Supplementary Material: Hydroxamate, A Key Pharmacophore Exhibiting a Wide Range of Biological...

26
Mini-Reviews in Medicinal Chemistry Complementary Information HYDROXAMATE, A KEY PHARMACOPHORE EXHIBITING A WIDE RANGE OF BIOLOGICAL ACTIVITIES Samuel Bertrand 1 , Jean-Jacques Hélesbeux 1 , Gérald Larcher 2 , Olivier Duval 1, * 1 Laboratoire des Substances d’Origine Naturelle et Analogues Structuraux, UPRES -EA 921, IFR 149 QUASAV, UFR des Sciences pharmaceutiques et ingénierie de la santé, Université d’Angers, 16 Bd Daviers, 49045 Angers Cedex, France. 2 Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, IFR 132, Université d’Angers, Institut de Biologie en Santé PBH- IRIS CHU 4, Rue Larrey 49933 Angers Cedex, France.

Transcript of Supplementary Material: Hydroxamate, A Key Pharmacophore Exhibiting a Wide Range of Biological...

Mini-Reviews in Medicinal Chemistry – Complementary Information 1

HYDROXAMATE, A KEY PHARMACOPHORE EXHIBITING A WIDE RANGE OF BIOLOGICAL

ACTIVITIES

Samuel Bertrand1, Jean-Jacques Hélesbeux

1, Gérald Larcher

2, Olivier Duval

1,*

1Laboratoire des Substances d’Origine Naturelle et Analogues Structuraux, UPRES-EA 921, IFR 149 QUASAV, UFR des Sciences

pharmaceutiques et ingénierie de la santé, Université d’Angers, 16 Bd Daviers, 49045 Angers Cedex, France.

2Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, IFR 132, Université d’Angers, Institut de Biologie en Santé PBH-

IRIS CHU 4, Rue Larrey 49933 Angers Cedex, France.

Mini-Reviews in Medicinal Chemistry – Complementary Information 2

TABLE I. LIST OF BIOCHEMICAL ACTIVITIES OF HYDROXAMIC ACID DERIVATIVES SORTED BY

PHARMACOLOGICAL ACTIVITIES

Pharmacological activities Biochemical activities

Antibacterial and antifungal

activities

Inhibition of fructose bis-phosphate aldolases [1]

Inhibition of glyoxalase [2]

Inhibition of methionine aminopeptidase [3-5]

Inhibition of peptide deformylase [3, 6-9]

Inhibition of phosphomannose isomerases [10]

Inhibition of UDP-3-O-[R-3-hydroxymyristoy]-N-acetylglucosamine deacetylase

[7, 11-15]

Iron chelation [16]

Vectorisation of therapeutic agents [17-22]

Antidiabetic activity activation of Akt signaling pathway [23]

inhibition of 11 -hydroxysteroid dehydrogenase 2 [24]

inhibition of insulin-degrading enzyme [25]

Anti-inflammatory activities inhibition of 11 β-hydroxysteroid dehydrogenase 2 [24]

inhibition of aminopeptidase [26]

inhibition of cyclooxygenases [27-30]

inhibition of dipeptidylaminopeptidase [26]

inhibition of histone deacetylase [31]

Inhibition of leukotriene A4 hydrolases [32, 33]

inhibition of lipoxygenases [27-29, 34]

inhibition of TNF-α converting enzyme [7, 35-40]

Anti-neurodegenerative activities inhibition of glutamate carboxypeptidase II [41-44]

inhibition of histone deacetylase [45, 46]

Inhibition of kynurenine aminotransferase [47]

inhibition of matrix metalloproteinases (MMP) [45, 48]

inhibition of serine racemase [49-52]

iron chelation [53-66]

Anti-osteoarthritis activity inhibition of aggrecanases [7, 67-70]

inhibition of histone deacetylase [71]

Anti-osteoarthritis activity inhibition of matrix metalloproteinases [67, 68, 72-74]

Anti-oxidant activities Electron scavenging capacity [75-86]

Iron chelation [53-66, 83, 84, 87,

88]

Antiparasitic activities Inhibition of aminopeptidase [89]

Mini-Reviews in Medicinal Chemistry – Complementary Information 3

Inhibition of histone deacetylase [90-93]

Inhibition of metalloproteases [90, 91]

Iron chelation [28, 94-96]

Anti-scarring activity Inhibition of procollagen C-proteinase (MMP family) [97, 98]

Anti-toxin activities Inhibition of botulinum neurotoxin [99-105]

Inhibition of collagenase from Clostridium histolyticum [7, 106]

Inhibition of thermolysin from Bacillus thermoproteolyticus [107, 108]

Inhibition of ureases from Helicobacter pylori [3, 94, 109-113]

Antitumor activities inhibition of carbonic anhydrase [3, 114-117]

inhibition of cyclooxygenases [118, 119]

inhibition of eukaryotic translation [120]

inhibition of glutamate carboxypeptidase II [41-44]

inhibition of glyoxalase [2]

inhibition of histone deacetylase [3, 7, 121-144]

inhibition of lipoxygenases [118, 119]

inhibition of matrix metalloproteinases [3, 7, 35, 127, 145-

158]

inhibition of methionine aminopeptidase [5, 159]

inhibition of phosphatases alcalines, acides ou les 2 ? [160, 161]

inhibition of phospholipases C [162]

inhibition of ribonucleotide reductase [87, 127, 163, 164]

Iron chelation [87, 163, 165-167]

Antiviral activities inhibition of histone deacetylase [168-171]

Inhibition of HIV integrase [172, 173]

Depigmenting activity inhibition of tyrosinase [83]

Hypotensive activities inhibition of vasopeptidase [174-177]

Activation of nitric oxide formation [28, 178-182].

Metal detoxification Iron chelation [53-66]

Other metal chelation [183-185]

Mini-Reviews in Medicinal Chemistry – Complementary Information 4

TABLE II. LIST OF BIOCHEMICAL ACTIVITIES OF HYDROXAMIC ACID DERIVATIVES SORTED BY

PHARMACOLOGICAL ACTIVITIES

Biochemical activities Pharmacological activities

Activation of Akt signaling pathway Antidiabetic activity [23]

Electron scavenging capacity Anti-oxidant activities [75-82, 84-86]

inhibition of 11 β-hydroxysteroid dehydrogenase 2 Anti-inflammatory activities [24]

Antidiabetic activity [24]

inhibition of aggrecanases Anti-osteoarthritis activity [7, 67-70]

inhibition of aminopeptidase Anti-inflammatory activities [26]

Antiparasitic ativities [89]

Inhibition of botulinum neurotoxin Anti-toxin activities [99-105]

inhibition of carbonic anhydrase Antitumor activities [3, 114-117]

Inhibition of collagenase from Clostridium histolyticum Anti-toxin activities [7, 106]

inhibition of cyclooxygenases Anti-inflammatory activities [27-30]

Antitumor activities [118, 119]

inhibition of dipeptidylaminopeptidase Anti-inflammatory activities [26]

inhibition of eukaryotic translation Antitumor activities [120]

Inhibition of fructose bis-phosphate aldolases Antibacterial and antifungal

activities

[1]

inhibition of glutamate carboxypeptidase II Anti-inflammatory activities [41-44]

Anti-neurodegenerative activities [41-44]

Inhibition of glyoxalase Antibacterial and antifungal

activities

[2]

Anti-inflammatory activities [2]

Inhibition of histone deacetylase Anti-inflammatory activities [31]

Anti-neurodegenerative activities [45, 46]

Anti-osteoarthritis activity [71]

Antiparasitic activities [90-93]

Antitumor activities [3, 7, 121-141, 143, 144,

186]

Antiviral activities [168-171]

Cardiovascular protective activities [187]

Inhibition of HIV integrase Antiviral activities [172, 173]

Inhibition of insulin-degrading enzyme Antidiabetic activity [25]

Inhibition of kynurenine aminotransferase Anti-neurodegenerative activity [47]

Inhibition of leukotriene A4 hydrolases Anti-inflammatory activities [32, 33]

inhibition of lipoxygenases Anti-inflammatory activities [27-29, 34]

Mini-Reviews in Medicinal Chemistry – Complementary Information 5

Antitumor activities [118, 119]

Inhibition of matrix metalloproteinases Anti-neurodegenerative activities [45, 48]

Anti-osteoarthritis activity [67, 68, 72-74]

Antitumor activities [3, 7, 35, 127, 145-158]

Inhibition of procollagen C-proteinase (MMP family) Anti-scarring activity [97, 98]

Inhibition of metalloproteases Antiparasitic activities [90, 91]

Inhibition of methionine aminopeptidase Antibacterial and antifungal activities

[3-5]

Antitumor activities [5, 159]

Inhibition of peptide deformylase Antibacterial and antifungal activities

[3, 6-9]

inhibition of phosphatases Antitumor activities [160, 161]

inhibition of phospholipases C Anti-inflammatory activities [162]

Inhibition of phosphomannose isomerases Antibacterial and antifungal activities

[10]

inhibition of ribonucleotide reductase Antitumor activities [87, 127, 163, 164]

inhibition of serine racemase Anti-neurodegenerative activities [49-52]

Inhibition of thermolysin Anti-toxin activities [107, 108]

inhibition of TNF-α converting enzyme Anti-inflammatory activities [7, 35-40]

Inhibition of tyrosinase Depigmenting activity [83]

Inhibition of UDP-3-O-[R-3-hydroxymyristoy]-N-acetylglucosamine deacetylase

Antibacterial and antifungal activities

[7, 11-15]

Inhibition of ureases Anti-toxin activities [3, 94, 109-113]

inhibition of vasopeptidase Hypotensive activities [174-177]

Iron chelation Antibacterial and antifungal activities

[16]

Anti-neurodegenerative activities [53-66]

Anti-oxidant activities [53-66, 84, 87, 88]

Antiparasitic activities [28, 94-96]

Antitumor activities [87, 163, 165-167]

Metal detoxification [53-66]

Other metal chelation Metal detoxification [183-185]

Nitric oxide formation Hypotensive activities [28, 178-182].

Vectorisation of therapeutic agents Antibacterial and antifungal activities

[17-22]

Mini-Reviews in Medicinal Chemistry – Complementary Information 6

CHEMICAL STRUCTURE OF SOME HYDROXAMIC ACID DERIVATIVES AND THEIR RELATED PHARMACOLOGICAL/BIOCHEMICAL ACTIVITIES

Name Structure Related activities

(±)-1-hydroxy-3,7,7,9,9-pentamethyl-1,4,8-triazaspiro[4.5]decan-2-one

Hypotensive activity / Nitric oxide formation [182]

(Arylalkyl)hydroxamic acids

N

O

OH

O

N

O

OH

Anti-inflammatory / 5-lipoxygenase inhibitor [188]

(S)-HDAC42

Antitumor / Histone-deacetylase inhibitor [189]

[(Aryloxy)alkyl]hydroxamic acids

N

O

OHO

O

N

O

OHO

O

Anti-inflammatory / 5-lipoxygenase inhibitor [188]

Actinonin

HONH

OHN

O

N

OOH

Antibacterial / Peptide deformylase inhibitor [8]

Mini-Reviews in Medicinal Chemistry – Complementary Information 7

Acyclic 3-alkyl-O-methyl-azaindole N-methyl hydroxamates

Antiviral / HIV integrase inhibitor [172, 173]

Acyclic 3-aminomethyl-azaindole N-methyl hydroxamates

Antiviral / HIV integrase inhibitor [172, 173]

AHP analogues

Anti-toxin / Inhibition of botulinum neurotoxin [104]

Albomycin δ1

Antibacterial / Vectorisation of antimicrobial agents [17, 18]

Mini-Reviews in Medicinal Chemistry – Complementary Information 8

Arylacrylohydroxamic acids

N

O

OH

N

O

OH

Anti-inflammatory / 5-lipoxygenase inhibitor [188]

Arylhydroxamic acids

N

O

OH

NH

O

OH

Anti-inflammatory / 5-lipoxygenase inhibitor [188]

Azaindole N-methyl hydroxamic acid

NN

F

N

N

O

OH

O

NH2

NN

F

O

N

O

OHO

Antiviral / HIV-1 integrase inhibitor [173]

Caffeoyl-amino acidyl-hydroxamic acid

Antioxidant / Electron scavenging capacity [83]

Depigmenting activity /

Tyrosinase inhibitor [83].

Chlorocinnamic acid hydroxamate HN

OHO

ClHN

OHO

ClCl

Anti-toxin / Inhibition of botulinum neurotoxin A [103]

Mini-Reviews in Medicinal Chemistry – Complementary Information 9

Ciclopiroxolamine

Antifungal [190-193] Antioxydant / Iron chelation [79, 163] Anticancer [163, 167]

Cobactin ring analogue

Hypotensive activity / Vasopeptidase inhibitor [175]

Cobactin ring analogue

Hypotensive activity / Vasopeptidase inhibitor [175]

Deferoxamine B

N

O

OH

NH

O

N

O

OHHN

O

N

O

OH

NH3+

Metal detoxification (Fe, Al) [66, 184] Antioxidant [85, 86, 88, 194] Anti-malarial [95, 195, 196] Antitumor [87, 166]

Desferri-tsukubachelin

Hypotensive activity / Vasopeptidase inhibitor [197]

Mini-Reviews in Medicinal Chemistry – Complementary Information 10

Dimerumic acid

NH

HNO

O

N

OH

O

N

OH

O

OH

HO

Antioxidant [75, 81]

Enactins OH

N

O

OH

O

H2N X

R1

X : ,OOH

H

Antifungal [198-200]

Ferrimycin

Antibacterial / Vectorisation of antimicrobial agents [19]

Glycosylated -amino hydroxamic acids

Anti-malarial [201]

Hadacin

N

OH

O

OH

O

Antitumor [165, 202, 203]

Mini-Reviews in Medicinal Chemistry – Complementary Information 11

Hydroxamate derivative of glycyrrhetinic acid

H

OH

O

O

O

N

OH

H

Antidiabetic / Inhibition of 11 -hydroxysteroid dehydrogenase 2 [24] Anti-inflammatory / Inhibition of

11 -hydroxysteroid dehydrogenase 2[24]

Li1 ??????

Antidiabetic / Insulin-degrading enzyme inhibitor [25]

m-Carboxy cinnamic acid bishydroxamic acid (CBHA)

NH

O

HONH

O

OH

Antitumor / Histone-deacetylase inhibitor [204]

Modified pectins Carboxylic acids modified to hydroxamic acids Antioxydant [78]

Neoenactins OH

N

O

OH

O

H2N X R1

R2

R3

X : ,OOH

H

Antifungal [198-200]

Mini-Reviews in Medicinal Chemistry – Complementary Information 12

N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycyl hydroxamic acid

SNH

HN

OHO

O

OO

Anti-neurodegenerative / Matrix metalloproteinases inhibitor [48, 205]

NVP-LAQ824

NH

O

OH

N

OH

HN

Antitumor / Histone-deacetylase inhibitor [204]

Oxamflatin

NH

O

OH

NHS

O O

Antitumor / Histone-deacetylase inhibitor [204]

Panobinostat

HN

HN

NH

O

OH

Antitumor / Histone-deacetylase inhibitor [124]

PDX 101

NH

O

OHSNH

OO

Antitumor / Histone-deacetylase inhibitor [204]

Mini-Reviews in Medicinal Chemistry – Complementary Information 13

Phenolic hydroxamic acids

Antidiabetic / Akt phosphorylation activators [23]

Pyroxamide

NH

O

OHHN

O

N

Antitumor / Histone-deacetylase inhibitor [204]

Quinolinylmethyl -sulfone piperidine hydroxamic acid

Anti-inflammatory / TNF-α converting enzyme inhibitor [37]

Scriptaid

NH

O

OHN

O

O

Antitumor / Histone-deacetylase inhibitor [204]

Mini-Reviews in Medicinal Chemistry – Complementary Information 14

SL142

Antitumor / Histone-deacetylase inhibitor [125]

SL325

Antitumor / Histone-deacetylase inhibitor [125]

Suberoylanilide hydroxamic acid (Vorinostat, SAHA)

HN

O

NH

O

OH

Antitumor / Histone-deacetylase inhibitor [125, 127, 132-134, 137, 204] Antiviral (HIV) / Histone-deacetylase inhibitor [170]

Sulindac hydroxamic acid

F

HN

O

OH

S

O

O

Antitumor / Cyclooxygenase inhibitor [119]

Mini-Reviews in Medicinal Chemistry – Complementary Information 15

sulindac hydroxamic acid analogue ou isomer ????

F

HN

O

OH

S

Antitumor / Cyclooxygenase inhibitor [119]

Tepoxalin

N

O

OHNN

O

Cl

Anti-inflammatory / Cyclooxygenase [206] and 5-lipoxygenase [206] inhibitor

TMC-69

Antitumor / Phosphatase inhibitor [161]

TPX-HA analogue

NH

NHN

HN

O

O

O

OHN

OOH

Antitumor / Histone-deacetylase inhibitor [204]

Mini-Reviews in Medicinal Chemistry – Complementary Information 16

Trichostatin A

NH

O

OH

O

N

Antitumor / Histone-deacetylase inhibitor [127, 204]

VRC3375

HONH

O

N

OO

O

Antibacterial / Peptide deformylase inhibitor [8]

VRC3376

HONH

O

N

OO

O

Anti-bacterial / Peptide deformylase inhibitor [8]

Mini-Reviews in Medicinal Chemistry – Complementary Information 17

REFERENCES

1 er oin on onvielle e t Guerin, M. E.; Jackson, M.; Sygusch, J.; Therisod, M. Rational Design, Synthesis, and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases. J. Med. Chem., 2010, 53(21), 7836-7842.

[2] Ly, H. D.; Clugston, S. L.; Sampson, P. B.; Honek, J. F. Sytheses and Kinetic Evaluation of Hydroxamate-based peptide inhibitors of Glyoxalase I. Bioorg. Med. Chem. Lett., 1998, 8(7), 705-710.

[3] Winum, J.-Y.; Köhler, S.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T. Targeting bacterial metalloenzymes: A new strategy for the development of anti-infective agents. Anti-Infect. Agents Med. Chem., 2008, 7(3), 169-179.

[4] Schiffmann, R.; Neugebauer, A.; Klein, C. D. Metal-Mediated Inhibition of Escherichia coli Methionine Aminopeptidase: Structure-Activity Relationships and Development of a Novel Scoring Function for Metal-Ligand Interactions. J. Med. Chem., 2005, 49(2), 511-522.

[5] Hu, X.; Zhu, J.; Srivathsan, S.; Pei, D. Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(1), 77-79.

[6] Jain, R.; Chen, D.; White, R. J.; Patel, D. V.; Yuan, Z. Bacterial peptide deformylase inhibitors: A new class of antibacterial agents. Curr. Med. Chem., 2005, 12(14), 1607-1621.

[7] Lou, B.; Yang, K. Molecular Diversity of Hydroxamic Acids: Part II. Potential Therapeutic Applications. Mini-Rev. Med. Chem., 2003, 3(6), 609-620.

[8] Chen, D.; Hackbarth, C.; Ni, Z. J.; Wu, C.; Wang, W.; Jain, R.; He, Y.; Bracken, K.; Weidmann, B.; Patel, D. V.; Trias, J.; White, R. J.; Yuan, Z. Peptide Deformylase Inhibitors as Antibacterial Agents: Identification of VRC3375, a Proline-3-Alkylsuccinyl Hydroxamate Derivative, by Using an Integrated Combinatorial and Medicinal Chemistry Approach. Antimicrob. Agents Chemother., 2004, 48(1), 250-261.

[9] Boularot, A.; Giglione, C.; Petit, S.; Duroc, Y.; Alves de Sousa, R.; Larue, V.; Cresteil, T.; Dardel, F.; Artaud, I.; Meinnel, T. Discovery and Refinement of a New Structural Class of Potent Peptide Deformylase Inhibitors. J. Med. Chem., 2006, 50(1), 10-20.

[10] Roux, C. The reaction mechanism of type I phosphomannose isomerases: New information from

inhibition and polarizable molecular mechanics studies. Proteins, 2011, 79(1), 203-220.

[11] Jackman, J. E.; Fierke, C. A.; Tumey, L. N.; Pirrung, M.; Uchiyama, T.; Tahir, S. H.; Hindsgaul, O.; Raetz, C. R. H. Antibacterial Agents That Target Lipid A Biosynthesis in Gram-negative Bacteria. J. Biol. Chem., 2000, 275(15), 11002-11009.

[12] Li, X.; McClerren, A. L.; Raetz, C. R. H.; Hindsgaul, O. Mapping the Active Site of the Bacterial Enzyme LpxC Using Novel Carbohydrate-Based Hydroxamic Acid Inhibitors. J. Carbohyd. Chem., 2005, 24(4), 583 - 609.

[13] Gattis, S. G.; Hernick, M.; Fierke, C. A. Active Site Metal Ion in UDP-3-O-((R)-3-Hydroxymyristoyl)-N-acetylglucosamine Deacetylase (LpxC) Switches between Fe(II) and Zn(II) Depending on Cellular Conditions. J. Biol. Chem., 2010, 285(44), 33788-33796.

[14] Brown, M. F.; Reilly, U.; Abramite, J. A.; Arcari, J. T.; Oliver, R.; Barham, R. A.; Che, Y.; Chen, J. M.; Collantes, E. M.; Chung, S. W.; Desbonnet, C.; Doty, J.; Doroski, M.; Engtrakul, J. J.; Harris, T. M.; Huband, M.; Knafels, J. D.; Leach, K. L.; Liu, S.; Marfat, A.; Marra, A.; McElroy, E.; Melnick, M.; Menard, C. A.; Montgomery, J. I.; Mullins, L. Noe O’ onnell J enzien J Plummer, M. S.; Price, L. M.; Shanmugasundaram, V.; Thoma, C.; Uccello, D. P.; Warmus, J. S.; Wishka, D. G. Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections. J. Med. Chem., 2012, DOI: 10.1021/jm2014748.

[15] Warmus, J. S.; Quinn, C. L.; Taylor, C.; Murphy, S. T.; Johnson, T. A.; Limberakis, C.; Ortwine, D.; Bronstein, J.; Pagano, P.; Knafels, J. D.; Lightle, S.; Mochalkin, I.; Brideau, R.; Podoll, T. Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC. Bioorganic & Medicinal Chemistry Letters, 2012, 22(7), 2536-2543.

[16] Bergeron, R. J.; Elliott, G. T.; Kline, S. J.; Ramphal, R.; III, L. S. J. Bacteriostatic and Fungostatic Action of Catecholamide Iron Chelators. Antimicrob. Agents Chemother., 1983, 24(5), 725-730.

[17] Vértesy, L.; Aretz, W.; Fehlhaber, H.-W.; Kogler, H. 3. Salmycin A-D, antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv. Chim. Acta, 1995, 78, 46-60.

[18] Pramanik, A.; Braun, V. Albomycin Uptake via a Ferric Hydroxamate Transport System of Streptococcus pneumoniae R6. J. Bacteriol., 2006, 188(11), 3978-3886.

Mini-Reviews in Medicinal Chemistry – Complementary Information 18 [19] Miller, M. J. Microbial Iron Chelators as Drug Delivery Agents: The Rational Design and Synthesis of Siderophore-Drug Conjugates. Acc. Chem. Res., 1993, 26, 241-249.

[20] Hider, R. C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep., 2010, 27(5), 637-657.

[21] Miller, M. J.; Malouin, F. In: The Development of Iron Chelators for Clinical Use; Crc Press, Inc, 1994; pp. 275-306.

[22] Möllmann, U.; Heinisch, L.; Bauernfeind, A.; Köhler, T.; Ankel-Fuchs, D. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. BioMetals, 2009, 22(4), 615-624.

[23] Georgiades, S.; Mak, L.; Angurell, I.; Rosivatz, E.; Firouz Mohd Mustapa, M.; Polychroni, C.; Woscholski, R.; Vilar, R. Identification of a potent activator of Akt phosphorylation from a novel series of phenolic, picolinic, pyridino, and hydroxamic zinc(II) complexes. J. Biol. Inorg. Chem., 2011, 16(2), 195-208.

[24] Stanetty, C.; Czollner, L.; Koller, I.; Shah, P.; Gaware, R.; Cunha, T. D.; Odermatt, A.; Jordis, U.; Kosma, P.; Claßen-Houben, D. Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of

glycyrrhetinic acid as selective 11-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg. Med. Chem., 2010, 18(21), 7522-7541.

[25] Leissring, M. A.; Malito, E.; Hedouin, S.; Reinstatler, L.; Sahara, T.; Abdul-Hay, S. O.; Choudhry, S.; Maharvi, G. M.; Fauq, A. H.; Huzarska, M.; May, P. S.; Choi, S.; Logan, T. P.; Turk, B. E.; Cantley, L. C.; Manolopoulou, M.; Tang, W.-J.; Stein, R. L.; Cuny, G. D.; Selkoe, D. J. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin. PLoS One, 2010, 5(5), e10504.

[26] Fournié-Zaluski, M.-C.; Coulaud, A.; Bouboutou, R.; Chaillet, P.; Devin, J.; Waksman, G.; Costentin, J.; Roques, B. P. New Bidentates as Full Inhibitors of Enkephalin-Degrading Enzymes: Synthesis and Analgesic Properties. J. Med. Chem., 1985, 28(9), 1158-1169.

[27] Leone, S.; Ottani, A.; Bertolini, A. Dual acting anti-inflammatory drugs. Curr. Top. Med. Chem., 2007, 7(3), 265-275.

[28] Marmion, C. J.; Griffith, D.; Nolan, K. B. Hydroxamic acids - An intriguing family of enzyme inhibitors and biomedical ligands. EUr. J. Inorg. Chem., 2004, (15), 3003-3016.

[29] Huang, F.-C.; Shoupe, T. S.; Lin, C. J.; Lee, T. D. Y.; Chan, W.-K.; Tan, J.; Schnapper, M.; Suh, J. T.; Gordon, R. J.; Sonnino, P. A.; Sutherland, C. A.; Inwegen, R. G. V.; Coutts, S. M. Differential Effects of a Series of

Hydroxamic Acid Derivatives on 5-Lipoxygenase and Cyclooxygenase from Neutrophils and 12-Lipoxygenase from Platelets and Their in Vivo Effects on Inflammation and Anaphylaxis. J. Med. Chem., 1989, 32(8), 1836-1842.

[30] Simmons, D. L.; Botting, R. M.; Hla, T. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol. Rev., 2004, 56(3), 387-437.

[31] Halili, M. A.; Andrews, M. R.; Sweet, M. J.; Fairlie, D. P. Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem., 2009, 9(3), 309-319.

[32] Hogg, J. H.; Ollmann, I. R.; Haeggström, J. Z.; Wetterholm, A.; Samuelsson, B.; Wong, C.-H. Amino hydroxamic acids as potent inhibitors of leukotriene A4 hydrolase. Bioorg. Med. Chem., 1995, 3(10), 1405-1415.

[33] Penning, T. D. Inhibitors of Leukotriene A4 (LTA4) Hydrolase as Potential Anti Inflammatory Agents. Curr. Pharm. Des., 2001, 7(3), 163-179.

[34] Andreou, A.; Feussner, I. Lipoxygenases - Structure and reaction mechanism. Phytochemistry, 2009, 70(13-14), 1504-1510.

[35] Cherney, R.; Wang, L.; Meyer, D.; Xue, C.; Arner, E.; Copeland, R.; Covington, M.; Hardman, K.; Wasserman, Z.; Jaffee, B. Macrocyclic hydroxamate

inhibitors of matrix metalloproteinases and TNF- production. Bioorg. Med. Chem. Lett., 1999, 9(9), 1279-1284.

[36] Guo, Z.; Orth, P.; Wong, S.; Lavey, B.; Shih, N.; Niu, X.; Lundell, D.; Madison, V.; Kozlowski, J. Discovery of novel spirocyclopropyl hydroxamate and carboxylate compounds as TACE inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(1), 54-57.

[37] Zhang, C.; Lovering, F.; Behnke, M.; Zask, A.; Sandanayaka, V.; Sun, L.; Zhu, Y.; Xu, W.; Zhang, Y.; Levin, J. I. Synthesis and activity of quinolinylmethyl P1'

-sulfone piperidine hydroxamate inhibitors of TACE. Bioorg. Med. Chem. Lett., 2009, 19(13), 3445-3448.

[38] Mazzola Jr., R. D.; Zhu, Z.; Sinning, L.; McKittrick, B.; Lavey, B.; Spitler, J.; Kozlowski, J.; Neng-Yang, S.; Zhou, G.; Guo, Z.; Orth, P.; Madison, V.; Sun, J.; Lundell, D.; Niu, X. Discovery of novel hydroxamates as highly

potent tumor necrosis factor- converting enzyme inhibitors. Part II: Optimization of the S3' pocket. Bioorg. Med. Chem. Lett., 2008, 18(21), 5809-5814.

[39] Feng, W.-f.; Zhao, Y.-b.; Huang, W.; Yang, Y.-z. Molecular modeling and biological effects of peptidomimetic inhibitors of TACE activity. J. Enzym. Inhib. Med. Chem., 2010, 25(4), 459-466.

Mini-Reviews in Medicinal Chemistry – Complementary Information 19 [40] Bahia, M.; Silakari, O. Strategy for generation of new TACE inhibitors: pharmacophore and counter pharmacophore modeling to remove non-selective hits. Med. Chem. Res., 2010, 1-9 (Article in Press).

[41] Thomas, A. G.; Rojas, C. J.; Hill, J. R.; Shaw, M.; Slusher, B. S. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition. Anal. Biochem., 2010, 404(1), 94-96.

[42] Stoermer, D.; Liu, Q.; Hall, M.; Flanary, J.; Thomas, A.; Rojas, C.; Slusher, B.; Tsukamoto, T. Synthesis and biological evaluation of hydroxamate-based inhibitors of glutamate carboxypeptidase II. Bioorg. Med. Chem. Lett., 2003, 13(13), 2097-2100.

[43] Mesters, J. R.; Hilgenfeld, R. In: Handbook of Metalloproteins; John Wiley & Sons, Ltd: 2006; pp.

[44] Mesters, J. R.; Barinka, C.; Li, W.; Tsukamoto, T.; Majer, P.; Slusher, B. S.; Konvalinka, J.; Hilgenfeld, R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J., 2006, 25(6), 1375-1384.

[45] Ptak, C.; Petronis, A. Epigenetic approaches to psychiatric disorders. Dialogues Clin. Neurosci., 2010, 12(1), 23-33.

[46] Gibson, C. L.; Murphy, S. P. Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J. Neurochem., 2010, 115(4), 806-813.

[47] Henderson, J. L.; Sawant-Basak, A.; Tuttle, J. B.; Dounay, A. B.; McAllister, L. A.; Pandit, J.; Rong, S.; Hou, X.; Bechle, B. M.; Kim, J.-Y.; Parikh, V.; Ghosh, S.; Evrard, E.; Zawadzke, L. E.; Salafia, M. A.; Rago, B.; Obach, R. S.; Clark, A.; Fonseca, K. R.; Chang, C.; Verhoest, P. R. Discovery of hydroxamate bioisosteres as KAT II inhibitors with improved oral bioavailability and pharmacokinetics. Med. Chem. Commun., 2012.

[48] Scuteri, A.; Ravasi, M.; Pasini, S.; Bossi, M.; Tredici, G. Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience, 2011, 172, 12-19.

[49] Mothet, J.-P.; Parent, A. T.; Wolosker, H.; Brady Jr., R. O.; Linden, D. J.; Ferris, C. D.; Rogawski, M. A.; Snyder, S. H. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Nat. Acad. Sci. USA, 2000, 97(9), 4926-4931.

[50] Sasabe, J.; Chiba, T.; Yamada, M.; Okamoto, K.; Nishimoto, I.; Matsuoka, M.; Aiso, S. D-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J., 2007, 26(18), 4149-4159.

[51] Hashimoto, K.; Fukushima, T.; Shimizu, E.; Okada, S.-I.; Komatsu, N.; Okamura, N.; Koike, K.; Koizumi, H.;

Kumakiri, C.; Imai, K.; Iyo, M. Possible role of D-serine in the pathophysiology of Alzheimer's disease. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2004, 28(2), 385-388.

[52] Hoffman, H. E.; Jirásková, J.; Cígler, P.; Sanda, M.; Schraml, J.; Konvalinka, J. Hydroxamic Acids As a Novel Family of Serine Racemase Inhibitors: Mechanistic Analysis Reveals Different Modes of Interaction with the Pyridoxal-5'-phosphate Cofactor. J. Med. Chem., 2009, 52(19), 6032-6041.

[53] Metal chelation therapy, oxygen radicals, and human disease. Lancet, 1985, 1(8421), 143-145.

[54] Henle, E. S.; Linn, S. Formation, Prevention, and Repair of DNA Damage by Iron/Hydrogen Peroxide. J. Biol. Chem., 1997, 272(31), 19095-19098.

[55] Aust, S. D.; White, B. C. Iron chelation prevents tissue injury following ischemia. Adv. Free Rad. Biol. Med., 1985, 1(1), 1-17.

[56] McLaren, G.; Gordeuk, V. Hereditary hemochromatosis: insights from the Hemochromatosis and Iron Overload Screening (HEIRS) Study. Hematology, 2009, 2009(1), 195-206.

[57] Liu, Z. D.; Hider, R. C. Design of iron chelators with therapeutic application. Coord. Chem. Rev., 2002, 232, 151-171.

[58] Loukopoulos, D. In: Management of the haemoglobinopathies, In: Congress of the European Haematology Association, Birmingham, UK, 25-28 June 2000, 2000; pp. 141-145.

[59] Ackrill, P.; Day, J. P.; Ahmed, R. Aluminum and iron overload in chronic dialysis. Kidney int. Suppl., 1988, 24, S163-167.

[60] Hayflick, S. J. Neurodegeneration With Brain Iron Accumulation: From Genes to Pathogenesis. Sem. Pediatr. Neurol., 2006, 13(3), 182-185.

[61] Quintana, C.; Bellefqih, S.; Laval, J. Y.; Guerquin-Kern, J. L.; Wu, T. D.; Avila, J.; Ferrer, I.; Arranz, R.; Patiño, C. Study of localization of iron, ferritin, and hemosiderin in Alzheimer's disease hippocampus by analytical microscopy at the subcellular level. J. Struct. Biol., 2006, 153, 42-53.

[62] Bartzokis, G.; Lu, P. H.; Tishler, T. A.; Fong, S. M.; Oluwadara, B.; Finn, J. P.; Huang, D.; Bordelon, Y.; Mintz, J.; Perlman, S. Myelin breakdown and iron changes in Huntington's disease: Pathogenesis and treatment implications. Neurochem. Res., 2007, 32(10), 1655-1664.

[63] Burgetova, A.; Seidl, Z.; Krasensky, J.; Horakova, D.; Vaneckova, M. Multiple Sclerosis and the Accumulation of Iron in the Basal Ganglia: Quantitative

Mini-Reviews in Medicinal Chemistry – Complementary Information 20 Assessment of Brain Iron Using MRI T 2 Relaxometry. Eur. Neurol., 2010, 63(3), 136-143.

[64] Dexter, D. T.; Wells, F. R.; Lee, A. J.; Agid, F.; Agid, Y.; Jenner, P.; Marsden, C. D. Increased Nigral Iron Content and Alterations in Other Metal Ions Occurring in Brain in Parkinson's Disease. J. Neurochem., 1989, 52(6), 1830-1836.

[65] Kakhlon, O.; Breuer, B.; Munnich, A.; Cabantchik, Z. I. In: Oxidative Stress and Free Radical Damage in Neurology; Gadoth, Natan; Göbel, Hans Hilmar, Humana Press: 2011; pp. 169-190.

[66] Hershko, C. Oral iron chelators: new opportunities and new dilemmas. Haematologica, 2006, 91(10), 1307-1312.

[67] Alcaraz, M. J.; Megías, J.; García-Arnandis, I.; Clérigues, V.; Guillén, M. I. New molecular targets for the treatment of osteoarthritis. Biochem. Pharmacol., 2010, 80(1), 13-21.

[68] Noe, M. C.; Natarajan, V.; Snow, S. L.; Mitchell, P. G.; Lopresti-Morrow, L.; Reeves, L. M.; Yocum, S. A.; Carty, T. J.; Barberia, J. A.; Sweeney, F. J.; Liras, J. L.; Vaughn, M.; Hardink, J. R.; Hawkins, J. M.; Tokar, C. Discovery of 3,3-dimethyl-5-hydroxypipecolic hydroxamate-based inhibitors of aggrecanase and MMP-13. Bioorg. Med. Chem. Lett., 2005, 15(11), 2808-2811.

[69] Fosang, A. J.; Little, C. B. Drug Insight: Aggrecanases as therapeutic targets for osteoarthritis. Nat. Clin. Pract. Rheumatol., 2008, 4(8), 420-427.

[70] Yao, W.; Wasserman, Z. R.; Chao, M.; Reddy, G.; Shi, E.; Liu, R.-Q.; Covington, M. B.; Arner, E. C.; Pratta, M. A.; Tortorella, M.; Magolda, R. L.; Newton, R.; Qian, M.; Ribadeneira, M. D.; Christ, D.; Wexler, R. R.; Decicco, C. P. Design and synthesis of a series of (2R)-N4-hydroxy-2-(3-hydroxybenzyl)-N1- [(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]butanediamide derivatives as potent, selective, and orally bioavailable aggrecanase inhibitors. J. Med. Chem., 2001, 44(21), 3347-3350.

[71] Chen, W.-P.; Bao, J.-P.; Hu, P.-F.; Feng, J.; Wu, L.-D. Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol. Biol. Rep., 2010, 37(8), 3967-3972.

[72] Nuti, E.; Casalini, F.; Avramova, S. I.; Santamaria, S.; Cercignani, G.; Marinelli, L.; La Pietra, V.; Novellino, E.; Orlandini, E.; Nencetti, S.; Tuccinardi, T.; Martinelli, A.; Lim, N.-H.; Visse, R.; Nagase, H.; Rossello, A. N-O-isopropyl sulfonamido-based hydroxamates: Design, synthesis and biological evaluation of selective matrix metalloproteinase-13 inhibitors as potential therapeutic agents for osteoarthritis. J. Med. Chem., 2009, 52(15), 4757-4773.

[73] Becker, D. P.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; Bond, B. R.; Carroll, J.; Carron, C. P.; DeCrescenzo, G. A.; Easton, A. M.; Freskos, J. N.; Funckes-Shippy, C. L.; Heron, M.; Hockerman, S.; Howard, C. P.; Kiefer, J. R.; Li, M. H.; Mathis, K. J.; McDonald, J. J.; Mehta, P. P.; Munie, G. E.; Sunyer, T.; Swearingen, C. A.; Villamil, C. I.; Welsch, D.; Williams, J. M.; Yu, Y.; Yao, J. Orally Active MMP-1 Sp ring α-Tetr ydropyr nyl nd α-Piperidinyl Sulfone Matrix Metalloproteinase (MMP) Inhibitors with Efficacy in Cancer, Arthritis, and Cardiovascular Disease. J. Med. Chem., 2010, 53(18), 6653-6680.

[74] Tommasi, R. A.; Weiler, S.; McQuire, L. W.; Rogel, O.; Chambers, M.; Clark, K.; Doughty, J.; Fang, J.; Ganu, V.; Grob, J.; Goldberg, R.; Goldstein, R.; LaVoie, S.; Kulathila, R.; Macchia, W.; Melton, R.; Springer, C.; Walker, M.; Zhang, J.; Zhu, L.; Shultz, M. Potent and selective 2-naphthylsulfonamide substituted hydroxamic acid inhibitors of matrix metalloproteinase-13. Bioorg. Med. Chem. Lett., 2011, doi:10.1016/j.bmcl.2011.08.087.

[75] Aniya, Y.; Ohtani, I. I.; Higa, T.; Miyagi, C.; Gibo, H.; Shimabukuro, M.; Nakanishi, H.; Taira, J. Dimerumic acid as an antioxidant of the mold, Monascus Anka. Free Rad. Biol. Med., 2000, 28(6), 999-1004.

[76] Gutteridge, J. M. C.; Richmond, R.; Halliwell, B. Inhibition of the Iron-Catalysed Formation of Hydroxyl Radicals from Superoxide and of Lipid Peroxidation by Desferrioxamine. Biochem. J., 1979, 184(2), 469-472.

[77] Shimoni, E.; Ampel, M.; Zähner, H.; Neeman, I. Antioxidant properties of desferrioxamine E, a new hydroxamate antioxidant. J. Am. Oil Chem. Soc., 1998, 75(10), 1453-1455.

[78] Rha, H. J.; Bae, I. Y.; Lee, S.; Yoo, S.-H.; Chang, P.-S.; Lee, H. G. Enhancement of anti-radical activity of pectin from apple pomace by hydroxamation. Food Hydrocolloid., 2011, 25(3), 545-548.

[79] Sato, E.; Kohno, M.; Nakashima, T.; Niwano, Y. Ciclopirox olamine directly scavenges hydroxyl radical. Int. J. Dermatol., 2008, 47(1), 15-18.

[80] Oxidative Stress and Free Radical Damage in Neurology. 1st; Humana Press: 2011

[81] Taira, J.; Miyagi, C.; Aniya, Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem. Pharmacol., 2002, 63(5), 1019-1026.

[82] Al-Harbi, M. M.; Al-Gharably, N. M.; Al-Shabanah, O. A.; Al-Bekairi, M. M.; Osman, A. M. M.; Tawfik, H. N. Prevention of doxorubicin-induced myocardial and haematological toxicities in rats by the iron chelator

Mini-Reviews in Medicinal Chemistry – Complementary Information 21 desferrioxamine. Cancer Chemther. Pharmacol., 1992, 31(3), 200-204.

[83] Kwak, S.-Y.; Lee, S.; Choi, H.-R.; Park, K.-C.; Lee, Y.-S. Dual effects of caffeoyl-amino acidyl-hydroxamic acid as an antioxidant and depigmenting agent. Bioorg. Med. Chem. Lett., 2011, 21(18), 5155-5158.

84 Končić Z B rb rić erković I Zorc B Antiradical, Chelating and Antioxidant Activities of Hydroxamic Acids and Hydroxyureas. Molecules, 2011, 16(8), 6232-6242.

85 H šková Koubková L Vávrová A cková E Hrušková K Kov říková Vávrová K Šimůnek T. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicol., 2011, 289(2-3), 122-131.

[86] Adgent, M. A.; Squadrito, G. L.; Ballinger, C. A.; Krzywanski, D. M.; Lancaster, J. R.; Postlethwait, E. M. Desferrioxamine inhibits protein tyrosine nitration: Mechanisms and implications. Free Rad. Biol. Med., 2012, 53(4), 951-961.

[87] Richardson, D. R.; Kalinowski, D. S.; Lau, S.; Jansson, P. J.; Lovejoy, D. B. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim. Biophys. Acta - Gen. Subj., 2009, 1790(7), 702-717.

[88] Obolensky, A.; Berenshtein, E.; Lederman, M.; Bulvik, B.; Alper-Pinus, R.; Yaul, R.; Deleon, E.; Chowers, I.; Chevion, M.; Banin, E. Zinc–desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa. Free Rad. Biol. Med., 2011, 51(8), 1482-1491.

[89] Skinner-Adams, T. S.; Peatey, C. L.; Anderson, K.; Trenholme, K. R.; Krige, D.; Brown, C. L.; Stack, C.; Nsangou, D. M. M.; Mathews, R. T.; Thivierge, K.; Dalton, J. P.; Gardiner, D. L. The Aminopeptidase Inhibitor CHR-2863 Is an Orally Bioavailable Inhibitor of Murine Malaria. Antimicrob. Agents Chemother., 2012, 56(6), 3244-3249.

[90] Flipo, M.; Beghyn, T.; Leroux, V.; Florent, I.; Deprez, B. P.; Deprez-Poulain, R. F. Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents. J. Med. Chem., 2007, 50(6), 1322-1334.

[91] Dow, G. S.; Chen, Y.; Andrews, K. T.; Caridha, D.; Gerena, L.; Gettayacamin, M.; Johnson, J.; Li, Q.; Melendez, V.; Obaldia III, N.; Tran, T. N.; Kozikowski, A. P. Antimalarial activity of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors. Antimicrob. Agents Chemother., 2008, 52(10), 3467-3477.

[92] Andrews, K. T.; Haque, A.; Jones, M. K. HDAC inhibitors in parasitic diseases. Immunol. Cell Biol., 2012, 90(1), 66-77.

[93] Sumanadasa, S. D. M.; Goodman, C. D.; Lucke, A. J.; Skinner-Adams, T.; Sahama, I.; Haque, A.; Do, T. A.; McFadden, G. I.; Fairlie, D. P.; Andrews, K. T. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939. Antimicrob. Agents Chemother., 2012, 56(7), 3849-3856.

[94] Weinberg, E. D.; Moon, J. Malaria and iron: history and review. Drug Metab. Rev., 2009, 41(4), 644-662.

[95] Tsafack, A.; Loyevsky, M.; Ponka, P.; Cabantchik, Z. I. Mode of action of iron (III) chelators as antimalarials : IV, Potentiation of desferal action by benzoyl and isonicotinoyl hydrazone derivatives. J. Lab. Clin. Med., 1996, 127(6), 574-582.

[96] Mabeza, G. F.; Loyevsky, M.; Gordeuk, V. R.; Weiss, G. Iron chelation therapy for malaria: A review. Pharmacol. Ther., 1999, 81(1), 53-75.

[97] Bailey, S.; Fish, P.; Billotte, S.; Bordner, J.; Greiling, D.; James, K.; McElroy, A.; Mills, J.; Reed, C.; Webster, R. Succinyl hydroxamates as potent and selective non-peptidic inhibitors of procollagen C-proteinase: Design, synthesis, and evaluation as topically applied, dermal anti-scarring agents. Bioorg. Med. Chem. Lett., 2008, 18(24), 6562-6567.

[98] Reid, R. R.; Mogford, J. E.; Butt, R.; deGiorgio-Miller, A.; Mustoe, T. A. Inhibition of procollagen C-proteinase reduces scar hypertrophy in a rabbit model of cutaneous scarring. Wound Repair Regen., 2006, 14(2), 138-141.

[99] Rao, S.; Starr, R. L.; Morris, M. G.; Lin, W.-J. Variations in expression and release of botulinum neurotoxin in Clostridium botulinum type A strains. Foodborne Pathog. Dis., 2007, 4(2), 201-207.

[100] Hicks, R. P.; Hartell, M. G.; Nichols, D. A.; Bhattacharjee, A. K.; van Hamont, J. E.; Skillman, D. R. The medicinal chemistry of botulinum, ricin and anthrax toxins. Curr. Med. Chem., 2005, 12(6), 667-690.

[101] Singh, B. R. Intimate details of the most poisonous poison. Nat. Struct. Biol., 2000, 7(8), 617-619.

[102] Simpson, L. L. Identification of the Major Steps in Botulinum Toxin Action. Ann. Rev. Pharmacol. Toxicol., 2004, 44, 167.

[103] Capková, K.; Yoneda, Y.; Dickerson, T. J.; Janda, K. D. Synthesis and structure-activity relationships of second-generation hydroxamate botulinum neurotoxin A protease inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(23), 6463-6466.

Mini-Reviews in Medicinal Chemistry – Complementary Information 22 [104] Pang, Y.-P.; Vummenthala, A.; Mishra, R. K.; Park, J. G.; Wang, S.; Davis, J.; Millard, C. B.; Schmidt, J. J. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design. PLoS One, 2009, 4(11), e7730.

105 Smit glič Č pek Z ng Y Godbole, S.; Reitz, A. B.; Dickerson, T. J. Reexamining hydroxamate inhibitors of botulinum neurotoxin erotype A: Extending tow rd t e β-exosite. Bioorg. Med. Chem. Lett., 2012, 22(11), 3754-3757.

[106] Supuran, C. T.; Briganti, F.; Mincione, G.; Scozzafava, A. Protease inhibitors: Synthesis of L-alanine hydroxamate sulfonylated derivatives as inhibitors of Clostridium histolyticum collagenase. J. Enzym. Inhib., 2000, 15(2), 111-128.

[107] Khan, M. T. H.; Fuskevåg, O.-M.; Sylte, I. Discovery of Potent Thermolysin Inhibitors Using Structure Based Virtual Screening and Binding Assays. J. Med. Chem., 2008, 52(1), 48-61.

[108] Jin, Y. H.; Kim, D. H. Inhibition stereochemistry of hydroxamate inhibitors for thermolysin. Bioorg. Med. Chem. Lett., 1998, 8(24), 3515-3518.

[109] Burne, R. A.; Chen, Y.-Y. M. Bacterial ureases in infectious diseases. Microb. Infect., 2000, 2(5), 533-542.

[110] Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol., 2010, 63(5), 424-430.

[111] Rajic, Z.; Perkovic, I.; Butula, I.; Zorc, B.; Hadjipavlou-Litina, D.; Pontiki, E.; Pepeljnjak, S.; Kosalec, I. Synthesis and biological evaluation of O-methyl and O-ethyl NSAID hydroxamic acids. J. Enzym. Inhib. Med. Chem., 2009, 24(5), 1179-1187.

[112] Muri, E. M. F.; Mishra, H.; Avery, M. A.; Williamson, J. S. Design and synthesis of heterocyclic hydroxamic acid derivatives as inhibitors of Helicobacter pylori urease. Synth. Comm., 2003, 33(12), 1977-1995.

[113] Barros, T. G.; Williamson, J. S.; Antunes, O. A. C.; Muri, E. M. F. Hydroxamic acids designed as inhibitors of urease. Lett. Drug Des. Discov., 2009, 6(3), 186-192.

[114] Supuran, C. T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.

[115] Guler, O. O.; de Simone, G.; Supuran, C. T. Drug design studies of the novel antitumor targets carbonic anhydrase IX and XII. Curr. Med. Chem., 2010, 17(15), 1516-1526.

[116] Scolnick, L. R.; Clements, A. M.; Liao, J.; Crenshaw, L.; Hellberg, M.; May, J.; Dean, T. R.; Christianson, D. W. Novel binding mode of hydroxamate inhibitors to human carbonic anhydrase II. J. Am. Chem. Soc., 1997, 119(4), 850-851.

[117] Santos, M. A.; Marques, S.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Supuran, C. T. Carbonic anhydrase inhibitors: Inhibition of cytosolic/tumor-associated isoforms I, II, and IX with iminodiacetic carboxylates/hydroxamates also incorporating benzenesulfonamide moieties. Bioorg. Med. Chem. Lett., 2007, 17(6), 1538-1543.

[118] Hyde, C. A. C.; Missailidis, S. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int. Immunopharmacol., 2009, 9(6), 701-715.

[119] Fogli, S.; Banti, I.; Stefanelli, F.; Picchianti, L.; Digiacomo, M.; Macchia, M.; Breschi, M. C.; Lapucci, A. Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells. Eur. J. Med. Chem., 2010, 45(11), 5100-5107.

[120] Rodrigo, C. M.; Cencic, R.; Roche, S. P.; Pelletier, J.; Porco, J. A. Synthesis of Rocaglamide Hydroxamates and Related Compounds as Eukaryotic Translation Inhibitors: Synthetic and Biological Studies. J. Med. Chem., 2011, 55(1), 558-562.

[121] ten Holte, P.; van Emelen, K.; Janicot, M.; Fong, P. C.; de Bono, J. S.; Arts, J. HDAC Inhibition in Cancer Therapy: An Increasingly Intriguing Tale of Chemistry, Biology and Clinical Benefit. Top. Med. Chem., 2007, 1, 293-331.

[122] Donepudi, S.; Mattison, R. J.; Kihslinger, J. E.; Godley, L. A. Modulators of DNA methylation and histone acetylation. Update Cancer Ther., 2007, 2(4), 157-169.

123 T mb ro ell’Aver n r f V Nebbioso, A.; Radic, B.; Ferrara, F.; Altucci, L. Histone deacetylase inhibitors: clinical implications for hematological malignancies. Clin. Epigen., 2010, 1(1), 25-44.

[124] Di Fazio, P.; Schneider-Stock, R.; Neureiter, D.; Okamoto, K.; Wissniowski, T.; Gahr, S.; Quint, K.; Meissnitzer, M.; Alinger, B.; Montalbano, R.; Sass, G.; Hohenstein, B.; Hahn, E. G.; Ocker, M. The pan-deacetylase inhibitor panobinostat inhibits growth of hepatocellular carcinoma models by alternative pathways of apoptosis. Cell. Oncol., 2010, 32(4), 285-300.

[125] Han, S.; Fukazawa, T.; Yamatsuji, T.; Matsuoka, J.; Miyachi, H.; Maeda, Y.; Durbin, M.; Naomoto, Y.; Morty, R. Anti-Tumor Effect in Human Lung Cancer by a Combination Treatment of Novel Histone

Mini-Reviews in Medicinal Chemistry – Complementary Information 23 Deacetylase Inhibitors: SL142 or SL325 and Retinoic Acids. PLoS One, 2010, 5(11), 599-606.

[126] Khan, S. N.; Khan, A. U. Role of histone acetylation in cell physiology and diseases: An update. Clin. Chim. Acta, 2010, 411(19-20), 1401-1411.

[127] Saban, N.; Bujak, M. Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemther. Pharmacol., 2009, 64(2), 213-221.

[128] Hanessian, S.; Auzzas, L.; Giannini, G.; Marzi, M.;

Cabri, W.; Barbarino, M.; Vesci, L.; Pisano, C. -Alkoxy analogues of SAHA (vorinostat) as inhibitors of HDAC: A study of chain-length and stereochemical dependence. Bioorg. Med. Chem. Lett., 2007, 17(22), 6261-6265.

[129] Mann, B. S.; Johnson, J. R.; Cohen, M. H.; Justice, R.; Pazdur, R. FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell Lymphoma. Oncologist, 2007, 12(10), 1247-1252.

[130] Sun, P.-C.; Tzao, C.; Chen, B.-H.; Liu, C.-W.; Yu, C.-P.; Jin, J.-S. Suberoylanilide hydroxamic acid induces apoptosis and sub-G1 arrest of 320 HSR colon cancer cells. J. Biomed. Sci., 2010, 17(1), 76.

[131] Green, S. R.; Choudhary, A. K.; Fleming, I. N. Combination of sapacitabine and HDAC inhibitors stimulates cell death in AML and other tumour types. British J. Cancer, 2010, 103(9), 1391-1399.

[132] Shi, Y. K.; Li, Z. H.; Han, X. Q.; Yi, J. H.; Wang, Z. H.; Hou, J. L.; Feng, C. R.; Fang, Q. H.; Wang, H. H.; Zhang, P. F.; Wang, F. S.; Shen, J.; Wang, P. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemther. Pharmacol., 2010, 66(6), 1131-1140.

[133] Modesitt, S. C.; Parsons, S. J. In vitro and in vivo histone deacetylase inhibitor therapy with vorinostat and paclitaxel in ovarian cancer models: Does timing matter? Gynecol. Oncol., 2010, 119(2), 351-357.

[134] Pratap, J.; Akech, J.; Wixted, J. J.; Szabo, G.; Hussain, S.; McGee-Lawrence, M. E.; Li, X. D.; Bedard, K.; Dhillon, R. J.; van Wijnen, A. J.; Stein, J. L.; Stein, G. S.; Westendorf, J. J.; Lian, J. B. The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss. Mol. Cancer Ther., 2010, 9(12), 3210-3220.

[135] Srivastava, R. K.; Kurzrock, R.; Shankar, S. MS-275 Sensitizes TRAIL-Resistant Breast Cancer Cells, Inhibits Angiogenesis and Metastasis, and Reverses Epithelial-Mesenchymal Transition In vivo. Mol. Cancer Ther., 2010, 9(12), 3254-3266.

[136] Perry, A. S.; Watson, R. W. G.; Lawler, M.; Hollywood, D. The epigenome as a therapeutic target in prostate cancer. Nat. Rev. Urol., 2010, 7(12), 668-680.

[137] Sato, A.; Asano, T.; Horiguchi, A.; Ito, K.; Sumitomo, M.; Asano, T. Combination of Suberoylanilide Hydroxamic Acid and Ritonavir is Effective Against Renal Cancer Cells. Urology, 2010, 76(3), 764.e7-764.e13.

[138] Yoshikawa, M.; Hishikawa, K.; Idei, M.; Fujita, T.

Trichostatin A prevents TGF-1-induced apoptosis by inhibiting ERK activation in human renal tubular epithelial cells. Eur. J. Pharmacol., 2010, 642(1-3), 28-36.

[139] Sonnemann, J.; Greßmann, S.; Becker, S.; Wittig, S.; Schmudde, M.; Beck, J. The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemther. Pharmacol., 2010, 66(3), 611-616.

[140] Copeland, A.; Buglio, D.; Younes, A. Histone deacetylase inhibitors in lymphoma. Curr. Opin. Oncol., 2010, 22(5), 431-436.

[141] Takahashi, O.; Okinaga, T.; Iwanaga, K.; Habu, M.; Ariyoshi, W.; Tominaga, K.; Nishino, N.; Nishihara, T. Novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction in oral squamous cell carcinoma. J. Biophys. Chem., 2011, 2(3), 215-221.

[142] Chowdhury, S.; Ammanamanchi, S.; Howell, G. M. Epigenetic Targeting of Transforming Growth Factor Receptor II and Implications for Cancer Therapy. Mol. Cell. Pharmacol., 2009, 1(1), 57.

[143] Nebbioso, A.; Carafa, V.; Benedetti, R.; Altucci, L. Tri l wit ‘epigenetic’ drug : An upd te Molecular Oncology, 2012, DOI: 10.1016/j.molonc.2012.09.004.

144 o i inc m I ’Andre orcelloni M.; Ettorre, A.; Mauro, S.; Bigioni, M.; Binaschi, M.; Maggi, C. A.; Nardelli, F.; Parlani, M.; Fattori, D. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors. Bioorganic & Medicinal Chemistry Letters, 2011, 21(22), 6767-6769.

[145] Rothenberg, M. L.; Nelson, A. R.; Hande, K. R. New Drugs on the Horizon: Matrix Metalloproteinase Inhibitors. Oncologist, 1998, 3(4), 271-274.

[146] Verma, R. P.; Hansch, C. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem., 2007, 15(6), 2223-2268.

[147] Kupai, K.; Szucs, G.; Cseh, S.; Hajdu, I.; Csonka, C.; Csont, T.; Ferdinandy, P. Matrix metalloproteinase activity assays: Importance of zymography. J. Pharmacol. Toxicol. Meth., 2010, 61(2), 205-209.

Mini-Reviews in Medicinal Chemistry – Complementary Information 24 [148] Lee, M.-H.; Atkinson, S.; Rapti, M.; Handsley, M.; Curry, V.; Edwards, D.; Murphy, G. The activity of a designer tissue inhibitor of metalloproteinases (TIMP)-1 against native membrane type 1 matrix metalloproteinase (MT1-MMP) in a cell-based environment. Cancer Lett., 2010, 290(1), 114-122.

[149] Mannello, F.; Tonti, G.; Papa, S. Matrix metalloproteinase inhibitors as anticancer therapeutics. Curr. Cancer Drug Targ., 2005, 5(4), 285-298.

[150] Takahashi, K.; Ikura, M.; Habashita, H.; Nishizaki, M.; Sugiura, T.; Yamamoto, S.; Nakatani, S.; Ogawa, K.; Ohno, H.; Nakai, H.; Toda, M. Novel matrix metalloproteinase inhibitors: Generation of lead compounds by the in silico fragment-based approach. Bioorg. Med. Chem., 2005, 13(14), 4527-4543.

[151] Sani, M.; Belotti, D.; Giavazzi, R.; Panzeri, W.; Volonterio, A.; Zanda, M. Synthesis and evaluation of

stereopure -trifluoromethyl-malic hydroxamates as inhibitors of matrix metalloproteinases. Tetrahedron Lett., 2004, 45(8), 1611-1615.

[152] Subramaniam, R.; Haldar, M.; Tobwala, S.; Ganguly, B.; Srivastava, D.; Mallik, S. Novel bis-(arylsulfonamide) hydroxamate-based selective MMP inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(11), 3333-3337.

[153] Curtin, M. L.; Garland, R. B.; Davidsen, S. K.; Marcotte, P. A.; Albert, D. H.; Magoc, T. J.; Hutchins, C. Broad spectrum matrix metalloproteinase inhibitors: An examination of succinamide hydroxamate inhibitors

with P1 C[] gem-disubstitution. Bioorg. Med. Chem. Lett., 1998, 8(12), 1443-1448.

[154] Yang, S.-M.; Scannevin, R. H.; Wang, B.; Burke, S. L.; Wilson, L. J.; Karnachi, P.; Rhodes, K. J.; Lagu, B.;

Murray, W. V. []-N-Biaryl ether sulfonamide hydroxamates as potent gelatinase inhibitors: Part 1. Design, synthesis, and lead identification. Bioorg. Med. Chem. Lett., 2008, 18(3), 1135-1139.

[155] Yang, S.-M.; Scannevin, R. H.; Wang, B.; Burke, S. L.; Huang, Z.; Karnachi, P.; Wilson, L. J.; Rhodes, K. J.;

Lagu, B.; Murray, W. V. []-N-Biaryl ether sulfonamide hydroxamates as potent gelatinase inhibitors: Part 2. Optimization of [alpha]-amino substituents. Bioorg. Med. Chem. Lett., 2008, 18(3), 1140-1145.

[156] Wahl, R. C.; Pulvino, T. A.; Mathiowetz, A. M.; Ghose, A. K.; Johnson, J. S.; Delecki, D.; Cook, E. R.; Gainor, J. A.; Gowravaram, M. R.; Tomczuk, B. E. Hydroxamate inhibitors of human gelatinase B (92 kDa). Bioorg. Med. Chem. Lett., 1995, 5(4), 349-352.

[157] Sani, M.; Candiani, G.; Pecker, F.; Malpezzi, L.;

Zanda, M. Novel highly potent, structurally simple -

trifluoromethyl -sulfone hydroxamate inhibitor of stromelysin-1 (MMP-3). Tetrahedron Lett., 2005, 46(14), 2393-2396.

[158] Rossello, A.; Nuti, E.; Carelli, P.; Orlandini, E.; Macchia, M.; Nencetti, S.; Zandomeneghi, M.; Balzano, F.; Barretta, G. U.; Albini, A.; Benelli, R.; Cercignani, G.; Murphy, G.; Balsamo, A. N-i-Propoxy-N-biphenylsulfonylaminobutylhydroxamic acids as potent and selective inhibitors of MMP-2 and MT1-MMP. Bioorg. Med. Chem. Lett., 2005, 15(5), 1321-1326.

[159] Kawai, M.; BaMaung, N. Y.; Fidanze, S. D.; Erickson, S. A.; Tedrow, J. S.; Sanders, W. J.; Vasudevan, A.; Park, C.; Hutchins, C.; Comess, K. M.; Kalvin, D.; Wang, J.; Zhang, Q.; Lou, P.; Tucker-Garcia, L.; Bouska, J.; Bell, R. L.; Lesniewski, R.; Henkin, J.; Sheppard, G. S. Development of sulfonamide compounds as potent methionine aminopeptidase type II inhibitors with antiproliferative properties. Bioorg. Med. Chem. Lett., 2006, 16(13), 3574-3577.

[160] Fürstner, A.; Feyen, F.; Prinz, H.; Waldmann, H. Total Synthesis and Reassessment of the Phosphatase-Inhibitory Activity of the Antitumor Agent TMC-69-6H. Angew. Chem. Int. Ed. Engl., 2003, 42(43), 5361-5364.

[161] Fürstner, A.; Feyen, F.; Prinz, H.; Waldmann, H. Synthesis and evaluation of the antitumor agent TMC-69-6H and a focused library of analogs. Tetrahedron, 2004, 60(43), 9543-9558.

[162] Gonzalez-Bulnes, P.; Gonzalez-Roura, A.; Canals, D.; Delgado, A.; Casas, J.; Llebaria, A. 2-Aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLCBc. Bioorg. Med. Chem., 2010, 18(24), 8549-8555.

[163] Eberhard, Y.; McDermott, S. P.; Wang, X.; Gronda, M.; Venugopal, A.; Wood, T. E.; Hurren, R.; Datti, A.; Batey, R. A.; Wrana, J.; Antholine, W. E.; Dick, J.; Schimmer, A. D. Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood, 2009, 114(14), 3064-3073.

[164] Elford, H. L.; Wampler, G. L.; van't Riet, B. New Ribonucleotide Reductase Inhibitors with Antineoplastic Activity. Cancer Res., 1979, 39(3), 844-851.

[165] Shigeura, H. T.; Gordon, C. N. Further Studies on the Activity of Hadacidin. Cancer Res., 1962, 22, 1356-1361.

[166] Okada, T.; Sawada, T.; Kubota, K. Deferoxamine

enhances anti-proliferative effect of interferon- against hepatocellular carcinoma cells. Cancer Lett., 2007, 248(1), 24-31.

Mini-Reviews in Medicinal Chemistry – Complementary Information 25 [167] Zhou, H.; Shen, T.; Luo, Y.; Liu, L.; Chen, W.; Xu, B.; Han, X.; Pang, J.; Rivera, C. A.; Huang, S. The antitumor activity of the fungicide ciclopirox. Int. J. Cancer, 2010, 127(10), 2467-2477.

[168] Shehu-Xhilaga, M.; Rhodes, D.; Wightman, F.; Liu, H. B.; Solomon, A.; Saleh, S.; Dear, A. E.; Cameron, P. U.; Lewin, S. R. The novel histone deacetylase inhibitors metacept-1 and metacept-3 potently increase HIV-1 transcription in latently infected cells. AIDS, 2009, 23(15), 2047-2050.

[169] Wightman, F.; Ellenberg, P.; Churchill, M.; Lewin, S. R. HDAC inhibitors in HIV. Immunol. Cell Biol., 2012, 90(1), 47-54.

[170] Shan, L.; Deng, K.; Shroff, Neeta S.; Durand, Christine M.; Rabi, S. A.; Yang, H.-C.; Zhang, H.; Margolick, Joseph B.; Blankson, Joel N.; Siliciano, Robert F. Stimulation of HIV-1-Specific Cytolytic T Lymphocytes Facilitates Elimination of Latent Viral Reservoir after Virus Reactivation. Immunity, 2012, 36(3), 491-501.

[171] Matreyek, K. A.; Oztop, I.; Freed, E. O.; Engelman, A. Viral latency and potential eradication of HIV-1. Expert Review of Anti-infective Therapy, 2012, 10(8), 855-857.

[172] Plewe, M. B.; Butler, S. L.; R. Dress, K.; Hu, Q.; Johnson, T. W.; Kuehler, J. E.; Kuki, A.; Lam, H.; Liu, W.; Nowlin, D.; Peng, Q.; Rahavendran, S. V.; Tanis, S. P.; Tran, K. T.; Wang, H.; Yang, A.; Zhang, J. Azaindole Hydroxamic Acids are Potent HIV-1 Integrase Inhibitors. J. Med. Chem., 2009, 52(22), 7211-7219.

[173] Tanis, S. P.; Plewe, M. B.; Johnson, T. W.; Butler, S. L.; Dalvie, D.; DeLisle, D.; Dress, K. R.; Hu, Q.; Huang, B.; Kuehler, J. E.; Kuki, A.; Liu, W.; Peng, Q.; Smith, G. L.; Solowiej, J.; Tran, K. T.; Wang, H.; Yang, A.; Yin, C.; Yu, X.; Zhang, J.; Zhu, H. Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg. Med. Chem. Lett., 2010, 20(24), 7429-7434.

[174] Turbanti, L.; Cerbai, G.; Di Bugno, C.; Giorgi, R.; Garzelli, G.; Criscuoli, M.; Renzetti, A. R.; Subissi, A.; Bramanti, G.; DePriest, S. A. 1, 2-Cyclomethylencarboxylic monoamide hydroxamic derivatives. A novel class of non-amino acid angiotensin converting enzyme inhibitors. J. Med. Chem., 1993, 36(6), 699-707.

[175] Walz, A.; Miller, M. Synthesis and biological activity of hydroxamic acid-derived vasopeptidase inhibitor analogues. Org. Lett., 2002, 4(12), 2047-2050.

[176] Paulis, L.; Unger, T. Novel therapeutic targets for hypertension. Nat. Rev. Cardiol., 2010, 7(8), 431-441.

[177] Dive, V.; Chang, C.-F.; Yiotakis, A.; Sturrock, E. D. Inhibition of Zinc Metallopeptidases in Cardiovascular Disease - From Unity to Trinity, or Duality? Curr. Pharm. Des., 2009, 15(31), 3606-3621.

[178] Moncada, S.; Higgs, E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J., 1995, 9(13), 1319-1330.

[179] Stuehr, D. J. Mammalian nitric oxide synthases. Biochem. Biophys. Acta Bioenergetics, 1999, 1411(2-3), 217-230.

[180] Zamora, R.; Grzesiok, A.; Weber, H.; Feelisch, M. Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty's acid: A comparison with Angeli's salt. Biochem. J., 1995, 312(2), 333-339.

[181] Marmion, C. J.; Murphy, T.; Docherty, J. R.; Nolan, K. B. Hydroxamic acids are nitric oxide donors. Facile formation of ruthenium(II)-nitrosyls and NO-mediated activation of guanylate cyclase by hydroxamic acids. Chem. Commun., 2000, (13), 1153-1154.

[182] Vystorop, I. V.; Konovalova, N. P.; Nelyubina, Y. V.; Varfolomeev, V. N.; Fedorov, B. S.; Sashenkova, T. E.; Berseneva, E. N.; Lyssenko, K. A.; Kostyanovskyc, R.

G. Cyclic hydroxamic acids derived from -amino acids - 1. Regioselective synthesis, structure, NO-donor and antimetastatic activities of spirobicyclic hydroxamic acids derived from glycine and DL-alanine. Russ. Chem. Bull. Int. Ed., 2010, 59(1), 127-135.

[183] Raymond, K. N.; Smith, W. S. In: Structure & Bonding - Bonding Problems; Springer, Berlin / Heidelberg, 1981; 43, pp. 159-186.

[184] Hewitt, C. D.; Garstang, F. M.; O'Hara, M. Copper removal from renal patients using desferrioxamine chelation to reduce aluminium overload. Acta Pharmacol. Toxicol., 1986, 59(7), 431-434.

[185] Jones, M. M. New developments in therapeutic chelating agents as antidotes for metal poisoning. Crit. Rev. Toxicol., 1991, 21(3), 209-233.

[186] Chowdhury, S.; Ammanamanchi, S.; Howell, G. Epigenetic Targeting of Transforming Growth Factor Receptor II and Implications for Cancer Therapy. Molecular and Cellular Pharmacology, 2009, 1(1), 57.

[187] Villalta-Romero, F.; Gortat, A.; Herrera, A. E.; Arguedas, R.; Quesada, J.; de Melo, R. L.; Calvete, J. J.; Montero, M.; Murillo, R.; Rucavado, A.; Gutiérrez, J. M.; Pérez-Payá, E. Identification of New Snake Venom Metalloproteinase Inhibitors Using Compound Screening and Rational Peptide Design. Med. Chem. Lett., 2012, 3(7), 540-543.

Mini-Reviews in Medicinal Chemistry – Complementary Information 26 [188] Summers, J. B.; Kim, K. H.; Mazdiyasni, H.; Holms, J. H.; Ratajczyk, J. D.; Stewart, A. O.; Dyer, R. D.; Cartert, G. W. Hydroxamic Acid Inhibitors of 5-Lipoxygenase: Quantitative Structure-Activity Relationships. J. Med. Chem., 1990, 33(3), 992-998.

[189] Bai, L.-Y.; Omar, H.; Chiu, C.-F.; Chi, Z.-P.; Hu, J.-L.; Weng, J.-R. Antitumor effects of (S)-HDAC42, a phenylbutyrate-derived histone deacetylase inhibitor, in multiple myeloma cells. Cancer Chemther. Pharmacol., 2010, 1-8.

[190] Almeida, B.; Sampaio Marques, B.; Carvalho, J.; Silva, M.; Leão, C.; Rodrigues, F.; Ludovico, P. An atypical active cell death process underlies the fungicidal activity of ciclopirox olamine against the yeast Saccharomyces cerevisiae. FEMS Yeast Res., 2007, 7(3), 404-412.

[191] Leem, S. H.; Park, J. E.; Kim, I. S.; Chae, J. Y.; Sugino, A.; Sunwoo, Y. The possible mechanism of action of ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells, 2003, 15(1), 55-61.

[192] Gupta, A. K.; Skinner, A. R. Ciclopirox for the treatment of superficial fungal infections: a review. Int. J. Dermatol., 2003, 42(S1), 3-9.

[193] Subissi, A.; Monti, D.; Togni, G.; Mailland, F. Ciclopirox: Recent Nonclinical and Clinical Data Relevant to its Use as a Topical Antimycotic Agent. Drugs, 2010, 70(16), 2133-2152.

[194] Gutteridge, J. M.; Richmond, R.; Halliwell, B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochemical Journal, 1979, 184(2), 469.

[195] Chevion, M.; Chuang, L.; Golenser, J. Effects of zinc-desferrioxamine on Plasmodium falciparum in culture. Antimicrob. Agents Chemother., 1995, 39(8), 1902.

[196] Cabantchik, Z. I. Iron chelators as antimalarials: the biochemical basis of selective cytotoxicity. Parasitology Today, 1995, 11(2), 74-78.

[197] Kodani, S.; Ohnishi-Kameyama, M.; Yoshida, M.; Ochi, K. A New Siderophore Isolated from Streptomyces sp. TM-34 with Potent Inhibitory Activity Against Angiotensin-Converting Enzyme. Eur. J. Org. Chem., 2011, 2011(17), 3191-3196.

[198] Inouye, Y.; Okada, H.; Nakamura, S. Hydroxamic acid antimycotic antibiotics. A new group of antibiotics. Ann. N. Y. Acad. Sci., 1988, 544, 180-182.

[199] Yamamoto, K.; Shiinoki, Y.; Furukawa, J.; Nakamura, S. A New Group of Antibiotics, Hydroxamic Acid Antimycotic Antibiotics. IV. Structures of Enactins

Ia, Ib1,Ib2 and Va. Chem. Pharm. Bull., 1991, 39(6), 1436-1439.

[200] Yamamoto, K.; Shiinoki, Y.; Nishio, M.; Matsuda, Y.; Inouye, Y.; Nakamura, S. A new group of antibiotics, hydroxamic acid antimycotic antibiotics. III. Isolation and characterization of enactin congeners. J. Antibiot., 1990, 43(8), 1012-1017.

[201] Mishra, R. C.; Tripathi, R.; Katiyar, D.; Tewari, N.;

Singh, D.; Tripathi, R. P. Synthesis of glycosylated -amino hydroxamates as new class of antimalarials. Bioorg. Med. Chem., 2003, 11(24), 5363-5374.

[202] Kaszka, E. A.; Gitterman, C. O.; Dulaney, E. L.; Folkers, K. Hadacidin, a New Growth-Inhibitory Substance in Human Tumor Systems. Biochem., 1962, 1(2), 340-343.

[203] Shigeura, H. T.; Gordon, C. N. The Mechanism of Action of Hadacidine. J. Biol. Chem., 1962, 237(6), 1937-1940.

[204] Yoo, C. B.; Jones, P. A. Epigenetic therapy of cancer: past, present and future. Nature Reviews, 2006, 5, 37-50.

[205] Bertini, I.; Calderone, V.; Fragai, M.; Luchinat, C.; Mangani, S.; Terni, B. Crystal Structure of the Catalytic Domain of Human Matrix Metalloproteinase 10. J. Mol. Biol., 2004, 336(3), 707-716.

[206] Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem. Pharmacol., 2001, 62(11), 1433-1438.