Hukum Bernoulli Dan Penerapannya

10
Hukum Bernoulli Dan Penerapannya Penemu Hukum Bernoulli Asas Bernoulli dikemukakan pertama kali oleh Daniel Bernoulli (1700±1782). Dalam kertas kerjanya yang berjudul Hydrodynamica, Bernoulli menunjukkan bahwa begitu kecepatan aliran fluida meningkat maka tekanannya justru menurun. Prinsip Bernoulli Prinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli. Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow). Aliran Tak-termampatkan Aliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak- termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut: di mana: v = kecepatan fluida g = percepatan gravitasi bumi h = ketinggian relatif terhadapa suatu referensi p = tekanan fluida ρ = densitas fluida Persamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut: • Aliran bersifat tunak (steady state) • Tidak terdapat gesekan

Transcript of Hukum Bernoulli Dan Penerapannya

Page 1: Hukum Bernoulli Dan Penerapannya

Hukum Bernoulli Dan PenerapannyaPenemu Hukum Bernoulli

Asas Bernoulli dikemukakan pertama kali oleh Daniel Bernoulli (1700±1782). Dalam kertas kerjanya yang berjudul Hydrodynamica, Bernoulli menunjukkan bahwa begitu kecepatan aliran fluida meningkat maka tekanannya justru menurun.  Prinsip BernoulliPrinsip Bernoulli adalah sebuah istilah di dalam mekanika fluida yang menyatakan bahwa pada suatu aliran fluida, peningkatan pada kecepatan fluida akan menimbulkan penurunan tekanan pada aliran tersebut. Prinsip  ini sebenarnya merupakan penyederhanaan dari Persamaan Bernoulli yang menyatakan bahwa jumlah energi pada suatu titik di dalam suatu aliran tertutup sama besarnya dengan jumlah energi di titik lain pada jalur aliran yang sama. Prinsip ini diambil dari nama ilmuwan Belanda/Swiss yang bernama Daniel Bernoulli.Dalam bentuknya yang sudah disederhanakan, secara umum terdapat dua bentuk persamaan Bernoulli; yang pertama berlaku untuk aliran tak-termampatkan (incompressible flow), dan yang lain adalah untuk fluida termampatkan (compressible flow).

Aliran Tak-termampatkanAliran tak-termampatkan adalah aliran fluida yang dicirikan dengan tidak berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida tak-termampatkan adalah: air, berbagai jenis minyak, emulsi, dll. Bentuk Persamaan Bernoulli untuk aliran tak-termampatkan adalah sebagai berikut:

di mana:v = kecepatan fluidag = percepatan gravitasi bumih = ketinggian relatif terhadapa suatu referensip = tekanan fluidaρ = densitas fluidaPersamaan di atas berlaku untuk aliran tak-termampatkan dengan asumsi-asumsi sebagai berikut:• Aliran bersifat tunak (steady state)• Tidak terdapat gesekan

Aliran TermampatkanAliran termampatkan adalah aliran fluida yang dicirikan dengan berubahnya besaran kerapatan massa (densitas) dari fluida di sepanjang aliran tersebut. Contoh fluida termampatkan adalah: udara, gas alam, dll. Persamaan Bernoulli untuk aliran termampatkan adalah sebagai berikut:

Hukum Bernoulli menyatakan bahwa jumlah dari tekanan ( p ), energi kinetik per satuan volum (1/2 PV^2 ), dan energi potensial per satuan

Page 2: Hukum Bernoulli Dan Penerapannya

volume (ρgh) memiliki nilai yang sama pada setiap titik sepanjang suatu garis arus.Dalam bagian ini kita hanya akan mendiskusikan bagaimana cara berfikir Bernoulli sampai menemukan persamaannya, kemudian menuliskan persamaan ini. Akan tetapi kita tidak akan menurunkan persamaan Bernoulli secara matematis.Kita disini dapat melihat sebuah pipa yang pada kedua ujungnya berbeda dimanaujung pipa 1 lebih besar dari pada ujung pipa 2.

Penerapan Hukum Bernoulli:

a. Efek VenturiSelain teorema Torricelli, persamaan Bernoulli juga bisa diterapkan pada kasus khusus lain yakni ketika fluida mengalir dalam bagian pipa yang ketinggiannya hampir sama (perbedaan ketinggian kecil). Untuk memahami penjelasan ini, amati gambar di bawah.

Pada gambar di atas tampak bahwa ketinggian pipa, baik bagian pipa yang penampangnya besar maupun bagian pipa yang penampangnya kecil, hampir sama sehingga diangap ketinggian alias h sama. Jika diterapkan pada kasus ini, maka persamaan Bernoulli berubah menjadi :

Ketika fluida melewati bagian pipa yang penampangnya kecil (A2), maka laju fluida bertambah (ingat persamaan kontinuitas). Menurut prinsip Bernoulli, jika kelajuan fluida bertambah, maka tekanan fluida tersebut menjadi kecil. Jadi tekanan fluida di bagian pipa yang sempit lebih kecil tetapi laju aliran fluida lebih besar.

Ini dikenal dengan julukan efek Venturi dan menujukkan secara kuantitatif bahwa jika laju aliran fluida tinggi, maka tekanan fluida menjadi kecil. Demikian pula sebaliknya, jika laju aliran fluida rendah maka tekanan fluida menjadi besar.

b. Tabung PitotTabung Pitot adalah alat ukur yang kita gunakan untuk mengukur kelajuan gas / udara. Perhatikan gambar di bawah…Lubang pada titik 1 sejajar dengan aliran udara. Posisi kedua lubang ini dibuat cukup jauh dari ujung tabung pitot, sehingga laju dan tekanan udara di luar lubang sama seperti laju dan tekanan udara yang mengalir bebas. Dalam hal ini, v1 = laju aliran udara yang mengalir bebas (ini yang akan kita ukur), dan tekanan pada kaki kiri manometer (pipa bagian kiri) = tekanan udara yang mengalir bebas (P1).

Page 3: Hukum Bernoulli Dan Penerapannya

Lubang yang menuju ke kaki kanan manometer, tegak lurus dengan aliran udara. Karenanya, laju aliran udara yang lewat di lubang ini (bagian tengah) berkurang dan udara berhenti ketika tiba di titik 2. Dalam hal ini, v2 = 0. Tekanan pada kaki kanan manometer sama dengan tekanan udara di titik 2 (P2).Ketinggian titik 1 dan titik 2 hampir sama (perbedaannya tidak terlalu besar) sehingga bisa diabaikan. Ingat ya, tabung pitot juga dirancang menggunakan prinsip efek venturi. Mirip seperti si venturi meter, bedanya si tabung petot ini dipakai untuk mengukur laju gas alias udara. Karenanya, kita tetap menggunakan persamaan efek venturi. Sekarang kita oprek persamaannya :

Page 4: Hukum Bernoulli Dan Penerapannya

Ini persamaan yang kita cari. Persamaan ini digunakan untuk menghitung laju aliran gas alias udara menggunakan si tabung pitot.

c. Penyemprot Racun SeranggaPenyemprot Racun Serangga hampir sama prinsip kerjanya dengan penyemprot parfum. Jika pada penyemprot parfum Anda menekan tombol, maka pada penyemprot racun serangga Anda menekan masuk batang penghisap.

Page 5: Hukum Bernoulli Dan Penerapannya

Ketika bola karet diremas, udara yang ada di dalam bola karet meluncur keluar melalui pipa 1. Karenanya, udara dalam pipa 1 mempunyai laju yang lebih tinggi. Karena laju udara tinggi, maka tekanan udara pada pipa 1 menjadi rendah. Sebaliknya, udara dalam pipa 2 mempunyai laju yang lebih rendah. Tekanan udara dalam pipa 2 lebih tinggi. Akibatnya, cairan parfum didorong ke atas. Ketika si cairan parfum tiba di pipa 1, udara yang meluncur dari dalam bola karet mendorongnya keluar…Biasanya lubang berukuran kecil, sehingga parfum meluncur dengan cepat… ingat persamaan kontinuitas, kalau luas penampang kecil, maka fluida bergerak lebih cepat. Sebaliknya, kalau luas penampang pipa besar, maka fluida bergerak pelan.

d. Cerbong asapPertama, asap hasil pembakaran memiliki suhu tinggi alias panas. Karena suhu tinggi, maka massa jenis udara tersebut kecil. Udara yang massa jenisnya kecil mudah terapung alias bergerak ke atas. Alasannya bukan cuma ini… Prinsip bernoulli juga terlibat dalam persoalan ini.

Kedua, prinsip bernoulli mengatakan bahwa jika laju aliran udara tinggi maka tekanannya menjadi kecil, sebaliknya jika laju aliran udara rendah, maka tekanannya besar. Ingat bahwa bagian atas cerobong berada di luar ruangan. Ada angin yang niup di bagian atas cerobong, sehingga tekanan udara di sekitarnya lebih kecil. Di dalam ruangan tertutup tidak ada angin yang niup, sehingga tekanan udara lebih besar. Karenanya asap digiring ke luar lewat cerobong… (udara bergerak dari tempat yang tekanan udaranya tinggi ke tempat yang tekanan udaranya rendah).

e. Gaya Angkat Sayap Pesawat TerbangGaya Angkat Sayap Pesawat Terbang juga merupakan salah satu contoh Hukum Bernoulli.Pada dasarnya, ada empat buah gaya yang bekerja pada sebuah pesawat terbang yang sedang mengangkasa .1. Berat Pesawat yang disebabkan oleh gaya gravitasi Bumi

Page 6: Hukum Bernoulli Dan Penerapannya

2. Gaya angkat yang dihasilkan oleh kedua sayap pesawat3. Gaya ke depan yang disebabkan oleh mesin pesawat4. Gaya hambatan yang disebabkan oleh gerakan udara.

Bagian depan sayap dirancang melengkung ke atas. Udara yang ngalir dari bawah berdesak2an dengan temannya yang ada di sebelah atas. Mirip seperti air yang ngalir dari pipa yang penampangnya besar ke pipa yang penampangnya sempit. Akibatnya, laju udara di sebelah atas sayap meningkat. Karena laju udara meningkat, maka tekanan udara menjadi kecil. Sebaliknya, laju aliran udara di sebelah bawah sayap lebih rendah, karena udara tidak berdesak2an (tekanan udaranya lebih besar). Adanya perbedaan tekanan ini, membuat sayap pesawat didorong ke atas. Karena sayapnya nempel dengan badan si pesawat, maka si pesawat ikut2an terangkat.

f. Tikus juga tahu prinsip BernoulliPerhatikan gambar di bawah…. ini gambar lubang tikus dalam tanah. Tikus juga tahu prinsip om bernoulli. Si tikus tidak mau mati karena sesak napas, karenanya tikus membuat 2 lubang pada ketinggian yang berbeda. Akibat perbedaan ketinggian permukaan tanah, maka udara berdesak2an dengan temannya (bagian kanan). Mirip seperti air yang mengalir dari pipa yang penampangnya besar menuju pipa yang penampangnya kecil. Karena berdesak2an maka laju udara meningkat (Tekanan udara menurun).

Page 7: Hukum Bernoulli Dan Penerapannya

Karena ada perbedaan tekanan udara, maka udara dipaksa mengalir masuk melalui lubang tikus. Udara mengalir dari tempat yang tekanan udara-nya tinggi ke tempat yang tekanan udaranya rendah.

Faktor- fator yang mempengaruhi viskositas adalah sebagai berikut (Bird, 1987):

a.       TekananViskositas cairan naik dengan naiknya tekanan, sedangkan viskositas gas tidak dipengaruhi oleh tekanan.

b.      TemperaturViskositas akan turun dengan naiknya suhu, sedangkan viskositas gas naik dengan naiknya suhu. Pemanasan zat cair menyebabkan molekul-molekulnya memperoleh energi. Molekul-molekul cairan bergerak sehingga gaya interaksi antar molekul melemah. Dengan demikian viskositas cairan akan turun dengan kenaikan temperatur.

c.       Kehadiran zat lainPenambahan gula tebu meningkatkan viskositas air. Adanya bahan tambahan seperti bahan suspensi menaikkan viskositas air. Pada minyak ataupun gliserin adanya penambahan air akan menyebabkan viskositas akan turun karena gliserin maupun minyak akan semakin encer, waktu alirnya semakin cepat.

d.      Ukuran dan berat molekulViskositas naik dengan naiknya berat molekul. Misalnya laju aliran alkohol cepat, larutan minyak laju alirannya lambat dan kekentalannya tinggi seta laju aliran lambat sehingga viskositas juga tinggi.

e.       Berat molekul

Page 8: Hukum Bernoulli Dan Penerapannya

Viskositas akan naik jika ikatan rangkap semakin banyak.f.       Kekuatan antar molekul

Viskositas air naik denghan adanya ikatan hidrogen, viskositas CPO dengan gugus OH pada trigliseridanya naik pada keadaan yang sama.

Koefisien viskositas fluida atau disingkat sebagai perbandingan tegangan luncur F/A, dengan cepat perubahan tegangan luncur. Cairan mempunyai gaya gesek yang lebih besar untuk mengalir daripada gas. Sehingga cairan mempuyai koefisien viskositas yang lebih besar daripada gas. Viskositas gas bertambah dengan naiknya temperatur. Koefisien gas pada tekanan tidak terlalu besar, tidak tergantung tekanan, tetapi untuk cairan naik dengan naiknya tegangan.

Koefisien viskositas secara umum diukur dengan dua metode, yaitu :

1. Viskositas OstwaldWaktu yang dibutuhkan untuk mengalirkan sejumlah tertentu cairan dicatat dan dihitung dengan menggunakan hubungan :

Karena P =  . g . h maka persamaan di atas dapat ditulis sebagai berikut :

Dimana :

P  =  tekanan hidrostatik

R  =  jari-jari kapiler / tabung

T  =  waktu aliran zat cair sebanyak volume (V) dengan beda tinggi (h)

l   =  panjang kapiler / tabung

Umumnya koefisien viskositas dihitung dengan membendingkan laju aliran cairan yang koefisien viskositasnya diketahui.

Hubungan itu adalah :

Dimana :  d . t = laju aliran

1. Metode bola jatuhMetode bola jatuh menyangkut gaya gravitasi yang seimbang dengan gerakan aliran pekat dan hubungannya adalah :

Dimana :

Page 9: Hukum Bernoulli Dan Penerapannya

b = bola jatuh atau manik-manik

g = konstanta gravitasi

Pada persamaan di atas bila digunakan perbandingan maka akan didapatkan :

dicatat dengan stopwatch. Percobaan diulangi lagi dengan cairan pembanding setelah dibersihkan. Dengan ini ditentukan t1 dan t2.Viskositas suatu cairan  murni  merupakan  indeks  hambatan  air  cairan atau larutan. Viskositas dapat diukur dengan menggunakan tabung Cannon Fenske, yaitu dengan menghitung waktu alir zat cair di dalam tabung Cannon Fenske. Cara ini juga untuk menghitung jari-jari molekul. Caranya yaitu setelah didapatkan waktu alir zat cair maka akan didapatkan viskositas dari zat cair tersebut. Selanjutnya akan didapat slope (A), akhirnya akan didapatkan jari-jari (r) dengan menggunakan persamaan :

A = 6,3 x 1021 x r3

Dimana :

A = slope

Persamaan tersebut didapatkan dari persamaan yang telah diturunkan oleh Einstein.

http://hedihastriawan.wordpress.com/kimia-fisika/viskositas/

http://wenimandasari.blogspot.com/p/laporan-termokimia.html

http://rodhanzulkifli.blogspot.com/2012/12/hukum-bernoulli-dan-penerapannya.html