Potential of the Brazilian Natural Lignocellulosic fibres for Composite Manufacturing

44
SYMPOSIUM ON FIBRE REINFORCED COMPOSITES SYMPOSIUM ON FIBRE REINFORCED COMPOSITES PORT ELIZABETH PORT ELIZABETH SOUTH AFRIICA SOUTH AFRIICA 24 24 25 February, 2009 25 February, 2009 POTENTIAL OF THE BRAZILIAN POTENTIAL OF THE BRAZILIAN NATURAL LIGNOCELLULOSIC FIBRES NATURAL LIGNOCELLULOSIC FIBRES FOR COMPOSITE MANUFACTURING FOR COMPOSITE MANUFACTURING RASIAH LADCHUMANANANDASIVAM RASIAH LADCHUMANANANDASIVAM MICHELLA MELO TAVARES MICHELLA MELO TAVARES MARIA GORETE FELIPE MARIA GORETE FELIPE MARCIO ELEIEL DE OLIVEIRA ALEXANDRE MARCIO ELEIEL DE OLIVEIRA ALEXANDRE Department of Textile Engineering Department of Textile Engineering Centre of Technology Centre of Technology Federal University of the State of Rio Grande do Norte Federal University of the State of Rio Grande do Norte (Avenida Salgado Filho, 3000, Lagoa Nova, Natal (Avenida Salgado Filho, 3000, Lagoa Nova, Natal - - RN, 59078 RN, 59078 - - 970, Brazil) 970, Brazil)

Transcript of Potential of the Brazilian Natural Lignocellulosic fibres for Composite Manufacturing

SYMPOSIUM ON FIBRE REINFORCED COMPOSITESSYMPOSIUM ON FIBRE REINFORCED COMPOSITESPORT ELIZABETH PORT ELIZABETH ––

SOUTH AFRIICASOUTH AFRIICA

24 24 ––

25 February, 200925 February, 2009

POTENTIAL OF THE BRAZILIAN POTENTIAL OF THE BRAZILIAN NATURAL LIGNOCELLULOSIC FIBRES NATURAL LIGNOCELLULOSIC FIBRES FOR COMPOSITE MANUFACTURINGFOR COMPOSITE MANUFACTURING

RASIAH LADCHUMANANANDASIVAMRASIAH LADCHUMANANANDASIVAMMICHELLA MELO TAVARESMICHELLA MELO TAVARES

MARIA GORETE FELIPEMARIA GORETE FELIPEMARCIO ELEIEL DE OLIVEIRA ALEXANDREMARCIO ELEIEL DE OLIVEIRA ALEXANDRE

Department of Textile EngineeringDepartment of Textile EngineeringCentre of TechnologyCentre of Technology

Federal University of the State of Rio Grande do NorteFederal University of the State of Rio Grande do Norte(Avenida Salgado Filho, 3000, Lagoa Nova, Natal(Avenida Salgado Filho, 3000, Lagoa Nova, Natal--RN, 59078RN, 59078--970, Brazil)970, Brazil)

Table 1 Table 1 -- Chemical Composition of Vegetable Chemical Composition of Vegetable FibresFibres..

Fibre

Component

Composition (based on dry matter %)

Cotton Hemp Jute Flax(non macerated)

Ramie (macerated) Curauá Coir Sisal

Cellulose82.0- 94.0

67.0 64.4 56.5 – 62.8 69.4 70.7 – 73.6 36 - 43 65.8

Hemicellulose 16.1 12.0 15.4 – 17.1 13.1 9.9 0.15 – 0.25 12.0

Pectin 0.6 – 1.2 0.8 0.2 3.8 4.2 13.3 3.0 – 4.0 0.8

Lignin ------ 3.3 11.8 2.5 – 2.8 ----- 7.5 – 11.1 41 - 45 9.9

Protein 1.0 - 1.8 ----- ----- ----- ----- -----

Fat & wax 0.4 – 0.9 0.7 0.5 1.3 – 1.4 0.3 - 0.6 0.3

Sugars 0.2 – 0.3 ----- ----- ----- ----- -----

Solubility in water ------

2.1

1.1 10.5 – 11.9 10.8

1.2Ashes 0.6 – 1.5 5.9

Others 1.4

Table 2 Table 2 –– Properties of some Properties of some fibresfibres..

Fibre Diameter(µm)

Density (g/cm3)

Moisture regain at 85% RH

Elongation at break

(%)

Fracture stress (MPa)

Young´s modulus

(GPa)

Price /kg ($) raw

E Glass 8 - 14 2.54 – 2.56 ----- 3.0 1700 - 3500 65 - 72 1.3

Cotton 16 - 21 1.5 (1.51) 7 7.0 – 8.0 287 – 597 5.5 – 12.6 1.5 – 2.2

Jute 200 1.3 (1.46) 12.5 1.5 – 1.8 393 – 773 26.5 0.35

Flax 1.5 (1.4) 7 2.7 – 3.2 345 – 1035 27.6 0.5 1.5

Hemp 1.48 10.8 1.6 690.0 0.6 – 1.8

Sisal 50 - 300 1.26 - 1.33 12.5 - 17.5 2.0 – 2.5 511 – 635 9.4 – 22.0

Coir 450 1.15 - 1.5 10 - 12 17 - 47 131 - 175 4.0 – 6.0 0.25 – 0.5Bambo o 0.8 2.5 – 3.7 391 – 1000 48 – 89

PALF 1.44 2 – 2.8 413 – 1627 34.5 – 82.5

Ramie 1.5 5 - 6 1.2 500 - 870 61.4 – 128 1.5 – 2.5

Curauá 60 - 100 362 - 748 20 - 36 0.9 – 1.2∗Tensile strength strongly depends on type of fibre, being a bundle or a single filament.

Table 3 Table 3 -- Methods of Extraction, Production and Length of some Vegetable Methods of Extraction, Production and Length of some Vegetable Hard Hard FibresFibres..

Fibres Method of Extraction Quantity produced Length (mm)

Pineapple Manual (beating) / Mechanical - decorticator

2,5 to 3,5 % of the weight of green

leaves900 to 1500

Curauá Manual (beating) / Mechanical - decorticator

2,5 a 3,5 % of the weight of green

leaves900 a 1700

Sisal Manual (beating) / Wetting/ Mechanical -decorticator

3 to 4% of the weight of green leaves 900 a 1200

Coco Wetting/ Mechanical -decorticator 8% of the husk (1,1kg) 75 a 150

Banana Manual (beating) / Mechanical – decorticator. 1,5% of the sheaths 300 a 900

Juta Wetting (beating) / Chemical process. 3 to 4% of the stem 1500

Ramie Mechanical – decorticator. 2,5 to 3,5 % of skin 900 a 1200

Table 4 Table 4 -- Hybrid systems studied.Hybrid systems studied.

Fibres / Reinforcements Polymer matrixBanana - Cotton PolyesterBanana - Glass PolyesterBamboo - Glass PolypropyleneCoir - Glass Phenol formaldehyde / PolyesterFlax - Glass PolypropyleneJute - Bentonite PolyesterJute - Cotton Polyester / PhenolicJute - Glass Polyester / EpoxyLuffa cylindrical - Glass PolyesterOil Plam - Glass Epoxy / Phenol formaldehydePineapple - Glass Polyester / PolypropyleneRamie - Cotton PolyesterSisal - Bentonite PolyurethaneSisal - Glass Phenol Formaldehyde / PolyesterSisal - Oil Palm Natural RubberSisal - Cotton PolyesterCurauá - Jute PolyesterCurauá- Glass PolyesterCurauá - Pineapple Polyester

EXAMPLES OF BRAZILIAN EXAMPLES OF BRAZILIAN NATURAL LIGNOCELLULOSIC NATURAL LIGNOCELLULOSIC

FIBRES FOR COMPOSITE FIBRES FOR COMPOSITE MANUFACTURINGMANUFACTURING

Pineapple plantation, fruit, decorticator and the fibre.

0,75 to 1,50 m

0,90 to 1,20 m

Manual extraction of PALF fibre, spinning and products.

Table 5 Table 5 –– Type of pineapple and the cultivated areas.Type of pineapple and the cultivated areas.Type Plantation Area

Cayenne South coastal area of São PauloPernambuco or Perola Paraíba and Rio Grande do Norte

Queen South AfricaRed Spanish Cuba & Porto RicoPérolera Central & north of South AmericaRondon Amazon RegionJupi North East of Brazil

Planting system Spacing (cm)

Density (plant / ha)

Single row * 90 x 30 37.00080 x 30 41.600

Double row **90 x 40 x 40 38.40090 x 40 x 35 44.00090 x 40 x 30 51.200

Table 6 Table 6 -- Systems of planting pineapple (Pineapple planting systems).Systems of planting pineapple (Pineapple planting systems).

(*) distance between rows of plants(**) distance between double rows, between single row and between plants.

Table 7 Table 7 -- Estimated production of PALF / decorticator.Estimated production of PALF / decorticator.

Number of leaves /plant 40(Average) Mass of leaf (kg) 0,065

(Average) Mass of leaf /plant (kg) 2,6

Percentage of fibre / green leaf (%) 2,5

Decortication time / leaf (s) 5

Price / kg of fibres (Estimated) R$US$

1,000,43

Number of leaves decorticated / hour 720

Fibre production / hora (kg/h) 1,17

Fibre production / day (10h) (kg/day) 11,7

Table 8 Table 8 -- Estimated production of PALF per hectare.Estimated production of PALF per hectare.

Table 9 Table 9 -- Estimated PALF production in Brazil 2009.Estimated PALF production in Brazil 2009.

System of planting (single row) (cm) 90x30Plants (quantity/ha) 37.000Leaves (quantity/ha) 1.320.000Mass of leaves (kg/ha) 85.000Mass of fibres (kg/ha) 2.146

Value of fibre production (R$/ha)US$/ha (US$ = R$2.32)

2,146.00925.00

Area planted (ha) 1,486,880

Fibre mass (kg) 3.19 x 109

Fibre price (US$/kg) (Estimated) 0.43

Total production of fibres (estimated) US$ 1, 37 x 109

Curauá plants (marrom and branco), fruit, decorticator, fibres and paper made of curauá fibre.

Use of Curauá fibre in automobile parts.

Planting system Spacing (cm)

Density (plant / ha)

Single row 150 x 150150 x 100100 x 100

4,4446,6679,600

Double row 150 x 50 20,000

Table 10 Table 10 -- System of planting System of planting CurauCurauáá..

Number of leaves /plant removed 15 - 20(Average) Mass of leaf (kg) 1.6(Average) Mass of leaf /plant (kg) 32Percentage of fibre / green leaf (%) 6-7Average mass of fibre / plant (kg) 2.1Average mass of fibre / ha (ton) 20Price / kg of fibre (Estimated) R$US$

1.450.62

Price of fibre / ha (Estimated) US$ 12,400.00

Table 11 Table 11 -- Estimated production of Estimated production of curaucurauáá per hectare.per hectare.

Green coconut, extraction of fibre, products made of coconut fibre.

Jute plants and fibre.

Use of jute fibre in Renault Clio in Brazil.

Sisal plantation, transporting leaves, decorticator and drying fibres.

Different products made from sisal fibre.

Licuri plant. Hand bags using the Licuri leaves.

Licuri leaves. Trunk. Fruits. Seeds.

Macambira plants, leaves with thorns, equipment used to pull out the plants.

Ramie plants, fibres, chemical treatments and final products.