Foraminiferal record of environmental changes: Messinian of the Los Yesos area (Sorbas Basin, SE...

18
Foraminiferal record of environmental changes : Messinian of the Los Yesos area (Sorbas Basin, SE Spain) E. Goubert a; *, D. Ne ¤raudeau b , J.M. Rouchy c , D. Lacour b a Laboratoire de Ge ¤ologie, Universite ¤ d’Angers, 2 boulevard Lavoisier, 49 045 Angers Cedex, France b Laboratoire de Pale ¤ontologie, Universite ¤ de Rennes I, Avenue du Ge ¤ne ¤ral Leclerc, 35 042 Rennes, France c CNRS-ESA 7073, Laboratoire de Ge ¤ologie, Muse ¤um National d’Histoire Naturelle, 43 rue Bu¡on, 75005 Paris, France Received 15 May 2000; accepted 31 July 2001 Abstract The Late Messinian of the Sorbas Basin (Betic Cordillera, SE Spain) has been sampled to estimate (1) the paleoenvironmental changes recorded by the benthic foraminifers in pre-evaporitic and evaporitic units, and (2) the impact of the ‘Messinian Salinity Crisis’ on the foraminiferal biodiversity. In the pre-evaporitic unit, foraminifers indicate a circalittoral to bathyal environments and show significant changes in bottom-water oxygenation. Simultaneously, the occurrences of epiphytic damaged foraminifers and the blocks of Porites point out the presence of plant substrates and coral-reefs on the infralittoral zone. The overlying evaporitic unit is characterized by four subaqeous selenitic gypsum layers and three marine fossiliferous intercalations. Each episode of gypsum deposition ends with a desiccation event. Each fossiliferous intercalations traduce a rapid reflooding of the basin by marine waters corresponding to infralittoral to upper bathyal environments with normal marine conditions. During the evaporitic period, the ecological conditions in the water column were intermittently favorable to the development of marine organisms, and moreover, the marginal basins of the Betic Cordillera were not continuously desiccated during the Messinian. The low percentage of extinct species (5%) at the Messinian^Pliocene boundary and the occurrences of benthic foraminifers in the evaporitic unit indicate that the infralittoral to upper bathyal environments have not been completely modified and/or barren during the ‘Messinian Salinity Crisis’, i.e. the ‘Messinian Salinity Crisis’ is not associated with a biological crisis. ß 2001 Elsevier Science B.V. All rights reserved. Keywords: benthic foraminifers; ecological groups; paleoenvironments; biodiversity; ‘Messinian Salinity Crisis’; western Mediter- ranean 1. Introduction Since the beginning of the Neogene, the paleo- geography of the Mediterranean Basin was fre- quently modi¢ed by environmental changes due to tectonic and climatic constraints. Indeed, dur- ing the Tortonian and the earliest Messinian, the communications with the Atlantic Ocean were considerably reduced (Esteban et al., 1996; Krijgsman et al., 1999a; Soria et al., 1999), result- ing in the ‘Messinian Salinity Crisis’ (Hsu « et al., 1977). 0031-0182 / 01 / $ ^ see front matter ß 2001 Elsevier Science B.V. All rights reserved. PII:S0031-0182(01)00386-8 * Corresponding author. Present address: Universite ¤ de Bretagne Sud ^ Campus de Tohannic ^ Centre Y. Coppens, rue Yves Mainguy, 56017 Vannes cedex, France, Tel: +33-2-97-68-4218; Fax: +33-2-97-63-3619. E-mail address: [email protected] (E. Goubert). Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 www.elsevier.com/locate/palaeo

Transcript of Foraminiferal record of environmental changes: Messinian of the Los Yesos area (Sorbas Basin, SE...

Foraminiferal record of environmental changes:Messinian of the Los Yesos area (Sorbas Basin, SE Spain)

E. Goubert a;*, D. Neraudeau b, J.M. Rouchy c, D. Lacour b

a Laboratoire de Geologie, Universite d'Angers, 2 boulevard Lavoisier, 49 045 Angers Cedex, Franceb Laboratoire de Paleontologie, Universite de Rennes I, Avenue du General Leclerc, 35 042 Rennes, France

c CNRS-ESA 7073, Laboratoire de Geologie, Museum National d'Histoire Naturelle, 43 rue Bu¡on, 75005 Paris, France

Received 15 May 2000; accepted 31 July 2001

Abstract

The Late Messinian of the Sorbas Basin (Betic Cordillera, SE Spain) has been sampled to estimate (1) thepaleoenvironmental changes recorded by the benthic foraminifers in pre-evaporitic and evaporitic units, and (2) theimpact of the `Messinian Salinity Crisis' on the foraminiferal biodiversity. In the pre-evaporitic unit, foraminifersindicate a circalittoral to bathyal environments and show significant changes in bottom-water oxygenation.Simultaneously, the occurrences of epiphytic damaged foraminifers and the blocks of Porites point out the presenceof plant substrates and coral-reefs on the infralittoral zone. The overlying evaporitic unit is characterized by foursubaqeous selenitic gypsum layers and three marine fossiliferous intercalations. Each episode of gypsum depositionends with a desiccation event. Each fossiliferous intercalations traduce a rapid reflooding of the basin by marine waterscorresponding to infralittoral to upper bathyal environments with normal marine conditions. During the evaporiticperiod, the ecological conditions in the water column were intermittently favorable to the development of marineorganisms, and moreover, the marginal basins of the Betic Cordillera were not continuously desiccated during theMessinian. The low percentage of extinct species (5%) at the Messinian^Pliocene boundary and the occurrences ofbenthic foraminifers in the evaporitic unit indicate that the infralittoral to upper bathyal environments have not beencompletely modified and/or barren during the `Messinian Salinity Crisis', i.e. the `Messinian Salinity Crisis' is notassociated with a biological crisis. ß 2001 Elsevier Science B.V. All rights reserved.

Keywords: benthic foraminifers; ecological groups; paleoenvironments; biodiversity; `Messinian Salinity Crisis' ; western Mediter-ranean

1. Introduction

Since the beginning of the Neogene, the paleo-

geography of the Mediterranean Basin was fre-quently modi¢ed by environmental changes dueto tectonic and climatic constraints. Indeed, dur-ing the Tortonian and the earliest Messinian, thecommunications with the Atlantic Ocean wereconsiderably reduced (Esteban et al., 1996;Krijgsman et al., 1999a; Soria et al., 1999), result-ing in the `Messinian Salinity Crisis' (Hsu« et al.,1977).

0031-0182 / 01 / $ ^ see front matter ß 2001 Elsevier Science B.V. All rights reserved.PII: S 0 0 3 1 - 0 1 8 2 ( 0 1 ) 0 0 3 8 6 - 8

* Corresponding author. Present address: Universite deBretagne Sud ^ Campus de Tohannic ^ Centre Y. Coppens,rue Yves Mainguy, 56017 Vannes cedex, France,Tel: +33-2-97-68-4218; Fax: +33-2-97-63-3619.

E-mail address: [email protected] (E. Goubert).

PALAEO 2732 27-12-01

Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78

www.elsevier.com/locate/palaeo

In this work, the succession of paleoenviron-ments and foraminifer assemblages are analyzedfrom the time period before and during the Mes-sinian evaporite deposition in the Los Yesos area,in the Sorbas Basin (Betic Cordillera, SE Spain).The paleoecological approach uses the availabledata on recent foraminiferal assemblages fromthe Mediterranean (see review in Murray, 1991).These ecological characteristics of foraminifers al-low us to estimate depth, salinity, oxygen contentand plant substrates. Finally, the impact of the`Messinian Salinity Crisis' on the foraminiferalbiodiversity has been estimated.

2. Geological setting of the Sorbas Basin andthe Los Yesos section

The Sorbas Basin is located in the Betic Cordil-lera, in SE Spain, and is bound to the north andto the south by two mountains: the Sierras de LosFilabres and the Sierra Alhamilla (Fig. 1). Thisbasin began to ¢ll during the Middle Miocene(Fig. 2) and then, during the Late Neogene, itwas marked by subsidence from the Tortonianto the Early Messinian, and by tectonic upliftingfrom the Late Messinian to the present day (Mar-tin and Braga, 1996).

Fig. 1. Geological setting of the Sorbas Basin, SE Spain (based on Conesa et al., 1999; Riding et al., 1999).

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7862

The Messinian deposits of the Sorbas Basincomprise of several units characterized by con-trasting depositional environments (Figs. 2 and3): reefs and carbonate platforms, evaporitic en-vironments with interbedded sands and marls.Within the Sorbas Basin, the Los Yesos area isthe best section showing a complete series fromthe pre-evaporitic Messinian deposits to the post-evaporitic ones, with a limited development ofevaporites.

The Messinian composite section of the LosYesos area, previously described by Montenat etal. (1980) and Ott d'Estevou and Montenat(1990), encompasses a depositional sequence upto 100 m thickness (Fig. 3). The lowermost unit,the pre-evaporitic unit (Abad Member), consistsof alternated marls and limestones with a richmarine fauna (Lacour and Neraudeau, 2000;Saint-Martin et al., in press) (Fig. 4): bivalves,echinoids (Brissopsis gr. atlantica), gastropodsand crabs. Three intercalations are noticeable,from the base to the top: (1) coral reefs or reefblocks (Porites, Siderastraea), (2) intercalated dia-tomites, and (3) conglomerate with ostreids. TheAbad Member is overlain by up to 70-m-thick

selenite gypsum, corresponding to the evaporiticunit (Yesares Member). This unit is characterizedby four layers of 10, 20, 40, and 4 m in thickness,respectively. They are all predominantly com-posed of primary selenitic gypsum locally replacedby nodular secondary gypsum after anhydrite.The surfaces of the gypsum layers commonly dis-play erosional features with several-meter-deeptruncations. Moreover, the uppermost part ofthe two lower gypsum layers is covered by a sev-eral decimeter-thick horizon, characterized bynodular to mosaic like (chicken-wire) gypsum de-veloped displacively within a yellowish dolomiticmatrix. This facies is overlain by black sands andconglomerates containing pectinids, oysters, gas-tropods and scaphopods (Fig. 4). The uppermostgypsum layer is separated from the previous oneby alternated marls and limestones containing arich fauna (Fig. 4), with bivalves, echinoids (Bris-sopsis gr. lyrifera), crustaceans, bryozoas and os-tracods (Lacour and Neraudeau, 2000; Saint-Martin et al., 2000). The uppermost part of theLos Yesos section corresponds to the SorbasMember (post-evaporitic unit) (Riding et al.,1999) and consists of tidal sandstones.

Fig. 2. Simpli¢ed geological map of the Los Yesos area, Sorbas Basin (after Ott d'Estevou and Montenat, 1990) and location ofsections I and II. The members are de¢ned according to Riding et al. (1999) and the units according to Marin et al. (1999).

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 63

Fig. 3. The Messinian of the Sorbas Basin, SE Spain. (a) Chronology and biostratigraphy of the Messinian (from Krijgsman etal., 1999b); (b) lithology of the two sections of the Los Yesos area.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7864

Krijgsman et al. (1999b) obtained a high-reso-lution cyclostratigraphic framework for the Mes-sinian based on three continuous pre-evaporiticsequences, including the Sorbas Basin. The onsetof the deposition of the gypsum is dated at5.96 þ 0.02 Myr ago (Fig. 3).

3. Material and methods

The Messinian composite section of the LosYesos area has been sampled for foraminiferalstudies (Fig. 3). After drying and weighing, the24 samples of marls were washed and sievedthrough four sieves (2 mm, 500 Wm, 250 Wm, 45Wm). All residues were considered for studying themineral and faunal contents. Each residue wassplit to get a fraction of around 300 foraminiferaspecimens that were identi¢ed and counted. Thenumber of foraminifera per gram was calculatedby extrapolation. The speci¢c identi¢cations wereconducted according to reference publications(Berggren and Haq, 1976; Wright, 1978; Blanc-Vernet et al., 1979; AGIP, 1982; Venec-Peyre,1984; Bizon and Bizon, 1984; Jorissen, 1988; Ci-merman and Langer, 1991; Van de Poel, 1992)and the generic attribution was made accordingto Loeblich and Tappan (1988). Then, the recog-nition of autochthonous, allochthonous or re-worked specimens was based on the observationsof (1) the shape of the test, (2) broken tests,(3) strategies of life, which indicate if the specieswas more or less exposed to transport, and (4) eco-logical or stratigraphical mixings.

The paleoenvironmental interpretations arebased on the knowledge of the ecological a¤nitiesof the still-extant species (strategies of life ^ in-faunal, epifaunal, epiphytic, oxic, dysoxic, anoxic^, bathymetrical distribution, temperature, salin-ity) and on the ecomorphological characteristicsassociated with the morphogroups analyses(Chierici et al., 1962; Levy, 1971; Haake, 1977;Severin, 1983; Venec-Peyre, 1984; Bizon and Bi-zon, 1984; Corliss, 1985; Jones and Charnock,1985; Bernhard, 1986; Coppa, 1987; Jorissen,1988; Corliss and Chen, 1988; Langer, 1988;Venec-Peyre and Le Calvez, 1988; Murray,1991; Jorissen et al., 1992; Langer, 1993; Sen

Gupta and Machain-Castillo, 1993; Kaiho,1994; Langer et al., 1998; Mou£i-el-Houari etal., 1999; Jorissen, 1999; Duleba et al., 1999; De-benay et al., 2000). The ecomorphological groupsare de¢ned according to Severin (1983), Bernhard(1986), Corliss and Chen (1988) and Duleba et al.(1999): epifaunal (biconvex, planoconvex trocho-spiral and rounded trochospiral forms); epifaunalor shallow infaunal (rounded trochospiral androunded planispiral forms); and infaunal (elon-gate £attened, £attened tapered, tappering-£aring,tappered and cylindrical forms). The bathymetri-cal distribution of the ecological groups (E.G.s)refers to the nomenclature proposed by Pere©sand Picard (1964). These authors de¢ned, in theMediterranean, the infralittoral zone as the innershelf with photophile plants, the circalittoral zoneas the outer shelf with sciaphile plants, and thebathyal zone as the topographical transition tothe slope. If the samples are devoid of foramini-fers, the paleoenvironments are deduced from themacrofauna and diatoms (Lacour and Nerau-deau, 2000; Saint-Martin et al., 1999).

4. Results

The two levels of black sands and conglomer-ates in the ¢rst mid-part of the evaporitic YesaresMember are devoid of foraminifers. Five samplesof marls from the pre-evaporitic Abad Memberand four samples of marls of the Yesares Memberare fossiliferous (Figs. 4 and 5). A total of nineplanktic species and 51 benthic species were rec-ognized in these nine samples of marls (Table 1).The abundance per gram of dried sediment is 15^500 specimens, with a speci¢c diversity of 7^25species for both the pre-evaporitic and the evap-oritic marls.

4.1. The planktic species

The pre-evaporitic Abad Member is character-ized by high frequencies of planktic foraminifers(99.5^20%). The planktic assemblages are oligo-speci¢c with seven species (Globorotalia mediterra-nea, G. gr. menardii, Neogloboquadrina acostaen-sis, Globigerinella siphonifera, Globigerinoides

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 65

sacculifer, G. trilobus, Orbulina universa group).The planktic foraminifers observed in the youngerpre-evaporitic marls (sample E, Table 1) are onlyrepresented as pyriteous internal molds. Theupper part of the evaporitic Yesares Member(sample H, Table 1) shows only 1% of plankticspecimens of G. trilobus.

4.2. The benthic species

Within the Los Yesos composite section, theagglutinated foraminifera are extremely rare

(Martinotiella communis, Textularia cf. gramenand Reophax sp.) in the pre-evaporitic levels andabsent in the marls interbedded in the YesaresMember. As far as the porcelaneous foraminiferaare concerned, they are absent both in the Abadand the Yesares Members.

The pre-evaporitic marls (samples A^E, Table 1)are characterized by high frequencies of bulimina-ceans (Bulimina aculeata, B. echinata, B. elongata,Uvigerina peregrina, U. rutila, Uvigerina? bono-niensis, Rectuvigerina siphogenerinoides, Spirolox-ostoma savenae) and bolivinaceans (Brizalina a¡.

Fig. 4. Faunal and mineral contents (presence/absence) of the Los Yesos section.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7866

Table 1Relative abundances of foraminifera species in the Los Yesos section

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 67

dilatata, B. dentelata). Additional hyaline taxa arefound, in increasing abundance order: Melonispompiloides, Dentalina sp., Hanzawaia boueana,Hoeglundina elegans, Neoeponides schreibersii,Cancris auriculus, Lenticulina calcar, Gyroidinoidessoldanii, Cibicidoides ungerianus, Polymorphinasp., Planulina ariminensis. Some species are repre-sented by damaged specimens, in order of increas-ing abundance: Nodosaria acuminata, Rosalinaglobularis, Elphidium aculeatum, E. hauerinum, E.crispum, E. ¢chtellianum, and Lobatula lobatula.The benthic foraminifers observed in the youngerpre-evaporitic marls (sample E, Table 1), as in thecase of the planktic foraminifers, correspond topyriteous internal molds.

The lower marls of the evaporitic unit (sampleF, Table 1) are characterized by extremely highfrequencies of Ammonia tepida (65%) and few ad-ditional species (Para¢ssurina sp., Ammonia bec-carii, Oolina sp., Elphidium margaritaceum, E.crispum, and Planulina ariminensis). The speci¢cdiversity and the abundance increase in the me-dium marls (samples G and H, Table 1). Thedominant species is Porosononion granosum (40^55%) and the minor species are, in order of in-

creasing abundance: Cibicidoides sp., Glandulinalaevigatus, Gyroidinoides sp., Asterigerinata pla-norbis, Bulimina minima, Cibicides refulgens,Ammonia beccarii, Rosalina globularis, Globulinagibba, Oolina sp., Brizalina a¡. dilatata, Poly-morphina sp., Anomalinoides granosus, Lobatulalobatula, Ammonia tepida, Elphidium crispum, E.margaritaceum, Reussella spinulosa, Neoconorbinaterquemi, and Haynesina germanica. The upper-most marls, just below the fourth selenitic gypsumlayer, are devoid of microfauna.

4.3. E.G.s of benthic foraminifers

Amongst the taxonomical categories occurringin the Los Yesos area, all genera and 37 of the 51benthic species have survived in the Mediterra-nean until today. Hence, the strategies of lifeand the ecomorphological characteristics of thesetaxa allow the recognition of seven distinct E.G.s(Table 2; Fig. 5). Three E.G.s occur from theinfralittoral to the circalittoral zones: (E.G.1) par-alic, epifaunal or shallow infaunal, oxic to dysoxicspecies with two major species, A. tepida and P.granosum ; (E.G.2) epifaunal or shallow infaunal,

Table 2E.G.s of the foraminifers of the Los Yesos section

Bathymetrical distribution E.G. Species

Infralittoral tocircalittoral

(1) Paralic speciesepifaunal or shallowinfaunal oxic to dysoxic

Ammonia tepida, Haynesina germanica, Porosononion granosum

(2) Epifaunal or shallowinfaunal oxic to dysoxic

Ammonia beccarii, Oolina sp., Para¢ssurina sp.

(3) Epiphytic species,oxic preferentiallyphotophile (ph) orsciaphile (sc)

Textularia gramen (sc), Asterigerinata planorbis, Cancris auriculus,Lobatula lobatula (sc), Cibicides refulgens (sc), Elphidium aculeatum(ph), Elphidium crispum, Elphidium ¢chtellianum, Elphidium hauerinum,Elphidium margaritaceum, Globulina gibba (sc), Neoconorbina terquemi(sc), Rosalina globularis (sc)

Circalittoral tobathyal

(4) Epifaunal, oxic Anomalinoides granosus, Hanzawaia boueana, Cibicidoides ungerianus,Gyroidinoides soldanii, Hoeglundina elegans, Neoponides schreibersii,Melonis pompiloides (or shallow infaunal)

(5) Infaunal, opportunistic(opp), dysoxic (dys)

Martinottiella communis, Brizalina dentelata (opp; dys), Brizalina a¡.dilatata (opp; dys), Bulimina aculeata (opp; dys), Bulimina echinata(opp; dys), Bulimina elongata (opp; dys), Bulimina minima (opp; dys),Glandulina laevigatus, Polymorphina sp., Reussella spinulosa,Uvigerina peregrina (opp; dys), Uvigerina rutila (opp; dys)

From upper bathyalto lower bathyal

(6) Epifaunal, oxic Lenticulina calcar, Planulina ariminensis(7) Infaunal, opportunistic(opp), dysoxic (dys)

Bulimina costata (opp; dys), Uvigerina ? bononiensis, Rectuvigerinasiphogenerinoides (dys)

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7868

Fig. 5. Distribution of the E.G.s in the Los Yesos section and interpreted paleoenvironments.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 69

oxic to dysoxic species ; (E.G.3) epiphytic, oxicspecies with Elphidiids and four major speciesL. lobatula, A. planorbis, N. terquemi, R. globula-ris. From the circalittoral to the bathyal zones,two E.G.s are de¢ned: (E.G.4) epifaunal oxic spe-cies represented by Gyroidinoides spp., Cibici-doides spp., A. granosus, H. elegans, N. schreiber-sii ; (E.G.5) infaunal, opportunistic, dysoxicspecies dominated by buliminaceans (B. aculeata,B. echinata, B. elongata, U. peregrina, U. rutila),bolivinaceans (B. a¡. dilatata, B. dentelata) andwith R. spinulosa. The two latter E.G.s are asso-ciated with the bathyal zone: (E.G.6) epifaunal,oxic species with P. ariminensis ; (E.G.7) infaunal,opportunistic, dysoxic buliminaceans (B. costata,U. bononiensis, R. siphogenerinoides). The bathy-metrical distribution of the major species for eachE.G. is reported in Fig. 6.

5. Palaeoenvironmental interpretation (Table 2)

5.1. The pre-evaporitic Abad Member (Figs. 5 and6a)

The planktic foraminiferal assemblages arecomposed of O. universa, O. suturalis, O. bilobata,G. siphonifera ( = G. aequilateralis, recent form),species which are associated with warm-oligotro-phic waters (Hemleben et al., 1988) and reportedin sub-tropical provinces (Be, 1977). In the lowerpart of the section (samples A and B), benthicforaminifers are very rare, indicating hostile con-ditions in the bottom water. The upper part of thepre-evaporitic unit (samples C^E) is characterizedby high frequencies of infaunal dysoxic benthicspecies (E.G.5: Bulimina spp., Uvigerina spp. Rec-tuvigerina, Brizalina spp.). The association of in-faunal dysoxic species and warm-oligotrophicplanktic species indicates the existence of oxy-gen-poor, organic-rich, eutrophic waters at thebottom, and oligotrophic, normal salinity watersat the surface (Jorissen, 1999; Sierro et al., 1999;Vazquez et al., 2000). So, all samples of the pre-evaporitic Abad Member show a strati¢cation ofthe water column, resulting in dysoxic bottomwaters.

Brizalina dilatata has been recorded from 75 m

depth in the western Mediterranean (Bizon andBizon, 1984) and from 100 m in the AdriaticSea (Chierici et al., 1962). In the case of B. acu-leata, this species occurs in deeper intervals, from170 to 350 m in the western Mediterranean (Bizonand Bizon, 1984) and from 200 to 500 m in theGulf of Mexico (Culver, 1988). Amongst the ma-jor benthic species of the pre-evaporitic AbadMember, R. arquatensis (recent form of R. sipho-generinoides) live at the largest water depths(E.G.7). Lutze (1980) has observed this form liv-ing along the coast of Africa from 340 to 520 mdepth. Additional oxic taxa are not common andall specimens of epiphytic species (E.G.3) aredamaged (e.g. L. lobatula, E. aculeatum, E. cris-pum, R. globularis). These specimens were pre-sumably transported on the plant substrates (sea-grass and/or algae) from the shelf to the bathyalzone. This kind of distribution is known in recentassemblages (Mou£i-el-Houari et al., 1999).

All samples of the pre-evaporitic Abad Memberindicate an upper bathyal environment. Becauseof the absence of benthic specimens in sampleA, and due to the pyritization of the specimensin sample E, no precise range of paleodepth canbe estimated from these two samples. Neverthe-less, the two samples suggest the existence of astrong water strati¢cation. Samples B^D, withthe successive occurrences of R. siphogenerinoides(E.G.7), B. aculeata and B. a¡. dilatata (E.G.5),show a progressive shallowing from the upperbathyal to the lower limit of the circalittoralzone. The epifaunal species (E.G.5, E.G.7) ofsample C show that the strati¢cation became pe-riodical. According to the occurrences of the epi-phytic species (E.G.3), the marine plants werewell-developed in the lower part of the sectionand seem to have disappeared in the upper partof the pre-evaporitic Abad Member.

Along the pre-evaporitic marls (samples A^E),the occurrences of bivalves and diatoms indicate acircalittoral environment with normal-oxygenatedconditions (Lacour et al., 2000; Saint-Martin etal., 1999). However, the presence of the irregularechinoid Brissopsis atlantica in the limestones ofnearby levels (between marl layers B and C) mayindicate an anoxic episode. Indeed, Brissopsis pa-ci¢ca lives today in the oxygen-minimum zone at

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7870

about 200^400 m water depth in the Paci¢c Ocean(Thompson et al., 1985; Bernhard, 1992).

The pre-evaporitic Messinian of Los Yesos(Fig. 6a) thus corresponds to a distal platform(upper bathyal to circalittoral) with periodicalwater strati¢cation: (1) the upper bathyal bot-

tom-water environment was poorly-oxygenated,eutrophic, and colonized by infaunal species, (2)the warm-oligotrophic surface water was charac-terized by planktic communities dominated by O.universa, and (3) the infralittoral zone was colon-ized by coral-reefs and/or plant substrates.

Fig. 6. The Messinian of the Los Yesos area (Sorbas Basin): paleoenvironmental interpretations based on the foraminifers.(a) The pre-evaporitic Abad Member; (b) the base of the evaporitic Yesares Member; (c) the mid-part of the evaporitic YesaresMember.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 71

5.2. The evaporitic Yesares Member (Figs. 5 and6b,c)

The macrofauna (bivalves ^ Pecten, Spondylus^, gastropods ^ Turritella ^, scaphopods) of thetwo levels of black sandstones interbedded in thegypsum layers are associated with an infralitto-ral environment with normal salinity and nor-mal-oxygenated conditions (Saint-Martin et al.,2000).

The third marly intercalation in the gypsum(samples F^H) are characterized by high frequen-cies (55^65%) of three species (E.G.1): A. tepida,H. germanica, and P. granosum. These species areactually abundant in typical paralic environments,such as lagoon, estuary and restricted bay (Debe-nay et al., 2000). They are considered to have awide tolerance to environmental variations. Po-rosononion granosum is today found in the Venicelagoon (Albani et al., 1991) and in the AdriaticSea in a zone parallel to the Italian coast, wherethe bulk of the Po river runo¡ is deposited (Jo-rissen, 1988), and the species seems to be linked tothis runo¡ (Geslin, 1999). On the other hand, A.tepida and H. germanica are observed in severalparalic environments (Debenay et al., 2000). Someadditional taxa belong to the epi/infaunal group(E.G.2): A. beccarii, Oolina sp., and Para¢ssurinasp. In the recent environments, A. beccarii is ob-served up to 100 m depth. The epiphytic group(E.G.3) constitutes 4^24% of the assemblage andis represented by preferentially photophile forms(Elphidium spp.), by mainly sciaphile forms (C.refulgens, L. lobatula, G. gibba, N. terquemi, R.globularis), or by indiscriminately photophile orsciaphile forms (A. planorbis, C. auriculus) (Kita-zato, 1988; Langer, 1988, 1993; Langer et al.,1998). The assemblages are composed of 1^15%of circalittoral to upper bathyal species. Amongstthese additional taxa, up to 6% are epifaunal oxicspecies (E.G.4: A. granosus, Cibicidoides sp.,Gyroidinoides sp., P. ariminensis) and up to 15%are infaunal dysoxic species (E.G.5: B. a¡. dilata-ta, Polymorphina sp., B. minima, R. spinulosa, G.laevigata). This Messinian assemblage corre-sponds to the fauna presently observed in thenorthern Adriatic Sea in front of the Po estuary(Jorissen, 1988).

The additional fauna (bivalves, echinoids, bryo-zoas, crabs, ostracods) indicate environmentsfrom the infralittoral to the circalittoral zone (La-cour and Neraudeau, 2000; Saint-Martin et al.,2000).

The foraminifers indicate a deepening trendfrom the base to the mid-part of the marls ofthe evaporitic Yesares Member. In the marlsjust above the third selenite gypsum layer (sampleF), A. tepida (E.G.1) and additional taxa, belong-ing to the epifaunal or shallow-infaunal (A. bec-carii) group as well as to the epiphytic photophilegroup, indicate an infralittoral environment withrestricted water circulation, leading to variationsin salinity, organic matter and oxygen content(Fig. 6b). The mid-part of the marls (samples Gand H), with P. granosum (E.G.1) and the risingcontents of epiphytic sciaphile and oxic circalit-toral species, traduce a more open marine envi-ronment with an increasing depth from 20 to 60^80 m, which is characterized by continental in£u-ences (oxygen, organic matter and clay content),but without major changes in salinity (Fig. 6c).

These fossiliferous marine deposits (blacksands, marls and limestones) are interbedded inthe gypsum layers. The texture of the gypsum in-dicates that the selenitic gypsum formed by sub-aqueous growth of crystals nucleated on the bot-tom of hypersaline pools. The characteristics ofthe uppermost part of the gypsum layers (nodularand chicken-wire facies, and erosional features)indicate that the basin was desiccated at the endof each evaporitic episode. The fact that thesefacies are overlain by marine deposits (blacksands, marls and limestones) indicates a rapid re-£ooding of the basin by marine water after eachdesiccation event.

The Yesares Member is, hence, characterizedby episodes of basin restriction interrupted by pe-riods of normal marine conditions. Each episodeof gypsum deposition ends with desiccation beforea new phase of re£ooding by marine waters,which permits the development of marine organ-isms. The third marine intercalation (marls andlimestones with micro- and macrofauna) in thegypsum of the evaporitic Yesares Member corre-sponds to the major re£ooding by marine watersduring this evaporitic period.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7872

6. Evolution of the biodiversity and survival ofspecies

The species occurring in both pre-evaporiticand evaporitic deposits belong to the epiphyticgroup (E.G.3: L. lobatula, R. globularis and E.crispum), the infaunal group (E.G.5: B. a¡. dila-tata, Polymorphina sp.) and the epifaunal group(E.G.6: P. ariminensis). So, all ecomorphologicalgroups occurring in the infralittoral to the upperbathyal zone survive to the main part of the evap-oritic period. The occurrences of bivalves, echi-noids, bryozoa, crabs, ostracods, foraminifersand marine plants (substrates for epiphytic spe-cies) in the evaporitic unit indicate that the bio-diversity of the infralittoral to upper bathyal en-vironment is high immediately after thedeposition of three layers of selenite gypsum (upto 60 m thick).

Amongst the 52 species of foraminifers recog-nized in the Los Yesos section, 47 have beenrecorded in the Mediterranean Tortonian and48 have been noticed in the Mediterranean Low-er Pliocene. Thus, ¢ve species appear during theMessinian period (A. tepida, H. germanica, E.margaritaceum, S. savenae, and G. mediterranea),whereas three species disappear from the Med-iterranean Basin at the Messinian^Plioceneboundary (B. echinata, B. dentelata, G. mediter-ranea). Globorotalia mediterranea is consideredto be a chronological marker in the Mediter-ranean Basin according to Bizon and Bizon(1972).

According to the stratigraphic occurrences ofthe species recorded in Los Yesos, the Late Mes-sinian environmental changes were only fatal fortwo benthic species (B. echinata and B. dentelata),i.e. less than 5% of the species.

7. Comparisons and discussion

7.1. Foraminiferal assemblages

The species recorded in the Los Yesos area ofthe Sorbas Basin (Table 1; Table 2; Appendix)have previously been found in di¡erent basins ofthe Betic Cordillera: (1) the Sorbas Basin (Ott

d'Estevou, 1980; Montenat et al., 1980; Troelstraet al., 1980; Conesa, 1997; Conesa and Babinot,1999; Sierro et al., 1999), (2) the Carboneras-Ni-jar Basin (Fig. 1) (Poore and Stone, 1981; Van dePoel, 1992), and (3) the San Miguel de SalinasBasin (Fig. 1) (Garcin, 1987; Michalzik et al.,1993; Michalzik, 1996). All of these studiesmainly analyzed the pre-evaporitic foraminiferalassemblages. However, the fossiliferous layers in-terbedded within the evaporitic unit have beenonly studied in the Sorbas Basin by Ott d'Estevou(1980) and Montenat et al. (1980), and in theCarboneras-Nijar Basin by Van de Poel (1992).Finally, the post-evaporitic unit has been reviewedin the Carboneras-Nijar Basin by Poore andStone (1981) and Van de Poel (1992).

The di¡erent kinds of foraminifers are not rep-resented at the same ratio in the basins of theBetic Cordillera. The absence or rarity of aggluti-nated foraminifers observed in the Los Yesos sec-tion is a characteristic of the Messinian depositsas a whole and not only of the evaporitic series.The absence of porcelaneous foraminifers in oursamples is surprising because Ott d'Estevou(1980) recorded miliolids in the Los Yesos area.Finally, in the case of the hyaline taxa, the bio-diversity of our samples is very high compared tothe results obtained by Ott d'Estevou (1980) andMontenat et al. (1980).

7.2. Palaeoenvironmental interpretations

The ¢rst paleodepth estimations were proposedby Dronkert (1976) and Pagnier (1976) from sed-imentological studies of the pre-evaporitic andevaporitic deposits of the Sorbas Basin. Dronkert(1976) estimates the initial maximum pre-evapor-itic water depth (the Abad Member) at 200 m.The minimum depth of evaporite deposition (theYesares Member) was at least 10 m, and the max-imum depth was about 70 m (Pagnier, 1976).From the lowermost to the uppermost gypsumlayers, this author shows a deepening trend from10 to 70 m. On the other hand, the geochemicaldata indicate that the gypsum from the SorbasBasin precipitated mostly in subaqueous condi-tions from marine-derived brines (Rosell et al.,1998; Playa et al., 2000). All of these data are

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 73

in good agreement with our interpretations(Fig. 5).

The paleoenvironmental interpretations for thepre-evaporitic foraminiferal assemblages of theSorbas Basin were conducted by Sierro et al.(1999) and Vazquez et al. (2000). These authorspoint out the presence of water strati¢cation dur-ing the Messinian pre-evaporitic deposits basedon the study of the lowermost part of the upperAbad Member in the eastern part of the SorbasBasin. Sierro et al. (1999) suggest a bathyal envi-ronment with a sedimentary cyclicity (sapropels :laminated brownish organic-rich layer, followingthe terminology of Hilgen et al., 1995); this phe-nomenon is well-known in the Mediterranean Ba-sin from the Miocene to the Late Quaternary(Katz and Thunell, 1984; Jorissen, 1999). Our ob-servations on the pre-evaporitic Abad Member(the uppermost part just below the selenitic gyp-sum layers) indicate a similar trend, with two dif-ferent points, which complete the paleoenviron-mental interpretations concerning the pre-evaporitic period in the Sorbas Basin. Firstly,the foraminiferal assemblages of the uppermostpart of the pre-evaporitic unit indicate a shallow-ing environment trend from the upper bathyal tothe circalittoral zone in a distal platform. Sec-ondly, the phenomena of water strati¢cation oc-cur, but no saprophylic layers have been observedin the uppermost part of the pre-evaporitic AbadMember.

The periodically restricted, marine environ-ments preceding the deposits of evaporites in theBetic Cordillera have been previously indicated inthe Carboneras-Nijar Basin (Fig. 1) (Van de Poel,1992), in the Lorca Basin (Fig. 1) (Rouchy et al.,1998; Wrobel and Michalzik, 1999; Ste¡ahn andMichalzik, 2000) and in the Fortuna Basin (Fig. 1)(Dinare©s-Turell et al., 1999).

In the case of the evaporitic Yesares Member,micropaleontological data from the Sorbas Basinare sparse. Montenat et al. (1980) cite some gen-era: Elphidium (keeled), Melonis, Reussella, Epo-nides, Glabratella. These authors estimate a pale-odepth of several tens of meters but less than 100m. In our study, the younger evaporitic fossilifer-ous sample (H; Table 1) corresponds to this paleo-

depth interpretation (Figs. 5 and 6). The under-lying samples (F and G; Table 1) allow us toshow a deepening trend in the marls interbeddedin the evaporitic unit of the Sorbas Basin (Figs. 5and 6). These samples indicate the complete re-construction of the normal marine environmentwith the development of (1) the marine plants(for the epiphytic species), (2) benthic foraminifers(epifaunal and infaunal species), and (3) associ-ated microfauna (ostracods) and macrofauna(echinoids, bivalves). This normal marine environ-ment reconstructed during the evaporitic period iscolonized by the same fauna, which has been ob-served in the marine environment during the pre-evaporitic period in the Sorbas Basin.

In the southern part of the Betic Cordillera, theevaporitic unit of the Carboneras-Nijar Basin hasbeen studied by Van de Poel (1992). In the inter-bedded marls of this unit, Van de Poel (1992)observed planktic (Turborotalia quinqueloba) andbenthic (Ammonia, Elphidium, Bolivina, miliolids)foraminifers, and deduced the existence of infra-to circalittoral environments.

This set of data show that during the evaporiticperiod, the ecological conditions in the water col-umn were intermittently favorable to the develop-ment of marine organisms, and moreover, themarginal basins of the Betic Cordillera were notcontinuously desiccated during the Messinian.

7.3. Impact of the `Messinian Salinity Crisis' onthe foraminifers

The occurrences of benthic foraminifers in theupper part of the evaporitic unit of the SorbasBasin, and the low percentage of extinct species(less than 5%) during the Late Messinian indicatethat (1) the foraminiferal biodiversity was not sig-ni¢cantly modi¢ed during the Messinian^Plioceneperiod and (2) the infralittoral to upper bathyalenvironments still supported a foraminiferal faunaduring the `Messinian Salinity Crisis'. Neraudeauet al. (1999) have demonstrated the same trendfrom the echinoids faunas. The `Messinian Salin-ity Crisis' has been a very light impact on thefauna living in the infralittoral to upper bathyalenvironments.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7874

8. Conclusions

The foraminiferal assemblages of the Messiniandeposits of the Los Yesos area in the Sorbas Ba-sin allow us to show the paleoenvironmentalchanges during the pre-evaporitic and the evapor-itic times. In the pre-evaporitic Abad Member,the occurrence of planktic species (Globorotaliaspp., Globigerinoides spp., Neogloboquadrinaspp.) and benthic species (Planulina ariminensis,Gyroidinoides soldanii, Neoeponides schreibersii,Cibicides ungerianus) indicate an upper bathyalto circalittoral environment with open marineconditions. These open marine conditions are dis-rupted by episodes of water strati¢cation: theplanktic foraminiferal assemblages are dominatedby Orbulina universa and the benthic foraminifers(Brizalina spp., Rectuvigerina spp., Bulimina spp.)indicate the existence of oxygen-poor, organic-rich waters at the bottom. The epiphytic damagedforaminifers and the blocks of Porites point outthe presence of plant substrates and coral-reefs onthe infralittoral zone. The pre-evaporitic paleoen-vironments of the Los Yesos area correspond torestricted conditions recorded before the evapor-itic unit in the western Mediterranean Basin.

The pre-evaporitic Abad Member is overlain byup to 70 m thick of selenite gypsum (the evapor-itic Yesares Member). Deposits are characterizedby four subaqueous selenitic gypsum layers endedby desiccation facies, and three marine fossilifer-ous intercalations (from the base to the top):(1) two layers of black sands and conglomerateswith bivalves, gastropods and scaphopods, and(2) marls and limestones with bivalves, echinoids,crabs, bryozoa, ostracods and foraminifers. Thebase of this last fossiliferous level, located in theupper part of the evaporitic unit, indicates a rapidrecovery of marine conditions associated with anincreasing depth: (1) from the paralic infralittoralzone (Ammonia tepida), (2) to the infralittoralzone with some continental inputs (Porosononiongranosum), and (3) to the circalittoral environ-ment (Neoconorbina terquemi, epiphytic Elphi-diids, Reussella spinulosa). Finally, the gypsumlayers characterize episodes of basin restriction.Each episode of gypsum deposition ended by aphase of desiccation before a new phase of re-

£ooding by marine waters which permitted thedevelopment of marine organisms. Thus, the mar-ginal basins of the Betic Cordillera were not con-tinuously desiccated during the Messinian.Amongst the foraminiferal species recorded inthe Messinian deposits of the Sorbas Basin, 95%occur in the Lower Pliocene deposits of the west-ern Mediterranean area. The low percentage ofextinct species (5%), the high biodiversity in theevaporitic unit, and the occurrences of benthicforaminifers (in this evaporitic unit) indicate thatthe infralittoral to upper bathyal environmentshave not been completely modi¢ed and/or barrenduring the `Messinian Salinity Crisis'. The Messi-nian environmental changes marked by the depo-sition of evaporites are not associated with a bio-logical crisis, and the study of this faunainterbedded in the evaporitic unit may be usedfor a better understanding of sedimentary andpaleoenvironmental cyclicities during the evapor-itic period.

Acknowledgements

We thank G. Camoin (CEREGE, Aix-en-Provence, France) who organized in Septemberof 1999 the international symposium on `Paleo-ceanology of Reefs and Carbonate Platforms:Miocene to Modern', where this study was initiallypresented. M.S. Seidenkrantz, University of Aar-hus, and F. Orti, University of Barcelona, aregratefully acknowledged for their reviews andvaluable suggestions. This study is a contributionto the Project `Impact of the Messinian Crisis onthe Mediterranean Fauna Biodiversity, Betweenthe Tortonian and the Present-Day' (part of theCRISEVOLE Program).

Appendix. List of species observed in the Los Yesoscomposite section (in alphabetical order)

Ammonia beccarii (Linne, 1758)Ammonia tepida (Cushman, 1926)Anomalinoides granosus (Hantken, 1875)Asterigerinata planorbis (d'Orbigny, 1846)Brizalina dentellata (Tavani, 1955)Brizalina dilatata (Reuss, 1850)

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 75

Bulimina aculeata (d'Orbigny, 1826)Bulimina costata (d'Orbigny, 1852)Bulimina echinata (d'Orbigny, 1852)Bulimina elongata (d'Orbigny, 1846)Bulimina minima (Tedeschi and Zanmatti, 1957)Cancris auriculus (Fichtel and Moll, 1798)Cibicides refulgens (de Montfort, 1808)Cibicidoides ungerianus (d'Orbigny, 1846)Elphidium aculeatum (d'Orbigny, 1846)Elphidium crispum (Linne, 1758)Elphidium ¢chtellianum (d'Orbigny, 1839)Elphidium margaritaceum (Cushman,)Glandulina laevigata (d'Orbigny, 1826)Globulina gibba (d'Orbigny, 1826)Gyroidinoides soldanii (d'Orbigny, 1826)Hanzawaia boueana (d'Orbigny, 1946)Haynesina germanica (Ehrenberg, 1840)Hoeglundina elegans (d'Orbigny, 1826)Lagena laevis (Montagu, 1803)Lenticulina calcar (Linne, 1758)Lobatula lobatula (Walker and Jacob, 1798)Martinottiella communis (d'Orbigny, 1826)Melonis pompilioides (Fichtel and Moll, 1798)Neoconorbina terquemi (Rzehak, 1838)Neoeponides schreibersii (d'Orbigny, 1846)Nodosaria acuminata (Hantken, 1875)Planulina ariminensis (d'Orbigny, 1826)Porosononion granosum (d'Orbigny, 1846)Rectuvigerina siphogenerinoides (Lipparini, 1932)Reussella spinulosa (Reuss, 1850)Rosalina globularis (d'Orbigny, 1826)Spiroloxostoma savenae (Conato, 1964)Textularia gramen (d'Orbigny, 1846)Uvigerina ? bononiensis (Fornasini, 1888)Uvigerina peregrina (Cushman, 1923)Uvigerina rutila (Cushman and Todd, 1941)

References

AGIP, S.p.A., 1982. Foraminiferi Padani, second edition.AGIP S.p.A. San Donato Milanese, Milano.

Albani, A., Favero, V.M., Serandrei Barbero, R., 1991. Thedistribution and ecological signi¢cance of recent foramini-fera in the lagoon south of Venice (Italy). Rev. Esp. Micro-paleontol. XXIII, 29^45.

Be, A.W.H., 1977. An ecological, zoogeographic and taxonom-ic review of recent planktonic foraminifera. In: Ramsay,A.T.S. (Ed.), Oceanic Micropaleontology, Vol. 1, AcademicPress, London, pp. 1^100.

Berggren, W.A., Haq, B.U., 1976. The Andalusian stage (LateMiocene): biostratigraphy, biochronology and paleoecology.Palaeogeogr. Palaeoclimatol. Palaeoecol. 20, 67^129.

Bernhard, J.M., 1986. Characteristic assemblages and mor-phologies of benthic foraminifera from anox, organic-rich

deposits: Jurassic through Holocene. J. Foraminifer. Res.16, 207^215.

Bernhard, J.M., 1992. Benthic foraminiferal distribution andbiomass related to pore-water oxygen content: central Cal-ifornia continental slope and rise. Deep-Sea Res. 39, 585^605.

Bizon, G., Bizon, J.J., 1972. Atlas des Principaux Foramini-fe©res Planctoniques du Bassin Mediterraneen: Oligoce©ne a©Quaternaire. Technip. In: Association Franc°aise des Tech-niciens du Petrole (Eds), ECOMED, Paris.

Bizon, G., Bizon, J.J., 1984. Ecologie des Foraminife©res enMediterranee Nord-occidentale. Association Franc°aise desTechniciens du Petrole `ECOMED', pp. 81^139.

Blanc-Vernet, L., Clairfond, P., Orsolini, P., 1979. La merPelagienne. Les foraminife©res. Geol. Mediterr. 6, 171^209.

Chierici, M.A., Busi, M.T., Cita, M.B., 1962. Contribution a©une etude ecologique des foraminife©res dans la mer Adria-tique. Rev. Micropaleontol. 5, 123^142.

Cimerman, F., Langer, M.R., 1991. Mediterranean Foramin-ifera. Slovenska Akademija Znanosti in Umetnosti, Ljublja-na.

Conesa, G., 1997. Geometrie et biosedimentologie d'une plate-forme carbonatee messinienne (bassin de Sorbas, Sud-Estde l'Espagne). Ph.D. Thesis. Aix-Marseille I Univ., Mar-seille.

Conesa, G., Babinot, J.F., 1999. Le Messinien inferieur desmarges carbonatees du bassin de Sorbas (sud-est Espagne):organisation sedimentaire, microfaunes et paleoenvironne-ments. Rev. Micropaleontol. 42, 255^267.

Conesa, G., Saint-Martin, J.-P., Cornee, J.-J., Muller, J., 1999.Nouvelles contraintes sur la crise de salinite messinienne parl'etude d'une plate-forme carbonatee marginale (bassin deSorbas, Espagne). C. R. Acad. Sci. Paris Ser. 2, 81^87.

Coppa, M.G., 1987. Les foraminife©res des carottages holoce©nesde plate-forme continentale sarde. Geol. Mediterr. 14, 25^43.

Corliss, B.H., 1985. Microhabitats of benthic foraminiferawithin deep-sea sediments. Nature 314, 435^438.

Corliss, B.H., Chen, C., 1988. Morphotype patterns of Norwe-gian Sea deep-sea benthic foraminifera and ecological impli-cations. Geology 16, 716^719.

Culver, S.J., 1988. New foraminiferal depth zonation of thenorthwestern Gulf of Mexico. Palaios 3, 69^85.

Debenay, J.P., Guillou, J.J., Redois, F., Geslin, E., 2000. Dis-tribution trends of foraminiferal assemblages in paralic en-vironments: a base for using foraminifera as early warningindicators of anthropic stress. In: R. Martin (Ed.), Environ-mental Micropaleontology, Vol. 15 of Topics in Geobiology.Kluwer Academic, NY, pp. 39^67.

Dinare©s-Turell, J., Orti, F., Playa, E., Rosell, L., 1999. Palaeo-magnetic chronology of the evaporitic sedimentation in theNeogene Fortuna Basin (SE Spain): early restriction preced-ing the `Messinian Salinity Crisis'. Palaeogeogr. Palaeocli-matol. Palaeoecol. 154, 161^178.

Dronkert, H., 1976. Late Miocene evaporites in the SorbasBasin and adjoining areas. Mem. Soc. Geol. Ital. 16, 341^361.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7876

Duleba, W., Debenay, J.-P., Beck Eichler, B., Michaelovitchde Mahiques, M., 1999. Holocene environmental and watercirculation changes: foraminifer morphogroups evidence inFlamengo Bay (SP, Brazil). J. Coast. Res. 15, 554^571.

Esteban, M., Braga, J.C., Martin, J.M., Santisteban, C., 1996.Western Mediterranean reef complexes. In: Franseen, E.K.,Esteban, M., Ward, W.C., Rouchy, J.M. (Eds.), Models forCarbonate Stratigraphy from Miocene Reef Complexes ofMediterranean Regions. Soc. Econ. Paleontol. Mineral.Concepts Sedimentol. Paleontol. Ser. 5, 55^72.

Garcin, M., 1987. Le bassin de San Miguel de Salinas (Ali-cante, Espagne), relations entre contexte structuro-sedimen-taire et depoªts evaporitiques et carbonates au Messinien.Ph.D. Thesis. Paris-Sud Univ., Orsay.

Geslin, E., 1999. Impact des stress environnementaux sur lespeuplements, la morphologie et la texture des foraminife©resparaliques: implication pour leur utilisation comme bioindi-cateurs. Ph.D. Thesis. Angers Univ., Angers.

Haake, F.W., 1977. Living benthic foraminifera in the AdriaticSea: in£uence of water depth and sediment. J. Foraminifer.Res. 7, 62^75.

Hemleben, C., Spindler, M., Anderson, O.R., 1988. ModernPlanktonic Foraminifera. Springer, Berlin.

Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J.,Santarelli, A., Zachariasse, W.J., 1995. Extending the astro-nomical (polarity) time scale into the Miocene. Earth Planet.Sci. Lett. 136, 495^510.

Hsu« , K.J., Montadert, L., Bernouilli, D., Cita, M.B., Erickson,A., Garrison, R.E., Kidd, R.B., Melie©res, F., Mu«ller, C.,Wright, R., 1977. History of the Messinian salinity crisis.Nature 267, 399^403.

Jones, R.W., Charnock, M.A., 1985. `Morphogroups' of ag-glutinated foraminifera. Their life positions and feeding hab-its and potential applicability in (paleo)ecological studies.Rev. Paleobiol. 4, 311^320.

Jorissen, F.J., 1988. Benthic foraminifera from the AdriacticSea: principles of phenotypic variation. Utrecht Micropa-leontological Bull. 37, 1^174.

Jorissen, F.J., Barmawidjaja, D.M., Puskaric, S., van derZwaan, G.J., 1992. Vertical distribution of benthic foramin-ifera in the northern Adriatic Sea: the relation with theorganic £ux. Mar. Micropaleontol. 19, 131^146.

Jorissen, F.J., 1999. Benthic foraminiferal successions acrossLate Quaternary Mediterranean sapropels. Mar. Geol. 153,91^101.

Kaiho, K., 1994. Benthic foraminiferal dissolved-oxygen indexand dissolved-oxygen levels in the modern ocean. Geology22, 719^722.

Katz, M.E., Thunell, R.C., 1984. Benthic foraminiferal bio-facies associated with Middle Miocene to Early Plioceneoxygen-de¢cient conditions in the eastern Mediterranean.J. Foraminifer. Res. 14, 187^202.

Kitazato, H., 1988. Ecology of benthic foraminifera in thetidal zone of a rocky shore. Rev. Paleobiol. Benthos 86,815^825.

Krijgsman, W., Langereis, C.G., Zachariasse, W.J., Boccaletti,M., Moratti, G., Gelati, R., Iaccarino, S., Papani, G., Villa,

G., 1999a. Late Neogene evolution of the Taza-Guercif Ba-sin (Ri¢an Corridor, Morocco) and implications for theMessinian salinity crisis. Mar. Geol. 153, 147^160.

Krijgsman, W., Hilgen, F.J., Ra¤, I., Sierro, F.J., Wilson,D.S., 1999b. Chronology, causes and progression of theMessinian salinity crisis. Nature 400, 652^655.

Lacour, D., Neraudeau, D., 2000. Evolution de la biodiversitedes Brissopsis (Echinoida, Spatangoida) en Mediterranee en-tre le Messinien et l'Actuel: application paleoecologique auxB. lyrifera intragypses de Sorbas (SE Espagne). Geodiversi-tas 22, 509^523.

Lacour, D., Lauriat-Rage, A., Neraudeau, D., Saint-Martin,J.P., 2000. Impact de l'evenement messinien sur les bivalveset les echinides du Bassin de Sorbas (SE Espagne). In: So-ciete geologique de France (Ed.), 18³ Reunion des Sciencesde la Terre, 17^20 avril 2000, Paris, France.

Langer, M., 1988. Recent epiphytic foraminifera from Vulcano(Mediterranean Sea). Rev. Paleobiol. Benthos 86, 827^832.

Langer, M.R., 1993. Epiphytic foraminifera. Mar. Micropa-leontol. 20, 235^265.

Langer, M.R., Frick, H., Silk, M.T., 1998. Photophile andsciaphile foraminiferal assemblages from marine plant com-munities on Lavezzi Islands (Corsica, Mediterranean Sea).Rev. Paleobiol. 17, 525^530.

Levy, A., 1971. Eaux saumatres et milieux margino-littoraux.Rev. Geogr. Phys. Geol. Dynam. 13, 269^278.

Loeblich, A.R., Tappan, H., 1988. Foraminiferal genera andtheir classi¢cation. Van Nostrand Reinhold, New York.

Lutze, G.F., 1980. Depth distribution of benthic foraminiferaon the continental margin o¡ NW Africa. Meteor Forsch.er-geb 32, 31^80.

Martin, J.M., Braga, J.C., 1996. Tectonic signals in the Messi-nian stratigraphy of the Sorbas Basin (Almeria, SE Spain).In: Friend, P.F., Dabrio, C.J. (Eds.), Tertiary Basin ofSpain: The Stratigraphic Record of Crustal Kinematics.Cambridge University Press, Cambridge, UK, pp. 387^391.

Michalzik, D., 1996. Lithofacies, diagenetic spectra and sedi-mentary cycles of Messinian (Late Miocene) evaporites inSE Spain. Sediment. Geol. 106, 203^222.

Michalzik, D., Elbracht, J., Mauthe, F., Reinhold, C.,Schneider, B., 1993. Messinian facies relations in the SanMiguel de Salinas Basin, SE Spain. Z. Deutsch Geol. Ges.144, 352^369.

Montenat, C., Ott d'Estevou, P., Plaziat, J.C., Chapel, J.,1980. La signi¢cation des faunes marines contemporainesdes evaporites messiniennes dans le sud-est de l'Espagne.Consequences pour l'interpretation des conditions d'isole-ment de la Mediterranee occidentale. Geol. Mediterr. 6,81^90.

Mou£i-el-Houari, L., Ambroise, D., Mathieu, R., 1999. Dis-tribution des foraminife©res benthiques actuels sur la margecontinentale algeroise (Baie de Bou-Isma|«l). Rev. Micropa-leontol. 42, 315^327.

Murray, J.W., 1991. Ecology and paleoecology of benthic for-aminifera. Longman Scienti¢c and Technical, New York.

Neraudeau, D., Roman, J., Borghi, E., 1999. Impact of theMessinian crisis on the Mediterranean echinoid fauna. In:

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^78 77

Candia, M.D. and Bonasoro, F. (Eds.), Echinoderm Re-search, 1998. Balkema, Rotterdam, pp. 355^360.

Ott d'Estevou, P., 1980. Evolution dynamique du bassin neo-ge©ne de Sorbas (Cordille©res betiques orientales, Espagne).Doc. Trav. IGAL Paris 1, 1^264.

Ott d'Estevou, P., Montenat, C., 1990. Le bassin de Sorbas-Tabernas. Doc. Trav. IGAL Paris 12^13, 101^128.

Pagnier, H., 1976. Depth of deposition of Messinian seleniticgypsum in the basin of Sorbas (SE Spain). Mem. Soc. Geol.Ital. 16, 363^367.

Pere©s, J.M., Picard, J., 1964. Nouveau manuel de bionomiebenthique de la mer Mediterranee. Bull. Rec. Trav. Stat.Mar. Endoume 31, 5^23.

Playa, E., Orti, F., Rosell, L., 2000. Marine to non marinesedimentation in the Upper Miocene evaporites of the East-ern Betics, SE Spain: sedimentological and geochemical evi-dence. Sediment. Geol. 133, 135^166.

Poore, R.Z., Stone, S.M., 1981. Biostratigraphy and paleoecol-ogy of the Upper Miocene (Messinian) and loxer Pliocene(?) Cerro de Almendral section, Almeria Basin, southernSpain. US Geol. Surv. Prof. Pap. 774-F, 1^11.

Riding, R., Braga, J.C., Martin, J.M., 1999. Late MioceneMediterranean desiccation: topography and signi¢cance ofthe `Salinity Crisis' erosion surface on-land in southeastSpain. Sediment. Geol. 123, 1^7.

Rosell, L., Orti, F., Playa, E., Peryt, T.M., 1998. Strontiumgeochemistry of Miocene primary gypsum: Messinian ofsoutheastern Spain and Sicily and Badenian of Poland.J. Sediment. Res. 68, 63^79.

Rouchy, J.M., Taberner, C., Blanc-Valleron, M.-M., Sprovieri,R., Russell, M., Pierre, C., Stefano Di, E., Pueyo, J.J., Car-uso, A., Dinare©s-Turell, J., Gomis-Coll, E., Wol¡, G.A.,Cespuglio, G., Ditch¢eld, P., Pestrea, S., Combourieu-Neb-out, N., Santisteban, C., Grimalt, J.O., 1998. Sedimentaryand diagenetic markers of the restriction in a marine basin:the Lorca basin (SE Spain) during the Messinian. Sediment.Geol. 121, 23^55.

Saint-Martin, J.-P., Pestrea, S., Conesa, G., 1999. Les assem-blages de diatomees des niveaux infra-gypseux du bassinmessinien de Sorbas (Espagne). 18e©me Colloque del'A.D.L.A.F., Nice, France, 14^17 September 1999, pp.54^55.

Saint-Martin, J.-P., Neraudeau, D., Lauriat-Rage, A., Gou-bert, E., Secretan, S., Babinot, J.F., Boukli-Hacene, S.,Pouyet, S., Lacour, S., Pestrea, S., Conesa, G., 2000. Lafaune interstrati¢ee dans les gypses messiniens de Los Yesos(Bassin de Sorbas, SE, Espagne): implications. Geobios 33,637^649.

Sen Gupta, B.K., Machain-Castillo, M.L., 1993. Benthic for-

aminifera in oxygen-poor habitats. Mar. Micropaleontol. 20,183^201.

Severin, K.P., 1983. Test morphology in benthic foraminiferaas discriminator of biofacies. Mar. Micropaleontol. 8, 65^76.

Sierro, F.J., Flores, J.A., Zamarreno, I., Vazquez, A., Utrilla,R., Frances, G., Hilgen, F.J., Krijgsman, W., 1999. Messi-nian pre-evaporite sapropels and precession-induced oscilla-tions in western Mediterranean climate. Mar. Geol. 153,137^146.

Soria, J.M., Fernandez, J., Viseras, C., 1999. Late Miocenestratigraphy and palaeogeographic evolution of the intra-montane Guadix Basin (Central Betic Cordillera, Spain):implications for an Atlantic-Mediterranean connection. Pa-laeogeogr. Palaeoclimatol. Palaeoecol. 151, 255^266.

Ste¡ahn, J., Michalzik, D., 2000. Foraminiferal paleoecologyand biostratigraphy in the pre- and post-evaporitic late Mio-cene (Messinian) of the Lorca Basin, SE Spain. Neues Jahrb.Geol. Pala«ont. Abh. 217, 267^288.

Thompson, J.B., Mullins, H.T., Newton, C.R., Vercoutere,T.L., 1985. Alternative biofacies model for dysaerobic com-munities. Lethaia 18, 167^179.

Troelstra, S.R., Van de Poel, H.M., Huisman, C.H.A., Geer-lings, L.P., Dronkert, H., 1980. Paleoecological changes inthe latest Miocene of Sorbas Basin, S.E. Spain. Geol. Me-diterr. 6, 115^126.

Van de Poel, H.M., 1992. Foraminiferal biostratigraphy andpalaeoenvironments of the Miocene-Pliocene Carboneras-Nijar Basin (SE Spain). Scr. Geol. 102, 1^32.

Vazquez, A., Utrilla, R., Zamarreno, I., Sierro, F.J., Flores,J.A., Frances, G., Barcena, M.A., 2000. Precession-relatedsapropelites of the Messinian Sorbas Basin (South Spain):paleoenvironmental signi¢cance. Palaeogeogr. Palaeoclima-tol. Palaeoecol. 158, 353^370.

Venec-Peyre, M.T., 1984. Etude de la distribution des foramin-ife©res vivant dans la baie de Banyuls-sur-Mer. In Associa-tion Franc°aise des Techniciens du Petrole `ECOMED'. pp.60^80.

Venec-Peyre, M.T., Le Calvez, Y., 1988. Les foraminife©resepyphites de l'herbier de Posidonies de Banyuls-sur-Mer(Mediterranee occidentale): etude des variations spatiotem-porelles du peuplement. Cah. Micropaleontol. 3, 21^42.

Wright, R., 1978. Neogene benthic foraminifers from DSDP,Leg 42A, Mediterranean Sea. Initial Report Deep Sea Drill-ing Project 42, 709^726.

Wrobel, F., Michalzik, D., 1999. Facies successions in the pre-evaporitic Late Miocene of the Lorca Basin, SE Spain. Sedi-ment. Geol. 127, 171^191.

PALAEO 2732 27-12-01

E. Goubert et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 175 (2001) 61^7878