IRF510 - UPCommons

73
©2002 Fairchild Semiconductor Corporation IRF510 Rev. B IRF510 5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. Formerly developmental type TA17441. Features 5.6A, 100V •r DS(ON) = 0.540Single Pulse Avalanche Energy Rated SOA is Power Dissipation Limited Nanosecond Switching Speeds Linear Transfer Characteristics High Input Impedance Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol Packaging JEDEC TO-220AB Ordering Information PART NUMBER PACKAGE BRAND IRF510 TO-220AB IRF510 NOTE: When ordering, include the entire part number. D G S SOURCE DRAIN (FLANGE) DRAIN GATE Data Sheet January 2002

Transcript of IRF510 - UPCommons

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

IRF510

5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET

This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17441.

Features

• 5.6A, 100V

• r

DS(ON)

= 0.540

Ω

• Single Pulse Avalanche Energy Rated

• SOA is Power Dissipation Limited

• Nanosecond Switching Speeds

• Linear Transfer Characteristics

• High Input Impedance

• Related Literature- TB334 “Guidelines for Soldering Surface Mount

Components to PC Boards”

Symbol

Packaging

JEDEC TO-220AB

Ordering Information

PART NUMBER PACKAGE BRAND

IRF510 TO-220AB IRF510

NOTE: When ordering, include the entire part number.

D

G

S

SOURCE

DRAIN (FLANGE)

DRAINGATE

Data Sheet January 2002

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

Absolute Maximum Ratings

T

C

= 25

o

C, Unless Otherwise Specified

IRF510 UNITS

Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V

DS

100 VDrain to Gate Voltage (R

GS

= 20k

Ω)

(Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

DGR

100 VContinuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

D

5.6 AT

C

= 100

o

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

D

4 APulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

DM

20 AGate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

GS

±

20 VMaximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P

D

43 WLinear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.29 W/

o

CSingle Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E

AS

19 mJOperating and Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T

J

, T

STG

-55 to 175

o

CMaximum Temperature for Soldering

Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

L

Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

pkg

300260

o

C

o

C

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of thedevice at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. T

J

= 25

o

C to 150

o

C.

Electrical Specifications

T

C

= 25

o

C, Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS

Drain to Source Breakdown Voltage BV

DSS

V

GS

= 0V, I

D

= 250

µ

A, (Figure 10) 100 - - V

Gate to Threshold Voltage V

GS(TH)

V

GS

= V

DS

, I

D

= 250

µ

A 2.0 - 4.0 V

Zero-Gate Voltage Drain Current I

DSS

V

DS

= 95V, V

GS

= 0V - - 25

µ

A

V

DS

= 0.8 x Rated BV

DSS

, V

GS

= 0V, T

J

= 150

o

C - - 250

µ

A

On-State Drain Current (Note 2) I

D(ON)

V

DS

> I

D(ON) x

r

DS(ON)MAX

, V

GS

= 10V (Figure 7) 5.6 - - A

Gate to Source Leakage Current I

GSS

V

GS

=

±

20V - -

±

100 nA

Drain to Source On Resistance (Note 2) r

DS(ON)

V

GS

= 10V, I

D

= 3.4A (Figures 8, 9) - 0.4 0.54

Ω

Forward Transconductance (Note 2) g

fs

V

GS

= 50V, I

D

= 3.4A (Figure 12) 1.3 2.0 - S

Turn-On Delay Time t

d(ON)

I

D

5.6A, R

GS

= 24

Ω

, V

DD

= 50V, R

L

= 9

Ω

,V

DD

= 50V, V

GS

= 10VMOSFET switching times are essentially independent of operating temperature

- 8 12 ns

Rise Time t

r

- 25 63 ns

Turn-Off Delay Time t

d(OFF)

- 15 7 ns

Fall Time t

f

- 12 59 ns

Total Gate Charge(Gate to Source + Gate to Drain)

Q

g(TOT)

V

GS

= 10V, I

D

= 5.6A, V

DS

= 0.8 x Rated BV

DSS

, I

G(REF)

= 1.5mA (Figure 14)Gate charge is essentially independent of operating temperature.

- 5.0 30 nC

Gate to Source Charge Q

gs

- 2.0 - nC

Gate to Drain “Miller” Charge Q

gd

- 3.0 - nC

Input Capacitance C

ISS

V

GS

= 0V, V

DS

= 25V, f = 1.0MHz (Figure 11) - 135 - pF

Output Capacitance C

OSS

- 80 - pF

Reverse-Transfer Capacitance C

RSS

- 20 - pF

Internal Drain Inductance L

D

Measured From the Contact Screw On Tab To Center of Die

Modified MOSFET Symbol Showing the Internal Devices Inductances

- 3.5 - nH

Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die

- 4.5 - nH

Internal Source Inductance L

S

Measured From The Source Lead, 6mm (0.25in) From Header to Source Bonding Pad

- 7.5 - nH

Junction to Case R

θ

JC

- - 3.5

o

C/W

Junction to Ambient R

θ

JA

Free air operation - - 80

o

C/W

LD

LS

D

S

G

IRF510

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

Source to Drain Diode Specifications

PARAMETER SYMBOL Test Conditions MIN TYP MAX UNITS

Continuous Source to Drain Current I

SD

Modified MOSFET Symbol Showing the Integral Reverse P-N Junction Diode

- - 5.6 A

Pulse Source to Drain Current(Note 3)

I

SDM

- - 20 A

Source to Drain Diode Voltage (Note 2) V

SD

T

J

= 25

o

C, I

SD

= 5.6A, V

GS

= 0V (Figure 13) - - 2.5 V

Reverse Recovery Time t

rr

T

J

= 25

o

C, I

SD

= 5.6A, dI

SD

/d

t

= 100A/

µ

s 4.6 96 200 ns

Reverse Recovered Charge Q

RR

T

J

= 25

o

C, I

SD

= 5.6A, dI

SD

/d

t

= 100A/

µ

s 0.17 0.4 0.83

µ

C

NOTES:

2. Pulse test: pulse width

300

µ

s, duty cycle

2%.

3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).

4. V

DD

= 25V, start T

J

= 25

o

C, L = 910µH, RG = 25Ω, peak IAS = 5.6A.

Typical Performance Curves Unless Otherwise Specified

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE

D

S

G

TC, CASE TEMPERATURE (oC)25 50 75 100 125 150 1750

PO

WE

R D

ISS

IPA

TIO

N M

ULT

IPL

IER

00

0.2

0.4

0.6

0.8

1.0

1.2

TC, CASE TEMPERATURE (oC)

50 75 100 15025 175

10

8

6

0

4

I D, D

RA

IN C

UR

RE

NT

(A

)

2

125

ZθJ

C, T

RA

NS

IEN

T

10

1

0.1

0.0110-210-5 10-4 10-3 0.1 1 10

SINGLE PULSE

t1, RECTANGULAR PULSE DURATION (S)

DUTY FACTOR: D = t1/t2PEAK TJ = PDM x ZθJC + TC

t2

PDM

t1

NOTES:

TH

ER

MA

L IM

PE

DA

NC

E (

oC

/W)

0.010.02

0.5

0.2

0.10.05

IRF510

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. OUTPUT CHARACTERISTICS

FIGURE 6. SATURATION CHARACTERISTICS FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

100

10

1

1031 10 1020.1

I D, D

RA

IN C

UR

RE

NT

(A

)

VDS, DRAIN TO SOURCE VOLTAGE (V)

OPERATION IN THISREGION IS LIMITEDBY rDS(ON)

TC = 25oC

10µs

100µs

1ms

TJ = 175oCSINGLE PULSE

VDS, DRAIN TO SOURCE VOLTAGE (V)

10 20 30 400 50

10

8

6

0

4

I D, D

RA

IN C

UR

RE

NT

(A

)

VGS = 10V

VGS = 8V

VGS = 7V

VGS = 6V

VGS = 5V

VGS = 4V

PULSE DURATION = 80µs

2

DUTY CYCLE = 0.5% MAX

VDS, DRAIN TO SOURCE VOLTAGE (V)2 4 6 80 10

10

8

6

0

4

I D, D

RA

IN C

UR

RE

NT

(A

)

VGS = 10V

VGS = 8V

VGS = 7V

VGS = 6V

VGS = 5V

VGS = 4V

PULSE DURATION = 80µs

2

DUTY CYCLE = 0.5% MAXVDS ≥ 50VPULSE DURATION = 80µs

TJ = 175oC TJ = 25oC

I D(O

N),

ON

-STA

TE

DR

AIN

CU

RR

EN

T (

A)

VGS, GATE TO SOURCE VOLTAGE (V)

10

1

0.1

10-2

0 2 4 6 8 10

DUTY CYCLE = 0.5% MAX

ID, DRAIN CURRENT (A)

4 8 12 160 20

5

4

3

0

2

r DS

(ON

), D

RA

IN T

O S

OU

RC

E

VGS = 20V

PULSE DURATION = 80µs

1

VGS = 10V

ON

RE

SIS

TAN

CE

)

DUTY CYCLE = 0.5% MAX

3.0

1.8

0.6

0 60 160 180-60

TJ, JUNCTION TEMPERATURE (oC)

NO

RM

AL

IZE

D O

N R

ES

ISTA

NC

E

ID = 3.4A, VGS = 10V

2.4

1.2

0-40 -20 20 40 80 100 140120

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX

IRF510

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Typical Performance Curves Unless Otherwise Specified (Continued)

1.25

1.05

0.85

0 60 160 180-60

TJ, JUNCTION TEMPERATURE (oC)

NO

RM

AL

IZE

D D

RA

IN T

O S

OU

RC

E

ID = 250µA

1.15

0.95

0.75-40 -20 20 40 80 100 140120

BR

EA

KD

OW

N V

OLT

AG

E

VDS, DRAIN TO SOURCE VOLTAGE (V)

C, C

APA

CIT

AN

CE

(p

F)

500

400

300

200

100

0

VGS = 0V, f = 1MHz

CISS = CGS + CGDCRSS = CGDCOSS ≈ CDS + CGD

CISS

COSS

CRSS

1 2 5 10 2 5 102

ID, DRAIN CURRENT (A)2 4 6 80 10

2.5

2.0

1.5

0

1.0

gfs

, TR

AN

SC

ON

DU

CTA

NC

E (

S)

PULSE DURATION = 80µs

0.5

VDS ≥ 50V

TJ = 175oC

TJ = 25oC

DUTY CYCLE = 0.5% MAX

TJ = 175oC

TJ = 25oC

I SD

, SO

UR

CE

TO

DR

AIN

CU

RR

EN

T (

A)

VSD, SOURCE TO DRAIN VOLTAGE (V)

100

10

1

0.10 0.4 0.8 1.2 1.6 2.0

PULSE DURATION = 80µsDUTY CYCLE = 0.5% MAX

Qg, GATE CHARGE (nC)

2 4 6 80 10

20

16

12

0

8

VG

S, G

AT

E T

O S

OU

RC

E V

OLT

AG

E (

V)

VDS = 80V

4

VDS = 50VVDS = 20V

ID = 3.4A

IRF510

©2002 Fairchild Semiconductor Corporation IRF510 Rev. B

Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORM

tP

VGS

0.01Ω

L

IAS

+

-

VDS

VDDRG

DUT

VARY tP TO OBTAIN

REQUIRED PEAK IAS

0V

VDD

VDS

BVDSS

tP

IAS

tAV

0

VGS

RL

RG

DUT

+

-VDD

tON

td(ON)

tr

90%

10%

VDS90%

10%

tf

td(OFF)

tOFF

90%

50%50%

10%PULSE WIDTH

VGS

0

0

0.3µF

12VBATTERY 50kΩ

VDS

S

DUT

D

G

IG(REF)0

(ISOLATEDVDS

0.2µF

CURRENTREGULATOR

ID CURRENTSAMPLING

IG CURRENTSAMPLING

SUPPLY)

RESISTOR RESISTOR

SAME TYPEAS DUT

Qg(TOT)

Qgd

Qgs

VDS

0

VGS

VDD

IG(REF)

0

IRF510

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHERNOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCTOR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and isnot intended to be an exhaustive list of all such trademarks.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can bereasonably expected to result in significant injury to theuser.

2. A critical component is any component of a lifesupport device or system whose failure to perform canbe reasonably expected to cause the failure of the lifesupport device or system, or to affect its safety oreffectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information

Preliminary

No Identification Needed

Obsolete

This datasheet contains the design specifications forproduct development. Specifications may change inany manner without notice.

This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to makechanges at any time without notice in order to improvedesign.

This datasheet contains final specifications. FairchildSemiconductor reserves the right to make changes atany time without notice in order to improve design.

This datasheet contains specifications on a productthat has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.

Formative orIn Design

First Production

Full Production

Not In Production

OPTOLOGIC™OPTOPLANAR™PACMAN™POP™Power247™PowerTrenchQFET™QS™QT Optoelectronics™Quiet Series™SILENT SWITCHER

FASTFASTr™FRFET™GlobalOptoisolator™GTO™HiSeC™ISOPLANAR™LittleFET™MicroFET™MicroPak™MICROWIRE™

Rev. H4

ACEx™Bottomless™CoolFET™CROSSVOLT™DenseTrench™DOME™EcoSPARK™E2CMOSTM

EnSignaTM

FACT™FACT Quiet Series™

SMART START™STAR*POWER™Stealth™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™TinyLogic™TruTranslation™UHC™UltraFET

STAR*POWER is used under license

VCX™

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

LM78XX LINEAR INTEGRATED CIRCUIT

1

DESCRIPTIONThe Contek 78XX family is monolithic fixed voltage

regulator integrated circuit. They are suitable forapplications that required supply current up to 1 A.

FEATURES*Output current up to 1.5 A

*Fixed output voltage of 5V, 6V, 8V, 9V, 10V, 12V,

15V ,18V and 24V available

*Thermal overload shutdown protection

*Short circuit current limiting

*Output transistor SOA protection TO-220

1

1:Input 2:GND 3:Output

TEST CIRCUIT

3

1

2

GND

OUTPUT

INPUT

R13 R17 R9Z2

T12

T14R19

R18R12

R11R10

R8

T8 T9

T13

T10

R14T11

T5

T6

R5T4

Z1

R15

T15

R16R1 R2

R4

C1

R6

T7

T3

T1 T2

R3

R7

Contek

3-TERMINAL 1A POSITIVE

VOLTAGE REGULATOR

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

LM78XX LINEAR INTEGRATED CIRCUIT

2

ABSOLUTE MAXIMUM RATINGS

( Operating temperature range applies unless otherwise specified )

PARAMETER SYMBOL RATING UNIT

Input voltage(for Vo=5~18V)

(for Vo=24V) V I

35

40

V

V

Output Current I o 1 A

Power Dissipation PD Internally Limited W

Operating Junction Temperature Range TOPR -20 +150 C

Storage Temperature Range TSTG -55 +150 C

Contek LM7805 ELECTRICAL CHARACTERISTICS( VI=10V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 4.8 5.0 5.2 V

Output Voltage Vo VI =7.5V to 20V,

IO=5mA - 1.0A,PD<15W

4.75 5.25 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 50 mV

Tj=25 C,IO=0.25A - 0.75A 25 mV

Line regulation Vo VI =7V to 25V,Tj=25 C 50 mV

VI =7.5V to 20V,Tj=25 C,Io=1A 50 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =7.5V to 20V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 40 V

Temperature coefficient of Vo Vo/T Io=5mA -0.6 mV/ C

Ripple Rejection RR VI =8V - 18V,f=120Hz,Tj=25 C 62 80 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Contek LM7806 ELECTRICAL CHARACTERISTICS( VI=11V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 5.75 6.0 6.26.2 V

Output Voltage Vo VI =8.5V to 21V,

IO=5mA - 1.0A, PD<15W

5.7 6.3 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 60 mV

Tj=25 C,IO=0.25A - 0.75A 30 mV

Line regulation Vo VI =8V to 25V,Tj=25 C 60 mV

VI =8.5V to 21V,Tj=25 C,Io=1A 60 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =8.5V to 21V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 45 V

Temperature coefficient of Vo Vo/T Io=5mA -0.7 mV/ C

Ripple Rejection RR VI =9V - 19V,f=120Hz,Tj=25 C 59 75 dB

Peak Output Current IPK Tj=25 C 1.8 A

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

LM78XX LINEAR INTEGRATED CIRCUIT

3

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Contek LM7808 ELECTRICAL CHARACTERISTICS( VI=14V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 7.7 8.0 8.3 V

Output Voltage Vo VI =10.5V to 23V,

IO=5mA - 1.0A, PD<15W

7.6 8.4 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 80 mV

Tj=25 C,IO=0.25A - 0.75A 40 mV

Line regulation Vo VI =10.5V to 25V,Tj=25 C 80 mV

VI =10.5V to 23V,Tj=25 C,Io=1A 80 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =10.5V to 23V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 58 V

Temperature coefficient of Vo Vo/T Io=5mA -0.9 mV/ C

Ripple Rejection RR VI =11.5V to 21.5V,

f=120Hz,Tj=25 C

56 72 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Contek LM7809 ELECTRICAL CHARACTERISTICS( VI=15V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 8.65 9.00 9.35 V

Output Voltage Vo VI =11.5V to 24V,

IO=5mA - 1.0A,PD<15W

8.6 9.4 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 90 mV

Tj=25 C,IO=0.25A - 0.75A 45 mV

Line regulation Vo VI =11.5V to 25 V,

Tj=25 C, PD<15W

90 mV

VI =11.5V to 24V,Tj=25 C,

Io<=1A

90 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =11.5V to 24V 1.0 mA

Iq IO=5mA 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 58 V

Temperature coefficient of Vo Vo/T Io=5mA -1.1 mV/ C

Ripple Rejection RR VI =12.5V to 22.5V,

f=120Hz,Tj=25 C

56 72 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

LM78XX LINEAR INTEGRATED CIRCUIT

4

Contek LM7810 ELECTRICAL CHARACTERISTICS( VI=16V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 9.6 10.0 10.4 V

Output Voltage Vo VI =12.5V to 25V,

IO=5mA - 1.0A,PD<=15W

9.5 10.5 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 100 mV

Tj=25 C,IO=0.25A - 0.75A 50 mV

Line regulation Vo VI =13V to 25V,Tj=25 C 100 mV

VI =13V to 25V,

Tj=25 C,Io<=1A

100 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =12.6V to 25V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 58 V

Temperature coefficient of Vo Vo/T Io=5mA -1.1 mV/ C

Ripple Rejection RR VI =13V - 23V,f=120Hz,Tj=25 C 56 72 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Contek LM7812 ELECTRICAL CHARACTERISTICS( VI=19V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 11.5 12.0 12.5 V

Output Voltage Vo VI =14.5V to 27V,

IO=5mA - 1.0A,PD<15W

11.4 12.6 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 120 mV

Tj=25 C,IO=0.25A - 0.75A 60 mV

Line regulation Vo VI =14.5V to 30V,Tj=25 C 120 mV

VI =14.6V to 27V,Tj=25 C,

Io=1A

120 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =14.5V to 30V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 75 V

Temperature coefficient of Vo Vo/T Io=5mA -1.5 mV/ C

Ripple Rejection RR VI =15V - 25V,f=120Hz,Tj=25 C 55 72 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

LM78XX LINEAR INTEGRATED CIRCUIT

5

Contek LM7815 ELECTRICAL CHARACTERISTICS( VI=23V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 14.4 15.0 15.6 V

Output Voltage Vo VI =17.5V to 30V,

IO=5mA - 1.0A,PD<15W

14.25 15.75 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 150 mV

Tj=25 C,IO=0.25A - 0.75A 75 mV

Line regulation Vo VI =18.5V to 30V,Tj=25 C 150 mV

VI =17.7V to 30V,

Tj=25 C, IO =1A

150 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =17.5V to 30V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 90 V

Temperature coefficient of Vo Vo/T Io=5mA -1.8 mV/ C

Ripple Rejection RR VI =18.5V to 28.5V

f=120Hz,Tj=25 C

54 70 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Contek LM7818 ELECTRICAL CHARACTERISTICS( VI=27V, Io=0.5A, Tj= 0 C - 125 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 17.3 18.0 18.7 V

Output Voltage Vo VI =21V to 33V,I O=5mA - 1.0A 17.1 18.9 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 180 mV

Tj=25 C,IO=0.25A - 0.75A 90 mV

Line regulation Vo VI =21V to 33V,Tj=25 C 180 mV

VI =21V to 33V,

Tj=25 C, IO =<1A,PD<15W

180 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =21.5V to 33V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 110 V

Temperature coefficient of Vo Vo/T Io=5mA -2.2 mV/ C

Ripple Rejection RR VI =22V - 32V,f=120Hz,Tj=25 C 53 69 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

LM78XX LINEAR INTEGRATED CIRCUIT

6

Contek LM7824 ELECTRICAL CHARACTERISTICS( VI=33V, Io=0.5A, Tj= 0 C - 12 C, C1=0.33uF, Co=0.1uF, unless otherwise specified )(Note 1)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT

Tj=25 C, IO=5mA - 1.0A 23.0 24.0 25.0 V

Output Voltage Vo VI =27V to 38V,I O=5mA - 1.0A 22.8 25.2 V

Load Regulation Vo Tj=25 C,IO=5mA - 1.5A 240 mV

Tj=25 C,IO=0.25A - 0.75A 120 mV

Line regulation Vo VI =27V to 38V,Tj=25 C 240 mV

VI =27V to 38V,Tj=25 C,Io=1A 240 mV

Quiescent Current Iq Tj=25 C, IO=<1A 8.0 mA

Quiescent Current Change Iq VI =28V to 38V 1.0 mA

Iq IO=5mA - 1.0A 0.5 mA

Output Noise Voltage VN 10Hz<=f<=100kHz 170 V

Temperature coefficient of Vo Vo/T Io=5mA -2.8 mV/ C

Ripple Rejection RR VI =28V - 38V,f=120Hz,Tj=25 C 50 66 dB

Peak Output Current IPK Tj=25 C 1.8 A

Short-Circuit Current ISC VI=35V, Tj=25 C 250 mA

Dropout Voltage Vd Tj=25 C 2.0 V

Note 1: The Maximum steady state usable output current are dependent on input voltage, heat sinking, lead length

of the package and copper pattern of PCB. The data above represents pulse test conditions with junction

temperatures specified at the initiation of test.

Note 2: Power dissipation<0.5W

APPLICATION CIRCUIT

Contek

LM78XX3

2

1

C0

0.1 F

C1

0.33

F

Vi Vo

Note 1: To specify an output voltage, substitute voltage value for " XX".

Note 2: Bypass capacitors are recommended for optimum stability and transient response and should be located as

close as possible to the regulators.

CONTEK

Contek Microelectronics Co.,Ltd.

http://www.contek-ic.com E-mail:[email protected]

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

1

®

July 2004

HIP4081A

80V/2.5A Peak, High Frequency Full Bridge FET DriverThe HIP4081A is a high frequency, medium voltage Full Bridge N-Channel FET driver IC, available in 20 lead plastic SOIC and DIP packages. The HIP4081A can drive every possible switch combination except those which would cause a shoot-through condition. The HIP4081A can switch at frequencies up to 1MHz and is well suited to driving Voice Coil Motors, high-frequency switching power amplifiers, and power supplies.

For example, the HIP4081A can drive medium voltage brush motors, and two HIP4081As can be used to drive high performance stepper motors, since the short minimum “on-time” can provide fine micro-stepping capability.

Short propagation delays of approximately 55ns maximizes control loop crossover frequencies and dead-times which can be adjusted to near zero to minimize distortion, resulting in rapid, precise control of the driven load.

A similar part, the HIP4080A, includes an on-chip input comparator to create a PWM signal from an external triangle wave and to facilitate “hysteresis mode” switching.

The Application Note for the HIP4081A is the AN9405.

Features• Independently Drives 4 N-Channel FET in Half Bridge or

Full Bridge Configurations

• Bootstrap Supply Max Voltage to 95VDC

• Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise and Fall Times of Typically 10ns

• User-Programmable Dead Time

• On-Chip Charge-Pump and Bootstrap Upper Bias Supplies

• DIS (Disable) Overrides Input Control

• Input Logic Thresholds Compatible with 5V to 15V Logic Levels

• Very Low Power Consumption

• Undervoltage Protection

• Pb-free Available

Applications• Medium/Large Voice Coil Motors

• Full Bridge Power Supplies

• Switching Power Amplifiers

• High Performance Motor Controls

• Noise Cancellation Systems

• Battery Powered Vehicles

• Peripherals

• U.P.S.

PinoutHIP4081A

(PDIP, SOIC)TOP VIEW

Ordering InformationPART

NUMBERTEMP RANGE

(°C) PACKAGEPKG.

DWG. #

HIP4081AIP -40 to 85 20 Ld PDIP E20.3

HIP4081AIPZ (Note)

-40 to 85 20 Ld PDIP (Pb-free)

E20.3

HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3

HIP4081AIBZ (Note)

-40 to 85 20 Ld SOIC (W) (Pb-free)

M20.3

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B.

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1BHB

BHI

DIS

VSS

BLI

ALI

HDEL

AHI

LDEL

AHB

BHO

BLO

BLS

VDD

BHS

VCC

ALS

ALO

AHS

AHO

Data Sheet FN3659.7

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.

Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights ReservedAll other trademarks mentioned are the property of their respective owners.

2

HIP4081A

Application Block Diagram

Functional Block Diagram (1/2 HIP4081A)

80V

GND

LOAD

HIP4081A

GND

12V

AHI

ALI

BLI

BHI BLO

BHS

BHO

ALO

AHS

AHO

CHARGEPUMP

VDD

AHI

DIS

ALI

HDEL

LDEL

VSS

TURN-ONDELAY

TURN-ONDELAY

DRIVER

DRIVER

AHB

AHO

AHS

VCC

ALO

ALSCBF

TO VDD (PIN 16)

CBS

DBS

HIGH VOLTAGE BUS ≤ 80VDC

+12VDC

LEVEL SHIFTAND LATCH

14

10

11

12

15

13

16

7

3

6

8

9

4

BIASSUPPLY

UNDER-VOLTAGE

HIP4081A

3

Typical Application (PWM Mode Switching)

11

12

13

14

15

16

17

18

20

19

10

9

8

7

6

5

4

3

2

1 BHB

BHI

DIS

VSS

BLI

ALI

HDEL

AHI

LDEL

AHB

BHO

BLO

BLS

VDD

BHS

VCC

ALS

ALO

AHS

AHO

80V

12V

+

-

12V

DIS

GND

6V

GND

TO OPTIONALCURRENT CONTROLLER

PWM

LOAD

INPUTH

IP40

81/H

IP40

81A

HIP4081A

4

HIP4081A

Absolute Maximum Ratings Thermal InformationSupply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . . -0.3V to 16VLogic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3VVoltage on AHS, BHS . . . -6.0V (Transient) to 80V (25°C to 125°C)Voltage on AHS, BHS . . . -6.0V (Transient) to 70V (-55°C to 125°C)Voltage on ALS, BLS . . . . . . . -2.0V (Transient) to +2.0V (Transient)Voltage on AHB, BHB . . . . . . . . VAHS, BHS -0.3V to VAHS, BHS +VDDVoltage on ALO, BLO . . . . . . . . . . . . .VALS, BLS -0.3V to VCC +0.3VVoltage on AHO, BHO . . . . . . . VAHS, BHS -0.3V to VAHB, BHB +0.3VInput Current, HDEL and LDEL . . . . . . . . . . . . . . . . . . -5mA to 0mAPhase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/nsNOTE: All Voltages relative to VSS, unless otherwise specified.

Thermal Resistance (Typical, Note 1) θJA (°C/W)SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Storage Temperature Range . . . . . . . . . . . . . . . . . . . -65°C to 150°COperating Max. Junction Temperature . . . . . . . . . . . . . . . . . . 125°CLead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . . . . . 300°C

(For SOIC - Lead Tips Only

Operating ConditionsSupply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15VVoltage on ALS, BLS . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +1.0VVoltage on AHB, BHB . . . . . . . . . VAHS, BHS +5V to VAHS, BHS +15VInput Current, HDEL and LDEL . . . . . . . . . . . . . . . .-500µA to -50µAOperating Ambient Temperature Range . . . . . . . . . . .-40°C to 85°C

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of thedevice at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θJA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified

PARAMETER SYMBOL TEST CONDITIONS

TJ = 25°CTJS = -40°C TO

125°C

UNITSMIN TYP MAX MIN MAX

SUPPLY CURRENTS AND CHARGE PUMPS

VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA

VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA

VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 µA

VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA

AHB, BHB Quiescent Current -Qpump Output Current

IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0VDD = VCC = VAHB = VBHB = 10V

-50 -30 -11 -60 -10 µA

AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA

AHS, BHS, AHB, BHB Leakage Current

IHLK VBHS = VAHS = 80V,VAHB = VBHB = 93V

- 0.02 1.0 - 10 µA

AHB-AHS, BHB-BHS Qpump Output Voltage

VAHB-VAHSVBHB-VBHS

IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V

INPUT PINS: ALI, BLI, AHI, BHI, AND DIS

Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V

High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V

Input Voltage Hysteresis - 35 - - - mV

Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 µA

High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 µA

TURN-ON DELAY PINS: LDEL AND HDEL

LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100µA 4.9 5.1 5.3 4.8 5.4 V

GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO

Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V

High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V

Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A

HIP4081A

5

HIP4081A

Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A

Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V

Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V

Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V

Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K,CL = 1000pF.

PARAMETER SYMBOL TEST CONDITIONS

TJ = 25°CTJS = -40°C TO 125°C

UNITSMIN TYP MAX MIN MAX

Lower Turn-off Propagation Delay(ALI-ALO, BLI-BLO)

TLPHL - 30 60 - 80 ns

Upper Turn-off Propagation Delay(AHI-AHO, BHI-BHO)

THPHL - 35 70 - 90 ns

Lower Turn-on Propagation Delay(ALI-ALO, BLI-BLO)

TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns

Upper Turn-on Propagation Delay(AHI-AHO, BHI-BHO)

THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns

Rise Time TR - 10 25 - 35 ns

Fall Time TF - 10 25 - 35 ns

Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns

Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns

Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns

Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns

Disable Turn-off Propagation Delay(DIS - Lower Outputs)

TDISLOW - 45 75 - 95 ns

Disable Turn-off Propagation Delay(DIS - Upper Outputs)

TDISHIGH - 55 85 - 105 ns

Disable to Lower Turn-on Propagation Delay(DIS - ALO and BLO)

TDLPLH - 40 70 - 90 ns

Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns

Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns

TRUTH TABLE

INPUT OUTPUT

ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO

X X X 1 0 0

1 X 0 0 1 0

0 1 0 0 0 1

0 0 0 0 0 0

X X 1 X 0 0

NOTE: X signifies that input can be either a “1” or “0”.

Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued)

PARAMETER SYMBOL TEST CONDITIONS

TJ = 25°CTJS = -40°C TO

125°C

UNITSMIN TYP MAX MIN MAX

HIP4081A

6

HIP4081A

Pin Descriptions PIN

NUMBER SYMBOL DESCRIPTION

1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrapdiode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30µA out of this pin tomaintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.

2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI highlevel input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high levelinput. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).

3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs.When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to15V (no greater than VDD).

4 VSS Chip negative supply, generally will be ground.

5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connectedexternally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V(no greater than VDD).

6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connectedexternally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V(no greater than VDD).

7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI highlevel input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high levelinput. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).

8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay ofboth high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees noshoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V.

9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay ofboth low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees noshoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V.

10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrapdiode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30µA out of this pin tomaintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.

11 AHO A High-side Output. Connect to gate of A High-side power MOSFET.

12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side ofbootstrap capacitor to this pin.

13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET.

14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET.

15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes.

16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4).

17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET.

18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET.

19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side ofbootstrap capacitor to this pin.

20 BHO B High-side Output. Connect to gate of B High-side power MOSFET.

HIP4081A

7

HIP4081A

Timing Diagrams

FIGURE 1. INDEPENDENT MODE

FIGURE 2. BISTATE MODE

FIGURE 3. DISABLE FUNCTION

U/V = DIS = 0

XLI

XHI

XLO

XHO

TLPHL THPHL

THPLH TLPLH TR(10% - 90%)

TF(10% - 90%)

X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT

U/V = DIS = 0

XLI

XHI = HI OR NOT CONNECTED

XLO

XHO

(10% - 90%) (10% - 90%)

U/V OR DIS

XLI

XHI

XLO

XHO

TDLPLH TDIS

TUEN

TREF-PW

HIP4081A

8

HIP4081A

Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K

and TA = 25°C, Unless Otherwise Specified

FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD SUPPLY VOLTAGE

FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs FREQUENCY (kHz)

FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs FREQUENCY (LOAD = 1000pF)

FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs FREQUENCY (kHz) TEMPERATURE

FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS CURRENT vs FREQUENCY

FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL vs TEMPERATURE

6 8 10 12 142.0

4.0

6.0

8.0

10.0

12.0

14.0

I DD

SU

PP

LY C

UR

RE

NT

(mA

)

VDD SUPPLY VOLTAGE (V)0 100 200 300 400 500 600 700 800 900 1000

8.0

8.5

9.0

9.5

10.0

10.5

11.0

I DD

SU

PP

LY C

UR

RE

NT

(mA

)

SWITCHING FREQUENCY (kHz)

0 100 200 300 400 500 600 700 800 900 10000.0

5.0

10.0

15.0

20.0

25.0

30.0

FLO

ATI

NG

SU

PP

LY B

IAS

CU

RR

EN

T (m

A)

SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 10000.0

1.0

2.0

3.0

4.0

5.0

I CC

SU

PP

LY C

UR

RE

NT

(mA

)

SWITCHING FREQUENCY (kHz)

75°C

25°C

125°C

-40°C

0°C

0.5

1

1.5

2

2.5

200 600 800 10000 400

FLO

ATI

NG

SU

PP

LY B

IAS

CU

RR

EN

T (m

A)

SWITCHING FREQUENCY (kHz)

-50 -25 0 25 50 75 100 125-120

-110

-100

-90

LOW

LE

VE

L IN

PU

T C

UR

RE

NT

(µA

)

JUNCTION TEMPERATURE (°C)

HIP4081A

9

HIP4081A

Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified

FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP VOLTAGE vs TEMPERATURE

FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION DELAY TDISHIGH vs TEMPERATURE

FIGURE 12. DISABLE TO UPPER ENABLE, TUEN, PROPAGATION DELAY vs TEMPERATURE

FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION DELAY TDISLOW vs TEMPERATURE

FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs TEMPERATURE

FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH PROPAGATION DELAY vs TEMPERATURE

-40 -20 0 20 40 60 80 100 12010.0

11.0

12.0

13.0

14.0

15.0

NO

-LO

AD

FLO

ATI

NG

CH

AR

GE

PU

MP

VO

LTA

GE

(V)

JUNCTION TEMPERATURE (°C)-40 -20 0 20 40 60 80 100 120

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)

425

450

475

500

525

-50 -25 0 25 50 75 100 125 150

JUNCTION TEMPERATURE (°C)

PR

OP

AG

ATI

ON

DE

LAY

(ns)

-40 -20 0 20 40 60 80 100 12030

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)

350

375

400

425

450

-50 -25 0 25 50 75 100 125 150

RE

FRE

SH

PU

LSE

WID

TH (n

s)

JUNCTION TEMPERATURE (°C)-40 -20 0 20 40 60 80 100 120

20

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)

HIP4081A

10

HIP4081A

FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL vs TEMPERATURE

FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs TEMPERATURE

FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL vs TEMPERATURE

FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs TEMPERATURE

FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE

Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified (Continued)

-40 -20 0 20 40 60 80 100 12020

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)-40 -20 0 20 40 60 80 100 120

20

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)

-40 -20 0 20 40 60 80 100 12020

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)-40 -20 0 20 40 60 80 100 120

20

30

40

50

60

70

80

PR

OP

AG

ATI

ON

DE

LAY

(ns)

JUNCTION TEMPERATURE (°C)

-40 -20 0 20 40 60 80 100 1208.5

9.5

10.5

11.5

12.5

13.5

GA

TE D

RIV

E F

ALL

TIM

E (n

s)

JUNCTION TEMPERATURE (°C)-40 -20 0 20 40 60 80 100 120

8.5

9.5

10.5

11.5

12.5

13.5

TUR

N-O

N R

ISE

TIM

E (n

s)

JUNCTION TEMPERATURE (°C)

HIP4081A

11

HIP4081A

Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =100K and TA = 25°C, Unless Otherwise Specified

FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS SUPPLY AND TEMPERATURE AT 100mA

FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS SUPPLY AND TEMPERATURE AT 100mA

FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY VOLTAGE

FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY VOLTAGE

FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS QUIESCENT COMPONENT) vs FREQUENCY ANDGATE LOAD CAPACITANCE

-40 -20 0 20 40 60 80 100 1204.0

4.5

5.0

5.5

6.0

HD

EL,

LD

EL

INP

UT

VO

LTA

GE

(V)

JUNCTION TEMPERATURE (°C)10 12 140

250

500

750

1000

1250

1500

VC

C -

VO

H (m

V)

BIAS SUPPLY VOLTAGE (V)

75°C

25°C

125°C

-40°C

0°C

12 140

250

500

750

1000

1250

1500

VO

L (m

V)

BIAS SUPPLY VOLTAGE (V)10

75°C

25°C

125°C

-40°C

0°C

6 7 8 9 10 11 12 13 14 15 160.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GA

TE D

RIV

E S

INK

CU

RR

EN

T (A

)

VDD, VCC, VAHB, VBHB (V)

6 7 8 9 10 11 12 13 14 15 160.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

GA

TE D

RIV

E S

INK

CU

RR

EN

T (A

)

VDD, VCC, VAHB, VBHB (V)1 10 100 10002 5 20 50 500200

0.1

1

10

100

500

50

5

0.5

200

20

2

0.2

LOW

VO

LTA

GE

BIA

S C

UR

RE

NT

(mA

)

SWITCHING FREQUENCY (kHz)

100pF

1,000pF

10,000pF

3,000pF

HIP4081A

12

HIP4081A

FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE

FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE

Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =100K and TA = 25°C, Unless Otherwise Specified (Continued)

10 100 100020 50 200 50010

100

1000

20

50

200

500

LEV

EL-

SH

IFT

CU

RR

EN

T (µ

A)

SWITCHING FREQUENCY (kHz)

8.2

8.4

8.6

8.8

9.0

50 25 0 25 50 75 100 125 150

UV+

UV-

TEMPERATURE (°C)

BIA

S S

UP

PLY

VO

LTA

GE

, VD

D (V

)

10 50 100 150 200 2500

30

60

90

120

150

HDEL/LDEL RESISTANCE (kΩ)

DE

AD

-TIM

E (n

s)

HIP4081A

13

HIP

4081A

1

2

31

2

3

1

2

3

65

1

23

21

12131

2

3

1011

1

23

123456789

10 11121314151617181920

L1

R21Q1

Q3

Q4

R22

L2R23 C1

C3

JMPR1

R24

R30 R31

C2

R34

C4

CR2

CR1

Q2

JMP

R5

JMPR3

JMPR2

JMPR4

R33

C5

C6

CX CY

C8

U1

CW CW

+

B+IN2 IN1

BO

OUT/BLI

IN-/AHI

COM

IN+/ALI +12V

+12V

BLS

AO

HEN/BHI

ALS

CD4069UB

CD4069UB

CD4069UB

CD4069UB

HIP4080A/81A

SECTIONCONTROL LOGIC

POWER SECTION

DRIVER SECTION

AHOAHBAHSLDELALOHDELALSIN-/AHIVCCIN+/ALIVDDOUT/BLIBLSVSS

BLODISBHSHEN/BHIBHOBHB

R29

U2

U2

U2

U2

43

89

R32

I

O

O

CD4069UB

CD4069UB

ENABLE INU2

U2

NOTES:

1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V.

2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED. REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR JMPR1 - JMPR4.

FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC

HIP

4081A

14

HIP

4081A

R22 1

Q3

L1

JMPR2

JMP

R5

R31

R33

CR2

R23

R24

R27

R28

R26

1

Q4

1

Q2JMPR3

U1

R21

GND

L2

C3

C4

JMPR4

JMPR1

R30

CR1

U2

R34

R32

I

O

C8R29

C7

C6

C5

CY

CX

1

Q1

COM+12V

B+

IN1

IN2

AHO

BHO

ALO

BLOBLS

BLS

LDEL

HD

EL

DIS

ALS

ALS

O

+ +

HIP

4080

/81

FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN

HIP

4081A

15

HIP4081AHIP4081A

Dual-In-Line Plastic Packages (PDIP)

NOTES:1. Controlling Dimensions: INCH. In case of conflict between English

and Metric dimensions, the inch dimensions control.2. Dimensioning and tolerancing per ANSI Y14.5M-1982.3. Symbols are defined in the “MO Series Symbol List” in Section 2.2

of Publication No. 95.4. Dimensions A, A1 and L are measured with the package seated in

JEDEC seating plane gauge GS-3.5. D, D1, and E1 dimensions do not include mold flash or protrusions.

Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).6. E and are measured with the leads constrained to be perpen-

dicular to datum .7. eB and eC are measured at the lead tips with the leads uncon-

strained. eC must be zero or greater.8. B1 maximum dimensions do not include dambar protrusions. Dam-

bar protrusions shall not exceed 0.010 inch (0.25mm).9. N is the maximum number of terminal positions.

10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

eA-C-

CL

E

eA

C

eB

eC

-B-

E1INDEX 1 2 3 N/2

N

AREA

SEATING

BASEPLANE

PLANE

-C-

D1

B1B

e

D

D1

AA2

L

A1

-A-

0.010 (0.25) C AM B S

E20.3 (JEDEC MS-001-AD ISSUE D)20 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A - 0.210 - 5.33 4

A1 0.015 - 0.39 - 4

A2 0.115 0.195 2.93 4.95 -

B 0.014 0.022 0.356 0.558 -

B1 0.045 0.070 1.55 1.77 8

C 0.008 0.014 0.204 0.355 -

D 0.980 1.060 24.89 26.9 5

D1 0.005 - 0.13 - 5

E 0.300 0.325 7.62 8.25 6

E1 0.240 0.280 6.10 7.11 5

e 0.100 BSC 2.54 BSC -

eA 0.300 BSC 7.62 BSC 6

eB - 0.430 - 10.92 7

L 0.115 0.150 2.93 3.81 4

N 20 20 9

Rev. 0 12/93

16

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withoutnotice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate andreliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may resultfrom its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

HIP4081AHIP4081AHIP4081A

Small Outline Plastic Packages (SOIC)

NOTES:1. Symbols are defined in the “MO Series Symbol List” in Section

2.2 of Publication Number 95.2. Dimensioning and tolerancing per ANSI Y14.5M-1982.3. Dimension “D” does not include mold flash, protrusions or gate

burrs. Mold flash, protrusion and gate burrs shall not exceed0.15mm (0.006 inch) per side.

4. Dimension “E” does not include interlead flash or protrusions. In-terlead flash and protrusions shall not exceed 0.25mm (0.010inch) per side.

5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.

6. “L” is the length of terminal for soldering to a substrate.7. “N” is the number of terminal positions.8. Terminal numbers are shown for reference only.9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater

above the seating plane, shall not exceed a maximum value of0.61mm (0.024 inch)

10. Controlling dimension: MILLIMETER. Converted inch dimen-sions are not necessarily exact.

INDEXAREA

E

D

N

1 2 3

-B-

0.25(0.010) C AM B S

e

-A-

L

B

M

-C-

A1

A

SEATING PLANE

0.10(0.004)

h x 45o

C

H

µ

0.25(0.010) BM M

α

M20.3 (JEDEC MS-013-AC ISSUE C)20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL

INCHES MILLIMETERS

NOTESMIN MAX MIN MAX

A 0.0926 0.1043 2.35 2.65 -

A1 0.0040 0.0118 0.10 0.30 -

B 0.014 0.019 0.35 0.49 9

C 0.0091 0.0125 0.23 0.32 -

D 0.4961 0.5118 12.60 13.00 3

E 0.2914 0.2992 7.40 7.60 4

e 0.050 BSC 1.27 BSC -

H 0.394 0.419 10.00 10.65 -

h 0.010 0.029 0.25 0.75 5

L 0.016 0.050 0.40 1.27 6

N 20 20 7

α 0o 8o 0o 8o -

Rev. 1 1/02

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

7-1327

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

CD40106BMSCMOS Hex Schmitt Triggers

Features

• High Voltage Type (20V Rating)

• Schmitt Trigger Action with No External Components

• Hysteresis Voltage (Typ.)- 0.9V at VDD = 5V- 2.3V at VDD = 10V- 3.5V at VDD = 15V

• Noise Immunity Greater than 50%

• No Limit on Input Rise and Fall Times

• Low VDD to VSS Current During Slow Input Ramp

• 100% Tested for Quiescent Current at 20V

• 5V, 10V and 15V Parametric Ratings

• Maximum Input Current of 1µA at 18V Over Full Pack-age Temperature Range; 100nA at 18V and +25oC

• Standardized Symmetrical Output Characteristics

• Meets All Requirements of JEDEC Tentative StandardNo. 13B, “Standard Specifications for Description of‘B’ Series CMOS Devices”

Applications

• Wave and Pulse Shapers

• High Noise Environment Systems

• Monostable Multivibrators

• Astable Multivibrators

Description

CD40106BMS consists of six Schmitt trigger circuits. Eachcircuit functions as an inverter with Schmitt trigger action onthe input. The trigger switches at different points for positiveand negative going signals. The difference between thepositive going voltage (VP) and the negative going voltage(VN) is defined as hysteresis voltage (VH) (see Figure 17).

The CD40106BMS is supplied in these 14 lead outlinepackages:

Braze Seal DIP H4Q

Frit Seal DIP H1B

Ceramic Flatpack H3W

December 1992

File Number 3354

PinoutCD40106BMS

TOP VIEW

Functional Diagram

Logic Diagram

FIGURE 1. 1 OF 6 SCHMITT TRIGGERS

A

G = A

B

H = B

C

I = C

VSS

VDD

F

L = F

E

K = E

D

J = D

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A

2G = A

3B

4H = B

5C

6I = C

9D

8J = D

11E

10K = E

13F

12L = F

A *1 (3, 5, 9, 11, 13)

G*2 (4, 6, 8, 10, 12)

* ALL INPUTS ARE PROTECTEDBY CMOS PROTECTIONNETWORK

VDD

VSS

7-1328

Specifications CD40106BMS

Absolute Maximum Ratings Reliability InformationDC Supply Voltage Range, (VDD) . . . . . . . . . . . . . . . -0.5V to +20V

(Voltage Referenced to VSS Terminals)Input Voltage Range, All Inputs . . . . . . . . . . . . .-0.5V to VDD +0.5VDC Input Current, Any One Input . . . . . . . . . . . . . . . . . . . . . . . .±10mAOperating Temperature Range. . . . . . . . . . . . . . . . -55oC to +125oC

Package Types D, F, K, HStorage Temperature Range (TSTG) . . . . . . . . . . . -65oC to +150oCLead Temperature (During Soldering) . . . . . . . . . . . . . . . . . +265oC

At Distance 1/16 ± 1/32 Inch (1.59mm ± 0.79mm) from case for10s Maximum

Thermal Resistance . . . . . . . . . . . . . . . . θja θjcCeramic DIP and FRIT Package . . . . . 80oC/W 20oC/WFlatpack Package . . . . . . . . . . . . . . . . 70oC/W 20oC/W

Maximum Package Power Dissipation (PD) at +125oCFor TA = -55oC to +100oC (Package Type D, F, K) . . . . . . 500mWFor TA = +100oC to +125oC (Package Type D, F, K). . . . . .Derate

Linearity at 12mW/oC to 200mWDevice Dissipation per Output Transistor . . . . . . . . . . . . . . . 100mW

For TA = Full Package Temperature Range (All Package Types)Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER SYMBOL CONDITIONS (NOTE 1)GROUP A

SUBGROUPS TEMPERATURE

LIMITS

UNITSMIN MAX

Supply Current IDD VDD = 20V, VIN = VDD or GND 1 +25oC - 2 µA

2 +125oC - 200 µA

VDD = 18V, VIN = VDD or GND 3 -55oC - 2 µA

Input Leakage Current IIL VIN = VDD or GND VDD = 20 1 +25oC -100 - nA

2 +125oC -1000 - nA

VDD = 18V 3 -55oC -100 - nA

Input Leakage Current IIH VIN = VDD or GND VDD = 20 1 +25oC - 100 nA

2 +125oC - 1000 nA

VDD = 18V 3 -55oC - 100 nA

Output Voltage VOL15 VDD = 15V, No Load 1, 2, 3 +25oC, +125oC, -55oC - 50 mV

Output Voltage VOH15 VDD = 15V, No Load (Note 2) 1, 2, 3 +25oC, +125oC, -55oC 14.95 - V

Output Current (Sink) IOL5 VDD = 5V, VOUT = 0.4V 1 +25oC 0.53 - mA

Output Current (Sink) IOL10 VDD = 10V, VOUT = 0.5V 1 +25oC 1.4 - mA

Output Current (Sink) IOL15 VDD = 15V, VOUT = 1.5V 1 +25oC 3.5 - mA

Output Current (Source) IOH5A VDD = 5V, VOUT = 4.6V 1 +25oC - -0.53 mA

Output Current (Source) IOH5B VDD = 5V, VOUT = 2.5V 1 +25oC - -1.8 mA

Output Current (Source) IOH10 VDD = 10V, VOUT = 9.5V 1 +25oC - -1.4 mA

Output Current (Source) IOH15 VDD = 15V, VOUT = 13.5V 1 +25oC - -3.5 mA

N Threshold Voltage VNTH VDD = 10V, ISS = -10µA 1 +25oC -2.8 -0.7 V

P Threshold Voltage VPTH VSS = 0V, IDD = 10µA 1 +25oC 0.7 2.8 V

Functional F VDD = 2.8V, VIN = VDD or GND 7 +25oC VOH >VDD/2

VOL <VDD/2

V

VDD = 20V, VIN = VDD or GND 7 +25oC

VDD = 18V, VIN = VDD or GND 8A +125oC

VDD = 3V, VIN = VDD or GND 8B -55oC

Positive TriggerThreshold Voltage(See Figure 17)

VP5 VDD = 5V 1, 2, 3 +25oC, +125oC, -55oC 2.2 3.6 V

VP10 VDD = 10V 1, 2, 3 +25oC, +125oC, -55oC 4.6 7.1 V

VP15 VDD = 15V 1, 2, 3 +25oC, +125oC, -55oC 6.8 10.8 V

Negative TriggerThreshold Voltage(See Figure 17)

VN5 VDD = 5V 1, 2, 3 +25oC, +125oC, -55oC 0.9 2.8 V

VN10 VDD = 10V 1, 2, 3 +25oC, +125oC, -55oC 2.5 5.2 V

VN15 VDD = 15V 1, 2, 3 +25oC, +125oC, -55oC 4 7.4 V

Hysteresis Voltage(See Figure 17)

VH5 VDD = 5V 1, 2, 3 +25oC, +125oC, -55oC 0.3 1.6 V

VH10 VDD = 10V 1, 2, 3 +25oC, +125oC, -55oC 1.2 3.4 V

VH15 VDD = 15V 1, 2, 3 +25oC, +125oC, -55oC 1.6 5.0 V

NOTES: 1. All voltages referenced to device GND, 100% testing beingimplemented.

2. Go/No Go test with limits applied to inputs.

3. For accuracy, voltage is measured differentially to VDD. Limitis 0.050V max.

7-1329

Specifications CD40106BMS

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER SYMBOL CONDITIONS (NOTE 1, 2)GROUP A

SUBGROUPS TEMPERATURE

LIMITS

UNITSMIN MAX

Propagation Delay TPHLTPLH

VDD = 5V, VIN = VDD or GND 9 +25oC - 280 ns

10, 11 +125oC, -55oC - 378 ns

Transition Time TTHLTTLH

VDD = 5V, VIN = VDD or GND 9 +25oC - 200 ns

10, 11 +125oC, -55oC - 270 ns

NOTES:

1. CL = 50pF, RL = 200K, Input TR, TF < 20ns

2. -55oC and +125oC limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE

LIMITS

UNITSMIN MAX

Supply Current IDD VDD = 5V, VIN = VDD or GND 1, 2 -55oC, +25oC - 1 µA

+125oC - 30 µA

VDD = 10V, VIN = VDD or GND 1, 2 -55oC, +25oC - 2 µA

+125oC - 60 µA

VDD = 15V, VIN = VDD or GND 1, 2 -55oC, +25oC - 2 µA

+125oC - 120 µA

Output Voltage VOL VDD = 5V, No Load 1, 2 +25oC, +125oC,-55oC

- 50 mV

Output Voltage VOL VDD = 10V, No Load 1, 2 +25oC, +125oC,-55oC

- 50 mV

Output Voltage VOH VDD = 5V, No Load 1, 2 +25oC, +125oC,-55oC

4.95 - V

Output Voltage VOH VDD = 10V, No Load 1, 2 +25oC, +125oC,-55oC

9.95 - V

Output Current (Sink) IOL5 VDD = 5V, VOUT = 0.4V 1, 2 +125oC 0.36 - mA

-55oC 0.64 - mA

Output Current (Sink) IOL10 VDD = 10V, VOUT = 0.5V 1, 2 +125oC 0.9 - mA

-55oC 1.6 - mA

Output Current (Sink) IOL15 VDD = 15V, VOUT = 1.5V 1, 2 +125oC 2.4 - mA

-55oC 4.2 - mA

Output Current (Source) IOH5A VDD = 5V, VOUT = 4.6V 1, 2 +125oC - -0.36 mA

-55oC - -0.64 mA

Output Current (Source) IOH5B VDD = 5V, VOUT = 2.5V 1, 2 +125oC - -1.15 mA

-55oC - -2.0 mA

Output Current (Source) IOH10 VDD = 10V, VOUT = 9.5V 1, 2 +125oC - -0.9 mA

-55oC - -1.6 mA

Output Current (Source) IOH15 VDD =15V, VOUT = 13.5V 1, 2 +125oC - -2.4 mA

-55oC - -4.2 mA

Propagation Delay TPHLTPLH

VDD = 10V 1, 2, 3 +25oC - 140 ns

VDD = 15V 1, 2, 3 +25oC - 120 ns

Transition Time TTHLTTLH

VDD = 10V 1, 2, 3 +25oC - 100 ns

VDD = 15V 1, 2, 3 +25oC - 80 ns

7-1330

Specifications CD40106BMS

Input Capacitance CIN Any Input 1, 2 +25oC - 7.5 pF

NOTES:

1. All voltages referenced to device GND.

2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized oninitial design release and upon design changes which would affect these characteristics.

3. CL = 50pF, RL = 200K., Input TR, TF < 20ns

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE

LIMITS

UNITSMIN MAX

Supply Current IDD VDD = 20V, VIN = VDD or GND 1, 4 +25oC - 7.5 µA

N Threshold Voltage VNTH VDD = 10V, ISS = -10µA 1, 4 +25oC -2.8 -0.2 V

N Threshold VoltageDelta

∆VTN VDD = 10V, ISS = -10µA 1, 4 +25oC - ±1 V

P Threshold Voltage VTP VSS = 0V, IDD = 10µA 1, 4 +25oC 0.2 2.8 V

P Threshold VoltageDelta

∆VTP VSS = 0V, IDD = 10µA 1, 4 +25oC - ±1 V

Functional F VDD = 18V, VIN = VDD or GND 1 +25oC VOH >VDD/2

VOL <VDD/2

V

VDD = 3V, VIN = VDD or GND

Propagation Delay Time TPHLTPLH

VDD = 5V 1, 2, 3, 4 +25oC - 1.35 x+25oCLimit

ns

NOTES: 1. All voltages referenced to device GND.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

3. See Table 2 for +25oC limit.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25oC

PARAMETER SYMBOL DELTA LIMIT

Supply Current - MSI-1 IDD ± 0.2µA

Output Current (Sink) IOL5 ± 20% x Pre-Test Reading

Output Current (Source) IOH5A ± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPMIL-STD-883

METHOD GROUP A SUBGROUPS READ AND RECORD

Initial Test (Pre Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A

Interim Test 1 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A

Interim Test 2 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A

PDA (Note 1) 100% 5004 1, 7, 9, Deltas

Interim Test 3 (Post Burn-In) 100% 5004 1, 7, 9 IDD, IOL5, IOH5A

PDA (Note 1) 100% 5004 1, 7, 9, Deltas

Final Test 100% 5004 2, 3, 8A, 8B, 10, 11

Group A Sample 5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

PARAMETER SYMBOL CONDITIONS NOTES TEMPERATURE

LIMITS

UNITSMIN MAX

7-1331

Specifications CD40106BMS

Group B Subgroup B-5 Sample 5005 1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas Subgroups 1, 2, 3, 9, 10, 11

Subgroup B-6 Sample 5005 1, 7, 9

Group D Sample 5005 1, 2, 3, 8A, 8B, 9 Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE GROUPSMIL-STD-883

METHOD

TEST READ AND RECORD

PRE-IRRAD POST-IRRAD PRE-IRRAD POST-IRRAD

Group E Subgroup 2 5005 1, 7, 9 Table 4 1, 9 Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

FUNCTION OPEN GROUND VDD 9V ± -0.5V

OSCILLATOR

50kHz 25kHz

Static Burn-In 1Note 1

2, 4, 6, 8, 10, 12 1, 3, 5, 7, 9, 11, 13 14

Static Burn-In 2Note 1

2, 4, 6, 8, 10, 12 7 1, 3, 5, 9, 11,13, 14

Dynamic Burn-In Note 1

- 7 14 2, 4, 6, 8, 10, 12 1, 3, 5, 9, 11, 13

IrradiationNote 2

2, 4, 6, 8, 10, 12 7 1, 3, 5, 9, 11,13, 14

NOTES:

1. Each pin except VDD and GND will have a series resistor of 10K ± 5%, VDD = 18V ± 0.5V

2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures,VDD = 10V ± 0.5V

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENTCHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENTCHARACTERISTICS

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPMIL-STD-883

METHOD GROUP A SUBGROUPS READ AND RECORD

10V

5V

AMBIENT TEMPERATURE (TA) = +25oC

GATE-TO-SOURCE VOLTAGE (VGS) = 15V

0 5 10 15

15

10

5

20

25

30

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)

OU

TPU

T LO

W (S

INK

) CU

RR

EN

T (IO

L) (m

A)

10V

5V

AMBIENT TEMPERATURE (TA) = +25oC

GATE-TO-SOURCE VOLTAGE (VGS) = 15V

0 5 10 15

7.5

5.0

2.5

10.0

12.5

15.0

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)

OU

TPU

T LO

W (S

INK

) CU

RR

EN

T (IO

L) (m

A)

7-1332

Specifications CD40106BMS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENTCHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENTCHARACTERISTICS

FIGURE 6. TYPICAL CURRENT AND VOLTAGE TRANSFERCHARACTERISTICS

FIGURE 7. TYPICAL VOLTAGE TRANSFER CHARACTERIS-TICS AS A FUNCTION OF TEMPERATURE

FIGURE 8. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE

FIGURE 9. TYPICAL TRANSITION TIME AS A FUNCTION OFLOAD CAPACITANCE

Typical Performance Characteristics (Continued)

-10V

-15V

AMBIENT TEMPERATURE (TA) = +25oC

GATE-TO-SOURCE VOLTAGE (VGS) = -5V

0

-5

-10

-15

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)

-20

-25

-30

0-5-10-15

OU

TPU

T H

IGH

(SO

UR

CE

) CU

RR

EN

T (IO

H) (

mA

)

-10V

-15V

AMBIENT TEMPERATURE (TA) = +25oC0

-5

-10

-15

DRAIN-TO-SOURCE VOLTAGE (VDS) (V)0-5-10-15

OU

TPU

T H

IGH

(SO

UR

CE

) CU

RR

EN

T (IO

H) (

mA

)

GATE-TO-SOURCE VOLTAGE (VGS) = -5V

ALLOTHERINPUTS TOVDD OR VSS

VDD

VIN

VO ID

21VO

ID

10V

5V

AMBIENT TEMPERATURE (TA) = +25oC

SUPPLY VOLTAGE (VDD) = 15V

CURRENTPEAK

CURRENTPEAK

15.012.510.07.55.02.50

15.0

12.5

10.0

7.5

5.0

2.5

0

1.5

1.0

0.5

0

INPUT VOLTAGE (VI) (V)

OU

TPU

T V

OLT

AG

E (V

O) (

V)

DR

AIN

CU

RR

EN

T (ID

) (m

A)

-55oC

+125oC

SUPPLY VOLTAGE (VDD) = 15V

10V

5V

15

10

5

0

OU

TPU

T V

OLT

AG

E (V

O) (

V)

151050

INPUT VOLTAGE (VI) (V)

ALLOTHERINPUTS TOVDD OR VSS

VDD

VIN21

VO

AMBIENT TEMPERATURE (TA) = +25oC

LOAD CAPACITANCE (CL) (pF)0 40 60 80 10020

0

50

100

150

200

SUPPLY VOLTAGE (VDD) = 5V

10V

5V

PR

OPA

GA

TIO

N T

IME

(tP

HL

, tP

LH

) (n

s) AMBIENT TEMPERATURE (TA) = +25oC

LOAD CAPACITANCE (CL) (pF)0 40 60 80 10020

0

50

100

150

200

SUPPLY VOLTAGE (VDD) = 5V

10V

15V

TR

AN

SIT

ION

TIM

E (

tTH

L, t

TL

H)

(ns)

7-1333

CD40106BMS

FIGURE 10. TYPICAL POWER DISSIPATION PER TRIGGER ASA FUNCTION OF INPUT FREQUENCY

FIGURE 11. TYPICAL TRIGGER THRESHOLD VOLTAGE AS AFUNCTION OF SUPPLY VOLTAGE

FIGURE 12. TYPICAL PERCENT HYSTERESIS AS A FUNCTIONOF SUPPLY VOLTAGE

FIGURE 13. TYPICAL POWER DISSIPATION AS A FUNCTIONOF RISE AND FALL TIMES

Applications

FIGURE 14. WAVE SHAPER FIGURE 15. MONOSTABLE MULTIVIBRATOR

Typical Performance Characteristics (Continued)

INPUT FREQUENCY (f) (kHz)

PO

WE

R D

ISS

IPA

TIO

N P

ER

TR

IGG

ER

(P

D)

(µW

)

864

2

105

864

2

104

864

2

103

864

2

102

10

10-186421

864210 102 103 104

8642 8642 8642

AMBIENT TEMPERATURE (TA) = +25oC

SUPPLY VOLTAGE (VDD) = 15V

10V

5V

CL = 50pFCL = 15pF

AMBIENT TEMPERATURE (TA) = +25oC

SUPPLY VOLTAGE (VDD) (V)0 10 15 205

0

5

10

15

VP

VN

TR

IGG

ER

TH

RE

SH

OL

D V

OLT

AG

E (

VP,

VN

) (V

)

INPUT ON TERMINALS 1, 5, 8, 12 OR 2, 6, 9, 13;OTHER INPUTS TIED TO VDD

AMBIENT TEMPERATURE (TA) = +25oC

SUPPLY VOLTAGE (VDD) (V)

0 10 15 2050

15

20

25

10

5

HY

ST

ER

ES

ISV

HX

100

PE

RC

EN

TV

DD

(

(

8642

104

8642

103

8642

102

8642

10

8642

1

10-1

RISE AND FALL TIME (tr, tf) (ns)

0.186421

864210 102 103 104

8642 8642 8642

PO

WE

R D

ISS

IPA

TIO

N (

PD

) (µ

W)

SUPPLY VOLTAGE (VDD) = 15pFFREQUENCY (f) = 100kHz

AMBIENT TEMPERATURE (TA) = +25oCLOAD CAPACITANCE (CL) = 15pF

15V, 10kHz

15V, 1kHz

10V, 1kHz

5V, 1kHz

VDD

VSS

FREQUENCY RANGE OF WAVE SHAPEIS FROM DC TO 1MHz

VDD

VSS

1/6 CD40106BMS

VDD

VSS

1/3 CD4007UB

R

C

VSS

VDD

tM = RC n

50kΩ ≤ R ≤ 1MΩ100pF ≤ C ≤ 1µF

VDD

VDD-VP

FOR THE RANGE OF R AND CGIVEN 5µs < tM < 1s

VDD

VSS

tM

1/6 CD40106BMS

21

7-1334

CD40106BMS

FIGURE 16. ASTABLE MULTIVIBRATOR

FIGURE 17. HYSTERESIS DEFINITION, CHARACTERISTICS, AND TEST SETUP

FIGURE 18. INPUT AND OUTPUT CHARACTERISTICS

Applications (Continued)

VDD

VSS

R

C

VSS

tA = RC n

50kΩ ≤ R ≤ 1MΩ100pF ≤ C ≤ 1µF

VP

VN

FOR THE RANGE OF R AND CGIVEN 2µs < tA < 0.4s

tA

VDD-VN

VDD-VP

1/6 CD40106BMS

VDD

VIN

VSS

VDD

VO

VSS

VP VN

VH

VH

VN VP

VO

VIN

VH = VP - VN

(a) DEFINITION OF VP, VN, VH (b) TRANSFER CHARACTERISTIC OF 1 OF 6 GATES

VIN VO

LOGIC “1”OUTPUTREGION

LOGIC “0”OUTPUTREGION

LOGIC “1”INPUT

REGION

LOGIC “0”INPUT

REGION

VDD

VSSVOL

VN

VPVOH

OUTPUTCHARACTERISTIC

INPUTCHARACTERISTIC

DRIVER LOAD

VOL

VOH

1335

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time withoutnotice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurateand reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties whichmay result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office HeadquartersNORTH AMERICAIntersil CorporationP. O. Box 883, Mail Stop 53-204Melbourne, FL 32902TEL: (321) 724-7000FAX: (321) 724-7240

EUROPEIntersil SAMercure Center100, Rue de la Fusee1130 Brussels, BelgiumTEL: (32) 2.724.2111FAX: (32) 2.724.22.05

ASIAIntersil (Taiwan) Ltd.Taiwan Limited7F-6, No. 101 Fu Hsing North RoadTaipei, TaiwanRepublic of ChinaTEL: (886) 2 2716 9310FAX: (886) 2 2715 3029

CD40106BMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and arederived from the basic inch dimensions as indicated.Grid graduations are in mils (10-3 inch).

METALLIZATION: Thickness: 11kÅ − 14kÅ, AL.PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN

DIE THICKNESS: 0.0198 inches - 0.0218 inches

Electrical Specifications Subject to Change

LTC6992-1/-2/-3/-4

169921234p

TYPICAL APPLICATION

DESCRIPTION

TimerBloxVoltage-Controlled Pulse Width Modulator (PWM)

The LTC®6992 is a silicon oscillator with an easy-to-use analog voltage-controlled pulse width modulation (PWM) capability. The LTC6992 is part of the TimerBlox™ family of versatile silicon timing devices.

A single resistor, RSET, programs the LTC6992’s inter-nal master oscillator frequency. The output frequency is determined by this master oscillator and an internal frequency divider, NDIV, programmable to eight settings from 1 to 16384.

fOUT = 1MHz

NDIV

•50kΩRSET

,NDIV = 1,4,16 …16384

Applying a voltage between 0V and 1V on the MOD pin sets the duty cycle, according to the following formula:

Duty Cycle =

VMOD

0.8 • VSET

− 1

8≅

VMOD − 100mV

800mV

The four versions differ in their minimum/maximum duty cycle. Note that a minimum duty cycle limit of 0% or maximum duty cycle limit of 100% allows oscillations to stop at the extreme duty cycle settings.

DEVICE NAMEPWM DUTY

CYCLE RANGE

OUTPUT DUTY CYCLE LIMITS

MIN MAX

LTC6992-1 0% to 100% GND V+

LTC6992-2 5% to 95%

LTC6992-3 0% to 95% GND

LTC6992-4 5% to 100% V+

n Pulse Width Modulation (PWM) Controlled by Simple 0V to 1V Analog Input

n Four Available Options Define Duty Cycle Limits – Minimum Duty Cycle at 0% or 5% – Maximum Duty Cycle at 95% or 100%n Frequency Range: 3.81Hz to 1MHzn Single Resistor Programs Frequency with < 2.4%

Maximum Errorn PWM Duty Cycle Error < 4.5% Maximumn Frequency Modulation (VCO) Capabilityn 2.25V to 5.5V Single Supply Operationn 115μA Supply Current at 100kHzn 500μs Start-Up Timen CMOS Output Driver Sources/Sinks 20mAn –40°C to 125°C Operating Temperature Rangen Available in Low Profile (1mm) SOT-23 (ThinSOT™)

and 2mm × 3mm DFN

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and TimerBlox and ThinSOT are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

FEATURES

APPLICATIONSn LED Dimming Controln PWM Servo Loopsn High Vibration, High Acceleration Environmentsn Portable and Battery-Powered Equipment

6992 TA01a

LTC6992

MOD

GND

SET

OUT

V+

DIV

RSET50k

V+

ANALOG PWMDUTY CYCLE

CONTROL(0V TO 1V)

C10.1μF

1MHz Pulse Width Modulator

MOD0.5V/DIV

OUT1V/DIV

2μs/DIV 6992 TA01b

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

269921234p

ABSOLUTE MAXIMUM RATINGSSupply Voltage (V+) to GND .........…………………….6VMaximum Voltage On Any Pin

.............................(GND – 0.3V) ≤ VPIN ≤ (V+ + 0.3V)Operating Temperature Range (Note 2)

LTC6992C ................................................ 0°C to 70°CLTC6992I .............................................–40°C to 85°CLTC6992H .......................................... –40°C to 125°C

(Note 1)

TOP VIEW

OUT

GND

MOD

V+

DIV

SET

DCB PACKAGE6-LEAD (2mm 3mm) PLASTIC DFN

4

57

GND

6

3

2

1

TJMAX = 150°C, θJA = 64°C/W, θJC = 10.6°C/WEXPOSED PAD (PIN 7) IS GND, PCB CONNECTION IS OPTIONAL

MOD 1

GND 2

SET 3

6 OUT

5 V+

4 DIV

TOP VIEW

S6 PACKAGE6-LEAD PLASTIC TSOT-23

TJMAX = 150°C, θJA = 230°C/W, θJC = 51°C/W

PIN CONFIGURATION

ORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE

LTC6992CDCB6-1#PBF LTC6992CDCB6-1#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN 0°C to 70°C

LTC6992IDCB6-1#PBF LTC6992IDCB6-1#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 85°C

LTC6992HDCB6-1#PBF LTC6992HDCB6-1#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 125°C

LTC6992CS6-1#PBF LTC6992CS6-1#TRPBF XXXX 6-Lead Plastic TSOT-23 0°C to 70°C

LTC6992IS6-1#PBF LTC6992IS6-1#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 85°C

LTC6992HS6-1#PBF LTC6992HS6-1#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 125°C

LTC6992CDCB6-2#PBF LTC6992CDCB6-2#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN 0°C to 70°C

LTC6992IDCB6-2#PBF LTC6992IDCB6-2#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 85°C

LTC6992HDCB6-2#PBF LTC6992HDCB6-2#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 125°C

LTC6992CS6-2#PBF LTC6992CS6-2#TRPBF XXXX 6-Lead Plastic TSOT-23 0°C to 70°C

LTC6992IS6-2#PBF LTC6992IS6-2#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 85°C

LTC6992HS6-2#PBF LTC6992HS6-2#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 125°C

LTC6992CDCB6-3#PBF LTC6992CDCB6-3#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN 0°C to 70°C

LTC6992IDCB6-3#PBF LTC6992IDCB6-3#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 85°C

LTC6992HDCB6-3#PBF LTC6992HDCB6-3#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 125°C

LTC6992CS6-3#PBF LTC6992CS6-3#TRPBF XXXX 6-Lead Plastic TSOT-23 0°C to 70°C

LTC6992IS6-3#PBF LTC6992IS6-3#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 85°C

Specified Temperature Range (Note 3)LTC6992C ................................................ 0°C to 70°CLTC6992I .............................................–40°C to 85°CLTC6992H .......................................... –40°C to 125°C

Junction Temperature .......................................... 150°CStorage Temperature Range .................. –65°C to 150°CLead Temperature (Soldering, 10 sec)................... 300°C

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

369921234p

ORDER INFORMATIONLEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE

LTC6992HS6-3#PBF LTC6992HS6-3#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 125°C

LTC6992CDCB6-4#PBF LTC6992CDCB6-4#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN 0°C to 70°C

LTC6992IDCB6-4#PBF LTC6992IDCB6-4#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 85°C

LTC6992HDCB6-4#PBF LTC6992HDCB6-4#TRPBF XXXX 6-Lead (2mm × 3mm) Plastic DFN –40°C to 125°C

LTC6992CS6-4#PBF LTC6992CS6-4#TRPBF XXXX 6-Lead Plastic TSOT-23 0°C to 70°C

LTC6992IS6-4#PBF LTC6992IS6-4#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 85°C

LTC6992HS6-4#PBF LTC6992HS6-4#TRPBF XXXX 6-Lead Plastic TSOT-23 –40°C to 125°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.

Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET,DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.

ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

Oscillation Frequency

fOUT Output Frequency 3.81 1000000 Hz

ΔfOUT Frequency Accuracy (Note 4) 3.81Hz ≤ fOUT ≤ 1MHzl

±0.8 ±1.7±2.4

%%

ΔfOUT/ΔT Frequency Drift Over Temperature l ±0.005 %/°C

ΔfOUT/ΔV+ Frequency Drift Over Supply V+ = 4.5V to 5.5VV+ = 2.25V to 4.5V

l

l

0.250.08

0.650.18

%/V%/V

Period Jitter (Note 11) NDIV = 1 1.2 %P-P

NDIV = 4 0.40.07

%P-P%RMS

NDIV = 16 0.150.022

%P-P%RMS

Long-Term Stability of Output Frequency (Note 9)

TBD ppm/√kHz

BWFM Frequency Modulation Bandwidth TBD kHz

tS,FM Frequency Change Settling Time (Note 10)

tMASTER = tOUT/NDIV TBD μs

Pulse Width Modulation

ΔD PWM Duty Cycle Accuracy VMOD = 0.2 • VSET to 0.8 • VSETVMOD < 0.2 • VSET or VMOD > 0.8 • VSET

l

l

±1.5±2.0

±4.5±4.9

%%

DMAX Maximum Duty Cycle Limit LTC6992-1/LTC6992-3, POL = 0, VMOD = 1V l 100 %

LTC6992-2/LTC6992-4, POL = 0, VMOD = 1V l 90.5 95 99 %

DMIN Minimum Duty Cycle Limit LTC6992-1/LTC6992-4, POL = 0, VMOD = 0V l 0 %

LTC6992-2/LTC6992-3, POL = 0, VMOD = 0V l 1 5 9.5 %

BWPWM PWM Duty Cycle Bandwidth TBD kHz

tS,PWM Duty Cycle Setting Time (Note 6) tMASTER = tOUT/NDIV TBD μs

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

469921234p

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET,DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.

ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

Power Supply

V+ Operating Supply Voltage Range l 2.25 5.5 V

Power-On Reset Voltage l 1.95 V

IS Supply Current RL = ∞, RSET = 50k,NDIV = 1

V+ = 5.5V l 365 450 μA

V+ = 2.25V l 225 285 μA

RL = ∞, RSET = 50k,NDIV = 4

V+ = 5.5V l 350 420 μA

V+ = 2.25V l 225 280 μA

RL = ∞, RSET = 50k,NDIV ≥ 16

V+ = 5.5V l 325 390 μA

V+ = 2.25V l 215 265 μA

RL = ∞, RSET = 800k,NDIV = 1 to 16, 384

V+ = 5.5V l 120 170 μA

V+ = 2.25V l 105 150 μA

Analog Inputs

VSET Voltage at SET Pin l 0.97 1.00 1.03 V

ΔVSET/ΔT VSET Drift Over Temperature l ±75 μV/°C

RSET Frequency-Setting Resistor l 50 800 kΩ

MOD Pin Input Capacitance 2.5 pF

MOD Pin Input Current l ±10 nA

VMOD,HI VMOD Voltage for Maximum Duty Cycle

LTC6992-1/LTC6992-4, POL = 0, D = 100%LTC6992-2/LTC6992-3, POL = 0, D = 95%

l 0.90•VSET0.86 •VSET

0.936•VSET VV

VMOD,LO VMOD Voltage for Minimum Duty Cycle

LTC6992-1/LTC6992-3, POL = 0, D = 0%LTC6992-2/LTC6992-4, POL = 0, D = 5%

l 0.064•VSET 0.10 •VSET0.14 •VSET

VV

VDIV DIV Pin Voltage l 0 V+ V

ΔVDIV/ΔV+ DIV Pin Valid Code Range (Note 5) Deviation from IdealVDIV/V+ = (DIVCODE + 0.5)/16

l ±1.5 %

DIV Pin Input Current l ±10nA

Digital Output

IOUT(MAX) Output Output Current l ±20 mA

VOH High Level Output Voltage V+ = 5.5V IOUT = –1mA IOUT = –16mA

l

l

5.454.84

5.485.15

VV

V+ = 3.3V IOUT = –1mA IOUT = –10mA

l

l

3.242.75

3.272.99

VV

V+ = 2.25V IOUT = –1mA IOUT = -8mA

l

l

2.171.58

2.211.88

VV

VOL Low Level Output Voltage V+ = 5.5V IOUT = 1mA IOUT = 16mA

l

l

0.020.26

0.040.54

VV

V+ = 3.3V IOUT = 1mA IOUT = 10mA

l

l

0.030.22

0.050.46

VV

V+ = 2.25V IOUT = 1mA IOUT = 8mA

l

l

0.030.26

0.070.54

VV

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

569921234p

Note 1: Stresses beyond those listed under Absolute Maximum Ratings

may cause permanent damage to the device. Exposure to any Absolute

Maximum Rating condition for extended periods may affect device

reliability and lifetime.

Note 2: The LTC6992C is guaranteed functional over the operating

temperature range of –40°C to 85°C.

Note 3: The LTC6992C is guaranteed to meet specified performance from

0°C to 70°C. The LTC6992C is designed, characterized and expected to

meet specified performance from –40°C to 85°C but it is not tested or

QA sampled at these temperatures. The LTC6992I is guaranteed to meet

specified performance from –40°C to 85°C. The LTC6992H is guaranteed

to meet specified performance from –40°C to 125°C.

Note 4: Frequency accuracy is defined as the deviation from the fOUT

equation, assuming RSET is used to program the frequency.

Note 5: See Operation section, Table 1 and Figure 2 for a full explanation

of how the DIV pin voltage selects the value of DIVCODE.

Note 6: Duty cycle setting time is the is the amount of time required for

the output to settle within ±1% of the final duty cycle after a ±10% change

in the setting (±80mV step in VMOD).

Note 7: To conform to the Logic IC Standard, current out of a pin is

arbitrarily given a negative value.

Note 8: Output rise and fall times are measured between the 10% and the

90% power supply levels with 5pF output load. These specifications are

based on characterization.

Note 9: Long term drift on silicon oscillators is primarily due to the

movement of ions and impurities within the silicon and is tested at 30°C

under otherwise nominal operating conditions. Long term drift is specified

as ppm/√kHr due to the typically non-linear nature of the drift. To calculate

drift for a set time period, translate that time into thousands of hours, take

the square root and multiply by the typical drift number. For instance, a

year is 8.77kHr and would yield a drift of 888ppm at 300ppm/√kHr. Drift

without power applied to the device may be approximated as 1/10th of the

drift with power, or 30ppm/√kHr for a 300ppm/√kHr device.

Note 10: Frequency change settling time is the amount of time required

for the output to settle within ±1% of the final frequency after a 0.5x or 2x

change in ISET.

Note 11: Jitter is the ratio of the peak-to-peak deviation of the period to

the mean of the period. This specification is based on characterization and

is not 100% tested.

ELECTRICAL CHARACTERISTICS

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

tr Output Rise Time (Note 8) V+ = 5.5VV+ = 3.3VV+ = 2.25V

1.11.72.7

nsnsns

tf Output Fall Time (Note 8) V+ = 5.5VV+ = 3.3VV+ = 2.25V

1.01.62.4

nsnsns

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET,DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

669921234p

TYPICAL PERFORMANCE CHARACTERISTICS

Frequency Error vs RSET Frequency Drift vs Supply Voltage Typical VSET Distribution

VSET Drift vs ISET VSET Drift vs Supply VSET vs Temperature

Frequency Error vs Temperature Frequency Error vs Temperature Frequency Error vs Temperature

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

TEMPERATURE (°C)

–50–3

0

1

2

3

0 25 50 100 125

–1

–2

–25 75

6992 G01

ER

RO

R (

%)

RSET = 50k3 PARTS

GUARANTEED MAX OVER TEMPERATURE

GUARANTEED MIN OVER TEMPERATURE

TEMPERATURE (°C)

–50–3

0

1

2

3

0 25 50 100 125

–1

–2

–25 75

6992 G02

ER

RO

R (

%)

RSET = 200k3 PARTS

GUARANTEED MAX OVER TEMPERATURE

GUARANTEED MIN OVER TEMPERATURE

TEMPERATURE (°C)

–50–3

0

1

2

3

0 25 50 100 125

–1

–2

–25 75

6992 G03

ER

RO

R (

%)

RSET = 800k3 PARTS

GUARANTEED MAX OVER TEMPERATURE

GUARANTEED MIN OVER TEMPERATURE

RSET (k)

50–3

0

1

2

3

200 400 800

–1

–2

100

6992 G04

ER

RO

R (

%)

3 PARTS

GUARANTEED MAX OVER TEMPERATURE

GUARANTEED MIN OVER TEMPERATURE

SUPPLY VOLTAGE (V)

2–0.5

0

0.2

0.1

0.3

0.4

0.5

4 5 6

–0.2

–0.1

–0.3

–0.4

3

6992 G05

DR

IFT (

%)

REFERENCED TO V+ = 4.5V

RSET = 50k

RSET = 200k RSET = 800k

VSET (V)

0.980

100

50

150

200

250

0.996 1.004 1.012 1.020.988

6992 G06

NU

MB

ER

OF

UN

ITS

2 LOTSDFN AND SOT-231274 UNITS

ISET (μA)

0–1.0

0

0.4

0.2

0.6

0.8

1.0

10 15 20

–0.4

–0.2

–0.6

–0.8

5

6992 G07

VS

ET (

mV

)

REFERENCED TO ISET = 10μA

SUPPLY (V)

2–1.0

0

0.4

0.2

0.6

0.8

1.0

4 5 6

–0.4

–0.2

–0.6

–0.8

3

6992 G08

DR

IFT (

mV

)

REFERENCED TO V+ = 4V

TEMPERATURE (°C)

–500.980

1.000

1.010

1.005

1.015

1.020

0 25 50 100 125

0.995

0.990

0.985

–25 75

6992 G09

VS

ET (

V)

3 PARTS

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

769921234p

TYPICAL PERFORMANCE CHARACTERISTICS

NDIV > 1 Duty Cycle Error vs RSET NDIV > 1 Duty Cycle Error vs RSET NDIV > 1 Duty Cycle Error vs RSET

NDIV = 1 Duty Cycle Clamps vs RSET NDIV > 1 Duty Cycle Error vs RSET

NDIV = 1 Duty Cycle Error vs RSET NDIV = 1 Duty Cycle Error vs RSET NDIV = 1 Duty Cycle Error vs RSET

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G10

ER

RO

R (

%)

VMOD/VSET = 0.2 (12.5%)DIVCODE = 03 PARTS

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G11

ER

RO

R (

%)

VMOD/VSET = 0.5 (50%)DIVCODE = 03 PARTS

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G12

ER

RO

R (

%)

VMOD/VSET = 0.8 (87.5%)DIVCODE = 03 PARTS

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G13

ER

RO

R (

%)

VMOD/VSET = 0.2 (12.5%)DIVCODE = 43 PARTS

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G14

ER

RO

R (

%)

VMOD/VSET = 0.5 (50%)DIVCODE = 43 PARTS

RSET (k)

50–5

0

3

2

1

4

5

100 400 800

–1

–2

–3

–4

200

6992 G15

ER

RO

R (

%)

VMOD/VSET = 0.8 (87.5%)DIVCODE = 43 PARTS

RSET (k)

503

8

95

94

93

92

96

97

100 400 800

7

6

5

4

200

6992 G16

ER

RO

R (

%)

DIVCODE = 03 PARTS

LTC6992-2/LTC6992-3VMOD = VSET

LTC6992-2/LTC6992-4VMOD = VSET

RSET (k)

503

8

95

94

93

92

96

97

100 400 800

7

6

5

4

200

6992 G17

ER

RO

R (

%)

DIVCODE = 43 PARTS

LTC6992-2/LTC6992-3VMOD = VSET

LTC6992-2/LTC6992-4VMOD = VSET

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

869921234p

TYPICAL PERFORMANCE CHARACTERISTICS

NDIV > 1 Duty Cycle Error vs Temperature

NDIV > 1 Duty Cycle Error vs Temperature

NDIV > 1 Duty Cycle Error vs Temperature

NDIV = 1 Duty Cycle Clampsvs Temperature

NDIV > 1 Duty Cycle Clamps vs Temperature

NDIV = 1 Duty Cycle Error vs Temperature

NDIV = 1 Duty Cycle Error vs Temperature

NDIV = 1 Duty Cycle Error vs Temperature

TEMPERATURE (°C)

–50–5

0

1

2

3

4

5

0 25 50 100 125

–1

–2

–3

–4

–25 75

6992 G18

ER

RO

R (

%)

VMOD/VSET = 0.2 (12.5%)DIVCODE = 03 PARTS

GUARANTEED MAX

GUARANTEED MIN

TEMPERATURE (°C)

–50–5

0

1

2

3

4

5

0 25 50 100 125

–1

–2

–3

–4

–25 75

6992 G19

ER

RO

R (

%)

VMOD/VSET = 0.5 (50%)DIVCODE = 03 PARTS

GUARANTEED MAX

GUARANTEED MIN

TEMPERATURE (°C)

–5

0

1

2

3

4

5

–1

–2

–3

–4

6992 G20

ER

RO

R (

%)

VMOD/VSET = 0.8 (87.5%)DIVCODE = 03 PARTS

GUARANTEED MAX

GUARANTEED MIN

–50 0 25 50 100 125–25 75

TEMPERATURE (°C)

–50–5

0

1

2

3

4

5

0 25 50 100 125

–1

–2

–3

–4

–25 75

6992 G21

ER

RO

R (

%)

VMOD/VSET = 0.2 (12.5%)DIVCODE = 43 PARTS

GUARANTEED MAX

GUARANTEED MIN

TEMPERATURE (°C)

–50–5

0

1

2

3

4

5

0 25 50 100 125

–1

–2

–3

–4

–25 75

6992 G22

ER

RO

R (

%)

VMOD/VSET = 0.5 (50%)DIVCODE = 43 PARTS

GUARANTEED MAX

GUARANTEED MIN

TEMPERATURE (°C)

–50–5

0

1

2

3

4

5

0 25 50 100 125

–1

–2

–3

–4

–25 75

6992 G23

ER

RO

R (

%)

VMOD/VSET = 0.8 (87.5%)DIVCODE = 43 PARTS

GUARANTEED MAX

GUARANTEED MIN

TEMPERATURE (°C)

–50 –253

8

95

94

93

92

96

97

50250 100 125

7

6

5

4

75

6992 G24

ER

RO

R (

%)

DIVCODE = 03 PARTS

LTC6992-2/LTC6992-3VMOD = VSET

LTC6992-2/LTC6992-4VMOD = GND

TEMPERATURE (°C)

–50 –253

8

95

94

93

92

96

97

50250 100 125

7

6

5

4

75

6992 G25

DU

TY

CY

CLE (

%)

DIVCODE = 43 PARTS

LTC6992-2/LTC6992-3VMOD = VSET

LTC6992-2/LTC6992-4VMOD = GND

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

969921234p

TYPICAL PERFORMANCE CHARACTERISTICS

NDIV = 1 Duty Cycle vs VMOD/ VSET NDIV > 1 Duty Cycle vs VMOD/ VSET NDIV > 1 Duty Cycle vs VMOD/ VSET

NDIV = 1 Duty Cycle Error vs Ideal

Duty Cycle Error vs DIVCODE Duty Cycle Error vs DIVCODE Duty Cycle Error vs DIVCODE

NDIV > 1 Duty Cycle Error vs Ideal NDIV > 1 Duty Cycle Error vs Ideal

VMOD/VSET (V/V)

0 0.20

40

80

70

60

50

90

100

0.80.60.4 1

30

20

10

6992 G29

DU

TY

CY

CLE (

%)

DIVCODE = 03 PARTS

LTC6992-1/LTC6992-4

LTC6992-2/LTC6992-4

LTC6992-1/LTC6992-3

LTC6992-2/LTC6992-3

VMOD/VSET (V/V)

0 0.20

40

80

70

60

50

90

100

0.80.60.4 1

30

20

10

6992 G30

DU

TY

CY

CLE (

%)

DIVCODE = 43 PARTS

LTC6992-1/LTC6992-4

LTC6992-2/LTC6992-4

LTC6992-1/LTC6992-3

LTC6992-2/LTC6992-3

VMOD/VSET (V/V)

0 0.20

40

80

70

60

50

90

100

0.80.60.4 1

30

20

10

6992 G31

DU

TY

CY

CLE (

%)

DIVCODE = 113 PARTS

LTC6992-1/LTC6992-4

LTC6992-2/LTC6992-4

LTC6992-1/LTC6992-3

LTC6992-2/LTC6992-3

IDEAL DUTY CYCLE (%)

–5

0

4

3

2

1

5

50250 100

–1

–2

–3

–4

75

6992 G32

ER

RO

R (

%)

DIVCODE = 03 PARTS

PART A

PART B

PART C

IDEAL DUTY CYCLE (%)

–5

0

4

3

2

1

5

50250 100

–1

–2

–3

–4

75

6992 G33

ER

RO

R (

%)

DIVCODE = 43 PARTS

PART A

PART B PART C

IDEAL DUTY CYCLE (%)

–5

0

4

3

2

1

5

50250 100

–1

–2

–3

–4

75

6992 G34

ER

RO

R (

%)

DIVCODE = 113 PARTS

PART A

PART B

PART C

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

DIVCODE

0 2–5

–1

3

2

1

0

4

5

864 12 14

–2

–3

–4

10

6992 G26

ER

RO

R (

%)

VMOD/VSET = 0.2 (12.5%)3 PARTS

DIVCODE

0 2–5

–1

3

2

1

0

4

5

864 12 14

–2

–3

–4

10

6992 G27

ER

RO

R (

%)

VMOD/VSET = 0.5 (50%)3 PARTS

DIVCODE

0 2–5

–1

3

2

1

0

4

5

864 12 14

–2

–3

–4

10

6992 G28

ER

RO

R (

%)

VMOD/VSET = 0.8 (87.5%)3 PARTS

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1069921234p

TYPICAL PERFORMANCE CHARACTERISTICS

Linearity Near 0% Duty Cycle Linearity Near 5% Duty Cycle Linearity Near 31% Duty Cycle

Duty Cycle Drift vs SupplyNDIV > 1 Duty Cycle Drift vs Supply

Linearity Near 100% Duty Cycle Linearity Near 95% Duty Cycle Linearity Near 67% Duty Cycle

Supply Current vs VMOD

VMOD/VSET (V/V)

88

95

99

98

97

96

100

0.8360.804 0.9

94

93

92

91

90

89

0.868

6992 G35

DU

TY

CY

CLE (

%)

DIVCODE = 4LTC6992-1/LTC6992-43 PARTS

VMOD/VSET (V/V)

88

95

99

98

97

96

100

0.8360.804 0.9

94

93

92

91

90

89

0.868

6992 G36

DU

TY

CY

CLE (

%)

DIVCODE = 4LTC6992-2/LTC6992-33 PARTS

VMOD/VSET (V/V)

62

67

71

70

69

68

72

0.612 0.628 0.6440.596 0.676

66

65

64

63

0.66

6992 G37

DU

TY

CY

CLE (

%)

DIVCODE = 43 PARTS

VMOD/VSET (V/V)

0

7

11

10

9

8

12

0.116 0.1480.084 0.18

6

5

4

3

2

1

6992 G38

DU

TY

CY

CLE (

%)

DIVCODE = 4LTC6992-1/LTC6992-33 PARTS

VMOD/VSET (V/V)

0

7

11

10

9

8

12

0.116 0.1480.084 0.18

6

5

4

3

2

1

6992 G39

DU

TY

CY

CLE (

%)

DIVCODE = 4LTC6992-2/LTC6992-43 PARTS

VMOD/VSET (V/V)

26

31

35

34

33

32

36

0.324 0.34 0.356 0.3720.308 0.388

30

29

28

27

6992 G40

DU

TY

CY

CLE (

%)

DIVCODE = 43 PARTS

SUPPLY (V)

–0.5

0

0.4

0.3

0.2

0.1

0.5

3 4 52 6

–0.1

–0.2

–0.3

–0.4

6992 G41

DR

IFT (

%)

DIVCODE = 0

VMOD/VSET = 0.5

VMOD/VSET = 0.2

VMOD/VSET = 0.8

5% CLAMP 95% CLAMP

REFERENCED TO V+ = 4V

SUPPLY (V)

–0.5

0

0.4

0.3

0.2

0.1

0.5

3 4 52 6

–0.1

–0.2

–0.3

–0.4

6992 G42

DR

IFT (

%)

DIVCODE = 4

REFERENCED TO V+ = 4V

VMOD/VSET = 0.5

VMOD/VSET = 0.2

VMOD/VSET = 0.8

5% CLAMP

95% CLAMP

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

VMOD (V)

0

250

350

300

400

0.40.2 0.6 0.80 1

200

150

100

50

6992 G43

PO

WER

SU

PP

LY

CU

RR

EN

T (

μA

)

LTC6992-2

RSET = 50k, ÷1

RSET = 50k, ÷16

RSET = 100k, ÷4

RSET = 800k, ÷1

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1169921234p

TYPICAL PERFORMANCE CHARACTERISTICS

Supply Current vs Frequency, 5V Supply Current vs Frequency, 2.5V

Output Resistance vs Supply Voltage

Supply Current vs Supply Voltage Supply Current vs Temperature Jitter vs Frequency

Rise and Fall Time vs Supply Voltage Typical ISET Current Limit vs V+

SUPPLY VOLTAGE (V)

RIS

E/F

ALL T

IME (

ns)

6992 G51

3.0

1.5

2.5

1.0

0.5

2.0

02 43 5 6

CLOAD = 5pF

tRISE

tFALL

SUPPLY VOLTAGE (V)

OU

TP

UT R

ES

ISTA

NC

E (

Ω)

6992 G50

50

25

20

35

45

5

10

15

30

40

02 43 5 6

OUTPUT SOURCING CURRENT

OUTPUT SINKING CURRENT

SUPPLY VOLTAGE (V)

I SET (

μA

)

6992 G52

1000

400

800

200

600

02 43 5 6

SET PIN SHORTED TO GND

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

SUPPLY VOLTAGE (V)

0

250

350

300

400

3 4 52 6

200

150

100

50

6992 G44

PO

WER

SU

PP

LY

CU

RR

EN

T (

μA

)

LTC6992-2RSET = 50k, ÷1

RSET = 50k, ÷4

RSET = 50k, ÷16

RSET = 100k, ÷1

RSET = 800k, ÷1

TEMPERATURE (°C)

–500

250

300

350

400

0 25 50 100 125

200

150

100

50

–25 75

6992 G45

PO

WER

SU

PP

LY

CU

RR

EN

T (

μA

)

5.0V, RSET = 50k, ÷1

2.5V, RSET = 50k, ÷1

5.0V, RSET = 50k, ÷16

5.0V, RSET = 800k, ÷1

2.5V, RSET = 800k, ÷1

FREQUENCY (kHz)

0.010

1.4

1.6

1.8

2.0

0.1 1 100 1000

1.2

1.0

0.8

0.6

0.4

0.2

10

6992 G46

JITTER

(%

P-P

)

÷1, V+ = 5V

÷1, V+ = 2.5V

÷4, V+ = 5V

÷4, V+ = 2.5V

÷16÷64

PEAK-TO-PEAK PERIODDEVIATION MEASUREDOVER 30s INTERVALSVMOD/VSET = 0.5

FREQUENCY (kHz)

0.0010

250

300

350

400

0.10.01 1 100 1000

200

150

100

50

10

6992 G47

PO

WER

SU

PP

LY

CU

RR

EN

T (

μA

) ÷4

÷1

÷16,384

V+ = 5V

FREQUENCY (kHz)

0.0010

250

300

350

400

0.10.01 1 100 1000

200

150

100

50

10

6992 G48

PO

WER

SU

PP

LY

CU

RR

EN

T (

μA

)

÷4

÷1

÷16,384

V+ = 2.5V

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1269921234p

PIN FUNCTIONSV+ (Pin 1/Pin 5): Supply Voltage (2.25V to 5.5V). This sup-ply must be kept free from noise and ripple. It should be bypassed directly to the GND pin with a 0.1μF capacitor.

DIV (Pin 2/Pin 4): Programmable Divider and Polarity Input. A V+ referenced A/D converter monitors the DIV pin voltage (VDIV) to determine a 4-bit result (DIVCODE). VDIV may be generated by a resistor divider between V+ and GND. Use 1% resistors to ensure an accurate result. The DIV pin and resistors should be shielded from the OUT pin or any other traces that have fast edges. Limit the capacitance on the DIV pin to less than 100pF so that VDIV settles quickly. The MSB of DIVCODE (POL) determines if the PWM signal is inverted before driving the output. Setting POL = 1 results in a negative transfer function (duty cycle decreasing as VMOD increases).

SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage on the SET pin (VSET) is regulated to 1V above GND. The amount of current sourced from the SET pin (ISET) pro-grams the master oscillator frequency. The ISET current range is 1.25μA to 20μA. The output oscillation will stop

if ISET drops below approximately 500nA. A resistor con-nected between SET and GND is the most accurate way to set the frequency. For best performance, use a precision metal or thin film resistor of 0.5% or better tolerance and 50ppm/°C or better temperature coefficient. For lower ac-curacy applications an inexpensive 1% thick film resistor may be used.

Limit the capacitance on the SET pin to less than 10pF to minimize jitter and ensure stability. Capacitance less than 100pF maintains the stability of the feedback circuit regulating the VSET voltage.

(DCB/S6)

TYPICAL PERFORMANCE CHARACTERISTICS

Typical Start-Up, POL = 0 Typical Start-Up, POL = 1

V+

1V/DIV

OUT1V/DIV

V+ = 2.5VDIVCODE = 3 (÷64)RSET = 50kVMOD = 0.3V (~25% DUTY CYCLE)

100μs/DIV6992 G53

500μs

V+

1V/DIV

OUT1V/DIV

V+ = 2.5VDIVCODE = 12 (÷64, POL = 1)RSET = 50kVMOD = 0.2V (~87.5% DUTY CYCLE)

100μs/DIV6992 G54

500μs

6992 PF

LTC6992

MOD

GND

SET

OUT

V+

DIV

C10.1μF

RSET R2

R1

V+

V+

V+ = 3.3V, RSET = 200k, and TA = 25°C, unless otherwise noted.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1369921234p

BLOCK DIAGRAM (S6 Package Pin Numbers Shown)

PIN FUNCTIONS (DCB/S6)

MOD (Pin 4/Pin 1): Pulse-Width Modulation Input. The voltage on the MOD pin controls the output duty cycle. The linear control range is between 0.1 • VSET and 0.9 • VSET (approximately 100mV to 900mV). Beyond those limits the output will either clamp at 5% or 95%, or stop oscillating (0% or 100% duty cycle), depending on the version.

GND (Pin 5/Pin 2): Ground. Tie to a low inductance ground plane for best performance.

OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings from GND to V+ with an output resistance of approximately 30Ω. The duty cycle is determined by the voltage on the MOD pin. When driving an LED or other low-impedance load a series output resistor should be used to limit source/sink current to 20mA.

6992 BD

PROGRAMMABLE DIVIDER

÷1, 4, 16, 64, 256, 1024, 4096, 16384

MASTER OSCILLATOR

DISABLE OUTPUTUNTIL SETTLED

POR

OUTPUTPOLARITY

DIGITALFILTER

4-BIT A/DCONVERTER

fOSC = 1MHz • 50kΩ •ISET

VSET

POLR1

R2

DIV

V+

OUT

D = tON

tOFF

5

4

1

6

HALT OSCILLATORIF ISET < 500nA

MCLK

+

ISET

VSET = 1V+–

VREF1V

3 22

GNDSET MOD

RSET

DUTY CYCLE =VMOD(LIM) – 0.1•VSET

0.8•VSET

VOLTAGE LIMITER

VMOD(LIM)

VMOD

PULSE WIDTH MODULATOR

tOUT

tON

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1469921234p

OPERATIONThe LTC6992 is built around a master oscillator with a 1MHz maximum frequency. The oscillator is controlled by the SET pin current (ISET) and voltage (VSET), with a 1MHz • 50k conversion factor that is accurate to ±0.8% under typical conditions.

fMASTER = 1

tMASTER

= 1MHz • 50k •ISET

VSET

A feedback loop maintains VSET at 1V ±30mV, leaving ISET as the primary means of controlling the output frequency. The simplest way to generate ISET is to connect a resistor (RSET) between SET and GND, such that ISET = VSET/RSET. The master oscillator equation reduces to:

fMASTER = 1

tMASTER

= 1MHz • 50k

RSET

From this equation it is clear that VSET drift will not affect the output frequency when using a single program resistor (RSET). Error sources are limited to RSET tolerance and the inherent frequency accuracy ΔfOUT of the LTC6992.

RSET may range from 50k to 800k (equivalent to ISET between 1.25μA and 20μA).

The LTC6992 includes a programmable frequency divider which can further divide the frequency by 1, 4, 16, 64, 256, 1024, 4096 or 16384 before driving the OUT pin. The divider ratio NDIV is set by a resistor divider attached to the DIV pin.

fOUT = 1

tOUT

= 1MHz • 50k

NDIV

•ISET

VSET

With RSET in place of VSET/ISET the equation reduces to:

fOUT =

1

tOUT

= 1MHz • 50k

NDIV •RSET

DIVCODE

The DIV pin connects to an internal, V+ referenced 4-bit A/D converter that monitors the DIV pin voltage (VDIV) to determine the DIVCODE value. DIVCODE programs two settings on the LTC6992:

1. DIVCODE determines the output frequency divider setting, NDIV.

2. DIVCODE determines the output polarity, via the POL bit.

VDIV may be generated by a resistor divider between V+ and GND as shown in Figure 1.

Figure 1. Simple Technique for Setting DIVCODE

6992 F01

LTC6992

V+

DIV

GND

R1

R2

2.25V TO 5.5V

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1569921234p

Table 1 offers recommended 1% resistor values that ac-curately produce the correct voltage division as well as the corresponding NDIV and POL values for the recommended resistor pairs. Other values may be used as long as:

1. The VDIV/V+ ratio is accurate to ±1.5% (including resis-tor tolerances and temperature effects)

2. The driving impedance (R1||R2) does not exceed 500kΩ.

If the voltage is generated by other means (i.e. the output of a DAC) it must track the V+ supply voltage. The last

column in Table 1 shows the ideal ratio of VDIV to the supply voltage, which can also be calculated as:

VDIV

V+ = DIVCODE + 0.5

16 ±1.5%

For example, if the supply is 3.3V and the desired DIVCODE is 4, VDIV = 0.281 • 3.3V = 928mV ± 50mV.

Figure 2 illustrates the information in Table 1, showing that NDIV is symmetric around the DIVCODE midpoint.

Table 1. DIVCODE Programming

DIVCODE POL NDIV RECOMMENDED fOUT R1 (kΩ) R2 (kΩ) VDIV/V+

0 0 1 62.5kHz to 1MHz Open Short ≤0.03125 ±0.015

1 0 4 15.63kHz to 250kHz 976 102 0.09375 ±0.015

2 0 16 3.906kHz to 62.5kHz 976 182 0.15625 ±0.015

3 0 64 976.6Hz to 15.63kHz 1000 280 0.21875 ±0.015

4 0 256 244.1Hz to 3.906kHz 1000 392 0.28125 ±0.015

5 0 1024 61.04Hz to 976.6Hz 1000 523 0.34375 ±0.015

6 0 4096 15.26Hz to 244.1Hz 1000 681 0.40625 ±0.015

7 0 16384 3.815Hz to 61.04Hz 1000 887 0.46875 ±0.015

8 1 16384 3.815Hz to 61.04Hz 887 1000 0.53125 ±0.015

9 1 4096 15.26Hz to 244.1Hz 681 1000 0.59375 ±0.015

10 1 1024 61.04Hz to 976.6Hz 523 1000 0.65625 ±0.015

11 1 256 244.1Hz to 3.906kHz 392 1000 0.71875 ±0.015

12 1 64 976.6Hz to 15.63kHz 280 1000 0.78125 ±0.015

13 1 16 3.906kHz to 62.5kHz 182 976 0.84375 ±0.015

14 1 4 15.63kHz to 250kHz 102 976 0.90625 ±0.015

15 1 1 62.5kHz to 1MHz Short Open ≥0.96875 ±0.015

OPERATION

Figure 2. Frequency Range and POL Bit vs DIVCODE

0.5•V+

f OU

T (

kHz)

6992 F02

1000

100

10

1

0.001

0.1

0.01

INCREASING VDIV

V+0V

POL BIT = 0 POL BIT = 1

0 15

1

3

2

5

4

7

6 9

8

11

10

13

12

14

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1669921234p

Pulse Width (Duty Cycle) Modulation

The MOD pin is a high impedance analog input providing direct control of the output duty cycle. The duty cycle is proportional to the voltage applied to the MOD pin, VMOD.

Duty Cycle = D =

VMOD

0.8 • VSET

− 1

8

The PWM duty cycle accuracy ΔD specifies that the above equation is valid to within ±4.5% for VMOD between 0.2 • VSET and 0.8 • VSET (12.5% to 87.5% duty cycle).

Since VSET = 1V ±30mV, the duty cycle equation may be approximated by the following equation.

Duty Cycle = D ≅

VMOD − 100mV

800mV

The VMOD control range is approximately 0.1V to 0.9V. Driving VMOD beyond that range (towards GND or V+) will have no further affect on the duty cycle.

Duty Cycle Limits

The only difference between the four versions of the LTC6992 is the limits, or clamps, placed on the output duty cycle. The LTC6992-1 generates output duty cycles ranging from 0% to 100%, meaning the output can stop oscillating and rest at GND or V+.

The LTC6992-2 will never stop oscillating, regardless of the VMOD level. Internal clamping circuits limit its duty cycle to a 5% to 95% range (1% to 99% guaranteed). Therefore, its VMOD control range is 0.14 • VSET to 0.86 • VSET (approximately 0.14V to 0.86V).

The LTC6992-3 and LTC6992-4 complete the family by providing one-sided clamping. The LTC6992-3 allows 0% to 95% duty cycle, and the LTC6992-4 allows 5% to 100% duty cycle.

Output Polarity (POL Bit)

The duty cycle equation describes a proportional transfer function, where duty cycle increases as VMOD increases. The LTC6992 includes a POL bit (determined by the DIVCODE as described earlier) that inverts the output signal. This makes the duty cycle gain negative, reducing duty cycle as VMOD increases.

OPERATION

Figure 3. POL Bit Functionality

6992 F03

OUT

POL = 1

tOUT

D•tOUT

OUT

POL = 0

tOUT

D•tOUT

DVMOD

0.8 • VSET

18

D 1VMOD

0.8 • VSET

18

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1769921234p

POL = 1 forces a simple logic inversion, so it changes the duty cycle range of the LTC6992-3 (making it 100% to 5%) and LTC6992-4 (making it 95% to 0%). These transfer functions are detailed in Figure 4.

Table 2. Duty Cycle Ranges

PART NUMBER

DUTY CYCLE RANGE vs VMOD = 0V → 1V

POL = 0 POL = 1

LTC6992-1 0% to 100% 100% to 0%

LTC6992-2 5% to 95% 95% to 5%

LTC6992-3 0% to 95% 100% to 5%

LTC6992-4 5% to 100% 95% to 0%

OPERATION

Figure 4. PWM Transfer Functions for All LTC6992 Family Parts

VMOD/VSET (V/V)

0

DU

TY C

YC

LE (

%)

100

90

60

40

20

70

80

50

30

10

00.4 0.8 0.90.2 0.6

6992 F04a

VMOD/VSET = 0.9

VMOD/VSET = 0.1

10.3 0.70.1 0.5

POL = 1 POL = 0

VMOD/VSET (V/V)

0

DU

TY C

YC

LE (

%)

100

90

60

40

20

70

80

50

30

10

00.4 0.8 0.90.2 0.6

6992 F04b

10.3 0.70.1 0.5

POL = 1 POL = 0

VMOD/VSET = 0.86

VMOD/VSET = 0.14

VMOD/VSET (V/V)

0

DU

TY C

YC

LE (

%)

100

90

60

40

20

70

80

50

30

10

00.4 0.8 0.90.2 0.6

6992 F02c

10.3 0.70.1 0.5

POL = 1 POL = 0

VMOD/VSET = 0.1

VMOD/VSET = 0.86

VMOD/VSET (V/V)

0

DU

TY C

YC

LE (

%)

100

90

60

40

20

70

80

50

30

10

00.4 0.8 0.90.2 0.6

6992 F02d

10.3 0.70.1 0.5

POL = 1 POL = 0

VMOD/VSET = 0.9

VMOD/VSET = 0.14

LTC6992-1 LTC6992-2

LTC6992-3 LTC6992-4

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1869921234p

Changing DIVCODE After Start-Up

Following start-up, the A/D converter will continue monitoring VDIV for changes. Changes to DIVCODE will be recognized slowly, as the LTC6992 places a priority on eliminating any “wandering” in the DIVCODE. The typical delay depends on the difference between the old and new DIVCODE settings and is proportional to the master oscillator period.

tDIVCODE = 16 • (ΔDIVCODE + 6) • tMASTER

A change in DIVCODE will not be recognized until it is stable, and will not pass through intermediate codes. A digital filter is used to guarantee the DIVCODE has settled to a new value before making changes to the output. Then the output will make a clean (glitchless) transition to the new divider setting.

OPERATIONStart-Up Time

When power is first applied to the LTC6992 the power-on reset (POR) circuit will initiate the start-up time, tSTART. The OUT pin is held low during this time. The typical value for tSTART ranges from 0.5ms to 8ms depending on the master oscillator frequency (independent of NDIV):

tSTART(TYP) = 500 • tMASTER

The output will begin oscillating after tSTART. If POL = 0 the first pulse has the correct width. If POL = 1 (DIVCODE ≥ 8), the first pulse width can be shorter or longer than expected, depending on the duty cycle setting, and will never be less than 25% of tOUT.

During start-up, the DIV pin A/D converter must determine the correct DIVCODE before the output is enabled. The start-up time may increase if the supply or DIV pin volt-ages are not stable. For this reason, it is recommended to minimize the capacitance on the DIV pin so it will properly track V+. Less than 100pF will not affect performance.

6992 F06

OUT

DIV STABLE VDIV

V+

tDIVCODE

tSTART

1ST PULSE WIDTH MAY BE INACCURATE

Figure 5. DIVCODE Change from 5 to 2 Figure 6. Start-Up Timing Diagram

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

1969921234p

Basic Operation

The simplest and most accurate method to program the LTC6992 is to use a single resistor, RSET, between the SET and GND pins. The design procedure is a four step process. After choosing the POL bit setting and proper LTC6992 version, select the NDIV value and then calculate the value for the RSET resistor.

Step 1: Selecting the POL Bit Setting

Most applications will use POL = 0, resulting in a positive transfer function. However, some applications may require a negative transfer function, where increasing VMOD reduces the output duty cycle. For example, if the LTC6992 is used in a feedback loop, POL = 1 may be required to achieve negative feedback.

Step 2: Selecting the LTC6992 Version

The difference between the LTC6992 versions is observed at the endpoints of the duty cycle control range. Applica-tions that require the output never stop oscillating should use the LTC6992-2. If it is better to allow the output to rest at GND or V+ (0% or 100% duty cycle, respectively), select the LTC6992-1.

The LTC6992-3 and LTC6992-4 clamp the duty cycle at only one end of the control range, allowing the output to stop oscillating at the other extreme. If POL = 1 the clamp will swap from low duty cycle to high, or vice-versa. Refer to Table 2 and Figure 4 for assistance in selecting the proper version.

Step 3: Selecting the NDIV Frequency Divider Value

As explained earlier, the voltage on the DIV pin sets the DIVCODE which determines both the POL bit and the NDIV value. For a given output frequency, NDIV should be selected to be within the following range.

62.5kHz

fOUT

≤ NDIV ≤ 1MHz

fOUT (1a)

To minimize supply current, choose the lowest NDIV value (generally recommended). For faster start-up or decreased jitter, choose a higher NDIV setting. Alternatively, use Table 1 as a guide to select the best NDIV value for the given ap-plication.

APPLICATIONS INFORMATIONWith POL already chosen, this completes the selection of DIVCODE. Use Table 1 to select the proper resistor divider or VDIV/V+ ratio to apply to the DIV pin.

Step 4: Calculate and Select RSET

The final step is to calculate the correct value for RSET

using the following equation.

RSET = 1MHz • 50k

NDIV • fOUT (1b)

Select the standard resistor value closest to the calculated value.

Example : Design a PWM circuit that satisfies the following requirements:

• fOUT = 20kHz

• Positive VMOD to duty cycle response

• Output can reach 100% duty cycle, but not 0%

• Minimum power consumption

Step 1: Selecting the POL Bit Setting

For positive transfer function (duty cycle increases with VMOD), choose POL = 0.

Step 2: Selecting the LTC6992 Version

To limit the minimum duty cycle, but allow the maximum duty cycle to reach 100%, choose LTC6992-4. (Note that if POL = 1 the LTC6992-3 would be the correct choice.)

Step 3: Selecting the NDIV Frequency Divider Value

Choose an NDIV value that meets the requirements of Equation (1a).

3.125 ≤ NDIV ≤ 50

Potential settings for NDIV include 4 and 16. NDIV = 4 is the best choice, as it minimizes supply current by us-ing a large RSET resistor. POL = 0 and NDIV = 4 requires DIVCODE = 1. Using Table 1, choose the R1 and R2 values to program DIVCODE = 1.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2069921234p

APPLICATIONS INFORMATIONStep 4: Select RSET

Calculate the correct value for RSET using Equation (1b).

RSET = 1MHz • 50k

4 • 20kHz= 625k

Since 625k is not available as a standard 1% resistor, substitute 619k if a 0.97% frequency shift is acceptable. Otherwise, select a parallel or series pair of resistors such as 309k and 316k to attain a more precise resistance.

The completed design is shown in Figure 7.

6992 F07

LTC6992-4

MOD

GND

SET

OUT

V+

DIV

R1976k

DIVCODE = 1

R2102k

RSET625k

VMOD

2.25V TO 5.5V

Figure 7. 20kHz PWM Oscillator

Figure 8. Duty Cycle Variation Due to ΔVSET

VMOD (V)

0

DU

TY C

YC

LE (

%)

100

90

70

80

60

50

30

40

20

10

00.60.2

6992 F08

10.4 0.8

ΔVSET = 0mV

ΔVSET = 30mV

ΔVSET = –30mV

Figure 9. Fixed-Frequency, Arbitrary Duty Cycle Oscillator

6992 F09

LTC6992-X

MOD

GND

SET

OUT

V+

DIV

R1

R2

RSET2

RSET1

2.25V TO 5.5V

D54

•RSET2

RSET1 RSET2

18

Some applications can eliminate ΔVSET sensitivity by making VMOD proportional to VSET. For example, Figure 9 shows a simple circuit for generating an arbitrary duty cycle. The equation for duty cycle does not depend on VSET at all.

Duty Cycle Sensitivity to ΔVSET

The output duty cycle is proportional to the ratio of VMOD/VSET. Since VSET can vary up to ±30mV from 1V it can effectively gain or attenuate VMOD, as shown below when ΔVSET is added to the equation.

D =VMOD

0.8 • VSET + ΔVSET( ) − 1

8

The simplifying assumption of ΔVSET = 0V creates the po-tential for additional duty cycle error, which increases with VMOD, reaching a maximum of 3.4% if ΔVSET = –30mV.

ΔD ≅

VMOD

800mV•

ΔVSET

VSET

≅ − Dideal + 1

8⎛⎝⎜

⎞⎠⎟ •

ΔVSET

VSET

Figure 8 demonstrates the worst-case impact of this varia-tion (if VSET is at its 0.97V or 1.03V limits).

This error is in addition to the inherent PWM duty cycle accuracy spec ΔD (±4.5%), so care should be taken if ac-curacy at high duty cycles (VMOD near 0.9V) is critical.

ISET Extremes (Master Oscillator Frequency Extremes)

Pushing ISET outside of the recommended 1.25μA to 20μA range forces the master oscillator to operate outside of the 62.5kHz to 1MHz range in which it is most accurate.

The oscillator will still function with reduced accuracy for ISET < 1.25μA. At approximately 500nA, the oscillator output will be frozen in its current state. The output could halt in a high or low state. This avoids introducing short pulses while frequency modulating a very low frequency output.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2169921234p

APPLICATIONS INFORMATIONAt the other extreme, it is not recommended to operate the master oscillator beyond 2MHz because the accuracy of the DIV pin ADC will suffer.

Pulse Width Modulation Bandwidth and Settling Time

The LTC6992 will respond to changes in VMOD up to a –3dB bandwidth of TBD (see Figure 10). This makes it easy to stabilize a feedback loop around the LTC6992, since it does not introduce a low frequency pole.

Duty cycle settling time depends on the master oscillator frequency. Following a ±100mV step change in VMOD, the duty cycle takes approximately TBD master clock cycles

(TBD • tMASTER) to settle to within 1% of the final value. An example is shown in Figure 11.

Frequency Modulation and Settling Time

In addition to pulse-width modulation, the LTC6992 can be frequency modulated by varying ISET. The LTC6992 will respond to changes in ISET up to a –3dB bandwidth of TBD • fOUT (see Figure 12).

Following a 2x or 0.5x step change in ISET, the output frequency takes approximately TBD master clock cycles (TBD • tMASTER) to settle to within 1% of the final value. An example is shown in Figure 13.

Figure 13. Frequency Change Settling Time

PLACEHOLDER

Figure 10. PWM Frequency Response

Figure 11. PWM Settling Time

Figure 12. Frequency Modulation Bandwidth

PLACEHOLDER

PLACEHOLDER

PLACEHOLDER

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2269921234p

Power Supply Current

The power supply current varies with frequency, supply voltage and output loading. It can be estimated under any condition using the following equation:

If NDIV = 1 (DIVCODE = 0 or 15):

IS(TYP) ≈ V+ • fOUT • 39pF + CLOAD( )

L+ V+

320kΩ+ V+

2 •RLOAD

+ 2.2 •ISET + 85µA

If NDIV > 1 (DIVCODE = 1 or 14):

IS(TYP) ≈ V+ •fOUT

NDIV

• 27pF + V+ • fOUT • 27pF + CLOAD( )

L+ V+

320kΩ+ V+

2 •RLOAD

+ 2.6 •ISET + 90µA

SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES

The LTC6992 is a 2.4% accurate silicon oscillator when used in the appropriate manner. The part is simple to use and by following a few rules, the expected performance is easily achieved. The most important use issues involve adequate supply bypassing and proper PCB layout.

Figure 14 shows example PCB layouts for both the TSOT-23 and DFN packages using 0603 sized passive components. The layouts assume a two layer board with a ground plane layer beneath and around the LTC6992. These layouts are a guide and need not be followed exactly.

APPLICATIONS INFORMATION1. Connect the bypass capacitor, C1, directly to the V+ and

GND pins using a low inductance path. The connection from C1 to the V+ pin is easily done directly on the top layer. For the DFN package, C1’s connection to GND is also simply done on the top layer. For the TSOT-23, OUT can be routed through the C1 pads to allow a good C1 GND connection. If the PCB design rules do not allow that, C1’s GND connection can be accomplished through multiple vias to the ground plane. Multiple vias for both the GND pin connection to the ground plane and the C1 connection to the ground plane are recommended to minimize the inductance. Capacitor C1 should be a 0.1μF ceramic capacitor.

2. Place all passive components on the top side of the board. This minimizes trace inductance.

3. Place RSET as close as possible to the SET pin and make a direct, short connection. The SET pin is a current summing node and currents injected into this pin directly modulate the operating frequency. Having a short connection minimizes the exposure to signal pickup.

4. Connect RSET directly to the GND pin. Using a long path or vias to the ground plane will not have a significant affect on accuracy, but the direct, short connection is recommended and easy to apply.

5. Use a ground trace to shield the SET pin. This provides another layer of protection from radiated signals.

6. Place R1 and R2 close to the DIV pin. A direct, short connection to the DIV pin minimizes the external signal coupling.

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2369921234p

TYPICAL APPLICATIONS

Figure 14. Supply Bypassing and PCB Layout

Constant On-Time Modulator

6992 TA02

LTC6992-1

MOD

GND

SET

OUT

V+

DIV

RM29.31k

RM11.05k

RSET44.2k

RIN*11.8k VCTRL

VMOD

VSET

VIN0V TO 2V R1

182kDIVCODE = 2(÷16, POL = 1)

C10.1μF

OUT

R2976k

VCC

*OPTIONAL RESISTOR ADJUSTS FOR DESIRED VIN RANGE.

AS VIN INCREASES, tOUT INCREASES AND DUTY CYCLE DECREASES (BECAUSE POL = 1) TO MAINTAIN A CONSTANT tON.FOR CONSTANT OFF-TIME, JUST CHANGE DIVCODE SO POL = 0.

IFRM2

RM1+RM20.9 THEN tON = NDIV • 1.125μs •

RSET

50k

APPLICATIONS INFORMATION

6992 F14

LTC6992

MOD

GND

SET

OUT

V+

DIV

C10.1μF R1

R2RSET

V+

MOD

GND

SET

OUT

V+

DIV

V+

DIV

SET

OUT

GND

MOD

R1

R2

C1

RSET

V+C1R1

R2

V+

RSET

TSOT-23 PACKAGEDFN PACKAGE

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2469921234p

TYPICAL APPLICATIONSDigitally Controlled Duty Cycle with Internal VREF Reference Variation Eliminated

Programming NDIV Using an 8-Bit DAC

6992 TA03

LTC6992-X

MOD

GND

SET

OUT

V+

DIV

RSET

+

V+

1/2LTC6078

R1

C10.1μF

R2

LTC1659VOUT CLK μP

CS/LD

DIN

REF VCC

GND

V+

V+

6992 TA04

LTC6992-X

MOD

GND

SET

OUT

V+

DIV

RSET

C10.1μF

LTC2630-LZ8VOUT SCK μP

CS/LD

SDIVCC

GND

2.25V TO 5.5V

C20.1μF

DIVCODE

0123456789101112131415

DAC CODE

02440567288104120136152168184200216232

≥255

ANALOG PWMDUTY CYCLE CONTROL

(0V TO 1V)

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2569921234p

TYPICAL APPLICATIONSChanging Between Two Frequencies

6992 TA05

LTC6992-X

MOD

GND

SET

OUT

V+

DIV

R1

R2RSET

V+

NOTESWHILE THIS CIRCUIT IS SIMPLER THAN THE CIRCUIT TO THE RIGHT, ITS FREQUENCY ACCURACY IS WORSE DUE TO THE EFFECT OFV+ SUPPLY VARIATION FROM SYSTEM TO SYSTEM AND OVER TEMPERATURE.

NOTES1. WHEN THE NMOSFET IS OFF, THE FREQUENCY IS SET BY RSET = RSET1.2. WHEN THE NMOSFET IS ON, THE FREQUENCY IS SET BY RSET = RSET1 || RSET2.3. V+ SUPPLY VARIATION IS NOT A FACTOR AS THE SWITCHING RESISTOR IS EITHER FLOATING OR CONNECTED TO GROUND.

RVCO

V+

‘HC04

fMAX

fMIN

ANALOG PWMDUTY CYCLE CONTROL

(0V TO 1V)LTC6992-X

MOD

GND

SET

OUT

V+

DIV

R1

R2RSET1RSET2

V+

ANALOG PWMDUTY CYCLE CONTROL

(0V TO 1V)

V+

‘HC042N7002

fMIN

fMAX

Simple Diode Temperature Sensor

6992 TA06

LTC6992-2

MOD

GND

SET

OUT

V+

DIV

R41000k

MOC207M

Q1

OUTPUT

D3

C11μF

R5186k

5V

5V5V

LT6003

+10mV/C

5V

R1130k

R250k

R3130k

ADJUST FOR 50% DUT CYCLE AT 25°C

+

–R7

16.9k

R884.5k

R645.3k

D11N458

R11422Ω

NDIV = 16f = 10kHz

PWM OUTPUT FOR ISOLATED MEASUREMENT+1% DUTY CYCLE CHANGE PER DEGREE C–10°C TO 65°C RANGE WITH OPTO-ISOLATOR (DC: 15% TO 95%)

R9365Ω

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2669921234p

Motor Speed/Direction Control for Full H-Bridge (Locked Anti-Phase Drive)

TYPICAL APPLICATIONS

6992 TA07

LTC6992-2

MOTOR

A1

A2

CW CURRENTFLOW

VS12V

POWER H-BRIDGEHIGH = SWITCH ON

MOD

GND

SET

OUT

V+

DIV

R11000k

INPUT 0V TO 1V

R2280k

V+

R3300k

2.6kHz, 5% TO 95% PWM5% DC = CLOCKWISE50% DC = STOPPED95% DC = COUNTER CLOCKWISE

Motor Speed/Direction Control for Full H-Bridge (Sign/Magnitude Drive)

6992 TA08

LTC6992-2

MOTOR

A3

A4 A5

CW CURRENTFLOW

VS12V

POWER H-BRIDGEHIGH = SWITCH ON

MOD

GND

SET

OUT

V+

DIV

R41000k

INPUT 0V TO 1V

R5280k

V+

R3300k

2.6kHz, 5% TO 95% PWM5% DC = SLOW95% DC = FAST

DIRECTIONH = CCW, L = CW

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2769921234p

TYPICAL APPLICATIONSRatiometric Sensor to Pulse Width, Non-Inverting Response

6992 TA09

LTC6992-1

C10.15μF

MOD

GND

SET

OUT

V+

DIV

R11000k

R2186k

VS

OUTPUTDUTY CYCLE = K • 100%

VS

LT1490K • VS

2.5V TO 5.5V

RSET316k

+

–R310kK = 1

K = 0

R490.9k

R510M

R69.09k

RSENSOR

NDIV = 16fOUT = 10kHz

C20.22μF

Ratiometric Sensor to Pulse Width, Inverting Response

6992 TA10

LTC6992-1

C10.15μF

MOD

GND

SET

OUT

V+

DIV

R11000k

R2186k

VS

OUTPUTDUTY CYCLE = (1–K) • 100%

VS

VS

VS

LT1490

2.5V TO 5.5V

RSET316k

+

R3100k

R410k

K = 1

K = 0

R690.9k

K • VS

R510k

R69.09k

RSENSOR

NDIV = 16fOUT = 10kHz

C20.22μF

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2869921234p

TYPICAL APPLICATIONSRatio Control Servo Pulse Generator

6992 TA11

LTC6992-1

C11μF

MOD

GND

SET

OUT

V+

DIV

R11000k

R2681k

VS

OUTPUT1ms TO 2ms PULSE EVERY 16ms

VS

VS

LT1490

2.5V TO 5.5V

RSET316k

+

R690.9k

R5130k

R68.66k

SERVOCONTROLPOT10k

2ms

1ms

R69.09k

NDIV = 4096fOUT = 62.5kHz, 16ms PERIOD

C20.22μF

Direct Voltage Controlled PWM Dimming 0 to 15000 Cd/m2 Intensity

6992 TA12

LTC6992-1

MOD

GND

SET

OUT

V+

DIV

f = 7.5kHzNDIV = 64

5VD1

HIGH INTENSITY LEDSSL-LX5093XUWC

R2280k

RSET105k

VDIMMING

R11M

R390.9Ω

C10.1μF

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

2969921234p

TYPICAL APPLICATIONSWide Range LED Dimming (0 to 85000 Cd/m2 Brightness)

6992 TA13

LTC6992-4

MOD

GND

SET

OUT

V+

DIV

RDIV11M

RDIV2280k

5V

5V

LT6004

RSET161.9k

+

5V

LT6004

+

R310k

VREF

VFAST

R47.5k

VDIMMING0V TO 1.65V

VSLOW

R27.5k

R110k

5–100%NDIV = 64f = 12.6kHz

0–100%NDIV = 4096fOUT = 100kHz

SLOW PWMCONTROLS 0 TO 6000Cd/m2 BRIGHTNESS

FAST PWMCONTROLS 6000 TO 85000

Cd/m2 BRIGHTNESS

C40.1μF

LTC6992-1

MOD

GND

SET

OUT

V+

DIV

RDIV31M

RDIV4681k

5V

3.3V 5V

RSET2124k

C10.1μF

3.3VIN PVIN

PWM

A1 D1

D2

LUMILEDS LXHL-BW02

LT3518UF

LED+

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

3069921234p

DCB Package6-Lead Plastic DFN (2mm × 3mm)

(Reference LTC DWG # 05-08-1715 Rev A)

PACKAGE DESCRIPTION

3.00 ±0.10(2 SIDES)

2.00 ±0.10(2 SIDES)

NOTE:1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

TOP AND BOTTOM OF PACKAGE

0.40 ± 0.10

BOTTOM VIEW—EXPOSED PAD

1.65 ± 0.10(2 SIDES)

0.75 ±0.05

R = 0.115TYP

R = 0.05TYP

1.35 ±0.10(2 SIDES)

13

64

PIN 1 BARTOP MARK

(SEE NOTE 6)

0.200 REF

0.00 – 0.05

(DCB6) DFN 0405

0.25 ± 0.050.50 BSC

PIN 1 NOTCHR0.20 OR 0.25 × 45° CHAMFER

0.25 ± 0.05

1.35 ±0.05(2 SIDES)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

1.65 ±0.05(2 SIDES)

2.15 ±0.05

0.70 ±0.05

3.55 ±0.05

PACKAGEOUTLINE

0.50 BSC

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

3169921234p

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTIONS6 Package

6-Lead Plastic TSOT-23(Reference LTC DWG # 05-08-1636 Rev B)

1.50 – 1.75(NOTE 4)

2.80 BSC

0.30 – 0.45 6 PLCS (NOTE 3)

DATUM ‘A’

0.09 – 0.20(NOTE 3) S6 TSOT-23 0302 REV B

2.90 BSC(NOTE 4)

0.95 BSC

1.90 BSC

0.80 – 0.90

1.00 MAX0.01 – 0.10

0.20 BSC

0.30 – 0.50 REF

PIN ONE ID

NOTE:1. DIMENSIONS ARE IN MILLIMETERS2. DRAWING NOT TO SCALE3. DIMENSIONS ARE INCLUSIVE OF PLATING4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR5. MOLD FLASH SHALL NOT EXCEED 0.254mm6. JEDEC PACKAGE REFERENCE IS MO-193

3.85 MAX

0.62MAX

0.95REF

RECOMMENDED SOLDER PAD LAYOUTPER IPC CALCULATOR

1.4 MIN2.62 REF

1.22 REF

LTC6992-1/LTC6992-2/LTC6992-3/LTC6992-4

3269921234p

Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com © LINEAR TECHNOLOGY CORPORATION 2010

LT 0510 • PRINTED IN USA

RELATED PARTS

TYPICAL APPLICATION

PART NUMBER DESCRIPTION COMMENTS

LTC1799 1MHz to 33MHz ThinSOT Silicon Oscillator Wide Frequency Range

LTC6900 1MHz to 20MHz ThinSOT Silicon Oscillator Low Power, Wide Frequency Range

LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator Micropower, ISUPPLY = 35μA at 400kHz

LTC6990 TimerBlox, Voltage Controlled Oscillator Frequency from 488Hz to 1MHz, No Caps, 2% Accurate

LTC6991 TimerBlox, Very Low Frequency Clock with Reset Cycle Time from 2ms to 9.5 Hours, No Caps, 2% Accurate

LTC6993-1 TimerBlox, Monostable Pulse Generator Resistor Set Pulse Width from 1μs to 2ms, No Caps, 2% Accurate

LTC6993-2 TimerBlox, Retriggerable Monostable Pulse Generator Resistor Set Pulse Width from 1μs to 2ms, No Caps, 2% Accurate

LTC6994-1 TimerBlox, Delay Block, First Edge Only Delayed Resistor Set Delay from 1μs to 2ms, No Caps, 2% Accurate

LTC6994-2 TimerBlox, Delay Block/Debouncer, Both Edges Delayed Resistor Set Delay from 1μs to 2ms, No Capacitors Required, 2% Accurate

LED Driver with 5000:1 Dimming Range

6992 TA14

LTC6992-1

MOD

GND

SET

OUT

V+

DIV

1M

681k102k

VIN5V TO 16V

ANALOG PWMDUTY CYCLE

CONTROL(0V TO 1V) 5V

LT3517

PWM

TGEN

VREF

CTRL

SYNC

FB

ISP

ISN

TG

SHDN VIN SW

VC GNDSSRT

C12.2μF

R13.92M

R2124k 300mA

C10.22μF

C24.7μF

C30.1pF

C40.1pF RT

6.04k2MHz

D1L1

6.8μH

LT3517

RSENSE330mΩ

C1: KEMET C0806C225K4RACC2: KEMET C1206C475K3RACC3, C4: MURATA GRM21BR71H104KA01BC5: MURATA GRM21BR71H224KA01BD1: DIODE DFL5160L1: TOKO B992A5-6RBNLEDS: LUXEON I (WHITE)M1: ZETEX ZXMP6A13FTA