Flow characterization using a laser Doppler vibrometer

17
11/3/2005 1 Managing Uncertainties in Noise Measurements and Prediction, Le Mans, France, 27-29 June 2005 Faculty of Engineering Department of Mechanical Engineering ACOUSTICS & VIBRATION RESEARCH GROUP Pleinlaan 2 • B1050 Brussel • Belgium [email protected] • http://avrg.vub.ac.be Flow Characterization using a Laser Doppler Vibrometer J. Vanherzeele, S. Vanlanduit & P. Guillaume D. Ragni & M. Martarelli Università Politecnica delle Marche c/o Dipartimento di Meccanica Via Brecce Bianche - 60131 Ancona -Italia Flow in a cylinder wake

Transcript of Flow characterization using a laser Doppler vibrometer

11/3/2005 1Managing Uncertainties in Noise Measurements and Prediction, Le Mans,

France, 27-29 June 2005

Faculty of EngineeringDepartment of Mechanical Engineering

ACOUSTICS & VIBRATION RESEARCH GROUPPleinlaan 2 • B1050 Brussel • Belgium

[email protected] • http://avrg.vub.ac.be

Flow Characterization using a Laser Doppler Vibrometer

J. Vanherzeele, S. Vanlanduit & P. GuillaumeD. Ragni & M. Martarelli

Università Politecnica delle Marchec/o Dipartimento di Meccanica

Via Brecce Bianche - 60131 Ancona -Italia

Flow in a cylinder wake

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

2

Outline

• Introduction• Theoretical principal LDV measurements• Experiment and Simulation Outline

• LDV• PIV• CFD (short)

• Measurement results• Frequency content• Visual content

• Conclusions

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

3

Introduction

Visualizing acoustic waves• High intensity: Schlieren, holography, laser-speckle….• Low intensity, high spatial resolution or small measuring volumes ?

Visualizing flow• Intrusive: tracers (PIV, LDA…), pitot, hot wire …

Visualizing stress• Schlieren, shadow moiré, photoelasticity…• Image correlation

All applications measurable with one simple technique: LDV

Visualizing flow

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

4

Theoretical principal LDV measurements

• Classical use LDV:Laser light (freq ν) is scattered by moving object (vel v), undergoes frequency shift ∆ν only dependant on optical path laser z

• Full view equationMeasured displacement s depends also on refraction index medium n

λθν cos2v=∆

dtdztyxn

dttyxdnz

dtztyxnd

dttyxdstyxv ),,(),,(]),,([),,(),,( +===

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

5

Theoretical principal LDV measurements

• Measuring density fluctuationsKeep target steady; measure only turbulent effects (1st term full view eq)

Measurement volume containing flow

Retroreflective steady object

Laser Doppler Vibrometer

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

6

Theoretical principal LDV measurements

• Validation?

• LDV measurement = interferometric technique

⇒signal is line integral across optical path

⇒tomography necessary in case of 3D flows

• Provides only visual information and frequency content

• Visual comparison with average flow calculated from PIV & CFD

• Frequency content comparison with PIV, CFD & St-number

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

7

Experiment and Simulation Outline

Experimental set-up LDV•2 cylinders: ∅ 0.014 m & ∅ 0.062 m

•Glass wind tunnel (cross section 30 x 30 cm)

•3 velocities (11.2 m/s, 21.2 m/s and 31 m/s)

•Bandwidth 2kHz; freq resolution 5 Hz)

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

8

Experiment and Simulation Outline

Particle Image Velocimetry (Basics)

Light sheet opticsmirror

Light sheet

Illuminatedparticles

Flow direction

Flow with Tracer particles1st light pulse

2nd light pulse

Image plane

camera

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

9

Experiment and Simulation Outline

Particle Image Velocimetry (Basics)

X1

X2

X3 X1’

X2’

X3’

(a) (b)

X1

X2

X3X1’

X2’

X1’=X1

X2’=X2(c) (d)

framen-1

Camera

Light source

framen

framen+1

framen+2

∆t∆tShutterclosed

Cross Correlation

Timing diagram

∆t

δ

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

10

Experiment and Simulation Outline

Experimental set-up Particle Image Velocimetry (PIV)•Nd: YLF pulse laser; pulse energy 2 x 10 mJ at 1kHz

•1024 x 1024 pixel camera; 1500 Hz frame rate

•∆t laser: 20 µs

•Particle size: 4 µm - 5 µm (smoke)

•Velocity: 11.2 m/s

•Cylinder ∅ 0.014 m

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

11

Experiment and Simulation Outline

Processing Images Particle Image Velocimetry (PIV)

• Initial interrogation window (2000 image pairs): 32 x 32 pixels; 50% overlap (resolving vorticity); triple pass

• Frequency content extraction:

• Store velocity data vt in 3D- matrix vtime

• Fourier transform this matrix along the t-axis: vFour

• Rescale the frequency vector

),(),,( YXvtYXv ttime =

),(),,( tvFFTfYXv timeFour =

20001500

vecvec ff =

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

12

Experiment and Simulation Outline

Experimental set-up Particle Image Velocimetry (PIV)

PIV image

Velocity & Vorticitydistribution

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

13

Experiment and Simulation Outline

Computational Fluid Dynamics (CFD) settings• Numeca software; Euranus flow solver• Grid: O-type consisting of 1 block; 128 cells in circumferential & radial

direction; stretched mesh towards wall (viscous sub-layer + wake)

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

14

Experiment and Simulation Outline

Computational Fluid Dynamics (CFD) settings– Model: unsteady turbulent RANS calculation; turbulence modeled by

Baldwin-Lomax (∅ 0.062 m ∀ v & ∅ 0.014 m at 31 m/s); turbulence modeled by Spalart-Allmaras (∅ 0.014 m at 11.2 m/s & 21.2 m/s)

– 2nd order dual time stepping with 4-stage Runge-Kutta; multigrid on inner stages; physical time step: 0.0001 s

– Frequency content extraction: 2 possibilities– Store velocity data in 3D matrix and perform Fourier transform

– Fourier transforming the lift coefficient (at least 10 vortex sheddings)

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

15

Measurement Results

Frequency content

v (m/s) freq LDV (Hz) freq St (Hz) freq CFD (Hz) freq PIV (Hz)11.2 190 175 188 19421,2 360 325 354 /31 510 476 540 /

cylinder: 14 mm

v (m/s) freq LDV (Hz) freq St (Hz) freq CFD (Hz)11.2 42 39 4321,2 80 74 8031 115 108 112

cylinder: 62 mm

error cylinder: 14 mm (%) error cylinder: 62 mm (%)LDV-PIV 2,1 /LDV-CFD 3 1,6LDV-St 7,3 6,8

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

16

Measurement Results

Visual content: ∅ 0.014 m at 11.2 m/s LDV

PIV CFD

Optimess 2005

Acoustics & Vibration Research Group

Vrije Universiteit Brussel

17

Conclusions

• A Laser Doppler Vibrometer was used to characterize a cylinder wake (different cylinders+different velocities)

• The technique was validated by means of PIV-experiments and CFD-simulations

• LDV measurements proved able to extract frequency content quite well and provide a visual representation of the flow

• Advantages:• No tracer particles necessary• Full field view of flow, completely automated, almost no set-up• Ability to measure large bandwidth (1 Hz-several MHz)• Measurement time ≈ PIV, but far faster than CFD