Graph Routing Problems: Approximation, Hardness ... - TTIC

115
Graph Routing Problems: Approximation, Hardness, and Graph-Theoretic Insights Julia Chuzhoy Toyota Technological Institute at Chicago

Transcript of Graph Routing Problems: Approximation, Hardness ... - TTIC

GraphRoutingProblems:Approximation,Hardness,and

Graph-TheoreticInsights

JuliaChuzhoyToyotaTechnologicalInstituteat

Chicago

GraphRoutingProblems

maximums-tflow

maximummulticommodity flow

maximumnode-disjointpaths

(NDP)

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Solutionvalue:2

OPT:valueofbestpossiblesolution

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Solutionvalue:2

Edge-disjointPaths(EDP):pathsmustbeedge-disjoint

GraphRoutingProblems

VLSIdesign OpticalNetworks

GraphRoutingProblems

VLSIdesign OpticalNetworks

GraphMinortheory

GraphRoutingProblems

VLSIdesign OpticalNetworks

GraphDecomposition NetworkFlows

GraphMinortheory

GraphSparsifiers

ExcludedGrid

Theorem

GraphCrossingNumber Fixed

ParameterTractability

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

terminals

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Assumption: Allterminalsaredistinct

n– numberofgraphverticesk– numberofdemandpairs

Node-DisjointPaths(NDP)

Input:GraphG,source-sinkpairs(s1,t1),…,(sk,tk).Goal:Routeasmanypairsaspossiblevianode-disjointpaths

s1t1

s2

t2

s3t3

Canwesolveitefficiently?

k=1? ✔

k=2?

NDPwithk=2• NP-hardindirectedgraphs[Fortune,Hopcroft,Wyllie'80]

• Efficientlysolvableinundirectedgraphs [Jung‘70,Shiloach ’80,Thomassen ‘80,Robertson-Seymour’90]

s1

t1

s2

t2G

Largerk?

flatgraph

Largerk?

• Constantk:efficientlysolvable [Robertson,Seymour’90]

– Runningtime:f(k)�n2 [Kawarabayashi,Kobayashi,Reed‘12]

f(k) = 222

.

.

.

k

Largerk?

• Constantk:efficientlysolvable [Robertson,Seymour’90]

– Runningtime:f(k)�n2 [Kawarabayashi,Kobayashi,Reed‘12]• NP-hardwhenkispartofinput[Knuth,Karp’74]

Example

G

S T

s t

• SetofdemandpairsisSxT:cansolveefficiently• DemandpairsareaspecificmatchingbetweenSandT:NP-hard

Maxs-tflow

Example

G

S T

• SetofdemandpairsisSxT:cansolveefficiently• DemandpairsareaspecificmatchingbetweenSandT:NP-hard

DealingwithNP-HardnessAnα-approximationalgorithm:

• efficientalgorithm• alwaysproducessolutionsroutingatleastOPT/αdemandpairs.

DealingwithNP-HardnessAnα-approximationalgorithm:

• efficientalgorithm• alwaysproducessolutionsroutingatleastOPT/αdemandpairs.

DealingwithNP-HardnessAnα-approximationalgorithm:

• efficientalgorithm• alwaysproducessolutionsroutingatleastOPT/αdemandpairs.

optimumsolutionvalue

OnApproximationFactors

• Asimplewaytocomparealgorithms– α=1+ε– α=2– α=O(logn)– α=O(√n)– …

OnApproximationFactors

• Asimplewaytocomparealgorithms

• Designalgorithmswithgoodapproximationfactorsα

• Establishbestpossibleapproximationfactorαforagivenproblem

Hardnessofapproximationresults

OnApproximationFactors

• Asimplewaytocomparealgorithms

• Designalgorithmswithgoodapproximationfactorsα

• Establishbestpossibleapproximationfactorαforagivenproblem

Hardnessofapproximationresults

OnApproximationFactors

• Asimplewaytocomparealgorithms

• Designalgorithmswithgoodapproximationfactorsα

• Establishbestpossibleapproximationfactorαforagivenproblem

Goal:powerful,simplealgorithmictechniqueswithprovablebounds

OnApproximationFactors

• Asimplewaytocomparealgorithms

• Designalgorithmswithgoodapproximationfactorsα

• Establishbestpossibleapproximationfactorαforagivenproblem

Understandingwhatmakesaproblemdifficult

Bettermodelsforreal-lifeproblems

OnApproximationFactors

• Asimplewaytocomparealgorithms

• Designalgorithmswithgoodapproximationfactorsα

• Establishbestpossibleapproximationfactorαforagivenproblem

DealingwithNP-Hardness

Multicommodity Flowrelaxation:sendasmuchflowaspossiblebetweenthesi-ti pairs.

Anα-approximationalgorithm:• efficientalgorithm• alwaysproducessolutionsroutingatleastOPT/αdemandpairs.

Example

s1

t1

t2

s2t3

s3

Example

s1

t1

t2

s2

s3

t3

Totalflowthroughavertex

atmost1

Example

s1

t1

t2

s2t3

• send½flowunitoneachofthe3paths• solutionvalue:3/2

s3

NDPsolutionvalue:1

Multicommodity Flows

• Canbecomputedefficiently

• OPTflow ≥OPT

fractionalsolution

multicommodityflowLP-relaxation

integralsolution

Multicommodity Flows

• Canbecomputedefficiently

• OPTflow ≥OPT

• UsetheflowtofindintegralroutingofatleastOPTflow/αdemandpairs

α-approximationalgorithm

multicommodityflowLP-relaxation

LP-roundingtechnique

ApproximationAlgorithm[Kolliopoulos,Stein‘98]WhilethereisapathPwithf(P)>0:• AddsuchshortestpathPtothesolution• ForeachpathP’sharingverticeswithP,setf(P’)to0

ApproximationAlgorithm[Kolliopoulos,Stein‘98]WhilethereisapathPwithf(P)>0:• AddsuchshortestpathPtothesolution• ForeachpathP’sharingverticeswithP,setf(P’)to0

-approximationO(pn)

CanWeDoBetter?

• Notifweusethemaximummulticommodityflowapproach!

BadExamples1 s2 sk…

tk t1t2…

s3

t3

BadExamples1 s2 sk…

tk t1t2…

s3

t3

BadExamples1 s2 sk…

tk t1t2…

s3

t3

BadExamples1 s2 sk…

tk t1t2…

s3

t3

BadExamples1 s2 sk…

tk t1t2…

s3

t3

OPTflow=k/3OPT=1gap:

�(k) = �(pn)

BadExamples1 s2 sk…

tk t1t2…

s3

t3

OPTflow=k/3OPT=1gap:

�(k) = �(pn)

Integralitygapoftheflowrelaxation

CanWeDoBetter?

• Notifweusethemaximummulticommodityflowapproach!

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

�(log1/2�� n)✏

ApproximationStatusofNDP

• -approximationalgorithmUntilrecently:– evenonplanargraphs– evenongridgraphshs

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

O(pn)

�(log1/2�� n) ✏

OnlyNP-hardnessknownforplanargraphsandgrids

s1

t1

s2

t2

s3

t3

NDPinGrids

s1

t1

s2

t2

s3

t3

NDPinGrids

ApproximationStatusofNDP

• -approximationalgorithmUntilrecently:– evenonplanargraphs– evenongridgraphshs

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

O(pn)

�(log1/2�� n) ✏

[C,Kim’15]-approximationO(n1/4)

OnlyNP-hardnessknownforplanargraphsandgrids

ApproximationStatusofNDP

• -approximationalgorithmUntilrecently:– evenonplanargraphs– evenongridgraphshs

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

O(pn)

�(log1/2�� n) ✏

[C,Kim,Li’16]-approximationO(n9/19)

[C,Kim’15]-approximationO(n1/4)

ApproximationStatusofNDP

• -approximationalgorithmUntilrecently:– evenonplanargraphs– evenongridgraphshs

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

O(pn)

�(log1/2�� n) ✏

[C,Kim,Li’16]-approximationO(n9/19)

[C,Kim’15]-approximationO(n1/4)

[C,Kim,Nimavat ’16]-hardnessofapproximation

forsubgraphs ofgrids2⌦(

plogn)

ApproximationStatusofNDP

• -approximationalgorithmUntilrecently:– evenonplanargraphs– evenongridgraphshs

• -hardnessofapproximationforany[Andrews,Zhang‘05],[Andrews,C,Guruswami,Khanna,Talwar,Zhang’10]

O(pn)

�(log1/2�� n) ✏

[C,Kim,Li’16]-approximationO(n9/19)

[C,Kim’15]-approximationO(n1/4)

[C,Kim,Nimavat ’16]-hardnessofapproximation

forsubgraphs ofgrids2⌦(

plogn)

WorkinProgress:AlmostpolynomialhardnessforNDPingridgraphs[C,Kim,Nimavat ‘17]

ApproximationStatusofEDP

• -approximationalgorithm[Chekuri,Khanna,Shepherd’06]

• -hardnessofapproximationevenforsubgraphs ofwallgraphs[C,Kim,Nimavat ’16]

O(pn)

2⌦(

plogn)

AWall

ApproximationStatusofEDP

• -approximationalgorithm[Chekuri,Khanna,Shepherd’06]

• -hardnessofapproximationevenforsubgraphs ofwallgraphs[C,Kim,Nimavat ’16]

• Workinprogress:almostpolynomialhardnessforEDPonwallgraphs[C,Kim,Nimavat ‘17]

O(pn)

2⌦(

plogn)

SummarysoFar

EDP and NDP do not have reasonableapproximation algorithms, even on planar graphs

Whatifweallowsomecongestion?

EDP/NDPwithCongestion

An-approximationalgorithmwithcongestioncroutes. demandpairswithcongestionatmostc.

uptocpathscanshareanedgeoravertex

↵OPT/�

EDP/NDPwithCongestion

An-approximationalgorithmwithcongestioncroutes. demandpairswithcongestionatmostc.

optimumnumberofpairswithnocongestionallowed

↵OPT/�

EDPwithCongestion• CongestionO(logn/loglogn):constantapproximation[Raghavan,Thompson’87]

• Congestionc: -approximation[Azar,Regev ’01],[Baveja,Srinivasan ’00],[Kolliopoulos,Stein‘04]

• Congestionpoly(loglogn): polylog(n)-approx[Andrews‘10]

• Congestion2: -approximation [Kawarabayashi,Kobayashi’11]

• Congestion14:polylog(k)-approximation[C,‘11]• Congestion2:polylog(k)-approximation[C,Li’12]• polylog(k)-approximationforNDP withcongestion

2 [Chekuri,Ene ’12],[Chekuri,C‘16]

O(n1/c)

O(n3/7)

EDPwithCongestion• CongestionO(logn/loglogn):constantapproximation[Raghavan,Thompson’87]

• Congestionc: -approximation[Azar,Regev ’01],[Baveja,Srinivasan ’00],[Kolliopoulos,Stein‘04]

• Congestionpoly(loglogn): polylog(n)-approx[Andrews‘10]

• Congestion2: -approximation [Kawarabayashi,Kobayashi’11]

• Congestion14:polylog(k)-approximation[C,‘11]• Congestion2:polylog(k)-approximation[C,Li’12]• polylog(k)-approximationforNDP withcongestion

2 [Chekuri,Ene ’12],[Chekuri,C‘16]

O(n1/c)

O(n3/7)

Alltheseresultsarebasedonthemulticommodity

flowrelaxation

“Tight”duetoknownhardnessresults

EDPwithCongestion• CongestionO(logn/loglogn):constantapproximation[Raghavan,Thompson’87]

• Congestionc: -approximation[Azar,Regev ’01],[Baveja,Srinivasan ’00],[Kolliopoulos,Stein‘04]

• Congestionpoly(loglogn): polylog(n)-approx[Andrews‘10]

• Congestion2: -approximation [Kawarabayashi,Kobayashi’11]

• Congestion14:polylog(k)-approximation[C,‘11]• Congestion2:polylog(k)-approximation[C,Li’12]• polylog(k)-approximationforNDP withcongestion

2 [Chekuri,Ene ’12],[Chekuri,C‘16]

O(n1/c)

O(n3/7) Structuralresultsaboutgraphs

newresultsingraphtheory!

EDPwithCongestion• CongestionO(logn/loglogn):constantapproximation[Raghavan,Thompson’87]

• Congestionc: -approximation[Azar,Regev ’01],[Baveja,Srinivasan ’00],[Kolliopoulos,Stein‘04]

• Congestionpoly(loglogn): polylog(n)-approx[Andrews‘10]

• Congestion2: -approximation [Kawarabayashi,Kobayashi’11]

• Congestion14:polylog(k)-approximation[C,‘11]• Congestion2:polylog(k)-approximation[C,Li’12]• polylog(k)-approximationforNDP withcongestion

2 [Chekuri,Ene ’12],[Chekuri,C‘16]

O(n1/c)

O(n3/7)

Edge-DisjointPathswithConstantCongestion

EDPonExpanders

Inastrongenoughexpander,ifthesetofdemandpairsisnottoolarge,canroutealmostallofthemonNode-DisjointPaths!

A B

E0

|E0| � min{|A|, |B|}2

MainIdea:ExploitAlgorithmsforExpanders!

Butourgraphisnothinglikeanexpander

Findexpander-likestructureinthegraphanduseitforrouting!

G

Well-Linkedness[Robertson,Seymour],[Chekuri,Khanna,Shepherd],[Raecke]

terminals

G

Well-Linkedness[Robertson,Seymour],[Chekuri,Khanna,Shepherd],[Raecke]

SetTofterminalsiswell-linkedinG,iff foranypartition(A,B)ofV(G), A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}

terminals

G

Well-Linkedness[Robertson,Seymour],[Chekuri,Khanna,Shepherd],[Raecke]

SetTofterminalsiswell-linkedinG,iff foranypartition(A,B)ofV(G), A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}

edge/node-disjoint

EDP:Well-LinkedInstances

• Terminals:verticesparticipatinginthedemandpairs

• Aninstanceiswell-linkediff thesetofterminalsiswell-linkedinG.

Theorem [Chekuri,Khanna Shepherd‘04]:anα-approximationalgorithmonwell-linkedinstancesgivesanO(αlog2k)-approximationonanyinstance.

EDP:Well-LinkedInstances

• Terminals:verticesparticipatinginthedemandpairs

• Aninstanceiswell-linkediff thesetofterminalsiswell-linkedinG.

Theorem [Chekuri,Khanna Shepherd‘04]:anα-approximationalgorithmonwell-linkedinstancesgivesanO(αlog2k)-approximationonanyinstance.

Onlytrueifthealgorithmroundstheflowrelaxation

G

MainIdea[Chekuri,Khanna,Shepherd],[Rao,Zhou]

X

EmbedanexpanderovertheterminalsintoG!

terminalsofG

G

MainIdea[Chekuri,Khanna,Shepherd],[Rao,Zhou]

X

EmbedanexpanderovertheterminalsintoG!

AnedgeofGmaybelongtoatmost2clusters/paths

GX

1.EmbedanexpanderovertheterminalsintoG

AnedgeofGmaybelongtoatmost2clusters/paths

2.Findaroutingonnode-disjointpathsintheexpander

3.Translateitintocongestion-2routinginG

MainIdea[Chekuri,Khanna,Shepherd],[Rao,Zhou]

G

EmbeddinganExpanderintoG

Routingonvertex-disjointpathsinXgivesagoodroutinginG!

Xs ts

t

G

MainIdea

X

1.EmbedanexpanderovertheterminalsintoG

AnedgeofGmaybelongtoatmost2clusters/paths

2.Findaroutingonnode-disjointpathsintheexpander

3.Translateitintocongestion-2routinginG

G

MainIdea

X

1.EmbedanexpanderovertheterminalsintoG

AnedgeofGmaybelongtoatmost2clusters/paths

2.Findaroutingonnode-disjointpathsintheexpander

3.Translateitintocongestion-2routinginG

Cut-MatchingGame[Khandekar,Rao,Vazirani ’06]

CutPlayer:wantstobuildanexpanderMatchingPlayer:wantstodelayitsconstruction

B3A3B2A2B1A1

Cut-MatchingGame[Khandekar,Rao,Vazirani ’06]

CutPlayer:wantstobuildanexpanderMatchingPlayer:wantstodelayitsconstruction

Thereisastrategyforcutplayer,s.t.afterO(log2n)iterations,wegetanexpander!

EmbeddingExpanderintoGraphG

EmbeddingExpanderintoGraphG

AfterO(log2k)iterations,wegetanexpanderembeddedintoG.

Problem:congestionΩ(log2k)

Path-of-SetsSystem

C2 C3 … CL

…w

C1

APath-of-SetsSystem

• L disjointconnectedclusters• TwodisjointsetsAi,Bi ofwverticesineachclusterCi• Ai Bi iswell-linkedinCi• Foralli,setPi ofwdisjointpathsconnectingBi toAi+1• Allpathsaredisjointfromeachotherandinternallydisjointfromclusters

[

A1 B1

widthwlengthL

A2 B2 A3 B3 AL BL

FromWell-Linkedness toPath-of-SetsC2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem[C,’11],[C,Li’12],[Chekuri,C’13]:SupposeGhasasetofkwell-linkedvertices.Thenwecanefficientlyconstructapath-of-setssysteminGwithparametersLandw,if: w · L48 < O(k)

FromWell-Linkedness toPath-of-SetsC2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem[C,’11],[C,Li’12],[Chekuri,C’13]:SupposeGhasasetofkwell-linkedvertices.Thenwecanefficientlyconstructapath-of-setssysteminGwithparametersLandw,if:

Extras:• CanconnectwterminalstoA1 bydisjointpaths• Canmakesuretheyformdemandpairs!

We’lluse:L=O(log2k)w=k/polylog k

w · L48 < O(k)

FromWell-Linkedness toPath-of-SetsC2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Thepathsaredisjointfromeachotherandthe

PoS system

Theterminalsformdemandpairs

GiventhePoS,canembedanexpander!

C2 C3 … CL

…w

C1

EmbeddingtheExpander

Ci

Ai Bi iswell-linkedinsideCi

[

Ai Bi

C2 C3 … CL

…w

C1

EmbeddingtheExpander

X

C2 C3 … CL

…w

C1

EmbeddingtheExpander

XExpandervertex thepathcontainingtheterminal

C2 C3 … CLC1

EmbeddingtheExpander

XExpandervertex thepathcontainingtheterminal

C2 C3 … CLC1

EmbeddingtheExpander

Expanderedges? cut-matchinggame!

C2 C3 … CLC1

EmbeddingtheExpander

Expanderedges? cut-matchinggame!

C2 C3 … CLC1

EmbeddingtheExpander

Expanderedges? cut-matchinggame!

node-disjointpaths

C2 C3 … CLC1

EmbeddingtheExpander

C2 C3 … CLC1

EmbeddingtheExpander

AfterO(log2k)iterations,weobtainanexpanderembeddedintoGwithcongestion2.…

AlgorithmforEDPwC inWell-LinkedInstances

FindaPath-of-SetsSystem

Findvertex-disjointroutingintheexpander

TransformintoroutinginG

EmbedanexpanderintoG

StructuralResult

IfGcontainsalargewell-linkedsetofvertices,thenitcontainsalargePath-of-SetsSystem

Excludedgridtheorem

Large-treewidthgraph

decompositions

Treewidthsparsifiers

Vertexflowsparsifiers

ExcludedGridTheorem[Robertson,Seymour]

ExcludedGridTheorem[Robertson,Seymour]

Simplegraphs

ExcludedGridTheorem[Robertson,Seymour]

ComplicatedgraphsSimplegraphs

ExcludedGridTheorem[Robertson,Seymour]

ComplicatedgraphsSimplegraphs

Treewidth kè DP-basedalgorithmswithrunning

time2O(k)poly(n).

Treewidth:measureshowcomplexthegraphis.

ExcludedGridTheorem[Robertson,Seymour]

ComplicatedgraphsSimplegraphs

Treewidth:measureshowcomplexthegraphis.

Originaldefinition:Treewidth isthesmallest“width”ofatree-likestructurethatcorrectly“simulates”thegraph.

(Almost)Equivalentdefinition:Treewidth isthecardinalityofthelargestwell-linkedsetofverticesinthegraph.

Treewidth

Trees Low-TreewidthGraphs

High-TreewidthGraphs

Treewidth

Trees Low-TreewidthGraphs

High-TreewidthGraphs

ExcludedGridTheorem[Robertson,Seymour‘86]

Ifthetreewidth ofGislarge,thenGcontainsalargegridasaminor.

CanembedalargegridintoGwithno

congestion

ExcludedGridTheorem[Robertson,Seymour]

Ifthetreewidth ofGislarge,thenitcontainsalargegridminor,so:• Gcontainsmanydisjointcycles• Gcontainsmanydisjointcyclesoflength0modm

• Gcontainsaconvenientroutingstructure• ThesizeofthevertexcoverinGislarge• …

Applications

• Fixedparametertractability• Erdos-Posa typeresults• Graphminortheory– AlgorithmforNDPwherekissmall

• Algorithmsforgraphcrossingnumber• …

ExcludedGridTheorem[Robertson,Seymour‘86]

Ifthetreewidth ofGisk,thenGcontainsagridofsizef(k)xf(k)asaminor.

• [Robertson,Seymour‘94]:–

• Conjecture[Robertson,Seymour‘94]: Thisistight.

f(k) = O⇣p

k/ log k⌘

ExcludedGridTheorem[Robertson,Seymour‘86]

Ifthetreewidth ofGisk,thenGcontainsagridofsizef(k)xf(k)asaminor.

Howlargeisf(k)?

ExcludedGridTheorem• [Robertson,Seymour,Thomas‘89]:• [Diestel,Gorbunov,Jensen,Thomassen ‘99] – simplerproof• [Kawarabayashi,Kobayashi‘12],[Leaf,Seymour‘12]:

• [Chekuri,C‘13]:• [C,‘16]:

f(k) = �⇣log1/5 k

f(k) = �

slog k

log log k

!

f(k) = �⇣k1/98

f(k) = ⌦⇣k1/19

C2 C3 … CL

…w

C1

MainIdea widthwlengthL

Thm: IfGcontainsapath-of-setssystemofwidthandlengthΘ(g2),thenthereisa(gxg)-gridminorinG.

[Leaf,Seymour‘12][Chekuri,C’13]

C2 C3 … CL

…w

C1

MainIdea widthwlengthL

Thm: IfGcontainsapath-of-setssystemofwidthandlengthΘ(g2),thenthereisa(gxg)-gridminorinG.

Ghaslargetreewidth

largewell-linkedsetofvertices

largePath-of-Setssystem

ExcludedGridTheorem

NodeDisjointPaths

[Robertson-Seymour‘90]

[C,Chekuri ‘13]

ExcludedGridTheorem

NodeDisjointPaths

[Robertson-Seymour‘90]

[C,Chekuri ‘13]

HistoricalNote• WorkonroutinggaveslightlyweakerstructurethanPath-of-SetsSystem,calledTree-of-SetsSystem

• WelatermodifiedittogetthePath-of-SetssystemfortheExcludedGridtheorem.

• Thisinturnhelpedimproveresultsforroutingproblems.

ApproximationAlgorithms

HardnessofApproximation

GraphTheory

FixedParameterTractability

RoutingProblems

GraphTheory

OpenProblems

• GettingtightboundsfortheExcludedGridTheorem.

• SimpleralgorithmsforNDPwithconstantk• Congestionminimization:– O(logn/loglogn)-approximationalgorithm– Ω(loglogn)-hardnessofapproximation– Integralitygapofthemulticommodity LPrelaxationopen

OpenProblems

• GettingtightboundsfortheExcludedGridTheorem.

• SimpleralgorithmsforNDPwithconstantk• Congestionminimization:– O(logn/loglogn)-approximationalgorithm– Ω(loglogn)-hardnessofapproximation– Integralitygapofthemulticommodity LPrelaxationopen

Thankyou!

Planargraphs?