analysis of data from nasa b-57b gust gradient program

500
ANALYSIS OF DATA FROM NASA B-57B GUST GRADIENT PROGRAM by Walter Frost Ming-Chang Lin Ho-Pen Chang and Erik Ringnes 4PR198 6 RECEIVE[ JWSASTI FACILITY ' (NASA-CR-178736) ANALYSIS OF DATA FROM NASAN86-236QU B-57B COST GRADIENT PBGGRAM final Report JTenaessee Univ.) 500 p HC A21/HF AQ1 : CSCL 01C Dnclas G3/08 15939 "T^ §'

Transcript of analysis of data from nasa b-57b gust gradient program

ANALYSIS OF DATA FROM NASA B-57BGUST GRADIENT PROGRAM

by

Walter FrostMing-Chang LinHo-Pen Chang

andErik Ringnes

4PR198 6R E C E I V E [

JWSASTI FACILITY

' (NASA-CR-178736) A N A L Y S I S O F D A T A FROM N A S A N 8 6 - 2 3 6 Q UB-57B COST G R A D I E N T PBGGRAM final ReportJTenaessee Univ.) 500 p HC A21/HF AQ1 :

CSCL 01C DnclasG3/08 15939

"T^

§'

Final ReportPrepared Under

NASA Contract NAS8-36177and

NASA Contract NAS8-35347

for

George C. Marshall Space Flight CenterNational Aeronautics and Space Administration

ANALYSIS OF DATA FROM NASA B-57BGUST GRADIENT PROGRAM

by

Walter FrostMing-Chang LinHo-Pen Chang

andErik Ringnes

September 1985

Atmospheric Science DivisionThe University of Tennessee Space Institute

Tullahoma, Tennessee 37388-8897

ACKNOWLEDGMENTS

The authors wish to express their appreciation and thanks to several

people who were very helpful and to a great extent responsible for this

research effort being accomplished. Realizing that it is not possible to name

everyone who contributed to the effort, it is nevertheless important to

mention some of them. Special acknowledgment is due to John Houbolt, Harold

Murrow, and Robert Sleeper of the NASA Langley Research Center and to Wenneth

Painter, Jack Ehernberger, and to the ground and flight crews of the B-57B

aircraft at the NASA Dryden Flight Research Facility. A special note of

appreciation is also due to Warren Campbell, Margaret Alexander, and Dennis

Camp of the NASA Marshall Space Flight Center for their technical direction

and encouragement. Richard Tobiason (NASA Headquarters) is also gratefully

acknowledged.

TABLE OF CONTENTS

SECTION PAGE

1.0 INTRODUCTION 1

2.0 STATISTICAL ANALYSIS OF DATA 7

2.1 Flight Path Information 8

2.2 Time Histories of Gust Velocitiesand Gust Velocity Differences 8

2.3 Average Turbulence Parameters andIntegral Length Scales 9

2.4 Probability Density Function for GustVelocities and Gust Velocity Differences 15

2.5 Single-Point Auto-correlation Coefficientof Gust Velocities 25

2.6 Two-point Auto-correlation Coefficientof Gust Velocities 27

2.7 Normalized Auto-spectra of GustVelocities 33

2.8 Normalized Two-point Auto-spectra ofGust Velocities 49

2.9 Two-point Cross-spectra of GustVelocities 59

2.10 List of All Parameters Measured andTheir Range of Values 60

3.0 CONCLUSION 66

REFERENCES 68

APPENDIX A 69

LIST OF TABLES

TABLE PAGE

1. Gust Gradient Flights During JAWS 1982 4

2. Summary of B-57B Flight Data During JAWS 6

3. Mean Airspeed (m/s) for Flight 6,July 14, 1982 11

4. Average and Standard Deviation of MeanAirspeed Difference Between Probes 12

5. Turbulence Intensity for All Runs of Flight 6 13

6. Standard Deviation of Velocity Differencefor All Runs of Flight 6 14

7. Turbulence Length Scales for All Runsof Flight 6 16

8. The Value of the Parameter r ofNon-Gaussian Probability Density Functionfor All Runs of Flight 6 24

m.

LIST OF FIGURES

FIGURE PAGE

1. NASA B-57B Gust Gradient Program 2

2. Comparison of probability density function for gustvelocities and their differences with theory,Flight 6, Run 42 20

3. Flow chart of non-Gaussian turbulenceprobability model 21

4. Comparison of probability density function for gustvelocities and their differences with theory,Flight 6, Run 5 23

5. Comparison of single-point auto-correlation ofgust velocities with theoretical model;composite of Runs 2 through 13 28

6. Comparison of single-point auto-correlation ofgust velocities with theoretical model;composite of Runs 14 through 23 29

7. Comparison of single-point auto-correlation ofgust velocities with theoretical model;composite of Runs 24 through 33 30

8. Comparison of single-point auto-correlation ofgust velocities with theoretical model;Composite of Runs 34 through 46 31

9. Normalized auto-spectra of gust velocities showingspike in the longitudinal spectra, Flight 6, Run 5 37

10. Spectra of variables used to compute Wx 39

11. Normalized auto-spectra of gust velocities showinginfluence of the Houbolt correction factor,Flight 6, Run 42 41

12. Comparison of theoretical and FFT computeralgorithm for an idealized time history

X(t) = e~a\t\ with and without correction .......... 42

13. Comparison of auto-spectra of gust velocitieswith von K arm an model, Runs 2 through 24 ......... 45

14. Comparison of auto-spectra of gust velocitieswith von Karman model, Runs 25 through 46 ........ 46

15. Illustration of selection of reference $(/cfor normalized auto- spectra of WXR velocity,Flight 6, Run 42 ..................... 50

16. Normalized auto-spectra of gust velocities,Flight 6, Run 42 ..................... 51

17. Coincident spectra and quadrature spectra ofgust velocities, Flight 6, Run 42 .............. 54

18. Terminology of the two-point auto-correlationdevelopment ....................... 56

19. Comparison of the two-point auto-spectrum withHoubolt and Sen's normal equation and therederived equation, Flight 6, Run 42 ............ 58

20. Coincident spectra and quadrature spectra ofgust velocities, Flight 6, Run 39 .............. 61

NOMENCLATURE

Mean airspeed of aircraft, m/s

C,VL Aircraft airspeed computed from impact pressureat right wing tip boom, nose boom, and leftwing tip boom, respectively, m/s

R, C, L Designation of right wing tip, nose,and left wing tip, respectively

L Integral length scale, m

X, Y, Z Longitudinal, lateral, vertical directionswith respect to aircraft frame

Wx, WY , W% Gust velocity component in X, Y, Z direction,respectively, m/s

n Number of degrees of freedom in normalizedStudent T probability density function

r An adjustable number in a non-Gaussianprobability density function

/ Cyclic frequency, Hz

s Spatial lag distance, m

Rx(r) Single-point auto-correlation function intime domain, m2 /sec2

BX(T) Single-point auto-correlation coefficientin time domain

Bwx(8) von Karman single-point auto-correlation

coefficient in spatial lag domain

VI

Rx(s,r) Two-point auto-correlation function,m2/sec2

BX(S,T) Two-point auto-correlation coefficient

RX,X'(S,T) Two-point auto-correlation function,11 *im /sec

RWXWX($) Auto-correlation for two points ata spatial distance of f, m2/sec2

Rwnwn($) Conventional longitudinal correlation fortwo points at a spatial distance of f, m2/aec2

RWPWP(S) Conventional lateral correlation for twopoints at a spatial distance of f, m2/sec2

Sx,x'(s,f) Two-sided two-point auto-spectrum density 'function, m2/sec

Sx(f) Two-sided single-point auto-spectrum densityfunction, m2/sec

Cx,x'(s,f) Coincident spectral density function, thereal part of a one-sided spectrum densityfunction, m2/sec

Qx,z'(s, f) Quadrature spectral density function, theimaginary part of a one-sided spectrum densityfunction, m2/sec

M Mach number of aircraft

Tc Computed free-stream temperature, °C

TO Total temperature, °G

VII

Free-stream static pressure measured atthe airplane nose boom, K.Pa

C.F. Houbolt's digitizing correction factorqc Impact pressure, Pa

qcR,qcc,qcL Impact pressure measured at aircraftright wing tip boom, nose boom, and leftwing tip boom, respectively, Pa

Be Bandwidth, Hz

Tr Total time record of a turbulence dataset, second

Tri Time length of each segment of a turbulencedata set, second

q, SEG. Number of separate segments for a turbulencedata set

Er Normalized standard error, \i B1

T

T Total time, seconds

East-west component of the airplane inertialvelocity measured by INS, positive towardeast, ml sec

North-south component of the airplane inertialvelocity mesaured by INS, positive towardnorth, ra/'sec

p(x) Probability density function

Greek Symbols

a Standard deviation, m/sec

&WX)0WY)&wz Standard deviation of gust velocitycomponents, WX, WY, WZ, respectively

K Wave number, u/V,m~1

w Spatial frequency, rad/sec

T Time lag, sec

f Degrees of freedom, 2BeTr

At Time increment, sec

A Difference

d_dt

$ Airplane heading measured in a horizontalplane clockwise from time north, rad

^ Yaw rate measured by body-mounted yaw-ratetransducer (positive with nose going right)rad/sec

$(/c) Spectrum in the domain of wave number,m3/(sec2 /rad)

$x(f) One-sided single-point auto-spectrum inthe domain of cyclic frequency, m2/sec

^WX(K)>^WY(K-))^WZ(K') Auto-spectrum density function of the theoreticalvon Karman model, m3/(sec2/rad)

$'K^q Spectrum at frequency /« of the

qth time slice,

Spectrum in the domain of spatialfrequency, m^

^,z'(*5/) One-sided two-point auto-spectrumdensity function, m2/sec

6x,x'(a,f) Phase angle of $«,,'(«, /), rad

Superscripts

- A bar over a symbol indicates average overan entire run in an aircraft flight

A caret over a symbol indicates the quantityis given with respect to the mean for theentire run in an aircraft flight

1.0 INTRODUCTION

The purpose of the Gust Gradient Program is to study low-altitude,

spanwise turbulence during takeoff, landing, and level flight near severe

weather formation where non-homogeneous turbulence may exist. Tradi-

tional aerodynamic analyses treat turbulence as a gust acting uniformly

over the entire aircraft at any given instant. This assumption is reasonable

for a small aircraft encountering turbulence with long length scales, but for

large aircraft and small turbulence length scales, such as occur near the

ground or under storm conditions, spanwise variation of turbulence gusts is

not negligible. The gust velocity distribution along the span can generate

rolling and yawing moments. If the velocity variation is large and develops

suddenly, the pilot will have difficulty controling the airplane, and may even

lose control. Also, the structural integrity of the aircraft may be severely

challenged. Theoretical analyses have been developed which do address

the effects of spanwise gust distributions (see for a review, Frost and Lin

(1983)). These analyses call for two-point spatial turbulence correlations

(i.e., cross-correlations) which are computed based on the assumption of

isotropic turbulence. However, very few flight experiments have been car-

ried out to measure these correlations and, thus, provide verification of the

isotropic turbulence model assumption.

The NASA B-57B Gust Gradient Program was initiated to provide

these measurements. The B-57B was instrumented with three probes: one

at the left wing tip; one at the center on the nose; and one at the right

wing tip. Figure 1 conceptually illustrates the Gust Gradient Program.

The lower right-hand side shows the B-57B aircraft with the three probes.

ORIGINAL PAGE ISOF POOR QUALITY

Eto01oo.

<u•5<o

cor .LT)i

CQ

oo

dli.O)

The upper right-hand side of the figure shows gust wind velocity variation

along the wing span. Obviously, asymmetric wind variation will generate

rolling moments. The upper middle sketch illustrates the difference between

a uniform gust and a nonuniform gust along the wing span. The lower left-

hand side of Figure 1 shows the conceptual flight path of the B-57B aircraft,

including takeoff, landing, and level flight. For safety reasons, the aircraft

only flew outside the storm cells instead of through them to detect the near

wind field influenced by the storm.

The data presented in this report were gathered when the Gust Gra-

dient Program joined the Joint Airport Weather Studies (JAWS) Project

in Denver, Colorado, from July 7 to July 23, 1982. During the JAWS

Project, 11 data collection flights were flown. These flights were carried

out in a controlled airspace and it was not possible to fly in all details the

conceptual flight paths. Therefore, most of the flight paths are straight

and level but are near, in many cases, severe microbursts. Table 1 shows

the flight number, date, start time (Mountain Daylight Time, MDT), end

time (MDT), and general comments about each flight. Only three flights

(Flights 6, 7, and 10) encountered severe turbulence. Analyses of the data

gathered on these three flights have been carried out.

The Gust Gradient Program was a joint program between three NASA

centers. NASA Dryden Flight Research Center operated and maintained

the aircraft. The raw data tapes were sent to NASA Langley Research

Center where the initial conversion into engineering units was carried out.

NASA Marshall Space Flight Center managed the program.

The data were stored on magnetic tapes in binary form. The tapes

are then sent to The University of Tennessee Space Institute (UTSI) for

Table 1. Gust Gradient Flights During JAWS 1982

FLIGHT DATE START END

1 7/7 15:41:38 15:59:392 7/8 14:49:11 16:40:353 7/9 13:17:10 15:42:34

4 7/11 14:46:07 17:02:445 7/13 15:20:18 16:44:56

6 7/14 13:41:13 15:55:21

7 7/15 14:08:13 16:26:20

8 7/17 15:49:35 17:17:56

9 7/20 15:59:30 18:35:52

10 7/21 16:05:05 18:04:40

11 7/22 13:36:09 15:24:45

COMMENTS

Landmark Familiarization FlightLight to Moderate TurbulenceLight to Moderate Turbulencewith Data Correlation withJAWS 02 (King Air 200)andJAWS 30 (HS 125)Moderate Turbulence and LightningILS Approaches to Stapleton inLight TurbulenceSevere Turbulence and OutflowsVisible on RadarOutflows, Severe Turbulence, andILS ApproachesRain with Light to ModerateTurbulenceLight to Moderate Turbulencewith some ILS ApproachesGood Downburst with Moderate toSevere TurbulenceLight and ModerateTurbulence

analysis. Because of the different computer systems at NASA Langley

(CDC System) and UTSI (VAX System), programs for converting data have

been developed. Of the three flights analyzed, results from Flight 6 on July

14, 1982, are reported here. The flight data include six tapes constituting

44 runs. Two runs are of too short a time duration for meaningful statistical

analysis and have been excluded. Flight 7 data for July 15, 1982, includes

one tape of five runs; and Flight 10 data for July 21, 1982, includes two

tapes of 10 runs. One run for Flight 10 is also too short for meaningful

analysis. These details are summarized in Table 2. The statistical analysis

of the data for Flight 6 only is given in this report. The analysis procedures

and description of results is described in Section 2.0. Comprehensive data

sets are given in Appendix A. Conclusions drawn from the analysis are

presented in Section 3.0.

Table 2. Summary of B-57B Flight Data During JAWS.

Flight No. of No. of No. of RunsNo. Date Tapes Runs Eliminated

6 July 14, 1982 6 44 2

7 July 1 5 , 1982 1 5 0

10 July 21, 1982 2 10 1

Short Runs:

Run No. No. of Datum Points

Flight 6, Run 7 N = 1207Flight 6, Run 9 N = 647Flight 10, Run 17 N = 847

2.0 STATISTICAL ANALYSIS OF DATA

Statistical analysis of the B-57B Program data for 44 runs from Flight

6 on July 14, 1982, is described in this section. General information and

statistical values for each run are given in Appendix A. For each run, ten

pages containing the following information per page are provided:

1st Page: Flight path information;

2nd Page: Time histories of gust velocities and gustvelocity differences;

3rd Page: Average turbulence parameters and integrallength scales;

4th Page: Probability density function for gust velocitiesand gust velocity differences;

5th Page: Single-point auto-correlation coefficient ofgust velocities;

6th Page: Two-point auto-correlation coefficient of gustvelocities;

7th Page: Normalized auto-spectra of gust velocities;

8th Page: Normalized two-point auto-spectra of gustvelocities;

9th Page: Two-point cross-spectra of gust velocities;

10th Page: List of all parameters measured and theirrange of values.

The method of computing the statistical results presented in Appendix

A is described in detail in the following subsections.

2.1 Flight Path Information

Flight direction on a topographical map, the altitude of the flight rela-

tive to the terrain contours, and horizontal wind vector recorded along the

flight path are shown and plotted on the 1st page for each run in Appendix

A. Also tabulated on these pages is the date, the time (MDT) at which the

run began, and the duration of the run in seconds.

The terrain over which the B-57B flew, in most cases, was flat. The

altitude of each run relative to the ground ranges from 250 feet in Run 23

to 2600 feet in Run 3. Most runs are flown at an altitude where it can be

assumed that the ground does not influence the turbulent wind field. In

Runs 23 and 24, this assumption cannot be applied.

In some runs, the wind direction is nearly perpendicular to the flight

path (see Run 2 as an example). In other runs, the wind direction is along

the flight path, as in Run 16 and Run 24. Many runs have a nearly constant

wind direction, as in Runs 2, 14, 15, 18, 20, 24, 34, 37, and 39. But in Runs

3, 4, 11, 13, 16, 23, 25, 26, 30, 31, 40 and 43, the wind direction changes

substantially along the flight path. This suggests the B-57B airplane may

have flown near a microburst. A microburst is a downdraft which, at the

surface, spreads out in all radial directions. The diameter of a microburst

is less than 4 km. An aircraft flying through a small-scale microburst in a

takeoff or landing approach will first encounter increasing head winds, then

the downdraft, and finally, increasing tail wind. The lift of the aircraft

will increase initially, but later will be drastically reduced due to loss of

airspeed. Several accidents have been contributed to microbursts.

2.2 Time Histories of Gust Velocities and Gust VelocityDifferences

8

The 2nd page for each run in Appendix A shows the gust velocity time

histories at the left wing tip, the center, and the right wing tip. Also, spa-

tial velocity differences for all combinations of the three probes are plotted

for the longitudinal, lateral, and vertical velocity components. The sam-

pling rate is 40 per second. Only 120 seconds worth of data is plotted for

illustration purposes, but the total data record is used in all analyses.

There are no great variations between velocities measured at the three

positions. As is later shown, the length scale of the turbulence is larger than

the wing span of the B-57B airplane (19.5 meters); and thus the difference

between the wind measurement at each of the three probes is small. The

velocity difference between any two positions is calculated. If the ratio of

velocity difference to airspeed is large, the spatial variation of turbulence

is significant. For example, in Run 17, Flight 6, the maximum velocity

difference of the vertical component between the right wing tip and the

center is 15 m/s, and the mean airspeed is 107 m/s. This represents a

14 percent spatial wind variation to airspeed ratio, which is significant in

terms of airplane controlability. Inspection of the lateral wind component

for Run 10 and Run 27, also in Run 28 after 50 seconds of the run has

elapsed, indicate these data are bad. The source creating these bad data is

not presently known.

2.3 Average Turbulence Parameters and Integral Length Scales

The 3rd page for each run in Appendix A is a tabulated listing of the

average values of several important turbulence parameters for the left, cen-

ter, and right probes designated with subscripts L, (7, and R, respectively.

The statistical parameters include mean airspeed, standard deviation of

the gust velocity, standard deviation of the gust velocity difference, and

the integral length scale. In analyzing the data, the total time history

is truncated such that the total record is a multiple of segments of 512

(or 1024) datum points. The reasdm for segmenting the data files will be

explained later.

Table 3 shows the mean airspeed for all runs in Flight 6. The average

mean airspeed for all runs is 105 m/s. The mean airspeeds at the individual

right, center, and left probes are l(k>.0, 104.2, and 105.2 m/s, respectively.

The average and standard deviation of the mean airspeed differences be-

tween all three probes and the average value at individual probes are shown

in Table 4. The mean airspeeds at the right and left probes are larger than

the mean airspeed at the nose by 1.82 and 1.03 m/s, respectively. This is

believed to be due to the influence! from the unsymmetric wake produced

from the nose of the airplane.

Table 5 lists the standard deviation of gust velocities for all runs of

Flight 6. The standard deviation of the gust velocities varies from 0.65 to

5.93 m/s for the longitudinal component, and from 0.73 to 7.48 m/s for the

lateral component. Bad data produce unreasonably high values for Runs

10 and 27. The vertical gust component standard deviation ranges from

0.62 to 4.25 m/s. The standard deviation of the gust velocity differences lie

between a low of 0.37 and a high of 1.97 m/s for the longitudinal component.

The lateral gust component standard deviation ranges from 0.29 to 1.79

m/s, and the vertical component from 0.34 to 1.96 m/s. Table 6 lists the

standard deviations of the gust velocity differences. The standard deviation

of the gust velocity, itself, is always larger than the standard deviation of

the gust velocity difference between probes. This is expected because in the

10

Table 3. Mean Airspeed (m/s) for Flight C, July 14, 1982.

RunNo.

234568101112131415161718192021222324

y j121.2111.5108.4104.0127.2101.6106.4106.2107.8112.1102.2101.5107.097.9103.596.6103.396.4102.5103.8102.9

Kc.120.3110.7107.7103.3125.9100.7105.2105.1106.7110.9101.3100.5105.996.8102.495.5102.295.6101.6102.7101.9

VJL122.2112.4109.5105.0128.0102.4107.0106.9108.6112.8103.1102.4107.898.5104.197.3104.097.6103.4104.5103.7

RunNo.252627282930313233343536373839404142434446

yr

104.8108.0105.9106.2106.1106.4102.598.497.3104.4107.6107.8104.594.9107.0105.8105.1110.3102.7106.9104.9

y r

103.0106.2104.1105.1104.9105.2101.597.696.4103.4106.6106.8103.494.0106.0104.6104.1109.2101.7105.8103.8

yR

104.2107.3105.0106.9106.7107.0103.399.398.2105.3108.4108.7105.295.7107.9106.4106.0111.1103.5107.7105.5

11

Table 4. Average and Standard Deviation of MeanAirspeed Difference Between Probes.

|= 1.82m/a ORC = O.OQm/a

|= 1.03m/5 acL = O.Um/s

= 0.15m/a

VR = 106.02m/s

= 104.2 m/3

= 105.23TO/3

12

Table 5. Turbulence Intensity for All Runs of Flight 6.

Run No.

234568101112131415161718192021222324252627282930313233343536373839404142434446

1.223.731.031.260.982.313.123.872.354.750.911.173.393.754.092.412.103.482.442.441.213.502.564.960.723.843.212.011.504.392.532.012.492.285.495.822.142.473.464.853.263.19

1.123.680.971.190.932.463.113.802.294.620.931.143.393.754.242.422.133.462.342.421.163.442.534.940.653.823.011.911.534.522.481.912.442.225.515.752.062.403.434.743.122.98

1.133.750.981.260.972.713.173.882.394.690.951.233.413.814.402.452.113.672.482.411.193.492.565.060.703.923.042.041.624.682.592.092.482.275.755.932.152.433.494.823.273.04

1.011.731.911.970.863.5020.883.251.642.370.731.851.134.774.143.552.253.004.067.450.746.045.11

314.620.802.104.735.282.792.422.013.324.264.413.293.042.802.062.673.353.533.28

1.001.811.922.020.853.5320.503.381.662.370.761.861.154.774.213.622.403.304.007.480.785.975.14

309.150.822.184.765.192.812.462.083.354.214.483.483.082.862.102.693.483.553.37

0.961.771.971.970.863.5420.633.281.542.310.731.871.114.644.113.442.333.273.877.440.805.925.06

312.160.792.214.725.162.792.292.023.284.184.453.413.062.852.082.633.503.593.22

1.402.241.221.140.683.952.603.442.092.360.940.981.193.304.253.103.773.573.581.570.952.262.100.830.722.382.531.511.412.911.992.281.851.633.242.842.992.492.833.092.722.78

1.422.041.201.090.623.872.593.392.032.220.870.741.173.314.163.113.513.423.641.550.942.211.890.830.712.222.401.471.302.811.822.091.701.523.092.692.922.312.712.8£2.572.50

1.452.101.231.170.654.652.713.452.152.250.980.941.203.414.093.193.573.443.681.551.072.432.000.820.682.422.421.531.392.922.042.201.921.623.262.843.652.442.723.002.702.68

13

Table 6, Standard Deviation of Velocity Difference for All Runs of Plight 6,

Run No.

234568101112131415161718192021222324252627282930313233343536373839404142434446

0.490.640,490.530.371.121.001.230.770,590.500.550.431.171.451.131.131.511.110.590.430.970.880.470,431.010.980.740.651.090.890.910.900,721.351.130.881,011,001,161,101,39

0.510,650.530.530.381.021.071.190.710.600.510.540.451.261.461.171,281.551.240.630.440.910.960.510.441.080.960.820.721.120.940,990.880.731.351,170,971,021,031,241.121.43

0.710.820.670.680.481.301.311.540.890.760.600.700.561.451.671.461.501.971.440.750.&31.181.210.640.561.341.211.040.861.371.191.261.120.911.701,431.141.241.241.491.381,80

0.390.600.460.480.291.111,051,260.760.560.450.490.391.241.521.271.341.791.080.580,400.940.875.660.391.101.000.770.631,070.870.880,860.731,391,101,010,950.971.241.041,37

0,390.590,430,460,331.021,101,280.790,570,430.470.411.321.541.191.421,611.19O.S80.400,950.923.370.351.090,940.750.681.090.900.920,850.691.351.100.960.970.981,251.081.39

0.400.650,480.510.321.111.211.360.820,620,470,530.441.411.681.291.371.781.220.640.431.020.923.100,381.081.010.770.721.190.950.910,900,751.431.151.041.041.061.391.191.43

0.480.660.520.560.341.341.081.340.850.650.540.520.461.481.661,441.451.631.330.670.411.050.950.460.421.171.120.860.701.281,040.950.970.811.471.311.091.111.141.481.241.56

0.460.720.480.520.361,231.171.350.860.680.510.450.451.471.621.291.331.701.330.690.461.061.000.510.431.221.030,950,741,220.991.071.020.871.481.291.051.171,161.521.281.53

0.540.83O.S60.600,381.521.341.530.930.770.610.560.511,501.931.691.661.961.470,750.501.191.050.530.491.301.290.960.781.391.131.151.220.971.611.471.271.311.321.591.431.79

gust velocity difference, the low-frequency content of the data is effectively

removed by the differencing process; but the gust velocity, itself, includes

both low and high frequencies.

The integral length scale is obtained by integrating the one-point spa-

tial lag auto-correlatiojj coefficient from zero to infinity. Theoretically, the

auto-correlation coefficient converges to unity at zero lag and zero at large

spatial lags. Due to noise in the measured data, the auto-correlation co-

efficient may oscillate about zero. The integral length scale is, therefore,

obtained by integrating the one-point auto-correlation coefficient to the

point where the auto-correlation first becomes zero.

Table 7 lists the integral length scale for all runs of Flight 6. The

length scales of the lateral and the vertical components are multiplied by

a factor of two as is suggested in the literature. The integral length scales

range from a low of 139 meters to a high of 1929 meters for the longitudinal

component, from a low of 105 meters to a high of 3824 meters for the lateral

component, and from a low of 110 meters to a high of 1697 meters for the

vertical component. In general, the integral length scales of the vertical

component are smaller than the integral length scales of the longitudinal

or lateral components.

2.4 Probability Density Function for Gust Velocities and Gust VelocityDifferences

The probability density function for the turbulent wind velocities is

defined by the expression:

_ Urn Prob[x < x(t] < x + Az]

15

Table 7. Turbulence Length Scales for All Runs of Flight 6.

Run No.

234568101112131415161718192021222324252627282930313233343536373839404142434446

1163103821672259938789662236713003395051546250261194362146149776821105575319144025929718906291912773186460354112813494379118241080503420

1329104330280159941189464535912703735001535251258190436153139799840101476918911245999559016561929718184439353112313354248767901082464370

12721042260763655

411.986664237912753374801540264255190376166151807805100470919134155929309156741914671184415349114013373689058141107446370

627559114129326511179

92429125161251733697219211551467312275110638241218200217342246426342074267617988786387881632207281381164580221722336877468

550541111628787181122

89629024481051757637213811361560128258104837361032194016992208475532004259217358135927531588203671977661371521182226827454

645554115929206981214

90832425621241824640220811981579144253105337761278201417062228696042038262818067445967911637207068080665870620882322831506

146710506943518755222868273341539186.2712113626142530716715847881111082472914438623796361102211079834361297224246258562235451479647155

159297667840586656030211613921631198694123727752033020519454110211256261304106085838760021522413234843973572232672875562<505115817''1178

1563940617411477538267100637516973826751169246428308198158496767146925834330385338558111622212371115363339212249265523237461505740161

16

where x(t) may be Wx, Wy, Wz, AWx, AWV, or AWz, respectively, and

Prob [x < x(t) < x + Arc] is the probability that the turbulence wind

velocity at a time t lies within a specified speed interval. The Gaussian

probability density function is given by:

where x is the mean value of x(t) and CT is the standard deviation of wind

velocity. The normalized Gaussian density distribution is used in the com-

parison with the experimental data.

The 4th page for each run in Appendix A contains the probability

density function of the turbulence wind velocities. Data measured by the

B-57B airplane for all three different probe positions and for all three ve-

locity components (longitudinal Wx, lateral, WY, and vertical Wz) are

plotted. The normal probability density function (solid line in each fig-

ure) is superimposed for comparison. The upper half of the figure shows

probability distributions of the three individual gust velocity components.

On the bottom half of the figure, the probability distributions of the gust

velocity differences are shown. The letters CR, CL, and RL indicate the

probe positions between which the difference is calculated: CR refers to

the right wing tip and the center; CL refers to the center and the left wing

tip; and RL refers to the right and left wing tips. The results of these

probability density calculations for the turbulence measured during Flight

6 do not fit the normalized Gaussian distribution very well. One reason

may be the short time record used in the computation. For example, in the

17

time history for Run 16, the wind velocity of the longitudinal component,

Wx> g°es from a large positive value to a small negative value over the du-

ration of the run. After becoming a negative Wx, it never again obtains a

positive value, however. In turn, the probability density of the longitudinal

velocity component for this run, Run 16, is not of a normalized form. The

reverse situation (going from a negative value to a positive value) occurs

to the longitudinal component in Runs 27, 38, and 39, and to the lateral

component in Runs 23, 25, 26, 31, and 37.

When comparing the velocity difference between two different posi-

tions, the probability density function is symmetric or more nearly the

Gaussian form. Nevertheless, the experimental probability exceeds the

magnitude of the theoretical Gaussian probability at the most probable

velocity.

The results obtained from Runs 10 and 27 for the lateral component,

and in Run 28 for all three components indicate bad data.

Since the normalized Gaussian probability density underestimates the

probability of velocities near the mean velocity, and tails of the distribu-

tion while overpredicting intermediate values, new probability models were

investigated.

The Student T probability density function was first analyzed. Ban-

dat and Piersol (1971) reported that the normalized Student T probability

density function is given by:

P(X] =

18

where n is the number of degrees of freedom. A comparison of Student

T (with n = 2), the Gaussian probability, and a sample of the the mea-

sured data is shown in Figure 2. The Student T distribution, however,

underestimates values near the mean velocity even more than the Gaussian

probability. When the degrees of freedom approach infinity, the Student T

model becomes identical to the Gaussian form. Since the measured data

are always higher than the Gaussian model near zero (mean velocity), the

Student T model is not a good distribution for modeling atmospheric tur-

bulence.

Another distribution used to correlate the data is a non-Gaussian prob-

ability density model by Reeves, et al. (1974). This model combines three

independent Gaussian functions, a(t), 6(t), and c(t). The procedure of com-

bining these functions is shown in Figure 3. The first step is to multiply

the Gaussian probability density function a(t) by b(t). The probability

distribution for the product d(t) = a(t) b(t) is:

f°° \ t \ tx\ , i \ ( x\\ **!\Pa(ri)pb(-)+Pa(-ri)pb(--)\--Jo L *? *? J *?

This new probability function is then added to the Gaussian function c(i)

after first multiplying both functions by appropriate scale factors. The

resulting variate u(t)

u(t) = c(t)-v'l + r2 v ' VT + r2

then has non-Gaussian probability density function:

19

Non-GaussianGaussianStudent T

W

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

Normalized Velocity Differences (Standard Deviations)

Figure 2. Comparison of probability density function forgust velocities and their differences withtheory, Flight 6, Run 42. (n = 2, r = 1.5)

20

a( t )

b(t)

multiply

c(t)

/I + r2

1/1 + r2

sum^ u(t)

scale factors

Figure 3. Flow chart of non-Gaussian Turbulenceprobability model.

21

.. _ 1(1 + r')* ___ _2 < 7

/-,/„ ll

where r is an adjustable parameter. A detailed derivation of this equation

is given by Reeves, et al. (1974 and 1976). The range of the parameter r is

from zero to infinity. If r equals zero, the function is exactly the Gaussian

function; however, as r increases, the value of the non-Gaussian probability

density function at zero increases. The non-Gaussian probability density

function with an r value equal to 1.5, the Student T probability density

function with the degree of freedom, n, equal to 2, and the Gaussian prob-

ability density function are compared with typical measured data in Figure

2.

The non-Gaussian density function fits this particular set of measured

data best for r = 3, as shown in Figure 4. By adjusting r, the non-Gaussian

form provides the closest fit to the experimental values. The value of r

which gives the best fit of the data, however, changes for different velocity

components and from run to run. Hence, the value of r depends upon the

velocity component being curve fit as well as the particular run. Table 8

lists suitable values of r for the three components of the gust velocities and

gust velocity differences from Flight 6. Bad data sets are marked with the

symbol X. For some data sets, the shape of the probability density is not

a symmetric bell shape (for example, the longitudinal component of gust

velocity for Run 3), and these runs are marked with a A symbol. The r

value varies from 0.5 to 7.5. The average value for all runs is r = 2. The

standard deviation of the distribution for r is slightly larger for gust velocity

than for gust velocity difference. On the other hand, the mean values of

22

Non-GaussianGaussianStudent T

i.o

0.8

R - Right wx

_C - Center _L - Left

5. -5. 5. -5.

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized' Velocity Differences (Standard Deviations)

Figure 4. Comparison of probability density function forgust velocities and their differences with theory,Flight 6, Run 5. (n = 2, r = 3)

23

Table 8. The Value of the Parameter r of Nou-'Jaussian Prob-ability Deusity Function for All Runs of Flight 6.

Run No. rW]

234568101112131415161718192021222324252627282930313233343536373839404142434446

rera«

AA3214AA2.5A11.5A3.51213.52.53.51.5A3.5AX2A1.51.52.521A3AA1.511.5A11

: 2

2.5A2.52.523X11.521A1.5A1.5A1.52.53A2.5AAXX1AA11.511.5AA10.51.511.5A1.51.5

1.7

7.51.5431.563.522.51.51.51.531.52.51.551.542.522.53.52.5X111.51.5211.51.51.51.522.52.51.521.51.5

2.3

2221.511.522.521.51.51.51.51.521.52.522.52.51.522.51.5X1.52.51.51.5221.51.51.521.51.51.51.51.51.51.5

1.8

2.532.53.51.52X2.52.52.5221.52.52.523.52.523.52.52.52.5XX22.521.51.5222221.521.51.521.51.5

2.2

33.533232.52.522.522233232.52.54.52321.5X2.52.51.522222221.5221.52.522

2.3

Total average = 2

a 0.95 0.69 1.35 0.28 0.55 0.60

24

r for the probability distribution components of gust velocity and for gust

velocity differences vary little.

2.5 Single-point Auto-correlation Coefficient of Gust Velocities

The single-point auto-correlation function for the turbulence wind ve-

locity is defined as

lint->™— > 00

1 fr1 JQ

where x(t) is time history of turbulence wind velocity with zero mean value,

and T is the lag time. This correlation when normalized by the variance is

called the correlation coefficient and is defined as:

where crx is the standard deviation. The single-point auto-correlation coeffi-

cient, BX(T), has an absolute value equal to or less than unity. An alternate

method for calculating the auto-correlation is to use a Fast Fourier Trans-

form (FFT) as described later.

The single-point auto-correlation coefficients of the severe turbulence

wind velocities at three different positions, right wing tip, left wing tip,

and nose, are presented on the 5th page of each data set for a given run

in Appendix A. Correlation coefficients for all three wind components, the

longitudinal, lateral and vertical, are given. The symbols WX,WY, and Wz

indicate the longitudinal, lateral, and vertical components relative to the

aircraft frame of reference, respectively. Subscripts R, L, and C refer to

25

the positions of right wing tip, left wing tip, and center, respectively. For

example, WXR presents the longitudinal component at the right wing tip.

All auto-correlation coefficients are plotted with the spatial lag distance as

the independent variable. Calculated auto-correlation coefficients decrease

from unity to zero and fluctuate about the zero axis as the spatial lag dis-

tance becomes large. The area obtained by integrating the single-point

auto-correlation coefficient from zero lag to the point where the correlation

coefficient first becomes zero is multiplied by the mean airspeed to estimate

the integral length scale. Since the mean airspeed remains nearly constant

throughout the flight, the plots of the auto-correlation coefficients indicate

the relative size of the integral length scales. There are no significant differ-

ences between the correlation from the three different recording stations for

a given wind velocity component, but there is a difference for the different

components.

The single-point auto-correlation coefficient of the vertical component

decays faster than the lateral and longitudinal components. A slower decay

of the auto-correlation coefficient is related to the low frequency of the

wind velocity. For example, in Run 17, there is lower frequency content in

the lateral component than in the longitudinal component as is seen in the

figure of the wind velocity time histories. As expected, the decay of the

single-point auto-correlation coefficient is slower for the lateral component

than the longitudinal component. The results indicate bad data for the

lateral component in Runs 10 and 27, and for all three components in Run

28.

The theoretical model for the single-point auto-correlation coefficient,

B(a), developed by von K arm an for three velocity components is expressed:

26

where a = 1.33, K" is a modified Bessel function of the second kind, L is

the turbulence length scale, and s is the spatial lag distance. Comparisons

of the theoretical models with the experimental data are shown in Figures

5 through 8. For the longitudinal velocity component, the auto-correlation

coefficient of the measured data is higher in value than that predicted by

the theoretical von K arm an model. For the lateral velocity component, the

auto-correlation coefficient agrees with the von Karman model; but for the

vertical velocity component, the auto-correlation coefficient is lower than

the value predicted by the von Karman model.

2.6 Two-point Auto-correlation Coefficient of Gust Velocities

The two-point auto-correlation of turbulence is a correlation between

the same velocity components at two different positions separated by a

distance s. The two-point auto-correlation function, Rx(s, T), is defined as:

oo1 /" , +r x(t,2 J0

where a is the separation distance, T is the lagtime, and x designates any

one of the velocity components Wx, Wy, or Wz- The symbol £ indicates

position. The two-point auto-correlation is normalized with the product

27

cV'o

OCJ

do

OJu

o->

<

1.0

0.0

-1.0

1.0

0.0

-1.00.0

von KarmanB-57BWv

von KarmanB-57B

von KarmanB-57BW,

0.2 0.4 S/L 0.6 1.0

Figure 5. Comparison of single-point auto-correlation ofgust velocities with theoretical model? compositeof Runs 2 through 13.

28

c<D'•-*o

ao

IH

OOIo

.4.)

3

1.0

0.0

-1.0

1.0

0.0

-1.0

_L

von KarmanB-57BWv

von KantianB-57B

von KarmanB-57BW,

0.0 0.2 0.4 s/L 0.6 0.6 1.0

Figure 6. Comparison of single-point auto-correlation ofgust velocities with theoretical model; compositeof Runs 14 through 23.

29

c.o

Co•t~*-t->

JS0.)

uoO

1.0

0.0

-1.0

i .O

0.0

von KarmanB-57B

von KarmanB-57B

-1.0

von KarmanB-57BW,

0.0 0.2 0.4 s/L 0.6 0.8 1. (I

Figure 7. Comparison of single-point auto-correlation ofgust velocities wi th theoretical model; Compositeof Runs 24 through 33.

30

cV'o

Vo

o.tj

1.0

0.0

-1.0

von KarmanB-57BWv

von KarmanB-57B

1.0

0.0

-1.0

von KantianB-57B

0.0 0.2 s/L 0.6 0.8 1.0

Figure 8. Comparison of single-point auto-correlation ofgust velocities with theoretical model; Compositeof Runs 34 through 46.

31

of the standard deviations for positions £ and £ + a, respectively. The

two-point auto-correlation coefficient is defined as:

B (8 T\ = R*(8'T)

where <rz and ax> are the standard deviations of x(£,t) x(£ + s,t), respec-

tively. The absolute value of BX(S,T) is less than one. The Fast Fourier

Transform technique is also an alternative method to calculate the two-

point auto-correlation.

The two-point auto-correlation coefficients are plotted on the 6th page

of the data set for each run in Appendix A. All three components, Wx, WY,

and Wz are correlated between all three measuring stations. The right wing

tip and the center is designated by RC, the center and left wing tip by CL,

and the right wing tip and left wing tip by RL. For example, the subscript

WXRC represents a correlation between the longitudinal components at the

right wing tip and the center position.

Since the time histories of the same component at the three different

positions do not differ much, the two-point auto-correlation coefficients are

similar to the single-point auto-correlation coefficients. This is a direct

consequence of the fact that the characteristic length scale of the turbulence

is very large compared to the length of the aircraft wing span. As expected,

at zero spatial lag, the two-point auto-correlation is not unity. In general,

the two-point auto-correlations decay faster for the vertical component than

for the longitudinal or the lateral component.

The correlations are also related to the wind direction along the flight

path, which is shown on the first page for each run in of Appendix A. To

understand this effect, first consider the longitudinal wind velocity compo-

32

nent. When the longitudinal wind velocity component changes gradually

from a head wind to a tail wind (or vice versa), the correlations decay

slowly. Examples that illustrate this are Runs 3, 13, 16, 23, 25, 26, 29,

30, 42, and 43. If the longitudinal wind component changes very quickly

from a head wind to a tail wind and back to a head wind repeatedly, the

correlations decay faster than in the previous case. Examples are Runs 17

and 40. In other cases, the longitudinal wind component does not change

polarity (i.e., remains either a head wind or a tail wind for the duration

of the flight), and the magnitude changes smoothly. The correlations then

decay very slowly as illustrated by Runs 31, 32, 33, 34, 38, 39 and 41.

Now consider the lateral wind velocity component. When the wind

changes direction gradually from the left side to the right side (or vice

versa), the correlations decay rapidly as shown by Runs 11, 33, 44, and 46.

hi other cases, the wind does not change direction, but the magnitude of

the wind velocity changes smoothly. The correlations then decay slowly as

in Runs 13, 25, 31, 32, 36, 37, 42 and 43.

The effect of bad data is again observed in runs Runs 10, 27 (lat-

eral component only) and Run 28 (all three components) and should be

discarded.

2.7 Normalized Auto-spectra of Gust Velocities

The single-point auto-spectrum density function of turbulence is a

measure of the frequency distribution of the wind kinetic energy. The

auto-spectrum is defined as the Fourier transform of the single-point auto-

correlation in the following way:

•(/)-£33

where / is frequency, r is lag time, and j is %/— I and x is any of the

three wind velocity components Wx, Wy> and Wz- In this equation, the

frequency / ranges from negative to positive infinity. This spectrum is two-

sided; but because of the symmetry of the single-point auto-correlation, the

spectrum is also symmetric:

The negative frequency does not have a physical meaning and, hence,

the one-sided spectrum density function is introduced:

*,(/) = 2Sx(f)

= 2 °° Rx(T)e~3'2irfTdT— 00

The frequency ranges from zero to infinity. Since the single-point auto-

correlation function is an even function of T, and there is no phase angle,

the auto-spectrum is given by the real part of the Fourier transform only:

*,(/)= 4 / Rx(T)eoaZirfrdrJo

Similarily, the single-point auto-correlation is the Fourier inverse trans-

form of the single-point auto-spectrum.

Rx(r)= ' r*Jo

when T equals zero, this becomes the square of the standard deviation:

= r°./o

34

An integration of the auto-spectrum between two frequency limits, /i and

/2, represents the wind kinetic energy in the frequency range fi to fa.

Another way to calculate the auto-spectrum density function is by

applying a direct Fourier transform to the turbulence wind velocity data.

This method is much more convenient and saves computer time; therefore,

it is used to compute all auto-spectra given in this report.

The theoretical von Karman model for the auto-spectrum density func-

tion, $, for all three velocity components is expressed as follows:

a is the standard deviation; L is the integral length scale; K is the wave

number, w/V; u> is spatial frequency and V is mean airspeed. On a loga-

rithmic plot, an increase in the standard deviation will increase the area

under the curve. The length scale also affects the shape of the spectrum

primarily in the location of the "knee" of the curve.

In computing the auto-spectrum density function of turbulence, the

data record is normally divided into segments each of 512 datum points.

However, in some runs, because longer time records were available, the

segments consist of 1024 datum points. The number of datum points in

each segment determines the lowest frequency of turbulence wind energy in

35

the computed spectrum. On the other hand, the accuracy of the spectrum

increases with the number of segments used. The highest frequency of the

auto-spectrum is the cutoff frequency, or Nyquist frequency, fe, and is given

by one half of the sampling rate. The B-57B airplane instrumentation has a

sampling rate of 40 Hz; therefore, the cutoff frequency is 20 Hz. The lowest

frequency is 0.078 Hz for 512 datum points and 0.039 Hz for 1024 datum

points. The auto-spectrum is normalized by the square of the standard

deviation. The normalized auto-spectrum is plotted versus wave number

K on the 7th page for each run in Appendix A. The figures on this page

present spectra for each run at all three recording positions and for all three

wind components. In order to eliminate the uncertainty occuring at high

frequency (which is discussed later), the auto-spectra are plotted only to a

frequency of 5 Hz.

hi Figure 9, the normalized auto-spectra of gust velocities are plotted

for Run 5 of Flight 6. An abnormal spike occurs in the left wing tip spec-

trum of the longitudinal component at a frequency of about 10 Hz. Wind

components are calculated from several parameters measured by various

instruments on the B-57B airplane. To determine the source of this spike

in the spectra, each of the parameters used to calculate Wx were carefully

analyzed. The longitudinal wind component is calculated in the following

way:

Wx(t) = VB(

V(t) = (65.76881)(0.3048)MV/T^

/ /„ \2/7 \ 1/2

-)36

ORIGINAL PAGE ISOF POOR QUALITY

101

10-

101

¥ ->10

io-3

101

SEG.= 8

SEG.= 8

N=1024+ SEG.= 8

SEG.= 8

N=1024SEG.= 8

SEG.= 8

I , Illlllll || il r i ,i.mil in I .,,11111! i ii.i.iil i . inii.l i i .,ml i I iinij j I I n.ill

IO"1 io1 icr1 io1 io-1 io1

f (Hz)

Figure 9. Normalized auto-spectra of gust velocities showingspike in the longitudinal spectra, Flight 6, Run 5.

37

\2/7 I*W. , i \ 9

k p ) ~ 1 + (L2M2

where the symbols are defined in the list of nomenclature. In these equa-/v

tions, only the term V(t) differs noticeably at the three different probes.

The parameters used to compute V(t) are qc,p, and Tc. Thus, these pa-

rameters need to be investigated further. Figure 10 shows the spectra for

these parameters. There is an obvious problem with the measurement of

impact pressure at the left wing tip boom, and a slight problem with the

measurement of free stream-static pressure. The spectrum for the free

stream-static pressure approaches a constant at roughly 5 Hz indicating a

high noise level. Velocities computed from measurements at all the probes

use the same free-stream static pressure measurement.

Several spectra for qcL ^d for Pf showed these same characteristics

while others behaved perfectly normally. It is believed that water droplets

in the pitot tube inlet were responsible for these data abnormalities. Since

this error always occurs at frequencies higher than 5 Hz, the spectra pre-

sented in the report are truncated at 5 Hz.

Additional biasing in the energy spectrum is identified by a rise in

the high-frequency region. Houbolt suggests this is due to the "top hat"

digitizing of turbulence data and proposes a correction factor to account

for this effect:

Here w is spatial frequency and At is the time increment. This correction

38

>. I....... . I-..... . I...,

I — , , _ f _ i *•••••' * ' -.>•••" • • '-•" f i- (-mr*> o- v/» u> r*.'o *o 'o 'o o

r>i

oCM

QJ

Q.

O0

-a0)

0)

.a

Oaia.

<D3O)

39

factor has almost no influence on the signal in the low-frequency region,

but it decreases the spectrum value in the high-frequency region. In Figure

11, the effect of this correlation factor is illustrated. Symbol 1 represents

the spectrum without, arid Symbol 2 represents the spectrum with, the

correction factor. The difference between Symbols 1 and 2 is obviously

greatest in the high-frequency region.

To analyze the influence of the Houbolt correction factor, a decaying

exponential time series given by:

is investigated. The decay rate is defined by the constant, a. From this

equation, the single-point auto-correlation is calculated using the Fast Fourier

computer algorithm. In turn, by taking a Fourier Transform of the auto-

correlation, the exact spectrum is obtained. The exact result is:

"2o — 2(o cos irfT — 2irf sin

T is total record time. To check the correction factor, the analytical curve

is digitized with the following described parameters: o = 0.1, At = 0.1

second, N = 512, A/ = 0.0391?*, and T = 51.2 seconds. These results

are shown in Figure 12. The solid line represents the exact spectrum, and

the symbols represent the digitized signal without the correction factor and

with the correction factor, respectively. The theoretical line coincides with

40

10* r-

$ 10°

10-z

N = 512SEG. = 10

1 - without correction factor2 - with correction factor

io- 10°K = cj/V (m"1)

Figure 11. Normalized auto-spectra of gust velocitiesshowing influence of the Houbolt correctionfactor, Flight 6, Run 42.

41

o•!->O

CO

oo>L.s_oo

3o

(VIII

"I O

n~ t

-M <T3

O -Mcn-i-

C i)

0)4-> (C

Q- CD

O IIO

<o o•!->

i— (/)(T3 -r-O -C

s-o

Co

u<us_oo

oJD3O

^r

is- N

I

OJ"I

CDo

S_ -r- •O -l-> CQ) O

•*-> QJ 4-1

N UH- ••- 01O r- S-

(O S_c cu oo -o u

i- C 3ro n3 oQ. JCE S- 4JO O ••-

OlS-

cr.ul

U)« BOt

42

the exact spectrum, when the correction factor is applied. Although the

correction has not been used in the analysis, it is recommended for use in

subsequent analyses.

As mentioned previously, smoothing is accomplished in all spectra plots

by ensemble averaging. The smoothing procedure is carried out in the

following way.

The original time record, Tr> is divided into q separate segments, where

each time segment is of length T'. The smooth spectrum is given by:

where $'k is the spectrum at frequency fa of the qth time slice. The band-

width Be with this approach becomes l/Tr'. Thus, the degree of freedom

is:

n = WeTr = 2<?

The normalized standard error, Er, is then given by

Therefore, the larger the value of q becomes, the smaller the normalized

standard error. In this study, the parameters used are At equals 0.025

second; /«. is 20 Hz. The total sampling time, Tr, for each run ranges in

length from 38.4 seconds to 128 seconds; the total number of datum points,

43

W, varies from 1536 to 5120. The number of segments, q, varies from 8

to 10 depending upon the length of each run. The time segments, T/, are

either 12.8 seconds (512 datum points) or 25.6 seconds (1024 data points).

The bandwidth, Be, is either 0.039 Hz or 0.078 Hz. Calculations of rms

error range from 32 percent in Run 33 to 58 percent in Run 8.

In Figure 13, the von K arm an spectrum model is compared with the

normalized auto-spectra of all three gust velocity components from Run

2 through Run 24, measured at the center probe. The experimental data

fit the von Karman spectrum reasonably well considering the data are, in

fact, nonstationary in the statistical sense. However, there is substantial

scatter in the data. Longer data records would reduce the scatter, i.e., more

effective ensemble averaging. Figures 13 and 14 illustrate this phenomena.

Figure 14 is a similar comparison of the von Karman model with measured

data, but it is taken from Runs 25 to 46. The average number of segments

used in the ensemble average in Figure 13 is 4.7; but in Figure 14, it is

5.9. Thus, the measured data given in Figure 14 are slightly smoother

than those in Figure 13. Due to the length of the records, no results below

0.039 Hz can be calculated. Note also other techniques of selecting L would

provide a better fit to the von Karman model (see Houbolt, et al. 1964).

Comparison of von Karman's theoretical auto-spectrum model with

experimental data measured by the B-57B airplane is shown on Page 7

of the Appendix for each run. The symbols Wx, Wy, and Wz represent

the longitudinal, lateral and vertical components, N is the number of data

points, and SEG. represents the number of segments used in each run.

Generally, the experimental auto-spectra compares reasonably well

with the von Karman spectrum model. A few cases, however, where the

44

ORIGINAL PAGE 7SOF POOR QUALITY

QJ

OO

Ol

4-> CMl/l13 _c:en co4- o0 i-

.c(0 +->i.

-t-> C\JoO) tOQ. C(^ 31 CtLO

(O O)-o

4- OO E

O (O

(O ^Q.E co o

01

45

PAGE Is

QUALJTY

12

-3

-3

3 O

oO

COO)

UO

> VO

01 _C

§,§•

i. LD+-> 00oOl 10CL C01 3

O)

coco

Q.

a§C-J >

01

cn

to

Io

46

experimental auto-spectrum does not fit the theoretical model, may be

explained as follows. First, consider the case where the value of the experi-

mental auto-spectrum is larger than the value of the von Karman spectrum

model at a given wave number. Such examples are the longitudinal com-

ponent in Run 41; the lateral component in Runs 24, 33, 41, 42, and 43;

the vertical component in Runs 11, 16, 24, 33, 34, 43, and 44. The von

Karman spectrum model is a function of the integral length scale. In this

case, the large integral length scale resulted in a poor fit for the experimen-

tal auto-spectrum with the von Karman model. The explanation for the

large integral length scale can be found by examining the plot of the single-

point auto-correlation coefficient. The auto-correlation normally reaches

zero and then oscillates in a sinusoidal manner about zero. But, in the

cases under discusssion, the auto-correlation does not reach zero before the

sinusoidal behavior begins. Thus, only at a large spatial lag does the auto-

correlation become zero, which, as noted earlier, is taken as the cut-off of

the integration in the length scale calculations.

A second case to consider is the situation where the value of the exper-

imental auto-spectrum is less than the value of the von Karman spectrum.

Examples are the longitudinal component in Runs 3, 13, and 16; and the

lateral component in Runs 23, 25, 31, and 37. In these cases, the integral

length scale which is used in the von Karman model is too small to provide

a reliable fit with the experimental spectrum. Li turn, the auto-correlation

coefficient decays linearly and too quickly. The reason for this rapid decay is

that the corresponding time histories display the following behavior. Divid-

ing the time history into two parts, one half is above zero, and the other is

consistently less than zero. These records apparently contain considerable

47

patchiness or nonstationarity.

Because the proper length scale is difficult to determine, calculations

of auto-spectrum without directly computing the length scale was investi-

gated. Consider the equation for the von Karman spectrum model. The

length scale is one of the parameters, but the length scale can be com-

bined with other parameters to form a new variable. This new variable can

be determined by applying a curve fitting technique to the experimental

data. For example, the von Karman model for the longitudinal component

is expressed:

* [1 + (1.339L*)2]5/6

assuming that LK > 1.

TT (1.339L/c)5/3

(1.339K)6/3

By rearranging this equation, it becomes:

At a certain wave number, say KJ, there is a corresponding value of

the experimental spectrum $(KI) illustrated in Figure 15. The parameter

48

(<r2/L2/3) can then be evaluated at several wave numbers and an average

estimated.

The spectrum equation of the von Karman model can be written:

2^TT0" \

(1.339^)2

Now the value of (<r2/L2/3) is substituted into this equation and the

von Karman spectrum is evaluated without use of the integral length scale.

Figure 16 shows a comparison of experimental data with the von Kar-

man spectrum equation using the integral length scale and that determined

by the curve fit method for Run 42. The curve fit always passes through

the data to which it has been fitted. The von Karman spectrum, based

on the directly integrated integral length scale model, correlates most data

well but is not as reliable as the (Zr2/3/<72) parameter model.

2.8 Normalized Two-point Auto-spectra of Gust Velocities

The two-point auto-spectrum density function is defined as the Fourier

transform of the two-point auto-correlation function between the same ve-

locity component at two different positions. It is expressed as:

= 1^J — oo

where subscripts x and x' denote the velocity components for the same

direction (i.e., longitudinal, lateral or vertical)but separated by the spatial

separation distances. The frequency / is a parameter that can vary between

49

N = 512SE6. = 10

i•i.,

T n£ 10U

•e

ID'2

' »<Vef> ,'

-

1C'2

'.V

^'HV'-1

>Tyi

. ...,...! , . J

ef 10~2

V (m'1)

Figure 15. Illustration of selection of reference $(Kref) f°r

normalized auto-spectra of W D velocity, Flight 6,Run 42. XK

50

Mb

10Z

10°

10-i

10a

10°

io-'

10s

10°

von Karmancurve fitN= 512SEG.=10

von Karmancurve fitN= 512SEC.=10

,,,J 1 . ,,.„„!von Karmancurve fitN= 5125EG.=1

von Karmancurve fitN- 512SEC.=10

WXC

von Karmancurve fitN= 512S E G . l O

jj_ uLvon Karmancurve fitN= 512SEG.flO

von Karmancurve fitN- 512SEG.=10

Wy,

ml , , ,,,.J

von Karmancurve fitN= 512

SEC.-10WYR

von Karmancurve fitN= 512SEG.plO

WZR

10-8 10° 10'8

/c = cj/V

10- 10°

Figure 16. Normalized auto-spectra of gust velocit ies,Flight 6, Run 42.

51

minus and plus infinity. The two-point correlation -Rz,x '(a,r) is integrated

over time, r, from negative to positive infinity. Because J2x,Z '(a,r) is not

an even function, the spectrum density function SXtXi(s,f) is generally a

complex number and is called a two-sided spectrum. The one-sided two-

point atito-spectrum density function $x,x'(s, f) is similar, but it is defined

only for all positive frequencies as:

= 2J —

where the real part, CXjX>(s, f) is called the coincident spectral density func-

tion, and the imaginary part, Qx>x '(8,f), is called the quadrature spectral

density function. It is convenient in practice to represent the two-point

auto-spectrum in terms of a magnitude and a phase angle in the following

way:

where

I *,„•(», /) 1= yc2,..(«,/) + <£,,.(«,/),

and

52

Another method to compute the two-point auto-spectrum is to perform

a direct Fourier transform on the two turbulence wind velocity time histo-

ries. This method is used because it is convenient and fast. The quadrature

spectrum,Qx,x', ls always smaller than the coincident spectrum, CX f X i , for

frequencies less than about 0.4 Hz. However, for higher frequencies, these

two spectra are of the same order. Figure 17 shows this phenomena for

Flight 6, Run 42. Plotted are the three velocity components correlated

between the right wing tip and the center position. The coincident spectra

have the highest value at a frequency equal to 0.078 Hz, and then decrease

to near zero at a frequency equal to 1 Hz. The quadrative spectra have

values near zero for all frequencies. The results are similar for other runs,

except that the coincident spectra decay faster in some of the runs. The

magnitude of the two-point auto-spectrum is normalized by dividing it with

the product of the standard deviations for the individual velocity time his-

tories at each location in space.

On the 8th page for each run in Appendix A, the normalized two-

point auto-spectra are plotted versus wave number, K:. The figures include

three different separation positions and three velocity components. The

subscriptions CZ/, RC, and RL represent the separation positions between

the center and the left wing tip, between right wing tip and the center, and

between the right and left wing tips, respectively. For example, WXCL rep-

resents the longitudinal velocity component correlated between the center

and the left wing tip. N is the number of datum points in each segment

of the time history used for calculating the spectrum by the fast Fourier

transform technique. Frequencies higher than 5 Hz were not plotted be-

cause of the uncertainty in the data at high frequencies, as described earlier.

53

90.

50.

.-10.

to

oOlQ.10

4JC0)-U

(JC

Oo

90.

50.

0._in

WYRCN = 512SEG. = 10

: \__i i i i i

WXRCN = 512 SSEG. =10 oo>

Q.CO

QJS-3

4-^roL-•o

_ \ 3

• "•-•••« °

1 1 1 1 1

WZRCN = 512SEG. = 10

: Vsi i i i i

- WYRCN = 512SEG. = 10

-

i i i i i

WXRCN = 512SEG. = 10

"*

_

1 1 1 1 1

WZRCN = 512SEG. = 10

i i i i i

10-2 10' 10-2 10'

f (Hz) f (Hz)

Figure 17. Coincident spectra and quadrature spectra ofgust velocities, Flight 6, Run 42.

54

The magnitude of the two-point auto-spectra decays almost linearly in the

high-frequency region on a logarithmic plot.

The results of the two-point auto-correlation calculations are close to

the results of the single-point auto-correlahion calculations for the same

velocity component. The theoretical model of the two-point auto-spectrum

developed by Houbolt and Sen (1972) shows that this spectrum is a function

of the ratio of separation distance to length scale (fl/L). Not surprisingly,

when s/L approaches zero, the properties of the two-point auto-spectrum

approach the properties of the single-point auto-spectrum. In Flight 6, the

values of s/L range from 0.0051 to 0.13 for the longitudinal, from 0.0025

to 0.156 for the lateral, and from 0.0058 to 0.189 for the vertical velocity

component. Again, abnormal results in Runs 10, 27, and 28 are attributed

to bad data.

Houbolt and Sen developed a theoretical model for the two-point auto-

spectra function. They considered the gust field to be homogeneous and

isotropic. In their derivation, the velocity fluctuation, Wx- was taken as

the value perpendicular to the line of separation. This, however, is not

correct since Wx is generally defined in the direction of the aircraft body

axis. Figure 18 illustrates the various parameters referred to in the text.

To correct Houbolt and Sen's two-point auto-spectral function, a Fourier

traasform of the correlation:

a ^

is required where RWNWN($) and PWPWP($] are the conventional longitu-

55

co

Oo

nto

oQ.IO

OJ

en co o>"o Q.c o

S- >Ol O)

I— T3

CO

(1)

56

dinal and lateral turbulence correlations (Frost and Moulden, 1977). By

performing a Fourier transform on the two correlation functions, RWNWN

and RwpWp, a corrected equation for the spectrum can be found. This

equation is complicated, but has a closed form integral solution reported

by Campbell and Foster, 1954. The solution of $wxwx ls:

( r \ 2 (-J |o.054

°-097

where

L is the length scale, V is the mean airspeed, and K is a modified Bessel

function of the second kind.

Houbolt and Sen's original equation was given by:

The new equation, and Houbolt and Sen's original version, are compared to

experimental data in Figure 19. The new equation is plotted as a solid line

and Houbolt and Sen's equation is represented by a dashed line. The flight

data is the computed two-point auto-spectra of the longitudinal velocity

component between the right wing tip and the center position for Flight

57

o

10'

10-2

New Equation

Houbolt and SenEquation

10-4

10-3

Figure 19.

10

(nf1)

101

Comparison of the two-point auto-spectrum withHoubolt and Sen's normal equation and therederived equation, Flight 6, Run 42.

58

6, Run 42. The new equation gives slightly better agreement with the

experimental data than Houbolt and Sen's original equation.

2.9 Two-point Cross-spectra of Gust Velocities

The cross-spectrum density function of two different velocity compo-

nents is found by taking a Fourier transform of the cross-correlation func-

tion. The two different velocity components can be taken at the same

location or at two different locations. The equation for the two-point cross-

spectrum is similar to that for the two-point auto-spectrum except that

different velocity components are used.

The magnitude of the cross-spectra of turbulence velocities versus wave

number, K, are plotted on the 9th page for each run in Appendix A. This fig-

ure includes all possible combinations of the three velocity components be-

tween the three positions. The symbols LL, LC, LR, CL, CC, CR, RL, RC,

and RR represent the positions at which the two velocity components were

measured. Frequencies higher than 5 Hz are still cut off because of the

uncertainty in high-frequency measurements.

Since the time histories of the same velocity component at the three

positions are similar, the cross-spectra have similar shapes for the same

two velocity components at various locations. For example, the Wx Wz

components have the cross-spectra plots that look alike for all nine location

combinations: LL,LC,LR,CL,CC,CR,RL,RG, and RR. For Wx Wz,

Wx Wy, and Wy Wz, the cross-spectra show different energy distributions

for low wave numbers (« less than 0.03), see Run 18. For higher wave num-

ber between 0.03 and 0.3, the cross-spectra have nearly the same shape for

a given run. In theory, the cross-spectrum between the longitudinal and

59

vertical velocity components in the atmospheric boundary is larger than

the cross-spectrum between the lateral and vertical velocity components,

and between the longitudinal and lateral velocity components. For Flight 6,

the cross-spectrum between the lateral and vertical velocity components is

about the same order of magnitude as the cross-spectrum between the lon-

gitudinal and vertical velocity component. This suggests at the altitude of

Flight 6 measurements, the turbulence is approaching isotropic conditions.

The relation between the coincident spectrum and quadrature spec-

trum in a two-point auto-spectrum is much different from a single-point

cross-spectrum. The quadrature spectrum of a single-point cross-spectrum

does not need to be less than the coincident spectrum in the low-frequency

region. Figure 20 shows the coincident and quadrature parts of the cross-

spectrum for Run 39 measured at the center probe. The quadrature spec-

trum of Wx Wz is larger than the coincident spectrum in the low-frequency

region in Run 39. The same phenomenon occurs to Wy Wz and Wx Wy

spectra. However, for the other runs, it is difficult to say which spectrum

is larger.

2.10 List of All Parameters Measured and Their Range of Values

On the 10th page for each run in Appendix A, a table is presented for

each run which lists all parameters recorded during a flight: the units, the

maximum and minimum values, the mean value, the root mean square value

and the total number of data points for each parameter. These parameters

are stored on magnetic tapes in the following order:

1. Mountain Daylight time in seconds for each record (t);

2. Roll rate measured by body-mounted roll-rate transducer (positive

60

90.

50.

0.-10.

(O

OOlQ.</)4Jc0)T3•n-OC"

•^OO

90.

50.

nu •i r>

wx wzN = 512SEG. = 6

-

/v, „„.„„.1 1 1 1 1

WX WYN = 512 £SEG. =6 £

cud.i/l

CU

~^_ 4^

(Os~

T3ra

— 3

1 1 1 1 1

WY wz

N = 512SEG. = 6

-

-

i i i i i

My wz

N = 512SEG. = 6

-

; \i i i i i

W X W YN = 512SEG. = 6

_

__

"""

\i i i i i

- W Wwx wzN = 512SEG. = 6

i "I"*' i i i

10 10' 10" 10'

f (Hz) f (Hz)

Figure 20. Coincident spectra and quadrature spectra ofgust velocities, Flight 6, Run 39.

61

with right wing going down), rad/s

3. Normal acceleration at e.g. (positive up) g units (an);

4. Pitch rate measured by body-mounted pitch-rate transducer (positivewith nose going up), rad/s (0);

5. Pitch attitude measured in the vertical plane (positive with nose up),rad

6. Roll attitude of airplane with reference to horizontal (positive withright wing down), rad

7. Airplane heading measured in a horizontal plane clockwise from truenorth (always positive), 0 to 360° range, (V*i);

8. Sensitive airplane heading obtained from V'l with arbitrary zero at theinstant the data switch is turned on (positive with nose right) ±15°range

9. Airplane heading measured in a horizontal plane clockwise from truenorth (always positive) 240° to 600° range (^2);

10. Sensitive airplane heading obtained from ^2> with arbitrary zero at theinstant the data switch is turned on (positive with nose right) ±15°range

11. Normal acceleration at the left wing tip (positive up), g units (anL);

12. Normal acceleration at the right wing tip (positive up), g units (anR)',

13. Longitudinal acceleration at the c.g (positive forward), g units (ax};

14. Lateral acceleration at the c.g (positive toward right wing), g unitsK);

15. Angle of attack measured at the airplane nose boom (positive withflow vane trailing edge up), rad (ac);

16. Angle of sideslip measured at the airplane nose boom (positive withflow vane trailing edge toward right), rad (/0C);

62

17. Temperature of the INS pallet, °F(Ti);

18. Temperature of the instrument pallet, °F(TP);

19. Vertical acceleration of the INS stable element (positive up), g units(a,);

20. Angle of attack measured at the right wing tip boom (positive with,flow vane trailing edge up), rad (an);

21. Angle of sideslip measured at right wing tip boom (positive with f^owvane trailing edge toward right), rad (/?R);

22. Angle of attack measured at the left wing tip boom (positive with flowvane trailing edge up), rad («£,);

23. Angle of sideslip measured at the left wing tip boom (positive withflow vane trailing edge toward right), rad (,#L);

24. Yaw rate measured by a body-mounted yaw-rate transducer (positivewith nose going right), rad/s (if));

25. Total temperature, °C (T0);

26. Impact pressure measured at the left wing tip boom, Pa (qCL)',

27. Impact pressure measured at the airplane nose boom, Pa (gcc);

28. Impact pressure measured at the right wing tip boom, Pa (qCR)',

29. Free-stream static pressure measured at the airplane nose boom, KPa

(p);30. Temperature of IRT, °C T/#T;

31. Distance to go from the present position of the aircraft to the nextwaypoint set on the INS (always positive), m(At);

32. Bearing to destination, i.e., bearing from the aircraft's present positjopto the next waypoint set on the INS, measured in a horizontal plane,clockwise from true north (always positive), deg (75);

63

33. Longitude of aircraft as measured by INS, deg (LONG);

34. Latitude of aircraft as measured by INS, deg (LAT);

35. Track angle of airplane measured in a horizontal plane clockwise fromtrue north (always positive), deg (IT)',

36. Airplane heading, measured in a horizontal plane clockwise from timenorth, rad

37. East-west component of the airplane inertial velocity as measured byINS (positive toward east), m/s (VE);

38. North-south component of the airplane inertial velocity as measuredby the INS (positive toward north), m/s (V}y);

39. Pressure-derived altitude based on standard atmosphere tables, Km

(M;

40. Computed free-stream temperature, °C (Tc)',

41. Computed east-west wind component (positive toward east), knots(WE);

42. Computed north-south wind component (positive toward north), knots

43. Computed magnitude of wind vector, knots (W);

44. Computed direction of wind vector, deg (iw);

45. True airspeed computed from impact pressure measurement at rightwing tip boom, m/s (VR);

46. True airspeed computed from impact pressure measurement at theairplane nose boom, m/s (Vc);

47. True airspeed computed from the impact pressure measurement at leftwing tip boom, m/s (VL);

64

48. Incremental pressure-derived altitude with reference to value at begin-ning of run (positive when altitude increases), m (A/ip);

49. Computed unconnected inertial displacement, m (Ahz);

50. Computed longitudinal component of gust velocity at right wing tipboom (positive in direction of flight path), m/s

51. Computed longitudinal component of gust velocity at airplane center-line nose boom (positive in direction of flight path), m/s (Wxc}\

52. Computed longitudinal component of gust velocity at left wing tipboom (positive in direction of flight path), m/s (WXL]\

53. Computed lateral component of gust velocity at right wing tip (positivetoward right), m/s (WYR)',

54. Computed lateral component of g;ust velocity at airplane centerlinenose boom (positive toward right), m/s

55. Computed lateral component of gust velocity at left wing tip boom(positive toward right), m/s (WyL}',

56. Computed vertical component of gust velocity at right wing tip boom(positive up), m/s (WzR)',

57. Computed vertical component of gust velocity at airplane centerlinenose boom (positive up), m/s

58. Computed vertical component of gust velocity at left wing tip boom(positive up), m/s

65

3.0 CONCLUSION

The statistical analysis of the turbulence measured in Flight 6 of the

NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982, includes

the calculations of average turbulence parameters, integral length scales,

probability density functions, single-point auto-correlation coefficients, two-

point auto-correlation coefficients, normalized auto-spectra, normalized two-

point auto-spectra, and two-point cross-spectra for the gust velocities. The

probability density function of the turbulence is best represented by Reeves'

non-Gaussian model which is a function of the parameter r. When the value

of r is zero, the probability is, in effect, a Gaussian probability. When r ap-

proaches infinity, the probability will approach a modified Bessel function

of the second kind and of the first order. Additional analysis is required to

determine how r is related to the severity of the turbulence.

Comparison of the single-point auto-correlation coefficients with the

theoretical model developed by von Karman shows that the auto-correlation '<*

coefficients of the longitudinal velocity component are higher in value than

that predicted by the model. For the lateral velocity component, the auto-

correlation coefficients agree with the von Karman model, but for the ver-

tical velocity component, the auto-correlation coefficients are lower than

the model. Since the time histories of the same gust component at three

different positions of the NASA B-57B do not differ much, the two-point

auto-correlation coefficients are similar to the single-point auto-correlation

coefficient. The results appear to be very accurate up to 5 Hz; but at fre-

quencies higher than 5 Hz, errors will occur because of noise in the signal

and biasing due to possible water in the pressure sensors. Generally, the

66

von Karman single-point auto-spectra models using the integral length scale

fit the data well. Applying Houbolt's digitizing correction factor, however,

will bring the data into better agreement with the theory. Curve-fitting the

data to obtain a value of the parameter (L2/3/<r2), however, improves data

correlation with the von Karman model.

As to the two-point auto-spectrum of the gust velocities, the quadra-

ture spectrum is always smaller than the coincident spectrum for frequen-

cies less than about 0.4 Hz. The coincident spectra have the highest value

at a frequency of about 0.078 Hz and then decrease to near zero at a fre-

quency of approximately 1 Hz. The quadrature spectrum of a single-point

cross-spectrum, however, is not always less than the coincident spectrum in

the lower frequency region. Houbolt and Sen's model of the two-point auto-

spectrum for the longitudinal velocity component in its original form does

not agree with the data as well as the new corrected form of the equation.

The two models predict lower values than the data in the high-frequency

region.

In general, the turbulence behaves very similarly to isotropic homoge-

neous atmospheric turbulence. This ma;y be a consequence of the fact that

the ratio of the 19.5m span of the B-57B turbulence length scale is small.

Additional flights at lower levels and perhaps closer to the storm front may

be required to further investigate the non-isotropic turbulence.

67

REFERENCES

Bendat, J. S., and A. G. Piersol (1971): "Random Data: Analysisand Measurement Procedures." New York, John Wiley & Son, Inc.

Reeves, P. M., G. S. Campbell, V. M. Ganzer and R. G. Joppa(1974): "Development and Application of a Non-Gaussian Atmo-spheric Turbulence Model for Use in Flight Simulators." NASACR-2451.

Reeves, P. M., R. G. Joppa, and V. M. Ganzer (1976): "A Non-Gaussian Model of Continuous Atmospheric Turbulence for Usein Aircraft Design." NASA CR-2639.

Houbolt, J. C. and Asim Sen (1972): "Cross-Spectral FunctionsBased on von Karman's Spectral Equation." NASA CR-2011.

Frost, W. and T. H. Moulden (1977): "Handbook on Turbulence."New York, Plenus Press.

Campbell, G. A. and R. M. Foster (1954): "Fourier Integrals forPractical Applications." D. Van Nostrand Company, Inc. (NewYork).

Frost, W. and M. C. Lin (1983): "Statistical Analysis of Turbu-lence Data from the NASA Marshall Space Flight Center Atmo-spheric Boundary Layer Tower Array Facility," NASA CR-3737.

Houbolt, J. C., R. Steiner, and K. G. Pratt (1964): "Dynamic Re-sponse of Airplanes to Atmospheric Turbulence Including FlightData on Input and Response," NASA TR R-199.

68

APPENDIX A

ORIGINAL PAGE ISOF POOR QUALITY

(X fOQ_

CO 4->

•»-> o>o ••-CO i—S- U_

o*3-

oo i-0> Q or- S <U

— l/>* in

- LO (T>r— .. O

un i—

3 ro

OJ O) (O-»-> = S-tO -r- 3Q t— Q

oooCTi

OOO00

(6ap)

CO

oI

COTJ

CO

CO

CO

o

<nCO

CTl

00

I/IOJ

co

CM

ooo!•••»

oooV£>

OOOLf>

7i A,

K%

Z*

! . t t .il/ .. h*I - «VL/

C\J

o:

c:o

(OQ.

O)

en

A.I

e

oM

OO

OCO

^

d0)>

I I i 1 1

rt

Oce

o

d

oo

oCD

(D 0)

. a

oX

a:X d

X

o

_, d

oo

oCO

so*r

oCM

o

O D O O O(M .-• T-. (\J (s/ui) paadg pui&

o o o o oCM ,-, —. CM

I I

3o>

c(O

Ol

_

« §

CO U.01

•r™ **i- 10O Ol4-> OIO C•r- 01

01OJM-

CXJ

<:01

en

A.2

TABLE A.I. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 2.

I. Mean Airspeed (m/s)

v R

121.2 120.3 122.2

Standard Deviation ofGust Velocities (m/s)

W,XL

1.13

aw.xc

1.12

aw.

XR

1.22

(JW.

YL

0.96

(7W.

YC

1.00

<7W,

YR

1.01

III. Standard Deviationof Gust VelocityDifferences (m/s)

aw,ZL

aw,zc

1.42

W,ZR

1.40

RL

0.49 0.51

0.39 0.39

o,

0.48 0.46

0.71

HCL XRC XRL

0.40

0.54

IV. Integral Length Scale (m).

XL

\L

645

L

1563

\

550

zc

1592

1272 1329 1163

627

R

H67

A.3

1.0

0.8

R = RightC = CenterJ_= Left

(0

8D-,

0.2

0.0-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.3. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 2.

A.4

a•••4u

tio

o

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.4. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 2.

A.5

WXRC

a

Vooco

no(X

I

1000. ' 2000. 3000. 4000.

Spatial Lag ,S=VT(m)

Figure A.5. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 2.

A.6

ID'1

10*

\

* 10°

10-

•von KarmanN=1024SEG.= 4

—von KarmanN=1024SEG.= 4

von KarmanN=1024SEG.= 4

von KarmanN=1024SEG.= 4

mill i iimiJ i_.i-i_miil i ii

—von KarmanN=1024SEG.= 4

Wy

, inmil . .,|,|J I ili.Mil

von KarmanN=1024SEG.= 4

—von KarmanN=1024SEG.= 4

von KarmanN=1024SEG.= 4

r •?

—von KarmanN=1024SEG.= 4

I I tllUll I I II Mill I llllinl I llllllJ

io~8 10° 10° io~8 10°

= u/V

Figure A.6. Normalized auto-spectra of gust velocities, Flight 6, Run 2.

A.7

10s

6" 10°\S

37* 10-a

108

tr6" 10°

10-

10a

N=1024SEG.= 4

WXCL

i iniiiil i i i iiua i i i

N=1024SEG.= 4

. N=1024SEG.= 4

N=1024SEG.= 4

+V>

tint i i iiinil i i it u ill

N=1024SEG.= 4

N=1024SEG.= 4

I.IIMll

5EG.= 4

WZRL

10~8 10° 10~a 10°« = cj/V (m

ID'2 10°

Figure A.7. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 2.

A.8

w w w.

.-e«"

'' 10°._ *v

10° 10° 10i-Z 10°K =

Figure A.8. Two-point cross-spectra of gust velocities, Flight 6, Run 2,

A.9

ORIGINAL PAGE 8SOF POOR QUALITY

TABLE A.2. List of All Parameters Measured and Their Range of Values,Flight 6, Run 2.

34"567-

~8910111213i*151617181920212223242526272829303132333*3536373839*041»2»3*445

48495051t>213545i56•7"58

START T I H E •

CHANNEL UNITSRToTsFCG UNITS

49555.4388

HIGH

STOP TINE -'4966*.6138

LOW NEAN RHS

A C C L N CGT H E T A DOTTHETAPHI ••" "PS IIDElTPSTTPS I 2DEL PS 1" 2A C C L N LT"ACCL N RfACCL X JCGACCL'Y CG"ALPHA CTRBETA CTRTENP ITENP PA C C L Z INSALPHA RTB E T A R TALPHA LTB E T A LTPS I DOTTENP TOTOC ifOC CTROC PTPSTENP IRT0 TO G

~B TO pLONGLAT ~TDK ANGHOGV EVN~ "ALTITUDE

RAO/SECRAO _"_'RADDEGREES^"DEGREESDECPEESDEGREESG UNITS^C UNITSGUN ITS _

"G"UN ITSRADRADOEG'FP E G F ' " "G UNITS'

.0701.300.045

.068

17582"271.335_ 1.227_ 1.685_ 1.759

.077_ •21"?_ .006__ .020J 11.396"

89.6*71.332

-.099.598

-.033"~ .008

-.104J69.652_

-2.474"267.462

-2.8012_ . 330

•231__ ._ -.187__ -.061

-.073T69.597

89.467.553

r RADR A D

r PADRADRAP/ SEC"

r DEC cpsinPSIDPSIDPSIA

r OFG cHETERS

.016.052.021.012.039

31.0981.0671.0501.093

10.97928.445

0769139. 891C

-.053-.034-.058-.072-.035

29.914 31.898

. .«91 ,.915

10.927" li25.534 2

•756035. 93 0»*«*

-.00312.99372.00494.04226

-.01153271.32161

-.73362"J69.18582

-1.06147~_~ 1.C1157

_ 1.02622.04435_

_".00601_ -.02507__ -.02177lit.4374089.t0903

1.00215-.01960

.01299-.01736-.02644

.0033030.40423_

.97588

.96142

.9922110.9582626.81273

.02051

.99597'.00894

_^04376.02588

271.32272'l". 06268"

J69.18692_' 1.30520"

'_ 1.02036_" 1.03719

_.0450(r.06275.02594.02430

JliO.4384689.609061.00463

.02110

.01639

.01873

.02617

.0098130.40585

.97651

.96207

.9929410.9582726.82397

4367

4367

DEGREESDEGREES

D f C ^ E E SR A D I A N SH/SEC

K MOEr.SEES CKNOTS

KNJ1TSOEGf ItSH/SFCH/StCH/SEC

80.516-104.683

39.751272.t51

4.786-119.616

5.7142.430

22.8312.913

-1.77316.259

359.981128.106125.644126.979

60.412 80.46366 60.46387-104.839 -104.76115

39.752 39.75407270.614 271.5D367

4.715 4.74643-124.401.-122.39509

EU WHO SPONS WSO SPO«IV> SPFFOW I S O CIPtCA l R S P F E n RA I R S P E E D CAIRSPEED I

JDJITA ALT HETERS 18.118LiSRfroi!UG RIGHTUG'CEHTfUG LEFTVG RIGHTVG C E N T !VG L E F T«<^ RIGHTUG C E N ThG LEFT

1.6C22.392

22.751-9.347

-15,6371.P47

.104117.665116.119116*519-19.650

3.236022.40747

23.19801-4.43574-6.71558

6.3221942.06074

122.16261120.31C60121.18580-4.51043

OISP HETERS 1KTTEITHTiTEJTHTITEIT

H/SECI H/SEC

H / S F CH / S f C

t H /SECH/SFCH/SFC

I H/SECH/SEC

6.724 -19.8722.5372.3963.1722.6432.5912.4195.4394.8165.469

-4.374-3.895-3.404-4.054-4.563-4.377-4.436-3.611-4.375

-4.71472 ;-.00000

.00000

.00000

.00326

.00347

.00391

.00511

.00623

.00477

104.7611639.75'07

271.534264.74645

122.403763.451092.40749

23.198734.920136.975468.53608

67.00408122.1835912P.32964121.20421

10.066p3_10.09669

1.20677.1.106971.12080

.97500.96989.93178"

1.36188_1.379411.40635

A.10

ORIGINAL PAGE ISOF POOR QUALITY

01

<O

Q£ (OQ.

O 4J

0> •—l_ LL.

•f—o o-a

CM ^--S00 I- £

2 S °—' co" in j>

«* o•— •• CO

CO ^*>» ID

3 CO ••

O) W (O

•O •?- 3Q f- a

(OQ.

o>

i^

k

OOo

ooooo

O)a»x»

so>co

Lf)

LT>

CO

oo

a» s.\\

\

00

0)

CO

CM

ooor*.

ooovo

ooo

oo

cePI

vo

-Co>

o<+-c

QJ

O>

A.11

M2<

M2<

oCM

OO

O00

O10 O

O

<u

>-3<]

O(M

O

_ O

OO

OID

oo>n

(U

i .

o(M

oo

ooo

o(O

o<r

oM

o o o o oCM '-i T-> fSJ

I I

o o o o(M —< —•

o(M

C7)

•ac:

oroO

•— c<u -3> oe

<4- CJ>O -i-

(D

O Ol

10 C

O)<U <4-s «*-( -o

d

•st

(s/ui)

A.12

TABLE A.3. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 3.

I. Mean Airspeed (m/s)

111.5 110.7

R

112.4

n. Standard Deviation ofGust Velocities (m/s)

aWXL

3.75

aWYL

1.77

crwxc

WYC

1.81

WXR

3.68 - 3.73

aWYR

1.73

III. Standard Deviationof Gust VelocityDifferences (m/s)

0.64 0.65

0.60 0.59

0.66 0.72

0.82

HCL XRC XRL

0.65

0.83

aWZL

2.10

aw,zc

2.04 2.24

IV. Integral Length Scale (m).

554

,ZL

940

\

\

541

1042 1043 1038

559

976 1050

A.13

1.0

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

Figure A.11.

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations) •i

Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 3.

A.14

aV'3

<uo

ao33jg<ui*LIooio

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.12. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 3.

A.15

WXRC

a•i-4

U•1-4«*-•«fc-(

0>o

co

Ouio

n'Sa.io

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

300Q.

Figure A.13. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 3.

A.16

10Nb

•von KarnvanN=1021SEG.= 3

\

I

von KarmanN=1024SEG.= 3

von KarmanN=1024SEG.= 3

—von Karman —von Karman —von KarmanN=1021SEG.= 3

von KarmanN=1024SEG.= 3

K = u/V (m-1

10,-a 10°

Figure A.14. Normalized auto-spectra of gust velocities, Flight 6, Run 3.

A.17

102 r'

rb^b~ 10°

10-*

108

trtr io0

* ltr*

10s

b"b~ 10°

10-2

N=1024SEG.= 3

WXCL

,,J , , ,,,,J

N=1024SEG.= 3

WYCLV

i iinitj I iiinij i i i mill 1 lim

_ +F +

N=1024SEG.= 3

+ WZCL

N=1024SEG.= 3

WXRC

**

N=1024SEG.= 3

tiniJ i 11 mill i i t innl t IIMIH i i mini i i mini i t imitl i

SEG.= 3

V+m

F

5EG.= 3

WZRL

10- 10° io~8

/c =10° icr8 10°

Figure A.15. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 3.

A.18

«„ w w „ w.

10~8 10° ID'2 10°K = u/V (

ID' 10°

Figure A.16. Two-point cross-spectra of gust velocities, Flight 6, Run 3.

A.19

ORIGINAL PAGE ISOF POOR QUALITY

TABLE A.4. List of All Parameters Measured and Their Range of Values,Flight 6, Run 3.

START TIME • 49609.4844 STOP TIHE • 49883.9094

CHANNEL2 PHI DOT3 ACCL M CG4 THETA DOT5 THETA6 PHI7 PSI 1« DEL PSI 19 PSI 2

10 DEL PSI 2 ™11 ACCL" N LT12 ACCL H RT13 ACCL X CG~-

UNITSPAC/SEC6 UNITSR A D / S E CRAO "RAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITS

14 ACCL f CG 6 UNITS15 ALPHA CTR16 BETA CTR17 T E M P I •""18 TE1P P19 ACCL Z INS "20 ALPHA RT21 BETA RT22 ALPHA LT21 BETA LT24 PSI DOT25 TF1P TOT26 OC LT27 OC CTR26 OC RT29 PS30 TEMP IRT31 0 TO G32 B TO D33 LONG34 LAT33 TPK ANG36 NOG37 VE38 VN39 ALTITUDE40 TEMPC41 EU WHO SPD42 r-S WND SPD43 wlND S P E E D<.<r WIND OIPFC* ? A I 8 S P E E P f i»6 A 1 0 S P E E P C47 AIRSPEED L48 DELTA AIT "49 INRTL OISP50 UG RIGHT51 UG C E N T E R5i UG LEFT53 VG RIGHT54 VG C E N T E R55 VG L E F T56 UG RIGHT57 UG CENTER58 UG LEFT

RADRAODEC FDEC FG UNITSR A ORADRAO "~1 ~~RADRAD/SECOEG CPSIOPS ID»SIDPSIADEC CMETERSDECREESDEGREESDEGREES ""O C C P F E SRADIANSM/SECM/SECKMDEGREES CKNOTSKNCTSKNOTSDFCPEES"""f / S f C•»/sirM/SfCMETERSMETERSM/SECM/SECM/SECM/SECM/SECM / S E C '""M / S E CM / S E CM / S E C

HIGH.072

" 1.627.037.094.041

313.3212.904

314.9882.8742.0201.859

.139

.175" ~ .058

.036107.798

'90.0061.633

.068

.063

.C69

.021~.03f

29.914

LOW-.C88

.642-.045.031

-.069308. ?97-1.857

310.060-1.802

.160

.182

.032-.159-.054..C72

106.89989.647

.620-.060-.035-.039-.085-.027

28.240

ME AM-.00324

.99422

.00481

.06292-.00889

310.69637.51978

312.55654' .51022

1.011681.02835

.06434

.00796-.01C4P-.C2107

107.3303269.83471

1". 00 459-.00229

.01447

.00071-.02642

.0034628. ^4907

BHS.02078.99850.01095.06434.02096

310.697641.02301

"312.557751.014851.026211.04275

.06518

.05271

.01490

.02740107.33076"89.83472

1.00892.01282.02156.01119.03106.01146

28.95259.979 .756 .82327 .82447.944 .751 .81163 .81273.993 .763 .B3729 .83843

10.979 10.680 10.95411 10.9541224.966 13.439 20.73977 20.83180

8742922. 2148737460. 433****»***»»************R0.291

-105.00639.858

313.1115.496

-82.07178.4142.612

23.4589.3517.154

11.5033 59. 99 «122.17611<5.?03121.133

- 195.0700.0005.2504.5764.8124.6114.4744.2397.6226.9338.091

ftO.229-105.082

39.804311.MO

5.410-85.818

73.9742.392

22.310-16.032-17.B97

2.391.072

197. f451C6.66P107.221-24.882

" -15.034-11.902-10.520-11.826-6. 080-6.336•7.339-8.3S6-6.C<1-5.981

80.26050-105.04370

39.83064312.CB4iB

5.45239-84.17617

76.044772.41049

22.84Z7R-7.78967-.60240

10. "4)20105.75741112.42393110.730<53111.49930

"" " -6.41 523-5.23568-.00000-.00000-.00000-.01278-.01492-.01482

""-.04249-.03757

, -.03986

80.26050105.04370

39.83064312.014*0

5.4524184.1822776.05794

2.4104922.R43769.223856.2764*

11.15677129.53243112.4'»<;-»0110,?ft63"111.53747

8.345186.137213.731223.687613.750821.719761.798P41.762252.227402.033962.09167

POINTS312131213121312131213121312'i3121312131213121

"3121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121312131213121

A.20

ORIGINAL PAGE |SOF POOR QUALITY

<o

a: 5

o

r?

s11

l i

oo •T7 "O00 Q SOS = Oi— ^- U

O••co

(Bap)

s ro ••^> i— c

o

(D Q; ft}•I-1 E t-f^S *f~" ^

O h— Q

<TJO.

oo

U(.<u

CO

O

I

(U

°?<u

oI •

co

CO

LOo

UT—

cr>

03

a*

£

o oo oo oen co

ooof~-

ooo

oooin

cQi

CT)

CO

o<+-c.

a.

en

QJ

3

A.21

a:rvj3

1

I

r i

CE>—*2

1

,

i1

i i

onX3

:

i•4

t i

d d cCM .-.

CJM

3

1

J

t1 1

1 1

r y' 3

Ii.

1 11 1

X3

tI •;k.i i1 1 1

.3 d d

— CM1 1

_l ,M3

'

j

J

1

k , , '1 1

i ?!3

1

1

t

1 . ,<i i

_iX

< 3;;1

; ;L

C , , <1 1

(s/ui

osM3o

>

L , ^

1

v j

, '*I;*- *i^1

r.

V, ,1 1

CJa:X3<1

t> :L i i

• i

\ T

) P83UC

iCJt^3<j

i

, ,i i

_J

u>_

-

L j

1 ' J

X3<

1

L i 'i i

PUIAA

_J

C£f*43

<

P Ii i

joc> -

"'*^1*-*

t 1 4._.i. . .-,'

i3«-1

!

L i |

O O CCSJ —i

.

"

(

-

-

-

-

"

,

-

.

I

D O C—. ri

O(M

•O0

d03 >>

-M• *r-

0 CJCO O

OJ

s+->in

O 3<M cn

•ao =

«O

C3 V*M <U

^_)

S 0^— O

r— C. s~ 0) 3

s S; >tt:y> 4-> *~

• ^^" (/) V^O 3CD CV OT-I-1

t 4- O>

§ t> °;zI/) U-

d * .«M S_ CO

O 0)4-> CJ»r\ f~

O t/> C._ fl)• r~ yjt- i_

d QJfM 0) H-— E 4-

d P'-S0

d 2°CO .

<s.O fljCO s_

3

d .?«* u.

•ofSJ

O

DSJ1

A.22

I. Mean Airspeed (m/s)

R

108.4 107.7 109.5

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

0.49

0.46

0.52

0.53

0.43

0.48

0.67

0.48

rZRC A¥ZRL

0.56

H. Standard Deviation ofGust Velocities (m/s)

aWXL

0.98

aWYL

1.97

aWZL

1.23

V. Integral

\L

(7wxc

0.97

aWYC

1.92

aWwzc

1.20

Length

\c

aWXR

1.03

aWYR

1.91

aWZR

1.22

Scale (m)

\R

260 302

\

216

1159 1116 1141

Sr

617 678 694

TABLE A.5. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 4.

A.23

^ RighV ' ' 'C = Center WL = Left

I I I I I I I

w

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

5.

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.19. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 4.

A.24

cV'a

va

ao

0)

hOuIO

1 1 1 1 1 _l

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.20. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 4.

A.25

a>ooco

EoIo

.goa,io

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

Figure A.21. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 4.

A.26

108

10°

Nb

108

10°

10-«r

von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

I

von KarmanN= 512SEG.= 5

von KarmanN= 5125EG.= 5

von KarmanN= 512SEG.= 5

Wy

von KarmanN= 5125EG.= 5

W,

—von KarmanN= 512SEG.= 5

i.im,l . in.,,,1 , il i . ,,|,J

—von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

10" 10° 1(T2 10°

K = u/V (m

ID"8 10°

Figure A.22. Normalized auto-spectra of gust velocities, Flight 6, Run 4.

A.27

102

r 10°

102

102

6

N= 512SEC.= 5

WXCL

N= 512SEG.= 5

N= 512g + SEG.= 5

+ V WZCL

N= 512SEG.= 5

WXRC

N= 5125EG.= 5

WYRCV+ .

N= 512SEG.= 5

WZRC

N- 512SEG.= 5

WXRL

iiml i i i mitl i i mint i i i null

N= 512SEG.= 5

N= 512SEG.= 5

WZRL

10,-2 10° 10~2 10°K = u/V (m

10°

Figure A.23. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 4.

A.28

10*

's?""•=• 10

•e-""1

io-2

io8

^^

".„ 10°&

io-8

10*

^~.

"% 10°tAt•w*

io-«

r

r

r—

rr

rr

r

r

r

rr

rr

r;

rr

rr

r

fr

rr

r

r

rr

rrr

r

rrr'

fr[

w x w zLL

— -LC

r — LR

• ^ ^^^~ * \Ar \'v. |Lr XA$r \ty

r Nr" i iiiurJ i uiHiJ i iiiiml i i initl

CL

-— CC

f — CR

: \ ^^"\

r v^.vW^

r VA^\

f Nr" i iiiurJ 1 until i iinrnl i i HiJ

— RL— -RC

r — RR

r > v^vr .>*.>''v

V * 1^r ^\*r \J: r

r

10~8 10°

r

|-

rrr

rr-

rr

rr

r

rr

r

rr

rrir

r*—

r

r

r^r

1r

r

r

rr

r

r

rr

r

r

!

r

r

rr

w x w y— LL

— -LC

r \ — LR

1 V ^S

~ \ V.r \*\V

r Vxo\r '-Ar ^r

CL

— -CC

r \ ~~CR

- v^v

r \\V

- ^vVto

— Ud

~

i mini i nrntJ f MinrJ i i iniiJ

— RL-— RC

r , — RRr x \^

r \ N^)v^ \ ii.r s <\r Vft

rr:,,,.,nl J A , ,,,J

10~B 10°

K = u/V (m'1)

r

r

rr

r

rr—

rw

w3

rr

rr

r

rr

r=

r;r

r—

r

r

r^rr

r

r

rrr

r

r

rr

r

rr

r-

r

rr

W Y W Z— LL

— -LC

r . — LR

r \^\i \ Vr~ » \t\ Vj

r V\"^Nr VK

r ^ri muni i iinml i iiintil i IIMH{

CL

— -ccr \ ~~CR

r 4N\

r ^\,r V/\'iA

r ^r" i MI lilt! i i mini i i nitirl i mittJ

RL

— -RC

r v — RR

" \^\\ ** "t\ * '*! ^1,

^w'vV

7* MB

r:, Minn! , ,,,,ml ml J

10~2 10°

Figure A.24. Two-point cross-spectra of gust velocities, Flight 6, Run 4.

A.29

ORIGINAL PAGE ISOf POOR QUALTTY

TABLE A.6. List of All Parameters Measured and Their Range of Values,Flight 6, Run 4.

START TIME • 49983.5647CHANNEL UNITS HIGH

2 PHI DDT3 ACCL N CG4 THETA DOT5 T H E T A6 PHI7 PSI 1d DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL~N LT12 A C C L N RT13 ACCL X CG"14 A C C L Y CG15 ALPHA CTR16 B E T A CTR17 TEMP IIB TE1P P19 A C C L Z INS "20 ALPHA RT21 B E T A RT±Z A L P H A LT23 B E T A LT24 PSI DOT"25 TE1" TOT£6 OC LT27 OC CTR26 OC RT29 PS30 TEMP IRT31 0 TO G """ "32 B TO 033 LONG"34 I ATi5 TR< AMG36 HOG ""i7 VE38 VN39 ALTITUDE«0 TE1PC41 EW UNO SPD42 MS U<«0 SPD*3 WI'O ?PEEO.4'hHD DIPEC•d i ! O S » E E O Pii A I R S » F E D C47 AIRSPEED L46 DELTA ALT49 INRTL DISP5C UG RIGHT51 UG CENTER ""52 UG L E F T53 VG RIGHT54 VG C E N T E R5! VG LEFT56 WG RIGHT5 7 ~ W G C E N T E R58 WG LEFT "~"

R A O / S E CG UNITSRAD/SECPADR A DDEGPEFSDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSR A DRAOCEG FDEC FC UNITSR A PRAO :RADR A DRAD/SEC"DFG CPSIPPSIDPSIOPSI ADEC CHE T EPSDECREESDEGREESDEGREESO t C R E E SRADIANSM / S ? CH/SECKMD E G R E E S CKNOTSKNOTSK K G T S

. D E C R F E S "M / S E T" /SECM/SECMETERSMETERSM/SFCH/SECH/SECM/SECM/SFCM / S E C "M / S E CM/SECH/SFC

.0911.Z93

.029

.097

.042221.749

-.327383.261

-.4811.7781.499

.133.160.034.041

106.f 3990.006

1.285.056.073.054.C29.033

2f>.<30.839.827.859

10.966

STOP TIHE • 50050.6647 POINTSLOW MEAN RMS-.066

.743-.033

.044-.055

217.874-4.061

579.727-4.242

.440.399.038

-.146-.029

" -.047105.619

89.826.751

-.021-.011-.017-.047-.027

27.453.659.664.671

10.928

-.00283.99291.00433.06338

-.01429"220.18189

-1.88476.981.82887

-2.06B241.010311.02689

.07836.01505

-.00596-.00462

106.1367189.69643

1.0C476.00596.03009.00762

-.01116.00300

2*. 27712.77766.76766.79386

10.94477

.01781,99529.00828.06433.02436

220.163672.07056

981.829492.241121.017951.03394

.06118

.04168

.01106

.01537106.13888

89.898471.00707

.01297

.03312

.01297

.01711

.0110628.27952

.77898

.76890

.79516 "'10.94478

19.717 17.880 19.09111 19.094996727618. 7658722005. 619»»*»«*»«***»**»**»***«

80.158-105.194

39.842222.493

3.696-66.633-79.190

2.43023.216

9.174-.177

14.166359.947113.792111.724112.932

2.670" o.coo

2.9222.5332.8203.4593.9343.5523.8934.1894.554

80.130-105.251

39.792219.846

3.829-76.635-P5.614

2.40222.100-9.308

-13.9732.910

.030100.949100.437100.083-29.156-23.903-4.777-4.499-3.840-5.390-5.667-6.676-4.305-4.193-4.099

PO. 14442-105.22186

39.61719221.46507

3.86650-73.54235-83.09595

2.4172922.49604-3.09424-5.67366

7.4254291.36132

1C9. 51228107.73473108.41707-9.49684

-11.00873.00000.00000.00000.00741.00539.00808

-.00760-.00448

" -.00579

80.14442'105.22186

39.81719221.46663

3 .8665373.6133983.11787

2.4173022.49730

4.560396.1573«7.66227

146.3)400109.55540107.77641106.46061

11.6059812.862811.01469

.95252

.970711.894461.90553

' 1 . 9 5 1 8 11.207331.18C241.21073

26P4268426842684266426642684268426642684268426842664268426842684268426842684268426842684268426842684268426P4268426842664268426842684266426842664268426642664266426642684269426642684268426842684268426842664268426842684268426842684

A.30

>•F"

4JIB

OL 10Q.

CO 4-»

•c- .C•»-> o>O ••-O) i—s_ u_Q O

I I

CO

O

I

C7I<U13

ro• OJin-0

O 3•— 4-»I •r-

Ot

00

If)

enco

to

«M~!co i— o>y\ Q u

• CTl«*- •— o<— •• co

in co>»io3 co ••

4J E i.(0 -r- 3Q I— Q

(6ap)

(O0.

oCo

C

i-

en

CO

VO

OJ

CSJ

0O0

0Oo00

000

000

oooir>

ORIGINAL PAGE ISOF POOR QUALfTY

LD

C3

CO

0}

O

fOQ.

Lf)CNJ

Ol

A.31

oCXJ

oo

_octM

ctM

OCO

oCD

oo-

I I I

cex

1r

O O O D OCM .-. -. CM

I I

X2<

(s/ui)

_ o

4— 1 .o

---1 1

-

ft:>22rf*1 '

j

i i

;

-

.

i

'M

•OOH

CDCO

,

O(£>

^

CDr\)

i i i i OJ

_ o

_lX£a

:

1 jj«

_j

< ;

-!

-

CM• — 1

OO

.CDCO

0*CD

' ii ."

f

L_ !

0

*

OCM

O

d o" o CD oCM — i — < CM1 1

'o'w

N ^ *

0)

01

u tno

> a:

t- O)o ••-(Sl U.<D

• I— *»s_ ono cu••-> oi c

•r- CUJC. i.

01<L) M-

CM

cC

01

A.32

TABLE A.7. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 5.

I. Mean Airspeed (m/s)

R

104.0 103.3 105.0

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL HRC HRL

0.53 0.53

0.48 0.46

HCL HRC

0.68

0.51

n. Standard Deviation ofGust Velocities (m/s)

(7WXL

1.26

crWYL

1.97

a

1.17

IV. Integral

\L

763

2920

a uWXC WXR

1.19 1.26

CT a

Y C YR

2.02 1.97

a aWZC WZR

1.09 1.14

Length Scale (m)

\L«r

r YDU AIX

801 722

LTIT ^

vr NT?YO in

2878 29320.55 0.52 0.60

411 ^05 351

A.33

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.27. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 5.

A. 34

c• l-lo

<uoud.23i"oJou

I I I I I 1

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.28. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 5.

A.35

0>

V

8

EouIo

(X

1.

0.

— 1 ^—

^ L

i. -

-l.0.

WXCL

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S--=VT(m)

•4000.

Figure A.29. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 5.

A.36

%108

10°

10-r

•von KarmanN=1021SEG.= 8

von KarmanN=1024SEG.= 8

—von KarmanN=1024SEG.= 8

von KarmanN=1024SEG.= 8

—von KarmanN=1024SEG.= 8

von KarmanN=1024SEG.= 8

Wv

—von KarmanN-1024SEG.= 8

Wv

•von KarmanN=1024SEG.= 8

M,ll ,1 ! IM.IIll

io~2 10° 10° io~310°

K = oj/V

Figure A.30. Normalized auto-spectra of gust velocities, Flight 6, Run 5,

A.37

102

10*

b- 10°\s•e- 10-e

io8

6

SEG.= 8

N=1Q24SEG.= 8

* * +WYCL

N=10245EG.= 8

*

WZCL

SEG.= 8

WXRC

N-1024SEG.= 8

WYRC

N=10245EG.= 8

ZRC

+ V

SEG.= 8

WXRL

ill t i nnnl i i mnil i iimiil

SEG.= 8

WYRL

N=1024SEG.= 8

ZRL

10~8 10° 10~8 10° 10,-8 10°

Figure A.31. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 5.

A.38

102

3 10o•«4

io-2

102

3 10o•p?•e*

io-8

10*

S^ 1()o

•&"*

io~8

r

r

r

r

r

r5-

r

i-

j-

r

1r

r

r

r

r

r

r

r

f

r

r

r

r

r

rr

r

rr

r

r

r

r

r

F

rrrrr

w „ w,x z— LL

-— LCr\ LR

r\\r\S\: V. -i Tkl

X.t "> Tlnr~ i riniiJ i iiiuiJ i tintnl ii iimil

CL

— -ccr\ — CR

r\\r\ ~\\• ^;\\r "V*1*

Tmr \J|

r ^r:,, J ,,,„„! ,,,„„,! ,,„,»,!

— RL

-™ RC

r\ RR

r \ wl* u

K' X- ^i*, i^Lr VV» Tl: KVT

f ^r- J , ,,,J , M,,nJ nJ

io-z 10°

rr;

r

r

r

rr

r

w~

r

r

r

ra

r

r

r

r

j-

I

r

ri

r

r

r

r

r

r

r

r

r

r

r

r

r

r

rr

r

r

W WX Y

— LL— -LC

r\ — LRr\Vx

r\^\

|1ri i iimJ i i iniiJ i i iinJ i mini

CL

— -ccr\ — CR

"vNw-\\\

;lP1 J ,M,,.,J .,....,1 . ,umJ

. — RL

— -RC

r\ RR

r*v 'V.r\Vv'\I \ V, V

r \\S*.v

r ^r

10~8 10°

K = u/V (rn"1)

r=

r

rr

r

r

r

rr-

rj-r

r

r

r

r

r=

r

rr

r

^

r

r

5

f

f

r

i-:

rr:

r

rr=

s-

=•

f

r

r

r

r

N v W,Y Z

LL

— -LC

f\ — LR

s-s- Mft- * U

rx\ 'vv["•^r ^^

i Miinil i i mini i i i|ffi|l i i iimJ

LL

— - CC

r\ — CR

=~N^ ^VL

i-\ vr\- \ "/y^UWi '\ TILr lu/w Tli! \«7r vr %r: ,,i ,ni , ,„„„! ,,,„„;

— RL

— -RC

r\ — RR

F" ^ \*

^-\ ^'. V= \ lN4»Tkj- Vwi . "ML,r \H^?II ^ri iniiin i iinml i ii ii nil i mini

10~z 10°

Figure A.32. Two-point cross-spectra of gust velocities, Flight 6, Run 5,

A.39

TABLE A.8.

ORIGINAL PAGE ISOF POOR QUALITY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 5.

S T A R T T I K E • 50119.3030 STOP THE • 90339*6090

3456

_ 7a9

ioli12I*"1415161718!'_202122232*2526272829303132"3334353637383'40414243t4O»647484950515253545556575fl

CHANNEL,H T DOT

ACCL N CGTHETA OPTTHETAPHIPSI 1_ _

PS I 2 ~"DEL PS I 2ACCL N LTACCL N'iRTACCJL X ' C GACCL

_UN ITSRAD/SEC "~G UNITSR A D / S E CR A ORAO

_DEGREESDEGREE'SDEGREE S_DEGREES^

IG UNITSG UNITSGUNITS

HIGH.072

1.405.050.119.C71

__-15,C81406.872_

_ tow-.091.598-.041.038

-.C67_39,294_-15.08i401.240

1EAN-.00269

.99269.00467.07520

-.01416_42.695U_-15.08145403.89753

_ «"S _.01681.99521,00960.07674.02443

__15.08145403.89867

_POINTS68206820862088208820

_6B2Q

1.584"1.650

y CG G UNITSALPH A CTJL7 RADBETA CTP RADTEMP'!" __ PEG fTEHP P __DEG FACCL ZfINS G UNITSALPHA" RT RADBETA RT _ RAD _1_ALPHA LT___ RADBETA LT RADPS I DOT

EMP TOLOC LT _OC CTR PSIDOC RT PSID _P S " ' " " P S UTEMP IRT _ DEC CD TO G HETERSB TO D

.065105.81990.006

1.395

_-15,092 ^15,09198 __15,09198_,276 1.01043 1.01767 _

7_ ,219 J.C2649 1,03414__. 030 .07363 . 07?61_

_ -.146 .01275 .04444_-.047 ,00259 ,01100_

_ -.063 __ -.00701 ,0161?104.200_104.98570_104,98678_«9.626 89.97672 69.97674

_1.C0300_.01516-.039

1.00544.01932

R A D / S E C _PEG c

>S IP

.087

.082,045.045

30.111.810.796.82?

-.C27 ___ .02900 __ ,03193-.030 .01708 _ .02095

1 '-.066.7'" -• 01406 '_ _ .01948-.031 _ .00293 __ ,0104128.733 _ 29,5475? _ 2.9.54858

,625 __ ,72406 __ ,72504.626 .71451 .71541.641 .73897 _ .73991

LONGLATT8K ANGHOG __VEVN

DEGREESDECREESDEGREESOFGPEFSRADIANS

_ _ _ ___ 11.220 10.953 _ll.lb922 11.U922

21.511 5.738 17.96417 18.392688743166. 0548724791. 258*******«*»**«'*»»******

80.157 80.20184 80.20184-105.216 -105.12401

8820662068208820

_882QP8206820_882p68206820

_8820_8P20"8820882086208820

_882CJ8fl206620882083208820

M/SECKHDEGREES C"KNOTSKNOTSK N O T S

ALTITUDE__TEHPCEW WND SPONS WND SPDWIMO SPEEDWIND DI*EC

RC

AIRSPEED LDELTA ALTINRTL DISP

JJG RIGHT _UG C E N T E RUG L f c F TVG RIGHTVG CEHTERVG LEFTWG RIGHTVtGTCemEft. "H/SECWG LEFT M/«EC

80.247-105.033"" 39.935

44.722.818

___76.89p81.710

2.41124.70212.94617.05317.161

269.483

39.77740.404

.714

« / S F C• • / S F CM/SECHFTERSHETERS

"M/SECH/SECH/SECH/SECH/SFCM/SEC

10P.P42109.834137.888

0.0005.2704.6995.3878.6108.252

'"" 7.9485.907

7 5. 9 40"6.026

75.5932.219

23.486-12.386

.0842.931

120.17797.93596. "32

_ 96, 736-54.264-32.911-J.P69-4.949-4.978-4.284-4.442

_ -4.446-4.133

-4.293

39.8561841.76970

.7637371,13980_79.65279

2.2551424.23264-1.6114710.8132811.63981

173.57646105.02261103.30915103.98006-18.09718-20.25578

.00000

.00000

.00000-.02269-,022"2-.02177

' " ' .00099_ »CQ104

7 .00186

105.1240239.8562041.78378

.7639471,1783679.66807

2.2551524.23327

4.2624411.1109911.90052

174.84177105.05459103.34013104.01337

19.4063721.63720

__1.38508_1.318981.407101.9B7592.025291.976931.15474

_ 1.12373"1.20869

_88208820882088206820

_882Q682088208820882088208820632088?0

88298820»82068206820882088208820J82088208820

A.40

9F POOR

a:*«

UD

CO

(O

ol+-c

roQ.

CO

0)

3cn

A.41

a:rvi

3:

o(\J

oo

ooo

CDCO

ooa)

o;

I L_i i

OC\J

Oo

oCO

oCD

O(\J

O<uw

0)

ac.X

OOf.X

oX

o

-. CD

OO

CD

OCO

oM

O O O O O(M ^-i «-H (SJ / / \

(s/m)

a a a o oCM -j —i CMI I

to3a>•oc(O

</)01

CD

4-> «to vo3

CO I0)

S- CO

-t-> CJto c

ro

cu

01

A.42

TABLE A.9. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 6.

I. Mean Airspeed (m/s)

127.2 125.9 128.0

U. Standard Deviation ofGust Velocities (m/s)

aWXL

0.97

wxc

0.93

aWXR

0.98

<7WYL

0.86

aw.

YC

0.85

WYR

0.86

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

WZL

0.65 0.62

WZR

0.68

0.37

0.29

°AWAWZCL

0.34

0.38

0.33

0.36

0.48

XCL XRC XRL

0.32

0.38

IV. Integral Length Scale (m).

655

n,698

599 599

718 651

477 866 875

A.43

1.0

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.35. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 6.

A.44

G..-lo

ao

ou

o. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.36. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 6.

A.45

WXRC

a<D

0)ooco

<otooI

oa,o

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.37. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 6.

A.46

102 r

10°

10,-s

io8

10°

ID''r

\

I

10s

10°

10-

ron KarmanN= 512SEG.= 4

Wy

, j , ii.inil . i.mill i I.m

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

von KarmanN= 5125EG.= 4

ll unit i i i inn i i 11 mil t i mini i i i null

von KarmanN= 512SEG.= 1

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

10-8 10° 10~8

*; =

10° 10' 10°

Figure A.38. Normalized auto-spectra of gust velocities, Flight 6, Run 6.

A.47

103 r

" 10°

102

er- 10°

•e- 10-a

io8

" 10°

A•r—i

>e>

N= 512SEG.= 4

WXCL

n I I I nun I I I null

N= 512SEG.= 4

WYCL

N= 512SEG.= 4

WZCL

i ii mil i i i mill i i i mill

N= 512SEG.= 4

N= 512SEG.= 4

WYRC

N= 512SEG.= 4

N= 512SEG.= 4

XRL

N= 512SEG.= 4

N= 512SEG.= 4

1(T8 10° 10~8 10°/c = «/V (m

10,-8 10°

Figure A.39. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 6.

A.48

10*

^^

. 10°Jfc

10~a

102

^ .

•s? 10°•&"*

io-z

10*

^^^

.„ 10°•r-t

•6-

10-

rrr

rs

;

r

r

-

rrrr

r

rr

*

r

rr

rr

r*—

r

r

r

rZ

rr

r

rrrfrr\

r

r

rrrr

r

r

W X W Z— LL

— -LC

r — LR

r X~ "^ v\.- \ *» iM.F *\ IM Md= v <v *r SAr ^k

r~ i umtJ t mm! i immt i iniflil

— CL

— -CC

r — CR

r ^\P v \ ^^

r X"VvS3 ^V *(W

s~ Aitt

r" | |iuii{ i iniiiJ i i ii mil ft ii mil

— RL

— -RC

r — RR\

r M

r^v\f- vv iL

r ^r- J ,,,,J , 1 , ,,,,nJ

io-B 10°

r

rr

rr~

rrL-

r

3

r

r

rf

3

-

r

r|-

r

rr

r

' —

r

rr§•_T

r

•rt

r

'

rr

r

r

r

f

rr

r

W X W YLL

— -LCr . — LR

r \r \\;V

\ \'\ Ui

r ^ v *k

r M xr (llw

In

r

— CL— -CC

r \ — CR

V ^w

- \ '\\\

r XVV\r K!<!fy

r ^ur

— RL

— -RC

r \ — RR

r-\\r \v"vVr V>vh

r ^r 1r

io-e 10°K = u/V (m"1)

r5-r

rrir

r

L-

r-

r

^

rr

r

r

rrr

r

p.

J"

' —

r

B-

r

r-r

r

=

r

r

5"

r

r

ri

S~

r

r

r

r

rr

s"=

W Y W ZLL

— -LC

r — LR

f ^Ar vi \\

x "^ \hi..?~ *\ ^^ ^L

r \^i•- *\*£ V

|~

i iinml i i ipml i i inm i i mill

CL

— - CC

r CR

- ^"" "x> VIr x\o«vSr M' \

T \r" < i mini i i iiiiiil i i until t i imiJ

RL

— - RC

r — RR

r ^\r N,( yi

r NX''V\f v\ *»

r ir: „! ,,,,„„! 1 1

icr2 10°

Figure A.40. Two-point cross-spectra of gust velocities, Flight 6, Run 6,

A.49

OF POOR

TABLE A.10. List of All Parameters Measured and Their Range of Values,Flight 6, Run 6.

START TIME • 50*28.6107 STOP TIHE • 90490.6697

CHANNEL2"PHI DOT3 ACCL N CG4 T H E T A DOT ""9 THETA6 PHI7 PS II8 DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL N LT12 ACCL N RT"13 ACCL X CG "14 ACCL Y CG19 ALPHA CTR16 BETA CTR ~17 TEMP I18 TEMP P19 ACCL Z INS"20 A L P H A RT?1 B E T A RT "22 ALPHA LTZ3 BETA LT*4 PSI DOT>5 TEMP TCTib OC LT27 OC CTB28 OC RT """Z9 PS30 TEMP IRT~21 0 TO G ~"32 P TO D33 LONG34 LATJ5 TR< ANG36 HOG37 VEi3 VN39 ALTITUDE40 TEMPC41 Eta WHO SPD42 H? UNO SPO4 3 W l s O S P E E DS4 UltO OIREC4f A I R S P E E D R-.6 A l R S P E s D C47 AIRSPEED L48 DELTA ALT49 INRTL DISP50 UG »IGHT51 UG C E N T E R52 UG L E F T53 VG RIGHT54 VG CENTER55 VG LEFT56 WG RIGHT57 WG C E N T E R53 UG LEFT

UNITSRAD /SECG UNITSRAO/ SEC ~R A PRADDEGREES ~DEGREESDEGREESDEGREESG UNITSG UK ITS ""GUNITSG UNITSRADRAODEG F ~~DEG FG UNITS"RADRAD "~~RADRAOR A O / S E CDEG CPSIOPS ID ""PSIDPSIADEC- CM E T E R SD E G R E E SD E G R E E SP E C - R F F SO E G P E E SR A C T A N SM/SEC" /SECKMO E G R f F S CKNOTSK N O T SK N T T SD E G R E E S

M/SF.CM/SECNF.TFRS "METERSM / S E CM/SECM/SFCM/SECM / S E CM/SEC "M / S E CM / S E CM / S E C "

HIGH.042

1.257

".057.051

— 187.5831.258

949.226.933

1.4901.564.057.196

-.007-.002

103.84190.010

- - - ' 1.285-.000

.004-.008

" "" .03134.345

1.2281.1941.244

11.42629.651

LOW-.060

.813-.018

.007-.081

"182.299-3.708

540.298-4.C36

.556

.539-.009-.157-.050-.051

103.46189.826

.626-.(50-.016-.046-.053-.019

33.2621.G01• 992

MEAN-.003381.00089.00520.03411

-.02030" 185.06099

-1.11855",542.97195

-1.426981.C13481.03298

.02337

.00757-.03472-.02319

" 103.5846590.00601

1.00756-.03013.01134

-.02760-.02633

.0026333.724981.112031.08P60

RNS.01392

1.00309.00893.03595.03077

185.065721.71416

542.973431.931001.02C711.04025

.02579

.04716

.03525

.02504103.5846990.006011.00980

.03094

.01419

.02636

.02970

.0093833.726361.113571.09016

1.021 1.12582 1.1273511.132 11.39266 11.3926719.312 27.68251 27.71173

8746711. 4 888744720. 193******* ***************80.291

-104.98639.P19

186.7433.285

-6.465-122.561

2.28226.19414.546i.too

14.6793C8.574134.202132.142133.704190.24515.716

2.2641.8022.2881.6531.8431.6702.6272.4852.563

8C.282-104.994

39.845182.965

3.195-15.386

-129.6672.073

25.7266.C79

-6.3546.154

261.925122.138120.417120*906-18.897-13.749-2.662-2.548-2.837-2.788-2.665-3.106-2.403-1.959-2.791

80.26641-104.99027

39.87974184.P3937

3.24291-10.80429

-126.316062.39625

25.627669.47973

-2.7147110.01628

286 .28368127.9S894125.02934127.22719

4.469424.58905-.00000-.00000

.00000-.06271-.06019-.06200-.02655-.02548-.02475

80.21641104.99027

39.B7975184.84427

3.2430011.25805

126.335402.09627

25.828019.645873.17152

10.153892S6. 47080128.02816125.96772127.26699

9.331499.19484

.97980

.90778

.96193

.91206

.92141

.91674

.75956

.63957

.73229

POINTS2483248324832483248324832483248324832483

" 2483248324832483246324832483248324832483

""248324632483248324632483246324P3248324832483248324B324632483248324632483248324P32 4 8 32 4 8 32 4 8 32 4 8 324932483248324832483246324832483

" 2 4 6 32483248324832483

A.50

>•t—4-»to

a: 03CL

cO •!->

O ••-O» i—s_ u_•a o•uT3C

CMCO

O O

• O (/>- CO

>» o

O) O) to•M S 1-<O ••- 3o »— S

.c•tJ(OQ.

•4->JCCT

OOo

ooooo

(6ap)

o•uoo

t.at

IT)

<*O

o>OJ

• 0)Lf> T3O 3

i.O

ooor-.

CDCDO

oto i—

• ienro

00

vo

at

ooo

CO

co:

O

-M(O

O

fOCL

•=1-

=C

O)S-3O1

A.51

LJX

uOfX

dX

ac.x

oo

oCD

oCO

OCSJ

o oCM «

o o oT-« (MI I (s/ui)

o o o o oCM —. —< CM

I I

OO

cu'

3CD

-oc

OJ

O COo

i— C<U =3

VO

cn

O)• r- *S- COO Ol4-> O</> C

•r1" ^J: s_

0)

oo

O)

A.52

TABLE A.11. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 8.

I. Mean Airspeed (m/s)

101.6 100.7 102.4

H. Standard Deviation ofGust Velocities (m/s)

uw.

XL

2.71

CTw.xc

2.46

aw.

XR

2.31

aw,YL

3.54

w.YC

3.53

aw.

YR

3.50

III. Standard Deviationof Gust VelocityDifferences (m/s)

XRC XRL

aw,

ZL

4.05

vwzc

3.87

aWZR

3.95

1.12

1.34

1.02

CLCL RC

1.11 . 1.02

°AW a/ZCL

1.23

1.30

l . l l

™ZRL

1.52

IV. Integral Length Scale (m).

XL XC XR

412 411

\L \

387

1214 1122 1179

ZL ZC ZR

538 560 522

A.53

1.0 " i i i i | i i i rw

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.43. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 8.

A.54

c4)

<uo

o

0)IMt,Ouo1

I I I 1 I I

I \ I I I I

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.44. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 8.

A.55

<U'o

0)oo

IOIo

R'S

O

H

1.

0.

-1.

WXRC

\

1. L

0.

-1.0.

WZRC

WZCL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

-10GO.

Figure A.45. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 8.

A.56

01b

102

10°

10-t

\

I

io8

10°

10-

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

WZL

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

•von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

Wv

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

ID" 10° 10~8 10°

K = u/v (m

10-2 10°

Figure A.46. Normalized auto-spectra of gust velocities, Flight 6, Run 8.

A.57

©F. POOft'qUALrr*

108

10«

10-

10*

10°

io-8

108

100

io-8

: N= 512! * SEG.= 3

f X WXCL- +

^ %r rir

r

=z' N= 512f SEG.= 3- •+•

r \ WYCL

r

r ++

• , ,,,„„! J , ,,„„,! ,,:

j. . N= 512f + SEG.= 3

F +++* WZCL+

r ^w-i.

! ^

r

ri tiiniil \ t t iiiti! t itnnvt i 11 inn

N= 512! + SEG.= 3

f +\+ WXRC

r •)-.

|-

N= 512f + SEG.= 3

f + WYRC

f +V

:

~ ,1 1 , ,,,„.,!

: N= 512f + SEG.= 3

r ^ WZRC•H-

*~ +*$*

\ ^

ri i Html i i iitinl i i itttttl i i iiiti

N= 512f + SEG.= 3

r %+. WXRL

: V

r ^r

B-

~ , 1 , 1 , in.ml , ,,,|,,,I5

N= 512F SEG.= 3- +

r + WYRL

r +v**5" +-KSteLi- ^SSgf

• , , 1 , , 1 1 , ,,„„,!

N= 512f + SEG.= 3

r ^ WZRL

[ ^\ %r

ID'8 10° lO'8

K =10° 10~e 10°

Figure A.47. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 8.

A.58

w x w z

' I I HUM InmiJ iltnitn i I HIM

1(TZ 10° 10~8 10°

K = u/V (m'1)101-8 10°

Figure A.48. Two-point cross-spectra of gust velocities, Flight 6, Run 8.

A.59

TABLE A.12.

ORIGINAL PAGE ISOF POOR QUALmr

List of All Parameters Measured and Their Range of Values,Flight 6, Run 8.

START TIME • 93660.3312 STOP TINE 5070*.6812

CHANNEL2 PHI DOT3 ACCL N CG4 THETA DOT5 THETA6 PHI7 PS I 18 DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL N LT12 ACCL N PT13 ACCL X CG14 ACCL Y CG19 ALPHA CTR16 BETA CTR17 TEMP I1* TEMP PII ACCL 2 INS20 ALPHA RT21 BETA RT12 ALPHA LT23 BET* LT?4 PSI DOT29 TEHP TOT26 OC LT27 OC CTP28 OC RT29 PS30 TEHP IRT31 0 TO G32 B TO 033 LONG34 LAT35 TRK ANG36 HOG37 VE38 VN3<J ALTITUDE*0 TEHPC*1 EU UNO SPD••2 MS WHO SPD<>3 WIND SPEED*4 W I N D P I»£C0 A I » $ P E S O R"t A IRSPEED C*7 AIRSPEED L*8 DELTA ALT49 INRTL OISP50 UG RIGHT51 UG CENTER*2 UG LEFT53 VG RIGHT54 VG CENTERi5 VG LEFTi6 UG RIGHT57 UG CENTERIS WG L E F T

UNITSRAD/SECG UNITSR A D / S E CRAORADDEGREES "DEGREESDEGREESDEGPEESG UNITSG UNITSGUNITSG UNITSRADRADDEC FOEG FG UNITSRADRADRAOR A DRAD/SECOFG CPSIDPSIDPSIOPSIADEG C ""HETERSDEGREESDEGREESDEGREESDEGREESRADIANSH/SECH/SECKHD E G R E E S CKNOTSKNOTSK N O T SO E G P E E S* /SECf»/SFCN/SEC"ETERS*F.TFRSM/SECM / S E C* /SECN/SECM/SFCH/SECH/SECM/SECH/SEC

HIGH.174

1.319.07*.159•027

215.4093.374

977.2623.2262.3852.388

.190

.169

.108

.046104.74090.196

1.578.109.078.109.035.C72

31.391.789.775.802

11.40826.275

8749926.323180.304

-104.97739.837

211.9623.782

-45.370-81.692

2.13925.48234.524

5.8*740.397

340. 7?6108.704106.930107.63620.04012.47010.C529.983

10.4209.0118.6488.5339.9138.0008.635

LOU-.203-.988-.049

.028-.143

208.364-3.444

570.574-3.683-.153

.002

.013-.153-.100-.132

104.02190.006

.248-.090-.083-.104-.115-.047

29.324.548.540.562

11.33216.841

8743122.163^60.293

-105. CC319.602

2C7.3903.660

-51.063-R9.478

2.C8524.775

4.018-27.355

4.28*236. 35C91.11789.41389.982

-33.674-31.109

-5.099-6.966-6.363

-10.139-11.006-10.721-13.116-13.043-13.229

MEAN-.00299

•24233•00960•06809

-.02451212.69610

.79414.574.66218

,657931.006281.02219

.07240

.00649

.00568-.02270

104.3274390.01833

.99982.01595.01371.01824

-.02990.00376

30.58600.69984.68636.71087

11.3618024.03299

1**+*+****+!

80.29620-104.990**

39.81985209.75281

3.73629-49.12517-85.94697

2.1180*29.5389117.76145-7.5833420.3*195

289.5*371102.*01P3100.65197101.60862-1.04461-1.12069-.00000-.00000-.00000-.02614-.02602-.01972

.04793

.05927

.06483

RHS.03979.98619.01804•07672.04010

212.700211.51749

574.663601.458301.049621.05830

.07744

.04530

.02565

.03688104.3276990.018341.01440

.03168.02927.03167.03935.02102

30.58919.70147.68780.71220

11.3618124.13850

I**********80.29823

104.9904839.81985

209.758013.73637

49.1572395.980262.11B09

25.5393818.5188010.4926921.26516

290.16391102.45117100.70629101.6699413.2120912.500292.B98033.076063.2*4733.358933.399503.424514.098104.069924.21581

17741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177417741774177*177417741774177417741774177417741774177417741774

A.60

LT>

0>

<O

occO

0) r—i- U-

Q O4->

-a

1 - 1 oI

0><u•o

• 0)s-sco

in

o. i

CO

(6ap)

CM ^~~ "O00 h- =f\ a or- 2 O

.±> <U• CO °"'

^- o

0> 0) <O4_> £ i-( 0 - ^ 3Q I— Q

C7>

Ooo §

J_

O

<oi.0)

CTl

CO

(1)m

ro

CM

S0 2o oo ovo m

a:

-M-CO)

U_

«ico•13<a

o

IDCL

O)

3

A.61

<JoOl>

3cn-ocrejc/)a;

•r- Oo r—o

r— C<1J 3> ce

VO

en

01 U_01

tl wTo a)•M o</i c:•i- a-C S_

aai ':-

oID

O)S-

a>

o o o o o(S/WL)

o o o o oCSJ —i —i CM

I I

A.62

TABLE A.13. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 10.

I. Mean Airspeed (m/s)

R

106.3 105.2 107.0

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC

1.00

1.05

1.07

Xc, °*

1.10

1.31

1.21

II. Standard Deviation ofGust Velocities (m/s)

aWXL

3. 17

aWYL

20.63

aWZL

2.71

awxc

3. 11

aWYC

20.50

awzc2.59

aWXR

3.12

aWYR

20.88

CTWZR

2.60

IV. Integral Length Scale (m).

866

C

894

V \

896

1.08 1.17 1.34

267 302

ZR

286

A.63

1.0R'-'rflihfcC = Center WL = Left

i r

W

i i i i i r

W

L0?

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. . 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.51. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 10.

A.64

0. 4

U

<uou0o5.213!_

SHouIo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.52. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 10.

A.65

do>

0>oo

o3.513fcouo

a•sPL,IO

1.

0.

-1.

- i

r

-1.

WXRC

WYCL

NYRL

WZRC

WZCL

WZRL

0. 1000. 2000. 3000. 4000.

Spatial Lag ,S=VT(m)

Figure A.53, Two-point auto-correlation coefficient of gust velocities.Flight 6, Run 10.

A.66

102

10°

ICT* r

von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

i I

von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

WYC

X

M.l , ,, I I ,1 1

von KarmanN= 5125EG.= 5

ZC

—von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

WYR

X

von KarmanN= 512SEG.= 5

10~2 10° ID'8 10°

K = u/V (m

10,-8 10°

Figure A.54. Normalized auto-spectra of gust velocities, Flight 6, Run 10.

A.67

io2

tT 10°

" 10°

161 10~8

IO8

6"b- 10°S>Q> tn-i

N= 512SEG.= 5

WXCL

A

N= 512SEG.= 5

WYCLr- + -f

N= 512SEG.= 5

, • 11,11,1 i muni , .11,11,1

N= 512SEG.= 5

ml , , I M M l l , , ..... i

N= 512SEG.= 5

WYRC

N= 5125EG.= 5

WZRC

N= 512SEG.= 5

WXRL

N= 512SEG.= 5

N= 5125EG.= 5

10" 10° 10~8 10°K = u/V (m

10,-a 10°

Figure A.55. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 10.

A.68

•e-

10a

10°

io-2

IO2

10°

io-2

10s

i nO

w x w zr — LL

r

r

rrr

r

B~•

r

r

rrr

r

r

rr

r

r

rL

r — -LCr

r

r

r

rr

r ~A — LR

r ~ \\

r "\S\r ^\

F \r

r= iiin,J llinul .....«l .iniml

— CL

r — -CC

r

r

r

r

r

r

1" \ ^

r \ v\

| ^'i TU

r ivfyj,

r ^r 'ri niiiij i inittj i iniml i i mm!

— RL

f — -RC

rr

r

rr

r

r \ — RRr ">, \

r \"vVr "*vir V

r

r

io-8 10°

W X W Y

r — LL

r

f

r

i

^>p

r

rrr

a™

r

r

r

rrr

r

r

r

r — -LC

r

r

r

s-

r

r

r "> — LR

r '( *1y(jj|j

P *NjWu

r \ii9liMI™3~

r

r- i ,,,„„! 1 ,.J

— CL

r — -ccrr

f

r

r

r

r ^ — CR

r ^ iSujpir ""V^xrfttl > iWf

r h^ JiATJlfl

rr

r

— RL

p- -— RC

s"

r

rr3

r

r

r V — RR

hlS.r~ * *%**ji L\~ \\ *Wr ^r

^

r:,,,,,,,; ,,,„„! , J , ,,,™J

io-8 10°

W Y W Zr — LL

r

g-

r

rr

r

B~E

I-

3

f

r

rr

r

rrrrr

r ^ — -LCs"

B-

p

r

r

r

f . \ LR

r ^^ > ^|ur ^ ^vAfa

r "M^rr

r:, ,,,,,,,1 , ,,„,„! , ,N,M,| ,,,,,,,J

CL

g- — -CC

»-

s-

r

r

r A — CR

r J\,\h|

r V'v*?r %r

r

r-

:,,,,,,,J , ,,,„„! 1 1

— RL

r ^ — -RC

5-r

r

rr

r

r A RR

r~S>i v,. Vi»jt|- ^ "iP

r ^tor

rri iiiiinl i i ntml i i tinm i i iimJ

10~8 10°

K = <y/V (m-1)

Figure A.56. Two-point cross-spectra of gust velocities, Flight 6, Run 10.

A.69

TABLE A.14.

ORIGINAL PAGE ISOF POOR OUALfTY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 10.

START TTHE • 50888.3766 STOP TINE • 50997.9766

__ CHANNEL _2 PHI OPT3 ACCL N CG4 THETA_DPT__

~ 5 THETA6 PHI """7 PSI l'"3 _8 "DEL" PSI 1 _

"9 PSI 2" 110 DEL PSI 211 ACCL ~N" Lid12 ACCL 'N RT__13 ACCL X CG J14 ACCL V CG_15 ALPHA CTP16 BETA CTR ~~17 TEMP i"~'__^l18 TEMP P19 ACCL Z INS_20 "ALPHA RT21 B E T A RT ~~"22 ALPHA LT_723 BETA LT2* PSI DOT ""_;_29 TEMP TOT J26~OC LT " __27 OC CTR ""_„t8 OC RT29 PS30 TEMP IRT31 0 TO G '_32 B TO 013 LONG14 LAT35 TB< ANG36 HOGtl VE __ __38 VH39 ALTITUDE»0 TEMPC»1 EM hif i SPO

SPOS P F E Oni«£C

Rti A t P S P E E O C47 AIRSPEED I*d DELTA ALT*9 INRTL D1SP90 UG RIGHT _51 UG CENTER52 UG LEFT33 VG PIGHT£4 VG CENTER55 VG LEFT56 KG RIGHT

UNITS__RAD /SECG UNITSRAD/SEC_

"RAJ3 1" ~RADDEGREES

"DEGREESDEGREESDEGREES

"C'UNITSG UNITSGUNITSG" UNITSPADRADDEC IFDEG FG UNITS"

HICH

-.988.078.132.C93

_3*1.706

3.903^2.307'

__ trw-.113-.988

__..-• P34..024

-.079_176.311_-3.120334.313-3.331

»2o44

_' .193"

_.165_1" .097

.C57103.661

~ 90.1861.688 "

-.517_ j.025.

-.114"-.Pt5-.104

"102.94190.006""

_ M E A N-.00313-.98774

.00588

.06787-.01214

56811_.17890

"337.60727_"" -.01719

1.01049__ 1.02517

.08002

RMS.03061•9B774.01698.07093.02991

_179.59268_"l.31236

_337.606771.29578

RADRAD '"RADPADRAD/SECDEG CPS IDPS IDPSIDPS1ADEG C

.084

.077

.042.072

31.763.876.850.895

11.39226.090

-.C51-.C67-.062-.106-.050

30.905.649.636.650

11.35618.086

(

<

4

31!<

4

1124,

.00964_-.00429-.01729

103.3287190.17989

1.C0426.00559.01772.00848

-.02495.00308

31.21927j.76703.75168.77854

11.3753724.24345

__1. 05800,09322_.03889..01775..03070

JLP3.3287990.179901.01364

.01944I .02909_.02029

.03382

.02057_ 31.22030

_ .76798.75256.77942

11.3753824.23960

"OtGPEESD E G R E E SOEGPFES

RADIANSM / S E CC / S E C ""

J743405.0188742233.354»********************«80.295 " 8 0 . 2 7 9 60.28717

-109.CIO -109.0088239.779 39.R1396

177.2'»71.231

.743

D E G « F E S

1/SfCH/SECDETERS

I/SECH/SECM/SECM/SECH/SECH/SECM/SEC

53 WG L E F T M/SEC

-105.00839.849

179.6565.C519.141

"-106.5812.122

26.999211.599

1.C94397.399359.779114.492111.662113.420

6.9726.036

"" 9.2708.462"8.789

216.162206.917208.197

'_ e.i42_6.8958.411

3.143102.96916

-114.4t9 -111.463872.C97

24.832-199.655-295.580

2.770.034

98.12197.12398.046

-16.652-13.868-8.189-6.839"-7.106

-211.920-209.619-213.526

_J-11.056_-10.782-10.754

2.1084525.70599

9.37796-15.19986

20.54753310.58021107.04264105.22172106.26403-4.91937-4.56191

__ .00000•00000.00000

-.00046-.00531-.00436

.02631

.03045

80.29717105.00882

39.91397178.55840

3.149073.10177

111.498992.10845

29.7081629.6169730.2086639.62092

?19.73217107.07115105.25050106.29486

7.587897.09406

_3.041233.03199"3.08611

20.79883~ 20.40824

20.53657__ 2.55247

2.5V1222.65394

2768276827682768276P27682768276827682768276827602768276827682768276827682763276827682769276927682768276827682768276827692768276827682768276827682768276827682769276827<-9276827682768276827682768276827682766276827682768276827682768

A.70

LO

0»>

0) -(->OC (0

o.cO 4->•i- .c•»-> o>o -r-0» i—S- U_

•r—O O

+J•o

n 1

j i

(6sp)

o-

CM

<1> Ol al•!-> = 2•O -r- 3O I— o

10CL-

i.3O

<o

oI

en0)•o

O)-o

O 3I— +JI -r-

LO

CO

_ o

00

ooo

OOO00

ooor .

oooVO

oooLO

10

en

(t3

S-o

LD

£3cn

A.71

OO

a

3Ol

-oc(O

l/>O)

O i—oO> 3> a:

</) ID

O T-

(/) Ll-

i- too <u+J Ol/l C

•r- <U_C 5-

O)OJ M-

COLT>

O)

3

O O O D OCM —• —• CM

I I (s/ui)o o a o oCM —i —i CM

i i

A.72

TABLE A.15. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 11.

I. Mean Airspeed (m/s)

106.2 105.1 106.9

n. Standard Deviation ofGust Velocities (m/s)

aWXL

3.88

awxc

3.80 3.87

aWYL

3.28

aw.

YC

3.38

<7WYR

3.25

III. Standard Deviationof Gust VelocityDifferences (m/s)

AVXCL

1.23

1.26

1.19

HCL XRC

1.28

1.35

^RL

1.54

1.36

™ZRC ^ZRL

1.53

(7WZL

3.45

awzc

3.39

aWZR

3.44

IV. Integral Length Scale (m).

612

908

xc

645

896

c

1006 1161

622

\C \R

924

827

A. 73

i rW

i r i i |1 I 1 T

N

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.59. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 11.

A. 74

e0)

<uo

co

ouo

1.

0.

-1.

-1.0.

WYL

WZR

Wzc

NZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.60. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 11.

A.75

1.

0.

-1.

WXRC

WXCL

.auiS0)o

coa

Ioio

Io

-1.0.

-4= J

WXRL

WYCL

NYRL

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S = VT(m)

1000.

Figure A.61. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 11.

A.76

10s

10°

10-'r

von KarmanN= 512SEC.= 5

—von KarmanN= 512

von KarmanN= 512

.= 5

von KarmanN= 5125EC.= 5

—von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

T— von-KarmanN= 512SEG.= 5

10,-8 10° ID'8 10°

/c = w/V (m

10°

Figure A.62. Normalized auto-spectra of gust velocities, Flight 6, Run 11

A.77

io2

10*

6"b~ 10°

* 1Q-*

10s

trb~ 10°

U= 512SEG.= 5

N= 512SEG.= 5

N= 512SEC.= 5

wzcu

N= 512SEG.= 5

WXRC

N= 512SEC.= 5

WYRC

N= 512SEG.= 5

N= 512+ SEG.= 5

WXRL

II.Mll

N= 512SEG.= 5

WYRL

N= 512SEG.= 5

WZRL

1Q-2 10° 1(T8 10°K = u/V (m

10,-B 10°

Figure A.63. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 11.

A.78

w w w w w

io-z 10° io~8 10°K = u/V (in"1)

10°

Figure A.64. Two-point cross-spectra of gust velocities, Flight 6, Run 11

A.79

ORIGINAL PAGE ISOF POOR QUALITY

o>>

0)<oa.

4J O>^J *r"

S- LL.•c—Q O

-o

I I

CM ^~."000 I- Cty\ Q o

• o ">•a- ini— .. CTi

CM co

O) Ol fO•M E 1-<O -r- 3Q I— O

cn

OOo

oooCO

I I

(6ap)

L.

O4->Coo

10

i.V

ooon-

ooo

oI

o• <u

Lft T3O 3f— *->

I -r~C7>

-|

i

CO

00

vo

0)

OOO

CM

Oi

C71

1-o

IT)UD

CD

cn

A.80

oM

CJ>-

i i ^r* t

>-20

1 '•

I I I I

V rx . . V-.

ce.X

i i i i

oo

o00

s

oCM

OCM

OO

O Ooo a>w

o(o a>

o(VJ

oCM

oo

oCO

oCO

o(SI

i i i

O O D O O(M »-i •-« CM (s/ui)

a a a o ocxj —• —•< csj

i i

oo

co3a>-octo10OJ

•i- CMo .—o

i— C<U 3> a:

14- cno -^00 Ll_O)

•r" •»1- coo a>-i-> oCO C

O)

10

O)

3

A.81

TABLE A.16. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 12.

I. Mean Airspeed (m/s)

R

107.8 106.7 108.6

El. Standard Deviation ofGust Velocities (m/s)

aWXL

2.39

wxc2.29

WXR

2.35

aWYL

1.54

aw

YC

1.66

WYR

1.64

III. Standard Deviationof Gust VelocityDifferences (m/s)

aWZL

2.15

CTW.zc

2.03

CTWZR

2.09

A\CL

0.77

0.76

0.85

0.71

0.79

0.86

0.89

HCL XRC XRL

0.82

0.93

IV. Integral Length Scale (m).

379

\.324

\

359

290

367

\H

291

ZL

375 392 334

A.82

1.0 i i i | i i r

W

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.67. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 12.

A.83

cv'3

<uooco

ou

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.68. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 12.

A. 84

a>-1-4

w«««-!a>ooco3

—13

Io

c.(-IoPL,

1.

0.

-1. L

1. L

-1.0.

J L_

WXRC

j i _ __ i i i

WZCL

-jTi-. J_ _i_==

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

^000.

Figure A.69. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 12.

A.85

102 r\.

10°

10-'

von KarmanN= 512SEG,= 3

—von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

limg t I

Wxc

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

iltiil I itiiinl i i i itnil i iiiim

-—von KarmanN- 512SEG.= 3

—von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

,,.J I i IMIMI! i ..null

10' 10° 10~a 10°

K = w/V (m

ID'8 10°

Figure A.70. Normalized auto-spectra of gust velocities, Flight 6, Run 12

A.86

103 r

b~"6" 10°\3)* 10-8

108

«• 10-*

io2

tr*tr 10°

N= 512SEG.= 3

WXCL

4*•v

N= 512SEG.= 3

WYCL

r +

r

N= 512SEG.= 3

N= 512SEG.= 3

WXRC

N= 512SEG.= 3

WYRC

N= 512SEG.= 3

IRC

x

N= 512SEG.= 3

XRL

Y+

N= 512SEG.= 3

N= 512SEG.= 3

10-2 10° 1(T8 10°tc = u/V (nr1)

10,-3 10°

Finure A.71. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 12.

A.87

—LL—-LC—LR

•6-

.

•e-'

W Y W Z

kr \

—LL—-LC—LR

~ i i ii mil i it mm i i nnjij i i null

rrrf \

if Vrr

—CL—-cc

CR

1 ...... ,,l , ,,,»„! , ,1,1,1,1 ,M,,,J

torf

rr

10-* 10° ID'2 10°/c = u/V (

-,,,,,,ni , ,,,,J .in,,.! ;

10~z 10°

Figure A.72. Two-point cross-spectra of gust velocities, Flight 6, Run 12,

A.88

ORIGINAL PAGE ISOF POOR QUALITY

TABLE A.17. List of All Parameters Measured and Their Range of Values,Flight 6, Run 12.

START T I M E • 51170.2*72 _.. . $TO?_T!M. •.„. «I_69*6_V7?

CHANNEL2 PHI DOT3 ACCL N CG4 THETA DCT5 THETA6 PHI7 PSI 18 DEL PSI 1<J PSI 2

10 DEL PSI 211 A C C L N LT12 A C C L N RT13 A C C L X CC1* A C C L Y CG15 A L P H A CTR16 BETA CTR17 TEMP I18 TEMP P19 A C C L Z INS23 A L P H A RT21 B E T A RT2? A L P H A LT23 B E T A LT24 PSI DOT25 T E f P TOT26 OC LT27 OC CTR?6 OC RT29 PS30 TEMP IRT31 0 TO G32 B TO D33 LONG34 LAT35 TRK ANG36 HOG37 VE39 VN39 ALTITUDE<>0 TEKPC41 E« WHO SPO4? NS UNO SPO4 3 WIND S P t E O44 U1KD O I O E C«.^ A1PSPUD »>' A l f r ' P F I O C47 AIRSPEED L4° DELTA ALT49 INRTL OISP50 UG BIGHT51 UG C E N T E R52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT5^ UG PIGHT57 UG C E N T E R59 UG L E F T

UNITSRAO/SECG UNITSRAD/SECR A ORAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSCUNITSG UNITSRAORAODEG fDEC FG UNITSRAORADRADRADPAD/SECDFG CPSIOPSIOPSIDPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESR A D I A N SM/SEC(i/SECKMD E G R E E S CKNOTSKNOTSKNOTSC t G P E E Sf /S ICP / S E CM/SECMETERSMETERSM/SECM/SECM/SECM/SECM/SECM/SECM / S E CM/SECM/SEC

HIGH.062

-.986.052.111.029

184.4132.434

542.0582.3151.9882.086

.124

.134

.036

.045101.862

"".._ 90.3661.491

.047

.076

.048

.030

.04331.765

LOW MEAN-.064 -.00304-.988 -.98774-.049 .00643

.027 .07646-.080 -.02127

"" 180.186 182.08173-1.357 .30705

538.185 540.07757-1.449 .20428

.205 1.00470-.068 1.01963

.040 .07911-.136-.051-.070

101.32290*186

.624-.046-.035-.042-.083-.029

30.997.941 .714.892 .705.936 .726

11.396 11.35925.348 16.001

8744668.1098743795.162'80.298 80.291

-104,994 -104.99639.844 39.805

182.591 180.6503.226 3.158

-1.324 -5.014-109.937

2.12026.27716.929

4.99120.73B

359.647117.021114.310117.359

1.514• U4

4.9334.4044.9645.3184.9324.7678.6917.1487.106

-112.4402.094

24.999-2.010

-17.8201.120

.430103.546102.120102.760-24.648-21.096-8.176-7.584-9.725-4.563-5.004-5.158-4.551-4.181-5.088

.00923-.00894-.01826

101.5949990.36268

.99910-.00128

.01687

.00222-.02533

.0021931.39238

.78944

.77305

.8017611.3776023.70841

***********80.29431-104.99495

39.82446181.62804

3.1B847-3.21335

-111.308522.10687

25.726627.26860

-9.5051712.73116

313.47283108.S8302106.66622107.76448-11.37162-10.43838

.00000

.00000

.00000-.02033-.02132-.02629

.02515

.02639' .02826

RMS.02231.98774,01473.07947.03112

182.084851.09754

__540. 078571.07351

. 1.031251.04544

.08064

.04338

.01590,02791

101.5950590.36268

1.00669.01573.02550.01432.03180.01576

31.39290.79040.77393.80270

11.3776123.78185

***********80.29431104.99495

39.82446181.62681

3.188533.37586

111.309902.10688

25.728267.96615

10.4982913.17653

316.98033108.61235106.6<Jf06107.79463

13.4446612.72263

2.374322.315232.419431.645731.660571.533782.063892.020242.14503

_POINTS1576157615761576157615761576157615761576157615761576

.___.! 5 76

.... 15761576

. .1576... . 1576

15761576157615761576J576157615761576157615761576157615761576157615761576157615761576157615761576157615761576157615761576

__ 157615761576157615761576157615761576

A.89

0)

c£ ao.

-t-> O»(J v0> •—s_ u-•^o o

**-a

IT!

1 g

0)TJ

LOLOo

s a(fop)

•/i-o

CM -— C00 t— OO> O Or- S <U

— in•— •• CM

0> 0> T>•M E l-(O •»- 3Q t— Q

(OD-

o>

(/IOl

Lf>

OOo

oooCO

ooor*.

3o:

o>

co

toQ.

en

ro

013O)

A.90

o<M

OO

a:rvi o.M % M

3<

C£rvi

OCO

oto

otf-1

ooO)>

8 10=JO)

o

(_)>-

o>-

0£x

cjX X

uX

£

g *3<

O(\J

Oo

oOD

OID

Oa>w

v. s§ Ho(XI

o(M

OO

OCO

oCO

oT

o(M

o o o o o(SI —t —i <SJ

f i (s/ui)o o o a o(M _i —. <\|

i i

Ol

•i- COO i—o

r— C0> 3

M- OTO -r-

a>• r— •«&. (/)o a;

•(-> oCO C

o><U <4-E >4-•^ *^I— TJ

«C

s~

A.91

TABLE A.18. Average Turbulence Parameters and Integral Length Scales,

I. Mean Airspeed (m/s)

112.1 110.9 112.8

III. Standard Deviationof Gust VelocityDifferences (m/s)

0.59

0.56

0.65

0.60

0.57

ZRC

0.68

RL

0.76

0.62

^¥ZRL

0.77

El. Standard Deviation ofGust Velocities (m/s)

aWXL

4.69

crWYL

2.31

aWZL

2.25

V. Integral

aV

4.62

aWYC

2.37

awzc

2.22

Length

aWXR

4.75

aWYR

2.37

aWZR

2.36

Scale (m)

\L \C \R

1275 1270 1300

2562 2448 2516

1697 1631 1539

A.92

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.75. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 13.

A.93

c«J'o

4)OU

do

I<uJMI*Ou

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.76. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 13.

A.94

ti0)

a)oOCo

oID-,

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.77. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 13.

A.95

10* r

\

I

10"

10-

von KarmanN=1024SEG.= 5

von KarmanN=1024SEG.= 5

von KarmanN=1024SEG.= 5

von KarmanN=1024SEG.= 5

Wv

von KarmanN=1024SEG.= 5

von KarmanN=1024SEG.= 5

W,

, i.,,,,1

—von KarmanN=102<3SEG.= 5

Wv

10-2 10° io-a 10°

K = u/V (m-1)

io-8 10°

Figure A.78. Normalized auto-spectra of gust velocities, Flight 6, Run 13.

A.96

103 -

•e« jQ-8

10*

•e- 10-8

108

- 10°

«< 10-«

SEG.= 5

WXCL

i i mud

N=1024SEG.= 5 e * SEG.= 5

WYRC

N=1024SEG.= 5

N-W24SEG.= 5

WXRC

SEG.= 5

,J , , ,,,,,J

SEG.= 5

.* SEG.= 5

WYR

-

i i ntnl

N=1024SEG.= 5

i mini

10-8 10°K =

10°u/V (or1)

ic z 10°

Figure A.79. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 13.

A.97

<&>'

•6.".„ 10°•7

10-z 10° 10~a 10°K = «/V (

10~B 10°

Figure A.80. Two-point cross-spectra of gust velocities, Flight 6, Run 13.

A.98

TABLE A.20. List of All Parameters Measured and Their Range of Values,Flight 6, Run 13.

START TIME • 51266*3674 STOP TINE • 91399*7674CHANNEL

2 PHI DOT3 ACCL N CG4 THETA DOT5 THETA6 PHI7 PSI 1P DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL N LT12 A C C L N RTJ3 A C C I . X . C G14 A C C L Y CG13 ALPHA CTR16 BETA CTR .17 TEhP I18 T E M P P19 A C C L I INS,20 A L P H A PT21 B E T A RT2? A L P H A LT23 B E T A LT24 PSI DOT25 TEMP TOT26 OC LT27 OC CTR28 OC RT29 PS30 TEMP IRT31 D TO 53? 8 TO 0 .33 LONG3 4 L A T35 TRK ANG36 HOG3 7 V E31 V»43<> ALTITUDE*o TEMPC41 EH WHO SPO*? NS WNO SPO(.3 yl>-0 S P E E D»<• hlf.C O I S E C0 A K S P E t D A4ft A I R S P E E D C47 AIRSPEED I48 DELTA ALT49 INRTL OISP50 gc PIGHT$1 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 WG RIGHT57 WG CENTER5 ? b G L E F T

UNITSRAD/SECG UNITSRAD/SECRADRADDEGREESDEGREESOEGPEESDEGREESG UNITSG UNITSGUN ITS ,G UNITSPADPADDEG FOEG FG UNITSRADRADRADRADRAO/SECCEG CPS IDPSIOPSIDPSIAOEG CP E T E R S ......DEGREESOEGPEESDEGREESOEGFEESRADIANSf / S E C _f /SKKMDEGREES CK N O T Si -NOTSU N O T SC ( G f > E E SH/SECM/SFCH/SECHETERSMETERSM/SEC. .H/SECH/SECH/SECH/SECM/SECM/SECH/SECH/SEC

HIGH.061

-.968.058.106.071

9.7003.727

367.4433.4631.8251.796.126.223.053.099

100.60390.545

1.593.078.098.069.032.046

32.671.. _ 1.109

1.0761.127

11.38524.219

8745955.56480.285

-104.99639.929

6.091.179

._ 15.667116.476

2.13326.235

5.55415.57327.180

347.009127.644124.804126.681

24.30524.5746.8866.4137.1958.2837.6696.0824.9494.5554.703

LOW-.087-.988

. . -.0*9.005

-.0773.719

-1.798361.810•2.066

.168,346

-.018-.222-.074-.077

100.06390.366

.518-.058-.031-.065-.081-.037

30.210. .701

.690

.71511.34119.109

6741898.066'80.272

-105.01739.799

3.580.079

6.923107.057

2.10123.063

-25.164-16.280

.12913.640

102.728100.961101.855-6.894-6.772

.._,_. -11.374-11.113-11.563-8.162-6.248-8.545-6.451-6.104-5.852

MEAN-.00293

_ -.98774.00569.05467

-.006717.315981.64122

365.236991.371741.010871.02537

.05268

.00796-.01541-.02128

100.24713___.90. 37968

1.00281-.00536

....... .01344-.00372-.02718

.00353._31. 40146,

.85912

.84123

.8711411.3*87622.20841

***********80.27820-105.00729

39.863596.55789

.1409812.75865

111.102032.11312

25.25722-9.97566

3.1771313.62806

108.80332112.64093110.93788112.08051

4.887846.62826-.00000-.00000-.00000-.OC061

.00564

.00358-.01959-.01256-.01172

RMS.02265.98774,01250.05966.02832

7.393991.94792

365.238451.72629

• 1.022681.03705

.05649

.05483

.02073

.02796

POIMI&5176

....51765176517651765176517651765176517651765176.517651765176

100.24718 517690.37970 ._.. 51 76

l.t0067Q 5176.01684 5176.02130 5176.01482 5176

_. 03181 5176.... .01312 .. 5176

lit 4092.3 5176...... .86533 5176

.84729 5176

.87745 517611.36876 517622.23702 5176

******+**** 517680.27620 5176

105.00729 517639.86360 5176

6.65132 5176.14226 5176

._ 12.92836 5176111.12976 5176

2.11313 517625.27419 517610.88719 51769.71923 5176

14.59432 . 5176116.25303 5176113.0U89 5176111.11001 5176112.25469 5176

0. 96447 517610.74572 5176

4.79897 51764.66924

... 4,743152.366152.369092.306612.358932.212332.24696

51765176517651765176517651765176

A.99

ORIGINAL PAQE ISOF POOR QUAJimr

<u>

•2.C0> 4J

0.

O 4J

•M CD(J -i-tt) •—s_ u_o o-a

CNJ

O

CM X-N TJ03 I— CT» a o— 2: u

• <}• t/5^)- IDr— •• CO

co un

-3 •— co

<u v <a*-» S i.<o •<- 3Q t— Q

-C4J«3Q.

JZo>

000en

000oo

or-*I

o>a>•o

in T3O 3i— 4->I -r-

CT»

O

IT)

I l

(6ap)

3O

0tJ

<a

V

0oo

0oovo

ro

CM

CO

I/)ai

LO

n

C

CT)

CO

03O.

cn

co

ai

A.100

o<SJ

oo

OLrvi % ce.rvi

3

' t-

DOO

8

>

O>

•a

tt:

3

OS.

3

o

3

ce.x3

oX3

uX3

ofSJ

oo

oo a>w

. •—o10 0)

o<\J

oo

S

oM

D O O D

(S/UI) PU?M

o o a o oCM —t —i Cvl

I I

Ol

O io

i- l/Jo <u

+-> oto c

O)

CVCO

O)

A.101

TABLE A.2V. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 14.

I. Mean Airspeed (m/s)

R

102.2 101.3 103.1

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC HRL

n. Standard Deviation ofGust Velocities (m/s)

aWXL

0.95

aWYL

0.73

aWZL

0.98

awxc0.93

aWYC

0.76

crwzc0.87

a 'WXR

0.91

aWYR

0.74

aWZR

0.94

0.50

0.45

0.54

0.51

0.43

" e

0.51

0.60

0.47

0.61

IV. Integral Length Scale (m).

337

124

382

\c

373

\

105

c

198

339

125

186

A.102

I I I

w

0 5.-5. 0 5.-5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.83. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 14.

A.103

cJJo

do

0)su(doO

o

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.84. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 14.

A.104

1.

0.

-1. L

WXRC

WXCL

WXRL

u0)

0)oocoya

IoItJc•8a.

i

o.

-i,0.

.-"•••* I

WYRC

WYCI.

NYRL

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.85. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 14.

A.105

10*

10°

10-1

10*

10°

io-

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

von KarmanN= 512SEG.= 1

—von KarmanN= 512SEG.= 4

I

von KarmanN= 512SEG.= 4

von KarmanN- 512SEG.= 4

—von KarmanN= 512

_± SEG.= 4

—von KarmanN= 512SEG.= 4

W,

MM! i I I mill i , ,,.,„' I .1 1 . , mJ , ii,mil I I i mill

10-8 10° 10° 10~2 10°

u/V

Figure A.86. Normalized auto-spectra of gust velocities, Flight 6, Run 14.

A.106

10a

r 10°

10*

b~ 10°

^

108

N= 512SEG.= 4

WXCL

N= 512SEG.= 4

* WYCL

N= 512SEG.= 4

*A

N= 512SEG.= 4

XRC

,,,! i

N= 512SEG.= 4

V

N= 512SEG.= 4

n mil i i mutt i 11 mm

N= 512SEG.= 4

"

, ,,,,,,,1 , , , n , , i l ,,l , . .....j

N= 512SEG.= 4

wr(?L

N- 512SEG.= 4

'*,

io~8 10° ic 8 10° io~8 10°

Figure A.87. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 14.

A.107

ORIGINAL PAGE ISOF POOR QUALfTY

IO2

^

.g, 10°

•a-'"1

io-2

10*

%-'. 10°•7<o<

io-8

10s

1?"._ 10°lAt*w*

io-a

rr

r

rr-r~

T-:

ri-

rr

r-rr-

r

r

rr=

r

r

-

r

f

r

r

rf

r

'

r

r

r

rr:

f

rr

r

W x w zLL

— -LC

— LR

r ***\

P V* ml

•~ w ^v Tb! V V nl

r iftF *w

s~

~ i i iimJ i iiiiiJ i iiiiml ii MI ml

CL

— -CC

r — CR

2~ v^\

r K.N VL- \ v/\ TI•- V N**i \j• 1 Y». Tr Vi•~ Pni

r~ i i inttJ i HiinJ i i in ml i t ii mil

— RL— -RC

i- — RR

Vs!

- \ Wr v-\ MI

- AA/HIr \\tyr *nr

ID'8 10°

r;-|-

r

r-r

r—

e-

j-

rr

r~rr

rr

T

r;

rr

r

=-

r

r

rr

rr

r

w*

r:

r

rr

r

r

r:

r

r

rr

W X W YLL

— -LC

r — LR

'r \r ^-^L'*- ^ V ifcli "A^i i"r vVn\r- >>^

ri i mnJ i i mill i i HUM r i iitiiJ

CL

---- ccr — CRr \v

f V-'«m.•— V ' ( ^^: vvty ^

r ^Ar fir• , ,Mlllj , mlllj , ,lmj , lllnj

— RL— -RC

r — RRr V- v ^\r C^\r AvTv'' *r k^?" r|

r~Z

10~8 10°

K = u/V (m"1)

g-

l-f

r

r-r

r—

=-

r"

rr

j.=-

r5-

-

r

rr

r=rr

j-

-

"

r

r

r~

~

=

r

B-

r

rF

r-

s~

rr

5~

r

s"

~

r5-

=•

r

W Y W ZLL

— -LC— LR

\

"~ \"" ^y* ^\

•- v^ *J* Tlk^\ vvi T

— \ l*fc

r ^ri inittd i i mini i i mull i i mnJ

CL

— -ccr — CRI »

r v\r *»/s

t iV- \ "* ulw- V\ V"l ^\} ^ *"» M

r ' v >r ipi iniml i i inml i i until i i iniJ

— RL— -RC

g- RR^ \

: ^^ V,

r v ' \ \

r \'*<'Vr Vjjr jr

ID"8 10°

Figure A.88. Two-point cross-spectra of gust velocities, Flight 6, Run 14,

A.108

TABLE A.22, List of All Parameters Measured and Their Range of Values,Flight 6, Run 14.

START TIME • 51534.6178

CHANNEL UNITS HIGH2 PHI DOT RAD/SEC3 ACCL N CG G UNITS4 THETA DOT RAD/SEC5 THETA RAD6 PHI RAD7 PSI 1 DEGREESa DEL PSI i9 PSI 210 DEL PSI 211 ACCL N IT '12 ACCL N RT13 ACCL X CG ~~14 ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEMP I18 TEKP P19 ACCL I INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT2<. PSI DOT25 TEMP TCT__2b OC LT27 OC CTR28 QC RT29 PS30 TEMP IRT31 D TO G32 B TO 633 LONG3*. LAT35 TRK ANG36 HOG37 VE38 VN39 ALTITUDE40 TEPPC41 EW WNO SPO42 NS VNO SPO43 hIKO SPEED<•<• WU.O CIPEC•• '• » 1 > S P E E 0 R•>•• A l U P F f O C47 AIRSPEED L48 DELTA ALT49 INRTL OISP50 UG RIGHT51 UG CENTER5? UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 WG RIGHT57 WG CENTER55 WG LEFT

OFGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEG FDEG FG UNITSRADRADRAORADfrAO/SECDcG CPSIDPSIDPSIOPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSOEGffESr./SECM / S f C

M/SECMETERSPETERSM/SECM/SECM/SECM/SECM/SECM/SECM/SECP/SECM/SEC

.038-.988.037.093.029

341.8593.022

340.3362.8751.4421.525.129.176.029.021

100.24390.5451.265.048.053.049.010.025

28.733

STOP TIHE • 51587,6178LOW MEAN RMS POINTS-.044-.988-.016.050

-.034337.280-1.240336.111-1.390

.579

.461

.040-.161-.023-.051

100.06390.366.771

-.011-.004

. -.012-.054-.01627.748

-.00240-.9877*.00547.07118.00342

_JI?.924461.23042

338,664901.096081.0C4741.01802.08510.00910.00089

-.01563100.1923790.48423.9*881.01730.02038,02040

-.02270.00406

__28. 17497

.01363

.98774

.00916

.07212

.01369339.925671.51986

338.666061.412201.011911.02518.06660.05854.00615.01686

100.1924190.484261.00065.01960.02255,02227.02465.00789

26.17560.745 .626 .70134 .70184.729 .621 .66808 .68656.766 .642 .71302 .71351

11.176 11.145 11.15970 11.1597017.860 12.776 16.23253 16.29063

8741039. 7708739566. 976******* ***************"80.197 "60.171 80. 1B422 " 80.18422-105.079 -105.106 -105.09224 105.0922440.071 40.029 40.04956 40.04958335.652 331.598 333.41964 333.421205.966 5.689 5.93368 5.93371

-40.846 -44.205 -43.02968 43.0355690.4192.27223.359

-14.471-13.78132.31758.620106.619104.176105.32822.46620.8882.8092.7702.8842.1552.2442.1002.1492.0112.941

81.0642.24922.614-24,839-23.10322.62036.58997.83396.25696.660-1.1910.000-2.225-2.218-2.636-2.902-3.218-2.865-3.062-2.893-3.532

86.130582.26196

23.06600-19.14337-18.5517626.7261745.91237103.06016101.2P034102.2304312.0654212.10621-.00000-.00000-.00000-.02446-.02421-.02372,01042.01233.01246

86.167352.2619623.0681419,2120818.6352526.7652146.09625103.07799101.29795102.2485313.3587213.51076.93557.94757.96699.73694.76331.73156,93544.86537.97105

2120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120212021202120

212021202120212021202120212021202120.212021202120

A.109

01

2L0) •<->

o_co +J4J en^J *^"0) r-J_ LL.

o o-a

i i «*o

a>•o

LT>0)

eno

in

J IC\J

O

1- 1—

CT(n

(Bap)

OJ »-~. -Oa: t- cCT Q Or— 2; O

en"* °.

cc>•, 00

3 <•

a» <y <o• ( - » £ $ _as ••- 3o I— a

JC

0.

$_o•MCoCJ

CT>

00

I/I(U

CSJ

Ooocr>

ooo00

0oo

oooVO

ORIGINAL PAGE [SOF POOR QUALITY

-,•>.,

- f ^ /"•v.^ --, •' /•

co

03

O14-c

03Q.

O)

O-lCO

<cO)

C7)

'••'.V / ;.

A.no

oCM

OO

'_o:rvi3

_M3

CO

d(0

en

1 1 1 1

01X

£ 1

_X3

O O O O OCM 1-1 — " C M

X3

oCM

§

§ v

^

d

d

d

•r- IO

o r~

oCO

oCM

i- V)O 9)••-> Oto c.c fc.

<u

I— -o

8

S-3o>

/ / \(s/m) P^TAl

O O O O OCM - 7 CM

A.Ill

TABLE A.23. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 15.

I. Mean Airspeed (m/s)

V.

101.5 100.5 102.4

H. Standard Deviation ofGust Velocities (m/s)

QWXL

1.23

(7W.xc

1. 14

(7

WXR

1.17

aWYL

1.87

aw.

YC

1.86

CTWYR

1.85

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

CTWZL

0.91

wzc0.94 0.98

0.55

0.49

0.54

0.47

0.52 0.45

0.70

0.53

HRC XRL

0.56

IV. Integral Length Scale (m).

480 500 505

V \C \R

1824 1757 1733

ZL

675

ZC

694 712

A.112

1.0 i i i i | i i i rw

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.91. Probability density function for gust velocities and gustvelocity differences, F l igh t 6, Run 15.

A.113

soIou

§<u

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.92. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 15.

A.114

e0)

0)ooco

EouIo

g'Sa.o

E-

I I I .

1000. 2000. 3000.

Spatial Lag .S=VT(m)

Figure A.93. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 15.

A.115

I10a ,

10°

l(Tsr

10*

10°

10-V

—von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

i i iiiiil t i t null i I I null I I tilII

•von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

Wy

—von KarmanN= 512SEG.= 5

.von KarmanN= 512SEG.= 5

fee

von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

I i i null i i i Mini i i i mill I I I HUB

—von KarmanN= 512SEG.= 5

10" 10° 10~z 10°

K = oi/V (m

10~8 10°

Figure A.94. Normalized auto-spectra of gust velocities, Flight 6, Run 15.

A.116

•e- 10-z

io2

N= 512SEG.= 5

WXCL

<*»

I 1 1 mil

N= 512SEG.= 5

F +

b\

*

10-a

IO2

r 10°

WYCL

N= 512SEG.=5

10-2

N= 512SEG.= 5

XRC

iil t i t t mil i i i mtil

N= 512SEG.= 5

M- 512SEG.= 5

N= 512SEG.= 5

N= 512

5EG.= 5

WYRL

i i,mil

N= 512SEG.= 5

WZRL

10-810°

K = cj/V10° 10" 10°

Figure A.95. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 15.

A.117

ORIGINAL PAGE ISOP POOR QUAiJTY

IO2

s.'°-•e-

10-*

IO2

•c> mO10«p^

•e-

io-8

10Z

• x1?•a- 10

•e.""

io-8

r

r—3

r

i

rr

r

-

r

-

r

r

rr

rrr

r

rr

rr

rr

r

r

rr:r

rrr

rrr:rrr

[

w x w z— LL

— -LCr — LR

r V.

r \*\vr \\\r N$r ^ri miitJ i tnitJ i iniwl i in mil

CL

— -ccr — CR

f V,•_ 1 ^L

f \"\\

r ^\

r ^r >r:.I.,..J IIM.J ,,„«! , ,,,J

— RL— -RC

r — RRr \• \ ^A*

r XN \r \\\n:,,,,,,J ,.,,.j . M,,mt . ,,,UJ

io-2 10°

r

rr

r5-

rr

r

r

rr:r

r

3

r

rr

rr

r

r

rrrr

r

r

r

r

r

r^r

r\r•

r

r

r:

r

r

W X W Y

— LL

— - LC

r — LR

r v/-\T \>v-'\~ » <\ W^

r S'ijyr VSr Nri i mnJ i i iiniJ i niiiiJ i i nniJ

CL

— -CC

r \ ~~CR

\ ,N-vr \^-Vr V-;A: " \i •

r SSr w:,,,,,»; ,,,,,,j j , ,i,.j

RL

— - RC

r — RR

r ,V.I * <^.

r \-v\i_ \ ''*, T\Ir ~v. ". J

f ^i IIIIDI i luiin i i iititJ t niitJ

io-8 10°

r

rp

r

r

r

r

1-

rr:r

rr

r

r

rr-r

rr

B-

rr

r-

f

r

r

r

r

r

-r

r-

r^

r

r

r^r

r

rr

w Y wz— LL— -LC

r — LR

r ,\A,f v'»-v\

r V^''V\

r \>

f N=

i mum i i mini i > mml i i miJ

— CL— -cc

r — CRr \Ar v Lr \'-'\\i" VV^3*\ '*4t f

r ^:i iiuml , ,.,,ml , nmirl n 1

— RL

— -RC

r — RRr \A" * VI

r \^'\\\ V Tjir \^^ W

: A. 7ii 1

f ^r:,,,,J J , ,,u.l , ,,n,J

io-B 10°K = U/V (TCI-1)

Figure A.96. Two-point cross-spectra of gust velocities, Flight 6, Run 15.

A.118

TABLE A.24.

ORIGINAL PAGE »SOF POOR QUALTTY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 15.

START

CHANNEL? PHI DOT3 ACCL N CG4 THETA DOT5 THETA6 PHI7 PSI 10 DEL PSI 19 PSI 210 DEL PSI I "11 ACCL N LT12 ACCL N RT13 ACCL X C614 ACCL Y CG15 ALPHA CTR16 BeTA CTR17 TEMP I18 TEPP P19 ACCl 7 INS20 ALPHA RT21 BETA RT2? ALPHA LT23 BETA LT24 PSI DOT25 TEHP TOT26 OC LT27 OC CTR23 OC RT29 PS3C TEPP IRT31 C TO G32 B TO 033 LONG34 LAT35 TRK ANG36 HOG37 VE39 VN39 ALTITUDE40 TEWPC*1 EU WNO SPO*? NS WND SPOHi aisj SPIED-" «INP OIPEC<•«> » USPEtO R•••. AIRSPEED c47 AIRSPEED L43 DELTA ALT49 INRTL DISP50 UG RIGHT"51 UG CENTER52 UG LEFT53 VG PIGHT54 VG CENTER55 VG LEFT56 4G RIGHT57 UG CENTER5C WG LEFT

TIME • 52083.3269

UNITS HIGHRAD/SECG UNITSRAO/SECPADRADDEGREESDECREESDEGREESDEGREESG UNITSG UNITSGUN ITSG UNITSRADPADDEC FDEG FG UNITSRADRADRADRAORAD/SECDEG CPSIDPSIDPSIDPSIADEG CMfTERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SFCM/SECKMDEGREESKNOTSKNOTSKNOTSCfcGPEESM/SLCM/SECH/SECMETERSMETERSM/SECM/SECH/SECM/SECM/SECM/SECM/SECM/SECM/SEC

.066-.986.040.079.145

115.3761.582

477.6331.2561.8101.806.082.210.019.025

99.34390.5451.200.041.056

'....'.' .035.016.025

28.733

STOP TIME • 52156.6289LOW MEAN RMS POINTS-.044-.988-.037-.019-.051

109.036-4.560471.649

~~-4. 830.236.235.023

-.189-.034-.05098.98490.366

.746-.013-.Oil-.016-.060-.01927.254

.742 .636

.725 .621

.771 .64411.232 11.15119.515 14.510

8T57459. 9558751773. 606'80.356

-104.86539.982122.3602.03389.709

-47.1202.266

C 23.724.143

-8.88826.096359.382106.900103.777105.0233.3633.9852. BIB3.2044.2163.6793.3993.4394.9764.0704.298

80.299-104.94039.948118.1891.92486.749

-55.6102.210

22.139-13.043-25.17610.126.393

98. OF*96.4CO97.500-54.520-54.429-3.368-3.193-3.730-5.193-4.696-4.806-2.863-2.784-2.655

-.00080-.98774.00520.05756

-.01393112.70519-1.01255475.05116-1.305201.004791.01722.05731.00960

-.00299-.0162299.1593390.37155

.99543

.01120

.01967•01256-.02227.00291

JL8,17089.69199.67849.70426

11.1718517.04082

»*«*****+*«<60.32786

-104.9029139.96458120.366201.98733

87.63211-51.33699

2.2532623.13803-7.04303-17.8346519.3227021.9983?102.39877100.54715101.52052-11.67177-12.25759-.00000-.00000-.00000-.01988-.02248-.02406-.01340-.01361-.01306

.01534

.98774

.00936

.06128

.03326112.711811.58114

475.052661.779791.014871.02712.05794.07259.00683.02013

99.1593490.37156.99699.01313.02261.01428.02480.00954

28.17255.69241.67888.70466

11.1718617.06934

***********80.32787104.9029139.96458120.37541

1.9874567.6349451.431562.2532823.141197.3698118.186P919.6233P24.04324102,41215100.56036101.5348415.7943416*720481,203471.202471.296201.793441.792921.797061.129331.057851.06971

29322932293229322932293229322932293229322932.2.93229322932293229322932293229322932293229322932293?293229322932293229322932293229322932293229322932293229322932293229322932293229322932293229322932293229322932293229322932293229322932

A.119

ORIGINAL PAGE «Of POOR

0)

•2.COf 4->

CC. tOo.

O -M•f— -C4J a>(j '•-<u •—i- U-

5 o•M

-a

1 1 1 1

^^_

-

! "1 1 ! 1

(J

O

1

o>O)TJ

O. a>in -o0 3•— 4->

1 -r-0»

O

IT)

LOO

Di—

(6ap)

CM - T3CO >— CO1 Q O

^S ^• CO (/)

•4-0r— •• VO

o en

oj a> (o+-> = s_<a -i- 3Q I— Q

<n

CTl

00

co

OJ

ooo

ooooo

ooo

ooo

oo

3"

<-D

c3

A

U3

+J^ZCD

Co

S-o

o>

ai

A.120

oCM

sifj3<

oCO

oo

T3c

i i i i i

OfX

o0£

>-3<

o o o o o(\J I-H 1-1 <\J

o(\J

oo

oCO

oID

ot\j

O

O

oo

oCO

oCO

o

o(M

O0)w

0)

(s/ui) paadg

O O O O OCM _i -< (M

I I

O)

••- 10O r—o

r— C(!) 3> CC

14- o>O -r-

(D• r~ **s- inO OJ+J OCO C•r- O^ s-

O)CU M-E t-

•i— *r—I— T3

COen

<u

A.121

TABLE A.25. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 16.

I. Mean Airspeed (m/s)

R

107.0 105.9 107.8

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC

0.43

0.39

0.46

0.45

0.41

0.45

0.56

0.44

cr.™ cr...... cr.,,,AWZCL AWZRC A¥ZRL

0.51

II. Standard Deviation ofGust Velocities (m/s)

WXLwxc

3.41

crWYL

1.11

crWZL

1.20

3.39

CTWYC

1.15

awzc

1.17

3.39

crWYR

1.13

crWZR

1.19

IV. Integral Length Scale (m).

\.

640

1540 1535 1546

\c637 697

1169 1237 1136

A.122

1.0

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.99. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 16.

A.123

!CJ

oudo

i0)I*IHOU

I

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.100. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 16.

A.124

0)ooc.23

—"oSto

n•sIXo

1.

0.

-1.

1. -

0.

1 L_

WXRC

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

WYCL

WYRL

WZRCi _j

NZCL

i i i

WZRL

"3000.

Figure A.101. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 16.

A.125

10-'

10-

•von KarmanN= 512SEG.= 7

[|J i iiiiiiJ i i t HIM! 4 t nun

von KarmanN= 512SEG.= 7

null i t mini t i i iinii i iitu

•von KantianN= 512SEG.= 7

Illlll 1 I iilllj

von KarmanN= 512SEG.= 7

•von KarmanN= 512SEG.= 7

•von KarmanN= 512SEG.= 7

von KarmanN= 512SEG.= 7

•von KarmanN= 512S£G.= 7

1 i Illlltl I I Illllll II 111MB I I I Illtd

von KarmanN= 512SEC.= 7

unl t i mm) i i ii mil i

10'8 10° 10~8 10°

K = 6J/V

NT8 10°

Figure A.102. Normalized auto-spectra of gust velocities, Flight 6, Run 16,

A.126

10*

e-K" 10°o

S^•» 10-8

10e

tiT

tr 10°

^

10*

?ioo

%* 10-8

: N= 512f SEG.= 7

f » WXCL*

i"- +*

: j*

r

I

' N= 512f + SEG.= 7

r *4* WYCL: V

r tm

:

r

" i ,..n«l , ,,.,i,j . , , I , ,ii

1. N= 512f SEG.= 7

r * ++ + WZCL: <*%r +*\f Sr

r

10~8 10°

1 N= 512I SEG.= 7

j- * WXRC

r *****'* *\

f-•: N= 512f + SEG.= 7

r *** WYRC= Xr V: ?<*•: A*.r ^L- afiK

^^b: ^r

~ . ,,,„„! ,1 , , J , ..,„„

1 N= 512f SEG.= 7

: + ^. f*l*

r V

r Iferr

10~8 10°

L N= 512I SEG.= 7

f + WXRL

r +v+r \

r

= N= 512f * SEG.= 7

\

-

;

t i unfit i i mint i i iitnil i i iiiuif

: N= 512[ SEG.= 7

r +*t ++ WZRL

r -^

f Hrr

10~8 10°K = u/V

Figure A.103. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 16.

A.127

OF POOR QUAUFY

10- 10°

^ f HIMl I tlfft* ' IfJIff llllllJ

10'* 10° 10°

u/V

Figure A.104. Two-point cross-spectra of gust velocities, Flight 6, Run 16.

A.128

POOR QUALTHf

TABLE A.26. List of All Parameters Measured and Their Range of Values,Flight 6, Run 16.

START

. ..CHANNEL2 PHI DOT3 A C C L N CG4 T H E T A DOT5 THETA6 PHI

. 7 PSI I . ._9 DEL PSI 19 PSI 2

10 DEL PSI 211 A C C L N IT1? A C C L . N RT13 A C C L X CG ..14 A C C L Y CG ....15 A L P H A CTR.16 B E T A CTR17 TEHP Ila TEHP PI* A C C L Z INS.2C A L P H A RT21 BETA RT22 ALPHA LT23 B t T A LT24 PSI DOT?•> TFHP. .TCT2<> QC LT27 OC CTR2* OC RT23 PS30 TEHP IP I.3 1.0. JO... 632 B TO 0 _.31 LOKG3* LAT25 TRK ANG .3i HOG . .3 7 V E3 3 V M39 ALTITUDE40 T E M P C41 E U UNO SPD4? KS *ND SPD<O W l " 0 S P E E D<•'. wlr .3 Oi l-EC- -•. « I P «; P E t c R

• » i » '. P !• E O C47 AIRSPEED I48 D E L T A ALT49 f N K T L CISP50 UG RIGHT51 UG CENTER52 UG LEFT5 3 V G RIGHT5 4 V G C E N T E R55 VG LEFT56 VG RIGHT! .•• VG C F S T E R• is WG I EFT

TIME • 52203*3041

UNITS HIGH .P A D / S E C .062G UNITS -.986PAD/SEC .033PAD .106RAD .028D E G R E E S 174,902DEGREES 1.934DEGREES S33.250D E G R E E S 1.727G UNITS 1.597G UNITS 1.688GUN ITS

. G UNITS. P A D

RADDEC FOEG FG UNITS ..RADPADRADR A OR A O / S E CDEC CPS IDPSIDPSIOPSI ADEG CH E T E R SDEGREESDEGREES ....

. DEGREES ...D E G R E E S

. R A D I A N SM / S E CH/SKKHD E G R E E S CKNOTSKNOTSK N O T SO E G C E E SH/SKf / S KH/SECHETERSHETERSH/SECM/SECH / S E C

H / S E CH/SECM/StCH / S E Cr /ssc

.073

.204

.022

.036.._.. 99.523

90.9451.261

.029

.062

.033

.031

.03932.474

.889

.866

.89911.40423.636

_fllAfl552.358l60.404

... -104.83139.906

174.9913.059

13,034-90.396

2.12126.70110.67217.633n.ftfc

359,905114.825112.843114.25110.516

7.9406,9856.7006.9094.3655.0615.1665.15t>4.8735.266

STOP TIN

LOW ...-.052-.988-.021

.016-.070

. 171.387-1.387

529.736-1,566

.516

.465-.007

_ _ -.176-.041-.069

99.163. 90.366

.....744-.036-.027-.032-.069-.033

30.603.. . .631

.619.643

11.35614.939

I2U9.33.00S4.00.379

-104.84339.620

172.7952,998

_ 6.642-109,876

2.06625.626-6.632-5.156

.147

.19097.6849 5 . P 3 796.762

-22.049-20.092-5.140-5.096-5.446-3.313-3.616-3.432-3.531-3.152-3.236

t • 52Z99.5291

MEAN RMS-.00304 .01444-.98774 .98774

.00592 .00997

.05495 .05628-.00828 .01937

_173.36213_1T3. 36399.40296 .88380

531.58282 J.3.1. 58337.21066 .81041

1.00992 - 1.01734... 1.02359 1.03089

.03508 .03741

.00714-.01249-.02149

99.4434390.36937

1.00060-,00372

.01386-.00359-.02747

.00349....11.8361.1,. .77804

.76070

.78948.... 11.36102

22.54041

'*.*******»*«80.39196

-104.8371439.66246

174.044903.03136

10.62C68-101.46122

2.1044626.25128

2 .445737.71576

... 9 .64661217.4053?107. 795921 0 5 . 6 5 7 2 2107.02757-5.98500-6.92817-.00000-.00000-.00000-.03762-.03586-.03287

.02143

.02405' .02452

.04786

.01577

.02444- 99.44346

. 90,369361,00286.01131.01730

... .01094.02952,01004

31,83876..78035.76292.79177

11.3810222.57985

1*1*********80.39196

104,8371439,86247

174.046183.03139

10.68262101.61652

2,1044726.25204

3 .2R76710.05797

. 1 0 , 5 6 1 6 7224 .79726107.6711?

107*. 104248.725949.309523.327523.330863.343811.108601.119951.083561.165581.150431.17514

POINTS38493849384938493849384938493849

., 384938493B493849

. . 3 8 4 938493849

... 384938493849384938493849394936493849

... 384938493849

38493649384936493849

. 3849_. 3849...3649

38493849364938493849

.... 38493849

38*938493849

3849384938493849384938493849

3849

A.129

<u>-13

.O) -(->Qi «

Q.

O +J

o ••-(U i—S- Ll_

Q O4J

T3

cna)

0)T3

C7)

o

(/)C\J^~ -D00 t— CO% O O

«tn i/>«* ooi— •• IT)

' r^.

(6ap)

— o

3 «3- ..•-3 •— C

O

O) Ol m•M _E J_

Q £ Q

Oc_>

cn

oo

00

CO

CVI

ooo

ooo00

ooo

ooo

ooin

•-. -.-/SI

t nr-£ ' . - ? ix \rv'>.\ i

•5 ISS.fi

nprr

'»7*

if_ t _± _•F T " , * * - " ~ . ^ ,

i'

:«**:»

W i r ji f ' \ l z ' a r

,-•--:#•.<

rx,^< /-.i-. A!

»«jif i,i -v—

./ -j<.-'' '• Wf'^r» •:

!(u,i,l> ^^Til

'•iiwlf':<»JV-V...

' i7 •III _''(".

#•

, -~n

'/«5

^vy

!Zo

ia

o>+-C

(OCL

-CO)

uno

ec

s_

A.130

oodl>

in3O>

TJCto

to

•i- r-.O r-o

i— CO) 3> cc

•+- o>O -r-

(/> U_OJ

*^~ *«

S- 10o <u4-> Ot/1 C

•r- <UJZ S-

(1)

10o

CD

O O O O O(M —i —• (\J

I I (S/CU)

o o o o oCM —i - (M

I I

A.131

TABLE A.27. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 17.

I. Mean Airspeed (m/s)

VL

97.9

vc

9.8

VR

98.5

II. Standard Deviation ofGust Velocities (m/s)

crWXL

3.81

aWYL

1.61

aw.xc

3.75

aw.

1.77

WXR

3.75

cr

1.77

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

aWZL

3.11

awzc

3.31

WZR

3.30

1.17

1.21

1.26

1.32

1.15

XCL XRC XRL

1.11

IV. Integral Length Scale (m).

261

\c251 250

1.48 1.17 1.50

L

2208 2138 2192

216

c

277 261

A.132

1.0

0.8

,£>2 0.4a.

0.2

0.0

i i i i

CenterLeft

i i i i i i i i rw

-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.107. Probability density function for gust velocit ies and gustvelocity differences, Flight 6, Run 17.

A.133

0

do

(M0

CJ

I

I I I 1 I I 1

1000. 2000, 3000.

Spatial Lag ,S=VT(m)

WOO,

Figure A,108. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 17.

A.134

WXRC

0)• l-lo£0)ooCO

sooIo

fi•s(XIo

E-

i 1 J 1

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.109. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 17.

A.135

10*

10°

10-'r

10*

10°

10-

10-

—von KarmanN= 512SEG.= 5

WXL

i i Mini i i i HUB i i HHIU ilium

—von KarmanN= 512SEG.= 5

i i HIM i t i IHIB i i i nntl i

•von KarmanN= 512SEG.= 5

—von Karman •N= 512SEG.= 5

Wy

UHH 1 I 11 Mill I 1 IIIMJ

—von KarmanN= 512SEG.= 5

•von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

UlltJ I I HllUl 1 t I Unit I I Unit

—von KarmanN= 5123EG.= 5

i i utml I I imm i ininn i i imtn

von KarmanN= 512SEG.r 5

i iwl . I ii li ttn i i 11 tn4 i i 11 nnl

10-2 10° 10~2 10°

K = <u/V (m'1)

10°

Figure A.110. Normalized auto-spectra of gust velocities, Flight 6, Run 17,

A.136

io8 t- . N= 512

10-a

102

tT 10°

3^* 10-«

10*

10°

10-2

SEG.= 5

tiling | ilniiil I i^pmt

N= 512SEO.= 5

WYCL

' ' ' IMIi i i i nun iii utiil i i i KI

N= 512SEG.r 5

i i Una i i | mill

N= 512SEG.= 5

WXRC

i iniiul I luitiil | | tiiin

N= 512SEG.= 5

N= 512SEC.: 5

ini 1 i II Mid | f jin lit

SEG.= 5

i i in ml i i ttini i itinnl

N= 512SEG.= 5

I t I IHllI I I HI lilt I I Until I I Illllll

N= 512SEG.r 5

mill i i IIIIM

1(T2 10° 1(T8 10°K = w/V (m

1Q-6 10°

Figure A.m. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 17.

A.137

IN

^•e.'

" 10

10

"._ 10•6-

10,-a :

10° 10~*K =

10° 10,-8 10°

Figure A.112. Two-point cross-spectra of gust velocities, Flight 6, Run 17,

A.138

TABLE A.28.

ORIGINAL PAGE ISOF POOR

List of All Parameters Measured and Their Range of Values,Flight 6, :Run 17.

S T A R T TIME • 52*74.7196 STOP TIME 525*9.3196

CHANNFL2 PHI D3T3 A C C L N CG4 T H E T A DOT5 THETA6 PHI7 PSI 16 DEL PSI 19 PSI 2

10 DEL PSI 211 A C C L N LT12 A C C L N RT13 A C C L X CG14 A C C L Y CG15 A L P H A CTR16 B t T A CTR17 T E M P I18 T E h P P19 A C C L Z INS20 A L P H A RT21 B E T A RT22 A L P H A LT23 B E T A LT24 PSI DOT25 T E H P TOT26 OC LT27 OC CTR28 OC RT2 9 P S30 T E H P IRT31 0 TO G32 B TO D33 LONG3 4 L A T35 TRK ANG36 HOG3 7 V E33 VN39 A L T I T U D E40 T g P P C41 EU »NO SPO4? NS bND SPOO r i lNO S P E E D-4 V If.D D I R f c C4} A IHPEt C R46 A I R S P e f D C47 A IRSPEED L*» D E L T A ALT*9 INPTL DISP50_yG RIGHT51 UG C E N T E R52 UG LEFT53 VG RIGHT5 4 V G C E N T E R55 VG L E F T56 VG RIGHT5 7 W G C E N T E R5S t fG L E F T

UNITSR A D / S E CG UNITSR A O / S E CRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSR A OR A DDEG FDEG FG UNITSRADRADR A DRADRAD/SECDEG CPSIOPSIDPSIDPSIADEG CP F T E R SC E G R E E SD E G R E E SD E G R E E SC E G R E E SR A D I A N SM / S E C .....M / S f c CKMD E G R E E S CK N O T SK N O T SK N O T SO t G B E E SM/SKM/SECM/SECMETERSM E T E R SM / S E CM/SECM/SECM / S E CM / S E CM/SECM/SKM / S E CM / S E C

HIGH.209

-.986.122.17*.07*

275.2807.371

272.7*37,1662,9*52.434

.231

.168

.132

.07999.70390.5*5

1.693.152.098.123

.0**

.06633.065

.627

.80*

.82911.61225.53*

LOW-.217-.986-.113

.023-.126

265.777-1.857

263.590-2.007-1.779-.775

.017-.173-.162-.167

99.16390.366

-.253-.139-.123-.165-.163-.056

29.717.508.502.512

11.46*16.422

MEAN-.00170-.9877*

.00652

.06875-.01293

RMS.0*5*6.9877*.02*51.09**7.03573

270.7*801 270.75*253.08773

268.555582,892071.010731.02259

.06352

.00220

.00539-.0317*

99.4793390.37*27

1.00389.01270.00510.01262

-.039**.00*91

31.7*151.65868,6**57.66707

11.5932922.06122

3.59689268.56166

3.*267*1.081561.0879*

. .,08997,.0*995.02780.0*5*5

99.*793790.37*28

1.02006.03302.03051.031*1.0*893.02069

31.75509.66230.6*776.67026

11.5932922.15976

6757893.9908750806.508**********************80.426

-10*. 81739.757

272.4824.812

_ -91.7794.1652.032

26.20726.18P12 .P56*3.674

359.962109.707107.757109.53861.85120.372

6.6298.3016.6*79.882

10.1859.66*

12.36113.83811.3*1

80.370-10*. 902

39.755267.132

4.646-100,650

-*.8l*1.942

25,182-15.593-41.3*9

.296

.29186.52685.7*286.239-7.769-6,076

-13.898-13.9*2-1*.650-16,800-17.67*-16.259-12.819-12.9*0-13.187

80.39767-10*. 86002

39.75631270.95910

*. 73520-96,39310

1.653041.95573

27.06536.39163

-6.9280712.21*74

171.0070998.4640096.8169997.859*6

5.556905.08689-.00000-.00000

.00000,01*17.01795.03311.02*33.03258.02656

80.3976710*. 66003

39.75631270.96365

*. 73532_ 96,*3963.

3.118511.95575

27.076677.26085

13 .4S64015.2903*

210.5326*98..5760996.9312097.980*1

9.559026.676693.8*9983.6*1313.896215.939505.9*0005.6270*3.*75263.*67513.5*615

PUIM15298*296*298*298*298*298*298*296*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*298*

• 298*298*298*298*29842964298*2964298*298*298*296*.298*296*298*298*298*

_ 298*298*296*

A.139

10r— -CO) 4->

(X (QQ_

O +->•i-* -e-w o>u ••-

0 O

c•r*oe

LT>

O

I

(Ux>

o• <uu-> -o

O 3

o>co

I ILOo

CO

(6ap)

X> (- CW Q Q•— s: o

>, ro

3 "sT ••O ^- C

O

OJ OJ «34J E t.(O ••- 3Q t— Q

_ O

(OQ.

S-

o4->Coo

CO

LO

o oo oo oO> CO

ooor^

ooo

ooo

ORIGINAL PAGE S3OF POOR QUA*/TY

<\ vrN4 \ A.^^5i "

1 S^°A' ••**>*-.('

-. . *

CO

c

O)

co

to4-of-

(OQL

<C

S-

A.140

ood>

cn13C

•r- COO r—O

r— CO) 3

IX)

M- cnO ••-c/> LL.0>

•r- •>s- toO Ol+-> oto c

•r- 01J= 5-

01O) 4-e M-

• r-1 *r-!— "O

O>

o o o o o(M .-. ^-i t\J

I I (S/UI) p38dg

A.141

TABLE A.29. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 18.

1. Mean Airspeed (m/s)

R

103.5 102.1 104. 1

U. Standard Deviation ofGust Velocities (m/s)

CTW.

XL

4.40

W,XC

4.24

W.XR

4.09

aw.

YL

4.11

aw.

YC

4 .21

aw.YR

4.14

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC HRL

aw,

ZL

4.09

(7W,zc

4.16

aw,

ZR

4.25

1.45

1.52

1.46

XCL HRC

1.54

1.66 1.62

1.67

1.68

rZRC A¥ZRL

1.93

IV. Integral Length Scale (m).

XL

255

\L

WX

258 261

1198 1136 1155

LWZR

428 520 425

A.142

1.0

0.8

,0

8 0.4

0.2

0.0

I i i r

CenterLeft

-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.115. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 18.

A.143

cQJ'o

<uo

ao£.2"oJ

ooio

1.

0.

-1.

-1.0.

Wxc

WXL

WYRj i i

WYC_i i i

WZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

3000.

Figure A.116. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 18.

A.144

1.

0.

-1.

WXRC

WXCL

WXRL

0)oO

co

J5"5

Io

NYRC

WYCL

WYRL

n•s&,io

.1.

-1.0.

I i

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.117. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 18.

A.145

10*

10°

10-'r

b\«

10*

10o

10-

10a

10°

von KarmanN= 512SEG.= 3

Wy

—von KarmanN= 512

V+ SEG.= 3

WYL

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

Wy

,1,1 I I.MMll J

—von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

W,

von KarmanN= 512SEG.= 3

Wy

mid

—-von KarmanN= 512SEG.= 3

II.Mll

—von KarmanN= 512SEG.= 3

10,-2 10° ID'8 10°

* = «/V (m

ID'2 10°

Figure A.118. Normalized auto-spectra of gust velocities, Flight 6, Run 18.

A.146

10*

6-10°

•e- 10-z

io2

tTtT

'?

10*

- 10°

N= 512SEG.= 3

WXCL

V

N= 512SEG.= 3

WYCL

n inn i i i mill

N= 512SEG.= 3

iiinin i t limit i iiiiint

N= 512SEG.= 3

WXRC

N= 512SEG.= 3

N= 512SEG.= 3

WZRC

N- 512SEG.= 3

WXRL

N= 512SEG.= 3

N= 512SEG.= 3

WHRL

i i inn! I 1 tiinil i in Hill i i i mill

10' 10° 10~a 10°K = u/V (m"1)

10-a 10°

Figure A.119. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 18.

A.147

POOR

10-z 10°

K = u/V (m"1)10~a 10°

Figure A.120. Two-point cross-spectra of gust velocities, Flight 6, Run 18,

A.148

OF POOR QUMJTf

TABLE A.30. List of All Parameters Measured and Their Range of Values,Flight 6, Run 18.

S T A R T TIME • 52564,5399

CHANNEL UNITS HIGH? PHI D3T3 A C C L N CG4 THETA DOT5 THFTA6 PHI7 PSI 18 DEL PSI 19 PSI 2

10 DEL PSI 211 A C C L N LT1? A C C L N RT13 A C C L X CG14 A C C L r CG15 A L P H A CTR16 B E T A CTR17 TEf.P IIF T E M P P19 A C C L Z INS20 A L P H A RT21 B E T A RT22 A L P H A LT23 B E T A LT24 PSI DOT25 T E M P TOT26 DC LT27 QC CTR28 QC RT29 PS30 TEMP IRT31 D TO G32 8 TO 033 LONG3 4 L A T35 TRK AN636 HOG37 VE38 VN39 ALTITUDE40 TEMPC41 EU USD SPD42 NS VND SPO43 r f lM ) SPEED<•- ait .o O I R E C- i A I R S P E E D R

47 A IRSPEED I48 D E L T A ALT49 INRTL DISP50 UG RIGHT51 UG C E N T E R52 UG LEFT53 VG RIGHT5 4 V G C E N T E R55 VG LEFT56 WG RIGHT5 7 W G C E N T E R58 UG L E F T

R A D / S E CG UNITSR A O / S E CRAORADDEGREESDEGREESD E G R E E SDEGREESG UNITSG UNITSGUNITSG UNITSR A DR A OOtG FOEG FG UNITSRADPADRADRADR A D / S E CD£G CPSIDPSIDPSIDPSIADfG CMETERSDEGREESDEGREESDEGREESD E G R E E SRADIANSM/SECM / S E C

D E G R E E S CKNOTSK N O T SK N O T SP E G P E E SP / S F Cr / s t cM/SECMETERSMETERSM/SEC _ . ._.M/SECM/SECM / S E CM / S E CH/SECM/SECM / S E CM / S E C

.195-.986

.087

.153

.14535.765

6.342397.367

6.1082.5882.747

.316

.157

.092

.07099.16390.545

1.645.114.078.102.046.072

34.049

STOP TIHE • 52631.3149

LOW MEAN RMS 1-.207 -.00258-.988 -.98774-.084 .00333-.012 .07550-.127 .00356

25.910 31.45116-3.003

388.214-3.389

-.636-.247

.017-.118-.081-.159

97.72490.366

.415-.092-.100-.075-.141-.068

29.520

2.35194393.41160

2.062831.001691.0130C

.15350

.00152-.00708-.03934

98.3955590.46761

1.00154-.00050-.00414

.00208-.0451"

.0036831.36908

.06040.... .98774

.02547

.08620

.0415231.49658Z.8755l.._.

393.414942.668791.084111.08702

.17344

.03763

.03364

.0535698.3961290.46765

1.02298.03735.03295.03573.05598.02713

31.390651.004 .474 .74758 _ .76334 ...

.989 .478 .73113 .746261.026 .481 .75578 .77157

11.604 11.566 11.58464 11.5848526.090 12.776 20.59054 21.00565

8754689. 93387 51012. 826******* ***************80.379

-104.87039.61932.552

.64370.764

112.2451.975

27.29924.32054.57055,573

225.526121.60511S.295120.086

20.63320.283

9.7608.526S.1749.664

.... .. 11.3768.7169.557

_ 9.4809.369

60.365-104.904

39.77630.151

.47549.79083.533

1.94825.061

-16.13414.96715,448

149. 2?68 3 . P 5 38 3 . 6 3 683.232-5.974

-12.200-13.188-13.847-13.089-12.167-13.122-11.608-11.531-11.527-10.305

80.37110-104.88764

39.7968331.27949

.5715662.60382

102.853071.96161

26.094967.90204

36.70662..... 3 8 , 3 0 3 4 2

191.73120104.08300102.41479103.52546

7.328284.10521

.00000

.00000

.00000

.16674. .18613

.19356

.10974._ .13023

' .08614

80.37110104.68784

39.7968431.28723

.5723462.98293

103.255081.96162

26.0995210.9549637.43329

...... 39,00336192.09765104,6?399102.94240104.06756

9.684659.378023.924714.008534.174153.94106

..... 4,035993.96635.3.966953.895133.79863

POINTS1871187118711871187118711671187118711871 ....1871

.187118711871187118711871187118711871187118711871187118711871187118711871187116711871187]187]18711871187]187]167318731873197118731 8 7 3187]

187118711871187118711871187118711871187118711871

A.149

<U

10

O) +•>

Q-

O •»->

<U •—

O O

C

(6ap)

Q o

c\j w

00 VO

V 0) oj•u E £

o>

oooa\

ooooo

s_ocoo

ra

s-

ooo

ooo

0)•o

(ULT)

I -r-C7>

in,-

CO

LOO

CO

vo

t/>(U

co

CNJ

oo

-.'J.

\ \ — i p )^^X)J-

9

C

a:

vo

o•r—

(O

O

CM

cu

A.150

oCM

OCO

OCO

O<f

O<\l

o o o o oCM i-< —I (\J

I I (S/TU) paadg

o o o o oCM —• —i C\l

I I

oo<u>

CD

TJc

o

-

£

}.

"

.

,

CM

CDO

OCO

CDO5

.OT1

CDCM

Oa>w

0)

E-

03

<u•r~4-> •

0 i—O

r— COJ 3> o:

4-> «

3O>4->

M- 01O -r-

l/) U_OJ

• »»S- to/^ ft \

•M O10 C

••- CU

(UOJ

I— -o

<u

O)

A.151

TABLE A.31. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 19.

I. Mean Airspeed (m/s)

R

96.6 95.5 97.3

III. Standard Deviationof Gust VelocityDifferences (m/s)

A\CL

1.13

1.27

7tf"ZCL

1.17

°

1.19

ZRC

1.44 1.29

RL

1.46

1.29

iWZRL

1.69

II. Standard Deviation ofGust Velocities (m/s)

XL

2.45

aWYL

3.44

wxc W

2.42

XR

2.41

CTWYR

3.62 3.55

aWZL

crw

3.19

zccrW

3.11

ZR

3.10

IV. Integral Length Scale (m).

• W ^*W ^*W

190

1579

190 194

1560 1467

ZL

308

ZC

330 307

A.152

1.0

0 5. -5. 0 5. -5. ' 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.123. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 19.

A.153

fi<u

<uoutia

s_ouIo

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

3000.

Figure A.124. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 19.

A.154

a

HIooco

ooI3

G'S

1.'

0.

-1. L

WXRC

i. -

WXCL

WXRL

WYRC

WVCL

WZCL

0. 1000. 2000. 300Q. "5000.

Spatial Lag ,S=--VT(m)

Figure A.125. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 19.

A.155

102 ir

10° r

10-'i-

b>.«

102

10°

10-

102

10o

10-'r

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

,,J . , i .mil I , in,,,.

von KarmanN= 512SEG.= 4

WZL

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

ml , ,, mill

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

Wy

—von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

10-a 10° ID'2 10°

K = u/V (nr1)

10,-8 10°

Figure A.126. Normalized auto-spectra of gust velocities, Flight 6, Run 19,

A.156

108

r 10°

«• 10-*

108

108

66"

N= 512SEG.= 4

WXCL' \

N= 512SEG.= 4

WYCL

**

N= 512SEG.= 4

WZCL

N= 512SEG.= 4

WXRC

N- 512SEG.= 4

++

N= 512SEG.= 4

f ^

N= 512SEG.= 4

N= 512SEG.= 4

WYRL

j

N= 512SEG.= 4

t mul i i nun! i i limit i iitnJ

10-8 10° 10° 10,-8 10°

Figure A. 127. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 19.

A.157

W x w z

102

io-z

-f

T

—LL

—-LC

—LR

W X W Y

i in i rJ t i ntiiJ i 1 11 mil i i inml

rf

r r

rr

-LL

-LC

-LR

N y W z

rr

—LL

—- LC

—LR

— CL

102 r

10°•&•

ic 8

10Z

10°•e*

rr

r f

-CL

-CC

-CR

i itniitl t i until j t mini i innJ

—CL

J

-r

rrrf

imil i i mini i i mini i i inij

rr "\

rr

IT

—RL—-RC—RR

i i mini i i inml i I mnn i iininl

10,-z 10° ID'8 10°K = w/V (

10~a 10°

Figure A.128. Two-point cross-spectra of gust velocities, Flight 6, Run 19.

A.158

TABLE A.32.

ORIGINAL PAGE BOF POOR QOAUPf

List of All Parameters Measured and Their Range of Values,Flight 6, Run 19.

START TIME • 52704.6901 STOP TIHE • 52766.2901

CHANNEL2 PHI OOT3 ACCL N CG4 THETA COT5 THETA6 PHI7 PSI 18 DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL N LT12 ACCL N RT

_J3 ACCL X CG14 ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEf<P I18 TEHP P19 ACCL Z INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 OC LT27 QC CTR2B OC RT29 PS30 TEMP IRT31 0 TO G3"> B TO D33 LONG34 LAT35 TRK ANG36 HOG37 VE3i VN39 ALTITUDE

~ 41 Eh kNO SPD4; NS UN-) SPO*3 W I Mi SPEED

" -<. * INO oi»EC| 45 AIRSPEED R

47 AIRSPEED L4fl DELTA ALT49 INRTL DISP' 50 UG RIGHT51 UG CENTER

" 52 UG LEFT53 VG RIGHT

" 54 VG CENTER55 VG LEFT56 MG RIGHT57 UG CENTER56 WG LEFT

UNITSRAD/SECG UNITSRAD/SECRADRAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEC FDEG FG UNITSRAORADRADRADRAD/SECDEG CPSIDPSIDPSIDPSIADEG CMETERSDEGFEESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSG E G F E E SM/SECM/SEC

M/S6CMETERSMETERSM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.195

-.988.089.138.085

194.9797.048

557.5481.5212.3783.042.200,181

LOW-.140-.988-.074.027

-.142185.469-7.323543.466-7.594-.916-,363.001

-.198.118 -.090.073 -.136

98.984 98.26490.725 90,5451.561 .312.141.110.107.054.080

31.687

. -.077-.077-.081-.123-.07029.422

.786 .472

.759 .457

.776 .47811.623 11.56425.534 18.906

8753817.2988751939.41880.371

-104.88139.826192.722

3.418-14.968-79.477

1.97627.29430.83739,46640.473296.566105.990104.772

106.56516.44710.14011.17211.60311.5319.7948.9547.763

10.13711.37310.656

80.370-104.89339.780190. C893.254

-18.960-68.226

1.93525.101-6.486-4.024

.41688.50783.41781.645

82.937-24.091-23.988-9.346-10.301-9.250-8.477-9.466-8.703

-15.526-13.960-15.337

MEAN RMS-.00296 .04568-.98774 .98774.00696 .02169.08364 .08753

-.00324 .03751191.60679 191.61632-1.19551 2.48680549.52867 549.53279-1.56996 2~.451861.01457 1.069681.02964 1.08828.07291 .07944.00464 ,05013,00689 ,02856.

-.02491 ,0422698.69812 98,69824

... 90.54659 . 90.546591.00751 1.02198.01623 .03496.01097 .03335.01676 .03253

-.03366 ,04510.00379 .02652

31,01732Zl2l«02043.64352 .64675.62902 .63201.65209 ,65506

11.59795 11.5979621.76447 21.79981

**********************80.37043 80.37043

-104.88735 104.8873539.80218 39.80218191.39770 191.398713.36306 3.36324

-16.83823 16,85999-83.35918 83.408491.95249 1.9525026.46305 26.4661512.72001 15.1062317.90769 16.6451023.05311 24.15235

212.72362 213.6597597.25571 97,3652095.54755 95.65967

96.61565 96.73505-6.97398 10.78014-5.89437 10.00265-.00000 3.20215-.00000 3.25581-.00000 3.35707-.11567 3.92306-.11009 3.94191-.10724 3.74048-.03404 3.70736-.02507 3.68525-.02231 3.85930

24642464

.. .246424642464246424642464246424642464.246424642464

._.. 246424642464

. 2464246424642464246424642464

.246424642464246424642464246424642464246424642464246424642464246424642464246424642464

246424642464246424642464246424642464246424642464

A.159

<u

<B

O) +->Qi <0

Q.

O +•»

0 -r-<U r—

Q O•M

•g

~l - 1

J L

•*O

a>•o

un

in

LOt—

o>

(5ap)10

CSJ —. T333 I- C0» Q O•— s. o^^ <u' «3" IO

»3- Or— .. O

O LO

•— C0

tt» Ol f0•*•» E 1~<0 ••- 3Q »— Q

(0Q.

o>

O4->Coo

(O

00

(/>O)

n

CM

OOJ

c3

ec.

ol»-c

OL

JCo>

enCVJ

O)S-

O)

ooo

oooCO

ooo

0 So oo o

A.160

oo

CO3cn•ac(O

l/>ai

•r- OO CMOi— CCU 3> a:

4- O>O T-

CO Li-CU

*f— ft

S_ COO 014-> OCO C

•r- O)

CDd) <4-E 4-

Ooo

<:

i.

o o o o oCM " «-• CM

I I (s/ui)a o a a oCM —. —i CM

i i

A.161

TABLE A.33. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 20.

I. Mean Airspeed (m/s)

103.3 102.2 104.0

II. Standard Deviation ofGust Velocities (m/s)

aWXL

2.11

aWYL

2.33

aw.xc

2.13

<7

w.YC

2.40

aWXE

2.10

aWYR

2.25

III. Standard Deviationof Gust VelocityDifferences (m/s)

CL

1.13

1.34

1.45

1.28

1.42

1.33

*\RL

1.50

XCL XRC XRL

1.37

HRC HRL

1.66

<7WZL

3.57

wzc3.51

WZR

3.77

IV. Integral Length Scale (m).

376

144

\<436

YC

128

L-

362

SB312

198 205 167

A.162

1.0

0.8 -

0.6

R'^ighC = CenterL = Left

I I T i i i i i \ \ rr i i

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1-RC2-CL3-RL

A N

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.131. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 20.

A.163

1.

0.

-1.

WXR

Nxc

c<U"u

0)ouflo

11

Io

_ L

-1.

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

NYC

WYL

Wzc

WZL

4000.

Figure A.132. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 20.

A.164

-4-2

C

<U

MH«4-<V

Ouco

ela

ouIo

- ?

3o

PL,Io

°r

-1.0.

WXCL

!_____—L

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.133. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 20.

A.165

b

'?10°

10-i

s108

10°

10-

von KarmanN= 512SEG.= 3

-von KarmanN= 512

•von KarmanN= 512SEG.= 3

•von KarmanN= 512SEG.= 3

von KarmanN- 512SEG.= 3

von KarmanN= 512SEG.= 3

W,

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

W.

von KarmanN= 512SEG.= 3

10-8 10° 10~8 10° ID'8

K = u/V (m'1)

10°

Figure A.134. Normalized auto-spectra of gust velocities, Flight 6, Run <!0.

A.166

108

10-2

10*

- 10°

102

N= 512SEG.= 3

WXCL

%\

N= 512SEG.= 3

WYCL

^ i iiinJ

N= 512SEG.= 3

WZCL

.1,1 . , ,,,,,

N= 512SEG.= 3

N= 512+ SEG.= 3

WYRC r

N= 512SEG.= 3

1 , ,,,„„!

N= 512SEG.= 3

WXRL

N= 512SEG.= 3

WrRL

N= 512SEG.= 3

WZRL

10° 10~2 10°K = cj/V (m

10,-2 10°

Figure A.135. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 20.

A.167

10-*

10'8 10° 1(TZ 10°K = w/V (m'1)

10°

Figure A.136. Two-point cross-spectra of gust velocities, Flight 6, Run 20.

A.168

ORIGINAL PAGE ISOF POOR QUALITY

TABLE A.34. List of All Parameters Measured and Their Range of Values,Flight 6, Run 20.

START TINE • 52604.3152 STOP TINE • 52334.9692

CHANNEL2 PHI DOT3 ACCL N CG

" 4 THETA DDT5 THeTA

'~ 6 PHI7 PSI 18 PEL PSI 1

" <> PSI 210 DEL PSr2~11 ACCL N LT1? ACCL N RT13 ACCL X CG ~14 ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEMP I16 TEMP P19 ACCl I INS20 ALPHA PT21 BETA RT~Z? ALPHA LT?3 BETA LT24 PSI DOT'25 TEHP TOT26 OC IT27 OC CTR28 OC RT29 PS30 TEMP IRT31 0 TO G32 B TO 033 LONG34 LAT35 TRK ANG36 HOG37 VE3? VN34 ALTITUDE40 TEMPC

. 41 EU WHO SPO42 NS UNO SPD

' 43 WIND SPEED44 WIND OIJ.EC

" 4< A I R S P E E D R' i». ilPSPSIC C47 AIRSPEED t49 DELTA AIT49 INRTl DISP5C UG UGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 UG RIGHT57 WG CENTER58 UG LEFT

UNITSRAD/SECG UNITSRAD/SECRADFADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUN ITSG UNITSRADRADDEC FCEG FG UNITSRADRADRAORADRAD/SECDEG CPSIDPSIOPSIDPSIADEC CMETERSDEGREESDEGREES "'DEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSDEGREESM/SECM/SfCM/SECMETERSMETERSM/SECM/SECM/SECM/SECM/SECM/StCM/SECM/SECM/SEC

HIGH.234-.986.122.192.086

56.5544.168

415.6733.8732.7513.096.398.124.164.119

98.80490.7252.092.205.134.152.061.080

33.557.863.843.874

11.63427.186

LOW-.135-.988-.157.027

-.11846.452-3.855407.928-4.213-1.227-1.343

.036-.100-.155-.15298.08490.545-.044-.144-.111-.141-.159-.11330.210.504.481.475

11.56710.560

MEAN-.00373-.98774.00343.07552

-.0126453.508501.13628

412.72897.806301.012581.02750.12597.00643-.00725-.0282598.3377790.591071.01042.00053.00660

-.00016-.03402.00327

_32t40597.73629.72098.74739

11.5894122.91253

RNS.03946.98774.02364.08809.03459

"53.527791.80927

412.731281.627781.068291.07798.14404.03352.03304.04592

98.3379490.591101.02653.03711.03210.03169.04643.02725

__J2_, 41696.74211.72633

' .7531211.5894323.46166

8759064. 4 2287 54026. 68 S**********************60.419

-104.81439.80454.559.983

97.81675.3961.97427.68725.91731.31636.500260.654112.605110.559111.87543.54241.6826.9455.7106.4456.9779.0136.46619.92717.02015.904

60.389-104.668

39.77352.259

.83881.33858.1021.927

25.8594.4643.55111.022191.76063.23663.66285.743-3.157-6.033-6.843-7.003-6.545-7.533-7.649-9.300-11.561-11.978-12.394

80.40342-104.8419939.7877952.66599

.9285391.5274969.3521]1.95844

27.1632115.5773620.2575625.95807217.69641104.04720102.23646103.2811726.0174526.55113.00000.00000.00000

-.01178-.00316.00048.16088.18542

, .16906

80.40342104.6420039.7877952.86836.92886

91.6950769.533211.9584727.1849516.1938420.7297326.30518217.96397104.25837102',43991103.4981030.2920629.927562.241242.312052.258352.097302.206452.13B893.448303.232333.25304

20102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010201020102010

.. 20102010?0102010201020102010201020102010201020102010201020102010

A.169

ORIGiNAL PAGE ISOF POOR QUALITY

01>

O£ <OQ_

CO 4J

•<- JZ•»-> OTO •!-

<U r—1- U.

r i

t.\t:o o

(J0)

' 00^- Lf)

0) tt) «4J E l_(O -i- 3Q h— Q

oI

a>

o• <us^

0>

o

LOo

to P—• iCT»CO

I/I(U

OJ

OL

IO

en

U_

o

(O

oc

>Oa.

a>

ro

cu

01

A.170

*

o>-

oX X

3

o<Y.X

dX

D D O O O(\J •—• 1-1 t\J

I I

cex

OO

o Oco Q}OT

Oco a)

O(M

O

O<\J

OO

OCO

o

o(M

(S/TII)

o o a a oCM —. —i c\j

i i

ooa>>

CO3en

T3c(O

(/IO)

U CMO

CD>

O T-

O)•r— *»S- tOO CU-!-> Oto c

•r- 0>JZ S_

OJ0) 4-

00CO

=t

s_

A.171

TABLE A.35. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 21.

I. Mean Airspeed (m/s)

R

96.4 95.6 97.6

II. Standard Deviation ofGust Velocities (m./s)

aWXL

3.67

aw. c

3.46

WXR

3.48

aWYL

3.27

aw.

YC

3.30

WYR

3.00

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC

aWZL

3.44

aw,zc

3.42

aWZR

3.57

1.51

AWAWZCL

1.55

1.79 1.61

ZRC

1.63 1.70

1.97

HCL XRC XRL

1.78

ZRL

1.96

IV. Integral Length Scale (m).

uT " i l T ' T I TT* n,, „ Ti ^JL

166

253

153

258

Sv c

147

SB275

158 194 158

A.172

0.0-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.139. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 21.

A.173

1.

0.

-1.

NXR

Wxc

c• fj

a

ouao3a,

"a!t.,»wo

CJ

_ L

l-i—X_ i

-1.

Lo.

WXL

WYRi ., . i

NYL

WZR

Wzc_u 1

WZL .

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.140. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 21.

A.174

*Jc!0>

0)OO

Co

'-13si

1ooIo"3<-*JRO

PHIO<s

L

l.L

0.

-1.0.

WXRC

WYRL

• _ . i

_L_ I

WZ R L •

1 I

1000. 2000. 3000.

Spatial Lag ,S=V7(m)

4000.

Figure A.141. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 21.

A.175

b

"i?

10"

10°

10-

von Karman :N= 512SEG.= 3

—von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

von KarmanN- 512SEG.= 3

Wv

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

—von KarmanN= 512SEG.= 3

•von KarmanN= 512SEG.= 3

10,-3 10° 10~8 10° 10-

K = o>/V (m'1)

10°

Figure A.142. Normalized auto-spectra of gust velocities, Flight 6, Run 21

A. 176

10Z

102

r 10°

10s

- 10°

N= 512SEG.= 3

WXCL

.

N= 512SEG.= 3

WYCL

+•<!•."

N= 512SEG.= 3

WZCL

N= 512SEG.= 3

WXRC

N= 512SEG.= 3

WYRC

++*tf.

N= 512SEG.= 3

WZRC

N= 512SEG.= 3

WXRL

N= 512+ SEG.= 3

IIMIll

N= 5125EG.= 3

WHRL

10° icr2 10°/c = u/V (m

10- 10°

Figure A.143. Nonnalized two-point auto-spectra of gust velocities,Flight 6, Run 21.

A.177

'.„ 10

-LL

-LC

-LR

r r

• muni .iim.1 I mini iui.nl

LL

—-LC—LR

i inniil i iniml i i m ml t i nntl

pi

—-CC

—CR

ioz

^ 10°

io-

—RL

—-RC

—RR

—RL

—-RC

-RR

i<rz 10° io~8 10°K = u/V (m-1)

10- 10°

Figure A.144. Two-point cross-spectra of gust velocities, Flight 6, Run 21

A.178

TABLE A.36.

ORIGINAL PAGE ISOF. POOR QUALITY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 21.

START TIHE 52918.690* STOP TINE • 52960.2904

CHANNEL2 PHI DOT3 iCCL N CG4 THETA DOT

"5 THETA6 PHI7 PSI 18 DEL PSI 19 PSI 210 DEL PSI 211 ACCL N IT12 ACCL N RT13 ACCL X CGIt, ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEMP I16 TtMP P19 ACCL Z INS20 ALPHA RT21 BETA RT"22 ALPHA LT23 BETA LT

~2<. PSI DOT2i TEMP TOT26 OC LT27 OC CTR23 OC RT29 PS30 TEMP IRT31 D TO G32 B TO 033 LONG3* LAT35 TRK ANG36 HOG

" 3 7 V E~38~VN39 ALTITUDE40 TEflPC41 £V UNO SPO

" 42 NS WHO SPD" <•] Wl'fl SPEED~4* WIND DIPEC' 45 A I R S P E E D R4<> AIRSPEED C47 AIRSPEED L<,* DELTA ALT49 INRTL OISP50 L'G RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 WG RIGHT57 WG CFNTER59 UG LEFT

UNITSRAD/SECG UNITSRAO/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEG FDEG FG UNITSRADRADRADRADRAD/SECDEG CPSIDPSIOPSIOPSIAore cPETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSCEGREESM/SECH/SECM/SECMETERSMETERSP/SECM/SECM/SECM/SECM/SECH/SECM/SECM/SECf/SEC

HIGH.187

-.988.124.133.172

220.3336.930

581.8396.8413.8003,744.229.196.126.119

96.62490.7252.273.158.156.126.099.093

32.472

LOW-.211-.988-.142.004

-.103210.125-2.885571.982-3.095-1.446-1.556

.017-.147-.104-.15598.08490.545-.061-.086-.096-.106-.149-.07430.899

.816 .475

.781 .493

.793 .50411.630 11.58125.905 20.918

8757342.9128754752.94180.404

-104.83539.806218.3183.867

-49.668-68.740

1.96427.93632.71236.16137.479272.262107.219106.327108.6312.6310.00011.61810.66413.0149.2419.7209.33610.8089.60110.658

60.393-104.86039.780214.2333.690

-54.592-73.019

1.93026.197-12.838-.4053.931

98.00285.97385.01163.439-31.864-29.527-9.683-10.652-11.653-8.562-8.802-10.182-9.085-7.651-9.245

MEAN-.00081-.98774.00692.06964.00628

214,428231.36186

576.296711.197231.005611,02663.0738B,00737.00494

-.0173796.4082290.724441.00324.01505.01681.01295

-.02629.00231

3_J. 79919.63856.62800.65518

11.6087623.94578

***********"86.39661

-104.8475239.79275215.723193.76632

-51.24423-71.164221.94496

27.2443411.6808410.3264917.34749

223.0106497.6019995.5934996.36692-16.66124-20.04487-.00000-.00000-.00000-.06347-.06555-.05988-.04443-.03628-.02823

RMS_,05916.98774.02633.07536.04803

214.442132.75481

576.301442.68900

.. 1.12389i. 13564.07956

_ .05112,03205.05996

98.4082690.724441.03396.03660.05416.03800.05866.04145

31.80051.64090.63002.65727

11.6087723.96379

***********60.39881104.8475239.79275

215.725283.7665751.2560371.172241.9449927.2467314.5331711.7019918.65677

225.2953097.6751495i 66 57 296.4503518.4436021.644173.841913.871094.187713.362663.606573.519793.576243.439123.46054

POINTS166416641664

_1664166416641664166416641664

._ 16641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416641664166416661664

A.179

-i 1

<u>

o>ro

O 4J

U •«-0) r—s_ u_

Q O4->

•o

l_o

(6ap)

OJ *— • T5O) K- C

2g 8^ (D

•» O l/>

>•.

O) OJ f•4J E inj ••-

cn

o oo oo o<T» 00

o-MCOCJ

ooo

ooo

: O

-i i

O>0)•o

IDo

CO•o

C7>

O

LDO

lf>r—

ro

00

O)

Osl

Oooun

CMCM

o4->(O

oM-c:

(OQ.

OlS-3CD

A.180

OCDOT

(U

oo

to3

T3Ctotoo>

•r- CMO CMO

r— C<U 3> o;

CO VO3CT>4->

o ••-to U-01

•I—" *•>

S_ to0 Ol+-> o•r- 01-C S-

0>01 <*-S M-

ID

QJ

O)

O O D O OCM -* —• <M

I I (s/ui)o o o o oCS1 —i — " C M

I I

A.181

TABLE A.37. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 22.

I. Mean Airspeed (m/s)

R

102.5 101.6 103.4

n. Standard Deviation ofGust Velocities (m/s)

CTW

XL

2.48

aw.xc

2.34

aw.

XR

2.44

aw.

YL

3.87

(7WYC

4.00

<7W.

YR

4.06

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC

aw,

ZL

3.68

aw,zc

3.64

W,ZR

3.58

1. 11

1.08

1.33

1.24

1. 19

1.33

1.44

HCL XRC XRL

1.22

RL

1.47

IV. Integral Length Scale (m).

XL

151

1053

ZL

\XC

139

XL \

1048

\ZC

XR

149

1106

ZR

496 541 478

A.182

1.0 i i i i I I i i rW

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.147. Probability density function for gust velocities and g-ustvelocity differences, Flight 6, Run 22.

A.183

1.

0.

-1.

WXR

Wxc

WXL

G

'oG<(-,<uo

CJ

flo5_«glu

ou

_ L

-1.0.

NYR

WYCi i i

>^_i i — — . .^j i

WYLi i i

-

WZC

WZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

SOOO.

Figure A.148. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 22.

A.184

0)ouGo13cd

1OoIo

R'oQ-,

Io

1.

0.

-1 ^

,_ L

-i.0.

I _^ L. -t.

_ i I I _i I L_

J l_

I -_-l-

J. L.

WXRC=L

WXCL

NXRL

WYCL_j..——

NYRL

j i

WZRC

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

Figure A.149. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 22.

A.185

102

10-'r

b\«

108

10°

10-t

tI

10Z

10°

10-

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

WY

von KarmanN= 512SEG.= 3

||4 ill inij t i i initl i i mill I I mini i t 11 mil i i i mill

von KarmanN= 512SEG.= 3

—von KarmajiN= 512SEG.= 3

von KarmanN= 512SEG.= 3

10-3 1Q0 10°

= «/V

Figure A.150. Normalized auto-spectra of gust velocities, Flight 6, Run 22.

A.186

108 r

b

fcT

^?

102

108

SEG.= 3

WXCL

N= 512SEG.= 3

WYCL

i 1 1 UK! i i i inrtl i i i mill

N= 512SEG.= 3

N= 512SEG.= 3

WXRC

N= 512SEG.= 3

•*»•

N= 512SEG.= 3

N= 512

WXRL

ml i i MI nil i i iiuitl i i i unil

N= 512SEG.= 3

WYRL

N= 5125EG.= 3

10-2 10° io-8 10°/c = w/V (m

10,-a 10°

Figure A.151. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 22.

A.187

~ i MM nil i 11 irml i 11 mill i intnJ

r —RL—-RC

—RR

' t tinitl i mail i niiirn_j iinml i nnuJ i IIHIII i nuiij i uimi i initiil i iiinnl > itninl i lima

10-z 10° 10~8 10°K = u/V (m"1)

10,-z 10°

Figure A.152. Two-point cross-spectra of gust velocities, Flight 6, Run 22.

A.188

TABLE A.38.

ORIGINAL PAGE ISOf POOR QUAUTf

List of All Parameters Measured and Their Range of Values,Flight 6, Run 22.

START TIME • 52990.3705 STOP TINE 53036,4455

CHANNEL2 PHI DOT3 ACCL N CG4 T H E T A DOT5 THETA6 PHI7 PSI 18 DEL PSI 1<> PSI 2

10 DEL PSI 211 A C C t N LT12 A C C l N RT13 A C C L X CG

..14 A C C t Y . C G . . .15 A L P H A CTR16 B E T A CTR17 TEMP I18 TEMP P19 A C C L z IN;20 ALPHA RT21 B E T A RT22 A L P H A LT23 B E T A LT24 PSI DOT

I_25..TEhP JO.T_26 OC IT27 OC CTR26 QC RT29 PS30 TEMP IRT31 D TO G32 B TO 033 LONG34 LAT35 TRK ANG36 HOG37 VE38 VN3<» ALT ITUDE40 TEHPC41 EW UNO SPD42 NS MNO SPO

^ 43 W I N D S P E E D~ 44 w l N O O I S E C

4 '. A l P ' P c k C t<•£- Mf SPUD C47 A I R S P E E D L4 9 D E L T A A L T

~ 49 INKTL DISP" 50 UG RIGHT

51 UG CENTER52 UG LEFT5 3 W G SIGHT54 VG CENTER55 VG LEFT56 WG RIGHT5 7 W G C E N T E R5 9 W G L E F T

UNIRAD/SECG UNITSC A D / S E CRADRAODEGREESDEGREESDEGREESD E G R E E SG UNITSG UNITSGUN ITSG UNITSR A ORADDEC FDEC FG UNITS.PADPADRADRADRAD/SECDEG CPSIDPSIDPSIDPSIADEG CMETERSDEGREESDEGREESDEGREESD E G R E E SRADIANSH / S E CM / S E CKMDEGREESKNOTSKNOTSK N O T SO F G P E E Sr / s t crmcH/SECMETERSMETERSM / S E CM/SECM/SECM/SECM/SECM/SECM/SECM / S E CM / S E C

TS HIGH.109

-.966.079.181.030

86.4935.490

444.5415.2552.2732.354

.262

.133

.076

.08298.26490.905

1.479.097.104.090.062.103

33.853.895.862.897

11.60429.328

8760971.251180.444

-104.78539.77483.270

1.517118.20621.070

1.986C 27.899

38.29327.2224C.6B4

291.604114.U9111.398113.96733.60031.3659.6486.5569.408

13.97215.67315.0418.5898.2929.036

LOW-.172-.986-.060

.030-.127

76.631-4.325

435.036-4.507

_ -.307-.216

.024-.091-.076-.137

_ 97.72490.725

.284-.073-.075-.077-.146-.066

30.21?.520.506.509

11.55017.050

S755879.87280.406

-104.84439.76879.896

1.34196.42011.670

1.94826.043

8.834-14.979

9.034209.430

86 .27486.07187.220-3.768-6.735-7.711-6.124-7.847-6.200-6.394-5.885

-10.433-11.363-11.200

J»i*N-.00283-.98774

.00350

.07443-.02673

93,814702.79380

441.918832.574471.003301.01659

.12149,01151

-.00758-.01872

98.0127590.73602

1.00042-.00064

.01575-.OOZ14-.02602

.00472__12.3855V

.72472

.71109

.7374711.5695924.7692*

***********80.42410-104.81595

39.7709781.92032

1.46647111.2499815.92429

1.9722427.2237919.5399714.6481925.63871

233 .76620103.4C042101.59011102.5349120.1652517.63709

,00000.00000.00000

-.12695-.11394-.10724

.14935

.16089

.13440

RMS.04419.98774.01700.08715.04460

81.83719.3.39169

441.922803.20726

. 1.049791,05486

.13763_.. .03303

,02569,03519

98,0128690,73603. 1.01116

,02859.03031.02770.03739.02565

32.40210.... .73174

.71788

.7449411.56960

.......25.03831..

***********80.42410104.61596

39.7709781.92492

1.46867111.4413716.12511

1.9722627.2264420.1012816.5657226.04773

2 3 4 . 3 9 9 5 8103.67006101.83991102.7901922.2255821.17311

2.298122.213422.357474.014263.945793.823573.365163.428573.45362

184318431843184318431843.16431643

. 18431843184318431843

_ 18431843

... 18431843184318431643

...18431643

... 1843164318431843184318431843

. 1843184316431843164316431843184318431643184318431843184318431 8 4 3164318431843184318431843184318431643184318431843

A.189

(Or- .eOJ 4->

{Si HJ0.

cO 4->•r- -C•M 0>O -r-QJ r—s_ u.

O O4J

-3C

I I

J L

OO I— OT> Q (j•— SO)

-- • 1/5' O

«*• i — CO•— •• CTi

^ CO

O) OJ (O4-> E S-•O ••- 3Q I— Q

0>

I

(6ap)

0 0 0o o o0 0 0cr> co r->.

oO

—i O

enat

o• (U

LT> -OO 3r— 4J

I "r^O>co

Lf>

o

enCO

cr>

00

(UIT)

Oooin

ORIGINAL PAGE BSPOOR QUALITY

s'- \\Wf • ,Ji X.iv/'k<</r; &}&' \':-•'"•>'F

AiW^AJtf^A

•A-:-

COCM

3o;

CD

oM-c:

COLT)

s_3O)

**

A.190

ooQJ>

inQJ

•r- COO CMO

r— CO) 3

I/) IO

(U•r- •>i- too <u-u oCO C

•r- (U^ i.

<uQJ <4-E 4-

QJ

3C7>

D O O O O(\J •-' —1 t\J

I I (s/ui)

A.191

TABLE A.39. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 23.

I. Mean Airspeed (m/s)

103.8 102.7 104.5

II. Standard Deviation ofGust Velocities (m/s)

(7WXL

2.41

wxc2.43

WXR

2.44

WYL

7.44

CTW.

YC

7.48

crWYR

7.45

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

a aWZL WZC

1.55 1.55 1.57

0.59 0.63

A\

0.58 0.58

0.75

cr.,.r afRC

0.64

IV. Integral Length Scale (m).

807

\799 776

ZCL

0.67

XRC XKL

0.69 0.753776 3736 3824

767 102 811

A.192

1.0 " 1 I I I | I I I I

w

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.155. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 23.

A.193

cSJ"o

coa

a

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure 'A.156. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 23.

A.194

WXRC

CJ._<o

(Uo

CO

"sj

IOoIo

g'oIo

Q. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.157. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 23.

A.195

10a r

10°

l(Tsr

102

10°

10'

102

10°

10-'r

von KarmanN=1021SEG.= 7

ml

von KarmanN=1024SEG.= 7

I I "III" I 11 ini—i i "mil

von KarmanN=1024SEG.= 7

i ii ""I—i 111 mil—i 11 mill—i i nun

von KarmanN=102<JSEG.= 7

"I i i ""ill i i """I—i i mm

von KarmanN=1024SEG.= 7

von KarmanN=1021SEG.= 7

' il 111 mil—i 1.1 mill

—von KarmanN=1024SEG.= 7

Wy

von KarmanN=1024SEG.= 7

10-» 10° io~8 10° io~8

K = <y/V (m-1)

10°

Figure A.158. Normalized auto-spectra of gust velocities, Flight 6, Run 23.

A.196

102 r

6" 10°\'!?

102

6"

^

108

tr 10°

•0.

N=1024SEG.= 7

WXCL

SEG.= 7

WYCL

SEG.= 7

N=1024SEG.= 7

WYRC

SEG. = -

SEG.= 7

SEG.= 7

WYRL

1Q-S 10° 1(T8 10°« = w/V (m

10-2 10°

Figure A.159. Normalized two-point auto-spectra of gust velocities,-|: Flight 6, Run 23.

A.197

w „ w.

- ml , ,,,«! ml I, I

RL

10-z 10° 1CT2 10°

K = w/V (

• ,1 ,.,,J imiml i

10~8 10°

Figure A.160. Two-point cross-spectra of gust velocities, Flight 6, Run 23.

A.198

PAOE OSOF POOR QUAWY

TABLE A.40. List of All Parameters Measured and Their Range of Values,Flight 6, Run 23.

START TIME • 53170.3109 5TOP_H»E - 53363.1609

CHANNEL2 PHI DOT3 ACCL N CG4 THETA DOT5 THETA6 PHI' 7 PSI 19 DEL PSI 19 PSI 2

' 10 DEL PSI 211 ACCL N LT1? ACCL N FT

" 13 ACCL X CGl<r ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEMP I18 TEMP P

"19 ACCL Z INS20 ALPHA RT

"21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 QC LT27 QC CTR28 OC RT29 PS30 TEHP IRT31 D TO G32 B TO 0

" 33 LOKG34 LAT

" 35 TRK ANG36 HOG

" 37 WE3* VN39 ALTITUDE40 TENPC

. 41 EM k»NO SPD4? MS WND SPO

_43 .« ISO SPEED44 WIND D.IREC

t" 45 A I R S P E f C R4* A I R S P E E D C47 AIRSPEED L48 DFLTA ALT4Q INRTL DISP

_?c gc RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT5* VG CENTER55 VG LEFT

" 56 VG RIGHT57 KG CENTER58 WG LEFT

UNITSRAD/SECG UNITSRAO/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSCUNITSG UNITSRADRADCEG FDEC FG UNITSRAORAORADRAORAO/SECDEC CPSIOPSIDPSIDPSIADEC CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKKDEGREES CKNOTSKNOTSKNOTSDEGREESM/SfcCM/SECM/SFCHETERSMETERSM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.112

-.<J88.060.106.065

318.9644.462

318.5096.6082.3192.171.114.158.032.051

98.44491.2651.459.049.074.039.037.047

32.868

LOW-.125-.988-.044.028

-.151310.158-1.886312.172-2.037-.123-.332-.010-.154-.064

.. -.Ill97.90490.905.557

-.062-.059-.065-.117-.03529.619

MEAN-.00295-.98774.00600.06149

-.01872314.602061.06459

315.069112.155141.013131.02620.05927.00983

-.01289-.0180598.3329491.061431.00435-.00431.01661

-.00389-.02370.00334

30.99356

RHS.02595,98774.01173.06426.03662

314,60874.1.46634

315.070682.979091.031311.04389.06287.04515.01713.02416

98.3330391.061461.00887.01376.02212.01335.02792.01223

"31.00330.894 ,626 .74468 .74612.877 .629 .72894 .73036.914 .644 .75594 .75742

11.612 11.570 11.59178 11. 5917927.188 15.152 21.67480 21.89621

8761088.2948749959.437*****«**»*»+«*»****«**80.407

-104.80840.001321.9445.560

-61.95980.3721.97227.32226.69718.43534.?8«

359.997114.875112.541113.63019.29717.8296.9597.6797.03818.66219.66319.6685.9275.5176.139

80.278-104.96639.886309.8005.446

-74.54360.1491.94324.638-9.680

-34.265.228.007

96.59795.576

._.. 95.292-10.027-9.616-10.088-9.352-9.115-7.580-8.275-8.656-5.422-5.014-5.779

80.34369-104.8848839.94511313.326545.49857

-69,8485066.060231,95678

25.740402.66083

-15.2756021.C6640174,17824104,53087102.66868103.767563,920724.61329-.00000-.00000-.00000.00035•00068.OC261.00368.00663

, .00215

80.34370104.8848939.94513313.350625.4986069,9473066.388551.9567925.747128.4223319,711282 1 , 4 3 5 ? 5

235.12447104.58107102.73759J03. 81691

7.771758.461332.385052.372212.356467.217437.244097.199601.561471.527801.54623

POINTS7738773877387738773877387738773877387738773877387738

__7738773877387738773877387738773877387738,7738773877387738773877387736773877387738773877387738773877387738773877387738773877387738773877387736773877387736773877387738773877387738

A.199

ORIGINAL PAGE ISOF POOR QUALITY

LT>

<U>

I.

1 ! 1 1

.

: X0) 4-> _/"Qi (T3

O.CO -!->•r- il•»-> CTO -r-<U f—s_ u.

Q O| i

-oc3

- •. —

~I ! 1 1

j0

1

oLT>O

1

LT>

LO00 O

• r^ ^—Q ^ '

OJ — -oco I- cen a o• — S o

i — •• i —O 00

>, ID

a> a> ro-M E s_(O -r- 3O (— Q

+J(Oa.

I I

(6ap)

o o oo o oo o oo> oo r*.

•oo

O)•o

00

o So oo ovo f

CNJ

c:

CJ)

co

o<+-c

(OQ.

Ol

CT)

A. 200

Ct S LJM V M3 f 3

i t i i i

i . i

OLM

O>-

g x

1 ft , I

O O.O O CD(\| .-< T-. (\j

(s/ui) pa adg P^TM

2<

Soo

oCO

oCD

O

O<\J

OO

I

OCXI

Oo

9.

o o o o oCM -, —i CVJ

I I

uo

T3c(O

00

O CMo

'OJ 3> O£

S- 00O Ol4J O00 C

•.- O)-C S_

(U

A.201

TABLE A.41. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 24.

I. Mean Airspeed (m/s)

102.9 101.9 103.7

II. Standard Deviation ofGust Velocities (m/s)

WXL

1.19

WYL

0.80

aw.xc

1.16

WYC

0.78

WXR

1.21

CTWYR

0.74

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

CTWZL

1.07

wzc0.94

CTWZR

0.97

0.43

0.41

0.44

RC

RC

0.46

0.53

0.40 0.40 0.43

0.50

IV. Integral Length Scale (m).

XL805

1278

ZL

1469

Sr

840

XL Xc

1032

x^1256

821

1218

1108

A. 202

1.0

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

I i I i | i I l r

1-RC2-CL3-RL ~

A W

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.163. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 24.

A.203

G<u

QJOU

ao3.2"oJfcouIo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.164. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 24.

A. 204

1ooo

RO

I

1000, 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.165. Two-point auto-correlation coefficient of gust ve]pp1t1psfFlight 6, Run 24. '"

A.205

102

10°

lO'1

10*

10°

io-

108

10°

io-!

von KarmanN= 512SEG.= 6

, ,,.,,j i 1.1.11,1 ,1

•von KarmanN= 512SEG.= 6

von KarmanN= 5125EG.= 6

von KarmanN= 512SEG.= 6

Wy

ilL.

—von KarmanN= 512SEG.= 6

'rc

—von KarmanN= 512SEG.= 6

•von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

10~8 10° 10° 10,-2 10°

K = u/V

Figure A.166. Normalized auto-spectra of gust velocities, Flight 6, Run 24.

A. 206

108

10-z

ioz

- 10°

•e-

10*

rt 10°

N= 512SEG.= 6

WXCL

*>*

N= 512SEG.= 6

r +** WYCL

N= 512SEG.= 6

N= 512SEG.= 6

XRC

N= 512SEG.= 6

N= 512SEG.= 6

*S

N= 512SEG.= 6

WXRL

N= 512SEG.= 6

WYRL

+4*

N= 512SEG.= 6

WZRL

1Q-8 10° 10~8

/c =10° 10'8 10°

Figure A.167. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 24.

A. 207

w w

10*

•e-

10~a

108

•e-

10*

W X W Y

10-z 10° icrz 10°/c = u/V (

10,-2 10°

Figure A.168. Two-point cross-spectra of gust velocities, Flight 6, Run 24.

A. 208

ORIGINS- PAGE ISOF POOR QUALITY

TABLE A.42. List of All Parameters Measured and Their Range of Values,Flight 6, Run 24.

START TIN! • 53490.2614 STOP TIHE • $3537,606*

234

~ 5_ 6

~e"9

-.10_.ll

U314151617181920212223

_24

~2627282930

_3132

.33

35363733

. 39404142

L '•I

~47484950

~51

~53545556

~5758

CHANNELPHI OQTACCL N CGTHETA DOTTHETAPHI

DEL PSI 1PSI 2DEL PSI Z....ACCL N LTACCL N RTACCL X CGACCL Y CGALPHA CTRBETA CTRTEPP ITEMP PACCL Z INSALPHA RTBETA RTALPHA LTBETA LTPSI DOTTFfP TOTOC LTOC CTROC RTPSTEMP IPT0 TO G8 TO DLONGLATTPK ANGHOGVEVNALTITUDETENPCEu WNO SPOMS WNO SPOWIND SPEEDyir.n OIR?CAISSPEEC R

TlRSPjEEO l_DFLTA ALTINRTL OISPUG RIGHTUG CENTERUG LEFTVG RIGHTVG CENTERVG LEFTWG RIGHTWG CENTERUG LEFT

._ UNITSRAD/SECG UNITSRAO/SECRAORAODEGREESDEGREESDEGREESDEGREES .G UNITSG UNITSGUN ITSG UNITSRADRAODEC FDEC FG UNITJ.RADRAORAD .RADRAO/SECOE6 CPSIOPSIOPSIOPSIAOEG CHETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSDEGREESM/5EC

M/SECHETERSMETERSH/SECM/SECH/SECM/SECM/SECM/SECM/SECH/SECH/SEC

HIGH.050-.986.039.086.045

136.509.053

495.940.. -.126

1.7391.643.098.173.023.018

98.44491*4441.222.042.059.051.017.031

31.293.818.802.830

11.61620.914

8760761.05680.391

-104.82039.987135.2902.37388.305-76.750

1.97025.81032.397

-12.51537.35P

311.633109. ?92107.457106.9386.2424.7932.7312.2612.4382.0412.5182.6182.8322.6923.459

LOW-.087-.988-.025.038

-.055131.226-2.656493.123_-5.389

.423

.515

.015-.133-.037-.05495.74691.065.750

-.019-.013-.026-.056-.01629.520

HEAN-.00318-.98774.00572.06000

-.01664_L33. 89999-1.42388494.50336-2.616261.011351.02330.05311,01089

-.01071-.0205598.0792691.26768

. . 1.00186.00505.01801

. .01110-.02454.00317

30.35857

RMS,01687,98774.00913.06166.02243

_1H,912221.59390

_494. 503673.345031.018921.03104.05519

_.- .04354__ ,01363

.0228198.0796391.267881.00357.01114.02008.01484.02625.00784

30.36105.620 ,73412 .73582.615 .71910 .72077.637 .74591 .74763

11.573 11.59746 11.5974616.632 19.64369 19.6655P

8754631.411**********************80.320 80.35594 80.35594

-104.906 -104.86368 104.8638939.923 39.95447 39.95448132.816 133.85318 133.855562.320 2.34565 2.3456981.507 85.50226 85.52?41-85.467 -82.10193 82.155841.940 1.95283 1.9528524.442 25.18711 25.1895220.651 27.57554 27.63905-22.771 -18.19812 18.3145226.3EO 33.CP414 33.1562P293.236 303.3C374 303.3983996.C86 103.71868 103.7774694.423 101.67765 101.9355794*766-23.889-24.781-3.189-3.434-4.214-3.318-3.282-3.194-3.359-3.135-4.147

__10e, 91350-11.06568-11.96518

.00000

.00000

.00000

.00196

.00098

.00445

.01311

.01606. .01627

_102.9716214.0052115.057851.173801.129401.16536.85846.89045.93718.98950.954681.06854

POINTS.34933493349334933493

. 349334933493

_ 3493349334933493

„ 34933493

......349334933493349334933493349334933493

_ 3493349334933493349334933493349334933493349334933493349334933493349334933493349334933493349334933493349334933493349334933493349334933493

A. 209

CM

<U>

to"OJ 4JO£ <O

CL.

O 4J•r- .C+J O)O 'I-

<U i—s_ u_O O

4J•a

1 t

I

O

00 I— EO> Q of— S CJ

v-^ <U~ t** V)

*&• COi— •• CO

co r>.>> LO

Q t— Q

(6ap)

oI

CT>

•o

^ <uO =?

O

LT>O

• I<T>CO

cu

un00

vo

en

(OQ.

cn

[Z

cn

QJ

3C7)

A.210

oo0)>

CO

CD

T3

(O

0)

•J3 ••i- LOo oooO) 3> O£

-)-> •>co vo

cn+->JC

O •!-

CO Ll_CD

1- coO OJ

•»-> Oco C

•r™ fl^JZ S_

(1)0) 4-

Ols_

o o o(s/ui)

o o o o oCM —" —< CM

I I

A.211

TABLE A.43. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 25.

I. Mean Airspeed (m/s)

104.2 103.0 104.8

II. Standard Deviation ofGust Velocities (m/s)

CT

WXL

3.49

<TW,xc

3.44

CTWXR

3.50

WYL

5.92

aw.

YC

6.00

aWYR

6.04

III. Standard Deviationof Gust VelocityDifferences (in/s)

HCL XRC XRL

CTWZL

2.43

<7W,zc

2.21

VWZR

2.26

0.97

0.94

1.05

0.91

0.95

1.18

XCL XRC XRL

1.02

1.06 . 1.19

IV. Integral Length Scale (m).

\c

YL YC

1004 1014 1055

2014 1940 2002

258 261 247

A.212

1.0

R

C

L

i \ r~] i i i rR N

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.171. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 25.

A.213

a.2'o

ouao3JS"vfco

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.172. Single-point auto-correlation coefficient of gust velocitiesFlight 6, Run 25.

A.214

c0>

Vo

BO

Oc_>Io

IO

E-

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.173. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 25.

A.215

b\s

102

10°

•von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

—von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

Wy

11,1 , , MM.ll

—von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

Wy

von KarmanN= 512SEG.= 5

•von KarmanN= 512SEG.= 5

10~8 10° 1Q-* 10°

K = a/V

10"3 10°

Figure A.174. Normalized auto-spectra of gust velocities, Flight 6, Run 25,

A.216

10s

rt 1°°

108

b""

\s10-

108

- 10°

N= 512SEG.= 5

WXCL

...... J

N= 512SEG.= 5

WYCL

+ N= 512SEG.= 5

N= 512SEG.= 5

WXRC

N= 512SEG.= 5

WYRC

N= 512SEG.= 5

ZRC

N= 512SEG.= 5

N= 512SEG.= 5

WYRL

,1

N= 512SEG.= 5

WZRL

10~8 10° ID"8 10°K = u/V (in'1)

1Q~ 10°

Figure A.175. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 25.

A.217

w x w z

10a

10~a

ITrr . •

—LL—-LC—LR

W X W Y

II mill ,,,,.,J .M,,J IMM.J

sT

?r

10

^ 10

—CL

—-CC

—CR

•e-

io-

>*.

•e«"

rr

10

10 rf9-r

LL

—-LCLR

w y w z

IT /--

-LL

-LC

i iiirnil i I Mini! i i iitml

—CL

™CC

CR ^

—RL

—-RC

llllmJ ....... 1 1 ...... J ...,.,1

10-8 10° 10° 10~8 10°K = <y/V

Figure A.176. Two-point cross-spectra of gust velocities, Flight 6, Run 25,

A.218

TABLE A.44.

ORIGINAL PAGE USOF POOR QUALTnr

List of All Parameters Measured and Their Range of Values,Flight 6, Run 25.

START TIME •. 53557.496* STOP TINE • 3 36.30 .1216

CHANNEL. UNIT2 PHI DOT RAO/SEC3 ACCL N CG C UNITS4 THFTA DOT5 THETA6 PHI7 PSI 18 DEL PSI I9 PSI 210 OEt PSI 211 ACCL H IT12 ACCL N RT

Il3 ACCL. X CG!<• ACCL Y CG15 ALPHA CTR16 BETA CTR17 TE*P I14 TEPP P19 _ACCL I INS20 ALPHA RT21 BETA RT2Z ALPHA LT23 BETA LT24 PSI DOT25 TEMP TCT26 OC LT27 CC CTR23 OC RT29 PS30 TEMP IRT31 0 TO G32 B TO 0"33 LONG34 LAT35 TPK ANG36 HOG37 Vf39 VN39 ALTITUDE«0 TEMPC<•! f * UNO SPO*? NS yNO SPO43 NINO SPEED44 WIND OIPEC<.5 AIPSPEEO R

' 46 AlfiSPFFO C47 AIRSPEED L40 DELTA ALT49 INRTl DISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 UG RIGHT57 KG CENTER53 VG LEFT

RAD/SECRADRAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSPADRADDEC FDEC FG UNIIS_RADRADRAORADPAD/SECDEC CPSIOPSIOPSIOPSIAOEG CMETERSDEGREESDEGREESDECREESDEGREESRADIANSP/SECM/SECKMDEGREESKNOTSKNOTSKNOTSDEGREESM/SECM/SECM/SECMETERSMETERSM/SECM/SECM/SECM/SECH/SECM/SECM/SECM/SECM/SEC

S HIGH LOW.109

-.988,070.090.038

1*9.1906.431

507.9096.1962.7362. 265.145.151

. .079.060

98.44491.4441.795.082.121.113.054.066

33.065.845.825

-.135-.988-.064.018

-.125140.736-1.680500.164-1.919-.083.018

-.007-.136-.065-.14295.92991.265.608

-.056-.102-.049-.130-.06829.914.565.543

MEAN-.00375-.98774,00603.05098

-.03005:i44.6234L

2.11333503.733751,88821

.. 1,012021.02362.05526..00408

_. -.01377-.0334498.2110691.374981.00183.-.00168.00425.00186

-.03708.00290

31.86240.74907.73174

RMS PQ.03066.98774

__ ,01634.... .05322

.04408144.633362.69405

503.736392.52022_1.047041,05658.05987.04809

._; ,02197___.04455

98.2114491.375021.01066.01963.02675.01953.04583.02161

3i. 87291.75134

. .73395.853 .570 .75797 .76026

11.633 11.580 11.59788 11.5978924.408 20.320 22.07959 22.10369

8766774.6438762053.901**********************80.463 80.406 80.43367 80.43367

-104.734 -104.802 -104.76930 104.7693039.909 39.853 39.6P029 39.68029141.867 132.540 136.54180 136.581332.593 2.449 2.51593 2.5161186.019 69.613 79.65717 80.06585-77.655 -89.946 -84.04857 84.12690

1.965 1.926 1.95254 1.95256C 27.568 25.295 26.57718 26.58160

53.936 17.553 43.46234 44.0414216.612 -30.114 2.55542 11.5406455.718 20.662 ~45.1C352 45.52837

314.974 250. 5b3 268.41385 268.90716111.144 91.116 104.75630 104.84020109.349 89.006 102.97022 103.05066

. 110.65210.0916.26110.94311.10710.490

..: 17.58116.35216.0686.9506.1777.278

90,769-26.596-25.908-5.952-5.538-6.930-8.071-7.992-7.615-9.461

_ -9.422-9.867

104,15521-2.40713-2.60415

* 00000..00000.00000.02554.03411.03025

-.06281-.05586-.06514

104,237059.5518410.058223.550113.497113.561215.816795.741695.710472.168092.124562.31192

IM1S_292429292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929292929?92929292929

A.219

0)>

OC 10a,

co •«-»•M 0»O ••-V r—s_ u.•r-O O

-M-3

o«*•

00 I— cO> Q o'— s: o•—' o' tn 10*a- m

'" •* vo>» LD

d> O> (O•M S 1-<d ••- aQ I— Q

o>

ooo

oooGO

1 1

(6ap)

ooor^

s

1 Mh

-( o»•o

. o»O 3

I -f

c.o

t-3O••->

Oo

oooVO

_ inif)t—

ro

oo

QJun

ooom

CM

C

01

co

oM-c

(OQ.

/<C

S-

A. 220

o<uw

Vg

ooCU

en-oc

cu

O CMO

'CU 3

vo

4- onO •--

cu•r— •*S- inO CU4-» OV> C

•r- CU-C i.CU 4-

00

cu

01

(s/ui) paadg

A.221

TABLE A.45. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 26.

I. Mean Airspeed (m/s)

R

107.3 106.2 108.0

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

Standard Deviation ofGust Velocities (m/s)

aWXL

2.56

aWYL

5.06

aWZL

2.00

awxc2.53

aWYC

5.14

crwzc1.89

CTWXR

2.56

aWYR

5.11

aWZR

2. 10

0.88 0.96 1.21 IV. Integral Length Scale (m).

XCL HRC XRL

0.87 0.92 0.92709 769 753

CL

0.95 1.00

ZRL

1.051706 1699 1734

343 304 291

A. 222

\ I 1 I 1 * 1 I 1 I

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.179. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 26.

A.223

Ouao

S-,OU

IO

1.

0.

-1. Lr

WXR

I I T =d

< L

0.

-1.0.

WZL

1000. 2000. 3000.

Spatial Lag ,S=V"''m)

1000.

Figure A.180. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 26.

A.224

1. WXRC_ L

WXCL

WXRL

a.2oCDOO

ao•3a

1oi

3-

oCU

o

-1.0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

WYCL1

NYRL

i i

WZRC

=j~-=

WZCL_i_ ^^-—i

WZR.L

"5000.

Figure A.181. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 26.

A. 225

b

i?

108

10°

lo-t

r

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

I . III..J i iiiuill I i. I

von Karm&nN= 512SEG.= 5

,i,l i iiimil i i i mi

von KarmanN= 512SEG.= 5

Wv

•von KarmanN= 5125EG.= 5

N,r

, 11,,m| | i i i nnil

von KarmanN= 512SEG.= 5

'XR

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

!ZR

10,-8 10° ID'8

K = U/V

10° 10- 10°

Figure A.182. Normalized auto-spectra of gust velocities, Flight 6, Run 26,

A. 226

10Z

6"6"

10-8 r

102

io-z

10"

r' N= 512f „ SEG.= 5

r * * WXCL:r *•*

* , ,,,„„) i i i , ill i II mil

N= 512f SEG.= 5

r + + WYCL

r \

• , , ,,,,,J , IIMlJ 1 I ,11,1,1

|

''r- + N= 512

f SEG.= 5

i- **+ uir ^ WZCL: *i-f<p-«-

r **»r Afct: ^fc

r ir

i I riuiJ i iiiinJ i i i n t)[| i i iiitii

r

N= 5121 SEG.= 5

I * \++ W*RC

r +^*

- ' \r %

r

" , ,,,,,i,l , iiiiml i minil i ,,,„„

N= 512f SEG.= 5

f * WYRCB~ "*"

[ ^r + N=G512s

r + \ + WZRCr *^

f ^r

1 III, MM 1 IIIIIIH 1 IIIMIll 1 IMIII

r

N= 5121 SEG.= 5

: ***•

r \r

" 1 ,,l I I

N= 512[ + SEG.= 5

f . * WYRL

; \—" , ,,,,,,,1 1 1 , ,,,„„!

f *' SEG.= 5

r +X WZRL

\

+i

r

i i i mill i t i mill i i i MUM i i i mm

10~8 10° 10~8 10° 10~8 10°ic =

'Figure A.183. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 26.

A.227

W Y W Z

10

•6-

-

10*

10°

ic 2

10~2 10°* = u/V (m'1)

10,-e 10°

Figure A.184. Two-point cross-spectra of gust velocities, Flight 6, Run 26,

A. 228

ORIGINAL PAGE mOF POOR QUALITY

TABLE A.46. List of All Parameters Measured and Their Range of Values,Flight 6, Run 26.

START TINE • 53675.4568

CHANNEL UNITS HIGH2 PHI OdT3 ACCL N CG

~ 4 THETA DOT5 THETA6 PHI7 PSI 18 DEL PSI 1

" "9 PSI 210 DEL PSI 211 ACCL N IT12 ACCL N RT13 ACCl X CG14 ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEKP I18 TEKP P19 ACCL Z INS20 ALPHA RT~21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEfP TOT26 OC LT27 OC CTR26 OC RT29 PS30 TEHP IRT31 0 TO G~3? B TO 033 LONG34 LAT35 TRK AN€36 HOG37 VE38 VN39 ALTITUDE40 TEMPC41 EU UNO SPO42 NS UNO SPO43 WIND SPEED

"*4 WIND 01PEC<.5 AIRSPEED R«••> AltSPCtD C

" 47 AIRSPEED L48 DELTA ALT49 INPTL OISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT96 tfG RIGHT57 UG CENTER5* UG LEFT

RAD/SECG UNITSRAD/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRAODEC FDEG FG UNITSRADRADRADRADRAD/SECDEC CPSIOPSIOPSIDPSIADEG CMETERSDEGREESDECREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSDECREESP/SECM/SECM/SECMETERSMETERSH/SECH/SECH/SECM/SECM/SECH/SECH/SECM/SECM/SEC

.109-.988.060.074.032

313.3263.345

314.9953.0212.2752.206.110.177.067.037

96.08491.6211.657.055.064.086

_ .021.074

33.065.905

STOP

LOU-.107-.986-.053-.019-.109

305.579-4.149307.947-4.330-.026.175

-.011-.146-.078-.12993.22791.265.470

-.063-.080-.061-.129-.04530.505.663

.TIME • 53743.5568

MEAN RMS PO-.00341-.98774.00658.04090

-.02083309.16925-.76181

?11.09599-1.009041.013831.02757.03383.00589

. ...-.0192Q-.0264996.9972391.443581.00402

_ -.01241.00678

. -.01094-.03321.00503

32.15773.79432

•02931.96774.01497.04456.03556

309.193921.85405

311.100361.948791.045061.05803.03663.04839.02396,03657

96.9999491.443581.01315.02028.02166.01662.03928.01958

32.16451.79513

.888 .658 .77808 .77880

.920 .655 .80567 .8063911.611 11.535 11.56983 11.5698424.408 21.904 23.30971 23.31669

8765643.2268762044.147**********************~ "80.455 80.411 "80.43301" 60.43301

-104.746 -104.799 -104.77254 104.7725439.894 39.849 39.87229 39.87229316.987 313.660 317.70011 317.703105.499 5.366 5.42571 5.42580

-64.173 -67.527 -65.61357 65.6195376.0071.99627.34538.72221.50539.896351.395115.055113.053114.1134.2960.0006.7055.6415.8769.4016.9718.9978.2189.0479.596

63.7611.94325.2401.606

-26.74510.744

232.22297.50397.75496.048-48.594-47.135-7.318

~-7. 190-6.925-15.906-15.141-15.200-7.543-6.364-6.127

72.164541.9581426.5425624.60439.98975

-27.17396270.S2836108.01910106.1*533107.26962-33.88065-34.82629-.00000-.00000-.00000.01078.01064.01027-.02672-.02384

• -.02578

72.264901.9581626.5494625.4109310.7166927.57916272.21699108. 042031061. 21847107,2957935.2574236.151332.670942.634262.684575.869645.891645.828792.059041.851121. 95965

LSU-272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724272427242724

A.229

"oj -wo£ <o

0.Co •«->••- -C+•» 0>O H-<U i—i. u.o o

I I

J I I I

or«~I

0)TJ

• a»j- -o

O 3

LOO

« Lf)^ CM «d-r— •• O

UD i—>»tnrO i—

a> ai to•M s £<O T- 3Q t— Q

10a.

C7>

OoI

t.0)

OOOa>

ooo00

ooo

oooVO

r^• i

co

CO

CO(U

LO

CO

oooLf>

7 f ,....>..// - - • ' • ' __~-

a:

CT)

o4Jto

O

c

fOa.

en

LT)00

ai5-

cn

A. 230

o(M

OO

tvl3

&OCO

OCO

Oo

</>3O)

T3

<O

OJ

•r- r--o ooo

r— CO) 3> on

CO CO

<+- cno ••-l/l LJ_OJ

•p— ft

S- COO O)+J (Jco c:

•r- QJ

0)<U C|_E M-

OO

O)S-3Ol

O O O O O(M r-l ^ (SJ

I I (s/ui)O O O O OCSI —i —i CM

I I

A.231

TABLE A.47. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 27.

I. Mean Airspeed (m/s)

R

105.0 104.0 105.9

Standard Deviation ofGust Velocities (m/s)

W.XL

5.06

(7W.xc

4.94

(7W.

XR

4.96

aw.

YL

<7W,

YC

aw.

YR

312.16 309.15 314.62

III. Standard Deviationof Gust VelocityDifferences (m/s)

""in0.47 0.51 0.64

w,ZL

0.82

W,ZC

0.83

W,ZR

0.83

IV. Integral Length Scale (m).

XCL HRC

5.66

0.46

3.37

0.51

3.10

XRC XRL

0.53

XL

1913

222

XC

1891

Y

220

XR

1914

224

7T 7f* "7T?

303 1060 443

A.232

1.0 i i i i | i i i rW

5. -5. 5. -5.

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.187. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 27.

A.233

c.•d<J

<Uo

ao

ou

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.188. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 27.

A. 234

WXRC

a.80

Vooao

bouIo

B'8

I

0. 1000. ZOOO. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.189. Two-point auto-correlation coefficient of gust velocitiesFlight 6, Run 27.

A.235

•von KannanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

—von KarmanN= 512SEG.= 8

hrc

von KarmanN= 512SEG.= 8

W,

,,||| I ,,,.||||

von KarmanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

W,

von KarmanN= 512SEG.= B

i i i mill . iiiiiiil ,1

10,-a 10° 10~8 10°

K = u/V (m

10~ 10°

Figure A.190. Normalized auto-spectra of gust velocities, Flight 6, Run 27

A.236

IO8 r

b~^b~ 10°

10-8

IO8

r 10°

* io-8

108

6"b~ 10°

•&• 1Q-a

N= 512SEG.= 8

WXCL

N= 512SEG.= 8

N= 512SEG.= 8

WZCL

N= 512SEG.= 8

WXRC

N= 512SEG.= 8

N= 512SEG.= 8

N= 512SEG.= 8

WXRL

N= 512SEG.= 8

+*

N= 512SEG.= 8

+ .-H-

s,il i imiiil I .,.,.1,1 . ,,,„„• , iii,ml ml I i ii,i,nl

10~8 10° 0~8 10°K = cj/V (m'1)

io~810°

Figure A.191. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 27.

A.237

102

•6-

io-a

108

— 10°

io-2

10*

10°

1(T8

10-2 10° KT8 10°K = u/V (m"1)

10" 10°

Figure A.192. Two-point cross-spectra of gust velocities, Flight 6, Run 27

A.238

TABLE A.48. List of All Parameters Measured and Their Range of Values,Flight 6, Run 27.

START TINE -. 53789.3720 STOP TINE • 53869,6*70

234567

~ B"9

101113.1 3.1*151617161920?122232*25 .262728293031.32333*.3b2637•>f>3<J-.0t, i

<.?<•!•;<.«.5464,74349505152535455565756

CHANNELPHI DOTA C C L N CGTHETA DOTT H E T APHIPSI 1DEL PSI 1PSI 2DEL PSI 2~.ACCL N LTA C C L N RTACU X _CGACCL r CGALPHA CTRB E T A C T RTEMP ITEMP PACCL Z INSA L P H A RTB E T A RTA L P H A LTB E T A LTPSI DOTTEMP TOTOC LTQ C C T ROC RTPSTEMP IRT0 TO 66 TO DLONGL A TTRK ANGHOCV FVNALTITUDET E K P CEtf WHO SPDKS WHO SPOt a l r .O SPEEDW I N D OI»cCA I P S P E F O RA f l iSPEEO CAIRSPEED LDELTA AITINRTL DISPUG RIGHTUG C E N T E RUG LEFTVG RIGHTV G CENTERVG LEFTUG RIGHTUG CENTERW G LEFT

UNITSR A D / S E CG UNITSRAD/SECPADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRAOPADDEC FDEC fG UNITS_PADPADRADRADRAO/SECDEG CPSIDPSIDPSIOPSIADEG CMETEPSDEGREESDEGREESD E G R E E SD E G R E E SPADI4*tSr / s f cM / S E CKMD E G R E E S CKNOTSK N O T SK N O T ST f c G B E E SM / S E Cf /SECM/SECMETERSMETERSM/SECM / S E CM / S E CM/SECM / S E CM/SECM / S E CM/SECM/SEC

HIGH.066

-.968.0*3.103.055

359.1181.875

359.69814.988

1.6851.565.110.193.020.025

98.44491.797

1.316.041.052.047.013.027

31.687.669.846

LOW-.080-.986-.025

.006-.063-.155

_ -1.709396.176

-.713.322.531.009

-.129-.041-.040

90.70991.444

.763-.035-.002-.034-.045-.023

29.619.624.625

.885 .66011.606 11.57021.314 16.632

fl7$*770. 27887.61829. 56860.399 80.391

-104.793 -104.80840.015 39.9P5

8.651 5.6856.283 .000

. 15.055. . . 8.97799.634

1.97225.73128.263-6.38531.009

321.603112.886110.451111.88915.35213.410

9.50210.04311.1*3

2*7.305242.0172*5.086

3.2312.294*.019

89.9851.945

24.95814.619

-22.96518.737

286.10497.82595.24995.175

-11.584-11.127-8.811-8.337-8.695

-*60.057-452.4*3-*56.2*5

-2.923-2.858-3.056

MEAN RMS-.00303 .01863-.9877* .9877*.005*0 .01003.05186 .0545*

-.01397 .02618iiO. 30769 198.56757

.11985 .73436357.677*5

4.628591.008691.022*6

.05993

.01414.-.01807-.01112

95.5214691.56511

1,00078..-.00807

.02290• -.00684

-.01612.00354

J.Q.6627Q..76529.75061.77867

11.5936B20.34004

*J***********80.39505-104.80091

39.969177.285352.21048

12*34130.96.34134

1.955462 5 . 2 8 6 3 020.70162

-14.95049"25 .72530305.63957105.93768104.0530?105.03829-1.36348-1.63479

-tOOOOO.-.00000-.ocooo2.392282.236212.09729

.00925_

.01366

.00784

357.8781*

.PUIMIi.*171*171*171*171

. _ . . *m4171*171*171

6.3207* *1711.01793 *171

_ 1.03037 *171.06357 *171.04673 4171.02037.01561

95.5339691.56515

1,00 309.01338.02507

. .01311.01900.00903

_JLD_. 68651,76767.75286

41714171417141714171*17l*171

... *171*171*171*171

.._ *1714171

.78096 417111.59368 417120.34497 4171

<»*»**»**** *17l80,39505 4171

104.60091 417139.96918 4171

7.33214 41713.71756 4171

. 1 2 . 4 5 0 9 3 417196.384s2

1.9554725 .2866620.6093*15.292642 5 . 8 2 4 2 6

305.71820106.01335104.1289?105,11803

. ...7.1*9117.8616*4.956*34.934195.05634

315,03190309.54880312.55804

.83293

.82569

.81866

41714171'.171*171*171

. *17J417141714171

_ U71*171*171*171*171*171

.... *1714171*171417141714171

A. 239

01>4J

a: <oQ-

O 4->•r- .C4-> C7>O -r-O» •—S- LU•^

O O

oI

OlO)•p

CM

s-sO 3

ino

(6ap)

Q OS O

-

•— •• oi— VO

>>0

3 IT) ..•-3 •— C

O•^

•• •• -4J<U OJ ro** S J_tO ••- 3Q I— Q

Lf)

cr>co

I/I<u

coCM

ID

cn

co

O14-c

Q.

-MJ^CO

rocn

(Us-

A. 240

or(vl

^

(_jM

^.

Jffcj

%

.

1

i t t

r*j

< Ji

1^

'i , ,

J

Orvt3

i

•:

erf

r*j3

~i

_

t

0CSI

do

d00

m

o :-,CO ^_>

•i—u

o o** '&d(\J 4J

3

i i i i i i i i i i O <~rl

>— 1 >~

3

\ ^f

IfI

*I

I

i i i

C*r

X3

\

\

_l

3 \

Q£^-3<•!

t

rIi

Ii

11

, , 1 , ,1 1 1 1 1

i i

(_)X

J ^

j

<

|X3 L

!

i i

,

rX3

f

1 1

)

U^

? |

, ,

— iOL>-

3

.

, ,1 1

1 1

(_J

X

J <'

-|

-

r'-

^^

(\1 "3

I/)

o «»O '_£

"" ---00• '7^ o <NJ

o 0 o00 QJ , — g;

W O) 3• v~ ' > Di

0ID D -4-> "

C t/1 l

° E-1 ^^M- enO •!-

O r—(NJ 00 U_

O)

' ° 0 Vi \ r \

~T~ \^

_ o" <" =

O;X

J <1

;

-4

1 1 t 1 J i l l ' )

.

-

.

1

M - i-0».-< ^ f~

d g £o _£ **-" H- -5dCO

^>cr>to """I

d.^ OJ

d co(SJ T_

1 1

Oi i i I t i i i i i

O O O O OO O O O O (M -^ — « f\JCM i-H r-l CM . , . j. II

A.241

TABLE A.49. Average Turbulence Parameters and Integral Length ScalesFlight 5, Ri)n 20. •

I. Mean Airspeed (m/s)

R

106.2 105.1 106.9

III. Standard Deviationof Gust VelocityDifferences (m/s)

0.43 0.44

HCL XRC

0.39 0.35 Q,38

0.42 0.43 0,49

II. Standard Deviation ofGust Velocities (m/s)

<7WXL

0.70

aWYL

0.79

aWZL

0.68

V. Integral

awxc

0,65

WYC

0.82

awzc

0,71

Length

aWXR

0.72

WYR

0.80

awWZR

Q.72

Scale (m)

^TIT ^fttT iW•VI VP Y"DAJj Avx ' AJv

415 402

869

"rZL

853

847

zcW"^ !• '

858

642

862

A. 242

1.0

0.8

0.6iscd,02 0.4

Pu

0.2

0.0

C = Cente/ Wk* Left x

Tl 1 II I I I \ I T

-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

i i i \ I i I i1-RC2-CL3-RL

A W

5. -5. 5. -5.

Normalized. Velocity Differences (Standard Deviations)

Figure A.195. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 28.

A.243

c.p<J

ouao

<us*boy

1.

0.

-1.

-1.0.

WXR

Wxc

NXLj i i

WYC

WYL

WZR. i 1 "•"• .1 i i ' i —i 1

Wzc

NZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.196. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 28.

A. 244

1.

0.

WXRC

WXCL

c.2o• l-tHH**-!0]

eo

Io-tJ

R.(-iO

(X

oE-

_ I l_

_ L

_ L

-1.0.

^ I ' - L.

I _L

i i

WXRL

WYRC

I 1 L

I i

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

_i I

WYRL

WZRC_j i

WZCL

WZRL

Fiaure A 197. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 28.

A.245

b

1?

102

1Qo

1Q-

102

10°

von KarmanN= 512SEG.= 4

.mil J I

—von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

l l l l j t I I unit I I I lUl l l

von KarmanN= 512SEG.= 4

Wy

nil i I 11 mil I i I mill I I I inn

—von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

Wzc

von KarmanN= 512SEG.= 4

Wv

von KarmanN= 512SEG.= 4

—von KarmanN= 512SEG.= 4

10-8 10° 1(T8 10°

« = u/V (m-1)

10~2 10°

Figure A.198. Normalized auto-spectra of gust velocities, Flight 6, Run 28.

A. 246

108

6b"

108

N= 512SEG.= 4

WXCL

N= 512SEG.= 4

N= 512SEG.= 4

F + V WZCL

N= 512+ SEG.= 4

•fWXRC

N= 512SEG.= 4

WYRC

N= 5125EG.= 4

*V

N= 512SEG.= 4

WXRL

N= 512SEG.= 4

N= 512SEG.= 4

10-8 10° 10~8 10°K = w/V (m

10- 10°

Figure A.199. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 28.

A.247

108

10-2

102

10°

lo-2

I-

rr

rz

r

r-

L

r — -Cr

f

r

r

r

r:

r ~~c

r •— »

r -\\r x^<?\r \\JP

T ^r~ i i niiJ i i iirnJ i |iiinil i i niiiil

rr

10°

io~8

—RL—-RC—RR

11 in J iiimj ii.innl iiiimil

io-z 10°

rr

rr

—LL

—- LC—LR

sT

—-CC—CR

J ,,,„„! ....... J , ,i,n,J

—RL—-RC

—RR

rr ~~\

rr

10'2 10°K = u/V (

10,-B 10°

Figure A.200. Two-point cross-spectra of gust velocities, Flight 6, Run 28.

A. 248

TABLE A.50. List of All Parameters Measured and Their Range of Values,Flight 6, Run 28.

START TIME • 5*081.562* STOP TINE • 54141.937*

23

~ 6789

10111213i*1516171819202122232*

2627282930313233

353637

CHANNELPHI DOTACCL N CGTHETA DOTTHFTAPHIPSI 1DEL PSI 1PSI 2DEL PSI 2ACCL N LTACCL N RTACCL X CGACCL Y CGALPHA CTRBETA CTRTEMP ITEMP PACCL Z INSALPHA RTBETA RTALPHA LTBETA LTPSI DOTTEMP TOTOC LTOC CTROC RTPSTEMP IRTD TO GB TO DLONGLATTRK ANGHDGVE

38 VN39 ALTITUDE*C TEMPC*1 EU UNO SPD*? NS VNO SPD<.3 UINC SPEED** hi NO OIREC^5 UfSPEtC B

*7 AIRSPEED L40 DELTA ALT*9 INRTL DISP50 UG RIGHT5152535*55565758

UG CENTERUG LEFTVG RIGHTVG CENTERVG LEFTUG RIGHTUG CENTERUG LEFT

UNITSRAD/SECG UNITSRAD/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRAODEG FCEG FG UNITSRADRADPADRADRAD/SECDEG CPSIOPSIOPSIOPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSCEGFfESf /SICM/SKM/SECMETERSMETERSM/SECM/SFCM/SECH/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.036

-.182• 0**.068.08*

161.5185.*90

487.491.9031.5141.488.42?.760.203.187

98.***91.80*1.213.198.053.200.162.912

35.03*.820

LOU-.056-.988-.449-.018-.06679.494-4.656406.168-6.571.438

-1.332.021

-.136-.079-.073.407

-18.414-.243-.072-.016-.076-.059-.23429.601.727

MEAN-.00467-.98741-.01228.03563.00062

128.54818..15133

475.49316-.646751.008941.04047.09365.11051.00999.00902

97.4310183.85549.99137.01913.01294

. .02354-.00817.12503

31.40757.77946

RMS.01391.9875*.0*879

" .0*020.0356*

129.162122.16766

476.16863.982651.015551.04906.15983.28255.07688.07161

97.4785086.23968,99321.073*7.01769.07382.0*156.33226

_JljMO*3..77965

.799 .709 .76369 .76388

.831 .726 .79123 .791*311.615 11.583 11.59626 11.9962720.119 -159.660 11.55175 21.00909

8770481.0118764833.677**********************80.459

-104.71139.990125.0602.213

108.840-71.679

1.96329.60551.395

-14.18572.4083*6.253109. *03107.332108.7055.74615.5635.0563.4117.9563.05926.33020.42923.40421.76121.734

60.400-104.78739.950

. 123.8432.156

106.061-74.671

1.94024.26517.204

-70.334**. 956285. *29102.502101.281102.56*-16.7*6-17.235

-2.084-3.657-2.992-8.723-5.038-9.967-13.532-9.824

60.42964-104.7489839.96989124.431352.16268

107.27685-73.47960

1.9536625.9086740.18662-28.37259-51.90798303.*1662106.9*3531C5. 10826106.16297-3.50797-.47227,00000.00000.00000.2*306.23813.22*12.00539

-.26181, -.1597*

80.4296*10*. 7*89639.96989124. 431862.18271

107.2799673.485751.9536725.9*98*41. 1591932.5D36752.**585303.87318lOt. 9*88410*. 11 319106.167996.6772010.287633.00323.607063.11029.98604

9.921284.371358.519017.969037.92025

POINTS2415241524152415241524152*152*152*15

. 2*152*152*15.2*152*152*152*152*152*152*152*152*152*15

... 2*15

2*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152*152415_241524152415241524152415

._. 24152415

A.249

CO

SI•r--M10i— .c0) -Ma: <a

Q_£2O -M•i- .C4J 0>O •!-CU r—S_ U-•^

0 04->

T3

'5

1 ( 1 1

F ""~

— -

^ .

-* —

™* ' ~

1 1 1 1

•a-o

^

o>U•o

00• (11* ^^^- -rj

O 3i— 4->

1 'I—

CT»CO

CO

LDo

C3 VT>r—«d- • 1

(T\vj tCO

(6ap)

(J0)

in

tt» CJ (O-M S £<O -I- 3Q I— O

OOO

oo

ooo

00

01

£

co

OOOin

enCMcuo;

01

(OQ.

OCM

QJ

C71

IM&.iaH

A. 250

ooai

ns

toai

•t- eno coo

r— C<U 3> a:

CT>-t->

<+- o>O •!-

i- 01O D

a>

CMO

O)s_

a;

o o o o ocvj -, - ex.

(S/TII) pS9dg

o a o o oCM T-I —i tM

I I

A.251

TABLE A.52. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 29.

I. Mean Airspeed (m/s)

106.1 104.9 106.7

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC

Standard Deviation ofGust Velocities (m/s)

<7WXL

3.92

aWYL

2.21

aWZL

2.42

awxc

3.82

aWYC

2.18

awzc2.22

CT

3.84

aWYR

2.10

aWZR

2.38

1.01

1.10

i.oa

XCL HRC

1.09

1.34

1.08

IV. Integral Length Scale (m).

592

\

599 592

1.17

"ZRC A¥ZRL

1.22 1.30604 553 634

385 387 379

A.252

1.0 n I i i i i rN

0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.203. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 29.

A.253

c.r-l

<J

OCJ

do3_a"3

ouIo

1000. 2000. . 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.204. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 29.

A.254

ti"o

0)o

co

ooIo

c•s(XIo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

-5000.

Figure A.205. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 29.

A.255

b

I

108

10°

io-'

10"b

1?

10'

108

10°

10-i

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

•von KarmanN= 512SEG.= 6

•von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

\

von KarmanN= 512SEG.= 6

10-a 10° 1Q-2 10°

K = <u/V (m

10-z 10°

Figure A.206. Normalized auto-spectra of gust velocities, Flight 6, Run 29,

A.256

10* r

6""6" 10°

10*

6

108

tT 10°

S•5*

* 10-a

N= 512SEG.= 6

N= 512SEG.= 6

N= 512SEG.= 6

N= 512SEG.= 6

WXRC

N= 512SEG.= 6

N= 512SEG.= 6

ZRC

N= 512SEG.= 6

WXRL

N= 512SEG.= 6

WYRL

N= 512SEG.= 6

WZRL

10-8 10° 10~8 10°K = u/V (m

10~8 10°

Figure A.207. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 29.

A.257

N

•6-

LL

LC

LR

F J I I ,1 i,,iml

—CL

—-CC—CR

".„ 10°

w y w z—LL

—- LC

—LR

—CL

—-CC

—CR

terr -x.>,

| f Illltll 1 H|<|||l | pllltll 1 1 MfllJ

10~z 10°

,,„.; , i ,,,.ij A

10~B 10°K = <j/V fm~r

r i i Html t i iiiml i 11 mm i nnrtJ

10'8 10°

Figure A.208. Two-point cross-spectra of gust velocities, Flight 6, Run 29.

A. 258

TABLE A.53. List of All Parameters Measured and Their Range of Values,Flight 6, Run 29. .

START TIHE 5*223.7177. STOP TIHE • 5*308.3177

CHANNEL2 PHI DOT3 ACCL «* CG4 THETA COT5 THETA6 PHI7 PSI 1P DEL PSI 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCl X CG14 ACCL Y CG15 ALPHA CTR16 BETA CTR17 TEMP IIP ff.ff P)<> ACCL Z INS20 ALPHA PT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 OC LT27 OC CTR28 OC RT29 PS30 TEMP IRT31 D TO G32 B TO D33 LONG34 LAT35 TRK ANG36 HOG37 Vt33 VN3<J ALTITUDE40 TEfPC<•! Erf WNO SPO4? NS »ND SPO43 ap.D SFEEO4<, *ISD OIREC45 A I B S P E E O Rv-, AIRSPEED C47 AIRSPEED L48 DELTA ALT49 INRTL DISP50 UG PIGHT51 UG CENTER5? UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 WG FIGHT57 WG CENTER58 WG LEFT

UNITSRAD/SECG UNITSRAD/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADPADDEC FDEC FG UNITSRADRADRADRADRAD/SEC .DEG CPSIDPSIDPSIDPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSCEGPEESM/SFCH/SECH/SECHETERSMETERSH/SECH/SECM/SECM/SECH/SECM/SECM/SECM/SECM/SEC

HIGH.125

-.986,OR5.103.087

190.0483.962

5*7.6913.7562.07*2.473.126.187.065.067

9S.16391.9841.57*.07*.091.077.056.052

33.360.966.930.975

11.59623.456

8773441.22980.527

-104.65439.880177.7293.33012.048

-97.2441.98424L1596 1*517.713

64.683303.414118.726115.965118.1191*,65610.55012.48113.055

. 13.2297.3748.1148.116

10.5329.1519.350

LOW-.343-.988-.091-.002-.182

182.299-3.679540.298-3.919-1.267-1.171-.026-.136-.104-.10998.26491.804-.069-.126-.078

. -.114-.113-.05430.407.598

... .591.613

11.55318.086

8772509,760'60.506

-104.66039.798173.0663.1904.379

-113.5071.95425.60230.455

-31.14830.917

260.92294.75093.05893.632-15.468-15.089-8.711-7.920-8.957-7.754-8.979-7.961-8.533-6.631-7.512

HEAN-.003*4-.9877*.00619.05159-.00756

187.012691.050*1

5*4.80294.623291.010631.02556.03662.00477-.01834-.0282098.67065

.... 91.81465

-!oil81. .00652-.00798-.03412.00245

32.51286.7762J.75840.785*8

11.5762221.317*7

»**********'

60.51672-10*. 6571739.83760176.348173.277256.81378

-106.733*11.9676227.0228946. 54551—6.3814347.53741

277.72412106.69984104.88739106,079*3-l.*7708-.35223-.00000-.00000-.00000-.03696-.03566-.03855.02071.01828.01657

RMS PJL.0*356,9877*,01832,056*3.0380*

167.018051.73*03

5**, 80*62.. 1,60931 ..

1,06*091.07778.04606.043*3.02672.03982

98.6709591.81*661.01558

_ ,02397.02578

._.. .02296 ...

..._ .04301.02116

32.51760.78074,76267.78991

11.5762321.3567*

***********60.5167210*. 6571739.83761176.351873.277357,05962

106.870261.9676227.0291046.761139.5854647.73347277.86274100.84328105.02774106.226226.025967,454773.733463.712573.806552.125562.225542.255262.404512.251732.44044

INT?33843384338433843384338433843384338433843384338*33843384338433843364336*338*338*338*338*338*3384336*338*336*338*33€*338*338*338*338*338*338*338*338*338*336433843384338433843384336*336*338*338*338*338*338*336*336*336*336*336*336*

A.259

<u>

<0

^

•4J C7>o •»-<l) i—5- U.

o o4-1

•a

o«3-

CM --~-o2g H- C•^ Q o- - S o

« v

«d- inr— "10^ !£ co

^ •— co

Q) Q) IB- > - » £ $ _* -i- 3Q t— Q

i-3O

oo

t-a>

ooo

ooooo

OOor>.

ooo

oI

0>01•o

00 „.. Ol«d- "O

C71

O

CO

ino

m.—

CO

CTi

00

to(U

CVJ

oooin

"\ /

oCO

ceL

U3

S-o

o>•.—

Ll_

CTlOCvJ

<cCD

A.260

oo

in<U

•r- O0 COo

i — C01 3> OL

>+- "01O -r-

Ol•^- r»

S- COO QJ-!-> Oin c:•^ dj: s-

O)<D 4-

O

CM

<C

Ol

3CD

O O O O O(\J T-H ^ .(\|

I I

a o o a o(M _-i —. (SJ

(s/ui)

A.261

TABLE A.54. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 30.

I. Mean Airspeed (m/s)

R

106.1 105.2 107.0

III. Standard Deviationof Gust VelocityDifferences (m/s)

XCL XRC XRL

0.98

1.00

1.12

0.96

0.94

1.03

1.21

XCL XRC XKL

1.01

1.29

Standard Deviation ofGust Velocities (m/s)

cr

3.04

aWYL

4.72

CTWZL

2.42

V. Integral

uwxc

3.01

CTWYC

4.76

awzc

2.40

Length

aWXR

3.21

CTWYR

4.73

CTWZR

2.53

Scale (m)

\L VXC \R

930 955 972

LW L-|f L-ir

^YL V \R

2038 2004 2074

581 600 636

A.262

1.0 i i i i i i r

W

n i i i | i i i rW

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.211. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 30.

A.263

c<u'3

<uouao

t-,ouIo

1.

0.

-1. L

-1.0.

WXR

NXL

WYL

WZR

Wzc

NZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.212. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 30.

A.264

1. WXRCI

01OU

ao

1touIo

-I(XIo

-1.

0.

_J I

I r-

WXRL

i

WYRC

WYCL

WYRL

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.213. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 30.

A.265

102

10°

ID'2 r

"b

I

10*

10°

10'

\I10*

10"

10-

von KarmanN= 512SEG.= 6

,J

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

innl I MMMll

von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

W7

von KarmanN= 512SEG.= 6

Wv

ni.il

von KarmanN= 512SEG.= 6

I I I mm I ) i mill I I 11 HIM ill nntl

—von KarmanN= 512SEG.= 6

10~a 10° l(Ta 10°

K = u/V (m-1)

10°

Figure A.214. Normalized auto-spectra of gust velocities, Flight 6, Run 30.

A. 266

102

6b"

•e- -z10-z i

io2

6"

\"5T

IO8

io-a

N= 512SEG.= 6

WXCL

nrtt i i i mill i i i mill

N= 512SEG.=6

N= 512SEG.= 6

ill i i i m in i i i mill

N= 512SEG.= B

WXRC

N= 512SEG.= 6

N= 512SEG.= 6

mini i i niiiil i i i mitl

N= 512SEG.= 6

WXRL

ml i i i mill i i i mill i i i mill

N= 512SEG.= 6

^YRL

N= 512SEG.= 6

ZRL*

1Q-8 10° 1(T2 10°K = w/V (m

10,-B 10°

Figure A.215. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 30.

A.267

10-Z 10° 10° 10" 10°ic = u/V

Figure A.216. Two-point cross-spectra of gust velocities, Flight 6, Run 30.

A.268

TABLE A.55. List of All Parameters Measured and iheir Range of Values,Flight 6, Run 30.

START TIME • 54396.3579 STOP.TINE • 5*4*1*657?

CHANNEL2 PHI DOT3 ACCL N CG4 THETA DCT5 THETA6 PHI7 PS1 18 DEL PSI 19 PSI 2

10 DEL PSI I11 ACCL H LT1? ACCL N RT13 ACCL X CG14 ACCl r CG15 ALPHA CTR16 BETA CTR17 TEMP I18 TEMP PJ9 ACCL 1 INS_20 ALPHA PT21 BETA RT22 ALPHA LT23 BETA LT2*. PSI DOT .25 TEMP TOT26 QC LT27 OC CTR _?8 QC PT29 PS30 TEMP IRT31 0 TO G32 B TO D33 LONG34 LAT35 TSK ANG36 HOG37 VE38 VN39 ALTITUDE40 TEHPC41 CU UNO SPD42 NS UNO SPD«3 WIND SPEED44 WIND OIREC<-5 A I B S P E I O R••i AlBSPEfO C47 AIRSPEED I49 DELTA ALT49 INRTL DISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER "'55 VG LEFT56 WG PIGHT57 WG CENTER58 UG LEFT

UNITSRAD/SECG UNITSRAD/SECRADPADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRAORADDEG FCEG fG UNITSRADRADRAD .RADRAO/SECCEG CPSIDPSIDPSIOPSIAPEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSP/SECH/SECKMDEGREES CKNOTSKNOTSKNOTSD?GPEESK/SECp/srcM/SECMETERSMETERSM/SECH/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.132-.986.079.103.136

320.3733.198

319.5653.0792.4482.093.102.159.032.067

96.80492.1631.443

._ _ . .034.093.049.046.076

33.360.903.669.916

11.61524.408

6774265.408160.536

-104.63439.662325.4555.582

-53.71878.2431.996

26.25452.12711.02952.259329.356115.263111.922113.99015.39910.3778.9717.6706.61612.42412.930

: 13.3075.6605.9236.993

LOW-.135-.988-.060-.001-.110

306.749-5.824310.764-8.300-.955-.519-.011-.169

: -.106-.12197.90491.980-.044-.101-.087-.119-.121-.074

JO. 407.642.643.671

11.53518.086

J770427.366'80.489

-104.69239.606317.1165.420

-61.44666.1331.941

24.81515.857

-28.17716.465248.53499.02596.97196.826

-40.356-44.998-8.132-6.339-6.351

-11.131-11.465-11.410-9.138-8.781-8.637

MEAN-.00150-.98774.00564.04840

-.02117314.24767-1.64363314.87559-2.925701.010791.01890.04816.00497-,01998-.0287398.5729291.99004.99784

-.01528.00540

-.01486-.03372.00348

32,04335.78101.76344

RMS.04142.98774.01666.05292.04347

314.260912.46791

. 3J4. 880764.098441.049681,05776.05077.04975,02523.04342

98.5730791.990051.00812.02331.02970.02236.04469

_ .0274532,05635.78203.76441

.79030 .7914211.56567 11.5856921.60008 .21.86582

I*********************60.51337

-104.6626639.83497321.357115.49545

. -57.9384272.562081.96103

26.5302328.08552-7.28048"30.91928284.74801107.00765105.21899106.39364-19,95947-22.26094-.00000-.00000-.00000-.01143-.01478-.01349-.01176-.01627

' -.01342

60.51337104.6628639.63497321.365575.4955557.9702872.656091.9610726.5505028.7945312.4366231.36558285.46080107,. 04173105.24900106.4254223.2060325.791463.297873.086523.104265.27921

"5.284875.242962.596362.447392.51175

POINTS_3412341234123412341234123412

.... 341234123412

.. 341234123412

_.. 341234123412341234123412341234123412

._ ... 34123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412

.... 341234123412341234123412341234123412341234123412

A.269

0) -Mo: <o

o_cO •!->

••-> 0>o ••-

c/)04 *~+ -a00 H- CTl Q O

• O t/)•3" CM

00 CO2?*?."3 m ••

Q I— o

n)a.

o>

_L

<u•o

' <U**• -oO 3

cno

o o o0 0 0o o oO% 00 f

3O

OO

s_QJ

ooo

LOo

LO r—

CT>CO

_ o

oo

ai

ro

CVJ

ooom

CO

a3o:

CM

et

CU

3ai

A.270

Ol>

o>-ocra1/1a>

o roo

i— CO 3> Qi

4- 01O T-

<usi too cu

•(-> 0

-C 5-O>

QJ 4-E 4-

'I— T—

I— -O

oooooo

<aoS-3cr>

A.271

TABLE A.56. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 31.

I. Mean Airspeed (m/s)

102.5

C

101.5 103.3

III. Standard Deviationof Gust VelocityDifferences (m/s)

XRC HRL

0.74

0.77

0.86

0.82

0.75

0.95

1.01

XCL HRC XRL

0.77

°AW °A-arZCL AWZRC A¥ZRL

0.96

Standard Deviation ofGust Velocities (m/s)

aWXL

2.04

aWYL

5.16

aWZL

1.53

IV. Integral

crwxc

1.91

aWYC

5.19

awzc

1.47

Length

CTWXR

2.01

aWYR

5.28

aWZR

1.51 .

Scale (m)

VT Y/"* VDAij A\s A-Tt

915 901 890

\

2628 2592 2676

116 215 110

A.272

1.0R'='RighVC = Center HL = Left

i i i i i i i i rW

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

i l i i | i \ \ r

1-RC2-CL3-RL '

A W

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.230. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 31.

A.273

c<u'a

ouco

•!••<-fj.2"a!t<oo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.229. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 31.

A.274

WXRC

tiOJ

ooao*3.S"a>

Io

RoOH

IO

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

3000.

Figure A.231. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 31.

A.275

102 r

10°

10-'r

102

b

1?

10-

t1?

10s

10°

10-

von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

Hyr

von KarmanN= 512SEG.= 6

Wy

von KarmanN= 5125EG.= 6

W7

von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

w,.

von KarmanN= 512SEG.= 6

i nirl i i n mil i t t unJ i i i nm iintml i iinntl i iiinnl i i mini

10-8 10° IQ'2 10° 10~2

K = u/V (m-1)

10°

Figure A.232. Normalized auto-spectra of gust velocities, Flight 6, Run 31

A.276

102

io2

b\.•^

•6-

102

" 10°

S•7

•e*

N= 512SEG.= 6

wxa

N= 512SEG.= 6

WYCL

i 'millI I Mllld 1 i 'mill i i i mill 1_

N= 5125EG.= 6

N= 512

WXRC

N- 512SEG.= 6

WYRC

i ' in"" LJ-U jiiil—i 1 1 i n i i l .

N= 5125EG.= 6

ZRC

N= 512SEC.- 6

mini

N= 512

SEG.= 6

WYRL

++

N= 512SEG.= 6

ZRL

ID" 10° 10~8 10°« = u/V (m

10,-8 10°

Figure A.233. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 31.

A.277

W x W z W X W Y

&

&

10-2 10° 10G 10- 10°K = u/V

Figure A.234. Two-point cross-spectra of gust velocities, Flight 6, Run 31

A.278

TABLE A.57. List of All Parameters Measured and Their Range of Values,Flight 6, Run 31.

START TIME - 54900.3731 STOP TINE • 94581,5231

CHANNEL2 PHI DOT3 A C C L N CG4 THFTA DOT5 T H E T A6 PHI7 PSI 18 DEL PSI _1_9 PSI 2

10 DEL PSI 211 A C C L N LT12 A C C L N RT

UNITSRAO/SECG UNITSRAO/SECRADRAOOEGPEES_LDEGREES _DEGREESDEGREESG UNITSG UNITS

13_A.C.Cl_JL CO GUN ITS14 ACCL Y CG_ G UNI15 A L P H A CTR PAD16 B E T A CTP RAC17 T E f P I DEG f18 T E M P P DEG f1<J A C C L z INS_G UNIT_S

HIGH• 119

-.966.056.101.030

JJL5«805_5.226

495.236_ 7.401

2.618_T 2.349

,155

LOW-.087-.968-.047.024

-.083

_ HEAN _-.00356-.98774•00534.05225

-.02370

RHS P.OINIS..02644.98774.01350.05511.03358

324632463246324632463246126.295 129.53603 129.54446

-1.828 1.32683 _ 1.87939 3246488.195 __491.32235 _4_?1.32409 3246_-2.007 _ 1.18977 1. 68496" __ 3246_ -.410 1.00977 1.03574 3246

.104 1.02389 1.04913,005 .06955 __»07566

04394

3246

20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25_TEMP TOT.26 OC LT27 QC CTR28 OC RT2<» PS30 TEMP IRT31 D TO G32 B TO 033 LONG34 LAT3i TBK AHG3<j HOG3 7 V E33 VN3? ALT ITUDE40 T E P P C41 tW WHO SPO<-2 NS kSD SPD4 1 W I N D S P E E D4 * W I N D O l f E C45 A I R S P E E D R46 A I R S P E E D C47_A IRS PEED L48 DELTA ALT49 INRTL TISP5C UG RIGHT M/SEC51 UG CENTER M/SEC5? UG LEFT M/SEC53 VG RIGHT M/SEC5 4 V G C E N T F R M / S E C5 3 V G LEFT P / S E C5 f WG RIGHT M/SEC57 wG CENTER M/SEC5 6 W G L E F T P / S E C

RADRADRADRAORAD/SPEG CPSIDPSIDPSIDPS IADEG CMETERSDEGPEESDEGREESDEGPEESDEGPEESRADIANSK/SFC .._M/SECKM

DEGREES CKNOTSKNOTSKNOTSDEGREESM/SECM/SECM/SECMETERSMETERS

TS .169.044.041

98.62492.163

TS 1.601.060.079.062.035

EC .06233.459

.663

.836

.87711.61424.029

-.145-.065-.09598.08491.984

.462-.066-.040-.059-.067-.037

.553

.547

.57611.55916.841

.00918-.01476-.0208298.28256 992.13624 91.00273-.00484.01492

-.00254-.02478.00286

Jl, 46964 3,72550.71196.73816

11.59065 120.25643 2

.02188

.0304698.2826692.13826

32463246324632463246

1*01069 3246._., 01960 3246.02503.01963.03211.01673

Hj50318,72950.71574.74210

11.5906620.35419

JI78P913.1108773855.757**********************80.587 80.513 80.54929 80.54929

-104.558 -104.653 -104.60699 104.6069939.869 39.814 39.64177 39.64178128.897 123.966 126.78799 126.799342.358 2.231 2.28765 2.28778

107,050 90.65t 100,66850_ 100,81730-71.326 -77.864 -75.06089 75.081051.979 1.941 1.95757 1.9576027.749 24.975 26,32574 26.3432662.144 37.047 49.71676 50.066497.812 -29.016 r:13.16749 16.0351763.638 44,511 52.42342 52.57357306.547 262.187 285.32951 285.55232112.635 91.537 103.33756 103.47682110.046 89.272 101.52771 101.66367111.776 __ 89.7909.127 -28.89111.525 -26.1615,370 -6,4565.108 -5.4805.575 -5.7429.869 -10.5859.522 -11.2859.383 -11.3005,031 -4,9794.813 -4.6546.032 -5.519

102.46276 _ 102,60521-12.60057 16.66684-10.25378

,00000,00000.00000

-.04291-.03644-.03539

3246324632463246324632463246324632463246324632463246324632463246324632463246324632463246324632463246324632463246324615.62155

.2.07041 32461,97966 32462.12244 32465.22491 32465.14116 32465.11095 3246

-.00442 _ 1.50163 . 3246.01003 1.45553 3246

-.00649 1.52213 3246

A.279

<U>

to'CU 4Ja: ra

D-cO 4J•r- JC4J O>0 •»-01 r-s- u_o o

4J•a

— •*- 0-—'CO

~ CO 00^- co

ooo^> r—•

Ol CO itJ•*-> E S-<a -i- 3o i— o

o oo oo oCTV CO

s_3O

-(->Coo

OOOr^

ooo

CM

o

a>•o

• cuS"°O 3

C7>

O

CM

LOr

CO

IOo

0>

CO

cuLO

CM

OOOin

CMCO

c3o;

CO

o4-c:

(Oa.

inCOCM

cu

A. 280

ttctvl M

3K o

rvj

D O O O O(M •-! «-i CM

*

< *

_1ct:>-3<

_ceX3

o

OCO

oCO

so

•o

CDO

o OCO (1)

OCD 0)

O

CD

OO

OCD

CD

(s/ui) paadg,

o o o a ot\| ^-i —i CSJ

i i

CJo<U

Ol

•oc:ta

toO)

•r- CMo ooo

r— CCL) 3

«/) VO

4- CD->O T-

CO U_cui. too cu+-> oto c

••- OJ.C L-

cu0) 4-

VOro

<ccui.3en

A. 281

TABLE A.58. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 32.

I. Mean Airspeed (m/s)

98.4 97.6 99.3

Standard Deviation ofGust Velocities (m/s)

WXL

1.62

(7

WYL

2.79

ac

1.53

2.81

a

1.50

WYR

2.79

III. Standard Deviationof Gust VelocityDifferences (m/s)

RC RL

0.65

0.70

0.72

0.63 0.68

0.74

0.86

XCL XRC XRL

0.72

°AFQffZRL

0.78

(7WZL

1.39

awzc

1.30

WZR

1.41

IV. Integral Length Scale (m).

X,674

\.1806

XC

656

YC

1735

\R

629

V1798

222 224 221

A. 282

1.0

0.8

2

0.2

0.0

T I I I

CenterLeft

T i l l

wi i i i I i i i r

W

-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.237. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 32.

A. 283

c<u

<uo

ao

oCJ

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.238. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 32.

A. 284

uft<*_!

0)

• co

Io

O

E-

1.

0.

-1.

WXRC

0.

-1.0.

WZCL

1000. 2000. 3000. 3000.

Spatial Lag ,S=VT(m)

Figure A.239. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 32.

A. 285

102

10°

10-

•von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

mill i i miij i i i mill i

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von Karman= 512

.= 6

von KarmanN= 512SEG.= 6

Wy

I

—von KarmanN= 512SEG.= 6

W-,

nun,!

—von KarmanN- 512SEG.: 6

W,

10-2 10° io~8 10° icr*

K = <y/V (m-1)

10°

Figure A.240. Normalized auto-spectra of gust velocities, Flight 6, Run 32.

A. 286

108 r

6-bM 10°

161 io-a

IO2

6~ 10°\3;

:rr•6" 1Q-s

IO8

tr•r 10°

10-2

N= 512SEG.= 6

WXCL f

N= 512SEG.= 6

-N= 5125EG.= 6

N= 512SEG.= 6

WXRC

N= 5125E.G.= 6

WYRC

N= 512SEG.= 6

N= 512SEG.= 6

WXRL

N= 512SEG.= 6

N= 512+ SEG.= 6

**•< WZRL

mill I ! i,Mi,l i . ,,,|J i 111,11, I .mini i .iiiml I . iiimJ

io- 10° 10~2 10°K = u/V (m

10,-2 10°

Figure A.241. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 32.

A.287

1Q2

"v?•S 10°

«•

io-a

IO2

*^._. 10°•&'"

io-8

10*

s~*

""::? 10°•eri

io-8

rrr

..:

r

r

r

-

r

-

'

•-

_

:

r

r-

r

rr

r

rrr

r

|rI

5-

r

F

r

r

r

r

r

rfr

rr

r

r

f

r=

r

W x W z— LL— -LC

r — LR

r „ v.- x->- ^\ir x S \

r uyjvr \i 1

r r

r~ \ t nun i iiiinJ i i iiiitn li nintl

CL

— -ccr v ~CR

r v V,

r \N \\

r "VYf \r nr" t iiinJ i inniJ i iiiintl ii inml

— RL

— -RC

r — RRr /\r ^\\i

r ^V0v

r ^r

1 Illlin 1 IlintJ I iniml i itunn

r

r

P

sr--

rr

r—

r

I-

rr

i.i

rr-

r

r

rr

r

rr

a"

r

rir

r

r

r

r

rr

f

r

r

r

rr

rs-

r

r

W X W Y— LL

— -LC

— LR

•- N.^~'> \«.

"" \-v>V>--VV 1* 1

r vr ^r

~ 1 1 ItlHJ 1 1 lllllJ 1 1 IllltJ 1 1 MtlJ

— CL

— -ccr — CR

" -\"" *•• rL

\ \ » T^,r Vxi\*~ 'vi P

rri i iiinJ i i Mini i i iitnJ i minJ

— RL

— -RC

r — RR

r *\

" v -\•- \ v

: Nr: J ,1 1 ,,,,,,,!

rrrI-i

r

rs-

-

r

j-

rr__

=

i

r-

H

r

rr

rr

r

r

§•

r-w-

rr

5"

f

rr

r=

F

r•-

r

rr

rr

r

W Y W ZLL

— -LCr — LR

r v V.: V"v vur ,v\\r -^ l(M

r v5-

*1 llin^t i < mini i i uiiiil i i mill

CL

— -CC

r v. ~~CR

T~ ^ V-

r ^ N^ \: \ **** illu'r- *~ '\^fr \^r

ri i iiniil I mum i i until i i MINI

— RL

— -RC

r — RR

r „ x*

r ^ ''\r \y

:

r-,,,M,J ,,,„„,! ,,,„»! ,, J

10' 10° 10'8 10°

/c = w/V (m"1)

Figure A.242. Two-point cross-spectra of gust velocities, Flight 6, Run 32,

A. 288

TABLE A.59. List of All Parameters Measured and Their Range of Values,Flight 6, Run 32.

START TINE • 54633.3133 STOP TIHE • 5471*.*383CHANNEL

2 PHI DOT3 ACCL N CG4 THETA DOT5 THETAt> PHI7 PSI 18 DEL PSI 19 PSI 2

10 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL X CG14 ACCL Y CG15 ALPHA CTRIb'BETA CTR17 TEMP I18 TEMP P14 ACCL Z INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 OC LT27 OC CTR2a OC PT21 PS30 TEMP IRT31 0 TO G32 B TO 033 LONG3<. I AT3? TRK ANG36 HOG37 VE38 VN39 ALTITUDE40 TEMPC41 EU WNO SPO4? NS UNO SPO*3 WJND SPEED<.<, WIND DICE:o A I R S P E E D R*.*. A I » ; P E t O C47 AIRSPEED L49 DELTA ALT49 INRTL DISP50 yG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 WG RIGHT57 WG CENTER58 WG LEFT

UNITSRAD/SECG UNITSRAD/SECRAORAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUN ITSG UNITSRADRAODEG fDEC FG UNITSRADRADRAORADRAD/SECDEG CPSIDPSIOPSIOPSIADEC CMETERS "DEGREESDEGREESDEGREESDEGREESRADIANSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSCEGPEES>/SECP/SECM/SECMETERSMETERSM/SECM/SECM/SECM/SEC __.M/SECM/SECM/SECM/SECM/SEC

NIGH.08?-.968.048.083.064

331.2923.81$

330.1263.7261.9341.861.106.153.034.046

98.44492.3431.3BO.056.060.046.036.039

31.391

low-.097-.988-.027.023

-.167.325.304-2.239324.142-2.360.260.142

-.005-.117-.054-.07298.06492.163

.545-.055-.030

".Tl. -.054-.074-.03529.916

MEAN-.00291-.98774.00636.05687

-.01381. 328.63927

1.23549327.715421.11600

_ 1.015851.02666.05723.00976-.00748-.0164498.2969192.168071.00594.00239.01801

- ,00301-.02198.00462

30.60689

RMS PC.02995.98774.01256.06018.04153

328*641571.72975

327.717591.648911.033501.043991 06107..03901.01393.02687

96.2969992.168081.01111.01352.02675.01297.02911.01562

. 30.60830.759 .603 .66774 .66841.791 .587 .65563 .65626.777 .614 .66010 .68074

11.609 11.553 11.58528 11.5652922.684 19.717 21.04391 21.05456

8783838.5668782229.222******+*********+***+*80.605

-104.52639.883336.3225.777

-26.46375.1671.984

26.43046.022-15.39155.412325.573105.987104.195104.8031.5070.000.4.2064.6294.6037.6486.6636.6834.2473.9853.976

80.575-104.557

39.831332.0935.669

-36,76867.4501.94525.46922.610-35.01334,409290.01894.51592.42293.665-37.350-35.345-6.358-6.243-5.931-6.626-7.185

.._ -5.784-6.096-4.673

.... -5.067

80.59005-104.5410639.85753335.617945.73140

. -31.9748670.588131.9613125.6671134.62664

-25.83890"43,48318307.0000799.3343797.5655896.44388-20.93445-20.06137

- -..-.00000-.00000-.00000.00602.00661.00499

-<rOO}35.00078

i..r.00197

80.59005104.5410639.85754335.623965.73145

_. 32.06712._70.628111.9613325.6676P35.0029026.0685243.64368307.0661599.357059i. 5865198.4679522,6328821.76206.1.52472 ....1.557841.639152.775382.79466

_.._. 2.76955.1.414021.306001.37563

II MIS.32533253325332533253325332533253325332533253J253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253325332533253

A. 289

OF QUALITY

0)

+J2*O) 4Jo: 03

a.cO •!-»

O ••-<U i—s_ u_o o

•M-o

(6ap) spin inn

00 t— oO> Q (jr- S <L(

LTJ

o> 0) <o• » - > £ * -<0 ••- 3Q t— Q

I

s_3O+->co

(Q

s_

<=> So oo o<T> 00

ooor^

ooo

C\J

1-o

0)

. <u

CM

LOo

__ o

CTl

CO

(ULO

co

CVJ

oooIT)

r- :^Vf-A ' 'A

COro

3IX.

Ol

co

s-o

fOQ.

ro«d-CXJ

eC

OJ

3CT

A. 290

oo<u>

CD

-acCO

(/>01

••- COO COoi — Co> 3> a:

i/l VD3cn+J4- cnO ••-

(U•I— *S- U1o a>-M o

a;ai

i— "O

CM

eC

cu

o o o o o(M -H .-, (\J

i i (s/ui)

A.291

TABLE A.60. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 33.

I. Mean Airspeed (m/s)

97.3 96.4 98.2

H. Standard Deviation ofGust Velocities (m/s)

aWXL

1.69

wxc4.52

aWXR

4.39

aWYL

2.29

aWYC

2.46

aWYR

2.42

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL HRC XRL

aWZL

2.92

awzc

2.81

CTWZR

2.91

1.09 1.12 1.37 IV. Integral Length Scale (m).

XCL HRC XRL

1.07

1.28

1.09

«ZRC

1.22

1.19

1.39

SL741

Sr

YC

813

1914 1929 1912

V878

ZR

1237 1323 1079

A. 292

1.0

0 5.-5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.245. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 33.

A.293

fl0)

ouao£"a!fco

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.246. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 33.

A.294

.aCJ

0)

cSco

£ooIo-u

O(X,IO

1.

0.

-1.

r_ L

-1.

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

NXRL

WYRC

WYCL

WZCL

WZRL

4000.

Figure A.247. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 33.

A. 295

102

10°

10-J

10*

10°

io-

\

I

102

10°

10"

von KarmanN= 512SEG.=10

nil) i inmJ , ,,l

von KarmanN= 512SEG.=10

WYL

i t i mm ill min i i i iinil i i i mn

von KarmanN= 512SEG.-10

•von KarmanN= 512SEG.=10

Wy

—von KarmanN= 512SEG.=10

von KarmanN= 512SEG.^10

,,,,,,1

-von KarmanN= 512

—von KarmanN= 512SEG.=10

—von KarmanN= 512SEG.^10

ID' 10° 10~8 10°

K = u/V (m

10,-2 10°

Figure A.248. Normalized auto-spectra of gust velocities, Flight 6, Run 33

A.296

108

164

102

10"

108

" 10°

N= 512i SEG.=10

f * * wxcu

r +

— fei'*5t*

i i i mill i i i n nil iii mill i i i n ui

1. N= 512f + SEC. =10

r X HTCL

r \

r

i i i HUB i i i min i t i mill i i i inn

1. N= 512f + SEG.^10

r +V WZCL

^ \r \r

i i i nun i i i mill I I I mill i I I mi

f

;_ N= 5121 SEG.=10

r ++tT

- fr

F

i i innil i i 1 1 urn i I i mill i i i inn

:. N= 5i2T + SEG.=10

r *+i+ ^YRC

" Htj*-

f- ^3ff

r

' , Minnl i I...,..! , MMIM! , mm

: N= 512F + SEG.-10

r +V+ WZRC

?~ ^TI>

\ \3-

ri i n mil i i itinn i i i mill i i i mi

r

' N= 512f SEG.=10

r + +

WXRL4-

^ \

r ^r

1 1 1 HUM 1 1 Illllll I I I ! Illll 1 1 1 Illlll

j. N= 512\ + SEG.=10

r "V WYRL

r \

' \\ V

r

1 1 1 Illl^l 1 1 1 Illlll i 1 1 1 Mill 1 I I nun

N= 512f + SEG.=10

r ++A WZRL

\ ^r

i i i HIM) i t mull i i 1 1 mil i i i nun

10-2 10° 10~2

K =10° 10,-2 10°

Figure A.249. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 33.

A.297

&

108

:s- 10°

io-a

IO2

10°

io-2

IO8

•7? 10°

io-8

r

3-

r~f-=

r1.

r

B~:

1-

1

r

r

r

r-

rrr:

r

rr

r:

-

-

'

'

"•

'

i-:

r-

r

T

r

r

r

r

r

r

r

W x w zLL

— -LC

r X — LR— v \/\

r '^ V- \ \* \r vv*t.\r ^Hv

i: 'r

m-3

i imin i iiiniJ i iiiinn i iiiitm

— CL

— -CC

r \ — CR- V \1

r \A*B~ \. V-v \1

f ^r

f-ii iniJ i,i,mJ ,,,,„»! ,,,„„,!

— RL

— -RC

r V. — RR- x *Af '*••» Vr ^x^Ar \\r \r

ri IIIIIH i ninii i muni i niiita

g"

r

sr~

3~

^rP

r

'—

r

~r=

rr

r

r-

rr_-i

rr

rr

-

3-

3"

—r

Zr

r

r

r

r;

r-

r

r

r

r^

r

r5r

r

rrr

W X W Y— LL

— -LC

r \ LR— \ \^

r \X- \ >^, \.r \ \\r >v (hi

r \rr

i i initj i i Mini i i iittii i i iinif

— CL

— -CC

r \ — CR; ^^

r \ \

r V\\

r "\rr

i i iiinJ i i nriiJ i i mitJ i i itniJ

— RL

— -RC

r \ — RR" \ >™r x

t *\

rx \?xVr \;<*r \r

r: 1 Illlli IIIHnJ IIIMIlJ , ,,,»J

r

i-

:.~s-:

r'.-

r'—

B-^_»rr

r

r

r-

5-

r

r~r

rrr

-

r*

r—r

~m-3

~r

W

r

g--

r-

r

r

r

r

i

r

r:

r

f

B~

f

r

W r W z— LL

— -LC

r \ — LR- \ \

i" *'-x \~ \ X|> *vr v- A \r A '\.r~ IA

rr1 ,,,! ,,,! , ,„„„! 1

CL

— -ccr V — CR* . ^^*^

i" ''-x \

! Vv\\\\, i

f ^rP" i i in ml i i mml i i ntml i i umf

— RL

— -RC

r V — RR- i ^^**\

r Vv V

r w\\\r *i *^-r \rr•, M.J iniinl i mini inmJ

io-z 10° icr8 10°K = u/v (m-i)

10,-8 10°

Figure A.250. Two-point cross-spectra of gust velocities, Flight 6, Run 33,

A.298

TABLE A.61.

OEliggNAL PAGE 5SOF POOR QUALITY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 33.

START TIME • 54766.7186

CHANNEL UNITS HIGH2 PHI DOT3 ACCl N CG4 THETA DOT5 THETA6 PHI7 PSI 18 DEL PSI 19 PSI 2

10 DEL PSI 2 .11 A C C L N IT12 A C C L N RT13 ACCl X CG .14 A C C L Y CG15 A L P H A CTR16 B E T A CTP17 TEMP I18 T E M P P19 A C C L I INS20 A L P H A RT21 B E T A RT22 A L P H A IT23 B E T A LT24 PSI DOT25 T E M P TOT26 QC IT27 OC CTR2? QC PT23 PS30 T E M P IPT31 0 TO G32 B TO 033 LONG34 L AT35 TRK A4G3t HDG37 y?3 5 V N29 ALTITUDEV3 T E M P C<.! E tf WHD SPD<.? NS WHO SPOO W INO S P E E D^ WIND OIPEC45 A I P S P E E D R4ft A I R S P E E D C<i7 AIRSPEED L48 D E L T A ALT49 INRTL OISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT5 4 V G C E N T E R55 VG LEFT56 VG RIGHT5 7 W G CENTER58 WG LEFT

R A O / S E CG UNITSRAD/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSR A OPADDEC FOEG FG UNITSR A DRADRADRADRAO/SECDEG CPSIDPSIDPS 10PSIADEG CTETERSDEGREESDEGREESD E G R E E SD E G R E E SP A D I A N SM / S F Cf / S E CKMDEGREES CK N O T SKNOTSK N O T SD E G R E E SH/SECM/SECH/SECMETERSMETERSH/SECK/SECH/SECH/SECH/SECM / S E CH/SECH/SECH/SEC

.170-.988

• 079.145.071

305.9314.256

307.9474.1972.4532.490

.201

.139

.090

.07998,44492.519

1.680.110.118.105.062.076

31.194.776.753.774

11.66016.632

8776542.362180.535

-104.60739.974

306.1215.364

-62.09149.8102.287

26.62140.373

3.69952.190

340.250105.809104.154109.685333.488

2.46811.93911.77413.557

7.9377.8087.4589.1416.4067.715

STW Tl«t

LOW-.148-.988-.070

.032-.084

i98.535-2.828

300.907-2.831-.707-.776

.019-.136-.079-.132

97.72492.163

.332-.078

_.. -.138-.068-.106-.058

28.536.544.531.530

11.1244.556

37J0261.263'80.449

-104.71839.914

303.0645 .237

-75.69642 .331

1.90924.160

6.112-39.691

9.450257.002

67.80787.94888.911

-44.630-24.247-10.582-10.481-11.724-10.063-6.950-7.393

-11.378-10.714-12.648

• 54931.31*6

MEAN RHS-.00328-.98774

.00610

.08220-.01177

_3£e. 668041.12369

304.680181.07682

... 1.010251.02369

.09164

.01008-.00648

._ -.0166398.17143

_. 92.331001*00493

._ .00712_ .01747

' .00840_-.02273

.0031830.06563

.65473

.64226

.6663911.6067612.59466

***********'80.49318-104.66145

39.94334304.69599

5.30829-65,95620

45 .658871.94636

25 .4362725.03413

-18.96161..""31,81763

306. 1900298.160<>696.3995897.30766-7.49217

...-••13939-.00000-.00000

._.. -.00000-.03200-.03587-.03442

.02001

.02269

.02964

. .03691.98774•01748.08618.02937

302^,670901.72800

304.682901.690101.052791.06677.09814.03693

. .02125.03125

98.1715292.331021.01745

.02424

.03013_. ,02279

.03254

.0193030.06855.

.65617

.64354.66767

11.6067712.93295

***********80.49319104.66145

39.94335304.69684

5.3083466,0367745,700571.94638

2 5 . 4 4 2 2 025.9166820.4266533.00006

30 fc .3 t f l 3398,. 2051396.4449597.3982610,4043010.16541

4.452184.583994.721802.407802.447302.277492.902252.796092.91104

POINJS57845784578457845784578457845784

_ 578457845784578457845784

.... 57645784578457845784

. 57845784578457845784578457845784578457845784578457845784578457845784578457845784978457845784578457845784578457845784578457845784578457845784578457845784

A. 299

0)

(C

"oJto

co ••->

4-> eno ••-s_ u_o o-a

5

00

CTl (/)

i— •• ro10 en

ai <u to+j E J-ra -r- 3Q H-Q

a.4J

en

I

1 1

I I

(6ap)

Io o oo o oo o oen co r^

ooo10

oi

ena>

• <D^J- TJO 3

t -r-cno

OJ

S

O

00

0)

CM

ooo

ro

c:3o;

F.

o

eaa.

LDCM

O)

A. 300

ct:M

dM

u>-2<

OCM

OO

OCO

oto

o

O

•CD

OO

o OCO d)

CO

oID 0)

I I t I I

cexcjx

S £

o(\J

O(M

OO

OCO

o(O

o

oCM

oo

T3CtoI/)a>

O COor- CO) =)> cc

a>

10 Ll_ai

*i— •%S- COO O)

4-> OCO C

•r- 0)£ S-

O)a> it-

LOCM

O)

en

o o o o otsi *-< >-< rsj (s/ui)

o o o o oCM —i -J (SI

I I

A. 301

TABLE A.62. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 34.

I. Mean Airspeed (m/s)

R

101.1 103.1 105.3

II. Standard Deviation ofGust Velocities (m/s)

orW.

XL

2.59

w.YL

2.02

(7W,

XC

2.18

w.YC

2.08

aw.

XR

2.53

w.YR

2.01

III. Standard Deviationof Gust VelocityDifferences (m/s)

0.89 0.91

0.87 0.90

1.01 0.99

1.19

HCL XRC XRL

0.95

1.13

W.ZL

2.01

aw,zcI. 82

W,ZR

1.99

[V. Integral Length Scale (m).

\L

671

596

718

592

XR

773

\C \B

638

1115 181

ZR

831

A. 302

1.0

0.8

1 n iR'='FlightC = Center WL = Left

i i i i i i i iW

I 1 I T ) I I i f

W

0 . 5.-5. 0 5.-5. 0

Normalized Gust Velocity (Standard Deviations)

i i i i I i i i i

1-RC2-CL3-RL

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.253. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 34.

A. 303

-c<u

ouco

t,ou

1.

0.

-1. L

-1.0.

.— - —r

WXR

Wxc• *

WXL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

WYR

Wzc

WZL

4000.

Figure A.254. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 34.

A. 304

1.

0.

-1.

WXRC

WXCL

WXRL

a'ju

Voocoa

1oio

Ia,

i

-1.

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

WYRC

WYCL

WYRL

WZCL

WZRL

4000.

Figure A.255. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 34.

A. 305

b

I

102

10°

10-i

Nb10*

10o

10-

von KarmanN= 512SEG.= 7

—von KarmanN= 512SEG.= 7

WYL

...I.J I .M.IlJ I

von KarmanN= 512SEG.= 7

von Karman :N= 512SEG.= 7

Wv

—von KarmanN= 512SEG.= 7

—von KarmanN= 512SEG.= 7

iiinil I I mini i iimiil

von KarmanN= 512SEG.= 7

n i l i l l mill

von KarmanN= 512SEG.= 7

—von KarmanN= 512SEG.= 7

10-8 10° 10~8 10°

/c = <y/V (m

10,-a 10°

Figure A.256. Normalized auto-spectra of gust velocities, Flight 6, Run 34,

A. 306

10a

10*

10°

io-2

10s

10°

1 0

r

L N= 512f SEG.= 7— *

: *

- **

r \<• \.r ^^1 «

r

N= 512f + SEG.= 7

f +**«. WYCL• *•?r ^ fci.

r

rf i ii inn i i i nun i i i mill i i i ii|ii

'• N= 512f + SEG.= 7

f +*V WZCL

^ \! \r ^m,i 'rr

j_ N= 512f SEG.= 7

r ++ WXRC-. ++

r *+

3" +2nk= -titt

r-

N= 5121 + SEG.= 7

f +\ WYRC

:

r-:

' , ,,,„„! ,1 , ,,,,„,!s:

1 N= 512f 5EG.= 7

F %

r" . Illlml , ,, ,„„! , ,,,,>„! „

N= 512f SEG.= 7

F +++

WXRL

f tt\ "V

r

[ , i,,,,,,l i nm.,1 > ,,,„„! , ,,,,„,!

1 N= 512f + SEG.= 7

; V'RL

r

r

:

: N= 512| SEG.- 7

r +*v WZRL

: +

5-

r" , ,,1 , ,,,,,„! , I N,|,,| I .,., ,,,|

10'8 10° 10~8 10°/c = w/V (m

io-810°

Figure A.257. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 34.

A. 307

W Y W Z

10'* 10~e 10°K = <u/V (m"1)

10,-B 10°

Figure A.258. Two-point cross-spectra of gust velocities, Flight 6, Run 34,

A. 308

TABLE A.63. List of All Parameters Measured and Their Range of Values,Flight 6, Run 34.

START TlHt • 59009*7169 STOP TINE • 55103.3189

CHANNEL? PHI DOT3 ACCL N CG4 THfcTA DOT5 THETA6 PHI7 PSI 18 DEL PSI 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL ...X CG14 ACCL T CG15 ALPHA CTR16 BET* CTR17 TEMP I19 TEMP P19 ACCL Z INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 OC LT27 OC CTR?8 OC RT2<> PS30 TEMP IRT31 0 TO G32 B TO 033 LONG34 LAT35 T*K ANG36 HOG37 VB3? VN39 ALTITUDE40 TEHPC41 Eb UNO SPO4? MS UNO SPO43 WIND SPEED44 yiNP 01PEC*. r, i I P < •> ? f r P<•-- t if S'CEC C47 4IRS»EEO L44 DELTA ALT49 INRTl DISP^0 JJ(J PIGHT51 US CENTER*? UC LEFT53 VG RIGHT54 V<5 CENTER55 VG LEFT-S&-JUL8I.OHT57 VG CENTER5* WG LEFT

UNITSRAD/SEC6 UNITSRAD/SECRAORAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEC FDEC FG UNITSRAORAOFADRADRAD/SECDEC CPSIDPSIDPSIOPSIADEC CMETERS __DEGREESDEGREESDEGREESDEGREESRADIANSH/SECM/SECKHDEGREES CKNOTSKNOTSKNOTSCEGPEESM/SFC»/SKH/SECMETERSMETERSM/SECH/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.128

-.988• 072.079.057

146.0203.579

505.0863.5202.3092.420.108.167.045.052

97.90492.5231.526.057.081.055.044.047

_ ._ 32,080

_LOW .-.133-.988-.049.019

-.111138.975-3.150498.059-3.330

.127-.236.005

. .. -.143-.069-.08397.36592.343

.415-.053-.039-.055-.093-.04129.619

.916 .670

.689 .657

.917 .68211.667 11.32515.152 8.063

8781697. 6518775113. 97180.569 80.490

-104.564 -104.65939.965 39.887137.883 136.1152.535 2.41788.940 85.651-91.2962.14426.34061.234-4.98362.619306.443115.007113.043114.693207.00120.9854.6504.5365.4195.5245.3525.0305.8487.0446.653

-94.6671.90524.42534.797

-31.36636.036276.25199.40797.62498.464

-31.P310.000

-8.538-8.651-9.335-6.757-8.365-7.574-6.444-6.161-7.641

MEAN-.00342-.98774.00605.04662

-.01297142.20724

.01757501.38409-.096801.011061.02421.05088.01420

-.01631-.0140697.6593892.390951.00267.00342.02200

:... .00432-.01754.00334

30.76657.75544.74155.76943

11.6063313.65616

*****•*****!

"80.53013-104.6112839.92564136.823592.4728687.06648-92.714911.9466725.4365346.82274

-20.75382-51.45601293.73613105.32870103.44S26104.385989.8729913.15567.00000.00000.00000

-.00546-.00439-.00730.00261-.00020

• .00724

RMS POINTS.03617 3744.98774 3744

_. .01475 3744.05038 3744.03306 3744

142.21209 37441.14997 3744

501.38536 37441.15295 37441.04447 37441.05858 3744.05379 3744,04965 3744

...... .02167 .3744.02655 3744

97.65949 374492.39099 37441.01106 3744.01501 3744.03013 3744.01526 3744.02755 3744.01732 3744

30.77297 3744.75678 3744.74282 3744.77075 3744

11.60633 374413.71274 3744

*********** 374480.53013 "3744104.61128 374439.92565 3744136.82423 37442.47294 374487.07146 374492.71873 37441.94668 374425.44042 374446.94765 374421.41187 374451.59990 3744293.79008 3744105.37107 3744103.46t66 3744104.42937 374412.34200 374414.02453 37442.52999 37442.47754 37442.58126 37441,99429 37442.06950 37442.00985 37441.96394 37441.79981 37442.01710 3744

A. 309

ORIGINAL PAGE 5SOF POOR QUAirTY

(O

cu

•M O>o ••-CU i—L. U.

O O

•o

01CM •— --O» t- C

- CM•— "00

i— IO

3 m ••T> ^-c

o

<u a) <o•M £ S-(O ••- 3Q h-Q

(Oa.

I Io oo oo oen oo

~i:o>o>•o

in QJTJ

I -r-C7»

J in_o

<r>

(6ap)

o

t.o

oo

2a>

(U

CO

CM

oOOr-.

ooo

ooo

-V.-^:' V.••'"' : .'_.

LOCO

o• r-

tO

o^-

toa.

CTlunCM

S_

O)

iZ

A.310

0)>

CO3cr>

t/iOJ

•i- LDU OOO

r— C<U 3> CC

</>3

CT>

S- coO 0)

4-> OCO C

O) M-E M-

O

C\J

<

QJ

O O O O O(M •—I •-« CM (s/ui) paadg

A.311

TABLE A.64. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 35.

1. Mean Airspeed (m/s)

107.6

R

106.6 108.4

III. Standard Deviationof Gust VelocityDifferences (m/s)

XCL XRC HRL

0.91

°AW*ycL

0.88

0.95

0.99

0.92

1.07

1.26

0.91

1.15

n. Standard Deviation ofGust Velocities (m/s)

aWXL

2. 09

a

3.28

aWZL

2.20

awxc

1.91

aWYC

3.35

awzc2.09

CT

WXR

2.01

aWYR

3.32

aWZR

2.28

IV. Integral Length Scale (m).

\* l f f ^*W

L XC X.R

184

791

184

XL Xc753

187

788

363 397 361

A.312

1.0 1 i r

W

i r I I T T

W

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 .5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 35.

A.313

GD

OU

flO

t*uo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.246. Single-point auto-correlation coefficient of qust velocities,Flight 6, Run 35.

A.314

WXRC

d.2u

0)oOc.2*3

<sJ

IO

o(X

Io

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

Figure A.261. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 35.

A.315

102

•e- 10o

10-i

Nb

io8

10°

io-

10*

10°

10,-a

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

—von KarmanN= 512SEG.= 6

YC

•von KarmanN= 512SEG.= 6

— von KarmanN- 512SEG.r 6

von KarmanN- 512SEG.= 6

von KarmanN= 512SEG.= 6

i m i l . i n m i l . , , i i i i i l i i ' I . mi,il i i . n m l , .n.,.1 I I , mill

10,-e 10° 10~8 10°

K = w/V (m

10,-2 10°

Figure A.262. Normalized autojspectra of gust velocities, Flight 6, Run 35

A.316

108

•6- 10-« ~r

108

r 10°

10-a

N= 512SEG.= 6

WXCL

N= 512SEG.= 6

N= 512SEG.= 6

WZCL

N= 512SEG.= 6

W•m-*

^

XRC

N= 512SEG.= 6

WYRC

N= 5125EG.- 6

'••*+

N= 512SEG.= 6

N= 512SEG.= 6

WYRL

N= 512SEG.= 6

WZRL

1Q-2 10° 10° 10°

Figure A.263. Nonnalized two-point auto-spectra of gust velocities,Flight 6, Run 35.

A.317

w x z w

IO8

10°•e-

io-3

sT X

rr

rr

—LL—-LC—LR

iiiniJ i i iiniJ i n nuil i I Him

102

io-8

r t

|T

r r

-—CC—CR

~ i iiiinj i iiimj i itnui! i iiiinil

•e*

io8

10°

io-8

—RL—-RC—RR

i.iimJ , ,,,,,J I ,..|J

10~8 10° i(T8 10°K = w/V (nr1)

10" 10°

Figure A.264. Two-point cross-spectra of gust velocities, Flight 6, Run 35,

A.318

TABLE A.65. List of All Parameters Measured and Their Range of Values,Flight 6, Run 35.

START TIKE • 55285.3543 STOP TIHE • 55353.304)

CHANNEL?>HI DOT3 ACCL N CG4 THETA DOT5 THETA* PHI7 PSI 1d DEL PSI 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N PT13 ACCL X CG14 ACCL V CG15 ALPHA CTR16 BETA CTR17 TErP Iie TEMP P19 ACCL Z INS20 ALPHA fl21 BETA RT2? ALPHA LT23 BETA LT24 PSI DOT25 TEfP TOT26 OC LT27 OC CTR?e oc RT2<» PS3C TEHP IRT31 0 TO G3? B TC 033 LONG34 LAT3* TPK AKG3t HOG37 VE33 VN3) ALTITUDEv; TE*K41 EM WSO SPO«.? NS WNO SPO43 ulNP SPEED*i «I*r OIVEC-: AIRSPEED •«.- AlFSPEEO C47 AIRSPEED I48 DELTA ALT49 INRTL OISP50 UG RIGHT"5 TUG CENTER5? UG LEFT53 VG RIGHT54 VG CENTER5^ VG LEFT56 WG PIGHT57 WG CENTER59 WG LEFT

UNITSRAD/SECG UNITSRAD/SECPADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSPADRADDEC FC£G FG UNITSRADRADPADRADRAO/SECDEC CPSIOPSIOPSIDPSIADEC CPETERSDEGREESDEGREESDEGREESDEGREESRADIANSH/SFCP/SEC*HPtCREES CKNOTSKNOTSM«OTSCEGPEESH/SECH/SECH/SECMETERSMETERSH/SECH/SECH/SECH/SECH/SECH/SECH/SECH/SECH/SEC

HIGH.093••988.070.09?.099

13.5828.694

371.3168.3712.2982.288.120.173.045.073

97.72492.7031.716.062.103.059.054.062

33.065.899.888.936

11.65521.708

8799137.088180.714

-104.35339.86621.881

.?5135.66891.9212.10027.37248.924

-17.42357.673345.040116.223113.220113.989177.11533.6156.3715.4365.86112.02612.32110.4017.4716.5827.672

LOW-.099-.988-.047.020

-.1194.776.347

362.867-.067-.438-.338.011

-.195-.061-.11597.36592.523.427

-.068-.060-.072-.115-.05431.765.717.705.715

11.38719.312

B795967.168<80.707

-104.37839.81118.634

.10030.91688.3901.91326.2256.029

-38.79624.643296. ?38101.773101.076101.921-10.4210.000-6.567-5.729-5.778-10.131-9.742-9.609-9.913-9.447-10.679

HEAN-.00338-.98774.00566.04795

-.010069.023134.33168

366.862553.964181.009681.02202.04955.01067

-.02319-.0174897.4739792.54734.99980

-.01223.01693

-.01249-.02211.00465

32.42029,80012.78437.81260

11.6101220.56946

***********60.71034

-104.3656339.8386919.9C451.17238

32.7536390.498521.9440326.7t60524.63383-27.41379~37. 30196318.62575108.42732106.57343107.6111520.9978621.19528-.00000-.00000-.00000-.00057-.00384-.01005-.01703-.01888-.01758

RHS.03385•96774.01629.05007.039149.228774.73575

366.867344.422461. 053721.06064.05131.05095.02756.02996

97.4740292.547361.01037.02005.02769.02042.03107.02079

32.42126.80063.78481.81310

11.6101320.59765

***********80.71034104.3656339.8386919.92664.17589

32.7821390.505711.9440626.7668125.5994827.6235037.66154318.95269108,. 44349106.58758107.6275922.9198322.698351.978731.874652.065513.522663.526053.474142.276602.088042.20457

POINTS271827182718271827182718271827182718271627182718271827182716271827182718271827182718271627182718271827182718271827182716271827182718271827182718271827162718271*27182718271827182718271827182718271827182718271827162718271827182718

A.319

QC (0Q.

•U CDO ••-«U r-i- LL.

O O

J L

(6ap)

CM --^-O00 I- CT> Q O' -SO

— 'dj•• in f>" LO

1 — . . rv.

>»CM

3 lf» ••T> ^- eo

d) <U U*J = !_<O •"- 3Q H-Q

OOO O

CO

oo

ooof-.

ooovO

cni -8

LO

C7>

O

°

Oiro

CO

LO

OooLT>

'"" \

\

^

CO

C£.

VQ

+->

cn•r—

U.

o•r—

<O

Ol<-c

fOa.

unCM

O)S--

O)

A.320

oCO

oo

oCO

K CJtvl

QiM

Oo<u

853

o:X

oee. o3<

O

O

oo

o OCO 0>

CD O

S

.dX

o

_, d

oo

oCD

CD

oM

1 1 1 1

0 0 0 0 0O O O O O

3CD

01O

o noO)

I/) ID

o ••-

oo><D

-0

to

CD

A.321

TABLE A.66. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 36.

I. Mean Airspeed (m/s)

107.9 106.8 108.7

III. Standard Deviationof Gust VelocityDifferences (m/s)

a' a•XRC \RL

II. Standard Deviation ofGust Velocities (m/s)

(7WXL

2.48

aWYL

4.18

crWZL

1.92

crwxc2.44

aWYC

4.21

awzc1.70

aWXR

2.49

aWYR

4.26

aWZR

1.85

0.90

0.86

0.88

0.85

1.12

HCL XRC HRL

0.90

IV. Integral Length Scale (m).

wL

415

xcLw

439 460

0.97

XRC XRL

1.02 1.221637

Sir^

1588 1632

339 357 297

A. 322

1.0 c-r-T-r- 1 I I I | I I I T

W

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.267. Probability density function for gust velocities and gu.velocity differences, Flight 6, Run 36.

A.323

c••CJ

<uouao3

ouIo

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.268. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 36.

A. 324

ORIGINAL PAGE ISOF POOR QUALrTY

WXRC

VouB.22—"o>t_ocj

O

;ooa. 2000. :

Spatial Lag ,S=VT(m)

Figure A.269. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 36.

A. 325

I

\

I

10a

10°

10-

von KarmanN= 512SEG.= 4

J , I.MlJ I I I Mil

von KarmanN= 512SEG.= 4

von KarmanN= 512SEG.r 4

von KarmanN= 512SEG.= 4

XC

ml

von KarmanN= 512SEG.= 4

von KarmanN= 512SEG.= 4

i i l l l t l l nil , , I ,

von KarmanN= 512SEG.= 4

von KarmanN= 512SEG.= 4

w,

—von KarmanN= 5125EG.: 4

10- 10° 10° 10°

K = u/V

Figure A.270. Nonnalized auto-spectra of gust velocities, Flight 6, Run 36.

A. 326

10a

-T 10°_£

•^

•e-

io8

trbT 10°

3:;?

>e« 10-2

ioa

tr 10°

10-2

N= 512SEG.= 4

WXCL

N= 512SEG.= 4

WYCL

N= 5125EG.= 4

10-8

3- +N= 512SEG.= 4

WXRC

N= 512SEG.= 4

N= 5125EG.= 4

N= 512SEG.= 4

XRL

N= 512SEG.= 4

WYRL

N= 5125EG.= 4

K = u/V10,-2 10°

Figure A.271. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 36.

A.327

102 r

•e-

io

102

10° r r r

io-z

W X W Y

nr

rf

rf

-LL

-LC

-LR

w y w z

!T x<

—LL

—-LC

—LR

rr

s-f \

uui-CL

-CC

-CR

^r- nl , , i mill i i,nnil i M

108

io-8

—RL—-RC

— RR

—RL—-RC

-- RR

srr \

rf

id

•RL•RC•RR

IDI

10' 10° 10~z 10°

/c = w/V (10,-z 10°

Figure A.272. Two-point cross-spectra of gust velocities, Flight 6, Run 36.

A. 328

ORIGINAL PAGE OSOF POOR QUAUTY

TABLE A.67. List of All Parameters Measured and Their Range of Values,Flight 6, Run 36.

START TINE • 9509.4796 STOP TIME 95492.6296

CHANNEL2 PHI DOT3 ACCL N CG4 THETA COT5 THETA6 PHI7 PSI 10 DEL PSI 1<» PSI 210 DEL PSI 211 ACCt N LT12 ACCL N RT13 ACCl X CG14 ACCl V CG15 ALPHA CTR16 BETA CTR17 TEMP I16 TEHP P19 ACCL Z INS20 ALPHA RT21 BETA RT2? ALPHA LT23 BETA LT2* PSI DOT25 TEPP TOT26 QC LT27 OC CTR28 QC RT29 PS30 TEHP IfT.31 fl TO G32 B TO 033 LONG3* LAT35 TRK ANG30 HOG37 VE38 VN39 ALTITUDE«.0 TEfPC<>! EM UNO SPO<.? NS WNO SPO*3 MISC. SPtEO«.<. klNL OI»EC• - » 1 1 1 ? E F C «<••;. i i»: »f ft c47 AIRSPEED I<••» DELTA ALT<•« INRTL DISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT5<. VG CFNTEft5'j VG LEFT56 WG RIGHT57 WG CFNTER59 UG LEFT

UNITSRAD/SECG UNITSRAO/SECPADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEG fDEC FG UNITSRADRADRAORADRAD/SECDEG CPSIOPSIDPSIOPSIADFG CMFTERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SFCM/SECKMDEGREES CKNOTSKNOTSKhOTSCEGBCESH/SF.Cf/SKH/SECMETERSMETERSM/SECM/SECH/SECM/SECM/SECM/SECM/SECM/SECP/SEC

HIGH.150

-.986.056.080.069

145.3154.609

904.3894.4911.9662.342.108.205.027.042

97.72492.8R31.483.035.069.049.033.056

34,049.881.869.902

11.60524.974

LOW-.150-.988-.058.010

-.101135.453-4.678495.236-4.801-.248-.130.005

-.155-.065-.07997.36992.703.509

-.064-.041-.083-.074-.05231.194.665.669.702

11.56119.1C9

.MEAN-.00318-.98774.00528.04882-.02130

140.89133.46417

900.12913.315131.012411.02570.05256.00695

-.02379-.0197297.4748992.760331.00380-.01647.01374

. -.01626-.02480.00235

33,54743.60116.78564.81406

11.5793521.73162

RMS.03 to 4.96774.01419.05151.03655

140.900431.65305

900.131531.614431.046701.05720. ,05573.05558.02720

... .0302897.4749492.760371.01150.02207.02507.02198.03246.02009

32,55178.80214.78656.81503

11.5793521.77920

8803745. 664 87 99810. 08A«**********M*******»«60.770

-104.26939.855139.7832.52588.349-92.401

1.97828.16051.213-7.86758.149326.282114. 2<)«J11?.?24112.99814.25017.2447.2727.7899.1859.9799.5149.5965.6965.6625.896

80.723-104.34239.806136.3472.35882.361-97.315

1.94825.86120.739-37.96630.530280.825101. IS?•J8.77396.481-16.446-15.440-5.506-5.426-4.908-6.759-6.877-6.334-7.362-5.744-5.668

80.74615-104.3142039.83044137.972972.4500965.47921-94.732091.9654426.8677436.9S518

-21.75357-43.63255300.743«i9108.66604106. 79631107.620691.318202.54706.00000.00000.00000.01414.01394.01041

-.00415-.00512

. -.01152

80.74615104.3142139.83045137.978602.4502585.5095094.746611.9654526.8701637.5278022.7795443.90038300.93686108.697>010t). 82716107.852976.711566.452922.543292.494242.535714.152864.111844.079822.033441.935082.09458

POIMIS228622862286.22862286228622862286228622862286226622862266228622862286228622862266228622862286228622862286228622862286226622862286228622862286228622862286228622862286228622862?8fr2?et228622862266228622862286228622862286228622862286

A. 329

OF POOR QUALfiY

o> r> i'£ !"<o ;

•— -c [-nj 4^> ;<* £ I

Q. i

§*- LO ••-<U •—i- u.a o

+j-3

in

in eo.C\4

3 m •_;*~ 5

• r~•• ..4J41 OJ <O•*J E i-rt3 *^- 3

I IO Oo oo o

I I I I

(Sap)

$_o•uco

•Owa*

ooo

ooo

-446 L9H

oI

O)

: in

i IT)o

ro

_ o

CO

<u•r»

s:

evj

Ooo

x

.*

c&-.^-

. -c3

ca:

cn

u_•t

O

ns

O

ro

CDi.

cn

A. 330

o(SJ

oo

OOO

OUD

OO

X3<»

L)

3

<

O O O D Ot\J —i —i (M

I I (s/uu)

>-3

<

o(M

OO

o OCO a)

wc5UD D

. 6

o

o

oo

oto

oID

ocsi

o

a o o o oCM _i —" (SJ

I I

cro

11

u roo<U 3> a:

OJ•P— «N

S_ in0 O)•(-> O(/> C

•r- QJ.C S_

O)01 H-

CM

et

01

en

A.331

TABLE A.68. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 37.

I. Mean Airspeed (m/s)

104.5 103.4 105.2

III. Standard Deviationof Gust VelocityDifferences (m/s)

A\CL

0.72

0.73

A\RC

0.73

0.69

0.91

XCL XRC XRL

0.75

Q. Standard Deviation ofGust Velocities (m/s)

CT

WXL

2.27

aWYL

4.45

aWZL

1.62

V. Integral

o a\C \R

2.22 2.28

a aV WYR

4.48 4 .41

a aWZC WZR

1.52 1.63

Length Scale (m)

\L \C \R

349 353 354

ZCL

0.81

ZRC

0.87

ZRL

0.972070 2036 207

212 223 224

A.332

I I I I I I I I I

w

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

5.

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.275. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 37.

A.333

<u

oCJ

do

.3

ou

1.

0.

-1.

™" 1 •

0.

Wzc

WZL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.276. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 37.

A.334

0F POOR

WXRC

4)

8ao

£

I

oCuIi6-

1

IF^..^ WXRL

^~~7~~--v__ j_ « i < — — — I- i — — i-—

WYRC

3000. 2000, 3000.

Spatial Lag ,S=V7(m)

Figure A.277. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 37.

A.335

"b

I

102

10°

10*

10-

•von KantianN= 512SEG.= 6

i.,J , J I

•von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

ml I i 11 mill

•von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

i.nJ i it.ii.il i ii I . mini . I . I ,il i " i i i | . . i I ,1 i ,,ii,i,l

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.: 6

W,

10- 10° 10~8 10°

ic = <y/V (m~J)

10,-e 10°

Figure A.278. Normalized auto-spectra of gust velocities, Flight 6, Run 37

A. 336

IO2 r

r 10°

10-

10*

6" 10°\

J^«•• io-8

10a

6"tT 10°

10-2

N= 512SEG.= 6

N= 512SEG.= 6

N= 512SEG.= 6

WZCL

N= 512SEG.= 6

N= 512SEG.= 6

WYRC

N= 512SEG.= 6

WZRC

N= 512SEG.= 6

,11,1 I I I I 11 1 ,1,1

N= 512SEG.= 6

WYRL

v

N= 512S£G.- 6

WZRL

10' 10° 10~8 10°ic = cj/V (m

10,-B 10°

Figure A.279. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 37.

A.337

— LL

10,-z 10° io-B 10°K = u/V (m-1)

10-e 10°

Figure A.280. Two-point cross-spectra of gust velocities, Flight 6, Run 37,

A. 338

TABLE A.69.

ORIGINAL PAGE ISOF POOR QUAITTY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 37.

S T A R T TIHE • 55949.4097

CHANNEL2 PHI DOT3 ACCL N CG4 THFTA DOT5 THETA6 PHI7 PSI 1e DEL PSI 19 PSI 2

10 DEL PSI 211 A C C L M LT12 ACCL N RT13 A C C L X CG14 A C C L Y CG15 A L P H A CTR16 B E T A CTR17 TEUP I18 TEMP P1" A C C L Z IN$20 A L P H A RT21 B E T A RT2? ALPHA LT23 B E T A LT24 PSI DOT25 TEMP TOT26 OC LT27 OC CTR28 OC RT2<5 PS30 TFMP IRT31 D TO G32 8 TO 033 LONG3* L AT~t TRK ANG3-5 HOG17 VF39 VH39 ALTITUDE40 T f h P C41 CW UNO SPD4? SS *ND SPDO 4 IKP S P E E D* 4 W I N D O l S E C.-. U S S P E F O «

'••; A I P S P E C O C47 A I R S P E E D L43 DELTA ALT4<i INPTL DISP

0 UG RIGHT1 UG CENTER2 UG LEFT3 WG PIGHT<> VG C E N T E R<> VG L E F Tr; *G BIGHT? KG C E N T E R6 WG L E F T

UNITSRAO/SECG UNITSRAD/SECR A ORADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUN ITSG UNITSRADRADDEC fOEG FG UN{T$RADR A ORADRADRAD/SECDEC CPSIDPSIDPSIDPSIADEC CHETERSD E G R E E S "DEGREESDEGREESDEGREESRADIANSK / S F Cf / S E CKMC F C P E E S CKNOTSKNOTSKNOTSD E G R E E S* / S f CH/SECM/SECfETERSHETFRSM/SECI»/SECH/SECH/SECfl/SECr /s tcM/SECN/SECM / S E C

HIGH.13*

-.988.054• 079.059

304.8662.110

306.5391.9332.2382.558

.094

.161

.035

.02996.44493.062

1.395.032.057.040.019.052

32.868.860.839.876

11.61623.456

STOP TINE

LOW-.091-.988-.045

.019-.087

297.465-4.913

299.850-4.976-.488

.105

.007-.152-.074-.100

97.72492.703

.542-.062-.059-.065-.100-.043

30.899.665.656• 678

11.41720.320

• 59631.6347

HE AN-.00292-.98774

.00641

.04907-.01464

RMS.02969.98774,01296.05071.03435

30.1*03588 301.04029-1.48293

303.14423-1.60693

1.014601.02708

,04301.00823

-.01876-.02116

98.0143692.68271

1.00455-.01344

.01273-.01152-.02696

.0034931.96564

.75267

.73724

.7637611.5955222.26972

2.20261303.14844

2.274131.041471.05097

.04447

.04573

.02219

.0300898.0145092.682711.01046

.01900

.02303

.01724

.03336

.0160231.97022

.75407

.73836

.7649411.5955322.27804

8804740. 5 318799049. 306******* »********»*»***60.776

-104.27539.845

302.6015.344

-75.63348.604

2.07928.00130.469-9.72445.368

348.604112.530110.238111.541105.858

1.1066.9586.5987.0809.2619.1669.0286.1216.4737.026

80.720-104.349

39.813294.685

5.219-79.375

35.1261.940

25.9966.342

-43.55917.025

294.79899.16197.S9498.236

-33.336-31.042

-5.420-4.854-4.927-7.592-7.947-7.604-4.734-5.081-4.635

80.74798-104.31161

39.82955299.01940

5.27990-77.36219

43.012791.95418

26.6396216.66617

-27.9416333 .44439

327.64846105.21123103.40906104.47403-16.68896-17.22765

-.00000-.00000-.00000-.02226-.02495-.03043-.02240-.02100-.02116

60.74798104.31161

39.82955299.02883

5.2799877.3675143.20625

1.9542126.6427617.4313029.1140433 .93343

327.9422910!».250P7103.44771104.5146321.1598719.52640

2.224592.166372.214354.387974.459594.431471.590691.489031.58769

32893289328932893289.32693289328932693289328932893289326932893289328932693289328932893289328932893?893?69328932893289328932693289328932893289328932893289328932893269328932893?893269328932893269328932893289328932893289328932893289

A.339

0)

•is !-

-MO) IO •f- L<U r- T

o o-3

CO

CMoo c

o

ooco

>,CVJ

15 LO '•

.. .. <->Ol O) (T3+J E S-gr-3

Io 2o o§ §

I I

(6ap)

ooor .

ooo

oi

0)

Lf)

oin

CO

co

CO

<uLO

ooo

•iii"

30

00CO

c3eg

<£>

en

o4->ITJ

-CCT>

00CVJ

(D3O1

A. 340

ooO)>

OJ

•r- COO COo

i— C(D 3> cc

CD-M-C

M~ cn

i/> LL.QJ

• r~— r»

s- i/>O O)+ J Oi/i e:

••- o>

CMooCMet

OJ

enu_

o o o o oCM -i r-i (\J

I I (s/ui)

o o a a oCM ~* —4 (M

I I

A.341

TABLE A.70. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 38.

I. Mean Airspeed (m/s)

94.9 94.0 95.7

Standard Deviation ofGust Velocities (m/s)

aWXL

5.75

a

3.41

awxc

5.51

<7WYC

3.48

CTWXR

5.49

3.29

III. Standard Deviationof Gust VelocityDifferences (m/s)

_^CRC

1.351.35

CLCL RC

1.39

1.47

1.35

1.48

1.70

1.43

1.61

a

ZZL.3.26

awzc

3.09

crWZR

3.24

FV. Integral Length Scale (m).

xc

\L

680

YC

719

1140 1123 1128

813

wWZR77 7f*

249 267 246

A. 342

R^'Righ'tC = Center W

= Left

\ \ r

N

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.283. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 38.

A. 343

c

'u

<uouflo

01s-l!-,OU

0. 1000. 2000. 3000.

Spatial Lag ,S=VT(m)

3000.

Figure A.284. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 38.

A. 344

ORIGINAL PAGE ISOF POOR QUALrTY

WXRC

ao_CO~soo

oa,io

1000. 2000.

Spatial Lag ,S=VT(m)

Figure A.285. Two-point auto-correlation coefficient of gust ve'Flight 6, Run 38.

A.345

102 r

10°

10-i

b

S"

10*

10o

10"

10°

10-

von KarmanN= 512SEG.= 5

Wy

—von KarmanN= 512SEG.= 5

•von KarmanN= 5125EG.= 5

I mini i i jiniit I i mini I I nun

von KarmanN: 512SEG.= 5

Wy

von KarmanN- 512SEG.= 5

von KarmanN= 512SEG.= 5

von KarmanN= 512

EG.= 5

— von KarmanN= 512

V SEG.= 5

' YR

von KarmanN- 512SEG.= 5

W,

10-2 10° 0~2 10°

K = u/V (m"1)

10~8 10°

Figure A.286. Normalized auto-spectra of gust velocities, Flight 6, Run 33,

A. 346

102

liTKT1 10°

io-z

102

6"bT 10°

10-

10*

6"*b~ 10°

io-a

N= 512SEG.= 5

WXCL

N= 512SEG.= 5

wYCL-V

N= 512SEG.= 5

N= 512SEG.= 5

WXRC

N= 512SEG.= 5

N= 512SEG.= 5

WZRC

N= 512SEG.= 5

WXRL

,,,,,1,1

N= 512SEG.= 5

NYRL

N= 512SEG.= 5

WZRL

ID"2 10° 10~2 10° 101-2 10°

Figure A.287. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 38.

A.347

w x w z W X W Y

108

10°"

io

Ifrf"

rr

—LL—-LC—LR S-F

~ i i utirj | i irntJ i i limit i i until

LL

—- LCLR

J i i Mini i i mill i i imtJ

rr

•• r

M,,I| i i ..... ,\ i mmil i.M.J

108

._ 10°•e-

10-8 rrr

10*

io-8

io-210° 10'8 10°

K = co/V (10,-8 10°

Figure A.288. Two-point cross-spectra of gust velocities, Flight 6, Run 38.

A. 348

TABLE A.71.

ORIGINAL PAGE ISOF POOR QUALTTY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 38.

S T A R T T I M E • 55778.4101 STOP TINE - 55«5<..5601

CHANNFl? PHI 'OOT3 A C C l N CG<• THITA DOT5 T H £ T 4f> PHI7 PSI 1* PEL PSI 1o PSI 2

10 DEL PSI 211 A C C L N LT12 A C C L N RT13 A C C l X CG!<• ACC l Y CG15 A L P H A CTR16 H E T A CTR17 T E M P IId TEMP PI? A C C l Z INS20 A L P H A PT21 B E T A RT22 A L P H A LT23 B E T A LT24 PSI DOT25 T E M P TOT26 QC LT?7 OC CTR2:* OC PT29 PS30 TEMP IRT31 0 TO G3' 8 TC 033 LONG3=. L AT35 TRK ANG3s HOG3 7 V E3 K V N3* A L T I T U D EO T E M P C41 EM WSO SPD<.? NS WNO SPO••3 W I-ir S F E £ D<•- *IND O I P E Ci --- * I S S P E I ? R*', A l f r S P H O C47 A I R S P E E D L4 3 D E L T A A L T49 ISPTL PISP50 UG PIGHT51 UG C E N T E R ""52 UG IEFT53 VG PIGHT5 4 V G C E N T E R5-J VG I E F TV WG «K,HT5 7 W G C E N T E R "5 ? K G L E F T

UNITS HIGHR A D / S E C .185G UNITS -.988R A D / S E C .099R A OFADD E G R E E SD E G R E E SD E G R E E SDEGREESG UNITSG UNITSGUNITSG UNITSR A DRADDEC FDEG FG UNITSRAORADRADRADRAD/SECDEG CPSIDPSIDPSIDPSIAOEG CP E T E R SD E G R E E SD E G R E E St t G P E E SD E G R E E SR A D I A N Sf / S F Cr / S E CKMD E G R E E SK N O T Sf H Q T SC ' l O T ST F G M E Sf / S e CM / S i CN/SF.CMETERSKETERSM / S E CC / S E Ch /SECK / S E CM / S E CK / S E CM / S E CK / S E CM / S E C

.142

.093197.79713.102

560.0127.6662.7282.653

.225

.165

.107

.08584.77293.242

1.997.119.111.111.078.097

31.194.772

LOU-.203-.988-.089

.017-.172

188.267-1.357

545.930-1.566-1.017-1.234-.001-.181-.111-.116

84.41292.883

.059-.119-.077-.095-.127-.062

28.733.449

HE AN-.00422-.98774

.00526

.06705-.007.69

192.609103.87888

550.993832.621231.005241.01784

.09954

.01078-.0023?-.01296

84 .5636093.06622

.99955

.OC594

.02074

.00727-.02040

.0038530.04202

.62099

RMS POINTS" .05195 3046

.9B774 3046

.02003 3046=09250 3046.04553 3046

192.61851 30465.26117

551.004613.392721.066511.08046

.10879

.04264

.02641

.0403684.5836693.066221.01761

.02989

.04011

.02836

.04077

.0279830.04632

.62492.751 .457 .61003 .61371.816 .477 .63242 .63615

11.600 11.549 11.57711 11.5771219.515 8.063 17.18616 17.30297

8787613.2108785335.744**********************80.653

-104.47439.798

188.1763.466

-8.060-106.080

1.986C 26.281

38.766-12.406

64.639359.190108.577104.174105.62429.96724.43512.79613.17213.386

9.31210.14711.67913.24311.65311.716

80.646-104.486

39.724184.097

3.298... -15.5P.3

-118.1571.951

24.919-2.099

-59.97113.712

. 3 7 68 3 . 4 5 281.77580.992-4.967-1.819

-13.866-11.294-12.019-7.958-6.189-8.140

-12.711-10.150-10.399

80.64962-104.47962

39.76100186.53306

3.37798-12.5107B

-108.525441.96700

25 .6273820.76440

-33.SCB4941 .2P316

326 .2?6059 5 . 7 2 3 7 594.0*19794.8589010.680199.29277

.00000

.OOOOC

.00000-.01110-.00670-.00758

.04382

.04700

.04061

80.64962104.4796239.76100

186.535013.37815

12.63522108.55997

1.9670125.6P81722.1855335.831734 2 . 1 4 3 9 3

326 .8020595 .8624194.1817695.0080713.6423012.111936.402116.365366.573863.120673 .295843.233973.267523.112613.27416

3046304630463046304630463046304630463046304630463046304630463046304630463046304630463046304630463046304630*6304630463046304630463046304630463046304630463046304630463046304630463046304630463046304630463046

A. 349

ri

O) -4->ce (0

Q.cO 4->

• o» !'•- L

-3

UlCM •—*o20 £- =Ti O O

QJU')l

— oo>*, >•)

Q t^Q

O Oo oo oen co

ORIGINAL PAGE ISOF POOR QUALITY

(63p)

OOor*-

oooVD

o—1 "3-

- O

O

ir>T

CO

cr>

CO

cu

OOOLO

\ I V-CTvCO

en

co

ro

o

V''

CTiCOCM

eC

CLI

A.350

ooo

13CT)

(O

to<H

•i- O1o roo

i— CCD 3> or

en

to u_cuil toO O)4-* OtO C•i- O)

<DQJ M-

OCTi00

cu

cn

o o o o o(\J ^H •—I (\J

I I

A.351

Figure A.291. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 39.

I. Mean Airspeed (m/s)

R

107.1 106.0 107.9

II. Standard Deviation ofGust Velocities (m/s)

aWXL

5.93

aw.xc

5.75

aWXR

5.82

aWYL

3.06

aWYC

3.08

aWYR

3.04

III. Standard Deviationof Gust VelocityDifferences (m/s)

XRC XRL

1.13 1.17

AMYCL A\RC

1.10 1.10

°AW °AWr«i '7D/-'

UVU LlK\s

1.31 1.29

1.43

iRL

1.15

°A¥ZRL

1.47

CTWZL

2.84

awzc

2.69

WZR

2.84

IV. Integral Length Scale (m).

Sr

1337

Sr

806

L¥V

776

Sv

1335 1349

\c V811

ZL

265 287 258

A.352

1.0 i \ i i i r

W

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1-RC2-CL3-RL

A N

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.292. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 39.

A.353

a•i—*o

do3d

»—4

0?

1.

0.

-i.

_L

-I.0.

WYLj i i

1000. 2000; 3000.

Spatial Lag ,S=VT(m)

WZR

Wzc

WZL

4000.

Figure A.293. Single-point auto-correlation coefficient of gust velocit ies ,F l igh t 6, Run 39.

A. 354

V'o<Ttt*j0)ooc.21Z3

—"l>

Oo

_co

o£E-

ORIGINAL PAGE ISPOOR QUAUTY

WXRC

WZRC

T\ -r

r :

WZRL

10CG. 2000. 30:;G. ^CCG.

Spatial Lag ,S-VT(m)

Figure A.294. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 39.

A.355

108

10°

10'!r

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

WHL

von KarmanN= 512SEG.= 6

mil i ..mill i i....ill i 1,11.

von KarmanN= 512SEG.= 6

von KarmanN= 512SEG.= 6

•—von KarmanN= 512SEG.= 6

—von KarmanH- 512SEG.= 6

W\

—von KarmanN= 512SEG.= 6

10~8 10° 10~8 10°

K = <y/V (nT

10°

Figure A.295. Normalized auto-spectra of gust velocities, Flight 6, Run 39,

A. 356

ORIGINAL PAGE ISOF POOR QUALTTY

" 10°

10-a r

102

~ 10° r

10-2

10s

10°

10-

N= 512SEG.= 6

WXCL

N= 512SEG.= 6

VYCL

N= 5125EG.= 6

V,. "ZCL

rI i i mini

N= 512SEG.= 6

N= 512

WYRC

N= 512SEG.= 6

WXRL

N= 512

3EG.= 6

W YRL

ZRC

i i i iK i r l i MIIIII i IIIKII!

1Q-* 10° 10"z 10°K = u/V (m

10" 10°

Figure A.296. Normalized two-point auto-spectra of gust velocit ies,Flight 6, Run 39.

A . 3 5 7

ORIGINAL PAGE ISOF POOR

w x w z

•e-

•6-

i t mill i i nnJ i i imiJ i 11 mil tJiiinii i 11 mm. _i_iiiiBil tiiinii

10- 10~z 10°K = 04/V (

10,-8 10°

Figure A.297. Two-point cross-spectra of gust velocities, Flight 6, Run 39,

A. 358

ORIGINAL PAGE ISOF POOR QUALITY

TABLE A.72. List of All Parameters Measured and Their Range of Values,Flight 6, Run 39.

START TIME • 55905.2702 STOP TINE • 95987,6202

CHANNEL? PHI DOT3 A C C L N CG4 T H E T A DOT5 T H E T A6 PHI7 PS1 1ft DEL PSI 19 PSI 2

1C DEL PSI 211 A C C L N LT1? A C C L N RT13 A C C L X CG!<. A C C L r CG15 A L P H A CTRI t B E T A CTR17 T E M P I11' T E K P P1<V A C C L Z INS2 0 A L P H A R T21 B E T A PT? ? A L P H A L T2 3 B E T A L T2 <• PSI DOT25 TEf lP TOT?!S OC LT?7 OC CTP2 8 O C R T29 PS30 TEHP IRT31 D TO G32 B TO 033 LONG34 L AT} •> TRK ANG3i> HOG37 VE33 VN39 A L T I T U D E40 T F M P C<>! EU UNO SPO42 NS WNO SPO<O *IND S ^ E F O<•<• » U-D D I P E C- ' A I V ': ? E 1 (. «

-- » it!»:it c4? A I R S P E E D L< • » D E L T A A L T49 INPTL DISP50 UG R I G H T51 UG C E N T E R5? UG L E F T5 3 V G R IGHT5 4 V G C E N T E R5 t VG I F F T5 6 W G R I G H T5? UG C E N T E R5 - W G L E F T

UNITSR A D / S E CG UNITSR A D / S E CPADPADD E G R E E SD E G R E E SD E G R E E SDEGREESG UNITSG UNITSGUNITSG UNITSR A OP A DDEG FOFG FG UMTSPADPADPADPADP A D / S E CDEG CPSIDPSIDPSIOPSIADEG CM E T E R SDEGREESD E G R E E SD E G P E E SD E G R E E SPADIANSr« /SFCP / S E CKND E G R E E S CKNOTSKNOTSK N O T SD f G P E E Sf / i f C* / S F CH/SECMETERSH E T C R SM/SECM / S E CM / S F CM / S E CM / S E CM / S f CM/SECM / S E CM / S E C

HIGH.172

-.<)8e.072.lie.106

338.3293.<)61

337.1603.7262.3302.A76

.130

.175

.045

.08684.40993.242

1.641.048.101.049.085.062

32.277

LOW-.154-.986-.064

.003-.106

330.940-3.327

329.774-3.536

-.556-.402-.012-.187-.107-.115

83.69393.062

.225-.109-.079-.107-.105-.054

29.816

MEAN-.00237-.98774

.00582

.05137-.01141

335.03794.83103

333.89185.61627

1.010411.02234

.05864

.01240-.02544-.01404

84.0196993.13788

1.00125-.0214(

.01899-.02031-.02040

.0038731.04272

RMS.04220.98774.01914.05789.03592

335.041711.78121

333 .895421.688691.070861.08120

.06468

.04468

.03164

.0310384.0197693.13793

1.01663.03053.03191.02841.03242.02234

31.04845.965 .646 .79508 .79859.936 .640 .77999 .78322.982 .653 .60809 .81140

11.626 11.502 11.59280 11.5926420.918 14.295 17.42756 17.54250

8786506. 17687 83867. 62 7****»*» ***************60.661

-104.47239.789

332.7365.903

-44.83308.191

2.01926.30116.791

l .ORf t4 2 . 3 8 8

359. <37?119.079116.443117.69712.271

9.39611.64711.72011.380

8.7769.4099.2378.0787.0807.472

80.619-104.517

39.726329.602

5.772-48.747

83.0631.932

24.697-22.972-41.946

1.127.010

9 7 . 2 2 29S- .27396.760

-75.207-74.293-13.346-12.156-11.957-8.283-7.626-8.620-8.164-9.264

-10.473

80.64035-104.49450

39.75742331.38115

5.84631-46.83638

85.680671.95609

25.43610-6.53624

-20.94099-23 .305547 2 . 3 f 9 7 5

1 0 7 . 8 7 S 3 81 C 6 . C Z E S 8107.01836-51.00719-50.95554

-,00000-.00000-.00000-.02960-.02785-.02914

.01888

.02525

.0.71B1

80.64035104.49450

39.75743331.38225

5 .8463646.8519985.89522

1.956222 5 . 4 3 7 3 9

9.051882 3 . 5 ? 8 9 825.21010

134 .?040 f107.<?P7f,91 Of!. 1377 3107.1351555.5501156.20205

5,706685.636625.821632.974763.014772.996432.824162.674122 .B3194

POINTJ3294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943294329432943 2 9 43'943? I*.3294329432943294329432943294329432943294329432«54

A.359

ORIGINAL PAGE ISOF POOR QUALfTY

10 IHI +->o: ro

CL.

O -t->•r- J=•*-• cr, iu •'- t-tl) i—

Q O

'.U

0-5 .01

I: Of

(Bap)

3O

OO

(U

oI

C7>(U

oI

LOo

CTi

CO

O)

J O

I

11

o•vT

c:o

J-o

i enI -

lX_--

A. 360

ooa;

01

"Oc(O

cu

or—O)

O •"-

I/)1),

o cu.o (j(S> C

•r- CU.c s_

01

oo01

<ccu

o o o o ot\J —I r-1 t\J

I I (S/UI) PUT&

A. 361

TABLE A . 7 1 . Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 40.

I. Mean Airspeed (m/s)

R

105.8 104.6 106.4

II. Standard Deviation ofGust Velocities (rn/s)

aWXL

2.15

aw.xc

2.06

WXR

2.14

aWYL

2.85

aw.

2.86

aWYR

2.80

III. Standard Deviationof Gust VelocityDifferences (m/s)

HCL XRC XRL

CT

WZL

3.05

<7W,zc

2.92

aWZR

2.99

0.88

1.01

ZCL

1 . 09

0.97

0.96

ZRC

1 . 05

1.11

HCL HRC XRL

1.04

ZRL

1.27

IV. Integral Length Scale (m).

368

658

Sr

424

613

c

437

*YC V

645

523 556 562

A.362

1. 0 ~~ "i i" I "i

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1-RC2-CL3-RL

A W

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.299. Probability density function for gust velocit ies and gustvelocity differences, Flight 6, Run 40.

A.363

G0)

<uo

eo

OuIo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.300. Single-point auto-correlation coefficient of gust veloci t ies,Flight 6, Run 40.

A. 364

£

'3

0)o0

GO

uo

1.

0.

-1.

_j L

WXRC

4_ —i.

WXCL

WXRL

j .

i -~- I

W Y R L

R-'oCL,Io6-

Spatial Lag ,.^=\

Figure A.301. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 40.

A. 365

102

10°

10-t

b\1?

%

5?10o

lO'V

von KarmanN= 512SEG.= 3

Wy

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

XC

von KarmanN= 512SEG.= 3

von KarmanN= 512SEG.= 3

iinj I I i unit I I I mm I I I mil i I itlilll I I 11 unl I I I mill I I I inn i i i 11 ml I I I mill tin lull I i i mill

von KarmanN= 512SEG.= 3

WXR

— von KarmanN= 512

v- SEG.= 3

von KarmanN= 512

.= 3

1Q-8 10° 10~8 10°

K = u/V (m

10" 10°

Figure A.302. Normalized auto-spectra of gust velocities, Flight 6, Run 40.

A. 366

ioa ;

6"1

6" 10°

1< 2

10s

6""b~ 10°

10s

•e- 10-z

N= 512SEG.= 3

WXCL

N= 512SEG.= 3

N= 512SEG.= 3

WZCL r

I I innj i i mull i I < mill i i iin

N= 512SEG.= 3

WXRC

N= 512SEG.= 3

WYRC

N= 5125EG.= 3

WZRC

N= 512SEG.= 3

WXRL

N- 512SEG.= 3

N= 512SEG.- 3

WZRL

iini j pirnt t i ^HUI t_i_iiitn i i min ....... ' - I.I Illlll — '

10~8 10° 10~8 10°K = u/V (m

10°

Figure A.303. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 40.

A. 367

W X N Z

102

^•6«'

10-2

—LL

—• LC—LR

W x W Y

i

rt" - vlIT

r r

r f

'iiinitj imntj iininft ..... m

• Tfrf

-LL

-LC

-LR

10

"_ 10°

10

rr

ml , ,,i,,,,l i. ,,11.1 II I

' CL

I in! i i mini i i in ml i i ninJ

FIT

RL

—-RC

io-z 10°,,,J ,,,„„! i ,,J

ID'8 10°

K = cj/V (nic 8 10°

Figure A.304. Two-point cross-spectra of gust velocities, Flight 6, Run 40.

A. 368

ORIGINALPOOR

TABLE A.72. List of All Parameters Measured and Their Range of Values,Fli.ght 6, Run 40.

S T A R T TIME • 96010.3354 STOP TINt

CHANNEL. ; HI DOT3 ACCL N CG<• THETA DOTS THETAh ''HI7 PSI 11 DEL PSI 19 PSI 2

10 OEl PSI 211 ACCL N LT1? ACCl N PT13 ACCL X CG14 ACCL Y CG1 '" ALPHA CTRIt BETA CTR17 TEMP Ilr TEMP P13 4CCL Z INS?c ALPHA PT21 BETA RT?? ALPHA LT23 BETA LT?<• PSI 03T?v TEMP TCT-V. OC IT?7 OC CTR? 3C RT23 PS30 TEMP IPT31 D TO G3? 8 TO 0•>3 LONG34 L AT-"> TPK AMGJK HOG-.7 VE3rt VN?<V ALTITUDE-: TEr.PC41 Ek kNO SPD<•:• NS kNO SPO<.3 WI'P SPrFD-<• WI.'-C OI»£C• A I K S P £ t C P- ; A I P 5 P 1 1 0 C<•? AIRSPEED L<•" DELTA ALT45 INRTL DISPb: UG BIGHT5l"L!G CENTER'..? UG I EFT53 VG RIGHT5<. VG CENTER5v VG LEFT*~. WG PI GUT57 kG C E N T E R','. W G 1 E F T

UNITSRAO/SECG UNITSPAD/SECKAORAODEGREESDEGPEESDEGREESDEGREESC- UNITSG UNITSGUN ITSG UNITSRADPAPDEC FCEG FG UNITSRADRADRAORADPAD/SECPEG CPSIOPSIDPMOPSIATEG CMETERSCEGFEESPEGPEESP'GREtSPECRfESRADIANSM/SECM/SECKM

fiCPEES CKN3TSKNOTS>SflTlC f G F E E S-/SECM/SECM/SECMETERSMETERSH/SECM/SECf/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.179

-.988.058.128.0666.1352.493

364.2752.3152.2302.140.200.153.053.058

84.05393.2421.558.067.079.058.047.066

31.096.679.86?.835

11.63417.050

LOW-.146-.988-.051.013

-.058.197

-3.356358.290-3.595-.527-.122.007

-.145-.080-.10083.69393.062

.525-.071-.056-.065-.100-.04729.520

.645

.614

.64611.57613.212

MEAN-.00267-.98774.00505.04891.00414

3.26515-.48054

361.27731-.716801.016541.02990.07273.01367

-.02279-.0131883.6877393.170671.00885-.01971.01963

-.01607-.01774.00393

30.37338.77702.75952.78587

11.5934715.65904

RMS.03714.98774.01624.05807.02405

3.576341.51600

361.280051.605201.055491.06547.08177.04644.02794.03069

83.8878393.170711.01933.02614.03161.02290.03064.02554

30.37563.77858.7610P.78748

11.5934815.69241

P 78 5262. 59287 8384 3. 44 3*»***»* ****+*•****»***80.612

-104.51539.8577.872.12?

14.054108.191

1.96625.56418.7398.27719.237

359.950112.823111.370112.43932.07428.6635.0464.8385.4886.2256.7616.4175.8245.7146.267

80.6C8-104.522

39.8C93.470.017

5.93697.9001.9?8

24.006-16.000-12.067

.379

.04996 . t \ 094.27896.532-8.112-7.178-6.615-5.778-5.P40

-10.546-10.882-10.571-10.724-10.528-11.191

80.60972-104.51675

39.832496.06472.06642

11.133d3103.610921.95561

24.920455.0<5ie9

-1.24068~ 8.16661249.1S360106.37677104.61910105.7912619.7352718.49654-.00000".OOOGO.OCOOO

-.00650-.00893-.007513.06696.06524,0t250

80.60972104.5187539.832496.20982.0731P

11.42302103.6<:'89fr1.95564

24.9214P7.819284.298018.9??67

262.917731G6..4M53104.t)728P105.8443822.4733321.155552.238752.176322.220412.9675P3.027343.011352.841892.744102.86020

POIN1£. '-• 2 1

20512051205120512051205120512051205120512051205120512051205120512051205120512051205120512051205120512051205120512051205120512051205120512051?0512051205120512051201:12051?OS12051205120512051205120512051205120512051205120512051

A.369

OF POOR

Ol>

10 !•— .c hO» 4J j

O 4J

s_ u.Q O

-U•a

J L

(6ap)

O

"II

1 I

en

: oI -t—

O>

, Lf5O

u, <—• Ia*CO

en(U

\

r v /

o;r,

10+->i

CD ,'

CO

i.o

a.

LO

Oro

<C

Ol

A. 370

B

o

<C

2~o

cja:>-

{

i

£ 1£ -3 :

-^

i i

-

i

r

i

~

-

f

ot\s_4

oo1— t

oCO

oCD

CDf

Ofvj

'c?0>CO

0)

pi

I 1 1 L.1 i i I

cex3

g ccx

O(NJ

ao

oCO

oCO

o*r

O(SJ

i i t

o o o o o<M « r-< CM

I I

o o o o oCM . —4 <M

oo

to3cn

tod)

0 «=j-o

1 — c:O) 3> o:

to 103

t- cno ••-to u_QJ

*r~ *^s- toO O)-P UCO C

•t- OJ: s_

O)0) <*-e «*-

•I*- 'I—

I— T3

OCO

3cn

(s/tu) paadg

A.371

TABLE A.74. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 41.

I. Mean Airspeed (m/s)

105.1 104.1

R

106.0

III. Standard Deviationof Gust VelocityDifferences (m/s)

XCL XRC

1.01

0.95

1.02

CL A\RC

0.97

1.11 1.17

1.24

1.04

1.31

Standard Deviation ofGust Velocities (m/s)

<7WXL

2.43

aWYL

2.08

aWZL

2.44

(7wxc2.40

aWYC

2. 10

crwzc2.31

aWXR

2.47

aWYR

2.06

CTWZR

2.49

IV. Integral Length Scale (m).

\L \

905

V

706

876

715

911

802

ZL ZC

237 260

ZR

235

A.372

1.0

0.8

i rR'=' r i igh'tC = Center WL = Left

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.307. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 41.

A.373

<u•*^o

<UO

o33

afcouIo

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

WOO.

Figure A.308. Single-point auto-correlation coefficient of gust velocities:Flight 6, Run 41.

A.374

WXRC

V

cSco

EouI

•0,

i

o. 1000. 2000, 3000.

Spatial Lag ,S=VT(m)

4000.

Figure A.309. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 41.

A.375

von KarmanN= 512SEG.= 8

10*

10°

10~s

—von KarmanN= 512SEG.= 8

•von KarmanN= 512SEG.= 8

,1 .11,,,,.

von KarmanN= 512SEG.= 8

Wxc

—von KarmanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

, .1 1 , , ,,,,,J , ..mill

—von KarmanN= 512SEG.= 8

—von KarmanN= 512SEG.= 8

Wv

—von KarmanN= 5125EG.= 8

W,

10~8 10° 10~8 10°

K = u/V (m

10°

Figure A.310. Normalized auto-spectra of gust velocities, Flight 6, .Run 41

A. 376

102

10*

- 10°

108

b~*b" 10°\S

N= 512SEG.= 8

WXCL

N= 512SEG.= 8

v+•"•*.

N= 5125EG.= 8

i uiiiJ i i i uiiJ i ii mill

N= 512SEG.= 8

WXRC

ill i in uj i i i mill

N= 512SEG.= 8

YRC

\

, ....... 1 , ...... ,1 , ,,,,,,,1

N= 512SEG.= 8

WZRC

N= 512SEG.= 8

WXRL

N= 512S^G•— 8

*

*v,

N= 512SEG.= 8

. WZRL

10° io~8 10°/c = u/V (m

10,-B 10°

Figure A.311. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 41.

A.377

w x w z

•e-:=•

102

10°

10,-a

IF

r r

ifr r

—LL—-LC—LR

w x w y

v^fc»m%

— LL

.••

•e-

r r

r i i iiiml t i M mil i i uiutl i i iniiJ

CL

-—CC—CR

"-pi imnJ i niniJ i iiiuj i iiimil

rrrf

rr

' i iintiii i i mini i i iiiml I I uiiij

RL

—-RC—RR

rr \

rr

" i ninJ i tinJ iiinij i i mm i mini i until t i HUH i l ima ' i niiittt i i i u i m i numl i mini

101-8 10° 10~z 10°K = u/V (

101-8 10°

Figure A.312. Two-point cross-spectra of gust velocities, Flight 6, Run 41

A. 378

TABLE A.75.

ORIGINAL PAGE ISOF POOR QUALITY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 41.

STAPT TIfE 56114*5905 STOP TINE • 56223.5155

CHANNEL2 PHI DOT3 ACCl N CC4 THETA DOT5 THETA6 PHI7 PSI 16 OFL PSI 19 PSI 2

10 DEL PSI 211 A C C L N IT12 ACCL N RTJ3 ACCl X...C514 ACCL Y CG15 ALPHA CTR _16 B E T A CTR17 TEMP IIB TEMP P19_ACCL,1 INS__20 A L P H A PT21 B E T A RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT26 OC IT27 OC CTR26 OC RT29 PS30 TEMP IRT31 D TO 632 B TO 033 LONG34 LAT39 TRK ANG36 HOG37 VE3d VN39 ALTITUDE40 TEKPC41 EU UNO SPD42 NS UNO SPD43 WIND SPEEO44 t f lKC DIBEC-' i l PSFE IG 9-i U tSPEf 0 C47 AIRSPEED L48 DELTA ALT49 INPTL OISP50 UG RIGHT

"5fUG CENTER52 UG lEFf53 VG RIGHT54 VG CENTER "55 VG LEFT56 UG PIGHT57 WG CENTER58 UG IEFT

UNITSRAD/SECG UNITSRAD/SECRADRAODEGREESDEGREESDEGREESDEGREESG UNITSG UNITSCUNITSG UNITSPADRADOEG FDEC FG UNITSRADPADPADRAORAO/SECDEG CPSIOPSIDPSIOPSIADEG CPETERSDEGREESDEGREESDEGREESDEGREESRADIANSH/SECM/5ECKMDEGREES CKNOTSKNOTSKNOTSC E G P E E S* / S E CC / 5 C CP/SECMETERSPETERSM/SICM/SECH/SECM/SECM/SEC "M/SECM/SECM / S E CM/SEC

HIGH.195

-.986.076.087.135

164.3361.081

522.695.766

2.6102.607

.168

.171

.077

.06964.05393.242

1.670.093.083.086.038.045

33.163.923.906.929

11.64420.119

low-.264-.986-.068

.009-.167

156.346-4.654

517.063-5.154

-.487-.597-.005-.166-.090-.078

83.69393.062

,343-.089-.035-.084-.078-.035

28i930.636.622.648

11.47613.212

NEAN-.00222-.98774

.00607

.04613-.01356

161.19206-1.9596C

519.77113-2.25919

1.016371.02977

.05129

.01116._._ -.02254

-.0148583.8952393.23297

1.00706-.01504

.01671-.01518-,02066

.00300..31., 19861.

.76579

.75010

.77810U. 6055217.63910

RMS.04297.98774.01724.05054.03833

161.196592.29254

519.772452.552041.065921.07588...05566

.04804

.02671

.0258563.8952993.23298

1,0208?.02499.02674.02465.02820.01679

—111, 2078 5.76743.75178.77986

11.6055317.92344

8790627.0728787803.405**********************80.689

-104.42639.843

159.9192.667

46.972-101.787

2.03627.23238.152-.365

40.733334.831115.^65114.320115.37165.825

0.0005.2705.8475.1907.8167.6446.4079.5868.5248.609

60.632 60.66049 80.66049-104.482 -104.45448 104.45448

39.739 39.79119 39.79120156.300 157.58712 157.58868

2.761 2.81306 2.6131536.004 43.76572 43.64302

-109.3071.921

24.0436.096

-24.86610.891

271.11397. CIO95.08696.260

-49.786-51.255-6.931-7.793-7.325-6.556-7.428-6.326

-10.109-8.568-9.651

-105.945671.94723

25.6017022.65012

-13.56281-26.67774SCO. 90150105.95941104.07812105.14001-23.42937-25.80172

.00000

.00000

.00000

.00916

.01171

.00985-.01669-.01234-.01640

105.972561.94726

25.8076523.1467814.1936427.15214

301.0?f87106.0U0310«i. 133P*105.19363

25.5782627.70937

2.435282.375482.414262.15967

" 2 . 2 0 9 4 92.203792.466672.286152.42076

POIHTS43574357435743574357435743574357435743574357435743574357

. 4 3 5 743574357435743574357435743574357

._..4357435743574357435743574357435743574357435743574357435743574357435743574 3 5 74 3 5 74 3 5 7* 3 5 7435743574357435743574357435743574357435743574357

A.379

ORIGINAL PAGE ISOF POOR QUAUTY

O '*"

££

5S•o

10•o

cv c00 *^O01 I— Or- Q O)

^r co c\j^ .. •si-

oo •—>,co3 in ••

<u <u <o•u E i.us •- 3Q t— Q

(6ap)

O>

0 2o oo oen co

ooor-

oooVO

O

I

CT(U

01

o

ino

cr>co

(Tt

co

(A01

esi

oooin

CM

Ol

!Z«%co4->rO

O

(OQ.

o>

CO

CO

(U

01

A. 380

1 II I I

a:x3

I I I

c

I I I I I

o o o o o(M —. -H (M

>-2<

s!X

oM

OO

OCO

OCO

o

O

O

oO

o OCO <U

CD <D

o(M

o

., O

oo

oCO

oCO

o

otsi

O O O O O(M —i —. (VJ

O

"ol

t/)0)

•i- OvJO 3-O

'a; 3> a:

</> 103O14->

JC4- 0>O -r-

10 Ll_<U

s_ toO OJ•M Oto c

•r— QJ^ s-

OJO) <4-

oo

en

(s/ui)

A. 381

TABLE A.76. Average Turbulence Parameters and Integral Length ScalesFlight 6, Run 42.

I. Mean Airspeed (m/s)

110.3 109.2 111.1

HI. Standard Deviationof Gust VelocityDifferences (m/s)

1.00 1.03 1.24

XCL XRC

0.97 0.98 1.06

n. Standard Deviation ofGust Velocities (m/s)

o~WXL

3.49

aWYL

2.63

aWZL

2.72

V. Integral

awxc

3.43

aWYC

2.69

awzc

2.71

Length

crWXR

3.46

cr

2.67

crWZR

2.83

Scale (m)

\L \C \R

814 790 824

S»YC

2088 2118 21721.16 1.32

461 511 451

A. 382

1.0 i i i | i i i rW

o.o-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0 i i i i | r \ \ r

1-RC2-CL3-RL "

A W

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.315. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 42.

A. 383

IDOU

ao

ooIoI

0. 1000. 2000.' 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.316. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 42.

A. 384

ORIGINAL PAGE ISOf. POOR QUAi/TY

u

"u£3«*-(

0)ooco

"aj

1OUI

I&,

i

i.0.

-1.

0.

-1.0.

-J I i I _J L

1000. 2GOO. 3000.

Spatial Lag ,S=VT(m)

WXRC

WXRL

WYCL

WZCL

WZRL

Figure A.317, Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 42.

A. 385

102

10°

10-'r

102

10°

10-'r

von KarmanN= 512SEG.=10

—von KarmanN= 512SEG.=10

—von KarmanN= 512SEC.=10

IB lit itiin i i i iiiitl i i i mi

von KarmanN= 512SEG.=10

i i mill i i mull i I I mill i

—von KarmanN= 512SEG.=10

Wv

von KarmanN= 5125EG.=10

i i imil i tn mil i i i iiiij i i i

von KarmanN= 512SEG.=10

—von KarmanN= 512SEG.=10

—von KarmanN= 512SEG.=10

I nml i i I mill i iiiinil

10-8 10° \Q~Z 10° icr8

K = <y/V (m-1)

10°

Figure A.318. Normalized auto-spectra of gust velocities, Flight 6, Run 42.

A. 386

10a

66"

102

r 10°

10s

- 10°

N= 512SEG.=10

WXCL'

1 Illlllll 1 umlll 1 ..... Ill

N= 512SEG.=10

N= 512SEG.=10

WZCL

++

N= 512SEG.=10

WXRC

N= 512SEG.=10

N= 512SEG.=10

N= 512SEG.=10

WXRL

. . u in i l i , miiil I . I i ,mil

N= 512SEG.=10

,,, mil

N= 5125EG.=10

WZRL

10-8 10° io~8 10°K = u/V (m

ic 2 10°

Figure A.319. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 42.

A. 387

*e<

io

10,-a 10° 10° 10" 10°K = u/V

Figure A.320. Two-point cross-spectra of gust velocities, Flight 6, Run 42

A. 388

TABLE A.77. List of All Parameters Measured and Their Range of Values,Flight 6, Run 42.

START TIME • 56283.4507CHANNEL . UNITS HIGH

2 PHI OOT3 ACCL N CG ....4 THETA DOT3 THETA6 PHI7 PSI 18 DEL PSI" 19 PSI 2

10 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL X CG14 ACCL r CG15 ALPHA CTR16 BETA CTR17 TEMP I18 TEMP P19 ACCL Z INS; ...20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT?6 OC LT27 OC CTR?8 OC RT29 PS30 TEMP IRT31 0 TO G32 B TO D33 LONG34 L*T35 TRK ANG36 HDG37 VE38 VN39 ALTITUDE40 TE*PC41 EM MNO SP0

43 •I-«0 SPEED44 tolND U J O t C

«6 AlSSPEfO C47 AIRSPEED I48 DELTA ALT49 INRTL OISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 KG MGHI57 WG CENTER58 KG LEFT

RAD/SECG UNITSRAD/SECKADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUN ITSG UNITSRADRADDEC FDEG FG UNITSRAORADRADRAORAD/SECDEG CPSIDPSIDPSIDPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESRACIAKSM/SECM/SECKMDEGREES CKNOTSKNOTSKNOTSDEGREESM/SECM/SECM/SECMETERSMETERSM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

.138-.988.097.105.066

330.5874.667

329.4224.5782.6822.875.184.206.033.047

83.69393.4221.734.046.083.053.041.074

33.360

STOP TIMELOW-.162-.988-.072.004

-.102322.838-2.972322.029-3.095-1.189-.740-.016-.159-.129-.10483.15393.242-.C29-.133-.061-.124-.107-.04729.520

• 56423.6007

MEAN RMS POINTS•.00265-.98774.00613.04763

-.01209326.980841.15246

326.087711.011411.013211.02660.05184.01174

-.03043-.0162883.3693493.250971.00453-.02804.01666-.02711-.02246.00343

31.59253

.03744

.98774

.01818

.05252

.03206326.983481.73963

326.090231.652041.071281.08265.06614.04861.03583.02841

83.3694293.250961.02099.03527.02695.03390.03089.02006

31.609511.096 .621 .84609 .052061.071 .623 .82872 .634461.118 .664 .85894 .8647811.628 11.566 11.59495 11.5949620.119 6.907 16.19509' 16.46314

8787725, 3768760405. 299*«******»* *«*»***«****80.666

-104.46139.852324.2095.765

-61.56294.5641.97427.805-1.28510.40134.969133.063126.395123.772125.129

.1620.0009.8359.23210.3047.6698.2888.0619.3489.4328.829

80.571-104.57239.741320.7425.629

-71.76280.6551.93123.602-28.6C6-28.6715.4273.7/398.44495.44695.282-43.030-41.333-9.772-9.407-9.043-8.354-8.C53-8.403-8.789-8.853-10.260

80.61816-104.5161839.79765322.437915.70170

-66.7459986.866991.9545825.64363

-16.14936—10.3023720.447436C.22U36111.08026109.15326110.26046-19.74658-18.71720-.00000-.00000-.00000-.03780-.03310-.02826.02436.03277.01775

80.61817104.5161839.79766322.439355.7017566.6343586.983771.95460

25.6627516.6462012.7316520.9566864.02796Ul. 25600109.32959110.4412621.8787521.309543.505383.477023.539212.613372.625782.571092.936212.885092.85266

56865686568656865686366656865686568656865686568656865666568656865686568656t3656865686568656865686

"568656863686568656865686568656865686568656865686568656665686568656865686

56865686568656865686568656865686568656865686568656865686

A. 389

ORIGINAL PAGE ISOF POOR QUAUTY

V

•2.C<U 4J01 as

D.CO -»-»••- -C*J D>O "-O) r-

Q O•M

-o

1 1

C\J

•o

I I

(U

O 3

C\J

tr>O

CO

(Bap)

Q "2" 0<C^ W

CO?§»5r~in "

(U 4) <O4J E 5-03 •- £Q j— Q

o>

i.3oco

<ot-tt)

ooo

ooo00

OOorv.

ooo

*C-> O

CTV

00

IE

CO

C\J

ooom

ro

oM-c

03Q.

CMro

O)s.3CD

A. 390

oCDVI

<L>

OO

CD>

3cn-oc.to

0)

•r- COo •*o

CT)

CU•i— **i.. i/>o cu-!-> 0t/1 C

•r- CU.E S-

01cu *•-

C\JOvJ

cu

A.391

Figure A.323. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 43.

I. Mean Airspeed (m/s)

102.7 101.7 103.5

II. Standard Deviation ofGust Velocities (m/s)

WXL

4.82

aWYL

3.50

a

4.74

aWYC

3.48

crWXR

4.85

CTWYR

3.35

III. Standard Deviationof Gust VelocityDifferences (m/s)

1.16 1.24 1.49

1.24 1.25 1.39

ZRC

1.48 1.52 1.59

3.00

wzc2.88

(7WZR

3.09

IV. Integral Length Scale (m).

S

Sr

1107 1082 1080

2322 2226 2336

505 581 479

A. 392

1.0

0.8

0.6•PH.0

0.2

R = Righ'tC = Center w

L = Left

o.o-5.

I I I I | I I I I

W

i _ij_rffl i I i 9^' '

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.324. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 43.

A.393

a0)

<uoudo

<uSit*ou

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.325. Single-point auto-correlation coefficient of gust velocit ies,Flight 6, Run 43.

A. 394

ao>

ooco

Io

R'SPu,IO

E-

0. 1000. 2000, 3000.

Spatial Lag ,S=VT(m)

30CG.

Figure A.326. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 43.

A. 395

108

10°

10-

von KarmanN= 512SEG.= 8

von KarmanN= 512SEG.= 8

i i i mm i i i

von KarmanN= 512SEG.= 8

Illlllj ' llllllJ 1 I I mill i i I inn

von KarmanN= 512SEG.= 8

Ny

—von KarmanN= 512SEG.= 8

Wy

von KarmanN= 512SEG.= 8

i 11innl

von KarmanN= 512SEG.= 8

WXR

—von KarmanN= 512SEG.= 8

von KarmanN= 5125EG.= 8

i mini i I 'I I i """I i I mull

ic 8 10° Q-8 10°

* = <y/V (m-1)

io-8 10°

Figure A.327. Normalized auto-spectra of gust velocities, Flight 6, Run 43,

A. 396

108 r

* 10-2

102

•e- 10-s

108

•e<

N= 512SEG.= Q

WXCL

N= 512SEG.= 8

WYCL

N= 5125EG.= 8

N= 5125EG.= B

WXRC

N= 512SEG.= B

N= 512SEG.= 8

N= 512SEG.= B

WXRL

N= 512SEG.= B

WYRL

N= 5125EG.= 8

10° io~8 10°K = u/V (m

10' 10°

Figure A.328. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 43.

A.397

w x w z

•e<

•e-10

10*

io-8

10-* 10°

'lllllJ lllllllJ . lll.llj Illlllj

10~B 10°ic = Q/V (r

10~8 10°

Figure A.329. Two-point cross-spectra of gust velocities, Flight 6, Run 43.

A. 398

ORIGINAL PAGE ISOF POOR QUALTIY

TABLE A.78. List of All Parameters Measured and Their Range of Values,Flight 6, Run 43.

START TINE • 96470.4260 STOP TIME • 56585.6010

CHANNEL2 PHI DOT3 ACCL N CO4 THETA DOT5 THET46 PHI7 PSI 18 DEL PSI 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL X CG14 ACCL Y CG19~ALPHA CTR16 BETA CTR17 TEMP I18 TEMP P19 ACCL Z INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEPP TOT26 QC LT27 OC CTR?8 OC RT29 PS30 T IMP IRT31 D TO G32 B TO 033 LONG34 LAT35 TRK ANG36 HOG37 VE38 VN39 ALTITUDE40 TEMPO41 EM UNO SPO42 NS MNO SPO43 UNO SPEED«•<• Wlr«0 OI»EC ""45 »l-SfeED B46 MSS^tO C47 AIRSPEED L48 DELTA ALT49 INRTL OISP50 UG RIGHT51 UG CENTER52 UG LEFT53 VG RIGHT "54 VG CENTER55 VG LEFT56 WG RIGHT57 WG CENTER58 HG LEFT

UNITSRAD/SECG UNITSRAO/SECRAORADDEGREESDEGREESDEGREESDEGREES "G UNITSG UNITSGUNITSG UNITSRADRADOEG FDEG FG UNITSRADRADRADRAORAO/SECDEG CPSIDPSIOPSIOPSIADEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SECH/SECKMDEGREES CKNOTSKNOTSKfiCTSDEGREES""""H/SfcCK/SICH/SECMETERSMETERSM/SECM/SECM/SECM/SECM/SEC'M/SEC •H/SEC "M/SECM/SEC

HIGH.165

-.988.144,131.112

277.7532.611

275.2072.3444.2643.873.194.214.085.091

63.51393.4222.543.082.108.102.069.085

33.6561.063

LOW-.223-.988-.105.OC6

-.127268. V47-6.C89266.758-6.329-1.949-1.213-.026-.136-.101-.16482.97393.242.007

-.120-.086-.098-.151-.07228.634

.541

MEAN-.00211-.98774.00569.06641

-.00446272.97135-2.03655

. 270.72327-2.305091.012911.02445.07407.01026

-.01883-.0177683.2736393.346361.10390-.01173.01651

. -.01102-.02360.00357

30.58369.73396

RMS.05105.98774.02057.07204.03860

272.975742.55J42

270.727452.762791.091871.09776.06655.04311.03039.03627

83.2738993.396381.02453.02967.03253.02909.03746.02446

30.61276.74242

1.024 .525 .71699 .727231.055 .541 .74459 .7531611.634 11.420 11.59036 11.5903618.497 7.371 14.90966 15.01359

8776211. 2518763565. 709**»**»*********»»*****80.530 80.429 80.48134 80.48134

-104.626 -104.777 -104.69931 104.6993239.877 39.874 39.87461 39.87481273.969 269.759 271.34337 271.345744.U60 4.702 4.77539 4.77943

-112.109 -129.658 -120.20902 120.374548.4472.07727.311-1.58614.28058.6*1173.662122.975121.142123.909113.72119.63210.69710.5199.43212.859

"14.4259.37210.18810.45512.177

-.4831.92823.604-57.239-24.7056.66631.50668.6t387.35388.657

" -35.422-17.614-17.261-17.429-18.897-7.612-7.787-8.146-9.725-9.034-9.581

2.902641.9577725.40764-36.67363-10.11370~ 38.4969674.95791103.457001C1. 70340102.73223-5.41792-2.44869.00000.00000.00000.06192.06730.06633.01266.02866

• ~" .00414

3.808371.9578025.4208237.6436811.9279039.67tJ9575.57034103.74037ibl .940761103.0139110.782359.070604.842654.730094.816973.343883.474123.4B612

""" 3.094102.864062.99761

POINTS428742874287

~ 428742874287428742874287428742874287428742874287428742874287428742874287428742874287426742874287428742874287426742874267426742874287428742874287428742874287

""4267428742B7428742874287

" 428742874287428742874287428742874267

A. 399

<u

O) -MQ£ fOa.cO •!->

O ••-

s_ IZo o-a

CVJ

«a-o2

/

OTcu

O 3

i •<-o>

CM

in

5

(6ap)

CM —"OX) I— C5> Q Or- S O

, , QJ

- (£) ««

_ o

3 in ^ "~ o.. . .-*Jcy (if ro*J E 3-Q I— O

i-

O4JCo

2

CU

CM

ca;

CD

0H-C

(OQ.

oCOCO

Ol

CT)

.

Oooen

ooooo

Ooor^

ooo

oooin

A. 400

o

ooQJ>

en-a

in0>

0oCU

l/l <^53O>4->

(/I LJ_<D

i- COO OJ

+-> OCO C

.c s_<D

COCO

•<

QJ

CD

O O O O O(X( ,_, ^-i (\J

I I (S/UI)

a o o a oCM —i —' CM

I I

A.401

Figure A.332. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 44.

I. Mean Airspeed (m/s)

R

106.9 105.8 107.7

III. Standard Deviationof Gust VelocityDifferences (m/s)

CL

1.10 1.12 1.38

1.04 1.08 1.19

1.24 1.28 1.43

Et. SLandard Deviation ofGust Velocities (m/s)

aWXL

3.27

crWYL

3.59

aWZL

2.70

awxc

3.12

CTWYC

3.55

awzc2.57

aWXR

3.26

aWYR

3.53

a

2.72

IV. Integral Length Scale (m).

446

831

740

\c

464

XL \c

827

Wwzc

771

503

877

647

A. 402

1.0 i i i i i i rW

0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.333. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 44.

A. 403

C4)

<UO

tiO

<uIHInOOIO

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

1000.

Figure A.334. Single-point auto-correlation coefficient of gust velocities,Flight 6, Run 44.

A. 404

ao1*Ja

Iooo

RO

ft,

O

ORIGINAL PAGE ISOF POOR QUALITY

1000. 2000. 3000. 1000.

Spatial Lag ;S=VT(m)

Figure A.335. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 44.

A. 405

•von KarmanN= 512SEG.= 5

ll.ll .1,1von KarmanN= 512SEG.= 5

•von KarmanN= 512SEG.= 5

nit) i i i imj I I I mill i I I mil i i i iniii

von KarmanN= 512SEG.= 5

Wv

„„!

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

von KarmanN= 512SEG.= 5

Wy

von KarmanN= 512SEG-.= 5

von KarmanN= 512SEG.= 5

W7

10-2 1Q0 1Q-2 1Q0

K = u/V (m-1)

10,-2 10°

Figure A.336. Normalized auto-spectra of gust velocities, Flight 6, Run 44.

A. 406

103

•6- 1Q-z r

102

r 10°

io-8

108

N= 512SEG.= 5

,,,J ....... J ....... ,1 ,

N= 512SEG.= 5

WYCLV

N= 5123EG.= 5

i i iiinn i i mud i i itiuil i i iii

N= 512SEG.= 5

WXRC

N= 512SEG.= 5

N= 512SEG.= 5

ut i i mud i i i mill i t i inn

N= 512SEG.= 5

N= 512SEG.= 5

N= 5125EG.= 5

*

mill i t in nil t i .1.1 mil i iiiiini

10-8 10° io~8 10°ic = ej/V (m

ic 8 10°

Figure A.337. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 44.

A. 407

•e-

•6*::?

IO8

10°

io-2

102

10°

io-8

10*

10°

io-»

r

_

r

-

rr

r

-

.

-

-

r

rr

r

<r

\

r

rr

rr:

rrr

I\-FIfrI{

W x w zLL

-— LC

r \ — LR— v \

I 0\r Vv V\r \\r >^L

r

r~ i iimtJ i nmiJ i iniml i i iiiml

CL

— -ccr \ ~~CR_ \ TA

r ^VV

A *iL

r 'wrr-,,,„„! imnJ . miml ...M...I

— RL— -RC

r \ — RR

r \\\r Vv"v"-\!" V\

[ ^f

io-8 10°

g-

rr

f

rr

r

r

rr5-s

r=

rr-

r

rr

r

rr

r

r

r

r

rr

r

r

r•*•

T

rr

rI

r

r

r

r

r

r

rr

w x w Y— LL— -LC

r X — LR

^ u"" \^.\- \s\r \S

T^r

r

— CL— -cc

r X ~ CR

• x ""H*r V'A: \ i\ 1J

r \ ^r iVt

iir

r• I mini I llllllJ 1 lllllJ I tllJIll

RL

-— RC

r X — RR

r \^-X.r V*^r" i ift

r \rr' jut i f f j i ulna inin^ i inaa

10-* 10°A; = o>A (nT1)

r

r

^_~f

rs-

r

=-

1-

r

r

r;

r

r-

r

rr

r

r

r

ru_

B-

r^r

rr

5-

•••=

r

|

f

r:

r

r

r

r

rii

rr

f

w y w z

— LL— -LC

r \ — LR\ \

r xs\\

r V'vv,,\r * n*ij* ( ji

r T*

rr~ t niiiiii i iitiml i ii ii ml i niiiiJ

— CL

— -ccr \ — CR

: \ 'S. \?~ ^^ ^^ in• v\ \<r y| '=- iir

r" i iiiinil i ii iiml i ii mill i iiiml

— RL— -RC

T \ — RR

r S>^ \r x->TiJS\r \ t.- ¥«| - *»L (i

r \r

r

ID'8 10°

Figure A.338. Two-point cross-spectra of gust velocities, Flight 6, Run 44

A. 408

TABLE A.79. List of All Parameters Measured and Their Range of Values,Flight 5, Run 44.

START TIME • 56626.3912 STOP TINE • 56700.6162

CHANNEL2~PHI DOT"3 ACCL N CG4 THETA DOT5 THETA6 PHI7 PSI 18 DEL PSl 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL X CG '•"14 ACCL Y CG15 ALPHA CTR~ "16 BETA CTR17 TEKP I18 FENP P19 ACCL Z INS20 ALPHA RT21 BETA RT22 ALPHA LT23 BETA LT24 PSI DOT25 TEMP TOT """"26 OC LT27 OC CTR?8 OC *T29 PS30 TEMP IRT31 0 TO G32 B TO D33 LONG34 LAT35 TB* ANG36 HOG37 VE38 VN39 ALTITUDE40 TE1PC41 Erf WNO SPO42 *S h*0 SPO43 UND SPeEO44 nIsD DIfitC45 4I8SPEED R46 AIRSPEED C47 AIRSPEED L48 DELTA ALT<r9 ISBTL DliP50 UG RIGHT51 UG CENTER'52 UG LEFT53 VG RIGHT54 VG CENTER55 VG LEFT56 «G BIGHT57 «/G CENTER58 hG LEFT

UNITSRAD/SEC ~G UNITSRAD/SECRAORADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUNITSG UNITSRADRADDEG FDEC fG UNITSRADRADRADRADRAD/SECDEG CPSIDPSIDPS 10PS1ADEG CHETERSDEGREESDEGREESDEGREESOtCifttESRADIANSP/SECf/SECKH

DEGREES CKNOTSKNOTSKNOTS

DEGREESH/SECM/SECH/SECMETERSHETERSM/SECM/SECH/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.172

-.988.087.113.063

103.4002.875

461.0372.4322.7362.591.120.186.043.045

83.69393.4221.617.063.073.058.030.047

32.671

LOU-.142-.988-.072.011

-.10495.299-5.001453.342-5.447"-.332-.488-.044-.139

"" -.097-.09582.61393.242

.165-.104-.053-.100-.087-.05429.C28

MEAN-.00284-.98774.00573.05185-.0174599.41393-1.10287

• 457.08981-1.520371.00689

" 1.01763.02933.00793-.02670-.0207783.2140593.41608.99584

-.02323.01255-.02288-.02639.00184

31.01379

RMS.04280.98774.01874.05854.04126

99.431322.14398

457.093352.384231.064441.06730

~ .04181.04089.03328.03340

"83.2145893.416091.01176.03187.02667.03142.03558.02154

31.026771.066 .623 .79363 .799761.043 .614 .77785 .783711.075 .614 .60569 .8119511.652 11.384 11.58289 11.5829018.497 14.295 16.71458 16.72667

8770378. 5988764277. 722******»* *********** t»*80.481

-104.69739.894101.960

1.B2C97.149

" -10.0522.102

23.087-18.33525.85552.056119.353124. 065122.215124.768145.40931.82410.347e.4ie~~7.8688.0008.7419.4507.4096.1566.889

80.429-104.77239.88397.1371.67680.124-20.039

1.S1S23.719-46.753-9.11319.37372.72294.55794. (3195.298-42.042-17.133-8.111-7.864-9.206-8.631-8.900-8.710-8.858-7.664-8.376

80.45594-104.7336439.88779100.476971.74U34

86.53513-16.036631.9629325.42017-33.31267- *. 45*9935.27327K5.t3259107.65803105.83196106.870406.121739.77187-.OOCOO-.00000-.00000-.09730-.08698-.07784.02468.03482.02997

80.45594104.7336539.88779100.465821.7486686.66680

"16.250311.96301

25.4413033.8725511.6675835.82572106.221531P7. 84998106.01463107.0993613.3161116.223313.354743.226183.337033.413293.429943.450602.617172.478b72.61362

POINTS"296929692969296929692969296929692969"296929692969296929692969

"29692969296929692969296929692969296929692969296929692969296929692969296929692969296929692969296929692969296929692969

• 29692969296929692969"29692969296929692969296929692969

A. 409

ORIGINAL PAGE ISOF POOR QUALITY

0>

<O

"a!it}0.

4J O>o ••-<U r-l_ LL.

S O+J

•a

1 t

CM

O

(6sp)

CM -—~"O30 I— CO^ O O.— S u^_ OJ- - v

^T.vo^ CO ^

3 LO '•

^"a.. . . 4->co a> ""

•t-> E 1-* — ,2a t— Q

(0Q_

io So oo oCfi 00

ooo

co

s_at

ooo

LO

«3-oI

010)TJ

a»o

LO

LD

CO

O

00

vo

co

CM

OOLf>

o•r—4->(O

O

fOQ.

a-iroro

<DS-

A.410

uo

1/53o>-a

l/lai

O *3-o

i— c:d) 3

(/) VO

CJ> 4->-E

M- O>O -i-

</) U_Ol

•^ *\&- (/)O Ol

•»-> o</) C

•^: i-o;

OJ <+-E «4- . -

•r— *r— 'i— -a

ais_C7>

O O O O O(\) 1-1 1-1 (M (s/ui)

o o o o oCXI —1 —1 t\J

A.411

TABLE A.80. Average Turbulence Parameters and Integral Length Scales,Flight 6, Run 46.

I. Mean Airspeed (m/s)

R

104.9 103.8 105.5

II. Standard Deviation ofGust Velocities (m/s)

aWXL

3.04

aW.xc

2.98

uWXR

3.19

aWYL

3.22

a

3.37

CTWYR

3.28

III. Standard Deviationof Gust VelocityDifferences (m/s)

CL

1.39

1.37

1.43

1.39

1.56 1.53

"V.

1.80

XCL HRC XRL

1.43

HCL XRC XRL

1.79

aWZL

2.68

wzc2.50

WZR

2.75

IV. Integral Length Scale (m).

370

506

370

454

420

V468

161 178 155

A.412

1.0 r

0.8

2 0.4P-,

0.2

o.o

CenterLeft

-5. 0 5. -5. 0 5. -5. 0

Normalized Gust Velocity (Standard Deviations)

1.0 l i 1 r| i i I T

1-RC2-CL3-RL "

A N

0 5. -5. 0 5. -5. 0 5.

Normalized Velocity Differences (Standard Deviations)

Figure A.341. Probability density function for gust velocities and gustvelocity differences, Flight 6, Run 46.

A.413

G<u

(Uouao

ou

l_= 1 ,—.1. 1

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

•5000.

Figure A.342. Single-point auto-correlation coefficient of gust velocities.Flight 6, Run 46.

A.414

a£o0)ooco

ouIo

O0,

I

1.

0.

0.

1.0.

WXRC

WXCL

WXRL

WYRC

WYCL

WYRL

WZRC

WZCL

WZRL

1000. 2000. 3000.

Spatial Lag ,S=VT(m)

000.

Figure A.343. Two-point auto-correlation coefficient of gust velocities,Flight 6, Run 46.

A.415

I

10Z

10°

10-r

•von KarmanN= 512SEG.= 7

von KarmanN= 512SEG.= 7

•von KarmanN= 512SEG.= 7

•von Karman IN= 512SEG.= 7

ml i ,,,„„!

•von KarmanN= 512SEG.= 7

,,,! Ivon KarmanN= 512SEG.= 7

I mull t t Html I i i mill

—von KarmanN= 512SEG.= 7

—von KarmanN= 512SEG.= 7

—von KarmanN= 5125EG.= 7

10~s 10° ID'2 10°

K = <y/V (m"1)

icr810°

Figure A.344. Normalized auto-spectra of gust velocities, Flight 6, Run 46,

A.416

108

6"IT

•6- 10-a

102

108

- 10°

io-a

N= 512

N= 512SEG.= 7

N= 512SEG.= 7

N= 512SEG.= 7

WXRC

N- 512SEG.= 7

N= 512

SEG.= 7

WZRC

N= 512SEC.= 7

N= 512SEG.= 7

N= 512SEG.= 7

ZRL

\

10°K = u/V

10°

Figure A.345. Normalized two-point auto-spectra of gust velocities,Flight 6, Run 46.

A.417

1C2 r

io-3

102

10°

io-a

IO2

10-*

10~s 10° io-2 10°K = u/V (m"1)

10i-Z 10°

Figure A.346. Two-point cross-spectra of gust velocities, Flight 6, Run 46.

A.418

TABLE A.81.

ORIGINAL PAGE fSOF POOR QUALITY

List of All Parameters Measured and Their Range of Values,Flight 6, Run 46.

START TINt 96894.4615 STOP TINE • 56990.6669

CHANNEL2 PHI DOT3 ACCL N CG4 THETA DOT5 THETA6 PHI7 PSI 16 DEL PSI 19 PSI 210 DEL PSI 211 ACCL N LT12 ACCL N RT13 ACCL X CG"14 ACCL Y CG15 ALPHA CTR"16 BETA CTP17 TEMP I18 TEhP P ~19 ACCL Z INS"20 ALPHA RT21 BETA f>T22 ALPHA LT23 BETA LT24 PSI OQT25 'TEMP "TOT26 OC LT27 OC CTR26 OC RT29 PS30 TEMP IRT31 0 TO G32 8 TO 033 LONG34 LAT35 TfcK ANG36 HOG37 VE38 VN39 ALTITUDE40 TEHPC41 Ey UNO SPD42 NS UNO SPD43 HsD SPEED44 WIND DIDcC*5 il'-S?E£D »<•<> APSPEED c47 AIRSPEED L48 DELTA ALT49 INRTL DISP50 UG RIGHT51 UG CENTER "52 UG LEFT53 VG RIGHT14 VG CENTER55 VG LEFT56 *G RIGHT17 MG CENTER58 »G LEFT

UNITSRAO/SECG UNITSRAD/SECRADRADDEGREESDEGREESDEGREESDEGREESG UNITSG UNITSGUN ITS ~"G UNITSRADRADDEG FDEG FG UNITSRADRADRADRADRAD/SECPEG CPSIOPSIDPSIDPSIAOEG CMETERSDEGREESDEGREESDEGREESDEGREESRADIANSM/SfcCM/SECKMDEGREES CKNOTSKNOTSKNOTSDEGREESM/SECH/SECN/SECMETERSMETERSM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SECM/SEC

HIGH.256

-.988.107.084.115

120.3076.842

462.5556.4902.9293.030.139.198.062.148

83.33393.6021.965.085.167.048.141.122

32.868.999

LOW-.154-.988-.093-.C02-.126

106.922-6.353469.191-6.594-.976-.638-.014-.198-.119-.19982.97393.422

.170-.122-.154-.124-.181-.15929.914

.603

MEAN-.00288-.98774.00562.04709

-.OC682113.39553

.04088475.65688

-.257121.014351.02626.05503.01267

-.02436-.0136563.0771793.506631.00498-.02124.01832

-.02072-.01948.00396

31.40905.76166

RMS.05378.98774.02221.05071.03697

113.414192.05479

475.661092.056211.095971.10270.06207.05424

~ " .03284".04592

83.0772393.508671.02776.03256.04371.03111.04401.03455

31.41576.76539

.974 .595 .74575 .749191.006 .611 .77096 .7747711.628 11.556 11.60257 11.6025719.312 15.790 17.68589 17.70696

6765989.5818758762.061**********************60.445

-104.75339.909117.223

2.12262.307-32.00C1.96027.909-14.27935.65353.949146.061120.130in. 042119.60028.3668.6939.8148.0418.15411.33210.363

. e.i6i12.0609.1128.371

90.380-104.84139.877112.655

1.88579.324

"-39.4151.93124.367-47.641-4.63918.29482.47094.37393.16793.613-20.576-19.730-10.437-10.228-10.710-6.678-9.188-8.590-8.653-7.778

~ -8.846

60.41270-104.7969039.89324115.249021.9994876.14249

-36.835611.9492626.03665-30.3230914.6476734.31207

116.C3064105.402491C3. 76903104.85960-2.62153-2.48577-.00000-.00000-.00000.02548.02318.01855.01224.00632.00349

80.41270104.7969139.89325115.257491.9998278.1748836.906531.9492926.0519930.9777715.9231334.83357116.57383105.58074lbi.b7774104.969457.616017.316113.295383.105703.184493.272413.365273.208532.766572.4D6782.65923

POINTS384938493649.3849364938493849384936493849384938493849

"38493849364938493849

" 364938493849384936493849364938493849384938493849364938493849384938493649'3849364938493849384938493649384936493649384936493849

'" 384938493849384936493849

" 36493849

A.419