TECHNICAL COMMITTEE ON EMERGENCY POWER ... - NFPA

497
TECHNICAL COMMITTEE ON EMERGENCY POWER SUPPLIES Second Draft Meeting Agenda for NFPA 110 and NFPA 111 June 16 and 18, 2020 Telephone/Web Conference 06-20-01 Call to Order & Welcome 06-20-02 Introduction of Committee Members (Attachment A) 06-20-03 Approval of Previous Meeting Minutes (Attachment B) 06-20-04 Chairs Remarks 06-20-05 Staff Presentation 06-20-06 Task Group Reports and Review of Public Comments (Attachment C) 06-20-07 Old Business 06-20-08 New Business 06-20-09 Adjournment

Transcript of TECHNICAL COMMITTEE ON EMERGENCY POWER ... - NFPA

TECHNICAL COMMITTEE ON EMERGENCY POWER SUPPLIES

Second Draft Meeting Agenda for NFPA 110 and NFPA 111

June 16 and 18, 2020

Telephone/Web Conference

06-20-01 Call to Order & Welcome

06-20-02 Introduction of Committee Members (Attachment A)

06-20-03 Approval of Previous Meeting Minutes (Attachment B)

06-20-04 Chairs Remarks

06-20-05 Staff Presentation

06-20-06 Task Group Reports and Review of Public Comments (Attachment C)

06-20-07 Old Business

06-20-08 New Business

06-20-09 Adjournment

Attachment A: Technical Committee Roster

Address List No PhoneEmergency Power Supplies EPS-AAA

National Electrical Code®

Christopher Coache06/10/2020

EPS-AAA

Dan Chisholm, Sr.

ChairMGI Systems, Inc.PO Box 2474Winter Park, FL 32790-2474Alternate: Dan Chisholm, Jr.

IM 10/1/1993EPS-AAA

Ernest E. Allen

PrincipalThe Doctors Company5001 Mayfield Road, Suite L55Lyndhurst, OH 44124NFPA Health Care Section

I 7/1/1990

EPS-AAA

Kenneth A. Cotton

PrincipalUS Energy/Donlee CropNetwork Operation Center140 East Stetson AveSuite 309Hemet, CA 92543Alternate: Joshua Dugger

M 10/1/1999EPS-AAA

David A. Dagenais

PrincipalPartners/Wentworth-Douglass Hospital789 Central AvenueDover, NH 03820

U 08/09/2012

EPS-AAA

Richard L. Day

PrincipalMichigan State Fire Marshal's Office207 Jackson StreetAllegan, MI 49010-9156

E 03/03/2014EPS-AAA

Thomas A. Domitrovich

PrincipalEaton Corporation114 Old State RoadEllisville, MO 63021Alternate: Bruce Gordon Campbell

M 04/02/2020

EPS-AAA

Timothy Evans

PrincipalUL, LLC Canada7 Underwriters RoadToronto, ON M1R 3A9 CanadaAlternate: Robert D. Osborne

RT 12/06/2019EPS-AAA

Louis J. Feller

PrincipalUS Army Corps of EngineersMedical Facilities Center4735 E. Marginal Way SSeattle, WA 98134-2329

U 03/03/2014

EPS-AAA

Jason M. Fisher

PrincipalSolar Technical Consulting LLC344 Key West DriveCharlottesville, VA 22911-8426

SE 04/02/2020EPS-AAA

James R. (Skip) Gregory

PrincipalHealth Facility Consulting4128 Zermatt DriveTallahassee, FL 32303-2252Florida Agency for Health Care Administration

E 3/21/2006

EPS-AAA

Ross M. Hardy

PrincipalOrlando Health Dr. P. Phillips HospitalFacilities Mgr Engineering Dr. Phillips Hospital9400 Turkey Lake RoadOrlando, FL 32819

U 07/14/2004EPS-AAA

Jonathan Hartsell

PrincipalRodgers5701 North Sharon Amity RoadCharlotte, NC 28215

IM 07/29/2013

EPS-AAA

Timothy Hurd

PrincipalNEC Energy Solutions155 Flanders RoadWestborough, MA 01581

M 04/02/2020

1

Address List No PhoneEmergency Power Supplies EPS-AAA

National Electrical Code®

Christopher Coache06/10/2020

EPS-AAA

Oleh Kowalskyj

PrincipalU.S. Department of Veterans AffairsVeterans Health Administration (10NAS)810 Vermont Avenue, NWWashingston, DC 20420US Department of Veterans AffairsAlternate: Gary Krauch

U 04/04/2017EPS-AAA

Pouyan Layegh

PrincipalUniversity of Texas MD Anderson Cancer Center3126 Barrons WaySugar Land, TX 77479

U 11/30/2016

EPS-AAA

Chad E. Loomis

PrincipalCornell University2336 South Balch HallIthaca, NY 14853

U 3/2/2010EPS-AAA

Alan Manche

PrincipalSchneider Electric1601 Mercer RoadLexington, KY 40511-1025Alternate: Ronald A. Schroeder

M 10/23/2003

EPS-AAA

Daniel J. O'Connor

PrincipalJENSEN HUGHES4 Overlook PointLincolnshire, IL 60069-4302Alternate: Eric Camiel

SE 1/1/1984EPS-AAA

Gary L. Olson

PrincipalkW Rx, LLC12979 Killdeer Street NWMinneapolis, MN 55448-7018

SE 08/09/2011

EPS-AAA

Chris Paxton

PrincipalBloom Energy Corporation4353 North First StreetSan Jose, CA 95134

M 04/02/2020EPS-AAA

Steve R. Sappington

PrincipalCaterpillar Inc.175 Cutstone CourtFayetteville, GA 30215-6206

M 08/11/2014

EPS-AAA

Michael L. Savage, Sr.

PrincipalMarion County Building Safety2710 E. Silver Springs Blvd.Ocala, FL 34470

E 08/08/2019EPS-AAA

Randy H. Schubert

PrincipalEricsson444 Hoes LanePiscataway, NJ 08854-4104Alliance for Telecommunications Industry SolutionsAlternate: Richard G. Kluge

U 12/08/2015

EPS-AAA

Ronald M. Smidt

PrincipalAtrium HealthPO Box 901Troutman, NC 28166American Society for Healthcare EngineeringAlternate: Joshua Brackett

U 7/24/1997EPS-AAA

David Stymiest

PrincipalSmith Seckman Reid, Inc.2995 Sidco DriveNashville, TN 37204

SE 1/12/2000

2

Address List No PhoneEmergency Power Supplies EPS-AAA

National Electrical Code®

Christopher Coache06/10/2020

EPS-AAA

Timothy P. Windey

PrincipalCummins Power Generation1400 73rd Avenue NEMinneapolis, MN 55432-3702Alternate: Rich Scroggins

M 08/03/2016EPS-AAA

Stephen Works

PrincipalBlanchard Machinery3151 Charleston HighwayWest Columbia, SC 29172

IM 12/06/2017

EPS-AAA

James Hunt

Voting AlternateHostrat Inc.5723 East AlkiSpokane, WA 99212Electrical Generating Systems Association

M 08/03/2016EPS-AAA

David C. Skiba

Voting AlternateSargent & Lundy LLC55 East Monroe StreetSuite 2710Chicago, IL 60603-5821

SE 10/28/2014

EPS-AAA

Joshua Brackett

AlternateBaptist Health5525 Studer RoadLittle Rock, AR 72223American Society for Healthcare EngineeringPrincipal: Ronald M. Smidt

U 12/06/2019EPS-AAA

Eric Camiel

AlternateJENSEN HUGHES117 Metro Center BoulevardSuite 1002Warwick, RI 02886JENSEN HUGHESPrincipal: Daniel J. O'Connor

SE 12/07/2018

EPS-AAA

Bruce Gordon Campbell

AlternateEaton Corporation130 Commonwealth DriveWarrendale, PA 15086Principal: Thomas A. Domitrovich

M 04/02/2020EPS-AAA

Dan Chisholm, Jr.

AlternateMGI Systems, Inc.412 Page StreetOrlando, FL 32806Principal: Dan Chisholm, Sr.

IM 7/14/2004

EPS-AAA

Joshua Dugger

AlternateFacility Shield International14419 Veterans WayMoreno Valley, CA 92553-9059Principal: Kenneth A. Cotton

M 10/29/2012EPS-AAA

Richard G. Kluge

AlternateEricsson1 Ericsson DrivePiscataway, NJ 08854Alliance for Telecommunications Industry SolutionsPrincipal: Randy H. Schubert

U 12/08/2015

EPS-AAA

Gary Krauch

AlternateVirginia New England Healthcare System2000 Springs RoadBuilding 61Bedford, MA 01730US Department of Veterans AffairsPrincipal: Oleh Kowalskyj

U 04/04/2017EPS-AAA

Robert D. Osborne

AlternateUL LLC12 Laboratory DriveResearch Triangle Park, NC 27709-3995Principal: Timothy Evans

RT 12/06/2019

3

Address List No PhoneEmergency Power Supplies EPS-AAA

National Electrical Code®

Christopher Coache06/10/2020

EPS-AAA

Ronald A. Schroeder

AlternateASCO Power Technologies, LP160 Park AvenueFlorham Park, NJ 07932Principal: Alan Manche

M 1/10/2008EPS-AAA

Rich Scroggins

AlternateCummins Power Generation3850 North Victoria StreetShoreview, MN 55126-2907Principal: Timothy P. Windey

M 10/28/2014

EPS-AAA

William H. Everard

Member EmeritusEverard Mid Atlantic Inc.8743 Center RoadSpringfield, VA 22152-2234

SE 1/1/1979EPS-AAA

Christopher Coache

Staff LiaisonNational Fire Protection AssociationOne Batterymarch ParkQuincy, MA 02169-7471

8/7/2011

4

Attachment B: Previous Meeting Minutes

- 1 -

8/14/2019

To: Christopher Coache

re: 2022 Edition of NFPA 110 and NFPA 111

First Draft Meeting / Session Minutes

8/13/19

19-8-1: Call to Order @ 0800 / Dan Chisholm, Chairman / Secretary (Steve Works / Blanchard)

19-8-2: Introduction of Members and Guests (reference Members sign-in)

Guest Log: Steve Burris and Craig Huling (Petroleum Recovery Services, Inc.), John

Sharpe (Generac Power Systems, Inc.), Robert Osbourne (UL)

19-8-3: Approval of Previous Meeting Minutes – accepted @ 0810

19-8-4: NFPA Staff Presentation / Christopher Coates (NFPA) 0810-0830

19-8-5: Task Group Reports – Steve Sappington (Caterpillar) delivers fuel testing synopsis for

committee review and record.

19-8-6: Review of Public Inputs

1) Order of review as presented in Meeting Agenda.

2) PI Task Groups were formed @ 1130 (lunch) to facilitate sub-topics and present

recommendations to the Committee as follows:

a. Fuel Cells – Ron Smidt (chair), David Stymiest, Jonathan Hartsell, Alan Manche

b. Battery Concerns – Ross Hardy (chair), Randy Schubert, Steve Works, Steve

Sappington

c. Continuation of Agenda – Pouyan Layegh (chair), Ronald Schroeder, Ernest

Allen, Skip Gregory

3) Meeting re-convened @ 1300 to review the PI task group’s findings and process PI’s

accordingly.

4) Meeting paused @ 1830; special task group was formed to review PI’s relating to

Standards for Testing (8.4) as follows: Ron Smidt (chair), Oleh Kowalskvi, Jonathan

Hartsell, Randy Schubert, Ross Hardy, Alan Manche, Pouyan Layegh. This meeting

ended @ 2145.

8/14/19

5) Meeting re-convened @ 0800. Opening session reviews the 8.4 task group’s work.

- 2 -

6) Remaining PI’s for NFPA 110 & 111 were addressed (ended @ 1200)

19-8-7: Old Business – N/A

19-8-8: New Business – Alan Manche: NFPA 110 committee should consider how to address

usability of NFPA 110 (follow-up from upcoming public comments).

19-8-9: Meeting Adjourned @ 1215.

Respectfully Submitted,

Steve Works

Blanchard Machinery / Power Systems

[email protected]

Attachment C: NFPA 110 Public

Comment Report

Public Comment No. 33-NFPA 110-2020 [ Section No. 5.1.1 [Excluding any Sub-

Sections] ]

The following energy sources shall be permitted to be used for the emergency power supply (EPS):

(1)

(2)

(3)

(4)

Statement of Problem and Substantiation for Public Comment

Allows use of a energy source that is highly utilized in Fuel cells.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Affiliation: ASHE

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 11:30:07 EDT 2020

Committee: EPS-AAA

* Liquid petroleum products at atmospheric pressure as specified in the appropriate ASTM standardsand as recommended by the engine manufacturer

* Liquefied petroleum gas (liquid or vapor withdrawal) as specified in the appropriate ASTM standardsand as recommended by the engine manufacturer

* Natural or synthetic gas

Hydrogen gas

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

1 of 120 5/7/2020, 4:56 PM

Public Comment No. 34-NFPA 110-2020 [ Section No. 5.2.1 [Excluding any Sub-

Sections] ]

Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

Statement of Problem and Substantiation for Public Comment

As requested in Committee Input 9, this allows other technology other than reciprocating engines to be utilized.

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 35-NFPA 110-2020 [New Section after 5.2.1.1]

Public Comment No. 37-NFPA 110-2020 [New Section after 5.2.5]

Related Item

• CI-9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 11:45:23 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

2 of 120 5/7/2020, 4:56 PM

Public Comment No. 35-NFPA 110-2020 [ New Section after 5.2.1.1 ]

TITLE OF NEW CONTENT 5.2.1.1.1

Fuel Cells systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI/CSA FC1

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 33-NFPA 110-2020 [Section No. 5.1.1 [Excluding any Sub-Sections]]

Public Comment No. 34-NFPA 110-2020 [Section No. 5.2.1 [Excluding any Sub-Sections]]

Public Comment No. 36-NFPA 110-2020 [Section No. 5.2.4]

Public Comment No. 37-NFPA 110-2020 [New Section after 5.2.5]

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 11:48:26 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

3 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 36-NFPA 110-2020 [ Section No. 5.2.4 ]

5.2.4

Rotating

EPS

5.2.4.1   EPS utilizing   R r otating equipment shall consist of a generator driven by one of the following prime movertypes:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.

1

Other

2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC )

(5) Alkaline (AFC)

5.2.4. 2 . 3   For EPS utilizing rotating equipment,   O o ther types of prime movers and their associated equipmentmeeting the applicable performance requirements of this standard shall be permitted, if acceptable to the authorityhaving jurisdiction.

5.2.4. 2

. 3     Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment otherthan its operating accessories and its generator . A fuel cell system shall not energize any other equipment other thanits operating accessories necessary to provide power for the Level 1 application .

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 35-NFPA 110-2020 [New Section after 5.2.1.1]

Related Item

• CI 9

Submitter Information Verification

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

4 of 120 5/7/2020, 4:56 PM

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:00:58 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

5 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 37-NFPA 110-2020 [ New Section after 5.2.5 ]

TITLE OF NEW CONTENT 5.2.5.1

5.2.5.1 A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard forStationary Fuel Cell Power Systems .

Renumber exiting 5.2.5.1 to 5.2.5.2

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 33-NFPA 110-2020 [Section No. 5.1.1 [Excluding any Sub-Sections]]

Public Comment No. 34-NFPA 110-2020 [Section No. 5.2.1 [Excluding any Sub-Sections]]

Public Comment No. 35-NFPA 110-2020 [New Section after 5.2.1.1]

Related Item

• CI 9 •

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:09:02 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

6 of 120 5/7/2020, 4:56 PM

Public Comment No. 38-NFPA 110-2020 [ New Section after 5.3.1 ]

TITLE OF NEW CONTENT 5.3.1.1

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient inaccordance with its listing and intended installation location for cold start , if applicable CP1]   and load acceptance forthe type of EPSS.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Related Item

• CI 9

Submitter Information Verification

This PC has not been submitted yet

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

7 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 39-NFPA 110-2020 [ New Section after 5.3.5 ]

TITLE OF NEW CONTENT 5.3.6 and A5.3.6

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing. Fuelcell system EPS shall be installed in accordance with its listing and manufacturer ’ s recommended installationinstructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will be permitted to vary dependingupon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or indoors in a controlledenvironment). Therefore, the fuel cell system is to be installed in accordance with the manufacturer ’ s recommendedinstallation instructions and system specifications, and in accordance with its listing. The ability of the thermalmanagement system to maintain the fuel cell system within its operating parameters in accordance with its intendedinstallation environment are evaluated as part of its listing.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task Group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 33-NFPA 110-2020 [Section No. 5.1.1 [Excluding any Sub-Sections]]

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:20:48 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

8 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 1-NFPA 110-2020 [ Section No. 5.6.4.5 [Excluding any Sub-

Sections] ]

The battery engine starting energy storage device shall be of the nickel-based battery (nickel cadmium,nickel metal-hydride or nickel zinc) or lead-acid type. battery, or electric double-layer capacitor (EDLC) orother energy storage device approved by engine manufacturer and AHJ.

Statement of Problem and Substantiation for Public Comment

Nickel-based batteries and EDLCs offer multiple reliability, maintenance and life benefits over lead-acid battery technology. These benefits increase availability of the critical engine-generator by reducing the risk of failure to start. The requirement for the engine manufacturer and AHJ to sign off on the proposed alternative solutions provides additional verification that the proposed alternative energy storage proposal will deliver the necessary performance.

Related Item

• Definition of engine starting energy storage devices

Submitter Information Verification

Submitter Full Name: William Kaewert

Organization: SENS Stored Energy Systems LLC

Street Address:

City:

State:

Zip:

Submittal Date: Thu Feb 13 10:37:18 EST 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

9 of 120 5/7/2020, 4:56 PM

Public Comment No. 9-NFPA 110-2020 [ Section No. 5.6.5.1 ]

5.6.5.1

A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

(6) Load Shed controls as required by 5.6.5.2(7)

Statement of Problem and Substantiation for Public Comment

NFPA 70 section 700.4 (B) requires "selective load pick up and load shedding" when both emergency and other loads are served from a common generator. Since that is nearly always the case, it is only reasonable that Level 1 generator sets incorporate load shedding capability.

Note: this PC is associated with a PC for 5.6.5.2(7) and a First Revision for Table 5.6.5.2 (new row v).

Related Item

• FR 24: added row v to table 5.6.5.2

Submitter Information Verification

Submitter Full Name: Timothy Windey

Organization: Cummins Power Generation

Street Address:

City:

State:

Zip:

Submittal Date: Thu Apr 09 11:23:47 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

10 of 120 5/7/2020, 4:56 PM

Public Comment No. 10-NFPA 110-2020 [ Section No. 5.6.5.2 ]

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

11 of 120 5/7/2020, 4:56 PM

5.6.5.2

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

12 of 120 5/7/2020, 4:56 PM

Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibrationshock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part ofthe EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and requiredby Table 5.6.4.2

(2) Panel-mounted control switch(es) marked “run-off-automatic” to perform the following functions:

(3) Run: Manually initiate, start, and run prime mover

(4) Off: Stop prime mover or reset safeties, or both

(5) Automatic: Allow prime mover to start or stop by operating a remote contact.

(6) Controls to shut down and lock out the prime mover under any of the following conditions:

(7) Failing to start after specified cranking time

(8) Overspeed

(9) Low lubricating-oil pressure

(10) High engine temperature (An automatic engine shutdown device for high lubricating-oiltemperature shall not be required.)

(11) Operation of remote manual stop station

(12) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with thefollowing characteristics:

(13) Battery powered

(14) Visually indicated

(15) Have additional contacts or circuits for a common audible alarm that signals locally and remotelywhen any of the itemized conditions occurs

(16) Have a lamp test switch(es) to test the operation of all alarm lamps

(17) Controls to shut down the prime mover upon removal of the initiating signal or manual emergencyshutdown

(18) The ac instruments listed in 5.6.9.9

(19) Controls to shed level 2 loads and to initiate an overload alarm for EPS that serves both level 1 andlevel 2 loads.

Table 5.6.5.2 Safety Indications and Shutdowns

Level 1

Level 2

Indicator Function (at Battery Voltage) CV S RA

CV S RA

(a) Overcrank X X X

X X O

(b) Low water temperature X NA X

X NA O

(c) High engine temperature pre-alarm X NA X

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

13 of 120 5/7/2020, 4:56 PM

O NA NA

(d) High engine temperature X X X

X X O

(e) Low lube oil pressure X X X

X X O

(f) Overspeed X X X

X X O

(g) Low fuel main tank X NA X

O NA O

(h) Low coolant level X O X

X O X

(i) EPS supplying load X NA NA

O NA NA

(j) Control switch not in automatic position X NA X

X NA X

(k) High battery voltage X NA NA

O NA NA

(l) Low cranking voltage X NA X

O NA O

(m) Low voltage in battery X NA NA

O NA NA

(n) Battery charger ac failure X NA NA

O NA NA

(o) Lamp test X NA NA

X NA NA

(p) Contacts for local and remote common alarm X NA X

X NA X

(q) Audible alarm silencing switch NA NA X

NA NA O

(r) Low starting air pressure X NA NA

O NA NA

(s) Low starting hydraulic pressure X NA NA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

14 of 120 5/7/2020, 4:56 PM

O NA NA

(t) Air shutdown damper when used X X X

X X O

(u) Remote emergency stop NA X NA

NA X NA

(v) Overload alarm/load shed contact X NA X

NA NA NA

CV: Control panel–mounted visual. S: Shutdown of EPS. RA: Remote audible. X: Required. O: Optional.NA: Not applicable.

Notes:

(1) Item (p) shall be provided, but a separate remote audible signal shall not be required when the regularwork site in 5.6.6 is staffed 24 hours a day.

(2) Item (b) is not required for combustion turbines.

(3) Item (r) or (s) shall apply only where used as a starting method.

(4) Item (i) EPS ac ammeter shall be permitted for this function.

(5) All required CV functions shall be visually annunciated by a remote, common visual indicator.

(6) All required functions indicated in the RA column shall be annunciated by a remote, common audiblealarm as required in 5.6.5.2(4).

(7) Item (g) on gaseous systems shall require a low gas pressure alarm.

(8) Item (b) shall be set at 11°C (20°F) below the regulated temperature determined by the EPSmanufacturer as required in 5.3.1.

Additional Proposed Changes

File Name Description Approved

PC_10.jpgTerra seems to have messed this up (because of the table). Please see the attachment for the change.

Statement of Problem and Substantiation for Public Comment

NFPA 70 section 700.4 (B) requires "selective load pick up and load shedding" when both emergency and other loads are served from a common generator. Since that is nearly always the case, it is only reasonable that Level 1 generator sets incorporate load shedding capability.The new entry in the table made it as an FR in the 1st draft meeting. Now need to pass the text that drives it.

Note: this PC is associated with a PC for 5.6.5.1(6) and a FR for Table 5.6.5.2 row v.

Related Item

• FR 24: Table 5.6.5.2 new row v

Submitter Information Verification

Submitter Full Name: Timothy Windey

Organization: Cummins Power Generation

Street Address:

City:

State:

Zip:

Submittal Date: Thu Apr 09 11:31:56 EDT 2020

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

15 of 120 5/7/2020, 4:56 PM

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

16 of 120 5/7/2020, 4:56 PM

Public Comment No. 40-NFPA 110-2020 [ New Section after 5.6.10.6 ]

TITLE OF NEW CONTENT New section 5.7 Fuel Cell System Equipment

5.7 Fuel Cell System Equipment

5.7.1 General.   Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation ofStationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1*   Fuel cells are classified by the type of electrolyte used (see 5.2.4). 

A5.7.1.1  There is a difference in start‐up ramp  me to full power based on the fuel cell type ranging from seconds to

hours.  During start‐up, fuel cells have an average power output un l they reach full power.  If needed, addi onal

power supplied from another source, such as a ba ery or ultra‐capacitor, assists with powering the intended load

during this  me.  Fuel cell systems that require high opera ng temperatures ramp slowly un l they reach full power

and an addi onal start‐up power source is not necessary.  For these types of fuel cells, they are typically run

con nuously in order to provide emergency power in the required  me period. [CP1]  

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy content,accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall be used indetermining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for anyconstant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load, with areturn to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-coolinglines, shall operate from battery voltage. [CP2]  

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall beprovided. [CP3]  

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified. [CP4]  

5.7.3.2.1.2 The fuel bypass valve   [CP5]   shall not be the valve used for malfunction or emergency shutdown.

5. 7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time   [CP6]  

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means [CP7]  

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required formaintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located inproximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.[CP8]  

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in accordancewith Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger, powered bythe fuel cell system and automatic controls for charging and maintaining the starting battery unit (and control battery,where used) in a fully charged condition during a running condition.

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems [CP9]   [FLB10]   . Where applicable, starting shall be accomplished using a stored energystarting system.

A5.7.4.1   Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

17 of 120 5/7/2020, 4:56 PM

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used whererecommended by the manufacturer of the fuel cell system and subject to approval of the authority having jurisdiction,under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is operating

(4) Where the stored energy system has a   “ black start ” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup untilthe fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be providedwith one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed as aseparate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

___________________________________________________________________________________________________

Level 1 Level 2

(1) Battery Units X X

(2) Battery Certification X X (for other than LA and Nickel)

(3) Power to load 45 sec 45 sec

(4) Automatic battery charger (BMS control) X X

(5) Maximum Recharge time 24 H 36 H

(1) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell systemshall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in5.7.4.5. 3 [FLB11]   .

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-acidbatteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-top,flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology batteries(e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system technologiesshall be listed to UL 1973.

5.7.4.5.4 The manufacturer shall provide installation, operation, and maintenance instructions for the batteries inaccordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate fromthe battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall havedemonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer'sinstructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied formaintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

18 of 120 5/7/2020, 4:56 PM

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit withoutdamaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked withthe following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system [CP12]   shall be provided and shall contain thefollowing:

(1) Automatic remote start capability [CP13]  

(2)   “ Run-off-automatic ” switch function [CP14]  

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPScontaining the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked   “ run – off – automatic ” to perform the following functions for quick-start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions: [CP15]  

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and withthe following

characteristics: [CP16]  

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely whenany of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

( 5 4 ) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergencyshutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved [CP17]   foreither a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

19 of 120 5/7/2020, 4:56 PM

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell systemshall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop, after appropriatetime delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel. [CP18]  

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic startingand operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in the samemanner commercial power is restored after a true commercial power failure. [CP19]  

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentionaloperation located outside the room housing the fuel cell system, where so installed, or elsewhere on the premiseswhere the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm   [CP20]   shall be provided as specified in5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5 exceptas noted below.

5.7.6.1   Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely uponone (i.e. is under continuous operation). [CP21]   [FLB22]  

5.7.7 Fuel Cell Cooling Systems . Cooling systems for fuel cell systems shall be either forced-air or naturalconvection, liquid-cooled, or a combination thereof.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_5_Draft_for_submition_w_comments_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9. Note this is a rewrite of section 5.6, still requires some work. Task group will provide committee with revised wording to consider.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:32:56 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

20 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 41-NFPA 110-2020 [ Section No. 7.4.1 ]

7.4.1

Rotating energy Energy converters shall be installed on solid foundations that are capable of supportingthe equipment or components and to prohibit sagging of items, such as fuel, exhaust, or lubricating-oilpiping and damage to parts resulting in leakage at joints.

7.4.1.1

Such For rotating energy converters, such foundations or structural bases shall raise the engine at least150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubricating-oildrainage and ease of maintenance.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

To provide allowance of Fuel Cells in keeping with CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:53:18 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

21 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 42-NFPA 110-2020 [ Section No. 7.4.4 ]

7.4.4

The EPS EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the typethat shall resist damage during shipping and handling. After installation, the base shall maintain alignmentof the unit during operation.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group work in response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 12:58:32 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

22 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 44-NFPA 110-2020 [ New Section after 7.5 ]

TITLE OF NEW CONTENT 7.5.1

section 7.5 shall not apply to fuel cells.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Submitting as an alternative to show that section 7.5 does not apply to fuel cells.

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 43-NFPA 110-2020 [Section No. 7.5] This is an alternative solution

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:03:25 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

23 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 43-NFPA 110-2020 [ Section No. 7.5 ]

7.5* Vibration.

Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed either between therotating equipment and its skid base or between the skid base and the foundation or inertia base. Thissection shall not not apply to Fuel cells.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 44-NFPA 110-2020 [New Section after 7.5]

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:00:36 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

24 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 45-NFPA 110-2020 [ Section No. 7.7.2 [Excluding any Sub-

Sections] ]

Air shall be supplied to the EPS equipment for combustion proper operation .

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:06:26 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

25 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 47-NFPA 110-2020 [ New Section after 7.9.1.1 ]

TITLE OF NEW CONTENT 7.9.1.2 Renumber exsisting sections

7.9.1.1…     All fuel tanks and systems for use with fuel cell power systems shall be installed and maintained in

accordance with FC 1

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 48-NFPA 110-2020 [Section No. 7.9.1.2]

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:10:37 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

26 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 46-NFPA 110-2020 [ Section No. 7.9.1.1 ]

7.9.1.1*

All fuel tanks and systems intended for use with rotating engines shall be installed and maintained inaccordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:08:33 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

27 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 5-NFPA 110-2020 [ Section No. 7.9.1.1 ]

7.9.1.1*

All fuel tanks and systems shall be shall be installed and maintained in accordance with NFPA 30,NFPA 37, NFPA 54, and NFPA 58. NFPA 58, PEI/RP 100, PEI/RP 900, PEI/RP1200 and state/federalregulations. Additionally, they shall have a written maintenance plan that shall include testing, inspections,maintenance records, monthly inspections, emergency procedures, emergency response plans, approvedPPE, response team, and contact list for state/local response teams.

Statement of Problem and Substantiation for Public Comment

NFPA 30 is for Aboveground Storage Tanks and it references being inspected and maintained by API standard 653 and STI standard SP001. NFPA 37 is for the installation and use of stationary combustion engines and gas turbines and the only standards are NFPA 30, API 650 and API 620 – none of which address Underground Storage Tanks (UST).

NFPA 54 & 58 is for natural and LP gas.

The standards for testing and inspecting of Underground Storage Tanks are:PEI/RP100 for installation of UST systems. PEI/RP900 for Inspection and Maintenance of UST systems. PEI/RP1200 for the testing and verification of spill, overfill, leak detection and secondary containment equipment at UST facilities.

The PEI standards are referenced in many situations for USTs just as NFPA is for the fire prevention and API & STI are for Aboveground Storage Tanks (ASTs).

As previously stated in another comment earlier, 8.3.3 requires a written schedule for testing of EPSS equipment. It is done to ensure everyone is maintaining a minimum set of standards and it is written. The same holds true here, it is necessary for facilities to address the minimums necessary to store and maintain safe reliable systems. It helps them address what they have, how to maintain it, when to notify someone if it is not working properly, prevent loss of life, be able to respond to emergencies, and have appropriately trained personnel.

Related Item

• Pulbic Input No. 29-NFPA 110-2019

Submitter Information Verification

Submitter Full Name: Mark Worden

Organization: Fuel Services Group

Street Address:

City:

State:

Zip:

Submittal Date: Mon Feb 17 10:49:56 EST 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

28 of 120 5/7/2020, 4:56 PM

Public Comment No. 48-NFPA 110-2020 [ Section No. 7.9.1.2 ]

7.9.1.2* renumber to 7.9.1.3

Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter .

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Public Comments for This Document

Related Comment Relationship

Public Comment No. 47-NFPA 110-2020 [New Section after 7.9.1.1] Requires renumbering after adding

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:15:03 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

29 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 11-NFPA 110-2020 [ New Section after 7.9.1.3 ]

7.9.1.4 Fuel Storage Tank Maintenance

Fuel storage tanks, both above and below ground, shall have a written fuel storage tank maintenance plan. This plan should address, at a minimum, state and federal requirements for testing, inspections,maintenance, Class A & B Operator training, and Class C Operator training. The plan shall also include aspill response plan, spill kits, OSHA requirements, OSHA training, and emergency contact protocol.

Statement of Problem and Substantiation for Public Comment

There is nothing that addresses the requirements for maintaining the fuel storage tanks. Having a written plan that addresses these items will assist in accomplishing several things, first is ensuring that the facility is compliant with state/federal requirements. Second, is ensuring that the tanks are maintained to prevent further impact to the fuel which is the lifeblood of the Emergency Power System. Third, it ensures the safety of those working with the systems by providing a path to necessary information and guidelines.

Having a written plan is not cumbersome on the facilities with EPS and will only help them maintain these systems to ensure they are operated safely. Most fuel storage tank systems are Underground Storage Tanks (UST) and all NFPA standards only address Aboveground Storage Tanks (AST) as they are under the Fire Code. However, no reference is given to Petroleum Equipment Institute (PEI) as it is with Steel Tank Institute (STI). Lets address the issues facing the facilities. I have personally seen and corrected healthcare facilities that have unknowingly neglected their storage tanks by not having performed required inspections, tests, and were not trained as required. To make matters worse, electrical contractors who service the generators were only doing visual tests of the fuel "in accordance with D975" thus leaving the facility with bad fuel, degraded tanks, bacteria, no tank inspections, and untrained facility personnel. We owe them to just put some guidelines in place to help them keep their systems in just as good of condition as the generators are...

Related Item

• 7.9.1.1

Submitter Information Verification

Submitter Full Name: Mark Worden

Organization: Fuel Services Group

Street Address:

City:

State:

Zip:

Submittal Date: Sat Apr 11 16:16:19 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

30 of 120 5/7/2020, 4:56 PM

Public Comment No. 49-NFPA 110-2020 [ Section No. 7.9.2 [Excluding any Sub-

Sections] ]

Fuel tanks shall be close enough to the prime mover for the fuel lift (suction head) of the prime mover fuelenergy converter fuel pump to meet the fuel system requirements, or a fuel transfer pump and day tankshall be provided.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:18:06 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

31 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 50-NFPA 110-2020 [ Section No. 7.9.3.2 ]

7.9.3.2

Approved flexible fuel lines shall be used between the prime mover energy converter and the fuel piping.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9, removed term prime mover and replace with a technology neutral term

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:20:35 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

32 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 51-NFPA 110-2020 [ Section No. 7.9.6 ]

7.9.6*

The fuel supply for gas-fueled and liquid-fueled prime movers energy converters shall be installed inaccordance with applicable standards.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9, uses a technology neutral term instead of Prime mover.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:23:06 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

33 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 52-NFPA 110-2020 [ Section No. 7.9.7 ]

7.9.7*

Where the gas supply is connected to the building gas supply system, it shall be connected on the supplyside of the main gas shutoff valve and marked as supplying an emergency generator Level 1 EnergyConverter .

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9, Technology neutral term used.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:25:28 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

34 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 53-NFPA 110-2020 [ Section No. 7.9.9 ]

7.9.9

The fuel supply for gas-fueled and liquid-fueled prime movers energy converters shall be designed tomeet the demands of the prime mover energy converter for all of the following factors, as applicable :

(1) Sizing of fuel lines

(2) Valves, including manual shutoff

(3) Battery-powered fuel solenoids

(4) Gas regulators

(5) Regulator vent piping

(6) Flexible fuel line section

(7) Fuel line filters

(8) Fuel vaporizers (LP-Gas)

(9) Ambient temperature effect of fuel tank vaporization rates of LP-Gas where applicable

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9. technology neutral term used. also all factors may not be applicable to some energy converters.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:27:25 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

35 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 54-NFPA 110-2020 [ Section No. 7.9.13 ]

7.9.13

Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines for Level 1emergency power supply systems. EPSS

Statement of Problem and Substantiation for Public Comment

Editorial consistency

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:32:21 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

36 of 120 5/7/2020, 4:56 PM

Public Comment No. 55-NFPA 110-2020 [ Section No. 7.10.1 ]

7.10.1

The exhaust system equipment

7.10.1.1 Equipment and installation, including piping, muffler, and related accessories for combustionengines and gas turbine , shall be in accordance with NFPA 37 and other applicable standards.

7.10.1.2 Equipment and installation, and related accessories for fuel cell power systems, shall be inaccordance with NFPA 853 and other applicable standards.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9, differentiation of exhaust requirements for fuel cell versus internal combustion equipment.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:33:52 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

37 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 56-NFPA 110-2020 [ Section No. 7.10.3 [Excluding any Sub-

Sections] ]

Exhaust piping shall be connected to the prime mover by energy converter by means of a flexibleconnector and shall be independently supported thereafter so that no damaging weight or stress is appliedto the engine exhaust manifold or turbocharger converter components .

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9. Rewrote section to be technology neutral

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:41:42 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

38 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 57-NFPA 110-2020 [ Section No. 7.10.3.7 ]

7.10.3.7

Design consideration shall be given to insulating the engine energy converter exhaust systems in buildingsafter the flexible section.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:45:05 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

39 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 58-NFPA 110-2020 [ Section No. 7.10.4 ]

7.10.4

For maximum efficiency, operation economy, and prevention of engine damage, the exhaust system shallbe designed to eliminate excessive backpressure on the engine by properly selecting, routing, andinstalling the piping size, connections, and muffler.

New section 7.10.4 (a) Exhaust system shall be designed to eliminate excessive backpressure on thesystem by properly selecting, and routing, and installing the piping size, connections and ducting .

7.10.4. 1

Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the requirements of themanufacturer.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9. Task group felt that some of the verbiage specific to internal combustion engines was important requiring a new section. Numbering must be dealt with.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:47:26 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

40 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 59-NFPA 110-2020 [ Section No. 7.11.2 ]

7.11.2*

Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the followingsystems shall not be used:

(1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken fromoutside the structure

(2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemicalsystem cannot damage the EPS system, hinder its operation, or reduce its output

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:53:00 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

41 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 60-NFPA 110-2020 [ Section No. 7.12.5 [Excluding any Sub-

Sections] ]

The When used, the starting battery units shall be located next to the prime mover energy converterstarter to minimize voltage drop.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9. Many Fuel Cells do not use batteries.

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:55:25 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

42 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 61-NFPA 110-2020 [ Section No. 7.13.4.1 ]

7.13.4.1

The on-site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 through7.13.4.1.4.

7.13.4.1.1*

In a new and unoccupied building or facility, with the prime mover energy converter in a cold start conditionand the emergency load at operating level, a normal power failure shall be initiated by opening all switchesor circuit breakers supplying the normal power to the building or facility.

new section 7.13.4.1. 1.1 For fuel cells that are continuously running the cold start condition is not required

7.13.4.1. 2*

In an existing occupied building or facility, with the prime mover energy converter in a cold start conditionand the emergency load at operating level, a normal power failure shall be simulated by operating at leastone transfer switch test function or initiated by opening all switches or breakers supplying normal power toall ATSs that are part of the EPSS being commissioned by this initial acceptance test.

7.13.4.1. 2.1 For fuel cells that are continuously running the cold start condition is not required

7.13.4.1. 3

When the EPSS consists of paralleled EPSs, the system control function for paralleling and load sheddingshall be verified in accordance with system design documentation.

7.13.4.1.4

The For engine generators the tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 shall beperformed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12).

(1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operatedsimultaneously shall be tested simultaneously with building load for the test period identified in7.13.4.1.4(10).

(2) The test load shall be all loads that are served by the EPSS. There is no minimum loading requirementfor this portion of the test.

(3) The time delay on start shall be observed and recorded.

(4) The cranking time until the prime mover starts and runs shall be observed and recorded.

(5) The time taken to reach operating speed shall be observed and recorded.

(6)

(7) The time taken to achieve a steady-state condition with all switches transferred to the emergencyposition shall be observed and recorded.

(8) The voltage, frequency, and amperes shall be recorded.

(9) Where applicable, the prime mover oil pressure and water temperature shall be recorded.

(10) The load test with building load, or other loads that simulate the intended load as specified inSection 5.4, shall be continued for not less than 1.5 hours, and the run time shall be recorded.

(11) When normal power is restored to the building or facility, the time delay on retransfer to normal powerfor each switch with a minimum setting of 5 minutes shall be recorded.

(12) The time delay on the prime mover cooldown period and shutdown shall be recorded.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

* The engine start function shall be confirmed by verifying operation of the initiating circuit of all transferswitches supplying EPSS loads.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

43 of 120 5/7/2020, 4:56 PM

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 13:58:59 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

44 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 62-NFPA 110-2020 [ New Section after 7.13.4.5.2 ]

acceptance of fuel cell systems

7.13.4.1….   [CP1]   For con nuously running fuel cell power systems, the tests conducted in accordance with

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7).

1)   When the EPSS consists of paralleled EPSs, the quan ty of EPSs intended to be operated simultaneously shall be

tested simultaneously with building load for the test period iden fied in 7.13.4.1(10).

2)   The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement for this

por on of the test.

3)   The  me delay on transfer shall be observed and recorded.

4)   The fuel cell opera on shall be confirmed by verifying opera on of the ini a ng circuit of all transfer switches

supplying EPSS loads.

5)   The  me taken to achieve a steady‐state condi on with all switches transferred to the emergency posi on shall be

observed and recorded.

5)   The voltage, frequency, and amperes shall be recorded.

6)   The load test with building load, or other loads that simulate the intended load as specified in Sec on 5.4 shall be

con nued for not less than 1.5 hours, and the run  me shall be recorded.

7)   When normal power is restored to the building or facility, the  me delay on retransfer to normal power for each

switch with a minimum se ng of 5 minutes shall be recorded.

7.13.4.3   [CP2]   A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permi ed to serve as

part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 percent of the

nameplate kW ra ng of the EPS, less applicable dera ng factors for site condi ons. 

7.13.4.3.1   [CP3]   This full‐load test shall be ini ated a er the test specified in 7.13.4.1.4 by any method that picks up

not less than 30 percent of the nameplate kW ra ng for the first 30 minutes, not less than 50 percent of the

nameplate kW ra ng for the next 30 minutes, and 100 percent of the nameplate kW ra ng for the next 60 minutes,

less applicable dera ng factors for site condi ons.

7.13.4.3.2   [CP4]   A unity power factor shall be permi ed for on‐site tes ng, provided that rated load tests at the

rated power factor have been performed by the manufacturer of the EPS prior to shipment.

7.13.4.3.3…   [CP5]   Where the EPS is a paralleled mul ‐unit EPS, each unit shall be permi ed to be tested

individually at its ra ng.

7.13.4.3.4…   [CP6]   The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load acceptance of

the test period iden fied in 7.13.4.1.4(6).

7.13.4.3.5…   [CP7]   The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15

minutes therea er un l the comple on of the test period iden fied in 7.13.4.1.4(6).

7.13.4.5   [CP8]   All safe es specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the manufacturer.

Excep on No. 2 : Where the safety func ons are proven to be fail‐safe as demonstrated by monitoring of normal

condi ons on fuel cell system metering and demonstra on that a failed sensor or circuit will not cause shutdown of

the  e nergy converter, further tes ng of the safe es is not required.

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

45 of 120 5/7/2020, 4:56 PM

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:05:46 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

46 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 63-NFPA 110-2020 [ Section No. 7.13.4.6 ]

7.13.4.6

Items (1) through (4) shall be made available to the authority having jurisdiction at the time of theacceptance test:

(1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems)

(2) A For rotating equipment a certified analysis as specified in 5.6.10.2

(3) A letter of compliance as specified in 5.6.10.5

(4) A manufacturer’s certification of a rated load test at rated power factor with the ambient temperature,altitude, and fuel grade recorded

Additional Proposed Changes

File Name Description Approved

NFPA_110_Section_7_Draft_for_submission_05-06-2020_highlighted.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:08:35 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

47 of 120 5/7/2020, 4:56 PM

Task group response CI 9 for inclusion of fuel cells 

NFPA 110 Emergency and Standby Power Systems  

Chapter 7 Installation and Environmental Considerations 

7.1 General. 

7.1.1 This chapter shall establish minimum requirements and considerations relative to the installation 

and environmental conditions that have an effect on the performance of the EPSS equipment such as 

the following: 

(1) Geographic location 

(2) Building type 

(3) Classification of occupancy 

(4) Hazard of contents 

7.1.2 Minimizing the probability of equipment or cable failure within the EPSS shall be a design 

consideration to reduce the disruption of loads served by the EPSS. 

7.1.3 The EPSS equipment shall be installed as required to meet the user’s needs and to be in 

accordance with all of the following: 

(1) This standard 

(2) The manufacturer’s specifications 

(3) The authority having jurisdiction 

7.1.4 EPSS equipment installed for the various levels of service defined in this standard shall be designed 

and assembled for such service. 

7.1.5 When the normal power source is not available, the EPS shall be permitted to serve optional loads 

other than system loads, provided that the EPS has adequate capacity or automatic selective load pickup 

and load shedding are provided as needed to ensure adequate power to (1) the Level 1 loads, (2) the 

Level 2 loads, and (3) the optional loads, in that order of priority.  When the normal power is available, 

the EPS shall be permitted to be used for other purposes such as peak load shaving, internal voltage 

control, load relief for the utility providing normal power, or cogeneration. 

7.2 Location. 

7.2.1 Indoor EPS Installations.  The EPS shall be installed in a separate room for Level 1 installations. 

7.2.1.1 The EPS room shall be separated from the rest of the building by construction with a 2‐hour fire 

resistance rating. 

7.2.1.2 EPSS equipment shall be permitted to be installed in the EPS room. 

7.2.1.3 No other equipment, including architectural appurtenances, except those that serve this space, 

shall be permitted in the EPS room. 

 

7.2.2 Outdoor EPS Installations. 

7.2.2.1 The EPS shall be installed in a suitable enclosure located outside the building and capable of 

resisting the entrance of snow or rain at a maximum wind velocity as required by local building codes. 

7.2.2.2 EPSS equipment shall be permitted to be installed in the EPS enclosure. 

7.2.2.3 No other equipment, including architectural appurtenances, expect those that serve this space, 

shall be permitted in the EPS enclosure. 

7.2.3 Level 1 EPSS equipment shall not be installed in the same room with the normal service 

equipment, where the service equipment is rated over 150 volts to ground and equal to or greater than 

1000 amperes. 

7.2.4 The rooms, enclosures, or separate buildings housing Level 1 or Level 2 EPSS equipment shall be 

designed and located to minimize damage from flooding, including that caused by the following: 

(1) Flooding resulting from fire fighting 

(2) Sewer water backup 

(3) Other disasters or occurrences 

7.2.5 Minimizing the possibility of damage resulting from interruptions of the emergency source shall be 

a design consideration for EPSS equipment. 

7.2.6 The EPS equipment shall be installed in a location that permits ready accessibility and a minimum 

of 0.9 m (36 in.) from the skid rails’ outermost point in the directions of access for inspection, repair, 

maintenance, cleaning, or replacement.  This requirement shall not apply to units in outdoor housings. 

7.2.7 Design considerations shall minimize the effect of the failure of one energy converter on the 

continued operations of other units. 

7.3 Lighting. 

7.3.1 The Level 1 or Level 2 EPS equipment location(s) shall be provided with battery‐powered 

emergency lighting.  This requirement shall not apply to units located outdoors in enclosures that do not 

include walk‐in access. 

7.3.2 The emergency lighting charging system and the normal service room lighting shall be supplied 

from the load side of the transfer switch. 

7.3.3 The minimum average horizontal illumination provided by normal lighting sources in the separate 

building or room housing the EPS equipment for Level 1 shall be 32.3 lux (3.0 ft‐candles) measured at 

the floor level, unless otherwise specified by a replacement recognized by the authority having 

jurisdiction. 

7.4 Mounting. 

7.4.1 Rotating Energy converters shall be installed on solid foundations that are capable of supporting 

the equipment or components, and to prohibit sagging of items, such as fuel, exhaust, or lubricating‐oil 

piping and damage to parts resulting in leakage at joints. 

7.4.1.1 For rotating energy converters, such foundations or structural bases shall raise the engine at 

least 150 mm (6 in.) above the floor or grade level and be of sufficient elevation to facilitate lubrication‐

oil drainage and ease of maintenance. 

7.4.2 Foundations shall be of the size (mass) and type recommended by the energy converter 

manufacturer. 

7.4.3 Where required to prevent transmission of vibration during operation, the foundation shall be 

isolated from the surrounding floor or other foundations, or both, in accordance with the 

manufacturer’s recommendations and accepted structural engineering practices. 

7.4.4 The EPS utilizing rotating equipment shall be mounted on a fabricated metal skid base of the type 

that shall resist damage during shipping and handling.  After installation, the base shall maintain 

alignment of the unit during operation. 

7.5 Vibration.  Vibration isolators, as recommended by the manufacturer of the EPS, shall be installed 

either between the EPS utilizing rotating equipment and its skid base or between the skid base and the 

foundation or inertia base 

7.6 Noise. Design shall include consideration of noise control regulations. 

7.7 Heating, Cooling, and Ventilating. 

7.7.1 With the EPS running at rated load, ventilation airflow shall be provided to limit the maximum air 

temperature in the EPS room or the enclosure housing the unit to the maximum ambient air 

temperature required by the EPS manufacturer. 

7.7.1.1 Consideration shall be given to all the heat emitted to the EPS equipment room by the energy 

converter, uninsulated or insulated exhaust pipes, and other heat‐producing equipment. 

7.7.2 Air shall be supplied to the EPS equipment for proper operation combustion . 

7.7.2.1 For EPS supplying Level 1 EPSS, ventilation air shall be supplied directly from a source outside the 

building by an exterior wall opening or from a source outside the building by a 2‐hour fire‐rated air 

transfer system. 

7.7.2.2 For EPS supplying Level 1 EPSS, discharge air shall be directed outside the building by an exterior 

wall opening or to an exterior opening by a 2‐hour fire‐rated air transfer system. 

7.7.2.3 Fire dampers, shutters, or other self‐closing devices shall not be permitted in ventilation 

openings or ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.3 Ventilation air supply shall be from outdoors or from a source outside the building by an exterior 

wall opening or from a source outside the building by a 2‐hour fire‐rated air transfer system. 

7.7.4 Ventilation air shall be provided to supply and discharge cooling air for radiator cooling of the EPS 

when running at rated load. 

7.7.4.1 Ventilation air supply and discharge for radiator‐cooled EPS shall have a maximum static 

restriction of 125 Pa (0.5 in. of water column) in the discharge duct at the radiator outlet. 

 

7.7.4.2 Radiator air discharge shall be ducted outdoors or to an exterior opening by a 2‐hour rated air 

transfer system. 

7.7.5 Motor‐operated dampers, when used, shall be spring operated to open and motor closed.  Fire 

dampers, shutter, or other self‐closing devices shall not be permitted in ventilation openings or 

ductwork for supply or return/discharge air to EPS equipment for Level 1 EPSS. 

7.7.6 Units housed outdoors shall be heated as specified in 5.3.5. 

7.7.7 Design of the heating, cooling, and ventilation system for the EPS equipment room shall include 

provision for factors including, but not limited to, the following: 

1) Heat 

2) Cold 

3) Dust 

4) Humidity 

5) Snow and ice accumulations around housings 

6) Louvers 

7) Remote radiator fans 

8) Prevailing winds blowing against radiator fan discharge air 

7.8 Installed EPS Cooling System. 

7.8.1 Makeup water hose bibs and floor drains, where required by other codes and standards, shall be 

installed in EPS equipment rooms. 

7.8.2 Where duct connections are used between the prime mover radiator and air‐out louvers, the ducts 

shall be connected to the prime movers by means of flexible sections. 

7.9 Fuel System. 

7.9.1 Fuel tanks shall be sized to accommodate the specific EPS class. 

7.9.1.1 All fuel tanks and systems intended for use with rotating engines shall be installed and 

maintained in accordance with NFPA 30, NFPA 37, NFPA 54, and NFPA 58. 

7.9.1.1…  All fuel tanks and systems for use with fuel cell power systems shall be installed and 

maintained in accordance with NFPA 2, NFPA 30, NFPA 31, NFPA 52, NFPA 54, NFPA 55, and NFPA 58. Commented [CP1]: Need to modify numbering 

7.9.1.2 Fuel system design shall provide for a supply of clean fuel to the prime mover energy converter. 

7.9.1.3 Tanks shall be sized so that the fuel is consumed within the storage life, or provisions shall be 

made to remediate fuel that is stale or contaminated or to replace stale or contaminated fuel with clean 

fuel. 

7.9.2 Fuel tanks shall be close enough to the prime mover energy converter fuel pump to meet the fuel 

system requirements, or a fuel transfer pump and day tank shall be provided. 

7.9.2.1 If the engine manufacturer’s fuel pump static head pressure limits are exceeded when the level 

of fuel in the tank is at a maximum, a day tank shall be utilized.  

7.9.3 Fuel piping shall be of compatible metal to minimize electrolysis and shall be properly sized, with 

vent and fill pipes located to prevent entry of groundwater or rain into the tank. 

7.9.3.1 Galvanized fuel lines shall not be used. 

7.9.3.2 Approved flexible fuel lines shall be used between the prime mover energy converter and the 

fuel piping. 

7.9.4 Day tanks on diesel systems shall be installed below the engine fuel return elevation. 

7.9.4.1 The return line to the day tank shall be below the fuel return elevation. 

7.9.4.2 Gravity fuel oil return lines between the day tank and the main supply tank shall be sized to 

handle the potential fuel flow and shall be free of traps so that fuel can flow freely to the main tank. 

7.9.5 Integral tanks of the following capacities shall be permitted inside or on roofs of structures, or as 

approved by the authority having jurisdiction: 

1) Maximum of 2498 L (660 gal) diesel fuel 

2) Maximum of 95 L (25 gal) gasoline fuel 

7.9.6 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be installed 

in accordance with the applicable standards. 

7.9.7 Where the gas supply is connected to the building gas supply system, it shall be connected on the 

supply side of the main gas shutoff valve and marked as supplying an emergency generator power 

source. 

7.9.8 The building’s main gas shutoff valve shall be marked or tagged to indicate the existence of the 

separate EPS shutoff valve. 

7.9.9 The fuel supply for gas‐fueled and liquid‐fueled prime movers energy converters shall be designed 

to meet the demands of the prime mover energy converter for all of the following factors, as applicable 

to the system: 

1) Sizing of fuel lines 

2) Valves, including manual shutoff 

3) Battery‐powered fuel solenoids 

4) Gas regulators 

5) Regulator vent piping 

6) Flexible fuel line section 

7) Fuel line filters 

8) Fuel vaporizers (LP‐gas) 

9) Ambient temperature effect of fuel tank vaporization rates of LP‐gas where applicable 

7.9.10 The fuel storage and supply lines for an EPSS shall be in accordance with this standard or with the 

specific authority having jurisdiction, or both. 

7.9.11 All manual fuel system valves shall be of the indicating type. 

7.9.12 Listed generator subbase secondary containment fuel tanks of 2498 L (660 gal) capacity and 

below shall be permitted to be installed outdoors or indoors without diking or remote impounding. 

7.9.12.1 A minimum clearance of 0.9 m (36 in.) shall be maintained on all sides. 

7.9.13 Automatically actuated valves shall not be permitted in the fuel oil supply or fuel oil return lines 

for Level 1 EPSSemergency power supply systems. 

7.10 Exhaust System. 

7.10.1 The exhaust system equipment and installation, including piping, muffler, and related accessories 

for combustion engines and gas turbines, shall be in accordance with NFPA 37 and other applicable 

standards. 

7.10…  The exhaust system equipment and installation, and related accessories for fuel cell power 

systems, shall be in accordance with NFPA 853 and other applicable standards. 

7.10.2 Exhaust system installation shall be gastight to prevent exhaust gas fumes from entering 

inhabited rooms or buildings and terminate in such a manner that toxic fumes cannot reenter a building 

or structure, particularly through windows, air ventilation inlets, or the engine air‐intake system. 

7.10.3  Exhaust piping shall be connected to the prime mover by means of a flexible connecter and shall 

be independently supported thereafter so that no damaging weight or stress is applied to the engine 

exhaust manifold or turbocharger. 

7.10…  Exhaust piping shall be connected to the fuel cell power system by means of a flexible connecter 

and shall be independently supported thereafter so that no damaging weight or stress is applied to the 

exhaust outlet. 

7.10.3.1 A condensate trap and drain valve shall be provided at the low point(s) of the piping unless the 

piping is self‐draining. 

7.10.3.2 Design consideration shall be given to thermal expansion and the resultant movement of the 

piping. 

Commented [CP2]: Need to modify numbering 

Commented [CP3]: Need to modify numbering 

7.10.3.3 For reciprocating engines, mufflers shall be placed as close as practicable to the engine, in a 

horizontal position if possible. 

7.10.3.4 An approved thimble(s) shall be used where exhaust piping passes through combustible walls 

or partitions. 

7.10.3.5 For reciprocating engines, the piping shall terminate in any of the following: 

1) Rain cap 

2) Tee 

3) Ell, pointing downwind from the prevailing wind 

4) Vertically upward‐oriented stack with suitable provisions for trapping and draining rain and snow 

water 

7.10.3.6 Design consideration shall be given to the potential heat effect due to proximity to all of the 

following: 

1) Conduit runs 

2) Fuel piping 

3) Lighting fixtures 

7.10.3.7 Design consideration shall be given to insulating the engine energy converter exhaust systems 

in buildings after the flexible section. 

7.10.4 For maximum efficiency, operation economy, and prevention of engine damage, the exhaust 

system shall be designed to eliminate excessive backpressure on the engine by properly selecting, 

routing, and installing the piping size, connections and muffler. 

7.10…  The fuel cell power system exhaust system shall be designed to eliminate excessive 

backpressure on the system by properly selecting, routing, and installing the piping size, connections 

and ducting. 

7.10.4.1 Exhaust systems shall be installed to ensure satisfactory EPS operation and meet the 

requirements of the manufacturer. 

7.11 Protection. 

7.11.1 The room in which the EPS equipment is located shall not be used for other purposes that are not 

directly related to the EPS.  Parts, tools, and manuals for routine maintenance and repair shall be 

permitted to be stored in the EPS room. 

7.11.2 Where fire suppression systems are installed in EPS equipment rooms or separate buildings, the 

following systems shall not be used: 

1) Carbon dioxide or halon systems, unless prime mover energy converter combustion air is taken from 

outside the structure 

Commented [CP4]: Adjust numbering 

2) An automatic dry chemical system, unless the manufacturers of the EPS certify that the dry chemical 

system cannot damage the EPS system, hinder its operation, or reduce its output. 

7.11.3 Where the EPS rooms or separate buildings are equipped with fire detection systems, the 

installation shall be in accordance with NFPA 72. 

7.11.4 Where outdoor and/or rooftop Level 1 EPS installations are required to be protected from 

lightning, the lightning protection system(s) shall be installed in accordance with NFPA 780. 

7.11.5 In recognized seismic risk areas, EPS and EPSS components, such as electrical distribution lines, 

water distribution lines, fuel distribution lines, and other components that serve the EPS, shall be 

designed to minimize damage from earthquakes and to facilitate repairs if an earthquake occurs. 

7.11.6 For systems in seismic risk areas, the EPS, transfer switches, distribution panels, circuit breakers, 

and associated controls shall be capable of performing their intended function after being subjected to 

the anticipated seismic shock. 

7.12 Distribution. 

7.12.1 The distribution and wiring systems within the EPSS shall be installed in accordance with NFPA 

70. 

7.12.2 Where EPSS’s are installed in health care facilities, the installation of the EPSS shall also be in 

compliance with NFPA 99. 

7.12.3 If the conduit’s point of attachment to the EPS is on the forcing function side of the EPS vibration 

isolation system, a flexible conduit section(s) shall be installed between the EPS unit(s) and any of the 

following, so attached: 

1) The transfer switch 

2) The control and annunciator wiring 

3) Any accessory supply wiring, such as jacket water heaters 

7.12.3.1 Stranded wire of adequate size shall be used to minimize breakage due to vibration. 

7.12.3.2 Bushings shall be installed to protect wiring from abrasion with conduit terminations. 

7.12.4 All ac‐powered support and accessory equipment necessary to the operation of the EPS shall be 

supplied from the load side of the ATS’s, or the output terminals of the EPS, ahead of the main EPS 

overcurrent protection to ensure continuity of the EPSS operation and performance. 

7.12.5 When used, the starting battery units shall be located next to the prime mover energy converter 

starter to minimize voltage drop. 

7.12.5.1 Battery cables shall be sized to minimize voltage drop in accordance with the manufacturer’s 

recommendations and accepted engineering practices. 

7.12.5.2 Battery charger output wiring shall be permanently connected to the primary side of the starter 

solenoid (positive) and the EPS frame (negative), or other grounding location. 

7.13 Installation Acceptance. 

7.13.1 Upon completion of the installation of the EPSS, the EPS shall be tested to ensure conformity to 

the requirements of the standard with respect to both power output and function. 

7.13.2 An on‐site acceptance test shall be conducted as a final approval test for all EPSSs. 

7.13.2.1 For new Level 1 installations, the EPSS shall not be considered as meeting this standard until 

the acceptance tests have been conducted and test requirements met. 

7.13.2.2 The test shall be conducted after completion of the installation with all EPSS accessory and 

support equipment in place and operating. 

7.13.3 The authority having jurisdiction shall be given advance notification of the time at which the 

acceptance test is to be performed so that the authority can witness the test. 

7.13.4 The EPSS shall perform within the limits specified in this standard. 

7.13.4.1 The on‐site installation acceptance test shall be conducted in accordance with 7.13.4.1.1 

through 7.13.4.1.4. 

7.13.4.1.1 In a new and unoccupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be initiated by 

opening all switches or circuit breakers supplying the normal power to the building or facility. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required.  

7.13.4.1.2 In an existing occupied building or facility, with the prime mover energy converter in a cold 

start condition and the emergency load at operating level, a normal power failure shall be simulated by 

operating at least one transfer switch test function or initiated by opening all switches or breakers 

supplying normal power to all ATSs that are part of the EPSS being commissioned by this initial 

acceptance test. 

7.13.4.1…  For fuel cell power systems that are continuously running, the cold start condition is not 

required. 

7.13.4.1.3 When the EPSS consists of paralleled EPSs, the system control function for paralleling and 

load shedding shall be verified in accordance with system design documentation. 

7.13.4.1.4 For engine generators, Tthe tests conducted in accordance with 7.13.4.1.1 and 7.13.4.1.2 

shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(12). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on start shall be observed and recorded. 

Commented [CP5]: Need to modify numbering 

Commented [CP6]: Need to modify numbering 

4) The cranking time until the prime mover starts and runs shall be observed and recorded. 

5) The time taken to reach operating speed shall be observed and recorded. 

6) The engine start function shall be confirmed by verifying operation of the initiating circuit of all 

transfer switches supplying EPSS loads. 

7) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

8) The voltage, frequency, and amperes shall be recorded. 

9) Where applicable, the prime mover oil pressure and water temperature shall be recorded. 

10) The load test with building load, or other loads that simulate the intended load as specified in 

Section 5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

11) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

12) The time delay on the prime mover cooldown period and shutdown shall be recorded. 

7.13.4.2 After completion of the test performed in 7.13.4.1, the prime mover shall be allowed to cool for 

not less than 5 minutes. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.  With 

full load applied, the coolant temperature of the generator set shall stabilize at a constant value relative 

to outdoor ambient temperature at least 30 minutes prior to completion of the test. 

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

starts the prime mover and, upon reaching rated rpm, picks up not less than 30 percent of the 

nameplate kW rating for the first 30 minutes, not less than 50 percent of the nameplate kW rating for 

the next 30 minutes, and 100 percent of the nameplate kW rating for the next 60 minutes, less 

applicable derating factors for site conditions. 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3 Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4 The data specified in 7.13.4.1(4), 7.13.4.1.4(5), and 7.13.4.1.4(7) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(10). 

7.13.4.3.5 The data specified in 7.13.4.1.4(8) and 7.13.4.1.4(9) shall be recorded at first load acceptance 

and every 15 minutes thereafter until the completion of the test period identified in 7.13.4.1.4(10). 

7.13.4.4 Any method recommended by the manufacturer for the cycle crank test shall be utilized to 

prevent the prime mover from running. 

7.13.4.4.1 The control switch shall be set at “run” to cause the prime mover to crank. 

7.13.4.4.2 The complete crank/rest cycle specified in 5.6.4.2 and Table 5.6.4.2 shall be observed. 

7.13.4.4.3 The battery charge rate shall be recorded at 5‐minute intervals for the first 15 minutes or 

until charge rate stabilization. 

7.13.4.5 All safeties specified in 5.6.5 and 5.6.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 1: It shall be permitted for the engine manufacturer to test and document overcrank, high 

engine temperature, low lube oil pressure and overspeed safeties prior to shipment.   

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on engine metering and demonstration that a failed sensor or circuit will not cause 

shutdown of the engine, further testing of the safeties is not required. 

7.13.4.1…. For continuously running fuel cell power systems, the tests conducted in accordance with 

7.13.4.1.1 and 7.13.4.1.2 shall be performed in accordance with 7.13.4.1.4(1) through 7.13.4.1.4(7). 

1) When the EPSS consists of paralleled EPSs, the quantity of EPSs intended to be operated 

simultaneously shall be tested simultaneously with building load for the test period identified in 

7.13.4.1(10). 

2) The test load shall be all loads that are served by the EPSS.  There is no minimum loading requirement 

for this portion of the test. 

3) The time delay on transfer shall be observed and recorded. 

4) The fuel cell operation shall be confirmed by verifying operation of the initiating circuit of all transfer 

switches supplying EPSS loads. 

5) The time taken to achieve a steady‐state condition with all switches transferred to the emergency 

position shall be observed and recorded. 

5) The voltage, frequency, and amperes shall be recorded. 

6) The load test with building load, or other loads that simulate the intended load as specified in Section 

5.4 shall be continued for not less than 1.5 hours, and the run time shall be recorded. 

7) When normal power is restored to the building or facility, the time delay on retransfer to normal 

power for each switch with a minimum setting of 5 minutes shall be recorded. 

7.13.4.3 A load shall be applied for a 2‐hour, full‐load test.  The building load shall be permitted to serve 

as part or all of the load, supplemented by a load bank of sufficient size to provide a load equal to 100 

percent of the nameplate kW rating of the EPS, less applicable derating factors for site conditions.   

7.13.4.3.1 This full‐load test shall be initiated after the test specified in 7.13.4.1.4 by any method that 

picks up not less than 30 percent of the nameplate kW rating for the first 30 minutes, not less than 50 

percent of the nameplate kW rating for the next 30 minutes, and 100 percent of the nameplate kW 

rating for the next 60 minutes, less applicable derating factors for site conditions. 

Commented [CP7]: Need to modify numbering 

Commented [CP8]: Need to modify numbering 

Commented [CP9]: Need to modify numbering 

7.13.4.3.2 A unity power factor shall be permitted for on‐site testing, provided that rated load tests at 

the rated power factor have been performed by the manufacturer of the EPS prior to shipment. 

7.13.4.3.3… Where the EPS is a paralleled multi‐unit EPS, each unit shall be permitted to be tested 

individually at its rating. 

7.13.4.3.4… The data specified in 7.13.4.1.4(3) and 7.13.4.1.4(4) shall be recorded at first load 

acceptance of the test period identified in 7.13.4.1.4(6). 

7.13.4.3.5… The data specified in 7.13.4.1.4(5) shall be recorded at first load acceptance and every 15 

minutes thereafter until the completion of the test period identified in 7.13.4.1.4(6). 

7.13.4.5 All safeties specified in 5.7.5 and 5.7.6 shall be tested on site as recommended by the 

manufacturer. 

Exception No. 2: Where the safety functions are proven to be fail‐safe as demonstrated by monitoring 

of normal conditions on fuel cell system metering and demonstration that a failed sensor or circuit will 

not cause shutdown of the energy converter, further testing of the safeties is not required. 

7.13.4.6 Items (1) through (4) shall be made available to the authority having jurisdiction at the time of 

the acceptance test: 

1) Evidence of the prototype test as specified in 5.2.1.2 (for Level 1 systems) 

2) For rotating equipment, Aa certified analysis as specified in 5.6.10.2 

3) A letter of compliance as specified in 5.6.10.5 or 5.7.8.1 

4) A manufacturer’s certification of a rated load test at rated power factor with the ambient 

temperature, altitude, and fuel grade recorded. 

 

 

 

 

 

 

 

 

Commented [CP10]: Need to modify numbering 

Commented [CP11]: Need to modify numbering 

Commented [CP12]: Need to modify numbering 

Commented [CP13]: Need to modify numbering 

Commented [CP14]: Need to modify numbering 

Public Comment No. 64-NFPA 110-2020 [ New Section after 8.2.4.1 ]

TITLE OF NEW CONTENT

8.2.5 F or Fuel Cell Systems, a Maintenance Manual should be provided per ANSI/CSA FC 1, Section 7.4.5.

Additional Proposed Changes

File Name Description Approved

Changes_to_NFPA_110_Chapter_8_for_submission_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group work on CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:18:24 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

48 of 120 5/7/2020, 4:56 PM

Chapter 8 Routine Maintenance and Operational Testing 8.1* General.

8.1.1 The routine maintenance and operational testing program shall be based on all of the

following:

(1) Manufacturer’s recommendations

(2) Instruction manuals

(3) Minimum requirements of this chapter

(4) The authority having jurisdiction

8.1.2 Consideration shall be given to temporarily providing a portable or alternate source

whenever the emergency generator is out of service and the criteria set forth in Section 4.3

cannot be met.

8.2* Manuals, Special Tools, and Spare Parts.

8.2.1 At least two sets of instruction manuals for all major components of the EPSS shall be

supplied by the manufacturer(s) of the EPSS and shall contain the following:

(1) A detailed explanation of the operation of the system

(2) Instructions for routine maintenance

(3) Detailed instructions for repair of the EPS and other major components of the EPSS

(4) An illustrated parts list and part numbers

(5) Illustrated and schematic drawings of electrical wiring systems, including operating and

safety devices, control panels, instrumentation, and annunciators

8.2.2 For Level 1 systems, instruction manuals shall be kept in a secure, convenient location,

one set near the equipment, and the other set in a separate location.

8.2.3 Special tools and testing devices necessary for routine maintenance shall be available for

use when needed.

8.2.4 Replacement for parts identified by experience as high mortality items shall be maintained

in a secure location(s) on the premises.

8.2.4.1 Consideration shall be given to stocking spare parts as recommended by the

manufacturer.

8.2.5 For Fuel Cell Systems, a Maintenance Manual should be provided per ANSI/CSA FC 1,

Section 7.4.5.

8.3 Maintenance and Operational Testing.

8.3.1* The EPSS shall be maintained to ensure to a reasonable degree that the system is

capable of supplying service within the time specified for the type and for the time duration

specified for the class.

8.3.2 A routine maintenance and operational testing program shall be initiated immediately after

the EPSS has passed acceptance tests or after completion of repairs that impact the operational

reliability of the system.

8.3.2.1 The operational test shall be initiated at an ATS and shall include testing of each EPSS

component on which maintenance or repair has been performed, including the transfer of each

automatic and manual transfer switch to the alternate power source, for a period of not less

than 30 minutes under operating temperature.

8.3.3 A written schedule for routine maintenance and operational testing of the EPSS shall be

established.

8.3.4* Transfer switches shall be subjected to a maintenance and testing program that includes

all of the following operations:

(1) Checking of connections

(2) Inspection or testing for evidence of overheating and excessive contact erosion

(3) Removal of dust and dirt

(4) Replacement of contacts when required

8.3.5* Paralleling gear shall be subject to an inspection, testing, and maintenance program that

includes all of the following operations:

(1) Checking connections

(2) Inspecting or testing for evidence of overheating and excessive contact erosion

(3) Removing dust and dirt

(4) Replacing contacts when required

(5) Verifying that the system controls will operate as intended

8.3.6* Storage batteries, including electrolyte levels or battery voltage, used in connection with

systems shall be inspected weekly and maintained in full compliance with manufacturer's

specifications.

8.3.6.1 Maintenance of lead-acid batteries shall include the monthly testing and recording of

electrolyte specific gravity. Battery conductance testing shall be permitted in lieu of the testing

of specific gravity when applicable or warranted.

8.3.6.2 Defective batteries shall be replaced immediately upon discovery of defects.

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM standards

or the manufacturer’s recommendations.

8.4 Operational Inspection and Testing.

8.4.1* EPSSs, including all appurtenant components, shall be inspected weekly and exercised

under load at least monthly.

8.4.1.1 If the generator set is used for standby power or for peak load shaving, such use shall be

recorded and shall be permitted to be substituted for scheduled operations and testing of the

generator set, providing the same record as required by 8.3.4.5.

8.4.1.2 If a continually operating fuel cell system is used for standby power or for peak load

shaving, such use shall be recorded and shall be permitted to be substituted for scheduled

operations and testing of the fuel cell system, providing the same record as required by 8.5.

8.4.2* Generator sets in service shall be exercised at least once monthly, for a minimum of 30

minutes, using one of the following methods:

(1) Loading that maintains the minimum exhaust gas temperatures as recommended by the

manufacturer

(2) Under operating temperature conditions and at not less than 30 percent of the EPS standby

nameplate kW rating

8.4.2.1 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.2 Equivalent loads used for testing shall be automatically replaced with the emergency

loads in case of failure of the primary source.

8.4.2.3* Diesel-powered EPS installations that do not meet the requirements of 8.4.2 shall be

exercised monthly with the available EPSS load and shall be exercised annually with

supplemental loads at not less than 50 percent of the EPS nameplate kW rating for 30

continuous minutes and at not less than 75 percent of the EPS nameplate kW rating for 1

continuous hour for a total test duration of not less than 1.5 continuous hours.

8.4.2.3.14 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.43.2.1 Equivalent loads used for testing shall be automatically replaced with the

emergency loads in case of failure of the primary source.

8.4.3 The EPS test shall be initiated by simulating a power outage using the test switch(es) on

the ATSs or by opening a normal breaker. Opening a normal breaker shall not be required.

8.4.3.1* Where multiple ATSs are used as part of an EPSS, the monthly test initiating ATSs shall

be rotated to verify the starting function on each ATS.

8.4.4 Load tests of generator sets shall include complete cold starts. An EPS that is continually

running as an energy source meets this requirement.

8.4.5 Time delays shall be set as follows:

(1) Time delay on start:

(a) 1 second minimum

(b) 0.5 second minimum for gas turbine units

(2) Time delay on transfer to emergency: no minimum required

(3) Time delay on restoration to normal: 5 minutes minimum

(4) Time delay on shutdown: 5 minutes minimum

8.4.6 Transfer switches shall be operated monthly.

8.4.6.1* The monthly test of a transfer switch shall consist of electrically operating the transfer

switch from the primary position to the alternate position and then a return to the primary

position.

8.4.6.2 The criteria set forth in Section 4.3 and in Table 4.1(b) shall not be required during the

monthly testing of the EPSS. If the criteria are not met during the monthly test, a process shall

be provided to annually confirm the capability of the system to comply with Section 4.3.

8.4.7* EPSS circuit breakers for Level 1 system usage, including main and feed breakers

between the EPS and the transfer

switch load terminals, shall be exercised annually with the EPS in the “off” position.

8.4.7.1 Circuit breakers rated in excess of 600 volts for Level 1 system usage shall be exercised

every 6 months and shall be tested under simulated overload conditions every 2 years.

8.4.8 EPSS components shall be maintained and tested by qualified person(s).

8.4.9* Level 1 EPSS shall be tested at least once within every 36 months.

8.4.9.1 Level 1 EPSS shall be tested continuously for the duration of its assigned class (see

Section 4.2).

8.4.9.2 Where the assigned class is greater than 4 hours, it shall be permitted to terminate the

test after 4 continuous hours.

8.4.9.3 The test shall be initiated by operating at least one transfer switch test function and then

by operating the test function of all remaining ATSs, or initiated by opening all switches or

breakers supplying normal power to all ATSs that are part of the EPSS being tested.

8.4.9.4 A power interruption to non-EPSS loads shall not be required.

8.4.9.5 The minimum load for this test shall be as specified in 8.4.9.5.1 - , 8.4.9.5.2, or 8.4.9.5.43.

8.4.9.5.1* For a diesel-powered EPS, loading shall be not less than 30 percent of the nameplate

kW rating of the EPS. A supplemental load bank shall be permitted to be used to meet or exceed

the 30 percent requirement.

8.4.9.5.2 For a diesel-powered EPS, loading shall be that which maintains the minimum exhaust

gas temperatures as recommended by the manufacturer.

8.4.9.5.3 For spark-ignited EPSs, loading shall be the available EPSS load.

8.4.9.5.4 For fuel cell system EPSs, loading shall be the available EPSS load.

8.4.9.6 The test required in 8.4.9 shall be permitted to be combined with one of the monthly

tests required by 8.4.2 and one of the annual tests required by 8.4.2.3 as a single test.

8.4.9.7* Where the test required in 8.4.9 is combined with the annual load bank test, the first

portion of the test shall be at not less than the minimum loading required by 8.4.9.5, the last

hour shall be at not less than 75 percent of the nameplate kW rating of the EPS, and the

duration of the test shall be in accordance with 8.4.9.1 and 8.4.9.2.

Commented [EP1]: Added

Public Comment No. 3-NFPA 110-2020 [ New Section after 8.3.7 ]

8.3.8

A written fuel mainteance plan shall be on file and contain elements necessary to test, inspect, maintain,recieve, remove, remidiate, and provide stability/useability for all fuel for emergency generator useage. Additionally, the plan must also include provisions for spill response, emergency procedures, and disasterresupplies.

Statement of Problem and Substantiation for Public Comment

Inherently, anytime there is no guidance - nothing will be done. in 8.3.3 it specifies a written schedule for testing of EPSS - why? why not just say test your EPSS and not tell them why or how? The answer is because it doesn't work. Too often (85% of all inspected) do not have any kind of plan from the generator to the tank, the generator is well maintained but not the fuel or UST/AST and it is starting to catch up to the industry. The requirement to have a plan is not specific to any one group or any bias, it just ensures that the maintenance and the testing is on the forefront and is being conducted which WILL save lives.

Related Item

• Public Input No. 29-NFPA 110-2019 [Section No. 8.3.7]

Submitter Information Verification

Submitter Full Name: Mark Worden

Organization: Fuel Services Group

Street Address:

City:

State:

Zip:

Submittal Date: Mon Feb 17 10:34:02 EST 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

49 of 120 5/7/2020, 4:56 PM

Public Comment No. 14-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular tes ng shall begin the day of installa on and first fill in order to establish

a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bo om at least

weekly and for degrada on and contamina on no less than twice annually, with a minimum of six months between

tes ng. All tes ng shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM

D7464 for microbial contamina on) and meet engine manufacturer requirements. Fuel tes ng shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bo oms shall be monitored for water at least weekly. If water is detected it is to be removed

immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamina on shall include at minimum, Microbial Contamina on per guidelines referenced under

ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentra on (ASTM D7371).   Similar,

modified, and proven methods recognized under ASTM shall be accepted.   For acceptable values consult with the

engine manufacturer and most current ASTM test documents ‐ ASTM D975, and the Appendix of ASTM D975,

Standard Specifica on for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecu vely for 12 months or longer, a diesel fuel stability test shall be performed

annually for degrada on. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing

up to a biodiesel blend of 5% and less. Addi onal methods may be acceptable, refer to most current ASTM test

documents ‐ ASTM D975, and the Appendix of ASTM D975,  Standard Specifica on for Diesel Fuel Oils.

8.3.7.4 – Any addi onal tes ng requirements shall be determined by equipment manufacturer, government

regula ons, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A, ASTM D975

Appendix, and the CRC Report No. 667,  Diesel Fuel Storage and Handling Guide  for detailed tes ng and

descrip ons.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the tes ng listed in 8.3.7.2, the fuel shall be

remediated to bring back to the required fuel quality for long‐term storage specified under ASTM. Remedia on may

be in the form of fuel addi ves, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test

results received.

8.3.7.5.1 ‐ To ensure that remedia on has had the intended effect on fuel quality, fuel system condi on, or both, any

remedia on effort shall include post‐treatment sampling and tes ng. Sampling and tes ng performed would only

need to reflect what ini ally failed.

8.3.7.5.2 ‐ The op mal period for post‐remedia on sampling and tes ng is between 3‐days and 14‐days a er

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contribu ng to the need for remedia on have been addressed, best

prac ce is to subsequently sample and test monthly for three months.”

Statement of Problem and Substantiation for Public Comment

I fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

50 of 120 5/7/2020, 4:56 PM

Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard

Related Item

• Fuel testing Recommended Changes

Submitter Information Verification

Submitter Full Name: Jerry Dawson

Organization: Keystone Materials Testing Inc

Street Address:

City:

State:

Zip:

Submittal Date: Mon Apr 20 16:35:44 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

51 of 120 5/7/2020, 4:56 PM

Public Comment No. 16-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular tes ng shall begin the day of installa on and first fill in order to establish a

benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bo om at least

weekly and for degrada on and contamina on no less than twice annually, with a minimum of six months between

tes ng. All tes ng shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM

D7464 for microbial contamina on) and meet engine manufacturer requirements. Fuel tes ng shall be performed

on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bo oms shall be monitored for water at least weekly. If water is detected it is to be removed

immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamina on shall include at minimum, Microbial Contamina on per guidelines referenced

under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentra on (ASTM D7371).   Similar,

modified, and proven methods recognized under ASTM shall be accepted.   For acceptable values consult with the

engine manufacturer and most current ASTM test documents ‐ ASTM D975, and the Appendix of ASTM D975,

Standard Specifica on for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecu vely for 12 months or longer, a diesel fuel stability test shall be performed

annually for degrada on. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing

up to a biodiesel blend of 5% and less. Addi onal methods may be acceptable, refer to most current ASTM test

documents ‐ ASTM D975, and the Appendix of ASTM D975,  Standard Specifica on for Diesel Fuel Oils.

8.3.7.4 – Any additional testing requirements shall be determined by equipment manufacturer, governmentregulations, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A,ASTM D975 Appendix, and the CRC Report No. 667, Diesel Fuel Storage and Handling Guide fordetailed testing and descriptions.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the tes ng listed in 8.3.7.2, the fuel shall be

remediated to bring back to the required fuel quality for long‐term storage specified under ASTM. Remedia on may

be in the form of fuel addi ves, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test

results received.

8.3.7.5.1 ‐ To ensure that remedia on has had the intended effect on fuel quality, fuel system condi on, or both,

any remedia on effort shall include post‐treatment sampling and tes ng. Sampling and tes ng performed would

only need to reflect what ini ally failed.

8.3.7.5.2 ‐ The op mal period for post‐remedia on sampling and tes ng is between 3‐days and 14‐days a er

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contribu ng to the need for remedia on have been addressed, best

prac ce is to subsequently sample and test monthly for three months.

Additional Proposed Changes

File Name Description Approved

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

52 of 120 5/7/2020, 4:56 PM

6_Month_Old_Fuel_-_6_Month_Old_Generator_-_Water_Sediment_Microbes.jpg

This is fuel from a 6 month old, newly installed emergency generator for a waste water facility. It's a 1,500 gallon fuel tank. The generator has not even been used in an emergency yet. Fuel is also only 6 months old - visible water, sediment and positive for bacteria. If this can happen to a brand new unit within 6 months, imagine what else is out there. Annual sampling IS NOT enough

Statement of Problem and Substantiation for Public Comment

As an advocate for the On-Site Power Industry who has been working with over 30 diesel fuel industry professionals over the last 2 years in regards to determining an industry consensus on proper fuel maintenance, I would request that the original revision of Chapter 8.3.7 that was submitted by the NFPA Fuels Task Force in August 2019 to the 110 Technical Committee be adopted in its entirety into NFPA 110 for the 2022 Edition.

It is incredibly important fuel sampling be done at a minimum every 6 months in order to ensure the reliability and operability of diesel fuel in a long term storage application (picture from 6 month old generator with 6 month old fuel attached with visible water, sediment, and microbial contamination).

The current edition is too vague - no specific fuel tests required, leaving too much open to interpretation. There is no current follow up process or maintenance requirements, and ASTM D975 testing refers to new fuel, not long term storage.

The submission provided by the Fuels Taskforce in August 2019 represented an industry consensus as to the minimum requirements for proper diesel fuel maintenance in long term storage applications which took years to compile. It provides uniformity in the marketplace which will ultimately protect the end user as each service provider will have a minimum guideline to follow which covers what is most important in monitoring the condition of the fuel rather than relying on inconsistent quotes that reflect each lab or service provider's interpretation as to what NFPA 110 fuel testing should include.

It would be a privilege to present what I have been seeing across the industry when it comes to diesel fuel and discuss my stance at the next Technical Committee meeting. I review lab results daily, and educate and meet with end users regarding the importance of ongoing diesel fuel maintenance. The end users are asking for more direction, and more education on this topic.

Thank you!

RelatedItem

• Support of EGSA Fuels Committee Working Group & NFPA Fuels Taskforce submissions toTechnical Committee

Submitter Information Verification

Submitter FullName:

Michelle Hilger

Organization: Mongoose Power Solutions

Affiliation:Advocate & Liaison for many On-Site Power Industry Dealers /Service Providers across the country

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 08:29:04 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

53 of 120 5/7/2020, 4:56 PM

Public Comment No. 17-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular tes ng shall begin the day of installa on and first fill in order to establish a

benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bo om at least

weekly and for degrada on and contamina on no less than twice annually, with a minimum of six months between

tes ng. All tes ng shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM

D7464 for microbial contamina on) and meet engine manufacturer requirements. Fuel tes ng shall be performed

on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bo oms shall be monitored for water at least weekly. If water is detected it is to be removed

immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamina on shall include at minimum, Microbial Contamina on per guidelines referenced

under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentra on (ASTM D7371).   Similar,

modified, and proven methods recognized under ASTM shall be accepted.   For acceptable values consult with the

engine manufacturer and most current ASTM test documents ‐ ASTM D975, and the Appendix of ASTM D975,

Standard Specifica on for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecu vely for 12 months or longer, a diesel fuel stability test shall be performed

annually for degrada on. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing

up to a biodiesel blend of 5% and less. Addi onal methods may be acceptable, refer to most current ASTM test

documents ‐ ASTM D975, and the Appendix of ASTM D975,  Standard Specifica on for Diesel Fuel Oils.

8.3.7.4 – Any addi onal tes ng requirements shall be determined by equipment manufacturer, government

regula ons, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A, ASTM D975

Appendix, and the CRC Report No. 667,  Diesel Fuel Storage and Handling Guide  for detailed tes ng and

descrip ons.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the tes ng listed in 8.3.7.2, the fuel shall be

remediated to bring back to the required fuel quality for long‐term storage specified under ASTM. Remedia on may

be in the form of fuel addi ves, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test

results received.

8.3.7.5.1 ‐ To ensure that remedia on has had the intended effect on fuel quality, fuel system condi on, or both,

any remedia on effort shall include post‐treatment sampling and tes ng. Sampling and tes ng performed would

only need to reflect what ini ally failed.

8.3.7.5.2 ‐ The op mal period for post‐remedia on sampling and tes ng is between 3‐days and 14‐days a er

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contribu ng to the need for remedia on have been addressed, best

prac ce is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

54 of 120 5/7/2020, 4:56 PM

appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Standard

Submitter Information Verification

Submitter Full Name: Salim Rowe

Organization: Semler Industries

Affiliation: EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 10:09:17 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

55 of 120 5/7/2020, 4:56 PM

Public Comment No. 18-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular tes ng shall begin the day of installa on and first fill in order to establish a

benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bo om at least

weekly and for degrada on and contamina on no less than twice annually, with a minimum of six months between

tes ng. All tes ng shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM

D7464 for microbial contamina on) and meet engine manufacturer requirements. Fuel tes ng shall be performed

on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bo oms shall be monitored for water at least weekly. If water is detected it is to be removed

immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamina on shall include at minimum, Microbial Contamina on per guidelines referenced

under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentra on (ASTM D7371).   Similar,

modified, and proven methods recognized under ASTM shall be accepted.   For acceptable values consult with the

engine manufacturer and most current ASTM test documents ‐ ASTM D975, and the Appendix of ASTM D975,

Standard Specifica on for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecu vely for 12 months or longer, a diesel fuel stability test shall be performed

annually for degrada on. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing

up to a biodiesel blend of 5% and less. Addi onal methods may be acceptable, refer to most current ASTM test

documents ‐ ASTM D975, and the Appendix of ASTM D975,  Standard Specifica on for Diesel Fuel Oils.

8.3.7.4 – Any addi onal tes ng requirements shall be determined by equipment manufacturer, government

regula ons, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A, ASTM D975

Appendix, and the CRC Report No. 667,  Diesel Fuel Storage and Handling Guide  for detailed tes ng and

descrip ons.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the tes ng listed in 8.3.7.2, the fuel shall be

remediated to bring back to the required fuel quality for long‐term storage specified under ASTM. Remedia on may

be in the form of fuel addi ves, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test

results received.

8.3.7.5.1 ‐ To ensure that remedia on has had the intended effect on fuel quality, fuel system condi on, or both,

any remedia on effort shall include post‐treatment sampling and tes ng. Sampling and tes ng performed would

only need to reflect what ini ally failed.

8.3.7.5.2 ‐ The op mal period for post‐remedia on sampling and tes ng is between 3‐days and 14‐days a er

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contribu ng to the need for remedia on have been addressed, best

prac ce is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

56 of 120 5/7/2020, 4:56 PM

appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Standard

Submitter Information Verification

Submitter Full Name: Christina Chmielewski

Organization: Semler Indusries

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 11:01:50 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

57 of 120 5/7/2020, 4:56 PM

Public Comment No. 19-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular tes ng shall begin the day of installa on and first fill in order to establish

a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bo om at least

weekly and for degrada on and contamina on no less than twice annually, with a minimum of six months between

tes ng. All tes ng shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM

D7464 for microbial contamina on) and meet engine manufacturer requirements. Fuel tes ng shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bo oms shall be monitored for water at least weekly. If water is detected it is to be removed

immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamina on shall include at minimum, Microbial Contamina on per guidelines referenced under

ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentra on (ASTM D7371).   Similar,

modified, and proven methods recognized under ASTM shall be accepted.   For acceptable values consult with the

engine manufacturer and most current ASTM test documents ‐ ASTM D975, and the Appendix of ASTM D975,

Standard Specifica on for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecu vely for 12 months or longer, a diesel fuel stability test shall be performed

annually for degrada on. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing

up to a biodiesel blend of 5% and less. Addi onal methods may be acceptable, refer to most current ASTM test

documents ‐ ASTM D975, and the Appendix of ASTM D975,  Standard Specifica on for Diesel Fuel Oils.

8.3.7.4 – Any addi onal tes ng requirements shall be determined by equipment manufacturer, government

regula ons, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A, ASTM D975

Appendix, and the CRC Report No. 667,  Diesel Fuel Storage and Handling Guide  for detailed tes ng and

descrip ons.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the tes ng listed in 8.3.7.2, the fuel shall be

remediated to bring back to the required fuel quality for long‐term storage specified under ASTM. Remedia on may

be in the form of fuel addi ves, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test

results received.

8.3.7.5.1 ‐ To ensure that remedia on has had the intended effect on fuel quality, fuel system condi on, or both, any

remedia on effort shall include post‐treatment sampling and tes ng. Sampling and tes ng performed would only

need to reflect what ini ally failed.

8.3.7.5.2 ‐ The op mal period for post‐remedia on sampling and tes ng is between 3‐days and 14‐days a er

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contribu ng to the need for remedia on have been addressed, best

prac ce is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

58 of 120 5/7/2020, 4:56 PM

guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Standard

Submitter Information Verification

Submitter Full Name: Loren Semler

Organization: Semler Industries, Inc.

Affiliation: EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 13:21:06 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

59 of 120 5/7/2020, 4:56 PM

Public Comment No. 2-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least semi- annually using appropriate ASTM tests to ensure thequality of the fuel is sufficient for operational use. If the fuel quality is below the ASTM standards or themanufacturer’s recommendations. for the tests, the fuel must be treated to bring it up to ASTM qualitystandards or removed and replaced with fresh fuel. ASTM tests should include D1298 API Gravity, D13004Corrosion Copper Strip, D86 Distillation 90% Revovery, D93 Flash Point, D5453 Sulfur, D2709 Sediment &Water, D6304 Suspended Water, D976 Cetane Index (if below 40 cetane index and fuel is treated withadditive, you must test with D613 Cetane Number), Microbial Positive/Negative, and D6217 Particle Count.

Statement of Problem and Substantiation for Public Comment

Diesel fuel does not last as long as it has in the past, hospitals are not able to sustain operations with poor fuel. BP estimates that their diesel fuel will last 6-9 months before noticeable degradation occurs and 3-6 months for bio-diesel. It is common knowledge to ask for no bio-diesel in stored fuel, however, distributors are allowed by law to have up to 5% bio-diesel in your fuel without notifying the customer. Without any wording about testing or what to test we are leaving healthcare facilities vulnerable , where there is no standard - people die. What tests will show that the fuel is good enough to be used, prevent unnecessary corrosion, contains very little water, no biological/algae, and has enough cetane (BTU's) to keep the facility functioning in the event of an emergency. We spell out all the things that the generator must do and be tested to ensure it works when needed, it cannot work without good fuel. I have seen where people just hold the fuel up and call it good and that is doing a disservice to those relying on this for assurance that things are in working order.

Related Item

• Public Input No. 29-NFPA 110-2019 [ Section No. 8.3.7 ]

Submitter Information Verification

Submitter Full Name: Mark Worden

Organization: Fuel Services Group

Street Address:

City:

State:

Zip:

Submittal Date: Fri Feb 14 13:01:02 EST 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

60 of 120 5/7/2020, 4:56 PM

Public Comment No. 20-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular testing shall on the first fill in order to establish a benchmark

guideline for future comparison. Diesel fuel shall be monitored for water on the tank bottom at least

monthly and for degradation and contamination no less than once annually, with a minimum of one

year between testing. All testing shall be performed using ASTM approved test methods (ASTM D4057 for

fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer requirements.

Fuel testing shall be performed on the primary fuel tank only.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least monthly. If water is detected it is to

be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable,

refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable,

refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days

after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an active EGSA member, I fully support the basis and intent for the revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 needs to be expanded beyond

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

61 of 120 5/7/2020, 4:56 PM

identifying a sample as diesel fuel. I think we need to continue annual fuel sampling and laboratory analysis and we need to expanded and add specific language with regard to chemical & mechanical fuel treatments, retesting after a failed test and the procedure for testing. This is critical to our industry and the emergency systems we support.

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Bill Keppel

Organization: Davidson Sales Company

Affiliation: EGSA Member

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 15:06:50 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

62 of 120 5/7/2020, 4:56 PM

Public Comment No. 22-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order toestablish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tankbottom at least weekly and for degradation and contamination no less than twice annually, with a minimumof six months between testing. All testing shall be performed using ASTM approved test methods (ASTMD4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturerrequirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to beremoved immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelinesreferenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. Foracceptable values consult with the engine manufacturer and most current ASTM test documents - ASTMD975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable,refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable,refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuelshall be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, andwill dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, orboth, any remediation effort shall include post-treatment sampling and testing. Sampling and testingperformed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-daysafter treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

63 of 120 5/7/2020, 4:56 PM

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Ken Cockerham

Organization: FPC of Nashville

Affiliation: Member, Electrical Generating Systems Association (EGSA)

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 15:55:56 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

64 of 120 5/7/2020, 4:56 PM

Public Comment No. 23-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to

establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank

bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum of

six months between testing. All testing shall be performed using ASTM approved test methods (ASTM

D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer

requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be

removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall

be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days after

treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

65 of 120 5/7/2020, 4:56 PM

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

66 of 120 5/7/2020, 4:56 PM

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

67 of 120 5/7/2020, 4:56 PM

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

68 of 120 5/7/2020, 4:56 PM

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

69 of 120 5/7/2020, 4:56 PM

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

70 of 120 5/7/2020, 4:56 PM

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

71 of 120 5/7/2020, 4:56 PM

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

72 of 120 5/7/2020, 4:56 PM

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

73 of 120 5/7/2020, 4:56 PM

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

74 of 120 5/7/2020, 4:56 PM

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

75 of 120 5/7/2020, 4:56 PM

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

76 of 120 5/7/2020, 4:56 PM

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

77 of 120 5/7/2020, 4:56 PM

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

78 of 120 5/7/2020, 4:56 PM

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

79 of 120 5/7/2020, 4:56 PM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

80 of 120 5/7/2020, 4:56 PM

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

81 of 120 5/7/2020, 4:56 PM

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

82 of 120 5/7/2020, 4:56 PM

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

83 of 120 5/7/2020, 4:56 PM

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

84 of 120 5/7/2020, 4:56 PM

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

85 of 120 5/7/2020, 4:56 PM

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

86 of 120 5/7/2020, 4:56 PM

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

87 of 120 5/7/2020, 4:56 PM

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

88 of 120 5/7/2020, 4:56 PM

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

89 of 120 5/7/2020, 4:56 PM

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

90 of 120 5/7/2020, 4:56 PM

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

91 of 120 5/7/2020, 4:56 PM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

92 of 120 5/7/2020, 4:56 PM

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

93 of 120 5/7/2020, 4:56 PM

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

94 of 120 5/7/2020, 4:56 PM

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

95 of 120 5/7/2020, 4:56 PM

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill

in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored

for water on the tank bottom at least weekly and for degradation and contamination no less than

twice annually, with a minimum of six months between testing. All testing shall be performed using

ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial

contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on

all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel

shall be remediated to bring back to the required fuel quality for long-term storage specified under

ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel

replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling

and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

96 of 120 5/7/2020, 4:56 PM

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Lanny Slater

Organization: Gen Tech

Affiliation: Member of EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Tue Apr 28 17:07:31 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

97 of 120 5/7/2020, 4:56 PM

Public Comment No. 24-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

– Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to

establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank

bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum

of six months between testing. All testing shall be performed using ASTM approved test methods (ASTM

D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer

requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be

removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall

be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days

after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However,

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

98 of 120 5/7/2020, 4:56 PM

it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Nemesio Marrero

Organization: Davidson Sales Company

Affiliation: Member Of EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Wed Apr 29 09:52:50 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

99 of 120 5/7/2020, 4:56 PM

Public Comment No. 25-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to

establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank

bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum

of six months between testing. All testing shall be performed using ASTM approved test methods (ASTM

D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer

requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be

removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall

be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days

after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However,

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

100 of 120 5/7/2020, 4:56 PM

it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Carlos Cifuentes

Organization: Davidson Sales Co.

Affiliation: EGSA Member

Street Address:

City:

State:

Zip:

Submittal Date: Wed Apr 29 13:33:44 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

101 of 120 5/7/2020, 4:56 PM

Public Comment No. 26-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to

establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank

bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum

of six months between testing. All testing shall be performed using ASTM approved test methods (ASTM

D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer

requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be

removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall

be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days

after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However,

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

102 of 120 5/7/2020, 4:56 PM

it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

Submitter Full Name: Lyndon Risser

Organization: DynaTech Generators

Affiliation: EGSA Member

Street Address:

City:

State:

Zip:

Submittal Date: Wed Apr 29 14:23:54 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

103 of 120 5/7/2020, 4:56 PM

Public Comment No. 27-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order toestablish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tankbottom at least weekly and for degradation and contamination no less than twice annually, with a minimumof six months between testing. All testing shall be performed using ASTM approved test methods (ASTMD4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturerrequirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to beremoved immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelinesreferenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. Foracceptable values consult with the engine manufacturer and most current ASTM test documents - ASTMD975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, referto most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, referto most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shallbe remediated to bring back to the required fuel quality for long-term storage specified under ASTM.Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, andwill dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, orboth, any remediation effort shall include post-treatment sampling and testing. Sampling and testingperformed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-daysafter treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• EGSA Fuel Working Group Submission

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

104 of 120 5/7/2020, 4:56 PM

Submitter Information Verification

Submitter Full Name: John Terry

Organization: EE&O, LLC.

Affiliation: Member of EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Thu Apr 30 09:21:38 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

105 of 120 5/7/2020, 4:56 PM

Note the following was produced by a Task group in response to Chair request on CI-9 Change are highlighted and total text will be up loaded with each submission. This is only CH 5 changes 5.2 Energy Converters — General.

5.2.1 Energy converters shall consist only of rotating equipment as indicated in 5.2.4.

5.2.1.1 Level 1 energy converters shall be representative products built from components that have proven

compatibility and reliability and are coordinated to operate as a unit.

5.2.1.1.1 Fuel Cell systems utilized as Level 1 energy converters shall be listed or field labeled to ANSI / CSA

FC1 .

5.2.1.2 The capability of the energy converter, with its controls and accessories, to survive without damage from

common and abnormal disturbances in actual load circuits shall be demonstrable demonstrated by tests on

separate prototype models, or by acceptable tests on the system components as performed by the component

suppliers, or by tests performed in the listing process for the assembly.

5.2.1.3 A separate prototype unit for a rotating type EPS shall be permitted to be utilized in a Level 1 or Level 2

installation, provided that all prototype tests produce no deleterious effects on the unit, and the authority having

jurisdiction, the owner, and the user are informed that the unit is the prototype test unit.

5.2.2* The A rotating equipment prototype unit shall be tested with all typical prime mover accessories that

affect its power output in place and operating, including, but not limited to, the following:

(1) Battery-charging alternator

(2) Water pump

(3) Radiator fan for unit-mounted radiators or oil coolers (or comparable load)

(4) Fuel pump and fuel filter(s)

(5) Air filter(s)

(6) Exhaust mufflers or restriction simulating the maximum backpressure recommended by the prime mover

manufacturer

5.2.3 The energy converter for Level 1 systems shall be specifically designed, assembled, and tested to ensure

system operation under the following conditions:

(1) Short circuits

(2) Load surges due to motor starting

(3) Elevator operations

(4) Silicon controlled rectifier (SCR) controllers

(5) X-ray Imaging equipment

(6) Overspeed, overtemperature, or overload

(7) Adverse environmental conditions

5.2.4 EPS

5.2.4.1 EPS utilizing Rrotating equipment shall consist of a generator driven by one of the following prime mover

types:

(1) Otto cycle (spark ignited)

(2) Diesel cycle

(3) Gas turbine cycle

5.2.4.2 EPS utilizing fuel cell systems shall consist of one or more of the following types:

(1) Proton exchange membrane (PEMFC)

(2) Solid oxide (SOFC)

(3) Molten carbonate (MCFC)

(4) Phosphoric acid (PAFC)

(5) Alkaline (AFC)

5.2.4.2.3 For EPS utilizing rotating equipment, Oother types of prime movers and their associated equipment

meeting the applicable performance requirements of this standard shall be permitted, if acceptable to the

authority having jurisdiction.

5.2.4. 2.3 Where used for Level 1 applications, the a prime mover shall not mechanically drive any equipment

other than its operating accessories and its generator. A fuel cell system shall not energize any other equipment

other than its operating accessories necessary to provide power for the Level 1 application.

5.2.5 The EPS shall be installed in accordance with NFPA 70, National Electrical Code.

5.2.5.1A fuel cell system EPS shall also be installed in accordance with NFPA 853, Installation Standard for

Stationary Fuel Cell Power Systems.

5.3 Energy Converters — Temperature Maintenance.

5.3.1 The EPS shall be heated as necessary to maintain the water jacket and battery temperature determined by

the EPS manufacturer for cold start and load acceptance for the type of EPSS.

5.3.1.1 A fuel cell system type EPS shall be provided with a thermal management system determined sufficient

in accordance with its listing and intended installation location for cold start, if applicable, and load acceptance

for the type of EPSS.

5.3.2 All prime mover heaters shall be automatically deactivated while the prime mover is running. (For

combustion turbines, see 5.3.5.)

5.3.2.1 Air-cooled prime movers shall be permitted to employ a heater to maintain lubricating oil temperature as

recommended by the prime mover manufacturer.

5.3.3 Antifreeze protection shall be provided according to the manufacturer's recommendations.

5.3.4 Ether-type starting aids shall not be permitted.

5.3.5 The ambient air temperature in the EPS equipment room or outdoor housing containing Level I rotating

equipment shall be not less than 4.5°C (40°F).

5.3.6 Fuel cell systems EPS shall be provided with a thermal management system in accordance with its listing.

Fuel cell system EPS shall be installed in accordance with their its listing and manufacturer’s recommended

installation instructions and specifications.

*A5.3.6 The type of thermal management system utilized by a fuel cell system will will be permitted to vary

depending upon the type of fuel cell system and the limitations of its intended installation (e.g. outdoors or

indoors in a controlled environment). Therefore, the fuel cell system is to be installed in accordance with the

manufacturer’s recommended installation instructions and system specifications, and in accordance with its

listing. The ability of the thermal management system to maintain the fuel cell system within its operating

parameters in accordance with its intended installation environment are evaluated as part of its listing.

5.4* Energy Converters — Capacity. The energy converters shall have the required capacity and response to

pick up and carry the load within the time specified in Table 4.1(b) after loss of primary power.

5.5 Energy Converters — Fuel Supply.

5.5.1 The fuel supplies specified in 5.1.1(1) and 5.1.1(2) for energy converters intended for Level 1 use shall not

be used for any other purpose. (For fuel system requirements, see Section 7.9.)

5.5.1.1 Enclosed fuel tanks shall be permitted to be used for supplying fuel for other equipment, provided that

the drawdown level or other passive features are designed into the fuel system to guarantee that the required

quantity of fuel is available for the EPSS.

Commented [CP1]: Do we need to separate rotating equipment vs. fuel cells for clarification between the two?

Commented [RS2R1]: Yes iI think we do.

Commented [RS3]: This section is specific to rotating equipment. I am struggling with how to seprate out the rotation from the fuel cell.

Commented [CP4]: Some EPS fuel cell systems are not intended to be cold started due to long ramp times to full power.

5.5.1.2 Vapor-withdrawal LP-Gas systems shall have a dedicated fuel supply.

5.5.2* A low-fuel sensing switch shall be provided for the main fuel supply tank(s) using the energy sources

listed in 5.1.1(1) and 5.1.1(2) to indicate when less than the minimum fuel necessary for full load running, as

required by the specified class in Table 4.1(a), remains in the main fuel tank.

5.5.3* The main fuel tank shall have a minimum capacity of at least 133 percent of either the low-fuel sensor

quantity specified in 5.5.2 or the quantity required to support the duration of run specified in Table 4.1(a).

5.6 Rotating Equipment.

5.6.1 General. Prime movers and accessories shall comply with NFPA 37, Standard for the Installation and Use

of Stationary Combustion Engines and Gas Turbines, except as modified in this standard.

5.6.2 Prime Mover Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the generator set shall

be used in determining whether or not brake power meets the connected load requirements.

5.6.3 Prime Mover Accessories.

5.6.3.1 Governors shall maintain a bandwidth of rated frequency for any constant load (steady-state condition)

that is compatible with the load.

5.6.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.6.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.6.3.2 Solenoid valves, where used, both in the fuel line from the supply or day tank closest to the generator set

and in the water-cooling lines, shall operate from battery voltage.

5.6.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.6.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.6.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.6.3.3 The prime mover shall be provided with the following instruments:

(1) Oil pressure gauge to indicate lubricating oil pressure when a pressurized lubricating system is provided

(2) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(3) Hour meter to indicate actual total running time

(4) Battery-charging meter indicating performance of prime mover–driven battery charging means

(5) Other instruments as recommended or provided by the prime mover manufacturer where required for

maintenance

5.6.3.4 The instruments required in 5.6.3.3(1) through

5.6.3.3(4) shall be placed on an enclosed panel, located in proximity to or on the energy converter, in a location

that allows maintenance personnel to observe them readily. The enclosed panel shall be mounted by means of

antishock vibration mountings if mounted on the energy converter.

5.6.3.5 All wiring for connection to the control panel shall be harnessed or flexibly enclosed, shall be securely

mounted on the prime mover to prevent chafing and vibration damage, and shall terminate at the control panel

in an enclosed box or panel. (For control panel requirements, see 5.6.5.)

5.6.3.6 The generator set shall be fitted with an integral accessory battery charger, driven by the prime mover

and automatic voltage regulator, and capable of charging and maintaining the starting battery unit (and control

battery, where used) in a fully charged condition during a running condition.

5.6.3.6.1 A battery charger driven by the prime mover shall not be required, provided the automatic battery

charger has a highlow rate capable of fully charging the starting battery during running conditions as specified in

5.6.3.6.

5.6.4 Prime Mover Starting Equipment.

5.6.4.1 Starting Systems. Starting shall be accomplished using either an electric starter or a stored energy

starting system.

5.6.4.1.1 Electric starter systems shall start using a positive shift solenoid to engage the starter motor and to

crank the prime mover for the period specified in 5.6.4.2 without overheating, at a speed at least equal to that

recommended by the manufacturer of the prime mover and at the lowest ambient temperature anticipated at the

installation site.

5.6.4.1.2 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the prime mover and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where two complete periods of cranking cycles are completed without replacement of the stored energy

(2) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the cranking capacity specified in 5.6.4.2.1

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability

5.6.4.2* Otto or Diesel Cycle Prime Movers. For otto or diesel cycle prime movers, the type and duration of the

cranking cycle shall be as specified in Table 5.6.4.2.

5.6.4.2.1 A complete cranking cycle shall consist of an automatic crank period of approximately 15 seconds

followed by a rest period of approximately 15 seconds. Upon starting and running the prime mover, further

cranking shall cease.

5.6.4.2.2 Two means of cranking termination shall be utilized so that one serves as backup to prevent

inadvertent starter engagement.

5.6.4.2.3 Otto cycle prime movers of 15 kW and lower and all diesel prime movers shall be permitted to use

continuous cranking methods.

5.6.4.3* Number of Batteries. Each prime mover shall be provided with both of the following:

(1) Storage battery units as specified in Table 5.6.4.2

(2) A storage rack for each battery or battery unit

Table 5.6.4.2 Starting Equipment Requirements

Starting Equipment Requirements

_________________________________________________________________________________________

Level 1 Level 2

(a) Battery unit X X

(b) Battery certification X NA

(c) Cycle cranking X or O O

(d) Cranking limiter time-outs

Cycle crank (3 cycles) 75 sec 75 sec

Continuous crank 45 sec 45 sec

(e) Float-type battery charger X X

dc ammeter X X

dc voltmeter X X

(f) Recharge time 24 hr 36 hr

(g) Low battery voltage alarm contacts X X

______________________________________________________________________________

X: Required. O: Optional. NA: Not applicable

5.6.4.4* Size of Batteries. The battery unit shall have the capacity to maintain the cranking speed

recommended by the prime mover manufacturer through two complete periods of cranking limiter time-outs as

specified in Table 5.6.4.2, item (d).

5.6.4.5 Type of Battery. The battery shall be of the nickel cadmium or lead-acid type.

5.6.4.5.1* Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.6.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.6.4.5.3 The manufacturer shall provide installation, operation, and maintenance instructions and, for batteries

shipped dry, electrolyte mixing instructions.

5.6.4.5.4 Batteries shall not be installed until the battery charger is in service.

5.6.4.5.5 All batteries used in this service shall have been designed for this duty and shall have demonstrable

characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.6.4.5.6 Batteries shall be prepared for use according to the battery manufacturer's instructions.

5.6.4.6* Automatic Battery Charger. In addition to the prime mover– (engine-) driven charger required in

5.6.3.6.1, a battery charger(s), as required in Table 5.6.4.2, shall be supplied for maintaining a charge on both the

starting and control battery unit.

5.6.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.6.4.2, item (f).

(3) As specified in Table 5.6.4.2, item (e), meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger shall be permanently marked with the

following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement

batteries to be obtained

(5) The battery charger output and performance shall be

compatible with the batteries furnished.

5.6.5 Control Functions.

5.6.5.1 A control panel shall be provided and shall contain the following:

(1) Automatic remote start capability

(2) “Run-off-automatic” switch

(3) Shutdowns as required by 5.6.5.2(3)

(4) Alarms as required by 5.6.5.2(4)

(5) Controls as required by 5.6.5.2(5)

5.6.5.2 Where a control panel is mounted on the energy converter, it shall be mounted by means of antivibration

shock mounts, if required, to maximize reliability. An automatic control and safety panel shall be a part of the

EPS containing the following equipment or possess the following characteristics, or both:

(1) Cranking control equipment to provide the complete cranking cycle described in 5.6.4.2 and required by Table

5.6.4.2

(2) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions:

(a) Run: Manually initiate, start, and run prime mover

(b) Off: Stop prime mover or reset safeties, or both

(c) Automatic: Allow prime mover to start by closing a remote contact and stop by opening the remote contact

(3) Controls to shut down and lock out the prime mover under any of the following conditions:

(a) Failing to start after specified cranking time

(b) Overspeed

(c) Low lubricating-oil pressure

(d) High engine temperature (An automatic engine shutdown device for high lubricating-oil temperature shall

not be required.)

(e) Operation of remote manual stop station

(4) Individual alarm indication to annunciate any of the conditions listed in Table 5.6.5.2 and with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely when any

of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(5) Controls to shut down the prime mover upon removal of the initiating signal or manual emergency shutdown

(6) The ac instruments listed in 5.6.9.9

5.6.5.3 Engines equipped with a maintaining shutdown device (air shutdown damper) shall have a set of

contacts that monitor the position of this device, with local alarm indication and remote annunciation in

accordance with Table 5.6.5.2.

5.6.5.4 The control panel in 5.6.5.2(4) shall be specifically approved for either a Level 1 or a Level 2 EPS

consistent with the installation.

5.6.5.5 The cranking cycle shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.6.5.2(2)(a).

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. Prime mover

shall start upon closing of a remote switch or contacts and shall stop, after appropriate time delays, when switch

or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the engine circuit to duplicate its functions in the same

manner commercial power is restored after a true commercial power failure.

5.6.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or unintentional

operation located outside the room housing the prime mover, where so installed, or elsewhere on the premises

where the prime mover is located outside the building.

5.6.5.6.1 The remote manual stop station shall be labeled.

5.6.6* Remote Controls and Alarms. A remote, common audible

alarm shall be provided as specified in 5.6.5.2(4).

5.6.6.1 Alarms and annunciation shall be powered by the prime mover starting battery unless operational

constraints make this impracticable. In that circumstance an alternate source from the EPS, such as a storage

battery, UPS, or branch circuit supplied by the EPSS, shall be permitted.

5.6.6.2 The following annunciation shall be provided at a minimum:

(1) For Level 1 EPS, local annunciation and facility remote annunciation, or local annunciation and network

remote annunciation

(2) For Level 2 EPS, local annunciation

5.6.6.3 For the purposes of defining the types of annunciation in 5.6.6.2, the following shall apply:

(1) Local annunciation is located on the equipment itself or within the same equipment room.

(2) Facility remote annunciation is located on site but not within the room where the equipment is located.

(3) Network remote annunciation is located off site.

5.6.6.4 An alarm-silencing means shall be provided, and the panel shall include repetitive alarm circuitry so that,

after the audible alarm has been silenced, it reactivates after the fault condition has been cleared and has to be

restored to its normal position to be silenced again.

5.6.6.5 In lieu of the requirement in 5.6.6.4, a manual alarm silencing means shall be permitted that silences the

audible alarm after the occurrence of the alarm condition, provided such means do not inhibit any subsequent

alarms from sounding the audible alarm again without further manual action.

5.6.7 Prime Mover Cooling Systems. Cooling systems for prime movers shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Table 5.6.5.2 Safety Indications and Shutdowns

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent

5.6.7.1 Forced-air-cooled diesel or otto cycle engines shall have an integral fan selected to cool the prime mover

under full load conditions.

5.6.7.2 Liquid-cooled prime movers for Level 1 applications shall be arranged for closed-loop cooling and consist

of one of the following types:

(1) Unit-mounted radiator and fan

(2) Remote radiator

(3) Heat exchanger (liquid-to-liquid)

5.6.7.3 Cooling systems shall prevent overheating of prime movers under conditions of highest anticipated

ambient temperature at the installed elevation (above sea level) when fully loaded.

5.6.7.4* Power for fans and pumps on remote radiators and heat exchangers shall be supplied from a tap at the

EPS output terminals or ahead of the first load circuit overcurrent protective device.

5.6.7.5 The secondary side of heat exchangers shall be a closed-loop cycle, that is, one that recycles the cooling

agent.

5.6.7.6 The installed EPS cooling system shall be designed to cool the prime mover at full-rated load while

operating in the particular installation circumstances of each EPS.

5.6.7.7 A full-load on-site test shall not result in activation of high-temperature pre-alarm or high-temperature

shutdown.

5.6.7.8 For EPSS cooling systems requiring intermittent or continuous waterflow or pressure, or both, a utility,

city, or other water supply service shall not be used.

5.6.7.9 The EPSS cooling system shall be permitted to use utility or city water for filling or makeup water.

5.6.7.10 Design of the EPS cooling system shall consider the following factors:

(1) Remote radiator or heat exchanger sizing

(2) Pipe sizing

(3) Pump sizing

(4) Sufficient shutoffs to isolate equipment to facilitate maintenance

(5) The need for and sizing of de-aeration and surge

(6) Drain valves for cleaning and flushing the cooling system

(7) Type of flexible hoses between the prime mover and the cooling system piping

5.6.8 Prime Mover Exhaust Piping. Where applicable, the exhaust system shall include a muffler or silencer sized

for the unit and a flexible exhaust section.

5.6.9 Generators, Exciters, and Voltage Regulators. Generators shall comply with Article 445 of NFPA 70,

National Electrical Code, and with the requirements of 5.6.9.1 through 5.6.9.9.

5.6.9.1* The generator shall be of drip-proof construction and have amortisseur windings.

5.6.9.2 The generator shall be suitable for the environmental conditions at the installation location.

5.6.9.3 The generator systems shall be factory tested as a unit to ensure operational integrity of all of the

following:

(1) Generator

(2) Exciter

(3) Voltage regulator

5.6.9.4 EPS voltage output, or the output of the transformer immediately down-line from the EPS, at full load

shall match the nominal voltage of the normal source at the transfer switch(es).

5.6.9.5 Exciters, where furnished, shall be of either the rotating type or the static type.

5.6.9.6 Voltage regulators shall be capable of responding to load changes to meet the system stability

requirements of 5.6.9.8.

5.6.9.7 If the system stability requirements of 5.6.9.8 cannot be accomplished, anti-hunt provisions shall be

included.

5.6.9.8 Generator system performance (i.e., prime mover, generator, exciter, and voltage regulator, as applicable

when prototype tested as specified in 5.2.1.2) shall be as follows:

(1) Stable voltage and frequency at all loads shall be provided to full-rated loads.

(2) Values consistent with the user's needs for frequency droop and voltage droop shall be maintained.

(3) Voltage dip at the generator terminals for the maximum anticipated load change shall not cause disruption or

relay dropout in the load.

(4) Frequency dip and restoration to steady state for any sudden load change shall not exceed the user's

specified need.

5.6.9.9 The generator instrument panel for Level 1 applications shall contain the following:

(1) An ac voltmeter(s) for each phase or a phase selector switch

(2) An ac ammeter(s) for each phase or a phase selector switch

(3) A frequency meter

(4) A voltage-adjusting feature to allow ± 5 percent voltage adjustment

5.6.10 Miscellaneous Requirements.

5.6.10.1 Where applicable, the prime mover and generator shall be factory mounted on a common base, rigid

enough to maintain the dynamic alignment of the rotating element of the system prior to shipment to the

installation site.

5.6.10.2 A certification shall be supplied with the unit that verifies the torsional vibration compatibility of the

rotating element of the prime mover and generator for the intended use of the energy converter.

5.6.10.3* Vibration isolators shall be furnished where necessary to minimize vibration transmission to the

permanent structure.

5.6.10.4 The manufacturer of the EPS shall submit complete schematic, wiring, and interconnection diagrams

showing all terminal and destination markings for all EPS equipment, as well as the functional relationship

between all electrical components.

5.6.10.5 The energy converter supplier shall stipulate compliance and performance with this standard for the

entire unit when installed.

5.6.10.6 Where requested, the short circuit current capability at the generator output terminals shall be

furnished.

5.7 Fuel Cell System Equipment

5.7.1 General. Fuel cell systems and accessories shall comply with NFPA 853, Standard for the Installation of

Stationary Fuel Cell Power Systems, except as modified in this standard.

5.7.1.1* Fuel cells are classified by the type of electrolyte used (see 5.2.4). A5.7.1.1 There is a difference in start-up ramp time to full power based on the fuel cell type ranging from seconds to hours. During start-up, fuel cells have an average power output until they reach full power. If needed, additional power supplied from another source, such as a battery or ultra-capacitor, assists with powering the intended load during this time. Fuel cell systems that require high operating temperatures ramp slowly until they

reach full power and an additional start-up power source is not necessary. For these types of fuel cells, they are typically run continuously in order to provide emergency power in the required time period.

5.7.2 Fuel Cell System Ratings. Proper derating factors, such as altitudes, ambient temperature, fuel energy

content, accessory losses, and site conditions as recommended by the manufacturer of the fuel cell system shall

be used in determining whether or not the fuel cell system meets the connected load requirements.

5.7.3 Fuel Cell System Accessories.

5.7.3.1 Fuel Cell System controls/power conditioning systems shall maintain a bandwidth of rated frequency for

any constant load (steady-state condition) that is compatible with the load.

5.7.3.1.1 The frequency droop between no load and full load shall be within the range for the load.

5.7.3.1.2 The frequency dip upon one-step application of the full load shall not be outside the range for the load,

with a return to steady-state conditions occurring within the requirements of the load.

5.7.3.2 Solenoid valves, where used in the fuel line from the supply closest to the fuel cell system and in water-

cooling lines, shall operate from battery voltage.

5.7.3.2.1 Solenoid valves shall have a manual (nonelectric) operation, or a manual bypass valve shall be

provided.

5.7.3.2.1.1 The manual bypass valve shall be visible and accessible and its purpose identified.

5.7.3.2.1.2 The fuel bypass valve shall not be the valve used for malfunction or emergency shutdown.

5.7.3.3 The fuel cell system shall be provided with the following instruments when necessary:

(1) Temperature gauge to indicate cooling medium temperature when a liquid medium cooling system is used

(2) Hour meter to indicate actual total running time

(3) Battery-charging meter indicating performance of fuel cell system powered battery charging means

(4) Other instruments as recommended or provided by the fuel cell system manufacturer where required for

maintenance

5.7.3.4 The instruments required in 5.7.3.3(1) through 5.7.3.3(4) shall be placed on an enclosed panel, located in

proximity to or on the fuel cell system, in a location that allows maintenance personnel to observe them readily.

5.7.3.5 All external wiring for connections to the fuel cell system and its parts, if applicable, shall be in

accordance with Article 692 of NFPA 70.

5.7.3.6 Where applicable, the fuel cell system set shall be fitted with an integral accessory battery charger,

powered by the fuel cell system and automatic controls for charging and maintaining the starting battery unit

(and control battery, where used) in a fully charged condition during a running condition.

Commented [CP5]: Should this be part of Annex A?

Commented [CP6]: Need clarification on the intent of this requirement. Why does the valve need to operate from battery voltage?

Commented [CP7]: Need clarification on intent of this requirement. Is it that a manual bypass valve is required if an electric valve is the primary one?

Commented [CP8]: Can this be the main fuel line valve to the overall fuel cell system?

Commented [CP9]: Not sure of the intent of this valve. It is not requiring a fuel bypass valve for fuel cell systems, correct? Fuel cell systems that are continuously running normally only have one source of fuel, so they primarily have a fuel shutoff valve, not a fuel bypass valve. Also, emergency shutdown of the system, not just fuel?

Formatted: Highlight

Commented [CP10]: Some fuel cell systems are monitored remotely 24/7 and run time data is collected off-site. SOFC are run 24/7 from pipeline natural gas, so not sure if hour meter is needed.

Commented [CP11]: Could be monitored off-site.

Formatted: Highlight

Commented [CP12]: If this information is monitored off-site, this panel would not be necessary. In the case of the Bloom Energy system, maintenance personnel are BE field service staff and they monitor the system from a laptop. Customers also have limited access viewing capability of their system’s operation.

Formatted: Highlight

5.7.4 Fuel Cell System Starting Equipment.

5.7.4.1* Starting Systems. Where applicable, starting shall be accomplished using a stored energy starting

system.

A5.7.4.1 Some fuel cell systems use power from the utility grid for start-up until the fuel cell system is up to

operational status, then it disconnects from grid power and runs independently of the grid.

5.7.4.1.1 Other types of stored energy starting systems (except pyrotechnic) shall be permitted to be used where

recommended by the manufacturer of the fuel cell system and subject to approval of the authority having

jurisdiction, under the following conditions:

(1) Where a means for automatic restoration from the emergency source of the stored energy is provided

(3) Where the stored energy system has the capacity to handle the intended loads until the fuel cell system is

operating

(4) Where the stored energy system has a “black start” capability in addition to normal discharge capability.

5.7.4.3.1 Number of Batteries. Where applicable, a fuel cell system shall be provided with batteries for startup

until the fuel cell system is operating to provide the necessary power to the loads. The fuel cell system shall be

provided with one of the following:

(1) Storage battery units as specified in Table 5.7.4.2, or

(2) Battery or capacitor storage systems that are either incorporated as part of the fuel cell system or installed

as a separate accessory such as a battery rack or storage system.

Table 5.7.4.2 Fuel Cell Starting Equipment Requirements

Fuel Cell Starting Equipment Requirements

____________________________________________________________________________________________________

Level 1 Level 2

(a) Battery Units X X

(b) Battery Certification X X (for other than LA and Nickel)

(c) Power to load 45 sec 45 sec

(d) Automatic battery charger (BMS control) X X

(e) Maximum Recharge time 24 H 36 H

(f) Low battery voltage alarm contacts X X

X: Required. O: Optional

5.7.4.4* Size of Batteries. A battery unit or other storage system provided for startup power for a fuel cell

system shall be sized to provide power to the necessary loads until the fuel cell power system is operating.

5.7.4.5 Type of Battery. The battery shall be of the nickel cadmium, lead-acid type or as noted in 5.7.4.5.3.

Commented [CP13]: Some FC systems use power from the grid for start-up until the FC is up to Balance of Plant status, then it disconnects from grid power and runs independently on NG.

Commented [FLB14R13]: I added Chris explanation above with a few tweaks as annex material.

Commented [FLB15]: Get rid of old technology specific criteria. BMS control that is evaluated per

5.7.4.5.1 Lead-acid batteries shall be furnished as charged when wet. Drain-dry batteries or dry-charged lead-

acid batteries shall be permitted.

5.7.4.5.2 When furnished, vented nickel-cadmium batteries shall be filled and charged and shall have listed flip-

top, flame arrester vent caps.

5.7.4.5.3 In addition to nickel cadmium and lead acid batteries, fuel cell systems may utilize other technology

batteries (e.g. lithium ion) or storage capacitor technology for starting applications. These other storage system

technologies shall be listed to UL 1973.

5.7.4.5.4The manufacturer shall provide installation, operation, and maintenance instructions for the batteries in

accordance with their listing.

5.7.4.5.5 Batteries or capacitor units shall not be installed until their charging mechanism is installed if separate

from the battery or capacitor unit.

5.7.4.5.6 All start up storage systems used in this service shall have been designed for this duty and shall have

demonstrable characteristics of performance and reliability acceptable to the authority having jurisdiction.

5.7.4.5.7 Batteries or capacitors shall be prepared for use according to the battery/capacitor manufacturer's

instructions.

5.7.4.6 Automatic Battery Charger. A battery charger(s), as required in Table 5.7.4.2, shall be supplied for

maintaining a charge on both starting and control battery units as applicable to the fuel cell system.

5.7.4.7 All chargers shall include the following characteristics, which are to be accomplished without manual

intervention (i.e., manual switch or manual tap changing):

(1) At its rated voltage, the charger shall be capable of delivering energy into a fully discharged battery unit

without damaging the battery.

(2) The charger shall be capable of returning the fully discharged battery to 100 percent of its ampere-hour

rating within the time specified in Table 5.7.4.2, item (e).

(3) For float type chargers, meters with an accuracy within 5 percent of range shall be furnished.

(4) The charger, if a separate accessory for charging lead acid or Ni-cad batteries, shall be permanently marked

with the following:

(a) Allowable range of battery unit capacity

(b) Nominal output current and voltage

(c) Sufficient battery-type data to allow replacement batteries to be obtained

(5) The battery charger output and performance shall be compatible with the batteries furnished.

5.7.5 Control Functions.

5.7.5.1 An on-site control panel or remote monitoring control system shall be provided and shall contain the

following:

Commented [CP16]: A remote monitoring control system may be offsite and a panel may not be a required part of the fuel cell system. Items 3-5 apply to FC systems that run continuously.

(1) Automatic remote start capability

(2) “Run-off-automatic” switch function

(3) Shutdowns as required by 5.7.5.2(2)

(4) Alarms as required by 5.7.5.2(3)

(5) Controls as required by 5.7.5.2(4)

5.7.5.2 An automatic control and safety panel or remote monitoring control system shall be a part of the EPS

containing the following equipment or possess the following characteristics, or both:

(1) Panel-mounted control switch(es) marked “run–off–automatic” to perform the following functions for quick-

start fuel cell power systems:

(a) Run: Manually initiate, start of fuel cell system

(b) Off: Stop fuel cell system or reset safeties, or both

(c) Automatic: Allow fuel cell system to start by closing a remote contact and stop by opening the remote

contact

(2) Controls to shut down and lock out the fuel cell system under any of the following conditions:

(a) Failing to start after specified time

(b) Abnormal conditions including high temperatures

(c) Operation of remote manual stop station

(3) Individual alarm indication on a control panel to annunciate any of the conditions listed in Table 5.7.5.2 and

with the following

characteristics:

(a) Battery powered

(b) Visually indicated

(c) Have additional contacts or circuits for a common audible alarm that signals locally and remotely

when any of the itemized conditions occurs

(d) Have a lamp test switch(es) to test the operation of all alarm lamps

(54) Controls to shut down the fuel cell system upon removal of the initiating signal or manual emergency

shutdown

5.7.5.3 (reserved)

5.7.5.4 The control panel or remote monitoring control system in 5.7.5.2(4) shall be specifically approved for

either a Level 1 or a Level 2 EPS consistent with the installation.

5.7.5.5 The startup operation shall be capable of being initiated by any of the following:

(1) Manual start initiation as specified in 5.7.5.2(2)(a) for quick start-up fuel cell systems.

(2) Loss of normal power at any automatic transfer switch (ATS) considered a part of the EPSS. The fuel cell

system shall start-up or switch power to the load upon closing of a remote switch or contacts and shall stop,

after appropriate time delays, when switch or contacts are opened.

(3) Clock exerciser located in an ATS or in the control panel.

(4) Manually operated (test) switch located in each ATS that simulates a loss of power and causes automatic

starting and operation until this switch is reset, to cause the fuel cell system circuit to duplicate its functions in

the same manner commercial power is restored after a true commercial power failure.

Commented [CP17]: For FC systems that are running continuously in order to pick up the load when needed, this function should not be required. Maybe add a comment “for quick start-up fuel cell systems”.

Commented [CP18]: The word “function” is included for gen-sets. In the case of FC systems that are running continuously, this should not be necessary.

Commented [CP19]: This is a FC 1 requirement

Commented [CP20]: Need to add some separate requirements for remote monitoring control system

Commented [CP21]: Is “approved” equivalent to listed, or is it an AHJ’s decision?

Commented [CP22]: Not sure what this is.

Commented [CP23]: Need clarification on this.

5.7.5.6* All installations shall have a remote manual stop station of a type to prevent inadvertent or

unintentional operation located outside the room housing the fuel cell system, where so installed, or elsewhere

on the premises where the fuel cell system is located outside the building.

5.7.5.6.1 The remote manual stop station shall be labeled.

5.7.6* Remote Controls and Alarms. A remote, common audible alarm shall be provided as specified in

5.7.5.2(4). Remote controls and alarms for fuel cell systems shall be in accordance with 5.6.6.1 through 5.6.6.5

except as noted below.

5.7.6.1 Alarms and annunciation need not be powered by a starter battery if the fuel cell system does not rely

upon one (i.e. is under continuous operation).

5.7.7 Fuel Cell Cooling Systems. Cooling systems for fuel cell systems shall be either forced-air or natural

convection, liquid-cooled, or a combination thereof.

Commented [CP24]: If remote monitored, the alarm is for the monitoring station, correct?

Commented [CP25]: Should not be a requirement if a fuel cell system is run continuously and doesn’t use a starting battery.

Commented [FLB26R25]: Revised wording, as 5.6.6.1 allows options other than starting batteries. Changed statement to address continuously running fuel cell systems that do not employ a starting battery.

Public Comment No. 29-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to

establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank

bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum

of six months between testing. All testing shall be performed using ASTM approved test methods (ASTM

D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer

requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be

removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration

(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For

acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM

D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be

performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15

diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer

to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard

Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall

be remediated to bring back to the required fuel quality for long-term storage specified under ASTM.

Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and

will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or

both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing

performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-days

after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,

best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation.

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

106 of 120 5/7/2020, 4:56 PM

Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

• Consultant

Submitter Information Verification

Submitter Full Name: Tom Wyper

Organization: Fastech

Affiliation: PEI

Street Address:

City:

State:

Zip:

Submittal Date: Thu Apr 30 16:11:42 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

107 of 120 5/7/2020, 4:56 PM

Public Comment No. 31-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

Additional Proposed Changes

File Name Description Approved

Revision_NFPA_110_Expand_Chapter_8.3.7.docxRevise and expand Section 8.3.7 pertaining to fuel quality testing and maintenance.

Statement of Problem and Substantiation for Public Comment

Fuel chemistry and composition has change significantly during the past dozen years due to society's needs for environmentally friendly fuels that minimize hazardous emissions. Sulfur has been vastly reduced. Additives may be mixed further upstream in the distribution system. Biodiesel fuel can be present within the fuel. The presence of water at tank bottoms can serve as a location for microbes to thrive, creating sludge, slime, and acidic conditions that can clog fuel filters and prevent generators from performing critical tasks when back-up power is needed.

The proposal stresses the importance of monitoring for water and removing water to minimize the formation of microbial activity that can impact fuel quality. ASTM standard test methods are provided to check for microbial contamination, presence of particulates and sediments that can cause filters to become clogged or reduce flow, fuel stability or instablility, and concentration of biodiesel. If fuel quality is found to be inadequate, additional measure are given to remedy the situation.

This proposal is supported by Members of the EGSA.

Related Item

• EGSA Fuel working Group Submission

Submitter Information Verification

Submitter Full Name: Wayne Geyer

Organization: Steel Tank Institute

Affiliation: Member of EGSA

Street Address:

City:

State:

Zip:

Submittal Date: Mon May 04 10:02:52 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

108 of 120 5/7/2020, 4:56 PM

REVISED CHANGES FOR NFPA 110 (2019 RELEASE) – Chapter 8.3.7 – Diesel Fuel Testing

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM standards or the manufacturer’s recommendations

PROPOSED CHANGE TO NFPA 110 (2022 RELEASE) – Chapter 8.3.7 – Diesel Fuel Testing

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tank bottom at least weekly and for degradation and contamination no less than twice annually, with a minimum of six months between testing. All testing shall be performed using ASTM approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturer requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. For acceptable values consult with the engine manufacturer and most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.4 – Any additional testing requirements shall be determined by equipment manufacturer, government regulations, recent test results, and geographical region. Refer to the most current NFPA 110 Annex A, ASTM D975 Appendix, and the CRC Report No. 667, Diesel Fuel Storage and Handling Guide for detailed testing and descriptions.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shall be remediated to bring back to the required fuel quality for long-term storage specified under ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, and will dependent of the test results received.

8.3.7.5.1 To ensure that remediation has had the intended effect on fuel quality, fuel system condition, or both, any remediation effort shall include post-treatment sampling and testing. Sampling and testing performed would only need to reflect what initially failed.

8.3.7.5.2 The optimal period for post-remediation sampling and testing is between 3-days and 14-days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed, best practice is to subsequently sample and test monthly for thee months.

Public Comment No. 32-NFPA 110-2020 [ Section No. 8.3.7 ]

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

109 of 120 5/7/2020, 4:56 PM

8.3.7

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

110 of 120 5/7/2020, 4:56 PM

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

Dear Scott,

We hope this email finds you well!

We need your help! There are only a few days left to support the “Fuel: Fact or Fiction” group effort

to evolve the fuel standards for emergency & standy power systems. We need your feedback

submitted to the NFPA in order to ensure passage of our amendments to:

Standard for Emergency and Standby Power Systems : Section No. 8.3.7

Document Information Alert: Open for Public Comment NOW ( closing date: 5/6/2020 )

Step #1: Access Online

Sign-in or Create Your Profile:   https://www.nfpa.org/

Go To :   https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-

and-standards/detail?code=110&tab=nextedition

Step #2: Review the Changes

Reference: The Next Edition: 2022 -   The next edition is now open for comment

Click : Submit Public Comment Online

Click : + Chapter 8 Routine Maintenance and Operational Testing

Scroll Down and Check the Following Box   That States :

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM

standards or the manufacturer’s recommendations

Click : Revise First Draft Section (S)

Step #3: Copy & Paste the Following Support (over the current wording):

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in

order to establish a benchmark guideline for future comparison. Diesel fuel shall be monitored for

water on the tank bottom at least weekly and for degradation and contamination no less than twice

annually, with a minimum of six months between testing. All testing shall be performed using ASTM

approved test methods (ASTM D4057 for fuel quality, and ASTM D7464 for microbial contamination)

and meet engine manufacturer requirements. Fuel testing shall be performed on all diesel fuel

sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is

to be removed immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelines

referenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel

Concentration (ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall

be accepted. For acceptable values consult with the engine manufacturer and most current ASTM

test documents - ASTM D975, and the Appendix of ASTM D975, Standard Specification for Diesel

Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

111 of 120 5/7/2020, 4:56 PM

be performed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method

for S15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be

acceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM

D975, Standard Specification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the

fuel shall be remediated to bring back to the required fuel quality for long-term storage specified

under ASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel

fuel replacement, and will dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system

condition, or both, any remediation effort shall include post-treatment sampling and testing.

Sampling and testing performed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-

days after treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been

addressed, best practice is to subsequently sample and test monthly for three months.

Additional Proposed Changes

File Name Description Approved

.1588601591320

.1588601639884

Statement of Problem and Substantiation for Public Comment

As an EGSA member, we fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

RelatedItem

• SSECO Solutions PEI member and committee member of recommended practices of gen and boilerapplications

Submitter Information Verification

Submitter Full Name: david chrien

Organization: service station equipment - DBA SSeco Solutions Inc

Affiliation: Petroleum equipment institute

Street Address:

City:

State:

Zip:

Submittal Date: Mon May 04 10:08:02 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

112 of 120 5/7/2020, 4:56 PM

Public Comment No. 68-NFPA 110-2020 [ Section No. 8.3.7 ]

8. 3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

37 Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order toestablish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on thetank bottom at least weekly and for degradation and contamination no less than twice annually, with aminimum of six months between testing. All testing shall beperformed using ASTM approved test methods(ASTM D4057 for fuel quality, and ASTM D7464 for microbrial contamination) and meet enginemanufacturer requirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 - All diesel tank ottoms shall be monitored for water at least weekly. If water is detected it is to beremoved immediately to help assure that high quality fuel is maintained.

8.3.7.2 - Tests for contamination shall include at minimum, Microbrial Contamination per guidelinesreferenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. Foracceptable values consult with the engine manufacturer and most current ASTM test documents - ASTMD975, and teh Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 - For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method forS15 diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may beacceptable, refer to most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975,Standard Specification for Diesel Fuel Oils.

8.3.7.5 - If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuelshall be remediated to bring back to the required fuel quality for long-term storage specified underASTM. Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuelreplacement, and will be dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition,or both, any remediation effort shall include post-treatment sampling and testing. Sampling and testingperformed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3 days and 14 daysafter treatment has been completed.

Annex Material for 8.3.7.5 To ensure that the factor or factors contributing to the need for remediationhave been addressed, the best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

Not only with my experience in my current position, but also in my 2 decades as a fuel storage tank compliance inspector for Virginia DEQ, diesel fuel for emergency generators was rarely tested. Critical care facilities that wished to achieve certain certifications were required to demonstrate hours to days of operational status when disconnected from the grid. Storage tanks installed at hospitals, for example, became larger and larger and the quantity of fuel stored could not be consumed in a reasonable time from exercising generators and the, thankfully, few times that weather created power outages. Fuel is stored for extended time, not turned over and also not adequately tested. We have always been concerned about natural disasters disrupting electrical supply to critical care facilities such as hospitals. When the added stress that pandemic viruses add to a hospital's capabilities, the risk of losing power due to a natural disaster and the emergency generator failing due to fuel quality issues is abhorrent. We have also become so dependent on data storage and processing that the generators that serve those industries must also be ready at any moment. Fuel testing, monitoring and, when needed, remediation is a minor cost compared to the potential losses of a failing backup system.

Related Item

• EGSA Fuel Working Group Submission

Submitter Information Verification

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

113 of 120 5/7/2020, 4:56 PM

Submitter Full Name: Steve Pollock

Organization: STI SPFA

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 17:00:55 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

114 of 120 5/7/2020, 4:56 PM

Public Comment No. 69-NFPA 110-2020 [ Section No. 8.3.7 ]

8.3.7

A fuel quality test shall be performed at least annually using appropriate ASTM standards or themanufacturer’s recommendations.

8.3.7 – Diesel fuel maintenance and regular testing shall begin the day of installation and first fill in order toestablish a benchmark guideline for future comparison. Diesel fuel shall be monitored for water on the tankbottom at least weekly and for degradation and contamination no less than twice annually, with a minimumof six months between testing. All testing shall be performed using ASTM approved test methods (ASTMD4057 for fuel quality, and ASTM D7464 for microbial contamination) and meet engine manufacturerrequirements. Fuel testing shall be performed on all diesel fuel sources of EPSS.

8.3.7.1 – All diesel tank bottoms shall be monitored for water at least weekly. If water is detected it is to beremoved immediately to help assure that high quality fuel is maintained.

8.3.7.2 –Tests for contamination shall include at minimum, Microbial Contamination per guidelinesreferenced under ASTM D6469, Free Water and Sediment (ASTM D2709), and Biodiesel Concentration(ASTM D7371). Similar, modified, and proven methods recognized under ASTM shall be accepted. Foracceptable values consult with the engine manufacturer and most current ASTM test documents - ASTMD975, and the Appendix of ASTM D975, Standard Specification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, referto most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.3 – For diesel fuel stored consecutively for 12 months or longer, a diesel fuel stability test shall beperformed annually for degradation. PetroOxy (ASTM D7545) is the accepted ASTM test method for S15diesel fuels containing up to a biodiesel blend of 5% and less. Additional methods may be acceptable, referto most current ASTM test documents - ASTM D975, and the Appendix of ASTM D975, StandardSpecification for Diesel Fuel Oils.

8.3.7.5– If diesel fuel is found to be outside of acceptable range in the testing listed in 8.3.7.2, the fuel shallbe remediated to bring back to the required fuel quality for long-term storage specified under ASTM.Remediation may be in the form of fuel additives, polishing, tank cleaning, or diesel fuel replacement, andwill dependent of the test results received.

8.3.7.5.1 - To ensure that remediation has had the intended effect on fuel quality, fuel system condition, orboth, any remediation effort shall include post-treatment sampling and testing. Sampling and testingperformed would only need to reflect what initially failed.

8.3.7.5.2 - The optimal period for post-remediation sampling and testing is between 3-days and 14-daysafter treatment has been completed.

Annex Material for 8.3.7.5

To ensure that the factor or factors contributing to the need for remediation have been addressed,best practice is to subsequently sample and test monthly for three months.

Statement of Problem and Substantiation for Public Comment

As an industry professional working at a company with over 100 years of experience in dealing with fuel related problems, I fully support the original revision of Chapter 8.3.7 submitted in August 2019 to the 110 Tech Committee. The current reference to ASTM D975 provides insight into the physical & chemical properties of a fuel sample as they exist at the exact time it is tested and measured against general legal specifications. However, it does not provide adequate insight & specification as to other critical properties that should be considered for appropriate fuel maintenance related to long-term fuel storage. Consideration of these additional fuel properties will inform on the likely future condition of a given lot of fuel, potential problems that may arise and guidance towards remediation. Therefore it is especially critical to our industry, given the reality of today's diesel fuel, that samples are taken at a minimum of every 6 months and imperative that the other components of this revision are adopted to ensure implementation of a basic, proper fuel monitoring, testing & maintenance standard.

Related Item

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

115 of 120 5/7/2020, 4:56 PM

• Fuel Industry Professional Submission

Submitter Information Verification

Submitter Full Name: Daniel Bordui

Organization: Bell Performance

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 18:34:26 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

116 of 120 5/7/2020, 4:56 PM

Public Comment No. 65-NFPA 110-2020 [ New Section after 8.4.1.1 ]

8.4.1.2

8.4.1.2 If a continually operating fuel cell system is used for standby power or for peak load shaving, such use shallbe recorded and shall be permitted to be substituted for scheduled operations and testing of the fuel cell system ,providing the same record as required by 8. 5 . ..

Additional Proposed Changes

File Name Description Approved

Changes_to_NFPA_110_Chapter_8_for_submission_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group on CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:23:46 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

117 of 120 5/7/2020, 4:56 PM

Chapter 8 Routine Maintenance and Operational Testing 8.1* General.

8.1.1 The routine maintenance and operational testing program shall be based on all of the

following:

(1) Manufacturer’s recommendations

(2) Instruction manuals

(3) Minimum requirements of this chapter

(4) The authority having jurisdiction

8.1.2 Consideration shall be given to temporarily providing a portable or alternate source

whenever the emergency generator is out of service and the criteria set forth in Section 4.3

cannot be met.

8.2* Manuals, Special Tools, and Spare Parts.

8.2.1 At least two sets of instruction manuals for all major components of the EPSS shall be

supplied by the manufacturer(s) of the EPSS and shall contain the following:

(1) A detailed explanation of the operation of the system

(2) Instructions for routine maintenance

(3) Detailed instructions for repair of the EPS and other major components of the EPSS

(4) An illustrated parts list and part numbers

(5) Illustrated and schematic drawings of electrical wiring systems, including operating and

safety devices, control panels, instrumentation, and annunciators

8.2.2 For Level 1 systems, instruction manuals shall be kept in a secure, convenient location,

one set near the equipment, and the other set in a separate location.

8.2.3 Special tools and testing devices necessary for routine maintenance shall be available for

use when needed.

8.2.4 Replacement for parts identified by experience as high mortality items shall be maintained

in a secure location(s) on the premises.

8.2.4.1 Consideration shall be given to stocking spare parts as recommended by the

manufacturer.

8.2.5 For Fuel Cell Systems, a Maintenance Manual should be provided per ANSI/CSA FC 1,

Section 7.4.5.

8.3 Maintenance and Operational Testing.

8.3.1* The EPSS shall be maintained to ensure to a reasonable degree that the system is

capable of supplying service within the time specified for the type and for the time duration

specified for the class.

8.3.2 A routine maintenance and operational testing program shall be initiated immediately after

the EPSS has passed acceptance tests or after completion of repairs that impact the operational

reliability of the system.

8.3.2.1 The operational test shall be initiated at an ATS and shall include testing of each EPSS

component on which maintenance or repair has been performed, including the transfer of each

automatic and manual transfer switch to the alternate power source, for a period of not less

than 30 minutes under operating temperature.

8.3.3 A written schedule for routine maintenance and operational testing of the EPSS shall be

established.

8.3.4* Transfer switches shall be subjected to a maintenance and testing program that includes

all of the following operations:

(1) Checking of connections

(2) Inspection or testing for evidence of overheating and excessive contact erosion

(3) Removal of dust and dirt

(4) Replacement of contacts when required

8.3.5* Paralleling gear shall be subject to an inspection, testing, and maintenance program that

includes all of the following operations:

(1) Checking connections

(2) Inspecting or testing for evidence of overheating and excessive contact erosion

(3) Removing dust and dirt

(4) Replacing contacts when required

(5) Verifying that the system controls will operate as intended

8.3.6* Storage batteries, including electrolyte levels or battery voltage, used in connection with

systems shall be inspected weekly and maintained in full compliance with manufacturer's

specifications.

8.3.6.1 Maintenance of lead-acid batteries shall include the monthly testing and recording of

electrolyte specific gravity. Battery conductance testing shall be permitted in lieu of the testing

of specific gravity when applicable or warranted.

8.3.6.2 Defective batteries shall be replaced immediately upon discovery of defects.

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM standards

or the manufacturer’s recommendations.

8.4 Operational Inspection and Testing.

8.4.1* EPSSs, including all appurtenant components, shall be inspected weekly and exercised

under load at least monthly.

8.4.1.1 If the generator set is used for standby power or for peak load shaving, such use shall be

recorded and shall be permitted to be substituted for scheduled operations and testing of the

generator set, providing the same record as required by 8.3.4.5.

8.4.1.2 If a continually operating fuel cell system is used for standby power or for peak load

shaving, such use shall be recorded and shall be permitted to be substituted for scheduled

operations and testing of the fuel cell system, providing the same record as required by 8.5.

8.4.2* Generator sets in service shall be exercised at least once monthly, for a minimum of 30

minutes, using one of the following methods:

(1) Loading that maintains the minimum exhaust gas temperatures as recommended by the

manufacturer

(2) Under operating temperature conditions and at not less than 30 percent of the EPS standby

nameplate kW rating

8.4.2.1 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.2 Equivalent loads used for testing shall be automatically replaced with the emergency

loads in case of failure of the primary source.

8.4.2.3* Diesel-powered EPS installations that do not meet the requirements of 8.4.2 shall be

exercised monthly with the available EPSS load and shall be exercised annually with

supplemental loads at not less than 50 percent of the EPS nameplate kW rating for 30

continuous minutes and at not less than 75 percent of the EPS nameplate kW rating for 1

continuous hour for a total test duration of not less than 1.5 continuous hours.

8.4.2.3.14 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.43.2.1 Equivalent loads used for testing shall be automatically replaced with the

emergency loads in case of failure of the primary source.

8.4.3 The EPS test shall be initiated by simulating a power outage using the test switch(es) on

the ATSs or by opening a normal breaker. Opening a normal breaker shall not be required.

8.4.3.1* Where multiple ATSs are used as part of an EPSS, the monthly test initiating ATSs shall

be rotated to verify the starting function on each ATS.

8.4.4 Load tests of generator sets shall include complete cold starts. An EPS that is continually

running as an energy source meets this requirement.

8.4.5 Time delays shall be set as follows:

(1) Time delay on start:

(a) 1 second minimum

(b) 0.5 second minimum for gas turbine units

(2) Time delay on transfer to emergency: no minimum required

(3) Time delay on restoration to normal: 5 minutes minimum

(4) Time delay on shutdown: 5 minutes minimum

8.4.6 Transfer switches shall be operated monthly.

8.4.6.1* The monthly test of a transfer switch shall consist of electrically operating the transfer

switch from the primary position to the alternate position and then a return to the primary

position.

8.4.6.2 The criteria set forth in Section 4.3 and in Table 4.1(b) shall not be required during the

monthly testing of the EPSS. If the criteria are not met during the monthly test, a process shall

be provided to annually confirm the capability of the system to comply with Section 4.3.

8.4.7* EPSS circuit breakers for Level 1 system usage, including main and feed breakers

between the EPS and the transfer

switch load terminals, shall be exercised annually with the EPS in the “off” position.

8.4.7.1 Circuit breakers rated in excess of 600 volts for Level 1 system usage shall be exercised

every 6 months and shall be tested under simulated overload conditions every 2 years.

8.4.8 EPSS components shall be maintained and tested by qualified person(s).

8.4.9* Level 1 EPSS shall be tested at least once within every 36 months.

8.4.9.1 Level 1 EPSS shall be tested continuously for the duration of its assigned class (see

Section 4.2).

8.4.9.2 Where the assigned class is greater than 4 hours, it shall be permitted to terminate the

test after 4 continuous hours.

8.4.9.3 The test shall be initiated by operating at least one transfer switch test function and then

by operating the test function of all remaining ATSs, or initiated by opening all switches or

breakers supplying normal power to all ATSs that are part of the EPSS being tested.

8.4.9.4 A power interruption to non-EPSS loads shall not be required.

8.4.9.5 The minimum load for this test shall be as specified in 8.4.9.5.1 - , 8.4.9.5.2, or 8.4.9.5.43.

8.4.9.5.1* For a diesel-powered EPS, loading shall be not less than 30 percent of the nameplate

kW rating of the EPS. A supplemental load bank shall be permitted to be used to meet or exceed

the 30 percent requirement.

8.4.9.5.2 For a diesel-powered EPS, loading shall be that which maintains the minimum exhaust

gas temperatures as recommended by the manufacturer.

8.4.9.5.3 For spark-ignited EPSs, loading shall be the available EPSS load.

8.4.9.5.4 For fuel cell system EPSs, loading shall be the available EPSS load.

8.4.9.6 The test required in 8.4.9 shall be permitted to be combined with one of the monthly

tests required by 8.4.2 and one of the annual tests required by 8.4.2.3 as a single test.

8.4.9.7* Where the test required in 8.4.9 is combined with the annual load bank test, the first

portion of the test shall be at not less than the minimum loading required by 8.4.9.5, the last

hour shall be at not less than 75 percent of the nameplate kW rating of the EPS, and the

duration of the test shall be in accordance with 8.4.9.1 and 8.4.9.2.

Commented [EP1]: Added

Public Comment No. 66-NFPA 110-2020 [ Section No. 8.4.4 ]

8.4.4

Load tests of generator sets shall include complete cold starts.An EPS that is continuously running shallnet be required to meet this requirement

Additional Proposed Changes

File Name Description Approved

Changes_to_NFPA_110_Chapter_8_for_submission_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI (

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:26:51 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

118 of 120 5/7/2020, 4:56 PM

Chapter 8 Routine Maintenance and Operational Testing 8.1* General.

8.1.1 The routine maintenance and operational testing program shall be based on all of the

following:

(1) Manufacturer’s recommendations

(2) Instruction manuals

(3) Minimum requirements of this chapter

(4) The authority having jurisdiction

8.1.2 Consideration shall be given to temporarily providing a portable or alternate source

whenever the emergency generator is out of service and the criteria set forth in Section 4.3

cannot be met.

8.2* Manuals, Special Tools, and Spare Parts.

8.2.1 At least two sets of instruction manuals for all major components of the EPSS shall be

supplied by the manufacturer(s) of the EPSS and shall contain the following:

(1) A detailed explanation of the operation of the system

(2) Instructions for routine maintenance

(3) Detailed instructions for repair of the EPS and other major components of the EPSS

(4) An illustrated parts list and part numbers

(5) Illustrated and schematic drawings of electrical wiring systems, including operating and

safety devices, control panels, instrumentation, and annunciators

8.2.2 For Level 1 systems, instruction manuals shall be kept in a secure, convenient location,

one set near the equipment, and the other set in a separate location.

8.2.3 Special tools and testing devices necessary for routine maintenance shall be available for

use when needed.

8.2.4 Replacement for parts identified by experience as high mortality items shall be maintained

in a secure location(s) on the premises.

8.2.4.1 Consideration shall be given to stocking spare parts as recommended by the

manufacturer.

8.2.5 For Fuel Cell Systems, a Maintenance Manual should be provided per ANSI/CSA FC 1,

Section 7.4.5.

8.3 Maintenance and Operational Testing.

8.3.1* The EPSS shall be maintained to ensure to a reasonable degree that the system is

capable of supplying service within the time specified for the type and for the time duration

specified for the class.

8.3.2 A routine maintenance and operational testing program shall be initiated immediately after

the EPSS has passed acceptance tests or after completion of repairs that impact the operational

reliability of the system.

8.3.2.1 The operational test shall be initiated at an ATS and shall include testing of each EPSS

component on which maintenance or repair has been performed, including the transfer of each

automatic and manual transfer switch to the alternate power source, for a period of not less

than 30 minutes under operating temperature.

8.3.3 A written schedule for routine maintenance and operational testing of the EPSS shall be

established.

8.3.4* Transfer switches shall be subjected to a maintenance and testing program that includes

all of the following operations:

(1) Checking of connections

(2) Inspection or testing for evidence of overheating and excessive contact erosion

(3) Removal of dust and dirt

(4) Replacement of contacts when required

8.3.5* Paralleling gear shall be subject to an inspection, testing, and maintenance program that

includes all of the following operations:

(1) Checking connections

(2) Inspecting or testing for evidence of overheating and excessive contact erosion

(3) Removing dust and dirt

(4) Replacing contacts when required

(5) Verifying that the system controls will operate as intended

8.3.6* Storage batteries, including electrolyte levels or battery voltage, used in connection with

systems shall be inspected weekly and maintained in full compliance with manufacturer's

specifications.

8.3.6.1 Maintenance of lead-acid batteries shall include the monthly testing and recording of

electrolyte specific gravity. Battery conductance testing shall be permitted in lieu of the testing

of specific gravity when applicable or warranted.

8.3.6.2 Defective batteries shall be replaced immediately upon discovery of defects.

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM standards

or the manufacturer’s recommendations.

8.4 Operational Inspection and Testing.

8.4.1* EPSSs, including all appurtenant components, shall be inspected weekly and exercised

under load at least monthly.

8.4.1.1 If the generator set is used for standby power or for peak load shaving, such use shall be

recorded and shall be permitted to be substituted for scheduled operations and testing of the

generator set, providing the same record as required by 8.3.4.5.

8.4.1.2 If a continually operating fuel cell system is used for standby power or for peak load

shaving, such use shall be recorded and shall be permitted to be substituted for scheduled

operations and testing of the fuel cell system, providing the same record as required by 8.5.

8.4.2* Generator sets in service shall be exercised at least once monthly, for a minimum of 30

minutes, using one of the following methods:

(1) Loading that maintains the minimum exhaust gas temperatures as recommended by the

manufacturer

(2) Under operating temperature conditions and at not less than 30 percent of the EPS standby

nameplate kW rating

8.4.2.1 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.2 Equivalent loads used for testing shall be automatically replaced with the emergency

loads in case of failure of the primary source.

8.4.2.3* Diesel-powered EPS installations that do not meet the requirements of 8.4.2 shall be

exercised monthly with the available EPSS load and shall be exercised annually with

supplemental loads at not less than 50 percent of the EPS nameplate kW rating for 30

continuous minutes and at not less than 75 percent of the EPS nameplate kW rating for 1

continuous hour for a total test duration of not less than 1.5 continuous hours.

8.4.2.3.14 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.43.2.1 Equivalent loads used for testing shall be automatically replaced with the

emergency loads in case of failure of the primary source.

8.4.3 The EPS test shall be initiated by simulating a power outage using the test switch(es) on

the ATSs or by opening a normal breaker. Opening a normal breaker shall not be required.

8.4.3.1* Where multiple ATSs are used as part of an EPSS, the monthly test initiating ATSs shall

be rotated to verify the starting function on each ATS.

8.4.4 Load tests of generator sets shall include complete cold starts. An EPS that is continually

running as an energy source meets this requirement.

8.4.5 Time delays shall be set as follows:

(1) Time delay on start:

(a) 1 second minimum

(b) 0.5 second minimum for gas turbine units

(2) Time delay on transfer to emergency: no minimum required

(3) Time delay on restoration to normal: 5 minutes minimum

(4) Time delay on shutdown: 5 minutes minimum

8.4.6 Transfer switches shall be operated monthly.

8.4.6.1* The monthly test of a transfer switch shall consist of electrically operating the transfer

switch from the primary position to the alternate position and then a return to the primary

position.

8.4.6.2 The criteria set forth in Section 4.3 and in Table 4.1(b) shall not be required during the

monthly testing of the EPSS. If the criteria are not met during the monthly test, a process shall

be provided to annually confirm the capability of the system to comply with Section 4.3.

8.4.7* EPSS circuit breakers for Level 1 system usage, including main and feed breakers

between the EPS and the transfer

switch load terminals, shall be exercised annually with the EPS in the “off” position.

8.4.7.1 Circuit breakers rated in excess of 600 volts for Level 1 system usage shall be exercised

every 6 months and shall be tested under simulated overload conditions every 2 years.

8.4.8 EPSS components shall be maintained and tested by qualified person(s).

8.4.9* Level 1 EPSS shall be tested at least once within every 36 months.

8.4.9.1 Level 1 EPSS shall be tested continuously for the duration of its assigned class (see

Section 4.2).

8.4.9.2 Where the assigned class is greater than 4 hours, it shall be permitted to terminate the

test after 4 continuous hours.

8.4.9.3 The test shall be initiated by operating at least one transfer switch test function and then

by operating the test function of all remaining ATSs, or initiated by opening all switches or

breakers supplying normal power to all ATSs that are part of the EPSS being tested.

8.4.9.4 A power interruption to non-EPSS loads shall not be required.

8.4.9.5 The minimum load for this test shall be as specified in 8.4.9.5.1 - , 8.4.9.5.2, or 8.4.9.5.43.

8.4.9.5.1* For a diesel-powered EPS, loading shall be not less than 30 percent of the nameplate

kW rating of the EPS. A supplemental load bank shall be permitted to be used to meet or exceed

the 30 percent requirement.

8.4.9.5.2 For a diesel-powered EPS, loading shall be that which maintains the minimum exhaust

gas temperatures as recommended by the manufacturer.

8.4.9.5.3 For spark-ignited EPSs, loading shall be the available EPSS load.

8.4.9.5.4 For fuel cell system EPSs, loading shall be the available EPSS load.

8.4.9.6 The test required in 8.4.9 shall be permitted to be combined with one of the monthly

tests required by 8.4.2 and one of the annual tests required by 8.4.2.3 as a single test.

8.4.9.7* Where the test required in 8.4.9 is combined with the annual load bank test, the first

portion of the test shall be at not less than the minimum loading required by 8.4.9.5, the last

hour shall be at not less than 75 percent of the nameplate kW rating of the EPS, and the

duration of the test shall be in accordance with 8.4.9.1 and 8.4.9.2.

Commented [EP1]: Added

Public Comment No. 67-NFPA 110-2020 [ New Section after 8.4.9.5.3 ]

8.5.9.5.4

8.4.9.5. 4 For fuel cell system E PSs , loading shall be the available EPSS load.

Additional Proposed Changes

File Name Description Approved

Changes_to_NFPA_110_Chapter_8_for_submission_05-06-2020.docx

Statement of Problem and Substantiation for Public Comment

Task group response to CI 9

Related Item

• CI 9

Submitter Information Verification

Submitter Full Name: Ronald Smidt

Organization: Atrium Health

Street Address:

City:

State:

Zip:

Submittal Date: Wed May 06 14:29:01 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

119 of 120 5/7/2020, 4:56 PM

Chapter 8 Routine Maintenance and Operational Testing 8.1* General.

8.1.1 The routine maintenance and operational testing program shall be based on all of the

following:

(1) Manufacturer’s recommendations

(2) Instruction manuals

(3) Minimum requirements of this chapter

(4) The authority having jurisdiction

8.1.2 Consideration shall be given to temporarily providing a portable or alternate source

whenever the emergency generator is out of service and the criteria set forth in Section 4.3

cannot be met.

8.2* Manuals, Special Tools, and Spare Parts.

8.2.1 At least two sets of instruction manuals for all major components of the EPSS shall be

supplied by the manufacturer(s) of the EPSS and shall contain the following:

(1) A detailed explanation of the operation of the system

(2) Instructions for routine maintenance

(3) Detailed instructions for repair of the EPS and other major components of the EPSS

(4) An illustrated parts list and part numbers

(5) Illustrated and schematic drawings of electrical wiring systems, including operating and

safety devices, control panels, instrumentation, and annunciators

8.2.2 For Level 1 systems, instruction manuals shall be kept in a secure, convenient location,

one set near the equipment, and the other set in a separate location.

8.2.3 Special tools and testing devices necessary for routine maintenance shall be available for

use when needed.

8.2.4 Replacement for parts identified by experience as high mortality items shall be maintained

in a secure location(s) on the premises.

8.2.4.1 Consideration shall be given to stocking spare parts as recommended by the

manufacturer.

8.2.5 For Fuel Cell Systems, a Maintenance Manual should be provided per ANSI/CSA FC 1,

Section 7.4.5.

8.3 Maintenance and Operational Testing.

8.3.1* The EPSS shall be maintained to ensure to a reasonable degree that the system is

capable of supplying service within the time specified for the type and for the time duration

specified for the class.

8.3.2 A routine maintenance and operational testing program shall be initiated immediately after

the EPSS has passed acceptance tests or after completion of repairs that impact the operational

reliability of the system.

8.3.2.1 The operational test shall be initiated at an ATS and shall include testing of each EPSS

component on which maintenance or repair has been performed, including the transfer of each

automatic and manual transfer switch to the alternate power source, for a period of not less

than 30 minutes under operating temperature.

8.3.3 A written schedule for routine maintenance and operational testing of the EPSS shall be

established.

8.3.4* Transfer switches shall be subjected to a maintenance and testing program that includes

all of the following operations:

(1) Checking of connections

(2) Inspection or testing for evidence of overheating and excessive contact erosion

(3) Removal of dust and dirt

(4) Replacement of contacts when required

8.3.5* Paralleling gear shall be subject to an inspection, testing, and maintenance program that

includes all of the following operations:

(1) Checking connections

(2) Inspecting or testing for evidence of overheating and excessive contact erosion

(3) Removing dust and dirt

(4) Replacing contacts when required

(5) Verifying that the system controls will operate as intended

8.3.6* Storage batteries, including electrolyte levels or battery voltage, used in connection with

systems shall be inspected weekly and maintained in full compliance with manufacturer's

specifications.

8.3.6.1 Maintenance of lead-acid batteries shall include the monthly testing and recording of

electrolyte specific gravity. Battery conductance testing shall be permitted in lieu of the testing

of specific gravity when applicable or warranted.

8.3.6.2 Defective batteries shall be replaced immediately upon discovery of defects.

8.3.7 A fuel quality test shall be performed at least annually using appropriate ASTM standards

or the manufacturer’s recommendations.

8.4 Operational Inspection and Testing.

8.4.1* EPSSs, including all appurtenant components, shall be inspected weekly and exercised

under load at least monthly.

8.4.1.1 If the generator set is used for standby power or for peak load shaving, such use shall be

recorded and shall be permitted to be substituted for scheduled operations and testing of the

generator set, providing the same record as required by 8.3.4.5.

8.4.1.2 If a continually operating fuel cell system is used for standby power or for peak load

shaving, such use shall be recorded and shall be permitted to be substituted for scheduled

operations and testing of the fuel cell system, providing the same record as required by 8.5.

8.4.2* Generator sets in service shall be exercised at least once monthly, for a minimum of 30

minutes, using one of the following methods:

(1) Loading that maintains the minimum exhaust gas temperatures as recommended by the

manufacturer

(2) Under operating temperature conditions and at not less than 30 percent of the EPS standby

nameplate kW rating

8.4.2.1 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.2 Equivalent loads used for testing shall be automatically replaced with the emergency

loads in case of failure of the primary source.

8.4.2.3* Diesel-powered EPS installations that do not meet the requirements of 8.4.2 shall be

exercised monthly with the available EPSS load and shall be exercised annually with

supplemental loads at not less than 50 percent of the EPS nameplate kW rating for 30

continuous minutes and at not less than 75 percent of the EPS nameplate kW rating for 1

continuous hour for a total test duration of not less than 1.5 continuous hours.

8.4.2.3.14 The date and time of day for required testing shall be decided by the owner, based on

facility operations.

8.4.2.43.2.1 Equivalent loads used for testing shall be automatically replaced with the

emergency loads in case of failure of the primary source.

8.4.3 The EPS test shall be initiated by simulating a power outage using the test switch(es) on

the ATSs or by opening a normal breaker. Opening a normal breaker shall not be required.

8.4.3.1* Where multiple ATSs are used as part of an EPSS, the monthly test initiating ATSs shall

be rotated to verify the starting function on each ATS.

8.4.4 Load tests of generator sets shall include complete cold starts. An EPS that is continually

running as an energy source meets this requirement.

8.4.5 Time delays shall be set as follows:

(1) Time delay on start:

(a) 1 second minimum

(b) 0.5 second minimum for gas turbine units

(2) Time delay on transfer to emergency: no minimum required

(3) Time delay on restoration to normal: 5 minutes minimum

(4) Time delay on shutdown: 5 minutes minimum

8.4.6 Transfer switches shall be operated monthly.

8.4.6.1* The monthly test of a transfer switch shall consist of electrically operating the transfer

switch from the primary position to the alternate position and then a return to the primary

position.

8.4.6.2 The criteria set forth in Section 4.3 and in Table 4.1(b) shall not be required during the

monthly testing of the EPSS. If the criteria are not met during the monthly test, a process shall

be provided to annually confirm the capability of the system to comply with Section 4.3.

8.4.7* EPSS circuit breakers for Level 1 system usage, including main and feed breakers

between the EPS and the transfer

switch load terminals, shall be exercised annually with the EPS in the “off” position.

8.4.7.1 Circuit breakers rated in excess of 600 volts for Level 1 system usage shall be exercised

every 6 months and shall be tested under simulated overload conditions every 2 years.

8.4.8 EPSS components shall be maintained and tested by qualified person(s).

8.4.9* Level 1 EPSS shall be tested at least once within every 36 months.

8.4.9.1 Level 1 EPSS shall be tested continuously for the duration of its assigned class (see

Section 4.2).

8.4.9.2 Where the assigned class is greater than 4 hours, it shall be permitted to terminate the

test after 4 continuous hours.

8.4.9.3 The test shall be initiated by operating at least one transfer switch test function and then

by operating the test function of all remaining ATSs, or initiated by opening all switches or

breakers supplying normal power to all ATSs that are part of the EPSS being tested.

8.4.9.4 A power interruption to non-EPSS loads shall not be required.

8.4.9.5 The minimum load for this test shall be as specified in 8.4.9.5.1 - , 8.4.9.5.2, or 8.4.9.5.43.

8.4.9.5.1* For a diesel-powered EPS, loading shall be not less than 30 percent of the nameplate

kW rating of the EPS. A supplemental load bank shall be permitted to be used to meet or exceed

the 30 percent requirement.

8.4.9.5.2 For a diesel-powered EPS, loading shall be that which maintains the minimum exhaust

gas temperatures as recommended by the manufacturer.

8.4.9.5.3 For spark-ignited EPSs, loading shall be the available EPSS load.

8.4.9.5.4 For fuel cell system EPSs, loading shall be the available EPSS load.

8.4.9.6 The test required in 8.4.9 shall be permitted to be combined with one of the monthly

tests required by 8.4.2 and one of the annual tests required by 8.4.2.3 as a single test.

8.4.9.7* Where the test required in 8.4.9 is combined with the annual load bank test, the first

portion of the test shall be at not less than the minimum loading required by 8.4.9.5, the last

hour shall be at not less than 75 percent of the nameplate kW rating of the EPS, and the

duration of the test shall be in accordance with 8.4.9.1 and 8.4.9.2.

Commented [EP1]: Added

Public Comment No. 70-NFPA 110-2020 [ Section No. A.4.4.2 ]

A.4.4.2

Typically, Level 2 systems are intended to supply power automatically to selected loads (other than thoseclassed as emergency systems) in the event of failure of the primary source.

Level 2 systems typically are installed to serve loads, such as the following, that, when stopped due to anyinterruption of the primary electrical supply, could create hazards or hamper rescue or fire-fightingoperations:

(1) Heating and refrigeration systems

(2) Communications systems

(3) Ventilation and smoke removal systems

(4) Sewage disposal

(5) Lighting, including unit equipment defined in NFPA 70 (NEC), 700.12

(6) Industrial processes

Additional Proposed Changes

File Name Description Approved

110_A2021_NEC_AAC_FD_CorrelatingNotes.pdf NFPA110_CCNote1

Statement of Problem and Substantiation for Public Comment

NOTE: This Public Comment appeared as CC Note No. 1 in the First Draft Report on First Revision No. 19.

The Correlating Committee notes that unit equipment is not defined in Article 700 and requests clarification from the Technical Committee on the intended application of list item 5.

Related Item

• First Revision No. 19

Submitter Information Verification

Submitter Full Name: CC on NEC-AAC

Organization: NEC Correlating Committee

Street Address:

City:

State:

Zip:

Submittal Date: Thu May 07 16:32:58 EDT 2020

Committee: EPS-AAA

National Fire Protection Association Report https://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPar...

120 of 120 5/7/2020, 4:56 PM