An Investigation Of Development Pathways For ... - DiVA Portal

122
An Investigation Of Development Pathways For An Economically Viable Seafarm Cultivation At The Kosterfjorden, Sweden Jean-Baptiste Thomas Master of Science Thesis Stockholm 2013

Transcript of An Investigation Of Development Pathways For ... - DiVA Portal

An Investigation Of Development Pathways For An Economically

Viable Seafarm Cultivation At The Kosterfjorden, Sweden

Jean-Baptiste Thomas

Master of Science Thesis

Stockholm 2013

Jean-Baptiste Thomas

Master of Science Thesis STOCKHOLM 2013

An Investigation Of Development Pathways

For An Economically Viable Seafarm

Cultivation At The Kosterfjorden,

Sweden

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY

Supervisor:

Fredrik Gröndahl, Industrial Ecology, KTH

Examiner:

Fredrik Gröndahl, Industrial Ecology, KTH

TRITA-IM 2013:30

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se

Abstract      New   opportunities   for   sustainable   economic   development   have   emerged   from   the  

transdisciplinary   collaboration   of   aquaculture   and   biotechnology.   As   a   response   to   the  

European   Commission’s   call   for   a   European   Bioeconomy,   SEAFARM,   a   five-­‐year   program  

pending   funding   from  FORMAS,  aims   to  develop  a  sustainable  aquaculture  as  a  milieu   for  

and  in  support  of  further  research  in  blue  biotechnology  in  five  collaborating  institutions  in  

Sweden.  This  thesis  aims  to  explore  aquaculture  technologies,  notably  IMTA  and  long-­‐line  

systems,   established   and   emerging   seaweed-­‐based   products,   the   proposed   Kosterfjorden  

site,  a  case  study  of  a  similar  project  in  Scotland,  BioMara,  and  some  other  technological  and  

socio-­‐economic   hurdles   that   will   affect   the   SEAFARM   cultivation   -­‐   all   to   enable   the  

development   of   two   economically   viable   but   contrasting   scenarios   for   the   cultivation.  

Scenario   ONE   represents   a   BioMara   inspired   cultivation   optimised   for   the   industrial  

production  of  biofuel  feedstock,  while  scenario  TWO  explores  the  potential  of  a  small-­‐scale  

and  diverse   IMTA  cultivation.  These  scenarios  were  cross-­‐referenced  against   the  scenario  

context  criteria.  The  final  result   indicated  scenario  TWO,  the  small-­‐scale  diversified  IMTA,  

would  be  a  more  adaptable  and  economically  resilient  option,  delivering  a  greater  variety  of  

species   for   biotechnological   scrutiny,   potential   for   a   diverse   and   specialised   range   of  

products   and   revenues,  while   also   optimising   the   conditions   necessary   for   the  pursuit   of  

SEAFARM   research   objectives,   notably   through   the   development   of   the   first   IMTA   in  

Sweden.  

                 

Acknowledgements      At   the   time   of   writing   this   acknowledgement   only   a   few   days   have   passed   since   my  

supervisor,   Fredrik   Gröndahl,   was   awarded   funding   to   initiate   the   SEAFARM   research  

project.  I  would  like  to  congratulate  him  as  well  as  thank  him  for  giving  me  the  opportunity  

to  witness  the  beginning  of  a  great  landmark  research  initiative  for  Sweden.  Just  like  in  the  

course  of  any  journey,  one  meets  people  who  give  up  a  bit  of  their  time  to  help  you  along  

the  way  with  new  ideas,  motivating  stories,  guidance,  support  and  friendship.  My  deepest  

gratitude  goes  out  to  all  the  interviewees,  notably  Göran  Nylund  and  Stephen  Cross,  Fredrik  

and  his  wife  for  their  hospitality,  as  well  as  Karin  Orve  and  Monika  Olsson  for  their  passion  

and   dedication   to   our   course.   This   thesis   would   not   have   been   possible   without   the  

enterprising  and  enduring  friendships  of  my  fellow  masters  graduates.  I  would  also  like  to  

thank  my  family  and  all  my  friends  back  home  without  whose  support,  I  would  have  never  

gone  to  KTH  in  the  first  place.    

 

                  Jean-­‐Baptiste  Thomas

   

 

 List  of  Abbreviations      SLCMS     Sven  Lovén  Centre  for  Marine  Sciences  SMHI     Swedish  Meteorological  and  Hydrological  Institute    IMTA     Integrated  Multi-­‐Trophic  Aquaculture  SAMS     Scottish  Association  for  Marine  Sciences  BESP   Break-­‐even  Electricity  Selling  Price  AD     Anaerobic  Digestion  PP     Profit  Potential  RSI     Required  Seaweed  Input  FA     Focus  Area          

  2  

List  of  Figures,  Tables  and  Charts      Figure  1       A  holistic  perspective  diagram  of  SEAFARM  FAs  1-­‐5  Figure  2       Market   shares   of   global   seaweed   industry   by   product   in   2004   (US$  

Millions).  Figure  3       Pyramid  of  trophic  levels  for  a  marine  environment.  Figure  4     Diagram  illustrating  an  IMTA,  featuring  finfish,  shellfish,  seaweeds  and  

invertebrates.  Figure  5     Value  pyramid  for  algae-­‐based  products.    

-­‐  -­‐  -­‐  -­‐  -­‐    

Table  1     Main  components  of   the  world's  seaweed   industry  and   their  value   for  2004  (US$).  

Table  2     Description  and  approximate  values  of  typical  algae-­‐based  foods.  Table  3     Description  and  approximate  values  of  typical  phyco-­‐supplements.  Table  4     Statistiska   centralbyrån   energy   prices   for   natural   gas   and   electricity  

(SEK/MWh).  Table  5     Summary   of   market   status   and   qualitatively   assigned   PP   and   RSI,   by  

product  category.  Table  6   Summary  of  results.  

 -­‐  -­‐  -­‐  -­‐  -­‐  

 Chart  1     Seasonal  Fluctuations  of  Surface  Water  Temperature  Gradients   (°C)  at  

the  Kosterfjorden  in  2012.  Chart  2     Seasonal  Fluctuations  of  Surface  Water  Salinity  Gradients  (PSU)  at   the  

Kosterfjorden  in  2012.  Chart  3     Seasonal   Fluctuations   of   Nitrate   (mgL-­‐1   )   and   Ammonium   (mgL-­‐1   )    

Gradients  at  the  Kosterfjorden  in  2012.  Chart  4     Seasonal   Fluctuations   of   Nitrite   (mgL-­‐1)   and   Phosphate   (mgL-­‐1)  

Gradients  at  the  Kosterfjorden  in  2012.    

  3  

   

1.   INTRODUCTION  ..........................................................................................................  5  1.1.   BACKGROUND:  THE  BIOBASED  ECONOMY  ....................................................................................................  5  1.2.   SEAFARM  .............................................................................................................................................................  6  1.3.   AIMS  AND  RESEARCH  QUESTION  ....................................................................................................................  8  1.4.   OBJECTIVES  .........................................................................................................................................................  9  

2.   METHODOLOGY  .......................................................................................................  11  2.1.   GROUNDED  THEORY  .......................................................................................................................................  11  2.2.   METHODOLOGY  ................................................................................................................................................  13  2.3.   LIMITATIONS  ....................................................................................................................................................  16  2.4.   ETHICAL  ASPECTS  ...........................................................................................................................................  17  

3.   LITERATURE  ............................................................................................................  19  3.1.   MACROALGAE  ...................................................................................................................................................  19  3.1.1.   Biological  basics  ......................................................................................................................................  19  3.1.2.   Seaweed:  a  global  industry  .................................................................................................................  22  3.1.3.   Phyco-­‐products  and  their  value  ........................................................................................................  24  

3.2.   AQUACULTURE  .................................................................................................................................................  34  3.2.1.   Fish  aquaculture  ......................................................................................................................................  35  3.2.2.   Seaweed  aquaculture  ............................................................................................................................  37  

3.3.   IMTA:  INTEGRATED  MULTI-­‐TROPHIC  AQUACULTURE  ...........................................................................  38  3.3.1.   Defining  IMTA  ...........................................................................................................................................  39  3.3.2.   Ancient  Origins  .........................................................................................................................................  42  3.3.3.   Quantifying  IMTA  Synergies  ...............................................................................................................  44  

4.   CASE  STUDY:  BIOMARA  ............................................................................................  48  4.1.   KEY  FINDINGS  ..................................................................................................................................................  49  4.1.1.   Identifying  Seaweeds  for  Biofuel  Conversion  ..............................................................................  49  4.1.2.   Harvesting  Beach-­‐Cast  Seaweeds  ....................................................................................................  50  4.1.3.   Technological  and  Socio-­‐Economic  Impacts  of  Biofuel  Production  from  Marine  Biomass  ........................................................................................................................................................................  51  

4.2.   PROJECT  SETBACKS  .........................................................................................................................................  52  4.3.   ‘PASSING  THE  BATON’  TO  SEAFARM  .........................................................................................................  53  

5.   RESULTS:  SEAFARM  DEVELOPMENT  SCENARIOS  ............................................................  55  5.1.   SCENARIO  CONTEXT  ........................................................................................................................................  55  5.1.1.   The  Kosterfjorden  site  ...........................................................................................................................  56  5.1.2.   Assigning  values  to  products  ..............................................................................................................  61  5.1.3.   SEAFARM  research  objectives  ............................................................................................................  64  5.1.4.   Socio-­‐  and  techno-­‐economic  context  ..............................................................................................  66  

5.2.   SCENARIO  DESIGN  ...........................................................................................................................................  68  5.2.1.   Scenario  ONE  –  A  Biofuel  Optimised  Aquaculture  ....................................................................  68  5.2.2.   Scenario  TWO  –  A  Small-­‐Scale  Diversified  IMTA  ......................................................................  70  

5.3.   SCENARIO  MATRIX  RESULTS  .........................................................................................................................  72  6.   CONCLUSION  ..........................................................................................................  74  6.1.   FURTHER  RESEARCH  .......................................................................................................................................  75  

7.   REFERENCES  ...........................................................................................................  77  

  4  

8.   APPENDIXES  ...........................................................................................................  86  8.1.   APPENDIX  A  –  VARIABLES  AFFECTING  SEAWEED  GROWTH  RATES  ........................................................  86  8.2.   APPENDIX  B  –  QUANTIFYING  IMTA  SYNERGIES  (FULL)  .......................................................................  87  8.3.   APPENDIX  C  –  MAPS  OF  KOSTERFJORDEN  SITE  FOR  SCENARIOS  ONE  AND  TWO  .............................  94  8.4.   APPENDIX  D  –  MAP  OF  AREA,  PHOTOGRAPHED  DURING  STUDY  VISIT  TO  SLCMS  .............................  95  8.5.   APPENDIX  E  –  INTERVIEW  TRANSCRIPTS  ...................................................................................................  96          

  5  

1. INTRODUCTION    

The   present   thesis   was  written   in   support   of   the   pending   SEAFARM   project.   The  

introduction  presents  the  call  by  the  European  Commission  for  research  to  pave  the  

transition  to  an  inherently  sustainable  bioeconomy.  SEAFARM  is  the  embodiment  of  

a   Swedish   response   to   this   call.   The   core   aim   of   the   thesis   will   thereafter   be  

introduced,  and  objectives  to  achieve  this  goal  will  be  fractioned  out.    

 

1.1. BACKGROUND:  THE  BIOBASED  ECONOMY    

 

“For   most   people,   the   bioeconomy   is   the   way   of   the   future.   A   shift   towards   an  

economy   based   on   renewable   resources   not   on   fossil   fuels   is   no   longer   just   an  

option,  it's  a  necessity”  (European  Commission,  2012).    

The   above   quote   summarises   the   basics   quite   accurately.   The   sooner   the  

replacement   of   fossil   fuels   is   conquered   in   theory   and   practise,   the   better.   In   the  

race   to   develop   a   European   bioeconomy,   the   European   Commission   launched   in  

February   2012   a   new   strategy   entitled   “Innovating   for   Sustainable   Growth:   a  

Bioeconomy  for  Europe”  (European  Commission,  2012).  Summarised  by  Maive  Rute  

Director   of   the   European   Commission   ‘Biotechnology,   Agriculture   and   Food’  

Directorate,   the  vision   is   for  a   “transition   to  a  more  resource  efficient   society   that  

relies  more  strongly  on  renewable  biological  resources  to  satisfy  consumers'  needs,  

industry  demand  and  tackle  climate  change”  (Rute,  2012).  

In  Europe   the  bioeconomy   is   already  one  of   the  major   industries,   turning  over  an  

estimated   €2   trillion   and   accounting   for   9%   of   jobs,   employing   over   22   million  

people  principally  in  fishing,  forestry  and  farming  (Rute,  2012).  These  are  the  three  

primary  production  sectors  that  will   feed  the  bioeconomy,  whose  products  will  be  

processed  in  biorefineries  to  replace  fossil  fuel-­‐based  products.    

 

  6  

Both   farming   and   forestry   are   well   established   in   the   EU,   protected   by   strong  

regulation   and   scrutinised   by   independent   judicators   -­‐   however   the   domain   of  

fishing   is  very  different.  Perhaps   it   is  because  the  oceans  are   too  vast   to  grasp  the  

impacts   we   are   having   on   them,   or   perhaps,   as   terrestrial   mammals,   we   do   not  

relate   the   aquatic   happenings   in   the   same   way   as   we   do   on-­‐land.   The   human  

conquest  of  the  oceans  is  still   in   its   infancy  and  predominantly  based  on  what  you  

might   term   primitive   ‘hunter-­‐gatherer’   principles,   to   harvest   natural   stocks.  Most  

ocean-­‐based   produce   comes   either   directly   (wild   capture   fisheries)   or   indirectly  

(intensive   aquaculture   fed  with  wild   capture   fish)   from   natural   stocks,  which   are  

dwindling   at   alarming   rates   in   the   face   of   improved   technologies   and   growing  

demand.  Only  a  minority  of  the  overall  market  is  based  on  ‘agricultural’  principles,  

whereby  a  carrying  capacity  is  increased  by  intensive  species  cultivation,  lessening  

pressure  on  natural  stocks.  Until  the  second  half  of  the  20th  century,  few  cultivations  

of  aquatic  products  took  place,  however  incentives  and  demand  are  on  the  rise,  and  

policy  makers  are  increasingly  looking  to  our  oceans  for  answers.    

 

1.2. SEAFARM  

 

The  SEAFARM  project  aims  to  provide  Sweden  with  its  first  sustainable  macroalgae  

farm   to   provide   an   entirely   new   class   of   feedstock,  marine-­‐based   feedstock,   for   a  

future  biobased  Swedish  economy  (Gröndahl,  2012).  The  project  is  still  in  its  infancy  

having   applied   for   funding   in   early   2013.   A   location   for   the   farm   remains   to   be  

determined,  but  it  will  need  to  be  located  in  proximity  to  the  Sven  Lovén  Centre  for  

Marine   Sciences   (SLCMS),   Tjärnö.   The   SLCMS   is   a   research   centre   internationally  

renown   for   its   marine   science   excellence   and   innovation,   able   to   provide   the  

expertise,  equipment  and  facilities  needed  to  cater  for  such  a  research  project.    

 

The   SEAFARM   project   extends   beyond   a   mere   seaweed   cultivation   however:   a  

transdisciplinary  research  collaboration  will  be  formed  between  some  of  the  major  

academic   institutions   in   Sweden,   including   KTH   Stockholm,   Linnaeus   University,  

  7  

Lund  University,   the  University  of  Goteborg   and  Chalmers.   SEAFARM   is   separated  

into  five  focus  areas  (FA)  as  seen  in  figure  1  below.    

 

   

Figure   1   –   A   holistic   perspective   diagram   of   SEAFARM   FAs   1-­‐5.   Source:  Gröndahl  (2013)    

FA1  involves  the  stimulation  of  know-­‐how  about  sustainable  seaweed  cultivation  on  

the  Swedish  west  coast.  FA2  will  be  an  investigation  to  develop  cheap  and  effective  

post-­‐harvest  pre-­‐treatment  and  preservation  methods  for  subsequent  transport.  In  

FA3,   seaweed   biomass   shall   be   subjected   to   thorough   biotechnological   scrutiny,  

mapping  out  its  constituent  elements,  identifying  potential  products  and  developing  

a  biorefinery  approach  for  their  extraction,  similar  to  the  multi-­‐product  fractioning  

in  petroleum  refineries.  FA4  aims  to  optimise  the  biofertiliser  and  biogas  potential  

of  wastes  coming  from  the  biorefinery  fractioning  processes.  Finally  FA5  will  see  the  

design   and   implementation   of   new   holistic   sustainability   assessment   tools,  

  8  

developed  specifically  in  the  context  of  cultivation  and  refining  of  seaweed  biomass.  

(Gröndahl,  2013)  

 

Having  received  some  preliminary  funding  for  pilot  projects,  SEAFARM  seems  likely  

to   be   granted   funding   for   a   period   of   up   to   5   years.   However   it   would   be  

counterproductive   for   the   community   of   Swedish  marine   biotechnologists,   if   after  

this  five-­‐year  period,  such  an  aquaculture  were  to  become  unviable  and  redundant.  

For  the  cultivation  to  continue  independently  in  the  future  and  persist  in  providing  a  

suitable   environment   for   further   research,   it   should   reach   a   state   of   economic  

sustainability   by   the   end   of   the   five   years.   With   this   in   mind,   the   present   thesis  

should   be   read   as   a   preliminary   investigation   into   development   pathways   to  

economic  viability  for  SEAFARM.  

   

1.3. AIMS  AND  RESEARCH  QUESTION  

 

Like  any  research  project,  this  thesis  represents  a  journey.  It  began  with  the  aim  of  

determining   the   scale   of   operations   required   for   economies   of   scale   to   push   a  

macroalgae   farm   producing   for   biofuel   feedstock,   toward   a   state   of   economic  

viability.   In   essence,   the   core   of   the   project   would   have   involved   building   on   the  

legacy  of   the  SAMS  BioMara  project   and   its   transposition   to  a   Swedish  west   coast  

context.  As  the  literature  review  process  began  to  reveal   itself,   it  became  apparent  

that  research  in  the  field  had  rapidly  matured.  The  last   few  years  has  seen  a  rapid  

rise   in   publication   and   patents   relating   to   marine   organisms   (Submariner  

2012:148).  Whereas   only   a   few  years   ago   research   focused  on  developing  marine  

resources  as  biofuel  feedstocks,  today  that  is  only  a  small  part  of  an  emerging  bigger  

picture   –   that   all   sorts   of   compounds   and   chemicals   can   be   fractioned   out   of  

macroalgae,  not  just  biofuels.    

 

Only   in   this   context  does   the   full   extent  of   the  SEAFARM  research  project  become  

apparent:   it   is  acting  as  a  catalyst  for  the  transdisciplinary  collaboration  of  marine  

  9  

aquaculture,   blue   biotechnology   and   biofuel   research   in   Sweden.   The   economic  

viability  of  such  a  cultivation  and  its  downstream  operations  is  undoubtedly  vital,  to  

support  research  beyond  the  restricted  five-­‐year  funding  package,  for  what  could  be  

the  emergence  of  an  entire  new  industry  on  the  west  coast  of  Sweden.    

 

As   a   result   of   this   preliminary   exploration   the   present   thesis   took   on   a   new  

direction:   to   inform  and  enable  SEAFARM  strategizing  and  decision-­‐making.  Can  a  

sustainable  macroalgae  cultivation  on  the  Swedish  west  coast  provide  high  quality  

samples   for   SEAFARM   research,   while   achieving   economic   viability   within   five  

years?  This  shall  be  considered  the  research  question  to  which  this  thesis  embodies  

an  answer.    

 

1.4. OBJECTIVES  

 

In  order   to  achieve   this   rather  broad  aim,  a  series  of  objectives  were   identified  as  

stepping-­‐stones   to   painting   the   full   picture.   These   are   bulleted   hereafter   and  

provide  a  generalised  sequence  that  was  followed.    

 

ü Select  a  cultivation  site  near  SLCMS  &  establish  background  information  

ü Explore   the   seaweed   &   fish   aquaculture   industries:   current   trends  and   challenges,  

best  practises  and  current  research  focus  areas.  

ü Identify  potential  phyco-­‐products  &  revenues  

ü BioMara  Case  Study  (2009-­‐2012):  research  project  coordinated  by  SAMS  with  a  focus  

on  cultivation  of  seaweed  as  biofuel  feedstocks.  

ü Develop  and  analyse  alternative  scenarios   for   the  development  of  an  economically  

viable  cultivation  for  SEAFARM  

i. Establish  a  representative  scenario  context  including:  end  products,  conditions  at  the  site,  

SEAFARM  objectives  and  other  techo-­‐  and  socio-­‐economic  considerations.    

ii. Define  two  contrasting  scenarios:  a  biofuel  optimised  aquaculture  inspired  from  BioMara;  

and  a  small-­‐scale  diversified  IMTA.  

  10  

iii. Analyse  their  performance  with  regard  to  the  criteria  established  in  the  scenario  context.  

   

  11  

2. METHODOLOGY  

 

Such   a   broad   field   of   research   and   multivariate   scenario   context   required   an  

intricately   tailored   combination   of   methodologies,   to   provide   up   to   date   and  

accurate   information,   adaptable   to   constantly   new   and   emerging   publications.   A  

combined  quantitative  and  qualitative  approach  was  used,  with  a  distinct  partiality  

to   qualitative   research   methods.   This   chapter   begins   by   explaining   the   general  

approach  and  timeline  of  the  research  process.  Thereafter  the  methodological  core  

of  the  research  is  presented  and  justified.    

 

2.1. GROUNDED  THEORY    

 

Before  going  into  the  details  of  the  methodological  treatment  and  acquisition  of  data  

or  information,  the  general  flow  of  the  thesis  must  be  motivated.  The  handling  of  the  

broad  palette  of  overlapping  disciplines  required  a  timeline  and  approach  inspired  

from  elements  of  Grounded  Theory  (Glaser  and  Strauss,  1967);  namely  to  intertwine  

different   methods   and   uncover   development   pathways   simultaneously   to   the  

research   being   carried   out   (Becker   and   Bryman,   2004:268).   Some   significant  

shortcomings   in   data   collection   and   in   the   research   processes   led   to   U-­‐turns   and  

twists  in  the  research  flow,  which  are  hereafter  explained.  

 

As  already  introduced  in  the  section  aims  and  research  question,  the  original  aim  of  

the  thesis  changed  radically  when  it  became  apparent  that  blue  biotechnology  had  

emerged  as  a  major  player  in  the  development  of  marine  resources.  Until  then,  the  

thesis   aimed   to   explore   the   prerequisites   for   a   BioMara   inspired,   economically  

viable,   biofuel   feedstock   cultivation.   Thereafter   it   evolved   into   a   comparison   of  

development   scenario:   one,   BioMara   inspired   cultivation   for   the   supply   of  marine  

biofuel   feedstock;  and  two,  a  smaller-­‐scale  diversified  cultivation.  This   is   typical  of  

how  grounded  theory  impacted  the  research  process.  

 

  12  

The   SEAFARM   objective,   to   develop   a   sustainable   aquaculture   led   the   author   to  

question  what  this  might  be.  What  forms  of  sustainable  aquaculture  exist  today?  In  

the   course   of   the   literature   review   it   became   apparent   that   mono-­‐trophic  

aquaculture   of   marine   animals   or   plants   is   fundamentally   unsustainable   when  

considered   from   a   holistic   systems   perspective,   either   due   to   high   levels   of  

environmental   stress,   or   from   lack   of   profitability.   A   meticulously   designed  

combination   however   enables   them   not   only   to   cancel   out   some   of   each-­‐others  

respective  flaws,  but  can  also  add  to  productivity  and  resilience  (Chopin,  2006).    

 

Thus  IMTA  emerged  as  a  technique  with  great  promise,  designed  for  environmental  

neutrality,  optimised  productivity  and  a  having  more  diverse  range  of  produce  than  

any  other  known  cultivation  technique.  Rather  than  mirroring  industrial  agriculture  

by  establishing  single  or  dual  crop  cultivation  or  crop  rotations,  an  IMTA  approach  

is  characterised  by  a  protracted  design  process  for  a  balanced,  resiliently  productive  

and  environmentally  neutral  engineered  ecosystem.  The  IMTA  approach  is  currently  

a  hot  topic   in  research  given  the  potential  to  mitigate  finfish  aquaculture  pollution  

by  upgrading  to  a  calculated  multi-­‐trophic  approach  (Chopin  et  al.,  2011;  Neori  and  

Nobre,   2012;   Diana   et   al.,   2013).   After   these   considerations   IMTA   became   an  

integral   part   of   the   second   scenario   as   it   was   considered   to   be   the   best-­‐suited  

practice   matching   the   initial   SEAFARM   objective,   to   develop   a   sustainable  

aquaculture.    

 

A   final  significant   twist   in   the  methodology  came  about  as  a  result  of  a  suggestion  

offered  during  the  study  visit  to  the  SLCMS,  whereby  SMHI  water  sample  data  was  

available  for  potentially  suitable  cultivation  site  along  the  edge  of  the  Kosterfjorden.  

Initially   it   was   hoped   that   the   BioMara   case   study   would   provide   data   regarding  

seaweed  growth  rates  and  water  quality   samples,   enabling  a   comparison  of  water  

quality  with   SMHI’s  Kosterfjorden  data,   therefrom  extrapolating   growth   rates   and  

yields  to  inform  the  question  of  scale.  Thus  BioMara  researchers  were  interviewed  

(see   section   2.2)   and   it   transpired   that   during   the   BioMara   project   very   little  

cultivation   data   was   acquired   due   to   marine   licensing   issues.   Furthermore,  

  13  

complications   relating   to   funding  meant   that  any  data  on  water   samples  were  not  

sharable.  The  grounded  theory  twist  thereafter  enabled  the  SMHI  water  quality  data  

in   the  Kosterfjorden   area   to   be  used  nonetheless:   the  data  was  plotted   on   graphs  

enabling   it   to   be   interpreted   by   interviewees   during   interviews,   and   to   obtain   an  

insight   into  key  challenges  than  may  emerge  during  seasonal   fluctuations  of  water  

conditions.   Yet   again,   the   grounded   theory   inspired   approach   to   the   research  

provided  the  tools  to  maintain  initiative  and  flexibility  in  research  orientation;  and  

to  consider  all  methodological  phases  as  a  single  learning  process.      

 

2.2. METHODOLOGY  

 

A   combination   of   quantitative   and   qualitative   methods   can   provide   a   clarity   and  

breadth  of  scope   to  answers   that  one  alone  will  usually   fail   to  achieve  (Silverman,  

2005),   thus   it  was  decided  to  use  both  where  possible.  However  given  the  state  of  

the  SEAFARM  project,  its  pending  status  and  early  planning  circumstance,  very  little  

quantitative   data   is   available   leading   to   a   significant   partiality   to   qualitative  

techniques.  Hereafter  the  research  procedure  is  elaborated.  

 

At  the  beginning  of  the  project,  the  thesis  supervisor  [Fredrik  Gröndahl]  suggested  a  

field  visit   to   the   SLCMS,   Tjärnö.   The   encounter  with   one   of   the   potential   research  

sites   and   teams  provided   an   insight   into   the  untapped  potential   of   the   cultivation  

and   in   proximity   to   this   extensive   marine   research   facility,   as   well   as   to   kindle  

personal  motivation  fuelled  by  the  enthusiasm  of  the  resident  researchers.  An  initial  

focus  group  –styled  discussion  was  held  with  Göran  Nylund  and  Fredrik  Gröndahl  at  

the  SLCMS,  to  identify  project  limitations  and  highlight  specific  avenues  of  interest.  

In   the   wake   of   this   study   visit,   the   data   collection   process   was   planned   in   four  

distinct   phases:   the   initial   literature   review,   the   BioMara   case   study,   the   semi-­‐

structured  interview  process  and  finally,  the  scenario  methodology.    

 

  14  

A  majority  of  the   information  in  this  thesis  was  collected  by   literature  review.  This  

was   the   primary   and  most   lengthy   phase   of   the   research   process.   Key   areas   that  

were   reviewed   included:  biology  of  macroalgae,  notably   factors   that  affect  growth  

rates  (Appendix  A);  phyco-­‐products  and  their  value;  the  global  aquaculture  industry  

for   fish   and   seaweed;   and   IMTA,   its   emergence   and   role   in   the   future   of   the  

aquaculture  industry,  and  an  evaluation  of  IMTA  synergies  (Appendix  B).    

 

Five   Semi-­‐structured   interviews   were   another   key   part   of   the   thesis  methodology,  

and  were  specifically  selected  to  enable  conversations  to  flow  freely,  within  a  set  of  

predefined   guiding   questions   and   themes.   In   accordance   with   ethical  

methodological   procedures,   all   interviewees   were   given   the   option   to   be   kept  

anonymous.  Furthermore,  prior  to  the  interviews  they  were  asked  for  consent  to  be  

recorded.   None   kept   their   right   to   anonymity   and   none   refused   to   be   recorded.  

Transcripts  are  attached  (Appendix  E).  

 

Information   to   compile   the   BioMara   case   study   was   gathered   from   literature,  

particularly  the  key  BioMara  findings,  but  also  by  interviewing  the  BioMara  project  

coordinator,  Dr  Michele  Stanley,  as  well  as  a  seaweed  cultivation  expert  working  in  

close  collaboration  with  Dr  Stanley  during  the  BioMara  project,  Lars  Brunner.  These  

interviews  gave  an  insider’s  intuition  of  the  successes  and  failures  of  BioMara,  most  

notably  elements  that  are  not  covered  in  literature  such  as  practical  limitations  and  

setbacks  of  the  project.    

 

Further   semi-­‐structured   interviews   were   conducted.   One   of   these   was   with   Per  

Rehnlund   of   Leroy   AB,   a   food   processing   company   with   specific   interest   in   the  

development  of  marine  foods  and  sea  vegetables  in  Scandinavia.  This  interview  was  

structured  to  yield  some  information  on  potential  value  of  harvested  algae  and  the  

state   of   the   Scandinavian  market   for   sea   vegetables,   and   other   algae-­‐based   foods  

and  products,  notably  phyco-­‐supplements  and  phycocolloids.    

 

  15  

Finally  and  in  support  of  the  IMTA  section,  interviews  were  conducted  with  Dr  Greg  

Reid  from  the  University  of  New  Brunswick,  and  Stephen  Cross,  associate  professor  

in   IMTA   research   at   the   Aquaculture   Institute   of   the   University   of   Stirling   and  

industrial   research   chairman   for   the   Natural   Sciences   and   Engineering   Research  

Council  of  Canada.  These  interviews  shed  light  on  the  very  latest  advances  in  IMTA  

research  and  the  industrial  applications  of  IMTA.    

 

The  tailored  scenario  methodology  was  then  developed  with  two  significant  parts:  

the   first   was   to   set   a   scenario   context,   the   second   to   describe   each   scenario   and  

discuss  how  they  fit  into  the  scenario  context.  The  scenario  context  was  established  

in  four  parts.    

 

Part   1   involved   the   collection   of   data   from   SMHI   regarding   the   hydrology   of   the  

Kosterfjorden  site,  an  area  in  immediate  vicinity  to  the  SLCMS.  The  data  from  these  

water  samples  were  plotted  on  graphs   to  examine  potential  growth  conditions   for  

seaweed   in   the   area.   The   graphs   were   sent   to   interviewees   and   discussed   in  

particular   depth  with   Lars   Brunner,   Stephen   Cross   and   Greg   Reid,   each   of   whom  

interpreted   them   and   made   suggestions   about   growth   conditions   and   potential  

problems  that  may  be  encountered  at  the  site.  Part  2  of  the  scenario  context  aimed  

to   set   out   a   framework   to   interpret   the   relative   value   of   a   selection   of   product  

categories:  phyco-­‐supplements,   food  and  sea  vegetables,  phycocolloids  and  biogas.  

Most   of   this   information   was   gathered   from   literature,   but   some   significant  

contributions  also  emerged  from  interviews.  Furthermore,  the  estimation  of  prices  

for   the  different  phyco-­‐products  was  opted   for   to   illustrate   and  provide   a   guiding  

idea   of   these   products   values,   and   as   such,   many   of   the   values   were   found   by  

searching  the  internet,  notably  from  the  major  online  retailers  such  as  Amazon.  The  

interview  with   Per   Rehnlund   of   Leroy   AB   also   helped   to   reinforce   these   findings.  

Part  3  established  some  criteria   for   the  analysis  of  each  scenario’s  performance   in  

the  delivery  of  the  SEAFARM  research  focus  areas  (FA1-­‐5).  This  was  also  based  on  

literature  reviewing,  or  more  specifically,  Gröndahl   (2013).  Finally,  Part  4  brought  

in   some   considerations   of   other   socio-­‐   and   techno-­‐economic   aspects   that   could  

  16  

influence   the   development   of   the   cultivation,   also   based   on   literature   and  

interviews.    

 

Having  established  the  scenario  context,  the  scenarios  themselves  required  defining  

for  comparative  analysis  in  the  scenario  context.  This  analysis  was  supported  by  the  

interviews,   particularly   for   considerations   of   environmental   growth   conditions  

(Stephen   Cross,   Lars   Brunner   and   Greg   Reid),   product   values   and   markets   (Per  

Rehnlund)   and   finally,   the   cultivation’s   economic   viability   (Michele   Stanley).   This  

was  the  second  major  element  of  the  scenario  methodology,  consisting  of  pragmatic  

consideration  of  each  scenario  in  terms  of:  the  scale  and  type  of  cultivation,  required  

infrastructure,   labour,   deliverable   products,   licensing   issues,   public   acceptability,  

and  economic  resilience.  Google  maps  were  modified  to  help  visualise  each  scenario  

(Appendix  C)  and  a  detailed  local  map  was  photographed  during  the  study  visit  for  

further   reference   (Appendix   D).   The   results   from   the   comparative   analysis   were  

summarised  in  a  table  (Table  6)  to  enable  the  drawing  of  conclusions.    

 

2.3. LIMITATIONS  

 

To  facilitate  the  research  process,  a  predefined  set  of  limitations  was  established.  In  

terms  of   the  geography  of   the   research,   it   is   limited   to   consider   the  Kosterfjorden  

pilot   facility   and   surrounding   areas   that   are   being   considered   as   a   part   of   an  

eventual   commercial   expansion.  Notably   the  Kosterfjorden   site  was   selected,   as   it  

was  the  only  place  in  near  the  SLCMS  with  SMHI  water  quality  data.  Incidentally,  it  is  

also   perhaps   the   Swedish   territorial  water  with   the   highest   salinity   content,   thus  

favouring  elevated  seaweed  growth  rates  (Submariner,  2012).    

 

Value   is   a   difficult   term   to   consider   in   research   these   days,   given   that   it   is   so  

subjective  and  multifaceted  (Costanza  et  al.,  1997).  Neither  the  value  of  ecosystem  

services   performed   by   seaweeds   nor   ‘carbon-­‐credit’   inspired   revenues   from  

nutrient  stripping  were  considered  in  the  scenario  method.  Furthermore,  costs  were  

  17  

difficult  to  estimate  for  SEAFARM,  given  how  early  this  thesis  was  written  relative  to  

the   project   commencing.   It   was   hoped   that   a   quantified   supply   chain   with   flow  

volumes,   costs   and   revenues   could   be   developed,   but   a   lack   of   data   made   this  

unachievable.   Thus   costs   are   not   estimated   within   this   project   but   they   are  

considered   when   available   from   peer-­‐reviewed   data,   in   which   case   they   were  

brought  in  to  the  literature  review.    

 

Two  other  significant  limitations  to  the  project  were  the  restriction  of  the  scope  to  

biogas  production  only,   thus  disregarding  bioethanol   and  biodiesel   production,   as  

well   as   the   simplified   representation   of   phyco-­‐products   into   three   product  

categories   (excluding  biogas).   The   considerable   variability   across   these   categories  

led   to   complications   in   the   interpretation   of   results.   For   instance,   the   phyco-­‐

supplements   category   has   low   value   high   volume   products   such   as   soil   additives,  

but   it  also   includes  their  polar  opposite,  high  value   low  volume  pharmaceutics.  On  

the   one   hand   this   reflects   the   reality   of   the   wide   range   of   products   that   can   be  

extracted  from  seaweeds,  however  this  somewhat  sacrifices  the  ability  to  accurately  

analyse   and   estimate   potential   revenues   of   the   second   scenario.   Finally,   the  

restriction  to  biogas  was  simply  that  the  current  technologies   for  the  extraction  of  

bioethanol   and   biodiesel   from   algae   are   widely   considered   as   not   being   a   break-­‐

even   technology   yet.   In   the   coming   years,   these   technologies   will   also   become  

worthy   subjects   for   an   economic   viability   assessment   of   extraction   from   marine  

feedstocks.    

 

2.4. ETHICAL  ASPECTS  

 

The  nature  of  the  project,  that  it  is  an  economic  viability  assessment  of  two  fictional  

scenarios,   meant   that   there   was   very   little   contact   with   real   ‘people’   other   than  

interviewees   and   so   very   few   ethical   aspects   to   consider   within   the   research  

process.   The   SEAFARM   research   team   will   necessarily   have   to   undertake   some  

  18  

public  awareness  meeting  for  local  inhabitants  prior  to  the  application  of  a  marine  

license,  however  this  is  far  beyond  the  scope  of  this  thesis.    

 

Exterior  considerations  as  to  the  wider  implications  of  sustainable  aquaculture  can  

and  should  be  mentioned.  It   is   important  to  note  that  very  little  research  has  been  

undertaken  to  investigate  the  impacts  of  seaweed  cultivations  and  IMTAs  on  marine  

wildlife,  considered  subjects  of  ethics.  It  could  also  perhaps  be  argued  that,  morally  

speaking,  it  is  vital  that  further  research  be  undertaken  in  IMTA  to  support  political  

discourse   to   develop   directorates   on   the   upgrading   of   aquaculture   operations   to  

reduce  their  environmental  impacts  through  multi-­‐trophic  integration.    

 

   

  19  

3. LITERATURE    

3.1. MACROALGAE  

 

The   following   section   will   first   present   some   biological   basics   on   seaweeds,  

highlighting   the   reasons   why   they   are   subject   of   growing   interest   amongst  

researchers.  Thereafter  the  existing  global  seaweed  industry  will  briefly  be  outlined,  

followed  by  a  detailed  account  of  four  major  product  categories  that  can  be  derived  

from   seaweeds   –   food,   phycocolloids,   phyco-­‐supplements   and   biofuels.   These  

categories   are   based   on   the   distinctions  made   by   Chopin   and   Sawhney   (2009)   to  

support  and  enable  the  subsequent  section  on  scenario  development.    

 

3.1.1. Biological  basics  

 Algae  are  amongst   the  earliest   life   forms   that  known  on   the  planet,   evolving   from  

primitive   cyanobacteria   at   least   1   billion   years   ago.   It   is   thought   that   the  

evolutionary   path   taken   by   algae   has   allowed   for   a   far   greater   physiological  

diversity   than   exists   amongst   terrestrial   plants,   particularly   in   reference   to   the  

variety  of  proteins  and  carbohydrates  found  in  cell  walls,  many  of  which  are  unique  

to   individual   species   making   them   particularly   valuable   in   biotechnology  

(Domozych   et   al.,   1980).   A   key   divergence   took   place   along   this   evolutionary  

journey  quite  early  on,  allowing  taxonomists  to  distinguish  species  by  colour  of  their  

respective   constituent   photosynthetic   pigments:   Rhodophyta,   red   algae;  

Chlorophyta,   green   algae;   and   Phaeophyta,   brown   algae   (Roesijadi   et   al.,   2010).  

Perhaps   more   significantly,   single   cells   began   to   congregate   and   from   complex  

macro-­‐structures   around   600million   years   ago   (Yuan   et   al.,   2011),   thus  

differentiating  themselves  as  macroalgae  –  the  focus  of  this  report.    

 

Seaweeds   have   colonised   almost   all   illuminated   aquatic   habitats   on   the   planet,  

adapting  to  local  conditions  and  demonstrating  impressive  resilience  (Domozych  et  

  20  

al.,  1980).  There  are  essential  metabolic  requirements  for  each  species,  for  instance  

some  seaweeds  require  saline  environments,  or  prefer  to  be  located  in  the  intertidal  

zone.   In   the   Baltic   Sea   and   Swedish   west   coast,   species   have   adapted   over  

generations  to  particularly  cold  and  brackish  conditions.  As  such  it  can  be  expected  

that   specimens   of   Laminaria   digitata   or   Saccharina   latissima   collected   from   these  

waters   will   be   very   different   to   corresponding   specimens   collected   in   Scotland,  

Spain   or   Canada   -­‐   yet   some   distinctive   physiological   and   reproductive   traits   are  

shared  by  most.  (Naoki  et  al.,  2006)  

 

Most   macroalgae   are   characterised   by   a   ‘holdfast’   or   foot   acting   as   an   anchor;   a  

‘stipe’  or  stem  which  structurally,   like  the  trunk  of  a  tree,   links  roots  to   leaf;  and  a  

single   or   multiple   ‘blades’   where  most   of   the   photosynthetic   activity   takes   place.  

With  regards  to  reproduction,  most  seaweeds  display  what   is  known  as  a  haploid-­‐

diploid  life  cycle  as  is  common  in  some  terrestrial  ferns  and  fungi.  The  ploidy  refers  

to   the   number   of   chromosomes   present   in   that   stage   of   the   life   cycle,   haploids  

having  a  single  set  of  chromosomes  in  the  cellular  nucleus  while  diploids  have  two,  

in   other  words   a   full   set   (Dawson,   1966).   Thus   to   reproduce,   the   spermatophyte  

diploid   adults   undergo   meiosis   to   produce   haploid   spores   which,   given   time,  

develop   into   male   and   female   gametophytes.   When   mature,   the   gametophytes  

produce   eggs   and   sperm,   which   form   young   spermatophytes   upon   contact,  

completing  the  life  cycle  (Lewis,  1964).    

 

The  swelling  interest  in  macroalgae  stems  from  a  large  variety  of  adaptations  these  

plants   are   known   to  possess   -­‐   their   ability   to   thrive   in   low   temperatures   and   low  

light   conditions,   their   biofiltration   properties   and   high   energy   content,   to   name   a  

few   -­‐   particularly   when   compared   to   terrestrial   counterparts.   For   instance,  

photosynthetic   efficiency   of   terrestrial   plants   varies   around   1.8   to   2.2%,  whereas  

that  of  aquatic  plants  usually   ranges   from  6   to  8%  (Aresta  et  al.,  2005),  providing  

macroalgae  with  the  fastest  growth  rates  of  any  plant.  Additionally  seaweeds  absorb  

nutrients   such   as   nitrogen   and   phosphorus,   chronic   pollutants   of   the   Baltic   Sea,  

consequently  offering  a  pathway  for  environmental  engineering  (Fox  and  Chapman,  

  21  

2011;  Marshall,   2012)   or   decontamination   of   current   industrial   activities,   such   as  

finfish  aquaculture  (Huo  et  al.,  2012).  

 

The   distribution   of   algal   species   in   the   Baltic   Sea   reflects   the   environmental  

limitations   to   algal   growth.   It   is   accepted   that   the   most   important   abiotic   factor  

controlling  algal  diversity  in  the  Baltic  Sea  is  salinity  (Blidberg  and  Gröndahl,  2012),  

however   growth   rates   are   determined   by   a   plethora   of   environmental   factors  

ranging   from   light   and   nutrient   availability   to   temperature,   water   motion   and  

turbidity  (Lewis  1964).  In  order  to  maximise  the  yield  of  harvestable  macroalgae,  it  

is   crucial   to   understand   the   biological   relevance   of   these   variations   in   all   their  

aspects.  For  an  explanation  of   the  effects  of  such  environmental   factors  on  growth  

rates,  see  APPENDIX  A.      

Many  of  the  factors  in  APPENDIX  A  have  already  been  considered  for  site  selection  

at   Tjärnö,   particularly   salinity,   given   its   biological   importance   and   the   brackish  

environment  that  is  the  Baltic  Sea.  The  SLCMS  is  located  in  a  sheltered  bay  on  the  far  

north  of   the  Swedish  West   coast,  where   the  water   is  of   the  highest   salinity  of  any  

Swedish  waters,   favouring  growth  conditions   for  algae.  However   the  site  was  also  

selected  because  of  the  existence  of  the  SLCMS,  a  year-­‐round  marine  research  centre  

with  a  collection  of  wet  laboratories,  equipment  and  scientists,  whose  expertise  and  

knowledge  of  the  area  will  undoubtedly  help  to  accelerate  the  development  process  

of   SEAFARM.   Specifically  within   the   context   of   this   thesis,   the   Kosterfjorden   area  

was   selected  as   the   site  of   the   cultivation,   constrained  by   the  availability  of  water  

quality  sample  data  from  SMHI.    

 

Having  covered  some  of  the  biological  basics  of  seaweeds,  the  following  section  will  

move  to  examine  the  economic  potential  of  seaweeds,  and  clarify  how  the  value  of  

seaweeds  has  been  re-­‐interpreted  in  the  last  few  decades.    

 

  22  

3.1.2. Seaweed:  a  global  industry  

 

The  value  of  the  global  seaweed  market  is  estimated  at  US$  5.5-­‐6  billion  per  annum  

by  the  FAO  (2003),  most  of  which  is  generated  from  direct  human  consumption  in  

the   form   of   food.   Approximately   US$   1billion   is   generated   from   a   combination   of  

high  value  products  destined  for  the  cosmetics,  pharmaceutics  and  food  processing  

industries  (FAO,  2003),  with  the  remained  from  miscellaneous  activities  such  as  soil  

conditioners,   fertilisers   and   animal   feed   additives   (FAO,   2004).   The   raw  material  

input   to   this   global   industry,   ie.   the   annually   harvested  wet  mass,   is   estimated   as  

being  approximately  7.5-­‐8  million   tonnes  (FAO,  2004),  most  of  which   is  cultivated  

and   a   minority   is   harvested   from   natural   stocks.   A   basic   calculation   from   these  

figures   indicates   that   the  global  average  value  of  all   seaweeds   lies   in   the  region  of  

US$  0.65-­‐0.8  per  kilogram  of  wet  mass   -­‐  but   in  reality   there   is  a  great  variation   in  

price   according   to   species   and   location   of   production.   Table   1   below   provides   a  

detailed   breakdown   of   the   major   industry   components   and   their   market   values.  

Figure   2   below   helps   to   highlight   the   importance   of   these   three  major   sectors   of  

production  by  showing  each  industry  component’s  share  of  the  global  market.  Both  

table  and  figure  present  information  from  Chopin  and  Sawhney  (2009).      

 

Table  1  -­‐  Main  components  of  the  world's  seaweed  industry  and  their  value  for  2004  

(US$).  Source:  Chopin  and  Sawhney  (2009)  

Industry  Component  Raw  Material  (wet  tonnes)  

Products  (tonnes)   Value  (US$)  

Sea-­‐vegetables  TOTAL   8.59  million   1.42  million   5.29  billion  Kombu  (Laminaria)   4.52  million   1.08  million   2.75  billion  Nori  (Porphyra)   1.40  million   141  556   1.34  billion  Wakame  (Undaria)   2.52  million   166  320   1.02  billion  

Phycocolloids  TOTAL   1.26  million   70  630   650  million  Carrageenans   528  000   33  000   300  million  Alginates   600  000   30  000   213  million  Agars   127  167   7  630   137  million  

Phyco-­‐supplements  TOTAL   1.22  million   242  600   53  million  Soil  additives   1.10  million   220  000   30  million  

  23  

Agrichemicals  (fertilisers,  bio-­‐stimulants)  

20  000   2  000   10  million  

Animal  feeds  (supplements,  ingredients)    

100  000   20  000   10  million  

High  value  miscellaneous  (Pharmaceuticals,  nutraceuticals,  botanicals,  cosmeceuticals,  pigments,  bioactive  compounds,  antiviral  agents,  brewing,  etc.)  

3  000   600   3  million  

 

Figure  2  -­‐  Market  shares  of  global  seaweed  industry  by  product  in  2004  (US$  

Millions).  Source:  Chopin  and  Sawhney  (2009)  

 Human  beings  have  been  consuming  seaweeds  for  millennia.  A  growing  demand  has  

sparked   a   rapid   increase   in   cultivation   capacity   over   the   last   half   century,  

particularly  in  Asia,  where  it  is  a  dietary  staple.  The  share  of  the  global  market  held  

by  sea  vegetables  such  as  Kombu,  Nori  and  Wakame  is  astounding:  almost  90%  of  

the   seaweed   industry   comes   from   the   demand   of   these   three   edible   species,   as  

illustrated   in   Figure   2   above.   A  market   analysis   conducted   by  Walsh   and  Watson  

  24  

(2012)  for  the  BMI  (Irish  Sea  Fisheries  Board)  explored  the  potential  of  all  seaweed-­‐

based   products   in   a   European   context.   This   extensive   report   concluded   that   the  

demand   for   edible   seaweeds   is   present   though   minimal,   however   there   is  

substantial  room  for  growth  in  the  seaweed  industry  to  meet  a  growing  demand  for  

high  value  phycocolloids  and  especially  for  phyco-­‐supplement  products.  

 

It  is  increasingly  being  recognised  at  a  global  level  that  the  value  of  seaweeds  is  not  

just   of   economic   relevance.   In   their   natural   environment,   seaweeds   truly   are  

keystone  species  that  define  their  ecosystems:  they  provide  shelter,  food  and  habitat  

for   molluscs,   bacteria,   crustaceans,   insects   and   fish   alike   while   oxygenating   the  

water   and   acting   as   highly   effective   cleaning   agents,   stripping  water   of   nutrients,  

some   heavy  metals   and   a   variety   of   other   toxic   compounds.   They   have   also   been  

acknowledged   as   potentially   valuable   geoengineering   agents   (particularly  

microalgae)   through   their  ability   to   capture  carbon  dioxide  during  photosynthesis  

while  blooming  at  prolific  rates  (Fox  and  Chapman,  2011).  Seaweeds  are  even  used  

as  end  of  pipe  solutions  to  remediate  aquaculture  and  waste  water  treatment  plants.  

Regrettably   it   is  not  within   the  scope  of   this   thesis   to  accurately   represent  algae’s  

multiple  ulterior  values  during  the  analysis,  for  instance  by  placing  economic  values  

on   ecosystem   services,   however   these   are   recognised   and   considered   where  

appropriate.    

 

3.1.3. Phyco-­‐products  and  their  value  

 

Phyco-­‐  originates  from  the  Greek  word  ‘phukos’,  meaning  seaweed.  For  the  purpose  

of   this   thesis,   the   vast   range   of   phyco-­‐products   has   been   split   into   four   major  

categories.  There  are  other  at   least  several  other  uses  and  values  of  seaweeds  that  

have   been   excluded   from   this   report,   for   instance   they   have   been   used   to   absorb  

heavy  metals   in   industrial   salvage   (Stirk  &   van   Staden,   2000)   and   in  waste  water  

treatment  as  biofilters  (McHugh,  2003).  Returning  to  this  thesis,  four  phyco-­‐product  

categories   have  been   established   for   simplicity.   The   first   and  by   far   the   largest   in  

  25  

terms  of  market  value  and  global  demand  are  sea  vegetables.  Second  are  the  colloid  

substances  such  as  agar,  carrageen  and  alginate.  The  third  category  are  compounds  

that   are  used  by   industries   as   supplements,   known  as  phyco-­‐supplements,   adding  

value   to   a   great   diversity   of   substances   ranging   from   cosmetic   creams,  

pharmaceutical   products   and   soil   conditioners,   to   processed   foods,   dietary  

supplements   and   beer.   The   fourth   and   final   general   category   remains   untested   in  

commercial-­‐scale  application,  despite  having  a  well-­‐established  market:   the  use  of  

seaweed  as  biomass  feedstocks  for  the  production  of  biofuels.  The  following  section  

will  explore  these  five  product  categories,  providing  some  market  value  estimations  

and  an  elementary  overview  of  production  methods.    

 

3.1.3.1. Sea  vegetables  

 

As  formerly  presented,  sea  vegetables  are  the  biggest  players  in  the  global  seaweed  

market  with   an   estimated   value   of   around  US$   5   billion.   The  majority   of   demand  

however  is   in  the  Far  East,  so  they  could  be  mistaken  as  being  of   little   interest   for  

European   cultivations.   The   comparatively   small   European   demand   for   sea  

vegetables   is  conversely  on  the  rise  (Walsh  and  Watson,  2012).  There  are  hosts  of  

innovative   phyco-­‐food-­‐products   that   have   been   emerging   for   the   last   decade,  

marketed  as  healthy  eco-­‐foods  and  snacks,  flavourings  and  seasonings.  Chefs  across  

the  world   use   such   products   as   secret   ingredients   or   decorations   in   the   high-­‐end  

Michelin   restaurants.   As   Per   Rehnlund   confirmed   in   our   interview,   from   his  

personal  experience  at  Leroy  AB,  as   long  as   the  sea  vegetables  are  of  high  quality,  

their  value,  marketability  and  demand  is  unmistakable  in  Europe.    

 

Table   2   below   shows   a   typical   selection   of   phyco-­‐food-­‐products   available   for  

purchase   on   the   Internet   or   in   typical   European   supermarkets.   This   selection   has  

been  made  based  on  cultivation  potential  by  European  seaweed  species.  The  market  

values   are   purely   to   paint   a   basic   picture   of   their   value,   and  were   obtained   from  

  26  

quick   searches   at   a   variety   of   retailers   on   the   Internet.   All   prices   have   been  

converted  to  US  Dollars.    

 

Table  2  –  Description  and  approximate  values  of  typical  algae-­‐based  foods  Product     Description   Market  value  Kombu  or  Kelp  

Dried  seaweeds  of  the  Laminaria  genus,  some  of  which  are  native  to  European  waters.  Nutritious  and  a  favourite  in  Asia,  Kombu  is  used  in  a  large  variety  of  dishes  and  dried  snacks.    

$6-­‐27  for  50grams    

Winged  Kelp  (Alaria  esculenta)    

Traditionally  eaten  in  Europe  and  Canada  for  centuries,  this  kelp  can  be  eaten  dried  as  a  snack,  in  fresh  salads  and  in  soups  or  other  dishes.    

$4.69  for  100grams  (frozen)    

Slaw  Kelp  (Laminaria  digitata)  

Pre-­‐cooked  and  frozen,  this  product  is  recommended  for  use  in  soups,  salads,  and  stir-­‐fries  or  as  an  accompaniment  to  fish  or  red  meat.  

$4.69  for  100grams  (frozen)    

Sweet  Kelp  or  Kombu  Royale  (Saccharina  latissima)  

Harvested  when  they  are  small,  these  kelps  are  characterised  by  a  distinctly  sweet  taste.  Traditionally  used  as  a  grazing  crop  for  sheep  to  sweeten  the  meat,  today  they  are  commonly  found  in  salads  and  mains  just  like  in  deserts  and  cocktails.  

$6-­‐17  for  50grams  

Sea  Spices   Available  as  flakes  to  be  added  as  spices  to  cooked  dishes,  the  ease  of  use,  high  nutritional  value,  surprising  variety  and  niche  flavours  offered  by  these  combinations  of  seaweeds  has  led  to  this  innovative  product  being  a  great  success  amongst  high-­‐end  European  chefs.    

$7.50  per  unit  (100grams)  

 

Phyco-­‐products   from   sea   vegetables   are   diverse   and   have   relatively   high   market  

values.  With  no  costly  investments  involved,  they  are  easy  and  cheap  to  produce  and  

hold  potential  in  being  highly  profitable  to  businesses.  The  only  downside  is  that  the  

European  demand  is  relatively  low  and  that  competition  for  these  products  is  fierce  

amongst  producers  (Wegeberg  and  Felby,  2010).  

 

3.1.3.2. Phycocolloids  

 

In   chemistry   substance   mixtures   are   classified   into   three   types:   solutions,  

suspensions  and  colloids.  Colloids  are  defined  as  containing  particles  ranging  from  1  

to   1000   nanometres   in   diameter   and   remain   evenly   distributed   throughout   the  

  27  

substance.   That   is   to   say   the   particles   do   not   settle   or   separate   over   time.   This  

contrasts  with  solutions  in  that  they  have  a  tendency  to  separate,  while  suspensions  

contain   particles   that   are   usually   visible   to   the   naked   eye.   Colloids   are   a   highly  

diverse  group  of  mixtures  with  an  equally  varied  set  of  chemical  properties.  Colloid  

products   that   are   extracted   from   algae,   that   is   to   say   phycocolloid   products,   are  

usually  one  of  three:  agar,  alginate  and  carrageenan.  The  seaweeds  from  which  they  

are   extracted   are   usually   harvested   and   selected   for   quality   over   quantity.   (FAO,  

2003)  

 

Agar   is  most   commonly   used   as   a   thickening,   emulsifying   or   stabilising   agent   for  

food   (vegetarian   alternative   to   gelatine),   as   a   mild   laxative   component   in  

pharmaceutics   products,   but   also   as   the   growth  medium   for   bacteria   and   fungi   in  

petri   dishes   due   to   its   solidifying   temperature,   which   is   ideal   for   experiments  

incubated  at  human  body  temperature.  Boiling  certain  species  of  algae  results  in  the  

breaching  of  cell  walls  and  the  release  of   two  structural  polysaccharides.  Together  

these   polysaccharides   form   agar,  which   can   be   dried   into   a   fine   powder   ideal   for  

storage.   Thanks   to   such   niche   uses,   the   market   for   agar   is   global   and   well  

established   but   somewhat   limited   when   compared   to   sea   vegetables.   It   is   mass-­‐

consumed   by   the   food   processing   industry,   laboratories   and   the   general   public.  

Standard   agar-­‐agar   can   be   purchased   both   online   and   in   supermarkets   for  

approximately  US$10   for  100g,  while  higher  quality   agar  used   in   laboratories   can  

fetch  up  to  US$2  per  gram.  (FAO,  2003)  

 

Similarly   to   agar   alginates   are   characterised   by   gel-­‐like   properties,   or   more  

specifically,   their   ability   to  make   aqueous   solutions  more   viscous.   Today   they   are  

widely  used  in  food  processing  (sauces,  ice  creams,  syrups,  biscuits,  canned  foods),  

pharmaceutics   (specialised   open   wound   dressings,   slow   release   medicines),  

immobilising   biocatalysts   in   industrial   processes,   the   printing   industry,   and   as  

additives   to   animal   feeds,   most   notably   fish   feed.   Alginates   are   sold   as   dry   and  

powdered  sodium  alginate,  produced  by  a  three  step  process:  first  the  seaweed  cell  

walls  are  broken  by  stirring  and  leaving  them  in  a  hot  alkaline  solution,  creating  a  

  28  

thick   slurry  which,  when  diluted  with  water   and   filtered   to   remove   any   insoluble  

seaweed  cellulose;  the  second  step  involves  the  precipitation  of  either  alginic  acid  or  

calcium  alginate,  two  alternative  processes  that  lead  to  the  same  result;  and  finally  

these  substances  can  both  be  converted  back  to  sodium  alginate  by  adding  a  mixture  

of   alcohol   and  water.  Alginates   can  also  be  purchased  online   for  US$9-­‐47   for  50g,  

depending   on   the   quality,   viscosity,   specific   properties   and   applications   of   the  

alginate  in  question.  (FAO,  2003)  

 

Carrageenan   is   another   viscosity   agent   and   is   most   commonly   used   in   dairy  

products,   meat   processing   and   other   miscellaneous   products   like   toothpaste,   air  

freshener   gels   and   pet   food.   There   are   two  major   forms   of   carrageenan   resulting  

from   two   different   production   methods.   The   first   is   significantly   cheaper   and  

produces  a  ‘natural  grade  carrageenan’  (lower  quality),  simply  involves  washing  the  

seaweed  and  dissolving  compounds   in  water  and  alkaline  solutions,   followed  by  a  

drying  process.  This  natural  grade  carrageenan  is  available  online  for  anything  from  

US$10-­‐24  per  50g.  The  second  involves  series  of  chemical  processes  and  filtrations,  

dehydration   by   the   addition   of   alcohol   followed   by   auxiliary   drying,   producing   a  

refined  high  quality  carrageenan  which  is  significantly  more  expensive  and  is  sold  in  

bulk  to  industry.  (FAO,  2003)  

 

3.1.3.3. Phyco-­‐supplements  

 

The  high  nutrient  content   in  seaweeds  (vitamins,  protein  &  minerals),  as  well  as  a  

range   of   valuable   and   specialised   fatty   acids,   enzymes,   carbohydrates,   pigments,  

antioxidants  and  polymers  have  raised  the  profile  of  seaweeds  in  recent  years,  most  

notably   in   the   realm  of  biotechnology.  The  European  Science  Foundation’s  Marine  

Board  estimated  the  blue  biotechnology  global  market  as  standing  in  the  region  of  

€2.8   billion   in   2010,   while   forecasting   annual   growth   between   5   and   12%  

(Querellou   et   al,   2010).   It   is   not  within   the   scope  of   this   thesis   to   examine   all   the  

  29  

potential  avenues  of  growth  of  this  industry,  so  a  selection  has  been  made  of  some  of  

the  more  significant  product  research  and  development  areas.  

 

A   biorefinery   approach   to   the   extraction   of   products   from   seaweeds   and   other  

marine  organisms  (sponges,  molluscs,  sea  worms,  bacteria  and  fungi)  is  thought  to  

hold  the  most  significant  potential  for  business  and  industry,  through  a  fractionation  

of  processes  for  multiple  end  products  (Langeveld,  2012:111-­‐130).  Core  to  research  

and  development  in  the  field,  biorefineries  are  still  being  designed  by  metabolic  flux  

modelling  and  tested  at  pilot  scales.  One  of  the  core  objectives  of  SEAFARM  is  for  an  

interdisciplinary   collaboration   across   different   Swedish   universities   to   produce  

such  a  pilot  biorefinery  system.  

 

In   terms   of   end   products,   it   is   hoped   that   a   wide   range   will   be   derivable   while  

wastes   are   expected   to   contribute   toward   biomass   feedstocks   or   soil   additives.   A  

few  existing  products  include  animal  feed  and  omega  3  supplements,  hydrating  and  

anti  ageing  creams  from  Laminaria  species.  A  total  of  4900  patents  associated  with  

genes  of  marine  organisms  had  been  filed  by  2010  (Submariner,  2012:128).  A  host  

of   innovative   products   are   being   developed,   trialled,   licensed   and   will   soon   be  

available   to   the   public.   Below,   table   3   shows   some   examples   of   existing   phyco-­‐

supplements  and  their  associated  market  values,  to  give  a  basic  idea  of  the  value  of  

this  growing  industrial  sector.    

 

Table  3  –  Description  and  approximate  values  of  typical  phyco-­‐supplements  Product     Description   Market  value  Animal  Feed   Available  as  pellets,  liquid  (for  dilution  in  drinking  water),  

or  flakes,  the  essential  nutrients  in  algae  make  these  increasingly  sought  after,  particularly  by  equestrian  breeders,  but  also  in  industry.  

$10-­‐50  per  kg  

Plant  Feed     Also  available  in  a  range  of  strengths  and  forms  (liquid,  pellets,  powder,  etc)  

$2-­‐25  for  100grams    

A  Vogel  VegOmega  3  

A  vegetarian  alternative  to  fish-­‐oil  based  omega  3  tablets,  Eucheuma  genus  seaweeds  

$29  for  60  tablets  

Cellumend  cellulite  

Cellulite  nodule  removal  and  prevention  cream,  made  from  Liporeductyl,  a  patented  molecule  found  in  

$74.99  for  125ml  

  30  

cream   Laminaria  digitata.  Clinical  trials  have  proven  it  to  be  one  of  the  most  effective  cellulite  treatments  available  to  date.    

Seagreens  Food  Capsules  

Certified  as  organic,  vegan  and  sustainably  wild  harvested,  these  clinically  trialled  capsules  are  reputed  to  be  one  of  the  best  dietary  supplements  available  for  humans.    

$25  for  60  tablets  

 

3.1.3.4. Marine  biomass  feedstock  for  biofuels  

 

The  race   to   find  a  viable   replacement   for  hydrocarbons   is  well  underway.   Initially  

produced  to  mix  with  fuels  thus  lowering  costs  and  acting  as  a  buffer  to  rapid  fossil  

fuel  price  fluctuations,  biofuels  have  been  on  the  rise  since  the  80s  and  are  widely  

accepted   as   a   ‘green’   or   carbon   neutral   source   of   energy   (UNCTAD,   2008).   Large-­‐

scale   biofuel   feedstock   sourcing,   however,   has   resulted   in   much   controversy  

through   unforeseen   knock-­‐on   effects,   such   as   land   grabbing   and   deforestation   to  

make   way   for   feedstock   cultivations   like   sugar   cane,   jatropha,   rapeseed   and   oil  

palms  (GRAIN,  2013).    

 

Marine  biomass  has   emerged   as   an   alternative   feedstock  with  distinct   advantages  

over  their  terrestrial  counterparts  (Rodolfi  et  al.,  2009;  Wegeberg  and  Felby,  2010):  

algae   are   richer   in   energy   (lipids,   starch)   than   terrestrial   alternatives,   while   also  

having  a   low   lignin  content,   facilitating  digestion  (Schenk  et  al.,  2008;  Sialve  et  al.,  

2009);  they  are  by  far  the  fastest  growing  potential  feedstock  source  (Muñoz  et  al.,  

2004);   their  role   in  ecosystems  is   to   lock  up  carbon  dioxide  and  filter  water  (strip  

nutrients),   thus   holding   the   potential   to   act   as   geoengineering   agents,   perhaps  

reversing   eutrophication  or   slowing   the   rise   in   atmospheric  CO2   if   cultivated  on  a  

large  enough  scale  (Hernandez  et  al.,  2005;  Chopin,  2006);  they  do  not  compete  with  

arable,  wild  or  protected   land;   they  do  not  add   to   fresh  water  stress;   and  perhaps  

most   importantly,   the   supply   chain   technology   is   rapidly   approaching  a  profitable  

state,   most   notably   anaerobic   digestion   to   biogas   (Bruton   et   al   2009;   Dave   et   al  

2013).

  31  

As   the  notorious   J.  Craig  Venter   said   following  his   controversial   finalisation  of   the  

first  synthetic  genome:  “Whoever  produces  abundant  biofuels  could  end  up  making  

more   than   just  big  bucks   –   they  will  make  history…   the   companies,   the   countries,  

that  succeed  in  this  will  be  the  economic  winners  of  the  next  age  to  the  same  extent  

that  the  oil  rich  nations  are  today”  (Synthetic  Genomics,  Inc.,  20  April  2009;  quoted  

in  ETC  Group  2010).  Marine  biomass  brings  this  opportunity  to  all  countries  with  a  

coastline;   it   is   an   alternative   to   land-­‐based   fuel   dependence,   offering   solutions   to  

better  manage  our  oceans  while  generating  food,  employment,  sustainable  products,  

local  economies,  and  a  new  ‘green  growth’  sector.    

 

Indeed   there   is   huge   potential   for   a   marine-­‐centric   bioeconomy   and   marine  

feedstocks,  however  few  trials  have  been  conducted  and  none  at  all  at  a  commercial  

scale.  It  has  been  suggested  that  with  the  technologies  currently  in  hand,  the  cost  of  

cultivation  needs   to  be   reduced  by  a   factor  of   four  or   five   for  operations   to  break  

even  and  become  viable  and  financially  attractive  to  investors  (Bruton  et  al.,  2009).  

Some  key  challenges  have  been  identified  and  attempts  to  overcome  them  are  being  

undertaken.    

 

Once   such   attempt   is   the   BioMara   project   (2009-­‐2012)   coordinated   by   SAMS   in  

Scotland.   It  was  amongst   the   first  major  European  funded  marine  biofuel  research  

programs.  Developed  as  a  preliminary  investigation  to  answer  some  key  questions  

to  help  develop  a  Scottish/Irish  marine  biofuel  economy,  so   far,   this  project   is   the  

closest   we   have   come   to   achieving   commercial   scale   trials   for   biogas   production.  

Some  recently  published  reports  shed  some  light  on  these  techno-­‐economic  issues,  

the  findings  of  which  are  summarised  hereafter.    

 

Dave  et  al.  (2013)  conducted  a  mass-­‐energy  balance  pilot  investigation  in  a  selected  

Anaerobic   Digester   (AD),   modelling   the   chemical   processes   using   the   ECLIPSE  

software.  The  biogas  from  the  selected  AD  of  1.6  MWth  (macroalgae  feed  rate  of  8.64  

dry  tonnes  per  day)  was  burned  in  a  combined  heat  and  power  plant  generating  237  

kWenet  of  electricity  and  367kWeth  of  heat.  Each  tonne  of  dry  macroalgae  feedstock  

  32  

was   valued   at   €50,   including   cultivation,   pretreatment   and   transport   costs.   The  

resulting   Break-­‐even   Electricity   Selling   Price   (BESP)   was   in   the   region   of   120  

€/MWh  over  a  17  year  payback  period.  This  was  calculated  using  cost  data,  techno-­‐

economic   elements   of   the   ECLIPSE   software   (material   costs,   insurance,   etc),   an  

assumed  heat  selling  price  of  20  €/MWh  and  finally,  a  digestate  cost  of  €7.5/tonne.  

The  estimated  accuracy  of   the   cost   estimation   is  ±30%,  given   the  variability  of   all  

the  component  factors.  (Dave  et  al.,  2013)  

 

When  comparing   the  BESP   for   this  pilot   study   to  other  electricity   cost  prices,   it   is  

clear   that   the   technology   is   indeed   approaching   a   state   of   profitability.   In   the   UK  

where   the   study   was   conducted,   the   average   cost   of   1MWh   at   a   consumer   level  

according  to  the  BERR  averages  at  £151.30  (Confused  about  energy,  online),  which  

is  equivalent  to  €177.  In  context  with  the  variation  of  ±30%  from  the  estimated  120  

€/MWh   BESP,   there  would   be   almost   no   profits   to  make   the   proposed   scheme   a  

viable   business   enterprise,   however   by   lowering   costs,   scaling   up   and   achieving  

economies  of  scale,  the  potential  is  there  for  profits  to  be  made.  (Dave  et  al.,  2013)  

 

The   calculations   for   BESP   in   Sweden   however   would   yield   very   different   results  

reflecting  the  generally  higher  costs  there,  so  a  BESP  in  the  UK  is  not  comparable  to  

the  same  exact  project  in  Sweden.  Nevertheless,  table  4  below  shows  the  electricity  

prices   in   Sweden,   arranged   as   they   are   into   categories   according   to   annual  

consumption.    

 

Table  4  –  Statistiska  centralbyrån  energy  prices  for  natural  gas  and  electricity  

(SEK/MWh).  Source:  SCB  (2013)  

 

Consumption   Categories  (MWh/year)  

<1   1  -­‐  <2.5   2.5  -­‐  <5   5  -­‐  <15   >15  

2007  January  to  June   2500   1450   1440   1280   1140  July  to  December   2700   1610   1500   1360   1220  

2008   January-­‐June   2690   1760   1590   1390   1270  

  33  

January  to  June   2930   1920   1720   1490   1360  

2009  January-­‐June   2770   1950   1740   1490   1400  January  to  June   2850   1890   1710   1480   1350  

2010  January-­‐June   3370   1950   1800   1560   1430  January  to  June   3090   1970   1820   1580   1430  

2011  January-­‐June   3250   2040   1870   1610   1460  January  to  June   3090   2030   1860   1610   1440  

2012  January-­‐June   3130   1970   1800   1510   1360  January  to  June   3080   1930   1780   1520   1360  

2007-­‐2012  

Total  Average     2954   1873   1719   1490   1352  Total  Average  (€)   343   217   199   173   157  

 

As  you  can  see  from  the  table  above,  the  average  cost  of  1MWh  is  on  the  rise,  having  

increased   on   average   (in   all   categories)   by   23%   over   5   years,   a   trend   which   is  

reflected   throughout   Europe   as   governments   and   companies   attempt   to   move  

toward  sustainable  energy  generation.    

 

As  already  discussed,  it  would  be  inaccurate  to  make  a  direct  transposition  of  the  UK  

developed  BESP  (120  €/MWh)  to  the  case  in  Sweden,  however  for  the  sake  of  this  

report   it  shall  be  considered  nonetheless,  with  a  pinch  of  salt.   In  essence  what  the  

report   findings   indicate   is   that   an   exact   copy   of   the   project   by  Dave   et   al.   (2013)  

would  be  a  profitable  venture,  providing  electricity  at  approximately  60-­‐80%  of  the  

retail  price  of  the  least  expensive  price  bracket  and  25-­‐45%  of  the  most  expensive,  

leading  to  interesting  returns  and  a  theoretically  much  lower  BESP  in  Sweden.    

 

Of  course  the  UK  BESP  being  applied  to  the  Swedish  market  warps  the  situation  and  

an   equivalent   pilot   study   in   Sweden   would   be   necessary   to   determine   the   profit  

potential   of   such   a   plant.   Other   studies   have   shown   similar   results   however   the  

costs  of  cultivation,  AD  plants,  materials,  labour  and  insurance  amongst  many  other  

factors  can  vary  immensely  from  place  to  place,  leading  to  very  different  results  and  

a   high   degree   of   uncertainty.   In   essence   other   studies   have   found   that   there   is  

potential  to  make  profits  through  such  ventures,  however  at  the  moment  the  risks  

  34  

are   too   high   and   the   profit  margins   are   too   low   and   unclear   (Bruton   et   al.,   2009;  

CREW,  2012).  

 

Another  important  note  from  the  above  pilot  study  conducted  by  Dave  et  al.  (2013)  

is   that   the  biogas  generated   in   this   study   is   converted  directly   into  electricity  and  

heat,  as  opposed  to  being  sold  directly  as  biogas.  However  the  latter  option,  selling  

the  biogas  directly,  would  make   it   very  expensive  and  non-­‐price   competitive  with  

natural  gas,  which  is  considerably  cheaper.  Over  the  coming  years  however,  as  the  

AD   processes   are   optimised   and   cultivation   techniques   become   more   automated  

and  cost  effective,  it  could  be  expected  that  overall  costs  will  drop  to  a  point  where  

this  direct  sale  of  biogas  may  become  viable.    

 

3.2. AQUACULTURE  

 

Everyday  200’000  new  people  are  brought   into  this  world  quadrupling  population  

over   the   last   century  while   the  most   conservative   estimates   forecast   a   continued  

increase   to   9.2   billion   by   2050,   and   further   beyond   that   (UN  Population  Division,  

2007).   There   is   no   doubt   that   this   huge   population   growth   is   now   irreversibly  

affecting  the  environment,  particularly  oceans.    

 

Over   1   billion   people   depend   on   global   fish   stocks   for   their   livelihoods   and   as   a  

principle   source   of   protein   (FAO,   2003)   –   and   the   depletion   of   these   stocks   is  

amounting  to  trepidation  amongst  world  leaders  who  are  looking  into  new  ideas  on  

how   to   manage   our   oceans   long-­‐term,   while   feeding   a   growing   population   and  

supplying   it  with  clean  energy.   Just   like  our  hunter-­‐gatherer  ancestors  settled  and  

developed  agriculture  to  raise  the  carrying  capacity  of  the  land  thousands  of  years  

ago  -­‐  today  we  face  the  same  challenge  with  our  oceans.  

 

It   is   easy   to   confuse   the   aquaculture   of   fish   and   seaweeds,   given   the   same  word  

portrays   both.   In   this   section,   first   the   aquaculture   of   fish  will   be   presented   on   a  

  35  

global  scale,  and  then  the  aquaculture  of  seaweeds  will  be  explored  as  a  source  of  

food   and   energy.   Thereafter,   the   emerging   field   of   Integrated   Multi-­‐Trophic  

Aquaculture   will   be   presented,   and   it   will   be   concluded   that   single   trophic  

aquacultures  are  necessarily  a  thing  of  the  past  and  that  sustainable  aquaculture  can  

only  come  from  meticulously  designed  multi-­‐trophic  aquaculture.    

 

3.2.1. Fish  aquaculture  

 

Typical  aquacultures  are  undertaken  as  monocultures,  with  a   single  or   sometimes  

several  species  being  cultivated  in  ponds  inland  or  off-­‐/nearshore  sheltered  areas.  It  

is   also   commonly   known   as   intensive   fed   aquaculture,   shellfish   or   finfish  

aquaculture.  Initially,  very  little  research  was  carried  out  on  the  short  and  long-­‐term  

effects   of   introducing   the   cultivation   of   a   single   species   in   an   ecosystem,   mainly  

because   there  was   so  much  profit   to  be  made   that   the   focus  was  on   expansion  of  

farming   practises.   Take   salmon   production   for   instance;   an   explosive   shift   took  

place  between  1990  and  1991,  as  global  salmon  production  grew  from  about  7’000  

tons  to  a  little  over  325’000  tonnes  -­‐  an  increase  of  some  4,600%  (Weber,  1997:4).  

In  2010  it  was  estimated  that  the  value  of  the  global  aquaculture  industry  was  in  the  

region  of  USD  119.4  billion,  producing  an  estimated  59.9  million  metric  tons  of  fish,  

crustaceans,  molluscs  and  other  aquatic  animals  (FAO,  2010).  

 

The  environmental   implications  of   the   industry  have  only  recently  become  subject  

of  major  studies  at  a  global   level.  Many  different   techniques  have  been  developed,  

ranging  from  dive  surveys  to  sediment  chemistry,  with  four  major  areas  of  concern  

found   to   be   recurrent   throughout   these   studies.   They   relate   primarily   to   escapes  

from   farming   pens,   wastes   and   eutrophication   therefrom,   the   use   of   drugs   and  

chemicals,   and   of   effects   on   other   species   such   as   predatory   birds   or   seals   that  

attempt  to  gain  access  to  farming  pens  (Carroll  et  al.,  2003).  There  is  great  variation  

however   in   results   from   one   inquiry   to   the   next,   particularly   amongst   different  

methods  to  investigate  the  use  of  chemicals  and  drugs,  as  well  as  the  impacts  from  

  36  

waste.  Some  studies  find  almost  no  impacts  at  a  distance  of  15m,  due  to  dilution  of  

wastes   or   chemicals   (Brown,  Gowen  &  McLusky,   1987),  while   other  more  precise  

experiments  on  benthic   composition  and  sediment   chemistry   can   identify   impacts  

over   150m   away   (Klaoudatos   et   al.,   2006).   Overall   however,   the   greatest   concern  

lies  in  the  wastes  and  eutrophication,  and  the  resultant  anoxic  environment  in  close  

proximity  to  farming  pens  as  well  as  knock  on  effects  therefrom  (Karakassis  et  al.,  

1998).    

 

It  is  worth  noting  that  of  all  the  sectors  of  food  production  in  the  world  adapting  to  

cater  for  a  growing  population,  aquaculture   is  the  fastest  growing  with  an  average  

growth   rate   of   6.9%   per   annum   (FAO,   2005).   In   2006   aquaculture   equalled   wild  

fisheries   in   the  world’s   fish   supply,   however   these   growth   rates   are   beginning   to  

slow   down,   partially   from   growing   public   concern  with   regards   to   environmental  

impacts,   genetically   modified   organisms,   fish   quality   and   sanitary   issues   (FAO,  

2005).   Another   major   reason   for   decreasing   growth   rates   is   that   these   fish  

aquaculture   are   usually   for   top   predators   (for   instance   salmon,   cod,   haddock   or  

trout),   and   the   feed   for   these   carnivorous   fish   usually   comes   from   wild   fishery  

captures.   Thus   wild   fish   are   captured   in   the   order   of   10   tonnes   per   ton   of  

carnivorous   cultured   fish   they   are   fed   to   (Chopin   et   al.,   2001),   meaning   this  

feedback   loop   increases   the   demand   and   our   dependence   on   wild   fish   captures,  

rather  than  developing  a  replacement  for  it  (Folke  et  al.,  1998).  Needless  to  say  the  

fish   aquaculture   industry  needs   to   evolve   to   a  higher   state  of   being,  more   in   tune  

with  the  aquatic  environment,  the  reality  of  withering  global  fish  stocks  and  public  

concerns.  

 

Thus  far  aquaculture  of  marine  animals  has  been  considered  but  an  essential  part,  

more  relevant  to  this  study,  is  still  missing:  the  cultivation  of  aquatic  plants.  In  the  

IMTA  section  3.3  later  in  the  literature  review,  recent  research  will  be  presented  to  

demonstrate   how   the   aforementioned   environmental   impacts   of   fish   aquaculture  

can  be  mitigated.  But  first  the  focus  will  turn  to  the  cultivation  of  seaweeds.    

 

  37  

3.2.2. Seaweed  aquaculture  

 

It   is   estimated   that   the   value   of   the   global   seaweed   industry   lies   in   the   region  

between  US$  5.5-­‐6  billion  per  annum  (FAO  2003).   Seaweeds  have  been  cultivated  

for  millennia   in  Asia,  notably   in  China,   the  Philippines,   Indonesia,  Korea  and  Japan  

where  macroalgae   have   long   been   a   pillar   of   traditional   food   staples.   However   in  

recent  years  production  has  begun  to  increase  rapidly  outside  of  Asia,  most  notably  

in  Norway,  Chile,  Russia,  Ireland,  Mexico,  the  UK  and  France  (Roesijadi  et  al.  2010).  

Why  this  sudden  change?  There  are  several  reasons,  but  perhaps  most  prominent  is  

the   search   for   techniques   to   sustainably   cultivate   marine   biomass   for   biofuel  

production,  to  reduce  stresses  on  available  arable  land.  

 

The  high  levels  of  interest  in  biofuels  comes  from  the  fact  that  they  are,  in  theory  at  

least,   carbon   neutral:   the   CO2   emitted   in   combustion   of   a   biofuel   is   initially  

sequestered  by  photosynthesis,  thus  recycling  the  carbon.  Furthermore  biofuels  are  

chemically   very   similar   to   fossil   fuels,   and   in   many   instances   can   quite   simply  

replace   fuels   used   today,   neither   requiring   considerable   infrastructural   upgrades  

nor  new   technologies.  However   surrendering  vast   swathes  of   arable   land   to   grow  

energy   crops   seems  counterproductive  particularly  given   the  growing  demand   for  

food,   and   that   many   of   these   crops   are   grown   with   petroleum-­‐based   fertilisers.  

Increasingly  this  trend  is  also  having  unforeseen  knock  on  effects,  for  instance  land-­‐

grabbing  in  Africa  (Zoomers,  2010).    

 

Marine   environments   motion   answers   to   many   of   these   problems,   offering   the  

medium   in   which   to   grow   energy   rich   aquatic   biomass,   ideal   substitutes   of   land  

based  energy  crops,  without  competing  for  arable  land.  Further  still,  research  shows  

that   combined   fish   and   seaweed   aquaculture   could   take   over   the   global   market  

share  of  wild  fisheries,  providing  price  competitive  and  potentially  environmentally  

positive  culture  systems  (Chopin  et  al.,  2001;  Ridler  et  al.,  2007;  Chopin,  2011).  This  

will  be  presented  in  the  later  section  on  IMTA.  In  a  Baltic  context,  however,  algal  and  

  38  

finfish   aquaculture   has   been   carried   out   in   the   Baltic   region   for   decades,   but   the  

potential  is  there  for  a  vast  increase  in  capacity,  not  just  to  produce  food  but  also  to  

participate   toward   a   smörgåsbord   of   sustainable   energy   sources   and   bio-­‐based  

products  (Blidberg  and  Gröndahl,  2012).    

 

Very   little   evidence   has   been   gathered   in   academia   regarding   the   environmental  

impacts   of   off-­‐   or   nearshore   production   of  macroalgae   on   a   large   scale.   The   only  

major   concerns   that   have   been   raised,   consider   potential   impacts   on   benthic  

ecosystems   during   the   installation   of   anchors   of   cultivation   systems,   and   shading  

impacts   of   an   operational   aquaculture.   In   fact,   much   research   suggests   quite   the  

opposite.  Algae  are  seen  as  highly  environmentally  positive  through  their  ecological  

role   as   nutrient   biofilters.   As   long   as   seaweeds   are   removed   from   water   when  

mature  (i.e.  they  are  not  left  to  sink  and  decay),  pollutants  are  fixed  in  the  biomass  

and  removed  from  the  water,  including  phosphorus,  nitrogen,  ammonia  and  several  

heavy   metal   groups,   depending   on   the   algae   species   in   question   (Chopin,   2006;  

Abreu  et  al.,  2011;  Ferreira  et  al.,  2012).  Potential  has  even  been  accredited  to  algae  

as  a  relatively  safe  agent   for  use   in  geoengineering   to  reverse  eutrophication  (Fox  

and   Chapman,   2011),   however   in   practise,   this   remains   relatively   undocumented  

other  than  one  trial  conducted  in  2012  (Marshall,  2012).    

 

3.3. IMTA:  INTEGRATED  MULTI-­‐TROPHIC  AQUACULTURE  

 

Despite  being   the   fastest   growing   sector  of   food  production,   the   rate  of   growth  of  

fish   aquaculture   has   begun   to   decline   in   the   face   of   growing   public   and  

environmental   concerns   (FAO,   2010).   The   move   from   traditional   aquaculture  

toward   IMTA   is   quite   simply   a   necessary   evolution,   as   the   latter   holistically  

addresses   the   formers’   shortcomings.   It   is   the   birth   child   of   our   increasing  

knowledge   of   nutrient   flows,   bad   cultivation   practises,   the   natural   world   and  

mounting  environmental  concerns.  In  IMTA,  the  fish-­‐excreted  ammonia,  phosphates  

and  CO2  are  assimilated  into  biomass  by  seaweeds  and  shellfish  (Abreu  et  al.,  2009),  

  39  

mitigating   the   impacts   of   an   otherwise   direct   discharge   of   nutrients   into   the  

environment.    

 

In   the   words   of   Thierry   Chopin,   one   of   the   greatest   advocates   of   IMTA,   past  

president   of   Aquaculture   Association   of   Canada   and   current   president   of   the  

International  Seaweed  Association:  “Such  a  balanced  ecosystem  approach  provides  

nutrient   bioremediation   capability,   mutual   benefits   to   the   co-­‐cultured   organisms,  

economic   diversification   by   producing   other   value-­‐added   marine   crops,   and  

increased  profitability  per  cultivation  unit  for  the  aquaculture  industry”  (Chopin  et  

al.,   2001).   This   section   aims   to   explore   such   claims   first   by   exploring   how   IMTAs  

have   come   about,   then   by   reviewing   experiments   that   attempt   to   quantify   the  

benefits  of  IMTAs,  and  finally  by  interviewing  experts  in  the  field.    

 

3.3.1. Defining  IMTA  

 

Inherent   to   the  concept  of   IMTA  is   the  key  word   ‘trophic’.  Derived   from  the  Greek  

word   trophē,   meaning   food   or   feeding,   trophic   levels   are   used   to   describe   an  

organism’s  position  in  a  food  chain.  Trophic  levels  are  now  used  to  describe  a  series  

of  key  ecological  processes  within  ecosystems,  namely  the  transfer  of  energy  in  the  

food   chain   and   the   cycling   of   nutrients   between   different   species   types.   Figure   3  

below  is  a  typical  marine  trophic  pyramid,  which  illustrates  the  transfer  and  loss  of  

energy  as  it  passes  from  primary  producers  (photosynthetic  organisms)  to  primary  

consumers   (herbivores),   to   the   secondary,   tertiary   and   finally,   to   top   consumers  

(carnivores).   The   pyramidal   shape   helps   to   visualise   the   loss   of   energy   between  

each  trophic  level  due  to  the  imperfect  nature  of  digestion,  which  usually  converts  a  

mere  10%  of   consumed  energy   into  body  mass   (Duxbury  and  Duxbury,  1994).  As  

such,  where  10’000  units  of   energy  are  available   from   the   sun,  phytoplankton  are  

only   able   to   convert   10%   into   1000   units   of   energy   available   for   primary  

consumption   by   herbivorous   zooplankton.   Likewise,   each   step   of   consumption  

converts  about  10%  of  energy  into  transferable  energy  (body  mass)  until  we  reach  

  40  

the   top  predators.  This   is  often  also  reflected   in   terms  of  population  numbers,  not  

just  body  mass.  The  top  trophic   levels  often  have  a   lower  population  number  than  

lower  trophic  levels.    

 Figure   3   –   Pyramid   of   trophic   levels   for   a   marine   environment.   Source:  

Duxbury  and  Duxbury  (1994)  

 

Thus   the   current  model   of   industrial   aquaculture  has   created  an   imbalance   in   the  

natural   trophic   ordering   in   our   oceans.   Consumers   tend   to   favour   species   of   top  

consumers  (salmon,  tuna,  cod,  etc.)  which  are  mass-­‐produced  in  cages  consume  vast  

amounts  of  feed  (usually  a  combination  of  harvested  fish  stocks,  chicken,  and  other  

cheap  sources  of  protein  and  supplements).  So  by  multiplying  the  effluents  from  the  

top  consumers,  in  other  words,  by  increasing  the  importance  of  the  red  line  on  the  

left  of  Figure  3,  the  environmental  load  of  the  effluents  becomes  so  great  it  degrades  

local  water   quality,   and   if   this   is   not   carried   away   by   currents   and   diluted,   it   can  

result   in   severe   eutrophication.   This   also   raises   questions   about   the   long-­‐term  

effects  of  dilution  of  such  effluents,  particularly  given  that  such  aquacultures  already  

proliferate  globally  on  a  huge  scale.  

 

IMTA  attempts  to  rebalance  the  equation,  by  integrating  multiple  trophic  levels  into  

single  cultivations.  If  the  design  process  is  well  executed,  with  careful  quantification  

Available Energy Units1000

100

10

1

0.1

Prim

ary

Prod

ucer

sPr

imar

y Co

nsum

ers

Seco

ndar

y Co

nsum

ers

Tert

iary

Co

nsum

ers

Top

Cons

umer

s

Salmon

Carnivorous fish

Carnivorous zooplankton

Herbivorous zooplankton

Phytoplankton

10000

Sunlight

Efflue

nts a

nd d

ecom

posi

tion

10%

10%

10%

10%

  41  

of   nutrient   flows,   and   calculated   positioning   to   maximise   inter-­‐species   synergies,  

the  result  is  an  engineered  ecosystem  designed  to  have  balanced  nutrient  flows  and  

trophic  populations,  thus  minimising  the  environmental  load  (see  Figure  4).  Such  an  

engineered   ecosystem,   it   turns   out,   hold   a   number   of   advantages   over   traditional  

aquaculture  techniques.  In  section  3.3.3,  some  of  these  synergies  are  demonstrated  

through   the   reviews   of   some   papers,   the   full   analysis   of   which   can   be   found   in  

Appendix  B.      

 Figure  4  –  Diagram  illustrating  an  IMTA,  featuring  finfish,  shellfish,  seaweeds  and  invertebrates.  Source:  Diana  et  al.  (2013)  In   the   interview   with   Greg   Reid,   he   elegantly   summarised   that   amongst   IMTA  

researchers  and  in  the  industry,  it  is  generally  accepted  that  there  are  three  types  of  

IMTA.   In   the   first   instance,   an   existing   finfish   aquaculture   is   transformed   into   an  

IMTA  by  the  integration  of  other  trophic  levels  to  reduce  the  environmental  loading  

from   the   initial  mono-­‐trophic   finfish   cultivation,   thus   diversifying   production   and  

improving  revenue  (Ridler  et  al.,  2007).  This  is  known  as  the  add  on  approach.  In  the  

second   instance,   the   IMTA   is   designed   from   scratch   in   a   virgin   or   disused  

environment,   allowing   full   control   and   flexibility   over   the  plans.   This   is   known  as  

the   custom  designed   IMTA.   The   third   and   final   type   of   IMTA   comes   into   existence  

  42  

through   trial   and   error,   with   the   developers   selecting   methods   that   provide   the  

greatest   yields   and   highest   quality   produce.   It   has   been   documented   and   applied  

over  four  millennia  ago  in  China  and  through  the  ages  since:  this  style  is  known  as  

an  incidental  IMTA  and  is  the  subject  of  the  next  section.  

 

3.3.2. Ancient  Origins    

 

Aquaculture   in   all   its   forms   has   been   happening   for   centuries.   Over   the   course   of  

time,   there   is   no   doubt   that   combinations   of   cultures   have   been   incidentally  

stumbled  across  and  identified  as  effective  design  recipes  (Troell  et  al.,  2003).  The  

reasoning   behind   them   however   differs   very   much   from   today:   in   the   past,  

polycultures   sought   to   satisfy   a   complex  mix   of   social   pressures,   local   supply   and  

demand,  and  lack  of  resource  availability  (Ruddle  and  Zhong,  1988);  today  IMTA  is  

conceptually  driven  by  bioremediation  and  profit  potential.  The  wisdom  integral  to  

traditional   farming   techniques   has   been   accumulated   over   generations;   IMTA   is  

quite  simply  a  new  name  for  an  old  trick,  with  specific  emphasis  on  using  species  of  

different  trophic  levels  while  attempting  to  quantify  and  balance  the  whole  in  terms  

of  nutrient  flows  (Chopin,  2013).    

 

The  earliest  written  record  of  the  integration  of  multiple  species  in  aquacultures  is  

accounted   in   the  You  Hou  Bin   document,  published  by   the  ancient  Han  Dynasty  of  

China  in  the  period  between  2200-­‐2100  BC.  Recommended  methods  (pen,  cove  and  

cage  systems)  and  their  benefits  are  presented  notably  for  the  co-­‐cultivation  of  fish  

with  aquatic  plants  and  sea  vegetables  (Costa-­‐Pierce,  2008:10).  Historical  evidence  

however   suggests   that   such   multi-­‐species   aquacultures   are   predated   by   up   to   a  

millennia  by   the  Etruscans,  who  practised  active   coastal  management  with   sluice-­‐

like  structures  to  enclose  lagoons,  thereafter  conducting  multi-­‐species  aquacultures  

at   those   sites   (Costa-­‐Pierce,   2008:15).   Nonetheless   it   is   widely   accepted   that   the  

Chinese   were   the   first   to   recognise   and   document   synergies   in   multi-­‐species  

cultivations.  

  43  

 

In   the   period   of   2000-­‐1000   BC,   successive   dynasties   would   rewrite   these  

documents,   building   on   previous   knowledge.   The   incorporation   of   carp,  mulberry  

trees  and  rice  paddies  became  a  common  example  of  practise  around  1100,  after  the  

publication   of  Lin  Biao  Lu  Yi   (The  Curious   of   Ling  Biao  Region)   by   Liu  Xun  which  

elaborated   on   the   theory   of  mutualism   in   rice-­‐fish   cultures   and   the   integration   of  

fruit   production   (Costa-­‐Pierce,   2008:10;   Chopin,   2013).   Increasingly   detailed  

accounts  would  continue  to  be  published  for  many  hundreds  of  years,  culminating  

with   a   milestone   act   around   AD   618,   when   the   common   carp   was   banned   from  

cultivation  due  to  its  resemblance  in  Chinese  to  the  then  Emperor’s  name  –  Li.  As  a  

result   species   diversification   ensued   and   soon   cultivation   moved   on   to   combine  

multiple   species   of   carp   and   their   integration   with   various   sea   vegetables   and  

plants,   as  adapted   from  neighbouring  Vietnamese  practises   (Chevy  and  Lemasson,  

1937).  Ancient  Egypt  is  also  known  to  have  practised  polycultures  as  early  as  1550  

BC   under   the   New   Kingdom,   with   Tilapia   grown   in   in   integrated   agriculture-­‐

aquaculture  drainable  ponds  (Chopin,  2013).    

 

Chopin  (2013)  recounts  a  royal  IMTA  practised  at  the  ‘Étang  aux  Carpes’  (still  active  

today)   at   the   Château   de   Fontainebleau,   as   a   result   of   instructions   by   the   French  

King  Henry   IV  who   insisted   that   the   castle   should   be   self-­‐sufficient.   In   the   1970s,  

John   Ryther   rekindled   interest   in   IMTA   and   is   considered   by   Chopin   as   the  

grandfather   of   IMTA   based   on   his   work   “integrated   waste-­‐recycling   marine  

polycultures   systems.”  This  work  developed  prototype  biofilter  mechanisms  using  

microalgae   to   strip   excess   nutrients   from   wastewater,   thereafter   feeding   the  

microalgae   to   oysters,   clams   and   other   bivalves   molluscs.   In   turn,   worms,  

amphipods,   lobsters  and  other   small   invertebrates  of   commercial   value   feed  upon  

the   wastes   from   the   shellfish.   Finally,   Ryther   introduced   various   species   of   Red  

Algae  to  remove  any  other  excess  nutrients,  resulting  in  a  final  effluent  virtually  free  

of  inorganic  nitrogen,  thus  not  contributing  to  eutrophication  or  pollution  (Ryther  et  

al.,  1975).    

 

  44  

The  term  Integrated  Multi-­‐Trophic  Aquaculture  was  coined  some  thirty  years  later  

at   a   workshop   in   2004:   Thierry   Chopin,   Jack   Taylor,   Stephen   Cross   and   other  

research   leaders   of   ‘eco-­‐friendly’   aquaculture   finally   agreed   that   what   they   were  

talking   about  was   in   fact   the   integration  of   species   across  different   trophic   levels,  

thus   mimicking   natural   ecosystem   flows   yet   adapting   them   for   harvestable  

productivity.  As  summarised  by  Chopin:  “It  [Ryther’s  1975  paper]  was  followed  by  

three  productive  decades  on  what  has  been  variously  called  polyculture,  integrated  

mariculture   or   aquaculture,   ecologically   engineered   aquaculture   and   ecological  

aquaculture.   Understanding   the   need   to   harmonize   all   these   names,   the   author  

[Chopin]   and   Jack   Taylor   combined   integrated   aquaculture   and   multi-­‐trophic  

aquaculture   into   the   term   integrated  multi-­‐trophic   aquaculture   in   2004.”   (Chopin,  

2003:16)  

 

Returning  to  the  initial  aim  of  this  thesis,  specifically  the  search  for  the  sustainable  

cultivation   of   seaweeds,   it   would   seem   that   IMTAs   whether   incidental,   custom  

designed  or  added  on  have  demonstrated  their  sustainability  quality,  by  standing  the  

test  of  time.    

 

3.3.3. Quantifying  IMTA  Synergies  

 

To  develop  pathways   for   an   economically   viable   aquaculture  on   the  west   coast   of  

Sweden,   it   is   important   to   explore   the   potential   benefits   of   potentially   basing   the  

design   of   the   cultivation   on   IMTA   principles.   This   section   aims   to   scrutinise   four  

reports  and  experiments  that  have  aimed  to  quantify  the  synergies  and  demonstrate  

benefits  of  IMTA  systems,   in  view  of  supporting  the  development  of  scenario  TWO  

in  the  latter  part  of  the  thesis.  For  full  details  on  these  experiments,  see  Appendix  B.  

 

The  first  report  predates  the  coining  of  the  term  IMTA  and  was  carried  out  by  Troell  

et  al.  (1997)  in  the  Metri  bay  of  Chile,  between  January  and  March  1995,  as  a  follow  

up  to  the  report  by  Buschmann  et  al.  (1994).  The  report  investigated  growth  rates  of  

  45  

blue  mussels  and  Gracilaria  chilensis  10m  away  from  salmon  cages,  compared  to  a  

site  150m  away  and  a   reference   site  1km  away.  Each   site  had  an   identical   layout,  

with   close   to   identical   environmental   conditions   and   currents.   Growth   rates  were  

measured  regularly  over  a  period  of   three  months,   and   the   results   concluded   that  

growth  rates  were  20-­‐40%  higher  at   the  site   that  was  10m  away  from  the  salmon  

cages,  while  growth  rates  at  150m  and  1km  distance  were  almost   identical.   It  was  

found  that  the  effluents  from  the  salmon  cages  acted  as  fertilisers  for  the  seaweed  

and   mussels   growing   10m   away.   This   inter-­‐trophic   fertilisation   has   been   further  

documented   in   other   reports   since   then.   In   the   interview  with   Stephen   Cross,   he  

confirmed   that  experiments  he  has   taken  part   in  had  accurately  measured  growth  

rate  improvements  of  up  to  50%.  (Troell  et  al.,  1997)  

 

The   second   chosen   report   identifies   another   synergy   that   emerges   from   the  

integration   of   multiple   trophic   levels   in   an   aquaculture:   that   is   the   improved  

resilience  to  disease  and  pests.  Molloy  et  al.  (2011)  set  out  on  an  experiment,  based  

on   the   hypothesis   that   blue   mussels   ingest   certain   salmon   pests   and   diseases,  

notably  the  sea  louse,  Lepeophtheirus  salmonis,  and  therefore  could  act  as  biological  

control  agents  in  cultivations.  Undertaken  laboratory  conditions  the  hypothesis  was  

confirmed.  A  follow  up  study  is  being  undertaken  in  the  Bay  of  Fundy  to  explore  this  

potential   in   open   waters,   where   the   pesticide   resistant   strains   of   sea   louse   are  

already   threatening   vast   numbers   of   salmon   aquacultures.   Different   three-­‐

dimensional  configurations  will  be  developed,  and  if  proven  successful,  mussel  long-­‐

line  cultivations  could  be  introduced  as  a  biological  control  agent,  protecting  salmon  

crops  while  adding  potential  value  to  those  cultivations.    

 

This   same   location,   the  Bay  of  Fundy,  has  also  been  subject  of  other   IMTA  related  

studies.  A  ten-­‐year  economic  feasibility  model  was  developed  by  Ridler  et  al.  (2007)  

to   understand   the   impact   of   upgrading   a   500’000   smolt   salmon   farm   to   an   IMTA.  

Included   in   this  model  was   the   costs   of   introducing   the  blue  mussel   and   seaweed  

long-­‐line  upgrades,   the  operation  and  maintenance  costs  of  each  system  and   their  

corresponding  revenues.  Three  scenarios,  a  best,  a  worst  and  an   intermediate  one  

  46  

were  established  according   to   losses  and   to   risks.  The  results   from  the  running  of  

the  model  found  that  no  matter  which  scenario  was  selected,  the  subsidiary  incomes  

from  mussels  and  seaweed  buffered  the  effects  of  salmon  losses,  while  also  paying  

for  themselves  within  the  ten-­‐year  period.  Principally  the  results  show  that  one  bad  

salmon   harvest   can   suffocate   profits   of   a   salmon   monoculture   over   a   ten-­‐year  

period,   whereas   IMTA   provides   the   diversity   of   economy   to   maintain   a   positive  

balance   sheet   and   sustain   the   business.   A   subsequent   re-­‐run   of   the   model   was  

thereafter  carried  out,  this  time  incorporating  market  risks  subjected  in  the  form  of  

an   immediate   12%  decrease   in   salmon  market   value   carried   over   a   ten-­‐year   run,  

mimicking  a  similar  price  drop  in  the  1980s  (Whitemarsh  et  al.,  2006).  Similar  to  the  

first   results,   the   IMTA   coped  better   yielding   a   profit  margin   of   3.2%   compared   to  

0.3%  for  the  salmon  monoculture.  (Ridler  et  al.,  2007)  

   

Similar  results  have  been  found  in  studies  of  land-­‐based  IMTAs.  In  a  study  by  Nobre  

et  al.  (2010),  two  schemes  for  IMTA  developments  were  once  again  compared  to  a  

monoculture,   this   time  of   abalone,  with   specific   aim   to   compare   the   economics   of  

the  two  systems  while  also  monitoring  the  changes  in  the  state  of  ecosystems  during  

the   study  period.  The   authors  based   the  methodology  on   a   recent  modification  of  

the   DPSIR   framework,   the   Differential   Drivers-­‐Pressures-­‐State-­‐Impact-­‐Response  

(ΔDPSIR)   proposed   by   Nobre   (2009)   to   support   sustainable   coastal   management  

decision  makers.  The  results  of  the  study  showed  first  and  foremost  that  the  IMTA  

scemes   paid   for   themselves  within   the   first   financial   year,   and   despite   increasing  

labour   costs,   they   also   increased   overall   operational   profit.   Secondly   the   IMTA  

schemes   reduced   discharges   of   nitrogen   and   phosphorus   by   44%   and   23%  

respectively,  while  also  reducing  net  CO2  emissions.  “The  quantified  environmental  

externalities   [of   these   reductions]   corresponded   to   an  overall   economic  benefit   to  

the   environment   and   thus   to   the   public,   of   about   0.9  million   and   2.3  million  USD  

year-­‐1  upon  shifting  the  farm  practice  from  abalone  monoculture  (scheme  1)  to  the  

IMTA  schemes  2  and  3,  respectively”  (Nobre  et  al.  2010:123).  

 

  47  

Some   reports   have   focused   solely   on   this   bioremediation   capability   of   seaweeds.  

Huo  et  al.  (2012)  monitored  the  nutrient  reduction  efficiency  of  Gracilaria  verrucosa  

when   co-­‐cultured   with   Pseudosciaena   crocea   in   the   coastal   waters   of   Xiangshan  

harbour  in  the  East  China  Sea.  “The  maximum  reduction  efficiency  of  PO4–P,  NO2–N,  

NH4–N   and   NO3–N   was   58%,   48%,   61%   and   47%,   respectively”   (Huo   et   al.,  

2012:99).  It  was  thus  found  that  for  a  balanced  system  in  term  of  nutrient  discharge  

and   uptake,   one   cage   of   P.   crocea   required   a   cultivation   area   of   144.95m2   of   G.  

verrucosa,   or   1kg   to   7.27kg   respectively.   The   bioremediation   capability   of   this  

particular  gracilaria  species  was  confirmed  in  this  study.    

 

The   above   five   reports   summarised   in   this   section   were   selected   as   convincing  

examples   of   the   potential   of   well-­‐designed   and   executed   IMTAs,   in   five   very  

different   areas.   The   first   demonstrated   the   inter-­‐trophic   fertilisation   between  

species   (Troell  et  al.,  1997).  The  second   identified   that   IMTAs  might  be  more  pest  

and   disease   resistant   than   their   counterparts   (Molloy   et   al.,   2011).   The   third  

modelled  an  economic  assessment  of   IMTA  versus  a  monoculture,   finding   that   the  

former   strengthened   the   economic   resilience   by   diversifying   products   while   also  

paying   for   itself   and   increasing   returns   (Ridler   et   al.,   2007).   The   fourth   similarly  

reported  the  benefits  to  a  monoculture’s  economy  through  upgrading  to  IMTA  style  

operations,   but   it   also   assigned   a   value   of   between   US$0.9-­‐2.3   million   for   the  

environmental  externalities  reduced  as  a  result  of  the  change  to  IMTA  (Nobre  et  al.,  

2010).   The   fifth   and   final   report   in   this   section   confirmed   the   open   sea  

bioremediation   capabilities   of   Gracilaria   verrucosa,   while   also   demonstrating   a  

procedure   to   balance   out   bioremediation   with   effluent   output,   to   create   an  

environmentally   neutral   (in   terms   of   nutrients)   open   sea   cultivation   (Huo   et   al.,  

2012).    

   

  48  

4. CASE  STUDY:  BIOMARA  

 

BioMara  was  a   joint  UK-­‐Irish,  €6  million   four  year   research  project   led  by  a   team  

from  SAMS  [Scottish  Association  for  Marine  Sciences]  from  2009  to  2012,  to  explore  

the   feasibility  of  yielding   third  generation  biofuels   from  marine  biomass.  The   idea  

came  about   in   reaction   to   the  EU  Parliament   setting   the   target   for  all  members   to  

achieve   at   least   10%   transport   fuels   from   sustainable   sources   by   2020   (Council  

Directive   2009/28/EC).   Terrestrial   crops   for   biofuels   are   neither   a   viable   nor  

sustainable  option   for  Scotland  given   the   lack  of  suitable  agricultural   land,   thus   to  

achieve  the  goal  set  by  the  EU,  it  was  decided  to  look  to  the  oceans  for  answers.  

 

The   aim  was   to   explore   all   avenues   of   biofuel   generation   from  both   seaweed   and  

microalgae  in  Scotland,  and  accordingly  the  project  developed  four  core  objectives.  

The   first  was   to   identify   the  most   appropriate   species   of   seaweed   and   cultivation  

techniques   for  bioethanol  and  biogas  generation.  The  second  was  to   identify  some  

oil  rich  microalgae  in  view  of  extracting  biodiesel  (irrelevant  to  this  thesis  and  will  

not  be  elaborated).  Third  was  an  evaluation  of   the  environmental   impacts  of  algal  

cultivation   and   harvesting   of   natural   stocks.   And   finally   to   achieve   a   holistic  

perspective   on   the   final   objective,   close   collaboration   with   and   the   education   of  

stakeholders  was  seen  as  essential  in  order  to  evaluate  the  technological  and  socio-­‐

economic   practicalities   of   producing   competitive   and   sustainable   biofuels   from  

marine  sources.    

 

This   case   study   aims   to   provide   the   reader   with   an   overview   of   the   journey  

undertaken  by  the  research  collaboration  of  BioMara,  their  major  findings  and  how  

these   should   help   pave   an   economically   viable   pathway   for   SEAFARM.   The   case  

study  attempts  to  answer  the  following  questions  

-­‐ What  were  the  major  findings?  -­‐ What  were  the  biggest  encumbrances  of  the  project?  -­‐ What  conclusions  can  be  drawn  from  BioMara  to  serve  SEAFARM  research?  

  49  

4.1. KEY  FINDINGS  

 

In  the  time  leading  to  the  BioMara  official  start  date  expectations  were  running  high.  

It  had  been  hoped  that  the  project  would  remove  the  last  major  hurdles  obstructing  

the   development   of   a   viable   algae-­‐based   economy,   paving   the   way   for   a   new  

beginning   for   the   depressed   ‘cross-­‐border   area’   between   Ireland,   southwestern  

Scotland   and   Northern   Ireland.   Such   hopes   are   embodied   by   the   role   of   Ian  

Macfarlane,   chair   of   the   Stakeholder   Group   whose   role   in   BioMara   was   to  

disseminate   results   through   industry,   raise   the   profile   of   research   activities  

internationally  and  help  nurture   research-­‐industry  partnerships.  But  as  promising  

as   the   algae   for   biofuels   would   appear   in   theory,   the   project   would   reveal   new  

questions   requiring   further   research   in   seaweed   pre-­‐treatment,   co-­‐digestion   and  

storage,  as  well  as  practical  encumbrances  of  cultivation  site  licenses,  which  would  

need  to  be  overcome  before  a  profitable  algal  biofuel  industry  could  really  take-­‐off.  

Hereafter   are   presented   the   key   findings,   as   summarised   in   the   “Celebrating  

BioMara  2009-­‐2012”  report  by  SAMS  (2012).  

 

4.1.1. Identifying  Seaweeds  for  Biofuel  Conversion  

 

Primarily   the   focus  of   the   research  was  on  brown  seaweeds,   also  known  as  kelps,  

given   their   relatively   high-­‐energy   contents   and   thus   biofuel   yield   potential   when  

compared  to  other  species.  Both  production  processes  –  bioethanol  by  fermentation  

and  biogas  by  anaerobic  digestion  –  were  core  to  the  research  objectives.  

 

Fermentation  of  biomass  is  carried  out  by  micro-­‐organisms  that  convert  sugars  into  

alcohols,  a  process  refined  over  hundreds  of  years  by  humans  to  produce  a  range  of  

alcoholic   beverages,   or   more   recently,   fuels.   However   seaweeds   are   structurally  

very   different   from   their   terrestrial   counterparts,   so   existing   saccharification  

enzymes   and   chemicals   are   ineffective,   expensive   and   produce   toxic   compounds.  

Further   research   is   needed   to   identify   higher   yielding   and   more   cost   effective  

  50  

methods,   and   in   comparative   terms,   it  was   considered   that   fermentation  was   less  

cost-­‐effective   and   less   energy-­‐yielding   that   anaerobic   digestion.   The   other   major  

finding  relating  to   fermentation  was  that,   like  all  plants,   the  seasons  affect  cellular  

chemical   composition.  The  autumn  was   identified  as   the   time  when  sugar   content  

peaks  and  thus  the  most  suitable  time  for  harvesting  for  fermentation.  Each  species  

of   seaweed  however  have  slightly  differing  peak   times   for   sugar   content,   and  also  

differ  from  year  to  year,  so  multiple  species  cultivations  should  prolong  the  season  

and  improve  yields.  

 

Pilot   tests   for   anaerobic   digestion  were   carried   out   and   it  was   identified   that   the  

higher  yields   can  be  achieved   through  a  mixture  of  different   seaweeds  and  added  

substrates  such  as  sheep  gut  rumen  and  faeces  from  seaweed  eating  sheep,  as  well  

as  by  separating  the  acidogenic  and  hydrolytic  phases  of  digestion.  Similarly  to  the  

research   into   fermentation,   the   ideal   harvesting   time   was   also   identified   as   the  

Autumn,  and  preferred  pre-­‐treatment  methods  included  fresh  mincing  followed  by  

freeze   drying   or   air   drying,   prior   to   digestion.   Vanegas   and  Bartlett   (2013)   found  

that   when   co-­‐digested   with   bovine   slurry   at   35°C   in   incubators   of   150ml   and  

1000ml,  of   the  common  Irish  sea  kelps,   the  highest  methane  yields  were  obtained  

from  Saccharina  latissima   (335ml  gVolatile  Solids-­‐1),   followed  by  Saccharina  polyschides  

(255ml  gSV-­‐1)  and  Laminaria  digitata  (246ml  gSV-­‐1).  

 

4.1.2. Harvesting  Beach-­‐Cast  Seaweeds  

 

Prior  to  BioMara,  a  serious  potential  candidate  source  of  algal  biomass  was  beach-­‐

cast  seaweeds  -­‐  torn  from  their  footholds  usually  during  storms,  these  are  seaweeds  

that  are  carried  by  waves  and  cast  at  the  high  tide  mark  along  beaches.  Large  storms  

off   the  coast  of  Scotland  regularly  bring   in  great  volumes  of  seaweeds,  which  then  

decompose   along   beaches.   The   theory   was   that   rather   than   decomposing   on  

beaches,  these  vast  algal  beds  could  be  harvested  and  used  as  feedstock.    

 

  51  

A  model  was  developed  by  PhD  student  Kyla  Orr  (SAMS),  which  would  shed  light  on  

the   ecological   role   of   beach   cast   seaweeds   in   the   region,   particularly   in   terms   of  

their   effects   on   the   local   food   web,   benthic   communities,   migrating   birds   and  

invertebrate  populations.  In  essence  the  beach-­‐cast  seaweeds  were  found  to  be  the  

habitat   for  a   range  of  organisms  upon  which  migrating  birds   feed,   such  as  beetles  

and  flies,  thus  the  model  predicted  impacts  on  their  population  numbers  growing  in  

severity  with   increased   harvesting.   Furthermore,   the   decomposed   seaweeds  were  

found   to   fertilise   and   increase   productivity   of   near   shore   ecosystems,   supporting  

benthic  communities  with  a  slow-­‐release  source  of  nutrients.  The  model  indicated,  

with   a   medium   degree   of   certainty,   that   to   minimise   environmental   impacts   on  

migrating   and   local   birds,   as   well   as   the   local   ecosystems,   no  more   than   10%   of  

beach-­‐cast   seaweed   should   be   harvested   in   each   designated   area,   and   that   this  

harvesting  could  only  happen  every  second  year,  allowing  the  local  ecosystems  and  

communities   time   to   recover.   Further   research   on   beach-­‐cast   seaweeds   also  

suggested   that   they   were   neither   reliable   nor   a   high   quality   feedstock,   and   that  

overall   it  would  be  best   to  harvest  specially  cultivated  species  during   the  autumn,  

when   they   contain   highest   densities   of   fermentable   or   anaerobically   digestible  

compounds.  (SAMS,  2012)  

 

4.1.3. Technological   and   Socio-­‐Economic   Impacts   of   Biofuel   Production   from  

Marine  Biomass  

 

A  fundamental  part  of  the  BioMara  project  was  to  investigate  the  techno-­‐  and  socio-­‐

economic   impacts   of   the   potential   seaweed-­‐biofuel   industry.   At   a   local   level,   the  

potential   of   the   industry   is   very   positive,   supplying   energy   and   creating   jobs   and  

revenues   in   an   isolated   region   subjected   to   high-­‐energy   prices   and   ageing  

infrastructure.   Some   detailed   models   and   plans   for   pilot   AD   combined   heat   and  

power  plants  were  developed   in  an  attempt   to  convince   investors   to  get   involved,  

however  these  efforts  were  unsuccessful.  

 

  52  

Overall   some   major   hurdles   to   profitability   were   identified,   notably   the   labour  

intensive   nature   of   seaweed   cultivation,   unstable   annual   yields   and   significant  

investment  costs.  It  was  estimated  that  long-­‐line  systems  of  14’400m  could  yield  up  

to   100   tonnes   of   algae,   at   a   market   price   of   about   €50   per   tonne.   Electricity  

therefrom  was   estimated   to   cost   approximately  €120   per  MWh,  with   potential   to  

improve  efficiency  by  integrating  combined  heat  and  power  plants  into  the  system.  

Such   systems   are   estimated,   overall,   as   costing  up   to  €3500  per  KW  of   electricity  

generation   capacity   –   several   times   the   cost   of   equivalent   sustainable   energy  

sources,   such   as   wind   or   wave   power   systems.   Further   research   in   the   area   is  

needed  to  reduce  process  and  infrastructural  costs,  optimise  efficiencies  for  marine  

biomass  digestion  and  to  estimate  the  economies  of  scale  that  could  be  achieved  by  

scaling  up  production.  (Dave  et  al.,  2013)  

 

4.2. PROJECT  SETBACKS  

 

One  of  the  biggest  obstacles  to  encumber  the  momentum  of  BioMara’s  research  was  

the   application   process   for   marine   licenses   to   cultivate   algae   in   near-­‐shore  

environments.  In  a  telephone  interview  with  Dr  Michele  Stanley  (05/15/2013),  she  

explained:   “We   did   an   Environmental   Impact   Assessment   on   the   site   because   back  

then   it  was   suggested  we  were   going   to   cultivate,   but  we  never   did.   They   didn’t   get  

licenses   for  a   long   time,  and  we’ve  had   to   change   sites.”  Multiple   applications  were  

filed   in   the  early   stages  of   the  project   and  only   recently,   some   three   to   four  years  

later,   have   licenses   been   acquired   and   pilot   tests   effectively   begun.   One   of   the  

BioMara  financiers,  The  Crown  Estate,  had  planned  to  develop  a  pilot  cultivation  in  

the   Lynn   of   Lorn   to   provide   samples   for   experiments,   yet   it   is   in   the   wake   of  

BioMara’s  completion  that  the  first  few  harvests  will  be  attempted.    

 

SAMS  and  some  of  the  other  BioMara  research  partners  have  recently  acquired  two  

other   licensed   sites.   The   cultivation   infrastructure   was   installed   at   the   Kerrera  

cultivation  site  in  February  2013,  followed  two  weeks  later  by  the  first  seeded  long  

  53  

lines,   along   which   macroalgae   will   be   monitored   as   the   grow   over   a   period   of  

approximately   6   months.   Harvests   will   begin   in   late   summer   and   early   autumn,  

providing   the   old   research   collaborations   with   their   first   cultivation   sites.   In   the  

course  of  BioMara,  to  undertake  anaerobic  digestion  and  fermentation  trials,  in  the  

words   of   Dr   Michele   Stanley:   “we   had   to   beg,   borrow   and   steal   from   all   sorts   of  

places”,  amongst  which  some  neighbouring  small  mussel  cultivations.  After  years  of  

unsuccessful   attempts,   complicated   financing   issues   and   licensing   terms,   the  

Kerrera  cultivation  site  is  now  finally  up  and  running.    

 

4.3. ‘PASSING  THE  BATON’  TO  SEAFARM  

 

In  some  ways,  one  could  consider  the  SEAFARM  research  collaboration  as  BioMara’s  

big  sister,  picking  up  research  gaps  where  BioMara  left  them,  while  adapting  to  the  

Swedish  west  coast.  So  what  are  the  research  gaps?  What  needs  to  be  done  before  a  

viable  biogas-­‐from-­‐algae  industry  could  emerge  in  Europe?  

 

During   the   interview   with   Michele   Stanley,   she   clearly   communicated   that   the  

planning   for  BioMara  predated   the  emergence  of  biotechnology  as  a  key  player   in  

the   development   of   seaweed   resources.  Whereas   in   2008,   biofuels   from   seaweed  

were   the   subject   of   excitement   and   of   inherent   great   promise,   today   the   greatest  

potential   is   seen   in   the  development  of   new   innovative  products,   and  particularly  

the  fractioned  biorefinery  approach.  These  shifts  in  perspective  are  reflected  in  the  

research   agenda   of   SEAFARM.   Beyond   that,   Michele   also   commented   on   the  

importance   of   investigating  marine   licensing   procedures,   and   that   these   can   take  

many  more   years   that   initially   forecasted   in   the   planning   phase.   Licensing   should  

not  be  taken  lightly,  nor  should  it  be  assumed  that  permission  for  a  cultivation  to  be  

granted  on  any  time  scale.    

 

Published  recently  on  the  3rd  of  June,  the  latest  roadmap  on  the  development  of  algal  

biotechnology  resources  provides  estimated  timeframes  and  relative  values  of  each  

  54  

key   development   area   (Schlarb-­‐Ridley   and   Parker,   2013).   After   reviewing   this  

report,   it   was   found   that   the   SEAFARM   objectives   (FA1-­‐5)   fit   effectively   into   this  

framework,  most  notably   regarding   the  development  of   the   fractioned  biorefinery  

approach  and  the  suggested  investigation  into  the  use  of   the  biorefinery  wastes  to  

develop  biofuels  and  soil  additives.    

 

   

  55  

5. RESULTS:  SEAFARM  DEVELOPMENT  SCENARIOS  

 

Thus   far   the   present   report   has   presented   a   wide   range   of   information   that   has  

come   from   literature   and   IMTA   experiment   reviews,   interviews,   a   case   study   of  

BioMara  and  a  field  visit  of  the  Sven  Lovén  Centre  in  Tjärnö.  Hereafter  the  informed  

discussion  is  engaged,  with  the  aim  of  exploring  three  alternative  scenarios  for  the  

development  of  an  economically  viable  SEAFARM.    

 

This   exploration   of   scenarios   will   have   3   constituent   parts.   Firstly   the   scenario  

context  will  be  determined  by  examining  Kosterfjorden  water  quality  data  obtained  

from   SMHI,   considering   the   range   of   algae-­‐based   products   established   in   section  

3.1.3  and  some  socio-­‐  and  techno-­‐economic  information  from  the  literature  review.  

Secondly,  the  three  scenarios  will  be  designed,  inspired  by  a  combination  of  existing,  

planned   and   fictional   cultivations   and   based   upon   information   gathered   in   the  

literature  review,  experiment  reviews  and  interviews.  Thirdly  the  scenarios  will  be  

applied   in   the  Kosterfjorden   context,   providing   an   analysis   of   estimated   revenues  

from  the  products  and  anticipated  growth  rates.  This  third  and  final  process  will  be  

informed   primarily   by   interviewee   experience   and   SMHI   data   from   the  

Kosterfjorden,   but   also   through   the  wide   range   of   data   collected   in   the   literature  

review  and  experimental  reviews.    

 

5.1. SCENARIO  CONTEXT  

     

In   order   to   apply   the   three  development   pathway   scenarios,   the   context   in  which  

they   are   to  be   applied  must  be   established.  As  mentioned  previously,   this   context  

has  four  major  elements:  the  water  conditions  at  the  cultivation  site,  Kosterfjorden,  

will  be  analysed  from  SMHI  data;  the  selection  of  algae-­‐based  products  undertaken  

in  section  3.1.3  will  be  assigned  relative  values  (very  high,  high,  medium,  low,  very  

low)   based   on   interview   discussions   and   literature,   to   reflect   estimated   potential  

  56  

revenue   streams   from   each;   the   SEAFARM   research   objectives   will   be   reiterated;  

and  finally,  other  socio-­‐  and  techno-­‐economic  considerations  will  be  considered.    

 

5.1.1. The  Kosterfjorden  site  

 

The   research   collaboration  of   the   SEAFARM  project   has   yet   to  begin   the   selection  

process  of  cultivation  site,  or  sites.  As  such  the  Kosterfjorden  site  was  chosen  for  the  

purposes   of   this   thesis   due   to   the   availability   of   water   sample   data   collected   by  

SMHI  as  well  as  the  Kosterfjorden’s  proximity  to  the  SLCMS.  The  SMHI  data  has  been  

collected  regularly  for  many  years  and  gives  a  historical  insight  of  water  conditions  

dating  back  over  50  years.  This  water  condition  database  includes  a  wide  range  of  

parameters   and   nutrient   levels,   at   a   variety   of   depths.   A   selection   of   the   6   most  

important   parameters   to   seaweed   growth   was   made,   based   on   BioMara’s   Final  

Stakeholder  Meeting  report  (Groom  and  Macfarlane,  2012),  and  are:  salinity  (PSU),  

temperature  (°C),  and  water  sample  content  of  nitrate,  ammonium,  phosphate  and  

nitrite  (mgL-­‐1).  These  6  parameters  are  represented  in  the  4  charts  here  below,  with  

a   variety   of   different   depths   to   illustrate   the   change   in   values   that   make   up  

distinctive  depth-­‐gradients.    

 

These  charts  were  presented  during  the  interviewing  process  to  Stephen  Cross  and  

Lars  Brunner,  both  of  which  have  extensive  experience  of  seaweed  cultivation,   the  

former  on  the  Canadian  west  coast  and  the  latter  at  a  variety  of  sites  in  Scotland.  The  

purpose   of   this   section,   of   sharing   this   information  while   interviewing   these   two  

experts,  was   for   experts   to   loosely   evaluate   the   suitability   of   the   site   and   identify  

any   potential   problems   that  might   occur   in   attempts   to   cultivate   seaweeds   at   the  

Kosterfjorden.   After   consideration   of   the   charts,   both   experts   made   comments,  

expressed  after  each  chart  here  below.  

 

 

  57  

CHART  1  -­‐  Seasonal  Fluctuations  of  Surface  Water  Temperature  Gradients  (°C)  at   the  Kosterfjorden   in  2012   [Depths   (D)  of   0,   5,   10  and  20m].  Source:  SMHI  (2013)    

   

Chart  1  displays  the  temperature  fluctuations  for  the  year  2012,  at  depths  of  0,  5,  10  

and   20   meters.   As   you   can   see,   water   temperatures   at   the   Kosterfjorden   are  

characterised  by  significant  annual   fluctuations   from  the  extreme   low  of   -­‐0.7°C  on  

the  7th  of  February  2012,  to  a  maximum  of  19.1°C  on  the  22nd  of  August  2012,  both  

values  having  been  recorded  at  a  depth  of  0m.  The  single  most   important  trend  to  

take   note   of   is   that   temperatures   fluctuate   to   a   greater   extent   at   the   surface   and  

remain  more   stable   at   depth.   This   is   probably   due   to  water  mixing   at   depth   and  

energy   transfers   with   the   atmospheric   temperature   fluctuations,   which   are   more  

pronounced   than   that   of   the   oceans.   It   is   also   evident   that   the   waters   generally  

warm  up  until  the  peak  of  the  summer  in  August,  and  then  decline  steadily  until  the  

middle  of  winter  in  February.    

 

Both   Stephen   Cross   and   Lars   Brunner   were   of   the   opinion   that   these   are   quite  

tolerable  variations  for  seaweed  and  fish  aquaculture.  Both  commented  that  it  was  

particularly  positive  that  the  surface  waters  at  the  site  did  not  seem  likely  to  freeze  

on   annual   bases,   however   they   warned   that   a   larger   data   set   should   be   used   in  

  58  

further  studies  considering  a  larger  span  of  time,  in  order  to  identify  potential  long-­‐

term  risks  associated  with  temperature  fluctuations.    

 

CHART  2  -­‐  Seasonal  Fluctuations  of  Surface  Water  Salinity  Gradients  (PSU)  at  the   Kosterfjorden   in   2012   [Depths   (D)   of   0,   5,   10   and   20m].   Source:   SMHI  (2013)    

   

Chart  2  displays  the  salinity  fluctuations  for  the  year  2012,  at  depths  of  0,  5,  10  and  

20   meters.   Several   trends   are   observable   here.   First   it   is   clear   that   the   highest  

salinity  values  are  at  lower  depths,  while  surface  waters  are  somewhat  more  diluted  

by   freshwater.  This   indicates   that   the  highly  saline  Atlantic  water  mass   is  situated  

below  a  more  brackish  Baltic  water  mass  at  the  surface,  diluted  by  a  combined  fresh  

water  input  of  rivers,  lakes,  surface  currents  and  precipitation.  A  second  observable  

trend   is   that   there   is  no  pronounced  seasonal  oscillation  of  salinity;  at  each  depth,  

salinity  remains  more  or  less  constant  throughout  the  year.  The  third  trend  of  note  

is   that,   like   for   temperature,   the   fluctuations   in   salinity   are   more   pronounced  

amongst   surface   waters   (range   of   almost   10   PSU,   from   a   high   of   27.6   PSU   in  

September   to   a   low   of   18.6   PSU   in   March),   and   become   more   stable   with   depth  

(range  of  approximately  5  PSU,  from  a  high  of  32.9  PSU  in  November  to  a  low  of  27.6  

PSU  in  March).    

 

  59  

This  information  kindled  concern  in  both  experts.  Lars  Brunner  was  of  the  opinion  

that  the  salinity  levels  were  particularly  low  and  would  be  a  major  limiting  factor  in  

the  metabolic   growth   rates   of   seaweed.   He   commented   that   a   generally   accepted  

minimum   is   usually   said   to   be   around   15   PSU.   Similarly,   Stephen   Cross   warned  

against   low   salinity,   however   he   has   visited   successful   cultivation   site   with   even  

lower  salinity  of  surface  waters.  The  trick,  he  explained,  was  to  rig  the  seaweeds  on  

a  cultivation  system  that  can  be  lowered  to  greater  depths  when  surface  waters  are  

beyond   the   survival   thresholds   of   the   most   vulnerable   species.   Such   a   system   is  

more  costly  than  a  fixed  line  system,  and  requires  relatively  advanced  engineering  

knowledge   of   such   cultivation   systems,   however   it   is   a   challenge   that   has   already  

been  overcome  at  other  cultivation  sites  in  Canada.    

 

CHART  3  –  Seasonal  Fluctuations  of  Nitrate  (mgL-­‐1  )  and  Ammonium  (mgL-­‐1  )    Gradients  at   the  Kosterfjorden  in  2012  [Depths  (D)  of  0,  5  and  10m].  Source:  SMHI  (2013)  

   

CHART   4   -­‐   Seasonal   Fluctuations   of   Nitrite   (mgL-­‐1)   and   Phosphate   (mgL-­‐1)  Gradients  at   the  Kosterfjorden  in  2012  [Depths  (D)  of  0,  5  and  10m].  Source:  SMHI  (2013)    

  60  

   

Charts   3   and   4   represent   the   nutrient   concentration   gradient   fluctuations   for   the  

year   2012,   at   depths   of   0,   5   and   10m.   The   major   trend   of   note   is   a   seasonal  

oscillation   of   all   the   nutrients,   which   seem   to   increase   steadily   in   the   autumn   to  

high’s   in  the  winter,  and  then  decrease  rapidly   in  the  spring  to  very   low  or  absent  

levels   for   most   of   the   spring   and   summer.   The   exception   is   perhaps   ammonium,  

which   seems   to   fluctuate   more   readily   displaying   independence   to   the   seasonal  

oscillations  trend  of  the  other  nutrients,  most  notably  in  the  surface  waters.  

 

With   regard   to   nutrient   levels,   Stephen   Cross   explained   he   had   few   comments   to  

make  given  that  his  experience  lies  principally  in  IMTA  cultivations,  and  as  such  the  

cultivation  sites  he  is  familiar  with  are  not  characterised  by  seasonal  variations,  but  

by  steady  stream  of  nutrients   from  the   finfish  cultures.  Lars  Brunner  on   the  other  

hand  had  plenty  of  comments  to  make.  According  to  him  the  nutrient  levels  seemed  

quite   tolerable,   although   the   lows   seem  particularly   strong   as  well   as   long   lasting  

(over   4   months).   He   explained   that   usually   seaweeds   have   plenty   of   nutrients  

available   in   the   winter   but   not   enough   light,   which   limits   growth.   Then   light  

intensity  begins  to  increase  in  the  spring,  raising  metabolic  rates.  This  period  of  time  

is   when   growth   rates   are   highest,   and   other   species   such   as   plankton   strip   the  

waters   of   nutrients   very   quickly,   leading   to   the   summer   lows.   Thereafter   the  

  61  

limiting   factors   are   reversed   in   the   summer   for   seaweeds,   as   light   intensity   is  

prevalent  but  there  is  a  scarcity  of  nutrients.    

 

5.1.2. Assigning  values  to  products  

 

As  presented  in  section  3.1.3  of  the   literature  review,  generally  speaking  there  are  

four   major   categories   of   products   in   development   or   in   resale,   these   being   food,  

phycocolloids,   phyco-­‐supplements   and   biofuel   feedstocks.   Each   of   these   have  

potential  revenue  streams,  or  profit  potential  (PP),  that  will  be  considered  hereafter.  

Furthermore  each  of  these  product  categories  also  have  different  required  seaweed  

inputs   (RSI),   that   is   to  say  different  volumes  of  seaweeds  required   for  operational  

viability.  Assigned  according  to  literature,  available  data  and  interview  discussions,  

PP  and  RSI  are  qualitatively  assigned  hereafter  according  to  the  following  scale:  low,  

medium,  high.    

 

Currently  the  largest  profits  from  seaweeds  are  generated  from  the  Asian  market  for  

sea   vegetables,   worth   US$   5.29   billion   in   2004   (Chopin   and   Sawhney,   2009).   In  

Europe   seaweeds   are   not   a   dietary   staple   and   are   not   sought   after   to   the   same  

extent,   though   there   is   a   small   demand   for   high   quality   sea   vegetables   and   the  

European  market  is  growing.  The  cost  of  processing  sea  vegetables  is  very  low,  they  

are   light   and   cheap   to   transport.   Overall   therefore,   the   generalised   PP   for   sea  

vegetables   will   be   assumed   as   being   ‘medium-­‐high’,   while   RSI   is   assumed   to   be  

‘medium’.    

 

Phycocolloids   are   the   second   biggest   player   in   the   global   market,   worth  

approximately  US$  650  million  in  2004  (Chopin  and  Sawhney,  2009).  Depending  on  

the   quality   of   the   end   product   phycocolloids   can   either   be   cheap   or   expensive   to  

extract,   however   their  market   price   reflects   these   costs,   balancing   revenues   with  

expenses.  The  difficulty  with   introducing  phycocolloids  as  a  substantial  product   in  

the  SEAFARM  scenarios  is  that  the  European  market  is  already  virtually  saturated,  

  62  

and  thus  any  serious  profit   to  be  generated  by  phycocolloids  will  need  to  be  price  

and   quality   competitive   with   existing   industries   (FAO,   2003).   As   such   the  

generalised  PP  for  phycocolloids  was  assigned  as  being  ‘medium-­‐low’,  primarily  due  

to  market   saturation,  but  also  due   to   the   requirement  of   significant   investment   to  

become   competitive   with   existing   phycocolloid   suppliers.   RSI   was   allocated   a  

‘medium-­‐low’  volume  rating.    

 

Phyco-­‐supplements  are  not  only  on  the  rise  in  terms  of  demand  but  also  diversity.  

New   innovative  products  are  emerging,  as  are  high  value  compounds  destined   for  

use   in   high-­‐value/low-­‐volume   industries   such   as   the   cosmetic,   neutraceutic   or  

pharmaceutic   products   specified   in   table   3.   The   diversity   of   this   category   of  

products,   which   range   from   high-­‐value/low-­‐volume   specialist   compounds   to   low-­‐

value/high-­‐volume   soil   additives,  must   be   considered   and   included   in   the   PP   and  

RSI   estimates;   i.e.   consider   the   difference   between   the   small   volumes   of   seaweed  

required   to   make   high   value   compounds   sold   per   gram,   and   the   vast   volumes  

utilised   to  sell   soil  additives  by   the  kilo.  On   the  whole,  however,   there   is   room  for  

significant  growth  of   the  phyco-­‐supplements  category  notably   through  research   in  

blue   biotechnology;   both   interviewees   and   reviewed   literature   suggest   there   is   a  

‘high’  PP  for  for  this  sector,  with  a  probable  increase  to  ‘very  high’  in  the  near  future.  

The  RSI  volume  had  to  be  assigned  as  ‘low-­‐high’  in  order  to  reflect  variation  in  the  

product  category.    

   

The  fourth  and  last  category  of  products,  biofuels  generated  from  seaweeds,  is  also  

on  the  rise  and  of  particular  interest  to  industry  as  this  is  the  sector  seen  as  having  

highest  profit  potential  in  the  near  future  (ETC  Group,  2010).  As  we  have  seen  in  the  

literature   review,   bioethanol   and   biodiesel   derived   from   seaweeds   are   looking  

promising  but  still  very  much  embedded  in  research,  while  biogas  is  rapidly  moving  

toward   development   and   at   the   tipping   point   of   being   profitable.   That   said,   the  

temporal   context   for   these   scenarios   is   the   present   to   five   years   from   now  

(SEAFARM   duration)   and   thus   the   PP   for   biofuels   must   held   in   that   time   frame.  

Based  on  the  information  gathered  in  the  literature  reviews  and  discussions  in  the  

  63  

interviews,   the   generalised   PP   will   be   limited   to   biogas   only   and   will   be   set   as  

‘medium-­‐low’  with  potential   to   increase   in   the  coming  years,  while   the  RSI  will  be  

set  as   ‘high-­‐very  high’   to  reflect   the  need   for  economies  of  scale   to   tip   the  balance  

sheet  toward  a  profitable  direction.  

 

Table  5  –  Summary  of  market  status  and  qualitatively  assigned  PP  and  RSI,  by  

product  category.    

Product  category   Profit  potential,  PP  (low-­‐medium-­‐high)  

Required  seaweed  input,   RSI   (low-­‐medium-­‐high)  

European   market  prospects  

Food/sea  vegetables   Medium  -­‐  high   Medium   Low,   improving  slowly  

Phycocolloids   Medium  -­‐  low   Medium   Stagnating,   highly  competitive  

Phyco-­‐supplements   High   Low  -­‐  High   Good   and   rapidly  improving  

Biogas   from  seaweed  

Medium  -­‐  low   High  -­‐  very  high   Promising  

 

To  summarise  this  section,  table  5  above  presents  the  PP  and  RSI  for  each  product  

category   selected   in   section   3.1.3,   motivated   in   the   preceding   section.   Figure   5  

below  further  helps  to  visualise  this  information,  inspired  from  Bruton  et  al.  (2009)  

and  adapted  from  the  Value  Pyramid  for  algae-­‐based  products,  described  by  Smith  &  

Higson  (2012).  The  above  PP  and  RSI  values  will  hereafter  be  used  in  the  scenario  

design   section,   justifying   potential   profitability   of   different   operational   scales,  

product  diversities  and  cultivation  types.  

 

 

  64  

 Figure  5  –  Value  pyramid  for  algae-­‐based  products.  Adapted  sources:  Bruton  et  al.  (2009);  Smith  &  Higson  (2013)    

In  addition  to  revenues  from  algae-­‐based  products,  revenues  can  be  generated  from  

the   finfish,   invertebrate  and  shellfish  aquacultures   intrinsic   to  an   IMTA.  These  are  

well-­‐established   industries,   however   the   seasonal   and   sustainable   production   of  

fresh,   local   foods  could  be  highly   lucrative  as  seen  in  the  economic  assessments  of  

Ridler  et  al.   (2007)  and  Nobre  et  al.   (2010).  Furthermore   the  cross-­‐fertilisation  of  

trophic  levels  can  be  expected  to  improve  harvest  yields.    

 

5.1.3. SEAFARM  research  objectives  

 

As   presented   in   the   introduction   (section   1.2)   and   in   the   SEAFARM   research  

proposal  (Gröndahl,  2013),  SEAFARM  has  five  FAs.  Crucial  to  the  scenario  context  is  

that  the  SEAFARM  cultivation  operations  must  not  only  cater  for,  but  be  designed  to  

maximise  research  opportunities  in  the  five  FAs.  Hereafter  is  a  reminder  of  each  FA,  

and   a  brief   explanation  of   how   the  different   scenarios  might   affect   that  particular  

research  objective.  

 

V. H

igh

LOW

MEDIUM

HIGH

RSI (Volume)

Mar

ket V

alue

Biofuel feedstockSoil additives

Feed

Sea vegetables

Luxury foods

Phycocolloids

Neutraceutics

Industrial chemicals

Cosmetics

Pharmaceutics

Speciality products

Hig

h

Med

ium

Low

Phyco-supplem

ents

Food / Sea vegetables

  65  

FA1. Sustainable  seaweed  cultivation  on  the  Swedish  west  coast.  

 

Sustainable  aquaculture  research  today  is  very  much  oriented  toward  the  potential  

benefits  of  IMTA  aquacultures  over  traditional  mono-­‐trophic  methods.  A  sustainable  

seaweed   cultivation   is   further   interpreted   in   the   scenario   context   as   being   an  

aquaculture   whose   operations   can   sustain   themselves   in   the   long-­‐term:   it   must  

therefore   be   free   of   significant   impacts   on   the   environment;   it   must   provide  

valuable  renewable  harvests  every  year;  and   it  must  yield  a  source  of   income  that  

can  grow  over  time.    

 

FA2. Seaweed  biomass  pre-­‐processing  and  preservation  strategies.  

 

The  scenarios  must  be  designed  to  cater  for  opportunities  to  research  and  develop  

new  strategies  and  techniques  for  the  pre-­‐processing  and  preservation  of  seaweed  

biomass,  prior  to  anaerobic  digestion  and/or  biorefining.  As  such,  samples  must  be  

readily  available  for  harvest  in  proximity  to  wet  and  dry  labs  in  order  for  conditions  

to  favour  efficient  research  for  this  FA.    

 

FA3. Map   out   biotechnology   potential   of   local   seaweeds,   then   design   and  

demonstrate   the   viability   of   a   large-­‐scale   biorefinery   capable   of   recovering  

valuable  phyco-­‐products.  

 

The  aquacultures  must  be  able  to  provide  sample  specimens  of  the  highest  quality  

throughout   the   growing   season,   and   regular   harvests   should   be  made   in   order   to  

map   out   changes   to   the   internal   composition   of   seaweeds   throughout   their   life  

cycles.  Opportunities   could  also  emerge   from   the  biotechnological  mapping  of   red  

and   green   seaweeds,   and   species   from   other   trophic   levels,   for   instance   of   sea  

cucumbers  or  fish.      

 

FA4. Optimise  the  potential  of  biorefinery  residues  to  produce  biofertiliser  and  

biogas.  

  66  

 

The  aquaculture  must  support  the  best  possible  conditions  to  explore  and  develop  

an  economically  viable  supply-­‐chain  for  the  AD  of  seaweed  biomass  to  biogas.  Large  

scale  would   be   ideal   as   it  would   answer   some  questions   relating   to   economies   of  

scale,  however  a  small  scale  cultivation  would  supply  specimens  for  the  continued  

development  of  improved  AD  techniques.  

 

FA5. Develop   a   suite   of   sustainability   assessment   tools   for   the   whole   of   the  

above   processes:   cultivation,   harvesting,   pre-­‐treatment,   preservation,  

biorefining  and  waste  recovery  of  seaweed  biomass.    

 

Once   again,   the   development   of   sustainability   assessment   tools   is   not   likely   to   be  

affected  by  cultivation  type.  The  results  of  sustainability  assessments  will  certainly  

vary   according   to   different   cultivation   scenarios,   but   the   development   of   these  

assessment  tools  will  not  be  impacted.    

 

As  explained  here  above,  the  key  FAs  likely  to  be  affected  by  the  different  cultivation  

scenarios  are  FA1-­‐4.  These  FAs  will  be  included  in  the  scenario  matrix  of  section  5.3  

and  will  help  to  grade  the  performance  of  each  scenario.    

 

5.1.4. Socio-­‐  and  techno-­‐economic  context  

 

This  section   looks  toward  the  socio  and  techno-­‐economic  context  of   the  SEAFARM  

scenarios.  Licensing,  the  location,  public  attitude,  infrastructure  required,  etc…      

 

One   of   the   biggest   challenges   faced   by   any   aquaculture,   is   obtaining   a   marine  

license.  As  seen  in  the  BioMara  case  study,  this  was  an  unforeseen  barrier  and  the  

most  significant  project  setback.  Licenses  can  be  very  difficult  to  obtain,  notably  due  

to  a  lack  of  evidence  as  to  the  impacts  of  large-­‐scale  seaweed  cultivations,  the  multi-­‐

use  nature  of  nearshore  areas,  and  a  “not-­‐in-­‐my-­‐back-­‐yard”  resistance  to  any  change  

  67  

amongst   local  populace.  There  are   few  seaweed  aquaculture  of   significant   scale   in  

Swedish   waters,   only   small-­‐scale   pilot   facilities   for   research   purposes.   As   such   it  

could  be  expected  that  the  application  for  the  marine  license  to  develop  a  nearshore,  

large-­‐  or  small-­‐scale  facility  will  be  complicated  and  lengthy,  as  it  will  be  the  first  of  

its   kind.   Rather   than   following   a   set   of   pre-­‐determined   marine   licensing  

instructions,   it   is   likely   the   process   will   be   of   mutual   discovery   for   all   parties  

involved.    

 

At   this   point   it   is   suitable   to   bear   in  mind   that   at   the   time   of   the  writing   of   this  

report,   the   SEAFARM  project   remains   in   the   starting   blocks,   pending   funding   and  

purely   theoretical.  No  practical   decisions  have   yet   been  made  with   regards   to   the  

specific   location  of   the  cultivation  site,  nor  has  a   time  plan  been  developed.  These  

act  as  major   limitations   to   the  accuracy  of   the  scenario  context.  The  Swedish  west  

coast  is  a  major  destination  for  summer  holidaymakers,  most  notably  this  area,  and  

it  can  be  expected  that  the   licensing  process  will  be  heavily  encumbered  by  public  

opinion  and  the  multi-­‐use  condition  of  the  area.  It  will  be  imperative  that  the  site  be  

sufficiently   discrete   so   as   not   to   affect   views,   while   also   avoiding   conflicting  

interests  with  local  fishermen,  shipping  routes  and  recreational  activities.  As  such  it  

can   be   hypothesised   that   the   smaller   the   cultivation,   the   less   likely   it   will   be   for  

conflict  to  emerge.  Some  opinion  surveys  have  already  been  conducted  in  Canada,  as  

noted   in   section   3.3.3.   It   would   seem   that   the   public   generally   favours   the  

development   of   IMTA   over   traditional   aquacultures,   however   some   form   of  

community  awareness  program  would  need  to  be  undertaken,  or  at  the  very  least  a  

survey,   in   order   to   determine   local   opinion   and   resistance   to   the   SEAFARM  

cultivation.      

 

From   a   technological   perspective,   the   aquaculture   infrastructure   will   necessarily  

need   to   be   adapted   to   the   local   area   and   specific   requirements   lain   down   by   the  

licensing  authorities.  For  instance,  it  can  be  expected  that  the  infrastructure  will  be  

required   to   be   removable   (non-­‐permanent)   and   discrete   in   appearance   but   not  

hazardously  so  (submerged  but  clearly  marked  to  avoid  accidents,  notably  by  night).  

  68  

Either   way,   it   must   be   expected   that   the   lack   of   experience   of   Swedish   marine  

licensing   authorities   relating   to   IMTAs   and   seaweed   cultivations   will   slow   the  

process  of  development  and  potentially  amount  to  unforeseen  costs.    

 

5.2. SCENARIO  DESIGN  

 

The  following  section  will  present  two  alternative  scenarios  for  the  development  of  

the  SEAFARM  project.  The  goal  of   this  section   is   to  envision  (describe)  alternative  

end-­‐states   for   the   cultivation   system,   thereafter   considering   each   in   the   scenario  

context   established   in   the   previous   section   5.1.   The   multi-­‐dimensional   context  

involves  four  principal  aspects:  Kosterfjorden  growth  conditions,  potential  revenue  

streams,   the   SEAFARM   research   objectives,   and   finally,   some   additional  

assumptions  on  socio-­‐  and  techno-­‐economic  aspects  as  well  as  some  consideration  

of  impacts  on  the  local  environment.  These  four  context  aspects  will  be  split  into  a  

series   of   criteria   within   a   table   inspired   by   decision   matrixes,   enabling   the   full  

picture   of   each   scenario   to   be   studied   pragmatically   and   presented   succinctly.   In  

essence  the  answer  to  three  questions  is  investigated:  

 

a) What  would  each  scenario  look  like?  

b) How  is  each  scenario  optimised  to  fit  into  the  scenario  context?  

c) Which   of   the   two   scenarios   represents   the   more   suitable   course   for   the  

SEAFARM  project  to  base  itself  on?  

 

a)  and  b)  will  be  addressed  in  the  description  of  scenario  ONE  and  TWO  in  section  

5.2.1   and   5.2.2,   respectively,   in   parallel   to   the   analysis   of   c).   The   analysis  will   be  

recapitulated  in  table  6  of  section  5.3.    

 

5.2.1. Scenario  ONE  –  A  Biofuel  Optimised  Aquaculture  

 

  69  

Scenario   ONE   describes   a   cultivation   characterised   by   the   ambition   of   achieving  

economic   viability   within   a   5-­‐year   timeframe,   primarily   from   the   large-­‐scale  

cultivation  of   local  kelp  species   for  conversion   to  biofuels,  and  other   large  volume  

kelp  products  such  as  fertilisers  and  feed.  In  consequent,  research  conditions  should  

be  optimised  for  FA2  and  FA4,  while  also  delivering  capabilities  for  the  provision  of  

seaweed  specimens  that  can  be  analysed  by  partner  institutions  involved  with  FA3.  

The   large-­‐scale   mono-­‐trophic   nature   of   scenario   ONE   will   not   contribute   to  

vanguard   aquaculture   research.   This   scenario   draws   heavily   from   the   work  

undertaken   as   part   of   the   BioMara   initiative,   notably   the   techno-­‐economic  

assessment  work  undertaken  by  Dave  et   al.   (2013)   as  well   as   the   interviews  held  

with   Michele   Stanley   and   Lars   Brunner.   Ultimately   a   mono-­‐trophic   cultivation,   it  

could   be   argued   that   this   scenario   is   not   optimised   for   FA1   and   that   forefront  

aquaculture  research  on  IMTAs  will  not  be  taking  place.  A  map  of  the  Kosterfjorden  

area  has  been  provided  in  Appendix  C  to  give  an  indication  of  the  scale  and  of  what  

scenario   ONE   may   look   like.   Hereafter   some   further   details   are   provided   for  

subsequent  comparison  with  scenario  TWO.    

 

As  Dave  et  al  (2013)  suggest,  along  with  several  other  reports  (Bruton  et  al.,  2009;  

James  and  Postlethwaite,  2012),   it   is   still  unclear   if   a  biofuel-­‐oriented  aquaculture  

can  reach  a  state  of  economic  viability.  The  profit  margins  are  still  too  tight  and  the  

risks  too  great.  It  is  expected  that  by  scaling-­‐up  however,  economies  of  scale  could  

be   achieved   that   will   favour   a   positive   balance   sheet.   Also   costs   and   prices   vary  

depending  on  where  the  aquaculture  is  located:  on  the  west  coast  of  Sweden  biogas  

may   have   a   much   lower   market   price   than   in   the   Scottish   Hebrides,   making  

economic  viability  more  achievable  in  Scotland  given  the  higher  market  value  of  the  

end   product.   Furthermore   this   scenario’s   economy   would   have   added   revenues  

from  large  volume  kelp  products  such  as  supplements  for  animal  feeds  and  soils,  as  

well  as  a  limited  amount  of  local  sea  vegetables.  The  major  concern  of  this  scenario  

is  that  such  a  large-­‐scale  cultivation  could  be  met  with  public  resistance,  hampering  

efforts  for  a  smooth  licencing  process.    

  70  

Questions   of   process   optimisation,  more   efficient   anaerobic   digestion   year-­‐round,  

pretreatment  and  storage  are  still  largely  unresolved,  however  according  to  Schlarb-­‐

Ridley  and  Parker  (2013)  it  is  expected  that  within  a  5-­‐10  year  time  frame,  advances  

in   cultivation   technology   will   render   AD   of   macroalgae   feedstocks   commercially  

viable.  Lewis  et  al.  (2011)  specifically  suggest  that  the  cost  of  AD  feedstocks  must  be  

reduced   to   £125-­‐300   per   dry   tonne   in   order   for   operations   to   break   even   under  

existing   market   conditions.   Another   strong   argument   for   AD   reaching   economic  

viability   is   that   the   cost   of   natural   gas   and   fossil   fuels   as   a   whole   is   steadily  

increasing,   and   the  more   these  prices   rise,   the  more   lucrative  opportunities   in  AD  

will   become.   In   the   present   however,   the   ability   to   project   profits   from  AD   alone  

remains  limited.  

The   mono-­‐trophic   nature   of   scenario   ONE   is   also   a   key   limitation.   As   will   be  

explained  in  the  description  of  scenario  TWO,  certain  key  synergies  induced  through  

multi-­‐trophic  integration  will  not  be  capitalised  upon.  In  relative  terms  therefore  it  

can   be   expected   there   will   be   a   reduced   resilience   to   disease   and   market   price  

fluctuations,   shifts   in   environmental   conditions   (nutrient   striping)   resulting   in  

growth  limitations,  and  added  vulnerability  from  the  limitation  to  a  single  revenue  

stream.  The  extent  of  these  relative  shortcomings  will  be  clarified  in  the  description  

of  scenario  TWO  in  the  following  section.  

 

5.2.2. Scenario  TWO  –  A  Small-­‐Scale  Diversified  IMTA  

 

Scenario  TWO  describes  an  IMTA  cultivation  designed  to  cater   for  a  wide  range  of  

local   species   to   subsequently   identify   those   that   hold   the   greatest   PP   and   exploit  

them   within   the   5-­‐year   timeframe.   The   contrast   with   scenario   ONE   lies  

predominantly   in   the   IMTA   approach.   With   regards   to   the   SEAFARM   research  

objectives,  scenario  TWO  should  perform  better  relative  to  scenario  ONE,  with  the  

author  weighting  each  FA  with  an  ‘optimised’  status,  as  motivated  hereafter,  except  

for  FA4.    

  71  

 

High   expectations   are   accorded   to   FA1   as   the   IMTA   approach   is   now   widely  

accepted  to  be  the  most  advanced  form  of  aquaculture  and  is  currently  the  subject  of  

intensive   research.   FA2   is   neither   hampered  nor   favoured  by   the   IMTA  approach,  

thus  having   the   same  weight  as   in   scenario  ONE.  The   research  conditions   for  FA3  

are   also   considered   to   be   optimum   through   the   vast   range   of   species   that  will   be  

subjected  to  biotechnology  research  and  development  of  biorefinery  processes.  FA4  

is  rated  as  limited  relative  to  the  other  scenario,  due  to  the  small  cultivation,  thus  it  

will  not  act  as  a   large-­‐scale  pilot  cultivation.  Finally,   the  development  of  a  suite  of  

sustainability   assessment   tools   (FA5)   should   be   unaffected   by   the   differences  

between  scenarios  ONE  and  TWO.  A  map  for  scenario  TWO  has  also  been  provided  

in  appendix  C  to  illustrate  the  scale  of  operations,  and  to  demonstrate  what  it  might  

look  like.      

 

The   cultivation   infrastructure   is   expected   to   be  more   costly   and   complex   per  m2  

however  the  cost  of  its  installation  should  more  or  less  match  that  of  scenario  ONE  

given  the  smaller  scale  of  operations.  Furthermore,  one  of  the  greatest  assets  of  an  

IMTA   approach   is   the   cross-­‐species   fertilisation,   which   should   help   to   maximise  

growth  rates  during  the  summer  when  natural  nutrient  availability  will  be   low  for  

scenario   ONE,   thus   relatively   improving   yields,   but   also   nurturing   synergies   of  

disease  resistance  and  environmental  benefits.    

 

The   expected   revenues   of   scenario   TWO   are  much  more   diverse,   coming   from   all  

four  categories  of  phyco-­‐products  outlined  and  motivated  in  section  5.1.2.  Based  on  

the   assumption   that   a   diverse   economy   is   more   resilient,   scenario   TWO   is   also  

favoured   as   being   build   on   a  more   solid   economic   foundation   than   scenario  ONE,  

with   multiple   avenues   of   future   development   rather   than   being   restricted   to   an  

income   from   biogas   related   options.   Indeed   in   the   short   term,   profits   could   be  

drawn   from   readily   established   markets   and   extraction   processes,   such   as   the  

fractioning   of   omega   3   and   β-­‐carotene,   or   the   sale   of   sea   vegetables   and  

  72  

phycocolloids.   Each   of   these   markets   could   participate   toward   a   greater   whole,  

while  nurturing  a  more  diverse  set  of  key  skills  for  the  team  of  Swedish  researchers.  

Finally,   research  by  Ridler  et   al.   (2007)   suggested   that  public   stakeholders   can  be  

more   accepting   of   an   IMTA   cultivation   over   a  more   traditional   aquaculture,  while  

the   small-­‐scale   of   operations   relative   to   scenario   ONE   should   also   reduce   the  

likelihood  of  public  resistance  and  opposition  to  marine  licensing.    

 

5.3. SCENARIO  MATRIX  RESULTS  

 

The   following   table  6  presents  a   summary  of   the  main  results,  as  discussed   in   the  

previous   two   sections.   Scenarios  ONE  and  TWO  are  played  off   against   each  other,  

relative  to  the  descriptions,  scenario  context  and  discussions  held  in  the  Section  5.2,  

SEAFARM  development  scenarios.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  73  

 

 

 

 

 

 

 

   

SCENARIO

)ONE

SCENARIO

)TWO

Limited'to'kelps,''known'for'their'high4energy'contents'in'the'autumn'and'thus'most'suited'to'AD.

All)known)local)species)from

)any)trophic)level.

Long4line'systems'&'long4term'development'of'automated'systems'to'reduce'harvest'costs.

Complex)and)costly)com

bination)of)fish)pens,)benthic)level)cages,)shellfish)cages)and))seaw

eed)longlines)

Limited:'nutrient'stripping'is'expected'in'the'spring,'thus'limiting'growth'in'the'summer.'Further'research'required.'

Enhanced)by)yearDround)fertilisation)through)the)integration)of)different)trophic)levels.)

FA1)D)Sustainable)AquacultureLim

ited:)not)able)to)partake)in)IMTA)research

Optim

ised:)vanguard)IMTA)cultivation)research

FA2)D)Preservation)&)pretreatm

entOptim

ised:)key)and)prioritised)challenge)to)tackle)Optim

ised:)key)challenge)to)tackle

FA3)D)BiorefineryLim

ited:)biotechnology)only)applied)to)macroalgae)specim

ensOptim

ised:)diversity)of)specimens

FA4)D)Biofuel)feedstockOptim

ised:)key)and)prioritised)challenge)to)tackle)Good:)key)challenge)to)tackle,)though)lim

ited)to)a)smaller)cultivation)w

ithout)econom

ies)of)scale

FA5)D)Sustainability)assessment)

toolsUnaffected

Unaffected

Sea)vegetablesMedium

,)limited)to)kelps

Medium

)D)high,)with)increasing)potential)as)the)European)m

arket)slowly)develops

PhycocolloidsNone,)lim

ited)to)kelpsMedium

)D)low,)a)highly)com

petitive)industry)with)a)saturated)m

arket)in)Europe)

PhycoDsupplements

Low,)lim

ited)to)large)volume)products)such)as)soil)conditioners)and)feeds

High,)rapidly)increasing)with)new

)patents)and)innovative)products,)driven)by)blue)biotechnology

Biogas)feedstockMedium

)D)low,)prom

ising)market)conditions)likely)to)im

prove)in)near)future,)but)there)are)still)m

any)risks)and)questions)that)need)answers

Medium

)D)low,)prom

ising)market)conditions)likely)to)im

prove)in)near)future,)but)there)are)still)m

any)risks)and)questions)that)need)answers

Finfish,)invertebrates)&)shellfish

None

High,)well)established)m

arket)and)local)demand)

On)benthic)environm

entLargely'unknown.'Some'impacts'likely'as'a'result'of'cultivation'installations.'Further'research'required.'

Largely)unknown.)Som

e)impacts)likely)as)a)result)of)cultivation)installations.)Further)

research)required.

On)m

arine)wildlife

Largely'unknown,'most'notably'for'marine'mammals'and'local'food'chains.'Further'research'required.

Largely)unknown,)m

ost)notably)for)marine)m

ammals)and)local)food)chains.)Further)

research)required.

Relatively'vulnerable.'Reduced'growth'rates'and'lost'harvests'from'parasitic'and'bacterial'infections'are'common.

Relatively)resistant.)Multiple)species)com

binations)can)(a))provide)back)ups)in)case)of)the)loss)of)a)particular)crop)and)(b))it)m

ay)improve)disease)and)pest)resistance.

Difficulties'with'making'a'large4scale'cultivation'discrete'are'likely'to'result'in'public'resistance'and'setbacks'to'licensing'process.

SmallerDscale)w

ill)reduce)likelihood)of)public)resistance.)IMTA)m

ay)also)help)to)gain)acceptibility.)

Minimal.'Could'be'affected'by'a'multitude'of'factors'such'as'market'price'fluctuations,'diseases'and'bad'harvests.

Enhanced.)A)diversified)product)range)will)im

prove)the)likelihood)of)overcoming)

economic)setbacks)

Economic)resilience

DESCRIPTION)AN

D)CONTEXT

Cultivated)species

Cultivation)infrastructure

Kostefjorden)environmental)grow

th)factors)

SEAFARM)research)support

Public)acceptability

Disease)vulnerability

Cultivation)impacts

Profit)Potential

Table  6  –  Summary  of  results  

  74  

6. CONCLUSION    

The  recent   increase   in  publications   in   this   field  suggests  we  are  entering  a  golden  

age  of  sustainable  marine  resource  development  -­‐  and  it  is  an  encouraging  prospect  

that   excellence   for   biotechnology   innovation   in   Sweden   can   be   applied   to   blue  

biotechnology   and   guarantee   future   development   through   the   SEAFARM   project.  

This  thesis  initially  set  out  to  explore  some  development  pathways  for  the  SEAFARM  

cultivation,   to   inform   forthcoming   decisions   and   explore   potential   for   the  

development  of  a  new  marine  resource  industry  in  Sweden.    

 

At  first  the  thesis  sought  to  establish  some  background:  the  call  for  the  development  

of  a  sustainable  European  bioeconomy  and  the  Swedish  response  to  this  call  in  the  

form   of   the   SEAFARM   project.   Thereafter   the   transdisciplinary   merging   of  

biotechnology,  aquaculture  and  bioenergy  research  was  established  in  the  literature  

review,  further  supported  by  interviews,  with  notable  emphasis  on  historical  trends,  

current   practises   and   the   necessity   of   directing   future   development   toward  more  

productive,   sustainable   and   lucrative   pathways.   In   order   to   better   inform   the  

subsequent  discussion   and  analysis   of   development  pathways,   a   case   study  of   the  

Scottish/Irish  BioMara  project  was  presented,   also   supported  by   interviews.  Then  

the  scenario  context  was  established  with  emphasis  on   the  selected  Kosterfjorden  

site,  SEAFARM  research  objectives,  some  potential  algae-­‐based  products  and  other  

techno-­‐   and   socio-­‐economic   aspects.   Finally,   scenarios   ONE   (a   biofuel   optimised  

aquaculture)   and  TWO   (a   small-­‐scale   diversified   IMTA)  were   described,  weighted  

and  compared  within  the  scenario  context.  

 

The   results   showed   that   scenario   TWO   faired   better   than   scenario   ONE,   most  

notably   in   the  pursuit  of   economic  viability.  Both   scenarios  performed  well   in   the  

provision  for  the  SEAFARM  focus  areas,  with  a  slight  advantage  to  scenario  TWO  in  

FA1  regarding  the  cutting  edge  IMTA  mode  of  cultivation  and  FA3  due  to  the  greater  

diversity   of   specimens   that   would   become   available   to   biotechnological   scrutiny.  

  75  

With  regards  to  profit  potential,  the  IMTA  scenario  provided  a  far  more  diversified  

set  of  incomes.  It  is  assumed  that,  although  these  revenues  would  not  be  substantial,  

their   breadth   would   form   a   more   resilient   and   viable   economy.   Furthermore,  

considerable  profits  could  be  expected  from  the  additional  revenues  from  IMTA  fish,  

invertebrate  and  shellfish  components.   Improved  harvest  would  be  expected   from  

the  cross-­‐species  fertilisation  maximising  growth  rates  during  the  summer  months,  

when   natural   availability   of   nutrients   is   lowest   but   sunlight   availability   is   at   its  

highest  (see  charts  3  and  4  of  the  scenario  context).  Finally,  the  IMTA  scenario  was  

also  found  to  hold  other  advantages  over  scenario  ONE,  namely  in  the  smaller  scale  

facilitating   marine   licensing,   increased   odds   for   public   acceptance,   and   the  

hypothetical   synergies   such   as   increased   resilience   to   disease   and   pests.   Overall  

scenario  TWO  was  found  to  be  a  well-­‐rounded  and  better-­‐suited  end  result  through  

its  diversified  products  and  economy,  enhanced  resilience,  smaller-­‐scale,  vanguard  

IMTA   approach   and   its   pragmatically   tailored   approach   to   the   delivery   of   the  

SEAFARM  research  objectives  (FA1-­‐5).    

 

 

6.1. FURTHER  RESEARCH  

 

It   is   still   early   days   for   this   new   industry,   and   many   questions   have   yet   to   be  

answered.  For  a  full  account  of  these  questions,  see  the  roadmap  recently  published  

by  Schlarb-­‐Ridley  and  Parker  (2013).    

 

With   regards   to   the   SEAFARM   cultivation,   some   more   specific   areas   of   further  

research   can   be   suggested.   It   is   known   and   accepted   that   specific   species   of  

seaweeds   are   highly   adaptable   to   new   environments.   For   instance,   a   specimen   of  

Saccharina   latissima   from   the   Bay   of   Fundy   in   Canada,   or   from   the   Scottish  

Hebrides,   will   not   be   adapted   to   brackish   Baltic   conditions   of   the   Kosterfjorden  

whereas   the   specimens   that   will   be   cultivated   in   the   SEAFARM   project   will   be.  

Although  part  of  the  same  species,  the  variation  and  adaptability  within  it  makes  it  

  76  

hard  to  estimate  growth  rates  and  potential  yields.  Some  preliminary  experiments  

should   be   conducted   to   estimate   potential   yields   from   the   SEAFARM   cultivation.  

Such   information   would   provide   a   much   stronger   basis   for   the   estimation   of  

potential  revenues,  than  was  possible  to  undertake  in  this  thesis.    

 

As   suggested  by  Michele  Stanley,  perhaps   the  greatest   challenge   for   these   sorts  of  

cultivations   lie   in   the   marine   licensing   sector,   which   in   the   UK,   remains   largely  

undecided   due   to   a   lack   of   knowledge   and   evidence   regarding   environmental  

impacts.   Further   research   should   therefore   be   undertaken,   not   just   in   the  UK   but  

anywhere  prospecting  for  cultivation  sites,  as  to  the  potential  impacts  of  cultivations  

on  benthic  environments,  as  well  as  local  species  of  fish,  mammals,  birds,  vegetation,  

in   fact   any   species   present   in   that   area.   This   should   inform  decision  makers  with  

regards  to  the  renewal  of  marine  licensing  policy,  and  accelerate  the  development  of  

new  cultivations.  

 

One  of  the  most  discussed  forms  of  value  amongst  ecologists  today,   is   the  value  of  

ecosystem  services  (see:  Smith  and  Higson,  2012).  As  seen  in  the  report  by  Nobre  et  

al.  (2010),  some  aquaculture  investigations  attempt  to  estimate  some  values  for  the  

ecosystem  services  provided  by  seaweeds.  Indeed  for  scenario  ONE,  an  operational  

large  scale  macroalgae  farm  on  the  west  coast  of  Sweden  would  be  extracting  vast  

amounts  of  nitrogen  and  phosphorus  from  those  waters.  It  could  be  suggested  that  a  

nutrient  credits  scheme  could  be  applied,   inspired  from  carbon  credits,  potentially  

adding  a  significant  amount  of  value  to  scenario  ONE  and  potentially  overall  making  

it   viable.   The   potential   for   such   nutrient   trading   schemes   should   be   investigated  

urgently   and   thoroughly   in   such  a   context,   as   it   could   tip   the  balance   in   favour  of  

scenario  ONE,  and  make  it  a  profitable  business  enterprise.    

   

  77  

7. REFERENCES    

 Aresta,  M.,  A.  Dibenedetto  and  G.  Barberio  (2005).  Utilization  of  macro-­‐algae  for  enhanced  CO2  fixation  and  biofuels  production:  Development  of  a  computing  software  for  an  LCA  study.  Fuel  Processing  Technology  86(14-­‐15):  1679-­‐1693.  Abreu  M,  H.,  Pereira,  R.,  Yarish,  C.,  Buschmann,  A,  H.,  and  Sousa-­‐Pinto,  I.,  (2011).  IMTA  with  Gracilaria  vermiculophylla:  Productivity  and  nutrient  removal  performance  of  the  seaweed  in  a  land-­‐based  pilot  scale  system.  Aquaculture  312,  77-­‐87    Abreu,  M.L.,  Varela,  D.A.,  Henríquez,  L.,  Villarroel,  A.,  Yarish,  C.,  Sousa-­‐Pinto,  I.,  Buschmann,  A.H.,  (2009).  Traditional  vs.  integrated  multi-­‐trophic  aquaculture  of  Gracilaria  chilensis  C.J.  Bird  J.  McLachlan  &  E.C.  Oliveira:  productivity  and  physiological  performance.  Aquaculture  293,  211–220.  

Becker,  S.  and  Bryman,  A.  (2004).  Understanding  research  for  social  policy  and  practice:  themes,  methods  and  approaches.  The  Policy  Press  and  the  Social  Policy  Association  :268    Blidberg,  E.,  and  Gröndahl,  F.,  (2012)  Macroalgae  Harvesting  and  Cultivation  [Chapter  in]  Submariner,  (2012)  Compendium:  An  Assessment  of  Innovative  and  Sustainable  Uses  of  Baltic  Marine  Resources.  Maritime  Institute  in  Gdańsk.    Bruton,  T.,  H.  Lyons,  Y.  Lerat,  M.  Stanley  and  M.  B.  Rasmussen  (2009).  A  review  of  the  potential  of  marine  algae  as  a  source  of  biofuel  in  Ireland.  Dublin,  Ireland,  Sustainable  Energy  Ireland.  

Brown,  J.R.,  Gowen,  R.J.,  McLusky,  D.S.,  (1987).  The  effect  of  salmon  farming  on  the  benthos  of  a  Scottish  sea  loch.  J.  Exp.  Mar.  Biol.  Ecol.  109,  39–51.  

Buschmann,  A.H.,  Mora,  O.A.,  Gomez,  P.,  Battger,  M.,  Buitano,  S.,  Retamales,  C.,  Vergara,  P.A.,  Gutierrez,  A.,  (1994).  Gracilaria  tank  cultivation  in  Chile:  use  of  land  based  salmon  culture  effluents.  Aquaculture  Engineer  13,  283-­‐300.    Carroll,  M.L.,  Cochrane,  S.,  Fieler,  R.,  Velvin,  R.,  White,  P.  (2003).  Organic  enrichment  of  sediments  from  salmon  farming  in  Norway:  environmental  factors,  management  practices,  and  monitoring  techniques.  Aquaculture  (226)  165-­‐180      Chevy,  P.  and  Lemasson,  J.  (1937).  Contribution  à  l’étude  des  poisons  des  eaux  douces  Tonkinoises.  Institute  Océanographique  de  L’Indochine.  33e  Note,  Gouvernment  Général  de  L’Indochine,  Hanoi.  182pp.    Chopin,  T.  (2006).  Integrated  Multi-­‐Trophic  Aquaculture:  What  it  is,  and  why  you  

  78  

should  care...  and  don’t  confuse  it  with  polyculture.  Northern  Aquaculture  (July/August  2006)  

Chopin,  T.  (2013).  Integrated  Multi-­‐Trophic  Aquaculture:  Ancient,  Adaptable  Concept  Focuses  On  Ecological  Integration.  Global  Aquaculture  Advocate  (March/April  2013)  

Chopin,  T.,  Buschmann,  A.H.,  Halling,  C.,  Troell,  M.,  Kautsky,  N.,  Neori,  A.,  Kraemer,  G.,  Zertuche-­‐Gonzalez,  J.,  Yarish,  C.,  Neefus,  C.,  (2001).  Integrating  seaweeds  into  aquaculture  systems:  a  key  towards  sustainability.  J.  Phycol.  37,  975  –  986.    Chopin,  T.,  Neori,  A.,  Buschmann,  A.,  Pang,  S.,  Sawhney,  M.  (2011)  Diversification  Of  The  Aquaculture  Sector:  Seaweed  Cultivation,  Integrated  Multi-­‐Trophic  Aquaculture,  Integrated  Sequential  Biorefineries.  Global  Aquaculture  Advocate  (July/August  2011)  :58-­‐60  

 Chopin,  T.  &  Sawhney,  M.  (2009).  Seaweeds  and  their  mariculture,  pp.  4477-­‐4487.  In:  The  Encyclopedia  of  Ocean  Sciences.  J.H.  Steele,  S.A.  Thorpe  &  K.K.  Turekian  (eds).  Elsevier,  Oxford.    Confused  about  energy  [online]  Available  at:  http://www.confusedaboutenergy.co.uk/index.php/domestic-­‐fuels/fuel-­‐prices#.UaMw4GQY2Ho    (Accessed  03-­‐06-­‐13)    Costa-­‐Pierce,  B.A.  (2008).  Ecological  Aquaculture:  The  Evolution  of  the  Blue  Revolution.  John  Wiley  &  Sons.      Costanza,  R.,  d'Arge,  R.,  de  Groot,  R.,  Farber,  S.,  Grasso,  M.,  Hannon,  B.,  Limburg,  K.,  Naeem,  S.,  O'Neill,  R.  V.,  Paruelo,  J.,  Raskin,  R.  G.,  Sutton,  P.,  &  Belt,  M.  van  den  (1997).  The  Value  of  the  World's  Ecosystem  Services  and  Natural  Capital.  Nature,  38,  253-­‐260.    Council  Directive  (2009/28/EC)  of  the  European  Parliament  and  of  the  Council  of  8  May  2003  on  the  promotion  of  the  use  of  biofuels  or  other  renewable  fuels  for  transport.  Official  Journal  of  the  European  Union  140,  5.6.2009,  pp.16-­‐62.    Dave,  A.,  Huang,  Y.,  Rezvani,  S.,  McIlveen-­‐Wright,  D.,  Novaes,  M.,  Hewitt,  N.  (2013).  Techno-­‐economic  assessment  of  biofuel  development  by  anaerobic  digestion  of  European  marine  cold-­‐water  seaweeds.  Bioresource  Technology  (in  publication)    Dawson,  E.Y.,  (1966).  Marine  Botany  –  An  Introduction.  Holt,  Rinehart  and  Winston,  Inc.,  New  York.    

  79  

DeBoer,  J.A.,  1979.  Effects  on  nitrogen  enrichment  on  growth  rates  and  phycocolloid  content  in  Gracilaria  fo/ifera  and  Neogardhiella  bail+  Florideophyceael.  Proc.  Int.  Seaweed  Symp.  9,  263-­‐273.    Diana,  J.S.,  Egna,  H.S.,  Chopin,  T.,  Peterson,  M.S.,  Cao,  L.,  Pomeroy,  R.,  Verdegem,  M.,  Slack,  W.T.,  Bondad-­‐Reantaso,  M.G.,  and  Cabello,  F.  (2013).  Responsible  Aquaculture  in  2050:  Valuing  Local  Conditions  and  Human  Innovations  Will  Be  Key  to  Success.  BioScience,  63:4,  255-­‐262  

Domozych,  D.S.,  Stewart,  K.D.  and  Mattox,  K.R.  (1980).  The  Comparative  Aspects  of  Cell  Wall  Chemistry  in  the  Green  Algae,  Chlorophyta.  Journal  of  Molecular  Evolution,  15,  1-­‐12    Duxbury  A,  B.,  and  Duxbury  A,  C.,  (1994).  An  Introduction  to  the  World’s  Oceans.  McGraw-­‐Hill  Higher  Education    European  Commission,  (2012).  Innovating  for  Sustainable  Growth:  A  Bioeconomy  for  Europe.  Communication  from  the  commission  to  the  European  Parliament,  the  Council,  the  European  Economic  and  Social  Committee  and  the  Committee  of  the  Regions  [Online]  Brussels,  13.02.2012.    Available  at  :  http://ec.europa.eu/research/bioeconomy/pdf/201202_innovating_  sustainable_growth_en.pdf    Accessed:  06.12.2013    ETC  Group  (2010).  Biomassters:  synthetic  biology  and  the  next  assault  on  biodiversity  and  livelihoods.  [Online]  Available  at:  https://www.cbd.int/doc/emerging-­‐issues/etcgroup-­‐biomassters-­‐2011-­‐013-­‐en.pdf    Accessed:  06.12.2013    FAO  -­‐  Food  and  Agriculture  Organisation,  (2003)  A  guide  to  the  seaweed  industry.  FAO  Fisheries  Technical  Paper  No.  441    FAO  -­‐  Food  and  Agriculture  Organisation,  (2004)  The  State  of  World  Fisheries  and  Aquaculture.  FAO  Fisheries  Department:  Rome.      FAO  –  Food  and  Agriculture  Organisation,  (2005).  FAO  Fisheries  and  Aquaculture  Department  [online].  Rome.  Updated  27  May  2005.  [Cited  25  August  2013].  (Available  at:  http://www.fao.org/fishery/topic/13540/en)    FAO  –  Food  and  Agriculture  Organisation,  (2010).  Fisheries  and  Aquaculture  Statistics:  Yearbook  2010.      Ferreira  J,  G.,  Saurel  C.,  Ferreira  J.M.,  (2012).  Cultivation  of  gilthead  bream  in  monoculture  and  integrated  multi-­‐trophic  aquaculture.  Analysis  of  production  and  environmental  effects  by  means  of  the  FARM  model.  Aquaculture  358-­‐359  23-­‐34  

  80  

   Folke,  C.,  Kautsky,  N.,  Berg,  H.,Jansson,  A.  &  Troell,  M.  (1998).  The  ecological  footprint  concept  for  sustainable  seafood  produc-­‐  tion:  a  review.  Ecol.  Appl.  8(Suppl.):S63s71.    Fox,  T.A.,  and  Chapman,  L.  (2011)  Engineering  geo-­‐engineering.  Meteorological  Applications,  18,  1-­‐8    Glaser,  B.G.  and  Strauss,  A.L.,  (1967)  The  discovery  of  grounded  theory:  strategies  for  qualitative  research,  Hawthorne  NY:  Aldine  de  Gruyter    GRAIN  (2013)  LAND  GRABBING  FORBIOFUELS  MUST  STOP:  EU  biofuel  policies  are  displacing  communities  and  starving  the  planet.  [Online]  Available  at:  http://www.grain.org/article/entries/4653-­‐land-­‐grabbing-­‐for-­‐biofuels-­‐must-­‐stop    Accessed:  06.12.2013    Groom  and  Macfarlane,  2012  Final  BioMara  Stakeholder  Meeting  report  [Online]  Available  at  www.biomara.org  (Accessed  21-­‐05-­‐13)    Gröndahl,  F.  (2013)  Funding  Application  for  SEAFARM  Project  [Un-­‐published].      Hauge-­‐Simonsen  (2013)  Sustainable  development  goals:  redefining  sustainable  development  [Online]  Available  at    http://www.stockholmresilience.org/21/research/research-­‐news/3-­‐27-­‐2013-­‐redefining-­‐sustainable-­‐development.html  (Accessed  21-­‐05-­‐13)    Hernandez,  I.,  Fernandez-­‐Engo,  A.M.,  Pérez-­‐Lloréns,  L.J.,  Vergara,  J.J.  (2005)  Integrated  outdoor  culture  of  two  estuarine  macroalgae  as  biofilters  for  dissolved  nutrients  from  Sparus  aurata  waste  waters.  Journal  of  Applied  Phycology  (17):  557-­‐567    Huo,  Y.,  Wu,  H.,  Chai,  Z.,  Xu,  S.,  Han,  F.,  Dong,  L.,  He,  P.  (2012)  Bioremediation  efficiency  of  Gracilaria  verrucosa  for  an  integrated  multi-­‐trophic  aquaculture  system  with  Pseudosciaena  crocea  in  Xiangshan  harbor,  China.  Aquaculture,  326-­‐329,  99-­‐105.

James,  M.  and  Postlethwaite,  B.,  (2012)  Assessment  of  the  feasibility  of  co-­‐digestion  of  feedstocks  –  2  technical  assessment.  CREW,  Centre  of  Expertise  for  Waters:  Glasgow.  Project  CRWRR002.      Karakassis,  I.,  Tsapakis,  M.,  Hatziyanni,  E.,  (1998).  Seasonal  variability  in  sediment  profiles  beneath  fish  farm  cages  in  the  Mediterranean.  Marine  Ecology  Progress  Ser.  162,  243–252.    

  81  

Katrandis,  S.,  Nitsi,  E.  &  Vakrou,  A.  (2003).  Social  acceptability  of  aquaculture  development  in  coastal  areas;  the  case  of  two  Greek  islands.  Coastal  Management,  31,  37–53.    Klaoudatos,  S.D.,  Klaoudatos,  D.S.,  Smith,  J.,  Bogdanos,  K.,  Papageorgiou,  E.,  (2006).  Assessment  of  site  specific  benthic  impact  of  floating  cage  farming  in  the  eastern  Hios  island,  Eastern  Aegean  Sea,  Greece.  Journal  of  Experimental  Marine  Biology  and  Ecology  338  (2006)  96–111  

Langeveld,  H.  (2012).  The  Biobased  Economy:  Biofuels,  Materials  and  Chemicals  in  the  Post-­‐oil  Era.  Earthscan.    Lewis,  J.R.,  (1964).  The  Ecology  of  Rocky  Shores.  Hodder  Education    Lewis,  J.,  Salam,  F.,  Slack,  N.,  Winton,  M.,  Hobson,  L.  (2011).  Product  options  for  the  processing  of  marine  macro-­‐algae  –  Summary  Report.  The  Crown  Estate,  44  pages.  ISBN:  978-­‐1-­‐906410-­‐31-­‐5    Marshall,  M.,  (2012).  Geoengineering  trial  hailed  a  success.  New  Scientist  (21  July  2012),  15.    Martinez,  L.A.,  (1994).  Uso  de  efluentes  de  salmonideos  para  el  cultivo  de  Gracilaria  chilensis  en  estanques:  Rendimiento  y  calidad  de  agar.  Thesis,  Univerdad  de  Los  Lagos,  Osomo,  Chile.  80  pp.  (In  Spanish).    McHugh,  D.J.,  (2003).  A  guide  to  the  seaweed  industry.  FAO  Fisheries  Technical  Paper  No.  441.      Molloy  S.D.,  Pietrak  M.R.,1,  Bouchard,  D.A.,  Bricknell,  I.,  (2011).  Ingestion  of  Lepeophtheirus  salmonis  by  the  blue  mussel  Mytilus  edulis.  Aquaculture  311,  61-­‐64  

Muñoz,  J.,  Freile-­‐Pelegrín,  Y.,  Robledo,  D.,  (2004).  Mariculture  of  Kappaphycus  alvarezii  (Rhodophyta,  Solieriaceae)  color  strains  in  tropical  waters  of  Yucatán,  México.  Aquaculture  239,  161–177.    Naoki,  N.,  Atsuko,  N.,  Koji,  O.,  and  Taketoshi,  O.  (2006)  Ecosystem  Modeling  of  the  Seaweed  Bed  with  Species  Competition.  Kaiyo  Kogaku  Shinpojiumu:  Japan.  19  :96    Neori,  A.  and  Nobre,  A.M.  (2012).  Relationship  Between  Trophic  Level  and  Economics  in  Aquaculture.  Aquaculture  Economics  &  Management,  16:1,  40-­‐67    Nobre,  A.M.,  (2009).  An  ecological  and  economic  assessment  methodology  for  coastal  ecosystem  management.  Environmental  Management  44  (1),  185–204.    Nobre,  A.M.,  Robertson-­‐Andersson,  D.,  Neori,  A.,  Sankar,  K.  (2010).  Ecological-­‐

  82  

economic  assessment  of  aquaculture  options:  Comparison  between  abalone  monoculture  and  integrated  multi-­‐trophic  aquaculture  of  abalone  and  seaweeds.  Aquaculture  306,  116-­‐126

Pillay,  W.  (2001).  The  millennium  address.  In:  Aquaculture  in  the  Third  Millennium  (eds  R.  Subasinghe,  P.  Bueno,  M.  Phillips,  C.  Hough,  S.  McGladdery  &  J.  Arthur).  FAO,  Rome.    Querellou,  J.,  Børresen,  T.,  Boyen,  C.,  Dobson,  A.,  Höfle,  M.,  Ianora,  A.,  Jaspars,  M.,  Kijjoa,  A.,  Olafsen,  J.,  Rigos,  G.,  Wijffels,  R.  (2010)  Marine  Biotechnology:  A  New  Vision  and  Strategy  for  Europe.  European  Science  Foundation,  Marine  Board.  [Online]    Available  at:  http://www.marine.ie/NR/rdonlyres/C076682C-­‐2B32-­‐437C-­‐A781-­‐B2EACBAA6B62/0/ESFMBmarine_biotechnology_paper15LR.pdf  Accessed:  06.12.2013    Ridler,  N.,  Wowchuk,  M.,  Robinson,  B.,  Barrington,  K.,  Chopin,  T.,  Robinson,  S.,  Page,  F.,  Reid,  G.,  Szemerda,  M.,  Sewuster,  J.,  Boyne-­‐Travis,  S.,  (2007).  Integrated  Multi-­‐Trophic  Aquaculture:  A  potential  strategic  choice  for  farmers.  Aquaculture  Economics  &  Management    Vol.  11,  Iss.  1,      Rodolfi,  L.,  Zittelli,  G.C.,  Bassi,  N.,  Padovani,  G.,  Biondi,  N.,  Bonini,  G.,  Tredici,  M.R.  (2009)  Microalgae  for  oil:  strain  selection,  induction  of  lipid  synthesis  and  outdoor  mass  cultivation  in  a  low-­‐cost  photobioreactor.  Biotechnology  and  Bioengineering  102:  100-­‐112.    Roesijadi,  G.,  Jones,  S.B.,  Snowden-­‐Swan,  L.J.,  and  Zhu,  Y.  (2010)  Macroalgae  as  a  Biomass  Feedstock:  A  Preliminary  Analysis.  US  Department  of  Energy,  DOE.      Ruddle,  K.,  Zhong,  G.,  (1988).  Integrated  Agriculture–Aquaculture  in  the  South  of  China:  The  Dike–Pond  System  of  the  Zhujiang  Delta.  Cambridge  Univ.  Press,  Cambridge.  173  pp.  

Rute,  M.  (2012)  Bioeconomy:  Ensuring  Smart  Green  Growth  for  Europe.  [Online]  Available  at:  http://ec.europa.eu/research/bioeconomy/policy/index_en.htm  Accessed:  06.12.2013    Ryther,  J.H.,  Goldman,  J.C.,  Gifford,  C.E.,  Huguenin,  J.E.,  Wing,  A.S.,  Clarner,  J.P.,  Williams,  L.D.  and  Lapointe,  B.E.  (1975).  Physical  models  of  integrated  waste  recycling  -­‐  marine  polyculture  systems.  Aquaculture  Volume  5,  Issue  2.  Authors:  John  H.  Ryther,  Joel  C.  Goldman,  Cameron  E.  Gifford,  John  E.  Huguenin,  Asa  S.  Wing,  J.Philip  Clarner,Lavergne  D.  Williams,  Brian  E.  Lapointe    SAMS  -­‐  Scottish  Association  for  Marine  Sciences  (2012).  Celebrating  BioMara  2009-­‐2012:  Highlights  from  a  research  project  into  the  feasibility  and  viability  of  

  83  

using  marine  biomass  as  a  source  for  biofuels  [Online]  Available  at  www.biomara.org  Accessed:  06.06.2013    Silverman  D.,  (2005)  Doing  Qualitative  Research:  A  practical  handbook.  Sage  publications,  London.    SCB  –  Statistiska  Centralbyrån  (2013).  Energipriser  på  naturgas  och  el.  [Online]    Available  at    http://www.scb.se/Pages/TableAndChart____212957.aspx      Accessed:  06.12.2013    Schenk,  P.M.,  Thomas-­‐Hall,  S.R.,  Stephens,  E.,  Marx,  U.C.,  Mussgnug,  J.H.,  Posten,  C.,  Kruse,  O.,  Hankamer,  B.,  (2008).  Second  generation  biofuels:  high-­‐efficiency  microalgae  for  biodiesel  production.  Bioenergy  Res.  1,  20–43.  

Schlarb-­‐Ridley  and  Parker  (2013).  A  UK  Roadmap  for  Algal  Technologies.  Technology  Strategy  Board  and  Natural  Environment  Research  Council.      Sialve,  B.,  Bernet,  N.,  Bernard,  O.,  (2009).  Anaerobic  digestion  of  microalgae  as  a  necessary  step  to  make  microalgal  biodiesel  sustainable.  Biotechnol.  Adv.  27,  409–416.  

Stirk,  W.A.,  van  Staden,  J.  (2000)  Removal  of  heavy  metals  from  solution  using  dried  brown  seaweed  material.  Bot.  mar.  43(5):  467-­‐473.  

Submariner,  (2012)  Compendium:  An  Assessment  of  Innovative  and  Sustainable  Uses  of  Baltic  Marine  Resources.  Maritime  Institute  in  Gdańsk.    Treasurer,  J.W.,  (2002).  A  review  of  potential  pathogens  of  sea  lice  and  the  application  of  cleaner  fish  in  biological  control.  Pest.  Manag.  Sci.  58,  546–568.    Troell,  M.,  Halling,  C.,  Nilsson,  A.,  Buschmann,  A.H.,  Kautsky,  N.,  Kautsky,  L.,  (1997).  Integrated  marine  cultivation  of  Gracilaria  chilensis  (Gracilariales,  Rhodophyta)  and  salmon  cages  for  reduced  environmental  impact  and  increased  economic  output.  Aquaculture  156,  45–61.

Troell,  M.,  Halling,  C.,  Neori,  A.,  Chopin,  T.,  Buschmann,  A.H.,  Kautsky,  N.,  Yarish,  C.,  (2003).  Integrated  mariculture:  asking  the  right  questions.  Aquaculture  226,  69-­‐90  

UNCTAD  –  United  Nations  Conference  on  Trade  And  Development  (2008).  Globalization  for  Development:  Opportunities  and  challenges.  Reoprt  of  the  Secretary  General  of  UNCTAD  to  UNCTAD  XII,  Accra,  Ghana  (20-­‐25  April  2008)  [Online]  Available  at:  http://unctad.org/es/Docs/td413_en.pdf  Accessed:  06.12.2013    

  84  

UN Population Division (2007). UN 2006 population revision. UN, New York. [online] Available at: http://esa.un.org/unpp/ Accessed: 06.12.2013 Vanegas C.H. and Bartlett, J. (2013). Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environmental Technology.  Walsh,  M.  and  Watson,  L.  (2012).  A  Market  Analysis  towards  the  Further  Development  of  Seaweed  Aquaculture  in  Ireland.  BIM:  Irish  Sea  Fisheries  Board.  [Online]  Available  at:  http://www.bim.ie/media/bim/content/publications/corporate-­‐other-­‐publications/A%20Market%20Analysis%20towards%20the%20Further%20Development%20of%20Seaweed%20Aquaculture%20in%20Ireland.pdf  Accessed:  06.12.2013    Weber,  M.L.  (1997).  Farming  Salmon:  a  briefing  book.  Consultative  Group  on  Biological  Diversity.    Wegeberg,  S.,  Felby,  C.,  (2010).  Algae  Biomass  for  Bioenergy  in  Denmark:  Biological/Technical  Challenges  and  Opportunities.  [Online  Article]  University  of  Copenhagen.  Available  at:  http://www.bio4bio.dk/~/media/Bio4bio/publications/Review_of_algae_biomass_for_energy_SW_CF_April2010.ashx  Accessed:  06.12.2013    Whitmarsh,  D.,  Cook,  E.  &  Black,  K.  (2006).  Economic  prospects  for  an  integrated  salmon-­‐mussel  production  system.  Mar.  Pol.,  30(3),  293–298.    Yuan,  X.,  Chen,  Z.,  Xiao,  S.,  Zhou,  C.,  Hua,  H.  (2011)  An  early  Ediacaran  assemblage  of  macroscopic  and  morphologically  differentiated  eukaryotes.  Nature,  470,  390-­‐393    Zoomers,  A.  (2010).  Globalisation  and  the  foreignisation  of  space:  seven  processes  driving  the  current  global  land  grab.  The  journal  of  peasant  studies  37:2  pp429-­‐447                        

  85  

   

  86  

8. APPENDIXES    

8.1. APPENDIX  A  –  VARIABLES  AFFECTING  SEAWEED  GROWTH  RATES        

Seven  key  environmental  variables  affecting  growth,  assembled  from  Gröndahl  and  Blidberg  (2012)    

i. Sea  action  –  coastal  areas  fit  for  algae  can  be  sheltered  as  well  as  exposed  to  wave  action  and  currents,   each  offering  distinct   advantages.  Where   currents   and  waves   are   active   the  water  and  fresh  nutrients  are  cycled  continuously,  however  only  plants  adapted  to  rough  treatment  by  heavy  storms  can  survive  in  these  conditions.  Where  an  area  is  sheltered,  algae  can  grow  without   risk   of   being   torn   from   their   anchorage,   however   stagnation   can   cause   greater  temperature  fluctuations,  lower  nutrient  content  and  exposure  to  diseases  or  pests.      

ii. Water  depth  and  turbidity  –  the  transparency  or  turbidity  of  the  water  is  of  vital  importance  for   the  growth  rates  of   the  algae:  murky  water  will  block  out  some   light,   reducing  available  energy  to  feed  photosynthesis,  however  crystal  clear  waters  provide  ideal  conditions.  Further,  water  is  not  fully  transparent:  it  absorbs  a  portion  of  light  so  usually  the  deeper  the  habitat,  the  less  light  available  and  thus  the  lower  the  growth  rates.      

iii. Salinity   –   at   a   biochemical   level,   salt   is   perhaps   one   of   the  most   important   environmental  factors  for  macroalgae.  It  holds  essential  roles  in  metabolic  functions  and  in  algal  cell  biology.      

iv. Nutrient  availability  –  like  any  other  plant,  if  all  the  essentials  for  photosynthesis  to  take  place  are  present,  as  well  as  all  the  nutrients  required  for  growth,  the  macroalgae  will  thrive.  Where  there   are   high   levels   of   nutrients,   it   is   possible   for   other   organisms   such   as  microalgae   to  thrive   in   competition   and   increase   turbidity;   however   where   nutrients   are   in   low  concentration,  growth  rates  will  be  limited.  A  fine  balance  must  be  struck,  and  where  control  is  not  available,  careful  monitoring  of  the  balance  is  essential.      

v. Unwanted   species   –   competition  by   organisms   such   as  microalgae   can  be   a   big   problem  as  previously  established,  but  so  can  pests,  for  instance  sea  snails.      

vi. Bottom  type  –  sea  floor  typologies  vary  a  lot  and  play  an  essential  role  in  determining  the  type  of  benthic  ecosystem  will  be  present.  Rocky  bottoms  provide  anchorage  for  microalgae,  while  sandy   or   muddy   bottoms   can   increase   water   turbidity   as   sediments   are   thrown   up   in  suspension   when   sea   action   is   elevated.   It   also   affects   the   costs   of   mooring   systems   for  eventual  macroalgae  cultivation.    

vii. Anthropogenic   uses   –   some   estuaries   or   coastal   areas   may   be   unsuitable   for   macroalgae  farming  based  on  other  anthropic  uses  of  the  space,  such  as  fishing  and  tourism,  while  other  spaces   may   be   designated   as   natural   reservations,   creating   difficulties   when   applying   for  construction  permits  for  the  necessary  infrastructure.  

   

  87  

8.2. APPENDIX  B  –  QUANTIFYING  IMTA  SYNERGIES    Measuring  the  efficacy  of  finfish  wastes  as  fertiliser  for  shellfish  and  seaweed  cultivation    The  research  presented  in  this  paper  was  conducted  off  the  coast  of  Chile   in  Metri  bay,   using   Gracilaria   chilensis   grown   on   ropes   to   reduce   eutrophication   and   use  wastes   from   a   salmon   cage   farm   between   January   and   March   1995.   Note:   no  shellfish   were   involved   in   this   particular   experiment,   only   seaweeds   and   finfish.  Gracilaria  was  selected  for  its  tried  and  tested  bioremediation  abilities  (Buschmann  et  al.  1994).  Metri  bay  has  pronounced  tides  between  5  and  7m  of  amplitude  driving  east-­‐west  tidal  currents  averaging  between  0.03-­‐0.12  m/s,  with  a  salinity  between  28   and   30   PSU   and   water   temperatures   between   8   and   15°C   (Toledo   and   Toro  1985).   “Nutrient   concentrations   in   the   farm   area   vary   during   summer   between   0  and   3.6   pM   for   nitrate,   0.03   and   0.09   FM   for   phosphate   (molybdate   reactive  phosphate)  and  0.7  1  and  2.1  FM  for  ammonia”  (Troell  et  al.  1997).  The  established  salmon   farm   species   were   Oncorhynchus   mykiss   and   Oncorhynchus   kisutch   and  production  averaged  around  227  metric  tons  per  annum.  (Troell  et  al.  1997)  

In  order  to  measure  the  fertilisation  of  the  G.  chilensis,  two  test  sites  and  a  reference  site   were   proposed   at   different   distances   from   salmon   cages:   the   two   test   sites,  stations   A   and  B,  were   positioned   10m   and   150m   respectively   to   the  west   of   the  salmon   cages   to   maximise   exposure   of   algae   to   the   effluents   as   carried   by   the  currents;   the   reference  site,   station  C,  was  positioned  approximately  1km  away   to  the   south   of   the   fish   farm.   Each   site   was   identical   in   terms   of   the   layout   of   the  seaweed:   each   was   composed   of   30   bundles   of   Gracilaria,   attached   to   3   circular  frames  (10  bundles  per  frame,  each  plant  spaced  out  every  25cm)  with  a  diameter  of  80cm.   The   frames   would   be   fixed   at   depths   1m,   3m   and   5m.   Two   experiments  lasting  2  weeks  each  would  be  conducted,  one  in  February  and  the  other  in  March,  with   the  objectives  of   (a)  measuring  specific  growth  rates,  as  described   in  Lobban  and   Harrison,   1994;   (b)   analysing   agar   content   expressed   as   percentage   of   dry  weight   according   to   Cancino   and   Orellana,   1987;   (c)   determining   levels   of   total  carbon  and  total  nitrogen,  by  means  of  a  Leco  CHN-­‐900  elemental  analyser;  and  (d)  measuring   total   phosphorus,   as   extracted   using   hydrochloric   acid   in   Aspila   et   al.,  1976.  (Troell  et  al.  1997)  

The  mean  specific  growth  rates  varied  from  3  to  7.1%  per  day  between  the  stations  and   at   different   depths.   The   growth   rates   were   significantly   (20-­‐40%)   higher   at  station  A  at  all  depths  and  both  in  February  and  March,  with  the  highest  recorded  at  1m  depth  in  February.  The  growth  rates  at  stations  B  and  C  were  almost  the  same,  with  slight  variation  and  no  observable  trends.  No  trends  emerged  from  total  N  and  P   content   at   different   depths   within   each   station,   however   samples   at   station   A  showed   significantly   higher   levels   of   both   total   N   and   P   content   compared   to  stations   B   and   C.   Carbon   content   varied   from   25-­‐29mmol   C   g-­‐1   dw-­‐1   and   no  noticeable   differences   occurred   in   depth   or   between   stations.   Agar   content,  measured  as  a  percentage  of  dry  weight,  ranged  between  16.9%  and  22.6%,  and  was  

  88  

lowest  at  station  A.  However  the  higher  biomass  yield  at  station  A  resulted  in  higher  levels  of  total  accumulated  agar.  (Troell  et  al.  1997)  

From  the  results  it  is  understood  that  nutrient  availability,  specifically  of  N  and  P,  is  one  of   the  major   limiting   factors   to   the  growth  rate  of  Gracilaria  chilensis   in   these  waters.  Thus  where  N  and  P  are  in  higher  concentrations  (in  direct  proximity  to  the  salmon  cages  at   station  A)  growth   rates  were  on  average  20-­‐40%  higher,  while  N  and  P  content   in   the  algae  was  also  higher.  Similar  experiments  have  documented  the   effects   of   nutrient   availability   on   macroalgae   growth,   as   well   as   significantly  increased  macroalgae  growth  rates   in  proximity   to  coastal   finfish  cages  (Leskinen,  1985;  Leskinen  et  al.,  1986;  Ruokolahti,  1988;  Rijnnberg  et  al.,  1992).  (Troell  et  al.  1997)

Agar   content   however   yielded   very   different   results,   as   agar   content   is   known   to  decrease   with   increasing   tissue   nitrogen   concentrations   (DeBoer,   1979):   the  experiment   showed   that   at   station   A   the   agar   content   was   consistently   less  concentrated   than   at   stations   B   and   C,   yet   the   overall   net   yield   at   station   A   was  greater   due   to   the   higher   biomass   yield.   This   illustrates   the   complexity   of   the  biological   processes   governing   algae   growth   and   substance   content,   and   it  demonstrates  that  decisions  regarding  cultivation  techniques  should  be  made  based  on   a   range   of   factors,   most   notably   the   desired   end-­‐product.   For   instance   in   the  above  case,  if  agar  were  to  be  the  desired  end-­‐product,  then  sites  B  and  C  might  be  preferable   despite   lower   net   agar   yield,   because   their   higher   concentrations   are  cheaper  to  extract  than  the  more  diluted  but  higher  net  yield  at  site  A.  That  said  it  has   been   reported   that   the   quality   of   agar   is   greater  when  Gracilaria   is   grown   in  proximity   to  salmon  cages  (Martinez,  1994),  a  commercially  significant   find  which  adds   to   the  complexity  of   the  decision  situation.   If  however   the  end  product  were  biomass  for  biofuels,  site  A  would  be  preferable  given  the  higher  biomass  yields  per  m2  of  cultivated  sea.    

 Mussels  as  a  barrier  for  finfish  pathogens      In   the   last   few   years   the   sea   louse,   Lepeophtheirus   salmonis,   has   developed  resistance   to   the   drug   SLICETM   and   begun   to   seriously   threaten   the   cultivation   of  Atlantic  salmon.  There  are  known  biological  controls,  such  as  several  native  species  of  wrasse  used   in  northern  Europe   (Treasurer  2002)  which   could  participate   to  a  solution,   however   keeping   tiny   wrasse   in   proximity   to   salmon   in   sea   cages   is  impractical.  Alternatively,  researchers  hypothesised  that  the  blue  mussel  may  act  as  a   biological   control   thus   reducing   infectious   pressure   if  mussels   can   consume   the  sea   louse   in   its   ineffective   copepodid   life   stage.  Thus   the  authors   joined  a   team  of  researchers  developing  an  IMTA  combining  salmon,  kelp  and  mussels  in  the  Bay  of  Fundy,   Canada,   with   aim   of   modelling   disease   dynamics   and   testing   their  hypothesis.      

  89  

Local  mussels  were   introduced   into  a  closed  seawater  system  maintained  at  10°C.  Separately,   local   sea   lice   were   collected   from   an   infected   farm   and   reared   to  copepodid   stage.   The   lice   larvae   were   stained   red,   then   counted   for   use   in   the  experiment.  10  beakers  of  0.5L  of  seawater,  containing  105  cells/ml  algae  and  100  copepodids  were  used.  1  mussel  was  placed   in  each  beaker  and   left   for  30mins  or  60mins.   Immediately   after   removal,   the   mussel   stomach   contents   were   removed,  stained  copepodids  were  counted,  then  contents  were  processed  for  DNA  isolation.      Results   show   that   mussels   indeed   ingested   the   copepodids.   The   number   of   free  swimming  copepodids  were  counted  after  the  removal  of  the  mussels  after  30  and  60mins:   in   the   30min   exposure   beakers,   87-­‐98   remained;   in   the   60min   exposure  beakers,   38-­‐100   remained.   In   the   30min   exposure   mussels,   all   were   found   to  contain  stained  copepodids  further  confirmed  by  DNA  analysis.  The  60min  exposure  mussels   all   contained   copepodids   except   for   one   (mussel   number   10),   also  confirmed  by  DNA  analysis.  It  is  thought  the  exception,  mussel  number  10,  was  not  feeding  at  the  time  of  the  experiment.  Overall  it  is  clear  that  feeding  mussels  ingest  sea  lice  copepodids  in  the  controlled  conditions  of  the  experiment,  however  it  is  not  known  if  they  can  ingest  sufficient  amounts  to  be  a  practical  biological  control  agent  in  open  water  cultivations.  Trials  are  needed  to  determine  their  efficacy  at  sea.          IMTA   vs.   Monoculture   in   the   Bay   of   Fundy:   ten-­‐year   economic   feasibility  modelling  and  public  opinion  survey    In   this   report   two   vital   questions   are   addressed.   First   a   model   is   developed   to  determine   economic   feasibility   of   salmon   monoculture   versus   IMTA;   second,  industry  and  public  opinion  are  consulted  over  the  two  cultivation  practises.      The  authors  modelled  the  profitability  of  salmon  monoculture  versus  IMTA,  through  3   plausible   scenarios.   The   base-­‐model   was   built   from   technical   data   of   a   salmon  farm  in  the  Bay  of  Fundy,  thus  replicating  expenses  and  revenues  of  an  established  farm  of   500’000   smolt.   Total   costs  were   estimated   at  US$1.4  million   and   revenue  would  be  calculated  based  on  an  assumed  selling  price  of   fresh  salmon  at  US$2.60  lb.   Thereafter   the   costs   and   revenues   had   to   be   valued   for   labour,   mussels   and  seaweed  farming:  for  mussels  the  total  10  year  cost  was  estimated  at  US$85’000  and  for   seaweed   cultivation   it   was   projected   at   US$28’000.   Revenues   and   the   Net  Present  Values  for  all  three  species  were  also  anticipated.  (Ridler  et  al.  2007)    With  the  base-­‐model  complete,  it  was  now  essential  to  introduce  risks  in  the  form  of  scenarios,   which   are   detailed   in   the   table   below.   Risks   were   assumed   to   be  uncorrelated  between  species,  a  plausible  assumption  as  motivated  by  Ridler  et  al.  (2007:105).  

Scenario   Salmon  Harvest   Mortality  rates   Probability   of  Occurrence  

1  (best)   5  in  10  years   11%  at  each  harvest   20%  

  90  

 The  results  from  running  the  model  through  the  scenarios  showed  that  IMTA  always  results   in   a  higher  NPV,  motivated  by   the   income   from  mussels   and   seaweed   that  buffer  the  effects  of  salmon  losses.  Principally  the  results  show  that  one  bad  salmon  harvest   can   suffocate   profits   of   a   salmon   monoculture   over   a   ten-­‐year   period,  whereas   IMTA   provides   the   diversity   of   economy   to   maintain   a   positive   balance  sheet  and  sustain  the  business.  This  was  further  tested  in  a  subsequent  re-­‐run  of  the  model,  this  time  incorporating  market  risks  subjected  in  the  form  of  an  immediate  12%   decrease   in   salmon   market   value   carried   over   a   ten-­‐year   run,   mimicking   a  similar  price  drop  in  the  1980s  (Whitemarsh  et  al.,  2006).  Similar  to  the  first  results,  the   IMTA  coped  better  yielding  a  profit  margin  of  3.2%  compared   to  0.3%   for   the  salmon  monoculture.  (Ridler  et  al.,  2007)    Thereafter   two   opinions   surveys   were   conducted   by   the   authors,   in   light   of   the  knowledge   that   public   perception   can,   and   has,   jeopardized   finfish   aquaculture   in  the  past  (Katrandis  et  al.,  2004);  and  given  the  key  goal  as  stated  in  the  Millenium  Conference  on  Aquaculture,  that  “technological  progress  in  the  next  millennium  has  to  go  hand-­‐in-­‐hand  with  social  and  ethical  acceptability”  (Pillay,  2001).   In  essence,  social  acceptability  is  seen  as  an  essential  prerequisite  to  sustainable  aquaculture.      The   first   random  survey  of  1220  people   took  place   in  New  Brunswick,  Canada,   in  2003,   with   110   respondents   taking   time   to   answer,   of   which   53   were   from  professional   organisations   or   companies   and   2   were   from   environmental   NGOs.  Overall  there  was  a  positive  attitude  displayed  by  both  public  and  industry  toward  salmon  monoculture   and   IMTA,   however   it  was   significantly   higher   for   the   latter.  The   former  was   appreciated   for   its   benefits   to   the   local   economy   and   community  employment;  the  latter  even  more  so  due  to  a  trust  in  science  and  the  development  of   the   latest   farming   practises,   even  when   the   respondent   lacked   familiarity  with  IMTA  principles.  This  highlights  the  fact  that  although  the  public  trusts  that  IMTA  is  ‘better’,  a  substantial  proportion  are  not  interested  in  the  multi-­‐trophic  nature  of  the  system  nor  the  benefits  of  such  principles.      The   second   survey   aimed   to   identify   differences   in   attitude   once   IMTA   principles  have  been  communicated  to  respondents,  and  was  conducted  in  the  same  locality  as  the  first  in  2005.  5  focus  groups  were  held  with  23  participants,  in  the  wake  of  a  12-­‐minute  video  outlining  the  IMTA  pilot  project  in  the  Bay  of  Fundy.  All  respondents  agreed  that  profit,  quality  produce  and  reduced  environmental  impacts  were  key  to  success,   and   that   success   should   be   proportional   to   sustainability.   Areas   of  uncertainty   included   the  potential  of   IMTA   to   reduce  disease  outbreaks,   replenish  natural   stocks   or   improve   quality.   However   areas   where   respondents   were  most  positive   included   “potential   to   reduce   environmental   impacts   of   salmon   farming  

2  (worst)   4   in   10   years,  with  one  lost  

11%   in   4   harvests,  100%  in  one  

40%  

3  (intermediate)   5  in  10  years   11%   in   4   harvests,  70%  in  one  

40%  

  91  

(65%),   while   improving   waste   management   in   aquaculture   (100%),   employment  opportunities   (91%),   community   economies   (95%),   industry   competitiveness  (95%),   food   production   (100%)   and   sustainability   of   aquaculture   overall   (73%).”  (Ridler  et  al.,  2007:108)  Another  key  find  of  public  perception  was  that  consumers  would  be  willing  to  consume  mussels  and  algae  co-­‐cultured  in  proximity  to  salmon  cages,  an  issue  previously  identified  as  potentially  problematic  (due  to  perceptions  of   increased   disease   transfer)   but   hereby   disbanded   as   a   non-­‐issue   (Ridler   et   al.,  2007).   Discussions   also   took   place   on   willingness   to   pay   (WTP)   extra   for  environmentally   friendly   seafood.   Results   were   as   varied   as   are   usually   to   be  expected   regarding   WTP,   but   were   generally   split   into   three   more   or   less   equal  groups:   one   third   would   pay   more   willingly,   up   to   10%   extra,   particularly  restaurateurs;  one  third  were  adamant  that  all  seafood  should  be  environmentally  friendly,  thus  there  should  not  be  two  tiers  of  price;  and  the  final  third  were  either  unwilling  to  pay  more,  or  simply  could  not  afford  to  (Ridler  et  al.,  2007).    Overall   public   attitude   toward   both   salmon  monoculture   and   IMTA  was   positive,  with   a   significant   preference   toward   IMTA   based   on   an   overall   improvement   in  sustainability.  Consumers  disbanded  the  erstwhile  issue  of  opposition  to  locally  co-­‐cultivation   of   products.   And   finally   WTP   discussions   for   environmentally   sound  seafood  yielded  a  variety  of  results,  ranging  from  ‘yes’  to  a  10%  increase  in  price,  to  an   outright   refusal   of   environmentally   unsustainable   seafoods,   and   ‘no’   from   low  income  families.        Abalone  monoculture  vs.  IMTA  in  South  Africa    This   report   is   the   first  detailed  economic  and  environmental   comparison  between  land-­‐based   IMTA   and   abalone   monoculture   systems.   The   authors   based   the  methodology   on   a   recent   modification   of   the   DPSIR   framework,   the   Differential  Drivers-­‐Pressures-­‐State-­‐Impact-­‐Response   (ΔDPSIR)   proposed   by  Nobre,   A.   (2009)  to   support   sustainable   coastal   management   decision   makers.   “The   aim   of   the  DDPSIR   approach   is   to   screen   the   ecological   and   economic   evolution   of   an  ecosystem   during   a   given   time   period   (Dt)   that   is   relevant   from   a   management  perspective  (response   implementation  period).  This  approach   includes  an  analysis  of  the  drivers,  pressures  and  state  before  and  after  the  response.  The  impact  on  the  ecosystem   (positive   or   negative)   corresponds   to   the   changes   of   state   during   the  study   period,   Dt”   (Nobre   2009:186).   The   specific   advantage   is   that   this   new  approach   uses   differential   values   over   time   and   can   include   the   Response  (incorporating  IMTA),  thus  providing  an  informed  analysis  of  change  of  state,  which  is  particularly  relevant  to  ecosystems  and  economic  components.  The  details  of  the  methodological  procedure  of  the  paper  are  too  lengthy  to  present  in  this  review,  and  it   was   decided   to   leave   them   out   while   recommending   the   report   for   detailed  instructions.    

The   case   study  data  applied   to   the  ΔDPSIR   is   from  a  South  African  240-­‐ton  year-­‐1  abalone   farm,   Irvine   &   Johnston   Cape   Cultured   Abalone   Pty,   Ltd.   and   aims   to  

  92  

compare   the   sustainability   of   different   aquaculture   configurations   for   that   case  study.   The   abalone   species   in   question   was   Haliotis   midae,   while   the   integrated  component   of   the   two   IMTAs   was   the   seaweed   Ulva   lactuca,   selected   for   this  abalone’s   affinity   for   consuming   it,   its   high   protein   content   and   for   its   local  availability.   In   2007   a   downstream  U.   lactuca   culture   pond  was   integrated   to   the  farm  to  bioremediate  part  of  the  effluents  and  to  provide  10%  of  the  farm’s  seaweed  requirements  (abalone  consume  algae).  The  farm  managers  decided  to  expand  the  seaweed   ponds   to   supply   30%   of   the   required   seaweed   in   2009.   Thus   the   three  configurations   that   were   input   to   the   ΔDPSIR   analysis   were   the   shift   from   the  original   monoculture   (scheme   1),   to   the   2007   system   (scheme   2),   to   the   2009  system  (scheme  3).  (Nobre  et  al.,  2010)  

 

Source:  Nobre  et  al.,  2010  

The   results   were   formulated   according   to   the   DPSIR   framework   and   are  summarised   hereafter,   as   the   analysis   is   too   extensive   and   complex   to   present   in  full.    

• Drivers  –  first  and  foremost  comes  profit,  which  was  estimated  to  be  higher  in   the   IMTA   schemes   due   to   a   variety   of   identified   synergies   and   cost  reductions,  despite  higher  labour  costs.  

• Pressures  –  N  and  P  discharges  were  reduced  by  44%  and  23%  respectively  in  the  shift  from  scheme  1  to  scheme  2,  and  further  reductions  are  predicted  beyond  that.  Natural  kelp  harvesting  will  also  decrease  by  an  estimated  2.2  ha  year-­‐1  due  to   in  situ  production,  reducing  pressure  on  those  ecosystems.  Furthermore   the   GHG   emissions   balance   indicates   a   net   reduction   in  emissions   relative   to   scheme   1   of   345   and   268   CO2e   year-­‐1,   mainly   from  reduction   in   pumping   heights   in   the   new   IMTA   configurations   but   also   a  small  amount  from  seaweed  CO2  uptake.  

  93  

• State  and  Impact  –  the  four  identified  reduced  environmental  impacts  were:  reduced  N  discharge,   reduced  P  discharge,   reduced  natural   kelp  harvesting  and  reduced  CO2  emissions.   “The  quantified  environmental  externalities   [of  these   reductions]   corresponded   to   an   overall   economic   benefit   to   the  environment  and  thus  to  the  public,  of  about  0.9  million  and  2.3  million  USD  year-­‐1  upon  shifting  the  farm  practice  from  abalone  monoculture  (scheme  1)  to  the  IMTA  schemes  2  and  3,  respectively”  (Nobre  et  al.  2010:123).  

• Response:  Retrofitting  the  monoculture  and  integrating  seaweed  ponds  cost  an   estimated   12   and   36   thousand   USD   year-­‐1   in   schemes   2   and   3,  respectively.  The  estimated  immediate  financial  benefits  of  increased  profits  (0.20  and  0.72  million  USD  year-­‐1)  were  found  to  recover  the  implementation  costs  within  the  first  financial  year.    

To  summarise,   the  economic  and  environmental   impacts  of  retrofitting  an  existing  on-­‐shore   abalone   monoculture   with   seaweeds   were   estimated   using   the   ΔDPSIR  framework.  It  was  found  that  the  costs  of  the  upgrade  were  far  outweighed  by  the  increase   in   economic   return   in   the   first   year   alone,   and   that   the   environmental  impacts  of  the  IMTA  schemes  were  much  lower  than  of  the  monoculture.  The  IMTA  schemes  proved  both  more  profitable  and  more  environmentally  sustainable.    

     

  94  

8.3. APPENDIX  C  –  MAPS  OF  KOSTERFJORDEN  SITE  FOR  SCENARIOS  ONE  AND  TWO    SCENARIO  ONE  

   SCENARIO  TWO    

 

SVEN LOVÉN CENTRE FOR MARINE SCIENCE

Kostefjorden

STRÖMSTADDominant Currents

Shellfish longlines

Seaweed longlines

Fish pens

Key:

  95  

8.4. APPENDIX  D  –  MAP  OF  AREA,  PHOTOGRAPHED  DURING  STUDY  VISIT  TO  SLCMS    

     

  96  

8.5. APPENDIX  E  –  INTERVIEW  TRANSCRIPTS        Göran  Nylund  &  Fredrik  Gröndahl  –  Tjärnö  –  19th  of  April  2013    [Discussion  has  already  begun  –  discussing  potential  SEAFARM  products  post-­‐refining]    Göran  –  It  could  be  very  attractive  to  look  at  Polyunsaturated  Fatty  Acids,  Omega  3.  Look  toward  literature  for  examples  of  Omega  3  being  extracted  from  different  seaweeds.    Lets  say  species  A  may  have  a  high  amount  of  Omega  3  and  it  might  mean  that  algal  biomass  volumes  would  be  reduced.  This  could  be  a  way  to  make  the  farm  economically  viable.    Fredrik  –  Yes  I  agree.  And  with  Omega  3,  there  is  already  a  large  market  for  it  and  you  could  get  a  price  for  it.  Also  for  the  biofuels  there  is  already  a  market  that  you  can  get  a  price  for.  Choose  a  few  markets  and  restrict  yourself  to  them.  Then  you  could  look  at  these  scenarios  and  say,  in  order  to  produce  biofuels  maybe  you  need  huge  cultures,  but  if  you  make  Omega  3  you  need  maybe  less…  maybe  that  could  be  interesting.      JB  –  [Talking  about  different  markets,  food,  high  value  stuff.  How  do  companies  get  to  a  profitable  state  of  economy?]    Fredrik  –  First  you  need  to  see,  how  you….  First  you  put  up  a  farm  with  certain  products  and  you  can  make  estimates  on  those  revenues.  How  unprofitable  is  it  to  make  this  farm.  Then  you  look  at  different  production  scenarios.  If  you  look  at  some  other  product,  we  could  get  very  profitable  with  a  very  small  farm.    Definietly  just  a  biofuel  farm  will  need  a  huge  area  to  turn  a  profit,  like  this  has  been  done  with  reeds  (PAPER),  and  that  was  similar,  they  wanted  to  harvest  reed  to  make  biogas.  We  could  see  these  scenarios  where  it  started  to  be  profitable.  Something  like  that  is  interesting  to  explore.  Like  I  guess  if  you  build  a  IMTA,  it  will  be  very  costly,  is  it  attractive  and  can  it  be  profitable?    JB  –  [Discuss  risks  associated  with  high  value  extractions,  saturation  of  markets  of  high  value  goods]    Fredrik  –  It  will  be  possible  to  get  some  production  per  acre  figures  from  BioMara.      Göran  –  Yes  it  seems  that  that  is  what  you  need.  If  you  have  some  figures  for  the  cost  of  production,  the  cost  will  be  related  to  …..  if  you  have  a  specific  surface  area,  from  that  you  can  calculate  things.  Those  numbers  from  BioMara  could  be  very  good  for  your  basis.  It  costs  so  much  to  collect  10Kg  of  seaweeds.  Then  look  at  the  products  to  see  how  you  can  break  even.  

  97  

 Fredrik  –  If  you  compare  the  conditions  between  here  and  BioMara  there  could  be  some  more  conclusions  or  guesses,  estimations  made.    JB  –  Yes  that  reminds  me  is  there  some  data  about  local  water  samples  that  we  could  use  to  compare  with  BioMara.    Göran  –  Yes,  SMHI  make  water  samples,  just  outside  the  bay  here.  I  will  email  you  those  details.      Fredrik  –  another  thing  to  think  about  is  space  availability.  We  did  this  for  Mussels  and  we  found  that  we  used  only  a  tiny  amount  of  space  of  total  coastal  areas  to  produce  a  huge  amount  of  mussels.  Anyway  this  project  will  be  good.      JB  –  Yeh  lots  of  questions,  few  answers!    Another  last  quick  thing  is  to  do  with  product  diversification  again.  I  wonder  about  the  market  potential  of  species  like  sea  cucumbers  and  urchins.  That  could  be  a  good  question  for  your  contact  at  Leroy?    Göran  –  yes  I  can  have  a  chat  with  him.    JB  –  Looking  back  at  the  document  ‘Seaweeds  for  a  biobased  Swedish  society’  the  3rd  focus  area  is  the  Environmental  Impacts.  There  seems  to  be  in  the  literature,  an  overwhelming  assumption  that  seaweed  cultivation  has  almost  no  bad  impacts,  only  good  from  nutrient  stripping,  which  I  think  is  perhaps  quite  naïve.  There  must  be  some  bad  things…    Göran  –  Potential  negative  impacts  on  the  area  around  the  harvest,  it  could  affect  the  benthic  organisms.      Fredrik  –  this  new  book  at  the  conference,  it  mentions  that  the  advantage  of  using  local  species  so  its  not  affected  by  invasive  species…      Goran  –  Lunch  time!                

  98  

Greg  Reid,  University  of  New  Brunswick  –  Telephone  Interview  –  6th  of  May  2013      JB  &  Greg–  Introductions,  explain  Seafarm  and  my  project.    JB  –  What  is  your  area  of  focus  in  research      Greg  –  The  last  few  years  it  has  been  mainly  IMTA  in  the  context  of  Canada,  but  alsolooking  at  the  system  efficiencies,  like  recovering  nutrients,  how  much  is  reasonable  and  practical,  so  im  looking  at  scales  as  well.  On  the  East  coast  we’re  looking  at  the  removal  of  nutrients  from  Atlantic  Salmon,  on  the  West  coast  other  species…  Most  of  the  shellfish  on  the  East  coast  are  Blue  Mussels,  and  we  are  also  looking  at  Sea  Cucumbers  and  Sea  Urchins.      JB  –  So  your  main  area  is  the  nutrient  uptake  role  of  these  species?    Greg  –  Yes,  kind  of…  it  also  feeds  into  the  economics  of  the  system  too,  directly  or  indirectly.  Canada  and  Norway  and  a  few  other  countries  are  regulated  on  the  benthic  impacts,  and  out  here  the  main  measurement  and  challenge  is  to  stay  below  threshold  levels  of  allowed  Hydrogen  Sulphide.  So  if  you  exceed  that  threshold,  you  are  expected  to  take  mitigative  action.  In  IMTA,  hydrogen  sulphide  release  is  a  function  of  how  much  fish  poo  is  getting  to  the  bottom,  so  if  you  have  cucumbers  or  urchins  down  there  capable  of  targeting  that  waste,  then  you  can  stay  within  the  threshold  and  even  increase  fish  production  at  that  same  site  without  needing  to  apply  for  a  new  site  licence,  all  the  while  developing  new  revenues  from  the  urchins  and  cucumbers.  So  the  economic  aspects  come  through  at  that  level.    JB  –  Are  there  any  specific  cultivation  sites  you  are  involved  with?    Greg  –  I’m  involved  with  all  of  them.  On  the  East  coast  here…  Well  before  I  get  to  that  you  should  know  that  there  are  3  basic  types  of  IMTA  you  should  be  aware  of,  of  which  we  have  2  here  in  Canada.    The  1st  is  where  you  already  have  a  full  scale  finfish  aquaculture,  in  this  case  Atlantic  Salmon,  and  then  you  are  adding  on  species  to  the  site.  So  I  call  that  an  ADD  ON  APPROACH.  The  2nd  is  a  site  which  is  being  custom  designed  for  the  purpose  of  IMTA,  and  in  that  case  you  have  more  control  over  the  scale,  the  ratios,  and  a  physical  location  more  appropriate  to  IMTA  with  for  instance  less  strong  currents.  And  we  have  one  major  one  on  the  west  coast,  with  Black  cod.  In  terms  of  nutrient  uptake,  the  CUSTOM  DESIGNED  IMTA  will  be  more  effective,  but  if  you  are  looking  for  a  larger  scale  IMTA  to  mitigate  aquaculture,  then  it’s  the  add  on  approach.    So  those  are  two  types  of  IMTA  we  have  in  Canada.  The  3rd  type  is  what  I  call  the  INCIDENTAL  IMTA,  and  its  common  in  places  like  China,  and  even  in  Spain,  where  because  of    the  way  that  site  lease  areas  work,  that  you  already  have  other  species  being  cultivated  in  the  same  area,  that  through  trial  

  99  

and  error  they  come  up  with  a  functioning  system  with  cross  feeding  between  the  different  cultivated  species.    JB  –  That’s  great  thanks.  Now  going  back  to  the  species  types,  are  the  cultivations  you  are  involved  with  actively  working  with  S.  latissima  or  L.  digitata?    Greg  –  Yes  both  are  involved  somewhat  here  on  the  East  coast.  Thierry  was  also  experimenting  with  another  species,  I  cant  remember  what  though.  Heres  where  the  economics  come  in  to  play,  trying  to  figure  out  which  market  your  kelp  is  going  to  is  how  you  will  determine  the  scale  of  operations,  how  long  they  need  to  grow  for  and  when  you  are  going  to  harvest,  etc…  Here  they  are  being  used  for  high  end  products,  as  opposed  to  something  like  a  fertilisers.  So  here  we  need  high  quality  kelps  harvested  before  there  is  any  form  of  “frond  erosion”  (that’s  what  is  sounds  like),  so  out  here  it  goes  in  the  water  in  November  and  gets  harvested  around  now,  May  or  June.  That’s  actually  a  big  thing  that  gets  overlooked  quite  a  bit.  Scenario  A  –  you  are  trying  to  mop  up  nutrients  and  produce  lots  of  kelp,  lots  of  mass,  then  you  lose  quality,  its  going  to  be  damaged  and  the  end  product  is  almost  free,  totally  worthless,  something  like  $10  per  ton.  But  Scenario  B  –  if  you  keep  high  quality  and  you  sell  it  while  its  still  quite  small,  then  its  more  of  a  ‘high  value  specialty  rather  than  a  low  value  commodity’,  at  least  from  the  economic  perspective.    It’s  a  real  challenge  too  to  get  high  volumes  of  kelp  so  cheaply,  because  for  every  100t  of  wet  mass  you  harvest,  you  can  only  get  about  10-­‐15t  of  dry  mass…    JB  –  with  regards  to  the  algae  at  these  sites,  which  of  your  colleagues  is  in  charge  of  the  seaweed  aspects  of  the  cultivations  and  the  high  end  products?    Greg  –  Well  the  seaweed  person  here  is  Thierry  Chopin,  and  he  grows  kelp  in  his  lab  and  deploys  them  in  the  East  coast,  but  on  the  West  coast  it  would  be  Stephen  Cross.  So  he  has  found  a  few  market  for  specialty  products,  but  the  amount  of  kelp  grown  on  an  IMTA  here  is  pretty  insignificant,  and  not  much  of  it  is  grown  in  Canada  when  compared  to  the  rest  of  the  world.      JB  –  Water  quality  comparison  with  other  sites.  I’ve  been  asked  to  compare  with  other  projects.  Is  there  an  agency  in  Canada  that  collects  water  samples  or  something?    Greg  –  well  it  depends  really.  Environment  Canada  are  supposed  to  be  the  ones  doing  that,  but  I  don’t  know  if  they  have  a  database  or  anything.  Depending  on  what  you  are  looking  at…  In  the  East  coast,  the  water  quality  is  good,  so  are  nutrient  levels,  the  oxygen  is  an  issue  here  especially  in  the  spring  with  all  the  melt  water  from  the  rivers  here.  What  sort  of  things  to  do  with  the  water  quality  were  you  thinking  of?    JB  –  Well  here  the  concern  is  salinity.      

  100  

Greg  –  well  here  it  is  near  a  stream  that  comes,  so  Stephen  Cross  has  had  to  deal  with  salinitiy  issues  and  he  may  have  data  on  salinitiy  tolerance  for  S.  latissima.  I  know  he’s  had  to  drop  the  cultivation  lines  to  below  5m  to  saltier  waters.      JB  –  Wow  very  interesting.  Ok  well  the  main  point  of  this  is  to  try  to  learn  from  others  experience,  and  of  course  if  Stephen  Cross  has  had  past  encounters  with  salinity  issues  it  would  be  in  our  interest  to  talk  to  him  about  it,  and  how  he  overcame  it.    The  other  major  part  of  this  project  is  the  economics  of  the  project.  Are  you  familiar  with  the  budget  sheet  of  cultivations,  or  have  these  cultivation  sites  been  privatised  at  all?    Greg  –  within  the  network  in  Canda  we  have  a  big  partnership  with  industry,  academia  and  government,  so  at  the  moment  the  finfish  is  commercial,  they  have  also  taken  over  the  mussels.  The  kelp  is  still  produced  in  university  labs,  and  deployed  by  researchers,  you  can  ask  Thierry  Chopin  about  the  future  plans  for  that  as  he  is  working  on  commercialisation  of  it.      JB  –  So  which  company  is  in  charge  with  this?    Greg  –  On  the  East  coast  COOKE  Aquaculture,  on  the  west  coast  its  KYUQUOT  SEAFoods.      JB  –  Do  you  have  contacts?    Greg  –  Sure  I’ll  email  those  to  you  now.      JB  –  [Closing  chat…]            

  101  

Stephen  Cross  –  Telephone  Interview  –  7th  of  May  2013    [Introductions]    JB  -­‐  I  spoke  to  Greg  Reid  yesterday  and  he  mentioned  you  would  be  an  ideal  person  to  speak  to  regarding  some  of  the  questions  I  have.  As  I  understand  it,  IMTA  research  in  Canada  is  split  between  the  East  and  West  coasts.  Which  side  are  you  on  and  what’s  your  background?    Steve  –  I’m  on  the  West  coast,  and  mine  is  the  only  licensed  IMTA  here.  I’ve  been  studying  and  researching  the  principles  of  IMTA  before  it  was  called  that,  for  the  last  13  years.  I  was  actually  in  the  room  when  a  DFO  [Department  of  Fisheries  and  Ocean]  spokesperson  came  up  with  the  IMTA  acronym.  So  in  the  last  5  years  I’ve  moved  to  a  truly  ‘from  the  ground  up’,  designed  and  tailored  IMTA  aquaculture,  so  its  not  ADD  ON.  We’ve  designed  an  entirely  new  production  system  called  ‘SEAfoods’,  that’s  Sustainable  Ecological  Aquaculture  foods.  The  reason  we’ve  given  it  this  new  name  is  because  the  average  consumer  doesn’t  usually  understand  the  multi  trophic  concept.  I  came  up  with  the  SEAfoods,  and  have  just  published  a  chapter  in  the  Encyclopedia  of  Sustainability  Science  explaining  how  it  is  different  to  IMTA.  The  main  difference  is  that  we  try  to  meet  social  criteria,  as  well  as  the  environmental  and  economic  aspects.  For  instance  we  only  use  local  species.  We  also  use  new  types  of  cages  to  reduce  chemical  use  to  only  organic  practises,  no  antibiotics,  alternative  energies  to  operate  the  winches  for  shellfish  for  instance,  and  so  on.  All  in  all  it’s  a  much  more  sustainable  way  of  doing  things  from  a  holistic  perspective.      JB  –  So  SEAfoods  is  on  a  higher  level  than  IMTA,  in  essence  going  beyond  just  the  cross  species  and  looking  at  higher  order  problems  that  emerge  from  the  application  of  IMTA.    Steve  –  Yes  that’s  right.  I  consider  it  a  new  system  overall.  When  we’re  finished  it  will  look  quite  futuristic.  From  the  academic  side  its  easy  to  sit  around  and  say  we  need  to  do  this  that  and  the  other,  but  none  of  them  really  have  a  clue  what  you  need  from  an  on  the  ground  perspective.  It  takes  almost  the  same  equipment  and  resources  to  grow  one  line  of  kelp  that  it  does  to  grow  70,  but  the  profit  margin  goes  up  a  hell  of  a  long  way  between  the  two.  These  are  the  realities  on  the  ground  that  are  often  not  considered  in  university  offices.      JB  –  This  is  actually  one  of  the  core  things  I’ve  been  requested  to  look  into,  the  economies  of  scale  that  can  be  achieved  here.  But  I  have  very  little  to  work  with,  absolutely  no  numbers  from  the  Swedish  project  because  it  is  still  in  the  starting  block,  and  again,  almost  none  at  all  from  published  papers  or  conversations  I’ve  had  so  far.  I  think  its  also  to  do  with  the  fact  that  this  is  still  uncharted  territory,  commercial  scale  IMTAs  haven’t  been  made  operational  yet,  except  those  across  the  continent  with  your  colleague  Thierry  Chopin.      

  102  

Steve  –  I  know  exactly  what  you  mean,  and  because  this  is  all  so  vanguard,  literally  the  forefront  of  the  technologies,  all  the  investors  in  these  projects  have  maintained  strong  proprietary  rights  over  the  information  and  I’m  unfortunately  not  in  a  position  to  give  you  numbers  either.  Although  I  can  give  you  some  stuff  to  work  with.  For  instance  the  biggest  cash  flow  comes  from  the  fish  you  work  with.  Fish  are  the  products  that  offset  the  cost  of  installation  of  the  system,  so  the  way  we  see  it,  everything  else  we  grow  around  them  is  pure  profit.  That’s  a  nice  way  of  looking  at  it.      JB  –  What  with  the  synergies  that  you  are  experiencing,  in  terms  of  cross  species  fertilisation?  I  know  of  an  example  in  Chile  where  growth  rates  have  increased  up  to  50%.    Steve  –  Yep  that’s  what  we’re  getting  too,  between  45  and  50%  increase  in  growth  rates  in  practise.  I  have  a  student  who  is  working  on  a  project,  he’s  taken  40  vertical  lines  of  kelp  and  placed  them  downstream  of  the  fish,  and  over  a  growing  season,  he  went  out  every  couple  of  weeks  to  measure  the  growth  rates  of  the  various  kelps  and  then  used  GIS  to  map  it  all  out  to  look  at  differential  growth.  Sure  enough  the  nutrient  plume  near  enough  matched  the  tidal  flow  conditions,  and  he  was  able  to  map  out  where  the  enrichment  zone  was,  as  such  indicating  where  you  would  want  to  position  kelp  long  lines  if  you  want  to  do  that.      JB  –  Could  you  tell  me  the  name  of  the  student,  I  would  love  to  find  this  paper.    Steve  –  Well  he’s  just  finished  the  experiment  but  he’s  in  the  process  of  writing  it  up,  but  I  can  pop  you  an  email  when  its  ready!  And  if  your  professors  ever  need  an  international  consultant,  tell  them  to  give  me  a  ring!  […Selling  himself!..]    JB  –  Well  thanks  for  all  of  this,  I  would  like  to  move  on  to  another  area  which  I’ve  prepared  a  few  questions  for  you  about.  This  is  water  quality.  In  essence  there  is  water  sample  data  for  the  area  where  the  farm  here  might  be  located.  I  sent  you  some  graphs  of  this  data,  most  notably  covering  the  yearly  fluctuations  of  salinity,  temperature  and  nutrients  gradients.    Steve  –  Yes  I  saw  them  and  had  a  look.      JB  –  Is  there  anyone  that  you  could  recommend  I  could  talk  to  regarding  these  things?    Steve  –  No  we  don’t  bother  with  nutrient  levels  because  they  are  so,  so  low  here,  hence  the  whole  reason  why  IMTA  was  an  interesting  option  for  here.  What  we’ve  been  focusing  on  is  how  we  can  recycle  nutrients  based  on  local  currents  and  dilution  patterns.  The  key  for  kelp  in  my  mind  is  knowing  the  site  and  it  can  be  different  from  one  to  the  next,  we  have  3  sites  within  1km  of  each  other  and  each  are  very  different.  One  has  a  seasonal  fresh  water  influence  and  an  associated  increase  in  turbidity.  Another  has  a  much  stronger  ocean  influence  with  much  

  103  

higher  growth  rates.  Surface  heating  is  affecting  the  3rd  site,  so  we  have  to  grow  it  at  a  depth  of  5m  so  that  slows  down  growth  too.  Overall  the  big  factors  are  light,  salinity,  temperature  and  nutrients,  and  of  course  the  position  in  the  water  column.      JB  –  Ok  well  what  can  you  tell  me  looking  at  the  graphs  that  I  sent  you?    Steve  –  Well  I  recon  you  would  need  to  have  the  kelp  species  on  a  system  that  can  be  lowered,  because  lower  salinity  can  cause  big  problems  for  kelps.  That  way  you  could  drop  them  if  need  be.  Temperature  looked  fine  and  nutrient  availability  looks  decent  in  the  spring  but  pretty  bad  in  summer,  but  that  shouldn’t  matter  too  much  particularly  if  you  have  cross  species  fertilisation  going  on.  What  about  light  penetration?    JB  –  I  don’t  have  much  information  about  that,  but  I  had  some  conversations  with  marine  biologists  on  the  site,  and  they  mentioned  some  kelps  can  grow  quite  low  down.    Steve  –  OK  well  that  sounds  good.  It  probably  will  do  well  then.  You  also  have  to  be  concerned  about  the  pollution  levels,  because  they  do  absorb  heavy  metals  and  such,  which  will  reduce  the  quality  of  the  products  depending  on  what  you  use  them  for,  particularly  food  and  so  on.  But  another  important  thing  to  note  is  that  species  of  kelps  here  in  Canada  are  very  different  to  those  where  you  are.  Local  adaptation  to  conditions  should  play  a  big  part,  and  I’m  sure  the  growth  rates  of  your  local  species  will  be  different  to  ours,  even  in  exactly  the  same  conditions.  They  will  have  adapted  to  your  environment,  there  is  no  doubt  there.      JB  –  Ok  thanks  for  that.  Well  before  we  wrap  up  I’d  like  to  talk  to  you  about  another  aspect.  My  professor  sees  two  routes  to  take  for  economic  viability.  The  first  is  to  go  large  scale  to  produce  kelp  for  biogas  production,  the  other  is  a  smaller  scale  IMTA  which  is  diversified.  Can  I  ask  you  what  you  think  about  those  two  pathways?    Steve  –  Yes  both  sound  familiar  in  theory,  although  the  first,  as  far  as  I’m  aware,  is  un-­‐trialled  in  practised.  For  my  part  I’m  familiar  with  the  second  option.  We  deal  with  high  value  niche  products  like  fish,  sea  cucumbers,  shell  fish,  sea  urchins,  and  some  kelp  for  high  value  products  in  the  west  coast  markets  of  California  and  so  on.      JB  -­‐  So  in  your  view  pathway  two  is  more  realistic  at  the  moment?    Steve  –  Certainly,  its  not  just  more  realistic,  its  happening.  The  1st  I’m  not  so  sure  about  yet,  there  is  some  research  coming  out  at  the  moment  about  that  and  there  are  a  lot  of  projects  trying  to  iron  out  the  last  bits,  but  as  far  as  I  know  its  not  a  tried  and  tested  ‘profitable’  venture  yet.      JB  –  [Wrapping  it  up,  goodbyes,  etc…]      

  104  

         Per  Nehrlund,  Leroy  AB  –  Telephone  Interview  –  14th  of  May  2013      JB  –  [Introductions]  Hopefully  this  interview  shouldn’t  last  more  than  ten  minutes  or  so,  I  just  have  some  very  specific  questions  regarding  algae  based  products,  and  the  state  of  the  Scandinavian  market  for  them.    Per  –  Ok  well  perhaps  you  want  to  know  a  bit  of  my  background  first.  [Background]    JB  –  Great  ok  well  it  seems  that  I  am  talking  to  the  right  person  then!    Per  –  I  hope  I  can  help.      JB  –  So  what  is  your  view,  generally  speaking,  of  products  that  can  be  derived  from  algae?  Is  Leroy  AB  working  with  such  products?    Per  –  Yes,  I  am  personally  involved  in  the  research  and  development  of  phyco  products,  specifically  for  food.  Over  the  last  ten  years  or  so,  the  European  food  market  has  opened  up  significantly  to  foreign  foods,  especially  Asian  foods.  Algae  are  becoming  common  on  supermarket  shelves  and  Leroy  AB  has  a  large  part  of  the  distribution  share.    JB  –  What  sort  of  products  are  you  talking  about  here?    Per  –  Well  the  real  money  earners  seem  to  be  things  like  the  snacks  that  you  can  find,  vegetarian  chips  made  from  kelps  and  things.  Also  food  supplements  and  additives  are  quite  important.  Raw  seaweeds  or  dried  seaweeds  are  less  valuable  and  not  as  sought  after  as  other  products,  but  all  of  them  are  on  the  rise.  We  are  also  working  with  high  end  restaurants,  providing  different  types  of  seasoning  packages,  like  seaweed  flavoured  salts  and  things,  which  seem  to  be  working  quite  well  too.      JB  –  So  you  say  the  market  is  on  the  rise…    Per  –  Well  yes,  it  is  hard  to  say  how  much  the  market  will  grow,  and  how  quickly  it  will  grow,  but  these  are  products  that  had  to  be  imported  from  Asia  and  by  Asian  companies  ten  years  ago,  but  now  predominantly  it  is  European  based  companies  bringing  them  in,  or  producing  them  here.  Again  as  I  said,  there  was  very  little  interest  in  seaweed  ten  years  ago,  but  certain  types  of  food  have  become  very  fashionable.  For  example,  Asian  foods,  Japanese  restaurants  etc.  Sushi  restaurants  

  105  

are  a  big  customer  for  algae,  but  most  Asian  food  restaurants  require  some  sort  of  algae,  whether  its  for  miso  soup,  sushi  rolls  or  other  more  fancy  products.    JB  –  Great,  can  you  give  me  any  sort  of  numbers  on  the  state  of  the  market,  how  much  your  sales  are  in  the  sector  for  example?    Per  –  Not  at  the  moment.  Most  of  the  information  in  Leroy  AB  is  proprietary,  so  I  am  not  free  to  disclose  data  to  you  unfortunately.  But  if  your  project  kicks  of  to  a  start  in  the  next  year  or  so,  we  could  place  orders  through  you  for  different  types  of  products,  and  certainly  could  help  you  by  being  a  good  customer!  After  that,  once  we  would  be  in  collaboration,  Leroy  policy  would  allow  for  certain  exchanges  of  information,  but  unfortunately  not  before.      JB  –  I  was  kind  of  expecting  to  hear  something  like  that.  I  haven’t  been  very  lucky  with  obtaining  numbers  from  my  interviews,  but  not  to  worry!  Ok  well  in  my  report  I  have  had  to  simplify  certain  things  in  order  to  make  the  analysis  more  manageable.  One  such  thing  is  that  I  have  had  to  simplify  phyco-­‐products  into  different  categories  and  assign  them,  generally  speaking,  some  sort  of  value.  What  I  would  like  to  do  now  is  explain  these  four  categories  and  discuss  in  general  terms  how  you  feel  their  values  are  relative  to  each  other.      Per  –  I  can  probably  help  with  that.    JB  –  So  the  first  category  is  sea  vegetables,  the  second  is  phyco-­‐colloids,  the  third  is  very  broad  and  is  phyco-­‐supplements,  and  the  last  is  biogas  from  algae.  When  assigning  them  relative  values,  I’m  thinking  a  basic  rating  of  low,  medium  or  high  will  do.      Per  –  Well  first  of  all  I  would  consider  sea  vegetables  to  high  value  products.  You  can  get  quite  a  good  price  selling  small  quantities,  but  it  always  must  be  of  high  quality.  Quality  also  varies  year  to  year,  some  might  be  bad  years,  others  may  be  very  good.  It  depends  on  a  lot  of  things.  So  maybe  this  would  have  a  medium  to  high  value.    I  am  not  sure  what  you  mean  by  the  second  one.    JB  –  Well  by  phyco-­‐colloids  I  mean  things  like  agar  agar,  or  any  product  that  is  based  on  the  binding  properties  or  hydrocolloid  properties  in  seaweed  compounds.      Per  –  Ok,  so  this  includes  food  additives  and  things.  Well  again  this  is  fairly  high  value,  but  the  problem  for  producers  is  that  the  market  is  very  saturated,  there  is  a  lot  of  competition.  These  products  values  also  vary  a  lot  depending  on  quality,  but  if  we  compare  it  to  sea  vegetables  for  example,  I  would  not  say  it  is  as  lucrative.  I  would  assign  it  a  medium  value.  Profits  will  be  hard  to  achieve  on  a  small  scale  with  phyco-­‐colloids,  because  a  lot  of  investment  is  needed  and  economies  of  scale,  in  order  to  compete  with  the  big  commercial  competition.      

  106  

JB  –  Ok  that’s  great.  Now  with  the  third  products  category,  I  encompass  many  different  things.  It  is  phyco-­‐supplements,  so  any  algae  based  product  that  improves  the  performance  of  a  substance  or  product,  by  adding  compounds  found  in  algae  with  advanced  properties.  Food  wise,  the  only  one  is  food  supplements,  but  the  category  also  includes  things  like  fertilisers,  bioactive  compounds,  pharmaceuticals,  etc…    Per  –  Well  food  supplements  are  very  valuable.  Some  are  quite  simple  to  extract,  just  dry  the  seaweed  and  grind  it  up,  then  sell  it  in  tablets  with  concentrated  enzymes,  vitamins  and  minerals  as  a  dietary  supplement,  for  pregnant  women  for  example.  There  is  a  big  market  for  this  already,  but  it  is  growing  rapidly.  People  are  becoming  more  and  more  concerned  about  what  they  eat,  and  providing  the  body  with  nutrients.  I  would  give  supplements  a  high  value  because  they  are  cheap  to  produce  and  sell  at  a  good  value-­‐added  price.    JB  –  I  though  that  would  be  your  answer,  but  I  needed  to  hear  it  myself.  Any  idea  about  the  other  products,  fertilisers,  pharmaceuticals,  etc…  and  also  the  fourth  category,  biogas?        Per  –  No,  sorry.  Again  we  only  work  with  food  products  for  humans.    JB  –  That’s  ok,  again  I  thought  so,  but  there  is  no  harm  in  asking!  Well  again  this  was  a  short  interview,  and  I  was  just  curious  to  ask  you  a  few  basic  questions.  But  before  we  wrap  it  up,  I  have  a  few  more  queries  about  other  seafood  products.      Per  –  Yes  seafoods  is  something  we  work  with    JB  –  What  about  high-­‐end  products  like  sea  urchins,  sea  cucumbers,  clams,  mussels  and  shellfish?      Per  –  That  is  something  we  don’t  do  much  of,  but  the  team  I  am  working  with  is  indeed  looking  at  expanding  into  this  realm.  I  know  there  are  some  really  high  value  products  that  come  from  these,  or  they  can  be  sold  fresh  to  restaurants  for  a  good  price.  Also  the  market  is  growing  for  these  things,  and  currently  most  are  imported  from  Asia.  We  hope  to  find  local  producers  of  these  so  we  can  provide  local  fresh  alternatives  for  the  EU  market,  but  I  cant  give  you  any  values  as  I’m  not  sure.  But  hazarding  a  guess,  I  would  call  them  very  high  value.      JB  –  Great!  Well  do  keep  in  touch  about  the  developments  of  these  products.  If  you  hear  anything  at  all  that  you  think  may  be  of  interest  to  me,  please  do  get  in  touch!  Also,  I  may  contact  you  again  when  I  get  to  my  analysis.  It  was  great  talking  to  you  and  having  this  brainstorming,  and  if  you  don’t  mind  I  will  call  you  again  in  the  coming  weeks  as  things  progress  on  my  end.    

  107  

Per  –  Sure  that  sounds  fine  to  me!  Also  I  will  look  into  these  high  value  products,  the  fresh  seafoods  and  algaes,  and  see  if  there  are  any  numbers  I  can  disclose  to  you  without  breaching  any  rules.    [Wrap  up,  goodbyes,  etc…]              Michele  Stanley,  SAMS  –  Telephone  Interview  –  15th  of  May  2013      JB  –  [Introductory  chat]  …  If  BioMara  can  be  seen  as  a  project  in  reaction  to  the  EU  Directive  on  sustainable  sourcing  of  10%  of  transport  fuels  by  2020,  then  SEAFARM  is  a  reaction  to  the  call  for  more  research  on  an  EU  Bioeconomy.    1st  Question  for  you  –  When  you  speak  of  BioMara  today,  do  you  say  BioMara  IS  or  BioMara  WAS.  Has  the  project  itself  come  to  an  end,  or  is  it  continuing  under  a  different  name?    M  –  It’s  ongoing,  so  we  are  involved  in  another  set  of  projects,  one  is  ENERGETIC  ALGAE.  Within  that  we  are  v  interested  in  how  people  are  going  to  keep  their  stock  cultures.  Again  one  thing  that  came  out  of  BioMara  is  that  people  aren’t  thinking  about  how  you  underpin  this  hole.  What  I  mean  by  “stock  cultures”,  its  like  your  cell  lines,  so  if  you  take  a  traditional  biotech  view  of  things,  if  you  were  growing  bacteria  or  yeast  industrially,  you  would  have  cultures  that  have  been  cryogenically-­‐preserved  so  you’ll  have  something  to  go  back  to,  in  case  of  your  main  culture  crashes.  This  is  something  which  is  becoming  a  bit  more  relevant  with  algae  because  the  culture  collections  are  few  and  far  between.  Its  not  always  clear  how  the  industry  is  going  to  look  at  this.  I  do  know  that  Craig  Venter  has  people  who  runs  his  culture  collection.  At  Energetic  algae  we’re  very  much  looking  at  that  is  going  to  underpin  a  potential  algae  industry.  One  thing  I  have  noted  that  has  changed  since  BioMara  is  that  there  has  been  an  expansion  from  biofuels  and  bioenergy  into  biotechnology,  to  find  out  what  else  we  can  do  with  algae.    JB  –  That  is  indeed  very  true!  One  of  the  things  that  F  has  asked  me  to  look  into  is  to  find  a  range  of  products,  which  could  potentially  be  produced  through  biotech,  and  specifically  which  of  these  could  produce  a  revenue  to  sustain  a  cultivation.  SEAFARM  will  have  biotech  teams  working  at  institutions  across  Sweden,  notably  on  the  pre-­‐treatment  and  how  to  store  the  stuff.      M  –  that  is  another  thing  that  not  a  lot  of  people  have  given  much  thought  to,  the  storage  aspect.  So  another  project  that  I’m  involved  with,  AtSeas  is  actually  an  SP7  

  108  

but  its  an  SME  FP7.  It’s  a  textile  company  from  Belgium  leading  the  project,  and  that’s  looking  at  different  surfaces  for  growing  the  algae  on  -­‐  because  it  could  be  that  long  lines  within  a  European  context  aren’t  going  to  be  financially  viable  as  you  start  to  try  and  expand  the  industry  because  of  labour  costs  involved.    So  can  you  take  a  textile?  Can  you  seed  it  more  naturally?  Can  you  coppice  it?  Instead  of  having  to  pull  it  all  up  to  harvest  it,  can  you  just  cut  the  seaweed?  And  how  do  we  store  the  seaweed?  These  are  all  questions  we’re  looking  at  today.      JB  –  Great  hadn’t  thought  of  the  coppicing  before,  and  it  makes  sense  that  it  would  reduce  costs  dramatically  if  you  didn’t  have  to  use  a  hatchery  for  the  full  cultivation  every  year…  and  make  the  labour  less  intensive…      M  –  Yep.  So  that’s  one  of  the  problems  –  if  Europe  is  to  compete  with  the  far  east,  or  even  with  Chile,  its  going  to  have  to  massively  reduce  costs  and  look  at  those  things.  Those  places  have  very  cheap  labour  costs,  whereas  here  its  simply  not  an  option  so  we  need  to  look  at  mechanisation  options  or  develop  new,  less  labour  intensive  ways  of  cultivating  and  harvesting.  Is  there  a  better  way  of  doing  this?  How  can  we  reduce  our  costs?    JB  –  Certainly  from  a  biofuels  as  the  end-­‐product  perspective  costs  need  to  be  reduced,  unless  huge  economies  of  scale  are  achieved  by  giant  cultivations…  but  even  that  is  only  in  theory  at  the  moment,  there’s  no  evidence  that  it  can  work  yet.  But  another  way  of  breaking  even  and  improving  the  balance  sheet,  and  that  would  be  through  higher  value  products.    M  –  So  I  have  another  job.  I  have  2  jobs.  I  work  for  one  of  the  research  councils  here  in  the  UK,  so  allocating  funding  to  research  projects.  So  I  work  for  Natural  Environment  Research  Council  and  also  the  Technology  Strategy  board.  So  its  sort  of  research  ßà  business  interface.  What  we  have  just  done,  and  this  corresponds  with  micro-­‐  and  macroalgae,  we  last  year  produced  a  strategic  research  agenda.  So  what  we  needed  to  do  research  wise  to  make  algae  and  established  industry  within  the  UK.  That’s  been  expanded  out  into  a  road  map,  which  we  are  launching  on  the  3rd  of  June.  That  having  a  look  at  what  is  achievable  in  the  short  and  long  term.    So  there’s  been  an  increase  in  people  wanting  to  eat  “sea  things”  like  sea  vegetables.  There  is  growing  interest  in  hydrocoidals,  but  mostly  in  higher  end  hydrocoidals.    There’s  a  certain  amount  of  bio-­‐prospecting  which  is  needed  to  identify  certain  bio-­‐actives  in  seaweed,  whether  you  can  couple  them  into  fractioning  or  thermochemical  conversions,  and  getting  products  out.  One  of  the  partners  of  BioMara  at  Dundork  was  looking  at  supercritical  which  was  a  good  way  of  extracting  polyphenols,  which  can  be  easily  fit  into  an  antioxidant  market.  The  material  was  dried  cheaply,  so  you  would  then  end  up  with  the  issue  of  storage,  but  that  could  then  be  fed  in.  So  its  how  you  look  at  it.    JB  –  Ok  thank  you  for  that.  Lots  of  things  to  look  into  there…  So  if  I’m  not  mistaken  the  Lynn  of  Lorn  was  the  site  for  the  cultivation  with  BioMara,  was  it  not?  

  109  

 M  –  The  Lynn  of  Lorn  has  kind  of  been  a  dead  site.  We  now  have  our  own  site  which  is  kind  of  near  by.  Its  off  an  Island  called  Kerrera.  So  as  I  said,    it  was  a  bit  of  a  dead  site,  we  did  an  EIA  of  the  Lynn  of  Lorn,  but  the  Crown  Estate  still  haven’t  put  any  hardware  in  there.  They  have  their  Marince  licence,  but  its  still  in  development  stage.    JB  –  Where  are  the  hatcheries?    M  –  So  for  us  its  done  at  SAMS.  The  hatchery  phase  is  actually  very  low  tech.  One  thing  we’ve  gotten  into  more  is  gametophytes.  Trying  to  find  new  ways  of  doing  it  and  lowering  costs.      JB  –  Contact?    M  –  That’s  LARS  BRUNNER.  Lars  is  very  good.  And  you  can  also  talk  to  him  about  cultivation  at  Kerrera.      JB  –  Cultivation  at  the  Lynn  of  Lorn    M  –  Well  that  would  be  someone  at  the  Crown  Estate,  so  Alex  Adrian.      JB  –  There  must  be  some  sort  of  history  of  the  harvests  at  the  Lynn  of  Lorn?    M  –  No.  So  let  me  be  clear.  We  never  actually  used  it  as  a  site.  It  wasn’t  operational.  We  did  do  an  EIA  on  the  site  because  then  it  was  suggested  we  were  going  to  cultivate,  but  we  never  did.  They  didn’t  get  licences  for  a  long  time,  and  weve  had  to  change  sites.  We  had  to  beg  borrow  and  steal  from  all  sorts  of  places.  We  have  our  own  site  only  since  February,  when  the  hardware  went  in  for  the  first  time  and  the  seaweed  the  week  after  that.      JB  –  So  its  getting  somewhere  in  that  sense.    M  –  I  think  that’s  part  of  the  problem,  the  actual  licensing…  its  actually  where  the  problem  is,  licensing  seaweed  farming.  Nobody  is  actually  thinking  of  that,  but  that  will  vary  from  country  to  country  as  well.      JB  –  Ok  thanks  for  those  answers.  Now  I  made  an  assumption  that  you  had  operations  that  were  active  today  as  leftovers  of  BioMara,  whereby  you  would  have  a  hatchery,  cultivation,  harvesting,  pretreatment,  processing  and  resale  in  the  form  of  a  supply  chain  –  a  wrong  assumption.      M  –  Its  always  very  difficult  with  the  funding  situations…  We  do  hatchery,  ansd  we  do  cultivations,  but  our  project  never  went  beyond  the  experimental  stage.  We  have  been  talking  to  big  companies  for  two  years  about  taking  this  further,  but  nothing  has  happened.  There  is  an  [anaerobic  digestion]  AD  plant  and  a  report  about  using  

  110  

seaweed  as  a  feedstock.  I  can  send  you  that  report.  So  we’re  waiting  for  these  other  companies  to  make  up  their  minds…  Another  thing  is  we’re  in  semi-­‐competition  with  a  small  company  looking  at  fermentation  so  at  the  moment  when  we  have  material  we  freeze  it  and  just  take  what  we  need.    JB  –  Ok.  Biogas  digestion  was  one  of  the  big  parts  of  the  project.    M  –  There  is  actually  a  paper  written  on  the  techno-­‐economics  of  the  biogas  digestion  from  seaweeds.  It’s  very  recent.  Neil  Hewit  from  BioMara  was  involved.  Its  just  out  in  Bio-­‐resource  technology.  First  author  is  Ashok,  David.      JB  –  Great  I’ll  look  that  up.  What  were  David  Ashok  or  Neil  Hewit  roles  in  BioMara?  And  who  would  be  good  for  Biogas?    M  –  DA  and  NH  were  in  charge  of  the  techno-­‐economic  aspects  of  the  research.  A  good  person  to  talk  to  about  Biogas  would  be  John  Bartlett  from  “Sliga”  (sounds-­‐like),  although  he’s  even  harder  to  get  a  hold  of  than  I  am.  If  you  cant  get  a  hold  of  him,  look  for  his  student,  1st  name  is  Carlos*  but  I  cant  remember  his  surname…  Someone  else  is  “Paul  McCarton  from  DunDork”    JB  –  Question  in  terms  of  water  quality  at  cultivation  sites.      M  –  Nave  Edwards  at  Gallway,  he  is  meant  to  be  taking  in  that  kind  of  information  for  Energetic  Algae.  Talk  to  Nave,  I  will  send  you  his  contact  details.      JB  –  Now  going  back  to  my  thesis,  the  path  I’ve  taken  so  far  seems  to  indicate  that  economic  viability  is  only  achievable,  at  the  moment,  through  small  scale  cultivation  and  high  value  products…  What  products  are  you  looking  at?    M  –  A  range  of  things  anything  from  food  to  potential  feed  for  the  shellfish  industry.  It  could  be  that  its  not  necessarily  kelps,  other  types  of  species  are  more  specialised  for  products.  More  effort  needs  to  go  into  species  selection  and  which  species  have  higher  volumes  or  densities  of  quality  products.      JB  –  Ok,  well  following  from  that  in  terms  of  product  diversification,  I’m  looking  at  IMTA.  Was  IMTA  ever  looked  into  for  BioMara.    M  –  No  because  of  the  way  we  were  funded.  You  need  to  make  sure  you  are  ticking  all  the  right  boxes.  You  can  look  at  these  retail  companies  though:  In  Scotland  there  is  a  company  called  Bodayre  who  are  reselling  a  specific  condiment  for  £8  per  100grams.  For  that  go  to  www.seaweedproducts.co.uk.  Another  one  is  Ocean  Harvest  who  are  specialised  in  terms  of  animal  feed  for  pigs  for  instance.  Another  is  SEAHorse  who  started  up  providing  supplement  for  race  horses.      

  111  

JB  –  So  when  you  set  up  BioMara  you  didn’t  expect  it  to  end  up  with  operations  that  could  continue  when  the  funding  ended?    M  –  No  we  still  had  a  lot  of  questions  to  answer,  like  storage  and  pre-­‐treatment,  and  we  didn’t  think  it  would  take  off  quite  yet.    JB  –  Ok  I’m  looking  at  my  notes  and  I  think  we’ve  covered  it  all.  We  can  wrap  it  up  I  guess.  If  you  could  send  me  those  links  that  would  be  great.  Thanks  a  lot  for  your  time!    [Closing  chat]      *Carlos  Vanegas      Lars  Brunner,  SAMS  –  Telephone  Interview  –  19th  of  May  2013    [Introductions]    JB  –  So  as  I  mentioned  in  our  email  exchanges,  the  reason  I  have  asked  you  to  meet  with  me  is  that  I  have  been  trying  to  gather  some  information  regarding  the  achievements  and  shortcomings  of  BioMara,  but  also  to  discuss  different  types  of  IMTA  products  and  growth  conditions  for  kelp  species.  So  first  of,  can  I  ask  you  to  let  me  know  a  little  about  your  background,  how  you  have  been  involved  with  BioMara  and  what  you  are  now  up  to  in  the  wake  of  the  BioMara  project?    Lars  –  My  background  is  quite  long,  but  basically  I  have  been  working  at  SAMS  for  some  15  or  20  years  now  looking  at  cultivation  methods  for  seaweeds,  particularly  kelps.  For  BioMara  I  was  going  to  lead  operations  at  the  cultivation  site,  however  as  you  now  know  from  Michele,  the  original  site  wasn’t  granted  a  marine  license.  Only  recently  have  we  finally  been  granted  permission  to  set  up  a  site,  but  this  one  is  on  the  Northern  tip  of  the  outer  Hebrides.  We  finally  have  our  first  lines  in  the  water,  and  we’re  due  to  harvest  our  first  batches  of  seaweed  at  the  end  of  the  summer.  My  team  still  works  in  close  collaboration  with  Michele  Stanley,  but  it  is  no  longer  a  part  of  the  BioMara  project,  although  other  projects  are  pending  application  and  we  would  supply  those  with  samples.      JB  –  Ok,  what  sort  of  a  cultivation  will  this  be?  Are  you  just  focusing  on  kelp  species?    Lars  –  That’s  correct,  although  the  integration  of  multiple  species  is  part  of  one  of  the  projects  we  may  become  a  part  of  in  the  coming  months.      JB  –  What  sort  of  other  species  would  you  be  bringing  onto  the  site?    Lars  –  A  variety,  namely  fish  and  shellfish,  mimicking  the  principles  of  an  IMTA  style  cultivation.  I  don’t  have  much  of  an  idea  of  which  species  yet,  I’ve  only  read  a  brief  

  112  

memo  about  these  projects.  As  I  said  before,  my  area  of  expertise  is  seaweeds  so  it  will  be  colleagues  of  mine  dealing  with  the  other  components.      JB  –  Great,  ok.  Well  can  I  ask  you  then  some  more  specific  questions  about  the  site.  It  is  called  Kerrera,  is  that  correct?    Lars  –  Yes.      JB  –  What  would  you  say  the  limiting  factors,  or  major  challenges  to  growth  at  your  site  are?  And  do  you  collect  water  samples  for  salinity  and  nutrient  content?        Lars  –  We  haven’t  begun  regular  water  sampling,  but  we  have  undertaken  a  few  surveys  yes.  Overall  we  have  fairly  good  conditions  here  for  seaweed  growth.  Very  salty  water  with  a  fair  bit  of  current  and  wave  action.  It  almost  never  freezes  at  the  surface,  although  we  have  some  concerns  with  floating  ice  blocks  that  we  have  to  tackle.  Also  wildlife  here  is  diverse  and  a  bit  of  an  issue.  We  have  lots  of  marine  mammals,  birds  and  big  fish  to  consider  during  operations,  particularly  when  we  install  our  long-­‐line  infrastructure.    JB  –  Well  that  already  answered  my  next  question,  which  was  about  what  sort  of  infrastructure  you  are  using.    Lars  –  Yes  we  are  using  long-­‐lines.  They  are  fairly  low  tech  and  quite  cheap  to  set  up,  its  not  a  complicated  system,  its  tried  and  tested,  and  I’ve  been  working  with  it  for  years.      JB  –  So  back  to  the  limiting  factors  for  growth,  what  is  your  major  concern?    Lars  –  At  Kerrera?  I’m  not  sure  yet,  but  evidently  it  would  seem  a  lack  of  nutrient  could  be  problematic.  The  water  is  quite  clean  here  in  relative  terms,  very  little  pollution  and  plenty  of  exchange  with  the  sea  through  strong  currents.  Yes  I  think  a  lack  of  nutrients  would  be  our  major  limiting  factor.      JB  –  So  do  you  think  IMTA  will  help  with  that,  in  theory  cross  fertilisation  between  species  should  help  improve  nutrient  content  if  the  fish  cages  are  carefully  positioned.      Lars  –  Indeed  this  is  something  we  are  collaborating  with  other  faculties,  particularly  with  Thierry  Chopin  in  Canada.  He  is  a  good  person  to  talk  to  about  that.    JB  –  Yes  I  have  already  interviewed  one  of  his  colleagues  on  the  Canadian  west  coast,  Steve  Cross,  as  well  as  Max  Troell  of  the  University  of  Stockholm  who  has  participated  on  cross-­‐species  fertilisation  research  in  Chile.      Lars  –  Yes  the  name  rings  a  bell.      

  113  

JB  –  Ok.  Well  regarding  the  cultivation  site  here  on  the  west  coast  of  Sweden,  I  have  found  some  water  sample  data,  that  I  plotted  on  graphs  for  you  to  look  at.  Did  you  get  my  email  yesterday?    Lars  –  Yes  but  I  have  not  had  the  time  to  look  at  them.    JB  –  That’s  fine,  well  I  would  like  you  to  have  a  quick  look  at  them  now  please.  The  idea  here  is  that  you  can  get  an  idea  of  the  conditions  at  the  site,  and  I  hope  that  your  expertise  can  shed  some  light  on  the  potential  challenges  for  growth  we  might  have.      Lars  –  Well  by  the  looks  of  it,  temperature  looks  fine  although  I  would  recommend  checking  the  data  over  longer  periods  of  time  to  check  for  extreme  cold  spells.  By  the  looks  of  it,  the  samples  are  collected  every  month  or  so.  If  you  look  back  over  the  years,  missing  samples  during  the  winter  period  are  probably  due  to  winter  freezes.  You  need  to  check  long  term  how  likely  freezes  are  because  they  can  damage  infrastructure  and  winter  cultivations.  Might  even  be  worth  trying  to  call  the  sample  collectors  to  find  out  if  frozen  surface  waters  are  a  major  concern  there.      JB  –  Great  thanks  for  the  tip!      Lars  –  With  regards  to  the  other  factors,  nutrients  show  the  classic  problem  of  being  in  surplus  in  the  winter,  being  quickly  used  up  in  spring  by  blooms,  and  remaining  at  low  levels  until  the  autumn/winter.  That  said  the  nutrient  levels  still  seem  to  be  alright,  with  a  decent  baseline,  although  they  will  most  certainly  be  a  limiting  factor  when  light  is  aplenty  in  the  summer  months.  The  salinity  gradient  chart  is  also  quite  interesting.  Here  salinity  is  quite  pronounced,  but  your  site  seems  a  little  on  the  low  side.  It  may  be  worth  having  a  long  line  system  that  can  be  lowered  to  where  salinity  is  greater,  in  case  of  sudden  drops  in  salinity  which  have  the  potential  of  ruining  a  harvest.  This  would  also  help  solve  the  problem  of  the  odd  surface  water  freeze.      JB  –  Ok.  Do  you  have  any  other  comments  about  the  graphs?    Lars  –  Not  that  I  can  think  of  now,  but  If  anything  else  comes  to  mind  I’ll  let  you  know.  Overall  the  conditions  seem  more  or  less  suitable,  particularly  if  you  use  species  already  found  in  the  vicinity.      JB  –  Before  wrapping  up,  I’d  like  to  have  a  final  discussion  regarding  economic  viability.  Now  I  know  this  isn’t  your  area  of  expertise,  but  as  you  said  before  you’ve  been  working  on  seaweed  cultivation  for  many  years,  both  in  academia  and  the  private  sector,  so  perhaps  you  can  enlighten  me.  As  a  part  of  my  report,  I  have  two  development  scenarios.  The  first  would  see  a  large  scale  cultivation  of  kelps  only,  primarily  for  the  provision  of  biogas  feedstocks.  The  second  scenario  would  see  a  much  smaller  scale  IMTA  style  cultivation,  also  of  local  species.  In  your  opinion,  which  of  these  two  scenarios  would  be  the  more  achievable?    

  114  

Lars  –  What  do  you  mean  by  achievable?    JB  –  Well  a  variety  of  things:  profitable,  manageable,  costly,  etc?    Lars  –  Well  mono-­‐cultivations  are  quite  easy  to  set  up.  The  long-­‐line  technology  is  simple  as  chips  to  organise,  the  seeding  systems  that  have  been  developed  even  in  the  last  few  years  are  very  successful,  cheap  and  simple.  Once  in  the  water  there  isn’t  much  to  be  done  until  harvest  time,  and  that  isn’t  too  difficult  either.  IMTAs  however  require  years  of  optimisation,  constant  monitoring  and  tweaking,  and  given  that  the  environment  is  dynamic  and  ever  changing,  the  system  has  to  be  malleable  to  suit  the  ever-­‐changing  conditions.  IMTAs  aren’t  easy  to  set  up  either,  you  have  to  be  aware  of  currents  and  so  on.  That  said,  the  benefits  of  that  can  materialise  in  an  IMTA  can  definitely  make  the  whole  process  worth  doing.  To  be  fair  I’m  not  IMTA  expert,  though  I  understand  the  basics  pretty  well.  I  wouldn’t  be  able  to  give  you  much  of  an  indication  about  economic  viability  of  IMTA  systems,  but  long-­‐lines  are,  as  I’ve  said  before,  already  well  established.    JB  –  So  in  your  opinion  the  long-­‐line  is  achievable  on  a  large  scale?    Lars  –  Yes  and  No.  Yes  in  terms  of  the  technical  aspects,  the  actual  ability  for  it  to  be  set  up.  But  in  practise  its  hard  to  get  licensing  permission  for  large  scale  cultivation,  particularly  in  near-­‐shore  environments.  It’s  a  hard  one  to  answer.  Both  options  have  up  sides  and  down  sides,  I  guess  it  would  depend  on  a  variety  of  other  factors,  like  the  market  for  the  products  you  are  aiming  for,  or  the  research  focus  of  the  projects  it  would  be  supplying  samples  for.      JB  –  Thanks  for  that.  If  you  don’t  mind  I  may  be  in  touch  again  soon  if  anything  else  comes  up!      Lars  –  Sure,  just  pop  me  an  email  and  we  can  set  up  another  phone  call.    JB  –  [Wrap  up]    

TRITA-IM 2013:30

Industrial Ecology,

Royal Institute of Technology

www.ima.kth.se