t e d beams. In an alternat'

ive approach, Bragg (1913) considered a d i f f r a c t e d beam to arise by

r e f l e c t i o n of the incident X-rays from a set of p a r a l l e l l a t t i c e planes.

In view of i t s greater s i m p l i c i t y , t h i s l a t t e r approach i s most frequently

adopted f o r the in t e r p r e t a t i o n of d i f f r a c t i o n e f f e c t s . A d i f f r a c t i o n

maximum i s formed when the rays scattered from each plane of a set are

i n phase. The condition f o r a maximum i s given by the equation:

nX = 2d sin 9 (1,1)

where n = 0, 1, 2

X = wavelength of the incident X-rays

d = the interplanar spacing of the set of l a t t i c e planes

0 = angle of incidence of the X-ray beam to the set of l a t t i c e planes.

13

I t can be seen that for a constant wavelength and a pa r t i c u l a r i n t e g r a l

value of n, the required angle of incidence (= angle of r e f l e c t i o n ) of

the X-ray beam to the l a t t i c e plane i s dependent only on d, the i n t e r -

planar spacing. This i n turn i s d i r e c t l y dependent on the dimensions

of the unit c e l l (a_, b, £, a, 3» y)- Thus, by find i n g the angles of

r e f l e c t i o n of the emergent d i f f r a c t e d beams from various planes i n the

c r y s t a l , the dimensions of the unit c e l l can i n p r i n c i p l e be determined.

A plane which passes through the l a t t i c e points of a c r y s t a l may

best be i d e n t i f i e d with respect t o the c r y s t a l axes, by a group of

three numbers knovm as the Mi l l e r i a n indices (hkJl). Such a plane makes

intercepts on the axes a, b, c, proportional to a/h, b/k, c/£.

Unit c e l l determination

The u n i t c e l l determination i s important since the atomic co-ordinates

and the bond lengths are determined r e l a t i v e to the un i t c e l l edges.

The directions alone of the emergent d i f f r a c t e d beams are s u f f i c i e n t

t o determine the un i t c e l l dimensions, the systematic absences of

*reflections * from certain planes provide information about the symmetry

elements present i n the c r y s t a l , whilst a knowledge of the i n t e n s i t i e s

of the in d i v i d u a l d i f f r a c t e d rays i s necessary f o r the determination of

the atomic parameters of the structure.

The directions and i n t e n s i t i e s of the d i f f r a c t e d beams are observed

by recording themi using photographic f i l m s , or using a photo-multiplier

assembly with a constant amplification f a c t o r , scalers f o r counting the

pulses from the detector, and a rate-meter which displays the rate at

which the pulses are received.

Photographic measurements

I f the c r y s t a l i s o s c i l l a t e d about one of i t s a x i a l directions i n

a c y l i n d r i c a l camera, the resu l t i s an o s c i l l a t i o n photograph i n which

14

the d i f f r a c t i o n maxima are arranged i n layers, whose spacing x gives

the c e l l dimension q, along the c r y s t a l axis under consideration.

path difference = nX = q sin

tan <{i = x/r

hence q = nX/sin (tan x/r) (1.2.)

where 90 - <*> i s the semi-vertical angle of the cone formed; X i s the

wavelength and r i s the radius of the cam.era.

Weissenberg photographs of such layers can be obtained by screening

a l l other layers and photographing the required one, while moving the

film, i n con junction'with the r o t a t i o n of the c r y s t a l . The remaining

c e l l dimensions can be calculated from the data obtained from the zero

and one higher layer Weissenberg photograph. For a monoclinic c r y s t a l ,

a = X/e sin 6 where C = 2 sin 6 (1.3.)-a a a e = Bragg angle f o r the 100 r e f l e c t i o n . 6 i s the supplement of 6"s a which can be measured either d i r e c t l y from a zero layer Weissenberg

photograph about the b axis or from zero and f i r s t layer Weissenberg

photographs about one of the other axes, by the method of angular lag.

tan 6" = ^ / ( ^ ^ u cot l<t> - hE,) (1.4.) C D a V/here i s the angular separation, on the f i r s t layer V/eissenberg

photograph about the c axis, f o r the pair of d i f f r a c t i o n maxima

corresponding to the hkl and hkl r e f l e c t i o n s .

The most widely used methods of i n t e r p r e t i n g X-ray d i f f r a c t i o n

photographs are based on the concept of the reciprocal l a t t i c e . The

condition f o r d i f f r a c t i o n then corresponds to a l a t t i c e point l y i n g i n

the surface of the sphere of r e f l e c t i o n .

Diffractometer measurements

For the work'described i n t h i s thesis the diffractometer used was

based on the Furnas-Harker^design. The name of the f o u r - c i r c l e

diffractometer arises from i t s possession of four arcs which may be used

15

FIG. 1.1

Diagramatic representation of the

Euierian cradle of the diffractometer

16

t o a d j u s t the o r i e n t a t i o n o f the c r y s t a l so as t o b r i n g any desired

plane i n t o the r e f l e c t i n g p o s i t i o n . They are d i v i d e d i n t o the c r y s t a l

o r i e n t e r , which contains the (f» and x c i r c l e s , and the base, which contains

tu and 28. F i g . 1.1. shows an o u t l i n e o f the arrangement.

The tv;o base c i r c l e s , to and 26, are mounted about a common a x i s

and can be e i t h e r adjusted independently or be geared together so t h a t

t h e i r movements are c o r r e l a t e d . The o r i e n t e r i s mounted w i t h i n t h e

0) c i r c l e and pinned so t h a t i t r o t a t e s w i t h tu. V/hen x = 0° the a x i s

of (>• coincides w i t h t h a t o f to and 26. The (J> c i r c l e r i d e s on the X

arc as shown and a t x = 90^ i t s a x i s i s perpendicular t o t h a t o f lo and

26. The c r y s t a l i s mounted on a goniometer head attached about the (J)

a x i s . The remainder o f the d i f f r a c t i o n system c o n s i s t s of an X-ray

tube and d e t e c t o r . The former i s set i n a f i x e d p o s i t i o n w i t h respect

t o the c r y s t a l o r i e n t e r , w h i l s t the d e t e c t o r i s mounted on the 26 c i r c l e .

Both are p o s i t i o n e d so t h a t the f o c a l spot o f the source, the centre

of the o r i e n t e r system, and the centre o f the d e t e c t o r aperture a l l

l i e i n a plane a c c u r a t e l y perpendicular t o the tu (26) a x i s .

The c r y s t a l i s p r e l i m i n a r y a l i g n e d p h o t o g r a p h i c a l l y and i s then

t r a n s f e r e d t o the d i f f r a c t o m e t e r f o r refinement o f the s e t t i n g . The

rough c e l l constants a v a i l a b l e from the f i l m s a l l o w t h e c a l c u l a t i o n o f

approximate s e t t i n g values f o r the low-order r e f l e c t i o n s , and the zero-

l e v e l Weissenberg, which shows the r e f l e c t i o n s which can be observed at

X = 0* , i s a u s e f u l guide t o the i n t e n s i t y p a t t e r n t o be expected.

The c r y s t a l i s f i r s t brought t o the centre of the thr e e c i r c l e s of the

d i f f r a c t o m e t e r w i t h the a i d o f an at t a c h a b l e telescope. Consider the

c r y s t a l ( l e t us assume i t t o be m o n o c l i n i c ) t o be set so t h a t i t s b a x i s

i s p a r a l l e l t o (+> {ie. X = 0.0° f o r the a-c- p l a n e ) . The a- and c-

vecto r s are i n i t i a l l y l ocated by s e t t i n g the 26 c i r c l e t o angles

corresponding t o stron g a x i a l r e f l e c t i o n s and then moving ^ u n t i l the

17

r e f l e c t i o n i s detected by the counter. The c r y s t a l i s then set by

use o f the h o r i z o n t a l h a l f s h u t t e r s incorporated v / i t h i n the d e t e c t o r .

For f u r t h e r accuracy o f s e t t i n g , the c r y s t a l i s placed a t X = 90° and

the s e t t i n g f i n e l y adjusted so t h a t t h e r e i s as small a v a r i a t i o n i n

i n t e n s i t y as po s s i b l e o f a s u i t a b l e OkO r e f l e c t i o n as (> i s completely

r o t a t e d . (Some v a r i a t i o n w i l l occur due t o a b s o r p t i o n ) . 26 values .

are then recorded and used t o determine b-.

The r e a l c e l l parameters can then be c a l c u l a t e d from the r e c i p r o c a l

parameters.

C a l c u l a t i o n o f the u n i t c e l l contents

I f the molecular weight o f a compound i s knovm, say by chemical

a n a l y s i s , and the c e l l dimensions and d e n s i t y have been measured, the

value of Z, which i s of fundamental importance i n determining the atomic

arrangements w i t h i n the u n i t c e l l , can be c a l c u l a t e d .

Z = P - l f - (1.5.)

where Z = number of molecules per u n i t c e l l ,

p. = d e n s i t y o f c r y s t a l

V = volume o f u n i t c e l l

Avogadro's number

M = molecular weight.

Space group determination

The c l a s s i c a l method of f i n d i n g the system t o i>;hich a p a r t i c u l a r

c r y s t a l belongs i s t o examine the arrangement o f i t s faces ( P h i l l i p s 2

1945). The more usual method, however, i s t o detect the Laue group

o f the c r y s t a l ( t e . the symmetry of the d i f f r a c t i o n p a t t e r n ) by

examining the o s c i l l a t i o n and Weissenberg photographs f o r m i r r o r planes

and r o t a t i o n axes. • V/hen symmetry elements i n v o l v i n g t r a n s l a t i o n are present i n a s t r u c t u r e .

18

c e r t a i n types of r e f l e c t i o n are absent, eg, i f the c r y s t a l has a tv;o

f o l d screw a x i s , the X-ray r e f l e c t i o n s from planes perpendicular t o

t h a t a x i s w i l l be present only f o r even i n d i c e s corresponding t o t h a t

a x i s .

Consideration of the Laue group t o g e t h e r v;ith any t r a n s l a t i o n a l

symmetry found, o f t e n allovjs the space group t o be s p e c i f i e d u niquely.

I n some cases, however, t h i s i s not so. For example the presence o f

a centre o f symmetry i n a c r y s t a l s t r u c t u r e cannot be determined by

the Laue group or by systematic absences, but i t can o f t e n be detected

by a s t a t i s t i c a l a n a l y s i s o f the i n t e n s i t y d i s t r i b u t i o n o f the d i f f r a c t e d

r ays. For a centrosymmetric c r y s t a l , t h e r e i s a gr e a t e r p r o p o r t i o n

of weaker r e f l e c t i o n s , balanced by a fewer but stronger r e f l e c t i o n s i n

the upper range, than f o r non-centrosymmetric c r y s t a l s , which give a

more uniform d i s t r i b u t i o n . Howells, P h i l l i p s , and Rogers^ used t h i s

f a c t f o r t h e i r t e s t . Tests f o r o p t i c a l a c t i v i t y , and pyro or

p i e z o - e l e c t r i c i t y , i f p o s i t i v e also e s t a b l i s h the absence of ce n t r o -

symmetry.

The s t r u c t u r e f a c t o r

The observed i n t e n s i t i e s o f d i f f r a c t e d beams are dependent on the

r e l a t i v e arrangement o f atoms i n the u n i t c e l l . I f the u n i t c e l l

contains N atoms, then there w i l l be N i n t e r p e n e t r a t i n g l a t t i c e s o f

equal dimensions. Therefore they w i l l a l l r e f l e c t X-rays from a

p a r t i c u l a r set o f planes i n the same d i r e c t i o n . However, the a c t u a l

phases o f the d i f f r a c t e d beams w i l l d i f f e r due t o the r e l a t i v e p o s i t i o n s

of the N atoms.

Considering the p o s i t i o n s o f the j ^ ^ atom i n the u n i t c e l l i n

terms o f f r a c t i o n s o f the u n i t c e l l edges as; = ^ j / ^ , y^ = ' ^ j ' ^ ^ '

2_. = Z_./c (where X_., Y_., Z_. are the absolute coordinates o f the j^^ atom

19

v/ith respect t o the t h r e e c e l l edges) then the phase of the X-ray

beam s c a t t e r e d by t h i s atom, r e f e r r e d t o the o r i g i n o f the u n i t c e l l ,

i s given by;

6. ~ 27T (hx. + ky. + Iz.) (1.6.)

I f the amplitude of t h i s v;ave i s f ^ , which i s termed the atomic s c a t t e r i n g

f a c t o r , the s c a t t e r e d wave i s described by the term,

_ i27T (hx. + ky, + Jlz.) . iA. n \ f .e 3 3 = (1.7. )

The atomic s c a t t e r i n g f a c t o r i s r e l a t e d t o the number of e l e c t r o n s

i n an atom He, atomic number) since i t i s the e l e c t r o n s which s c a t t e r

the X-rays. I n atoms, the e l e c t r o n s occupy a f i n i t e volume i n space

and the phase d i f f e r e n c e between rays s c a t t e r e d from d i f f e r e n t p o i n t s

i n t h i s volume must be taken i n t o account. For sma l l angles o f

d i f f r a c t i o n , these phase" d i f f e r e n c e s are s m a l l , and t h e r e f o r e , the

amplitude of the s c a t t e r e d v/ave can be taken as the sum o f the amplitudes

of the s c a t t e r i n g by the i n d i v i d u a l e l e c t r o n s . As the angle o f d i f f r a c t i o n

increases, however, the phase d i f f e r e n c e s become l a r g e r and the s c a t t e r e d

wave weaker, ie, the s c a t t e r i n g f a c t o r becomes l e s s than the atomic

number. For an atom assumed t o have s p h e r i c a l symmetry, the s c a t t e r i n g

f a c t o r i s constant f o r a given angle of d i f f r a c t i o n and can be p l o t t e d

against ( s i n 9 / X ) , g i v i n g a f a i r l y smooth curve. From t h i s curve, the

value o f the atomic s c a t t e r i n g f a c t o r f o r any value o f ( s i n e / X ) can

t h e r e f o r e be determined.

The t o t a l d i f f r a c t e d wave from the N atoms o f the u n i t c e l l i s the

sum o f a l l the i n d i v i d u a l scattered' beams and i s given by the equation

F(hkJl) = I f . e ^ ' ^ j ( l . S . )

F(hk£) i s termed the s t r u c t u r e f a c t o r .

When a c r y s t a l s t r u c t u r e i s such t h a t the u n i t c e l l contains many

atoms, the c a l c u l a t i o n o f the s t r u c t u r e f a c t o r s can become q u i t e t e d i o u s .

20

However, symmetry c o n d i t i o n s permit s i m p l i f i c a t i o n of such summations,

because the c o n t r i b u t i o n s t o a s t r u c t u r e f a c t o r by atoms occupying

equivalent p o s i t i o n s i n the c e l l can be considered i n sets. Let the

s^Tnmetry f a c t o r o f a set be S.

m 2Tri(hx. + ky. + £z.) S = Z e ^ ^ (1.9. )

V/here the sum over j includes a l l the coordinates o f the m e q u i v a l e n t

p o s i t i o n s i n one e q u i p o i n t s e t . Then the s t r u c t u r e f a c t o r expression

(1.8.) can be w r i t t e n

F(hk5.) = I f S n " "

Hence the summation i n (1,10.) i s c a r r i e d out w i t h atoms having the

same amplitude f r a t h e r than i n d i v i d u a l l y .

The symmetry f a c t o r i n equation (1.9.) can be expressed i n the form

S = A + IB

= I cos 2TT(hx. + ky. + Jlz.)+ iZ s i n 2Tr(hx. + ky. + j l z . )

(1.11.)

The magnitude o f F(hkJi), known as the s t r u c t u r e f a c t o r amplitude i s

given by

|F(hkJl)| = |E f S I ' ' n n' n

= | l f (A + i B ) n "

= [ ( Z f A ) ^ + (E f B (1.12. ) n n n n n n

The phase angle o f the s t r u c t u r e f a c t o r i s given by

Z f^B^ a(hkJl) = t a n ' ^ y ^ ^ (1.13.)

n n n

21

V/hen a c r y s t a l has a centrosymm.etric s t r u c t u r e and the symmetry

centre i s chosen as the o r i g i n o f coordinates, then f o r every atom a t a

p o i n t xyz t h e r e i s another a t x y z i n the same e q u i p o i n t s e t . I n

t h i s case B = 0 i n (1.11.) because s i n ( - x ) = - s i n x, and the sine terms

sum t o zero i n p a i r s . When the s t r u c t u r e lacks an i n v e r s i o n centre

or v/hen the o r i g i n i s not placed a t a symmetry c e n t r e , both A and B have

non-zero values.

Corrections t o the measured i n t e n s i t i e s

For any type o f wavemotion, the i n t e n s i t y o f the wave i s p r o p o r t i o n a l

t o the square o f i t s amplitude. This i s the case f o r X - r a d i a t i o n , and

the values o f the i n t e n s i t i e s KhkJ!.), recorded experimentally are the

raw data used i n X-ray c r y s t a l l o g r a p h y . The measured i n t e n s i t i e s are

i n f a c t modified by a v a r i e t y of experimental, p h y s i c a l , and geometrical

f a c t o r s , which make the equation f o r the s t r u c t u r e f a c t o r amplitude i n t o

| F ( h k l l ) | ^ = kKhkfi,). - r i - . Y (1.14.)

L. p A

where A i s the transmission f a c t o r o f the X-ray, L i s c a l l e d the

Lorentz f a c t o r and p i s termed the p o l a r i s a t i o n f a c t o r . I t should be

noted t h a t the i n t e n s i t i e s have r e l a t i v e values and s t r u c t u r e f a c t o r

amplitudes so obtained are on an a r b i t r a r y scale. During c r y s t a l

s t r u c t u r e d e t e r m i n a t i o n , the scale f a c t o r k i s used t o put the amplitudes

on an absolute scale,

Lorentz and p o l a r i s a t i o n e f f e c t s

An unpolarised i n c i d e n t X-ray beam i s p a r t i a l l y p o l a r i z e d on

d i f f r a c t i o n by a c r y s t a l ; t h i s causes a d i m i n u - t i o n o f t h e i n t e n s i t i e s

which increases w i t h the angle o f r e f l e c t i o n . Another e r r o r i s due

t o the r e l a t i v e time any c r y s t a l plane spends w i t h i n the narrow angular

range over which r e f l e c t i o n occurs. The p o l a r i s a t i o n f a c t o r , p, i s given

by

22

p.i,££4 (1.15.)

and i s a simple f u n c t i o n o f 26, independent o f the method used f o r

data c o l l e c t i o n . The Lorentz f a c t o r , L, depends on the precise

measurement technique used. For the e q u i - i n c l i n a t i o n Weissenberg i t i s

given by

L = - (1.16.) s i n 2 e / s i n ^ e - sin^y

where \i i s the e q u i - i n c l i n a t i o n s e t t i n g angle. For z e r o - l e v e l r e f l e c t i o n s

Eq. (1.16) reduces t o

Absorption

The e f f e c t o f absorp t i o n of a beam of X-rays by a c r y s t a l i s given

by the r e l a t i o n s h i p

I = I e"^^ (1.18.) o where I ^ = i n t e n s i t y o f the o r i g i n a l beam

I = i n t e n s i t y o f the beam a f t e r t r a v e r s i n g thickness t o f a c r y s t a l .

y = t h e l i n e a r a b s o r p t i o n c o e f f i c i e n t o f the c r y s t a l f o r the

wavelength used, and i s given by

y = p Ew.y . (1.19.) 1 mi I n t h i s expression, w i s the r e l a t i v e weight o f t h e i ^ ^ element i n

the c r y s t a l , p^^ i s the mass absorp t i o n c o e f f i c i e n t o f t h a t element and

p i s the d e n s i t y o f the c r y s t a l .

To apply an a b s o r p t i o n c o r r e c t i o n i t i s necessary t o evaluate t h e

amounts by which both the i n c i d e n t and d i f f r a c t e d beams are reduced by

abs o r p t i o n . These must be c a l c u l a t e d f o r each r e f l e c t i o n by f i n d i n g

the path lengths o f the i n c i d e n t and d i f f r a c t e d rays w i t h i n the c r y s t a l .

The transmission f a c t o r . A, f o r the (hk£) r e f l e c t i o n i s thus given by:

23

A(hk£) = 1/V / exp - I p ( r + r ) ] dV (1.20.) V ^ ^

where r^^ i s the path l e n g t h of the i n c i d e n t beam before being s c a t t e r e d

by the volume element dV, and r ^ i s the path l e n g t h a f t e r s c a t t e r i n g .

For a c r y s t a l o f a r b i t r a r y shape i t i s not u s u a l l y p o s s i b l e t o

evaluate t h i s i n t e g r a l d i r e c t l y . However, a very good approximation

can be made using the three-dimensional numerical i n t e g r a t i o n technique

developed by Busing and Levy. Here the i n t e g r a l i s evaluated by

Gaussian i n t e g r a t i o n , which approximates i t t o the weighted sum o f a

number o f terms. This i s done by s e t t i n g up a g r i d o f sampling p o i n t s

w i t h i n the c r y s t a l , each p o i n t being assigned a v;eight which i s dependent

on t h e c r y s t a l shape. The components o f the i n c i d e n t and d i f f r a c t e d

beams f o r each r e f l e c t i o n are then d e r i v e d . I n the computer program

used i n t h i s work, which was a m o d i f i c a t i o n o f the o r i g i n a l program o f

Coppens et al^^ a vector a n a l y s i s method i s used t o do t h i s o p e r a t i o n .

I f a sampling g r i d o f N p o i n t s i s used, t he tr a n s m i s s i o n f a c t o r

o f the (hkA) r e f l e c t i o n i s given by

N A(hkjl) = Z w . a ( r ) (1.21.)

r t h where i s the Gaussian weight o f the r p o i n t and a ( r ) i s the t r a n s

mission f a c t o r o f the (hk£) r e f l e c t i o n associated v;ith t h a t p o i n t .

The temperature f a c t o r

The thermal motion o f the atoms, has the e f f e c t o f i n c r e a s i n g the

d e s t r u c t i v e i n t e r f e r e n c e between the vari o u s e l e c t r o n s , hence reduces

the value o f the atomic s c a t t e r i n g f a c t o r f , and causes i t t o f a l l o f f

more r a p i d l y w i t h 6. This can be co r r e c t e d by r e p l a c i n g the term f o r

the atomic s c a t t e r i n g f a c t o r by a modified f u n c t i o n .

^ ^ ^-B(sin^e)n^ ^ (1.22.) o o

where f = s c a t t e r i n g f a c t o r o f an atom a t o r d i n a r y temperatures

2 1

f = s c a t t e r i n g f a c t o r of an atom a t r e s t o . . . B i s c a l l e d the i s o t r o p i c temperature f a c t o r and i s given by

B = 87T2 .U2 (1.23.)

where u^ i s the mean square displacement of the atoms from t h e i r mean

p o s i t i o n i n a d i r e c t i o n normal t o the r e f l e c t i n g plane.

The i s o t r o p i c value of q i s a good approximation i n the i n i t i a l

refinement o f a s t r u c t u r e but when the s t r u c t u r e i s complete a c l o s e r

and more accurate r e p r e s e n t a t i o n o f the v i b r a t i o n s can o f t e n be obtained

by c o n s i d e r i n g the motion t o be a n i s o t r o p i c . Then,

q = exp[-(6^j^h2+B^^k2 + 6^^Jl2+2S^2hk+2B^3hZ+2623kJl)] (1.24.)

the s i x temperature f a c t o r s 6^^, B^ j ^ ^335 B^^^ B^^, and 8^3 f o r each

atom, describe an e l l i p s o i d o f v i b r a t i o n . I n both the i s o t r o p i c and

a n i s o t r o p i c case, the temperature f a c t o r s can be considered as a d j u s t a b l e

parameters i n the refinement of the s t r u c t u r e .

Spot shape c o r r e c t i o n ^ '"

Probably the most serious problem i n the v i s u a l e s t i m a t i o n o f

i n t e n s i t i e s a r i s e s from the extension and c o n t r a c t i o n of spots on upper-

l e v e l Weissenberg photographs. The formulae t o c o r r e c t f o r the

extension o f the spots, combined w i t h the L o r e n t z - p o l a r i z a t i o n f a c t o r

i s as f o l l o w s : -

W , 2C cose 180 c { ( 4 - ^ 2 ) / g 2 . i ^ i ^ ( 1 2 5 ) l+cos22e { 2 R ^ / ( 4 - 5 2 ) i ^ j ^ ^ }

where w = spot c o r r e c t i o n

Lp = L o r e n t z - p o l a r i z a t i o n f a c t o r

C = 2(sin26 - sin2y)2

C = 2 s i n j j (where' \i = e q u i - i n c l i n a t i o n angle)

= camera r a d i u s

= f i r s t p i n h o l e t o c r y s t a l d i s t a n c e .

25

E x t i n c t i o n

Primary and secondary e x t i n c t i o n s are p h y s i c a l f a c t o r s t h a t a r e ,

i n g eneral, not corr e c t e d f o r since they u s u a l l y only a f f e c t a few

r e f l e c t i o n s .

Primary e x t i n c t i o n s r e s u l t from m u l t i p l e r e f l e c t i o n s . I f the X-ray beam

i s i n c i d e n t on a plane (hk£) at the Bragg angle, ^^j^j^s there i s a

r e f l e c t i o n . The r e f l e c t e d beam w i l l have f o r i t s angle of r e f l e c t i o n ,

^\.\.o* " ^ r e f l e c t e d beam passes through p a r a l l e l planes (hkJi), i t s

angle of incidence w i l l be 6 ^ ^ and f u r t h e r r e f l e c t i o n s w i l l occur.

For two r e f l e c t i o n s , the i n i t i a l i n c i d e n t beam w i l l s u f f e r a phase

change o f TT r a d i a n s , g i v i n g the c o n d i t i o n s f o r d e s t r u c t i v e i n t e r f e r e n c e

and hence reducing the i n t e n s i t y o f the d i f f r a c t e d beam. However, c r y s t a l

i mperfections l a r g e l y reduce t h i s e f f e c t by not a l l o w i n g the planes o f

a p a r t i c u l a r set t o be p e r f e c t l y arrayed.

Secondary e x t i n c t i o n occurs when tv;o independent l a y e r s o f a c r y s t a l are

i d e n t i c a l l y o r i e n t e d such t h a t t h e i r atomic planes are e x a c t l y p a r a l l e l .

R e f l e c t i o n by the upper l a y e r w i l l reduce the s t r e n g t h of the i n c i d e n t

beam. Planes i n the lower l a y e r r e c e i v i n g t h i s weakened i n c i d e n t beam

cannot make t h e i r f u l l c o n t r i b u t i o n t o the r e f l e c t e d beam. This e f f e c t

can be serious f o r low order, strong r e f l e c t i o n s .

Anomalous d i s p e r s i o n

From the expressions f o r the s t r u c t u r e f a c t o r , F(hk£), and the

s t r u c t u r e amplitude, |F(hkJl)|, i t can be shorn t h a t

| F ( h k j l ) | = |F(h k i)\ (1.26.)

and hence the i n t e n s i t i e s of these r e f l e c t i o n s should be i d e n t i c a l .

This i s known as F r i e d e l ' s Law. However, i n c e r t a i n c r y s t a l s c o n t a i n i n g

atoms which have a n a t u r a l a b s o r p t i o n frequency near t o the frequency

o f the i n c i d e n t X - r a d i a t i o n , there i s a measurable d i f f e r e n c e i n i n t e n s i t y

26

between (hkjl) and (H k £) r e f l e c t i o n s . This e f f e c t , anomalous d i s p e r s i o n ,

i s caused by a phase change d u r i n g s c a t t e r i n g by e l e c t r o n s associated

w i t h the absorption edge. The s c a t t e r i n g f a c t o r of the atom concerned

can then be expressed as a complex number, i n the form:

f (anom.) = f t A f + i A f " = f'+ i Z i f " (1.27.) o o The e f f e c t s o f anomalous d i s p e r s i o n are u s u a l l y s m a l l , since care i s

taken t o use a r a d i a t i o n whose wavelength i s not close t o the ab s o r p t i o n

edge o f any c o n s t i t u e n t atom.

The e l e c t r o n d e n s i t y f u n c t i o n

Since a c r y s t a l i s p e r i o d i c i n t h r e e dimensions i t can be

represented by a three dimensional F o u r i e r s e r i e s . The e l e c t r o n

d e n s i t y p(xyz) at any p o i n t xyz i s represented by the Fourier s e r i e s .

p(xyz) = 1/V I I F(hkZ)[-27Ti(hx+ky+£z)3 (1.28.) h k A " " ^

where F(hkfi.) i s the s t r u c t u r e f a c t o r . The q u a n t i t y which i s measured

i s the i n t e n s i t y , v/hich i s p r o p o r t i o n a l t o |F(hkjl) ^. I n general the

process o f c r y s t a l s t r u c t u r e determination cannot be c a r r i e d out by

d i r e c t means since the s t r u c t u r e f a c t o r s are complex terms and only the

moduli are determined from i n t e n s i t y measurements. The problem o f

s t r u c t u r e d e t e r m i n a t i o n i s t o f i n d the phases o f the s t r u c t u r e amplitudes

and then compute the e l e c t r o n d e n s i t y f u n c t i o n .

V hen the space group, or plane group, i s centrosymmetric the s t r u c t u r e

f a c t o r s are r e a l and th e r e are only two p o s s i b l e phases f o r a r e f l e c t i o n ,

t-e. 0 or TT. This amounts t o a s s i g n i n g a sign t o the s t r u c t u r e f a c t o r .

When the phases are 0 and TT the signs are + and - r e s p e c t i v e l y ,

A number of 'Direct Methods' o f phase d e t e r m i n a t i o n have been

proposed and u s e d i n v o l v i n g s t a t i s t i c a l a n a l y s i s o f the d i f f r a c t i o n

p a t t e r n . Although they are becoming more widely a p p l i c a b l e they are

s t i l l complicated procedures, most emphasis s t i l l being placed on phase

2 7

determination by i n d i r e c t methods.

Many s t r u c t u r e s have been solved by a t r i a l - a n d - e r r o r method.

A s t r u c t u r e i s assumed on the basis of the' chemical composition, a

knov;ledge of i t s c e l l dimensions and space group, the c o n f i g u r a t i o n o f

the molecule or other s t r u c t u r a l u n i t , i f i t i s known, a c r i t i c a l

examination o f the p h y s i c a l p r o p e r t i e s and other data t h a t appear t o be

p e r t i n e n t . An example of'a p h y s i c a l p r o p e r t y i s t h a t o f o p t i c a l

a n i s o t r o p y which provides a u s e f u l a i d i n c e r t a i n favourable circumstances. 9

This subject has been discussed f u l l y by Bunn. I n general, the

r e f r a c t i v e index of a c r y s t a l i n a p a r t i c u l a r d i r e c t i o n i s high i f the

atomic content i n t h a t d i r e c t i o n , i s h i g h , the reverse i s t r u e i f the

atomic content i s small. This i s a p a r t i c u l a r l y u s e f u l a i d t o t r i a l

s t r u c t u r e determination i f the c r y s t a l s have a high b i r e f r i n g e n c e .

The assumed s t r u c t u r e i s used t o compute t h e o r e t i c a l F values f o r

comparison w i t h the observed F values. Even an approximate agreement

between c a l c u l a t e d and measured data i s u s e f u l , because i t i n d i c a t e s

t h a t the assumed s t r u c t u r e at l e a s t resembles the t r u e s t r u c t u r e and

o f f e r s the hope t h a t successive refinements • . , w i l l lead t o a

s o l u t i o n of the s t r u c t u r e .

The Patterson f u n c t i o n

Patterson"^^'"^"^ showed t h a t a Fo u r i e r summation using values

(which, of course, are a l l p o s i t i v e regardless o f the F phases)

P(uvw) = l/V^ i-n Ik Zi |F{hki)|2e^''^^^-"*''''^^"^ (1.29.) -CO

where uv\-i are expressed as f r a c t i o n s o f a, b, c r e s p e c t i v e l y , gives a^

v e c t o r i a l p a t t e r n o f the distances between the atoms i n the s t r u c t u r e

and t h e r e f o r e i d e a l l y by analysing t h i s f u n c t i o n the c r y s t a l s t r u c t u r e

could be found. Hov/ever, f o r N peaks i n the e l e c t r o n d e n s i t y , t h e r e

w i l l be N peaks superimposed at the o r i g i n , and N -N peaks d i s t r i b u t e d

28

throughout the r e s t of the c e l l , t h i s gives r i s e t o one of the c h i e f

l i m i t a t i o n s o f Patterson maps i n p r a c t i c e as i t i s impossible t o

determine a l l o f these distances cue t o the overlapping o f the many

vecto r s involved except i n s t r u c t u r e s w i t h a few atoms. I f a high

p r o p o r t i o n o f i n t e r a t o m i c vectors l i e i n the same d i r e c t i o n and are o f

the same l e n g t h then a high value of the Patterson f u n c t i o n w i l l be

obtained g i v i n g the d i r e c t i o n o f the v e c t o r s . Thus f o r molecules

c o n t a i n i n g a benzene r i n g i t i s o f t e n p o s s i b l e t o determine the

o r i e n t a t i o n o f the benzene r i n g . The Patterson f u n c t i o n may be used

t o solve a s t r u c t u r e f a i r l y d i r e c t l y u s i n g the * heavy atom* method.

The heavy atom method

The weights o f the peaks i n the Patterson map are p r o p o r t i o n a l t o

the product o f the e l e c t r o n d e n s i t i e s o f p a i r s o f atoms. IVhen the

c r y s t a l contains a r e l a t i v e l y small number o f * heavy atoms' per u n i t c e l l ,

the Patterson peaks due t o these atoms stand out against a background

of overlapping smaller peaks and gi v e the co-ordinates o f the 'heavy*

atom. I n such cases, i t i s po s s i b l e t o synthesize an approxim.ation

t o the e l e c t r o n d e n s i t y at once using measured F's and c a l c u l a t e d

phases from the heavy atom c o n t r i b u t i o n o nly.

The sharpened P a t t e r s o n - f u n c t i o n

The sharpened Patterson i s a Patterson f u n c t i o n w i t h the |F(hkJl)|2

c o e f f i c i e n t s modified so t h a t sharper, more w e l l - d e f i n e d peaks are

produced. The Fourier c o e f f i c i e n t s become

(1.30.)

where f i s the mean u n i t y s c a t t e r i n g f a c t o r and i s defined by

29 N } I f

r = l ^ f = — (1.31.)

Z Z r = l ^ .

where f i s the s c a t t e r i n g f a c t o r f o r the r ^ ^ atom and Z i s the atomic r . ' • r

number of the r atom.

Sharpening o f the Patterson map occurs because the sharpening

tends t o reduce the |F(hkJl)|^ c o e f f i c i e n t s t o those which would have

been obtained i f the e l e c t r o n s were s i t u a t e d a t p o i n t centres and not

spread over a f i n i t e volume.

•A sometimes annoying d i f f i c u l t y w i t h the Patterson f u n c t i o n a r i s e s

from the great s i z e of the o r i g i n peak. Since i t may cause t r o u b l e

i n s c a l i n g the computer o u t p u t , and al s o i t can obscure short i n t e r a t o m i c

v e c t o r peaks, Che o r i g i n peak i s o f t e n e l i m i n a t e d d u r i n g the sharpening

o p e r a t i v e by using modified c o e f f i c i e n t s o f the form

N |F»(hkil)|2 = |F(hkil)|2 - Y. f.2 (1.32.)

i = l ^

The above equation holds only when the F*s have been placed on an

absolute scale. I n the case o f a sharpened Patterson f u n c t i o n , the

f.* s are a l l constants equal t o Z., and the o r i g i n removal process

simply c o n s i s t s o f s u b t r a c t i n g the q u a n t i t y 1 Z.^ from each squared F p o i n t

i = l ^

The d i f f e r e n c e synthesis

The most serious o f the e r r o r s which give r i s e t o inaccurate atomic

p o s i t i o n s are those due t o the premature t e r m i n a t i o n o f the Fo u r i e r

s e r i e s which gives the e l e c t r o n d e n s i t y . These r e s u l t i n small r i p p l e s

i n the e l e c t r o n d e n s i t y map. around atom peaks, and i n some cases may

produce d i s c e r n i b l e spurious peaks which can be mistaken .for t r u e atomic

p o s i t i o n s , e s p e c i a l l y i n the case o f heavy atoms. A method proposed

30

1 2 1 3

by Booth' ' v i r t u a l l y e l i m i n a t e s s e r i e s - t e r m i n a t i o n e r r o r s . Booth

proposed t h a t by using terms i n the Fo u r i e r synthesis o f zhe t y p e ,

F^,„(obs.) - F^^ ( c a l c . )

where F(obs. ) i s the F ^ ^ obtained from the observed i n t e n s i t i e s and

F ( c a l c . ) i s t h a t c a l c u l a t e d from the po s t u l a t e d atomic p o s i t i o n s .

The r e s u l t i n g s e r i e s i s c a l l e d a D i f f e r e n c e synthesis. VJhen the

proposed and a c t u a l s t r u c t u r e s are near l y the same t h e i r s e r i e s

t e r m i n a t i o n e r r o r s are s u b s t a n t i a l l y i d e n t i c a l . On s u b t r a c t i o n

t h e r e f o r e these e r r o r s vanish, so t h a t d i f f e r e n c e syntheses are v i r t u a l l y

f r e e from s e r i e s - t e r m i n a t i o n e f f e c t s . The d i f f e r e n c e synthesis has

another very u s e f u l p r o p e r t y i n t h a t when the proposed model e x a c t l y

matches the a c t u a l c r y s t a l s t r u c t u r e the d i f f e r e n c e map i s c h a r a c t e r i z e d

by a f a i r l y f l a t topography, w i t h only minor and random undulations

caused by e r r o r o f obs e r v a t i o n .

Refinement of the s t r u c t u r e

A f t e r the approximate p o s i t i o n s of the atoms i n a c r y s t a l s t r u c t u r e

have been determined i t i s necessary t o make small v a r i a t i o n s i n the

atomic parameters u n t i l the best c o r r e l a t i o n between the observed and

c a l c u l a t e d s t r u c t u r e amplitudes i s obtained- An exact f i t w i l l not

be found since the observed i n t e n s i t i e s are subject t o a number o f e r r o r s ,

te, e r r o r s inherent i n the method o f measurement, v i s u a l e s t i m a t i o n o f

i n t e n s i t i e s leads t o e r r o r s o f up t o about 10% i n the value o f I F ^ I , " * " ^

and also e r r o r s due t o ab s o r p t i o n and e x t i n c t i o n .

The p r i n c i p l e o f l e a s t squares s t a t e s t h a t the best values f o r the

parameters are those which minimize the sums of the squares o f the

pr o p e r l y weighed d i f f e r e n c e s between the observed and c a l c u l a t e d values

i s a minimum. Thus the q u a n t i t y t o be minimized i s M I W(|F^| - |F^|)2 ( 1 . 3 3 . )

r = l

31

where v; i s the v/eight of the assigned o b s e r v a t i o n , ie, a measure o f

e r r o r inherent i n i t s measurement.

I t has been found u s e f u l t o express the o v e r a l l agreement i n terms

of the r e s i d u a l R defined as

R = LW(|F^| - 1 F ^ | ) / J:W|F^1 (1.3M.)

A l l w e ighting done duri n g refinement i n t h i s t h e s i s was c a r r i e d

out by the method,suggested by H u g h e s . I n t h i s scheme, r e f l e c t i o n s

where | F ^ | i s l e s s than or equal t o a preset constant |F"| are given

u n i t weights, w h i l e a l l other r e f l e c t i o n s have weights (|F"|/|F^|)2.

This has the e f f e c t of assigning smaller v;eights t o e s p e c i a l l y intense

r e f l e c t i o n s and can, i n most cases, provide a reasonably constant value

of J:W( F^ - r ^ | ) ^ over the range o f values o f F_.

32

REFERENCES

1. T.C. Furnas, J r . , and D. Harper, Rev. S c i . I n s t r . , 1955, 2£, No. 5.

2. F.C. P h i l l i p s , An I n t r o d u c t i o n t o C r y s t a l l o g r a p h y , 3rd ed., Wiley,

1964.

3. E.R. Howells, D.C. P h i l l i p s and D. Rogers, Acta Cryst. , 1950, 3_» 210.

4. W.R. Busing and H.A. Levy, Acta C r y s t . , 1957, 10, 180.

5. P. Coppens, L. L e i s e r o w i t z and D. Robinovich, Acta C r y s t . , 1965, 18,

1035.

6. D.C. P h i l l i p s , Acta C r y s t . , 1954, 2> 746.

7. " D.C. P h i l l i p s , i b i d . , 1956, 9_, 819.

8. ' I n t e r n a t i o n a l Tables f o r X-Ray C r y s t a l l o g r a p h y ' , Vol. I l l , The

Kynoch Press, Birmingham, England, 1962, p.140.

9. C.W. Bunn, Chemical C r y s t a l l o g r a p h y , 2nd ed., Oxford U n i v e r s i t y Press,

1961.

10. A.L. Patterson, Phys. Rev., 1934, 46, 372.

11. A.L. Patterson, Z. K r i s t . , 1935, 90, 517.

12. A.D. Booth, Proc. Roy. Soc. (London), 1946, A188, 77.

13.. A.D. Booth, Proc. Roy. Soc. (London), 1947, A190, 482.

14. H. Lipson and W. Cochran, 'The Determination o f C r y s t a l Structures',

London, B e l l , 1953.

15. E.W. Hughes, J. Amer. Chem. Soc. , 1941, 63, 1737.

33

"Let there he light: and there

was tight, "

.... Genesis

34

CHAPTER 2

The C r y s t a l and Molecular S t r u c t u r e o f

G l y c y l - L - t r y p t o p h a n a t o c o p p e r ( I I ) T r i h y d r a t e

3S

2.1. I n t r o d u c t i o n

Most of the c r y s t a l - s t r u c t u r e analyses o f metal-amino a c i d and

n e t a l peptide complexes have been c a r r i e d out on the assumption t h a t

complexes act as models f o r the metal-binding s i t e s on p r o t e i n s . I n

order t o e s t a b l i s h the v a l i d i t y o f such models > i t must be shov.-n (1)

t h a t the b i n d i n g o f metal t o peptide i n the c r y s t a l i s the same as i n

a corresponding species i n s o l u t i o n , and ( 2 ) t h a t the behaviour of the

metal-peptide model i n s o l u t i o n i s s i m i l a r t o some aspect of the metal-

p r o t e i n system which i t i s intended t o represent. Only when t h i s has

been e s t a b l i s h e d i s i t p o s s i b l e t o a t t r i b u t e the geometrical p r o p e r t i e s

of the model t o the much more complicated b i o l o g i c a l system.

However, a l l i s not l o s t i f such d i r e c t analogies cannot be demon­

s t r a t e d . I f a c r y s t a l - s t r u c t u r e a n a l y s i s shows not h i n g e l s e , then i t

proves t h a t any i n t e r a c t i o n or c o n f i g u r a t i o n which i s observed i s a

p o s s i b l e i n t e r a c t i o n or c o n f i g u r a t i o n . Every s t r u c t u r e which i s s t u d i e d

t h e r e f o r e adds t o the general fund of c r i t e r i a f o r what i s reasonable i n

model b u i l d i n g experiments and i n speculations about the s t r u c t u r e s of

other compounds.

There i s now a f a i r l y l a r g e number of metal complexes of which the

complete s t r u c t u r e a n a l y s i s has been undertaken. I n 1967 Freeman"^

published a review o f the metal complexes of amino-acids and peptides.

The peptide s t r u c t u r e s he reviewed together w i t h the more recent s t r u c t u r e s

are l i s t e d i n Table 2.1.

Tryptophan i s one of the n a t u r a l l y o c c u r r i n g amino acids. I t i s

a precursor of neurochemically important com.pounds and chemically r e l a t e d

t o a group of psycho-pharm.aca. Several structui^e determinations o f 19

tryptophan d e r i v a t i v e s have been c a r r i e d o u t , ie, g l y c y l - L - t r y p t o p h a n , 20 21 21 L-tryptophan hydro-bromide, ' L-tryptophan h y d r o c h l o r i d e , the

22 23 s e r o t o n i n - c r e a t i n i n e sulphate complex, and DL-tryptophan formate.

TABLE 2.1

NAME FORMULAE REF B i s ( g l y c y l g l y c i n a t o ) z i n c ( I I ) d i h y d r a t e Ammonium b i s - g l y c y l g l y c i n e c o b a l t ( I I I ) d i h y d r a t e C o p p e r ( I I ) monoglycylglycine t r i h y d r a t e G l y c y l g l y c y l g l y c i n a t o c o p p e r ( I I ) c h l o r i d e sesquihydrate Sodium g l y c y l g l y c y l g l y c i n a t o c u p r a t e C I I ) monohydrate Disodium g l y c y l g l y c y l g l y c y l g l y c i n a t o n i c k e l a t e C I I ) decahydrate Disodium g l y c y l g l y c y l g l y c y l g l y c i n a t o c u p r a t e ( I I ) decahydrate Disodium t e t r a g l y c y l - g l y c i n a t o - c u p r a t e ( I I ) hydrate ( G l y c y l - L - h i s t i d i n a t o ) c o p p e r ( I I ) sesquihydrate ( 3 - A l a n y l - L - h i s t i d i n a t o ) c o p p e r ( I I ) d i h y d r a t e G l y c y l g l y c i n a t o - a q u o - i m i d a z o l e - c o p p e r ( I I ) hydrate Dipotassium b i s ( g l y c y l g l y c i n a t o ) c u p r a t e ( I I ) hexahydrate D i g l y c y l g l y c i n a t o - a q u o - i m i d a z o l e - c o p p e r ( I I ) monohydrate G l y c y l g l y c i n a t o b i s ( i m i d a z o l e ) c o p p e r ( I I ) p e r c h l o r a t e L - H i s t i d i n a t o - L - t h r e o n i n a t o aquo c o p p e r ( I I ) hydrate C o p p e r ( I I ) g l y c y l - L - l e u c y l - L - t y r o s i n a t e t e t r a h y d r a t e

d i e t h y l ether s o l v a t e D i a q u o ( g l y c y l g l y c y l g l y c i n a t o ) zinc hemisulphate d i h y d r a t e C h l o r o ( g l y c y l - L - m e t h i o n i n a t o ) p l a t i n u m ( I I ) monohydrate Barium D,L b i s ( g l y c y l g l y c i n a t o ) c o b a l t a t e ( I I I ) hydrate B i s ( g l y c y l g l y c i n a t o ) c o b a l t ( I I I ) p e r c h l o r a t e H e x a - a q u o - c o b a l t ( I I ) D , L - b i s ( g l y c y l g l y c i n a t o ) c o b a l t a t e ( I I I ) dodecahydrate

^8«12^°V6"'"/-2H2° 2 C^H^CuN203.3H20 3

CgH^QCuN^O^^~,2Na^.lOH20 7

SW"V3-l-^"2° 5 ^9"l2'^"\°3-2"2° 1° S"l2'^""4°4-^-^Y S"l2 " ,°5'"''' - V "

^10"l5^""6°3 ' " " K "

Cl0"l8^^^°6-"2° ^17"23'^""3°5'°-^^"lO°-'*"2°

(C5V3V"'>2n'"°4^'"-'*""2° C^H^gClNjOgPtS.HjO 17

B.iC^H^^Co^^O^)^.nH^O 18

2C8"l2^°V6 '"l2^° °6 '-l^H^O 18 CO o

37

The present X-ray a n a l y s i s was undertaken since the t i t l e complex

i s the f i r s t r e p o r t e d metal-peptide s t r u c t u r e where one o f the peptide

residues i s tryptophan.

2.2. Experimental

Synthesis and Spectroscopic Study

A deep-blue s o l u t i o n c o n t a i n i n g g l y c y l - L - t r y p t o p h a n a t o c o p p e r ( I I )

t r i h y d r a t e was prepared by the r e a c t i o n o f equimolar amounts o f ( a )

f r e s h l y - p r e c i p i t a t e d CuCOH)^ and g l y c y l - L - t r y p t o p h a n or (b) CuCO^ and

gl y c y l - L - t r y p t o p h a n . Both r e a c t i o n s were c a r r i e d out i n aqueous s o l u t i o n

and the r e a c t i o n v;as accelerated by warming. The complex separated as

deep blue p l a t e - l i k e c r y s t a l s .

A n i t r o g e n a n a l y s i s was c a r r i e d out on the prepared sample. The

percentage n i t r o g e n found was 11.2 v;hich agrees w i t h the t h e o r e t i c a l value

o f 11.2.•'• The i n f r a r e d spectrum o f the copper complex o f g l y c y l - L -

tryptophan was recorded using a Unicam S.P. 200, t o provide i n f o r m a t i o n

on the c o - o r d i n a t i o n about the copper atom. The a n a l y s i s o f the spectra

was c a r r i e d out by Mr. A. M. Deane, A.E.R.E,, Harwell, Didcot, Berkshire.

Frequencies quoted are the uncorrected frequencies of the charts shown. (Fig.A)

Comparison o f the spectra o f g l y c y l - L - t r y p t o p h a n , t r y p t o p h a n , and

ind o l e shows t h a t the bands a t 3280 and 755 cm"" are c o n t r i b u t e d by the

i n d o l e group (NH s t r e t c h and f u s e d - r i n g CH deformation r e s p e c t i v e l y ) .

The band a t 3420 cm ^ i s c o n t r i b u t e d by the t e r m i n a l liH^ o f g l y c y l - L -

tryptophan. Bands at 1610 and 1580 cm ^ i n tryptophan and g l y c y l - L -— NH

tryptophan must be due t o the | group, and show the group t o be — C - COOH •

"The author wishes t o thank Mr. Ian B u t l e r , o f the Marine B i o l o g i c a l A s s o c i a t i o n , Plymouth, f o r doing the n i t r o g e n a n a l y s i s .

80

3000 wavenumber

2000 1800 1600 1400 1200 1000 800

Fig.Al IR-spectrum of glycyl"L-tryptophan

GO

n

3000 wavenumber

2000 1800 1600 1400 1200 1000 800

Fig.A2 !R-spectrmn of copper glycyl-L-lryptophan.

80

70

60

50

40

30 s

120 E (fi

liof 2851

1603

J L

1029

1495

3000 wavenumber

2000 1800 1600 1400 1200 1000 800

Fig.As IR" spectrum of potassium bromide 1^ o

41

- NH. 2 —1 present i n the i o n i c form | A band a t 2550 cm — c — coo".

i s a l s o c h a r a c t e r i s t i c of t h e *2 group.

The prominent band a t 1665 cm ^ i n the g l y c y l - L - t r y p t o p h a n spectrum

must be due t o the other carbonyl group, and can be regarded as the amide I

band of an N - s u b s t i t u t e d amide. I n the Cu complex the 3280 and 755 cm ^

i n d o l e bands are l i t t l e changed. The i n d o l e group plays no p a r t i n the

r e a c t i o n . The 1665 cm ^ amide band has vanished. This i s t y p i c a l of 24 -1 c o o r d i n a t i o n o f an amide t o a metal. The band moves t o about 1580 cm ,

where i t would be masked by'the carboxylate a b s o r p t i o n .

- NH Salt formation | i s more d i f f i c u l t t o d e t e c t , as

- C - coo" Cu I

' l i ttle.movement o f the 1580 cm c a r b o x y l a t e band would be expected. 25

Adams has discussed the p o s i t i o n of t h i s a b s o r p t i o n i n amino-acid s a l t s and'also suggests the use o f the lower frequency r e g i o n f o r diagnosis.

—1 — NH Absence of a band a t 2650 cm i n the complex suggests t h a t the j2

group has been changed t o I f the complex was formed only by

c o o r d i n a t i o n o f the amide one would have expected t o see a broad a b s o r p t i o n

o f Cu - OH deformation somewhere between 1100 - 700 cm . This i s absent

and suggests Cu"* i o n s a l t f o r m a t i o n .

I n b r i e f , according t o Deane, the copper atom i s c e r t a i n l y complexed

by a coordinate l i n k t o the C = 0 group i n the peptide c h a i n , and

probably also bound by s a l t f o rmation w i t h the a c i d group.

X-ray Study

P r e l i m i n a r y

A small p l a t e was mounted t o . r o t a t e about i t s longest a x i s .

O s c i l l a t i o n , zero, and f i r s t l a y e r Weissenberg photographs v:ere taken

about t h i s a x i s . The Laue symmetry was determined as mmm.

42

^The o s c i l l a t i o n a x i s was l a b e l l e d the a a x i s , and systematic absences

v/ere o f the type

OkO: k = 2n + 1

OOi: £ = 2n t 1

The c r y s t a l v;as then mounted t o r o t a t e about i t s b a x i s , {ie. the wid t h

of the c r y s t a l p a r a l l e l t o the glass f i b r e ) . Further systematic absences

of the type

AOO: 2n + 1

were obtained.

Hence, the space group v;as determined uniquely as being ^'^^^i^i'

Accurate values o f the c e l l dimensions were obtained from Au-

c a l i b r a t e d V/eissenberg photographs,

a = 7.74(4) 8 U = 1579(6)

b = 13.78(3) 2

c = 14.81(3) 2 p = 25.21 cm"-

The d e n s i t y was measured by the f l o t a t i o n method. The c r y s t a l s

j u s t f l o a t e d i n a mixture of chloroform and bromoform, whose d e n s i t y , D ,

was measured t o be 1.57 g/cc. This means f o r a molecular formula of

C^gHj^gll^Og Cu (H = 376.5, F(OOO) = 780), the number o f molecules per

u n i t c e l l i s f o u r . The c a l c u l a t e d d e n s i t y , D^, i s 1,58 g/cc.

Data C o l l e c t i o n

I n t e n s i t i e s were c o l l e c t e d from a small c r y s t a l mounted about i t s

a_ a x i s (the longest .morphological d i r e c t i o n ) , using Cu-K^, r a d i a t i o n .

The approximate s i z e o f the c r y s t a l was 0.25 x 0.22 x 0.15 mm. An

Enraf-Nonius V/eissenberg camera was employed. Layers nkJi (n = 0 - 4)

were c o l l e c t e d using the method of m u l t i p l e f i l m packs. The same c r y s t a l

was then mounted about i t s b a x i s (second longest morphological d i r e c t i o n )

and l a y e r s hn£ (n = 0 - 7) were c o l l e c t e d . F i n a l l y the c r y s t a l v;as

43

mounted about the £ a x i s ( i e . perpendicular t o the p l a t e ) and l a y e r s

hkn (n = 0 - 3) were c o l l e c t e d . The i n t e n s i t i e s were measured by

comparison w i t h a c a l i b r a t e d wedge. Layers were scaled by hand using

r e f l e c t i o n s coirjnon t o more than one l a y e r , r e s u l t i n g i n 1119 unique

non-zero r e f l e c t i o n s .

S t r u c t u r e Determination

The 1119 non-zero r e f l e c t i o n s were cor r e c t e d f o r Lorentz and

p o l a r i z a t i o n e f f e c t s but not f o r a b s o r p t i o n . For the non-zero l a y e r s 26

the P h i l l i p s spot-shape c o r r e c t i o n was a p p l i e d . Using these c o r r e c t e d

i n t e n s i t i e s a t h r e e dimensional Patterson map was computed. The Patterson mau

The general e q u i v a l e n t p o s i t i o n s f p r space group P2^2^2j^ are:-

( x , y , z ) ; ( J - x , y, l + z ) ; ( J t x , 1-y, z ) ; ( x , 1-hy, ^ - z ) .

This gives r i s e t o Harker peaks i n the asymmetric u n i t of the Patterson

synthesis w i t h the f o l l o w i n g coordinates.

(a) 5 1 2x, + 2y, (b) J, 5 1 2y, + 2z; ( c ) + 2x, i + 2z.

A l l peaks i n the asymmetric u n i t o f the Patterson map o f height > 350 are

l i s t e d i n Table 2.2.

TABLE 2.2.

Peaks of height > 350 i n the asymmetric u n i t o f the Patterson map f o r

^ I 3 " l 9 " 3 ^ 6

u ( i n 60^^^) V ( i n 60^^^) w ( i n 50^^^) Height

1 0 • 17,5 0 483

2 0 30 8 652

3 30 26 24 352

4 30 2 1 . 30 375

5 30 4.5 30 688

44

There i s only one peak present i n the Patterson map which c o r r e s ­

ponds t o v e c t o r ( c ) , (2x, ^, l+2z), namely peak (2) at (0/60, 30/60, 8/60).

This gives a z coordinate o f 11/60 and an x coordinate o f 0/60.

S i m i l a r l y there i s a peak vvhich corresponds t o vector ( b ) , ( j , 5~2y, 2 z ) ,

namely peak (3) a t (30/60, 26/60, 24/60), which gives the y coordinate

as 2/60. These coordinates were checked using vector ( a ) , {l+2x^ 2y^ J)

which corresponds t o peak (5) at (30/60, 4.5/60, 30/60). The coordinates

of the copper atom were thus determined t o be x = 0.0000, y = 0.0375,

z = 0.1833.

S o l u t i o n of the s t r u c t u r e

The p o s i t i o n of the copper atom, was used i n a s t r u c t u r e f a c t o r

c a l c u l a t i o n f o r which the r e l i a b i l i t y index, R, v/as 0.44. Using the

phases provided by the copper atom a three dimensional d i f f e r e n c e e l e c t r o n

d e n s i t y synthesis was computed. The synthesis c l e a r l y revealed f o u r

atoms a t approximately 2 8 from the Cu atom. The value of R was 0,38

at t h i s stage. Successive d i f f e r e n c e syntheses were used t o determine

the atomic p o s i t i o n s o f the r e s t o f the molecule. A f t e r twenty-tv;o

atoms had been assigned, s t r u c t u r e f a c t o r s were computed f o r which R was

0.26. A d i f f e r e n c e map computed at t h i s stage showed two d e f i n i t e peaks.

One of these peaks was considered t o be due t o a v;ater molecule and the

"Other was due t o one of the atoms i n the square plane around the c e n t r a l

copper atom being i n the wrong p o s i t i o n ; t h i s was c o r r e c t e d . A f u r t h e r

s t r u c t u r e f a c t o r c a l c u l a t i o n gave an R value of 0.22.

A l l atomic c o o r d i n a t e s , together w i t h i n d i v i d u a l i s o t r o p i c

temperature f a c t o r s , except f o r the copper atom which was given a n i s o t r o p i c

temperature f a c t o r s , were r e f i n e d f o r two cycles o f f u l l - m a t r i x l e a s t

squares t o a value f o r the r e l i a b i l i t y index, R, of 0.13. A d i f f e r e n c e

synthesis which was now computed showed no s i g n i f i c a n t r e s i d u a l e l e c t r o n

d e n s i t y . A l i s t o f observed and c a l c u l a t e d s t r u c t u r e f a c t o r s was computed.

45

Several r e f l e c t i o n s v;hich had extremely bad agreement between observed

and c a l c u l a t e d values, were discovered t o have t h e i r i n t e n s i t i e s mis-

punched on the data cards. These were c o r r e c t e d . The molecule was

r e f i n e d f o r a f u r t h e r two cycles of l e a s t squares. The r e l i a b i l i t y

index, R, was then 0.12.

At t h i s stage i t was thought t h a t f o r f u r t h e r refinement t o take

place, the seventeen scale f a c t o r s which were used i n s c a l i n g the i n t e n s i t ­

i e s from one f i l m t o another would have t o be r e f i n e d . This was

c a r r i e d out f o r two cycles of l e a s t squares refinement w i t h a l l the atoms

i n the molecule i s o t r o p i c gave a value of R o f 0.12. I s o t r o p i c r e f i n e ­

ment was thought t o be complete a t t h i s p o i n t since the average s h i f t

per parameter r e f i n e d vjas less than h a l f the average estimated standard

d e v i a t i o n o f the parameters. Two more cycles o f refinement were

computed v/ith the copper atom reassigned a n i s o t r o p i c temperature f a c t o r s .

The r e l i a b i l i t y index R was now 0.11. At t h i s p o i n t i n the ref i n e m e n t ,

the Hughes weighting scheme (see Chapter 1) was introduced. The value

of F" which gave ZwAF^ t o be f a i r l y constant over the range of Fj^j^^(obs.)

was found t o be 15, on an absolute scale. The f i n a l value of R was

0.108, and the average value o f the s h i f t / e r r o r was about 0.03. The

f i n a l atomic parameters are given i n Table 2.3. and Table 2.17. gives

a l i s t o f F^j^^(obs.) vs F^^^^Ccalc.). No allowance was made f o r the

presence of hydrogen atoms i n t h i s s t r u c t u r e . The s c a t t e r i n g f a c t o r s 27

used f o r N,C, and 0 were from the usual t a b u l a t i o n . Those f o r copper 28

were by Cromer and V/aber. The values f o r Cu being c o r r e c t e d f o r the r e a l p a r t ( A f ' ) o f the anomalous d i s p e r s i o n e f f e c t , were those given

29 by Cromer

46

TABLE 2.3

- F i n a l pos i t i o n a l parameters, ( x , y , z ) , expressed as

f r a c t i o n s (x 10^) of the a, b, and c u n i t c e l l dimensions r e s p e c t i v e l

plus estimated standard d e v i a t i o n s i n paren t h e s i s .

Atom X y B

Cu 9933(5) 10380(2) 11739(2) .;:

0(1) 9352(19) 11577(11) 14218(9) 2.9(3) 0(2) 7625(19) 10504(11) 11264(9) 3.3(3) 0(3) 5004(25) 11099(11) 11534(9) 3.5(3) 0(4) 10827(22) 9769(13) 10702(11) 4.7(4) 0(5) 14195(21) 9249(12) 10723(11) 4.0(3) 0(5) 10875(24) 13317(14) 15090(12) 5.2(4) N ( l ) 12111(25) 10326(15) 12583(12) 3.4(4) N(2) 8973(23) 11129(14) 12762(11) 2.8(4) N(3) 9234(27) 13M27(15) 10380(13) 3.9(4) C ( l ) 11726(29) 10754(17) 13462(14) 2.7(5) C(2) 9882(34) 11201(15) 13'l95(14) 2.8(4) C(3) 7212(26) 11435(16) 12618(13) 2.1(4) C(4) 6538(26) 11013(15) 11757(14) 2.7(4) C(5) 7127(29) 12553(17) 12554(14) 2.4(4) C(6) 8181(30) 12953(18) 11779(17) 3.7(5) C(7) 7840(34) 13049(20) 10829(16) 3.9(5) C(8) 10606(28) 13558(16) 10989(13) 2.8(4) C(9) 12286(33) 13946(19) 10836(15) 3.2(5) C(10) 13320(32) 13961(19) 11575(16) 4.1(5) C ( l l ) 12825(31) 13568(18) 12433(15) 2.7(5) C(12) 11233(29) 13333(17) 12588(15) 2.6(4) C(13) 10062(32) 13274(15) 11860(13) 2.3(4)

••copper a n i s o t r o p i c temperature f a c t o r s (x 10 ) as they appear i n exp-(B^^h^+ 022^^+ ^33^^^+ 2B^2^k t 2B^^hii t 2623^^). Standard d e v i a t i o n s are given i n parenthesis.

6_ 6_ 6 Atom

Cu 11

152(4) 22

45(2) 33

34(1) 12

10(3) ^13 5(2)

6 23 3(1)

4 7

2.3. Results and Discussion of the s t r u c t u r e

In the c r y s t a l s t r u c t u r e of g l y c y l - L - t r y p t o p h a n a t o c o p p e r ( I I ) t r i h y d r a t e ,

the peptide m.olecule behaves as a t r i d e n t a t e chelate v i a i t s t e r m i n a l

amino group, peptide n i t r o g e n atom, and carbonyl group. The s i n g l e

peptide n i t r o g e n M(2) i s deprotonated. The C u ( I I ) atom has a c o o r d i n a t i o n

number of 4. The three peptide donor atoms and one H O molecule form an

approximate square. There are o t h e r examples of peptide C u ( I I ) complexes

w i t h square planar c o o r d i n a t i o n , eg. Na^CuCGly-Gly-Gly-Gly-Gly).2H2O ^ and

Na2Cu(Gly-Gly-Gly-Gly).lOH^O. There was no evidence f o r the presence of

a f i f t h c o o r d i n a t i o n p o s i t i o n above or below the square plane of the Cu

atom, and attempts t o i n c l u d e an a d d i t i o n a l water molecule i n these

p o s i t i o n s l e d t o an increase i n R. Thus the present case i s s i m i l a r t o

t h a t of the copper chelate o f g l y c y l - L - l e u c y l - L - t y r o s i n e and

C u ( I I ) ( L - t y r o s i n e ) 2 , where the benzene r i n g s o f the t y r o s i n e residues

are located below the base of the square-pyramid forming the surrounding

of the copper i o n s . I n the t i t l e complex, the tryptophan residue i s

lo c a t e d above and below the square plane o f the copper atom. This v ; i l l

be discussed l a t e r more f u l l y .

Average dimensions of m e t a l - b i n d i n g peptide groups

The bond lengths o f the c h e l a t e l i g a n d s of eleven complexed peptides

are shown i n Table 2.5. The bond lengths o f the Cu(gly-tryptophan) .SH O

compare very w e l l w i t h the other complexed peptides. There i s h a r d l y

any v a r i a t i o n o f the bond lengths over a l l the eleven complexes. Also

there i s no s i g n i f i c a n t d i f f e r e n c e from those o f f r e e p e p t i d e s , w i t h the

exception of the C = 0 and C - N bonds i n peptide groups at whose N(peptide)

atoms metals are bonded. See Table 2,6, where the average dimensions found

i n f r e e peptides (Mar;

peptides are compared

i n f r e e peptides (Marsh and Donohue, 1967),^"'" and i n metal-binding

48

0 ( 4 )

Fig. 2.1. The molecular structure of Glycyl-L-tryptophanatocopper (tl) trihydratc

NOTE Free water molecules 0(5) & 0 ( 6 ) are omitted.

TABLE 2.4.

49

Molecular oarameters f o r C, H U 0^ Cu l o 19 3 6

Bond lengths are given i n angstroms, angles i n degrees. Standard are given i n parentheses.

Bond len gths

Cu -0(2) 1.956(15) C(9) -C(IO) 1, .36(3) Cu -0 (14) 1.945(17) C(10) - C ( l l ) 1. .39(3) Cu -N(2) 1.921(18) C ( l l ) -C(12) 1. ,34(3) Cu - N ( l ) 2.056(19) C(12) -C(13) 1. U l ( 3 ) 0(2) -C(4) 1.32(3) C(13) -C(8) 1. 41(3) C(if) -0(3) 1.24(3) C(8) • -C(9) 1. 42(3) C(4) -C(3) 1.50(3) C(8) • -N(3) 1. 41(3) C(3) -N(2) 1.44(3) N(3) • -C(7) 1. 37(3) N(2) -C(2) 1.30(3) C(7) --C(6) 1. 44(4) C(2)--0(1) 1.26(3) C(6) • -C(13) 1. 52(3) C(2)-- C ( l ) 1.56(3) C(6) --C(5) 1, 52(3) CCD- -N ( l ) 1.46(3) C(5) --C(3) 1, 55(3)

Bond angles

0(2) -Cu -0(4) 91.9(7) C ( l ) - N(l)-Cu 109(1) 0(2) -Cu -N(2) 84.2(7) C(9)- C(10)- C ( l l ) 125(2) N(2) -Cu - N ( l ) 84.7(8) C(10) - C ( l l ) -C(12) 121(2) N ( l ) -Cu -0(4) 99.6(8) C ( l l ) -C(12) -C(13) 119(2) Cu -0(2) -C(4) l l M ( l ) C(12) -C(13) -C(8) 119(2) 0(2) -C(4) -C(3) 117(2) C(13) -C(8) -C(9) 121(2) 0(2)- -C(4) -0(3) 121(2) C(8) -C(9) -C(IO) 115(2) C(3)--C(4) - 0 ( 3 ) . 122(2) C(13)-C(8) -N(3) 109(2) C(4)--C(3)--C(5) 109(2) C(8) -N(3) -C(7) 109(2) C(4)--C(3)--N(2) 110(2) N(3) -C(7) • -C(6) 111(2) C(5)--C(3)--H(2) 110(2) C(7) -C(6) • -C(13) 103(2) C(3)-•H(2)--Cu 114(1) C(6) • -C(13)--C(8) 107(2) C(3)-•N(2)-•C(2) 128(2) C(12)--C(13)--C(6) 134(2) Cu -•N(2)--C(5) 117(2) C(9) --C(8) --N(3) 129(2) N(2)-•C(2)-•0(1) 125(2) C(13)--C(6) --C(5) 124(2) N(2)-•C(2)--C(l) 116(2) C(7) --C(6) --C(5) 132(2) 0 ( 1 ) - C(2)-•C(l) 119(2) C(6) --C(5) -•C(3) 113(2) C(2)- C ( l ) - •N(l) 112(2)

50

TABLE 2.5

Bond lengths ( i n S) i n Peptide Ligand Molecules

Complex Ref : Mean s.d. of

H C-CO (pe p t i d e )

Complex

Zn(Gly-Gly)2.2H20 1 0.015 |l,46 - 1.50 " 1.51' • •

(NH^)Co(Gly-Gly)2.2H2O 2 0.03 ,1.55. .1,52 Cu(Gly-Gly).3H20 3 0.015 (1.51

11.U9 1.53 1.51

Cu(Gly-Gly-Gly)Cl.ljH20 4 0.012 • |l.4U 1.54 1.54

NaCu(Gly-Gly-Gly).H^O 5 0.012 1.49 1.57 1.53

Na^CuCGly-Gly-Gly-Gly ).lOH^O 7 0.008 1.49 1.53

1.52 1.53

Cu(Gly-L-His).ljH20 9 0.015 1.45 • 1.51 CuC e-Ala-L-His).2H^0^ 10 0.02 1.49 1.55

[Co ( I I ) ( H 2 0 ) g 3 [ D , L - C o ( I I I ) ( G l y - G l y ) 2 ] 2 . 1 2 H 2 0 [Co(II)(H20)g3CD,L-Co(II)(H20)g]-CD,L-Co(III)(Gly-Gly)2]2.6H20

Ba[D,L-Co(III)(Gly-Gly)2]2.nH20 n = 12-17

18 0.01 | i . 5 0 1.51

Mean s.d, o f mean

Range No i n sample

1.49 0.011

1.44-1.55 10 1

1

1.53 0.005 1.50-1.57 14

Cu(Gly-Tryptophan).3H_0 s.d, 2 0.03 1.46

0.03 1.56 0.03

a) Peptide C=0 not bonded t o metal b ) Peptide N bonded t o metal c ) Peptide M not bonded t o metal d ) O(carbonyi) not bonded t o metal.

TABLE 2.5. continued

c=o ( P e p t i d e ) ^

OC-NC (pe p t i d e ) >N-CH2

K C-CO (ca r b o n y l )

C=0 (ca r b o n y l )

C-0 (ca r b o n y l )

c=o ( P e p t i d e ) ^

OC-NC (pe p t i d e )

- - • , ,

• •1.44^.-1.45C

" 1.54 . . 1.52 . . .

' . 1.24 1.25

1.27 . 1.27

1.26 i : 3 i • • • 1:45 ••• - 1^49 1.20 1.28 • 1.27 1.28

1.30 1.30

1.48 1.46

1.53 1.52

1.25 1.24

1.26 1.28

1.19^ • - 1.45"=

1.47c 1.51 1.21 1.31

1.23 1.24

1.29 1.36^

1.44 1.43 •

1.53 1.23 1.28

1.28 1.27 1.27

1.29 1.32 1.30

1.46 1.44

• 1.46 .. .

1.53 1.25 1.27^

1.27 1.31 1.48 1.52 1.26 1.28

1.27 1.29 1.48 1.53 1.34 • 1,28

1.26 1.30 1.45 1.52 1.23 1.29

1.26 0.007

1.23-1.28 10

1.30 0.004

1.29-1.32 9

1.46 0.012

1.44-1.48 14

1.52 0.005

1.49-1.53 10

1.24 0.007

1.20-1.26 . 10

1.28 0.005

1.25-1,31 .10

1.26 0.03

1.30 0.03

1.44^ 0.03

1.50^ 0.03

1.24 0.03-

1.32 0.03 •

e) peptide C=0 omi t t e d from mean because n e i t h e r i t nor the adjacent N i s bonded t o metal.

f ) peptide N omitted from mean due t o abnormal geometry. g) s t r u c t u r e has disor d e r e d c h e l a t e . h) a c t u a l l y >N-CH and HC-CO.

TABLE 2.6

Average Dimensions o f Free and Complexed Peptides

Bond Av. in f r e e peptides/ amin^ acids

Av. i n complexes

ih Angle

Av. i n f r e e peptides/ amino acids

(deg.)

Av. i n complexes

(deg.)

Terminal amino group NH -C ' 1.487 1.49 NH -C-CO 110.5 ' I l l Peptide group C -C a 1.51 1.53 C'-C-N 116 115 C=0 1.24 1.24^,1.26^ c -c=o 120.5 119 C-N 1.325 1.31^,1.30^ a

0=C-N 123.5 126 N-C» a 1,455 1.46 C-N-C a 122 c d 123'',117^

N-C'-C» fi

111 111 Carbonyl group u

C-CO 1.527 1.52 c-c=o- 116.4 120 C=0 1.24 C-C-0 118 118 C-0 1.25 1.26 0=C-0 , , , 125.6 123

a) Metal not bonded t o N(peptide) atom b) Metal bonded t o N(peptide) atom a f t e r d i s s o c i a t i o n of peptide proton. c) N(peptide) atom scared by two adjacent 5-membered r i n g s . d) N(peptide) atom adjacent t o a carbonyl group not bonded t o same metal atom

to

53

According t o Freeman,"'" the s i g n i f i c a n t lengthening o f the C-0 bond

and shor t e n i n g o f the C-H bonds -when a C u ( I I ) i s bound at the N(peptide)

atom impl i e s an increased c o n t r i b u t i o n of the resonance form B.

Cu Cu I I .

(A) ^ - ^ ^ ^ ^ ^

0 0

This can be explained because the e l e c t r o n s h i f t t o the metal i s

smaller than t h a t t o the peptide proton v;hich Cu "*" replaces. The

O(peptide) t h e r e f o r e becomes more negative and the C*- bond order i s

lov/er. This explanation i s c o n s i s t e n t w i t h a decrease i n the i n f r a r e d

amide I frequency from about 1680 cm ^ i n f r e e peptides t o about - 1 32 1580 cm when Cu i s bound a t the N ( p e p t i d e ) .

Bond Angles a t Ligand Atoms of Peptide Molecules

The bond angles a t the l i g a n d atoms o f seven c o p p e r ( I I ) peptide

complexes are l i s t e d i n Table 2,7. The angles i n the t i t l e complex

agree w e l l w i t h those i n the other molecules.

Consideration o f the tryptophan side chain

The atoms of the i n d o l e r i n g system were found t o be coplanar

(see Table 2.12). The median plane through a l l these atoms v:as c a l c u l a t e d

by l e a s t squares methods. The bonds w i t h i n the benzene r i n g have a

l e n g t h 1.34 - 1.42 8, and the bond angles do not de v i a t e s i g n i f i c a n t l y

from 120^. I n the p y r r o l e r i n g the bond angles and bond lengths are 33 34

approximately the same as reported f o r f r e e p y r r o l e , ' except f o r the

bond C(13)-C(6) (1.52 S) which i s r a t h e r long compared w i t h the expected

value o f 1.44 8. However, the l e n g t h o f t h i s bond seems t o vary som.ewhat 19 20 21 22 23

i n d i f f e r e n t s t r u c t u r e s » > > > (see Table 2.8). The values vary

from I.42-I.47X. There i s no unexpectedly short distance between C(8)-N(3),

54

TABLE 2.7

Bond Angles ( i n deg) i n Peptide Ligand Molecules

Complex 1

Ref Mean e. s .d ®LLL H-N-CH^ N-C-CC c-c=o

peptide C-CO-NC

Cu(Gly-Gly).3H20 3 0.9 1.1 (109 U i o

111 111

118 120

114 114

Cu(Gly-Gly-Gly)Cl.ljH20 4 0.6 0.8 r- 108 111 111

121 122

115 113

NaCu(Gly-Gly-Gly).H20 5 0.6 0.8 j i i o 110

109 116

118 119

113 116

Na^Cu(Gly-Gly-Gly-Gly).lOH^O 7 0.3 0.4 109 112

109 109 116

118 120 117

115 114 • 117

Cu(Gly-L-His).ljH20 9 0.6 1.0 {- 113-112

118 117

Cu(6-Ala-L-His).2H20 10 121^ 104^ 118^ 124^

Mean 110 111 119 115 s.d. o f mean 0.4 0.6 0.5 0.5 Range 109-111 108-116 117-122 113-117 No i n sample 6 14 10 10

Cu(Gly-L-Tryptophan).3H2O 1.0 2.0 |l09 112 110

119 116

s.d. 1.0 2.0 2,0 2.0

a) Angle o m i t t e d from mean due t o unusual type of che l a t e r i n g b) Angles o m i t t e d from means due t o di s o r d e r i n 3-alanyl chelate r i n g ,

TABLE 2.7 continued

55

o=c-r< OC-H-C 1 OC-N-M 1 M-N-C 1 C-C=0 [car b o n y l )

C-CO-0 0=C-0 OC-O-M

1128 l l 2 6

123 122

120 121

117 117

119 118

118 120

123 122

115 115

(123 j l 2 5

121 121 - -

126 113 122 114 (128 j l 2 6

121 121 117

119 120 121 125^ 127 126 127

125 126

119 119

116 115

120 115 125 -

|125 -_

-117 119 124 116

124^ 115^ 131^ 112^ 118 120 122 113

126 123 120 116 120 118 123 115 0.5 0.8 0.9 0.6 1.2 1.1 0.5 0.5

123-128 121-126 119-121 115-117 117-126 113-120 121-125 113-116 10 7 5 5 7 7 7 5

|l25 128 117 114 122 117 121 114

2.0 2.0 1.0 1.0 2.0 2.0 2.0 1.0

56

TABLE- 2.8

Dimensions of the tryptophan side chain.

a) b) - c ) d) . e) f ) C(3) -C(5) 1.506rt 1.532 1.539 1,539 1,55

C(5) -C(6) 1.534 1.500 1,530 l'.47l 1.52

C(6) -C(7) 1.338 1.350 1.38 1.344 1.362 1.44

C(7) -N(3) 1.430 1.371 1.39 1.377 1.372 1.37

N(3) -C(8) 1.307 1.370 1,39 1.391 1.432 1,41 C(8) -C(9) 1.399 1.390 1.43 1.400 1,394 1.42

C(9) - c ( i o ) 1.390 1,368 1.40 1.399 1.380 1.35

C(10) - c ( i i ) 1.353 1.400 1.38 1.386 1.381 1,39

C ( l l ) -C(12) 1.411 1,379 1.42 1.397 1,445 1,34

C(12) -C(13) 1.405 1.393 1.41 1.412 1.416 1.41

C(13) -C(8) 1.388 1.412 1.40 1.382 1,370 1,41 C(13) -C(6) 1.418 1.435 1.47 1,451 1.445 1,52

a) Ref, 19 ( g l y c y l - L - t r y p t o p h a n )

b) Ref. 23 (DL-tryptophan formate)

c) Ref. 22 ( s e r o t o n i n - c r e a t i n e sulphate complex)

d) Ref. 21 (L-tryptophan h y d r o c h l o r i d e )

e) Ref, 20 (L-tryptophan hydrobromide)

f ) This work.

57

are formed, as i n Na2Cu(Gly-Gly-Gly-Gly).lOH^o"^ and the t i t l e complex, but

seems to.apply also i n complexes v;ith 5-membered h i s t i d y i - p e p t i d e r i n g s

{eg. Cu(Gly-L-His).ljH20^).

b) Protonated N(peptide) atoms are never used as met a l - b i n d i n g s i t e s ,

since the t e t r a h e d r a l c o n f i g u r a t i o n s i m p l i e d by t h i s are both e n e r g e t i c a l l y

and g e o m e t r i c a l l y unfavourable. (A change t o sp"^ h y b r i d i z a t i o n would

cause the loss o f the resonance energy of the peptide group.'^^)

Environment o f the metal atom

Considering the l e a s t squares plane through the c e n t r a l Cu atom,

i t can be seen (Table 2.12) t h a t atoms H(2) and 0(4) are on one side o f

the plane and atoms 0(2) and N ( l ) are on the opposite s i d e . The C u ( I l ) -

l i g a n d bond lengths compare w e l l w i t h the 10 other C u ( I I ) peptides l i s t e d

i n Table 2.10. Also the angles betvieen the Cu atom and the l i g a n d bonds

agree w e l l , see Table 2.11 where the angles concerned are l i s t e d f o r

s i x other C u ( I I ) peptides.

I n t r a m o l e c u l a r s t e r i c i n t e r a c t i o n s

A l l the important short i n t r a m o l e c u l a r non-bonding distances are

l i s t e d i n Table 2.13. S t e r i c congestion does not seem t o be marked.

The distance between 0 ( 4 ) - 0 ( 2 ) o f 2.80 % agrees w i t h the sum o f the

Van der V/aals r a d i i i n v o l v e d o f 2,8 S.

Packing o f the s t r u c t u r e

The f i g u r e 2,2 shows the u n i t c e l l contents as viewed down the a_ a x i s .

The l o c a t i o n o f t h e tryptophan res i d u e i s below t he square plane surrounding

the copper atom. The plane o f the tryptophan group makes an angle o f

50.0*^ w i t h the square plane, A tryptophan group from another molecule i s

lo c a t e d i n the p o s i t i o n above the square plane surrounding the copper atom,

the plane o f t h i s tryptophan group makes an angle o f 13.0° w i t h the square

plane. Hence the c o o r d i n a t i o n plane i s "sandwiched" between two tryptophan

50

Key t o Table 2.10

a) Types o f i n t e r a c t i o n 1) Terminal N(amino) -NH -M 2) Deprotonated N(peptide) >N-M or

Deprotonated N ( p e p t i d e ) , b i n d i n g two metal atoms ^' O-M ^

3) Terminal O(carbonyl) i n chelate r i n g 0=C \ 4) Coordinated H O-M.

TABLE 2.10

Summary o f C u ( I I ) l i g a n d bond lengths i n peptides; but only c o n s i d e r i n g the s i m i l a r types o f i n t e r a c t i o n ^ a s i n Cu(glycyl-L-tryptophan ).3H20.

Complex Ref Coordination Av. s.d \

(1) (2) OH.

Cu(Gly-Gly-Gly)C1,IJH^O 4 elongated 0.008 1.99 - -Cu(Gly-L-His).l^H^O 9 d i s t o r t e d 0.01 2.04 1.99 -CCu(Gly-Gly H)ImH)2]C10j^ 13 octahedral 0.01 2.02 - - - -

Cu(Gly-Gly ).3H20 ^\ 0.011 2.03 2.00

1,89 1,89

1.97 1.97

1 1

96 96

NaCu(Gly-Gly-Gly).H^O 5 0.008 2.04 1,89 1.93 Cu(S-ala-L-His)2H20 10 square

pyramidal 0.012 1.96 1.95 1.93

CCu(Gly-Gly)(ImH)(H20)]ljH20 11 0.01 2.04 2.04

1.90 1.90

2.01 2.02

CCu(Gly-Gly-Gly H)(ImH)(H20)],H^0 13 1 0.01 2.03 1.90 -Cu(Gly-L-leucyl-L-tyrosine).BH^O 15/ 0.015 2.02 1,98 1.94

Na2Cu(Gly-Gly-Gly-Gly).lOH^O 7 square planar 0.004 2.03 • 1.92 1,91 _

"1.94 Mean 2.02 1.92 1.97 1 96 Range' 1.95-2.04 1.89-1.99 1.93-2,02 1 96 No. i n sample 12 12 7 2 Cu(Gly-L-tryptophan).3H2O S.D.

square planar 0.02 2,06 1.92 1,96 1. 95 Cu(Gly-L-tryptophan).3H2O S.D. 0.02 •" • 0.02• • 0,02 0 02

CD

TABLE 2.11 Angles between C u ( n ) - l i g a n d bonds i n peptides only concerned w i t h ligands appearing i n Cu(Gly-L-tryptophan).SH^O

Complex Ref Coordination Av.s.d. of e f A %ML (degj

Ligand Code^ M Av.s.d. of e f A %ML (degj 1 2 3 4

Cu(Gly-L-His).ljH20 9 Elongated d i s t o r t e d o ctahedral

0.4 WH N L 0 83 93 176

C u ( l ) i n Cu(Gly-Gly).3H20 3 0.5 NH^ N 0 OH^ 85 168 100 83 162 92 Cu(2) i n Cu(Gly-Gly).3H20 ) 0.5 NH N 0 OH. 83 163 98 83 163 93 NaCu(Gly-Gly-Gly).H^O Cu(6-Ala-L-His),2H20

5 10

I square [ p y r a m i d a l 0.3

0.5 NH^ N L 0 NH^ N 0 L

83 94 172

97 83

173

C u ( l ) i n Cu(Gly-L-leucyl-L - t y r o s i n e ) .8H2O 15 / 0.7 NH^ 0 N L n(b) . 85 Cu(2)in Cu(Gly-L-leucyl-L - tyrosine).SH^O 0.7 NH 0 N L n(b) 85 Na2Cu(Gly-Gly-Gly-Gly).10H20 7 ^ square 0.3 NH^ N L L 84 Cu(Gly-L-tryptophan).SH^O /pla n a r 0.7 NH N 0 OH 85 169 100 .84 176 92 Cu(Gly-L-tryptophan).SH^O 85 169 100 .84 176 92

Average angles a t C u d l ) atoms f o r the above 'ligands Ligand atoms NH^ - N N - 0 0 - OH OH

2 - NH,

Angle (deg) 85 84 92 99

range 83-94 83-85 92-93 98-100

No i n sample 7 6 3 3

a) 'NH^' are t e r m i n a l amino group,-'N' are N ( p e p t i d e ) , »0' are 0(c a r b o n y l ) and OH ' are water molecules i n basal plane b) not given i n l i t e r a t u r e .

o

61

TABLE 2.12

Planes of best f i t (Least Sauares) (a) coefficients'

Plane Description P Q R s 1 square plane about

Cu atom 2.2126 12. 0083 -5. 9033 7 ,7233

2 tryptophan r i n g -2.4682 12. 7972 2. 8049 17 .8302 3 chelate r i n g • 2,2701 11. 4504 -7. 0018 5 .8708 ^ chelate r i n g 2.7265 11. 8563 . -5. 4543 8 .6319 5 around C(4) 1.8908 11. 4783 -7. 3528 5 .2146 6 around C(2) 2.8123 12. 1585 -4. 4300 10 .4067 7 peptide group 2.7054 12. 1874 -4. 5794 10 .1259

a) Each plane i s represented by PX+QY+RZ = S, where X, Y, and Z are the coordinates ('•fro.ct/ona/j referred to the unit c e l l axis.

Atom Cu 0(1) 0(2) 0(3) 0(4) N(l) N(2) N(3) C( l ) C(2) C(3) C(4) C(6) C(7) 0(8) C(9) C(10) C ( l l ) C(12) 0(13)

1 -.020

-.081

.078 -.072 .095

(b) Deviations from Planes i n 2 Plane

-.018

.048

.032

.004

.038

.002

.022

.012

.004

3

.015

-.008

.024

022 006

4 .047

,050 .051

.032

.023

.007

.008

006 021

003

-.003

-.002 .008

-.001

,023

,017 014 020

62

TABLE 2.13

^13"l9"3°6 - short intramolecular ' non-bonding contacts ( i n angstroms)

less than 3,5 8. contacts distance contacts distance C(3)...0(l) 2.90(2) C(3)...C(2) 2.46(3)

C(5)...0(3) 3.57(3) C(5)...0(3) 3.00(3) C(5)...0(2) 3.43(3) C(13),.N(2) 3.35(3) N(l)...0(5) 3.52(3) N(3)...C(9) 2.56(3) 0(3).,.K(2) 3.57(3) C(2)...C(12) 3.40(3)

C(12)..N(2) 3.52(3) C(12)..C(5) 2.70(3) C(5)...C(12) 3.36(3) 0(1)...C(5) 3.29(3) C(3)...C(13) 3.54(3) 0(4)...0(2) 2.80(2) 0(2)...C(7) 3.57(3) C(6)...0(2) 3,50(3) C(4)...C(7) 3.28(3) C(3)...C(7) 3.49(3) N(2)...C(6) 2.98(3) C(2)...C(5) 3,16(3) C(4)...C(6) 2.97(3) N(l)...0(4) 3.06(3)

63

groups. This case i s similar to that of glycyl-L-leucyl-L-tyrosine"^^

and Cu(II) (L-tyrosine)^,^^ where the benzene rings of the tyrosine

residues are located above and belov; the base of the square-pyramid

forming the surrounding of the copper ions. In glycyl-L-leucyl-L-

tyrosine the benzene rings are approximately p a r a l l e l to the bases

of the pyramids (18*^ and 21° f o r the surrounding around Cu(l) and Cu(2)

respectively). The position of the tryptophan r i n g makes i t impossible

for water molecules t o be accommodated i n the octahedral coordination

f i f t h and s i x t h positions about the copper atom. The closest

approaches to the Cu atom are Cu'-C(12), 3.10 8; and Cu'-C(ll), 3.39 S;

(Table 2.15).

The p o s s i b i l i t y of an int e r a c t i o n with hydrogen i n the f i f t h and 35

si x t h positions have been reviewed and discussed by Bonamico et al ,

and more recently by Freeman."^ Freeman concluded that i t was un l i k e l y

that these represented bonding int e r a c t i o n s , using as arguments the very small bond order calculated from the formula D(n) = D(l) - 0.6

37 log n (Pauling ) and the fact that the sum of the Van der V.'aals r a d i i

are smaller than the observed Cu..,H distances.

In the present case, because of the angles which the planes of the

tryptophan rings (both above and below), make with the square plane

containing the Cu atom {ie. 13° and 50°), the hydrogen atoms do not

appear to be i n suitable bonding positions.

In order to decide i f the close contacts between Cu and C constitute

bonds, the same formula of Pauling also yields a small bond order,

but the sum of the Van der Waals r a d i i , estimated to be between 3.5 S

and 4.1 S i s s i g n i f i c a n t l y larger than the observed shortest contact

of 3,10 8. Similar close contacts were observed i n glycyl-L-leucyl-L-

tyrosine,"^^ and Cu(II) (L-tyrosine)^^^ (Table 2,15).

- I

® =

-z

^'9- 2.2. The packinq diagram of C lycy l -L- f ryp fophanafo copper (II) frihydrote molecules

viewed alonq r h e - c axis.

TABLE -2.9

Complex

Cu(Gly-Gly).3H20...(l) ...(2)

Planarity of Peptide Groups i n Cu Complexes'

Cu(Gly-Giy-Gly )C1. ijH^O*^

NaCu(Gly-Gly-Gly).H^O

Ma2Cu(Gly-Gly-Gly-Gly).10H20

Cu(Gly-L-His).ljH20 Cu(0-Ala-L-His).2H2O Cu(Gly-L-tryptophan).3H0

Ref

9 10

Mean e .s .d C,N,0

Peptide Distances of atoms from planes of peptide of Group ( i n S) group

8 Cu C a

C 0 N C a 0.01 I : -0.079-'-

-0.063*'* 0.0

-0.008 -0.001 0.027

0.0 -0.010

0.0 -0.009

-0.0H8-*' 0.067-*-

0.01 1

' 2 n/a -0.005

-0,006 0.022 0.021

-0.008 -0.008

-0.008 -0.007

-0.168-' 0.044*"-

0.01 0.188-'- -0.002 0.006 -0.003 -0.002 0.004

0.01 |2 -0.388''- 0.001 -0.005 0.002 0.002 -0.156-''

0.005 1 2

-0.069--0.004-*-

-0.015 0.0

0.009 -0.003

0.002 0.002

0.015 O.OOU

-0.012 -0.002

3 0.12U-"- 0.011 -0.011 -0.001 -0.012 0.013 0.01 - -0.083-'- 0.007 -0.007 0.0 -0.007 0.007 0.015 - -0.124''' (0.25)^ 0.003 -0.001 -0.002 0.001 0.02 - -0.020" -0.017 0.014 -0.001 0.023 -0.020

a) Deviations of atoms not included i n the calculation of the least-squares plane through each peptide group marked with .

b) Two complexes i n the asymmetric u n i t . c) Metal bound at O(peptide) of f i r s t peptide group, instead of N(peptide) d) Atomic position doubtful due to disorder i n S-alanyl chelate r i n g .

66

i e . 1.3l8 which was reported by Pasternak,''"^ t h i s i s i n agreement with

the other reported tryptophan structures (see Table 2.8).

Planarity of Hetal-binding peptide groups

0. ^ / " The peptide groups C - N i n free peptides are reported t o

H a

be 'invariably p l a n a r * . I n the case of metal-binding peptides, t h i s

statement can be v e r i f i e d to a f i r s t approximation by noting that i n

Table 2.7 the sums of the average angles at C(peptide) and N(peptide)

atoms are 360* and 359° respectively. This i s also i n agreement v;ith

the values obtained f o r the t i t l e complex. The extent of the actual

deviation from plana r i t y f o r seven Cu(II) peptide complexes i s shov/n i n

Table 2.9. In ten out of twelve of these peptide groups, there are

minor deflections of the N-Cu, 1^"^^, or both bonds out of the peptide

planes. The extreme deflections are only 6° f o r N-C bond i n Cu(Gly-Gly-

Gly)Cl.l-i-H20^, and 5^ and 11° f o r two N-Cu bonds i n NaCu (Gly-Gly-Gly).H^O^

The largest of these occurs at an N(peptide) atom v/hich forms an addi t i o n a l

weak bond i n a di r e c t i o n perpendicular to the three t r i g o n a l bonds, and

i s a t y p i c a l . These small (but r e a l ) deviations from plana r i t y seem to

represent the l i m i t s to which peptide groups can be deformed i n order to

accommodate *ring s t r a i n ' . However Cu(Gly-L-tryptophan).3H2O i s very

nearly planar, which l i k e the case of Na2Cu(Gly-Gly-Gly-Gly)10H2o'^ i s

square planar.

Freeman^ argues that the present evidence suggests that the structures

determined so f a r a l l obey the following two rules:

a) I f a peptide molecule acts as a multidenate ligand f o r a metal, and

an N(peptide) atom i s the cen t r a l one of three donar atoms, then the bonds

from the metal t o these three donors must be essentially coplanar.

(This condition i s rigorously v a l i d only when adjacent 5-membered rings

67

TABLE 2.14

a) Possible hydrogen bonded'contacts X.,.H...Y

The (x,y,z) coordinates of the iinprimed atoms are given i n Table 2,3

while those of the primed atoms are l i s t e d here.

Atom X

0(5)...0'(4)

0(6)...0^(1)

0(5)...0'(3)

N(l)...0'(3)

0(1)...0'(5)

0(6)...0*(4)

N(3),..0«(3)

x,y,z

x,y,z

x+l,y,z

x+l,y,z

-xt5/2,-y+2,z+J

-x+2,y+^,-z+5/2

xtJ,-yt5/2,-z+2

distance

2.70(2)

2.97(2)

2.89(2)

2.93(3)

2.74(2)

2.67(3)

2.97(2)

b) Bond angles at hydrogen-bond donors and acceptors

Angle

0(5)...0»(4)-Cu» x,y ,2

0(6)...0»(1)-C»(2) x,y , 2

0(5)...0'(3)-C'(4) x+l,y,z

N(l)...0»(3)-C'(4) x+l,y , 2

C(2)-0(l).,.0»(5) -x+5/2,-y+2,z+J

0(6),,.0'(4)-Cu» -x+2,y+l,-2+5/2

N(3)...0»(3)-C»(4) x+J,-y+5/2,-z+2

e

117.4

125.8

103.7

123.0

112.1

121.6

119.1

68

TABLE 2.15 Shortest non-bonded contacts with Cu(II) atoms whose coordination numbers are smaller than 6 f o r amino acids and peptides

Closest Complex Ref Coord.no, of Cu(II)

d.8

Closest non-bonded contact (a) , . .Atom type, ,. 'Cu, ,.C

8 CU...H

Cu(Pen)

Cudm)^

Cu(L-tyrosine)2iCul

Cu(L-tyrosine)2 iCu2

Cu(Gly-Gly).3H20;Cul

Cu(Gly-Gly).3H20;Cu2

NaCu(Gly-Gly-Gly).H20

Na2Cu(Gly-Gly-Gly-Gly).10H20

Cu(B-Ala-L-His),2H20

38

39 40

30

30

3

3

5

7

10

Cu(Gly-L-leucyl-L-tyrosine);Cul 15

3.17 O(carbonyl)of two 3,51(b) 3.00 adjacent complexes

>3.7(c) 3.34 N(amide) of two

adjacent complexes 3.01 C from phenyl r i n g 3,01

of adjacent complex 3.09 C from phenyl r i n g 3,09

of adjacent complex 3.65 carbonyl C of >3.7

adjacent complex 3,55 methylene C of 3,58 2.70

adjacent complex 3.59 methylene C of 3.59 2,84

adjacent complex 3.65 peptide N of adjac- 3.70 2.92

ent complex 3.52 imidazole C of >3.7

h i s t i d i n e side chain i n same complex

3.17 C from phenyl r i n g 3.17 of adjacent complex

TABLE 2.15 contirtued

Cu(Gly-L-leucyl-L - tyrosine);Cu2 15

Cu(Gly-L-tryptophan).3H20;Cul

Cu(Gly-L-tryptophan).SH^O;Cul

3.27

3.10

3.69

C from phenyl r i n g 3.27 of adjacent complex C from tryptophan r i n g 3.10 of adjacent complex C from tryptophan r i n g 3.69 from same complex , . ,

a) With the exception of atoms of the chelate rings of which the Cu i s a member. b) Methylene C atom i n c y c l i c side chain of ligand molecule chelated to the same Cu atom c) No contacts <3.7 8 except with CCimidazole) atoms of rings t o which Cu is bonded.

CD

70

TABLE 2.16

C,oH, N O Cu - Intermolecular contacts l e s s than 3.6 8 lo ly J b .

(The (x,y,z) coordinates of the unprimed atoms are given in Table 2.3

v;hile those of the primed atoms are l i s t e d here).

contacts -' distance

0( 5 ) . ..C'(4) x+l,y,z 3.40(2)

0(5). ..0»(2) x+l,y,z 3.27(2)

C(2). ..0'(5) -x+5/2,-y+2,z+J 3.43(3)

C ( l ) . .0»(5) -x+5/2,-y+2,2+J 3.42(3)

C(9). .0»(2) x+J,-y+5/2,-z+2 3.21(3)

0(5).. .N'(3) x+5,-y+5/2,-z+2 3.60(3 )

C ( l l ) . .Cu» -xt2,y+J,-z+5/2 3.39(2)

C ( l l ) . ..0»(2) -x+2,y+J,-z+5/2 3.20(3)

C(12), .0'(4) -x+2,y+J,-z+5/2 3.59(3)

C ( l l ) . .C'(4) -x+2,y+J,-z+5/2 3.48(3)

C(12). .Cu* -x+2,y+J,-z+5/2 3.10(2)

C(12). .0»(2) -x+2,y+J,-z+5/2 3.56(3) C(13). .N»(l) -x+2,y+J,-z+5/2 3.39(3)

C(13). .Cu* -x+2,y+^,-zt5/2 3.53(2) C(6). . .N»(l) -x+2,y+J,-z+5/2 3.40(3)

Q0(5)

0(11

ofom coordinate

C u l x, y, z C u D J j -x , - y , ) j * z C u m '2*x, 'z-y, - z

CuCZ -X, l i^y .^z-z C u Y ' i+x , ! i -y , l - z C u 2 I X , y, 2 n C u W ' / z - x j - y A * 2 C u V I I I x,l + y , z

Fig. 2.3. Hydrogen bonds in Clycyl-L-tryptophanatocopper (11) trihydrote. View is perpendiculor

to f l O O ]

72

There appears to be extensive hydrogen bonding i n the t i t l e

structure (Table 2.14, Fig. 2.3.). No attempt was made to f i n d the

positions of hydrogen atoms but t h e i r presence i n hydrogen bonds has

been inferred by considering interatomic distances and angles. Chains

of molecules l i e p a r a l l e l to the ac plane at y = 0 and y = 5. Hydrogen

bonds involving water molecules 0(5) l i n k adjacent molecules i n the

chain through the coordinated water molecule 0'(4) and the peptide

oxygen atom 0*(1). Further hydrogen bonding with water molecules

0(5) occurs between the chains through peptide oxygen atoms. There

also appears to be hydrogen bonding between oxygen 0*(3) of the

carbonyl group w i t h , the water molecule 0(5), N ( l ) , and the tryptophan

nitrogen atom N(3). The hydrogen bond distances and angles agree n

favourably with the values obtained i n Na2Cu(Gly-Gly-Gly-Gly).H2O ,

Cu(Gly-Gly-Gly)Cl.ljH20^, and Cu(Gly-Gly).3H20^,

73

TABLE 2 , 1 7

Observed and calculated structure amplitudes f o r Glycyl-L-tryptophanotocopper(II) Trihydrate.

Format

i I O I F I I O I F

The f i v e r e f l e c t i o n s omitted f o r suspected extinction were

h k I 1 0 | F ^ | I O | F J

1 0 1 1449 1636

2 0 0 638 752

1 1 0 497 573

0 2 0 902 962

0 2 1 507 640

74

0 , 0 . L

2 1?8S M 6 3 * ISq 7*7 6 114 1 1 * a *3B *39

10 782 270 12 635 732 1* 26ft 303 16 170 i * q

0*O(L

175 17«

13* 7 ) 3

13 15 16

1 . 0 , L

178 81

570 10* 353 593 *73 531

79 170 18* 768 757

7 . 0 . L

3** 281

76 *20 *0S 938 *15

1301 159 2*1 161

3.1, L

582 598 293 *37 377 1*2 5/17 227 795 266 239 116

« . 0 . L

179

508

23n 515 371 537

17* 785 181

723 656 2** * 2 * 333 11 1 606 759 376 776 221 112

357 37* 166 I S i I f * 2 8 0

12 205 13 1*0 1 * 16

171 90

17* 1*2

170 70* 100 109

5 , 8 , L

1 27* 78? 2 277 165 3 173 97 « 166 135 5 30* 51? 6 176 89 f 36* *9 7 9 328 32*

1 * 150 99

6tO>L

0 178 137 2 **7 *75 3 187 1*0 k 261 7*8 9 186 158 6 598 711 8 268 312

th i t r 1*2

9 , n . L

1 173 111

r , 0 t L

1 / 268) 306

2 **9 570 3 597 997 * 5 1 * 575 6 12* 113 7 153 136 ft 3** 3*6 9 3*6 327

10 593 5 W 11 2'i5 256 12 279 765 13 797 27* 1* 203 208 15 99 95 16 91 92 19 1'7 193

1 i t . L

1 *15 *17 7 307 J l * 3 796 ? 9 l * 157 165 5 676 667 6 30* 266 7 111 96 8 230 717 9 797 758

13 109 13 3 11 *n? 393 12 321 330 13 715 195 1* 12* 105 15 97 51 16 12* 72 17 159 191

7 . 1 « L

0 97 39 1 313 317 2 657 Tl7 3 330 2*7 * 690 700 5 *09 366 6 k*7 * I 5 7 775 25* 8 797 795 9 173 16*

10 551 527 11 59 65 12 17* 133 13 1** 136 1* 127 121

15 66 69 16 136 117 17 52 5* 19 99 119

3 . 1 , L

0 95 97 1 17? I M 7 302 357 3 598 599 * 376 370 S 53* 551 6 267 258 7 766 2S5 9 97 17 9 31? 798

10 97 15 Lt 36 9 169 12 1** I J9 13 1*3 158 1* 69 67 15 i t o 110 16 90 9* 17 1*0 1 1 *

« * l , i

0 72 77 1 992 616 7 *19 *78 3 765 759 * 630 636 5 101 97 6 1*9 139 7 63 65

9 283 791 11 10? 86 2 76 71

m 7 0 1 199 17 130 110 3 76 99 11 7 1 * 199 13 218 185 5 201 183 1? 159 16* 1* 76 67 6 105 101 1.1 i 18 127 15 163 136 7 206 205 t f - 109

5 . 1»L

7* 7 . 2 , L

9 176

0 . 2 , L

155

6 , l . L

69 1 3 7 . L69 277 321 275 203 17*

7? 1*1 t i e

91 1*6

r . l i L

12* 106 72 93

1 * * 116 12* 98 l ? 3 79

99 96 119 118 115 125

62 72 58 51

150 1*5

9, l . L

232 195 66 60

172 159 76 71 69 51 93 76

9 . 1 , L

133 119 115 97

90 99

v . 2 , L

590 * 5 * 559 530 916 690 9 6 1 822 *35 5 . 1 8 156 351 521 266 16*

67 ** l i t t i l n o 119

76 95 95 91 *7 52

1 . 2 » L

73 75 6 9 1 67* *79 *20 602 57* *75 362 *70 **8 398 2 1 * * 6 1 *9* 306 311 220 2*5 216 19*

J t 2 . L

163 *9* 2 38 15? 130 27*

8* 327 258 365 16* 131 70* 215 126 13*

6*

* . 7 , L

0 62* 6*9 171 202 1 *91 533 0 203 1^3 160 163 2 555 597 1 17* 122 106 1 1 * 3 773 180 7 71 71 318 316 * 92 76 * 68 68 202 215 5 3 95 391 5 116 115 7 5 * 250 6 *55 *77 6 128 120 1 35 13 7 7 3*7 ?9 7 7 60 • 7? 120 115 9 5 99 556 8 97 87 1 7* 190 9 16? 153 10 61 *5 1*3 115 10 100 96 101 99 11 709 ?[ 3 9 , 2 , t 158 168 12 32* 261

67 71 13 133 17B 1 170 136 15* 121 1* 18* 195 2 96 83

68 67 15 100 93 3 5* *? 16 90 89

1 338 7 1622

B?l 112 *02 608 515 260 683 795 725 7*3

79 76 69

105 176

1>3 ,L

2*3 1975

803 73

319 *9? *06 731 **r 79* 73* ?05

59 83 71

107 118

0 913 699 0 506 516 1 113* i : * o 1 7*0 360 2 *58 398 7 199 317 3 1159 1083 3 177 159 * 708 58* * 259 7*6 5 196 176 5 311 767 6 559 *81 6 229 *?S 7 30* 313 7 169 173 8 269 706 8 176 160 . 9 5*7 511 9 1*9 1*7 10 752 277 1 718 198 11 399 381 7 186 178 17 365 3*1 * 152 1** 13 191 177 5 60 5* 1* 112 95 6 1 1* 93 15 75 7%

16 68 96

' • • .2 ,1 17 59 57 19 91 9*

9 1*6 160 t **0 *58 2 , 3 , L t 133 i n 7 1 2 3* 273 I 193 1** b 15* 150 ? 605 599 i 1*2 1*7 - 3 *95 *71 \ 230 ?19 * *50 39 7 ' 1*9 1?3 5 559 577 i 133 119 6 *59 *30

75 1(0 r *17 397 1 176 160 9 231 710 • 119 9* 9 301 778 1 159 130 10 3** 395

11 272 7*9 6 . 2 , L 12 255 733

13 90 97 75* 7S0 15 127 1 1 * 208 19* 16 65 63 ?72 196 17 78 76 167 1*1 19 57 61

75 8* iro 130 3 , 3 , L 766 75 7 15* 1*7 0 593 515 132 131 1 655 593

97 92 2 612 556 175 1C5 3 635 637

78 73 * 595 601 117 tt-b 5 5*3 569

6 313 303 r , 7 . t . 8 123 179

9 280 257 76 75 Tt 66

75

3 , 3 , L

10 331 336 11 2fcl 262 12 1 SI 197 13 79 75 1^ 151 121 15 69 S7 16 135 133 17 S3 &9

<»»3,L

a 23I* 20 7 I kU7 ? (.St. •.(.5 3 •.25 <><*0 k •.39

152 I J l 6 159 15-: 7 130 199

fl 132 110 <? 209 IBb

10 197 201 11 IZ'* 12 I 77 156 16 99 100 17 58 59

5 . 3 . L

0 99 105 1 222 221 2 71 76 3 395 ••33 « 147 163 5 3(>6 3t.6 6 232 259 ? 15S IBl -

191 19'. i n 03 ft*) 11 23*. 751 12 12^ 1<.L' 13 137 tun

13 299 296 111 163 159 15 323 irt 16 210 111.

1 156 166 2 78 60 3 2?T 231 k i«l<. 't?9 5 IHC 197 6 111* 111 7 80 131 9 113 l i tH 9 135 153

13 150 173 11 100 116 12 111 122

7 . 3 » L

1*2 1 0 1

193 37

61 65

1 1 0

9 | ] . L

0 9 1 1 5 7 2 7 9 3 1 0 9

0 9 0 0 1 0 0 2 1 1 1 . 7 8 1 5 5 1 2 1 2 1 1 0 0 3 6 3 3 6 2 9 « 7<t 7 9 5 7 5 0 7 6 2 6 1 6 8 1 6 1 T 5 5 0 * 8 1 « 3 0 * 2 6 ?

1 0 1 7 0 1 5 *

l . i i . L

1265 111.2

611. 392 11.1. *i>9 5*6 *9b 1.01. 177 l i s 113 166 116 315 I 13

97

2 t * . L

l i n 33* 319 565

7S 1.23 151 595 ?99 212 116

13 156 1 13 165

1 3

3 * * . L

110 2*7 219 30* IS-) 203 fc07 2*8 *12 223 16)

93 171 103

1391 9US

370 136 *18 571 1.73 351. 170

95 110 179 151 26 9 123

95

110 131

1 80 T7 0 250 271

2 80 90 1 *7b 517 3 213 22^ 2 2?3 216 * 113 131 3 233 2*9 5 237 ?A6 (t 170 U 5 6 109 112 5 352 3»8 7 106 93 6 181 M 2 9 96 95 7 269 ^\^.

1 1 79 59 8 161 1*0 1 2 82 SO 9 2-12 175

10 118 <*2 13 133 127 1* 122 111

1 105 103 15 106 120 3 125 136 16 86 76

39* *31 367 26* 231 112 2*3 11*. 250 1 16

95 1*7

97

6 , * , L '

398 * M

389 216 211 132 269 116 296 1 1 *

96 l i s

9 5

117 167 ?88

81 178 I M 1*1 110

8b

7 . * . L

118 1 * * 166 1 16 1*0 137 133 1*6 137

8»*«l

11.1. 175 339

76 212 1*0 132 123 ao

1 150 16* 9 79 71 9 1.8 75

U 5*t 65

9 , * ,U

r 127 1 .*? t 56 51 ? 79 9T

•1 * 5 , L

1 1 *5 177 P 178 11.? t S l 3 6*6 (• 261. ?19 r. *19 51.1. 7 22* 2 1" a 91 91

11 221 236 1? 9? 102

1 . 5 , 1

•< 773 671 1 6 7 1 5*3 ? 697 6 1 * 3 378 *77 (. 633 6'i5 5 2^8 2 : 2 6 231 213 7 1 30 161

1 I * 1*3 n 1*3 113

1" i».10 J99 1? 1 11 127 l.» 110 111 1* 98 80 i " ; 1 1 5 79

* . 5 , 1 .

0 128 132 1 289 300 2 2 1 * 201 3 *03 *55 * 79 93 5 1 *3 138 6 8* 80 T 87 72 ft 176 1*0 9 226 25 7

10 131 119 1 1 1 3C 1*5 12 1 53 15ft 1 3 fl2 9r

5 . 5 , L

1 119 2 256 236 3 173 172 k 2*9 2*9 5 155 l f . 3 6 158 132 7 16C 17? 8 708 22 6 9 160 132

10 156 151 12 161 139

^ . 5 , L

1 17 91

160 131 131 130 126 150

81 1 30

67 80

' , 5 , L

61 I I 3 l ' 2 11.8 n* 1*3 I 1 1 l h 5

ft6 131

51 72

2 158 Ib t . 5 128 1*5 It 155 1*9 5 87 7.3 6 85 81. 7 82 8*

1 . 5 , L

1 1 1 * 137 3 136 15 3

4 , 5 , 1 .

99 no 97 96

0 1*1 1** 1 3 * 6 3 * 1 2 1*2 1 5 5

: . 5 , L ' * 6 , L

-: 129 111 0 ? 7 l 1 137 116 1 3 35 3 f t l 7 51. 62 2 230 26* ? 1.99 * 9 9 3 I 7* 176 1. 217 215 It 337 *1 1

567 613 5 311 • 33.3 6 232 192 6 195 ?r 1 7 117 9H 7 179 228 9 I t * 1 J7 . 9 85 5* 9 120 JlO 9 90 70

1'. 178 150 10 166 179 11 319 339 11 99 79 12 92 139 1 3 198 21 8

91 73 1* 95 I f 0 15 79 95 15 195 223

16 75 79 3 , 5 . L

1 f 6 , L ii ?70 2*5 1 192 198 0 707 55 7 2 *32 *92 1 68* 5*6 3 352 1*7 2 361 35* k * 2 * *62 3 353 333 <; 128 135 * 273 720 6 17* I7k 5 156 153 7 16* 120 6 * 5 * 519 9 17V 2 n 7 115 1 1 * 9 199 186 8 2 75 317

10 27S 301 9 2** 22* 11 131 95 10 96 91 12 159 15* 11 21. d 730

12 1*2 132 1* 2*9 256

15 85 01 16 105 88

2 . b , L

0 *81 *22 1 19* 166 2 220 1 86 3 232 2*2 * 100 107 5 * 1 * * I 3 6 139 1 16 7 fcb9 511. 9 156 1 3C 9 368 *03

IQ 98 90 12 100 102 13 217 750 1* 90 69 15 165 196

3 . 6 , L

i) 571. 563 1 219 213 2 3kl 318 .% 132 127 k 226 725 5 117 99 6 *-31 kk? 7 27*. 725 9 3 30 367 9 138 156

I f l 1*1 16 3 11 130 70 12 170 155 13 92 96 1* 1*9 167 16 87 81

* , * . . L

1 kS7 kbi 2 190 186 1 173 113 5 725 255 6 13* 1 * * 7 292 315

ft 1*C 160 9 201 1<»5

10 1*1 l i e 11 138 106 13 1*9 1 3* 15 128 157

5 , 6 , L

0 399 (.36 1 133 1 35 ? 295 775 3 215 2*1 * 97 69 5 171 156 6 1*1 138

7 100 118 3 1*1 167 9 98 10 3

1* 107 83

6 , 6 , L

3 1*1 151 1 173 11.8 3 ICO IOC 7 169 158 9 128 1*3

7 , 6 , L

0 138 151 2 137 99 3 1-36 125 s 131 103 6 155 151

85 76

8 , 6 , 1 .

1 83 92 2 116 106

9 , 6 . L

0 1 1 * 96 2 76 60 S 72 8*

0 » 7 , L

1 96 SO

2 C 2 &22 9 101 191 b 9t2 I 9 Z I 961 % 291 S9 I 9 9e2 9b2 Ir 22 92 I ft9< I 931 r 9 i t I I I 991 i 0 9 1 2 811 ib 2 I f 9 ( C9I 1 t i t 991 S

s i t S 9 I 2 921 9SI SI 991 lOI % 1 '21 9< t 692 1 9 t l 091 s 212 ff

91 It 9k 1 2C2 bb2 2IC 9 t e i S«l t lb % i l l 6 292 S12 t I d 691 1 It 22 f 91 1/1 9 I ' O l * * i b l 212 I 991 cot 1

S2t SSI I S t 02 1 1 •41M 091 Cfll S b u t 91 1 21 T 2 M

bb l b 2 9 1 1 122 CI 221 I I I 2 212 922 1 I b l 921 « [11 i l l 21

b92 902 i I b l I S I 0 922 612 01 1 1 '2t» I i l 2 Dk< 9 2/1 9S2 9

r i 2 0 / 2 b T 8 « 2 s n 691 9 «b V8 1 i b l 921 "9 b22 122 1 t s t 9 t t »

211 S i l 1 b t 9b I 121 i n 1 2 n 991 C • i t ' s S i 1 C 1'21 I b l 2 9 t 9 98t 2

r ' .2 812 2 911 19f t 1 * * « 9 901 201 1 • ( H I t C 2b Cb 1 1l£ i 1 2 101 201 0

2 :2 S i I £12 b i l s •11*H 1 » 0 1 t b i CSI 2 1 » 2 ' 4

1 •21 S i r bb2 1 t i l 1 601 11 C91 El 9 0 t o i 1 i t l

b 8 I 881 r bCt 921 t t 1 ( 2 292 11 *1l«l 6/ 28 2 11 bb -1 T*0*S bb2 212 6

9*1 921 I / I t b21 b 101 SOI 9 i n 9 n n i C b9 921 b 221 b i t 01 U22 (£2 i

I S I b i t z 212 212 / S i t 161 0 IfaZ o o s « l i t 1 1 M l V i r f 211 9 9 I t b i t I S91 8 n 9 Zbl b iv\ 0 b 1 i 2 t / k I c 1 1 9 SOI c

211 H<,t 01 211 1 i 1 1 111 2 b i 1 (21 2 ( 1 2 t •iT»r / S i 111 1 11 1 O i l i 2/2 292 1

k '2 S02 2 111 112 Z l*b*9

£b 11T b I b l 2L2 I T 2 « 9 31 121 6 1 • 11 • 2C» 91 1 U 1 811 b CTt o n 091 b02 b 12 9b CI Z U T2l f 211 11 1 11 TOT •! b / t S i l / 1 1 1 ( 9 1 21

SLI 1 T k l c r 1 b b / 2 912 • 9 98 901 11 blT 121 r 9Hl b02 S 'j t 2 i l c / 01 bk t b 122 212 01

212 bOc r s n b 9 l 1 2 c l s n 1 10 SOI 6 T •ll» 1 2 Z l 0 1 1 1 C I V 291 k 2 ^ 1 2 i : i t 9b 1 O i l 0

1 I t OS I 012 b22 2 o n O i l 2 1 1 2 6^2 1 M l •! 94 r 1 8k 1 b 2 l I b i t s n 9 a : i I b 2 c i b r b b i J t / r 111 i j o n o n S

911 CI 2b1 S8S 1 1 • 11' £?2 i r 2 9 1 • 01 • J 9 t 2 112 c

r «i C9I b I b t 621 2 b M 1 2 b i 1 bbt r i i \ 021 I b l 21 iC2 b22 1 br.T 2 r .1 D3I I fall I b l z /b2 2b2 b 111 ( I t 0

t i t ib\ C 6 1 1 2 i l l 291 r itk ^b« i •>22 bSl 0 r;2 /02 s T i * (

• n * i 21k /12 1 1 11 6( bb f i c t 16 i t

Ob 1 ' j i i ( 2 1 t l /12 2/2 2 l i t S i t St 1o 201 2: b i 1 2r I 1:1 W12 212 1 l i t 002 (1

1 I i»r 911 0 i 1 11 i\ I b i 1 bb 21 1 Q Oi 101 21 bfa 16 31 1 61 bf i 1S2 /C2 I t

b i 91 1 1 12 i i 1 6 12; 2LC k' T b * 2 181 611 01 f PI fall 9 1/ Ob V 291 2 l 1 0b2 1S2 6 bb I k 1 \ bC l b I fa22 i i < : I C I bb b l 992 192 0 212 /22 Z S ' I 2 212 b C I t t i l 11 bb ( 6 i 11 bc2 D i 2 1 i S I 1 i«t ' 1 Cik I 911 n S9S l i s s

2kC i n r / I t 921 21 bb2 90t 9 1 n ' 2 W l 921 1 St 1 9 / 1 J l Sb -b b 12S ObS c

I ' j l i r ; . I ill 9C I b b r r 0 / r 2 b2 t l 1 1 1 ' 1 i S l (. f t l i n / I s i /b2 I W1 21 i n b i ( / B/k b / t 9 SOI fa VS2 ob2 1 I I I 911 4 2cc bL2 b l * / * 2 kti b 012 212 c fab f l l Cb2 I f 2 1

Hi rv i b/2 I b 2 2 bb \ 0('2 <t Hbl 922 1' 221 921 91 621 I J b l SS2 1 11 z 6 b l I 1 t 1 111 2 2 b SO SI v s l 1 9 b l 9 b l I /9c Ib2 I I s 2 VS2 21

T 11 i b i d I 2 L I / / I 0 292 S/2 01 1 C l * l 221 bb 6

c - * i l b 0 T b M b l l / ( I 0 111 W1 1 901 bO / V12 S^l 2 1 01 •z 122 12^ 1 1 191 191 n 222 161 s

121 Cbl fo 1 1 1 b /1 01 £sb 8Sb 1 1 c f o 1 I I 121 I I r b i b (22 t / I b I t s 9bS f

911 Obi ** . 122 t t 2 V 1 9 i Sfab 2 C I t 0 T 01 •>) br2 6 12 "a 191 b22 / 1/ 6b I

i S 2 2 9 i 2S2 022 9 C01 8 (9 0 1 21*9 211 90 2 b t 2 f 21 1 Obt b

t 11 i r 1 1 i l l 911 < 091 1^2 1 l»i*V 291 9«1 1 2 12 r02 0 i r 2 bC2 I 061 b b l 2

I b l 111 u S6t VOl 1 t b b i i l 1* 21*S T 01 's / 2 t I t l 0 C12 2S2 ( I

l«t '2 291 ( 8 1 11 QSl fabi 2 b ^ l 2C 1 b TO'O /bt 222 6 l o t 912 C tE;2 102 t * i 1 811 21 l b ( 6 9

C2I l i t 9 bb b2t J I S/ CDt s b8 20 9 T 21*1 bl2 i 0 2 b bb l b b I t l 801 1 t c i £6C S

2b2 2S2 2 2 b l c c ; 6 b2t n t t 201 i 0 2 9 / 2 iO 2 9':2 sa2 I / i t 0/1 / C6 20 2 f b 9 29S C 611 2 n I IB2 2S2 0 /or Cb2 S 121 i l l 1 s t t ( ( ( 2

111 621 1 1* 2 i * r !• 01*1 e t c I l«/*0 1*i*fl

9/.

77

REFERENCES

1. H.C. Freeman, ^Advances i n Protein Chemistry*, 1967, 22, p.258-424.

2. R.D. G i l l a r d , E.D. McKenzie, R. Mason and G.B. Robertson, Nature,

1966, 209, 1347.

3. B. Strandberg, I . Lindqvist and R. Rosenstein, 2. K r i s t . , 1961, 116, 266.

4. H.C. Freeman, G. Robinson and J.C. Schoone,, Acta^ Cryst. , 1964, r ? , 719.

5. H.C. Freeman, J.C. Schoone and J.G. Sime, Acta Cryst. , 1965, 18, 381.

6. H.C. Freeman, J.M. Guss and R.L. S i n c l a i r , Chem. Comm., 1968, 485.

7. H.C. Freeman and M.R. Taylor, Acta Cryst. , 1965, 18, 939.

8. J.F. Blount, H.C. Freeman, R.V. Holland and G.H.W. Milburn, J. B i o l , Chem., 1970, 245, 5177.

9. J.F. Blount, K.A. Eraser, H.C. Freeman, J.T. Szymanski and C.H. Wang, Acta Cryst., 1967, 22, 396.

10. H.C. Freeman and J.T. Szyir.anski, Acta Cryst. , 1967, 22, 406.

11. J.D. B e l l , H.C. Freeman, A.M. Wood, R. Driver and W.R. V/alker, J. Chem.

Soc. (D), 1969, 1441.

12. A. Sugihara, T. Ashida, Y. Sasada and H. Kakudo, Acta Cryst., (B), 1968, 24, 203.

13. J.D. B e l l , H.C. Freeman, A.M. Wood, R. Driver and W.R. Walker,

J. Chem. Soc, (D), 1969, 1441.

14. H.C. Freeman, J.M. Guss, M.J. Healey and R.P. Martin, J. Chem. Soc. (D), 1969, 225.

15. D. Van der Helm, and W.A. Franks, J. Amer. Chem. Soc. , 1968, 90, 5627.

16. D. Van der Helm, Acta Cryst. , (B), 1970, 26, 1858.

17. H.C. Freeman and M.L. Golomb, J. Chem. Soc. (D), 1970, 1523.

18. M.T. Barnet, H.C. Freeman, D.A. Buckingham, I-N. Hsu and D. Van der

Helm, J. Chem. Soc. (D), 1970, 367.

19. A.R. Pasternak, Acta Cryst., 1956, 9, 341.

78

20. R.R. Ayyar and R. Chandrasekaran, Curr. Sci. , 1967, _35, 139.

21. T. Takigav;a, T. Ashida, Y, Sasada and M. Kakudo, B u l l . Chem. Soc.

Jap., 1966» 39, 2369.

22. I.L. Karle, K.S. Dragonette and S.A. Brenner, Acta Cryst., 1965,

19, 713.

23. E. Bye, A. Kostad and C. Romming, Acta Chem. Scand., 1971, _1, 364,

24. K.V/. Bagnall, A.M. Deane, T.L, Harkin, P.S. Robinson and M.A.A, Steward

J. Chem. Soc., 1961, 1611.

25. D.H. Adams, 'Hetal-ligand and Related Vibrations', 1967, Arnold, p.281.

26. 'International Tables f o r X-Ray Crystallography', Vol. I l l ,

The Kynoch Press, Birmingham, England, 1962, p.140.

27. I b i d , Vol. I l l , 1962, p.202.

28. D.T. Cromer and J.T. V/aber, Acta Cryst. , 1965, 18, 104.

29. D.T, Cromer, Acta Cryst., 1965, 18, 17.

30. C.E. Tatsch, and D, Van der Helm, Acta Cryst,, (A), 1969, 25, S192.

31. R.E. Marsh and J. Donohue, 'Advances i n Protein Chemistry', 1967, 22.

32. A . S . B r i l l , R.B. Martin, and R.J.P. V/illiams, 'Electronic Aspects of

Biochemistry' (B. Pullman, ed.), Academic Press, New York, 1964, p,519.

33. V. Schomaker and L. Pauling, J. Amer. Chem. Soc. , 1939, 63 , 1769.

34. W.S. Wilcox and J.H. Goldstein, J. Chem. Phys., 1952, 20, 1656,

35. B,R. Rabin, 'Metals and Enzyrr.e A c t i v i t y ' , (E.H. Crook, ed.), Cambridge

Univ. Press, London, 1958, p.21.

36. M. Bonamico, G. Dessy, A. Mugnoli, A. Vaciago, and L. Zambonelli,

Acta Cryst., 1965, 19, 886.

37. L. Pauling, 'Nature of the Chemical Bond', 3rd ed,, Cornell University

Press, Ithaca, M.Y., 1950, Chapter 7.

38. G.A. Barclay, and F.S. Stephens, J. Chem. Soc., 1963, p.2027.

39. J.A.J. Jarvis, and A.F. Wells, Acta Cryst., 1950, 13, 1028.

40. H,C. Freeman, J.E.W.L. Smith, and J.C, Taylor, Acta Cryst., 1961, 14, 407.

79

Curiouser and curiouser!

... Lewis Carroll,

CHAPTER 3

Nitrogen Fixation.

A General Introduction t o Chapters 4 - 7 .

80

81

Nitrogen Fixation^

The mechanism by which bacteria such as Azotobacter f i x nitrogen

remains a mysteryj and the chemist s t i l l has to resort to the high

temperatures and pressures of the Haber process to achieve the same

resul t s . There are two main approaches to the study of nitrogen

f i x a t i o n . One i s to study the natural n i t r o g e n - f i x i n g systems

found i n bacteria and some other very simple forms of l i f e . The other

i s t o attempt to make chemical models of the natural system to see

whether any f i x a t i o n of nitrogen can be achieved under mild reaction

conditions such as one v;ould expect to f i n d i n bacteria.

1. Biological Nitrogen Fixation

This, the more d i r e c t approach, has yielded very important

biochemical information and much of int e r e s t to the chemist. Only very 2 2-10 pr i m i t i v e bacteria and some blue-green algae f i x nitrogen. The

bacteria have yielded most biochemical information. They are of two

main types, symbiotic and free l i v i n g . The symbiotic, eg, rhizobium

are the more important. " They have normal b a c t e r i a l l i v e s i n the

s o i l but they do not f i x nitrogen there. However, ce r t a i n plants,

especially legumes, grown i n s o i l d e f i c i e n t i n f i x e d nitrogen, exude

some substance which a t t r a c t s a sp e c i f i c species of rhizobium t o the

root hairs.. The organisms enter along the axis of the hair i n f e c t i n g

c e r t a i n c e l l s and causing nodules t o grow on the roots. The bacteria

m u l t i p l y b r i e f l y w i t h i n a membrane i n the infected c e l l s , then change

shape, increase i n volume up t o 40 times, and lose the power of

reproduction. I n t h i s altered state they are called 'bacteroids' and

they can f i x nitrogen, providing the plant with ammonia i n exchange fo r

carbohydrate.

In contrast, the f r e e - l i v i n g bacteria l i v e and f i x nitrogen i n 12

the s o i l but are only important ecologically i n barren s o i l s .

82

They are the more easily c u l t i v a t e d i n the laboratory and most of the

information concerning the chemistry and biochemistry of the natural

process of nitrogen f i x a t i o n has been obtained from them.

In 1930, Bortells showed that molybdenum i s essential f o r nitrogen

f i x a t i o n by bacteria and i s closely associated with the metabolism

of dinitrogen. The bacteria grow well i n the absence of added

molybdenum i f they are provided with a source of ammoniacal nitrogen

but are unable to metabolize dinitrogen i n the absence of molybdenum

i n excess of impurity levels. Indeed, i n the presence of ammoniacal

nitrogen, the bacteria do not produce nitrogenase, the n i t r o g e n - f i x i n g

enzyme. However, i f the source of ammonia i s removed, the bacteria

can develop nitrogenase and metabolize dinitrogen within 1 - 1 0 hrs.

I t seems that the enzyme has an enormous a f f i n i t y f o r molecular nitrogen,

since the rate of f i x a t i o n i n the bacteria i s independent of pressure

down to 0.1 atm. The bacteria work best between 15 and 25* 0. They

are very slow at O C and most cut o f f sharply at 35 - 40°C.

Studies using ^^^2 ^^^^ that the f i r s t recognisable product from

the natural system i s ammonia. There i s no evidence f o r the i n t e r ­

mediate form of hydroxylamine, hyponitrous acid, di-imine, hydrazine,

or any of the other substances which, on the basis of thermodynamic

studies, might be intermediates.

2. Chemical Nitrogen Fixation

As the metalloenzyme system contains i r o n and molybdenum, t h i s

has led, over the past quarter of a century, to the study of the

i n t e r a c t i o n of dinitrogen with mixtures of t r a n s i t i o n metal compounds

and the development of three main types of chemical approach,

a) Study of dinitrogen complexes. This i s a fundamental study of

the i n t e r a c t i o n of dinitrogen with transitional-metal s a l t s , which

appear t o be relevant to the functioning of the enzyme. Dinitrogen

83

complexes are the only type of compound formed by elementary nitrogen

under mild reaction conditions, -ie, i n water or alcohols at ordinary

temperature and pressure. There are two classes: terminal-dinitrogen

complexes i n which the dinitrogen molecule occupies one co-ordination

place i n a transition-metal complex, and bridging-dinitrogen complexes

where dinitrogen bridges two metal atoms, one or both of which may be

t r a n s i t i o n metals. Their general chemistry and t h e i r r e l a t i o n to

b i o l o g i c a l and abiological nitrogen f i x a t i o n have been reviewed i n

22 23 b) N i t r i d i n g . * Lithium, magnesium, the alkaline-earth metals,

and most t r a n s i t i o n metals of Groups IV-VII form n i t r i d e s from

dinitrogen exothermically, generally at a d u l l red heat; indeed,

titanium i s reported to burn with incandescence when so heated.

At room temperature, n i t r i d i n g occurs rapidly on chemically clean metal

surfaces but i t does not occur i n the bulk metal or i s very slow,

except on l i t h i u m and the alkaline-earth metals. These bui l d up

a v i s i b l e layer, or even n i t r i d e completely through the bulk of the

metal {eg, Ca). I f fresh l i t h i u m metal i s continually exposed t o

dinitrogen, for example, by very slow addition of ethyl bromide t o

l i t h i u m i n b o i l i n g dry pentane under dinitrogen, yields of up to 40%

Li^N based on the metal can be obtained. Hydrolysis of the l i t h i u m

n i t r i d e gives ammonia with traces of hydrazine. Thus the formation

of metal n i t r i d e s , and t h e i r subsequent hydrolysis t o ammonia i s an

a l t e r n a t i v e p o s s i b i l i t y f o r the b i o l o g i c a l process, and n i t r i d i n g may

occur on the Haber process catalysts.

c) Reduction with aqueous reducing agents. This has often been

attempted, and many strong reducing agents i n the presence of derivatives

of t r a n s i t i o n metals such as molybdenum have been reported to produce

minute traces of ammonia from dinitrogen. Typical aqueous systems

84

are dihydrogen with platinum black or i n the presence of reduced

molybdenum compounds, fresh metallic i r o n rusting i n dinitrogen with

traces of dioxygen, and acidic solutions of sodium molybdate, sodium

borohydride, and thio-organics with or without ferrous s a l t s .

Two types of aqueous system are now known to reduce dinitrogen,

the one t o hydrazine and the other to ammonia. The essential

catalyst to produce hydrazine i s a reduced molybdenum or vanadium s a l t 24

i n the presence of a sii b s t a n t i a l proportion of magnesium ions.

Dinitrogen is reduced by an aqueous or aqueous-alcoholic solution of

sodium molybdate or molybdenum(V) chloride oxide, mixed with t i t a n i u m C I I I )

chloride at pH greater than or equal t o 10.5, Vanadium(H) can

take the place of both the molybdenum and Ihe titanium i n t h i s system.

An understanding of the mechanism involved i n the metallo-enzyme

system could lead t o a c a t a l y t i c process f o r nitrogen f i x a t i o n under*

mild conditions, and economical processes f o r the preparation of

i n d u s t r i a l important compounds such as amines and pyridine from

hydrocarbons and nitrogen gas.

85

REFERENCES 1. J. Chatt and G.J. Leigh, Chem. Soc. Rev. , 1972, 1^ 121.

2. R.M. Cox and P. Fay, Proc. Roy. Soc., 1969, B172, 357,

3. 'The Chemistry and Biochemistry of Nitrogen Fixation', ed, J.R.

Postgate, Plenum Press, London, 1971.

4. R.W.F, Hardy and R.C. Burns, Ann. Rev. Biochem, , 1958, 37_>

5. R.W.F. Hardy and E. Knight, i n 'Progress i n Phytochemistry',

ed. L. Rheinhold and Y. Liwshitz, V/iley, London, 1968, p.407.

6. J.R. Postgate, Symposium Soc, Gen, Microbiol., 1971, 21, 287;

r e f , 3, p,161.

7. R.W.F. Hardy, R.C. Burns, and G.W, Parshall, Adv. Chem. Ser. , 1971, No. 100, 219,

8. R.W.F, Hardy and R.C, Burns, i n 'Inorganic Biochemistry', ed.

G. Eichorn, Elsevier, Amsterdam, 1972.

9. R.H. Burris, Proc. Roy. Soc., 1959, B172, 339; r e f . 3, p.105.

10. W.D.P, Steward, 'Nitrogen Fixation i n Plants', Athlone Press,

London, 1966.

11. F. Bergerson, Proc. Roy. Soc., 1969, B172, 401; H,J. Evans and

S.A. Russell, r e f . 3, p.191.

12. W.D.P. Steward, Proc. Roy. Soc., 1969, B172, 367.

13. J. Chatt, Froc. Roy. Soc., 1969, B172, 327; Pure Appl. Chem,, 1970, 24, 425.

14. J.E. Fergusson and J.L. Love, Rev. Pure Appl. Chem., 1970, 20, 33.

15. Yu, G. Borodko and A.E. Shilov, Russ. Chem, Rev. , 1969, 38_, 355.

16. R. Murray and D.C. Smith, Co-ord, Chem. Rev. , 1968, _3> ^29.

17. A,D. Allen and F. Bottomley, Accounts Chem. Res., 1958, 1, 360.

18. G.J. Leigh, Preparative Inorg. Reactions, 1971, 2> 165,

19. J. Chatt and R.L. Richards, r e f . 3, p.57,

20. G.J. Leigh, r e f . 3, p.19.

86

21. G. Henrici-Olive and S. Olive, Angew. Chem. Internat. Edn.,

1969, _8, 650.

22. M.E. Vol*pin and V.B. Shur, Organometallic Reactions, 1970, 1, 55

23. E.E. Van Tamelen, Accounts Chem. Res., 1970, _3, 361.

24. A. Shilov, N. Denisov, 0. Efimov, N. Shuvalov, N. Shuvalova, and

A. Shilova, Nature, 1971, 231, 460.

87

"^'^s a lesson you should heedj

Tvy^ try again.

If at first you don't succeed^

Try^ try again, "

... William Edward Hickson,

88

CHAPTER- 4

The Crystal and Molecular Structure of

[N-N'-Diacetyldiimine-N-O] bis(dimethyl-

phenylphosphine) p l a t i n u m ( I I ) .

89

4.1. Introduction

Most of the few reported t r a n s i t i o n metal azo complexes are

prepared from 1,2-disubstituted azo-compounds, v/here the azo group

cannot bind * end-on*.

Thus azobenzene reacts as follows:-

CP / » Cp MoH + Ph.N = N.Ph ^ " ^ ^ N

Cp "^Ph where Cp = cyclopentadienyl. '

Fe(CO)^ + Ph.N = N.Ph \\ / / 4 / ) (2) / I \

C c c 0 0 0

In contrast, complexes containing an azo group bound * end-on'

have generally been prepared from aryldiazonium s a l t s , Bisnette and 3

King reported the preparation of molybdenum phenylazo complexes by the reaction:-NaCCpMoCCO)^] t [R.C^H^N^]BF^ CCCO^CpMo - N = N - C H R]

Cp = cyclopentadienyl, R = £ - Me, p. " MeO, £ - NO , £ - F, m - F.

These are red c r y s t a l l i n e somewhat a i r - s e n s i t i v e materials, which

react further with triphenylphosphine or dimethylsulphide.

- " 3 ^ ^ CCpMo(SMe)-(N^Ph)]_ tCpMo(CO) (N Ph)] — 2 2 2 .

m i CCpMoCCOXPPhgXN^Ph)] 3

An i . r . bond at 1545 - 1562 cm has been assigned to v(N=N), and the 15 4 assignment confirmed by N l a b e l l i n g .

Cook^ has obtained a series of novel c y c l i c azo-platinum complexes

by the reaction of i?tiC^H^^)(??h^)^l with substituted diazonium s a l t s

and related compounds. The reactions are summarised below

90

L = PPh

N = N

0 — P t L [L Pt(C.H..)]

^N=N N=N'

v(N = N) l i e s i n the range 1450 - 1530 cm and again a weak bond between

491 and 570 my appears to be associated with the azo group.

An example of an azo group which i s bound * end-on' whose structure

has been solved crystallographically i s that of

CReCl-CN = NC0Ph)(PMe^Ph)-3

An X-ray crystallographic study of (CH2N=NCu2)CuCl2'' has demonstrated

that the azo function binds two copper ions through the two nitrogen

lone pai r s ; the azomethane molecule maintains a trans configuration w i t h

l i t t l e change i n geometry from the free molecule ( a ) .

(a)

91

x-ray studies of the two copper chelates ( b ) ^ and ( c ) " show that

the metal i s coordinated to a single nitrogen

(b) ^N=rN (c)

The X-ray c r y s t a l structure determination of the t i t l e complex

was undertaken to establish the stereochemistry of the compound. I t

was thought to be as i n figure ( d ) .

•CH.

Pt N

where x = PPhCCH^)^ (d)

•CH 0

In the structure of dioxygen bis(triphenylphosphine) platinum (0)

benzene solvate,^^'"^"^ the Pt atom i s coordinated t o two oxygen atoms

t o form a three member r i n g (Fig. e).

PI

01

108.5(9 1.45(4)

(e)

02

4 3 ( l ) ^ " ; i ' t / 101.2(4) ' \ 107.8(7)

92

Other examples of the Pt atom forming a three member r i n g a r e ,

b i s ( t r i p h e n y l p h o s p h i n e ) ( l s l - D i c h l o r o - 2 , 2 - d i c y a n o e t h y l e n e ) platinum ( 0 ) ,

PtCCl^C = C(CN)23[P(CgH^)^]2 b i s ( t r i p h e n y l p h o s p h i n e ) (halogen-13

s u b s t i t u t e d ethylene) p l a t i n u m ( 0 ) complexes, (where the t h r e e o l e f i n s are CIFC = CF^, Cl^C = CF^, and Cl^C = ^^^2^' ^'^'"^^^^^"i^ile-bisCtri-

lif phenylphosphine) platinum.

^.2. Experimental

The t i t l e compound was prepared by Dr. A.S. Kasenally, at t h e -

A.R.C. Unit of Nitrogen F i x a t i o n , U n i v e r s i t y o f Sussex, by the r e a c t i o n

o f CPtCl2(PMe2Ph)2] w i t h d i a c e t y l h y d r a z i n e i n r e f l u x i n g ethanol i n

the presence of anhydrous sodium carbonate. The compound was received

as a m i c r o c r y s t a l l i n e y e l l o w powder. I t was r e c r y s t a l l i z e d , by

d i s s o l v i n g the powder i n the minimum amount o f benzene, and heptane was

then added u n t i l the s o l u t i o n turned t u r b i d . The s o l u t i o n was allowed

t o stand, and a f t e r a p e r i o d o f about one week, l a r g e needles of

approximately square c r o s s - s e c t i o n were obtained. ' The compound was

s t a b l e t o the atmosphere.

P r e l i m i n a r y

Powder photographs of the compound before and a f t e r r e c r y s t a l l i z -

a t i o n were i d e n t i c a l , t h i s showed t h a t i t had not been changed by the

process of r e c r y s t a l l i z a t i o n . A l a r g e needle was mounted t o r o t a t e

about i t s needle a x i s . O s c i l l a t i o n , zero, and f i r s t l a y e r Weissenberg

photographs were taken about t h i s a x i s . The Laue symmetry was

determined as 2/m, and assuming t h e a x i s o f o s c i l l a t i o n t o be a, the

systematic absences were recorded as

hOU: A = 2n + 1

OkO: k = 2n + 1

Hence, the space group was determined uniquely as P2j^/c (No. 14).

9 3

The d e n s i t y was measured by the f l o t a t i o n method, using a mixture of

sym-tetra-bromo ethane and carbon t e t r a c h l o r i d e , and was found t o

be 1.75(2) g/cc.

Unit c e l l parameters were determined from the photograph as:

a = 9.12(3) S

b = 22.14(4) S 6 = 104.3(5)

c = 11.50(3) 8

U = 2250(7)

This means f o r a molecular formula of C_-H^-hrO^P.Pt (H = 585.5,

F(OOO) = 1144) the number o f molecules per u n i t c e l l i s f o u r .

The c a l c u l a t e d d e n s i t y D^, i s 1.749 g/cc.

An i n t e r e s t i n g f e a t u r e o f the p r e l i m i n a r y X-ray photographs was

the apparent systematic weakness o f i n t e n s i t i e s f o r r e f l e c t i o n s o f the

type 5- = 2n + 1. This was taken t o be an i n d i c a t i o n of some e x t r a

pseudo-symmetry w i t h i n the u n i t c e l l , which i s discussed i n f u r t h e r

d e t a i l s h o r t l y .

Data C o l l e c t i o n

I n view of the high a b s o r p t i o n c o e f f i c i e n t , the c r y s t a l used f o r

the p r e l i m i n a r y photographic i n v e s t i g a t i o n was too la r g e f o r i n t e n s i t y

measurements. Accordingly a smaller fragment ( o f approximate s i z e

.3x.2x.2 mm), was cut w i t h a razor blade from, a l a r g e needle. The

fragment was then mounted w i t h the b a x i s , ( p e r p e n d i c u l a r t o the

longest l e n g t h ) o f the u n i t c e l l p a r a l l e l t o the a x i s o f a General

E l e c t r i c XRD 5 f o u r c i r c l e d i f f r a c t o m e t e r , equipped w i t h a manual

g o n i o s t a t , s c i n t i l l a t i o n counter, a pulse height d i s c r i m i n a t o r , and

set w i t h a 4* t a k e - o f f angle.

The p r e l i m i n a r y diffractom.eter examination showed t h a t the chosen

set o f axes formed a l e f t handed s e t . I n order t o comply w i t h the

requirements o f the d i f f r a c t i o n angle s e t t i n g program, they were

94

r e l a b e l l e d t o give a r i g h t handed s e t . This meant t h a t the space

group was red e f i n e d as P2^/a, C e l l dimensions v:ere re-determined

by accurate measurement of a x i a l 20 and (J) values.

a = 11.450(1) 8 U = 2224(3)

h = 22.120(1) 8

c = 9.013(1) 8 \i = 139.0 cm'-

6 = 103.01(5)^

With CuK^ r a d i a t i o n , the s t a t i o n a r y c r y s t a l - s t a t i o n a r y counter

technique was used t o measure 3408 r e f l e c t i o n s out t o a maximum 29

value of 90°. The counting time was ten seconds. I n d i v i d u a l

backgrounds were measured f o r about 200 o f the r e f l e c t i o n s , w i t h counts

less than 2,000. Other backgrounds were then taken from a graph o f

background against 29 f o r various ranges of t o t a l peak counts. Back­

grounds were measured a t (29 1)° f o r a l l counts over 2,000.

Throughout the c o l l e c t i o n of the data, the i n t e n s i t i e s o f fo u r reference

r e f l e c t i o n s were measured every 100 r e f l e c t i o n s as a check on e l e c t r o n i c

and c r y s t a l s t a b i l i t y . No change i n any o f t h e standard r e f l e c t i o n s

was n o t i c e d d u r i n g the course o f data c o l l e c t i o n . Of the r e f l e c t i o n s

measured, a t o t a l o f 2644 observed independent r e f l e c t i o n s were obtained

f o r which the net i n t e n s i t y was g r e a t e r than 3 x a ( I ) . . o ( I ) was

computed from the expression;

a ( I ) = ( I + 2B + (0.031)^)^/2.Lp.F^ (4.1)

where I = net i n t e n s i t y , B = the background, = I ^ , and Lp =

L o r e n t z - p o l a r i z a t i o n f a c t o r .

S t r u c t u r e Determination

The 2644 non-zero r e f l e c t i o n s were cor r e c t e d f o r Lorentz and

p o l a r i s a t i o n e f f e c t s . An approximate o v e r a l l i s o t r o p i c temperature

f a c t o r and an absolute scale f a c t o r were c a l c u l a t e d t o enable the

computation o f a three-dimensional Patterson map, sharpened t o

'point atoms a t r e s t * .

9 5

The Patterson map

The general e q u i v a l e n t p o s i t i o n s f o r space group ?2^/a a r e ;

( x , y , z ) ; ( x , y , z ) ; (J+x, i-y, z ) ; (1-x, f y , z ) .

This gives r i s e t o Marker peaks i n the asynunetric u n i t o f the Patterson

synthesis ( t o t a l symmetry P2/m) w i t h the f o l l o w i n g c oordinates:

a) 2x, 2y, 2z ( l ) - ' : ; b) i-2y, 0 ( 2 ) ; c) J+2x, 2z ( 2 ) ;

" r e l a t i v e h e i g h t s o f the peaks are given i n parenthesis.

A l l peaks i n the asymmetric u n i t o f the Patterson map of height

> 700 are l i s t e d i n Table 4.1

TABLE 4.1

Peaks of height > 700 i n the asymmetric u n i t of the Patterson map

So"28^02P2^^ u ( i n 50^^^) /. c^ths v ( i n 60 ) w ( i n 60^^^) Height R e l a t i v e Ht.

(1) 25 30 5 758 1 (2) 30 0 0 1643 2 (3) 55 30 5 730 1

There i s only one peak present i n the Patterson map which c o r r e s ­

ponds t o v e c t o r peak ( b ) , (5, 2-2y, 0 ) , namely peak ( 2 ) a t

(30/60, 0/60, 0/60) i e . y coordinate = .25.. Thus, because y = .25,

the Platinum atom i s on the a g l i d e , and the Patterson map cannot be

uniquely solved. For vector peak ( c ) , (5+2X, J, 22) t h e r e are two

peaks present which would correspond, namely peaks ( 1 ) and ( 3 ) .

S i m i l a r l y f o r vector peak ( a ) , (2x, 2y, 22), t h e r e are two peaks

present which would correspond, namely peaks ( 1 ) and ( 3 ) . 2 5

I t can be seen t h a t the z coordinate does not change z = ~"gQ5

but ^ 2 x = If or = If. i . . X = or X = - ^

The two p o s s i b i l i t i e s (A) and (B) f o r the platinum atom p o s i t i o n s are:-

x y 2

A) 0.2083 0.2500 0.0417 B) -0.0417 0.2500 0.0417

96

I t was not p o s s i b l e a t t h i s stage t o know which one of the two

s o l u t i o n s was c o r r e c t . I n f a c t only on refinement was a d e c i s i o n

made p o s s i b l e , since one o f the two p o s s i b l e s t r u c t u r e s d i d not

r e f i n e s u c c e s s f u l l y .

When the platinum atom i s placed at y = q, the u n i t c e l l possesses

a m i r r o r plane perpendicular t o the y a x i s a t a q u a r t e r , which i s not

r e q u i r e d by the space group symmetry. This i n t u r n means t h a t the

metal atom w i l l make no c o n t r i b u t i o n t o r e f l e c t i o n s o f the type:

hk£, h = 2n t 1, The presence o f some form o f pseudo-symmetry v;as

mentioned e a r l i e r when i t was noted t h a t r e f l e c t i o n s o f the t y p e :

hkJl, h = 2n + 1 were c o n s i s t e n t l y weaker than the remainder.

I n any e l e c t r o n d e n s i t y synthesis using observed s t r u c t u r e f a c t o r

amplitudes and phases c a l c u l a t e d from the platinum p o s i t i o n alone, two

sets o f peaks w i l l be produced around the platinum atom, one being the

m i r r o r image o f the ot h e r . S o l u t i o n o f t h e s t r u c t u r e i n t h i s case

depends on choosing the peaks surrounding the platinum atom v/hich

gives a reasonable i n t e r p r e t a t i o n o f the molecule.

S o l u t i o n o f the s t r u c t u r e

The two p o s s i b l e s o l u t i o n s f o r the p o s i t i o n o f the p l a t i n u m atom

i n t h e asymmetric u n i t are:-

X y z

A) .2083 .2470 .0417

B) -.0417 .2470 .0417

The y coordinate o f the platinum atom was placed j u s t o f f y = J,

so as t o make the platinum atom c o n t r i b u t e t o a l l the r e f l e c t i o n s .

The p o s i t i o n (A) o f the platinum atom was i n v e s t i g a t e d f i r s t .

The p o s i t i o n o f the platinum atom was used i n a s t r u c t u r e f a c t o r

c a l c u l a t i o n f o r which the r e l i a b i l i t y index R, was 0.30. Using t h e

phases c a l c u l a t e d from the platinum atom a three dimensional d i f f e r e n c e

97

e l e c t r o n d e n s i t y synthesis was computed. Four l a r g e peaks o f

approximately the same weight v/ere found around the platinum atom,

see F i g . 4.1. .Peaks ( 3 ) and (4) were the m i r r o r images of peaks

1 2

Fig . ^ . 1 . \ p , / y = J

(1) and (2) r e s p e c t i v e l y . Although the p o s i t i o n s o f two P atoms had

t o be found, only one o f the peaks, (peak ( 2 ) ) , was assigned a P atom,

i n order t o break the symmetry. A Fo u r i e r d i f f e r e n c e synthesis was

computed using the phases c a l c u l a t e d from the platinum and phosphorus

atoms. The value o f R was 0,28. From the r e s u l t i n g d i f f e r e n c e map

the peak i n p o s i t i o n (3) see Fig. 4.1. was h i g h e s t , t h i s peak was then

selected as the second phosphorus atom, and another d i f f e r e n c e map was

computed. The value o f R was 0,26. From t h e r e s u l t i n g map and

subsequent d i f f e r e n c e synthesis the peaks could be made t o f i t t h e

remaining twenty-four atoms i n t o an acceptable chemical arrangement.

However, throughout t h i s work, the pseudo symmetry vjas p e r s i s t e n t ,

and th e r e was always a choice o f two peaks, one e i t h e r side o f the

m i r r o r even r i g h t up u n t i l the l a s t atom was added.

A l l atomic c o o r d i n a t e s , together w i t h i s o t r o p i c temperature

f a c t o r s , were r e f i n e d f o r 2 cycles o f f u l l - m a t r i x l e a s t squares t o a

value f o r the r e l i a b i l i t y index, R, o f 0.21. Some of the atoms showed

l a r g e v i b r a t i o n parameters which were not acceptable. A d i f f e r e n c e

synthesis showed t h a t some high peaks s t i l l remained.

The second phosphorous atom was then thought t o be i n the wrong

p o s i t i o n and was instead placed a t p o s i t i o n ( 1 ) , see F i g . 4.1, and a

f u r t h e r d i f f e r e n c e synthesis computed. R f a c t o r a t t h i s stage was 0.26

From successive d i f f e r e n c e syntheses the p o s i t i o n o f a l l expected atoms

9 8

were found. A f t e r 2 cycles of l e a s t squares w i t h a l l atoms i s o t r o p i c ,

the R f a c t o r was 0.18. I n view of the high absorption c o e f f i c i e n t

(v = 139.0 cm ^) of the c r y s t a l w i t h respect t o the CuK r a d i a t i o n , a

an a b s o r p t i o n c o r r e c t i o n was c a r r i e d out. The program used, named

ICABS, uses the o r i g i n a l a b s o r p t i o n r o u t i n e s o f Coppenset a l , r e v i s e d

t o f i t 3- and 4 - c i r c l e d i f f r a c t o m e t e r geometry by P.G.H. Troughton o f

I m p e r i a l College, London U n i v e r s i t y . T h e e v a l u a t i o n o f the a b s o r p t i o n

c o r r e c t i o n i s done by a Gaussian i n t e g r a t i o n method as described by 17

Busing and Levy (1957), (see Chapter I ) . This i n v o l v e s determining

the absorption a t a number o f p o i n t s on a g r i d and summing f o r each

r e f l e c t i o n . The speed o f e v a l u a t i o n o f the ab s o r p t i o n i n t e g r a l i s

mainly dependent on two f a c t o r s : -1) The number of faces d e s c r i b i n g the c r y s t a l .

2) The number o f g r i d p o i n t s . The speed i s almost d i r e c t l y

p r o p o r t i o n a l t o t h i s .

The number o f p o i n t s necessary f o r accuracy i s mainly determined

by the s i z e o f the absorption c o e f f i c i e n t and the c r y s t a l ( i e . pR)

but the only c e r t a i n way of f i n d i n g the best number f o r a p a r t i c u l a r >

c r y s t a l i s by doing t e s t runs.

The a c t u a l planes bounding the c r y s t a l were determined w h i l s t the

c r y s t a l was mounted i n the g o n i o s t a t o f the d i f f r a c t o m e t e r . When a

c r y s t a l face i s brought i n t o a p o s i t i o n perpendicular t o the a x i s o f

the d i f f r a c t o m e t e r ' s telescope w i t h 0, 20 = 0.00°, the x ^ values

correspond t o the s e t t i n g angles o f t h e a p p r o p r i a t e hkfi. plane. This

was checked using X-rays. The program a l s o r e q u i r e s the distance i n

cm from a common o r i g i n iie, the centre o f the c r y s t a l ) t o each boundary

p l a n e i t h i s was determined using a microscope w i t h a c a l i b r a t e d

eyepiece.

9 9

Results f o r the c r y s t a l ^0^26^^2^2^2^^

boundary planes distance t o o r i g i n 4 d i v s . = 1 cm

010, 010 0.35 d i v s , 0.009 cm

001, 001 0.40 " 0.010 cm

321, 321 0.65 " 0.016 cm

The c a l c u l a t e d transmission f a c t o r s , based on a l i n e a r a b s o r p t i o n

c o e f f i c i e n t of 139.0 cm ^ v a r i e d from 0.02 t o 0.21.

Using the absorption c o r r e c t e d data, refinement was continued

f o r a f u r t h e r two cycles o f l e a s t squares, w i t h a n i s o t r o p i c temperature

f a c t o r s f o r the pl a t i n u m and phosphorus atoms. The r e l i a b i l i t y

index R had now reduced t o 0.16. I t was n o t i c e d , however, t h a t some

of the bond lengths were unreasonable, eg* N-N v/as 1.6 8, Also , t h e r e

were se v e r a l short i n t e r m o l e c u l a r d i s t a n c e s , i n the range of about 2.5 8,

which i s a bonding d i s t a n c e . For these reasons i t was thought t h a t

the platinum atom was i n the v/rong p o s i t i o n ; i t should be i n p o s i t i o n

B r a t h e r than A.

A d i f f e r e n c e synthesis was now computed using the new platinum

p o s i t i o n . R was found t o be 0,28. From the r e s u l t i n g map, the

atoms could be r e a d i l y assigned t o the peaks, as t h e i r arrangement around

the Pt atom was the same as when the platinum atom was i n the p o s i t i o n

( A ) . With a l l the expected atoms included a s t r u c t u r e f a c t o r c a l c u l a t ­

i o n gave, before refinement, an R f a c t o r value o f 0.21. The atomic

c o o r d i n a t e s , were then r e f i n e d f o r two cyc l e s o f l e a s t squares w i t h

a n i s o t r o p i c temperature f a c t o r s f o r the platinum and the two phosphorus

atoms. The r e l i a b i l i t y index R had f a l l e n t o 0,14. A check o f the

bond lengths and i n t e r m o l e c u l a r distances showed no unreasonable

distances. A l i s t o f observed and c a l c u l a t e d s t r u c t u r e f a c t o r s were

computed. Several r e f l e c t i o n s which had extremely bad agreement

between observed and c a l c u l a t e d values, were discovered t o have t h e i r

i n t e n s i t i e s mispunched on the data cards. These were c o r r e c t e d .

1 0 0

Refinement was continued f o r a f u r t h e r two cycles of l e a s t squares,

R changed t o 0.13. A f i n a l d i f f e r e n c e synthesis v/as computed and

i t showed no s i g n i f i c a n t r e s i d u a l e l e c t r o n d e n s i t y , except around the

platinum atom. A f t e r two more cycles the f i n a l value o f R was 0.128,

and the average value of the s h i f t / e r r o r was about 0.01. The f i n a l

atomic parameters are given i n Table 4.2 and Table 4.7 gives a l i s t

o f Fj^k/obs.) vs F ^ ^ ^ ( c a l c . ) .

The R f a c t o r o f 0.128 i s r a t h e r h i g h , but the s t r u c t u r e i s thought

t o be c o r r e c t . The reason f o r the l a r g e num±>er of i n t e n s i t i e s which

show bad agreement between F^j^^(obs,) and F^j^^(calc.) i s p o s s i b l y e r r o r s

i n the c a l c u l a t i o n o f the o r i g i n a l c e l l dimensions because o f s h i f t s

i n the d i f f r a c t i o n peaks due t o abs o r p t i o n . This i n t u r n made the

program which c a l c u l a t e s the s e t t i n g angles o f the d i f f r a c t o m e t e r

s l i g h t l y out. I t i s hoped t h a t the data w i l l be r e c o l l e c t e d i n 1

the near f u t u r e using molybdenum r a d i a t i o n , t o overcome t h i s problem.

Some c o n f i r m a t i o n o f the poor q u a l i t y o f the data was obtained v/hen i t

was found t o be impossible t o a r r i v e a t a s a t i s f a c t o r y w e i g h t i n g scheme.

The s c a t t e r i n g f a c t o r s f o r P,N, C and 0 were from the usual 18 19 t a b u l a t i o n , and those f o r platinum were by Cromer and V/aber.

The e f f e c t s o f anomalous s c a t t e r i n g were included i n the s t r u c t u r e 20

f a c t o r c a l c u l a t i o n s , values o f Af* and Af" were those given by Cromer.

4.3. Results and Discussion o f the s t r u c t u r e

CN-N*-Diacetyldiimine-N-O]bis(dimethylphenylphosphine)platinum(ll)

e x i s t s as d i s c r e t e monomeric f o u r coordinated molecules, ^^C^'3^2^5^5^^2

Pt(NCOCH^)25 one o f which i s shown i n F i g . 4:2 i n which the thermal

e l l i p s o i d s have been drawn t o i n c l u d e 50% p r o b a b i l i t y . The c e n t r a l

platinum atom i s square planar coordinated t o two phosphorus atoms, and

t o an oxygen and a n i t r o g e n atom o f the a z o d i a c e t y l group. The two

phosphorus atoms are c i s t o each o t h e r . The f i n a l molecular parameters

1 0 1

TABLE 4.2

^2o"28^^2*^2^2^^"^^"^-'- p o s i t i o n a l parameters, ( x , y , z ) , expressed as f r a c t i o n s (xlO^) of the a, b and £ u n i t - c e l l dimensions r e s p e c t i v e l y , plus estimated standard d e v i a t i o n s i n parenthesis ( f r a c t i o n a l , x 1 0 ^ ) , and i s o t r o p i c temperature f a c t o r s w i t h estimated standard d e v i a t i o n s i n parenthesis.

Atom X y z B ( i n 8 Pt 454(1) 2480(1) 4559(1) P ( l ) -195(7) 1679(5) 5554(9) P(2) 931(6) 2075(4) 2549(8) :':

0(1) 393(16) 2943(8) 6517(20) 3.0(3) 0(2) 241(23) 3348(12) 1401(30) 5.5(5) N ( l ) 721(23) 3350(12) 4111(30) 4.2(5) N(2) 971(23) 3804(12) 5316(30) 4.2(5) C ( l ) 786(28) 3573(14) 6539(37) 4.3(6) C(2) 959(33) 3840(17) 8002(43) 5.4(8) C(3) 487(36) 3716(19) 2649(47) 6.2(8) C(4) 590(32) 4352(16) 2582(41) 4,9(7) C(5) -1357(36) 2040(18) 6569(45) 6.1(8) C(6) -1042(35) 1128(18) 4264(49) 5.9(8) C(13) 2179(31) 2570(17) 1959(39) 4.4(7) C(14) -277(35) 1965(18) 817(44) 5.6(8) RING (1) C(7) 909(34) 1275(17) 6890(45) 5.4(8) C(8) 1801(28) 1600(15) 7808(37) 4.1(5) C(9) 2711(29) 1295(15) 8851(38) 4.5(6) 0(10) 2778(38) 688(20) 9016(50) 6.4(9) C ( l l ) 1733(34) 342(17) 8172(44) 5.6(8) C(12) 854(31) 624(16) 7037(40) 4.5(7) RING (2) C(15) 1485(26) 1332(13) 3026(33) 3.5(5) C(16) 1118(30) 779(15) 2029(38) 4.5(7) C(17) 1699(34) 248(17) 2432(44) 5.1(8) C(18) 2613(34) 150(18) 3715(44) 5.6(8) C(19) 2972(36) 693(19) 4644(46) 5.8(9) C(20) 2511(33) 1242(15) 4177(42) 5.2(7)

••platinum and phosphorus a n i s o t r o p i c temperature f a c t o r s i. x 10 ) as they appear i n exp-(6 h^+6«ok^ 2623kil)

1 1 " "-22- -^^33^ +2B^2hkt2S^3hi+

TABLE• 4.2 continued

Standard d e v i a t i o n s are given i n parenthesis

1 0 2

Atom ^11 ^22 ^33 ^12 ^13 ^23 Pt 51(1) 18(1) 95(2) 5(1) 9(1) 1(1) P ( l ) 47(5) 34(3) 95(10) -1(3) 14(6) 1(4) P(2) 55(6) 29(2) 77(9) -1(3) 11(6) -4(4)

1 0 3

C(I0)

Fig. 4.2. The molecular structure of ((CHjlj C5H5 PlgPtlNCOCH,) 3'2

TABLE 4.3.

Molecular parameters .for .C^^H^^l-l^O^F.Pt 20 Zo Z 2 2

Bond lengths are given i n angstroms, angles i n degrees Standard d e v i a t i o n s are given i n parenthesis.

1 0 4

BOND LENGTHS Pt -0(1) 2.056(19) P(2) -C(15) 1.78(3) Pt - N ( l ) 2.003(27) C(15)-C(16) 1. 52(4) Pt - P ( l ) 2.191(10) C(16)-C(17) 1. 36(6) Pt -P(2) 2.198(8) • C(17)-C(18) 1. 39(5) 0(1)-C(1) 1.46(4) C(18)-C(19) 1. 47(6) C ( l ) - C ( 2 ) 1.42(5) C(19)-C(20) 1. 35(6) C ( l ) - N ( 2 ) 1.28(5) C(20)-C(15) 1.40(4) N ( 2 ) - N ( l ) 1.46(4) P ( l ) -C(7) 1. 78(4) N ( l ) - C ( 3 ) 1.52(5) C(7) -C(8) 1. 37(5) C(3)-0(2) 1.28(5) C(8) -C(9) 1.41(4) C(3)-C(4) 1.46(6) C(9) -C(IO) 1. 36(6) P(2)-C(14) 1.85(4) C(10)-C(11) 1. 48(6) P(2)-C(13) 1.97(4) C ( l l ) - C ( 1 2 ) 1.42(5) P ( l ) - C ( 6 ) 1.81(4) C(12)-C(7) 1. 45(5) P ( l ) - C ( 5 ) 1,95(5)

BOND ANGLES N ( l ) - P t - 0 ( 1 ) 74.4(9) P(l)-C(7)-C(12) 121(3) N ( l ) - P t - P ( 2 ) 98.5(9) C(7)-C(8)-C(9) 118(3) P ( 2 ) - P t - P ( l ) 100.2(3) C(8)-C(9)-C(10) 125(3) P(2)-Pt-0(1) 88.4(6) C ( 9 ) - C ( 1 0 ) - C ( l l ) 119(3) P t - 0 ( 1 ) - C ( l ) 115(2) C(10)-C(11)-C(12) 121(3) 0(1)-C(1)-C(2) 113(3) C ( l l ) - C ( 1 2 ) - C ( 7 ) 120(3) 0(1)-C(1)-N(2) 119(3) C(12)-C(7)-C(8) 121(3) N(2)- C ( l ) - C ( 2 ) 128(3) Pt-P(2)-C(15) 109(1) C ( l ) - N ( 2 ) - N ( l ) 109(3) Pt-P(2)-C(14) 118(1) N ( 2 ) - N ( l ) - P t 122(2) Pt-P(2)-C(13) 109(1) N(2)- N ( l ) - C ( 3 ) 104(3) C(13)-P(2)-C(14) 107(2) P t - N ( l ) - C ( 3 ) 133(2) C(14)-P(2)-C(15) 104(2) N(l)- C ( 3 ) - C ( 4 ) 118(3) C(13)-P(2)-C(15) 108(2) N ( l ) - C ( 3 ) - 0 ( 2 ) 114(3) C(15)-C(16)-C(17) 119(3) 0(2)-C(3)-C(4) 126(4) C(16)-C(17)-C(18) 125(3)

TABLE '4:3.- cont inued

BO JD ANGLES continued

1 0 5

P t - P ( l ) - C ( 7 ) 115(1) P t - P ( l ) - C ( 5 ) 101(1) F t - P ( l ) - C ( 6 ) 118(1) C ( 6 ) - P ( l ) - C ( 5 ) 105(2) C ( 6 ) - P ( l ) - C ( 7 ) 107(2) C ( 5 ) - P ( l ) - C ( 7 ) 110(2) P ( l ) - C ( 7 ) - C ( 8 ) 118(3)

C(17)-C(18)-C(19) 114(3) C(18)-C(19)-C(20) 121(3) C(19)-C(20)-C(15) 124(3) C(20)-C(15)-C(16) 115(3) P(2)-C(15)-C(16) 124(2) P(2)-C(15)-C(20) 120(2)

1 0 6

are given i n Table 4.3. The standard d e v i a t i o n s are found t o be

r a t h e r h igh. The major cause of t h i s i s probably due t o the high

s c a t t e r i n g power of the platinum atom compared t o the l i g h t atoms.

This r e s u l t s i n small-changes i n the p o s i t i o n s of the l i g h t atoms

having r e l a t i v e l y minor e f f e c t s on the value o f F,, . ( c a l c ) . Also hkx

the c r y s t a l s t r u c t u r e refinement i s subject t o a c e r t a i n adverse e f f e c t . 21 V

I t i s known t h a t large^ c o r r e l a t i o n c o e f f i c i e n t s may occur betv/een

parameters of atoms which are r e l a t e d approximately by a pseudo

symmetry element. The f o l l o w i n g p a i r s o f atoms 0(2) C(14), C(15) C ( 3 ) ,

C(7) C ( l ) and C(16) C(4) are very n e a r l y i n s i m i l a r p o s i t i o n s e i t h e r

side o f the pseudo m i r r o r a t y = J.

Although the agreement index i s r e l a t i v e l y h i g h , the i n t e r n a l

evidence suggest t h a t the s t r u c t u r e i s c o r r e c t and the quoted standard

d e v i a t i o n s are r e l i a b l e . Bond lengths w i t h i n the phenyl r i n g s can

be used t o check the standard d e v i a t i o n s ; the mean of twelve independent

values was 1.42 S w i t h a standard d e v i a t i o n , c a l c u l a t e d from the spread

o f t_ 0.05 S. This i s i n good agreement w i t h the i n d i v i d u a l standard

d e v i a t i o n s o f 0.04 t o 0.06 8 f o r the C-C bonding. No unreasonably short

i n t e r m o l e c u l a r distance was found, and a f e a t u r e l e s s f i n a l d i f f e r e n c e

F o u r i e r synthesis was obtained. F i n a l l y , none o f the atoms has a

v i b r a t i o n parameter tending t o an impossibly large v a l u e , and f o r the

l i g h t atoms the g r e a t e r the distance from the platinum atom, the l a r g e r

the v i b r a t i o n parameters, as should be the case.

The solved s t r u c t u r e showed t h a t the proposed stereochemistry o f

the compound, see Fi g . 4.1, i s not c o r r e c t . Instead o f both n i t r o g e n s

o f the azo group bonding w i t h the platinum atom t o o b t a i n a t h r e e -

membered r i n g , we have one n i t r o g e n and one oxygen atom bonding w i t h

the p latinum atom t o give a f i v e merabered r i n g . This i s probably due

t o the f a c t t h a t a f i v e membered r i n g would be more s t a b l e than a t h r e e

membered r i n g i n which the angle N-Pt-N would be small.

1 0 7

Ibers"^'^ r e p o r t s an angle o f 47*^ f o r C-Pt-C i n a t h r e e membered r i n g ,

belonging t o the b i s [ t r i p h e n y l p h o s p h i n e ( h a l o g e n - s u b s t i t u t e d e t h y l e n e )

platinum ( 0 ) compounds], whereas i n t h i s f i v e membered r i n g the angle

i s 74° f o r N-Pt-0. However, as a general r u l e P t ( I I ) shows a g r e a t e r

preference f o r n i t r o g e n ( i n a l i p h a t i c amines and i n NO^), halogens,

cyanide and heavy donor atoms such as phosphorus, a r s e n i c , sulphur and

22

selenium, and r e l a t i v e l y small a f f i n i t y f o r oxygen and f l u o r i n e .

The oxygen atom 0(1 ) was chosen as such, because when i t was

r e f i n e d as a carbon atom, i t had a r e l a t i v e low temperature f a c t o r and

because of the g r e a t e r peak height on the e l e c t r o n d e n s i t y synthesis.

The l i g a n d s N ( l ) , 0 ( 1 ) , P ( l ) , and P(2) are arranged i n an approximate

square plane around the platinum atom. Considering the l e a s t square

plane through these atoms (Table 4.4) the atoms P ( l ) and N ( l ) are

on one side of plane (by 0.14 8 and 0,18 8 r e s p e c t i v e l y ) and atoms

P(2) and 0 ( 1 ) are on the opposite s i d e (by 0.14 8 and 0.20 8 r e s p e c t i v e l y ) .

The platinum atom i s 0.02 S from the l e a s t square plane on the same

side as the atoms P ( l ) and N ( l ) . Nearly a l l the angles d i f f e r from 90°.

The smallest angle i s 74° ( f o r N ( l ) - P t - 0 ( 1 ) ) and m.ay be a t t r i b u t e d t o

the d i s t o r t i o n o f the bond angle a t the platinum i n order, t o make the

r e q u i r e d f i v e membered chelate r i n g . The t w i s t i n g o f the atoms about

the square plane may be due t o s t e r i c e f f e c t s .

The bond l e n g t h (average 2,19 8) between the platinum and phosphorus

atoms i s s i g n i f i c a n t l y d i f f e r e n t from the expected l e n g t h o f 2.41 8 o 23

using a covalent r a d i u s f o r s i n g l e bonded phosphorus of 1.10 A and o 23

the square planar c o o r d i n a t i o n covalent r a d i u s o f P t ( l l ) o f 1.31 A.

I f the covalent r a d i u s f o r a double bonded phosphorus, (1.00 S), " i s used a l e n g t h o f 2.31 8 i s obtained which i s nearer t o the bond l e n g t h

t h a t was observed, but i t i s s t i l l longer by 0.12 8. This would seem

t o i n d i c a t e a c e r t a i n amount of TT bonding due t o the overlap o f f i l l e d d^ o r b i t a l s ^^^^^ "^xy' ^V^^ °^ metal vdth empty d^ o r b i t a l s i n

1 0 8

the valence s h e l l s of the phosphorus atoms.

l i t a l s

F i g . 4.3, A schematic diagram of the o r b i t a l s involved i n the TT bonding

between the platinum and phosphorus atoms.

In c i s I>t{PiCH^)^)^Cl^ a Pt-P distance of 2.247 (2.256 + 0.008, O 24 2.239 + 0.006) A has been reported. A s i m i l a r Pt-P distance of

2.267 + 0.008 8 has been observed in trans -Pt (P(C-K^. )^C_H^ )-HCl.

In trans- ^-^^^<^<^2^5h^ ^^-"^ l£ans- Pti?(C^H^)^Br^, the Ft-P bond

lengths were found to be 2.300 0.019 and 2.315 +_ 0.004 8 in the 26

chloride and bromide respectively.

The Pt-N bond length observed i s 2.05 S which i s in good agreement

with the Pt(lI)-NH- distance in Magnus Green s a l t , Pt(NH^), PtCl, " of

2.06 + 0.025 S, in [Pt(II)(NH2)2Br2]CPt(IV)(NH3)2Br2]^^ of 2.01 S,

i n dichloro-DL-methionineplatinum(II) CPt-(DL-MetH)Cl2]^^ of 2.03 8

and in chloroglycyl-L-methioninatoplatinum(II) monohydrate

[Pt(Gly-L-Met)Cl,H20]^^ of 2.07 8. A Pt-N 'normal* single bond length

of 2.05 8 would be expected from covalent r a d i i . The Pt-0 bond

length of 2.06 2 i s comparable with the Pt-N bond length.

Although these r e s u l t s indicate a general shortening of the Pt-P

distances, there i s no apparent lengthening, .due to the t r a n s - e f f e c t ,

25,30,31 Pt'O, and Pt-N bonds.

Examination of the chelate ring shows that the bond length between

C ( l ) and 0(1) (1.46 8) corresponds well to the accepted single bond

lengths of (1.43-1.47 8 ) . The distance C(l)-N(2) (1.28 8) shows

strong double bond character. I t i s lower than the accepted value of

TABLE 4.U

1 0 9

Planes of best f i t (Least Squares) • (a) c o e f f i c i e n t s ^

Plane Description P • Q R S 1 around Pt 9.953 -3.679 2.309 0.612 2 around C ( l ) 10.562 -6.879 0.137 -1.525 3 around i K l ) 11.321 -3.307 -1.955 -1.174 H around C(3) 11.418 -1.642 -2.106 -0.597 5 phenyl ri n g 1 8.14B -2.428 -7.538 -4.771 6 phenyl ring 2 9.202 4.427 -6.551 0.046

a) Each plane i s represented by PXtQY+RZ = S, where X,Y, and Z are the coordinates ({.rtxctiona I) referred to the unit c e l l axes.

(b) Deviations from Planes i n ?. Plane

Atom ! 1 2

Pt r.02 P ( l ) -.14 P(2) .14 0(1) .20 .00 0(2) N(l) -.18 N(2) .00 C ( l ) -.01 C(2):. .00 C(3) C(4) C(7) C(8) C(9) C(10) C ( l l ) C(12) C(15) C(16) C(17) C(18) C(19) C(20)

3 -.02

.08 -.03

-.03

> 4 5 6

.01.

.01

-.02 .01

.00 -.02 .02 .01

-.03 .03

-.06 .01 ,03

-.01 -.04 .08

1 1 0

1.322 + 0.003 S for the N=C-0 type bond. A value of 1.29 S was observed i n Zn[SC(NH2)NH NH^JCl^ for the C-N bond l e n g t h . T h e

bond length of 1.42 S between C ( l ) and C(2) i s shorter than the accepted 2 3

value of 1.50 S for a Csp -Csp single bond. Consideration of the

lea s t squares plane through the atoms C{1), N(2), C(2) and 0(1) (see

Table 4.4), shows them to be planar v;ithin experimental error. The

angles which the surrounding'bonds make with C ( l ) are a l l approaching

120°, thus indicating that atom C ( l ) i s sp^ hybridized. The bond length

N(l)-N(2) compares well with 1.48 S the accepted value for the N-N

single bond. The distance between N(l)-C(3) of 1.52 n i s longer than

that accepted for a single C-N bond (1,47 S) although t h i s i s single

in view of the large esd*s. Consideration of the le a s t squares plane

through the atoms N ( l ) , C ( 3 ) , N(2) and Pt (see Table 4.4), shews that

the atom N(l) i s 0.08 S away from the plane, which i s s i g n i f i c a n t ,

whereas the remaining atoms are planar. The angles which the surround­

ing bonds make with the atom N(l) vary from 104° - 133°. The C(3)-0(2)

distance (1.28 8) shows some double bond character, since the accepted

value for C=0 i s 1.20-1.25 8. The C(3)-C(4) distance (1.46 8) i s

shorter than would be expected for a normal sp^-sp'^ bond of 1,50 8.

The l e a s t squares plane through the atoms C(3), C(4),0(2) and N(l)

(Table 4,4) shows that the atom C(3) i s s l i g h t l y out of the plane

(0,02 8 ) , which i s not s i g n i f i c a n t , and the remaining atoms are planar.

The angles which the surrounding bonds make with atom 0(3) tend to

120°, thus i t appears that C(3) i s sp^ hybridized.

From the above discussion i t would appear that there i s l i t t l e

d e l o c a l i z a t i o n of the bonding in the chelate ring.

The bond lengths P(2)-C(15) (1.78 S) and P ( l ) - C ( 7 ) (1.78 8)

compare favourably with those observed i n the structures Ni(Il)(CN)2

(^(C^H^)(OC^H^)^)^iav. 1,78 8 ) ^ ^ and Ir(C^H^N)(C0)((CN)2C=C(CN)2)

(P(CgH^)3)2.^CgHg(av. 1,82 The P-C(sp^) found in the uncomplexed

I l l

triphenylphosphine molecule i s 1.828(3) S." ^ The P-C(sp^) distances

vary considerably, however the mean bond length 1.89 can be

compared v/ith the value of 1.87 0.2 8 found in the uncompiexed

trimethylphosphinej^^ and with 1.851(7) S found in cis-mer-CMoQCl^

(PMe^Ph)^^ • "" These variations in bond lengths are probably due to

the 'flapping' of the atoms and rings about the tv7o phosphorus atoms,

t h i s i s shown by examination of the individual isotropic thermal

parameters which are higher than normally expected.

In complexes with ligands l i k e the t i t l e compound's, i t i s

sometimes possible to draw a l t e r n a t i v e structures with the metal i n

diffe r e n t oxidation s t a t e s . For example, t h i s compound could be

regarded as either (A) or ( B ) , with the platinum atom in the oxidation

state 2 or 0. Clearly the bond lengths found show that A i s the

correct structure.

/ " a

N 0' \ ^ 0

• p t r " ^ p t 0

\ PMe^Ph ^ PMe^Ph 2

(A) (B)

1 1 2

TABLE 4.5.

2o"28"2* 2 2 "' ~ ° "' intramolecular non-bonding contacts (in angstroms) l e s s than 3.6 8.

contacts d i s t . contacts d i s t , Pt . .0(15) 3.24(3) N(l) . ..0(13) 3.31(5) Pt ..0(6) 3.43(4)^ 0(2) . .N(2) 3.55(4) Pt . ..0(2) 3.38(3) 0(2) . .0(14) 3.16(5) Pt . . . C ( l ) 2.98(3) 0(2) . .0(13) 2.79(4) Pt . ..0(8) 3.57(3) N(2) . . .0(4) 2.64(5) Pt . ..0(7) 3.36(4) 0(1) . . .0(3) 3.46(5) Pt . ..0(5) 3.20(5) 0(3) . ..0(13) 3.33(6) Pt . ..0(14) 3.48(4) 0(15). . .0(16) 3.36(5) Pt.. ..N(2) 3.04(3) 0(20). ..0(7) 3.37(6) Pt , ..0(13) 3.39(4) 0(19). ..0(12) 3,59(6) Pt . ..0(3) 3.23(4) P(2) . ..N(l) 3.19(3) P ( l ) ..0(1) 2.96(2) P(2) , ..0(2) 3.06(3) P ( l ) ..0(15) 3.38(3) 0(1) . . .0(8) 3.46(4) P ( l ) ..P(2) 3.37(1) 0(1) . ..0(5) 2.84(5)

1 1 3

Intramolecular S t e r i c Interactions

Consideration of the intramolecular non-bonding distances in the

molecule shows the s t e r i c congestion to be marked. A l l the important

short intramolecular non-bonding contacts l e s s than 3.6 8 are l i s t e d

in Table U.S. The two phenyl rings^ of the compound are approximately

p a r a l l e l , the distances C(19)-C(12) and C(20)-C(7) are 3.59 and

3.37 8 respectively. This corresponds to a Van der Waal distance of

3.70 8 (since the half thickness of an aromatic ring i s 1.85 8)."^^

The distance between the adjacent phosphorus atoms P ( l ) - P ( 2 ) i s 3.38 8,

compared to the sum of the Van der V/aals r a d i i involved of 3.80 8.-

There are several short contact distances involving the methyl groups

attached to the phosphorus atoms. These can be compared to the sum of o 23

the Van der V/aals r a d i i of two methyl groups of 4.0 8 . There

i s a very short non contact distance of 2.64 8 between the methyl

group C(4) and N(2) in the chelate ring compared to the sum of the

Van der VJaals r a d i i involved of 3.5 8. " The non bonding distances

between the phosphorus and oxygen atoms P ( l ) - 0 ( 1 ) and P(2)-0(2) are 23

both shorter than the Van der V/aals r a d i i involved of 3.3 A. The

distances are 2.96 8 and 3.06 8 respectively.

Packing of the Structure

The structure packs as d i s c r e t e monomeric units ( F i g . 4.4).

There are eight intermolecular contacts l e s s than 3.5 8, which are

l i s t e d in Table 4,6.

The shortest intermolecular distance of approach i s between the

C(15) atom of a phenyl ring with the 0(2) atom of an adjacent molecule.

This i s not unusually short compared with the sum of the Van der Waals

r a d i i (3.4 8) involved.

.The shortest distance of approach between methyl carbons of

adjacent molecules i s 3.44 8. This i s short compared with the sum

of the Van der Waals r a d i i (4.0 8 ) . I t can, therefore, be

1 1 4

TABLE 4.6.

C2QH2gN202P2Pt-Intermolecular contacts l e s s then 3.5 8.

(The"(x,y,z) coordinates of the primed atoms are given in Table 4.2

while those of the prim.ed atoms are l i s t e d here).

contacts distance C(15) . .. CClO') x,y , ^ - l 3.59(6) 0(2) . C(2') 3.55(5) C(9) . 0(2') 3.38(4) C ( l ) . . C(5') 3.54(5) N(2) . . C(5») 3.53(5) C(13) . . C(14' ) x-5»-y+isZ 3.46(6) C(19) .. . N(2') x-5,-y+i,z 3.53(5) N(2) .. . C(18») -x+J,y+l,-z+l 3.41(5)

/

f 'q- 4.4. A packing diagram of [(CH3)2C^H3P]2 Pt (NCOCH3)

1 1 6

assumed that intermolecular forces, apart from the p o s s i b i l i t y of

interaction from adjacent methyl carbons, would have a minimal

effect on the stereochemistry and molecular parameters adopted.

1 1 7

TABLE 4.7

Observed and calculated structure amplitudes for

Cn-N'-Diacetyldiimine-N-O]bis(dimethylphenylphosphine)platinum(ll)

Format: h k

t 10 F I lOlF I o' ' c'

1 1 8

O . O t L 0 , 6 « L

1 2 5 4 3 4 0 6 0 0 1 6 9 6 1 8 3 3 2 6 0 5 6 9 3 1 1 7 9 5 1 9 0 9 3 1 T 2 B 1 6 3 B 2 1 6 7 2 1 7 4 7 4 1 0 3 S l O d Z 3 1 * 8 7 1 4 7 6 6 5 0 6 5 2 1 4 1 0 9 7 1 1 0 2 7 5 7 3 5 9 6 5 3 7 6 4 0 0 e 5 8 5 6 7 6 7 2 3 7 2 6 7

7 3 2 6 4 5 6 • 6 * 5 1 0 9 * 1 4 4 6 7

O i l i L 0 , 7 . L

1 1 0 * 9 1 1 3 5 e Q i 7 6 6 1 7 9 0 6 8 8

3 1 1 * 8 1 ? 3 0 2 1 6 5 6 1 5 4 6 * 1 7 4 6 1 9 4 5 3 1 0 0 6 1 5 1 4 5 1 9 1 3 2 0 S 4 4 1 7 6 5 1 0 5 3 6 1 3 9 6 1 3 7 4 5 1 5 4 2 1 5 8 0 7 7 1 7 6 7 9 6 1 2 9 2 1 2 9 9 e 4 8 2 7 | 2 1 0 1 2 * 3

• 7 2 5 5 6 6 7 2 6 7 5 7 9 3 0 6 3 2 5

0 « 2 * L 0 , 8 « L

0 2 S 2 5 3 4 5 9 1 1 6 7 5 2 6 2 5 0 1 8 1 3 2 0 5 8 2 1 4 2 9 2 o a 7 1 £ 1 3 9 2 2 2 6 3 1 2 7 ? 1 3 9 8 2 1 6 2 9 1 7 * 1 « S 3 4 8 5 3 3 1 3 1 3 . 1 3 0 2 S 3 6 6 3 2 2 4 6 7 4 6 3 1 6 2 6 3 ? 7 9 5 1 8 0 1 5 0 7 4 7 0 4 8 0 7 3 5 6 3 5 7 e 4 9 6 5 6 3 8 5 1 6 5 7 3 9 6 1 2 7 5 0 9 4 0 6 5 3 2

0 . 3 « L 0 ( 9 , L

1 1 0 1 4 1 0 0 1 1 6 1 3 * 9 2 ? 3 9 0 3 9 8 ? l 5 6 6 1 * 3 1 3 1 3 8 3 1 4 9 5 3 1 4 4 6 1 * 7 7 * 1 5 1 ? 1 6 S 3 4 1 3 3 * 1 3 1 8 5 1 6 4 5 1 7 4 8 s 1 1 7 3 1 1 * 6 6 | 4 ? 9 1 5 1 3 6 1 1 5 4 1 1 3 7 7 9 9 5 1 0 4 2 7 9 7 3 1 0 2 4 8 7 5 5 » i07 8 • 5 5 5 6 5 8

• 9 4 2 1 5 2 0 O . l O . L

0 ( 4 i L 0 1 9 5 4 l ' # 5 8

0 1 3 1 1 1 ? 2 1 1 1 9 2 2 1 6 0 2 1 1 2 3 7 1 7 9 9 2 1 6 8 2 1 0 2 5 7 1 5 2 3 1 6 3 0 3 1 3 6 9 1 3 6 6 3 1 1 6 5 1 2 1 0 4 5 8 3 6 0 7 « 9 4 9 9 5 5 5 1 8 7 1 9 9 S 2 0 1 1 9 5 7 * 4 6 4 8 8 6 1 0 7 71 8 5 1 1 6 5 8 7 1 9 7 1 8 9 9 * 0 7 5 6 1 e 3 6 8 3 6 0

5 6 1

9 4 3 5 5 0 2 O i l l i L

O.StL 1 " 3 3 0 * 2 3 2 7 1 4 7 3 0

1 1 2 0 4 1 1 * 2 3 1 2 5 9 1 2 8 2 2 1 3 4 B 1 4 2 6 4 1 3 7 9 1 3 5 4 3 1 3 6 3 1 3 1 V 5 7 4 9 7 0 9 « 1 5 7 0 2 o 3 2 6 8 9 9 ^ 9 8 0 9 1 8 3 2 1 9 6 3 7 9 9 6 1 1 2 7 t 1 3 3 5 1 3 9 2 8 5 6 1 6 4 8 T 1 1 8 4 1 1 9 5 e 9 3 9 9 9 3 0 « 1 2 . t 9 . 4 5 7 5 8 S

0 1 2 7 2 1 3 3 8 1 1 6 9 7 1 5 8 2 2 1 6 5 9 1 6 2 6

J 1 3 5 6 1 4 2 1 * 4 6 4 4 5 4 7 3 2 3 3 6 9

0 i l 3 t L

1 * 5 T 2 6 7 9 3 1 2 5 * 4 9 4 9 5 5 5 6 6 7 7 6 7 7 6 6 6 4 6 6

0 . 1 * . L

1 1 0 * 1 * 2 5 1 6 2 0 1 1 6 7

* 1 3 2 9 2 4 6 1

5 0 1 7 9 1

1 2 5 4 9 0 9 5 8 9 6 2 2 8 * 1 6 0 *

1 2 6 7 1 * 2 7 1 5 2 0 1 2 2 5 447 3 * 6 5 1 9

O . l S i L

1 1 * 2 2 0 3 2 7 * 2 7 3 1 3 1 0 1 7 1 0 2 2 4 9 1 5 9 3 5 5 8 2 0 6 5 4 6 7 6 * 6 0 3 7 6 3 2 7 1 8

0 « 1 6 t L

0 1 5 2 1 144 3 1 1 3 2 9 1 2 1 * 2 1 1 2 2 1 0 2 0 3 6 9 4 6 7 1 5 3 9 1 3 5 4 7 2 * 6 2 7 5

0 . 1 7 ( L

1 * 3 * 4 2 5 2 6 * 3 6 3 1 3 6 3 0 6 7 6 4 9 7 3 9 9 9 « V 9 * 9 9 6 6 6 7 * 7 1 2 7 5 * 0 6 6 0

0 . l e . L

0 1 1 2 7 1 0 0 0 1 8 6 4 8 3 2 2 6 1 0 6 5 6 3 * 6 9 4 8 4 4 4 0 7 3 5 1 5 2 1 6 2 1 5

0 * 1 9 * L

1 3 0 0 2 2 9 2 * 3 2 3 3 5 3 6 3 0 6 1 1 9 6 7 4 6 5 0 6 669 7 0 6

0 ) 2 0 f L

0 7 0 7 7 5 6 1 8 0 2

2 9 8 4 6 5 ^ 3 3 7 0 * 1 1 4 2 8 0 3 2 u

p i 2 l . L

r 2 7 3 2 3 0 2 3 8 0 3 3 1 3 5 4 5 5 * 7 4 o i l O j 3 5 • 5 9 2 o 6 i

0 . 2 2 . L

0 9 0 7 1 0 V 7 1 7 9 2 7 8 J 2 * 8 3 5 i r 3 * 5 3 S O J 4 3 3 1 3 3 o

0 . 2 3 . L

1 2 * 4 2 1 1 2 2 7 0 3 1 J 3 3 1 0 3r :>

0 * 2 * . L

0 7 6 7 7 7 4 1 6 * 3 6 U 2 449 444

t t l . L

0 3 1 9 •••201 1 2 * 4 6 - 5 J 4 3 2 1 6 0 t 4 J 3 7 33 f 5 1 3 7 7 a 6 1 5 1 1 0 2 8 1 1 8 O J

- 1 1 1 6 31 - 2 V i e tior - 7 1 2 6 1 0 0 - 8 1 6 4 2 l 3 - 9 1 3 8 l * J

1 * 2 . L

0 7 5 6 T a a 1 3 U 4 1 9 o 3 ^ * 4 2 3 * 4 2 6 1 3 ^ 0 5 2 * 3 2 * S 6 1 9 3 99

- 1 5 9 0 4 i 3 • 2 7 * 0 b i v • 4 i l ? 1 1 0 - 6 5 2 1 4 1 J - 7 1 8 9 0 3 - 8 . 1 6 5 1 0 0

l * 3 f L

0 1 0 7 2 U 7 1 ^ 7 7 440 2 ^ 4 7 4 7 0 3 2 * 5 90 4 3 7 J 3 V a 9 I T T 1 * » 6 2 7 1 2 7 j a US 1 3 a

• 4 5 9 5 560 - 9 1 4 9 90

- 6 9 0 1 5 4 2 • 7 2 3 7 3 1 0 - 8 1 * 2 1 1 * • 9 1 4 6 1 3 9

1 > « i L

•0 - 8 4 6 T 3 4 1 4 d o • 2 7 2 2 3 5 3 1 0 3 7 5 2 5 8 3 4 1 1 6 4 9 6 4 6 1 0 3 1 2 2 7 2 0 2 1 0 6 8 1 * 0 1 1 6

• 2 3 5 0 1 0 9 - 3 0 9 7 6 1 6 • 4 4 6 5 3 3 7 - 5 1 9 9 4 2 • 6 3 5 1 1 9 9 - 7 3 3 4 2 2 9 - 6 9 4 1 3 0 • 9 1 3 9 1 6 8

1 . 5 i L

0 5 3 9 8 3 0 1 I T J 5 0 4 3 1 4 2 3 0 5 4 1 5 5 2 4 9 6 2 7 3 2 8 9 7 1 5 4 2 5 2

- 1 6 T 3 3 1 3 - 2 4 * 0 2 3 6 - 3 4 5 l 5 2 0 •4 1 0 2 1 9 6 6 - 5 1 1 1 1 4 - 0 * 1 9 * 5 6 - 7 2 3 2 1 3 6 - 8 1 3 8 3 9

l « 6 i L

0 5 1 6 • 2 1 1 1 7 4 I T S 3 5 9 3 * 9 3 4 0 2 3 • 5 0 7 2 9 a 2 1 3 8 1 6 T 2 6

- 1 1 3 2 * 4 7 - 2 3 9 2 1 3 0 • 3 1 9 T 1 5 1 •4 2 1 0 2 1 2 - 5 1 8 5 1 * 9 • 6 2 6 9 1 1 3 • 7 3 0 6 1 4 S - 9 1 2 S 1 8 4

l . T i L

0 2 6 6 5 T 4 1 2 5 1 3 4 2 5 2 2 . 2 3 7 3 2 6 1 5 9 6 2 1 3 1 3 3 6 2 2 2 1 6 T 9 1 8 0 1 3 3

- 1 OOT 2 6 6 - 2 2 T 4 1 1 0 • 3 2 9 0 3 6 7 - T 1 7 6 3 2 • 6 2 9 3 73 - 9 1 4 9 7 4

1 1 9

i.e.L - 5 9 5 * 6 1 2 6 6 1 9 6

9 0 1 T 1 3 - 6 1 7 3 . 2 * 2 2 2 1 2 6 8

1 9 0 1 T 1 3 • 7 1 0 * 1 1 3 3 2 0 9 1 3 8 "1 6 3 7 9 2 1 4 2 0 2 4 |

9 4 • * 2 0 3 ^ 2 7 l i U i l 5 1 1 4 4 | 9 4

1 « 1 4 9 V 6 7 6 1 1 2 1 3 6 6b 0 1 4 8 6 8 - 1 3 2 7 1 6 9 1 9 * 5 2 1 2 3 * 2 5 3 - 2 2 3 0 3 8

l i 9 > L 2 1 6 * 4 3 • 3 1 9 3 3 0

l i 9 > L 3 * 1 3 1 6 4 - 4 2 5 9 1 4 2

1 9 B 4 « 0 9 7 2 - 6 2 * 1 4 9

0 1 9 B 1 5 « 5 2 5 5 1 * 2 2 * 1 4 9

2 5 * 8 4 7 6 27fc 1 6 l i 2 0 i L 4 I T ? 2 3 7 2 0 2 1 7

l i 2 0 i L

6 1 5 « 1 4 7 • 1 3 3 3 7 6 0 9 4 6 5 e 2 0 9 1 5 b - 2 3 2 9 6 6 2 6 7 2 4

- I 9 4 R 5 7 5 - 3 * 2 3 7 2 1 6 6 1 9 2 - 2 4 3 6 2 5 0 - 4 * 0 2 3 3 • 2 1 2 6 2 5 4 " 4 1 9 0 7 7 - 5 • 3 8 2 7 • 4 1 7 3 1 6 1 • T 1 6 T 3t> - 6 I Q l 1 3 4 • B 2 6 7 1 7 7 - a 3 1 7 1 3 2 • a 7 4 1 9

2 6 7 1 7 7

- 9 2 2 5 3!> 1 9

l i 2 1 f L

u l O a 2 * 2

• 4 9 ? 4 7 5 ' 2 1 8 1 7 I

9 7 3 2 5 2 0 7 1 6 1 1 2 8

5 1 9 4 6 6 4 1 3 2 5 8 1 8 1 ^ 0 2 4 2 9 2 1 1

9 2 1 6 R 1 5 4 1 9 2

1*12«L

3 1 ^ 1 9 9 1 8 6 2 1 3 3 2 5 2 4 7 4 0 6 2 2 7 2 7 2 2 9 6 1 8 4

6 7

2 7 2 4 1 0 5 3 3 4 4 7 44il

5 1 6 7 4 3 4 3 2 5 2

2 9

9 1 5 9

? 2 0 1 2 0

7 7 1 6 9 1 4 9

11 3 6 5 7

1 3 1 3 7

2 0 9 2 4 3

6 5 7 5 V 7

1 1 5 6 5 3 7

3 2 6 2 0 0 1 2 2

5 9 1 3

l * l 3 f L

0 5 1 1 1 5 5 0 3 9 1 1 5 5 1 3 9 0 2 1 4 2 2 9 6 2 5 2 5 1 9 1 6 3 T 1 3 2 7 9

l « 1 5 * L 0 3 6 7

0 • 2 6 3 2 0 8 0 2 8 3 1 1 5 6 2 5 5 2 2 * 5 2 2 0 2 2 4 9 I i s e 4 1 9 5 1 0 4 lea 5 1 6 9 1 2 s 1 1 0

-? 1 7 0 4 4 7 • 1 3 0 0 - 6 6 5 U 6 - 2 l i e

- 3 76 1 • l 6 i L -5 1 0 4

356 259 229 251 158 28S 1*6 4 5 4 323 315 353 31* 153

I . I T . L 364 250 l i e 253 194 105 342 399

l«16fL 279 296 247 262 236

•• 267 162 2 6 4 266 157

2 0 9 3 2 6

9 7 1 9 7 2 2 3

6 6 1 3 1 2 3 6 1 6 4

9 5 U 5 1 0 9 1 6 5

1 0 6

l t 2 2 t L 0 135 4 61

-1 105 • 4 1 4 4

lt23>L 0 326 1 226 2 226 3 191

•I 297 '2 157 >3 ea

1 6 4 1 6 4 2 0 7 1 6 9

1 3 4 1

1 2 6 1 7 6

4 4 3 8

4 0 1 5 3 1 6 0 1 9 6

1 . 1 9 . L

0 2 9 9

1 9 * l * 2 4 « L 3 4 0 1 4 6 • I 6 6 9 *

5 9 6 7

• 2 1 0 2 1 2 7

2 3 6 2 * 0 * L 3 2 1

0 2 6 5 9 3 0 9 9 1 2 6 2 7 3 4 0 0 t 2 1 3 2 2 1 7 3

2 6 4 3 1 4 5 3 1 4 1 0 1 5 5 4 1 7 9 2 1 7 3 3

3 2 fl 1 9 4 1 1 5 8 9 6 0 6 6 S r 9 7 2 3 1 T 2 6 7 2 9 1

1 7 1 6 2 6 1 2 5 7 2 4 9 9 1 2 0 2 3 6 t S 6 • 1 2 0 0 1 1 6 6 9 i 6 l • 2 1 2 9 5 1 2 0 5 1 3 9 • 3 7 6 9 7 2 0

• 5 9 7 0 6 9 6 • 6 1 2 2 0 1 1 1 9 • 7 9 6 4 • 4 8

2 3 5 • 6 9 4 7 9 1 1

• 9 1 0 9 7 l 0 6 r 1 2 3 7 8 2 * 4 1 - 1 0 D95 e o u 2 2 * 0 1 2 5 4 5

3 1 7 2 4 1 6 C 0 2 i l t L ' 4 1 7 1 8 1 5 9 4

5 1 3 9 6 1 3 0 4 0 2 c 7 3 2 9 2 o 6 5 4 0 & 0 6 1 7 5 4 7 7 4 7 3 0 3 2 1 5 2 J 4 l 7 o 8 1 1 2 6 6 3 3 7 9 3 5 u 9 1 8 3 1 4 9 4 3 2 8 2 V I - 1 1 1 2 9 9 2 0 5 1 1 9 4 l i b ; - 2 1 1 7 6 9 9 3 6 1 2 6 7 1 2 ^ o - 3 3 7 6 3 G 1 7 7 7 5 7 4 0 • 4 4 3 9 3 7 6 6 O 7 0 e v u - 5 6 5 b 6 5 6 9 6 2 6 7 2 6 • 6 1 0 4 1 9 3 7

• 1 ZiU 2 2 7 ; - 7 1 0 3 4 9 0 3 • 2 2 4 1 00 - 0 1 0 3 8 9 0 1 -3 2 U 8 1 1 9 3 J - 9 9 1 2 8 3 1 • 4 2 2 3 0 2 1 7o

8 3 1

- 9 i b a 3 l o i u Z i b f L - 6 1 1 2 9 l o o e - 7 • 2 9 3 b j u 1 3 1 3 1 1 7 4 - 8 . 4 2 9 4 i » 0 t 6 4 1 6 2 7 - 9 ^ 2 5 1 0 ^ 2 6 2 5 0 0 7

- 1 0 1 2 0 l O U 3 6 6 3 5 3 1 4 e a i BlO 5 1 * 4 4 1 4 1 9 0 1 3 4 7 1 3 8 8

0 2 5 7 3 3300 7 1 1 4 3 1 1 9 0 1 2 3 6 9 3 W 3 a 9 1 2 6 8 6 2 2 2 1 3 2 7 7 1 9 5 9 0 0 3 1 3 i V 2 9 1*«2D - 1 1 4 6 2 1 3 3 1 4 1 5 2 8 l b 2 k f - 2 2 3 0 6 2 2 7 3 9 U 5 1 1 3 0 b - 3 2 5 5 9 £ • 2 3 6 0 1 9 6 2 J -* 2 1 4 8 - 2 0 4 9 T 1 4 6 ! • / - 5 1 0 2 2 1 6 8 7 6 1 6 5 1 3 * • 6 1 2 5 4 1 1 4 4 0 i ! 1 9 2 0 J - 7 8 8 1 7 a a

- 1 1 7 9 5 1 6 b J — •a 4 6 2 3 9 0 - 2 1 2 1 5 ! ! • • •3 4 2 0 4 0 J 2 t 6 « L • 4 6 3 6 6 U a - 5 0 4 0 7 6 f 0 1 4 5 6 1 2 7 7 • 6 U 6 2 1 1 6 V 1 1 9 9 9 2 0 1 0 • 7 1 0 6 7 9 4 7 2 1 3 4 2 1 2 5 6 • 8 V 3 1 0 j 4 3 1 * 1 4 1 2 2 5 - 9 1 0 1 6 9 9 0 4 1 6 6 9 1 5 4 8

- 1 0 0 1 9 b J l 5 9 3 3 8 6 6 6 4 4 9 4 7 4

2 t 3 t L 7 . 3 5 9 3 5 3 6 1 5 6 1 5 7

0 0 2 8 7 b ^ 9 1 3 3 1 2 9 1 | u l « b 7 i - I 1 5 8 0 1 3 1 8 2 1 2 7 2 0 • 2 9 3 3 7 6 6 3 9 4 2 5 4 0 -3 2 5 9 2 5 6 4 l U 4 3 1 U 3 < • 5 5 0 0 4 6 4 5 1 * 1 8 1 3 V U - 6 6 4 6 5 3 3 6 1 3 9 2 l * b B • 7 7 7 7 ' 2 7 T 1 1 2 6 l l i € -a 9 0 1 7 8 6 8 tbb 7i£f • 9 7 0 1 6 3 3 9 6 3 4 7 2 0

6 3 3

- 1 1 * 4 0 i r j i 2 i 7 * L • 2 3 U 5 7 3 1 r *

2 i 7 * L

-3 2 3 5 5 2 2 6 4 0 1 3 0 7 1 1 4 1 • 4 1 9 7 1 1 0 0 0 1 9 6 1 9 3 4 - 5 1 0 4 ) 1 6 V / 2 3 2 6 2 0 3 • 6 9 2 2 9 9 1 3 7 3 5 9 8 3 - 7 756 7 0 i 4 8 6 0 a n - 8 9 0 3 • a j 5 1 0 6 4 1 0 9 0 -- 9 l i e 0 / 0 1 0 5 6 1 0 3 6

-to 2 0 7 2 ^ U 7 1 0 0 1 1 0 0 5 a 9 7 0 1 0 1 6

2 t ^ i L • 1 1 5 5 9 . 1 5 1 2 —2 2 7 1 5 2 5 2 7

0 1 5 8 1 1 4 9 V 2 5 2 7

1 2 0

2 « T t L

- 3 2 3 * 4 2 n 7 7

-* I Q 4 5 1 7 * V - 5 n e e W O V • 6 i 3 b 7 - 7 8 2 8 - a 3 0 3 2 0 4

2 * f i t L

u 1 1 S 6 1 1 0 3 1 1 6 0 9 1 5 6 5 2 l e e o l f > u r 3 1 7 4 6 17 0'S

1 3 * 8 b 8 7 8 6 6 5 5 7 2 9 4 3 3 2

- I 1 7 ' ) 3 1 0 6 3 - 2 I 3 0 n I 1 * V - 3 4 2 0 3 3 0

1 6 2 1 9 3 • b 3 6 1 3 * 4 - t 7 0 2 6 6 7 - 7 6 3 0 - 0 7 9 1 7 9 4 - s 6 1 6 6 2 7

2 . 4 t L

u 1 5 1 9 1 1 0 4 4 8 7 4 2 1 5 5 6 0 3 5 2 9 5 2 3 « 1 0 0 0 9 4 7 5 8 2 2 7 7 V 6 e 7 e H b b 7 9 3 3 9 7 b 8 8 4 9 Q 3 0

- 1 1 3 6 0 1 3 4 ^ - 2 1 9 S 0 1 7 5 1 - 3 1 8 1 2 1 7 2 7 - 4 1 5 6 7 1 5 2 7 - 5 1 3 ^ 3 l?bi - 6 1 2 5 8 1 1 0 2 - 7 7 * 7 7 1 0 • 8 1 6 5 1 6 4

0 1 9 * 4 1 4 4 5 1 1 8 6 1 1 7 7 0 2 1 9 * 0 1 9 1 1 3 1 7 * 4 l f ) 9 2 « 1 2 9 6 1 2 7 J 3 7 8 9 7 3 B 0 5 3 9 5 0 0 7 1 2 1 1 5 1

9 1 1 0 3 • 1 1 7 4 4 1 6 4 9 • 2 1 0 0 8 9 5 1 " J 1 3 6 1 4 b • 4 3 9 8 3 9 3 " 5 4 9 0 43 t f " 6 7 2 1 7 2 V • 7 1 0 4 6 1 0 6 3 "fl 0 9 3 d l 4

-« 9 3 6 5 T 0

2 » | N L

0 8 9 3 7 9 6 1 3 0 0 3 1 9 2 1 6 * 0 0

4 7 9 5 0 0 0 5 2 6 5 8 8 - 3 V 1 9 9 l J 9 1 7 0 2 6 1 • 5 6 4 0 2 * 4 0 4 8 0 3 o 7 5 6 7 0.6 2 1 7 2 6 8 - 5 ' 2 7 7 b u 7 0 1 ' 0 0 3 3 0 / 3 0 8 • 6 i 9 0 5 4 0 7 4 3 7 7 7 4 3 9 9 4 3 8

i 9 0

6 5 7 7 9 9 5 4 4 3 5 2 1 2 t 2 0 i L 1 5 5 7 U 7 6 6 5 3 0 6 0 0 l 7 l * 1 0 9 7 7 5 6 0 6 0 3 0 ' 8 5 bit 1 5 2 5 i * b 4 - 1 9 1 2 9 7 3 1 > 6 6 7 0 J 1 0 0 3 • ^64 - 2 1 3 7 4 1 3 4 2 2 7 2 6 0 1 1

7 5 3 7 7 6 - 3 I 3 0 i l 1 2 7 3 3 b 7 6 6 4 J b o 5 7 6 7 >* 9 1 0 9 5 5 4 4 6 5 b « B 5 3 6 • 7 7 • 5 6 2 2 0 9 9 s • 1 4 * V 3 1 6 6 1 7 1 • 6 7 7 b 7 7 1 • 1 5 2 4 5 7 *

- 7 3 9 5 4 0 7 - 2 <:00 3 b S 2 . 1 2 t L

2 f 1 6 « U - 3 - 4

U 7 1 4 2

U J 1 * 6

l b o 2 1 « 0 U -s 2 2 8 2 2 u i 7 3 S 1 6 5 2 0 9 5 2 9 0 3 - 6 3 2 8 3 a o I V 7 1 i ' ; i 2 1 1 0 5 1 2 0 4 7 i 9 5 0 2 9 9 1 9 0 4 2 * £ l t L 1 1 6 4 1 1 4 1 3 9 2 9 9-Jb

5 3 6 5 4 8 4 030 9 1 6 0 4 9 2 4 6 i 3 8 0 3 5 0 5 4 9 6 5 2 0 I 1 8 1 2 3 j U 3 1 3 8 6 3 0 7 3 1 7 3 1 9 7 1 * 0

9 7 1 2 5 7 1 6 2 1 0 9 - 1 6 2 0 b o o 1 3 7 6 1 2 1 2 • 1 0 5 5 7 6 4 - 2 5 9 1 6 l V 1 0 5 1 V 8 6 • ? 4 6 7 4 4 8 - 3 6 4 9 6 0 *

1 1 7 1 0 7 • 3 1 7 4 1 7 4 • 4 0 5 7 6 1 4 5 2 8 1 1 0 7 8 - 5 » 5 6 0 » 4 4 1 0 3 4 5 • 9 1 9 3 2 1 4 6 5 9 6 6 9 • 6 3 7 1 4 0 7 2 > ^ 2 f L

1 1 8 0 1 1 6 7 • 7 4 7 4 5 0 9 t l 5 4 o 5 l

2 . 1 7 . L 0 1

0 5 7 0 9 3

60U 74<f

2 * 1 3 « L 2 5 7 0 6 * 0

4 4 5 0 6 7 9 6 4 4 3 4 5 7 5 1 0

4 4 5 9 2 2 1 4 6 3 4 3 6 - 1 4 3 2 4 0 U 4 4 2 3 5 1 3 3 1 7 4 2 0 - 2 2 7 7 3 U U 2 6 c 2 1 2 4 3 3 9 3 9 S - 3 1 6 2 l * o 1 7 9 1 1 3 9 9 6 9 6 2 3 0 7 7 6 7 3 6 6 3 2 6 5 4 2 f < e 3 f L 6 « 8 6 8 2 • 1 0 3 0 7 6 3 6 1 0 6 8 4 - 2 0 6 7 7 V 0 0 • 9 2 47t f 6 7 2 7 6 4 - 3 V 9 6 1 0 0 8 1 1 5 0 l 3 l Uai 9 0 2 • 4 l O O b 9 0 3 -! • 0 9 b u «

1 7 2 9 1 7 0 2 • 9 9 4 0 9 4 0 • 2 J 2 1 3 V u l«»0? 1 0 3 7 • 6 6 3 2 7 i e • 3 • 7 1 b o o

9 5 0 9 4 6 • T 2 7 9 3 3 9 5 6 9 6 0 1 2 « 2 4 . L 7 4 7 7 7 5 2 * l G i L

2 « 2 4 . L

679 6 6 1 0 5 6 5 5 6 J 1 7 9 1 8 1 0 6 9 u 6 0 3 1 0 1 6 6 6 /

1 9 9 7 9 6 3 • 1 3 3 7 3 7 v 2 * l 4 . L I 0 3 0

5 8 9 9 1 0 6 3 7

- 2 2 2 4 2 * 0

1 2 7 9 1 1 9 0 4 6 3 6 7 1 4 3 t l « L I 2 b 9 1 ^ 0 7 9 5 5 6 909

3 t l « L

1 » 5 1 1 7 5 8 6 2 8 1 3 2 6 0 b 3 0 4 b V 1 6 2 0 1 « 9 3 - 1 4 4 2 fill 1 1 4 3 i w

7 9 8 0 1 2 - 2 3 9 2 4 2 0 2 <r93 2 0 6 5 2 8 3 6 1 • 3 1 8 1 1 9 7 9 7 3 b i 3 0 6 J 4 6 * 5 2 9 V 3 1 3 6 1 3 7 7 « I H O 1 6 1 * 6 2 7 0 J 0 9 0 i l O

1 3 3 3 1 1 8 9 • 1 3 4 2 3 4 u b 8 4 U O b 2 * l 9 i l . • 2 1 9 4 5 2 1 2 2 1 7 • 3 2 3 0 1 j r 1 9 4 8 0 0 9 6 5 4 7 8 • 4 £ 4 8 2 2 1 1 6 7 1 8 6 1 2 3 1 2 9 9 - 5 1 4 2 l l v 9 6 1 6 U 7 2 1 1 7 6 2 • 8 « 7 3 200 0 4 1 7 8 0 3 2 7 0 3 1 3 • 9 1 2 2 I J J T o e 7 0 T 4 4 7 0 9 0 7

1 2 2 I J J

2 . 1 9 i L 9 6 0 e 6 2 1

2 . 1 9 i L • ] O 0 3 6 0 8 - 2 9 2 4 9 3 5 0 1 * 0 6 1 3 3 b

1 2 6 1 9 0 i 5 9 1 5 3 2 3 1 5 2 0 3 4 6 9 9 O 0 4 5 2 9 5 3 2 3 6 3 0 6 2 9 0 9 1 1 4 7 9

- 1 1 1 5 5 9 7 2 - 2 7 7 1 6 3 1 - 3 6 6 2 4 0 4 - 0 1 7 | 1 2 4 " 6 2 9 8 2 5 0 - 6 1 7 3 1 4 2 - 9 1 2 7 1 2 7

3 * 3 t L

0 2 3 7 5 7 1 3 7 8 7 2 2 2 7 0 8 7 9 3

- 1 6 2 3 5 0 1 - 2 3 1 4 2 4 6 - 3 HZa 7 2 4 - 4 3 6 8 2 4 8 • 6 2 1 2 3 1 2 - b 2 9 9 3 8 4 • 9 2 6 5 3 2 8

3 ( 4 •

C 3 1 3 4 1 1 3 9 5 2 4 7 2 1 0 7 9 b 3 4 2 7 4 4 6 4 9 0 7 7 B 5 5 3 0 4 2 3 1 7 1 4 0 3 0 © • 1 2 7 1 0 3

- I 1 0 2 1 2 6 - 2 3 3 7 1 4 2 - 3 2 4 4 7 1 • 4 1 8 7 3f i • 5 1 9 1 4 5 - 6 0 7 9 t e o - 7 1 9 3 1 4 3 - 0 3 3 0 3 3 3

3 i 5 * L

U 3 1 2 1 8 7 1 4 0 9 5 5 1 2 8 1 1 8 3 7 3 4 4 7 2 6 4 4 1 6 0 6 7 5 2 1 5 3 4 0 7 1 9 4 1 9 5 6 1 * 2 1 7 4

- I 5 3 2 3 3 4 - 2 3 6 8 3 1 0 - 3 5 2 8 4 1 3 • 4 3 5 0 1 1 * - 5 2 2 6 4 1 1 - 6 2 7 2 3 6 6 - 9 9 3 1 6 7

3 i 6 « L

0 3 0 2 T 7 0 1 2 5 9 1 0 0 2 2 7 4 2 2 4 4 5 3 2 3 8 1 s 1 3 3 2 7 6 2 2 5 3 3 0 6 | 4 7 4 0

1 2 1

•I 4 2 8 •2 l e o •3 3 9 6 •5 3 9 5 •6 3 7 7 •e 2 0 9

3 . 7 . L

1 3 7 2 6 9 1 6 0 1 8 * 2 2 2 8 7 7 3 7 7 3 2 2 1 9 7 1 2 7 1 7 3 3 1 7 1 8 7 1 0 *

3 * 8 « L

3 6 3 1 6 * 5 1 3 3 0 6 P O 2 6 3 1 8 8 1 2 7 3 2 1 1 3 2 1 * 2 1 7 3 1 * 3

91

3 . 9 . L

3 8 5 3 5 3 5 2 7 3 7 3 2 7 2 8 1 0 3 0 6 * 7 3 2 5 * 3 3 1 2 5 9

8 3

3 . 1 0 . L

2 9 7 2 * 7 1 2 0 | T 3 1 1 5 3 6 5 3 2 8 1 3 2

0 4 0 3 1 4 0 3 8 3 0 7 3 2 1 9

7 1 5 l O S 7 5 6 2 7 2 2 5 9 1 7 5

1 9 3 1 0 6 1 8 7

6 3 1*1 7 0 2 2 2 5 2 1 3

7 3 1 0 2

2 * 1 3 0

2 9 7 3

6 0 8 « 9

* 0 3 2 0 3 1 0 3 4 3 6

« * 2 3 1 6 2 5 6 9 ? 6 0

2 2 1 1 0

2 5

7 * 5 1

1 2 9 2 8 5 1

7 8 2 2 1 8 3 5 3

V 6 6 2 5tt 7 7

2 3 2 1 * 9

6 9 7 5 7 2

1 8 0 1 7 5

5 8

1 0 5 6 1

1 1 9 3 0 6

* 5 8

• I - 5 - 6 - 7 - 8

0 1 2 6 7

- 1 - 2 - 3

. 2 7 9 1 6 8

8 5 1 9 9 2 1 6 2 3 0 2 6 5 1 8 5

3 . 1 2 . L

2 5 3 1 0 4

7 0 1 5 0 1 1 5 2 8 7 1 7 6 3 7 1 1 * 4

8 0

3 . 1 3 . L

1 3 3 2 0 0 2 3 7 2 2 7 1 7 2

9 9 2 7 7 2 0 3 1 4 3 2 2 8 1 8 7

9 3

3 , 1 4 . L

3 3 3 1 6 3 3 2 8 1 1 6 1 6 1 1 7 0 1 8 1 3 8 4 1 8 * 3 1 0 3 5 *

8 *

3 > 1 S . L

1 1 7 1 9 9 3 * 0 1 5 6 3 3 2 1 6 1 1 2 * 1 2 5

3 . I 6 1 L

3 7 * 1 6 8 1 7 6 1 4 1 1 9 6 2 5 2 2 9 4 3 3 S 6 2 3

T 2 1 9

1 2 6 1 5 0

9 3 5 2 3 0 6 7

3 6 5 3 1 8

6 9 31 7 2

2 7 1 2 5 6 1 5 2 2 7 3

9 5

2 2 2 2 9 0 1 6 5 1 9 8 1 4 8

7 8 2 9 5 2 5 1 1 4 0 1 5 6

8 9 2 0 8 1 7 2

2 2 2 3 0 0 3 6 7

31 5 8 4 0 3 8

1 2 9 2 5 *

7 0 2 1

1 1 6

1 8 7 1 8 0

3 8 3 0 0 433 2 6 8 I S * 2 1 4

6 8 1 4 9 3 0 6 1 1 4

2 1 2 S 1 2 9 1 * 9 2 3 7

• 4 5 0 0 1 4 6 • 5 1 2 2 1 8 9

3 i l T i t .

1 3 0 8 3 7 2 2 9 1 « 5 5 2 2 0 6 9 6 6 9 1 2 4

• 3 1 5 > 2 3 0 • 5 1 5 * 1 * 5 - 6 1 2 2

3 * 1 6 . L

0 3 3 5 5 9 3 1 1 1 6 4 5 1 2 0 8 5

• 1 4 5 8 9 3 - 1 3 4 0 9 3 • 2 2 6 1 2 0 4 - 3 3 2 7 1 2 0 • 4 • 3 2 2 6 7 - 5 1 7 0 1 0 8

3 * 1 9 . L

0 2 * 0 1 0 0 1 3 1 8 4 9 2 2 5 3 1 0 2 4 1 6 6 1 5 2 5 2 1 6 6 3

- 3 1 4 0 2 0 5 - 5 2 1 7 7 7 - 6 1 5 3 1 4 6

3 t 2 0 * L

. 0 1 * 6 ) 3 1 1 7 6 2 3 2 4 71 1 4 2

- 2 1 0 2 2 6 4 - 3 1 0 7 3 1 7 • 4 2 1 1 1 6 4 - 5 1 6 8 *>*

3 t 2 1 * L

0 2 * 6 1 2 2 1 2 6 3 43 2 2 5 5 1 3 9 2 2 5 t 1 3 9 3 1 8 6 2 0 4 4 2 0 2 1 9 3

- 1 2 3 3 6 7 - 1 1 5 8 6 7 - 2 2 7 1 2 6 2 - 3 9 7 1 2 9

I 3 i 1 0 8 • S 2 0 9 1 0 8

3 i 2 2 i L

0 2 0 7 1 8 7 1 1 4 7 9 3

- 1 e * 2 7 6 • 4 1 3 1 1 1 2

3 * 2 3 t L

0 2 1 1 7 9 1 2 7 6 7 4

• I 1 2 9 1 7

>10

• 2

• %

* 6

- 9 .10

• 1

« 3 • 4 - 5

• 7 * 8

3 * 2 4 . L

2 0 2 • 1 5 6

4 < 0 t t

1 1 4 3 1 5 7 3 2 * 7 8 1 9 0 8 1 7 5 3 1 0 4 8 1 1 0 3

4 7 6 1 5 5 1 3 3 7 9 0 3 1 4

2 5 8 7 2 U 7 2 1 6 1 3 1 1 6 8

9 9 2 l 6 5 3

4 « 1 « L

2 9 2 1 2 0 6 2 1 0 8 8

3 1 5 ^ 1 5 2 3 0 5 * 3 8 * 0 ' 4 9 8 ;

2 6 7 6 ' 1 7 2 2 1 7 3 6 l i 4 l

8 0 6 3 6 2 2 4 2 « 0 4 • 2 0

4 . 2 , L

1 3 1 6 1 S 5 6 1 9 8 5 l d 7 5 1 7 0 3 1 6 1 1 1 ^ 3 3

9 3 9 1 6 5 2 2 2 3 0 7 1 9 9

1 3 3 6 1 9 0 3 1 5 0 1 1 1 1 9 1 1 3 2

6 9 4

4 t 3 » t

0 I 6 1 Q 1 1 7 T 0 t 1 ^ 0 3 2 6 4

93

9 9 / 1 4 3 ; 2 3 9 a 1 8 4 0 1 6 * » 1 7 7 V l O b a

* * S l 7 i i 1 5 7 7 2 b 2 7 v

2 4 8 * 1 9 ( i j 1 * 4 / 1 0 4 7

9 ; * 1 0 2 2

5 4 *

2 8 4 9 1 9 « 1 l u 2 b • 3 0 *

3 0 * l .7v 4 8 3 7 9 s

5 4 0 2 * 0 6 l * 7 i 1 5 5 0 1 3 3 4

l i b 2 V « 2 0 d 424f 9 1 3

1 0 9 « 1 4 i v 1 8 3 2 1 8 3 * I b O S 1 6 0 * 1 2 4 2

4 0 0

1 9 1 1 3 4 2 5 3

l 3 3 o 1 6 i j 1 3 3 7 1 0 0 3 1 1 0 8

8 6 /

1 6 1 0 1 7 3 2 1 3 U

2 3 6

6 3 * 4 3 0 2 6 5 9 8 5 9 0 7 6 9 9 7 3 9 0 6 4 0 6 5 4

- 1 ' 2 3 7 8 2 1 0 6 - 2 1 8 6 8 1 6 2 7 • 3 1 9 7 1 1 8 5 4 • 4 1 4 1 8 1 3 4 2 - 5 7 6 3 6 3 8 " 6 3 d 8 3 5 5 - 8 1 2 4 7 7 - 9 * 9 7 5 1 9

• 1 0 5ie 5 7 3

4 i 4 i L

0 1 0 5 5 1 0 3 4 1 1 7 1 6 1 5 7 7 2 1 6 6 0 1 9 4 7

• 3 1 5 3 1 1 4 0 1 4 1 5 0 9 1 3 8 1 5 1 3 1 9 1 2 4 1 6 1 2 1 5 1 2 7 0 7 7 7 4 eos

- 1 547 4 8 3 - 2 5 * 7 « 5 3 - 3 1 0 9 1 957 • 4 1 0 5 4 9 * 2 - 5 1 3 5 2 1 2 2 * - 6 1 2 5 3 1 0 9 7 - 7 1 0 8 7 1 0 1 1 - 8 1 0 9 4 1 0 1 1 • 9 6 8 0 6 5 3

4 t S t L

0 1 9 5 4 1 9 1 2 1 1 7 6 9 1 7 6 1 2 9 1 8 8 2 9 3 3 6 4 2 6 * 4 1 3 0 1 1 2 5 * 1 S 3 * 6 6 7 7 7 8 2 3 7 776 6 3 1 8 6 9 b 6 9 8

• i 2 3 9 3 2 1 7 2 - 2 2 6 9 6 2 * 1 9 • 3 2 1 6 5 1 9 0 8 • 4 1 6 7 * 1 7 9 3 - 5 1 2 3 8 1 1 6 9 - 6 * 3 l 434 • 7 U 6 1 3 9 - 8 . 1 9 9 2 4 9 - 9 4 8 8 4 7 1

4 | 6 f f L

0 9 3 1 450 1 8 2 2 8 5 2 2 1 3 9 8 1 3 6 6 9 1 2 7 9 1 2 2 7

* 1 2 * 9 1 2 6 4 9 1 2 6 4 1 2 4 0 6 979 9 6 5 7 7 2 8 7 2 3 8 4 2 4 4 6 3

- 1 3 6 9 3 2 3 - 2 9 3 0 4 6 7 - 3 8 0 2 7 0 4 - 4 7 6 0 6 4 9 - 5 1 1 0 3 1 0 6 3 - 6 1 2 3 9 1 1 3 5 • 7 1 0 1 0 934 - 8 8 6 0 A | S

•« 6 3 1 6 2 7

1 2 2

4 « 7 f L - 6 1 1 4 3 1 U l - 7 9 2 0 9 2 1 4 t 2 0 i L 3 1 2 4 - C 6 - 7 1 1 1 5 1 1 2 6 - 6 5 6 1 6 6 1 d 9 1 1 0 1

u 2 0 4 9 19 3 5 •fl 774 6 1 1 2 6 2 3 0 J - 1 5 0 9 4 3 6 1 I 4 l 6 1 3 0 3 - 9 5 0 8 5 6 2 • « 1 5 ( L 1 • 4 7 * 7 D - 2 434 2 3 7 2 7 8 3 7 6 5 2 477 b * b - 3 2 0 3 1 1 6 3 7 3 6 6 9 0 4 . 1 1 t L 0 9 6 2 1 0 3 7 3 4 0 2 5 ' / - 4 2 4 7 3 1 5 5 5 9 5 5 9 0 I 7 0 1 7 0 4 4 4 0 5 6 1 1 • 5 4 1 1 4 7 5 6 6 5 6 6 3 J 0 1 4 6 7 1 3 2 1 2 0 7 2 6 5 5 • 2 1 1 9 0 1 - a 3 2 1 3 9 5 7 6 5 f i 6 o 3 1 1 U 7 1 S 7 9 3 *«:* 4 7 4 • 3 1 7 6 2 u * - 9 I M 2 2 3 e 6 6 3 7 4 0 2 1 0 6 7 l g S 6 4 10^ 2 7 • 4 3 4 4 3 7 2

• 1 2 1 9 3 1 9 7 1 3 7 3 5 ' 3 2 5 2 0 6 2 7 7 • 5 • 7 7 5 0 / 5 « * « L - 2 2 4 0 5 2 l 9 V 5 1 8 0 1 0 9 6 2 * 7 3 * 5 - 3 2 1 2 3 1 C 0 7 6 387 • 2 5 • 1 1 3 6 4 1 3 2 9 * t i ^ l ( L ' 0 4 6 1 3 4 9 • 4 1 8 6 1 ITbf 7 • 1 6 • 7 1 - 2 1 2 5 5 1 1 3 2 2 3 3 3 1 7 0 - 5 1 3 0 7 1 1 7 3 - 1 i ^ 3 e 1 3 2 9 - 3 944 9 0 9 0 7 7 * 7 6 0 3 2 0 9 1 2 4 - 6 5 1 5 4 H 4 • ? 1 7 0 0 1 5 5 4 • 4 9 0 6 9 9 0 1 b 0 2 * 2 9 5 2 b 0 - 7 1 2 9 ? 0 * 9 ( je l U l B - 5 660 6 0 2 2 J 2 0 3 3 * b 2 5 6 3 0 7 - H 2 3 6 • 4 7 5 6 ' 2 1 - 6 3 0 0 2 0 5 3 112 l u ^ 6 2 4 2 1 C 4 • 9 4 0 6 41)7 - 5 bHO 0 7 4 - I ' 5 0 7 ^ / 6 03 5 0

• 6 3 6 6 3 4 4 • « l 6 i L - 2 b b 9 b v o -1 5b7 4 9 0 4 « e i L - 7 1 2 6 171 • 3 b 7 2 b v i - 2 3 7 6 2 5 9

- a 2 6 3 2 6 5 0 4 6 ' 4>>3 •* • 4 0 b ^ D - 3 2 7 4 3 3 * II 6 6 5 6 4 U - 9 1 1 7 9 3 1 • 3 1 4 5 2 - 4 2 6 0 3 3 8 1 7 2 4 7 1 1 2 0 4 b 0 V 2 4 i < ; 2 * L - 5 * b * 3 9 6 2 1 1 0 2 1(167 • • 1 2 « t 3 9 1 1 9 3 * - 6 2 5 * 2 & 0 3 1 4 * 2 * f e e 6 1 0 u 2 3 5 kfi - 7 2 0 3 1 4 2 4 1 2 6 * l ? 0 4 0 1 1 2 7 1 0 0 6 5 0 2 9 6 0 8 1 • 2 2 • v o - a 1 7 9 U S 5 9 * 6 A7*> 1 1 2 9 ^ U 9 n 6 * 1 4 403 2 9 1 2 b ' t f 6 7 6 8 730 2 1 3 0 1 I J O I • 1 2 6 3 2 9 9 - 3 1 9 6 2 1 1 5 t 5 « L 7 6 0 * 3 1 6 7 6 1 3 7 9 - 2 2 1 6 l o o - 4 ••05 * * v e 3 9 1 4 7 0 * 1 4 6 5 1 J 3 1 - 3 3 6 J 2 V 6 1 2 b o 3 3 3

•1 6 * 1 5 1 » s V ^ 9 1*% •« 5 5 2 5 5 3 4 « 2 3 « L 2 3 7 1 • 7 3 - 2 5 9 2 * 7 5 6 7 l J ' 2 8 • 5 760 745 3 1 3 2 1 5 - 3 9 3 9 7 * 5 6 b 2 3 - 6 ' 8 2 7 0 7 0 b j v * 3 2 5 1 7 1 - 4 7 OS t>'30 • 1 3 9 2 2 5 1 - 7 5 3 v 50 1 1 • 7 7 5 1 2 7 1 0 * 1 5 " 5 1 0 6 7 i a o 2 - 2 * a 7 • 6 5 -1 * b 6 b33 -1 3 0 9 3 4 2 • 6 1 l l n 1 .*. 7:1 - 3 » 2 1 755 • . 1 7 . L - 2 • 0 3 b 2 » - 2 2 V 9 1 2 2 • 7 9 6 9 954 -* 7 2 6 0 6 2 - 3 J 2 9 I I V -fl 6 9 r i f - V S • 5 0 3 1 ' 6 * 0 1 0 9 1 1 0 3 5 9 i 1 i L - 0 . 2 3 0 3 4 3 - 9 5 1 3 s o b - 6 1 0 5 3

1 1 7 0 1 0 5 6 1 1 3 9 J ' h i

2 5 ^ 600 3^3 0 1 5 7 v v

- 9 1 0 0 1 6 6

4 « 9 » L — *) 7i«* 0 3 1 I I 9 j 2 1 5

W o 2 3 3 2

i b O J D 9

' 0 3eo

5 « 6 t L

1 4 5 6 I 2 4 J 4 . 1 3 i L • 1 l l ^ V l o v i 3 4 2 0 J * 0 U 2 1 7 4 6 1 1 1 4 1 9 0 0 • 2 12«<0 l i v i 4 2 6 9 2 0 J 2 2 9 2 9 0 2 1 1 8 6 . 1 I b b •1 7 3 6 ' 2 ' • 3 1 0 6 ' 9 9 3 5 102 1 J O 3 * 4 3 2 5 6 J 5 1 0 S J u 1 755 ' s a >• 0 5 j 6 0 7 7 1 4 1 I 0^ 5 i *00 2 3 3 • 3 3 h ? b 7 2 l U * U 6 0 - 5 5 9 « 5 0 4 • 1 • u v 3 b / 0 1 1 7 * 5 5 3 * 7 ? V 3 1 6 0 6 b 5 7 • 6 2 6 0 2ba - 2 1 5 5 l e o 7 1 1 5 1 0 3 0 4 3 5 3 6 J 5 134 1 8 8 • t 7 0 VO - 3 » 4 9 I J* - 1 J « 3 : i i 7 ^ 6 0 6 1 9 6 2 7 6 • 4 ^ 1 7 ei£ • 2 3 U 0 6 6

• I 2 3 0 ? 2 i i 4 4 7 2 t f J 9 0 • • I b i L - 9 I b o 1 2 1 •* l i v 1 9 7 • 2 1 9 9 1 ^ ) 3 * - 1 l ^ ^ l 1 * 2 * • 6 1 7 7 1 2 ' - 9 1 3 8 6 7 - 3 1 4 3 1 1 2 V 0 • 2 I b l 4 1 * 4 7 t 2 6 V 3 J 2 • 8 I J O ! • / - 7 1 0 9 6 0 -* 1 1 * 7 - 3 1 0 6 4 t t ) 5 ) 1 « 9 e 4 3 0 • 0 2 2 1 4 4 - 5 1 0 0 8 HOb •« 5 2 5 3 0 0 2 O c O 705 5 f 2 * L - 6 3 9 * 3 1 « - 5 J 9 9 • 3 7 3 590 7 * 0 5 i 7 « L - 6 2 2 9 2 0 U - 6 3 3 7 J 2 9 * 6 3 J 7 4 2 0 O J b - 9 2 4 9 7 7 3 - 8 1 0 6 1 9 3 5 545 6 1 9 f 1 7 1 2 V * u 7 9 2 7 4 3

4 * 1 0 t L • 1 I f c l 2 * 4 * *** • i * 1 J 6 2 2 6 2

4 * 1 0 t L * f 1 4 < L • 3 2 9 0 2 ' 9 9 « u 3 J t o 3 2 5 5 1 0 7

1 0 9 0 * « 9 2 c 9 2 6 7 H o 0 3 « J 9 2 2 6 4

t 1 0 9 0 9 V O 1 7 5 2 003 • 9 36b 9 0 * 0 V 3 i J ' 3 1 3 1 7 3 1 1 2 0 4 1 1 * 0 1' 0 * 3 0 4 0 —6 5 2 f 6 1 1 • 1 0 2 w 3 / u 7 e 3 4 0 2 1 2 7 7 l ? 9 v 2 1 U 0 8 •#30 —2 1 4 3 1 ' • • 1 5 2 0 3 6 1 3 l « ' ) 7 n*n 3 I 2 r t 6 liO^ • • i 9 » L • 4 v e o b w J - 2 3 0 * 1 0 6 * 1 6 1 1 1 5 * ^ 4 1 U 6 1 1 U 1 2 • 9 3 ' 3 J l o - 3 3 3 0 9 0 5 l O l O 5 020 o ' l 0 / V * 7 u 9 —6 < 0 i V * - b 2 3 0 3 2 6 7 1 0 . <»ob 6 5 A e 6 1 3 1 ' 4 J 7 1 0 • 9 1 0 6 7v • 0 Z 1 6 2 9 7 9 0 3 S 0 2 • 1 • 16 <*9 i . 4 3 V • b v - 7 1 4 9 6 9

• 1 3 1 3 ? 7 2 - 2 3 7 2 3 9 7 • 1 v i e a ' 9 9 * J i L - 2 4 4 5 3 0 0 >3 739 0 5 * • 2 0 6 9 • J 6 4 7 6 ' l ^ • 4 5 2 9 • 5 1 • 3 7 9 9 7 6 4 0 1 0 9 00 - • 9 3 1 f « * 7 - 9 6 2 0 3 9 8 • * o l o a r i l 1 J 3 u J O V • 9 1 0 7 0 l n 4 l • 6 9 o e 0 8 * • 9 4 l 4 4 0 9 2 M 3 ' 0 9

1 2 3

s . e t L

2 M l 1 2 6 3 2 1 1 2 1 5 - 1 1 5 1 4 V 7 I T S ? 7 4

• 1 2 1 9 l o 2 - 2 2 8 ? b V - 3 3 0 S S B 3 •* l O b 1 3 b - 5 2 T B 2 9 3 - 7 1 2 ? 2 u

-e 1 1 4 S O

0

m 7

5 . 9 ( L

4 0 9 ? 3 7 1 9 9 1 S 6 2 4 8 1 3 2 1 1 1 4 7 8 i f l n 2 7 2 1 5 3 3 5 6 4 4 7 3 1 6 1 5 9

5 . 1 0 . 1 ,

2 1 1 1 1 0 1 4 3

BB 1 4 9 2 1 5

S . l l . L

3 7 3 1 4 / 1 7 4 1 8 5

o ^ 1 2 3

0 9 5 0 < ; 1 5 9 1 0 * 1 6 1 1 1 0 ? 2 o 1 * 3

4 9 s 5

1 7cJ I ' j o

l o

I40

n 7 9 l o v I 2 5 3 1 3 1

' f 2 2 5 3 1 3 1 6 4 1<*1

• 2 3 4 9 5 5 2 2 0 4 3 0 1 4 n lai

- 3 1 7 3 ? 5 * - 4 9 3 ? o i - 5 2 3 * 1 4 b - 6 2 6 1 ' i J • 7 2 1 7 7 - e 1 3 6 ^J^

S t l 2 . | .

•) 3 3 0 1 6 4 1 2 9 4 6 4 2 9 9 ? 4 ^ 4 l i n 10 J

- 1 3 3 0 1 1 1 - 2 1 9 7 ? 3 o

5 . 1 3 « L

2 2 6 * 2 3 3 2 6 4 o v 4 3 0 6 80 5 2 2 * 1 6 ^ 6 1 6 2 5 5

•1 2 T | 4 b 4 2 4 T I J O

- 5

0

1 9 3

5 . 1 4 . L

3 6 3 2 3 2 2 3 2 1 6 5 3 6 4 2 7 7 4 i ) 3 1 4 1

5 . 1 b . L

3 9 3 1 6 6 ^ 6 2 1 5 0

9 8 l f a 6 <?95

S . 1 6 . L

5 . 1 7 . L

1 3 5 I J l 2 3 4 l o o 1 6 0 i r i s

5 . 1 0 . L

2 4 4

7 7 2 6 2 1 1 0 1 2 4

4 5 1 2 1 2 1 4 1 4 7

3 1 9 i ? * I

8 6 1 2 1

5 6 1 4 4

2 3

') 3 i e 1 7 2 1 pse 1 7 1 2 i ; 3 6 1 1 2

- I 3 1 9 1 8 4 - I 3 1 9 J 0 4 - 2 • 3 1 5 OH

-) * 5 S « * 2 - 4 2 2 4 9 ?

1 6 6 4 1 2 7 ?

^ 4 A 1 5 0

0 149 2 8 3 1 3 1 1 U S

- 2 2 3 7 1 75 - 1 3 H 2 9 6 - 4 '33* - 5 7fc 1 1

5 . 1 9 , L

1 2 6 3 139 2 193 39

- 1 M 7 2S - 4 2 1 * 194 - 5 2 4 6 111

S . 2 ; > . L

0 ^i16 ^ 0 7 1 2 7 4 1 6 1 2 l n 4 ^ 1 2

• 2 1*2 1S9 - 3 14S U 9

9 . 2 1 . L

1 1 9 5 5 7 2 2 3 * 4 9

•3 no < 0 3 • 4 1 9 3 164

0 1

- 2 - 3

S . 2 2 . L

1 3 9 2 0 3 i T o

9 6

6 , d . L

9 ' ) 4 7 3 6

1 5 4 ? 1 * 2 * 1 2 7 u 1 * 1 1

o 3 J 1 0 3 1

b S 3 1 S * 4 <^U92 l d 9 2 1 * * 5 U 2 1

0 0 4 4 2 7

6 t 1 . L

1 7 7 9 2 0 6 9 1 5 6 *

990 9 6 7 0 6 0 22< ; 2 ? o

1 5 5 ^ o * j V l 4 b b « 1 * 1 2 2 9 b S o 7 0 3

- I l b U 3 1 3 9 ^ - 2 1 * U 1 * 2 0

2 1 6 - 3 1 J 6 8 1 2 o f 1 6 1 • 4 0 2 8 b J j

t )2 - 6 <:20 2 u o 5 * - 7 J ^ 5 3 7 o

- 8 ? 0 5 7 7 / - 9 / 0 4 T V s

o u i 6 . * t L 6 3 6

U U 7 0 1 U 6 o v 1 3 U 3 1 <rb3 e j 1 2 1 S 2 0 9 b 0 4 « 1 3 U 6 3 o 2 | 7 v a

6 2 4 4 v o T 9 J O 9 5 9 s 9 0 5 9 V f 6 8 7 6 o 7 i v o o

1 * 3 5 7 / T 9 0 4 / 2 0 1 U - I - 2 6 3te 1 7 1 1 - 2 V 3 5 o V o t J u 2 - 3 U J 5 1 l<:o

9 0 4 - 4 l o b 7 i b J / 7 / 9 - 5 !•» j V 1 J<:o 4 3 9 • 7 V b 3 9 U 3

- 8 ' 1 4 0 « * - 9 331 ^00

1 7 6 3 1 9 0 9 1 5 5 3

9 3 1 a V 3 6 7 5 2 1 9 2 3 7

1 * 2 7 o b u 6 4 6 5 4 U

1 9 2 1 0 S 2 U 6 V 7

u J 3 b 2 5 6 1 2 * 3 2 1 2 2 1 6 t i J 3 1 1 6 * 1 U 6 3 • W T o U 0 4 9 1 2 2 b 1 1 6 6 6 l U ^ U 1 U 7 7 d 2 6 0 9 5

• 1 6 9 / S U 9 • 2 T T u T 7 5 • 3 i o 3 b 1 6 2 T - 4 2 / 5 J 2 1 5 7 •s l o l l 1 3 7 3 * 6 U l i U 4 0 • 7 1 1 1 J 1 0 V 3 * b Tbt f * 9 3 7 0

6 . b . L

0 1 0 V 9 ) o J ^ 1 l v b 3 i v ^ o 2 l « b l i^ti/ 3 1 0 U 6 O V J 4 b V S bOtf s 1 9 1 1 0 0 T £ J 5 rf*j

• 1 l ' ^ b I b O v - 2 tins I b v j - 3 1 1 6 1 U ' a • 4 0 0 4 7 o o - s * 2 b * u « - 6 1 6 9 i : u o • T O I T O ^ l - H ' b 5 73d • 9 ' I V 133

O t O t L

0 0 9 9 o v j I J 4 V ^ b o 2 O J 6 b f v 3 b 6 6 * » o 4 T 4 0 o v / 9 V 2 3 9 4 * ^ b 0 2 0 C O * 7 O 0 2 r o e

• 1 / b b r i o • 2 V * 4 o v * •3 l « 7 u 1 * 1 < >4 1 4 b 5 1 tf-iU - 5 1 )f o u • 6 V I 1 o / o • 7 ' b o 6 / / • S b l 7 * 0 0 - 9 ' U

2 2 * 6 2 U V T 2 ^ 0 2 2 1 3 0 1 5 * 4 1 5 * 4 0 1 0 S 4 l o u l 1

5 5 6 9 ( J 6 2 *«r 4 7 0 3 rfTb ^ 0 5 4 1 6 2 1 6 2 9

6 i / i L

1 / 9 6 I b 5 4 1 * 0 7 i U d

b 7 « 1 7 2

l O t f O l * J o 1 3 J J l y « b

1 0 0

6 1 * 5 1 6 4 7 2 6 7 2 7 3

- 1 2 0 0 6 1 6 5 4 - 2 1 7 3 0 1 S 9 1 - 3 1 1 0 6 - V 7 6 • 4 6 3 0 6 9 0 - 5 1 6 9 I S O - 0 3B4 3 3 2 - 7 5 2 9 4 4 8 • o 6 2 3 5 9 1 - 9 5 7 9 5 9 9

b i O « L

0 4 0 8 4 0 6 1 1 4 3 2 4 9 2 2 9 9 2 7 2 3 6 6 4 O S l 4 l O B O 1 1 3 0 b l o l l 1 U 2 0 6 7 4 5 7 2 2 7 0 1 2 6 9 5

- 1 1 2 2 3 1 0 5 T - 2 l * 3 o U 6 U - J 1 3 0 9 • U 8 0 • 4 1 1 7 V 1 U 7 1 - 5 U 0 2 1 1 0 1 - o 1 I b O l u 7 5 • 7 9 0 8 0 6 0 - 0 5 1 9 5 2 7 • V 2 i : 3 2 3 9

b t 9 ( t

0 1 7 2 7 1 S T 3 1 U ^ O 1 0 6 4 2 1 1 5 T 1 1 3 0 3 1 J 4 4 1:^66 4 1 3 5 0 5 9 b I b T 1 5 4 o 1 3 1 1 3 4

•1 1 6 0 0 1 * 9 6 •2, I 2 3 T U 2 0 • J rib 7 7 8 « 4 0 0 4 2 4 0 2VV 2 8 2 7 S 0 6 4 T 2 0 a J b b l T 9 3 8 6 4 2 2

6 i 1 O I L

u 0 4 4 2 1 4 0 6 b l u 2 4 4 0 • 9 4 j 001 9 2 4 4 l O b S l u o o 5 0 2 4 0 5 4 6 6 0 1 6 9 3

• i o T j 7 8 9 - 2 1 1 4 0 1 0 3 9 - 3 V 0 9 9 6 0

V J O o 9 V - 5 1 2 1 0 1 1 7 7 • o 1 1 2 3 l U b • 7 e l b / 7 0 " 0 b O l • 9 4

b t U f L

0 1 3 9 0 1 2 9 9 1 l u l 0 2 9 0 4 V B 0 3

• 1 0 0 0 1 0 3 7

124

6 . 1 1 . L

• 7 5 1 7 f l 0 5 3 3 1 3 4 1

• 1 1 2 0 1 n o t - 2 8 7 3 8 5 2 - 3 6 9 2 6 8 5 - « 3 1 3 2 6 b - 6 2 8 7 ? 8 9 - 7 5 0 8 5 * 2 - a 4 9 4 4 6 1

6. 1 2 * L

0 2 4 6 1 4 8 1 4 9 6 4 7 9 2 5 4 6 5 5 6 3 8 7 5 ^ 6 6 4 SSO g 3 7 5 8 2 0 e*s t 5 6 3 6 4 2 1 4 S Q 5 4 0 2 9 4 1 9 6 6 3 9 7 4 9 7 5 • 9 0 9 8 4 7 5 1 0 0 7 9 7 3 b 1 0 7 9 l i o b 7 8 4 ? 6 2 3 8 4 * 5 4 3 5

6 . 1 3 . L

c 1 2 6 T l ? l 1 J 9 9 7 1 0 2 7 2 1 0 5 B I f . & d 3 1 0 ^ 9 1 0 6 * 4 5 5 4 5 6 0 5 2 3 o ' 1 9 0

- I 7 8 5 P 9 6 - 2 6 8 6 ft92 - 3 4 0 3 5 1 0 - • 3 2 5 3 5 7 - 5 2 0 1 1 9 0 - 6 2 4 6 2 7 9 - 7 5 0 1 5 * 7 - e 4 1 1 4 3 V

6 . 1 4 . L

0 1 5 5 9 B 1 2 7 5 3 1 * 2 3 4 6 3 7 3 3 6 3 0 6 0 7 • 8 7 7 P 6 7

- I 5 5 B * s * 0 - 2 1 0 1 7 9 ' * 7 - 3 l o a a 9 1 1 - 4 1 0 1 6 9 6 * - 5 9 7 5 P y 2 - t> 8 9 ? B 7 1 - 7 6 9 9 7 0 3

6 , 1 5 . L

0 1 0 4 7 1 0 5 1 1 8 4 8 8 7 9 2 8 4 1 P 4 3 3 7 3 ? 7 B 2 4 4 3 9 * t l l 5 1 1 5 12C1

- I 1 1 1 4 1 0 7 3 - 2 7 2 5 - 7 3 1 - 3 4 5 S 5 0 t i "4 3 0 6 3 6 1 - 6 2 0 5 • 1 9 7

- 7 2 2 1 • 3 3 6

6 , 1 6 t l .

0 3 o e 3 1 9 1 2 0 2 2 0 7 2 3 1 2 3 * 9 3 3 * 7 3 8 * 4 5*4 6 0 5

- 1 5 1 * • 7 3 - 2 5 8 1 5 1 0 - 3 7 8 9 7 * 2 -4 8 7 7 t l 0 2 - 5 8 2 8 7 7 0 - 6 6 1 3 64* - 7 * 1 6 * 6 6

0 6 9 1 d 2 * 1 6 1 3 6 2 0 2 6 * 6 7 0 4 3 * 5 0 5 5 2 4 3 * 3 * 2 l

- 1 1 0 3 6 1 0 2 1 - 2 7 5 5 7 7 3 - 3 * 9 e 5 2 1 -* 3 5 0 3 2 7 - 5 1 3 3 1 0 3

6 . I B t L

0 1 3 1 . 7 9 2 1 2 1 2 4 5 3 2 7 6 •iB*

- 1 2 7 1 1 9 0 - 2 4*4 * 6 1 - 3 5 * 6 5 8 1 -* 6 1 3 6 3 0 - 5 & a 9 • t >22 - 6 * 5 6 5 5 1

6 * l 9 t L

0 B 7 2 046 I H 4 1 0 3 1 2 5 5 * 5 8 2 3 3 * 2 " • 1 5

- 1 7 5 8 7 8 1 - 2 . 7 2 7 7 6 8 - 3 5 6 4 5 5 5 -4 2 6 7 2 * 7 - 6 l a 7 6 8

6 * 2 0 t l .

') 1 5 1 9 9 1 9 2 3 3 2 2 1 0 3 0 8

- I 2 2 3 1 9 9 - 2 2 9 4 . 3 3 2 - 3 * 2 t * 9 * -* 5 9 7 ' 0 3

6 . 2 1 ( L

0 6 5 0 7 1 * 1 6 5 3 7 3 1

- 1 5 n 2 5 3 * - 2 3 7 5 • 1 7 - 3 3 6 9 3 8 1

7 . 1 . L

2 2 3 9 2 1 7 3 2 * 3 1 7 8

- 1 3 7 * 3 3 2 • 3 no 1 3 5 <• - 6 2 5 * 2 * 9

- 6 3 0 9

7 , 2 . L

0 * e o 3 8 8 3 1 6 2 2 2 8 6 1 6 6 1 6 8

- 1 1 2 0 dO - 2 1 7 * 1 7 2 - 3 1 7 1 1 6 9 - 6 1 3 6 9 6 - 7 1 3 1 1 0 6 - 8 1 1 9 1 5 6

7 . 3 . L

2 9 0 3 7 0 2 2 9 5 3 7 * 2 e

1 6 *

2 1 9

1 9 6

I S ?

7 * * . L

2 0 1 « * 0 2 6 8 3 9 * 5 0 1 2 7 9

8 * 3 1 7 2 1 9

0 5 5 0 4 1 7 3 2 3 1 8 7 6 2 3 5 2 5 3

• 1 6 2 9 5 U 1 • 2 3 2 9 2 6 2 •3 1 2 9 4 • * 1 7 9 1 * 9 •5 1 9 5 2 o a •7 1 0 5 l i

7 , S . L

* 6 1 3 9 7

0 1 0 0 1 9 5 2 3 2 5 2 5 6 5 1 6 6 9 7

- 1 3 2 7 1 3 1 - 2 1 6 2 1 * 2 - 3 2 4 * 3 * 2 * * 3 * 7 * 5 7 - 6 2 1 5 9 7 - 7 1 3 7 2 1 8 - 8 1 8 1 2 2 2

7 . 6 « L

0 3 9 3 2 7 9 3 2 1 6 5 0 * 2 5 * 7 8 6 1 1 5 1 3 3

- 1 3 5 7 2 0 5 - 2 1 * 0 £ 7 • 3 2 3 3 2 2 3

7 , 7 . L

0 2 8 5 3 3 8 1 2 8 9 3 1 6 2 1 1 ^ 9 3 4 1 7 0 9 6 5 2 3 2 1 8 2

- 1 1 2 2 2 0 6 • 2 2 3 2 1 2 9 - 5 3 6 9 2 3 0

0

* 1 • 2

7 . 6 . L

2 * 8 1 9 5 2 5 5 1 2 3 2 5 0 2 6 5 1 1 2 2 3 7

7 8

7 . 9 , 1 .

2 1 9 : i 0 2 2 4 2 1 6 8 3 0 8 2 0 9 2 * 3 2 9 6 2 8 6 • * 5 3 9 6 1 * 5

9 2

7 > 1 2 , L

0 2 1 3 1 2 * 9

•2 1 8 * 3 1 0 1 * 1 3 6 5 1 1 1

O 1 9 8 . * 9 6 •5 1 0 9 •6 1 6 8 7 1 2 0

7 » 1 3 , L

1 6 1

5 l d s

l O o l l u 3 5 0 Z34 l i J

l »

1 2 4

3 1 6 3 * u 2 } « 1 2 5 1 9 * 1 2 4 1 1 6 U *

7 e 2 6 / 2 0 1

d i 5 o

7 . 1 0 . L ( 6 8 7 6 l

• 1 1 3 0 9£ - 2 1 0 9 l l u - 3 2 5 2 ( ; » o - 6 1 6 9 « 6 .

• 7 1 2 2 l u e

7 i l l . L ••

2 1 9 * 2 1 o 3 2 D U O J « < ! 2 * l O o 5 2 0 9 l 4

- I 1 0 0 <:0j - 2 2 1 7 1 V 4 - 3 2 * 4 1 6 0 - 4 2 8 2 50 - 5 3 3 3 S o - 6 2 u 4 « 1 - 7 1 U 5 2 5 • 8 9 4 4/

5 * 03

1 5 4 l O J 00 74

1 5 0 5 * 7 j 5 *

0 1 3 * 94 1 1 0 2 b o

• 1 2 6 1 1 * J - 2 1 9 7 1 7 s • 4 1 6 8 1 9 o

7 . M . L

0 1 7 6 2 1 5 1 2 3 0 5 5 2 2 6 3 * 3 2 3 * 8 4

• 1 2 6 * 2 8 - 2 3 6 9 2 5 2 • 3 2 5 5 1 8 7 - 5 1 0 0 1 * 5 • 6 1 2 2 3 9 0

7 . 1 5 . L

0 1 0 1 1 7 8 1 1 7 9 2 9

• 1 2 1 3 1 5 1 - 2 1 1 1 2 5 6 • 3 1 6 * 1 4 2 •4 1 6 2 1 6 6

7 . 1 6 . L

1 2 7 9 7 2 2 2 7 7 3 8 3 1 * * 1 9 0

- 1 2 6 7 8 2 - 2 3 * 3 I S O • 3 2 3 5 1 7 5

7 . l 7 , t

0 1 * * 1 0 0 1 1 6 8 5 5

- 2 I S * 1 7 4 - 3 2 1 8 6 0 •* 2 6 6 8 0

7 ( 1 8 . L

0 1 8 8 1 2 4 1 2 3 7 3 5 2 2 1 7 6 2

- 2 9 3 * 7 - 3 2 1 3 2 0 4 - S 1 2 1 7 5

7 . 1 9 , L

0 1 2 5 9 1 2 1 2 5 2 1 7

- 2 1 2 1 2 2 7 - 3 2 2 3 7 0 •* 2 7 3 8 1

7 * 2 0 , 1 .

0 1 0 9 1 8 6 1 2 0 1 1 4 *

• I 1 0 7 1 1 0 • 2 1 5 * 9 0 - 3 1 2 2 1 3 0

8 , 0 t L

0 1 0 2 1 . 9 1 6 1 6 1 9 5 7 * 2 * 2 3 3 1 9 3 * 6 1 * 9 e * 5 2 5 4 7 0 5 6 6 7 5 8 2 6 d i b e i 2

• 1 1 2 1 9 1 1 4 3

1:25

e . o * L

- 2 I S U 1 5 2 2 - 3 1 S 6 0 1 5 6 7 -4 1 6 5 4 1 6 3 0

- 5 1 1 3 6 1 1 2 2 - 6 1 0 2 6 1 0 6 6 - 7 8 0 7 6 7 5 - 8 2 9 ? 2 7 1

e i l i L

0 7 8 3 7 2 3 1 1 2 2 9 1 0 6 8 2 1 5 6 9 1 4 1 3 3 1 2 S 2 1 2 0 6 « 8 7 1 8 3 4 S 8 3 8 8 8 2 6 6 7 8 7 2 5

- 1 6 5 0 6 5 6 -? 4 3 7 4 3 7 -* 6 4 7 7 2 9 - 5 6 5 0 7 1 9 - 6 6 5 a 6 5 7 - 7 7 6 7 7 3 6 - 6 6 6 5 7 0 V - 9 5 8 5 6 2 8

e . 2 * L

0 9 7 5 8 8 9 t e e i fl42 2 1 9 2 ? 4 1 3 4 5 2 4 4 9 4 6 1 3 5 6 2 s 5 9 * 5 2 9 6 6 8 4 6 8 2

- 1 9 6 5 9 3 3 - 2 1 3 3 5 1 3 3 2 • 3 1 5 8 1 1 5 8 1 -» 1 1 1 8 1 7 8 9 - S 8 9 6 8 S 4 - 6 8 2 8 6 4 5 - 7 6 6 7 7 1 0 - 8 2 2 5 2 1 2

8 . 3 ^ L

0 9 7 8 8 8 9 1 1 5 2 7 1 3 6 6 2 1 5 2 9 1 4 1 4 3 1 1 * 7 1 1 3 1 4 1 0 « 2 9 1 8 5 6 8 3 6 8 5 t 5 2 3 5 9 1

m J 9 3 0 8 9 3 - 2 4 9 8 4 8 4 -4 4 5 5 4 6 b • 5 5 5 0 5 4 9 * 6 4 4 6 4 5 1 - 7 7 4 8 7 8 7 • f l 7 0 5 8 2 5 - 9 5 6 9 5 9 9

B f 4 « L

0 1 0 5 5 1 0 5 7 1 9 9 7 9 2 4 2 4 5 ? 3 9 1 3 1 6 4 • 9 7 4 3 9 2 3 4 2 9 4 6 5 4 6 4 6 5 2 3 9 8 2

• 1 9 1 1 8 6 7 > 2 1 3 6 0 1 2 9 1

- 3 1 6 2 3 1 5 4 1 • 4 1 2 0 7 1 1 3 0 - 5 8 2 4 6 4 7 - 6 5 6 4 5 3 9 - 7 2 1 9 1 9 3 • 8 9 6 7 7

8 . 5 , 1

0 1 2 7 6 1 1 7 0 1 1 6 3 1 1 * 7 3 2 1 4 8 3 1 4 3 3 3 1 1 5 3 1 U 4 7 4 9 0 8 8 0 7 5 5 9 5 6 4 6 6 3 3 8 4 0 8

- I 1 1 0 9 1 0 2 B • 2 8 1 7 7 7 5 - 3 U l 2 0 3 • 4 2 3 1 2 0 7 • s 5 9 6 5 7 3 - 6 n i ' 1 6 - 7 7 3 2 7 1 3 - 8 7 2 1 U 4 9

8 . 6 , L

0 9 9 7 9 2 7 1 8 0 0 7 5 7 2 2 8 3 3 0 7 4 2 7 8 2 7 0 5 ^ 3 1 4 4 7

- I 1 1 5 8 1 1 2 8 • 2 1 4 8 1 1 3 9 4 • 3 1 2 3 1 1 1 6 6 • 4 1 0 2 6 ' 1 U 4 0 - 5 • 9 8 2 1 0 2 3 - 6 6 2 1 5 9 1 - 7 2 2 9 2 0 2 - 8 8 9 7 7

8 | 7 . L

0 1 1 6 9 l U B l 1 1 3 4 5 1 2 7 8 2 i i e o 1 1 3 7 3 9 5 1 9 2 0 4 8 6 7 0 4 0 5 5 9 4 5 8 4

- 1 9 4 8 0 9 9 - 2 7 6 1 ? 4 1 - 3 1 4 0 1 1 0 • 4 1 6 2 1 * 3 - 5 3 5 3 3 2 3 - 6 7 9 3 8 3 3 - 7 8 5 0 ttB3 • 8 6 3 1 7 6 6

B , 0 . l

0 8 9 0 7 2 5 1 2 5 9 2 3 1 4 2 5 8 2 4 0 5 4 8 6 5 5 3

- 1 1 2 3 * 1 2 2 6 - 2 1 2 6 7 1 2 8 7 • 3 1 0 1 5 1 1 2 0 • 4 9 0 2 ^ 5 3 • 5 9 6 1 9 * 0 • 6 6 5 6 6 1 0 • 7 3 3 9 3 3 4 - d 1 2 6 1 4 9

0 1 1 5 1 1 0 0 6 1 9 5 6 9 5 1 2 6 5 > 8 7 0 3 9 7 7 9 8 3 4 9 2 9 9 6 0 5 6 3 6 6 4 3

- 1 7 1 5 6 4 3 - 2 3 1 5 2 5 8 - 3 1 9 8 1 2 0 - 5 4 7 3 4 6 2 - 6 6 3 6 8 1 0 - 7 6 9 9 7 1 4 • 8 4 3 6 5 6 6

B . l O f L

0 8 9 4 8 2 8 1 2 6 5 2 7 4 4 2 S d 2 4 0 5 5 4 5 5 9 9

- 1 1 2 8 2 1 2 0 6 - 2 1 1 3 0 1 1 2 7 - 3 9 1 6 9 9 6 • 4 8 3 6 B 9 7 - 5 8 9 1 8 9 9 - 6 6 9 5 6 6 7 • 7 3 2 7 3 2 9 - 8 1 * 2 1 7 1

8 * 9 , L

6 , U , L

6 5 4 6 4 1 9 6 1

1 1 0 1 9 2 5 4 4 3 1 1 6 1 6 2 1 9 3 3 9 9 6 5 2 5 5 0

8 . 1 2 . L

6 6 6 2 9 9 1 7 9 1 6 0 3 6 2

1 0 2 1 1 0 4 7

9 8 1 6 8 8 6 4 5 5 7 0

e « i 3 * L

7 9 6 7 2 8 7 6 4 6 2 8 7 1 7 4 6 4 1 6 2 1 4 1 3 4 7 9 4 7 4 9 9

0 * M i L '.

6 3 0 8 2 8

1 0 2 7 1 1 0 1

9 4 9 4 3 4

5 1 9 7

1 4 3 3 7 7 7 1 9 5 8 6

1 0 1 5 1 0 2 8

0 4 6 8 5 1 4

1 1 3 7 1 6 6 2 U l 6 V

- I 7 7 4 ' 7 6 0 - 2 8 9 4 6 4 4

- 3 9 1 8 9 2 6 - 4 0 3 2 6 7 4 - 5 6 0 6 7 6 J - 6 • 9 3 5 2 /

6 i i 5 * L

0 6 4 6 6 4 y 1 7 4 7 ' 7 9 ' r f -2 6 4 6 7 2 » 3 5 8 5 6 7 *

- 1 4 0 4 4 4 0 - 2 1 9 7 2 4 v - 4 9 7 1 2 J - 5 2 5 3 3 0 / - 6 4 2 2 4 9 /

8 ( 1 6 ( L

0 4 2 8 4 6 0 1 2 1 6 2 3 4

- 1 7 2 6 7 6 6 - 2 8 2 5 8 7 v - 3 6 5 2 6 4 r • 4 6 5 9 7 2 ^ - 5 5 9 6 6 7 a

B i l 7 , L

0 0 2 5 6 5 4 1 6 9 6 7 3 V

- 1 4 3 7 5 3 6 • 2 3 3 0 4 1 U - 3 1 1 9 1 2 0 * 4 9 6 9t - 5 2 3 5 2 > 2

e i i e . t

0 4 6 4 4 5 4 1 ibS 3 4 V

- 1 5 0 8 5 4 3 - 2 6 3 7 7 4 1 • 3 5 2 4 6 l V - 4 4 1 0 4 6 V

0 f 1 9 i U

0 4 7 9 * 9 / • 1 4 4 5 4 ^ r

• z 2 4 5 2 8 2

9 * l i L

1 * 0 1 1 9 9 1 4 6 J 1 5 6 1 3 4

2 4 7 2 6 J 1 4 1 1 6 2

9 i 2 * L

0 . 2 8 5 2 3 e 1 1 9 6 1 6 / 2 1 6 9 1 7 » 4 2 1 9 1 1 4 9 1 9 9 4 6

• 3 1 2 0 2 2 /

« f 3 t L

0 2 9 0 1 5 0 1 1 9 8 TO 2 2 3 4 1 7 2 3 1 5 7 1 3 4

' 4 1 6 9 1 5 4

- 1 2 0 0 1 5 6 - 2 2 8 4 3 5 6 - 3 2 9 4 . 3 5 2 - 4 1 2 0 l e e - 6 1 7 0 1 8 3 - 7 1 5 6 1 9 3

9 « 4 i L

0 4 9 3 3 9 7 - 1 1 5 3 1 8 3 • 3 1 5 6 2 8 6 -4 U 7 1 9 4 - 6 1 5 1 5 9

9 t 5 * L

0 1 6 8 3 7 2 1 6 9 5 8 3 2 0 4 1 4 0

• 1 2 0 9 6 4 - 3 I G S 3 1 7 •4 1 0 6 1 3 9 • 9 2 6 7 2 1 3 - 7 1 * 5 1 7 2 - 6 1 0 5 9 0

9 t 6 i L

0 4 9 3 * 2 6 1 2 5 9 U S 4 1 2 5 3 4 5 ' 9 6 3 5

- 1 1 9 4 1 3 0 - 3 9 6 1 9 5 • 4 1 2 9 2 4 5 • 6 1 2 5 l e

9 t 7 t L

0 2 3 8 4 6 1 1 5 7 2 6 7 2 1 5 4 3 5 1

• J 2 0 5 3 0 • 3 1 1 5 1 0 3 •4 2 7 8 1 9 0 - 5 3 5 7 2 9 4 - 6 1 2 6 9 7

9 ( 6 t L

0 1 6 6 5 4 1 2 0 6 3 9 4 1 4 9 3 0

• 2 1 7 5 1 2 6 • 3 2 4 3 9 2 •4 1 4 6 8 5 • 5 1 5 6 3 1 - 6 1 6 5 1 5

9 t 9 « L

1 1 4 6 3 4 6 2 1 3 3 2 7 0

• 1 2 2 4 9 2 - 2 1 2 6 1 5 2 • 3 9 3 1 7 2 • 4 2 6 9 1 4 2

126

« * 9 * L

• 5 3 5 1 3 2 * - 6 1 0 5 1 2 9

9 * 1 0 . L

0 1 2 1 1 5 5 4 | 9 9 17

- 1 1 5 0 ** '? 1 5 9 4 3 - 3 2 3 J S b •» 1 5 6 6 3 - 5 1 2 a a o - 6 1 6 6 2 0

9 . 1 1 « L

- 1 193 . I S U 'i 2 1 0 9 * - 3 1 9 6 9 V "* 1 6 9 6 3 - 5 1 * 2 . T*

9 . I 2 . L

1 1 6 8 3 2 3 1 5 «

- 5 1 0 8 1 2 1

9 . 1 3 . L

•J | T 6 1 6 6 1 1 1 3 1 2 a

- 1 1 ' 5 1 9 7 '2 2 3 6 t)7 - 3 2 2 0 17

1 0 8 - H>b

9 . 1 » . L

1 0 8 3 7 1 1 0 5 2 0

1 9 5 * 7 - I M 6 1 7 3 •? 1 6 * 2 t t l • 3 2 t S 3 1 *

9 . 1 5 . L

0 19T 2 * 7 1 1 6 7 1 0 6 i 1 8 9 6

- 1 1 * 9 1 7 * - 2 2 4 * 4 0 - 3 1 5 5 1 4 0 -» 17 ? 7 * - 5 9 9 13V

4 . 1 6 * 1 .

1 1 6 5 12 - I 1 6 5 1 1 5

l i s 1 J U 1 1 1 I b l

9 . 1 T , L

0 1 0 2 2 3 3 1 1 5 1 6 3

- 3 l e ? 5 5

1 0 « 0 * L

0 e T j 8 B T

- 1 1 3 2 >T0 - 2 5 * 9 6 3 * • J 7 * 5 9 0 V

•« 5 3 * T i n • S 4 T a 6 5 0

1 T 4 « T 5 7 2 7 5 1 7 4 5 3 157 1 2 * * 1 * 2 1 T 6

- 1 1 2 2 5 1 2 0 7 • 2 1 ) 3 * 1 U 9 3 - 3 9 2 6 6 9 9 - 4 6 4 8 6 6 7 - 5 » 5 6 * 7 7 - 6 3 5 7 • • 0 - 7 1 0 7 2 1 3

1 0 * 1 * t .

1 3 7 4 3 0 9 2 O i l ' 2 1 3 9 3 * 9 3 2 4 7 9 7 7 9 2

- I 1 3 1 8 0 - 2 3 5 9 * 0 3

- 3 5 9 * 7 3 6 - 4 7 6 5 69(1 - 5 e z s 6 6 9 - 6 6 6 9 7 0 1 • 7 6 4 0 7 7 6

1 0 * 2 . L

0 9 4 7 ' * 6 7 1 V b O • • 2 3 2 7 2 6 7 2 1 3 2 9 5 i 0 6 4 1 0 7 6 8

- 1 1 1 5 7 1 1 3 7 - 2 1 2 6 2 1 2 7 8 - 3 V 5 6 ><67 - 4 6 7 0 6 6 9 - 5 * 4 6 • «9H - 6 3 1 0 3 7 9

l u . 3 * L

0 • ^ e • 3 6 1 3 6 9 J 6 2 2 6 9 7 6 5 6 3 V Q b - • 4 3 * 7 5 9 tf09

- 1 2 H 4 2 8 4 - 2 2 1 5 1 9 1 - 3 6 9 9 7 3 4 • 4 e ; > S 0 9 9 - 5 6 4 9 7 3 1 - 6 6 ^ 9 ' • 2 - 7 6 ^ 6 taa

l u « 4 . L

0 1 0 7 2 i g 9 0 1 1 0 9 2 l v 9 5 2 7 7 5 7 9 2 3 4 6 2 • 3 5

- I 1 0 2 7 1 0 3 3 - 2 1 1 3 6 1 1 2 2 - 3 0>«4 ' ' 1 8 - 4 5 8 0 6 1 7 - 5 3 3 1 3 1 6 - 6 I B * 1 8 5

1 0 * 5 * L

0 5 4 3 • 7 | 1 6 1 1 B l O 2 6 0 9 7 7 5 4 6 7 3 7 1 1 9 5 5 2 5 7 1

1 2 t « « L

0 7 5 0 0 1 7 1 6 6 1 7 5 «

- 1 r s 4 6 3 6 - 2 5 7 5 O 0 6 - 1 2 6 5 2 3 5

1 2 « S . L

- 1 3 7 0 3 3 3 * * 2 5 * 9 -* - 2 l O O 5 9 _ 1 kit 2 3 J • 3 4 6 9 4 6 5 _ 2 3 7 4 4 1 1 >4 6 0 * 6 7 2 . ) 2 7 7 3 0 0 - 5 7 1 6 8 2 * . 4 3 9 4 5 0 2 • 1 - 6 6 5 5 7 9 5 . J 6 2 7 7 U • 5 - 7 5 7 1 6 7 6 - 6 5 1 2 6 3 J - 6

1 0 . 6 . L 1 0 * U * L •

0 9 6 7 9 7 3 0 7 2 7 7 6 4 0 1 9 1 V 6 8 5 1 * 5 6 5 l 4 2 7 1 5 7 1 7 2 j * 6 3 9 ^ > 4 3 * 4 4 * 9 6 - I 6 9 5 9 1 ^

" I i o n 1 0 2 5 • 2 / 1 7 7 * 4 • 2 9 * 3 9 5 6 - 3 6 0 0 7 2 6 • 3 7 6 0 7 6 0 -* 5 9 9 73S " 4 "* 5 0 9 5 2 1 • 5 • 3 7 4 0 6 - 5 " 5 3 2 * 3 0 3

156 • 1 9 9 1 0 ( 1 3 « L

1 0 < 7 * L

5 * 6 7 3 u 135 7 5 2 1 3 0 2 * 0 3 7 0 4 8 4 7 9 2 7 7 9 5 9 0

l O i b . L

5 3 7 7 1 4 7 1 0 7 4 5

7 4 2 6 1 3 3 7 5 3 1 0 4 4 8 7 6

7 2 2

0 1 0 0 5 1 0 0 6 1 7 6 2 7 7 * 2 5 * 2 5 6 0 3 3 7 5 4 1 4

- 1 1 0 1 / 1 0 4 4 - 2 / t 7 8 5 4 - 3 6 5 1 7 5 9 • 4 5 5 I 6 0 9 - 5 3 2 6 3 3 4 - 7 1 * 7 1 6 6

1 0 * 9 . L

0 2 9 9 2 4 9 1 6 * 3 6 6 1 2 6 7 ^ 7 5 0 3 ^T* 6 i 4

- 1 2 3 > 2 3 4 - 3 3 1 6 3 d O • 4 * 5 4 5 i 9 - s 6 7 < 7 « 3 - 6 6 « 1 7 9 7

1 0 . i n * L

0 • « 1 3 1 5 3 < * 5 3 9 2 • 3 5 • 2 5

- 1 <wbt 1 0 5 6 - 2 Tin 7 ^ 4 - 3 6 6 0 b k 6 • 4 6 3 0 7 5 8 - 5 4 1 2

1 0 * 1 1 . L

0 2 2 7 2 1 7 1 3 6 2 4 2 3

- 1 2 6 2 2 6 3 - 2 * * 6 • 9 1 - 3 6 1 6 7 4 1 • 4 5 e » 7 7 4 - 5 « 9 6 7 1 2

1 2 . 6 * L

0 1 9 6 2 3 ^ 1 2 6 6 J O U

- 1 1 3 9 1 * 6 - 2 3 2 2 33(1 - 3 ^ 5 0 • 6 / -* 3 * 0 9 ^ 6 - 5 • 1 8 9 4 £

1 0 « l * i L

0 6 2 9 6 * 9 - 1 7 1 1 7 « B

- 2 . 6 1 2 6 / 1 - 3 9 1 3 6 ^ 9 •* • 0 2 6 ^ 6

1 0 * 1 5 « L

- 2 < 2 3 kit - 3 £*Z 2 7 e

1 1 * 1 i C

0 1 5 6 M O

- 2 t 2 * I J r - 6 1 U 4 J J 4

1 1 * 2 i L

n 1 9 4 2 J - * 1 lit tJt 2 1 7 5 1^0 - I 1 * 1 t 3 *

- 2 1 0 6 1*6 - 3 I J O £ J h )

1 1 * 3 « L

b 1 * 1 6 * - 2 ^ 2 d ^ • a - 6 1 3 7 !•'•

1 1 • * . L

0 l 9 u ilt 1 < 3 4 1 0 *

- 3 1 5 3 at > 6 1 0 6 **

1 1 * 5 . L

r 1 0 7 1 2 3 I 1 1 9 Am

• 2 1 4 6 ^•*9

0 7 u * a £ v • I 9 0 3 6 « u • 2 • 1 6 • • J O < U 6 2 ^ <

1 2 * 7 . L

0 l o a 1 J i

1 0 2

1 1 « 6 * L

1 * 8 1 2 0

7 9

n * 7 a

1 0 7 1 7 3 1 4 4

l l . O t L

1 6 * I T V

1 1 . 9 f L

1 * 3 1 6 1 1 0 6 1 3 1 137 1 6 7

1 1 . 1 0 * 1 .

U . U . L

1 0 2

5 6 5 * 4 0

TO 2 5

2 1 5

1 8 4 2 3 4

- 1 9 * 2 * - 2 120 3 3 - J 0 6 1 2 3 »« v o 6 2 - 5 l e * 4 5

0 1 6 1 6 6 - 1 1 7 2 5 * - 2 1 5 2 1 6 - 3 H o 7 5 • 4 V 7 1 2 5

1 2 * 0 * L

J 6 4 6 6 * 0 1 7 2 6 7 3 0

• 1 6 0 9 6 6 9 - 2 7 2 3 7 B t l - 3 • 2 6 • 2 0 - 4 1 3 1 1 8 V

1 2 * 1 * t

0 2 3 6 2 5 9 1 1 9 6 2 0 3

- 1 • 5 4 5 3 5 • 2 6 5 1 ' 5 7 - 3 o 0 6 e l o • 4 - 3 6 4 ' 6 3 - 5 • 6 2 6 6 0

1 2 . 2 * k

1 6 7 * 7 2 1 - 1 7 3 5 7 9 3 - 2 6 0 * 6 2 6 - 3 3 4 1 3 2 3 " 4 1 0 * 9 7

I 2 * 3 * L

U 2 0 0 2 2 2

• 2 3 9 * • « 6 - 3 • 6 2 5 7 0 - 4 5 0 2 6 0 6

1 2 . 0 t L

- 1 • 0 5 5 0 * • 2 3 3 ! > • 2 7 • 3 3 1 0 3 6 0

127

REFERENCES

1. H. Minanida, Chem. Comn., 1969, 1148,

2. P.L. Pausoiij J. Chem. Soc. (C), 1968, 36,

3. R.B. King and M.B. Bisnette, Inorg. Chem. , 1966, 300,

4. G.W. Parshall, J. Amer. Chem. Soc., 1965, 87, 2133.

5. CD. Cook, and G.S. Jauhal, J. Amer. Chem. Soc., 1968, 90, 1464.

6. V.F, Duckworth, P.G. Douglas, R. Mason and B.L. Shaw, J. Chem. Soc. ,

(D), 1970, 1083.

7. I.D. Brown and J.D. Dunitz, Acta Cryst., 1960, 13, 28.

8. J.A.J. Jar v i s , Acta Cryst., 1961, 14, 961.

9. S. Ooi, D. Carter and Q. Fernando, 1967, Chem. Com.m. , 1301.

10. T. Kashiwagi, U.Yasuoka, N. Kasai, M. KakudO; S. Takahashi and

M, Hagihara, J. Chem, Soc,, (D), 1969, 1374.

11. CD. Cook, P-T. Cheng, and S,C Nyburg, J. Amer. Chem. Soc. , 1969,

91, 2123.

12. A. McAdam, J,N. Francis, and J.A. Ibers, J. Organometal. Chem., 1971, 29, 149.

13. J,N. Francis, A.. HcAdam, and J,A. Ibers, J. Organometal. Chem., 1971,

£9, 131.

14. C. Panattoni, R, Graziani, G. Bandoli, D.A. Clemente, and U, Belluco,

J. Chem: Soc,, (B), 1970, 371.

15. R. Eisenberg and J.A. Ibers, Inorg. Chem, , 1966, _5, 411,

16. P. Coppens, L. Leiserowitz and D. Robinovich, Acta Cryst 1965, 18,

1035.

17. W.R. Busing and H.A. Levy, Acta Cryst., 1957, 10, 180.

18. "International Tables f o r X-Ray Crystallography*, Vol. I l l ,

The Kynoch Press, Birmingham, England, 1962, p.202.

19. D.T. Cromer and J.T. Waber, Acta Cryst, , 1965, 18, 104,

20. D.T. Cromer, Acta Cr.yst. , 1965, 18, 17.

128

21. G,H, Stout and L.K. Jensen, i n 'X-Ray Structure Determination*,

Macmillan, N.Y., (1968).

22. F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry",

John Wiley and Sons, (1962), p.853,

23. L, Pauling, "The Nature of the Chemical Bond", Cornell University

Press, N.Y., 1950.

24. G.G. Messmer, E.L. Amma and J.A. Ibers, Inorg. Chem, , 1967, 5, 725,

25. R, Eisenberg and J.A, Ibers, Inorg. Chem, , 1965, 4_, 773.

26. G,G. Messmer and E.L. Amma, Inorg. Chem. , 1966, _5, 1775.

27. M. A t o j i , J.W. Richardson and R.E. Rundle, J. Amer. Chem. Soc. , 1957 ,

79, 3017.

28. C. Brosset, Arkiv. Kemi, Hin. Geol., 1948, 25A, 19.

29. H.C Freeman and M.L, Golcmb, J. Chem. Soc. , (D), 1970, 1523.

30. R. McWeeny, R. Mason and A.D.C, Towl, Discuss. Faraday Soc, 1969, 47, 20.

31. L. Aslanov, R, Mason, A.G. Wheeler and P.O. \^himp, J. Chem. Soc. ,

(D), 1970, 30.

32. L. Cavalca, M, Nardelli and G. Branchi, Acta Cryst., 1950, 13, 688.

33. J.K. Stalick and J.A. Ibers, Inorg. Chem., 1969, 1084.

34. J.S. Ricci and J.A. Ibers, J. Amer, Chem. Soc. , 1971, 93_, 2391.

35. J.J. Daly, J. Chem. Soc. , 1964, 3799.

36. H.D. Springall and L.O. Brockway, J. Amer. Chem. Soc., 1938, 60, 996.

37. L, Manejlovic-Muir, J. Chem, Soc. (A), 1971, 2796.

38. F.A. Cotton and G. Wilkinson, * Advanced Inorganic Chemistry*,

John Wiley and Sons, (1962), p.104.

1 2 9

"Now, what I want is Facts,,,,

Facts alone are wanted in life,"

.... Charles Dickens,

130

CHAPTER 5

The Crystal and Molecular Structure of

OxodichloroCacetone N-benzoylhydrazonato(l-)

N *,03-tri-phenylphosphinerhenium(V)

131

5.1. Introduction

Hydrazines can react with^ t r a n s i t i o n metals to give n i t r i d o and

dinitrogen complexes, thus, both types may be relevant to abiotic

nitrogen f i x a t i o n . During the past few years the Nitrogen Fixation

Laboratory at Sussex University has undertaken an investigation of

the reactions of hydrazine with halogenophosphine complexes.

The mode of reaction of the hydrazine i s dependent on the nature

of substituent groups. Thus 1,2-dialkylhydrazines are cleaved at

the N-N bond on reaction with [ReOCl2(PPh2> whereas aroyl hydrazines

y i e l d chelate complexes with retention of the N-N bond."^ Further

reaction of these chelate complexes leads to a series benzoylazo 2

complexes, and dinitrogen complexes. 3

Issa and co-workers have reported the preparation of chelated

benzoylhydrazone complexes of f i r s t - r o w t r a n s i t i o n metals:

CMe 2+

M = Mn, Co, Ni, Zn, Cu, Cd.

An i . r . band at about 1640 cm confirmed that the aroylhydrazine

moeity was co-ordinated i n the keto form and a band at about 1620 cm ^

was assigned to v (C=N).

The related thiosemicarbazone nickel complexes are neutral, and

contain the hydrazone bonded i n an enol form. An X-ray s t r u c t u r a l 4 determination has been published f o r a nickel thiosemicarbazone complex

and i s shown schematically below.

1,298^-^2

The X-ray c r y s t a l structures of two nickel bis(thiosemicarbazide)

complexes have been r e p o r t e d ^ a n d are shown schematically below,

with bond-lengths appended.

-1 2t

HN'

^ J 2 1.44?

I.33S 1.298

^''l,75X NH.

CNi(H2NNH-CSNH2)23SO^ OH"

r. M2 1.54? 1,918

2.16 1,44A >.

CNKH^NNCSNH^)^]

133

The changes i n the N(l)-N(2) and C-N(2) distances on conversion to the

neutral complex presumably r e f l e c t the change i n hybridization at 1!(2) 3 2 from sp to sp .

2 Chattj Dilworth, and Leigh recently described a series of ketone

hydrazonato-complexes of rhenium. Acyl and aroyl hydrazine hydro-

halides react with ketones and CReOCl (PPh ) 1 i n r e f l u x i n g benzene

to give a derivative of the ketone hydrazone, of general formula (A)

R» = Ph

= Me

X = CI

These workers have also investigated s i m i l a r arylimido-complexes

of molybdenum of general formula (B)

Ar» (B) where Ar = C H

Ar'= £MeC H 6 4 X = CI

PMe Ph

According to Chatt^ the rhenium ketone hydrazonato-derivatives

show two sharp i . r . bands at about 1560 and 1600 cm ^ assigned t o

v(C=N). The absence of any i . r , bands assignable t o v(N-H) or v(C=0)

suggests that the hydrazine moiety i s bonded i n the eml form. The

X-ray s t r u c t u r a l analysis of oxodichloroCacetone N-benzoyl-hydrazonato

( l - ) - N * , 03-tri-phenylphosphinerhenium(V) and chloro(dimethylphenyl-

phosphine)[N-£-tolyl-N*-benzoyldiimine-N-0]£-tolylimido molybdenum

134

were therefore undertaken to ascertain whether the hydrazine moiety

i s bound i n the keto or enol form.

5.2. Experimental 2

The rhenium complex was prepared by J.R. Dilworth of the

A.R.C, Unit of Nitrogen Fixation, University of Sussex, by the following

method. Oxotrichlorobis(triphenylphosphine)rhenium(V) (0.50g) and

monobenzoyl hydrazine hydrochloride (0.50g, 4.6 mol) were heated under

r e f l u x i n 1:1 benzene-acetone (50 ml) f o r 20 minutes; The clear green

solution was evaporated t o 10 ml at 15 mm Kg, and the complex

precipitated as a green s o l i d upon addition of ethanol (40 ml).

This r e c r y s t a l l i s e d from acetone as small green prisms (0.35 g 82%),

(Found: C, 47,6; H, 3,7; N, 4.1, ^2Q^2S^'^2^^2^2^^^ requires

C, 47,3; H, 3.7; N, 4.0%). Preliminary

Optical examination of the crystals revealed e x t i n c t i o n d i r e c t i o n s

along the body diagonals of the prisms. A small c r y s t a l was mounted

to o s c i l l a t e about a body diagonal, and o s c i l l a t i o n , zero, and f i r s t

layer Weissenberg photographs were taken. The Laue symmetry was

determined as 2/m and the o s c i l l a t i o n axis was the unique axis, which

was thus labelled the b axis. Similar photographs were then taken with

the c r y s t a l mounted about the a axis.

The systematic absences were of the type

h 0 i: a = 2n + 1 0 k 0: k = 2n + 1

Hence, the space group was determined uniquely as ?2^/c (No. 14).

The density was measured by the f l o t a t i o n method, using a mixture of

sym-tetra-bromo ethane and carbon t e t r a c h l o r i d e , and was found to be

1.67(2) g/cc,•

Unit c e l l parameters were determined from the photographs as:

135

6 = 113.4(5)^

a = 10.60(3) 8

b = 18.45(4) 8

c = 15.58(3) 8

U = 2788(7) 8

This means f o r a molecular formula of C^^H^^Cl-N^O^PRe, (M = 710.7, Zo zo Z Z 2.

F(OOO) = 1392) the number of molecules per u n i t c e l l i s four.

The calculated density, , i s 1.69 g/cc.

Data Collection

The c r y s t a l used f o r preliminary photographic inv e s t i g a t i o n ,

(which had a maximum dimension of 0.2 mm), was mounted with the b axis

of the u n i t c e l l p a r a l l e l to the if axis of a General E l e c t r i c XRD 6

apparatus. The preliminary diffractometer examination showed that the

chosen set of axes formed a l e f t handed set. In order t o comply

with the requirements of the d i f f r a c t i o n angle se t t i n g program, they

were relabelled to give a right-handed set. This meant that the

space group was redefined as P2^/a. Cell dimensions were re-determined

by accurate measurement of a x i a l 29 and values as:

a = 15.610(1) 8 ^ ^ 2^g^^3^ g3

b = 18.510(1) 8 105.8 cm"^ c = 10.650(1) 8

B = 114,68(5)°

Using the procedure described i n Chapter 4, the i n t e n s i t i e s of 3310

re f l e c t i o n s were measured with CuK radiation out to a maximum 29 a

value of 90°, Backgrounds were measured as previously described.

Of the r e f l e c t i o n s measured, a t o t a l of 2678 were obtained for which

the net i n t e n s i t y was greater than 3 x a ( I ) , where aCD was computed

from equation (4.1.).

Structure Determination

The 2678 non-zero r e f l e c t i o n s were corrected f o r Lorentz and

136

polarisation e f f e c t s . An approximate o v e r a l l isotropic temperature

factor and an absolute scale factor were calculated t o enable the

computation of a three dimensional Patterson map, sharpened t o

'point atoms at r e s t ' .

The Patterson map

The general equivalent positions f o r space group P2^/a are;

(x,y,z); (x,y,2); (J+x, ^-y^z); ( J - x , J+y,z).

This gives r i s e to Marker peaks i n the asymmetric unit of the Patterson

synthesis ( t o t a l sjmimetry P2/m) V7ith the following coordinates,

a) 2x, 2y, 2z(l)=--; b) J-2y, 0 ( 2 ) ; c) J+2x, J , 2z ( 2 ) ;

''•relative heights of the peaks are given i n parenthesis.

A l l peaks i n the asymmetric unit of the Patterson map of height > 400 are l i s t e d i n Table 5.1.

TABLE 5.1.

Peaks of height > 400 i n the asymmetric unit of the Patterson map

u ( i n 60^^^) v ( i n 60^^^) w(in 60^^^) Height Relative U

1 30 11.5 0 938 2

2 58 30 6 928 2

3 28 18.5 6 523 1

. There i s only one peak present i n the Patterson map which

corresponds t o vector peak (b) (i>5-2y,0), namely peak ( l ) at

(30/60, 11.5/60, 0). This gives a y coordinate of 9.25/60.

Simila r l y there i s only one peak present which corresponds to vector

peak ( c ) , (i+2x, J , 2z), namely peak (2) at (58/50, 30/60, 6/60),

which gives the x coordinate as 14/50 and the z coordinate as 3/60.

Confirmation of these f r a c t i o n a l coordinates was obtained from

the single weight, rhenium-rhenium vector peak (3) at u = 2x, v = 2y,

w = 22. The coordinates of the unique rhenium atom v;ere thus

137

determined to be x = 0.2333^ y = 0.1542, z = 0.0500.

Solution of the Structure

The position of the rhenium atom was used i n a structure factor

calculatipn using only the strongest 50% of the r e f l e c t i o n s , i n order

to conserve computing time. The r e l i a b i l i t y index, R, at t h i s stage

was 0.27, Using the phases determined by the rhenium atom a three

dimensional difference electron density synthesis was computed. From

t h i s , the two chlorine, the phosphorus, and the carbon atoms of the

three phenyl rings bonded to the phosphorus atom could readily be seen.

A new Fourier difference synthesis was computed using phases calculated

from these atoms. The value of R was 0.18 at t h i s stage. From the

difference map, a l l remaining atoms were determined. A f i n a l difference

synthesis showed no s i g n i f i c a n t residual electron density except i n

the region of the rhenium atom, which was taken to be an indication

of anisotropic thermal motion. The value of R had f a l l e n t o 0.13.

In view of the high absorption c o e f f i c i e n t (y = 105.8 cm ) of the

cr y s t a l f o r CuK^ r a d i a t i o n , an absorption correction was applied, as

i n the previous chapter.

Results f o r the Crystal C^gH^gCl^N^O^PRe

boundary planes distance to o r i g i n 4 divs f 1 cm

001, 001 0.25 divs. 0.0062 cm

i l O , 110 . 0.35 divs. 0.0087 cm

230, 230 0.25 divs. 0.0052 cm

The calculated transmission fact o r s , based on a line a r absorption

c o e f f i c i e n t of 105.8 cm , varied from 0.25 t o 0.39. Using a l l the

2678 absorption corrected data, the atomic coordinates, together with

isotropic temperature fact o r s , were refined f o r two cycles of f u l l -

matrix least squares to a value f o r the r e l i a b i l i t y index, R, of 0.10.

138

A l i s t of observed and calculated structure factors was computed.

Several r e f l e c t i o n s which had extremely bad agreement between observed

and calculated values, were discovered to have t h e i r i n t e n s i t i e s

mispunched on the data cards. These were corrected. Isotropic

refinement was thought t o be complete at t h i s point since the average

s h i f t per parameter refined was less than half the average estimated

standard deviation of the parameters. Refinement was continued f o r

tv;o further cycles of least squares with anisotropic temperature

factors f o r the rhenium, phosphorus, and the two chlorine atoms.

The r e l i a b i l i t y index R had now reduced to 0,057. At t h i s point i n

the refinement, the Hughes weighting schem.e (see Chapter 1) was

introduced. The value of F" v/hich gave ZwAF to be f a i r l y constant

over the range of F., (obs.) was found to be 5.8, on an absolute scale. nkZ

The f i n a l value of R was 0.052, and the average value of the s h i f t /

error was .026, The f i n a l atomic parameters are given i n Table 5.2.

and Table 5.7 gives a l i s t of F^j^j^(obs.) vs F^j^^(calc,).

The scattering factors used f o r P, CI, N, C, and 0 were from the 7 8 usual tabulation. Those f o r rhenium were by Cromer and Waber.

The effects of anomalous scattering were included i n the structure

factor calculations, values of Af* and Af" were those given by Cromer.

5,3. Results and Discussion of the Structure

. OxodichloroCacetone N-benzoylhydrazonato ( 1 - ) - N * , 0 ] - t r i -

phenylphosphinerhenium(V) exists as discrete monomeric molecules,

CReOCl2{PhCONNC(CH2)2}(PPh2)] one of which i s shown i n Fig. 5.1.

i n which the thermal e l l i p s o i d s have been drawn t o include 50%

probability.^*^ The rhenium atom has dis t o r t e d octahedral coordination.

The chlorine atoms are c i s to each other, and trans t o these two atoms

are the phosphorus atom and the nitrogen atom from the ketone hydrazonato

group. The remaining two positions, which are of course trans, are

13S

TABLE 5:2

Final positional parameters, (x,y,2), expressed as

fractions (x lO") of the a, b, and c unit c e l l dimensions respectively,

plus estimated standard deviations in parenthesis ( f r a c t i o n a l , x 10 ),

and estimated standard deviations i n parenthesis.

Atom X y z B Re 2323(1) 1562(1) 508(1) P 3555(2) 1918(2) 2779(3) C K l ) 1209(3) 1117(2) -1668(4) Cl(2) 3041(2) 2214(2) -686(3)-0(1) 1667(6) 2186(5) 867(9) 3.5(2) 0(2) 3189(5) 732(5) 639(8) 3.3(2) N(l) 1870(8) 685(6) 1364(11) 3.5(2) N(2) 2422(8) 53(6) 1647(11) 3.9(2) 0(1) 3099(9) 116(7) 1229(13) 3.0(2) C(2) 1133(11) 610(9) 1695(15) 4,7(3) C(3) 430(13) 1234(10) 1391(20) 6.8(4) C(4) 972(13) -64(10) 2350(19) 6.5(4) Ring (1) C(5) 3742(9) -464(7) 1355(13) 3.5(3) C(6) 4574(10) -348(8) 1215(15) 4.3(3) C(7) 5202(11) -928(9) 1382(17) 5.3(3) C(8) 4982(12) -1626(9) 1687(17) 5.3(3) C(9) 4151(11) -1753(9) 1806(16) 4.9(3) C(10) 3509(10) -1179(8) 1633(15) 4.3(3) Ring (2) C ( l l ) 3748(9) 2883(7) 3037(13) 3.3(3) C(12) 4426(12) 3125(9) 4307(17) 5.3(4) C(13) 4546(13) 3882(11) 4576(19) 6.3(4) C(14) 4028(11) 4380(9) 3600(15) 4.9(3) C(15) 3354(10) 4132(8) 2298(15) 4.1(3) C(16) 3208(9) 3389(8) 2005(14) 3.7(3) Ring (3) C(17) 4728(9) 1558(7) 3234(13) 3.4(3) C(18) 5283(11) 1277(8) 4558(16) 4.6(3) C(19) 6233(12) 1061(9) 4852(18) 5.7(4) C(20) 6568(11) 1131(9) 3815(17) 5.1(3)

140 Table 5.2. (contd. )

C(21) 6002(10) 1402(8) .•^520(15) 4 5(3) C(22) 5082(9) 1608(7) 2219(13) 3 5(3)

Ring (M) C(23) 3179(9) 1670(7) 4118(13) 3. 2(3) C(24) 2698(11) 2176(9) 4553(16) 5. 1(3) C(25) 2310(12) 1966(10) 5497(17) 5. 6(4) C(26) 2376(12) 1275(10) 5961(13) 5. 6(4) C(27) 2850(13) 753(10) 5513(19) 6. (4) C(28) 3242(11) 956(9) 4572(15) 4. 8(3)

'•'•'rheniuin chlorine and phosph orus anisotropic temperature factors ( X 10' as they appear in exp-(3j^j^h ^33^' ' 26^2^k + 2B 13^^^. ^23^^)

Standard deviations are given in parenthesis.

Atom 6 3 11 22 ^33 ^23 Re 36(1) 25(1) 74(1) - - I ( l ) 30(1) -6(1) P 38(2) 20(1) 82(4) -2(1) 31(2) -3(2) C l ( l ) 52(2) 40(2) 98(4) -12(1) 28(3) -18(2) C l ( 2 ) 51(2) 30(1) 99(4) -1(1) 44(2) 1(2)

141

occupied by the s i n g l e oxygen atom and the one from the keto hydrazonato

c h e l a t e r i n g . The f i n a l molecular parameters are given i n Table 5.3.

together w i t h t h e i r standard d e v i a t i o n s .

The d i f f e r e n c e i n bond lengths between R e - C l ( l ) and Re-Cl(2) i s

0.04 8 which i s s i g n i f i c a n t . Mason and h i s coworkers^'^ have found,

using R e ( I I I ) compounds t h a t the t r a n s - i n f l u e n c e o f a co-ordinated

t e r t i a r y phosphine l i g a n d on an M-Cl bond l e n g t h i n an octahedral complex

i s an increase o f about 0.1 8. I t i s t h e r e f o r e p o s s i b l e t h a t t h e 0.04 8

d i f f e r e n c e a r i s e s from a lengthening o f R e - C l ( l ) by t h i s e f f e c t . On

the other hand, the d i f f e r e n c e could a r i s e from a shortening o f the Re-Cl(2)

bond by a 'reverse t r a n s e f f e c t ' due t o the n i t r o g e n atom t r a n s t o C i ( 2 ) .

Whatever the reasoning t h e r e i s no doubt t h a t the values l i e a t the lower

end o f the range o f Re(V)-Cl bond lengths found i n other compounds,

eg, :- 2.408, 2.408. 2.428, 2.Mil 8 i n ReCl-(NCH^)(P(C_H.)-C H ) and

2.433, 2.399, 2.410 8 i n ReCl-(NC-HnCOCH^)(P(C H J C^HJ^.-*-^

Note i n the given examples, th e r e i s no c h l o r i n e atom t r a n s t o a

phosphorus atom.

The Re-P bond l e n g t h o f 2.469 8 compares w e l l w i t h the values

r e p o r t e d f o r Re(V) compounds, such as 2.481 and 2.485 8 i n ReCl^CNCH^)

^^^'^6"5^2'^2"5^2»'^^ '" ^ ^^^^3^^^6V^^3^^^^^2"5^2^6"5^2*'^^ 2.461 and 2.457 8 ReCl3(NCgH^C0CH3)(P(C2H^)2CgH^)2.'^^ A l l the given

examples had the phosphorus atom t r a n s t o another phosphorus atom, but

i n the t i t l e complex the phosphorus atom i s t r a n s t o a c h l o r i n e atom.

I n the R e ( I I I ) complexes stu d i e d by Mason," " the e f f e c t o f a t e r t i a r y

phosphine l i g a n d t r a n s t o a c h l o r i n e l i g a n d was t o decrease i t s l e n g t h

by about 0.05 8. However, th e r e does not appear t o be any appreciable

change i n the bond l e n g t h o f the t i t l e complex.

The Re-N(l) bond di s t a n c e o f 2.123 8 i s longer than the Re-N value

of 1,97(2) 8 found i n Re(I)Cl(N^)(P(CH^) C^K^)/^ but i t i s comparable t o 2 -J 2 D 3 4

the R e ( I I I ) - N s i n g l e bond distance o f 2,05 8 found i n Re(III)Cl_2PPh-.MeCN.-^^ o 3

C(8) '

CI (2)

^ig- 5.1. The molecular structure of iReOCyPhCONNClCH,) . ) (PPh,) ]

143

TABLE 5.3.

Molecular parameters f o r ^2S^2b^'^2^^2^2^^^^

Bond lengths are given i n angstroms, angles i n degrees

Standard d e v i a t i o n s are given i n parenthesis.

BOND LEIfGTHS

2.459(3) P - C ( l l )

2.390(3)

2.348(4)

2.123(12)

1.690(10)

2.012(9)

1.34(2)

Re -P

Re - C l ( l )

Re - C l ( 2 )

Re - N ( l )

Re -0(1)

Re -0(2)

0 ( 2 ) - C ( l )

C ( l ) - N ( 2 )

N ( 2 ) - N ( l )

N ( l ) - C ( 2 )

C(2)-C(3)

C(2)-C(4)

C ( l ) - C ( 5 )

C(5)-C(6)

C(6)-C(7)

C(7)-C(8)

C(8)-C(9)

C(9)-C(10)

C(10)-C(5)

P -C(23)

R ( l )

C ( l l ) - C ( 1 2 )

C(12)-C(13)

C(13)-C(14)

C(14)-C(15)

C(15)-C(16)

C ( 1 6 ) - C ( l l )

P -C(17)

C(17)-C(18)

C(18)-C(19)

C(19)-C(20)

C(20)"C(21)

C(21)-C(22)

C(22)-C(17)

C(23)-C(24)

C(24)-C(25)

C(25)-C(26)

C(26)-C(27)

C(27)-C(28)

C(28)-C(23)

^R(2)

R(3)

R(4)

144

TABLE 5.3. continued

BOND ANGLES P -Re - C l ( 2 ) 92.3(1) C(10)-C(5) -C(6) 120(1) / P -Re 92.7(3) Re -P - C ( l l ) 115(1) N(l)-Re - C K l ) 85.1(3) P - C ( l l ) - C ( 1 2 ) 118(1) C l ( l ) - R e - C l ( 2 ) 88.3(1) P - C ( l l ) - C ( 1 6 ) 122(1) Cl(2)-Re -0(1) 104.1(4) C ( l l ) - C ( 1 2 ) - C ( 1 3 ) 119(1) V C l ( l ) - R e -0(1) 101.0(3) C(12)-C(13)-C(14) 121(1) N ( l ) -Re- 0(1) 94.8(5) C(13)-C(14)-C(15) 119(1)

R(2) P -Re -0(1) 83.9(3) C(14)-C(15)-C(16) 121(1) R(2)

Cl(2)-Re -0(2) 88.4(3) C ( 1 5 ) - C ( 1 6 ) - C ( l l ) 119(1) C l ( l ) - R e -0(2) 90.0(2) C ( 1 6 ) - C ( l l ) - C ( 1 2 ) 120(1) N(l)-Re -0(2) 73.8(4) 'Re -P -C(17) 117(5) P -Re -0(2) 84.8(2) P -C(17)-C(18) 122(1) 0(1)-Re -0(2) 165.5(4) P -C(17)-C(22) 117(1) 0(2)-Re - N ( l ) 73.8(4) C(17)-C(18)-C(19) 118(2)^^ Re - N ( l ) -N(2) 116 ( 1 ) C(18)-C(19)-C(20) 119(1) N ( l ) - N ( 2 ) - c ( i ) 111(1) C(19)-C(20)-C(21) 121(2)

^R(3) N ( 2 ) - C ( l ) -0(2) 119(1) C(20)-C(21)-C(22) 120(2) R(3)

C ( l ) - 0 ( 2 ) -Re 119(1) C(21)-C(22)-C(17) 121(1) Re - N ( l ) -C(2) 132(1) C(22)-C(17)-C(18) 121(1)^ N ( 2 ) - N ( l ) --C(2) 112(1) C(17)-P -C(23) 109(1) N(l ) - C ( 2 ) --C(3) 119(2) C(17)-P - C ( l l ) 103(1) N ( l ) - C ( 2 ) --C(4) 122(1) C(23)-P - C ( l l ) 103(1) C(3)-C(2)- •C(4) 119(2) Re -P -C(23) 109(1) 0 ( 2 ) - C ( l ) --C(5) 118(1) P -C(23)-C(24) 119(1) N( 2 ) - C ( l ) - C ( 5 ) 122(1) P -C(23)-C(28) 121(1) C ( l ) - C ( 5 ) -•C(5) 122(1) C(23)-C(24)-C(25) 120(1)\ C ( l ) - C ( 5 ) - C(10) 119(1) C(24)-C(25)-C(26) 122(2) C(5)-C(6)- C(7) 120(1)) C(25)-C(26)-C(27) 119(2)1

R(4) C(6)-C(7)- C(8) 120(2) C(26)-C(27)-C(28) 120(2) R(4)

C(7)-C(8)- C(9) 121(2) R ( l ) C(27)-C(28)-C(23) 120(2)

C(8)-C(9)-C(10) 120(2) R ( l ) C(28)-C(23)-C(24) 119(2)/

C(9)-C(10) -C(5) 119(2),

145

Thus the Re-N appears t o be a normal s i n g l e bond.

The Re-O(l) bond distance o f 1.690 8 i s longer than the distance

of 1.60 8 found i n ReOCl (PPhEt ) j"^^ ( t h i s value i s not very accurate 3 2 2

since only two dimensional v i s u a l data v/as used), but i s s l i g h t l y

s h o r t e r than the values of 1.73 8 i n (Et^N )ReOBr^^(H20) .-" 1.735 8 i n

Ke^O^iS^CliEt^)^,'^^ 1.71 S i n (Ph^^As)ReOBr^^(KeCN) and much s h o r t e r than

1.86 S i n LRe^OCl^^}.^''^^

The Re-0(2) bond l e n g t h o f 2.01 8 compares v;e l l w i t h the av.

bond distance o f 2.013(9) 8 found i n C^^^H^Ql^^O^Re(III)2j^"*" but i s

s h o r t e r than the non b r i d g i n g oxygen-Re distances found i n

Re20Cl2(C2H^C02)2CPCgH^(C2H^)232^^ ( s ^ - 2.109(10)8). Thus the Re-0(2)

bond appears t o be s i n g l e . Cotton and Lippard"*"^ have derived a Re(V) r a d i u s o f 1.38 8 i n

23 o the bromorhenates, by use of Pauling*s value o f 1.11 8 f o r the Br

r a d i u s . On t h i s b a s i s , again using Pauling's r a d i i t a b l e s , they

suggest t h a t t h e Re-O s i n g l e bond l e n g t h should be 2.04 8. They

f u r t h e r suggest t h a t the Re-O bond l e n g t h of 1.86 8 found i n the 4-

Re^OCl^Q i o n should be a t y p i c a l Re=0 double bond l e n g t h . Doedens 24

and Ibers found t h a t these two values f i t Pauling's e m p i r i c a l r u l e t h a t D(n) = D ( l ) - 0.6 l o g n, where D(n) i s the l e n g t h o f the bond

of order n. They suggested t h a t the t r i p l e - b o n d l e n g t h should be

1.7 5 8. Thus t h e bond Re-O(l) appears t o be a t r i p l e bond.

The metal can be considered t o use i t s s i x valence o r b i t a l s

5d 2> 2 ? j 6s, 6p , 6p and 6p t o form o-bonds w i t h the s i x z x^-y^ - ^x * y l i g a n d s . The empty d^^ and d^^ would be a v a i l a b l e t o overlap w i t h

t he p and p o r b i t a l s o f the t e r m i n a l oxygen t o form an e f f e c t i v e x z t r i p l e bond. (This leaves the d o r b i t a l f r e e t o accommodate the

xz

remaining two d e l e c t r o n s , t h i s e x p l a i n i n g t h e diamagnetism of the

compound.)

146

> y

dxy Px or or

dyz Ez

Fi g . 5.2. A schematic diagram of the o r b i t a l s i n v o l v e d i n the

TT-bonding between the rhenium atom and the t e r m i n a l

oxygen atom.

I n other a r y l i m i n o and oxo complexes, where th e r e i s a s h o r t

M-L(M = metal, L = 0 or N) bond l e n g t h , the s t e r i c hindrance caused by

a close approach of the L atom t o the metal may be r e l i e v e d e i t h e r

by pushing the l i g a n d s c i s t o L towards the t r a n s X atom ( l e a d i n g t o

a long M-X bond d i s t a n c e ) or by lengthening the bonds c i s t o the 25

metal-L bond. I n the t i t l e complex the c i s atoms t o 0(1) i e .

C K l ) , C l ( 2 ) , P, aid N ( l ) are bent av;ay towards the t r a n s 0 ( 2 ) atom.

The only apparent increase i n length i s the Re-N(l) bond l e n g t h .

The t h e o r e t i c a l s i n g l e bond l e n g t h o f Re(V)-N, c a l c u l a t e d using the

covalent r a d i i o f N(0.70 S)^^ and Re(V) (1.38 8)- ^ gives a value o f

2.08 2. Thus the Re-N(l) distance i s longer by 0.04 S.

The phosphorus-carbon bond lengttis i n the triphenylphosphine

groups are normal, the mean of 1.81 8 being comparable w i t h the sum o f

the covalent r a d i i (1.84 S) and t o values i n other arylphosphine

complexes, eg. 1.826 S i n [(7T-C2H^)Ni(PPh2)Ph] 1.834 8 i n

C(Tr-C5H^)Mo(C0)2-(C0Me)(PPh3)] 1.824 8 i n ?.emi^{?{C^W^)^)and

147

the P-C distance of 1.828 8 i n the uncomplexed triphenylphosphine 28 2 2 molecule. Each of the C(sp )-P-C(sp ) angles i n the t i t l e complex

(mean 105.1°) i s less than the r e g u l a r t e t r a h e d r a l value o f 109^28*,

t h i s general p a t t e r n i s repeated i n each o f the triphenylphosphine trans­

i t i o n - m e t a l complexes which have been subjected t o an X-ray study (c/.

mean values o f 105.1° i n R e N C l . ( P ( C _ H ^ ) . ) . a n d 103.9° i n 2. b ^ 6 2

E ( P P h 2 ) 2 C u ) B H ^ ] a n d (103.0°) i n the uncomplexed triphenylphosphine 28

molecule. The 18 C-C bond lengths i n the triphenylphosphine l i g a n d

range from 1.36 - 1.44 8 ( a l l +_ ca. 0.03 8), and t h e average value of

1.41 8 i s s l i g h t l y l a r g e r than-the spectroscopic value of 1.397 8

appr o p r i a t e t o benzene. There i s probably some ' f l a p p i n g ' of the

phenyl r i n g s about the phosphorus atom since the i n d i v i d u a l i s o t r o p i c

thermal parameters are higher than normally expected. 31 32 33 34

Several workers ' ' ' have n o t i c e d t h a t the phosphorus atom of t h e triphenylphosphine l i g a n d i s displaced from the planes o f the

34

aromatic r i n g s . KcPhail et at suggested t h a t t h i s e f f e c t i s l i k e l y

t o be due t o Van der V/aal's r e p u l s i o n between the phenyl groups.

However, i n the t i t l e complex the phosphorus atom and the aromatic

r i n g s R ( l ) , R(2) and R(3) are planar w i t h i n the l i m i t s o f experimental

e r r o r . (Table 5,4.).

Bonding i n the che l a t e r i n g system

The bond angle N(l)-Re-0(2) deviates from 90° t o 73.8° so as t o form

the c h e l a t e r i n g . The C ( 2 ) - N ( l ) distance o f 1.34 8 corresponds t o the

accepted p a r t i a l double bond l e n g t h o f 1.32 The bond distances

from 0 ( 2 ) t o the two methyl 0 ( 3 ) and 0 ( 4 ) atoms (1.53 and 1.50 8 2 3

r e s p e c t i v e l y ) compare reasonably w e l l w i t h the s i n g l e Csp -Csp bond

l e n g t h o f 1.51 8. The methyl groups are ' t w i s t i n g * , since t h e i r

i n d i v i d u a l i s o t r o p i c thermal parameters are high. The l e a s t squares

plane through t h e atoms 0 ( 2 ) , N ( l ) and 0 ( 3 ) and 0 ( 4 ) (Table 5.4.), shows

148

TABLE 5.4

Planes o f best f i t (Least Squares)

(a) c o e f f i c i e n t s ^

Plane D e s c r i p t i o n P Q R S -1 c h e l a t e r i n g 3.981 6.136 7.555 2.256 2 around C ( l ) 4.286 6.080 7.525 2.327 3 around C(2) 2.503 7.803 7.924 2.119 4 around N ( l ) 3.214 6.297 7.954 2.137 5 phenyl r i n g R^ 0.935 3.477 9.221 1.408 6 P-phenyl r i n g R 14.397 -0.070 -7.840 2.984 7 P-phenyl r i n g R 3.474 16.955 2.225 5.055 8 P-phenyl r i n g . 9.510 - 4.311 4.625 5.582

a) Each plane i s represented by PX+QY+RZ = S, where X, Y, and Z are the coordinates (fractional) r e f e r r e d t o the u n i t c e l l axes.

(b) Deviations from Planes i n 8

Atom i

1 2 3 pla n e —

4 5 6 7 Re .02 .00 N ( l ) -.02 -.01 .01 N(2) .01 -.01 .00 0(2) -.02 -.01 CCD .01 .02 C(2) .02 .00 C(3) -.01 C(4) -.01 C(5) -.01 .01 C(6) .00 C(7) -.01 0( 8 ) .02 C(9) -.01 0(10) .00 P -.06 .06 0(11) .01 0(12) .09 0(13) -.05 0(14) -.04 0(15) .01

08

TABLE 5.4. continued

149

Atom C 16) C 17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28)

150

t h a t C(2) i s o f f the plane by only 0.02 8, which i s not s i g n i f i c a n t ,

and the remaining atoms are on the same plane. This i n d i c a t e s t h a t 2

C(2) i s sp h y b r i d i z e d . F u r t h e r evidence f o r t h i s i s t h a t the angles

around the atom C(2) a l l approach 120^.

The N ( l ) - N ( 2 ) distance i s 1.41 8, which i s 0.03 8 smaller than

the accepted s i n g l e bond l e n g t h o f 1.44 _+ 4 8* , Thus the bond has

very strong s i n g l e bond character. The l e a s t squares plane through the

atoms N ( l ) , Re, C(2) and N(2) (Table 5.4.) shows t h a t the atom N ( l )

i s only 0.01 8 out o f t h e plane, which i s not s i g n i f i c a n t , whereas t he

remaining atoms a l l l i e on the same plane. This vjould i n d i c a t e t h a t 2

N ( l ) i s also sp h y b r i d i z e d but the r e are g r e a t e r d i s t o r t i o n s from the

more symmetrical 120*^ arrangement. The N ( 2 ) - C ( l ) d i s t a n c e o f 1.31 8,

im p l i e s m u l t i p l e bond character between these atoms ( s i n g l e bond l e n g t h

i s 1.47 g.)''^ The C ( l ) - 0 ( 2 ) bond l e n g t h o f 1.34 8 i s considerably longer than

1.23(1) 8*^ f o r the C=0 bond, but i t i s comparable t o the 1,36(1) 8

of the p a r t i a l double bond as i n c a r b o x y l i c acids or e s t e r s . T h e

bond l e n g t h C ( l ) - C ( 5 ) ( 1 . 4 4 8) can be compared w i t h the C-H^-C=0 bond b o

l e n g t h i n s a l i c y l i c a c i d o f 1.46 S."^ The reason f o r the s l i g h t

s h ortening o f the bond l e n g t h may be explained by the * f l a p p i n g * o f

the phenyl r i n g attached t o C ( l ) , as shown by the i s o t r o p i c temperature

f a c t o r s . The l e a s t squares plane through the atoms, C ( l ) , C ( 2 ) ,

N( 2 ) , C(5) (Table 5.4.), shows t h a t the atom C ( l ) i s out o f the plane

by 0.02 8, which i s not s i g n i f i c a n t , whereas the remaining atoms a l l

l i e on the same plane. The bond angles around t h e atom C ( l ) are

near 120*^, thus i n d i c a t i n g the sp^ State.

From the above d i s c u s s i o n i t would appear t h a t the enol form (A)

i s present and not the keto form (B)

(A) (B)

Thus the chelate r i n g can be represented as:-

Re <-

1 5 i

I

/ The ch e l a t e r i n g , ( c o n s i d e r i n g atoms Re, l U l ) , N ( 2 ) , C ( l ) and

0 ( 2 ) ) , i s not p l a n a r , bending about atoms 0(2) and N ( l ) . The l e a s t -

squares plane (Table 5.4.) shows t h a t the atoms Re, N ( 2 ) , and C ( l )

are on one side of the plane and atoms 0(2) and K ( l ) are on the other

side.

I n t r a m o l e c u l a r S t e r i c I n t e r a c t i o n s

Consideration of the i n t r a m o l e c u l a r non-bonding distances less

than 3.6 8 (Table 5.5.) i n the molecule shows the s t e r i c congestion

t o be marked. The methyl group 0 ( 3 ) i s 2.82 8 from the atom 0 ( 1 ) ,

compared w i t h the sum o f the Van der V/aals r a d i i o f the atoms i n v o l v e d

of 3.4 8. The methyl carbon atom C(4) i s a t a distance o f 2.68 8

from the atom N ( 2 ) , the sum o f the Van der Waals r a d i i i n v o l ved i s 3.5 8

Other close approaches t o the ch e l a t e atom N(2) come from the phenyl

r i n g s , t h e c l o s e s t being 2.85 8, from the atom C(10). The c l o s e s t

carbon oxygen cont a c t distance i s between atom 0 ( 2 ) and C(6) o f the

152

TABLE 5.5.

less than 3.5 rt

•Short i n t r a m o l e c u l a r non-bonding contacts ( i n angstroms)

contacts distance contacts d i s t

Re. . . N(2) 3.024(11) 0 ( 2 ) . . .0(22) 3.15(1)

Re. . . 0(3) 3.509(24) 0 ( 2 ) . . .0(6) 2.81(2)

Re. .. C(23) 3.510(13) 0 ( 2 ) . . .0(17) 3.20(2)

Re...0(1) 2.907(12) 0 ( 1 ) . . .0(24) 3.57(2)

Re...0(2) 3.181(19) 0 ( 1 ) . ..0(2) 3.26(2)

P...0(2) 3.04(1) 0 ( 1 ) . . .0(23) 3.44(2)

P. ..0(1) 2.86(1) 0 ( 1 ) . . .0(3) 2.82(3)

P. . .01(2) 3.48(1) 0 ( 1 ) . . . N ( l ) 2.84(2)

P...N(l) 3.35(1) 0 ( 1 ) . . .0(11) 3.38(2)

01(1) . . .01(2) 3.31(1) 0 ( 1 ) . . .0(16) 3.14(2)

01(1) . . . N ( l ) 3.07(1) N ( l ) . . .0(28) 3.24(2)

01(1) ...0(2) 3,14(1) N ( l ) . . ,0(23) 3.35(2)

01(1) ...0(1) 3.18(1) N(2). . .0(10) 2.85(2)

01(2) .,.0(2) 3.05(1) N(2). . .0(28) 3.29(2)

01(2) ...0(22) 3.55(1) N(2). ..0(4) 2.58(3)

01(2) ...0(1) 3.22(1) 0(28) ...0(2) 3.53(2)

01(2) ...0(16) 3.52(1) 0 ( 2 ) . ..0(1). 3.45(3)

15

phenyl r i n g , compared t o the Van der Waal distance o f 3.4 8.

The atoms i n the coordinated sphere i n the complex, are arranged

so as t o prevent unacceptably close contacts between the l i g a n d atoms

bound t o the rhenium. The 0(1)...C1(1) and 0(1)...C1(2) contact

distances are 3.18 8 and 3.22 8 r e s p e c t i v e l y , compared w i t h the sum o f

the Van der Waal's r a d i i o f 3.20 8. The C1(2)...P contact of 3.48 8

and the C1(1)...C1(2) contact o f 3.31 8 can be compared w i t h t h e i r

r e s p e c t i v e Van der Waals distances of 3.70 8 and 3.60 8.

Chatt et at^^ found i n the complexes, cis-mer-CMoOCl (PHe Ph) ] z Z o

and cis-mer-[Mo0Cl^(PEt^Ph)^3, 0...CI contacts of 3.28 8 and 3.33 8

r e s p e c t i v e l y . The s h o r t e s t C1...P contact i n e i t h e r compound was

3.14 8. I b e r s ^ ^ observed i n sev e r a l o f h i s m e t a l - n i t r o g e n complexes,

t h a t the C1...N distances were reasonably constant a t about 3,02 8

and t h a t the CI...CI distances are a l l very s i m i l a r at around 3.33 8.

Packing o f the S t r u c t u r e

The F i g . 5.3. shows the u n i t c e l l contents as viewed down the

b a x i s , and the s t r u c t u r e can be seen t o pack as d i s c r e t e monom.eric

u n i t s . Because o f the l a r g e triphenylphosphine group i n the s t r u c t u r e ,

the packing of the molecules i s p r i m a r i l y determined by i n t e r a c t i o n s

o f the bulky phenyl r i n g s . Only s i x i n t e r m o l e c u l a r contacts are .

les s than 3.6 8 compared t o the sum of Van der Waals r a d i i o f methyl

carbons o f 4.0 8, and these are l i s t e d i n Table 5.6. A l l s i x , i n v o l v e

the phenyl r i n g carbons. The smallest distance i s between-the oxygen

atom 0(1) and carbon C(9) (3.24 8), t h i s compared t o the sum o f

Van der V/aals r a d i i o f the atoms i n v o l v e d o f 3.4 8.

/

Fia_5J. A pocking diagram of [ R e O C I ^ {PhCONNC ( C H j l J l P P h j ) ] molecules viewed along

the b axis.

TABLE - 5.6.

^28"26^^2^'2*^2^^^~^"^^^"^°'^^°^''"^^ contacts less then 3.6 8 (The (x,y,z) coordinates of the unprimed atoms are given i n Table 5.2, v/hile those of the primed atoms are l i s t e d here)

1 5 3

contacts

0(20)...0(27')

0(27)...0(7')

0(21)...0(1')

0(20)...0(24')

0 ( 1 ) . . . 0 ( 8 ' )

0 ( 1 ) . . . 0 ( 9 ' )

-x+1, -y, -z+1

-x+1, -y, -z+1

-x+1, y+1, -z

distance

3.59(3)

3.45(2)

3.52(2)

3.50(3)

3.59(2)

3.24(2)

156

TABLE 5.7.

Observed and calculated structure amplitudes for

OxodichloroCacetone N-benzoylhydrazonato(l-)-N*,0]-triphenyl-

phosphinerhenium(V).

Format

Jl IO|F I 10 F I o c'

The three r e f l e c t i o n s omitted for suspected extinction were

h k Jl 10 F I IOIF I o c' 1 2 0 2695 3617

2 0 0 2685 3506

2 0 1 3038 3980

It9 199 9 * 1 » 9 M S I O T ( -

1 » 9 M

9L£\ 19*1 V -ZZ9t e s c C 6 C e -ZbfX octi ( 6 9 1 1 9 -i99 l - 1 b 1 V 8 I C -0 1 C il* S 3 l OiL Z-C S l 9LL l 9 B » T -1101 0 * 3 1 9 iZt ( Z C 8 t z o i S O U s 90Z O Z Z £ B i l l lUJ • b l » M 9 CSS V 9 0 I e s z V 0 6 C I 0 > z c e z e u e IbL e c 9 t 6 V V 9 6 * Z

LOi 0 !

6 S i 5 Z Z 6 0 9 a g ^ S C e e c C O * 0 9 Z

s c * 9 * * C * 6 C s o c s t s * 6 V Z z e z * 9 9 C 4 * 6 1 C 9 9 1 c 9 6 8 i 9 r £ - • 3 Z £ z S S I i 0 9 Z 9 9 » Z

1 * Z * I 8 i C

9 f t 6 ; C 8 - ?C7 / Z * 9 * * i - 6 8 1 1 6 Z 9 6 8 9 9 - Z C b e z i i * Z Z 1 S - 0 6 6

9 6 Z 1 9 2 OCC o o s Z Z 9 9 i 6 0 Z 8

T Z P O

o z c 8 C 9 1 9 I T

S Z 8 e c o t

T 0 6 t 0 9 8 T

< 6 t S I *

i l l l 8 6 6 1 9 9 8 1 i c s i T C 8 i S B

T 9 » U

ill 9 9 t S / 9 1 6 0 1 6 ^ 6 1 Z S 9 1 B h S T Z - 6 C 9 6

1 * S « C

* Z E 1 8 Z ft t z c i 0 1 * 1 T 6 * I

T S * 1 t i r c i £ * 6 I

t B E l 1 9 9 1

i b 9 LZi. 6 - £ 3 5 1 I 9 D OtL LtL 9 - 8 B E * 0 * 0 1 - T * Z I I Z 0 8 9 bZL 1 - l E S 1 8 S 6 - * 0 S 8 * * TCC C 9 E 9 - BES Bli a - 9 * S * t s z a z & S Z > ~ 1 * 3 I S 3 i- ;*£ 3 * E 9 * 9 Z 6 9 * - Z B O l Z 9 I 1 9 - :** B * * 9 * 0 1 Z 9 1 1 E - s * s 1 6 S S - S 9 1 I I b l l 1 8 ^ Lt9 Z - B 2 S SBS *- £ E I 1 b i d 3 1 Z 1 S 3 £ 1 1 - O J b i ~ ; : 3 Z • S 3 Z 6 e z S 9 Z B 9 s n Z l I I Z- C O l S £ 9 t o e ilZ 1 1 9 1 1 8 9 9 1 1 - . 9 0 t 0 E Z I 9 9 1 9 2 9 9 Z E 9 6 CZE ^ t £ » E B * » J * B ! • 1 ^ C C I 1 1 * 1 E 6 9 2 * £ Z 1 6 S C T * 6 C t Z - 6 E E Z Z E 9 Z 1 £ O b Z Z C 6 0 1 2 9 0 1 1 t * 9 9 b S * 9 2 * £ 1 * 1 U b 5 * i 3 > * 1 1

U 9 1 b b £ ( * * 9 I Z

£ 1 > c

T 8 M 6 6 1 E 1 1 Z

S 9 8 E S 9 1

.r T 9 t * 0

e z z 9 * Z a - 2 Z £ 2 2 C * LL9 £ U 1 - T * » 1 E t * £ 6 £ £ 6 C 6 1 8 6 9 -O Z T l S C Z l s - Z 1 1 0 * 1 n - n * i i * o TEST * T M » - 3 1 Z 2 t Z b-

n * i i * o

0 Z * 1 S I S I E - 6 S S 9 1 9 8 - b i t 1 9 1 * S I C T 6 < e i Z - 6 * 6 6 £ 8 1 - * S f l • C 9 8 2 i S 6 1 Z 0 1 1 - 6 C Z 1 9 8 Z I 9 - / 9 b C l b 1 E 6 I 1 S E 3 S b i i Z 3 3 1 s - • : * 3 : 2 3 0 E * i 5 * 1 1 0 9 1 1 * S B I *-6 6 0 ! 0 2 1 1 9 E 6 Z 1 C B C I f - T 9 l « 0 S Z T T 6 * 1 1 s I 9 S 1 £ 6 9 1 2 -* Z t I ^ S t l * b 3 9 ^Li 1 - * 3 ; :;* 9 8 t Z I 8 9 2 1 c 2 0 2 * 9 1 6 0 6 £ S * E S z e s I C 9 z 1 S 9 9 E 9 9 9 9 * S B * * S Z T 9 C 1 0 1 8 1 Z 3 9 1 * S 5 1 E S c

L L 3 1 £ M I 9 8 3 1 Z * l 2 9 E 1 1 Z 9 E 2

6 E 1 1 S U Z

S *

9 0 * 9 0 * I

o s z XLZ 6 - O l E I S 1 E 1 c 1 * 5 1 ' 0 zii 93Z B - u z 3 3 E I * o z Z Z Z 9 - SOS S S S I 1 S £ 0 6 Z 9 9 * 1 O Z I S - S i s 9 6 S 0 s c z * 0 2 S 9 8 Z E I C *- Z l C S 8 C E IZL iLL i - T £ M B £ * ? C * 2 ^ E C E 6 Z z - 6 2 9 1 1 9 1 n o t 8 1 0 1 I - 1 2 8 1 S 3 0 1 - CBS £ * S 0 Z * I 1 * 1 6 6 C C 1 1 0 1 1 6 -hL\ 3 3 2 3 ; i 3 i 2 1 ( 1 9 - 1 * * I * 0 I Z Z £ 2 2 1 9 S S Z B S 1 -6 9 1 6 9 1 9 * 1 1 9 9 8 9 - * 8 2 • B E Z 9 I T S BES s 8 9 £ 1 1 S - E 9 E a * t S 7 1 1 3 M . * I Z Z i ; z * - b S I III * 1 6 9 C 1 Z SSE 2 E * E - S * 2 9 9 Z £ 8 9 * 0 1 1 b S * l 1 * * 1 Z -O I Z c z z 0 9 8 E Z E 9 0 Z l - T E I ' O

6 E I T B B 1 1 E 0 1 9 Z f t * 6 £ 9 2 1 I Z E I 2 h U 9 l i s 8 £ * 1 9 6 1 1 ?SE l ' £

< ' *S 0 9 S T l l ' 0 J I C Z fc£

» E 9 S 1 'JES 1 * * 8 ^^16 • ' O I S 2 1 8 1 9 1 e 8 s 9 M 6 8 2 S 9 Z 9 • '9 I E T / . 6 Z 0 S 9 1 9 9 1 S I I I 1EZ T * * * 0 * S b C O O l c 8 9 ( : I 6 ^ 1 1 2 ffZ * * 2 e Z E S l E 9 9 I T 1 9 1 b l l 1 S * l i * l ry ^ * 9 l f 9 9

R * B 1 / 8 S T * C I * 0 •» 'J l Z Z l •

S I B b 9 8 £ 9 E * * f * I E * ! I d Z 1 1 9 6 1 9 9 •••SI 1 9 1 1 E 2 S 0 1 S -S o t s • O i S * 1 « £ ' C E C 9 b Z b E 6 8 S l f 9 2 1 * * 9 / E 6 9 1 1 C 9 1 I 8 8 9 1 9 S 8

E 2 * I T * 1 T 6 » 0 S 8 9 8 S 9 9

* b Z C « 2 S S 9 T 6 C 2 1 6 * 9 S T b * £ 1 1 S Q I 9 1 0 * 1 6 9 E ; c 2 6 1 I 2 Z S * E O I f ^ l l z 2 2 2 B b l * 2 9 * S S S 1 9 8 * B B * E £ £ C 1 9 9 Z l 0 Z b I Z l Z 0 1 8 Z I I T Z » C O l T 0 9 1 0

T 2 2 £ 8 1 6 1 * 9 ' 0 8 0 * 9 9 £ 8

2 b S Z * S 1 9 * 9 Z 6 S 8 E S I 0 ^ 9 9 2 S S 2 6 * 1 9 C 0 2 1 1 6 1 S l b 9 8 S 9 9 2 0 9 1 * r ' 8 i * * t 9 2 £ 9 S 9 9 0 1 0 7 1 1 E 9 2 6 8 * 6 * 2 1 2 Z £ Z Z S 6 * 6 9 S £ 1 2 8 1 6 1 1 1 1 1 9 1 1 * 8 Z

1

E C C 1 9 1 1 1 1

T l ' 0 S E T l 3 7 6 6 C b t l 6 f C I 8

£ 0 9 OCS 6 2 9 * 2 6 £ 1 £ 9 9 o e s 8 * 6 S * / S 9 Z l * 2 8 C 1 6 S 2 1 2 Z S * 0 * I t * 9 0 9 E l l * I C Z c * z S Z b l Z * C I E 0 9 1 1 9 1 * b * S l O l S I 2 * E n 1 6 1 1 c S Z O E £ * 9 Z t 9 6 * 8 9 * z 1 0 9 1 S 9 1 1 t T O ' O

158

1 . < } . L 3 3 3 4 3 2 9 - 8 6 5 5 £ 6 5 3 1 0 5 3 9 7 0 2 * 9 , L 4 1 8 5 1 5 0 - 9 1 2 6 1 2 1 4 1 3 K 1 2 C 2

- 7 S o l 5 6 i 5 4 1 C 4 5 0 - 1 0 2 3 9 2 5 3 5 1 3 0 7 1 2 4 9 0 9 1 1 9 2 6 - e 6 J 7 5 9 * . - 3 5 4 1 5 7 1 6 1 2 9 9 1 3 6 0 2 6 7 3 6 2 5

1 . 1 0 , L - 4 4 5 9 «.79 2 . 2 , L 7 1 0 9 2 1 1 1 8 3 5 3 8 4 8 6

1 . 1 0 , L - 5 3 8 2 3 9 0 e t < ; 4 7 2 ? 3 i e 3 C 0

4 8 0 - 6 2 8 2 2 9 * , 0 1 1 6 3 1 2 4 1 - 1 6 7 7 7 5 7 6 6 6 1 6 9 3

4 8 0 4 7 9 1 6 3 7 6 5 3 - 2 1 5 5 8 1 6 5 8 2 2 0 2 3 4 1 3 ; . l 3 0 i i 1 . 1 6 . L 2 1 9 9 4 2 C 4 J - 3 1 8 6 4 1 8 7 4 ~l 1 3 2 1 5 0 2 4 £ a ' 3 7 1 3 1 7 3 4 l t « l - 4 2 1 U 2 C t 8 - 2 4 3 f 4 1 7 3 4 J 6 4 - ) ^ 0 1 6 2 1 4 6 4 7 5 7 7 6 6 - 5 1 7 6 2 1 6 9 3 - 3 1 G 9 3 1 0 6 5 7 1 4 4 2 1 2 3 1 2 5 7 7 5 1 5 5 1 1 9 - 6 1 5 3 7 1 4 4 6 - 4 1 0 6 2 9 6 4

* 2 4 . P 3 8 ' . 4 1 4 3 1 2 7 6 1 2 9 1 1 1 - 7 5 8 8 5 9 0 - 5 4 8 6 4 6 8 ~ 3 5 i 2 5 2 8 5 1 8 6 1 9 7 7 3 5 0 3 5 4 - B 3 2 7 111 - e 2 C 5 2 9 7 - 4 7*^0 7 4 9 8 4 7 3 4 7 8 - 9 1 6 8 1 7 4 - 7 4 9 7 4 7 1

- 8 1 4 1 1 i O

1 4 . J 1 3 u

1 . 1 7 , L 9 - 1

2 3 2 1 2 3 0

2 4 6 1 2 6 4

- I C 3 8 1 4 3 0 - 9 1 6 9 1 7 9

- 2 2 1 3 2 5 8 - 2 2 9 8 5 3 4 2 * « * L 2 ( 1 C . I 1 . 1 . t L - 3 4 6 2 4 8 4 - 3 4 3 " 3 9 ' J

L - 4 4 0 5 4 4 5 - 4 3 7 4 3 1 3 0 1 1 9 5 1 3 1 7 0 9 4 6 9 4 8

L 2 : 9 2 0 4 - 5 4 4 3 4 1 4 . 1 1 5 6 7 1 5 4 2 1 1 6 9 1 1 7 2 2 2 2 b l 2 8 2 1 * 1 8 , L - 6 1 0 2 2 9 2 2 2 1 ^ 4 4 1 5 2 3 2 1 3 5 4 1 2 3 7 3 2 u 7 1 7 5 - 7 5 2 6 4 8 4 3 9 8 9 9 3 4 3 6 6 1 6 3 9

- I 1 7 0 1 6 ' J 0 4 7 2 4 7 8 - 8 2 5 1 2 3 - : 4 5 4 1 5 1 1 4 4 1 6 4 1 8 - 2 13C' 9 b 1 4 9 6 5 5 5 - 9 4 7 6 4 4 5 5 2 8 0 3 1 5 5 3 1 1 5 0 5 - 3 3 u & 2 9 5 2 5 9 9 6 1 8 - 1 0 2 9 5 2 8 7 6 1 3 C t 2 t l 3 7 8 - 6 1W4 1 6 6 - I 4 0 5 4 5 4 7 1 4 3 1 4 1 7 2 5 5 2 4 1

1« U t L - 2 4 2 6 4 5 4 2 . 3 , L 8 4 1 0 4 5 1 - 1 8 2 7 B^*a

1« U t L - 3 2 9 3 2 8 2 - 1 1 6 6 3 1 8 1 4 - 2 1 0 3 0 1 0 1 4 0 1 2 Q 3 1 3 5 4 - 2 1 1 7 5 1 1 5 9 _ •» c 3 5 t £ 0

0 9 i 3 1 0 2 ; : 1 . 1 9 . L 1 1 7 7 1 5 4 - 3 9 0 5 ; i 6 8 - 4 1 4 8 1 4 6 1 I 3 i n 1 3 2 1 2 1 4 1 6 1 4 6 2 - 5 3 2 6 2 8 4 - 5 3 0 8 2 Q 9 2 1 3 b O 1 2 6 9 0 1 1 9 1 2 8 3 1 0 7 3 1 0 2 2 - 6 7 4 7 6 9 0 - 6 3 6 0 2 9 1

5 3 8 5 1 7 4 8 4 9 8 6 2 - 7 7 9 2 t s e - 7 f e e 7 e 5 2 i S 1 9 3 2 . 0 . L 5 3 4 1 3 2 8 - 8 6 7 2 6 3 1 - 8 C 8 9 9 i e 3 5 7 3 5 H 7 1 5 9 1 6 3 - 9 9 8 4 9 7 3

7 4 7 8 5 J t ) 1 1 1 7 4 1 3 2 1 8 1 6 8 1 4 1 2 . 1 1 . L - 1 8 4 4 8 3 ^ 2 2 8 8 2 3 0 5 1 9 2 6 7 1 8 7 2 . 7 . L - 2 I 0 i 5 9 6 4 3 1 6 9 3 1 9 3 t - 1 8 ^ 7 9 4 9 1 1 9 8 1 5 7 - 3 4 5 3 4 0 8 4 1 2 3 4 1 2 0 3 - 2 6 8 0 6 8 4 0 5 6 1 5 3 5 2 7 8 4 7 8 5 " 4 1 1 6 9 3 5 4 7 9 4 4 9 - 3 9 9 5<» I 1 2 6 1 0 0 3 8 2 5 7 9 5 - 6 4 3 3 4 2 5 6 2 4 7 2 4 5 - 4 5 0 1 4 9 3 2 3 2 1 2 7 7 < 4 5 6 C 4 - 7 7 3 8 7 1 6 7 7 5 5 M O S - 5 2 9 7 2 6 2 3 7 1 9 7 0 1 5 1 2 2 5 1 2 2 4

8 . 9 8 8 1 0 8 1 - 6 8 3 9 7 9 9 4 £ 0 6 6 0 0 9 7 5 1 0 0 5 1 . 1 3 . L 9 6 7 3 7 6 9 - 7 5 1 3 4 7 6 7 C 5 6 7 8 7 5 3 4 5 5 6

- 1 3 0 2 4 3 9 8 0 - 9 4 1 3 3 9 ? b £ 2 4 £ 2 ( . 1 £ 7 4 4 7 4 I 2 5 6 2 5 4 - 2 2 3 0 0 2 4 9 7 - 1 0 1 3 7 1 3 7 7 £ 6 7 6 5 9 - 2 1 0 7 1 1 0 2 6 2 8 u 5 7 1 9 - 3 8 0 9 6 5 7 3 4 8 3 9 8 . 3 1 7 1 4 1 6 6 8 3 1 ^ 7 9 4 7 - 4 5 5 6 5 1 2 2 t 4 , L - 1 1 0 4 3 1 0 5 3 - 4 1 5 0 7 1 3 7 8 4 5 V 6 5 5 / - 5 9 1 3 9 2 5 - 2 1 ; s 9 1 5 4 7 . c S 4 3 e e s 5 7 7 0 7 6 5 - 6 1 8 4 5 1 7 1 2 0 6 6 9 5 5 4 - 3 1 1 5 6 1 1 0 8 - 6 7 5 8 7 2 6 6 7 5 5 8 1 2 - 7 9 5 4 8 8 2 1 6 6 1 6 0 6 - 4 9 t 5 8 8 2 - 7 7 5 8 7 6 5

~ 1 4 ^ . 1 4 1 1 - e 9 2 5 8 8 7 2 6 6 8 5 6 7 ~^ 7 3 9 7 4 5 - B 3 7 6 3 9 1 " 2 B J 3 7 1 9 - 9 1 2 3 8 1 2 1 9 3 1 2 7 9 1 2 0 8 - 6 1 3 2 4 7 2 - 3 I 2 < » 6 - 1 0 8 8 1 8 5 9 4 8 9 3 8 6 6 - 7 1 7 8 2 2 1 2 . 1 2 . L - 4 8 4 R 8 1 3 5 4 4 0 4 1 7 - 8 3 8 2 3 6 1 - 5 6 ^ 0 5 8 9 2 . l . L 6 4 1 8 4 2 7 - 9 3 0 3 3 0 3 0 8 6 3 8 8 2 - 6 6 7 0 6 7 3 7 5 3 2 5 5 2 1 ^ C 5 9 3 8

6 u 4 6 3 . 0 2 0 6 1 7 0 8 3 6 0 3 5 7 2 . 8 . L 2 8 8 1 8 1 9

1 3 8 2 3 7 5 9 2 9 5 2 9 8 1 . 1 4 . L 2 1 1 8 5 1 1 9 2 - 1 1 4 7 1 1 5 1 8

3 1 7 5 2 1 7 1 2 - 2 1 6 1 4 1 7 4 9 0 1 0 1 9 1 0 1 6 4 1 5 9 5 1 6 1 7 - 3 1 2 U 4 1 1 8 1 1 1 1 2 1 1 1 0 9 5 6 4 0 6 7 2 ~ 4 1 7 8 1 4 1 2 1 2 3 9 1 1 8 6 6 5 8 3 6 1 8 - 6 4 1 2 3 8 1

5 0 9 7 7 7 6 7 7 4 - 7 4 3 3 4 C 9 ^ 1 6 2 1 5 3 8 5 0 7 5 2 6 - 6 5 6 9 5 5 9

- I 9 l * 9 3 4 9 2 5 9 2 9 5 - 9 8 2 2 8 0 3 •2 1 0 7 7 9 7 2 - I 1 4 9 2 1 7 1 6 - 1 0 5 7 4 5 6 0 - 3 5 6 6 5 5 6 - 2 1 8 3 6 2 0 2 3 - 5 2 5 0 • 2 4 6 - 3 2 7 2 2 5 3 2 . 5 . L - 6 3 0 2 2 9 0 -* 9 2 0 9 7 4

- 5 1 6 0 5 1 4 9 3 0 9 1 3 B 6 5 I . I S . L - 6 1 6 8 7 1 6 0 0 1 1 7 9 1 4 2

- T 6 7 7 6 3 4 2 7 3 2 7 3 4

1 8 5 • « C 7 3 4 1 5 3 1 4 9 J 2 l 2 5 0 3 1 1 3 6 6 U C 6 9 9 3 8 2 1 2 4 H I

1 0 3 1 4 1

3 3 0 0 2 5 1 4 3 2 9 2 6 2 t 1 3 3 U P 1 6 6 1 6 9 8 2 7 0 1 6 6 5 3 4 5 B 4 3 5 4 2 3 9 1 7 9 7 4 0 7 3 9 4 8 5 1 0 5 4 3

2 * 1 3 . 1

1 1 6 5 1 6 9 4 1 5 9 7 5

2 1 7 1 9 8

e i i CCZ 1 f Z * « S b l c z z 1- 9CC 9 Z t 0 9 0 0 T •66 6 - t Z i " i t i * » z 1SZ i c e i C I I fl- s m i • SSOT c I Z l ill e c s fibb I - TVS 9 t « 0 1 - c t t i 0111 7 O i * ztt c S6S S19 9 - 99S 9 8 S 6 - 8CC 1 b i i z ZIC I S C 9 - bCI O Z I $ - b^9 9S9 e - 9S». 8 8 C 0

b9i BBC I • z i • C91 S - 9^1 I Z I • - C S b • b b I -o z o H i 1 } 1 I (•1 • - 9 Z ( £- Z 9 0 t e c u 9 - 1 M * C

16 111 z - C98 Z Z 8 z - ( 8 2 9flZ s -OSZ • BZ z c m CV91 1- 0 9 S CZ9 • - • 6 Z ! • ( z -

I C C • z c s • 2V 9 lV 2 - '•9Z TSZ t -C I S S19 b- T » V t » 8 T l ! 0 3 Z • • ZVl 0 8 Z t t - e t c C I Z z

«* OZi 8 - 199 Z69 c C O I C 2 9 8 • At- I VOC s o c 9 - • I t c c t 9 - 198 6b9 z fi9Z 9^Z 9 • t c •ftZ 0 6C0I e i o i S - 001 1C1 600Z • O b i I C^S 9SS s Z 3 9 t » u t » ; z blZ r _ C 3 9 1 a o s i 0 • c o t S 9 0 t l * n t * Z

9 Z » t V I V l c - 1SI • Z1 Z s i z t • I Z T C C * 9 1 9 t9 t z - S1Z OCZ 1 1*9 *C 6 I 6 t • 061 2 tvC C9C • -

I I C I I- I6Z S I Z 99VI 9 Z C 1 1 OiS SvS t -$3fi 39» • 6SZ b9Z 6 - • 691 • S S I 0 7b 1 n z z -9CS T C l * 8 91 911 8 - 2UZ b C Z 1-VIZ C6Z c • s c i - ! ' • • € . 2bC t i c c ZSC 9EE z l O v ISC B - 0S9 139 9 - ? 6 l 6--2 z

i v ; I 9 0 B Z b l I - bOCT Z I C I s - I I I 181 0 1 - OOC Ib2 0 Sib C6& 0 999 1S9 9 - 8 • I I 8^ IT >- •92 C8Z b-

SC9 ZZ9 9891 Z C I I c - z c t 2 ^ 1 9 - T t f Z l * t •& 6>Z S9Z •r- 9 E S 1 J I b l 2 - S C . • 09 I -

u e c z z f - b S O l 166 1 - 6 9 0 2 6 C 1 Z S - 19C 292 s -6 1 C z u 0 1 - 96T •91 z~ Cb9 S09 T S ^ I 9 C S I * - 5 8 Z ZOZ c -£ 1 8 OCB b- VbZ S8Z \ ~ 918 S I I I b 9 S l I t ' S I C - lb9 819 z -ICOI u o t 9- 86S 0Z9 £ • fS 1 6 3 9 2Sv I z r - ^ i 2 - I'.'9 6"S I -BV& CIS I - CSS Z9« 2 C S O I s o n 9911 U9St t - BVS ZTS • 01T1 8601 9 * 1*9 • 69 (.••S b<;$ OS 9 UBS CtiS I I S c CVM 6 C I I • 19 9S9 c z c i H O I I 9*6 SSC1 z

6 l Z t * - T Z I ' B SC9 9aS 2 0^8 IZ8 9 9 ? h ZVb t c z » S O i - ?C1 S I I . 1 9 * : i 8 S Z 1 £ CC9 SO" 0 991 I S C z- 2 8 Z O I Z 9 - CZb CbB C U I T 6 9 1 1 LQi VSS 1 - i9C B9C 9 - 1 9 2 1 21C1 c 1 * 9 1 ' 2 s a s 3SC e s « 9 5 * S - T l 'C 9 ; 9 6 5 9 2

S 3 J t t c z * 8 t ¥ • - « ! • c e c I * 2 2 S 7 Z 9 -&>01 I C O I 1 9 6 f - bSZ ZvZ C l - 101 6C9 i'; C9* «:•• s -C I * 9 2 * z Z91T S1Z1 z - CIV b - -•19 • n • -l U 911 I CbbI i o n 1- 93C > z c B - T C * C ' c n i 8 ' o : c -B*L ; » t 3 a ^ t ; 9 i •r I ^ C e i c I - 9 29 e ^ s z -

btZ C^Z Z 19C O f * 9 - O v b • •b • • 1 - CSZ • TZ I -1C9 1S9 I 6 1 V 8S^ ( - 2 0 1 0^1 b- T09 S I S s b c e OCb 111 i^t V- 6121 BV2T I - OC2 C I Z •

Lli 9IS 3 1 - 9 9 1 1 9ZZt c - b l 9 1 • S 9 1 9 - r9C l o t z 999 Z*9 6 - T l t ' B 9Zb 'JV6 2 - 2 Z 9 SI9 s - f b 2 6RZ I s e c OBC 8 - « € • • S ^ 1- 8Z01 ( 9 0 1 c - • S I c<:t c * i c I6Z 9 - C9C ISC 6 - I I Z &1Z I 1181 191'. 2 -tai 1 9 * ; - 1 6 ; 8 - IZC I R Z 9 b C O l 106 1 - T S 1*Z 9C9 6C9 V- s o i l • S I T I - • b Z Z9Z s b69 9S9 6C9 (99 c - 8Z11 e z i i 9 - s n 9 9^9 l i e CbC I JCC c n z I -tLL ZSI 2 - IZ9 BC9 s - • I Z 33 1 n. bSC O l C s 0 9 T 9 0 1 9 -Lib 7 n 1 - i e 9 ZV9 • - I C CB 1 I 2 1 I 09 I t TC2 IFZ s -

<il\ 201 b » * 1Z^ c - b O l I 9211 c 1 11 s « : c -ZLi SBC V b *1 9C1 z - 1*9*€ I t l Z • C S Z z 99 ; z i 2 -2 9 1 191 c S b * CCS 1- O l O l c : b 1 : c z u v ; 9 Lfi z ; v ; i s ; • OCZ SZZ 0 1 - • b I C I C I Z 0 ftZl « • ! • «CS SOS 1 6b8 99b c bbl OSZ 6- • Z l l - I C S9B ZBB 0 C b b 9S01 z E l l B i t I - T Z * C 609 178 z

Z O i 9^1 1 i ^ C :6C 9 - • • 6 I S b 1 T P S 9ZZ S9Z ( - 99Z OSZ 0 1 - • 11 bb9 0

T D I ' B ' COC S92 *• • I Z s s z 9 -09£ o e c IBV U9v c - CbS • Z9 1- 1 ' » I 'Z tbt I I I I- * * s e ^ s I • $ • 5 I ^ ' 2 - 29r.t S ^ I I 9 -

fib 178 9 999 OS 9 t - 6 C 1 1 9 2 1 1 s - R9Z 9 ' .2 9 -T 9 l » 8 9*01 0 9 0 1 s 9 * 1 I C I 999 CbB 8 2 1 6CI . s -

9 1 1 1 • M l • ICC 1 6 Z I S^6 1Z6 c - *Z1 9 1 1 • -bSC s - 8 b l VS8 c I I I 9VI 9 19 9 ! I 2 - • IS b« S c -

6 8 1 *SC »- 8 3 y C I t t b C I I B I 9 0 S I SSC1 1 - • Z C I f C z -

tzt 0 8 9 c - • 61 6ZB - 0 9 1 Z ZZZ ZbC BSC g IZC • 6Z I-€ 5 9 CC9 z - SZ9 0 1 9 z • C9 9C9 I 9 8 4 99S 1- T 6 * C 1 3 1 C9I 1 b l ^ ! ! • 9 T f r z

6ST

9 , 4 , L - 2 3 7 0 3 6 0 2 3 0 2 2 7 2 4 , . 2 . L - 6 1 0 5 9 9 8 9

- 3 468 4 2 1 3 1 9 8 1 8 7 - 7 6 3 1

- 2 3 i l 3 2 4 -* A 9 0 4 4 0 4 1 7 6 I ! 9 c S t 3 9 7 4 - 8 1 6 8 1 5 9

- 3 2 1 0 1 5 7 - 5 584 5 2 7 - 1 3 6 6 4 3 3 1 734 8 5 1 - 9 3 0 5 2 8 8

- 4 6 3 1 6 2 b - 7 2 7 9 2 3 6 - 3 4 0 5 4 3 3 2 1 5 6 2 1 6 0 5 - 1 0 4 7 3 4 7 2

- 5 B^O 9 0 3 - 8 2 5 7 2 5 4 -4, 5 1 4 4 7 0 3 7 6 8 7 7 4

- 6 8 3 S - 9 3 9 6 443 - 5 4 7 C « 2 t 6 4 6 6 8 8 4 , 6 , L - 7 467 5 0 3 - 6 2 9 1 2 8 1 5 5 6 1 6 2 8 - e 8o4 8 4 ^ 3 . n * L 6 3 0 3 2 8 7 0 1 9 6 1 2 1 0 4

- 9 5 3 7 5 B I 3 , 1 6 , L 7 1 7 5 1 8 3 1 I E 2 ; 1 5 4 7

- 1 0 3 i 5 3 0 5 1 345 3 3 9 e 2 2 1 2 4 2 2 1 3 9 7 • 1 4 5 9

3 2 7 6 2 6 6 2 1 3 « 1 4 6 - 1 2 2 2 2 7 0 3 8 3 7 8 1 5

9 , 5 , L * 1 3 4 1 1 3 . * 1 7 6 2 0 4 - 3 7 0 3 7 7 1 4 549 5 6 2 5 3 8 2 4 2 6 - 3 1 2 0 1 4 4 - 4 8 2 9 7 7 2 * • C f t 5 3 5

0 I b b 1 1 4 6 1 7 6 1 9 0 - 5 3 6 2 3 7 1 6 344 3 7 0 3 « . 7 3 1 1 - 1 2 3 2 2 0 5 3 . 1 7 . L - 6 73B 6 6 0 - 1 . 1 6 7 1 1 7 3 1

2 6 2 2 4 2 - 2 101 5 9 - 7 8 0 0 7 5 5 - 2 7 7 9 8 0 3

4 V 2 4 9 5 3 5 2 346 0 1 9 4 2 0 9 - 1 0 3 6 6 3 4 6 _ 3 1 2 4 1 6 - 2 348 33U - 5 1 8 9 2 1 ; I t s I2<: - 4 5 6 3 5 3 5 . 3 5 5 7 5 6 8 - 7 2 6 7 2 2 1 - 1 2 2 9 2 4 3 4 , 3 . L - 5 3 7 8 3 7 4 . 4 bs9 7 1 9 - 2 3 2 5 3 4 3 - 6 6 5 1 6 1 2 - 5 2 0 0 2 0 7 3 . 1 2 . L - 3 3 u 2 3 6 5 0 1 6 2 1 5 1 - 7 1 3 6 8 I 3 l < : - b l £ 6 l O U - 4 3tl 2 5 ? 1 2 C 6 2 1 3 - 8 1 0 6 7 1 0 3 0 - 7 2 * 0 2 2 9 0 1 0 3 3 1 0 3 9 2 fcl7 6 3 8 - 9 ? 6 C 8 6 6 - 8 354 3 1 1 1 1 6 1 2 1 5 8 5 3 , I 8 . L 3 1 3 0 1 4 1 - 1 0 6 7 6 7 3 2

- 1 0 4 3 3 4 0 1 2 7 6 9 8 0 8 4 455 434 3 8 1 7 8 1 3 0 4 6 4 5 3 ? 5 1 6 < ; 1 5 6 4 , 7 . 1

9 , 6 * L 4 4 1 5 4 0 3 1 6 7 4 6B4 7 2 7 4 2 8 9 5 1 1 9 R7 - I 3 6 7 3 8 ( ) 6 2 7 1 2 4 4 0 1 9 9 2 5 5

0 4 4 0 4 2 2 6 2 0 2 2 7 5 - 2 2 7 7 3 0 5 - 1 7 1 1 7 5 7 1 2 7 7 3 S C 1 htjn - I 3 0 2 2 ( 3 _ 1 2 C C 2C'. - 2 £S8 9 0 8 2 6 0 2 6 5 2 3bB 3 5 2 - 2 2 2 7 2 1 2 - 3 5 2 5 5 2 6 3 4 4 4 4 2 0 3 4 7 8 r 3 1 8 6 1 5 9 4 , 0 . L - 4 3 1 4 3 0 4 4 5 1 5 4 9 7

1 7 5 1 4 1 -h 1 6 3 1 6 2 - 5 1 0 7 9 2 c £ 4 £ £ 3 4

2 L 6 2 4 1 - 5 5 0 8 4 i l 0 1 3 4 7 12<; i - 6 1 1 3 7 1 6 6 2 3 6 5 9 - 1 939 9 3 3 - 6 • 3 1 4 2 9 9 1 1 3 1 1 1 5 6 3 - 7 2 5 3 2 6 2 7 3 4 7 3 6 3 - 2 2 j 4 2 6 u - 7 5*. 7 5 2 6 2 2 7 1 B 3 0 4 5 - 8 2 7 4 2 4 5 - 1 2 9 4 2 5 8 - 3 5 i 8 5 1 J - 8 5 4 * 6 0 0 3 2 0 0 5 2 1 1 0 - 9 3 9 0 3 5 1 - 2 S7E ? 7 2

8 4 2 8 5 i 4 1 2 2 6 1 2 4 0 - I C 2 7 7 2 6 0 - 3 1 2 4 6 1 2 4 5 - 5 7 b l 7 3 3 3 . 1 3 , L 5 469 4 2 9 - 4 1 2 6 7 1 2 1 9 - 6 5 i 7 5 3 2 7 2 6 4 2Tj 4 , 4 , L - 5 6 0 3 6 6 4 - 7 5 0 1 4 6 3 0 6 0 1 6 2 2 8 4 1 b 5 0 2 - f £ 3 1 7 8 3 - 8 2 . ^ 2 2 4 5 I 1 5 9 1 9 2 - I ! « 1 . 5 I t t t c 1 C 1 4 1 0 4 2 - 8 2 6 7 2 6 6 - 9 2e>5 2 3 ; 3 5Cb 4 9 5 - 2 2 2 0 6 2 2 0 9 1 7 6 0 8 5 1

- 1 0 2 o 9 2 7 i * b 7 1 6 3 6 - 3 7 1 2 6 3 0 2 9 C 1 8 7 0 4 , 8 , L 5 7 2 4 7 2 6 - 4 1 2 3 3 1 0 6 9 3 1 1 7 0 1 1 1 3

9 , 7 , 1 b 5 2 5 ill - 5 4t<; ' ; 8 6 2 3 6 1 3 0 2 9 8 2 5 0 - I 5 7 2 6 0 B - 7 I b u b 1 5 3 4 6 2 2 7 2 5 0 1 1 4 9 9 1

0 897 8 7 b - 2 4 9 7 5 1 0 - 8 1 1 9 8 1 1 B 9 2 0 3 1 9 3 2 2 2 9 2 4 2 J 6 5 7 6 3 6 - 3 1 0 1 6 9 8 2 - 9 487 4 6 2 - 1 1 1 9 0 1 2 5 8 4 2 1 6 I C O 2 3 5 5 3 1 7 - 4 1 2 7 3 1 2 0 3 - 1 0 7 2 2 7 1 1 - 2 1 3 E e 1 4 0 4 - 3 2 3 4 3 1 9

2 ^ 6 2 1 3 - 5 8 3 7 7 7 9 - 3 1 3 3 2 1 2 6 1 - 4 4 0 4 3 6 3 - 2 1 3 7 1 1 3 3 7 - b 6 5 0 5 8 0 4 , 1 , L - 4 1 6 4 7 8 - 5 5 7 3 5 6 0 - 3 • 7 ^ 3 7 0 7 - 7 4 0 7 4 2 1 - 5 5 2 6 499 - 6 3 5 7 3 1 6 - 4 5 y l 5 2 7 0 1 11 7 6 - e 1 C 7 7 1 0 1 2 - 7 1 3 7 1 0 6 - 5 2 J 7 2 0 b 3 , 1 4 , L 1 1 7 6 2 0 2 - 7 9 5 2 9 0 5 - 8 3 1 7 30** 2 5 4 4 568 - 8 8 5 1 8 1 5 4 . 9 . L

0 9 8 0 9 9 1 3 b 7 2 6 5 6 - 9 6 0 8 5 5 7 3 . 9 , 1 . 1 1 3 1 3 1 3 0 7 4 7 t e 744 - I C 4 7 8 5 0 0 0 3 6 5 4 0 7

2 691 671 5 639 659 1 4 2 8 . 444 - I 553 566 3 4 2 6 382 6 831 842 4 , 5 . L 2 221 219 - 2 8 8 3 934 4 646 6 5 6 7 757 6 2 2 4 3C2 326 - 3 1 2 1 9 1253 5 422 • 3 9 3 311 337 0 8 7 6 921 5 6 7 3 625

1 7 7 5 1676 -1 706 717 -1 329 4 1 3 2 142 110 6 336 358 - 5 1 4 5 6 1351 - 2 502 498 - 2 2 1 5 P 2321 3 645 6 3 5 7 4 3 0 4 6 2 - 6 1 2 ^ 5 1106 . 3 4 1 7 4 4 5 - 3 1951 2012 4 1CC4 974 - 1 uc* 1020

- 4 188 159 - 4 6 4 ) 679 5 1 1 5 5 1133 - 2 696 6 9 8 S i l O . L 562 521 - s 9 9 0 982 6 1 0 9 0 1130 - 3 9 7 5 ' 997

* 6 607 537 - 6 1592 1470 7 974 1024 - 4 1210 1160 0 ? 9 6 330 - 7 4 8 0 508 - 7 1 0 7 5 1014 e • 2 5 • 7 C - ! C C l 753 1 5^6 5 4 9 - 8 311 271 - 1 1673 1884 • 6 128 9 7 2 341 3 8 3 3 , | S . L - 9 167 145 - 2 2361 2 5 7 5 - T 2 3 3 217

182 197 - 1 0 178 156 - 3 2 2 7 6 2 3 1 8 - 9 2 8 5 2 6 1 I b b 201 0 308 321 - 4 1143 1014

- I 4 7 6 300 1 250 2 1 4 - 5 1149 1 1 1 0 4 . 1 0 » L

i 6 1

4 , 1 u . L 3 1 8 8 2 1 3 5 , 2 . L - 3 1 1 6 9 5 4 5 5 5 5 0 7 0 9 1 9 1 0 0 7 - 4 3 5 9 3 1 6

1 1 3 5 0 1 3 4 4 - 1 4 3 5 4 3 0 0 8 8 0 8 5 0 2 1 5 3 1 1 8 - 5 4 4 7 4 1 5 2 8 9 1 B 5 1 - 2 2 0 8 2 1 5 1 4 9 1 6 3 3 3 2 7 5 2 7 5 - 6 1 6 4 1 5 5 3 8 6 8 8 8 6 - 3 6 7 5 6 2 7 2 4 4 4 4 7 2 4 £ 7 9 £ E 3 - 7 2 2 C 1 6 0 4 8 5 3 8 2 4 - 4 7 6 7 8 1 5 3 4 6 4 5 0 7 5 7 5 4 7 4 ^ - 8 1 9 3 2 1 3 5 1 5 4 1 7 0 - 5 6 1 0 6 4 9 4 7 2 7 7 4 J 7 2 9 7 1 7

- 1 7 7 0 7 8 0 - 6 4 5 7 5 0 4 5 7 2 4 7 3 2 7 6 8 6 7 0 7 5 . 1 2 . 1 - 2 2 o l 2 8 6 6 1 1 1 2 1 1 5 6 - 1 l t 2 5 1 6 4 1 - 3 5 7 4 4 9 3 4 * 1 6 . L 7 6 5 2 8 9 3 - 2 2 0 8 9 2 1 0 6 0 8 5 1 9 1 2 - 5 6 0 1 5 8 5 - 1 1 2 1 5 1 3 1 6 - 3 1 8 4 5 1 8 2 5 1 5 8 9 5 4 8 - 6 5e>0 5 3 2 0 8 9 9 9 2 8 - 2 1 8 9 9 2 0 3 5 - 4 1 5 0 6 1 4 8 9 2 6 2 6 5 9 4 - 7 I 7 5 : 1 8 9 0 8 8 5 _ 1 1 6 3 8 U S * - 5 £ 3 6 8 3 4 3 7 6 7 7 4 7 - 8 9 1 2 6 6 4 2 6 6 1 6 4 1 - 4 2 2 0 1 2 2 3 9 - 6 4 0 3 3 7 0 6 0 0 5 8 6 - 9 1 D J 3 9 1 6 3 6 4 6 6 8 0 - 5 9 9 1 9 8 2 - 7 1 2 1 9 6 5 2 9 7 2 7 3

- 1 5 3 2 5 6 0 - 6 1 2 3 1 1 1 9 8 - 8 2 0 9 1 6 5 -I 4 4 5 4 3 9 4 . U . L - 4 3 6 2 3 7 3 - 7 £ 7 7 • £ 3 4 - <i * 5 S 4 5 3 - 3 1 2 0 1 4 3

- 5 4 5 6 4 7 6 - 9 1 8 5 1 8 5 - 1 0 6 4 2 5 9 3 - 4 2 0 9 2 1 2 0 4 9 0

3 1 8 3 7 1

5 3 5 3 0 9 3 5 5

4 . 1 7 . L - 1 0 3 1 3

5 . 4 . L

3 3 1 5 , a . L -} 7 7 2

5 6 8 2 8 1

7 4 0 5 8 1 2 3 7

4 1 3 s 3 1 0 9 0 0 1 9 7 2 4 1 •"•> 1 3 8 1 1 4 5 0 - 8 4 6 9 4 7 4 5 1 1 3 6 1 1 4 1 I 1 2 5 9 5 0 8 H 2 9 3 0 1 1 3 7 2 1 3 7 4 6 5 8 4 5 5 8 2 1 1 7 1 1 1 1 1 2 3 5 1 3 1 7 2 1 0 1 1 1 0 0 9 5 . 1 3 . 1

- 1 «»72 1 0 0 1 - 1 5 2 n 5 £ 1 2 I f J P 1 7 5 6 8 7 4 6 4 3 - 2 6 6 3 6 9 1 - 2 3 1 3 3 6 6 3 l O l C 1 0 3 2 4 6 8 7 6 8 1 0 2 9 4 2 9 8 - 3 1 2 6 8 1 1 8 5 - 3 4 9 9 5 0 6 4 9 1 6 9 1 9 5 4 C 3 4 2 2 3 2 8 5 2 6 9 - 4 1 5 7 5 1 5 5 3 - 4 5 7 1 6 1 7 5 5 9 1 5 7 9 6 1 6 3 1 7 2 4 5 6 8 5 5 3 - 5 1 0 4 4 l O O o 6 4 (J4 5 1 1 - 1 I 5 4 9 1 6 4 5 5 5 8 1 5 6 2 - 6 7 4 8 7 2 0 4 . 1 8 ) L 7 1 6 9 1 4 4 - 2 1 0 3 0 1 0 4 6 - 1 9 6 0 9 8 6 - 7 3 i O 3 2 9 - 1 9 3 5 9 6 3 - 3 5 9 0 5 6 5 - 2 6 3 5 6 1 6 - 8 2 ' J 2 1 5 8 0 1 8 5 2 1 8 - 2 4 8 8 4 5 4 - 4 2 6 0 2 9 6 - 3 6 1 5 6 4 7

- 3 1 3 4 1 4 5 - 3 3 7 8 : 3£ _ c 9 1 6 9 C 1 - 4 1 0 O 2 9 1 3 4 , 1 2 . L - 4 1 2 6 4 1 1 8 9 - 6 9 v 3 9 5 1 - 5 1 1 G 3 1 1 1 5

5 . l . L - 5 7 4 3 7 6 H - 7 1 2 6 7 1 1 5 1 - 6 5 2 3 5 3 6 0 l o i f l 1 0 7 1 - 6 8 7 2 8 2 9 - a 1 1 7 7 1 1 4 0 - 7 3 7 4 4 1 2 1 8 5 9 8 4 7 0 3 3 2 3 0 4 - 7 1 0 7 9 i c : : - s 1 C C 7 9 8 7 - e 1 6 4 1 7 1 2 3^-2 2 6 7 2 3 7 9 3 8 2 - 8 9 4 6 9 0 2 3 3 / 9 3 5 4 4 2 6 1 2 8 5 - 9 4 6 0 4 5 3 5 , 9 , L 9 . 1 4 . L 4 3 ^ 0 2*>3 5 3 8 4 3 6 3 - 1 0 3 7 8 3 4 2 5 1 5 9 1 3 s 6 6 2 9 7 1 1 c 1 0 1 5 1 C C 7 c 8 5 3 8 7 3 6 1 4 9 1 2 5 7 4 6 8 4 7 3 5 . 5 . L 1 8 5 8 6 6 4 1 8 1 6 7 5 5

• I 9 8 6 <»b8 8 • 1 9 4 2 1 2 3 5 6 8 5 3 7 2 6 8 9 6 2 7 - 2 2 9 8 2 8 6 - 1 9 2 4 9 5 6 0 1 5 5 1 6 S 4 7 1 5 6 8 5 3 8 0 6 8 0 2 - 3 3 U i - 2 1 4 - j 1 1 4 1 8 1 2 8 4 3 2 2 5 7 t 3 7 £ 8 4 6 8 8 6 7 1 - 5 1 7 6 1 6 3 - 3 7 9 9 8 9 2 2 1 7 4 1 3 7 6 5 6 2 - 5 6 3 - 1 5 1 2 4 6 7 - 7 5 4 l 5 0 3 - 4 1 3 5 4 1 3 3 4 3 5 0 3 5 1 9 - 1 1 0 9 9 1 1 3 5 - 5 5 1 5 5 3 6 - 8 6 ^ 7 6 4 * * - 5 2 6 0 2 7 7 7 1 5 0 1 8 8 - 2 1 1 5 9 1 0 7 3 - 6 6 3 7 6 2 7

- 6 8 8 6 8 2 0 - 2 4 5C 4 1 5 - 3 1 C 1 3 I C l 4 - 7 5 3 4 5 7 1 4 . 1 J . L - 7 4 2 1 3 8 4 - 3 3 4 0 3 6 5 - 4 1 2 1 4 1 1 9 8

- 8 2 2 8 2 0 2 - 5 4 3 5 4 1 2 - 5 6 7 6 9 5 9 5 , 1 5 t L l i 3 5 4 - 9 1 5 5 1 3 3 - 6 6 7 3 6 3 3 - 6 6 9 4 6 5 2

- I 3 o t i 3 8 0 - 1 0 1 9 0 : B 8 - 7 £ 7 3 £ 3 4 - 7 2 5 1 3 2 4 C 1 9 7 1 5 8 - 2 yji 2 9 / - 6 2 3 5 2 0 5 - 8 3 0 1 2 7 9 - I 5 0 8 5 4 2 • 3 3 i 3 2 6 7 5 . 2 f t . - 9 3 4 9 3 1 7 - 2 4 7 1 4 6 6 - 4 4 i . . 5 3 9 4 5 , 6 . L - 3 4 4 3 4 7 7 - 6 1 4 7 I t l u U 1 4 5 4 1 4 3 9 i f I C L - 4 555 9 4 6

1 1 7 2 2 1 9 0 3 0 1 0 6 2 1 0 8 6 - 5 3 9 2 4 7 2 4 . 1 4 . L 2 2 0 2 5 2 2 3 4 1 1 0 9 9 1 1 7 1 0 2 4 1 2 4 5 - 6 2 4 1 2 5 7

3 1239 1267 2 4 50 431 1 356 174 1 4^9 4 0 0 4 719 718 3 427 438 2 324 293 5 * 1 6 . L 2 3 / 3 385 5 525 518 5 229 237 4 201 179 3 172 163 6 212 212 6 2 0 3 210 -1 734 736 9 194 156 4 2 5 9 202 7 154 174 -1 402 478 - 2 , « 2 ! 61S - 2 l U i c e 5 U S 9 6 -1 761 8 4 3 • 2 S I 41 - 3 187 1 8 3

- I 265 221 - 2 442 320 - 3 622 622 - 4 189 167 9 . 1 7 , L - J 2tt6 281 - 4 528 562 - 4 I U 2 107 - 7 4 6 9 4 52

9 . 1 7 , L

- 4 2 9 4 309 - 5 996 958 - 9 127 122 - 9 924 2C4 - I 2tt 326 " 5 1 8 6 1 7 ; - 6 9 7 0 9 2 7 - 6 112 695 - 2 272 2 9 3 - 6 123 109 • 7 1547 1473 • 7 6 8 9 642 5 . 1 1 . t - 9 929 966 " T l b 2 162 - 8 1233 1139 - 6 454 449 - 4 386 962

- 9 892 637 - 9 6 8 5 629 3 114 1«4 962

4 * 1 5 » L - 1 0 4 6 4 470 - 1 0 1 4 5 147 4 5

406 2 1 7

953 2 8 2

9 » 1 8 * L

1 190 98 5 . 7 , L - I 174 187 - I 2 9 9 9 4 6

•11 Z - c u r T -9»2 »- BBI e t i 1- 18V S 9 * 8 - 89r ObC b-

6C? c - T i e c c c 9 * 8 * S4» 1- • l £ l 2*1 8- 79: 5C1 r t ill 031 z- K b IBB « CZ« t b * 9 - 2b2 €2e l - 99 b ' l 9 -9tL 1- CEb CbB '»L'w c ? ? s - 159 989 9 - ' b f S * * l -t i t e > » 618 2^8 f C£1 i S I » - VZ-r C9> ' t l * 9 -C I« C I S z VS01 1*01 I BlC b i t 2 - S l B v«b o* I 151

I lt<f\ 9 * £ 1 \ e i / t » i 1- S»6 2*b e - y o c »' t . ?COI b&S 0 1*01 • : 3 t 3 »;» 9 )2 ( l b ; b8S 2- •rt* 2*» £ -

09t * 809 0%^ 1- U28 tf/.l 2 -9C9 C 89C " * E •»9>. r r v T-2f'9 2 IbC 90* 512 . Hh2

o t e on • l - 9 e c biC <1- :3 ' . t e ; 1 1 * t l of.C e f z 9 t9\ b- 9BC b- 26* C U * b i * T92 1 '2 V

ftl B- 192 1 - : T 9 995 • »;* *"£ 669 OIL 1- 219 bB9 0 - T 2 1 ' 9 01 1 1 IBOI c 992 9:£ 2

Bl£ *%: 7- i c a 12) ; - f IE 1*2 1 9££ 99E 5 - 685 9*5 • - 595 955 9 - T l '9 •-££ ZTt 0 I B * 9 1 * • - 285 205 SEfa 2:01 5 -1** 02* t - 99B 016. Z~ I f b 19b *bS 165 r \ - i*t*9 7C2 j » ; 2- i z ; * * » . \ - •.;3 159 £- ' . ' 1 1 6 . c.-.b 6-BZ* E * * I- 6 1 * 6 £ * 9 Z E I l 9*11 z - 1601 b e n B- t £ l 2*1 C 1 -£02 502 9 * c s 2 05 5 b E U UiHOT 1 - • • 2 1 9 e z i l~ •JhE Z * * B" 912 092 V 191 • 11 t 91* £ 5 * 5 * c ^ l EP2T 9 - ^o2 H E 1 - • bC? 2 EI 1 * : i y »39 ? 4 ; V ; i n b02 ' 5 - '~5* 9 ' 5 9 * Z£2 811 1 * 1 * 21£ 1 I** 1 9 * £ 191 069 • - • E l J * l 5-192 892 0 E9b 9!>b ' 992 2ZE z Tib 12b ?- t b . M K l l ^-

b b * 9ft^ 1 E l S I 2E51 1- 591 £ • 1 t -T ; * I T l ' l \\l 371 ^ IZZ

159 jf.Z 599

9 5

122 TSl

911 0 9 1 \:

0 2 * 92* 0 1 - 1 1 9 ICS *- 1* l f 9 959 5*U • 9Bt 9'- I 9 1 » * 19* b - bbS I 15 E - £ * 1 121 C • ;5 Z ' S s * ? 3 a - 93? 31: iZd b - 51?1 •jf 2T f b i • • 1 • 151 191 1 - 06* 09* "t- £?• • 9 » 9 - 5ZE 1 6*21 t ? l £ B*£ E 969 8£b 9 - L b l 6B9 1 - • 1*1 £C*t ?c :t S f ' . i z £201 9031 5 - T l t * 9 TbOl 200t 9 - f99 b ' 9 1 183 ^73 >- •531 ZT11 5 - T 9 » 9 691 1»1 0 512 65 2 2 - 1E9 £29 S - • *2 ClZ * -1*2 1*2 9 19Z 2*2 • - •21 5<l E - 9T9 659 r i - T 2 » 9 529 9 9 1 5 2 * * BOv 6 E * B * * Z- H E OlE 6 -7 : B 351 » 309 431 ; 9 3 l 9hUt 1- I b l 961 6 - ; l f • EE C I -925 b55 £ 18* 83S 1 *££ 52E 5 2*1 £51 1 - • * £ I 1»1 b -B121 T i l l 2 69E r/5C 19S 2b9 * b * C 5lC 9 - i E 2 b * 2 6 -2 £ M £ £ b 1 195 209 * b C l l 2 1 I I 5 - ••51 116 l -£31 9»t 3 T » 1 '9 T 9 I I ; i u £ -191 l *8T *- 9 > 1 Zrt 9 -

O i l 09 i 1 1111 S i l t £- 151 851 5 -T * * l 19* 5bC 9 - 1201 09b 0 2252 b2*2 2 - < bR t • • « I • -

269 C 6 9 5 - 1151 55*1 1- 6522 B M 2 £-1b5 IM 3 1 - i » : i s ; »- T • ) I '9 9Z9 6£9 1 TOf.l • M l z -£05 l i s b - 9 1 * ! • * t - 008 E b l 9 815 5 5 * 1-£*£" ISC 8- 2CS 6£5 2 - ! l b 01b 5 - 596 616 5 C05 b f l * l 51* 91* 1 - £55 ZDS 1- b99 089 • - bOl 999 • i91 2 * 1 9 1 ? ) ^11 J - IbZ 142 13> 93 i £ - I t * 9 : ^ £ <:!! 199 5 *&21 1921 5 - e i c Z2£ 0 • C1£I 5 U 1 2 - bOb 968 1 • 2* 1*.£ • 90b1 0691 *- 2b8 2T6 I- 9*1 1 * 2 1 I C ^^* E1E z 1&C2 8032 £- T S l ' 9 * I E UIC 9 ^51 999 1 8311 *3»1 F - Mt E E * 5 T 5*9 t * £ 'JT£ 0 126 BIB i - 121 0 9 1 1 - 1£S 1 1 5 • 9 1 1 £91 9 6£2 I b l 9 - *£2 022 £ 5 * * 95* • 0 1 - T 1 '9 116 118 5 £12 90£ 5 - 292 S£2 z COb 65b 6 -0 * * 13* * 5M 141 *- ! 9 e 3 896 *O0T 6 - •JH8 C16 b -*62 *62 C 152 122 £- 9601 l £ t 1 1 - • 091 1191 6 -659 125 1 Ob£ 91* £ T b ' 9 Obb 5C0t 9 - 9^9 b*9 9 -5 6 * 1 6 6 * 1 0 501 b l l 2 EbS 5*9 5 - £26 506 • -

292 3)2 3 lo: t b i 1 - 811 £91 •- hOE • ?E 2 -T £ * l 9 2 * 8 1 * 9 - 21c 2*£ £- 6ZZ d>2 I -

1 » * 1 ' 9 025 615 y~ 65 98 2 - Wt 9 M 9 9 e £ 5 b C 0 1 - 2 1 2 092 E - 119 118 1- 1 1 1 S T l 5 698 33S 4 - 12£ H E »- 1 1 9 l E l 2 - ; ; z 6 l £ * • T B n £ 0 1 1 • I 0 £ 1 19Ct 8 - *££ 2 2 e t - 892 £92 1 - 5*01 56b £ •"221 b2T1 c *B21 b l2T 1 - 2 1 2 5 1 2 2 - £C2 £02 5 6091 0£51 2 5122 I'^PZ 2 2 2 0 1 8901 9 - C£Z £52 1- b l l 811 £ *9*1 z e c i 1 P51I • 051 I 821 i ; 9 B i t U C 1 1 U 9 U 0 199 * * 9 0 BBS £ / 5 0 » 9 0 5 9 9 5 1 S b 9 t - T £ I * 9 1 * B ' 9 T * ' 9 T O ' 9

163

7 . b . L - 7 - 8

5 3 6 3 6 8

5 2 3 7 . 1 7 . 1 8 , 4 , L l i t 1 6 7

I C O 1 6 2

- 5 l o 5 2 2 J - 9 3 0 C 2 7 0 - 1 3 1 3 3 2 5 0 1 0 7 6 1 0 2 2 - 1 2 3 8 2 3 8

- 6 b l l 55^* - 2 3 8 8 3 8 5 1 1 0 4 4 1 0 5 9 - 3 2 9 2 2 7 4

- 7 P J * 7 . 1 1 t l 2 .751 7 7 9 - 4 1 3 4 1 1 3

- 8 * 7 7 8 , 0 , L 3 54 7 5 7 0 - 5 3 7 0 3 7 5 - 9 5-^6 5 7 d I 1 5 4 1 6 2 4 5 1 9 5 1 5

- 1 0 3 ^ 8 3 : 7 3 3 9 6 3 6 7 0 1 2 2 6 1 1 3 7 5 4 3 5 4 4 7 8 . 9 , L 2 7 9 2 7 3 1 1 1 J9 1 ? i ; t' i 3 6 2 C 9

7 , 7 , L - 2 2 3 4 2 2 5 2 6 6 0 6 9 8 - 1 8 3 0 6 7 4 0 2 4 5 2 2 5

- 3 3 3 2 3 2 3 3 6 4 8 6 6 5 - 2 2 9 4 2 3 3 1 3 8 5 3 5 6 •J 1 1 ^ 5 1 1 4 5 - 4 1 0 9 1 1 3 4 1 1 1 9 1 1 7 4 - 3 4 1 0 3 9 7 2 1 2 6 1 3 3

6 : 9 6 U - 5 5 3 7 5 0 5 5 8 2 7 s c ; - 4 EST 9 2 1 3 < 1 2 1 7 9 2 3 ^ ' J 2 8 3 - 6 1 7 2 1 9 2 6 4 9 6 5 8 5 - 5 1 1 1 2 1 1 3 2 * 2 5 3 2 2 7 J 2 i * 2 2 2 - 1 1 6 2 1 1 8 - 6 9 0 2 P 9 3 - 1 5 3 9 5 2 6 t. * * . 7 43 -J 7 , 1 2 , L - 2 8 3 8 8 8 8 . - 7 1 1 8 0 1 1 5 0 - 2 9 1 9 9 2 5

5 i 9 4 d b _ « 3 3 ? ' ' * - a 7 3 3 7 2 4 - 2 ICCC 9 1 9 6 5 t A 5 : 1 w 201 1 6 9 • - 4 1 0 5 8 1 0 6 3 - 9 7 8 6 7 5 1 - 4 3 7 2 3 7 1

- 1 1 2 . * 1 2 7 . . 1 2 7 1 2 3 7 - 5 1 4 8 0 1 5 3 2 - 1 3 4 2 9 4 5 1 - 5 5 5 9 5 7 8 -2 i * . e 1 4 b 3 2 7 1 2 6 3 8 - 6 5 5 0 5 3 4 - 6 3 3 8 3 2 3 - 3 1 ? . 0 1 2 0 ' 3 6 4 7 6 1 5 - 8 1 2 * 8 1 1 S 2 e . ; . L - 7 1 5 5 1 9 1

1 1 ^ 7 1 0 7^- * 5 8 5 5 3 2 - 9 l l o 9 1 3 8 6 - 6 3 5 7 3 5 8

3<.3 8 6 • 32*^

- 1 - 3

3 b 9 4 1 7

3 7 1 3 9 8

- 1 0 4 7 2 4 9 2 0 1 4 7 6 7 7 7

1 4 7 9 7 5 6

- 9 1 6 8 1 7 3

- 7 U i -fc 2 d l 2 7 0 8 . 1 . 1 2 2Ce 2 C 5 e . i c . L - 8 5 > 9 5 2 t . - 5 4 8 7 4 4 3 4 4 7 1 * 8 1 - 9 3:>1 34-3 - 6 7 6 5 7 3 5 0 1 2 4 6 1 2 j 9 5 3 3 5 6 7 0 * 7 5 4 8 9

- 1 0 i 4 ^ - 7 5 2 2 5 3 2 1 5 1 7 5 2 1 - J 1 2 7 4 1 2 8 6 - 8 1 9 n 2 1 2 2 \0P. 38 - 2 i ; 2 t 1 5 7 2 9 , 7 . L

7 , 8 , 1 3 1 7 3 1 7 3 - 3 1 4 0 6 1 * 6 8 7 . 1 3 , L 4 5 1 * 5 1 J - 4 1 4 8 1 1 4 7 5 - I 9 7 3 1 0 0 7

0 l l b O 1 1 6 7 6 1 1 6 4 9 - 5 7 6 7 7 8 3 - 9 3 4 7 3 9 2 1 3 52 1 3 5 9 •J 3 3 4 3 2 8 3d E * 3 f l - 6 2 c r I f l O

i 1 2 J ? i : o . - 1 3 o 4 3 2 6 - 1 9 9 0 1 0 4 4 - 7 2 2 3 2 0 9 9 , e , L J Ab J 2 1 2 7 1 0 4 - 2 6 8 6 7 7 8 - 8 5 1 5 4 9 0

7 | J 6 7 5 5 3 1 6 5 1 4 0 - 3 1 1 2 0 1 1 5 7 - 9 3 8 9 3 9 6 0 7 7 7 7 7 7 5 3 f r5 3 H ^ - 1 1 0 2 2 1 0 4 6 -1. 2 2 3 1 ; : - ' 7 - I C ; 2 t 1 S i C e i e

- I 1 ' > J 3 1 0 7 t , 1 1 6 3 1 1 1 0 - 5 1 2 b B 1 3 1 1 2 1 0 9 4 1 0 5 8 - 2 b3^ b 2 4 - 3 7 3 3 6 9 6 - 6 5 7 6 5 2 9 8 . 6 , L 3 1 C 8 0 1 0 3 5 - 4 6 3 5 b 4 3 - 4 5 3 6 - 7 2 8 8 ^ 9 7 4 6 6 5 6 4 2 - 5 I Z ' . O 1 2 2 4 - 5 8 1 1 7 7 8 - 8 ; E C 3 6 3 c 9 7 9 I C C t - I 2 7 9 3 5 8 - 6 1 3 ^ 3 1 3 1 b - 6 6 4 8 6 6 9 - 9 7 1 7 6 9 j 1 1 3 2 4 1 3 1 0 - 3 4 2 9 4 1 8 - 7 : 3 6 f l 1 3 5 5 - 1 0 7 1 * 7 2 3 2 9 3 8 9 2 4 - 4 6 0 3 5 6 9 - f t 1 0 * 5 1 0 1 1 7 , 1 4 . L 3 9 9 2 9 5 6 - 5 1 C 3 0 1 0 3 7 - 9 ')«.3 81 r 8 . 2 . 1 * S I C s a ; - 6 l i t * l l t 9

0 2 8 5 3 4 1 5 3 6 b 3 5 7 - 7 1 5 1 1 1 4 6 3 7 , 9 , L 1 6 ' ) n 5 6 4 0 2 8 7 2 7 4 - 1 4 8 5 4 6 5 - 9 1 2 5 5 1 2 2 0

2 6 2 2 5 8 3 1 2 6 5 2 * 8 -2 2 0 4 2 0 2 - 9 7 0 4 7 3 8 3 1 0 5 9 1*^71 3 • 7 3 3 6 9 H 2 \ t f U C - 4 7 7 3 7 7 4 1 • 6 3 8 6 2 5 - I 5 0 7 5 1 0 3 4 1 5 * 2 0 - 5 1 1 0 1 1 0 8 9 9 . 9 , L

I 19 I S ' . - 2 1 4 6 1 2 8 4 6 4 9 6 8 1 - 6 1 3 0 6 1 2 8 2 5 3 3 7 3 5 : - - 3 2 3 5 2 4 1 5 1 Tl l * f i - 7 1 1 9 5 1 1 6 1 0 6 5 8 6 0 0

- 1 1 2 ^ 2 1 3 3 4 - 4 1 8 6 2 3 4 6 1 3 1 1 2 1 - 8 1 I S l 1 2 C 5 1 - * C 2 * C 4

~2 1 3 1 7 1 3 : ^ - 5 4 7 6 4 7 5 - 3 2 0 8 1 6 5 - 9 82 3 8 3 2 2 6 9 2 6 5 1 - 3 9 i . 2 - 6 7:>3 7 2 8 - 4 5 7 8 5 * 1 - i : . 5 1 6 5 5 3 3 2 8 8 3 0 8

6 ^ ' ) 6 2 4 - 7 6 5 B 7 37 - 5 6 4 0 6 7 2 - 1 9 6 4 9 3 0 - 5 3 i 8 2 9 h - 6 ! 7 « 5 : 8 8 * 7 , L - 2 1 C 4 2 I C W - 6 2 6 3 2 5 i 7 . 1 5 . L - 7 1 6 9 1 7 7 - 3 9 1 4 9 1 7 - 7 16* . - 8 4 6 8 * 3 5 0 8 2 5 8 2 1 - 4 6 2 5 6 4 4

- 8 1 9 5 1 5 8 0 1 6 2 1 4 6 - 9 1 6 5 1 4 8 3 2 5 0 2 4 2 - 5 » 1 9 8 0 - 9 3 6 5 3 6 b 1 1 4 7 l o e 5 l E l 1 8 9 - 7 1 6 3 1 6 8

- 1 3 9 9 4 2 6 8 , 3 * L - 1 9 4 2 9 6 4 - 8 2 6 1 2 * 5 7 , 1 ^ , L - 2 5 7 6 5 6 8 - 2 8 5 3 8 2 9 - 9 2 4 2 2 4 1

- 3 3 9 1 « 1 0 0 3 5 9 3 39 - 3 6 7 8 6 4 5 0 2 ^ 5 1 6 0 - 4 4 4 2 49fc 1 8 2 8 E e 2 - 4 ( 2 9 1 1 7 9 . 1 0 . L 1 6 6 7 6 5 b - 5 4 1 0 4 3 6 2 5 3 6 5 2 3 - 5 2 7 4 2 6 2 2 2 3 0 1 9 6 - 6 3 6 3 3 5 8 5 1 3 9 1 4 8 - 6 1 4 6 1 5 4 0 4 3 3 4 2 3 3 3 4 1 3 1 6 6 1 7 9 2 0 8 - 7 3 3 1 2 9 3 1 * 7 0 4 7 4 4 3 6 1 3 6 6 7 . 1 b , L - 2 1 1 2 72 - S 2 6 3 3 9 1 2 4 3 2 3 6 4 5 1 3 8 1 1 4 - 3 1 4 8 1 6 3 - 1 0 4 4 5 4 3 5 3 4 1 5 4 3 6

- 1 3 J2 2 7 9 J 1 2 3 9 6 - 4 2 3 * 2 2 5 - 2 1 8 7 1 9 1 - 2 1 9 2 1 9 7 1 1 2 1 1 9 2 - 7 4 7 3 4 3 6 8 * 8 , L - 3 2 2 7 2 * 7 - 3 2 3 5 2 5 4 - 2 1 3 1 l i s - 8 4 t 3 ; - 4 1 8 4 1 4 8 - 5 * 9 6 4 8 4 - 9 1 4 9 1 0 4 0 2 0 7 1 8 6 - 5 5 4 8 S * 4 - 6 3 5 8 3 5 J 2 1 3 2 1 4 2 - 6 3 4 4 3 * 7

164

9 . 1 . . L 1 0 . I . L 5 9 4 5 7 3 - 7 2 1 7 2 2 1 3 4 9 1 4 2 9 7 / 5 7 6 3 - 8 • 4 0 0 4 1 1 - 1 2 0 0 2 2 9

- 7 J I I - J S n i b O b C 9 4 5 - 2 2 4 7 2 3 0 - 6 5 v v 5 J d 1 4 4 ! 4 5 5 F i a 4 8 4 ; - 1 0 . 1 2 . L - 3 5 9 6 5 4 1

Z 3 7 7 4 r i t i 4»rf5 • 5 6 - 4 4 6 C 4 4 7 9 , K , L 3 1 6 ^ 1 5 4 - 2 2 7 2 3 U 2 1 6 4 6 5 9 5 - 9 5 4 7 5 6 1

4 2 > 5 2 7 2 - 3 5 0 0 4 7 7 - 2 I S O 2 C 2 - d 1 C C 3 1 C C 7 2 2 3 4 - 1 1 3 6 ' " ' 1 4 t 4 - 4 7 ^ 9 7 : . J -i 3 4 6 3 2 8 - 7 4 4 5 4 4 6 3 2 3 b - 2 I 4b<< - 5 1 : ^ 2 1 j 7 5 - 4 3 4 1 3 1 4 - 8 9 1 8 4 7 0

- I l o 9 1^4 - 3 9 3 7 9 2 5 - 6 1 1 8 3 1 2 0 7 - 5 9 4 6 5 9 1 - 9 5 1 6 5 2 5 -2 * o * 464 -<t 11 HZ 1 1 4 4 - 7 9 1 1 a 9 : - 6 ; c i itz - I C * 3 2 . 4 C t - 3 * 5 5 4 a : - 5 1 1 3 5 1 1 7 2 - 8 i i < a 1 0 5 4 - 7 6 5 8 6 9 0

! /« - 7 2 b b 2 2 3 - 9 7 4 5 7 2 2 1 1 « 5 . L 1 9 : - a 4 8 4 4 6 1 1 0 . 1 3 . L

- 6 L'.-n - 9 a 5 9 b 5 5 1 0 . 7 , 1 C 1 3 1 9 3 - 7 : . 8 - I ' J i l 6 6 1 1 0 2 J 1 9 4 2 1 7 - I 2 9 0 3 2 4 - a 2 .»7

l O i i . L 0 1

1<JB 3 9 0

3 9 4 3 7 1

- I 1 3 4 1 4 2 - 2 - 3

3 3 3 1 9 1

3 5 9 1 2 6

9 , U . L 2 4 5 0 4 i a 1 0 . 1 4 « L - 4 3 8 2 3 8 7 U 2 - 1 3 £ 6 3 3 ^ 4 2 9 5 - 5 4 6 1 4 5 0

I 3 * . ; 2 9 1 2 2 ; 7 2 3 1 4 1 1 9 1 2 7 - 3 1 6 7 1 5 4 - 6 2 2 7 2 1 7 2 3 3 4 9 3 2 8 - I 6 5 4 6 6 6 - 4 1 6 6 1 4 6 - 7 3 0 2 3 5 0

- 3 3 > ? 3 5 - 4 1 9 0 2 r 2 - 2 6 1 3 6 3 9 - e 1 5 S 1 6 4 - 4 3 o 8 3 7 7 - 2 3 J 3 2 9 4 - 3 3 9 1 3 7 8 U . l . L - 9 2 0 8 1 8 0

2o<l 3 J 6 - 5 3 4 4 3 3 5 - 4 4 2 6 4 1 9 - 6 * 7 : . i t ' - ; - 6 6 5 5 6 4 4 - 9 4 6 4 4 1 9 0 7 0 2 6 7 1 1 1 . 6 , L - 7 7 7 b - a 2 / 5 2 7 6 - 6 1 9 3 2 0 . 1 4 1 5 i<it

2 7 8 i 3 9 - 9 3 0 C 2 2 1 2 2 9 8 2 8 3 1 3 2 9 2 8 9 9 . 1 J . L - I 8 4 0 8 6 2 2 4 6 7 4 4 0

1 0 t 3 , L l O f f l f L - 2 9 2 4 9 4 6 3 2 9 5 2 6 3 J 4 ^ 7 4 2 b _ 2 5 4 « ; 4 C - 2 2 2 7 2 1 7 1 4 5 4 u 7 3 9 6 9 2 2 1 1 7 9 1 - 4 3 1 8 3 0 2 - 3 2 2 5 1 8 6 2 * . 5 3 4 / I 4 4 4 4 4 6 3 1 4 4 1 1 8 - 5 3 4 9 • 3 7 1 - 4 4 2 7 4 1 b

- I 6 ^ 5 6 3 t i 2 1 8 2 1 6 7 - 2 2 4 9 2 5 7 - 8 4 6 3 4 7 7 - 9 7 2 0 7 0 0 - 2 9 4 ' * 9 7 « * 4 1 4 3 1 2 6 - 4 4 6 9 4 7 2 - 9 5 8 2 5 5 1 - t 5 4 ? 5 6 1 - 3 l b 6 « - 4 . 1 9 9 1 8 2 - 9 1 8 6 1 7 4 - 1 3 6 9 4 7 1 2 - 7 6 0 2 5 6 8

-* 5 b 6 5 5 d - 5 1 5 3 1 0 2 - 6 9 6 3 9 2 9 - 8 3 2 9 3 3 9 3 4 5 3 5 > - 8 3 5 3 3 0 4 l l f 2 . L - 9 1 3 9 S 4

- 6 3 ^ 1 3 3 1 - 9 2 0 4 1 8 9 1 0 . 9 , l 0 2 0 3 1 6 8 l l f 7 . L

9 , l * , L l l J t 4 , L 0 5 6 0 9 8 i 1 2 7 6 2 5 3 1 9 7 8 9 3 9 2 7 2 2 7 1 0 0 8 6 8 8 5 3

•J 2 . 2 19*< •J 4 9 5 4 9 8 3 1 3 9 1 1 5 9 1 6 9 C C 1 5 E 2 S 4 6 I 4 . 9 4 0 i I 9 6 3 5 6 1 - I 3 8 7 3 6 7 4 7 4 9 7 3 3 3 1 9 1 1 6 4

- 1 2 . 4 1 9 0 2 7 3 1 7 0 8 - 2 9 4 3 9 3 6 - 2 2 3 7 1 8 4 ~l 7 0 1 7 0 1 - 3 5 l 3 5 4 1 3 7 7 5 7 4 3 - 3 6 9 4 6 0 2 r 3 6 3 4 6 3 3 -2 7 6 6 7 4 0 - 4 4 3 9 4 3 e 4 5 2 3 5 1 6 - 4 2 1 0 2 5 1 - 4 7 1 2 6 9 7 - 2 4 2 1 4 2 1 - 5 4 . 6 4 5 4 - I 1 4 0 1 9 1 - 6 2 3 7 2 4 6 - 9 1 4 9 0 1 5 1 7 - 8 1 5 8 1 5 3 - 6 3 « . 5 3 7 7 - 2 1 4 4 9 9 - 7 2 2 0 1 7 6 - 6 1 4 9 2 1 4 2 5 - 9 4 3 2 4 2 6

- 3 5 0 7 4 9 1 - 8 3 2 1 3 2 6 - 7 9 1 2 9 5 3 9 , 1 > . L

l l 9 2 3

1 3 9 4 9 1 3

1 3 7 ? - 9 3 6 7 3 8 1 - 8

- 9 • e c 4 6 6

5 5 6 4 6 4

- I 2 4 . . 2 4 1 - 6 9 9 0 - l a 3 0 9 3 3 5 0 4 2 0 4 9 0 - 2 4 H 3 5 2 4 - 7 9 4 6 9 3 1 1 8 2 3 7 7 5 - 3 ' 4 / 6 5 2 t > - 9 * 6 2 4 8 0 1 7 4 2 6 9 9 l l f S f L 2 7 5 9 7 2 5

-* 3 i 4 3 3 J - 9 4 7 6 4 9 7 2 6 4 9 7 5 9 - 2 4 6 5 4 5 1 - 5 2 1 3 2 4 1 - I . . 2 3 n 2 9 2 - 1 1 1 9 1 1 2 J 1 1 9 3 1 1 4 1 - 3 9 1 9 8 8 1

l""* . f L - 9 3 9 5 3 8 0 1 9 8 4 9 4 1 - 4 I C O O 9 8 7

l""* . f L - 4 7 8 8 7 8 7 2 3 7 ! 2 < 7 r - s t e c 9 6 0

0 94<. 4 9 3 1 1 ' . 2 3 3 b 2 7 i l 7 6 1 3 9 / 5 9 6 3 4 7^-8 6 9 b

• 2 2 / 3 3 1 9 - i 5*<1 6 2 9 - 4 6 v 7 6 6 3 - 5 1 6 b 3 1 7 0 " * - 6 1 6 ^ 5 1 9 8 4 " 8 4 : ^ 0 6 9 7

- 1 0 3 1 4 3 6 3

- 9 9 2 9 9 4 0 3 1 6 9 1 3 4 - 6 9 5 4 1 0 5 7 1 1 4 8 i : n i - 6 9 u 9 9 2 2 - 1 1 4 C 4 1 4 3 2 - ? 7 9 2 8 2 6

1 9 6 4 9 6 1 - 7 1 0 0 1 1 J C 3 • - 2 1 9 4 3 1 9 8 9 - 8 6 9 3 7 9 1 2 4 4 9 4 2 7 - 8 7 3 3 7 2 7 - 2 C 7 1 8 ! 7 - 9 6 1 4 6 2 2

- I 1 1 6 1 1 1 4 3 > 4 7 1 7 6 8 7 6 1 4 6 2 2

- 2 1 3 9 2 1 3 3 1 l O i l l . L - 5 7 7 3 7 7 5 n * 9 , L - 3 1 0 3 4 9 9 2 - 6 1 6 1 1 4 8 - 4 8 4 3 a ? 2 0 6 5 ! 6 8 C - 7 4 1 9 4 2 C 1 e 4 S 6 2 6 - 9 3 4 1 3 9 2 I 7 6 2 7 l > - B 9 9 9 6 1 1 2 6 3 0 9 7 7 - 6 1 6 8 r ^ o 2 3 u l 2 9 1 - 9 6 9 1 7 0 2 - I 4 0 4 4 1 9 - 8 4 9 6 4 2 6 - I 6 3 9 6 3 6 - 1 0 1 0 3 0 1 0 4 2 - 2 4 9 8 4 9 7 - 9 9 } 6 5 4 9 - 2 6 9 1 8 7 3 5 7 2 9 1 8

- U 6 1 3 6 8 3 - 3 1 0 6 0 1 3 0 8 l l i 4 , L - 4 6 6 9 6 2 5

1 0 t 6 . L - 4 6 7 3 6 6 7 - 9 4 9 9 4 6 5

1 0 t 6 . L - 5 2 6 0 2 4 9 0 4 3 4 3 9 ? - ? 9 1 4 5 2 0 - 6 I t ! 1 C 7 1 2 9 C 2 ) e - a 4 2 ! 4 2 8

165 1 1 . 1 .

I 1 72 151 - I 2S4 2 7 i - 3 4^7 4,11 -* 4 J4 3 1 0 - 5 64 1 - 6 5 , 3 543 - 7 3,7 4 4 -

- 8 2-. 4

l l . l l . L

-1 1 33 1 4 7 - 3 4 / S - 4 4 i 7 42 . - 5 l3R 11^

11. U * L

5 11:- 1S6 - 3 1 / : lOcJ - 4 679 - i 4o2 4b.-- 6 lo7 4 1 -

1 1 . 1 3 . L

-1 5'*4 6 4 / - 2 6 . 7 - 3 1 87n - 4 5^6 54^ - 5 I 4 I IttJ

1 2 . . . L

1 254 2 3 / 2 53» 3 7«*3 73^

- 2 4^9 4rtj - 3 7a2 - 4 «>3 977 - 5 5 .8 S .e - 6 : 6 7 i l 6 ^ 4 - 7 1 iib 134-- 8 546 541, • q 2oO 3'.t.

- 1 ? 2 i 2 24i

1 2 . . .1

0 «:>5 796 1 6:>9 2 4 ^ 9 43«* 3 I f i 14.-

- I I I:>4 l i 5-» - 2 14 J6 147-- 3 '*1Z - 4 3 .5 i'^d

- 5 4J 9 4 : . - 6 l_o - 7 7dH - 8 671 - 9 7^r. 7 : 4 I J Td2 7 0 J

1 2 . ^ . L

2 £ 1 6 2^« -1 Ie7 1H3 - 2 : 79 16 -- 3 U2 375 - 4 « >2 i7^, - 5 w 5 7 / - 6 4 / 1 4 i ^

14. l . L

- 2 2>*.' 32.. - 3 ! / 6 J 84 - 6 l o : 156

1 4 , b , L

- 2 l'J4 l«»6 - 4 2sn 2 5 J

1 4 . V , L

- 4 219 227

- 7 274 273 - 9 167 130 - 9 124 142

1 2 . 3 . L

J 224 3 19A 1 7:.

- I 2 i l 249 -2 123 111 - 3 123 148 - 5 153 144 - 9 1 I* H5

1 2 . 4 . L

1 41,- 367 2 * 2 l 399

- 2 2 tl 277 - 3 4 5'- *17 - 4 a * 937 - 5 0 7 5 9 5u - 6 11 ^4 1 1 68 - 7 '»J2 894 - 8 3-11 4 3 3 -9 131 111

1 2 . 5 , L

u 796 . 764 1 6 /6 651 2 54'- 504

-1 Hl-j 774 - 2 H45 829 - 3 • 5 . 1 5- i - 4 2 7h 331 - 5 317 31 3 - 6 l b ! 151 - 7 253 - 8 5 5 5 563 - 9 67] 669

1 2 . 6 . L

•i 32r 336 1 4 5 5 447 2 59*1 561

- 2 635 - 3 1095 I'.'Sb -4 9:-3 8 " ; - 5 56M 5 9 3 - 6 786 835 - 7 «52 478 -8 7..*» 723 -«) 46ft 4 / 4

1 2 . 7 , L

• 1 359 349

1 4 93 44^1 2 4Jb 367

- I 3 ib .153 » 2 542 526 - 3 3 77 3 7 7

i s : 253 - 5 3 -6 296 - 7 4 3 3 42b - 8 4 U l 416

1 2 . 0 . L

1 154 124 -1 1*^4 2f-7 - 3 lb3 234 - 6 224 l o "

) 5 . 1 . L

-1 414 4C7 - 2 367 14 7 - 3 3o j 3 7 i - 6 3 '£ 2 Oil - 7 4 3 0 479

1 5 . 2 . L

-1 lb9 174 - 2 5 i l 523 - 3 7jA b87 - 4 «»77 942 - 5 534 550

1 2 .9 .1

1 5 v 5 1 2 9 3 255

- 1 4 3 9 4 3.-- 2 2 1 ! - 3 3 4 ? 375 - 4 3 2 7 30£

1 2 . I C . L

3 1 4 1 21<? - I 196 195 - 2 ? 3 C <'I2 - J 4 6 5 4 7b - 4 7 7 b 7 6 3 - 5 02c 8 9 ! , -£ £2C £ 4 : - 7 b2C £62

1 2 . 1 1 . 1

- I 5 3 4 5 5 2 - 2 5 1 1 4 6 4 - 3 6 5 3 - 4 5 7 1 •3£ - 5 2o9 280 - 6 1 4 2 1 1 9

1 2 . U . L

- 2 2 8 9 2 5 5 - 3 b l 9 598 - 4 SCI - 5 579 6-:=:

1 3 . 1 . 1

J 4 3 4 43 i 1 426 SV i 2 3 6 2 3 4 9

-1 5^1 • I S - 2 7 3 9 7 4 6 - 3 6 5 1 £59 - 4 2 74 199 - 6 2 3 9 - 7 2 7 1 2 4 9 -8 421 3 7 3 - 9 3 6 4 3 9 0

1 3 . 2 . L

1 3 2 2 2 8 9 2 £ 6 " ; £ 1 3

- 1 1 49 Ifi', - 2 3 3 r ) 3 3 6 - 3 7U2 6 9 1 - 4 9;<; S 2 2 - 5 1 7 1 1 9 5 3

- 6 10:J6 104 4 -7 97r Sfc7 - 9 5 9 " 6 i e - 9 219 i:»

1 3 . j . L

1 7 2 1 6 7 5 - 1 6 9 1 7.. 8 - 2 l o s e 1113 - 3 1120 1 1 4 : - 4 5 1 6 4 7 5 - 6 3 9 4 -7 e : 4 £ £ « - 9 f>7R e b » - 9 9»,3 7b 7

-6 6 6 8 £ b 8 - 7 5 2 3 5 9 2

I S i . L

•2 4 5 6 43*1 3 414 47 i

- 4 ) * • I S C • 5 1 3 5 1 J 8 •6 3 5 2 3 5 2 •7 6 7 * 7 4 7

1 5 . 4 . L

2 2U5 2'--7

13 .4 , L 1 4 . C . L

-1 126 142 0 169 180 - 2 295 282 - I 24 5 250 - 1 559 529 *• ( <4; 4t7 - 4 bOO 5 9 4 - 3 S2C 900 -5 230 257 -4 i c o a 992 - 6 653 6 S 4 - 5 694 70J - 7 6 C 3 6 3 3 - ( 7 S ? 743 - a 495 474 -7 752 851 - 9 151 177 - 9 674 691

1 3 . 5 . L 14.1 , L

,< 29P 290 c 742 748 1 332 309 -1 669 701

-1 379 390 - ; ( 4 ; e3c 7 2 362 341 - 3 e 2 7 7 9 3 - 4 372 295 - 4 164 l i b - 6 177 IRS - 6 516 4 7 3 -7 2C4 ; : 2 - 7 £15 !77 - 8 284 295 -8 S19 972

1 3 . 6 . L

1 335 291 -1 371 411 -2 323 353 - 3 1^6 160 - 4 262 279 - 5 495 4 7 9 - b 198 233

473 *69 - 9 3t4 31 7

1 3 . 7 , L

55.T 578 - 1 448 4b6 - 2 387 405 - i 389 366 - 4 281 29C - 8 26R 264

1 3 . e . L

-1 2on 191 - 2 352 345 - 3 731 72b - 4 1060 1151 - 5 1012 995 - 6 74 9 807 -7 642 690

1 3 , 9 . L

-1 33ft 3*1 - 2 399 378 - 3 498 474

2 0 6 147

1 3 . 1 3 , L

22b

_ > 4 2 2 29S - 4 4 9 1 4 6 6 - 5 4 1 1 4 3 4 -b 38H 4 4 3

1 3 , 1 1 , L

- i 1 2 0 6 3 - 4 2 s r 2 ( 3

- i 4 3 3 4 3 1 - 4 £ 6 1 6 5 7 - 5 4 / 4 4 9 6 - 6 • 4 C 4 9 C - 7 4 2 ' t 4 6 1

1 5 , 5 . L

- 2 1 7 8 1 9 1 - 4 2 0 5 1 9 7 - 5 2 7 9 3 1 8

1 5 , 6 . L

- i 3 6 n 3 7 1

1 4 . 2 . L

0 l e e 1 9 1 - 2 1 1 9 1 1 2 - 4 3 8 2 3 4 4 -t 3 7 3 2 5 8 - 7 3 6 7 3 7 8

-fi 2 5 9 2 3 8

1 4 . 3 . L

0 1 2 8 1 3 3 - 2 1 6 2 144 - 1 2 5 2 2 5 1 - 4 2 3 7 2 0 0 - 6 2 5 9 2 1 1

14 .4 , L

- 1 2 8 0 2 7 6 - 2 3 9 7 3 8 3 - 2 £ 1 7 :e5 - 4 54 9 5 5 0 - 5 7 B 3 7 7 8 - 6 7 7 0 74 8 - 7 ; 2 9 5£b - 8 3 9 9 4 0 2

1 4 . 5 . L

0 6 7 2 7 0 1 - 1 6 1 2 5 9 3 - 2 5 5 2 5 5 1 - 1 * C l 3 70 - 4 1 7 5 1 9 4 - 6 3 0 4 2 5 6

- 7 3 6 3 3 7 0 - e ; c s 5 2 9

1 4 . 6 , L

- 1 27C 2 8 e - 2 4 3 8 4 3-J - 3 6 9 3 6 9 6 - 4 8 5 £ 8 4 5 . • C l l 8 4 2 - 6 7 8 7 Tbfl - 7 5 4 6 5 7 1

1 4 , 7 , 1

- 4 2 9 6 2 8 1 - 5 3 5 9 3 4 2

1 6 . C , L

- 4 9 6 6 1 0 0 5 - 5 6 3 7 £ 2 3

1 6 . 1 . L

- 5 4 C 0 3 9 5

166

R£FER£t:-C£S

1. J . Cbatt, J.R. Dilworth and G.J. Leigh, J . Chem. Sec. (A), 1970, 2239.

2. J . Chatt, J.R. Dilworth, G.J. Leigh, and V.D. Gupta, J.' Chem. Soc. (A),

1971, 2631.

3. R.H. I s s a , M.F. Iskander and H.F. El-Shazly, Z. Anorg. Chem., 1967,

354, 98.

4. N.A. Bailey, S.E. Hull, G.J. Jones and J.A. HcCleverty, Chem. Comm.,

1970, 124.

5. R. Gronbaek and S.E. Rasmussen, Acta Chem. Scand., 1962, 16, 2325.

6. L. Cavalca, M. Nardelli and G. Fava, Acta Cryst., 1962, 15, 1139,

7. * International Tables for X-Ray Crystallography', Vol. I l l , The

Kynoch Press, Birmingham, England, 1962, p.202: 7a, p.275: 7b5 p.270.

8. D.T. Cromer and J.T. Waber, Acta Cryst., 1955, 18, 104.

9. D.T. Cromer, Acta Cryst. , 1965, 18, 17,

10. C.K. Johnson, Ortep thermal e l l i p s o i d plotting program, Oak Ridge

National Laboratory Report, 1965, ORNL-3794.

11. D. Bright and J.A. Ibers, Inorg. Chem., 1969, 8, 703.

12. D. Bright and J.A. Ibers, Inorg. Chem., 1958, 7, 1099.

13. L. Aslanov, R. Mason, A.G. V/heeler, and P.O. Whimp, Chem. Coirjn.

1970, 30.

14. B. Davis and J.A. Ibers, Inorg. Chem., 1971, 10, 578.

15. M.G.B. Drew, D.G. Ti s l e y and R.A. Walton, Chem. Comm., 1970, 500.

17. F.A. Cotton and S.J. Lippard, Inorg, . Chem., 1955, 1, 1621. 18. S.R. Fletcher, J.F. Rowbottom, , A.C. Skapski , and G, Wilkinson,

J . Chem. Soc. (D), 1970. 1572.

19. F.A. Cotton and S.J. Lippard, Inorg. Chem., 1966, 5, 416. 20. J.C. Morrow, Acta Cryst., 1952 851. 21. W.K. Bratton and F.A. Cotton, Inorg. Chem., 1959, 8, 1299.

167

22. F.A. Cotton, R. E i s s , B.M. Foxman, Inorg. Chem. , 1969, 950.

23. L. Pauling, "The Nature of the Chemical Bond", 3rd ed., Cornell

University Press, N.Y., 1960.

24. R.J. Doedens and J.A. Ibers, Inorg. Chem. , 1967, 5_, 204.

25. D. Bright and J.A. Ibers, Inorg. Chem. , 1969, _8, 709.

26. M.R. Chu r c h i l l and T.A.O»Brian, J . Chem. Soc. (A), 1969, 266.

27. H.R. Ch u r c h i l l and J.P. Fennessey, Inorg. Chem. , 1968, 953.

28. J . J . Daly, J . Chem. Soc., 1964, 3799.

29. S.J. Lippard and K.M. Melmed, Inorg. Chem. , 1967, 6_, 2223.

30. B.P. Stoicheff, Canad. J . Phys., 1954, 32, 339,

31. H. Luth, M.R, Truter and A. Robson, J , Chem. Soc. (A), 1968, 28.

32. R. Mason and P.O. V/himp, J . Chem. Soc, (A), 1969, 2709.

33. M.A. Bush, A.D,U. Hardy, J . Chem. Soc. (A), 1971, 1003.

34. A.T. McPhail, G.R, Knox, C.G, Robertson and G.A. Sim, J . Chem. Soc.

(A), 1971, 205.

35. J . Chatt, L, Manojlovic-Muir and K.W, Muir, J . Chem. Soc. (D), 1971,

655.

36. W. Cochran, Acta Cryst. , 1953, 6, 260.

168

"1^0 question is ever settled

Until it is settled right".

• • a • Ella Wheeler Wilcox,

169

CHAPTER 6

The C r y s t a l and Molecular Structure of

Chloro(dimethylphenylphosphine)CN-£-tolyl-

N*-benzoyldiimine-N-0]£-tolylimidomolybdenum

i ? 0

INTRODUCTION (see Chapter 5)

6.1. Experimental

The molybdenum compound v;as prepared by J.R. Dilworth of the

A.R.C. Unit of Nitrogen Fixation, University of Sussex, by the following

method. Oxodichlorotris(dimethylphenyiphosphine)molybdenum(IV) and

N-p-tolyl-N'-benzoyl hydrazine were heated under reflux under nitrogen

in dry methanol (40 ml. ) for 10 minutes. The r e s u l t i n g bright-red

solution was evaporated to 5 ml at 10 mm Hg and the complex

precipitated by the addition of dry ether (40 ml.). R e c r y s t a l l i s a t i o n

from dichloromethane-ether yielded bright-red plates.

Preliminary

Optical examination of the t h i n blade-like c r y s t a l s showed

extinction directions along the diagonals of the plate face. A small

c r y s t a l was mounted to o s c i l l a t e about an extinction direction.

O s c i l l a t i o n , zero, and f i r s t layer Weissenberg photographs were taken

about t h i s a x i s . The Laue symmetry was determined as 2/m. The

o s c i l l a t i o n photograph showed no mirror plane normal to the axis of

o s c i l l a t i o n , t h i s was c a l l e d the a a x i s .

The systematic absences were of the type:-

h 0 ii a = 2n + 1

0 k 0: k = 2n + 1

Hence, the space group was determined uniquely as P2^/c (No. 14), The

density v;as measured by the f l o t a t i o n method, using a mixture of carbon

tetrachloride and benzene, and was found to be 1.40(2) g/cc.

Unit c e l l parameters were determined from the photograph as:

a = 8.96(3) 8

b = 19.14(4) ? 6 = 104.4(5)"^

c = 17.83(4) A

U = 2967(7)

171

This means for a m.olecular formula of C H CI N OPHo, (M = 534.4,

F(OOO) = 1296) the number of molecules per unit c e l l i s four.

The calculated density, , i s 1.416 g/cc.

Data Collection

The c r y s t a l used for preliminary photographic investigation was

unsuitable, since, because of the high l i n e a r absorption value

(y = 60.3 cm ^) i t vrould be better to have a more symmetrical shaped

c r y s t a l rather than a plate. The d i f f i c u l t y was that the b axis was

perpendicular to the plate, and so a large plate was cut with a razor

blade. One fragment of the plate, (with the maximum dimension of

0.2 mm) was mounted with the b axis of the unit c e l l p a r a l l e l to the

^ arcs of a General E l e c t r i c XRD6 apparatus.

The c e l l dimensions were re-determined by accurate measurement of the

a x i a l 20 and values as:

a = 8.995(1) 8 U = 2973(3)

b = 19.090(1) 8

c = 17.860(1) 8

6 = 104.15(5)°

y = 60.3 cm'"

Using the procedure described in Chapter 4, the i n t e n s i t i e s of 3168

re f l e c t i o n s were measured with CuK radiation out to a maximum 20 a

value of 90°. Backgrounds were measured as previously described.

Of the r e f l e c t i o n s measured, a t o t a l of 2279 were obtained for which

the net in t e n s i t y was greater than 3 x a ( I ) , where a ( I ) was computed

from equation (4.1).

Structure Determination

The 2279 non-zero r e f l e c t i o n s were corrected for Lorentz and

polarization e f f e c t s . An approximate o v e r a l l isotropic temperature

and an absolute scale factor were calculated to enable the computation

of a three dimensional Patterson map, sharpened to * point atoms' at r e s t

172

The P a t t e r s o n Hap

The g e n e r a l e q u i v a l e n t p o s i t i o n s f o r space group P2^/c a r e :

( x , y , 2 ) ; ( x , y , z ) ; ( x , J+y, | - z ) ; ( X j ^ - y ^ J t z ) .

T h i s g i v e s r i s e to Marker peaks i n the asyminetric u n i t of the P a t t e r s o n

s y n t h e s i s ( t o t a l symmetry P2/m) wit h the f o l l o w i n g c o o r d i n a t e s .

a ) 2x 2y 2z ( l ) - - s b) 0, ^-2y, ^ ( 2 ) ; c ) 2x, J , +2z ( 2 )

•'•relative h e i g h t s of the peaks a r e given i n p a r e n t h e s i s .

A l l peaks i n the asymmetric u n i t of the P a t t e r s o n map of height >300

a r e l i s t e d i n Table 6.1.

TABLE 6.1.

Peaks of height >300 i n the asymmetric u n i t of the P a t t e r s o n map f o r

u ( i n HO^^^) v ( i n UO^^^) w ( i n 40^^^) Height R e l . Ht

1. 0 2 20 756 2

2. 4 20 30.5 676 2

3- ^ 18 10.5 362 1

There i s only one peak p r e s e n t i n the P a t t e r s o n map which corresponds

to v e c t o r peak ( b ) , ( 0 , J-^y, J ) , namely peak ( 1 ) a t ( 0 , 2/40, J ) .

T h i s g i v e s a y co o r d i n a t e of 9/40. S i m i l a r l y t h e r e i s only one peak

pr e s e n t which corresponds t o v e c t o r peak ( c ) , (2x, 5, J-fr22), namely

peak ( 2 ) a t (4/20, J , 30.5/40), which g i v e s the x c o o r d i n a t e as 2/40

and the z coo r d i n a t e as 5.25/40.

Confirmation of these f r a c t i o n a l c o o r d i n a t e s was obtained from the

s i n g l e weight, molybdenum-molybdenum v e c t o r peak ( 3 ) a t u = 2x,

V = 2y, w = 22. The c o o r d i n a t e s o f the unique molybdenum atom were

thus determined t o be x = 0.0500, y = 0.2219, 2 = 0.1344.

S o l u t i o n of the s t r u c t u r e

T h e - p o s i t i o n o f the molybdenum atom was used i n a s t r u c t u r e f a c t o r

1 7 3

c a l c u l a t i o n f o r which the r e l i a b i l i t y f a c t o r , R, was 0.M5. T h i s was

computed with a l l the observed r e f l e c t i o n s . Using the phases

c a l c u l a t e d from the molybdenum atom p o s i t i o n a t h r e e dimensional

d i f f e r e n c e e l e c t r o n d e n s i t y s y n t h e s i s was computed. From t h i s , the

phosphorus atom, the phenyl r i n g and two methyl groups bonded t o i t

could be i d e n t i f i e d . The remaining atoms were determined from t h r e e

f u r t h e r s u c c e s s i v e d i f f e r e n c e s y n t h e s e s . A s t r u c t u r e f a c t o r c a l c u l a t i o n

i n c l u d i n g a l l the atoms gave an R of 0.21,

I n view of the high a b s o r p t i o n c o e f f i c i e n t (p = 50.3 cm ^ ) of

the c r y s t a l f o r CuK^ r a d i a t i o n , an a b s o r p t i o n c o r r e c t i o n was a p p l i e d ,

as i n Chapter 4.

R e s u l t s f o r the c r y s t a l C^^H^^Cl^U^OPMo.

boundary pl a n e s d i s t a n c e to o r i g i n 4 d i v s = 1 cm.

1 0 0 - 1 0 0 0.25 d i v s . 0.0062 cm

0 0 1 - 0 0 1 0.44 d i v s . 0.0110 cm

0 1 0 - 0 1 0 0.23 d i v s , 0.0058 cm

0 3 2 - 0 3 2 0.23 d i v s . 0.0058 cm

The c a l c u l a t e d t r a n s m i s s i o n f a c t o r s , based on a l i n e a r a b s o r p t i o n

c o e f f i c i e n t of 60.3 cm v a r i e d from 0.35 t o 0.59.

Using a l l the 2229 a b s o r p t i o n c o r r e c t e d r e f l e c t i o n s , the atomic

c o o r d i n a t e s , together w i t h the i s o t r o p i c temperature f a c t o r s , were

r e f i n e d f o r two c y c l e s of f u l l j n a t r i x l e a s t squares to a v a l u e f o r

the r e l i a b i l i t y index, R, of 0.11. A l i s t of observed and c a l c u l a t e d

s t r u c t u r e f a c t o r s were computed. S e v e r a l r e f l e c t i o n s which had bad

agreement between observed and c a l c u l a t e d v a l u e s , were d i s c o v e r e d t o

have t h e i r i n t e n s i t i e s mispunched on the d a t a c a r d s . These were

c o r r e c t e d . I s o t r o p i c refinement was thought to be complete a t t h i s

p o i nt s i n c e the average s h i f t per parameter was l e s s than h a l f the

average estim a t e d standard d e v i a t i o n of the parameters. Refinement

was continued f o r f o u r f u r t h e r c y c l e s of l e a s t squares w i t h a n i s o t r o p i c

174

temperature- f a c t o r s f o r the molybdenum, phosphorus, and the two

c h l o r i n e atoms. The r e l i a b i l i t y index R had now reduced to 0.070.

At t h i s p o i nt i n the refinement, the Hughes weighting scheme ( s e e

Chapter 1 ) was introduced. The value of F" v;hich gave ZwAF t o be

f a i r l y c o n s t a n t over the range of F^^^Cobs.) was found to be 55, on an

a b s o l u t e s c a l e . The f i n a l v a l u e of R v;as 0.066, and the average

v a l u e of the s h i f t / e r r o r was .003. The f i n a l atomic parameters a r e

given i n Table 6.2 and Table 6.7 g i v e s a l i s t o f F^j^j^(obs.) v s F^j^^^Ccalc. )

The s c a t t e r i n g f a c t o r s used f o r P, C I , N, C, and 0 were from the u s u a l

1 2 t a b u l a t i o n . Those f o r molybdenum were by Cromer and V/aber.

The e f f e c t s o f anomalous s c a t t e r i n g were i n c l u d e d i n the s t r u c t u r e

f a c t o r c a l c u l a t i o n s , v a l u e s of and Af" were those g i v e n by Cromer.^

R e s u l t s and D i s c u s s i o n of the S t r u c t u r e

Chloro(dimethylphenylphosphine)CN-£-tolyl-N'-benzoyldiimine-N-0]£-

t o l y l i m i d o molybdenum e x i s t s as d i s c r e t e monomeric molecules,

CMoNC^H^CH^Cl2{PhC0NNC^H^CH2}(PMe2Ph)] one of which i s shown i n F i g . 6.1.,

i n which the thermal e l l i p s o i d s have been drawn to i n c l u d e 50%

p r o b a b i l i t y . The molybdenum atom has d i s t o r t e d o c t a h e d r a l c o o r d i n a t i o n .

The c h l o r i n e atoms a r e c i s t o each o t h e r , and t r a n s t o t h e s e two atoms

ar e the phosphorus atom and the n i t r o g e n atom from the ketone

hydrazonato group. The remaining two p o s i t i o n s , which a r e t r a n s t o

each other a r e occupied by an oxygen atom from the keto hydrazonato

c h e l a t e r i n g and the n i t r o g e n from the phenylimido group. The f i n a l

m o l e c u l a r parameters a r e given i n T a b l e 6.3. together w i t h t h e i r

standard d e v i a t i o n s .

54

Chatt and D i l w o r t h have p o i n t e d out t h a t the molybdenum complex

may be formulated as an a r y l n i t r e n e d e r i v a t i v e of molybdenum(II) ( A ) ,

or ( I V ) (B) or a r y l - i m i d o - d e r i v a t i v e of molybdenum ( I V ) ( C ) or ( V I ) ( D ) ,

which may be regarded a s c a n o n i c a l forms of the t r u e e l e c t r o n i c s t r u c t u r e .

175

TABLE 6.2.

C^^H^^Cl^U^OPi-\o - F i n a l p o s i t i o n a l parameters, ( x ^ y ^ z ) , expressed as

f r a c t i o n s (x 10 ) of the a_, b, anc3 c u n i t c e l l dimensions r e s p e c t i v e l y ,

p l u s estimated standard d e v i a t i o n s i n p a r e n t h e s i s ( f r a c t i o n a l , x 1 0 ^ ) ,

and i s o t r o p i c temperature f a c t o r s with estimated standard d e v i a t i o n s

i n p a r e n t h e s i s .

Atom X Mo 10497(1) P 13017(4) C l ( l ) 8548(4) C l ( 2 ) 11904(4) N ( l ) 9690(10) N(2) 9819(9) N(3) 10338(10) 0 11630(8) C ( l ) 11297(12)

R ( l ) 12101(12) 11525(16) 12315(18) 13633(18) 14220(17) 13396(15) 13618(20) 14629(17)

R ( 2 ) 12958(14) 13515(17) 13341(20) 12635(22) 12132(20) 12299(17) R ( 3 )

8827(12) 7408(14) 6481(15) 6954(15) 8375(16) 9324(14)

C(16) C(17) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C(21)

y 2 B(in S^) 2227(1) 11328(1) 2396(2) 10963(2) 1953(2) 11984(2) s; 1234(2) 11966(2) 1893(5) 10422(5) 4.4(2) 3208(4) 11082(5) 3.5(2) 3750(5) 11586(5) 4.1(2) 2849(4) 12272(4) 4.5(2) 3515(6) 12202(6) 3.9(2)

3993(6) 12807(6) 4.1(2) 4680(7) 12825(8) 6.3(3) 5132(8) 13437(9) 7.7(4) 4917(8) 13927(9) 7.1(4) 4253(8) 13918(9) 6.9(3) 3759(7) 13329(7) 5.4(3) 1615(9) 10517(10) 8.7(4) 2585(8) 11799(8) 7.1(4)

3111(7) 10291(7) 5.2(3) 3774(8) 10544(9) 6.9(3) 4333(9) 9984(11) 8,6(4) 4172(10) 9243(11) 9.4(5) 3545(10) 8974(10) 8.8(4) 2969(8) 9505(9) 6.7(3)

3453(6) 10392(6) 4.0(2) 3135(7) 10105(7) 5.1(3) 3368(7) 9407(7) 5.5(3) 3894(7) 8985(8) 5.5(3) 4223(7) 9278(8) 6.1(3) 4002(5) 9998(7) 4,8(3) •

TABLE 6.2. continued

1 ? 6

Atom x y . 2 uf • 02 B ( i n 0 ( 2 2 ) 5934(18) 4128(8) 8204(9) 7.5(4) RING ( 4 ) R(4 ) 'C(23) 9100(12) 1601(5) 9702(5) 3.8(2) C(24) 8792(14) 2009(6) 9020(7) 4.7(3) C(25) 8175(14) 1695(6) 8319(7) 4.9(3) C(26) 7900(14) 969(6) 8277(7) 4.9(3) C(27) 8246(15) 557(7) 8948(8) 5.7(3) 0 ( 2 3 ) 8856(14) 873(5) 9668(7) 5.1(3) C(29) 7190(16) 632(7) 7492(8) 6 . 4 ( 3 ) .

'•molybdenum, c h l o r i n e , and phosphorus a n i s o t r o p i c temperature f a c t o r s

( x 10 ) as they appear i n exp - (6i-Lh^622k^+B33il^t26^2^k+26^3hJ6+2623kA) Standard d e v i a t i o n s a r e given i n p a r e n t h e s i s .

Atom ^11 ^22 ^33 ^12 ^13 ^23 Mo 138(2) 20(1) 33(1) 2 ( 1 ) 10(1) - 5 ( 1 )

P 150(5) 32(1) 41(1) 14(1) 25(2) - 1 ( 1 )

O K I ) 222(6) 35(1) 68(2) - 16(2) 66(3) - 9 ( 1 )

C l ( 2 ) 245(7) 25(1). 4 0 ( 1 ) 17(2) 10(2) 2 ( 1 )

177

F i ^ J J . The molecular structure of [Mo NC H CH3Cl2{PhC0NNC5H4CH3}(PMe2ph))

178

TABLE 6.3.

Molecular parameters f o r C QH QCI N OPMO Bond lengths a r e given i n angstroms, angles i n degrees

Standard d e v i a t i o n s a r e given i n p a r e n t h e s i s ,

BOND LENGTHS

Mo-P 2,528(4) C ( 1 0 ) - C ( l l ) 1.40(2) \

Ho-N(2) 1.984(8) C ( l l ) - C ( 1 2 ) 1.45(2)

M o - C l ( l ) 2.393(4) C ( 1 2 ) - C ( 1 3 ) 1,35(3)

Mo-Cl(2) 2.406(3) C ( 1 3 ) - C ( 1 4 ) 1.33(3)

Mo-N(l) 1.726(9) C ( 1 4 ) - C ( 1 5 ) 1.44(2)

Mo-0 2.110(7) C ( 1 5 ) - C ( 1 0 ) 1.41(2) ,

N(2)-N(3) 1.38(1) C ( l & ) - C ( 1 7 ) 1.39(2)

N ( 3 ) - C ( l ) 1.30(1) C ( 1 7 ) - C ( 1 8 ) 1.39(2)

C ( l ) - 0 1.30(1) C ( 1 8 ) - C ( 1 9 ) 1.38(2)

N(2)-C(16) 1,41(1) C ( 1 9 ) - C ( 2 0 ) 1.41(2)

C ( l ) - C ( 2 ) 1.46(2) C ( 2 0 ) - C ( 2 1 ) 1.42(2)

C ( 2 ) - C ( 3 ) 1 , 4 1 ( 2 ) \ C ( 2 1 ) - C ( 1 5 ) 1.40(2) ,

C ( 3 ) - C ( 4 ) 1.44(2) C ( 1 9 ) - C ( 2 2 ) 1.54(2)

C ( 4 ) - C ( 5 )

C ( 5 ) - C ( 6 )

1.35(2)

1.38(2)

N ( l ) - C ( 2 3 ) ^ R ( l )

C ( 2 3 ) - C ( 2 4 )

1.38(1)

1.42(2)

C ( 6 ) - C ( 7 ) 1.47(2) C ( 2 4 ) - C ( 2 5 ) 1.38(2)

C ( 7 ) - C ( 2 ) 1.38(2) . C ( 2 5 ) - C ( 2 6 ) 1.41(2)

P-C(8) 1.83(2) C ( 2 6 ) - C ( 2 7 ) 1.40(2)

P-C(9) 1.85(1) C ( 2 7 ) - C ( 2 8 ) 1.40(2)

P-C(IO) 1.81(1) C ( 2 8 ) - C ( 2 3 )

C ( 2 6 ) - C ( 2 9 )

1.41(2) /

1.53(2)

/ R ( 2 )

R( 3 )

R ( 4 )

179

N(l)-Ho-0 165.4(4)

Cl(l)-Mo-N(2) 95.3(3) C l ( l ) - M o - C l ( 2 ) 87.7(1) Cl(2)-Mo-P 79.7(1) P-Mo-N(2) 94.0(3) C l ( l ) - M o - N ( l ) 100.8(4) C l ( 2 ) - M o - N ( l ) 101.8(4) P-Mo-N(l) 90.2(3) N(2)-Ho-N(l) 96.1(4) C l ( l ) - H o - 0 90.0(2) Cl(2)-Mo-0 88.3(2) P-Mo-0 81.1(2) N(2)-Mo-0 73.0(3) Mo-N(2)-N(3) 122(1) N ( 2 ) - N ( 3 ) - C ( l ) 110(1) N ( 3 ) - C ( l ) - 0 121(1) C(l)-0-Mo 115(1) 0 - C ( l ) - C ( 2 ) 118(1) N ( 3 ) - C ( l ) - C ( 2 ) 121(1) C ( l ) - C ( 2 ) - C ( 7 ) 119(1) C ( l ) - C ( 2 ) - C ( 3 ) 119(1) C ( 2 ) - C ( 3 ) - C ( 4 ) 117(1)\ C ( 3 ) - C ( 4 ) - C ( 5 ) 1 2 0 ( 1 ) j C ( 4 ) - C ( 5 ) - C ( 6 ) 123(1) ( C ( 5 ) - C ( 6 ) - C ( 7 ) 118(1) I C ( 6 ) - C ( 7 ) - C ( 2 ) 118(1) 1 C ( 7 ) - C ( 2 ) - C ( 3 ) 1 2 3 ( 1 ) / Mo-P-C(8) 113(1) Mo-P-C(9) 113(1) Mo-P-C(lO) 113(1) C ( 8 ) - P - C ( 1 0 ) 107(1) C ( 9 ) - P - C ( 1 0 ) 106(1)

R ( l )

TABLE 6.3. continued

BOND• ANGLES C ( 8 ) - P - C ( 9 ) 105(1) P - C ( 1 0 ) - C ( l l ) 121(1) P-C(10)-C(15) 117(1) C ( 1 0 ) - C ( 1 1 ) - C ( 1 2 ) 1 1 8 ( 1 ) \ C ( l l ) - C ( 1 2 ) - C ( 1 3 ) 117(2) C ( 1 2 ) - C ( 1 3 ) - C ( 1 4 ) 127(2) C ( 1 3 ) - C ( 1 4 ) - C ( 1 5 ) 119(2) C ( 1 4 ) - C ( 1 5 ) - C ( 1 0 ) 117(1)

C ( 1 5 ) - C ( 1 0 ) - C ( l l ) 122(1) / Mo-N(2)-C(i6) 127(1) N(3)-N(2)-C(16) 111(1) N ( 2 ) - C ( 1 5 ) - C ( 1 7 ) 120(1) N ( 2 ) - C ( 1 6 ) - C ( 2 1 ) 119(1) C ( 1 6 ) - C ( 1 7 ) - C ( 1 8 ) 1 1 9 ( 1 ) \ C ( 1 7 ) - C ( 1 8 ) - C ( 1 9 ) 121(1) C ( 1 8 ) - C ( 1 9 ) - C ( 2 0 ) 120(1) C ( 1 9 ) - C ( 2 0 ) - C ( 2 1 ) 120(1) C ( 2 0 ) - C ( 2 1 ) - C ( 1 6 ) 119(1) I

C ( 2 1 ) - C ( 1 6 ) - C ( 1 7 ) 121(1) / C ( 1 8 ) - C ( i g ) - C ( 2 2 ) 121(1) C ( 2 0 ) - C ( 1 9 ) - C ( 2 2 ) 120(1) Mo-N(l)-C(23) 177(1) N ( l ) - C ( 2 3 ) - C ( 2 8 ) 117(1) N ( l ) - C ( 2 3 ) - C ( 2 4 ) 122(1) C ( 2 3 ) - C ( 2 4 ) - C ( 2 5 ) 120(1) C ( 2 4 ) - C ( 2 5 ) - C ( 2 6 ) 120(1) C ( 2 5 ) - C ( 2 6 ) - C ( 2 7 ) 121(1) C ( 2 6 ) - C ( 2 7 ) - C ( 2 8 ) 120(1) C ( 2 7 ) - C ( 2 8 ) - C ( 2 3 ) 119(1) C ( 2 8 ) - C ( 2 3 ) - C ( 2 4 ) 121(1) C ( 2 5 ) - C ( 2 6 ) - C ( 2 9 ) 119(1) C ( 2 7 ) - C ( 2 6 ) - C ( 2 9 ) 120(1)

R ( 2 )

R ( 3 )

( 4 )

180

PMe^Ph

Ar

PMe^Ph

(A) ( 3 )

PMe^Ph PMe^Ph

Ar

(C) (D)

I n c o n t r a s t to the many d i f f r a c t i o n s t u d i e s o f molybdenum(V) and

- ( V I ) complexes^ ^ few molybdenum(IV) a c c u r a t e s t r u c t u r e data a r e

a v a i l a b l e , eg. NaK [MoO (CN) ]6H 0,-^^ cis-mer-CMoOCl_(PMe Ph).] j " " ^ 18

cis-mer-[HoOCl^(PEt^Ph)^3, and a p r e l i m i n a r y r e p o r t f o r CMoOCl(Ph^P.

CH2.CH2.PPh)2]"*"CZnCl30CMe2]~ OCMe .''"

The Mo-Cl bond l e n g t h s of 2.393 and 2.406 S ( C l ( l ) and C l ( 2 ) atoms

r e s p e c t i v e l y ) can be compared with the bond l e n g t h v a l u e s of 2.464(3)

and 2.479(5) X of the c h l o r i n e atom t r a n s t o a mo n o t e r t i a r y phosphine,

17 found i n the compounds cis-mer-CKo(IV)OCl (PMe (Ph ) ] and

' —— ^ ^ o .

181

18

c i s - m e r - [ H o ( I V ) 0 C l 2 ( P E t 2 P h ) ^ 3 r e s p e c t i v e l y . T h i s i s s i m i l a r t o the

C l ( l ) atom which i s t r a n s to the P atom, however, the other c h l o r i n e

atom C l ( 2 ) i s t r a n s to a n i t r o g e n atom N(2).

The M o ( I I ) - C l s e p a r a t i o n found i n (TT-C^H^)Ho(CO)(PPh2.CH2.CH2.?Ph2)Cl

i s 2.541 ^, s i m i l a r l y the d i s t a n c e i n (bipy)Ko(C0)^ClSn(Me)Cl2 and

(TT-C^H^)Mo(CO)^Cl a r e 2.557 and 2.54 8 r e s p e c t i v e l y .

The Mo-Cl bonds i n a i l the above compounds may be longer than would

be expected because of s t e r i c e f f e c t s , t h i s w i l l be d i s c u s s e d l a t e r .

The reason f o r t h i s statement i s t h a t the Mo(V)-Cl bond d i s t a n c e i n

M0OCI3 and Mo^Cl^Q are 2.28 + 0.03 and 2.27 + 0.02 ? r e s p e c t i v e l y .

The Mo-P bond l e n g t h of 2.528 S agrees w e l l w i t h the d i s t a n c e

( t r a n s to 01 atom) obtained i n compound [Mo0Cl2(PMe2Ph)33 "" of

2.521(5) and i n compound [MoOCl^(PEt^Ph)-] of 2.521(5) 8 , The

P-C(sp^) d i s t a n c e of 1.81(1) 8 i s ve r y n e a r l y e q u a l t o t h a t of 1.823(3) n 23

found i n the uncomplexed t r i p h e n y l p h o s p h i n e molecule and compares f a v o u r a b l y w i t h the mean v a l u e s of 1.79 8 and 1.82 8 found i n N i ( I I ) ( C N ) 2

(P(CgH^)(OC2H5)2)3,^'* and Ir(CgN^H)(C0)(CN)2 C = C(CN )2) (P(CgH^ ) ^ )2 . 25

JCgH^. The Mo-P-C a r e somewhat l a r g e r , and the C-P-C angles a r e

somewhat s m a l l e r than the t e t r a h e d r a l v a l u e . Such a p a t t e r n i s commonly 17 18 26-'31

observed i n c o o r d i n a t e d phosphines. ' ' I t has been suggested

t h a t they i n d i c a t e a g r e a t e r degree of phosphorus s o r b i t a l c h a r a c t e r i n

the metal-phosphorus o bonding o r b i t a l , and a g r e a t e r degree of phosphorus 31

p o r b i t a l c h a r a c t e r i n the phosphorus-carbon bond. The mean v a l u e of

the P-C(sp"^) d i s t a n c e i s 1.84 8 i s s l i g h t l y s h o r t e r than the v a l u e of

1.851(7) 8 found i n CMoOCl2(PMe2Ph)3]."'''^ The mean carbon-carbon bond

len g t h i n R ( 2 ) i s 1.40 S which i s c l o s e t o the s p e c t r o s c o p i c value f o r

benzene of 1.397 8. The phenyl r i n g i s p l a n a r w i t h i n experimental e r r o r .

( T a b l e 6.4).

The methyl atoms 0 ( 2 2 ) and 0 ( 2 9 ) observed bond d i s t a n c e s of 1.54 S

and 1.53 8 r e s p e c t i v e l y a r e longer than the expected l e n g t h of 1.50 8 f o r

182

2 3

a s i n g l e Csp -Csp bond l e n g t h . There i s a c e r t a i n amount of movement

of the methyl and phenyl r i n g s , e s p e c i a l l y the atoms a t t a c h e d t o the

phosphorus atom P. T h i s i s shown by the high v a l u e s obtained f o r the

i n d i v i d u a l i s o t r o p i c thermal v i b r a t i o n parameters.

Numerous attempts have been made to determine the atomic r a d i i of 5 33-42

the v a r i o u s formal o x i d a t i o n s t a t e s of molybdenum. ' U n f o r t u n a t e l y

the r e s u l t s g i v e c o n f u s i n g evidence, which makes i t i m p o s s i b l e t o a s s i g n

w i t h any c e r t a i n t y a bonding r a d i u s t o Mo i n any of the o x i d a t i o n s t a t e s . 39

According t o Stevenson and Dahl, the a v a i l a b l e data does not i n d i c a t e

any t r e n d i n the atomic r a d i i f o r the v a r i o u s formal o x i d a t i o n s t a t e s

of molybdenum but r a t h e r support the premise t h a t the type of s u b s t i t u t e n t

a t t a c h e d to the molybdenum atom i s the dominant f a c t o r i n determining

the r e s u l t i n g bond l e n g t h s . A r a d i u s of 1,61 S i s g i v e n f o r M o ( I I ) i n C_H_HoC_H (C0)„,^^ 1.59 8 f o r M o ( I I ) i n C ^ H 3 ^ o C ^ r ^ ( C 0 ) . 1 . 5 6 S f o r J D ^ O O 5 5 3 / 3 M o ( I I ) i n C ( C ^ H ^ ) 2 H 0 2 H { P ( C H ^ ) 2 ) ( C O ) ^ ] 1 . 5 5 8 f o r M o ( I I ) i n C2H^Mo(7i-CH3SCH2)(CO)2,^^ 1.52 8 f o r Mo(IV) i n (C^H^)2MoK2 and 1.64 ?.

39 f o r Mo(V) i n (C H MoO) S . • o b 2.

The observed Mo-N(l) n i t r o g e n d i s t a n c e i s 1.726 I f i t i s

assumed t h a t the c o v a l e n t r a d i u s of N i s 0.04 S g r e a t e r than f o r 0, then

t h i s v a l u e can be compared w i t h the Mo(IV)-0 d i s t a n c e of 1.676(7) % i n

cis-mer[MoOCl-(PHe_Ph)„] '^^ 1.59 8 i n [MoOCKPh^P.CH^.CH^.PPh^)^]"^,^^

and 1.801(9) t i n cis-mer-[MoOCl^(PEt^Ph)^].''"^ I f the Ho(V)-0 d i s t a n c e s

a r e c o n s i d e r e d , 1.53(4) S found i n MoOCi^,^"*" 1.65 8 found i n

C(EtO(S ) Mo03 0 and 1.70 8 found i n BaCHoO(C^O, )(H.O) 0 ]-3H 0.^^ 2 0 2 2 H 2 2 2 2

The Mo-N(2) bond d i s t a n c e of 1.984 8 i s s h o r t e r than the Ko-N(sp'^)

s i n g l e bond d i s t a n c e o f 2.23 8 i n llaJ^\o{V)^Q^iSCH^CH{nH^)CO^'] ,SH^O

2.21 8 i n Mo(dien)(CO)^.^^ A l s o i t i s s h o r t e r than the Mo-N(sp^) i n

{^^'C^}\^)^^oS{Cnp^m^'^l~ but i t i s n e a r e r the Mo-N(sp) 2.09 8 bond

i n K2Mo(NCS)g.H20.CH2C02H.^^ Thus i t may c o n t a i n some ir-bond c h a r a c t e r .

1 ei 3

Because of the s h o r t Mo-H(l) and the almost l i n e a r Mo-N(1 )-C(23)

s k e l e t o n (the angle = 177°), and the v a l e n c e requirements, the bond can

be f o r m a l l y c o n s i d e r e d as t r i p l e ( H o ^ N ) , with p^""^^ bonding

i n c o r p o r a t i n g the n i t r o g e n lone p a i r . S i m i l a r , almost l i n e a r bonds

47 48 49

ar e observed i n the rhenium a r y l i m i n o complexes, ' '

In other a r y l i m i n o and oxo complexes, where t h e r e i s a s h o r t

M-L(M = metal, L = 0 or N) bond l e n g t h , the s t e r i c hinderance caused

by a c l o s e approach of the L atom to the metal may be r e l i e v e d e i t h e r

by pushing the l i g a n d s c i s t o L towards the t r a n s X atom ( l e a d i n g to a

long M-X-bond d i s t a n c e ) or by lengthening the bonds c i s t o the metal-L

bond.^^ I n the t i t l e complex the c i s atoms to N ( l ) , ie, C l ( l ) , C l ( 2 ) ,

P and f U 2 ) a r e a l l bent away towards the 0 atom. The Mo-N(2) bond

l e n g t h does not appear to have i n c r e a s e d , and of the remaining c i s atoms,

i t i s d i f f i c u l t to say whether t h e r e i s any i n c r e a s e , because of the

u n c e r t a i n t y of the Mo r a d i u s . I t must be noted, however, as p r e v i o u s l y

s t a t e d , t h a t the average Mo-Cl bond l e n g t h i s 0.15 8 g r e a t e r than the o 22 average d i s t a n c e of 2.25 A i n Mo^Cl^^.

The observed Mo-0 bond l e n g t h of 2-. 110 ? compares w e l l with the

2.12 X Mo-0 bond d i s t a n c e i n ^^i^'^o^O^iC^O^^)^(H^O)^,^^ which i s t r a n s t o

Mo - 0.

Bonding i n the C h e l a t e Ring System

The bond angle 0-Mo-N(2) d e v i a t e s from 90° t o 73° so a s t o form t he

c h e l a t e r i n g . The bond d i s t a n c e N ( 3 ) - N ( 2 ) , of l e n g t h 1.38 2, i s longer

than the accepted v a l u e f o r an N = N double bond of 1.24 S and i s sHorter

than the s i n g l e bond value of 1.44 8. The p a r t i a l double bond c h a r a c t e r

can be seen when the bond i s compared w i t h t h e d i s t a n c e i n conjugated

h e t e r o c y c l i c s ; p y r a z o l e , 1.36 8; * d i p h e n y l - A ^ - p y r a z o l i n e , 1.34 S, **"

l , 3 - d i m e t h y l - 5 - i m i d o t e t r a z o l e c a t i o n , 1.31 8.^^ The l e a s t squares

plane through the atoms N ( 2 ) , Mo, N(3) and C(16) ( T a b l e 5,4) shows t h a t

184

TABLE 6.4

Planes of be s t f i t ( L e a s t Squares)

( a ) c o e f f i c i e n t s ^

Plane D e s c r i p t i o n P Q R S

1 c h e l a t e r i n g -7.975 -2.821 11.460 3.977

2 around C ( l ) -7.862 -2.395 11.946 4.830

3 around N(2) -8.135 -2.761 10,900 3.198

4 phenyl r i n g R ( l ) -6.431 -6.196 13.846 7.474

5 phenyl r i n g R ( 2 ) 8.667 -4.188 -6.869 2.885

6 phenyl r i n g R ( 3 ) -5.093 12.791 10.787 11.148

7 phenyl r i n g R ( 4 ) 8.829 -3.011 -6.152 1.600

8 N( 2 ) - R ( 3 ) - C ( 2 2 ) -5.080 - .12.775 10.828 11.175

9 N ( l ) - R ( 4 ) - C ( 2 9 ) 8.821 -3.059 -5.233 1.503

a ) Each plane i s r e p r e s e n t e d by PX+QY+RZ = S, where X, y, and Z a r e

th e c o o r d i n a t e s (jrosiirio l) r e f e r r e d to the u n i t c e l l axes.

TABLE 6.4. continued

185

( b ) D e v i a t i o n from Planes i n 9.

Plane

Atom 1 1 2 3 4 5 6 7 8 9

Mo .01 -.01 N ( l ) -,o: N(2) -.01 .01 -.05 N(3) .01 -.01 -.01 0 -.01 -.01 C ( l ) .00 .02 C ( 2 ) -.01 .00 C ( 3 ) -.02 C ( 4 ) .03 C ( 5 ) -.02 C ( 6 ) .00 C ( 7 ) .01 C(10) -.02 C ( l l ) .01 C (12) .01 0 ( 1 3 ) -.01 C(14) .00 C ( 1 5 ) .02 C(16) -.01 -.01 .01 C(17) .00 .02 C ( 1 8 ) .01 .02 C(19) -.01 .00 C(20) .00 .01 C(21) .01 .03 C(22) -.04 C(23) -.01 -.01 0 ( 2 4 ) .02 .02 C(25) -.01 .01 C(26) -.01 .01 C(27) ,01 .03 C ( 2 8 ) .00 ,00 C ( 2 9 ) -.03

186

the atom N(2) i s only 0.01 8 out of the pl a n e , t h i s i s not s i g n i f i c a n t .

The remaining atoms a l l l i e on the same p l a n e , t h i s would i n d i c a t e t h a t

M(2) i s sp h y b r i d i z e d . The angles surrounding N(2) approach 120

but t h e r e i s a c e r t a i n amount of d i s c r e p a n c y . The observed bond

d i s t a n c e C ( l ) - N ( 3 ) of 1.30 8 shows p a r t i a l double bond c h a r a c t e r , s i n c e

the accepted v a l u e f o r a N-C=0 bond le n g t h i s 1.32 8. ^

The C ( l ) - 0 bond l e n g t h of 1.30 8 i s longer by 0.07 8 than a C-0

double bond, but i t i s s t i l l s h o r t e r than the p a r t i a l double bond of

1,36 8 as found i n c a r b o x y l i c a c i d s or e s t e r s . The C ( l ) - C ( 2 ) d i s t a n c e

(1.46 8) j o i n i n g the phenyl group to the c h e l a t e shows good agreement

wit h the C^H^-C=0 bond l e n g t h of 1.46 8 i n s a l i c y l i c acid.^"*" The

d i s t a n c e N(2)-C(16) which i n both the e n d and keto forms v;ould appear

a s a double bond, i s of length 1.41 8, t h i s agrees w e l l with the va l u e

of 1.426 8 obtained i n C^H^NH.COCH^. The l e a s t squares plane ( T a b l e

6,4) through atoms 0 ( 1 ) , 0, N ( 3 ) , 0 ( 2 ) , i n d i c a t e s t h a t t h e atom 0 ( 1 )

i s 0.02 8 out of the pl a n e , t h i s i s not s i g n i f i c a n t . The remaining

atoms a r e a l l p l a n a r . The ang l e s around 0 ( 1 ) , i n t h i s c a s e , a r e a l l

v e r y n e a r l y 120°, thus the atom 0 ( 1 ) appears t o be i n the sp^ s t a t e .

The l e a s t squares plane through the c h e l a t e r i n g ( T a b l e 6.4), (ie, atoms

Mo, N(2), N ( 3 ) , 0 ( 1 ) and 0 ) , i s not p l a n a r , but i t bends a t atoms 0

and N(2). The atoms Mo, 0 ( 1 ) and N ( 3 ) , a r e on one s i d e o f the p l a n e ,

and atoms 0 and N(2) a r e on the o t h e r s i d e .

From the above d i s c u s s i o n i t would appear t h a t t h e r e i s d e l o c a l i z e d

bonding i n the c h e l a t e r i n g , and thus the system cannot be expressed

a s e i t h e r the keto or the enol form. I t i s b e t t e r to c o n s i d e r the

c h e l a t e as

187

TABLE 6.5.

29 30 ' 2 3* ^ ' ° ~ i n t r a m o l e c u l a r non-bonding c o n t a c t s ( i n angstroms)

l e s s than 3.6 8.

c o n t a c t s d i s t a n c e c o n t a c t s d i s t a n c e

Ho...N(3) 2.968(11) C l ( l ) . . . 0 3.21(1)

Mo...C(17) 3.552(14) C(21)...N(3) 2.80(2)

N ( l ) . . . P 3.07(1) • N(2)...0(10) 3.47(2)

N ( l ) . . . C l ( l ) 3.21(1) 0 ( 2 1 ) . . . 0 ( 1 3 ) 3.59(3)

P . . . C l ( 2 ) 3.16(1) N ( 2 ) . . . 0 ( 2 ) 3.60(2)

0...01(2) 3.15(1) 0 ( 1 5 ) . . . 0 ( 2 4 ) 3.59(2)

C(8 ) . . . N ( 1 ) 3.55(2) 0 ( 1 8 ) . . . 0 ( 2 4 ) 3.52(2)

N(1)...N(2) 2.80(2) 0 ( 1 6 ) . . . 0 ( 1 ) 3.47(2)

P. . .0 3.03(1) N ( l ) . . . 0 ( 1 7 ) 3.12(2)

0 ( 9 ) . . .0 3.05(2) 0 ( 2 4 ) . . . 0 ( 1 7 ) 3.36(2)

N(2)...P 3.33(1) 0 ( 1 6 ) . . . N ( l ) 3.10(2)

N ( 2 ) . . . C l ( l ) 3.25(1) 0 ( 1 0 ) . . . N ( 3 ) 2.83(2)

C l ( l ) . . . C l ( 2 ) 3.33(1) 0 ( 7 ) . . . 0 2.77(2)

C ( 8 ) . . . 0 1 ( 2 ) 3.40(2) N(3)...0(17) 3.46(2)

0 1 ( 2 ) . . . N ( l ) 3.24(1) 0 ( 2 1 ) . . . 0 ( 1 4 ) 3.57(3)

0 ( 1 7 ) . . . 0 ( 2 3 ) 3.47(2)

188

I n t r a m o l e c u l a r S t e r i c I n t e r a c t i o n s

C o n s i d e r a t i o n of the i n t r a m o l e c u l a r non-bonding d i s t a n c e s i n the

molecule shows the s t e r i c congestion to be marked. (Tab l e 6.5).

The methyl group C ( 8 ) shows a s h o r t c o n t a c t d i s t a n c e (3.33 8 ) w i t h t h e

c h l o r i n e atom C l ( 2 ) , compared wi t h the sum of the Van der Waals r a d i i

of 3.8 8.^^ The C ( 9 ) atom approaches 0 a t a d i s t a n c e of 3.05 ? compared

with the sum of the Van der VJaals r a d i i of 3.4 ^. There a r e s e v e r a l

c o n t a c t s between the carbon atoms of the phenyl r i n g s , the c l o s e s t being

between C (24) and C ( 1 7 ) (3.36 8, compared with,the t h e o r e t i c a l Van der

Waal d i s t a n c e of 3,70 X ) . There a r e some s h o r t c o n t a c t s between the

. c h e l a t e n i t r o g e n atoms and the piienyl r i n g s , eg. C(21)...N(3) (2.80 ^ )

and C( 3 ) . , . N ( 3 ) (2-.83 8 ) compared wi t h the sum of the Van der V/aal r a d i i

of the atoms i n v o l v e d of 3.35 8, Al s o the d i s t a n c e between the atom

C ( 7 ) and the 0 atom of the c h e l a t e r i n g i s only 2,77 9. compared w i t h the

sum o f the Van der Waals r a d i i o f 3.25 S.

The atoms i n the c o o r d i n a t i o n sphere i n t h i s complex, as i n the

rhenium complex d e s c r i b e d i n Chapter 5, a r e arranged so as t o prevent

unacceptably c l o s e c o n t a c t s between the l i g a n d atoms bound t o the

molybdenum. The N(1)...C1(1) and N(1)...C1(2) c o n t a c t d i s t a n c e s a r e

3.21 S and 3.24 S r e s p e c t i v e l y , compared w i t h the sum of the Van der

Waal s r a d i i o f 3.30 8. The C1(2)...P c o n t a c t of 3.16 8 and the C l ( l ) . . .

0 1 ( 2 ) c o n t a c t of 3.33 S can be compared w i t h t h e i r r e s p e c t i v e Van der

Waals d i s t a n c e s of 3,70 S and 3.60 8. T h i s agrees w i t h o b s e r v a t i o n s by

both C h a t t ^ ^ and I b e r s ^ ^ .

Packing of the S t r u c t u r e

The F i g . 6.2 shows the u n i t c e l l contents as viewed down the b

a x i s , and the s t r u c t u r e can be seen to pack as d i s c r e t e monomeric u n i t s .

The packing of the molecule i s p r i m a r i l y determined by i n t e r a c t i o n s o f

the bulky phenyl r i n g s . There a r e only f i v e i n t e r m o l e c u l a r c o n t a c t s

139

Fi,. 6.2. The packing diogran, of [MoNC.H, CH.CI.lPhCOt.NC.H^CH^} (PMc.Ph) 1 molecules

viewed along the b axis.

190

which a r e l e s s than 3.6 8, t h e s e a r e l i s t e d i n Table 5.6. The

s m a l l e s t d i s t a n c e of 3.48 S i s between the atom C ( 6 ) of a phenyl r i n g

and a methyl carbon atom C8'.

131

TABLE 6.6 .

C^gH^^Cl^N^OPMo - I n t e r m o l e c u l a r c o n t a c t s l e s s than 3.6 S. The ( x y z )

c o o r d i n a t e s of the unprimed atoms a r e given i n Table 5.2. v;hile those

of the primed atoms a r e l i s t e d here.

c o n t a c t s

C(20.). .C(12)'

C(6)...C(8)»

C l ( 2 ) . . . C ( 1 4 )

C 1 ( 1 ) . . . C ( 2 5 )

C ( i i ) . . . C l ( l ) '

x+2 -y+1 -z+2

: -y+l

x+2 y+l

Z + :

z+5/2

d i s t .

3.55(3)

3.48(3)

3.58(2)

3.58(2)

3.60(2)

192

Comparison of the S t r u c t u r e s o f C^-H^.Cl N^O^PRe and H^^Cl^ri.OPMo ^ 2o 2P 2 2 2 29 jQ 2 o

By c o n s i d e r i n g the c h e l a t e r i n g , i t can be seen t h a t the Mo-0 d i s t a n c e ,

t r a n s t o the sh o r t n i t r o g e n bond i s longer than the Re-0(2) d i s t a n c e

t r a n s to the sh o r t oxygen bond. The d i f f e r e n c e may be due t o the £

HeCgH^ group being a t t a c h e d t o the N ( l ) of the molybdenum complex.

In the c h e l a t e r i n g of the rhenium complex t h e r e does not appear

to be any d e l o c a l i z a t i o n of the bonding, but i n the molybdenum compound

th e r e i s some d e l o c a l i z a t i o n . T h i s may be due to the e x t r a £ MeC^H^

group a t t a c h e d to the N(2) atom.

I n the c h e l a t e r i n g of the rhenium complex, the atoms Re, N(2)

and C ( l ) a r e on one s i d e of the l e a s t squares plane and atoms 0 ( 2 ) and

N ( l ) a r e on the other s i d e , which i s as e x a c t l y as i n the molybdenum

compound, except t h a t the exten t i s not so g r e a t . I n the l a t t e r case

atoms Mo, N(3) and C ( l ) a r e bent i n one d i r e c t i o n and atoms 0 and

N(2) i n the opposite d i r e c t i o n .

I n the rhenium complex t h e r e appears to be a t r a n s e f f e c t due

t o the phosphorus atom. However, no such e f f e c t i s n o t i c e d i n the

molybdenum compound.

The atoms i n the c o o r d i n a t i o n sphere i n both complexes a r e

arranged so a s t o prevent unacceptably c l o s e c o n t a c t s between the

l i g a n d atoms bound t o the c e n t r a l metal atom.

1 9 3

TABLE 6,7

Observed and c a l c u l a t e d s t r u c t u r e amplitudes f o r

ChloroCdimethylphenylphosphine)[N -D-tolyl-N'-benzoyldiimine-N-0]£-

t o l y l i m i d o molybdenum.

Format h k

z io If I io If o ' c

The f i v e r e f l e c t i o n s omitted f o r suspected e x t i n c t i o n w

h k - ioIf^I io|fJ

0 2 0 2266 2770

1 0 0 2148 2998

1 1 - 2 1644 2057

1 2 0 1732 2000

2 1 - 2 2278 2639

ere

ce9 s - ix\ 11 ozt OOC 6 • I * LU zvc 01 VC1 O i l 8 .

v o l i .e i 1 - LLl zsc 6 evs 9 i 6 L ZCl OCT 91 Obi zzz 91 ase IbC e 98 0*1 9 S8T voz- VI 6b1 ozz SI • a • i s ; t z v 9V» S ZZS VZS c t

a i e 9 1 - 8Zc 09e ¥1 * ? • £«1 fibi S9Z V8Z Z1 8 9 ; 5 1 - cez 9»Z CI l i e £9C V101 i t i l c 9*1 S9I 11

6CZ ¥ 1 - tbS eZ9 Z1 V89 Qb9 c OSS 609 z 091 ZTZ 01 i t i 19T C l - i l Z i . U 11 811 . VE1 z Z89 188 1 69C bflC 6 S9S LSi zx- v e i 918 01 801 bOl 1 9911 9611 8

»9 I t t - 88 Z>1 6 bZC occ 0 1*6*0 Bbl tLZ L e n i * 9 n 0 1 - bSV Lt> 8 T8C 6 i » 9 892 B- eb i 191 L T V I ' O bLi »6£ CI TO* 6ZC C

L- 0611 Z IZ1 9 Z8Z 18Z IT bZ^T S t » I * b i t I C l 9- 0»£ i bc S 9fiZ coz Z1 911 e s i 01 ZOC 8CC c

60fi 5 - CVZ1 C6Z1 V bl.Z LLZ 11 i b * CIS b z t z »sz z

V6e 3 ) 3 V - 3TC avc Z VC2 WZ 01 V6Z 5VE 1 ZC1T ZRTT 1 zsc e ic c- CC51 V051 z ZIZ CZZ 6 V91 621 9 CIV 9€V , 0 iZZ ZTZ z - ZOV 88C I v i z lOZ B Z09 5V9 5 SS01 bSb 1 - 8011 VV01 0 ZBl 8EB 1 051 628 V T v * 0 O i l 4VZ 91 VSl J 5 5SB 1C9 C CBZ 08Z SI I M * 1 CVS oes V £65 V29 2 ZSE 06£ 61 S9V 605 VI 81 9 '»l c 9101 ZOOT 1 6CZ 2 2 2 e i i l Z IVZ CT 091 IVT 91- 91V vvs z SZ 9b 0 819 819 01 LIZ 50C Zt 12c 6IC V I - 29> a9v T £61 6VZ 6 C9t 98£ IT 089 S99 2 1 - T B ' O OZZ 9E2 9 VIS ICS 01 0C2 90Z 0 1 - T E T ' O V 2 2 6C2 1 061 C91 9 6 1 1 VTt 0- IZZ lEZ 51 906 V ? 6 9 1 V 6 3101 9 ivy 9 - 23! IZZ CI SET 151 V I 96* V 5 5 5 ezc see 5 19£ C6Z V- 1V2 £VZ 21 851 9VT £ 1 8501 V£01 E oos 10V V 996 TV6 Z- 80V sov 6 V15 895 11 P50E 5982 Z 9V1T C6T1 c OVC : VIE VI C9V TBV 1 IZE S9C 6 591 1*T 1 9 i l l c o t z i z a 1939 21 Z3Z 3ZC 9 011 2BT B »8C 69C I ETC aCC 01 109 1 £ 9 S Z19 VS9 1 1*£'0 V6S 9V9 0 Vlb ISOI 9 O i l 611 V SIS 859 9

V09 519 9 5S1 SZl c 5E01 8901 5 95E WE IT 1»C' 1 :&s 33% V 129 O i l z VB 8Z1 V T£T 6£T 91

Z081 £211 z 1S£ 95C 1 516 186 £ ££I £ 0 2 VI 592 681 1 1 - 89C 8ZE 0 S25 01S 2 19V 29* ET 9CZ lOZ 91- T O M 911 591 1 1£9 299 21 ISZ vvz ; T - T Z I ' O 8*1 6*1 11 otc ovc VI - O i l £11 5 T l ' O 051 5 1 1 01 CV2 62Z C l - V2V 9TV V 16T Z61 VI 895 2 * 9 6 Zbl C61 Z I - 181 66T T E6 e n Zl 11 I 6V1 91 105 89* 8 OZT SVI s - LIZ 3Z£ 3 b9t ELI I t 6TS OVS E l C91 £91 9 2t9 V8S 8- Ol£ lEV 6 S61 ITZ 11 682 St£ 5 t6£ 82V 9 - T 8 T * 0 66Z BSC 6 v v l OCT 01 ZBOT I T U V a9V CVS S - 8T9 ZV9 1 218 059 6 25V 105 £

1831 5131 V - 335 Z','» 9 191 9St 9 VVS 195 9 6 1 1 SlZ Z ev2 ICZ c- 09 T i l » 929 1£9 5 H E ZbC 1 . 15 511 1 ZS8 Z l l z - O i l 891 E 2EV VSV V Z21 951 9 0T1 V I I 1 - ZvZ £12 Z e6V 06 V C £68 COOT S 1»Z*0 10Z Z32 91 z ; i i ; i T 9£V £1V z 0£8 598 V z s i ZB1 51 069 259 T Bbl 9E6 E B2E CIE 91 6VC ICC CI T I T ' O £82 E l 2 2 21V 8^* VT 9SV SOS 21 1 * U * 0 0V9 V£9 1 962 T62 CI U 1 IST TI 111 1 2 1 > 989 S89 0 ovi 99 1 ZT 9VS SSS OT 9£V sov 9 Z l l 801 VT 196 6C0T 01 Z9T ZTZ 6 80C 862 1 bOZ 861 £T T 9 » 0 601 2*1 6 c o i l 6C11 8 OZC 012 V BIV CV» TI 6E2 £1Z 9 6tT 3TZ 1 5 ;z i»Z b 2b» C6V b 81E 9ZE 51 IVE 5T£ 5

V19 9 961 961 0 25V l i v 1 651 08 T Zl 916 ITOI V co t SlZ 5 06C VbC 9 812 9BZ 11 259 1 Z091 E ZV2I Z2Z1 V T 9 1 * 0 £98 9Z6 S 92Z OZZ 01 8812 96foT Z VlC SVC c £Z1 3V1 £ Ob £VT 6 8921 C921 z OZC EBZ 01 161 VGZ S12 6 ie 8 1 M * 0 8921 C921

861 191 8 928 ZV8 1 189 189 1

T Z M 2BZ ZVZ 1 009 899 0 S8Z1 6921 9 0E9 0*9 ZT -;9s c ; : 9 598 958 5 912 £12 01

OBZ VTZ 9T- 662 5E2 S T 0 I * 0 69 ITT V £82 012 8 "<;v9 lOS VT- S5T 081 V Z16 9201 E 512 622 9 111 TBI ZT- V91 bIZ 2 90V V9G 51 VIS 6VS Z I I Z I V I I I V 108 9Z> > I - 6V2 9Z2 T ZQt 9S1 ET ZlZt eVei 1 OVT EC I Z 1 68 - 1S£ v6e TI blZ 8ZC 9 - 1»ST*0 £12 ecz OT T S * 0 T*0*0

5 - 6 1 :

• zez ZBZ 1 - C¥9 SC9 0 efic fifiC zee 9- 081

b&l < i s»c fi3C fi- T Z I M ZL\ 101 CI 19* fi*» Z- • Si 61 i fifil Z1 6ZZ 1 - ?1Z D1Z e I - • y t

11 B^e 09 C 8 zee 9ze 0 1 - COI n i l 9 ? n e 71Z L Z9! 6tZ 4- fiZfi fib B£1 L 8Cfi 9 99Z z*z 8- • Z9 (¥6 <S6 9 fie* 1ZS C 9ZV 6C« L- •oz <BZ ZIC fi 9CC tee Z fifil ZL\ 9- •fiZ 60fi L>n • Z'yL S- 1911

90* Z T S I ' 1 9fi5 ZOfi »- SiZ 961 T »9Z VfZ e- L'rL

I9« 0 ovz cez 9- • 69 189 z- LbZ CD* t - bb3 ?38 i - • LI* 111 991 9- fill fi8I Z l eez

C l - i6Z efiz Z l - Ifil 091 n - 8BS SIS 0 1 - Cfifi eo9 6- re^ 8* hZfil 06(1 i - 9ZC i^e 9- • i f l 0T6 s - Z99 1''9 • - -9« fi^fi e- CZT 6 r i z-i - T 9 M • T CI fHZ • M Zl •bC o<;e

ot

U61 lOZ 5- 5C5 OZfi 11 551 tJCI 11 ZlZ ZOZ • 1-ez¥ sec 9 1 - OBfi B^S • - bbl Z l l 01 001 Z l l 01 fCZ ZTZ Z1-bii » l - ZJZ >>z i ~ Lit 61 i 6 598 118 6 n 9 • ?9 11-Z l l b<*l Z l - 9BI 181 T- b l l I b l 1 €•5 9Z5 e 8 I ^ 5C* 01-e i i 10Z 0 1 - bO* • 6G 01 ZbC 19t 5 bOZ \nz 1 bfiC 9HC 6-6 I Z I 1«I1 e- 00 • 13^ b BBl 911 c IBb B9b 5 uaZ o/.z 1-iz^ iff J - »?z Hi 13£ 5Z£ z 9SZ •bZ BOl Z19 9 -991 I 9091 • - b l ^ 09 • I zzz e9z 0 tcz 9^Z e •z t 65e 5-6011 fi96 z- 1Z8 OfiB s 655 • C9 z "BC • /C • -61Z IZC • 1 ccz lez • T i l M S^OI bUI I 1 T9Z o?c i s ; iX t ClZ oie 0 5 e e 05 e z -966 ezoi 01 Lit l i e 1 811 I I I t 1 - £ • • 9f.» 1 -519 969 e C I^ 6Z^ 0 1C1 •11 I I - T 6 ' l 95 Z /9Z 51 6*V1 e9fii 9 •ze bZC b- 50Z b l l vi dii • • 61 t?z 8- lOC • 8Z 5 1 - • zz • IZ Zl Zl£ Z9fi z • IZ zez 1 - o i l 5^1 £ 1 - •bZ 1«Z 11 9 I0 t 18b 0 ZOI IGI Z 1 - 661 ffL 5- 19 I Z I z t - "B^ 6' 5 01

I I Z 91Z 1 1 - 961 I IZZI c- bOl 151 11- 95Z 01 z 6 1*3»Z Hi ;s£ 31- •,li 6ZE z- • 05 1Z5 6- T^9 ef 9

lOZ bOZ b- TlZ UTZ l - ClC 81C H- 9511 fibll I eol 911 •fiZ bOC B- 91fi lefi t T • •e CZC 1 - • •a 9'*b 9 9ZC IZS • - 615 • 19 1 - bCZ Obi 11 ! • • ZbC 9- u z K Z • • 11 111 I - ; i ; »t» »- 519 6 IZ5 815 5- Z191 I f 91 e b91 811 z- t^e IfiC 5- ezz BIZ 8 9gz 5SZ e- I b l 961 z fibZ IbZ t eze IOC • - ezz bPI 9 909 195 z - IBZI •set 1 Ctfl • 91 e 095 1^5 z- • 19 • Z9 5 Z9CI IZOI I - ccc • 'Z 0 t t Z 1 1 ! z VC» »?• T- Jb • ICZ 192 51 •ez ebl 1 . ize • •e 11 efi 901 c 551 ezi Zl T 5 * I ZIC 09C 0 I I I ZZl b fiZZ 5^Z z i^e 5^£ 11

991 H I B ObOl 0Z11 1 10^ zc^ 01 "ZZ eei 11-T J I M l b } 1 b : ; M ; 0 lez l l Z b btZ I M 9 1 -

051 961 9 l e n OOZl 1 € « • ! € • • 1 * z c * ze^ 9- e9z BBZ 5 T O I M oc^ & • • 9 99^ C l -9Z1 611 c - OBZ 99Z • 195 • 09 • BIS • Z5 Z1-!&• 13* J - • 6> i Z1-: 53e 5 1 - Z991 9011 e T51 55 1 n -C6Z c&z 1 - i6e e6e z Z l ^ zc^ t l - IC I Odl z z^s 195 b-oz^ 9Z^ 9 e9c 91 e 0 C9e bce 1 1 - bfia 116 I ?9e I5e 8-

• IZZ QOZ z ! £ • ! • • C I - lOZI O^ZI 0 bZ* 15^ 1-3IZ 6ZZ I Ill t»e 8- fOOI 9901 9-

905 96* 1 - T i ' i 18 , 5b * T i l ' 1 • e i 691 e i - bbl t i l 5- S9e i r^

Zfil Z l - filZ Z9I • - ©•z 591 9 1 - e59 •11 e-• s ; M : 9- • : I l i t 3 1 - 1 u [99 c - tit 0E9 C l - 5^Z 9lZ 2-fiSC zee • - Clfi bBfi b- ccz 90Z z - CbZ 19Z • 1 - 66^ Zfle I -Z»1 091 c- T15 bOfi 1 - ec9 • 6 5 1 - eez IbZ 1 1 - 19Z ZlZ 91 I Z I ezi z- zos 6C* s - CC9 9Z9 11 b9Z CBZ C I - o^e 9ie e i fi91 •1 1 - Z59 ea; • - il* ilt 01 Z51 911 6- SlZ Zl 9SZ •ez a 899 1^9 e- • 6Z ! • £ b • tz 56Z e- bb I ' l l n t * l 6Z1 • 1 • BZ lez z - fib • T I ' • 15 bZ5 1 - bZ9 • Z9 01 (•Z •zz 9 e i i 981 Cl 505 C05 1 I9Z CbZ 9- / • e IhZ 6 • az v ;z » 3»Z C)Z s 33 >0l 9 fiUl ( • I 5- 5T8 90B 001 9ei c ZIZ 9£Z 8 fi^Z [•Z 5 ObC bfiC • - •ee 99b bOC 80C 1 5oe fibZ 1 ce 611 • 9^Z 5CZ C- 111 eei 9 Z l» 0 fill 061 9 • •01 [•UI t e o n 1601 z - Z^ZI ezei 5

'.•a • • J > 6z: 6 * ; I ZZI I 9501 1- •flCI e«e I 1»91* I ocz bOZ 5Z5 iCfi I 15Z cez • 1 68^ 055 c

l e i I I I c eiot CbOI 0 B^Z 59Z e i I Z I • •8 1 oze ize 01- Z9C 61^ z ZlC 9ee Zl 631 S»l a- ac9 ;• ' I l*b* I 051 e n 11 1*¥' I

S 6 T

£3! 3- 3?I 691 soz s - OZZ 9IZ z 181 9*1 CbS tS9 1

9iZ c- SCI t l \ 0 bis' J - iZi \L1 51Z 1- T Z I ' Z 8ei taz «gz 96» LtZ 9 9»C £ 1 - 6S» MC 31f » TIE I»£ M- I J ! BdZ s ie c 9/1 e iz 01- 1S9 eiz cec 6- 9S£

0 8CS b9S / - *Z i ;&z T- yb9

T S l ' Z 019 S-* u 69Z

9ez Z9Z 11- 9Z» zz» - 80*

T 6 * Z

91-5 1 '

f Z9 iZS 068 9 i * Z01 *4S *0b O i l

i9T 09E 09* I b l I t t

«48 zzs 951 iSS 668 C i l

T 9 * Z

K l Z*t

n z 6Z1

S09 bT9 BOTI Z i * tST 969 t T i 9iS on I C6ZT TZ9 i l O I b*t 26?

6 7 i 199 *T11 « 1 *

CP9 UB9 *09 S*I i « ; i t C99 Z*01 b«1

* I -I t -01-6-B-1 -9-S-V-£-Z-t -51 *1

1 U 3 1 - SI I 2- 5*Z biz Z- 151 108 1 1 - *1E 02* 2t «&1 coz i - 105 59» l - 9€2 152 1- £56 OZOl 0 1 - **^ 9f ^ 11 £0C 66Z 5- *81 081 Zl 682 512 * I *S9 219 b- c 12 922 S9E Z*£ *- *S* * ? * 11 f I£ 182 £ I SBE ISE 9- B2H b i l l e 991 * ; 1 c ~ M l * I I 01 H Z 681 11 Ebl 60Z 5- Ottl I f I I Z6f ;6£ Z- 811 B91 8 22E 9*E 01 6Z* *Z* •»- 9*2 1T2 9 68Z *sz 1 - 86* 515 1 *E9 bE9 b 205 ues €- t E l 95 I 5 831 511 6 lez OOE 9 082 E5£ 1 ?2£ 59E 2- BEl BlU

3 169 3U *5B 95 8 5 292 812 1- 612 E12 E zoz eoz L o&z 9ez 2 £58 526 * 902 9UZ 51 8*21 2H£ I 2 9bZ tCE 9 1 1 * 96* 0 21 OEl 2 *9Z 1*2 *1 - I * * 2^E 1 015 EZ5 S EEOl £131 1 *21 621 £1 98* znq 0 iLZ * T I l ' Z iBf IBE 21

znq

£0e * u c T 8 ' 2 **£ TSE t l T £ '2 605 z 1E£ 95E 5 1 - 98* 525 b

* L * £E* 1 ZIZ BZZ E l - ISE 08E 5 1 - IB* 86* 8 61E 91-3*£ 3 ;3 * ! 3 * 11 - * ; z 08 2 E l - 086 1 lOI 1 192 5 1 -

0Z5 0*5 6- OEl 521 Z l - 852 I t t 9 *S1 *11 * I -T * I 'Z Z*Z ZC2 8- 115 ET9 11- 09 8 EE6 5 •196 XjOb 2 1 -

919 l t 9 1 - 815 915 . 6- 26Z ZIZ * 915 5* 5 6-95Z 5?Z 5 1 - SZ* ZbZ 9- * 0 * 86C B- -. 811 I ZEl l £ 9E6 2*6 B -

Z9» 6- zzs 18* 5- 822 *6 I 1 - 891 9EI 2 112 ERI 1 -E9Z i - Z11 l E I 6** l i s 9- * Z H 1*11 1 PBZ 69 Z 9-

C0£ blZ S- 916 968 £- 861 £51 5- i l l 681 0 6*11 6991 *-* S ! 3?Z »- ;3£ 7',t J _ 651 161 *- •»601 6601 £-se* 5 1 * E- * *z * I£ 1 - 95* 9b£ 2- T 5 '2 225 61 5 2-Z*E 9*E Z- 5CS 99S £T 508 B61 1 - 1*£ blE l -IS* 15* 1 - 8 IZ 112 11 Oi l £ l I £ t OIZ 891 1 1 - •vOE 15E S1 \ i ZI t 31 £ZS * ; : 6 I £ * *£* Zl o*c 50£ 9 1 - 162 9<»Z *1 *91 091 6 €5 1 1*1 8 66* 1E5 11 u : £61 £ 1 - 921 2*1 El

.69C *5£ 8 9EZ 2ZZ 1 9*Z 1E2 01 826 £08 2 1 - * 12 Z9Z 1 I £91 9 l£ 20E 5 EZ* £3* 6 ZE2 U22 H - t 5B 098 01

\zt ?1t 9 SZS 13; * 02 E OtC 8 Z9C SBC 0 1 - e29 Cf 9 6 951 UZ 5 ZZ9 Zl9 I **B 818 1 199 8 59 6- S9E **£ 8 £59 0S9 £ 155 E19 5 £1Z 65Z 8- 102 I f Z L 60Z 90Z Z T O : '2 98* 2E5 * e*8 668 1 - 159 018 9 5S* i Z l 3 9£01 2501 E 1 1 * * 0 * P- 69 5 !1 5

soz 902 5 1 - 661 BIZ Z 5 1 * 225 5- e9£ HE T e i ' Z Z6f 60* C I - 003 518 1 9*1 £EZ *- P6E 8/ * z

*a i 181 £61 Z l - 1*9 *19 3 8«1 291 E- 65* - 1^5 1 *a i ? i i £ 1 - * l t . ; ; * 11 - 662 ISZ 2- 2901 **01 0 z t z l*Z 1 1 - 691 911 0 1 - 1*1*2 95E I9v 1-

2901 **01

ITZ lEZ 0 1 - 8Z* £9* 6- U l 191 51 1* Z '2 8 1 * 0*T 6- 65* as* 1 - HE 98 2 9 1- OSE 99E *1 VEZ C9J 3- ; s i 3Z! 9- 1*5 155 E t - 68E 5 1 * £1 ' 102 5<»l 9 1 -2*9 CS9 l - 2121 2*11 5- 5 1* 90* Z l - 511 221 21 108 2T1 * 1 -8*1 9T1 9- £0* 96E 219 8*9 11- 281 £91 11 r91 IS 1 £ 1 -flZ* 05* s - **Z 222 C- EOl £01 S- £8* 66* 01 »9T Z6I Z I -

13; » - 6!>9 1!>7 1 - 2*5 019 8- 09* £8* 6 £28 6T8 0 1 -*2S BIS £- tzz 5*2 EI 1101 9*01 1 - £08 118 1 RSI 9* I 6-05* E I * Z- 1*1 181 21 818 106 9- 988 556 9 921 Zf I e-68 911 1 - 695 U5 11 8 t * EZ* £- £501 £101 S 861 9b l 1 -611 l e t 11 15Z izz 01 *1E IbE 2- OOtI 01 11 ^ ?101 Z701 9-t9Z 65Z o r Z09 985 1 158 IBB 1 - 29 2 lEE E CiOI OT 11 s -SlZ i *Z 6 * l l 102 5 26E E T* * I 919 651 Z •'SE S2£ *-5az 6ie B 1 19 919 E 611 58 I £ I B i t 581 T 90T2 968 I t -5 t1 S»! » £1* Zt» ; 591 t i l 11 £26 £88 0 019 501 1 -U 5 *65 5 2*2 152 I 80* 8 1 * 01

019 501

Z5Z *6Z * 055 565 0 1 * * 9 1 * 6 1 * * ' 2 T I '2

f£9 iL9 111 202 0 LLX 811 * 1 - I9V 59* 9 5691 1291 f£9 iL9 C 8S1 £81 £ 1 - £e£ 91£ ££6 2901 |_ LiX 191 1 012 2 1 - £21 121 292 *92 * I

18C bit 0 l i s * t 9 1 1 - 029 919 5*1 802 £1 stz ec? o t - s * c 2ec C l - 02» I V * 01- *92 212 X 852 152 21

291 2 1 - 112 002 6 - 2bS 855 0 £12 511 11 9 - 32 2 S32 11- 9 L : 2 2 : 8 - 6££ 01£

zez s - 908 £28 6 - 9 £ 9 009 1- T * * C 896 0001 e t c 291 * 8 1 8 - 112 102 5 - 5£1 291 ^ • I * £- Zbl 2S1 9 - 92fi *- 611 521 1 1 - 915 215 bit 191 t - ^931 » * £1>1 3201 L — 125 *0S * l - 9 * 1 1

T C I ' t 661 102 SI 811 2 - 9£S £1* 2 1 - 2*1 911

T C I ' t Ltl 6 e i £- fOt 212 1 - 51£ £ l£ 11- 55* 6 0 * 618 898 1 - b£2 bS2 £1 6 1 * 26* 0 1 -

9bi LZ7 U - s;2 11 flZ 9 6£ 11 119 165 6- T 1*E ZbZ 0 1 - 661 1£2 6 5*1 0£1 01 6BE 18£ 8 -

e£2 5*2 9 - 2£2 £*2 8 *92 092 6 * * * 1 05£1 9 - 5*£ 5£2 9 1 -9 * * 0 1 * 1 - 091 8£1 1 ft: £62 1 5 1 * 50 * 5 - 111 991 * 1 -I S l 321 9 - 255 115 £ 691 9*1 9 815 * 9 * *- 0 5 5 £ 1 * 2 1 -985 515 £ - £82 2*2 0 629 659 5 291 O i l £ - 2511 6951 8 -10* 9 * * 2 - 16£ 0 8 * £ 119 5 * 9 2- 259 bbS 9 -911 *02 1 - 1 * 6 * £ 1*S 9 * ; 2 821 201 1 - 6521 ET01 *-* 2 * 5 * * 31 £911 6111 1 £12 0£2 E l £852 * * * 2 2 -6C2 £12 6 22£ *0£ 5 1 - *1E 21£ 0 6 * 2 *52 Z l * e i * 1 1 * 1 621 *21 1 225 9 9 5 n - £ 9 * 9 £ * 11 11£ 6 9 £ 21 509 165 9 1*2 £12 3 1 - 1*9 •£ *1£ 12E b :£9 129 01 1 * * S 5 * • 1 l2 £12 6 - 2 1 * &g£ 8 bbZ 15£ 8 £52 1*2 * * 6 1 5B1 9 - Et2 181 1 1 - 195 109 1 S2* 6e£ 9 121 911 2 0221 0121 1 - 202 902 * 1 - 9*1 901 9 966 066 * S91 291 1 01£ £ E E 9 - 2 3 ! 222 £ 1 - £6 111 5 56* 29» 2 I M 391 3 90* £ 0 * . 5- E5* * n * 2 1 - 15Z 992 £ 28 2 9 ^ 2 0

981 181 *- 2 1 * 5 1 * 1 1 - 0Z9 515 2 T 2 1 * £ 299

801 %bl £01

£ -El

9 2 * u :

1 * * Lbi

0 1 -6 -

129 2E9 0 1 * & * E

6Z£ 2Ee £ 1 - 002 502 21 191 291 9 - !•£•€ *0S 18* *-262 £0£ 2 1 - 012 961 11 08£ 88£ 9 - 9 * £ 51E 2 -E * l * 5 1 1 1 - 0 1 * 6 1 * 6 1101 286 5 - 1 IE 05£ * 1 212 681 1 -*££ 55E 0 1 - 8EI £51 1 Zii iOi *- * 9 ; Z95 01 COE • * : E 2 E?9 t l ' . b- 9iS 1*5 5 191 181 £ - 192 ESZ 6 251 151 1

.£02 291 9 - 1I£ t l £ * 929 609 2 - 981 5b1 9 E£E 9C£ 0 851 £ * 1 1 - 111 1*1 £ 2*21 fobll 1 - 195 Z15 9

9C£

9Sl 102 9 - 221 £51 2 11-: ZZi Z1 982 £82 5 T 9 l * 2 9 £ ? 119 « — 129 911 1 192 152 11 191 2*9 * T 9 l * 2

9 9 * 5 1 * *- 12£ 05E 0 161 111 6 161 021 £ 602 922 9 -*51 161 £ - 88 121 9 901 *51 2 1*5 155 j _ 19E 3 9 £ 2 - 1 * 8 ' E b9Z t l £ 1 LIZ £02 1 T£1 891 | ,

1E1 as9 1 - 819 099 5 199 895 0 91 " 511 561 0*2 11 182 0*2 5 1 - 8 l £ 582 * 6£2 1*1 1 1 - h i * I E * 251 0E1 6 25E B5E £ 1 - 069 101 £ 861 9 * 1 9 1 - " 8 1 *22 ISE 9aE a 911 £51 2 1 - Hi ZZi Z 822 1E2 * 1 - £*£ 29£ 2 5 ; E 89e 1 192 152. 1 1 - 909 £91 0 5*5 b05 2 1 - 012 882 5*2 952 5 5 I£ *1£ 0 1 - 2*E »££ 0 1 - 0 2 * 9 * * 0 169 9 5 9 £ 10* 0£* 6 - 1*S*£ 615 125 6 -* 5 I 151 1 EEl £81 9 - 261 b19 9 - T 1 1 ' 2 251 231 3 992 £*2 9 - 922 691 9 1 - 251 111 1 -

T 1 1 ' 2

T T I ' E 2101 * 6 6 6 - O i l 551 5 1 - 1£01 9 * b 9 - 12£ 15E 9 -

T T I ' E 59 * 5 * * 50E 962 * 1 - 018 918 5 - U 2 682 252 612 E - 131 121 £ 1 - SbOl 1101 • - 022 602 5 -

991 ^91 £ 1 - 9 6 9 * 6 9 1 - l b * £15 2 1 - *15 115 £ - b l 2 8 b l 621 9 * 1 2 1 - 6*£ SSE £1 *£2 5*2 1 1 - 16E1 £0*1 2 - 9£2 612 J , 619 199 1 1 - *££ 65E 21 *S5 E9S 0 1 - 1 2 * £5* 1 - 92£ 882 Q 511 902 0 1 - 96E 21£ 11 3 i ; £85 6 - 652 562 i * l 3 ; i i - *£1 951 01 111 021 8 - T Z * £ 991 991 1*2 £12 8 - 5E£ 8IE 6 995 1 2 * 1 - 292 112 9921 2521 1 - £ 5 * 15* 1 599 009 9 - E2E 122 9 1 - Rbl 512 { 105 66* £ - I&£ 2 l£ 5 Qi* I E * 5 - 0*£ b l £ * 1 - b9* 0T5 0 9*t * 9 £ 2 - 852 912 * 9201 056 *- U l 651 1 1 -*62 992 11 £01 569 £ 095 905 E - 606 158 0 1 - T 9 1 « 2 1*1 951 01 2*1 01 1 2 25* 22* 2 - 992 0£2 6 -

T 9 1 « 2

5 1 * 5 1 * 6 921 291 I bZl 32£ *1 £9* 29* 9 - £92 192 0 1 -6£1 * ; i a 922 012 0 £22 £61 £1 261 bb 1 - 561 *22 6 -681 222 9 6EI IE1 21 591T £991 9 - 1 9 1 081 8 -65£ E5E 5 T l ' £ 965 1£9 11 8 £9 299 5 - £62 21£ 1 -291 £51 * 882 282 b * *12 OO02 *-

21£

915 i i : 1 252 912 5 1 - 152 2*2 I OES £** E - 1*51 '2

S T

198

3 . 1 3 . L 1 123 172 0 422 407 4 , 7 , L 1 897 9*1 2 496 476 I 635 635 2 215 204

5 l d 2 180 4 964 980 2 628 651 0 268 277 3 125 1*. ; 6 295 295 6 24 1 ?50 1 - 645 <72 1 1C27 1C2C 4 2C1 245 7 166 155 7 177 201 4 281 257 2 243 255 5 560 580 B *52 445 8 729 694 5 137 180 3 532 523 7 273 295

9 295 276 6 520 509 4 650 644 9 217 : 3 t 3 .14*L 10 164 136 9 35C ' 3 C c ; 3 t 343 . IC 152 199

13 160 135 10 345 326 6 146 170 - 1 167 151 J 6^8 872 - 1 152 155 11 354 297 7 504 505 -2 210 251 2 5^9 586 -2 482 506 - 1 486 494 B 271 267 -3 375 429 3 3*9 327 - 4 1554 1694 -2 123( i : e 2 . 5 171 1 ;7 - 5 . 447 4 70

1 86 17-. - 5 314 345 -3 688 891 10 179 197 -7 690 721 e> *77 481 -6 1025 1071 - 4 471 467 11 155 177 -8 209 182 7 3^:5 328 -7 231 241 - 5 117 152 - 1 1122 1166 -9 195 232

- 1 " 335 315 -8 253 242 -6 319 ; 5 t - 2 236 - 2C2 - U UO 163 -2 278 24tl - 10 37f. 377 -7 2 84 263 - 3 142 129 - 1 1 520 487 - 3 430 429 -11 149 124 -10 127 90 - 4 257 219 • 4 2iO 197 -12 178 267 -11 124 100 - 5 861 893 4 , 1 1 . 1 - 5 136 1 36 -14 128 136 -12 135 112 - t 2E4 279 - 8 223 203 -14 239 2 70 - 8 232 240 3 484 494 11 266 272 4 . 2 . L -15 201 275 - 9 310 304 4 124 126

-16 219 275 - 1 0 211 188 5 253 247 3 , 1 5 . L - 1

- 2 153

1612 173

1642 4 * 5 . L -13 2*3 228 7

B 266 ICS

279 186

0 433 363 -3 735 705 4 , 8 . 1 9 155 209 3 240 i 7 u - 4 147 214 0 965 969 - 1 676 641

587 562 -5 682 721 1 975 558 C 2C4 177 -3 315 SD4 - 1 ^•.9 4 * 2 - 6 760 799 2 567- 553 1 535 540 - 4 207 198 -2 389 365 - 7 494 497 3 226 239 2 534 521 -5 446 443 -3 IS2 144 -a 513 475 4, 621 637 3 200 152 -6 376 • 436

I42 105 -9 110 85 5 43C *42 4 5<5 5CC -7 274 260 - 5 123 . 123 -10 34? 358 6 171 135 5 306 307 - 9 799 773 - 6 159 178 -16 237 327 7 392 406 6 425 462 -10 4S3 40? - 9 3ue 322 0 372 331 171 223 7 243 268 -13 320 324

1 184 196 5 246 253 e 1C£ IC 3.16»L 2 675 712 10 249 263 9 391 372 4 . 1 2 . L

4 564 509 11 34 1 333 11 316 311 1 199 224 5 2^4 257 12 253 289 - 1 504 516 1 674 676 2 503 56L 6 828 773 - 1 614 et2 _ 1 1C25 555 3 344 349

137 134 7 335 32 7 - 3 lao 164 - 4 330 294 5 400 379 - I 134 . 151 R 149 155 -« 720 747 - 5 151 161 6 341 323 - 2 2t}4 305 9 274 240 - 5 1107 1 141 - 6 392 410 7 176 I S * -3 249 253 10 323 315 -6 123 \2t - 7 E2 1 632 8 212 194

3^7 323 - 7 181 166 -8 248 249 - 2 355 35*3 - 7 l<,9 16** 4 , 3 * L -ft 547 530 - 1 0 299 2B7 -3 355 428

-12 26B 27 3 - 1 1 360 341 -5 275 228 3 . 1 7 , L 0 lOlC 1095 -13 131 137 - 12 127 U 4 -6 190 198

1 219 220 -14 145 159 -14 164 2C6 -7 284 274 0 3J1 34 7 2 158 121 - 1 5 234 294 -G 331 342 2 136 116 3 lUB 159 4 . 6 . L - 9 168 187

- 2 362 364 4 469 49 5 4 , 5 . L - 11 e i 5 603 - 5 l u o 19.J 5 136 142 0 339 348 -12 311 292 - 6 I ' i l 189 6 353 316 1 627 687 1 223 273

7 329 294 2 694 694 2 264 288 4 . 1 3 * 1 4 .0«L 8 562 501 9 <64 £87 t 1C6 tC3

9 252 249 4 165 143 4 4£a 485 0 262 226 0 128 141 10 267 229 5 261 276 5 339 341 1 246 205 2 832 11 326 321 6 4 4 4 415 6 169 166 2 171 124

4 949 937 12 360 361 8 121 68 7 409 482 3 594 616 6 J0u5 1009 13 158 159 9 330 3 36 9 243 262 4 317 306 e 237 208 -2 444 366 10 309 281 10 116 102 5 220 255

10 712 654 - 3 253 261 11 315 329 • I iti 6!5 -1 124 741 12 193 236 - 4 1027 996 - 1 4ce 439 -2 150 179 -3 126 157 - 2 1170 117U - 5 430 436 -2 299 297 - 3 219 223 -4 IBS 139 - 4 131 I6f ' - 6 302 288 - 3 1370 1361 - 4 211 227 - 5 219 190 - 6 B54 86U - 7 568 604 -5 146 140 -5 CIS 6*1 - 4 *2t 3iS - e 641 652 - 8 720 754 - 6 6CI 844 - 6 34 3 379 -T 125 130

-10 5^5 536 - 9 358 341 - 7 5C3 486 - 7 285 260 - 8 251 250 - 1 4 137 158 - 1 1 208 143 -B 291 246 - 8 412 428 - 9 433 3se - 1 6 224 346 -12 367 433 -10 301 324 - 9 l i e 653 - I C 2C3 172

- 1 3 124 161 -11 275 269 - 1 3 368 345 -11 115 122 4 . 1 . L

4 . « t L -12 -15

147 271

152 312 4,1C«L

757 042

1 9 9

l ^ . L - 1 6 137 208 -16 1 74 211 6 7

365 *3 3

386 *22

5 i

227 U *

225 1E5

2 3^8 366 5 .2 .L 5 , 5 . 1 8 1 70 177 - I 203 185 3 317 297 9 16B 173 -2 339 353 5 150 167 0 302 319 0 527 525 - I 662 710 -3 215 219

316 . 329 1 172 192 1 7 i e EC7 _ 1 * 3 5 *25 _ r 262 3 C 3 - 1 16^ 182 2 772 775 2 281 260 -4 5 * 1 557 - 6 • 190 201 - 2 195 235 3 189 221 * 487 50* - 7 352 356 -7 331 313 - 3 320 333 * * 5 * * 7 l . 5 *19 *12 - 9 226 2*9 -9 13* 112 -* 277 27b 5 2*5 227 t 1S2 1*5 - 1 1 432 *C2 - K 152 116 -5 136 7* 6 636 6*3 7 293 3*6 -12 135 131 - 1 1 387 366 - 7 2'.1 226 7 500 *62 8 * * 1 *02 - I * 119 159 - 8 319 8

9 216 300

213 333

9 - I

511 !e3

*55 ICt 5 . 5 , L

5 , 1 3 . 1

4 . 1 5 t L - 2 711 702 -2 *06 * * 8 0 352 341 - 3 197 188 - 3 320 303 0 136 182 1 350 360

0 330 331 - * 250 128 - * *68 46* 1 *28 * 5 * 2 153 1 78 1 1*5 131 -6 511 536 -5 *37 385 J *27 * t e 2*1 244 3 337 331 - 7 127 197 -10 225 179 4 252 249 * 436 465

3 i 6 333 -8 262 317 -11 217 2 1 * 5 5 * 0 527 5 166 165 - 1 3 5 9 38b - 9 400 *22 -13 310 3*3 6 193 215 - 1 157 110 - 2 196 207 -11 228 199 7 ICC 1 71 - 2 12C 1C2 - 4 2'<1 255 -12 215 197 5 . 6 . L 8 216 227 -3 259 271 - 5 2s7 1 72 - 1 * 231 310 9 256 32 5 - * 181 188 - 6 261 290 -15 171 222 0 152 1*6 - 1 391 403 - 5 287 261 - 7 I'lB 128 -16 * 9 * *57 1 33< 3*C -2 25« 2;c -7 15C 185 -8 1*3 1*0 2 *59 *61 - 3 335 334 -8 318 313 - 9 2U3 1R2 5 , 3 . 1 3

* 626 275

659 283

- 4 - 5

356 283

3 53 308

-9 265 2*7

* t l b . L 0 771 809 K 1 73 137 - t l * t 1C( £ . 1 * * 1 1 *70 505 6 *15 *26 - 7 292 276

1 2 j 4 207 2 355 360 7 *U2 393 - 9 54 6 520 2 259 2*6 2 *5£ 3 119 111 8 2 50 2*2 -13 377 381 3 202 203

- I 238 251 * 561 5*5 9 3C1 555 - 1 271 273 - 2 290 267 5 *89 52 5 10 207 218 5 . l O . L - 2 346 383 -* 329 3*2 6 293 301 -1 732 709 -3 221 20 7 - 5 171 200 8 361 357 -2 213 200 0 20 2 232 - 5 2C2 134 - 6 19* 176 9 267 2 50 _ 2 935 528 1 < 1 * *1C . t 3*6 3 £ 5 - 7 157 1 3*. - 1 *93 * 6 * - * 258 21? 2 167 180 -7 290 266

- 3 1 70 1B5 -5 167 152 3 372 352 -8 182 210 5 . 0 , L - * 323 3*6 - 6 16* 16C 4 136 133

-5 176 113 -7 *13 * 2 * c 4 t 1 *7e ; , i : .L 2 1037 1055 - 6 533 521 -8 185 179 7 334 313

*55 * * u - 7 182 165 -10 117 61 - 1 251 2*1 0 337 356 6 852 8*2 - 8 306 3*1 -12 331 320 - 4 156 166 1 152 153 8 567 505 -10 197 169 -15 22* 251 _ c 233 22< -2 \tt 1*4

10 291 301.- -12 223 16* - 7 233 232 - 3 181 208 1096 l U B - 1 3 250 307 5 . 7 , L -9 19B 236 - 4 422 *G6

- 6 567 538 - 1 * 178 235 - 1 1 602 553 - 5 135 113 - 8 165 128 -16 367 3£e 0 1 78 155 - t 13 ; 113

-10 3 ; * 29*. 1 663 681 5 . 1 1 .L -12 253 197 5 , * , L 4 371 358 6 , 0 , L

2U8 289 5 374 379 0 132 87 - 1 6 3S9 *92 0 3*7 3*7 6 132 1*7 1 3"i 7 *2« C stc 278

1 252 239 7 262 274 2 169 195 2 604 668 5 .1 .L 2 395 *03 8 358 357 3 294 265 4 * 5 l *96

3 *e8 5*0 9 3 52 364 4 159 177 8 576 549 0 82* 831 4 277 2 * * - I 557 : * t 5 22t 3c; -2 1 72 U 3 1 136 88 6 3 * * 335 -2 172 181 - 1 303 275 - * 509 543

2 293 272 7 25* 273 - 3 33* 333 - 2 36* 390 -6 438 *85 3 205 183 8 167 138 -5 570 55* -3 230 202 - 10 456 *£1 4 940 972 9 289 261 - 6 2 c ; 212 . c 237 216 -12 304 306 6 2uO 238 10 461 * 7 * - 7 131 135 - 6 128 149 8 323 372 - I 2R1 291 -a 226 218 - 7 268 280 6 , l , l .

10 1*2 158 -2 979 962 - 9 391 376 -8 305 303 - I 441 428 -3 1122 1117 - i c 2C5 ;c< - 5 *55 478 0 55C 617 -4 92 7 978 - 4 26* 2 63 -13 355 3*2 -12 189 194 1 163 152 - 5 288 265 - 5 2*7 18* - I * 1*2 156 4 387 388 - 6 245 218 - 6 251 273 S ,12 .L « 3C5 263 - 7 2 o l 218 -8 1*5 1*5 5 .8 ,L 6 4 34 . 474 - 8 19B 159 - 9 19* 222 U 220 2 1 * 8 140 135

- 1 0 2u3 257 -11 289 282 1 423 *26 1 268 313 -2 2*6 2 60 -12 *u5 393 -12 2*2 229 2 *16 448 2 298 302 _ •» U ! 165 • 1 3 146 159 -14 2*1 3 30 3 *C5 * *e 3 449 469 -4 453 413 - 1 4 275 355 -15 199 267 5 26* 2 76 4 178 171

o C3

r j M <>. tn M « - » m « • o n o ' ^ ' i t n o o — fN. m w3

« w 7 m u

I t I I I M M — M I t I I

M M — I I t

( I I I I * . >• I I I • • I I I

CD • »M

• ^ CO « O « V « « I -J •« — «

I ( I I I M ^ — M I I I I

•< » O — ^

I t I

*t (M M r« « • n M S « W ^ « I « t M I

m « M r M M n , * . m M n m cm « M

• • I I — I I

' ^ - * f ^ f > j r t n * » v < N i - * * M ^ r v «

<r. m - r« ( , m i s i r . , M M * M M f>j * ^ • M o- M J* B ^ cr m o M o a> • n M ^ n i M o . . . P M T « n M - o « f q m f « . « M m M « - «

7 M MM M l i t !

I I I I I I M M M * I I I

I I I I I M M M I t I I • • I I I I

•A M d 9 a •* O >v O O O « M M o r>i ri4 O r>i

O B 1 M 4 a ] h - i r « o c r > - i ( N a ) ' s i r . M M M a ] i « o m 9 9 a o f»i M m m « (M M

« •> ^ f t •4 r « m v«

M « n < m n , n , m M M r 4 r v i i r f M m i n f n < N i A M ^ M t f O - . M U - i ( r r . < M f » . 4 a o « f . ^

f* M « r v « m M > - 4 « « M M a ^ M « ( < t i ^ « A A « o ^ r«»fc _< « fsi M m f t a

* — o K> M m m « M

I I I I I I I I I I M M M M M 0 - < « < r O » » M « 0 » - » 0 - * I M m M M M

• I I I ' ' I • I • . 4

201

REFEREtlCES

1. ' I n t e r n a t i o n a l T a b l e s f o r X-Ray C r y s t a l l o g r a p h y ' , V o l . I l l ,

The Kynoch P r e s s , Birmingham, England, 1962, p.202.

2. D.T. Cromer and J.T. Waber, Acta C r y s t . , 1965, _18, 104.

3. D.T. Cromer, Acta C r y s t . , 1965, 18, 17.

U. C.K. Johnson, ORTEP thermal e l l i p s o i d p l o t t i n g program, Oak Ridge

N a t i o n a l Laboratory Report, 1955, ORtIL-3794.

5. F.A. Cotton and R.C. E l d e r , Inorg. Chem. , 1964, 3_> ^97,

6. J . J . Park, H.D. C l i c k and J. L . Hoard, J . Amer. Chem. Soc., 1969, 91, 301

7. A.B. Blake, F.A. Cotton and J.S. Wood, J . Amer. Chem. Soc., 1964, 86,

3024.

8. J.R. Knox, and C.K. Prout, Acta C r y s t . ( 8 ) , 1969, 2b, 1857.

9. L.R. F l o r i a n and E.R. Corey, I n o r g . Chem. , 1968, 722.

10. L.O. Atovmyan and Y.A. Sokolova, J . Chem. Soc. ( D ) , 1959, 649.

11. J.R. Knox and C.K. Prout, Acta C r y s t . ( B ) , 1969, 25., 2482.

12. A. Kopwillem and P. Ki e r k e g a a r d , Acta Chem. Scand., 1969, _23s 2184.

13. M.G.B. Drew and A. Kay, J . Chem. Soc. ( A ) , 1971, 1846 and 1851.

14. L.T.J. Delbaere and C.K. Prout, J . Chem. Soc. ( D ) , 1971, 162.

15. L.O. Atovmyan and O.N. Krasochka, J . Chem. Soc. ( D ) , 1970, 728.

15. V.W. Day and J. L . Hoard, J . Amer. Chem. Soc., 1958, 90, 3374.

17. L. Hanojlovic-Muir, J . Chem. Soc. ( A ) , 1971, 2796.

18. .L. H a n o j l o v i c - H u i r and K.W. Muir, J . Chem. Soc. ( A ) , 1972, 686.

19. V.C. Adam, U.A. Gregory and B.T. K i l b o u r n , Chem. Comm., 1970, 1400.

20. H. E l d e r and D, H a l l , I n o r g . Chem., 1969, 8, 1268.

21. M.G.B, Drew and I . E . Tomkins, J . Chem. Soc. ( A ) , 1970, 22.

22. D.F. Sands and A. Z a l k i n , Acta C r y s t . , 1958, 11, 615.

23. J . J . Daly, J . Chem. Soc., 1964, 3799.

24. J . S t a l i c k and J.A. I b e r s , Inorg. Chem. , 1969, 8_, 1091.

25. J . S . R i c c i and J.A. I b e r s , J . Amer. Chem. Soc. , 1971, 93, 2391.

2 0 2

26. H.R. C h u r c h i l l and J.P. Fennessey, Inorg. Chem. , 1963, 7_, 953.

27. A.T. E-icPhail, G.R. Knox, C.G. Robertson, G.A. Sim, J . Chem. Soc. ( A ) ,

1971, 205.

28. J.H. Enemark and J.A. I b e r s , Inorg. Chem. , 1957 , _6, 1575.

29. S.J. Li p p a r d and K.M. Melmed, Inorg. Chem. , 1967, b, 2223.

30. M.A. Bush, A.D.U. Hardy, L. Manojlovic-Muir and G.A. Sim, J . Chem. Soc,

( A ) , 1971, 1003.

31. R. Mason and A.D.C. Towl, J . Chem. Soc. ( A ) , 1970, 1601.

32. B.P. S t o i c h e f f , Canad. J . Phys., 1954, 32, 339.

33. F.C. V;ilson and D.P. Shoemaker, J . Chem. Phys. , 1957, 27, 809.

34. D. Lawton and R. Mason, J . Amer. Chem. Soc., 1965, 87, 921.

35. F.A. Cotton and R.H. Wing, Inorg. Chem. , 1965, 4_, 315.

36. M.J. Bennett and R. Mason, Nature, 1965, 205, 760.

37. R.J. Doedens and L.F. Dahl, J . Amer. Chem. Soc. , 1965, 87_, 2576,

•38. J.E.O'Connor and E.R. Corey, J . Amer. Chem. Soc., 1967, 89, 3930.

39. D.L. Stevenson and L . r . Dahl, J . Amer. Chem. Soc., 1967, 89, 3721.

40. R.H.B. Mais, P.G. Owston and D.T. Thompson, J . Chem. Soc. ( A ) ,

1967, 1735.

41. P.M. B i r d and M.R. C h u r c h i l l , Inorg. Chem., 1968, 7, 349.

42. M.R, C h u r c h i l l and T,A. O'Brien, J . Chem. Soc. ( A ) , 1969, 1110.

43. M, G e r l o c h and R, Mason, J . Chem. Soc. , 1965, 295.

44. L. P a u l i n g , 'The Nature of the Chemical Bond', 3rd ed., C o r n e l l

U n i v e r s i t y P r e s s , N.Y., 1960.

45. F.A. Cotton and S.M. Morehouse, Inorg. Chem. , 1965, 4 , 1377.

4 7 . D. B r i g h t and J.A. I b e r s , I n o r g . Chem., 1969, 8, 703. 4 8 . D. Br i g h t and J.A. I b e r s , Inorg. Chem., 1968, z> 1099 4 9 . D. B r i g h t and J.A. I b e r s , Inorg. Chem., 1968, 8, 709.

50. H.W.W. E h r l i c h , Acta C r y s t . , 1950, 13, 946.

2 0 3

51. B. D u f f i n , Acta C r y s t . , ( B ) , 1958, 24, 1256.

52. J.H. Bryden, Acta C r y s t . , 1955, _8, 211.

53. L.E. Sutton (1965). T a b l e s of I n t e r a t o m i c D i s t a n c e s and c o n f i g u r a t i o n

i n Molecules and Io n s . S p e c i a l P u b l i c a t i o n No. 18. London.

The Chemical S o c i e t y .

54. J . Chatt and J.R. D i l w o r t h , J.C.S. Chem. Comjn. , 1972, 549.

55. J . C h a t t , L. Manojlovic-Muir and K.W. Muir, J . Chem. Soc. ( D ) , 1971,

655.

56. D. B r i g h t and J.A. I b e r s , Inorg. Chem., 1969, , 709,

57. S. Chaiwasie and R.H. Fenn, Acta C r y s t . , ( B ) , 1968, 24, 525.

58. M.J. Bennett and R. Mason, Proc. Chem. Soc., 1963, 273.

59. M.R. C h u r c h i l l and J.P. Fennessey, Chem. Comm. , 1956, 695.

60. E.R. de G i l and L.F. Dahl, J . Amer. Chem. Soc. , 1959, 91, 3751.

61. W. Cochran, Acta C r y s t . , 1953, _6, 250.

04

"La distayice n'y fait rien; il n'y a que

le premier pas aui coUte"

(Translated - 'The distance doesn't matter^

it is only the first step that is difficult')

Marquise du Deffand

2 0 3

CHAPTER 7

The C r y s t a l and Molecular Structure of

[N-N*benzoylhydra2ido(2-)(-N50)]benzoylazo-

chloro-bis(dimethylphenylphosphine)molybdenu^l(IV)

206

7.1. Introduction

The X-ray c r y s t a l structure determination of the t i t l e coiriplex was

undertaken to e s t a b l i s h the stereochemistry of the compound. Analysis

had shown that the compound contained iHoCliPhCOU^)^(PHe^Ph)^'],

7.2. Experimental

The t i t l e compound v:as prepared by Dr. J.R. Dilworth, at the A.R.C.

Unit of Nitrogen Fixation, University of Sussex. Oxodichlorotris-

(dimethylphenylphosphine)molybdenum(IV) (0.5 g) and benzoylhydrazine

(0.5 g) were heated under reflux under nitrogen in dry methanol

(40 ml) for 15 minutes. On standing at room temperature the complex

c r y s t a l l i s e d from solution as red-orange needles and was r e c r y s t a l i i s e d

from dry methanol under nitrogen.

Preliminary

Optical examination of the c r y s t a l s revealed that many of them were

twinned. One large needle was cut with a razor blade to give a

fragment, with dimensions 0.45 x 0,15 x 0.45 mm, , which was single.

The fragment was mounted to o s c i l l a t e about the axis perpendicular to

the plate. O s c i l l a t i o n , zero and f i r s t layer Weissenberg photographs

showed the c r y s t a l belonged to the t r i c l i n i c system. Inspection of the

Weissenberg photographs, showed uneven i n t e n s i t i e s with numerous areas

where there appeared to be no spots, t h i s indicated that the space group

was probably PI.

C e l l parameters were obtained from the photographs by the method of

angular lag,"'"'^ and were:

a = 8.68(5) 8 a = 98.1(2)°

b = 22.47(5) X 6 = 89.5(2)*^

c = 16.71(3) X y = 101.2(2)°

U = 3170(7)

The density, D^, was measured by the f l o t a t i o n method, using =

mixture of carbon tetrachloride and hexane, and was found to be 1.38(2) g/cc

Assuming a molecular formula of ^Q^22^^^-^ 1^2^2^^'^^ ~ number

of molecules per unit c e l l i s four. Hence there are 2 independent

molecules i n the unit c e l l . The calculated density, , i s 1.40 g/cc.

Data Collection

The c r y s t a l used for preliminary photographic investigation v.'as

mounted with the a a x i s , (perpendicular to the fragment p l a t e ) , p a r a l l e l

to the axis of a General E l e c t r i c XRD 6 diffractometer. Accurate

values of 20 and (|) for the OkO and OOS, r e f l e c t i o n s were measured to

obtain values for b -, c_" and a"". The setting was then adjusted to

make a" p a r a l l e l to the a x i s , since t h i s i s required by the program

used to generate setting angles for a l l the r e f l e c t i o n s . 29 values

were then measured for hOO to obtain a value for a-*-. 6" and Y " v/ere

obtained d i r e c t l y by use of the x c i r c l e . The r e a l c e i l parameters

were then computed and are as follows:

a = 8.710(1) S a = 97.43(3)^

, b = 23.000(1) 8 e = 89.21(5)°

c = 16.370(1) 8 Y = 101.33(3)°

U = 3188(3) 8 y,CuK^ = 54.4 cm"-*"

Using the procedure described in Chapter 4 the i n t e n s i t i e s of 3939

r e f l e c t i o n s were measured with CuK radiation out to a maximum 29 a

value of 80°. Backgrounds were measured as previously described.

Of the r e f l e c t i o n s measured, a t o t a l of 3489 were obtained for v;hich the

net i n t e n s i t y v/as greater than 3 x a ( I ) , where a ( I ) was computed from

equation (4.1),

Structure Determination

After correcting for Lorentz and polarization e f f e c t s a l l the

observed r e f l e c t i o n s were used to compute a three dimensional Patterson map.

208

I f the space group were P i , the four Mo atoms in the unit c e l l would

form a parallelogram. The vector set for t h i s vjould be as shown in

the figure 7.1. and would contain two prominant double weight peaks.

FIGURE 7.1

Structure

(o) — •@

Vector Set

This v;as found to be the case although the heights did not correspond

exactly. ( A l l the peaks in the asymmetric unit of the Patterson map of

height >9 are l i s t e d in Table 7.1.) The peaks were nos. 1, 4, and 6.

TABLE 7.1.

Peaks of height >9 in the asymmetric unit of the Patterson map for

Peak No. u(in 25 ) v ( i n 50 ) w(in 40^^^) Height 1 0.0 21.25 19.0 18 2 4.5 3.0 4.5 10 3 6.0 25.0 19.0 10 4 6.5 28.5 4.5 15 5 18.0 0.5 16.0 13 6 19.0 43.0 14.5 12 7 24.5 47.0 14.5 10

The position of the centre of symmetry was calculated using peak 6,

to give the f r a c t i o n a l coordinates 3/25, 28.5/50, 12.75/40. These

were then converted to I , l , te. by adding 9.5/25, -3.50/50, 7.25/40.

209

One molybdenum position (A) i s then 9.5/25, -3.50/50, 7.25/^0.

For the second nioiybdenum position ( B ) , one could either choose peaks

( i ) or (U). Peak (H) v/as chosen, and by adding to the f r a c t i o n a l

coordinates of position (A) gave 16/25, 25.25/50, 11.75/40. To confirm

these two positions, Harker peaks should appear at 2x, 2y, 2z in the

Patterson map. These were found to be for position (A), peak 6; and for

position (B ) , peak 5. F i n a l l y the Ho-Mo vector peak, v/hose f r a c t i o n a l

coordinates are 6,5/25, 28,75/50, 4.5/40, was confirmed by peak 4. The

coordinates of the molybdenum atoms were thus determined to be x = 0.36C0,

y = -0.0700, z = 0.1813, and x = 0.6400, y = 0.5050, z = 0.2938.

Solution of the Structure

The two molybdenum atoms, with anisotropic temperature factors

were refined for two cycles of f u l l matrix l e a s t squares to a value for

the r e l i a b i l i t y index R, of 0.47. This was using a l l the observed

r e f l e c t i o n s . Using the phases calculated from the molybdenum atom

positions a three dimensional difference electron density synthesis was

computed. From i t three large peaks around each of the molybdenum atoms

could be seen. The difference between the phosphorus and chlorine atoms

could not be determined at t h i s stage. A further two cycles of l e a s t

squares was done, and a difference map generated using these atoms,

(put i n as chlorine atoms), as w e l l for the phase determination. R f e l l

to 0.35. From the r e s u l t i n g map a further 29 atoms could be i d e n t i f i e d

and furthermore i t was now possible to distinguish between the phosphorus

and chlorine atoms. Refinement was continued for another 2 cycles of

l e a s t squares followed by a difference map. R was now at 0.27. From

the difference map a l l the remaining atoms except three could r e a d i l y

be i d e n t i f i e d , (these three were two methyl carbon atoms, and a carbon

belonging to a benzene r i n g ) . Further refinement was continued using

block-diagonal l e a s t squares, because of the large number of parameters

2 1 0

involved. After 2 cycles R was at 0.16, and from the resul t i n g

difference map the three atoms were readily seen. A structure factor

calculation including a l l the non-hydrogen atoms gave an R of 0.098.

In view of the f a i r l y high absorption c o e f f i c i e n t (g = 54.4 cm )

of the c r y s t a l for CuK^ radiation, an absorption correction was applied,

as in Chapter 4.

Results for the c r y s t a l C.^H^^Cl^NgO^P^Mo^.

boundary planes distance to origin 4 divs = 1 cm

0 2 1 0.35 divs. .00875 cm.

0 2 i 0.35 divs. .00875 cm.

0 1 i 0.70 divs. .01750 cm.

0 i 0 0.45 divs. .001125 cm.

0 1 1 0.40 divs. .00100 cm. 3 1 3 0.70 divs. .01750 cm.-

4 5 2 0.70 divs. .01750 cm.

The calculated transmission factors, based on a l i n e a r absorption

c o e f f i c i e n t of 54.4 cm ^, varied from 0.43 to 0.58.

Using a l l the 3489 absorption corrected r e f l e c t i o n s , the atomic

coordinates with anisotropic temperature factors for the molybdenum,

phosphorus, and chlorine atoms, were refined for three cycles of block-

diagonal l e a s t squares to a value for the r e l i a b i l i t y index, R, of 0.078.

Hydrogen atom positions for a l l the phenyl rin g carbons were then calculated

A difference Fourier showed the positions of the remaining hydrogen

atoms. Each hydrogen atom was assigned the isotropic temperature

factors of the. parent atom . V/hen these were included i n a block

diagonal l e a s t squares refinement as a 'fixed contribution' R reduced to

0.068, In the f i n a l stages of refinement the Hughes^ weighting scheme

(see Chapter 1) v;as introduced. The value of F-** which gave ZwAF^ to be

2 1 1

f a i r l y constant over the range of r^^^(obs) was found to be 40, on an

absolute scale. Application of the v;eighting scheme l e f t R unchanged

at 0.068. At t h i s point three strong r e f l e c t i o n s thought to be

suffering from extinction were removed from refinement which converged

to give an R of 0.066. A f i n a l difference Fourier was featureless

except for a few peaks of ca, 0.6 - 0.8 e 2 in the immediate v i c i n i t y

of the molybdenum atoms.

The f i n a l coordinates of the non-hydrogen atoms are given in •

Table 7.2 and the coordinates of the hydrogen atoms are given in Table

7.3. The observed and calculated structure amplitudes are l i s t e d in

Table 7.8. The scattering factors used for P, C I , N, C, 0, and H were

from the usual tabulation. Those for molybdenum were by Cromer and

Waber,^ and the r e a l and imaginary parts of the anomalous dispersion

correction for molybdenum were those given by Cromer.^

7.3. Results and Discussion of the structure. CN-N'benzoylhydraziGo(2- )

(-N,0)]ben2oylazo-chloro-bis(dimethylphenylphosphine) molybdenum(IV)

e x i s t s as two crystallographic d i s c r e t e independent monomeric molecules,

CMoCl(PhC0NNH)(PhC0N2)(PMe2Ph)23, one of each independent molecules are

shown in Figures 7.2 and 7,3. The stereodiagram of each molecule shows

them to be nearly i d e n t i c a l except that in molecule (1) the phenyl group

attached to the keto hydrazonato chelate ring has been rotated.

The molybdenum atom has distorted octahedral coordination.

The phosphorus atoms are trans to each other. C i s to these two

positions are the nitrogen and oxygen from the keto hydrazonato

chelate r i n g . The nitrogen of the second keto hydrazonato ligand i s

trans to the oxygen of the chelate r i n g , v;hereas the oxygen of the second

keto hydrazonato ligand i s thought to be hydrogen bonded to the nitrogen

coordinated to the molybdenum of the chelate ring. The f i n a l molecular

parameters are given in Table 7.4 together with t h e i r standard deviations.

2 1 2

TABLE 7.2

Mo - F i n a l positional param.eters, (x, y, z ) , e xpressed

as fractions ( X 10 ) of the a, b. and c unit c e l l dimensions respectively

plus estimated standard deviations in parenthesis ( f r a c t i o n a l , X 10 ) ,

and isotropic temperature factors with estimated standard deviations in

parenthesis.

Molecule I

Atom X y z Mod) 3715(1) -705(1) 1795(1) '••

C K I ) 6263(3) -23(1) 1798(2) P ( l l ) 5521(3) 8576(1) 1982(2) P(12) 2787(4) 239(1) 1592(2) N ( l l ) 1556(10) 8900(4) 2124(5) 5.2(3) N(12) 3222(10) 9013(4) 754(5) 4.7(2) N(13) 1133(11) 8930(4) 2942(5) 5.8(3) N(14) 2726(10) 8827(4) 41(5) 5.3(3) 0(11) 3528(8) 9439(3) 3106(4) 5.5(2) 0(12) 397(10) 8399(4) 592(5) 7.6(3) C ( l l ) 2310(13) 9227(5) 3425(7) 5.6(3) C(12) 1231(13) 8519(5) -27(7) 5.4(3) C(13) 6901(15) 8531(6) 1144(8) 8.2(4) 0(14) 5713(17) 8813(6) 2^14(9) 8.9(5) C(15) 3427(15) 507(6) 616(8) 7.2(4) C(16) 670(16) 148(6) 1555(8) 8.1(4) C(17) 2091(14) 9311(5) 4315(7) 6.0(3)' C(18) 3377(17) 9429(7) 4839(9) 9.3(5) C(19) 3157(19) 9515(7) 5711(10) 10.7(5) C ( l l O ) 1743(17) 9451(7) 6025(9) 9.2(5) C ( l l l ) 454(20) 9345(8) 5528(10) 11.8(6) C(112) 672(17) 9252(6) 4651(9) 8.8(4) C(113) 9423(13) 1675(5) 868(7) 5.4(3) C(114) 8532(14) 1508(5) 1537(7) 5.4(4) C(115) 9167(17) 1595(5) 2310(9) 8.9(4) C(116) 726(18) 2048(7) 2418(9) 9.3(5) C(117) 1586(17) 2211(7) 1743(9) 9.3(5) C(118) 939(15) 2025(5) 958(7) 5.9(4) C(119) 3447(13) 859(5) 2353(7) 5.4(3)

2 i 3

TABLE 7.2 . continued

Atom X y z 0(120) 2985(18) 796(7) 3158(9) 9.5(5) 0(121) 3548(19) 1250(7) 3825(9) 10.3(5) 0(122) 4527(18) 1779(7) 3538(9) 9.7(5) C(123) 4974(18) 1825(7) 2864(9) 9.9(5) 0(124) 4458(16) 1358(5) 2224(8) 7.8(4) 0(125) 4643(12) 7805(5) 2050(5) 4.5(3) 0(126) 5549(14) 7412(5) 2316(7) 6.2(3) 0(127) 4893(14) 6824(6) 2343(7) 6.5(4) 0(128) 3350(15) 6599(5) 2124(7) 5.7(4) 0(129) 2465(15) 6981(6) 1848(8) 7.1(4) 0(130) 3115(13) 7575(5) 1818(7) 5.4(3) H(Nll) 1058(13) 8680(5) 1612(5)

Molecule I I

Mo(2) 6362(1) 4965(1) 2975(1) 01(2) 4280(3) 5494(1) 3423(2) P(21) 4279(4) 4355(1) 1967(2) P(22) 7988(4) 5672(1) 4088(2) N(21) 8180(10) 4729(4) 2428(5) 5.2(3) N(22) 6252(10) 4380(4) . 3511(5) 5.3(3) N(23) 8995(11) 5036(4) 1818(5) 6.6(3) N(24) 6302(11) 3960(4) 4039(5) 5.9(3) 0(21) 7101(8) 5562(3) 2090(4) 4.7(2) 0(22) 8580(10) 3820(4) 3385(5) 7.4(2) C(21) 8288(13) 5479(5) 1588(7) 5.2(3) . 0(22) 7557(14) 3689(5) 3880(7) 5.9(3) 0(23) 2511(17) 4017(6) 2457(9) 9.0(5) 0(24) 3605(18) 4783(7) 1233(9) 9.8(5) 0(25) 7237(16) 5551(6) 5111(8) 8.0(4) 0(26) 9979(16) 5535(6) 4110(8) 7.7(4) 0(27) 8899(13) 5867(5) 1056(7) 5.1(3) 0(28) 8342(15) 6382(6) 1044(8) 7.1(4) 0(29) 8933(17) 6774(6) 456(9) 9.0(5) 0(210) 10061(17) 6619(6) -95(8) 8.8(4) 0(211) 10631(15) 5114(6) -84(8) 7.8(4) 0(212) 10042(15) 5735(5) 525(7) 6.8(4) 0(213) 7585(13) 3201(5) 4417(7) 5.3(3) 0(214) 6734(14) 3162(5) 5100(7) 5.9(3)

214

TABLE 7.2. continued

Atom X y z C(215) 6781(15) 2700(6) 5565(8) 7,2(4) C(216) 7634(16) 2277(6) 5297(8) 7.8(4) C(217) 8501(16) 2319(6) 4618(8) 7.8(4) C(218) 8526(14) 2790(5) 4137(7) 6.6(4) C(219) 8222(13) 6466(5) 4016(6) 4.8(3) C(220) 9162(15) ' 6692(6) 3410(7) 5.7(4) C(221) 9383(16) 7314(6) 3317(8) 7.9(4) C(222) 8638(16) 7648(6) 3848(8) 7.8(4) C(223) 7721(16) ' 7457(6) 4434(8) 8.1(4) C(224) 7472(15) 6829(6) 4540(8) 7.3(4) C(225)

4 4907(13) 3731(5) . 1362(7) 5,4(3)

C(225) 4652(16) 3595(6) 529(8) 8.4(4) C(227) 5159(17) 3097(7) 94(9) 9.4(5) C(228) 5883(17) 2745(6) 478(9) 9.0(5) C(229) 6207(17) 2893(6) 1305(8) 8.7(4) C(230) 5715(15) 3380(6) 1753(8) 7.5(4)

-'•molybdenum, c h l o r i n e , "and phosphorus a n i s o t r o p i c temperature f a c t o r s (8^ X 10^) as they appear i n exp[-27T^(U h V=^+U^-kV-^+U^^£^C'--^t2U. _hka'->b-H 2U 13 hJla-'-C"t2U_-kJlb*-c-*-)]

2. o

11 "22 " '"33" " ""12* Standard deviations are given in parenthesis.

Atom " n "22 "33 ^ 2 " l 3 ^23 Mod) 330(6) 438(6) 443(5) 82(5) 13(5) 72(5) C l ( l ) 385(19) 528(21) 834(24) 20(16) 18(17) 140(18) P ( l l ) 320(19) 467(21) 602(21) 78(15) -30(16) 85(17) P(12) 421(20) 478(21) 505(20) 125(17) -19(17) 78(17) Mo(2) 446(5) 396(6) 446(6) 94(5) -53(5) 75(5) C l ( 2 ) 516(20) 524(20) 592(20) 199(17) 10(16) 127(15) P(21) 515(22) 544(23) 521(21) 103(18) -117(18) -1(13) P(22) 489(21) 431(21) 433(20) 109(17) -81(17) 63(16)

215

TABLE 7.3

Hydrogen Positional parameters'

Atom H131 H132 H133 H141 H142 H143 H151 H152 H153 H151 H152 H153 H231 H232 H233 H241 H242 H243 H251 H252 H253 H261 H252 H263 H18 H19 HllO H i l l H112 H114 H115 H116 H117 H118 H120 H121 H122

X

7683 7577 5275 7311 7552 5968 4665 2788 3158 229 225 237 145

2619 2404 4486 3249 2635 7875 6107 7055

10605 9906

10510 4529 4187 1596 -586 -350 7368

10209 -374 2751 344

2211 3215 4909

y 8952 8197 8402 8464 9205 8912 534 199 940 521

-241 69

3989 3575 4284 5158 4479 4955 5782 5697 5094 5717 5055 5719 9449 9542 9499 9333 9134 1245 1748 2009 2479 1537 391

1213

2140

z 1139 1245 578

3043 2825 3412 497 121 608

1380 1122 2151 2071 2559 3042 1053 677

1489 5565 5157 5157 4574 4034 3511 4594 6112 6578 5780 4257 1453 2673 2727 1822 560

3291 4444

4118

216

TABLE 7.3. continued

Atom X y z H123 5742 2234 2734 H124 4862 1424 1610 H126 6761 7577 2496 H127 5585 6531 2540 H128 2823 6142 2173 H129 1271 6809 1651 H130 2398 7860 1612 H28 7455 6485 1469 H29 8505 7180 447 H210 10519 6916 -539 H211 11494 6000 -523 H212 10520 5339 561 H214 6009 3480 5292 H215 - 6166 2680 6134 H216 7596 1906 5631 H217 9215 1991 4443 H218 9686 3002 3982 H220 9731 6400 3005 H221 10117 7497 2843 H222 8800 8114 3781 H223 7171 7761 4828 H224 6705 6653 5011 H226 4075 3870 210 H227 4934 2982 -562 H228 6204 2347 155 H229 6883 2636 1608 H230 5950 3484 2402

Hydrogen atoms bear the same numbers as the carbons to which they are bonded. These are calculated positions, and therefore no standard deviations are given.

C(II6)

C(II5J

- ) C(I23)

C{I27)

Fig. 7.2. The molecular structure of [MoC!(PhC0N2)2(PMe2Ph molecule (I) 5

2 18

C(2I6)

C(2i5) C(222)

C(223)

C(219}

C(225)

C(227)

C(230) 0(211)

C(2I0)

C(228]

Fig. 7.3. The molecular structure of (MoCKPhCONglg (PMe2Ph2) ]

m o l e c u l e (2)

TABLE 7.4. Molecular parameters for C--H^^C1^N„0 P. Mo

b U b b 2 8 4 4 2 Bond lengths are given in angstroms, angles i n degrees Standard deviations are given in parenthesis.

218

Mo(H)-P(Ml) Mo(K)-P(H2) Mo(H)-Cl(E-l) Mo(H)-0(Ml) Mo(H)-N(Ml) Mo(M)-H(K2) N(M1)-M(M3) N(M3)-C(H1) C(H1)-0(H1) N(M2)-N(H4) N(M4)-C(M2) C(N2)-0(M2) C(M1)-C(M7) C(M2)-C(M13) P(IU)-C(M3) P(M1)-C(M4) P(M1)-C(M25) P(M2)-C(M5) P(M2)-C(M.6) P(M2)-C(M19) N(H1)-H(NM1) 0(M2)-H(NH1) C(M7)-C(M8) C(M8)-C(M9) C(H9)-C(M10) C(M10)-C(M11) C(M11)-C(M12) C(M12)-C(M7) C(M13)-C(M14) C(H14)-C(M15) C(M15)-C(M16) C(M16)-C(H17)

Bond lengths M = 1 molecule 1 2.542(4) 2.525(4) 2.454(3) 2.131(7) 1.946(8) 1.770(8) 1.41(1) 1,32(1) 1.29(1) 1.24(1) 1,35(1) 1.27(1) 1,46(2) 1.48(2) 1.82(1) 1.82(1) 1.80(1) 1,83(1) 1.82(1) 1.79(1) 1.01(10) 1,77(10) 1.38(2) 1.43(2) 1.32(2) 1.35(2) 1.44(2) 1.34(2) 1.39(2) 1.37(2) 1,44(2) 1.38(2)

M = 2 molecule 2 2.545(3) 2,522(3) 2.429(3) 2.130(7) 1,945(9) 1,793(9) 1.40(1) 1.33(2) 1.25(1) 1.27(1) 1,37(2) 1.22(1) 1.48(2) 1.52(2) 1.82(1) 1.82(2) 1,81(1) 1.82(1) 1,82(2) 1.82(1)

1.37(2) \ 1.43(2) 1.39(2) 1.35(2) 1.43(2) 1.37(2) 1.34(2) 1.39(2) 1.36(2) 1.34(2)

R(M1)

R(M2)

220

TABLE 7.^. continued M--= 1 molecule 1

C(M17) C(K18) C(M19) C(H20)-C(M21)-C(M22)-C(M23)-C(M24)-C(M25)-C(M26)-C(M27)-C(M28)-C(M29)-C(M30)-

•C(M18) •c(r-ii3) -C(H20) •C(M21) •C(H22) •C(M23) •C(M24) •C(M19) C(H26) C(M27) C(H28) C(M29) C(M30) C(M25)

P(Ml)-Ho(H) P(Ml)-Mo(M) P(Ml)-Mo(H) P(Ml)-Mo(M) P(Ml)-Mo(M) P(H2)-Mo(M)-P(M2)-Mo(M)-P(M2)-Ho(M)-P(M2)-Mo(H)-Cl(H)-Mo(H)-Cl(M)-Mo(H)-Cl(M)-Mo(M)-N(Ml)-Mo(M)-N(Mi)-Mo(M)-N(M2)-Mo(M)-N(^S3)-N(M1)-N(M3)-N(M1)-Mo(M)-N(Hl)-N(M1)-N(H3)-N(M3)-C(H1)-

-N(Ml) -H(M2) -C1(M) -O(Ml) -P(M2) -Cl(M) -N(Ml) •N(M2) •0(M1) •N(M1) •N(M2) 0(M1) N(M2) 0(M1) 0(H1) Mo(M) H(KMl) H(NMl) C(M1) 0(M1)

1.39(2) 1.40(2) 1.37(2) 1.44(2) 1.39(2) 1.33(2) 1.40(2) 1.36(2) 1.42(2) 1.37(2) 1.38(2) 1.40(2) 1.38(2) 1.37(2)

Bond Angles

M = 1 molecule 1 105.3(3) 95.7(3) 80.0(1) 86.3(2)

160.9(1) 80.9(1) 93.1(3) 89.2(3) 94.9(2)

162.2(3) 107.0(3) 91.4(2) 89.6(4) 72.2(3)

161.6(3) 124(1) 127(6) 108(6) lOB(l ) 120(1)

R(M3)

M = 2 molecule 2 1.42(2) 1.40(2) 1.37(2) 1.43(2) 1.33(2) 1.31(2) 1.45(2) 1.37(2) 1.37(2) 1.41(2) 1.34(2) I

1.37(2) 1,40(2) 1.39(2)

M = 2 • molecule 2 97.9(2) 93.5(3) 83.3(1) 89.8(2)

168.5(1) 85.3(3) 93.4(2) 88.9(3) 91.3(2)

163.6(3) 106.3(3) 91.0(2) 90.0(4) 72.7(3)

163.0(4) 123(1)

109(1) 120(1)

2 2 1

N(H3)-C(M1)-C(M7) 0(H1)-C(I'!1)-C(M7) C(Ml)-0(Hl)-Ho(M) Mo(M)-II(M2)-N(M4) lUM2)-N(I-m)-C(H2) H(M4)-C(M2)-0(M2) N(M4)-C(M2)-c(M13) 0(M2)-C(M2)-C(M13) C(M2)-0(H2)-H(NM1) 0(M2)-H(Hin)-N-(Ml) Mo(H)-P(Ml)-C(M3) Mo(K)-P(Hl)-C(HU) ^^o(M)-p(^a)-c(^i25) C(M3)-P(M1)-C(H4) C(M3)-P(M1)-C(M25) C(M4)-P(M1)-C(M25) P(M1)-C(M25)-C(H26) P(M1)-C(M25)-C(M30) Mo(M)-P(M2)-C(M5) Mo(M)-P(M2)-C(M5) Mo(M)-P(M2)-C(M19) C(M5)-P(M2)-C(M6) C(M5)-P(M2)-C(H19) C(M6)-P(M2)-C(M19) P(M2)-C(M19)-C(M20) P(M2)-C(K19)-C(M24) C(M7)-C(M8)-C(H9) C(M8)-C(H9)-C(K10) C(M9)-C(M10)-C(Mli) C(M10)-C(M11)-C(M12) C(M11)-C(M12)-C(M7) C(M12)-C(M7)-C(M8) C(M13)-C(M14)-C(M15) C(M14)-C(M15)-C(M16) C(H15)-C(M16)-C(H17) C(M16)-C(M17)-C(M18) C(M17)-C(H18)-C(M13)

TABLE 7.4. continued

M = 1 molecule 1 119(1) 121(1) 116(1) 174(1) 116(1) 123(1) 117(1) 120(1) 122(3) 166(9) 112(1) 112(1) 118(1) 106(1) 104(1) 104(1) 120(1) 122(1) 112(1) 113(1) 115(1) 105(1) 105(1) 105(1) 117(1) 124(1) 120(1) 121(1) 121(1) 119(2) 122(1) 118(1) 118(1) 121(1) 120(1) 119(1) 119(1)

H = 2 molecule 2 120(1) 120(1) 116(1) 175(1) 114(1) 126(1) 112(1) 122(1)

113(1) 114(1) 113(1) 105(1) 104(1) 105(1) 123(1) 119(1) 112(1) 111(1) 117(1) 105(1) 107(1) 105(1) 118(1) 122(1) 119(1) 119(1) 122(1) 118(1) 121(1) 120(1) 120(1) 120(1) 121(1) 122(1) 116(1)

/

R(M1)

R(M2)

TABLE 7.4. continued.

2 2 2

C(I-518) C(Hi9) C(M20) C(M21) C(M22) C(M23)-C(M24)-C(M25)-C(M26)-C(M27)-C(M28)-C(M29)-C(M30)-

•C(I-':13)-•C(i"20)-•C(M21)-•C(M22)-•C(M23)-C(H24)-C(M19)-C(r!25)-C(H27)-C(M28)-C(M29)-C(M30)-C(M25)-

•C(M21) •C(M22) -C(H23) •C(M24) C(M19) •C(M20) C(M27) C(t-328 ) C(M29) C(M30) C(M25) C(M26)

M = 1 molecule 122(1) 121(1) 118(1) 120(1) 122(1) 121(1) 118(1) 120(1) 121(1) 119(1) 121(1) 121(1) 118(1)

M = 2 molecule 2 123(1) I

120(1) 116(1) 126(1) 119(1) 118(1) 121(1) 120(1) 122(1) 119(1) 121(1) 120(1) 118(1)

R(M3)

R(M4)

2 2 3

The Mo-Cl bond lengths from molecule (1) and molecule (2)

(av. 2.442(3) 8) can be compared with bond length values of 2.464(3) and

2.479(5) h Ox the chlorine atom trans to a monotertiary phosphine,

found in the compounds cis-rner-[I'1o(IV)0Cl (PHe (PH )]' ' and cis-mer-Z c o

Q [Mo(IV)OCl (PEt ?h)^3 respectively. Hov;ever, the chlorine atoms in 2 z J the t i t l e complex are trans to a nitrogen atom N(M1), v;hich i s i d e n t i c a l

to that of the complex [MoNC^H^CH^Cl^lPhCONNC^H^CH^XPMe^Ph)], (X),

described in the previous chapter, the bond length of v/hich i s 2.406 S.

The mean length of the Mo-P bonds i s 2.534(14) 8 t h i s can be

compared with tie mean Mo-P (trans to P) distance of 2.567(14) m found in

[Mo(lV)0Cl2(PEt2Ph)2].^ The mean P-C. (sp^) and P-C (sp^) distances of

1,81(4) and 1,82(10) 8, respectively, are consistent with those found 8 9 2 2 in other co-ordinated t e r t i a r y phosphines. ' The mean C(sp )-C(sp )

lengths are 1.38(24) 8 which i s close to the spectroscopic value of

1,397 8 appropriate to,benzene. The phenyl rings are planar

within the l i m i t s of experimental error (Table 7.5). The Mo-P-C

angles (mean 114(12)°) are somewhat larger, and the C-P-C angles

(mean 105(12)°) somm;hat smaller than the tetrahedral value. Such a 9 11

pattern i s commonly observed in coordinated phosphines ' (see Chapters

5 and 6).

Bonding in the phenylazo ligand

The mean Mo-N bond length of 1.782(17) 8 i s longer than the Mo-N

bond length of 1.726(9) S i n complex (X). The difference of about

0.06 S i s considered by Pauling"*"^ to be the difference between a double-

bond radius and a triple-bond radius nitrogen. Thus the bond s t i l l

has a f a i r amount of ir-bond character; a further indication of t h i s fact

i s the almost l i n e a r Mo-N-N skeleton (mean angle = 162.9(6)°), The

N(M2)-N(M4) bond length i s 1.23 8 in molecule (1) and 1.27 t in

molecule ( 2 ) . These bond lengths can be compared with 1.23 8 found in

24

H C-N N-CH and 1.24 a found in the phenylazo-derivative of rh e n i u m ( I I I ) ,

ReCl^iU^?h)(?Vie^?h)^.'^^ This suggests that the phenylazo ligand i s a

a and Tr-donor"^^ with respect to the molybdenum ion. The N(H4)-C(M2) 9 . mean distance of 1.36(3) h i s somewhat shorter than the N-C bond (1.U4 8)

14 found in ReCl (H Ph)(PMe Ph) - thus thi s may indicate a certa i n amount of double bond character. The accepted N-C=0 length i s 1.33 X." "

The C(K2)-0(H2) bond length of 1.22 8 found in molecule (2)

agrees well with the C=0 distance of 1.23 8 as found in aldehydes, ketones» 13

carboxylic acids and esters. However, the value of molecule (1)

(1.27 S) i s rather long;this may be due to hydrogen bonding since a

hydrogen i s suspected of being present on atom N ( l l ) . The C(H2)-C(H13)

distance (1.50(4) 8) can be compared with the C^H^-C=0 bond length of 5 5

m 8 S found in benzoic a c i d . ^ ^ The le a s t squares plane through the

atoms C(M13), C(M2), 0(M2) and N(H4) (Table 7,5) shows that a l l the atoms

l i e on the same plane. Thus the atom C(H2) appears to be in the sp^

stat e . Bonding in the Chelate Ring System

The bond angle 0(Ml)-Mo(H)-N(Ml) deviates from 90° to 72.5°, so

as to form the chelate ring. This angle i s the same as that found in

complex (X). The observed Mo(M)-0(Ml) bond length of 2.131 S can be

compared with the 2.110 S bond distance i n (X) which i s trans to

Mo=NCgH^CH^ . AMo-0 bond distance of 2,12 S i s found in BaHo^O^(C^O^)^{H^O)^'^'^

which i s trans to Mo=0.

The C(K1)-0(M1) bond length of 1.27 S i s longer than a C-0 double

bond (1.23 X),"*"^ but i t i s s t i l l shorter than the p a r t i a l double bond

of 1.36 S found in carboxylic acids or esters. The C-0 bond distance

found i n the chelate ring of the Mo complex (X) was 1.30 8. The observed

N(M3)-C(M1) bond distance of 1.33 8 shows p a r t i a l double bond character,

since the accepted value for a N-C=0 bond length i s 1.32 S."*"

2 2 5

TABLE 7.5.

Planes of best f i t ( l e a s t squares)for Molecule 1

(a) c o e f f i c i e n t s ^

Plane Description F > Q R S

1 chelate ring -4. 383 21.704 -3.007 17.981

2 Ho(l)-N(i2)-N(14)-C(12)-0(12) -4. 594 21.488 -2.943 17.711

3 around N ( l l ) -4. 690 21.241 -3.835 17.311

4 around C ( l l ) -4. 229 21.840 -3.129 13.107

5 around C(12) -4. 414 21.725 -1.614 17.927

6 chelate ring t plane 2 -4. 465 21.605 -3.133 17.832

7 phenyl ring R ( l l ) -1. 298 22.969 -2.431 20.055

8 phenyl ring R(12) -4. 812 21.256 -1.167 17.523

9 phenyl ring R(13) -7. 749 13.775 • -3.481 11.449

10 phenyl rin g R(14) -2. 800 3.967 14.954 4.851

11 chelate ring + plane 2 + -3. 766 22.241 -2.993 18.596

R ( l l ) + R(12)

a) Each plane i s represented by PX+QYtRZ = vhere X, Y, and Z are

the coordinates (j-ro^ciiorxui) referred to the unit c e l l a x is

226

TABLE 7.5. continued

b) Deviations from Planes in 8

Atom Mod) N ( l l ) N(12) N(13) N(14) 0(11) 0(12) 0(11) C(12) 0(17) 0(18) C(19) C ( l l O ) C ( l l l ) 0(112) 0(113) 0(114) 0(115) 0(116) 0(117) C(118) 0(119) 0(120) 0(121) 0(122) 0(123) 0(124) 0(125) 0(126) 0(127) 0(128) 0(129) 0(130) H(NMl)

Plane-1

.02 -.03

.02

-.02

.01

2

.03

-.04

.00

-.02

.04

3 .00 00

00

00

00

00

00

00

00

00

00

00

6 .03 -.01 -.03 .04 .01 -.03 -.05 .01 .04

.01 -.01 .o: -.02 .02 -.02

-.01 .01 -.01 -.01 .01 -.01

,01 ,00 -.01 01 00 •.01

10

.01

.00 -.01 .01 -.01 .00

11 .14 -.06 .02 -.04 .00 .10 -.25 .04 -.10 .04 -.35 -.33 -.01 .37 .34 -.05 .20 .24 .06 -.15 -.22

227

TABLE 7.5 continued

Planes of best f i t ( l e a s t squares) for Molecule 2 (a) c o e f f i c i e n t s ^

Plane Description P Q R S 1 chelate ring 4 .270 9.720 10.235 10.583 2

3

Mo(2)-N(22)-N(24)-C(22)- 0(22) 3 .641 10.851 10.450 10.812

4 around C(21) 4, .229 9.824 10.232 10.607 5 around C(22) 3. .520 11.190 10.250 10.852 6 chelate ring + plane 2 3, .953 10.778 10.033 10.844 7 phenyl ring R(21) 5. ,541 6.469 9.834 9.774 8 phenyl ring R(22) 5. 978 7.958 7.837 10.547 9 phenyl ring R(23) 6. 699 -0.918 10.144 8.981

10 phenyl ring R(24) 6. 695 10.327 -4.152 6.593 11 chelate r i n g + plane 2 t R(21) 4. 595 9.523 9.624 10.797

+ R(22) •

[) Each plane i s represented by PX+QY+RZ = s. where X, Y, and Z are the coordinates (jro^dtoryoi) referred to the unit c e l l a x i s .

2 2 8

Atom Mo(2) N(21) N(22) N(23) N(24) 0(21) 0(22) 0(21) 0(22) 0(27) 0(28) 0(29) 0(210) 0(211) 0(212) 0(213) 0(214) 0(215) 0(216) 0(217) 0(218) 0(219) 0(220) 0(221) 0(222) 0(223) 0(224) 0(225) 0(226) 0(227) 0(228) 0(229) 0(230)

TABLE 7.5 . continued b) Deviations from Planes in

Plane 1

.01 -.01

.01

-.01

00

2

.00

-.01

.00

00

00

00

.00

00

00

00

00

00

00

6 .01 -.08 -.02 -.04 -.03 .05 .07 .02 .02

-.01 .00 ,01 ,00 -.01 .02

.00 -.01 .02 -.02 .01 .01

.00

.00 00 00 00 00

10

-.02 .01 .01 -.02 .02 .00

—^ 11

-.22 -.12 -.21 -.03 -.18 -.15 .13 -.07 .01 -.02 .20 .29 .15 -.06 -.12 .06 .28 .31 .05 -.15 -.16

2 2 9

The C(M1)-C(M17) bond length (1.47 8) which l i n k s the chelate ring with

a phenyl group i s in good agreement with the i d e n t i c a l bond in (X).

The atoms N(M3), C(M1), C(M7) and 0(M1) are quite planar - (Table 7.5).

The angles surrounding C(Ml) are very close to 120°, thus the atom C(M1)

appears to be in the sp^ state. The bond distance N(H1)-N(M3) (1.41 8)

o 4a

i s shorter than xhe single bond value of 1.44 A. Thus there may be

some s l i g h t p a r t i a l double bond character but not as much as in (X)

which has a K-N bond length of 1.38 8. The Ho(M)-N(Ml) bond distance of

1.946 S i s in f a i r l y good agreement with the bond length found in (X)

of 1.984 8. However, i t i s shorter than the Ho-M(sp^) single bond

distance of 2.23 S in Ua^Ho(V)^O^iSCH^CH{m^)CO^:^.SH^O,-^'^ and 2.21 S in 20 2 Mo(dien)(CO) . Also i t i s shorter than the Ho-N(sp ) in (TT-C H ) -o 2. o 2.

Vio'^i.ZVi^^Vi^l but i t i s nearer the Mo-N(sp) 2.09 8 bond in 22

K^Mo(NCS)g.H20.CH3C02H. Thus i t may contain some ir-bond character.

In molecule (1) a hydrogen atom has been found attached to N ( l l ) ,

no corresponding hydrogen has been found in molecule ( 2 ) . There appears

to be hydrogen bonding between the oxygen atom 0(12) of the phenylazo ligand

and M ( l l ) . V/hether t h i s happens i n molecule (2) i s questionable.

The 0(22)...N(21) distance of 2.84 X compares reasonably well with 2.77 S

of molecule ( 1 ) , and both atoms l i e i n the same plane, so hydrogen

bonding i s possible. The atoms H(NMl), N ( l l ) , Mo(l) and N(13) a l l l i e on the same plane (Table 7.5) which would indicate that N ( l l ) i s i n the

2 sp state.

The l e a s t squares plane through the chelate r i n g (te. atoms Mo(M),

N(H1), N(M3), 0(M1) and C(M1)) i s not planar, but i t bends at atoms

0(M1) and N(M1), The atoms Mo(M), N(M3) and C(M1) are on one side of

the plane and atoms 0(K1) and N(Hl)"are on the other side. This e f f e c t

i s more pronounced in molecule (1) than molecule ( 2 ) .

From the above discussion i t would appear that there i s some

delocalized bonding in the chelate r i n g , exactly as in complex (X).

TABLE 7.6.

Cc^H^^Cl-N.O,P' Mo. - short intramolecular non-bonding contacts bU bo z fcf 4 4 ^ . . •

( i n angstroms) l e s s than 3.6

Molecule 1

2 3 0

contacts distance contacts distance P ( l l ) . . . N ( l l ) 3.59(1) M ( l l ) . ..0(12) 2.77(1) P ( l l ) . .0(11) 3.21(1) N ( l l ) . . .N(14) 3.51(1) P ( l l ) . . .N(12) 3.24(1) N ( l l ) . . .0(16) 3.34(2) P ( l l ) . .01(1) 3.21(1) N ( l l ) . . .0(130) 3.50(2) P(12). .01(1) 3.23(1) N(12). ..0(12) 2.58(1) P(12). .0(11) 3.44(1) N(12). . .0(113) 3.54(1) P(12). .11(12) 3.06(1) N(12). . .0(15) 3.44(2) P(12). . N ( l l ) 3.27(1) N(13). ..0(112) 2.84(2) 01(1).. .0(11) 3.29(1) N(14). . .0(114) 2.78(1) 01(1).. .0(13) 3.51(2) 0(11). . .0(14) 3.28(2) 01(1)., .0(14) 3.52(2) 0(11). ..0(18) 2.84(2) 01(1).. .N(12) 3.42(1) 0(11). ..0(112) 3.59(2) 01(1).. .0(119) 3.52(1) 0(11). ..0(120) 3.27(2) N ( l l ) . . .N(12) 2.62(1) 0(12). ..0(118) 2,79(1)

Molecule 2 P(21).. .01(2) 3.31(1) N(21). ..0(26) 3.34(1) P(21). . .N(22) 3.20(1) N(22). ..0(22) 2.61(1) P(21).. .0(21) 3,31(1) N(22). . .0(25) 3.40(2) P(21).. .N(21) 3.41(1) N(22). . .0(230) 3.55(1) P(22).. .N(21) 3.28(1) N(22). . .0(213) 3.56(2) P(22). . .N(22) 3.07(1) N(23). ..0(212) - 2.86(2) P(22).. .01(2) 3.35(1) N(24). ..0(214) 2.76(2) P(22). . .0(21) 3.34(1) 0(21). ..0(219) 3.58(1) 01(2).. .N(22) 3.40(1) 0(21). ,.0(220) 3.39(1) 01(2).. .0(21) 3.26(1) 0(21). ..0(24) 3.43(2) N(21).. .N(22) 2.65(1) 0(21). ..0(28) 2.77(2) N(21).. .N(24) 3.57(1) 0(22). . .0(214) 3.58(1) N(21).. .0(22) 2.84(1) 0(22). ..0(218) 2.80(2) N(21),. .0(230) 3.47(1) 0(22). . ,0(230) 3.59(2)

231

Intramolecular S t e r i c Interactions

Consideration of the intramolecular non-bonding distances in both

independent molecules show the s t e r i c congestion to be marked (Table 7.6).

N(M1) approaches N(M2) at a mean distance of 2.64 S in molecules ( l )

and (2) compared with the sum of the Van der Waal r a d i i of 3.0 S." ^

The carbon atom C(M14) of the phenylazo ligand shows a short mean contact

distance of 2.77 S with N(H4), compared with the t h e o r e t i c a l Van der

V/aal distance of 3.35 8. The distance betv/een the atom C(M18) and the

oxygen atom 0(M2) (2.80 8) can be compared with the sum of the Van der

V/aals r a d i i of 3.25 Also the distance between C(M8) and 0(H1)

(2.84 X and 2.77 8'in molecules (1) and (2) r e s p e c t i v e l y ) i s short.

Another short contact i s between N(M2) and 0(M2) (m.ean 2.60 8 ) ,

compared with the sum of the Van der Waal r a d i i of 2.90 X.

The atoms in the coordination sphere in t h i s complex, as in the

rhenium complex and molybdenum complex (X) described in Chapter 5 and 5

respectively, are arranged so as to prevent unacceptably close contacts 23 24

between the ligand atoms bound to the molybdenum. ' The N(12).. . C l ( l )

and N(22)...Cl(2) contact distances are 3.42 and 3.40 S respectively

compared with Ihe sum of the Van der V/aal s r a d i i of 3.30 8. These

values are somewhat higher than the N...C1 contact distances of 3.21 and

3.24 ? obtained in complex (X). In molecule (1) the 0 ( 1 1 ) . . . C l ( l )

contact i s 3.29 S while in molecule (2) the corresponding contact 0(21)...

C l ( 2 ) i s 3.26 8. The sum of the Van der Waal*s r a d i i i s 3.20 8. The

CI...P contact distances are longer in molecule (2) (mean 3.33 8)

than molecule (1) (mean 3.22 8) . They can be compared with the

th e o r e t i c a l Van der v;aal distance of 3.70 S. Here again they are longer

than the C1...P contact of 3.16 8 obtained in complex (X). Packing of the Structure

The Fig. 7.4 shows the unit contents as viewed down the a-'- a x i s .

23 2

t

^0(2) O

O

Fig- 7-4. The packing diagram of [MoCI (PhCON2)2 (PMe2Ph)2]

molecules viewed along the o* axis

2 3 3

TABLE 7.7.

P, Mo - IntGrmolecular contacts l e s s than 3.6 X. The (x y z) coordinates of the unprimed atoms are given in Table 7.2 while those of the primed atoms are l i s t e d here.

contacts

C(13) ...0(12)

0(221)...0(216)

C(223)...0(217)

0(217)...0(222)

0(222),..0(216)

0(225)...0(29)

C(112)...0(111)

0(117)...0(124)

x+1, y, z

-x+2, -y+1, - z t l

-xt2,.-y+1, -z+1

-xt2, -y+1, -z+1

-x+2, -y+1, -z+1

-x+1, -y+l, -z

-X, -y+2, -z+1

-X, -y+2, -z

d i s t .

3.22(2)

3.38(2)

3.57(2)

3.55(2)

3.52(2)

3.44(2)

3.56(2)

3.59(2)

234

and the structure can be 5len to pack as discrete monomeric units.

The packing of the molecule i s primarily determined by the bulky phenyl

rings and the methyl groups.

The phenylazo ligand, the chelate rin g , and the chelate's phenyl

ring are approximately planar for molecule ( 2 ) . The angle between the

two l e a s t squares planes through the phenyl groups i s 8° in t h i s case.

V/hereas in molecule (1) again the phenylazo ligand, and the chelate ring

are approximately planar, but the chelate's phenyl ring i s rotated.

The angle between the two l e a s t square planes through the phenyl groups

i s now 25°, t h i s i s thought to be due to packing.

There are only eight intermolecular contacts which are l e s s than

3.5 these are l i s t e d i n Table 7.7. The smallest distance of 3.22 S

i s betv;een the atom 0(13) of a methyl group and the oxygen atom 0(12)

of the phenylazo ligand.

2 3 5

TABLE 7 . 8 .

Observed and calculated structure amplitudes for [N-N' benzoylhydrazido ( 2 - ) ( - N , 0 ) 3 benzoylazo-chloro-bis(dimethylphenylphosphine)molybdenum(IV)

Format

z 1 0 I F I 1 0 I F

' o c

The three r e f l e c t i o n s omitted for suspected extinction were

h k Z 1 0 F 1 0 F I o c'

1 1 1 2 1 8 5 2 7 1 6

1 2 1 9 9 0 1 2 3 2

1 3 1 1 1 7 2 1 4 4 5

23 G

0 , - 6 , L 11 . (.63 428 C.3 ,L 12 2 89 268

11 359 367 -13 (•12 1*30 12 <»7S <»7b 0 , 0 , L -12 l*t2 172

-11 73 hit 0 , - 7 i L 1 211 127 -10 363 393

2 ibqs -9 532 53S 10 ".75 3 1180 -6 65 5b 11 i q2 177 (» l i t . ' 107 -7 (.(.1 (*27 12 19b 2 r6 5 i( .3q 1352 -6 ( t l9 398 13 376 397 6 1223 1139 -5 I3(t3 1252

7 96 • l oq -i» (.16 373 0 f b t L 8 1535 1(.35 -3 1272 l l i t t .

9 (tC7 138 -2 772 b/O 9 l u b 12t. 10 712 716 - I 1*39 1*36

1? i»02 3 52 11 311 301* 0 («bb (.79 11 <.5b t.32 12 129 110 1 510 601 12 •.qa •.76 2 1569 191t» 13 370 3 65 0 , 1 , t 3 636 699

1* <*10 505 0 , - 5 . L -12 2t<l 268 5 <t(.ft 529

- 1 1 (t08 (.28 b- 366 330 7 913 891 -10 228 23(* 7 515 1*97 0 625 612 -9 127 122 8 300 316 ) If tZ 151 -8 . 125 98 ' 9 59<* &(.ft

10 2S2 28'. -? 6q& 671, 10 71,9 829 11 171 17b -6 365 359 12 69b 721 12 119 108 -5 726 676 13 162 16ft 13 515 5C<. -<. (.33 (.17

-3 1527 I t . (.9 0,(*,L 0 . -< . .L -2 132 102

- 1 378 276 -12 «*32 **76 6 566 509 0 108 91 - -11 187 162 7 92 76 1 l(i83 -10 51.7 51* (* n 255 232 3 1750 1 773 . -q 2eiO 228 q 258 228 i* b81 597 -8 237 232

i n 591 5'*<t 5 731 679 -7 75 7b 11 203 162 b 779 7t.a -6 5'*1 500 12 (.75 <.76 7 >«68 (.73 -5 591 550

8 001 725 -1* (.'*(• i*0(* 0 « - 3 *L 9 77P 7(.2 -3 bi*2 b0 2

10 537 (*93 -2 1182 1171* •5 1386 1252 11 660 655 - 1 102 9 189(* b <*'3 8 398 12 523 533 0 122 Ob 7 i»56 '.27 13 93 109 1 306 307 ft 72 56 2 ZIO 271 9 5b& 538 C . 2 . L 3 1353 1523

10 387 390 (i 371 373 12 I b l 172 -12 265 253 5 630 692 13 •*(»3 (•30 -11 152 152 b 300 361 13

-10 955 q i9 7 1035 1128 0 « - 2 . L -9 28/ 265 8 011 796

-8 1072 10(.b 9 (.65 531* 3 3b5 330 -7 (•63 (.07 10 528 535 (• 275 2'.5 -6 778 75"* 11 159 139 5 132 : i 7 -5 12'» 117

797 751. -<* 262 2(.5 C . 5, L 7 '.76 (.07 -3 362 330 S Hit* l'3t>b -2 22(.5 2272 -13 (•b3 50(»

•q 3(!(« 265 - 1 766 701 -12 05 108 10 99'* 919 0 155'. 1779 -11 151 176 11 163 152 1 300 351 -10 2 b l 2 0'* 12 273 253 2 7'.8 ft'*3 -9 l b 5 151 12

3 523 500 -6 590 612

O . - I 4 L t* 0 37 833 -7 005 091 5 i t l ( . 1*12 -6 636 617

2 1<.7 102 6 1122 1122 -5 11 7(. 1000 3 1573 1(«(>9 7 1327 1297 -1 . 370 336 •t 1*1*6 117 ft 702 689 -3 729 690 5 728 b7b 9 901 970 -2 1115 l O i . ! 6 381 359 11 336 316 -1 361 371 7 75 7 b7(. 12 3 76 i.0<* 0 112(* 1170 0 137 98 10 93 100 1 797 qoq q lt>2 122 2 72 3'*

10 25b 23(. 3 300 310

k ICOl 1107 5 9*» 101 6 102 160 7 70 67 8 560 697 q 77 77

10 1.51 t>b2 11 301 300 12 371 (.0**

0 . 6 , L

13 336 365 12 1.67 (.7b 11 <*23 <.32 10 372 352 -9 130 12^ -0 231 100 -7 600 552 -6 356 31* (* -5 02'* 797 -f* 600 562 -3 009 03t. -2 022 7 75 - 1 1750 17(*0

0 190 157 1 91. 82 2 208 200 3 6q 85 k 62 7q 5 82 5 oqi* 6 66 5(. 7 3qq (*qo 0 125 15»* 9 1(*6 103

11 13(* 02 12 193 217

0 , 7 . L

13 3(*(t 397 12 100 ZOS 11 i s l 177 10 (,(.7 h7S - q 2(t0 Zkf - 0 600 603 -7 b23 63 7 -6 661 659 -5 1153 loqi* -<* (.00 37q -3 (.2>» 359 -2 1091* 10 (.i*

. - 1 879 919 0 52 3 5 0W 1 91 105 2 113 179 3 153 11.2 (. 227 220 5 610 63? b 76 6i» 7 373 300 0 366 332 q 358 (.2(,

10 131 72

11 201 ZbO

0 , 8 . L

12 11 10

(.33 329 167 2qb

1031 316

12X(»

(.76 367 151* 327 97(. 303

1120

- ( . 230 215 -3 003 662 -2 625 60 2 - I 1105 loqo

0 (*2(. (t6(* I 227 2bft 2 1.92 553 3 302 35b 1* 581 5q6 5 216 2'* 8 6 296 29b 7 (t6(* '*i*0 0 68 kh S 82 ttl

10 336 37 5

0,9*L

-12 02 07 -11 170 161 -10 (*91 53 C

-9 253 200 -8 863 901 -7 2q6 270 -5 572 533 -1* 251 2<*9 -3 32 q 307 -2 6<.8 63 3 - 1 309 323

0 1(*0 207 1 323 367 2 195 180 3 682 703 (» 257 276 5 951 qob 6 119 q2 7 852 90 3 0 72 65 q 279 250

10 79 76 11 129 i b q

0 . l O . L

-12 125 i 2 q -11 265 300 -10 199 20b

-9 320 297 -7 1389 138q -5 l'*22 I t t l** - t . (*35 399 -3 3 05 358 -2 160 i i q - 1 130 l t .b

0 318 33 9 1 210 tb7 2 889 977 3 (.87 (*97

107<. 1C53 5 252 237 6 18(. 157 7 71 7'* 0 106 101 9 71 Ob

10 6(*5 595

0 ,1 l , t

-12 3 53 (t2<* -11 88 129 -10 533 573

-9 83 102 -e 55(. 566 -7 208 210 -5 63 6*.

2 3 7

O . l l . L

1099 1075 -3 18<t li»8 -2 172 151* - 1 1165 1201*

C 28Z 3C3 1 791 879 3 i»ia *»21 ii 72 bb 5 589 620 b 100 85 7 636 630 s 114 172 9 23<. 23b

0 ,12 ,L

-11 198 2(>e -13 161 20b

-9 3rti 1.20 -« 630 bsr -J 887 905 -6 <.9l 51b -5 698 591

361 351 -3 i>(«5 (.01 -Z 327 30b - 1 329 325

0 778 8P7 1 230 210 2 1195 12<*7 3 77 83 <* 76<. 761* 5 262 21.7 & l<.b 136 7 316 300 0 51<* (.82 9 20(* 229

0 ,13 .L

-11 359 1.12 -9 205 -8 202 186 -7 229 216 -b *i60 >.bb -5 <»3l (tOi* - i i (»b8 (.(.3 -3 1193 111*5 - 1 Tit* 787

n 195 182 1 222 216 3 618 592 ^ 79 87 5 839 809 b 591 53P 7 59? 577 8 2<«3 219

• 0 , l * i , L

-10 586 bi*3 -9 238 281

-8 709 781 -7 303 301. -6 3U8 325 -5 127 116

285 298 - J 563 559 - 2 ei7k (,67

3. 1PS5 1112 1 151 167 2 7i«8 807 3 311* 329

5 1*30 it27 b 1.55 1,02

0 , 1 5 . t

-9 21.2 286 -7 161 175 -5 589 51,9 - 1 * 210 233 -3 792 e ib -2 127 11.2 - I 1.C5 393

0 i r 9 11*1 2 105 102 3 315 283 (* 21.0 195 5 (*eo 1.68

0 • 16,L

-8 311 360 -7 205 166 - 6 232 26', -5 21.3 270

201 207 - J , 2P7 197 -2 5P2 <.87 - 1 676 697

673 901 2 380 376 3 139 150 5 88 61*

P .17 . L

-7 2C». 208 - 6 31.1 335 -5 172 153 -<» i.b(* 1*53 -3 (.19 361* - 1 120 103

522 515 1 216 167 2 510 (,66 J 65 70 <t 598 531

0 , 18 ,L

-5 115 133 - t . 21.3 255 -3 587 562 - 2 352 3t . l - 1 613 596

b 500 511

1* -19 ,L

2 169 , 161 3 3i>b 31*9

1* - 18 ,L

-2 117 97

- 1 61<t 53b 0 369 31*0 1 711. 712 2 2(«2 260 3 89 61* 5 375 37i» b 231 235

1« - 1 7 , L

<i6b *32

-3 135 101 -2 552 500

0 251. 251* 1 1.02 (,31 2 <,23 '*16 3 191* 215 ii 3b7 (.22 5 288 203 6 111* 9b 7 101* 9b

1 . - I b . L

-5 107 79 -3 111* 105 -2 377 331* - 1 722 7ii2

0 533 51*9 1 71*9 723 2 131* 136 3 l b s 170 I* 237 21*0 5 179 107 5 1,21* 1*37 7 170 153 5 (.20 i*6(»

1* - 1 5 , L

-7 191 166 - 6 339 302 -5 1.23 387 -<* 1*81* (.1*0 -3 516 1*92 . 9 1.93 1.00 - 1 257 233

3 93 37 1 503 551 2 621* 66 2 3 563 570 (, 51.3 53 <* 5 (.53 i*7(* 6 382 375 7 190 209 8 197 232 9 1*25 1.52

1 , - l ' . , L

-7 32b 305 -5 186 172 - 1 . 61. i« 599 -3 1 01* 89 -2 709 7<*9 - I 571* 561

0 i,l<* 1*11 1 108 72 2 236 2<*i* 1* bOl 622 5 92 13b b b33 bb2 7 232 211 8 562 502 9 8b 1 J<*

10 101 132

1 . - 1 3 , L

- 8 336 307 -7 6b0 759 -b 102 77 -5 771 691* -l» 20 6 10^ -3 9 b 131* -2 22^ 232

- 1 57i» 553 7 126 . 71 1 97b 101b 0 330 310 2 552 561* 9 216 213 3 71*1 73i| 10 78 77 1* 21.1* 212 11 502 513 5 69 72 12 115 12** 6 i*5b 1*38 7 172 157 l , r 9 , L 6 203 211* 9 1,59 1*69 -11 273 26 7

10 00 105 -10 79 lO't 11 166 200 -9 707 60b

-8 225 232 1* - 12 ,L -7 501 519

-b 78 71* -6 109 130 -5 172 173 -7 265 209 - 1 . 291 321 -6 061 7 79 -3 612 bZl -5 9b 61 -2 171* 22(* - I , 1079 10(.9 - I 1*01 ii35 -3 1.07 1.22 0 675 651* -2 6 b l 901 1 11*0 l b 9 - I 230 255 2 265 270

0 669 730 3 366 373 1 i.(*0 (.1.1 1* 103b 101*3 2 151 137 5 223 205 3 255 272 b 8(*9 616 e* b62 665 7 72b 703 5 539 575 8 707 710 6 i*b<* 1*90 9 1.9 7 1*51 7 279 263 10 296 273 0 169 10<* 11 118 93

10 109 72 12 150 11*6

1 , -11 ,L 1,-8*L

-9 575 521* • 11 69 87 - 8 97 109 -10 151 110 -7 bi*i* 621 -9 (.51 1.59 -b 22b 175 -8' 3U7 . 33b -5 261 261 -7 1015 1C33 - 1 * 253 210 -b 1190 1217 -3 721 705 -5 773 7bi. -2 598 592 - 1 * 198 191 - I 638 612 -3 70 92

0 237 235 -2 (.56 i*bi* 1 523 515 - 1 829 861 2 390 . 363 0 377 379 3 87 139 1 1216 121.5 <* 77 1.3 2 701 761 6 101*7 965 3 1312 1213 7 121 11.2 1* 265 2(»6 5 61*0 598 5 101* lOti 9 65 85 b 51*7 510

10 231 250 7 152 167 12 135 139 9 51*1 51*1

10 556 50 5 I f - 10 ,L 11 OSi* 9U2

12 367 1.CC -10 113 : c i 13 190 216

-0 500 S09 -7 672 723 l t - 7 , L -6 1019 983 -5 770 730 -11 290 191

- 1 * 1206 1163 -10 135 I 2 i i -3 361 391 -9 526 521 -2 37<* 367 - 0 1(*Z 156 - 1 165 11.9 -7 %i,0 1*65

0 1182 1210 -b 130 121 1 51, I d -5 90 76 2 966 977 - I * 562 657 3 1169 1216 -3 127 121* 1. 3b8 ti05 -z 563 b29 5 925 650 - 1 91* 9(» b 31H 319

2 3 8

l , - 7 , L

0 t.a3 1 l ' . 5 f l 2 ^77 g(.t. i 192 2C(. t* 11(«3 icsa 5 535 (.97 6 792 778 r b&b b l 5 a 9 1 1 S81 s 731 709

10 2(.5 272 11 362 355 12 2 i5 2&(. : 5 bt.7 bSb

1 . -6 • L

-12 ibo 1'.9 - 1 1 1«.9 108

-9 b b l 678 -7 1320 11.12 -6 ?(. ') 261 -5 3t.b 387 - t i 79 97 -3 bft2 751 ' i 522 5J0 - 1 379 i.f .1

3 2bS 26<. 1 2937 3<.0d 2 730 ben 3 97'. 972 (t 1.31 t.03

27a 271 6 92 73 ? ')t.9 81.3 0 f.77 (.70 9 755 730

10 1101. 105«. 11 s t a 5C2 12 670 707

•12 • i : -9 -8 -7 - 6 -5

-3 - 2 - I

0 . 1

2 3 t* 5 6 7

8 9

10 11 12 13

l . - 5 , L

173 1.57

9b 3<.3

b6 785 283 9(.2 276 172 5 3 9 713

1295 1C7 51? 273 <im b70

10b 73

1C9 691 288 8 3 1

1 , - « . , L

Uht 223

197 '.59

71 36*.

25 833 311

1031 311 2<.C b l 5 766

1299 112 506 217 88b b28 •.51

130 6<* 85

66'. 28". 83*.

(.85 2'.2

10 1 1

13 •12 •1 J

13 1 1 12 13

•13 •12 •11 •10 -9 -8 -7 -6 -5

- 3 - 2

0 1

2 3 (*

.6 8 9

11 13

821 120 752 (.00 (.72 198 966 509 751

1827 1073

3D(. 3 ( . l 6 63 i.2(. 193 119

123b b3b

12' .7 3 2 1

1 . - 3 . L >

2 82 779 ' .29

662 77 bfa

219 155 239

1520 907

1379 87

1515 271 527 291 faC3 378 73 ' .

git 303

l i - 2 t L

9b 250 025 273

1028 363 267 783 220 570 (.52 315

176*. 737

128L' : ( .8 60<. 750

11.92 670 207

9b

1 . - l . L

855 - 1 3 105 123 118 - 1 2 692 761 7 59 - 1 1 287 3 2 1 It 1.0 -10 l 5 b 153 t.95 - 9 70 71* 223 -9 1273 1296

1090 - 7 (.63 573 -6 785 821. 550 -5 l ' . i 9 1'.95

2057 - ( . 79b 725 1066 -3 l b 9 7 1737

293 - 2 1007 108 ' . 3'*0 - I I C b b 1235 601. 0 b3b 65 8 (.13 1 2130 2155 181 2 393 335 113 3 222 192

1188 (. 9b7 837 615 5 1093 1003

1177 6 550 516 295 7 35(. 272

8 (.83 (.(.2 9 71b 721

10 205 192 31 '* 11 5 8 1 5'.0 863 12 202 176 i*(«l 13 218 2 2 1 u^t* 678 1 . O .L

72 25 - 1 3 369 397

ZUt* - 1 2 J 9 8 (*<*8 162 - 1 1 580 6 5 9 199 • - 10 821 83b

151(. - 9 bJO 5 6 1 821 - 8 193 218

1291. '7 I 0 b 7 1020 68 - 6 (.90 t.89

1358 - 5 670 b<*0 261 6 7 9 708 538 -3 116 27 255 - 2 2860 3396 553 - I i 9 & 374. 355 0 1 2 9 9 1607 7(.& 1 72 65

86 2 615 55(. 265 3 1(.60 1385

(. 282 257 5 133 <t9 6 15(.5 1<*55

(.8 7 5 7 1 ( . S I .

2^5 8 1238 111*9 895 10 73 56 233 11 13b 17b

U S ' . 12 87 89 i . l ( . 278 1* 1*L 771. 18' . - 1 3 (.37 1*33 530 - 1 2 300 2 8 9 (.73 -10 259 268 315 - 9 1.38 ^7^.

2108 - 8 176 182 869 -7 9 1 7 8 6 2

117(. - 6 265 257 132 -5 6 9 9 6 6 1 555 - I * 31*9 322 6(.9 -3 278 238

1393 - 2 337 3'*5 617 - 1 l b 0 8 1(.6(. 18 ' . 0 552 6 3 ' .

70 3 101*6 1003 It 108 7 1035 5 565 536 6 i»08 379

7 Sit* 337 8 217 25'. 9 975 930

10 2b'. 272 11 126 105 12 2 8 1 280

1 . 2 . L

-13 2 t . l 2<*3 -12 kUl 1*81 - 1 1 328 S'.l - 1 3 295 296

-9 67 11 -8 2 3 9 221 -7 72b 653 - 6 231. 207 -5 21*0 263

•.30 3bb -3 89 101 -2 2 5 5 8 2 5b3 - 1 1180 1213

0 273 263 1 395 (.77 2 511. 560 3 I 8 b 3 20i<l (. 1320 1289 5 1217 1222 6 833 793 7 (.37 1*26 0 253 223 9 11*0 11*2

10 215 219 1 1 2 1 1 207 12 112 115 13 382 363

1 . 3 , L

- 12 !(*<* 11.9 - 11 3b5 3(*9 - 1 0 71 89

-9 71 70 - 8 too 115 -7 98(. 962 - 6 38<* 356 - 5 l l b b luas -(* I b l 137 -3 1*01 339 - Z 372 366 - I 330 310

t; 30b 2 9 1 2 83b 91.8 3 2 3 2 0 2710 (. ba2 733 5 (*&7 512 6 1095 1 1 3 1 7 788 aou 8 b<.3 702 9 i*(.5 1.75

10 blO 57o 11 2 8 2 286 12 2'*'* 25u

1 «t».L

- 1 3 113 110 -12 373 388 - 1 1 87 93

-9 2 1 9 2 5 1 -7 i*3b 1*03 - 6 172 153 -5 779 686 - ( . 11* (*0 1(.07 -3 1 1 1 1 1037

-2 302 276 - 1 5 9 6 • 589

0 958 1 00<* 1 18 't 217 2 516 579

560 613 5 1600 1818 6 3 6 8 311 7 327 319 8 5 2 8 51*1 9 180 * I 7 b

13 537 572 11 2 6 6

1 . 5 . L

- 1 3 170 176 - 1 2 198 210 - 1 1 215 172 -10 1 0 1 113

-9 170 76 -7 (. 79 5Cd -6 b o d 619 -5 73b 791. - 1 . 5 7 9 563 -3 2 0 1 213 -2 503 1.83 - 1 2 7 8 21.2

3 1 1 1 1 119 C 1 283 2 8 1 2 105 117 3 772 635 (. (.98 507 5 55b 622 6 712 812 7 210 20 8 8 560 b C l 9 215 2 l t

10 222 22:. 11 330 3i.9

1 * 6 . L

- 1 3 215 2 3 9 - 1 2 11*1 103 - 1 1 1 3 9 11* I*

-10 275 255 - 9 2 82 29C - 8 232 21*0 -7 121*0 1213 - 6 552 1*99 -5 992 933

1*90 1*76 -3 195 l b 7 -2 77 70 - I S8u 9b8

0 68 13u 1 783 09'* 2 72 12<. 3 1 1 3 7 l l b b (. 113 107 5 726 77a 6 160 118 7 S I 38

8 2 5 1 285 9 322 338

I'J 11* •• 185 11 2 3 6 232

1 . 7 . L

- 1 2 321. 331 - 1 1 135 81 - 1 0 3 9 9 (.01

2 3 9

1.7 ,L - 8 111* 131 6 365 353 2 i - 1 7 , L 0 109 69 -7 l<.<.9 1I.34 7 136 139 1 504 49b

- 9 11*0 1(*1 -5 262 239 320 305 2 114 7B -a 395 393 -«» 319 282 I . I H . I . -3 l i b 104 3 237 22 5 -7 52 <»9 -3 185 18(* -2 292 250 4 712 699 -b a(.3 778 -2 21b 2 l ( i -9 •ilO H71 - 1 316 31b 5 125 I 2 b -5 (»30 5<.9 - I 291 318 -8 281 299 3 198 183 b 493 498

1132 1061 0 936 98<» -b 2t»9 2 a i 1 32 3 347 r 621 63 9 93 60 1 5*.3 638 -5 «i28 *.13 2 325 331 9 219 205

-2 135 7 1326 2 118 87 -«i 398 421* 3 207 192 - 1 507 1.29 3 3C7 326 -3 1*75 1.59 1, 215 212 2 , - 1 2 . 1 .

0 73 28 <t 255 261 -2 89'* 912 5 102 64 1 156 100 5 333 31.0 - I 367 359 6 17b 175 -9 371 381 2 357 38^ a 5l<. <*99 0 819 859 7 307 330 -8 662 625 3 789 798 9 116 111* 2 b l 3 650 -7 158 158 « 5*4 <» 59<. 11 530 <.7b 3 376 397 2 . - 1 6 . L -6 1045 956 5 790 817 5 178 139 -5 378 329 6 299 31*0 1 * l l t L 6 5 70 5<.(* -5 192 lb4 -4 baa 659 7 801 788 7 <*26 393 - 4 293 237 -3 298 331 e 185 178 - 1 1 <.10 1*50 -3 511 4b2 0 256 258 9 hbb <t70 -10 853 856 1 .15 ,L -2 450 455 1 264 232

11 30b , 329 -9 11.5 163 - 1 594 542 2 1344 1443 - 7 135 189 -a 299 328 0 97 57 3 442 47C

I t B . L -b 1028 1019 -7 302 297 1 98 90 4 9b5 957 -1* 1239 1226 - 6 118 111 3 86 66 5 241 229

-10 301 313 -3 866 336 -5 57<* 558 4 540 530 6 349 339 -9 506 526 - 2 736 707 -3 <tl2 391 b 535 568 7 451 475 -a 22*. 235 - 1 (.75 t.76 - 1 252 253 7 19b 198 8 * 298 282 -7 1121 1122 1 (.80 515 0 188 179 9 155 105 -6 <i55 h5t* 2 517 (*98 1 500 <*99 2 , - 1 5 . L 10 25G 296 -5 739 . 7 61. 3 kU? '.72 2 85 57 11 129 121 -1* b i a 598 1. Ikb 138 3 508 iiba -b 286 270 -3 558 (.97 5 593 596 1. 52** 501 -5 224 184 2 . - 1 1 . L - 1 l l d b 1131 6 3 76 376 5 ,3ao 341 -4 541 479

3 (*D8 i . r 6 7 232 21b -3 11 J 103 -9 411 379 1 8C9 903 8 103 88 l . l b t L -2 180 195 -8 138 16b 2 3 b l 368 9 . 2 78 2<*b - 1 ' ' ~- 22 4 248 -5 829 754 3 295 31.8 -7 107 101 Q : 305 302 -4 580 525 i» 120 69 1 .12,L -<i 593 603 1 290 2b4 • 3 686 650 5 87 56 -2 9<*0 911 727 755 -2 877 056 6 297 29*. - 1 1 1.1& (*62 - I 79 49 3 341 348 - I 3 72 396 7 1*20 389 -10 300 302 0 b20 633 523 510 0 305 31C a 219 213 - 9 915 960 1 275 316 5 114 87 1 60 85 9 233 192 - 8 368 363 6 333 357 3 73 73

10 375 (.£(. -7 9*.7 963 ] . 1 7 , L 7 358 376 1* 1146 1118 11 225 213 - b 389 1*30 9 322 333 5 678 695

-5 216 222 -6 155 165 7 317 311 1*9 ,L -3 93b 8b<» -5 202 181 2 . - l 4 , L 8 259 241

- 2 6'.9 658 -2 372 394 10 79 94 -12 iibd *>89 - 1 558 550 - 1 235 22 3 -7 167 130 -10 buo b*.9 0 1022 1039 0 220 197 -b 497 422 2 . - : J . L

-a lb*t 1(.2 1 833 921 L 262 281 -5 259 260 -7 507 2 758 799 2 <t33 417 - 4 790 740 -10 3<*3 326 -6 757 710 3 369 359 -3 361 333 •8 1090 1021 -5 <»b5 1.57 *i 2(.b 235 i . i a . L -2 278 286 • 7 527 - 6 1 1 •k 117(> l l< t2 5 348 322 - 1 230 209 -6 1058 1057 -3 59<i 537 6 1*70 <*it2 -2 231 224 0 263 258 • 5 527 511 -2 532 552 8 6b6 60 7 -3 39<. 368 2 519 534 -4 92 61 - 1 10** 157 3 204 214 -3 357 298

0 170 171. l * l 3 i L 2 t - 1 9 . L 4 889 882 -2 684 652 1 <>92 528 5 253 256 - I 786 817 2 3b9 KOQ -10 235 263 1 307 314 6 476 1(69 522 562 3 1021 1036 - 9 138 183 2 bbO 642 7 3b9 396 1 1595 1706 ^ 271 278 -8 257 277 3 19b 209 8 94 5i> 2 624 82 5

5 678 61.9 - 7 78 7i» , 9 213 202 3 593 609 b IbO 137 - 6 7b7 721 2 , - i a . L 10 271 333 I t 426 377 7 b22 650 -5 455 ^68 5 191 235 8 196 226 -i» 522 531 -2 2b2 226 2 t - l 3 , L b 245 228 9 85 90 -3 565 580 - I 57* 548 7 563 54a

a 161 iSh 0 338 2sa -7 320 297 ft 379 368 1*10,L 1 236 338 2 277 273 -5 295 250 9 685 696

2 230 237 3 2b2 239 - 4 374 349 11 523 523 -12 28b S h f , 3 S3 i 526 % 392 401 -3 640 629 12 117 124 -10 100 78 • i 355 310 5 *2<* 4J1 - 2 483 496

- 9 toso 1062 S 590 577 3 72ft 763 - 1 501 479

2 4 0

2 . - 9 , L 12 (.56 1.53 1 291 209 1 SI 9 i -7 329 283 8 b95 626 2 266 259 - 6 1359 1211.

-10 (.06 391 2 , - 6 , L 9 (.15 3 936 785 -5 230 226 - 9 231. 218 10 J83 369 5 177 175 - 1 * 725 70 C -7 36(. '3 75 - 1 1 (•C 1. '.22 12 332 291 6 970 931 -3 110 98 -6 1.36 1.02 -9 91.9 1313 13 138 152 7 359 31.0 -2 1190 1 lC«t -5 896 395 - 5 367 Jl•^ 8 51*3 532 - 1 827 765 - 1 * 927 933 -7 599 652 2 . - 3 . L 9 712 720 0 302 261 -3 706 692 - 6 3( 9 321 13 20(. 201 1 73u 692 -2 1.28 i.(.& -5 291 31<. -1? 1*16 (.'.5 11 359 363 2 2112 2396 - 1 b7 96 - 1 * :s'* 235 -11 317 J65 12 111 97 3 353 362

3 821 861 -3 1C57 11 31* -9 1.51* (.66 13 11* 1* 162 1* m 2 3 11.85 1 1217 121.3 -2 239 21.3 -5 172 188 5 589 585 2 9(.0 929 - I l ' . ( . l 1631 -7 21*6 203 2 ,O .L 6 1.70 <*7(. 5 1036 i o n 0 1220 1309 -6 7oa 712 7 276 21.6 (. 105b 1059 1 928 91*3 -5 279 266 -13 669 753 0 233 2H0 S 288 226 2 1222 1209 -(* 1038 1 C»*i. -12 1*22 (*07 9 322 310

775 719 i 2 71. ' 21.1. -3 1.63 521. - 11 570 520 10 208 197 7 262 253 1. 895 -2 1.55 (.91 - 10 71* 70 11 311 327 S 67 53 • 5 l i C 7 1191 - I 329 371* -8 31*5 370

320 318 6 173 187 0 598 6 m -7 836 627 2 . 3 , L 10 211 281 1 1226 1138 1 803 771* -6 002 830 11 226 196 8 91.2 663. 2 102 1*1 -5 520 (.99 -13 1*00 1.03 12 526 570 9 1101. 999 3 50b it7(« -^ 1168 1166 -12 - I b l i g " .

10 1131 1097 1. BIO 627 -3 232 273 -11 661* 677 2 . - 8 , L 11 260 257 5 233 197 -2 525 553 -10 112 126

12 1C2 90 6 11*0 78 - 1 301 369 - 9 b b l 62 5 -11 170 13(* 1 3 226 227 7 787 690 0 390 '.51 -8 1*35 380

-9 592 577 a 313 269 1 2085 1 666 -7 306 2S2 -8 682 691 2 . - 5 . L 9 1075 1021* 2 80 11 -0 sai* 555 -7 1021 1067 10 29(t 312 y 3 1737 1633 -5 827 76 0 -6 (*07 -12 185 177 11 • 71.6 725 1. 806 701 - 1 . 1*0 7 376 -5 509 503 -11 230 2?a 12 192 211 5 397 31.9 - 3 75b 767 -t , 63 38 -9 31't 333 13 297 311. b 1017 95b - 2 1113 1107 -3 836 825 - 8 597 628 7 369 29b - 1 l i e 61 -2 891 901 -6 1095 1160 2 . - 2 , L 8 379 367 0 365 395 - 1 95b 999 -5 291 299 9 <*10 332 1 997 1133

0 1025 101.7 -'. 81*1* 876 -11 1035 1078 10 257 213 2 509 532 1 22b9 21.1.6 -3 5 72 630 -12 173 179 12 81 73 3 i«9i* 1*07 2 168 186 -2 366 379 - 9 (.62 522 1* 1 797 193 5 3 (*00 (*33 - 1 (.09 i*bi* -7 267 27(. 2 . l . L 5 58 26 (* (»13 1*12 D 1685 ia i .9 -6 2(.6 250 6 766 83 5 5 89 57 1 102 9(. -5 310 308 -13 21*1* 255 7 51*0 555 6 59 3 537 2 1596 1515 - ( . 65 71 -12 83 73 8 6 9 / 753 7 952 931* 3 300 23b -3 910 960 - 11 328 316 9 199 187 8 t*21 '*21 1* 21.2 235 -2 1(.& 159 -10 566 5(*7 10 191 207 9 1158 1117 5 1.35 '*1Q - I 187 210 -9 571 561* 12 t*73 (»8b

10 (.65 (.39 6 55 15 0 1559 1739 - 8 292 207 11 7t.5 739 7 113 93 1272 1158 -7 525 1.36 2 . i * . L 12 121* 11.8 8 (.37 1*01 3 971. 81*6 -b 619 570

9 679 626 t. 137 50 -5 79 58 - 11 153 212 2 . - 7 , L 10 377 1*03 5 81* 60 - 1 * 155 10(* -10 301 271

11 lt'9C 1058 6 1101* 978 -3 701 623 -9 257 217 -11 t*0(* <*Pi* 12 lOi. 91 7 30 9 311* -2 277 258 - 8 801 6b7 -10 213 251. 13 650 672 8 1066 930 - I 921. 771* -7 666 62 6

-9 271* 280 9 36 2 3ob 0 626 656 -6 11 86 1107 -a 318 31.3 2*- '* .L 10 12(* 125 1 5(«6 533 -5 1*75 t.52 -7 178 158 12 233 27<* 2 761. 711* - 1 * 330 306 -6 1096 1122 - 1 1 1.87 1*78 13 215 232 3 1008 10 09 -3 1378 1351* -5 689 691 -10 213 201 1* 11*06 11.01* - 2 (.57 1*01* - ( . . 61.9 686 - 9 1.78 1*65 2 . - 1 .L 5 209 267 - 1 330 3<*2 - 3 1030 1013 -8 228 185 6 9i*5 900 0 10(*3 1116 -2 (.(.9 <*8t« -7 391 368 -12 112 96 7 289 2 76 1 1212 1375 - 1 66 60 -6 82 70 -11 268 2 d a a 680 667 2 07 37

0 759 768 -5 205 220 -10 707 719 9 228 168 3 137(. l ( t9(* 1 938 876 - 1 * 550 556 -9 111 126 10 107 179 d 1150 127C 2 1839 1855 -3 927 1020 -6 731 726 12 539 567 5 3(»9 337 J 281 265 -2 2 75 i 5 9 -7 1.61 1*99 6 - 570 581* <t 1218 1125 - 1 1322 1526 -6 260 279 2 . 2 . L 7 367 (.06 5 180 171 0 5 32 533 -5 79 62 0 (.51 50 2 6 318 IZU 1 31.5 (.05 - 1 * <t28 (*32 -13 1*00 it2i( 9 (.98 515 7 992 970 2 5 72 1.81* -3 577 539 -12 1*30 1.51 11 S0>« (.98 a 178 166 (* 207 189 -2 95 103 - 1 1 100 101*

10 1*22 1*18 5 50e 1*76 - 1 872 1056 -9 391. 303 11 (*(.6 6 860 003 0 114 121 -8 195 211

S2£ 692 6 9TC COS 1 - *52 99Z E 0** EE* I T -695 0*5 9 655 955 2 50£ 252 2 1 -062 652 / T / l ' Z 2** 60* - 1

B121 1 2*2 902 5 /*S 255 0 T*9*2 OCb C06 0 029 0/5 * £ 5 1 £ 9 1 0 256 926 T-

S*B T- 9C2 b*Z £ 9SZ £52 z - 102 £61 2 - * / £ 59E 01 Obf 2 - / / I I b £ l l Z 501 £ 1 1 £- 5/ *6 £- Z*5 055 / 2S f - 512 122 0 2C5 605 . *- / 9 £ / / £ • i - 1*01 *Z01 9 18* *- 512 222 2 - / b l / £ 2 5- 06* 19* 5

9n £b£ S- £8 99 £- T 9 1 * 2 £16 £59 9 - 5C/ 9 /9 * 2 i l i - 9 / 1 602 5- £Xl 56 / - IZ 19 £ e * i 6- /55 0/5 9- 1 / 99 . * 205 005 6- 696 506 Z

«TT SSI 6- / / I I I I / - 0 1 * 6** E 251 291 b - / } / I F / 1 -9 / 1 0 / 1 2 9501 OEOl 2 -

T C T - * r i » * i - * r 6££ **£ 1 T*T1*Z 092 ObZ £-96 511 0 9 f 11 0021 *-

iiz ^12 IT **J5 615 / 6 29 2E9 1 - 651 * / l 6 / 1 2 ozz 5-S9S 99 e 01 TOf /9Z 9 Z5* 505 f - £09 **5 6 1/5 b55 9 -S9 6 £ /5 £25 5 161 661 *- 2£5 995 9 62 *9 / -^•»t C/1 / b b l 902 * 912 122 5- 662 E6Z 5 ZEE ZbE 0-«»ST 521 9 /TC 162 £ 9 / * 19* / - / 9 1 051 * *Z1 1/1 6-CT9 *19 5 0*2 Z9Z 2 DC£ 69 Z E 9 / £ E5E 0 1 -*I9S 2^5 * £22 052 1 1*5l*Z £61 991 Z 08 21 1 1 -9S6 696 C 601 I t l 0 529 ec/ 1 992 rbz 2 1 -•»*»6 *26 2 S i t 9/C z- £6 £6 5 091 5*1 0 Tcr 52C t 9St *6E £- 062 / 6 2 * 5Z01 £901 1 - 1 • / .• z

tl 1 0 C/Z 69Z *- 012 152 £ 9 £ / £* / z -1 • / .• z

^04 TO* 1 - *1£ Z9r 5 - 5 £ 1 / 5 1 T 5*01 £601 E- 12£ 1Z£ 11 T«i»p 65* 2 - *S£ 9£C 0 9E1 / E l 5- EZ/ 90/ 6 199 *S9 t - - I ' 5 T - •£ 69£ 96E 1 - * n l / Z l 9 - E2T £6 9 09C *ilt •t- / * £ S9£ 2 - 695 065 / - £16 29 / / 0(6 156 S- 8S£ 19£ 9 655 1*5 £- 9C6 156 6 - 9EZ OEZ 9 919 6^5 Z- *0 *9 / 916 069 *- *S1 / 9 1 0 1 - E9 5/ 5 Oi 96 9- O i l £9 9 £ 9 1 961 5- 199 609 1 1 - *22 60Z *

S£l 9 f l 5 / 5 1 6*1 9- b * l T 1*01 E T l l - « t £99 559 * 90* 99C 6 - 1*01'Z 9S5 255 2

co i 621 t 5 / £ l 6051 1 f f f QIC 01 599 f * 9 2 T * * l * 2 61£ 09 C 6 9601 * / 3 1 1 -•ibZ £ 6 2 6 •:B* •*9* 1 191 III / E69 099 2-i*t^ b^i 9 252 / 5 2 0 ££2 /5Z c ET* 60* 5 5Z9 /69 £-032 12C I /02 ££2 1 - *5* 69* £ 552 0*Z * 125 9 /5 5 - .

t l f * 9 *12 / 6 1 z- 09/ 5 2 / 1. 992 6*2 C 1/E 02* 9-25* S 092 2Tf E- *52 2£2 0 6501 966 2 1 1 / £ £ / / -S t* * 5 f 2 9£Z *- £59 159 1- 619 £55 1 16£ 19E 9-

1S2 S92 £ 52* 15* 5- 1*1 £ 5 1 z- 59* 95* • 0 0/5 0/5 6 -IZl 1 1 / 2 09* 29* c- 26 *11 1 - £ * / 569 0 1 -ssx\ 2 / 0 1 1 T 9 T - * £ 29£ 95£ *- bOE 1££ z - 0 1 * / £ * 2 1 -C99 919 0 6*2 9£Z 5- * I£ SIC E-992 9*2 1 - /99 559 5 02* b £ * 9- 9E/ 15/ •»- T 9 » Z «09 *09 2 - 911 0 £ l * £02 9£Z / - 2£1 0*1 5-99 t - 911 021 £ 552 552 6- *b* /15 9 - 951 /ZT 11 9*T HI 061 IZZ 2 1*1 * * 1 b - 902 66Z 6- E/2 95Z 01 •rbS 62C s- zo* 9** 1 - 951 1/1 0 1 - 56E 60* 6 TQ^ 115 9 - /92 f zc Z- T £ l * 2 E5C Z9£ 9 96«» *2S 9- £9£ 9 1 * £- 1*6'Z 09Z I5Z /

6 £ * £ / * 9 / * 5 1 / 9 £ 1 9 T » / l - * t / 6 1 bOZ * 0£E Z*C Cl 16£ 5*E 5

591 *51 E C6* 215 6 5061 0 / / 1 * ^5 I C l 9 C52 5*2 5 *52 T£Z 0 /65 *9S 8 202 ZIZ £ 00% 6** I 555 615 669 999 1 - £ 2 / *9 / / 5Z2 *oz 2 Ml * i l 9 G6/ 65/ £ CZ9 £99 2- 119 999 5 C*l 211 1 2*4 99S • 5 15 901 2 *69 1/9 £- 661 0*Z * 2 2 / I E / 0 999 199 * 96£ 5 1 * 1 029 0 f 9 *- 822 fC2 £ 5*2 OEZ 1-b t s 16* S *01 9 / 0 0** 95* 5- 6/ £ / Z Z901 6E11 z -692 612 z 211 6 / l - 6£Z 1*2 9 - 5£b 0E9 ' 1 16£ / I * £-OOT 26 0 591 / 9 1 9- 19* 515 0 6001 5511 *-T* 09 1 - T*91-*C 0C9 59 / 6- 52*1 0C*1 1 - 295 b t 5 5-i 9 li 2 - 6/C ' 62C 0 1 - / I * 12* 2 - 122 *22 9-9 1 * cs* t - 991 191 2 - - 8921 *CE1 £- 921 0*1 / -661 *- T Z l ' Z 591 *02 *- 911 *91 9-1 1 * 2f * 5- 1 » / 1 * 2 2/2 /92 5- 091 * / l 6-09 (6 9 - 95 / & 9 2*1 *S1 9 - 9*C 59E 0 1 -C02 / 9 l / - 191 991 £- £*2 662 / 58* /05 / - 9 /5 5/5 U -

9*1 2Z1 9 956 916 6 -T f l - ' t T * / T ' l / 9Z 9CE * 99 */ 0 1 - T 5 » 2

T f 2

2 4 2

3 . - I C . L 9 597 619 10 07 1^6 q 15(* 123 1, 339 3( . l q 301 271 1 1 (.06 365 u 211 169 5 3dO (.3b

2 (.t9 1.71 1 1 a l t . 81.1 12 531 1.05 11 qq 9/ / 3 35 319 <* 225 2( 7 1 1 395 (.31 12 381 (*13 d 3J1 282 5 50>. 522 12 120 122 3 . - 3 , L q 7/9 / I . 9 b b i d 606 3 . 0 . L 11 3 32 3%2 7 791. 71.6 3 , - 6 , L -11 339 3/5 0 127 126 -10 (.zq (.77 -11 1/5 159 3 , 3 , L q b5b 635 -11 (.53 •.61 -q 1<*1 116 - I J ZOO 237

10 261 272 - 1 3 266 3i?3 -6 25 / Z /6 - 9 571 560 - I Z 3/Z 396 1 1 11.5 1 39 - J 520 550 - 7 1..0 121 - d 811 833 -11 619 58 7

- 0 03 93 -9 112 1Z3 -7 118 l(i8 -9 391 3/8 3 . - q . L -2 ' 162 162 - 5 oqo qa5- -6 910 880 - / 507 505

-6 1.1.C 1.79 -1* 226 191 -5 532 523 -5 1328 1Z58 - n (.35 1*38 -5 991 1 02(. -3 137^ : t . q / - 1 * 236 229 -3 070 61(*

- 9 qs 72 -». l( .a 197 -2 5t.7 633 -3 68 58 -2 l (*7b l o ^ l - i 122 129 -3 1167 13P5 - I (.27 (.81 -2 301 2/9 - 1 5(*(* 502 -7 830 792 - 1 11 7b 1255 3 8 b l 838 - I 109 9q 9t.5 065 -b 2'.7 282 1 :0(. 235 I 1.15 (•dq 3 938 I09d 1 16/ l i t l -5 1C<*5 1021 2 713 71.3 2 61 13Z 1 (.bO 1,08 2 37b 1.31 - I . (.79 1.91 3 659 6?7 3 560 511 2 337 313 3 1022 1128 -3 502 516 1. 7 32 710 •• Z35 235 3 369 303 121 Ibb -2 '.bb (.85 5 1103 1037 5 758 7Sb i* 7/9 716 5 296 35b - I (.66 (.57 6 359 375 b 218 173 5 700 b ib 6 1290 1369

C i.q7 5C6 7 0C8 770 7 613 / / 3 6 35/ z/<* 8 21. (* 21.9 1 265 2(.7 8 682 595 0 97 qb 7 3bb 355 10 3/1* 3 / 1 2 931. 930 : 1 325 315 9 615 5/0 8 506 '*(*2 3 166 160 12 221 21b 10 233 211 q 391 (*<*i* 3 , ( » , L (* (.92 i.7q 11 218 2Z/ 13 301* 300 5 276 251 3 . - 5 , L 11 322 32Z -12 331 299 b 192 2C(. 3 . - 2 . L IZ 233 2(*1 -10 900 991 8 671 fa73 •11 . 2 i q 180 - 9 130 1J9 q 160 i i q - n 32'* 357 -12 93 b'o 3 , 1 , L -8 1212 111*0

10 022 8 6 8 - 9 167 175 -11 l i b 113 -b 0/q /qq - 8 53q 537 - 9 101 20b - I Z 515 519 -5 30b 351

3 , - f t , L -6 325 353 -8 123 1 1 1 -11 56b 5bO - I * 1.39 373 -5 1.28 1.33 -7 339 350 -10 1*31 1*03 -3 8 q z 810

-13 763 72q - 1 , j z e 33) -5 71*5 703 -s 1*1*5 (•(,0 - z 1016 q / i -q (.80 ( .qi -3 621 633 - 5 3(*3 3 i q - 8 80 39 - 1 325 291 -8 379 380 -2 302 t.21 - 1 * 15Z 189 -7 3 o q 261 0 793 816 - 7 300 296 - 1 . 035 882 -3 723 718 -6 65 <*q 1 959 111*5 -6 182 2C9 J lbO(* 1701. - 1 00 75 -5 60/ b(*i* 2 079 1015 - I * 027 005 1 36(. 361 0 ii*q7 1563 -3 l t .20 1237 3 7/8 832 -3 673 881 2 550 5/2 1 oftq 793 - I 6(,1 602 (* 361 35d -2 1 1 2 1 11 86 3 126 l i b z 91C 823 0 050 029 5 562 5q5 - 1 1377 i« 217 201 1* (•51* (*87 1 52b 51*0 6 (.59 ( * / l

0 l4(* i n 5 330 319 5 51.7 (*(*q 2 375 351* / q53 1002 1 70»* 7t*Z 6 11'50 961* 6 189 190 3 561 5/0 0 sq 08 2 I b l 135 7 52b 1,8'* 7 95 111* 1, 919 q i 5 9 706 79/ 3 86 118 0 61*8 633 8 200 2q3 5 362 31Z . 11 ttOk (,3/ t> 638 813 9 917 872 10 5q3 501 6 560 56/ 5 577 550 10 j q 8 351* 11 80 5b / 361 306 3, 5 . L 6 1.50 (.35 11 513 5Z0 12 36 / 35b 8 (.6/ (.73 7 1332 126'* q zzq 190 - 1 1 06 101 q 710 696 3 , - < . , L 3 , - 1 , L 10 Z01 30/ -10 qo V/

11 8(* q7 11 00 / q -9 110 123 • - 1 1 3q7 1.13 -12 !*(*/ 1,00 - 12 / a 5 7(.3 -8 1C5 92 3 , - 7 , ) . -a 312 316 -11 351. 330 -7 651* b(*5

-7 23q 236 - I D 723 bqo 3 , Z . L -6 l o q 78 -11 157 1 77 -6 321* 35b -9 26b Z72 -5 100(* 93Z

-0 298 301 -5 878 933 -0 258 25 / -12 l / ( * 101 - 1 . 086 85b - 7 5J3 505 -*. 537 555 -6 1,20 390 - 1 1 Z&(* 2'.7 -3 116 89 -6 b6 3 686 -3 9q7 1136 -5 612 599 -10 b q i 686 -Z (*36 36C -5 322 372 -2 338 325 - I t b(* 68 -9 (*56 (*33 - 1 q5 39

•k 165 162 - 1 600 685 -3 111.3 i l 2 < * -8 15b l l (*3l 0 111* 92 -3 312 307 0 628 610 -2 183 I f tb - / (*0b (.50 1 73 65 - 2 250 258 1 101. 136 - I 8 / 0 919 -6 1331 1207 z 51*0 5/Z - 1 173 173 z 102 195 0 (•1*1 i.b5 -5 110 101 3 1,73 (.9/

0 895 qq8 3 qi.2 365 z kbk 392 -(* 221* 181 (* 1026 1078 1 1(*2 80 (» zzo 226 3 bOk 51* 1* -3 fl/q 752 5 662 681 2 1855 181.6 5 Z78 301 t* 1016 8 9 / - z 8/(* 75Z 6 380 1*3 q 3 221 2'.5 6 307 ' 300 5 751* 717 - 1 3qi. 382 7 l o q 62

713 727 7 353 312 b 755 681 0 1(,50 11*56 10 61*1 686 5 305 281 0 278 2/1* 7 116(* I0b2 2 705 /zq 6 (.56 (*(.l 9 350 325 8 51Z 1*67 3 Z88 2 / /

243

i . b . L 0 715 751 •4 357 326 b 98 93 10 544 554 1 3 98 433 -3 155 123 a 147 11*4

-10 852 842 2 4 99 55b -2 232 219 9 237 246 4 , - e * L -9 605 569 3 32b 319 -1 124 97 -8 b32 565 4 25Z 203 ' } 515 530 4*-12 iL -9 371 365 -7 57b 554 5 81 45 2 62 7 607 - 8 120 96 -5 7<.5 b39 7 394 392 3 88 49 - 7 104 l i b -7 139 120 -4 780 748 8 392 415 -6 3bJ 377 -b 629 896 -3 695 635 3 1 15iL -5 186 179 -5 lOb 125 -2 8'*0 846 3,1D,L -4 434 401 - 4 778 812 - 1 115b 1211 -3 636 bJO -3 161 172 -3 -25 538

0 102 140 -8 173 177 - I 367 3b7 -2 462 475 -2 1.1*1 470 1 lOAb I 2 r b -7 295 279 0 135 120 - 1 85 73 - 1 902 916 2 , 69 38 -5 373 3b7 0 596 b09 0 5b8 613 3 762 772 -4 632 b34 4 , - 1 7 , L 1 138 118 1 316 344 4 21b 251 -3 514 (.94 2 244 257 2 186 191 5 72". 7bl -2 103 92 0 227 23b 3 132 99 3 872 876 6 275 310 - I 4 96 (.90 1 150 149 4 418 436 1. 194 191 7 1119 1165 1 238 251 2 439 533 6 408 1.22 5 543 546 a 71. 50 2 271 261 3 665 705 7 493 525 6 2 83 259 9 60/ b5(. 3 281 335 4 405 402 8 371 375 7 378 376

4 293 314 9 384 383 8 390 431 3. 7.L 5 2W 210 4, • l b , L 9 205 257

6 <*45 437 4 , - l l | L 10 291 296 -11 189 159 7 500 47b -3 539 485 11 370 364 -10 <;&i 253 8 153 lb2 -2 207 172 -7 367 354

-9 187 1 83 -1 59b 593 -6 322 321 4 , - 7 , L -e 571 557 3 .11 .L 0 202 205 -5 204 176 -7 373 3 b : 1 333 341 -3 87 61 -10 228 190 - b03 589 - 9 126 77 2 907 888 -2 111 97 -9 498 468 -5 65 (.(« -8 306 301* 4 40 7 420 - 1 140 134 -8 199 197 -«. 19b 218 -7 277 27b 5 l i b 151 3 741 7 7c» -7 191 141 -3 94 57 -<* 101 95 6 463 418 1 500 511 -6 304 286 -2 68 87 -3 648 b43 2 b07 592 -5 154 171

n 30 2 292 -2 332 363 4. - 1 5 , L 3 249 251 - 4 93 71* 1 241 186 - 1 69b 924 4 78 97 -3 89 72 2 918 1087 0 395 406 • -5 434 391 5 195 213 -2 667 700 3 164 177 1 540 554 -4 511 434 7 13b 98 0 1148 1202 •* 9 r i 901 2 269 303 - I 76 63 8 478 493 1 277 297 6 360 33b t* 140 166 0 234 254 10 589 651 2 762 7 5 : 7 1.08 383 5 b45 635 1 459 460 3- 175 186 8 39C 408 6 89 61 3 652 869 4 , - l C . L 4 202 19b 9 223 ' 235 7 79C 7(*9 4 128 115 5 248 2bO

5 763 762 -6 484 457 6 624 606 3. d.L 3 .12 ,L - 4 351 367 7 471 1*53

4 , -14 , t . -3 241 252 8 1033 100& -11 41o <.J7 -7 125 lb3 -2 599 603 9 98 119 -10 92 b3 -6 311 291 -i» 238 179 - 1 358 352 10 226 23C

- 1 271 293 -5 351 325 -3 405 386 0 37b 395 -n 1<.1 159 - 1 * 694 660 -2 256 232 1 235 198 4 , - b . L -7 170 165 -3 IbC 159 - I 344 346 2 13b 159 -6 420 422 - I 17<* 176 0 721 71.0 3 31b 317 -10 100 85 •5 184 2n3 0 573 569 1 326 334 4 19b 179 -9 81 54 - J 1123 1117 2 b30 649 2 590 603 5 345 382 r8 486 511 -2 381 359 3 165 151 3 249 242- 6 98 90 - 7 240 234 - 1 939 1009 1. 5 « 553 Ibb Ibb 7 48^ 450 -6 179 172

1 768 856 b 80 20 3 129 132 a 565 618 - 5 740 821 3 418 t*2t. 6 530 529 9 76 65 - H 197 217 <. IP5 123 3 .13 .L 7 218 209 10 318 333 -3 964 1058 5 4.97 500 8 670 702 -2 102 116 6 349 345 -7 237 225 4 , - 9 , L - 1 135 167 7 1079 101.8 -6 331. • 369 4 , - 1 3 , L S9 10 7 8 277 2b(> -3 901 8b2 - 9 576 534 1 915 981 9 427 453 -2 132 131 -6 374 371 - 7 5B* 563 71*2 7w2

- 1 626 648 . 5 35b 373 - 5 165 158 1, 266 246 3 , 9 . L 201 204 - 1 . 269 22 9 - 4 83 42 898 832

152 127 -3 209 209 0 771, 811 7 329 303 -1.1 398 414 3 297 299 -2 149 125 1 269 315 8 312 . 275

-9 95 90 1* 145 159 - I 63 87 2 207 170 9 418 421 -8 566 55b 5 633 582 0 112 135 3 88 92 10 276 251 -6 15*. l b 5 1 41<* 447 b2 74 11 397 397 -5 122 124 3 ,14 ,L 2 321 344 5 277 293 -4 89 92 3 685 682 6 804 764 -2 422 39b -b 679 686 It 118 123 7 493 481* - 1 7bS 748 -5 321 307 5 303 340 8 705 702

2 4 4

1.. -5 I L • -8 7(A 711* -3 306 251 6 17* 183 3 3 06. 332 -7 1.79 1.5Z -2 1*71 370 7 687 730 * 61 bb

-9 22* 207 -6 787 505 -1 392 333 9 307 350 5 605 590 -6 198 191 -5 1*01. 1*09 0 133 1Z3 b 15* 1*3 -7 (.37 (.06 - i i 61 35 1 66b 7Z9 * . 5 , L • 7 *95 509 -b 7<# (.0 -3 31.7 37b 2 378 3bO -5 62 126 -2 990 101.1. 3 980 95 7 -9 697 696 * , 9 * L -(. 56* 638 - 1 815 779 * 22b 101 -8 165 1*5

168 161 -3 505 561. 0 1009 111.8 5 60 75 -7 102b ' 100* -8 168 161 -2 1305 1397 1 561 569 6 320 299 -5 9i*b 686 -7 157 157 - 1 136 ICb 2 856 81.9 7 375 3b2 - 1 , l i b 119 -6 160 1*7

0 1076 l l bO 3 553 (.83 9 250 277 -3 396 1.03 - 1 * *27 *2 7 1 31.5 371 (. 751. 681 10 533 562 -2 267 285 -3 *bb * l b 2 117 lb8 5 162 157 - 1 120 111 -2 *51 1*50 3 75 29 6 b7b 579 <.*2.L 0 37b 1.03 - I 1 71 176 1. 371 320 7 b58 662 1 (.12 •*(*2 0 5*5 577 5 911. 81.0 8 79b 777 -11 287 300 z 690 736 1 259 259 6 61 5 532 9 1.1.1 393 -JO 676 OlO 3 179 I b l 3 195 • 155 7 (.71. i.b7 10 508 1.79 -9 16b 1*7 (. 21.3 2b8 I * 1*5 1*6 6 (.62 (.20 11 287 305 -6 639 6b l 5 108 2*2 5 129 1*7 9 395 UQZ -7 2b2 250 b 230 237 6 27* 278

10 195 172 i . , - l . L -b 219 20b 7 221 226 7 b63 b*7 11 260 2(.7 -5 1.56 371 8 675 b85

* ,10 .L -11 21*8 21.7 -( . (.83 (.71. 9 336 3 b* * ,10 .L " . . - • • tL -10 112 119 -2 1069 973

69 28 -9 268 278 - I 367 3bi* * . 6 * L -8 69 28 -10 250 193 -a • 67 1.9 0 931. 995 -7 501 5*0

-9 521 531* -7 707 711. 1 232 •261 • -10 i*lb 392 -b 25b 2*7 -8 167 I 76 - 6 112 65 2 51.8 529 -9 9* 23 -5 562 517 -7 669 859 -5 121.7 1211. 3 211 153 -8 2b7 261. - 1 * 531 5(*C -6 (.36 (.33 - 1 . 75 30 1. 210 218 -7 96 92 - 2 7(* b5 -5 1062 112(. -3 1029 1063 5 1.31. 1.13 -b 1.35 (.32 - 1 372 36b -3 295 312 0 (.20 1.35 b 373 31* (. - 1 . 861 637 0 379 378 - 1 62 7 700 1 1117 896 7 b32 • 6'* 7 -3 3b0 335 1 292 309

0 315 292 2 326 365 8 163 1*1 - 2 b75 691. 2 363 1.2* 1 1053 1059 3 11.20 1251 9 1*61 *70 - 1 556 553 3 157 163 2 31.8 31.9 1* 263 265' 10 195 223 1 321 319 1* 552 58* 3 509 • .b l 5 LI 71 1058 2 261 329 5 392 306 1. 705 687 6 157 l i b (•*3.L (, 253 267 b 220 212 5 521 1.60 8 559 1.93 5 639 660 b i g i * 205 9 358 335 -11 89 1*0 6 11.1, 13b * . l l .L 7 569 51*7 10 103 95 -9 3(*3 323 7 (.80 •.92

182 5 21.2 233 11 319 331 -7 1190 111*0 ,9 121* 129 -b 161 182 9 721 687 -b 3( . l 3*9 -5 1*13 379

10 51.7 501 i . .D,L -5 766 697 i* ,7 ,L - ( . 266 239 11 225 20b - 1 . Z29 231 -3 098 660

-11 <«28 i»lb -2 676 59b -9 399 397 - 1 *27 (.25 1 . - 3 . L -10 b33 655 - I 965 917 -9 21.1 22* 0 227 235

-9 1.32 1.61 0 561* 555 -7 *b7 (.70 2 159 16b -10 t6>. 121. -5 977 935 1 82 6 093 -6 101 61. 3 551 550

- 9 252 225 -7 21.0 221* 2 b l 5 b66 -5 23* 205 * IbO 130 -8 su 89 -6 621 58b 3 550 599 -t . 79 52 5 9*5 919 -b 163 11.& -5 381 35(* 1. 676 708 -3 11*1 133 -5 b0 8 633 - 1 . 177 I7b 5 193 211* -2 735 719 * , 1 2 , L - 1 . 537 532 -3 1.53 (.50 6 20(* 198 -1 11*1 139 -3 701. 71.9 -2 11.52 13e.l 8 237 2 m 0 589 587 -b 691 703 -2 1097 1319 0 1111. 1255 10 622 718 2 352 352 -5 01 6* - 1 329 37b 1 2 70 21.6 3 293 305 -3 257 279

^ 0 226 21.5 2 850 735 (..l**L (, 395 39b - 2 *30 (.3* 1 69 123 3 1.15 3<*& 5 175 1*8 - 1 235 2 2 * 2 178 157 1* 795 690 -10 579 557 b 18b 195 0 538 536

• 3 1.91. 1.81 6 697 661. - 9 259 2*0 7 119 99 2 630 bb* (* 1.53 1.1.1 8 311 301. -5 725 bb5 0 610 653 3 2 1 * 21b 5 777 703 9 (.02 395 -6 21(* 192

b 15b 123 10 31.1* 331* -5 271 218 * * 8 . L * , 1 3 . L 7 100b 912 11 161. 11.7 -(* 672 b05 6 Z(.b 21.8 -3 21*0 22(* -9 307 353 -* 156 153

10 1.89 (.52 1. . 1 ,L -Z 981* 937 -8 260 256 -3 5'.d 555 11 lb9 103 -1 i*J2 1.05 -7 570 579 0 151 136

-10 100 59 0 757 70 7 -b 150 1*5 1 356 3*5 ( t . -2 ,L -5 79 126 1 653 703 -5 (.00 <*(*6

-7 622 805 2 11*0 121 -3 b * l 636 5 . - I b . L •11 51.7 571. -b 13<* 110 3 375 3 90 - I 255 252 -10 115 76 -5 1060 101.2 t. 571 597 1 IbO 17b 0 b32 573 -9 bOl b l 5 - ( . 33b 329 3 107 *1 2 130 132

2 4 5

5 . - 1 6 , L - 2 96 97 -7 644 709 7 259 236 0 64 7 662 5 . - 1 6 , L - 1 266 242 -6 148 141 0 550 522 1 1190 . 1203

1 310 271* 0 390 415 -5 654 - 660 9 310 280 2 132 136 2 171* 195 1 208 213 -2 571 .6-3 7 3 565 545 195

2 237 249 - I 995 1053 5 , - 2 . L 4 122 117 5 , - l 5 , L 3 170 163 0 300 203 7 155 173

4 07 83 1 992 1057 -9 345 390 0 220 219 183 191 5 375 307 • 2 760 700 -8 422 450 9 483 524

-\ 95 1P6 6 237 223 3 951 921 -7 50 8 490 31.0 325 7 92 91 4 88 86 -6 339 306 5 , 2 , L

1 836 869 0 2C& 247 5 462 417 -5 316 312 125 151 2 31* 3>*ti 9 42b 451 6 506 473 -4 108 194 - 0 125 151

3 551 527 7 347 343 -3 690 740 -7 125 91 5 100 19P 5 , - 9 , 1 0 459 •471 -2 504 669 - 6 719 605

9 399 363 - 1 044 901 -5 192 162 5 . - l i t , L - 7 130 155 0 938 10 34 - 4 691 652 5 . - l i t , L

- 6 187 177 5 , - 5 , L 1 009 - 793 -3 505 472 - 1 . 310 3 05 -5 120 107 2 790 699 -2 729 604 - 3 21*2 216 - 4 361 350 -5 227 191 3 299 270 - 1 223 223 -2 330 335 - 3 169 174 -7 377 430 4 204 155 0 308 307 - 1 1*19 (.35 -2 524 525 -6 323 353 5 715 659 1 460 bdz

0 300 39 : - 1 107 217 - 5 85 67 6 502 552 2 462 5C5 1 115 1C<* 0 70 90 -4 047 056 7 500 463 3 423 42C 2 21.5 21.0 1 105 53 -3 212 242 6 482 403 4 444 475 3 375 370 3 197 192 -2 60e 654 5 154 147

5 ( . l 577 4 469 504 - 1 493 408 5 , - l , L 6 253 240 6 719 7C9 5 501 501 0 204 103 0 260 247

6 ' 477 477 1 591 60O -9 325 379 5 , - l 3 , L 7 206 205 2 158 148 -0 219 229 5 , 3 . L

0 446 465 3 615 558 -7 623 653 - 1 . 2(*(. 225 4 lCd4 961 -b 394 402 -9 539 402 - 1 510 52'. 5 , - 8 , L 5 684 660 -5 420 444 - 0 82 51

1 ii53 1*72 6 693 557 -4 223 206 -7 450 454 2 121 145 -8 607 . 700 7 348 340 -3 379 400 -6 102 125 3 210 170 - 7 423 401 0 145 115 - 2 344 299 -4 186 166 U 132 143 -6 511 478 9 250 254 - 1 507 636 -3 3U2 291 7 223 242 -5 174 197 10 346 352 1 1135 999 -2 1026 920

- 4 264 272 537 409 - I 700 60C 5 i - 1 2 . L -3 133 155 5 , - 4 , L 3 1528 1319 3 550 571

- 2 121 13b 1, 511 443 1 501 559 -6 ti66 434 - 1 296 290 -9 621 592 5 436 411 S 269 235 -5 llh 130 1 041 045 -7 709 715 6 440 392 4 144 145 - 1 . <.31 444 2 230 263 -6 299 340 8 339 333 5 227 237 - 2 275 261 3 491 504 -5 762 775 9 430 412 6 444 516 - I 136 155 5 302 352 -4 590 610 7 451 492

2 (.90 551 b 341 352 -3 500 551 5 ,O.L 0 596 600 3 132 120 7 384 417 -2 230 202 ii 308 397 0 27C 276 - 1 1C69 1125 -9 154 136 5 , 4 . L 5 107 117 9 564 563 0 570 503 - 0 242 191 6 2«.7 256 1 753 799 -6 262 267 -9 09 73 7 %13 418 5 , - 7 , 1 3 078 826 -5 255 259 - 0 415 J53 0 1.15 450 4 542 444 -4 430 361 -7 176 155

- 0 367 396 5 306 350 -2 763 771 -6 407 465 S . - i l . L - 7 190 102 7 522 S J l - I 94 72 -5 169 167

- 6 256 257 0 475 457 0 350 423 - 4 649 591 -5 (•51 416 -5 338 377 9 415 446 1 790 626 -3 460 439

kZU 4P6 - 4 647 - 641 10 493 479 2 20 0 172 -2 360 352 -3 333 332 -3 299 306 4 906 027 - I 296 317 - 2 512 535 - 2 76C 787 5 , - 3 , L 5 533 496 0 00 65 - I 309 309 - I 103 163 6 456 456 1 440 491

0. 73 0 0 0 107 179 -9 291 32 0 7 100 109 2 293 323 1 275 2 79 1 475 457 - 0 220 192 8 654 616 3 512 540 2 lOA 00 2 405 480 -6 750 750 9 261 287 5 421 435 3 79 34 3 273 255 -5 199 190

S lOS 161 4 615 591 -4 764 5 . l . L 5 , 5 . L 6 SHQ 536 5 750 70b -3 342 300 7 134 140 6 526 505 -2 77 10 0 . - 9 469 402 - 0 142 127 a 67S 710 7 370 406 - I 440 464 -8 ao 54 -7 325 326

0 74 19 0 306 305 -7 601 566 -6 242 251 5 i - 1 0 » L 9 07 01 1 426 416 -6 09 90 -5 00 53

2 1009 979 -5 295 229 - 4 397 392 - 6 kbZ 457 5 , - 6 , L 3 1200 1177 - 4 147 140 -3 323 349 -5 121 106 4 905 oor -3 133 92 - 2 036 o i o -% 207 - 9 353 341 5 1126 1023 -2 40J 352 - 1 150 125 - 3 257 241 - d . 510 495 6 236 195 - I 640 591

2 4 6

5 ,5 ,L 6 , - 1 3 , 1 - 5 351 3'«0 b , - 2 * t 35b 3b3

n (.qo i , /8 - 1 756 759 -3 l i e 11.3 -7 223 203 1 2CZ I S / 1 2C J 138 -2 216 Z27 -o 215 243 3 Z36 262 17C 175 -1 322 330 -5 535 5(»j k 51% 553 ) t.5(. (.96 S 6/5 698 -% 102 10/ 6 557 583 2 55[ 579 - J 535 540 7 222 2<i3 6 , - l Z , L 3 250 261 -2 554 bot

7 260 Z%5 - 1 234 303 > . 6 * L -3 261. 6 135 15/ 9 2bd 2/1*

-2 151 1S8 7 270 2(. l 1 303 317 -9 1.20 ) 5 b l 535 2 103 152 -7 209 iqz 1 I7fa 143 b . -6*L 3 (.10 3b2 -5 389 i*C6 3 11.0 139 k 1.10 373 •5 (.21 1* •.7b u-i7 -5 232 258 5 2 /q 25i - ( , 5Cb •.8(. 5 16U 132 - 1 , (.<*5 i.b9 6 5/5 5«,> -2 90 106 -3 (.71 (.64 7 163 151 - I 165 160 6 , - 1 1 , L -2 (.3b 1.71

0 233 263 - I 515 521. 6 , - l . L 1 295 313 -1 , 291* 300 0 219 210 2 93 70 -3 72y 695 1 (.3*. 1.31 -5 92 05 3 335 31.6 -2 333 31b 1. 25/ 263 - 1 kki 1.91

125 m 6 - 1 26/ 266 5 356 351. 3 33b 311 5 20Z Z2b ^ 211 201. 6 331 332 1 lOlO Obb 6 181. 1(.6 1 Z91 353 7 2/2 233 2 303 2/7

3 291. 532 3 311, 297 5 ,7 ,L 1. 303 290 6 , - 5 . L k 126 09

5 327 308 7 3Z1 294 -7 I b l l ( . l -6 730 71*3 -b 103 80 6, , -IP, L -5 15/ 153 b , 0 , L -5 lik 150

6, , -IP, L -1. (.13 m 3

-<* 71.9 /39 -3 233 219 -2 253 253 -7 33 8 355 -2 bbb /P3 -2 (.29 kki -1 272 299 -6 186 16b

0 129 i z q - 1 335 363 - 0 552 598 -5 211 2DJ 2 2/0 300 0 522 53t. 1 10/ 3/ 308 1.01 3 92 116 1 21.6 235 2 730 bqq -2 (.98 (.03 (. (.0 7 3/8 2 258 260 1* /8i* /69 - 1 190 17* 5 31*5 31.0 3 111* 111 i 191* 233 3 101 11.* 6 781 /18 1, 221 Z13 - b IOC 115 1 i z q l i b

5 106 70 7 170 163 2 bO<* 502 5 , 8 . t 3 1<*3 118

b , - q . L 6, -(»,L k 5/b 51J -7 227 226 5 95 60 -6 6f 9 582 -5 t.bb i*3(* -7 359 38/ 6 585 565 -5 b59 626 - 1 . k7l it(.3 -6 262 301 7 90 71

37b 1*15 -3 293 307 -5 203 206 -3 131* 11.6 -2 181 211 -«• 376 385 b . l . L -2 l i b q5 - 1 151 IkS -3 5/5 629 -1 (.'59 1*1.9 3 121 13(, -2 llh 95 -3 (.09 1.28

9 H l l (.06 1 t.9b 511. - 1 61*5 698 -z 1*01 535 1 2b(* 298 2 1*9/ 521 0 321 306 -1 771 b9/ 3 317 289 3 222 105 1 (.27 1*1*1 0 3 1 / 3 1 /

331 31(* 1* b72 65/ 2 2(.8 ' Z13 1 ikk 372 5 (.51 (.03 5 11*1 139 3 150 160 2 221 22b

6 5 1 . / 553 h 305 318 3 1/0 196 5 .q ,L 7 I b l l<i2 5 371 381 1, 139 I5(t

b 36*1 360 5 3/3 356 -6 •.1*0 (»1(> b , - 0 , L / 290 277 6 202 201 • k 021* /0(. • 3 IZb 115 -6 207 176 b , - 3 , L b . Z . L -2 (.01 1.99 - t , 160 16b - 1 iZd 90 -3 (.1.1* (.32 -b 56/ 605 -6 3(i5 32<*

1 20 2 Z lb -Z i>78 52'» -1* 21*2 233 -5 151 11*3 202 190 - 1 700 /(.3 -3 277 2 / 1 -t» 503 546

0 168 lb5 -2 175 208 -3 Ibb 109 5 , 1 0 , L 1 311 290 - 1 130 130 -1 . 3QZ 2/1

2 Ikk 1/8 0 556 615 3 li85 493 -3 li5 7 1*56 3 127 IbZ 1 (.31 1.02 1 162 106 - I 60/ b l5 1* 171 16/ 2 025 762 2 533 560

1 SkS 578 5 280 288 3 69(* 601 3 Z61 264 2 334 361 7 495 512 H 189 212 k 391* 309

5 266 262 6 202 294 S,11,L 6 , - 7 , L • b 169 160

7 312 301 - I 229 255 -6 605 610

7 , - 6 , t 3 135 119 -3 202 296 -2 321 371

Z 303 319 7 . - 4 , L - 1 275 30Z 3 369 . 3/3 • 0 302 300

-3 333 347 1 111 121 7 . - 5 , t 0 166 167 z 00 03

1 362 420 s 00 73 -Z 503 505 2 159 163 - 1 130 115 - 3 Z6q Z64 7 , - 2 . L

0 405 424 1 1/2 102 7.-3.JL -3 235 Z52 c 200 300 0 227 Z26

1 '369 351 2 177 li»4

7 . - l , L

-3 901 370 -2 143 140 - 1 354 300

1 129 150 2 96 56 3 344 337

6 .3 ,1 .

-5 4%4 423 -* 65/ 6&« -3 718 683 -2 8JC /•.S - 1 Zlh 29/

0 429 482 1 154 U S 2 205 293 3 3«3 id3 4 591 60 8 5 353 361

6 . 4 , L

-b 52C •.03 -5 555 528 -3 1*4 16*. -2 3 1 / 31^ - 1 6<*8 b3i>

0 329 342 1 425 499 2 q i 8b 3 402 <.15 5 91 93

6.5,1.

-5 499 495 -4 781 727 -3 298 2qq -2 633 649 - I 103 //

1 201 ZlO 2 485 52/ 3 108 04 4 093 qoo

b,b*L

-3 518 502 -2 87 9t - 1 - b40 643

0 Z l l 206 1 404 548 3 136 136

6 . 7 , L

-3 166 166 -Z 142 14/ - 1 169 189

0 144 150 1 99 125

7 , - 6 , L

- 1 343 342 2 137 110

/ . - / , L

-Z 516 50 0

- 1 88 111 0 64b 602 1 110 139 2 464 487 3 265 264

7 . - 6 . L

-2 201 197 0 141 13/ 1 106 109

/ . O . L

-2 147 118 0 3 76 390 1 240 Z02 2 393 314

7*1«L

- I 287 270 0 232 235

2 4 7

REFERENCES

1. R. Hulme, Acta C r y s t . , 1966, 21, 898.

2. H.B. Hursthouse, Ph.D. T h e s i s , London U n i v e r s i t y , 1965.

3. E.W. Hughes, J . Amer. Chem. Soc., 1941, 53, 1737.

4. »International T a b l e s f o r X-Ray C r y s t a l l o g r a p h y ' , Vol. I l l , The

Kynoch P r e s s , Biriningham, England, 1962, p.202; 4a p.270.

5. D.T. Cromer and J.T. Waber, Acta C r y s t . , 1965, 18_, 104.

6. D.T. Cromer, Acta C r y s t . , 1965, 18, 17.

7. L, Manojl o v i c - H u i r , J . Chem. Soc., ( A ) , 1971, 2796.

8. L, Hanojlovic-Muir and K.V/. Muir, J . Chem. Soc. , ( A ) , 1972, 686.

9. M.A. Bush, A.D.U. Hardy, L. Hanojlovic-Muir, and G.A. Sim, J . Chem.

Soc. ( A ) , 1971, 1003.

10. B.P. S t c i c h e f f , Canad. J . Phys., 1954, 32, 339.

11. R. Mason and A.D.C. Towl, J . Chem. Soc., ( A ) , 1970, 1601.

12. L. P a u l i n g , *The Nature of the Chemical Bond*, 3rd ed. , C o r n e l l

U n i v e r s i t y P r e s s , N.Y., 1960.

13. ' I n t e r a t o m i c D i s t a n c e s * , S p e c i a l P u b l i c a t i o n Chemical S o c i e t y .

14. V.F. Duckworth, P.G. Douglas, R. Mason, and 3.L. Shaw, J . Chem. Soc. ,

( D ) , 1970, 1083.

15. J . Chatt and G.A. Rowe, J . Chem. Soc., ( 1 9 6 4 ) , 4019.

16. G.A. Sim, J.H. Robertson and T.H, Goodwin, Acta C r y s t . , 1955, _8, 157.

17. P.A. Cotton and S.M. Morehouse, Inorg. Chem., 1955, 4, 1377.

18. L,E. Sutton ( 1 9 5 5 ) , T a b l e s of I n t e r a t o m i c D i s t a n c e s and c o n f i g u r a t i o n

i n Molecules and I o n s . S p e c i a l P u b l i c a t i o n No. 18. London.

The Chemical S o c i e t y .

19. J.R. Knox and C.K. Prout, Acta C r y s t . , ( B ) , 1969, 2^, 1857.

20. F.A. Cotton and R.M, Wing, Inorg. Chem., 1955, 4, 315.

21. J.R. Knox and C.K. Prout, Acta C r y s t . , ( B ) , 1969, 2^, 2482.

22. J.R. Knox and K. E r i k s , Inorg. Chem. , 1968, l_t ^4.

2 4 8

23. J . C h a t t , L. Manojlovic-Muir and K.VJ. Muir, J . Chem. Soc. , (D)

1971, 655.

24. D. B r i g h t and J.A. I b e r s , Inorg. Chem. , 1969, 8, 709.

4 9

"Truth is never pure^ and rarely simple"

•.. - Oscar Wilde.

2 5 0

APPENDIX A

Molybdenum and Z i n c C y s t e i n e Complexes

251

INTRODUCTION

The r o l e of molybdenumCV) i n the enzymatic a c t i v i t y of milk

xanthine oxidase has been s t u d i e d by e l e c t r o n s p i n resonance techniques."^

The s i g n a l s i n d i c a t e d the presence of s u l p h u r bonds probably from 2

c y s t e i n e , around an o c t a h e d r a l l y coordinated molybdenum atom. Molybdenum-

sulphur complexes have t h e r e f o r e a t t r a c t e d c o n s i d e r a b l e i n t e r e s t a s

p o s s i b l e models f o r molybdenum i n enzymes.^ Although the chemistry

of molybdenum-sulphur complexes i s becoming w e l l understood, t h e r e

has been l i t t l e work on complexes with c y s t e i n e , only the f r e e

L - c y s t e i n e ^ , L - c y s t e i n e e t h y l e s t e r h y d r o c h l o r i d e urea 1:1 i n t e r m o l e c u l a r

complex,^ and L-( + ) - c y s t e i n e h y d r o c h l o r i d e monohydrate. p

F o l l o w i n g e a r l i e r work with Mo(V) and Mo(VI ) - c y s t e i n e s o l u t i o n s ,

a compound sodium d i - y - o x o - b i s [ o x o ( c y s t e i n a t o ( 2 - ) ) a q u o m o l y b d a t e ( V ) ]

t r i h y d r a t e m^im^O^iSCH^CHim^KO^l ^{H^Q)^}ZH^O^ was i s o l a t e d .

A b i n u c l e a r oxo-bridged s t r u c t u r e was proposed i n v/hich the c y s t e i n e

l i g a n d s a r e b i d e n t a t e with uncoordinated c a r b o n y l groups. To gauge

the r e a s o n a b l e n e s s of t h i s system a s a model f o r molybdenum i n

o x i d a t i o n - r e d u c t i o n enzymes, an X-ray' a n a l y s i s of t h i s compound v;as

commenced. Experimental

C r y s t a l s of t h i s compound were prepared as f o l l o w s

A s o l u t i o n of c y s t e i n e - H C l ( l . 5 7 6 g; 0.01 moles) i n H O (15 ml) was

added to a s o l u t i o n of Na MoO . 2H2O (2.419 g; 0.01 moles) i n H O

(15 m l ) . An orange c o l o u r developed. E t h a n o l (8 ml) was added

t h e r e t o and the s o l u t i o n l e f t i n the r e f r i g e r a t o r o v e r n i g h t .

The c y s t i n e p r e c i p i t a t e formed e a r l y and s e t t l e d at the bottom

of the t e s t tube. A f t e r about one week, orange needles of the complex

were seen on the s i d e of the tube. The l i q u o r was decanted and the

needles removed. Some were d r i e d i n vacuum over P2^5 remainder

2 5 2

r e d i s s o l v e d i n H O, f i l t e r e d f r e e from c y s t i n e and ethanol added t o

the s o l u t i o n . A p r e c i p i t a t e o f orange needles was formed. The

vacuum d r i e d c r y s t a l s had cracked surfaces, so the second p r e c i p i t a t e

of orange needles were used i n the s i n g l e c r y s t a l a n a l y s i s .

The orange a i r - s t a b l e c r y s t a l s were r e c t a n g u l a r p l a t e s . A c r y s t a l

was cut w i t h a razor-blade, so as t o form an approximate block, t h i s

was mounted t o r o t a t e about i t s longest morphological d i r e c t i o n .

O s c i l l a t i o n , zero, and f i r s t l a y e r V/eissenberg photographs were taken

about t h i s a x i s , using CuK^ r a d i a t i o n . The Laue symmetry v;as determined

as mmm, and assuming t he a x i s o f o s c i l l a t i o n t o be c, systematic

absences were o f the type:

h O O : h = 2 n + l

0 k 0: k = 2n f 1

The c r y s t a l was then mounted t o r o t a t e about i t s b a x i s , and f u r t h e r

systematic absences of the type

0 0 il: a = 2n + 1 were obtained.

Hence, the space group was determined uniquely as P2^2j^2^. The

d e n s i t y was measured by the f l o a t a t i o n method. The c r y s t a l s j u s t

f l o a t e d i n a mixture o f carbon t e t r a c h l o r i d e and symmetrical t e t r a -

bromoethane, whose d e n s i t y , D , was measured t o be 2.19 g/cc.

Unit c e l l parameters were determined from the photograph as:

a = 14,87(4) S

b = 19.39(4) S _^ The l i n e a r a b s o r p t i o n f a c t o r w = 144,6 cm

c = 6.42(5) S U = 1851

This means f o r a molecular formula of Na^Mo^O^CSCH^CHdlH^)C02]2

SH^O, the number o f molecules per u n i t c e l l i s f o u r . Calculated

d e n s i t y , D , i s 2.26 g/cc.

2 5 3

I n t e n s i t y data was recorded p h o t o g r a p h i c a l l y using the method of

m u l t i p l e f i l m packs. The i n t e n s i t i e s v;ere measured by comparison v;ith

a c a l i b r a t e d f i l m s t r i p . The c r y s t a l chosen f o r the d e t e r m i n a t i o n

of the c e l l parameters was thought t o be s u i t a b l e f o r i n t e n s i t y data

c o l l e c t i o n . I t was d u r i n g t h i s c o l l e c t i o n t h a t J.R. Knox and C.K.

Prout published the p r e l i m i n a r y r e s u l t s o f the s t r u c t u r e ' s o the

study was abandoned. The c e l l dimensions of the above c r y s t a l and

the i n t e n s i t i e s agree favourably w i t h t h e i r r e s u l t s .

Zinc Cysteine complex

I n the case of the z i n c - c y s t e i n e ( 1; 2) complex, tv^o f i v e membered

chelate r i n g s coordinated w i t h the metal are thought t o form., each

r i n g i n v o l v i n g sulphur and n i t r o g e n , whereas the c a r b o x y l group i s 12

f r e e . Zinc i s a l s o thought t o coordinate w i t h c y s t e i n e i n 1:1

r a t i o , i n which case sulphur, amino, and carboxyl groups are a l l

involved.''"^ Attempts t o grow s a t i s f a c t o r y c r y s t a l s of a zinc c y s t e i n e

complex were unsuccessful, since each time a white p r e c i p i t a t e was 14

obtained. One o f the methods used was t h a t o f Akihoma and Toyoshima.

254

REFERENCES

1, R,C. Bray and P.P. Knowles, Proc. Roy. Soc. A., 1958, 302, 351.

2. L.S. Meriwether, W.F. M a r z l u f f and V/.G. Hodgson, Nature, Lond. , 1966,

212, 455.

3. K.J.V. H a r t i a l a and M. Pulkinen, Ann. Med. Exp, et B i o l . Tenniae,

1955, 33, 2^6.

4. A.K. Brown and W.W. Zuelzer, J. Chim. I n v e s t . , 1958, 87, 332.

5. M.M. Harding and H.A. Long, Acta C r y s t . , B, 1958, 24, 1096.

6. D.J. Haas, Acta C r y s t . , 1955, 19, 860.

7. R.R. Ayyar, 2. K r i s t . , 1968, 12^, 227.

8. J.T. Spence and H.Y. Chang, Ino r g . Chem. , 1963, 2_, 319.

9. A. Kay and P.C.H. M i t c h e l l , Nature, Lond., 1968, 219, 267.

10. J.R. Knox and C.K, Prout, Chem. Comm., 1968, p. 1227.

11. J.R. Knox and C.K. Prout, Acta C r y s t . , ( B ) , 1969, 25, 1857.

12. N.C. L i and R.A. Manning, J. Amer. Chem. Soc. , 1955, 77, 5225.

13. J. Eisenbrand and F. Wegel, 2. Ph y s i o l . Chem., 1941, 26, 268.

14. S. Akihoma and S. Toyoshima, Chem. Pharm. B u l l . (Tokyo), 1962, 10

1254.

2 5 5

"ye learn wisdom from failvre much more then

from success. We often discover what will

do^ by finding out what will not do; and

probably he who never made a mistake never

made a discovery."

.... SamueI Smiles.

256

APPENDIX B

The C r y s t a l l o g r a p h i c Study of

T r i m e t h y l p l a t i n u m ( I V ) thenoyltrifluoroacetonateCMe^PtTTA)

257

Tv;o specimens o f t r i m e t h y l p l a t i n u T n ( I V ) t h e n o y l t r i f l u o r o a c e t o n a t e

were supplied by Dr. K. K i t e of Exeter U n i v e r s i t y . They were ye l l o w

r e c t a n g u l a r block c r y s t a l s .

A l l t h a t i s sure about the compound i s the basic u n i t .

( F i g . B.l.)

CF.

I t i s f a i r l y c e r t a i n t h a t the methyl groups are c i s t o each o t h e r ,

occupying one face of the octahedron round the platinum. There i s

evidence f o r a s s o c i a t i o n t o a 5-coordinate form by osmometry i n octane,

i t i s monomeric i n benzene and chloroform. The mass spectrum shows no

molecular i o n peak f o r a dimer, but a c l e a r one f o r the monomer ( F i g . B . l . ) .

Thus i t was suspected t h a t , assuming the platinum i s 6-coordinated, X i s

e i t h e r C(3) or sulphur from a second monomer.

Two specimens were supplied since i t was thought t h a t they may be

c i s and tr a n s isomers, o f the type shown i n F i g . B.2. These s t r u c t u r e s

were proposed on the assumption t h a t the bonding was l i k e t h a t i n other

B-diketonates o f Me^PtdV), through the a c t i v e methylene or y c a r b o n C(3) 1 2 3 4

atom t o the platinum atom, ' » »

The only other published thenoyl t r i f l u o r o a c e t o n a t e (TTA) complex

i n v e s t i g a t e d by X-rays i s ammonium t e t r a k i s [ 4 , 4 , 4 - t r i f l u o r o - l - ( 2 - t h i e n y l ) -

l ,3-butanedione]praseodymate(III) monohydrate, NH Pr(C H F 0 S) .H 0.^ 4 o 4 O z 4 ii

FIG. 6.2

25S

CH.

CH.

CH. CH.

Pt

CP X / c i s form

/ y \

Pt

CH.

CH.

CH.

CH.

"CH.

\

I,

/ CP.

CP,

/

\

t r a n s form

•pt

CH.

CH.

•CH.

Experimental

The tv;o specimens gave i d e n t i c a l X-ray powder and s i n g l e c r y s t a l

p a t t e r n s , and are probably i d e n t i c a l .

Data C o l l e c t i o n

A c r y s t a l was selected having the approximate s i z e .40 x .30 x .15 mm

and was mounted t o r o t a t e about i t s longest morphological d i r e c t i o n ,

which coincided w i t h the e x t i n c t i o n d i r e c t i o n under the p o l a r i z i n g

microscope. X-ray o s c i l l a t i o n and Weissenberg photographs were taken

about a set o f t h r e e c o n s i s t e n t c r y s t a l l o g r a p h i c a x i s using Cu-K^

r a d i a t i o n . The Laue symmetry was determined as mmm, and the systematic

absences were of the type:

. 0 k il: k = 2n + 1

h O J l : Jl = 2n + 1

2 5 9

Hence the space group was determined as Pbcm or Phc2y Accurate values f o r the u n i t c e l l parameters were obtained from Weissenberg photographs on which the d i f f r a c t i o n p a t t e r n of a gold w i r e was superimposed f o r c a l i b r a t i o n . The r e s u l t s were:

a = 8.08(3) S

b = 20.65(3) ?

c = 16.72(3) 8

U = 2789(8)

The d e n s i t y was measured by the f l o a t a t i o n method, using C l e r i c i * s

s o l u t i o n ( t h a l l i u m formate, t h a l l i u m malonate and w a t e r ) , and was found

t o be 2.18 g/cc i n s a t i s f a c t o r y agreement w i t h the value (2.20 g/cc)

c a l c u l a t e d f o r 8 molecules of (CH-)^Pt(C_H, F^O^S) per u n i t c e l l . o J o 4 o i:

The l i n e a r a b s o r p t i o n c o e f f i c i e n t f o r t h i s compound i s very high

(212;9cm •*") and the optimum thickness f o r the c r y s t a l was c a l c u l a t e d

t o be 0.09 mm,

E q u i - i n c l i n a t i o n V/eissenberg photographs were taken about the

p r i n c i p a l a x i s f o r the l a y e r l i n e s up t o 3 kJl, h22., and hk6. A f t e r

c o r r e l a t i o n o f the l a y e r s by hand, 1302 independent r e f l e c t i o n s gave

measureable i n t e n s i t i e s out of the p o s s i b l e 3,196. A m u l t i p l e f i l m

technique vjas used, and the i n t e n s i t i e s were estimated v i s u a l l y by

comparison w i t h a c a l i b r a t i o n s t r i p . The geometrical Lorentz-

p o l a r i z a t i o n c o r r e c t i o n (Lp) and the P h i l l i p ' s ^ ' " ^ spot d i s t o r t i o n

f a c t o r were a p p l i e d t o these i n t e n s i t i e s .

The Patterson Map

The general e q u i v a l e n t p o s i t i o n s f o r space groups Pbcm ( I ) and

?hc2^ ( I I ) a re;

I ) ( x , y . z ) ; y, z ) ; ( x , y, J + z ) ; ( x , y, J - z ) ; ( x , J - y , z ) ;

(x» 5+y> z ) i ( x , J+y, i-z); ( x , ^-y, J + z ) .

I I ) ( x , y, z ) ; ( x , y, J + z ) ; ( x , J - y , ^ + z ) ; ( x , J+y, z ) .

2 6 0

These gi v e r i s e t o the f o l l o w i n g Marker s e c t i o n s .

I ) 2x, 2y, 22i 0, 0, ^-2z; -2x, 1, 0; 0, J-2y, i. I I ) 2x, 2y, I; 0. J-2y, I; 2x, J , 0.

A l l peaks i n the asymmetric u n i t of the P a t t e r s o n map of height >180

a r e l i s t e d i n Table B . l .

TABLE B . l .

Peaks of height >180 i n the as>Tr.metric u n i t of the P a t t e r s o n map f o r

Me^PtTTA

Peak u ( i n 60^^^) v ( i n 60'^^) w ( i n 60^^^) Height

1 3 30 0 663

2 13 30 0 594

3 21 14 2 239"

4 25 16 2 243-'-

5 25 24 28 262-'-

6 21 6 28 236''

7 0 8 30 415

8 0 19 30 450

9 0 22 . 30 304

10 14 11 30 183

C o n s i d e r i n g the v e c t o r peaks f o r space group ( I ) i t can be seen t h a t

t h e r e i s no p o s s i b l e f i t .

For space group ( I I ) , t h e r e must be two independent s e t s of metal

atoms, per u n i t c e l l . I f the v e c t o r peak (2x, J , 0 ) i s c o n s i d e r e d ,

t h e r e i s two p o s s i b l e peaks p r e s e n t on the P a t t e r s o n map which s a t i s f i e s

t h i s , namely peaks 1 and 2 (Tab l e B . l , ) . Choosing the peak 2 t h i s

g i v e s a v a l u e of 2x = 13/60. C o n s i d e r i n g the v e c t o r peak (2x, 2y, J )

and u s i n g the 2x v a l u e of 13/60, t h e r e i s only one peak p r e s e n t i n the

P a t t e r s o n map which s a t i s f i e s t h i s , namely peak 10, Hence 2y v a l u e

= 11/60. These v a l u e s a r e checked by v e c t o r peak ( 0 , J-2y, J ) g i v e n

261

by peak 8 o f the Patterson map. The values of the z coordinates

cannot be uniquely determined from the Marker sections f o r t h i s p a r t i c u l a r

space group.

A . d i f f e r e n c e Fourier synthesis was then c a r r i e d out p u t t i n g i n

one o f the platinum atoms w i t h the x and y coordinates c a l c u l a t e d from

the Patterson map and w i t h z = 0, t e . (x = 6.5/60, y = 25/60, z = 0 ) .

In the r e s u l t i n g F ourier a l a r g e peak was seen at 28/60, 11/60, 28/60.

Using these values the peaks 1, 7, 9, on the Patterson map can be

accounted f o r using the c o r r e c t Marker peak. The remaining peaks

marked w i t h an a s t e r i s k are due t o P t ( l ) - P t ( 2 ) v e c t o r s .

A s t r u c t u r e f a c t o r c a l c u l a t i o n using the two platinum atoms i n the

p o s i t i o n s deduced from the Patterson map, f o r a l l the r e f l e c t i o n s l e d

to a r e s i d u a l R o f 0.31. One cycle o f f u l l m a t r i x l e a s t squares

reduced R t o 0.26. A three dimensional F o u r i e r d i f f e r e n c e synthesis

using the two platinum atoms i n d i c a t e d only the p o s i t i o n s of two

sulphur atoms. However, there were a l t e r n a t i v e p o s i t i o n s f o r these

sulphur atoms, since as the Pt atoms are placed at z = 0 and 2 = 5

a pseudo m i r r o r i s created perpendicular t o the z a x i s , hence have a

choice o f two peaks. . The platinum and sulphur p o s i t i o n s were r e f i n e d

f o r 2 cycles of f u l l m a t r i x l e a s t squares, using a n i s o t r o p i c v i b r a t i o n

parameters reduced R t o 21.5. A f u r t h e r d i f f e r e n c e synthesis showed

many peaks, but no s a t i s f a c t o r y s o l u t i o n could be found using them.

The probable reason f o r t h i s was bad data due t o a very serious

a b s o r p t i o n problem, because the s i z e o f the c r y s t a l used v;as r a t h e r

l a r g e . This was evident i n many of the spots on the f i l m s having

hollow centres. I n view o f t h i s , i t was f e l t t h a t f u r t h e r work was

u n l i k e l y t o give a s a t i s f a c t o r y s o l u t i o n , and t h e r e f o r e the study was

abandoned.

The atomic s c a t t e r i n g f a c t o r s f o r platinum v/ere taken from the g

D i r a c - S l a t e r c a l c u l a t i o n s o f Cromer and V/aber, s c a t t e r i n g f a c t o r s f o r

2 6 2

the sulphur atom were those t a b u l a t e d i n the ' I n t e r n a t i o n a l Tables f o r 19

X-ray C r y s t a l l o g r a p h y ' . The anomalous p a r t s o f the platinum and

sulphur s c a t t e r i n g f a c t o r s given by Cromer^^ v/ere included i n the

c a l c u l a t e d s t r u c t u r e f a c t o r s .

Discussion

The separation betvjeen each platinum atom was 5.49 8 a distance

which i s longer than t h a t i n the B-diketone complexes (4.4 S)^, but

i t i s s t i l l s h ort enough t o exclude the p o s s i b i l i t y t h a t the molecule

i s monomeric. The p o s i t i o n X i n F i g , B . l . i s occupied by the sulphur

of the thiophen group from the other h a l f o f the dimer, t h i s Pt-S

distance (av. 2.50 8) i s longer than the Pt-S s i n g l e bond distance o f

2.24 8 i n ci-LPt^(SCU)^Cl^i?(C^H^)^)^'],'^'^ However, i t appears t h a t

the both halves of the dimer are j o i n e d by Pt-S bonds.

2 6 3

TABLE B.2.

(CH ) Pt(C H 0 F S ) - r i n a l p o s i t i o n a l parameters, ( x , y, z ) , expressed

as f r a c t i o n s (x 10 ) o f the £, b, and £ u n i t c e l l dimensions r e s p e c t i v e l y

Atom x y z •

P t ( l ) 1116 4107 5000

P t ( 2 ) 4675 1861 4676

8(1) 1651 1759 4938

S(2) 4275 4188 5267

A n i s o t r o p i c temperature f a c t o r s ( x 10 ) as they appear i n

exp-(6j^j^h ^^33^ ^^^12 hkt26^3 h£+2B23kJl)

Atom ^11 ^22 ^ 33 ^12 «13 ^23 P t ( l ) 170 15 33 - 5 4 - 1

Pt ( 2 ) 216 13 29 9 1 - 5

S ( l ) 292 5 15 -12 -29 -51

S(2) 300 - 5 12 - 5 7 -14

TABLE B.3.

(CH3)3Pt(CgH^02F3S) - Bondlengths ( i n angstroms)

P t ( l ) - P t ( 2 ) 5,49

P t ( l ) - S(2) 2.56

P t ( 2 ) - S ( l ) 2.44

264

REFERENCES

1. A.G. Swallow and H. T r u t e r , Proc, Roy. Soc., 1960, 252, 205.

2. A,C. Hazell and H. T r u t e r , "Proc. Roy. S o c , 1960,'_254, 218.

3. A. Robson and H. T r u t e r , J. Chem. Soc., 1965, 102, 630.

4. M. T r u t e r and R. Watling, J. Chem. Soc., ( A ) , 1967, 1955,

5. R.A. L a l a n c e t t e , M. Cefola, V.'.C. Hamilton and S.J. La Place,

Ino r g . Chem. , 1967, 6_, 2127.

6. D.C. P h i l l i p s , Acta Cryst, , 1954, 7_, 746.

7. D.C. P h i l l i p s , i b i d , 1955, 9, 819.

8. D.T. Cromer and J.T. Waber, Acta C r y s t . , 1965, 18, 104.

9. ^ I n t e r n a t i o n a l Tables f o r X-ray C r y s t a l l o g r a p h y , ' Vol. I l l , The

Kynoch Press, Birmingham, England, 1962, p.202.

10. D.T. Cromer, Acta Cryst. , 1955, 18, 17.

11. P.G. Owston and J.M. Rowe, Acta C r y s t . , 1960, 13, 253.

2 6 5

"Errors^ like straws upon the surface flou;

He who would search for pearls must dive

below. "

.... John Dryden,

266

APPENDIX C

Computer Programs Used i n S t r u c t u r a l A n a l y s i s .

2 67

The programs l i s t e d below are contained i n the X-ray 63 and

X-ray 70 packages, which have been developed l a r g e l y by Professor 1 2

J.M. Stewart. ' The programs have been implemented on the

C h i l t o n A t l a s and the London U n i v e r s i t y CDC 6600. BLOKLS - Atomic parameter refinement by block-diagonal l e a s t squares.

The v e r s i o n i n the X-RAY 63 package allov/s t h e treatment o f 200 atoms

and the v a r y i n g of 850 parameters simultaneously. ' The ver s i o n i n the

X-RAY 70 package allows the treatment o f 300 atoms and the simultaneous

v a r i a t i o n o f 1200 parameters.

BONDLA - Determination o f contact and bond distances and interbond

angles.

CRYLSQ - C r y s t a l l o g r a p h i c l e a s t squares program v:hich has v a r i a b l e

array l e ngths. This allows a g r e a t e r number o f parameters t o be

va r i e d simultaneously than does t h a t o f ORFLS or BLOKLS.

DATEIX - Pr e l i m i n a r y data s c a l i n g , c a l c u l a t i o n of normalised s t r u c t u r e

f a c t o r s ( E ) , and estim.ation o f o v e r a l l temperature f a c t o r .

PATRON - Preparation of bi n a r y data f i l e and p r e l i m i n a r y treatment o f

i n t e n s i t y data ( L o r e n t z - p o l a r i s a t i o n c o r r e c t i o n s , c a l c u l a t i o n o f

s t r u c t u r e f a c t o r amplitudes) and form f a c t o r i n t e r p r e t a t i o n .

FC - S t r u c t u r e f a c t o r c a l c u l a t i o n .

FOURR - Fou r i e r t r a n s f o r m a t i o n s t o give Patterson, e l e c t r o n d e n s i t y ,

d i f f e r e n c e or E maps.

LISTFC - L i s t s s t r u c t u r e f a c t o r s f o r p u b l i c a t i o n .

LPADAT - Places the atomic parameters i n the proper arrays i n the b i n a r y

data f i l e .

268

LSQPL - Calculation of equations of three-dimensional planes and l i n e s .

ORFLS - Atomic parameter refinement by f u l l - m a t r i x least squares.

X-ray 53 version allows the treatment of 5 atoms and the simultaneous

vari a t i o n of 180 parameters, v/hereas the X-Ray 70 version allows the

treatment of 60 atoms and the varying of 240 param.eters simultaneously.

WTANAL - Analysis of least squares v.'eighting scheme.

Other programs used, not included i n the X-ray packages are as follows:

ICABS - (Written o r i g i n a l l y by Coppens et al^ f o r a CDC 1604 computer,

revised for CDC 5600 by F.A.- Stephens of Imperial College). Applies

an absorption correction to any c r y s t a l of a r b i t r a r y shape.

ORTEP - (V/ritten by C.K. Johnson, .Oak Ridge National Laboratory, U.S.A.)

This program v.'as used to construct the diagrams which show the therm.al

e l l i p s o i d s of a molecule

The following programs were w r i t t e n by M.J. Laing, Chemistry

Department, University of Natal, Durban, f o r use on the IBM 1130 computer

CSFC - A program f o r the calculation of structure factors f o r centro-

symmetric space groups.

CEDG-CFOUR - Two programs f o r two and three-dimensional Fourier

synthesis f o r centrosymmetric space groups.

NCSFB - A program f o r the calculation of structure factors for non-

centric space groups.

NCEDG-NFOUR - Two programs for two and three dimensional Fourier

synthesis f o r non-centric space groups.

269

ALOIS - A program f o r calculating a l l the distances less than some

specific value, betv;een a l l possible pairs of atoms i n a unit c e l l

and i n the unit c e l l s on each side of i t .

DIST - A program f o r calculating the bond lengths, bond angles,

least squares plane and dihedral angles.

The follov/ing programs were w r i t t e n by the author, f o r use on

the IBM 1130 computer.

QCORl - Corrects i n t e n s i t y data from Weissenberg film s f o r Lorentz

and polarization e f f e c t s , and also applies a correction f o r the

extension of the spots (see Chapter 1, formula 1.25).

QC0R2 - Corrects diffractometer i n t e n s i t y data f o r Lorentz and-

polarization effects.

QPATl - Three dimensional Patterson map fo r orthorhombic system.

QPAT2 - Three dimensional Patterson map f o r monoclinic system.

QFCl - Structure factor calculation f o r space group Pbcm

QFC2 - Structure factor calculation f o r space group Pbc2^

QFC3 - Structure factor calculation f o r space group P2^2j^2^

QFC - Structure factor calculation f o r space group P2^/c

QFDl - Three dimensional electron density map fo r space group Pbcm

QED2 - Three dimensional electron density map fo r space group Phc2^

QED3 - Three dimensional electron density map fo r space group P2^2^2j^

QED - Three dimensional electron density map for space group ?2^/c

70

REFERENCES

1. University of Maryland Technical Report TR-5^-6.

2. University of Maryland, U.S.A., 'Crystal Structure Calculations

System*, X-Ray 63, X-Ray 70.

3. P. Coppens, L. Leiserov;itz, D. Rabinovich, Acta Cryst. , 1955, 18,

1035.

4. C.K. Johnson, ORTEP thermal e l l i p s o i d p l o t t i n g program. Oak Ridge

National Laboratory Report, 1965, ORNL-3794,

S71

"Dis aliter visum,"

(Translated - 'The gods thought otherwise, ')

..., Virgi I,

"Nil posse creari

Denilo."

(Translated - 'Nothing can be created out of

nothing, ')

.... Lucretius,

272

APPENDIX D

Other Metal Complexes of Amino Acids

or Peptides Investigated.

273

D.l. Copper complex of dJl-8-aTnino-6-phenylpropionic acid

The acid was prepared by the method of Steiger''" by the action

of hydroxylamine hydrochloride on cinnanic acid.

Reaction

C H CH=CHCO HtNH O?: -^^"^ > C H CHCH CO H

HHOH

C H CHCH CO H+NH OH—^^^^^^ C,H CHCH CO H D O 2 2 2 6 5 2 2

NHOH NH

The copper complex v;as prepared using the method suggested by Birkofer 2

and Hartv;ig. They have reported the copper complex ^'^^^j^0^12^2^^2

of the t i t l e acid as having crystals of l i g h t blue plates. However,

i n a l l the cases t r i e d the resultant was a microcrystalline mass.

D.2. The copper complex of B-alanyl-DL-B-amino-butyric acid

3 The acid was prepared by the method of Birkofer and Hartwig,

These two authors have reported the copper complex, Cu(C H 0 N ) , / U o 2 2

of the acid as forming purple needles. V/hen t h i s method v/as t r i e d

only the o r i g i n a l acid would c r y s t a l l i z e out. The following c e l l

dimensions and space group of g-alanyl-DL-B-amino-butyric acid •

(HH -CH -CH -CO-NH-CH-CH -COOH)

were determined from o s c i l l a t i o n and V/eissenberg photographs,

a = 5.21 2, b = 17.44 8, c = 9.88 X, 6 = 100^18' .

space group P2^/c; z = 4. M.V/. = 174.2.

(by f l o t a t i o n i n mixture of chloroform and hexane) = 1.31 _f 0.02 g/cc

= 1.30 g/cc.

27 4

D.3. Copper complex of glycyl-B-phenyl-B-amino-propionic acid

The acid was prepared by Dr. R. Hanson of Plymouth Polytechnic.

A deep-blue solution containing the copper complex of glycyl-B-phenyl-B"

amino-propionic acid was prepared by the reaction of equimolar amounts

of CuCO and the acid. The reaction v/as carried out i n the aqueous

solution and the reaction was accelerated by warming. The complex

separates as deep blue p l a t e - l i k e crystals. From o s c i l l a t i o n

photographs the c r y s t a l appeared t o be orthorhombic, with the c e l l

dimensions

a = 8.68 8, b = 15.77 8, c = 21.28 8. D ( by f l o t a t i o n i n carbon tetrachloride and hexane) = 1.48 g/cc.

A single c r y s t a l determination was not attempted since the spots on

the photographs were extremely streaky.

27 5

REFERENCES

1. R.E. Steiger, Organic Synthesis Collective Vol. I l l , (by Oilman

and B l a t t ) p.91.

2. L. Birkofer and I . Hartwig, Chem. Ber., 1957, £0, 260.

3. L. Birkofer and I . Hartwig, Chem. Ber., 1956. 89, 1608.