CSIRO-EPA Melbourne Aerosol Study. Final Report J.L. Gras ...

194
SYSTEM CSIRO-EPA Melbourne Aerosol Study. Final Report J.L. Gras, R.W. Gillett, S.T. Bentley, G.P. Ayers, and T. Firestone CSIRO Division of Atmospheric Research March 1992 C.S.I.RO. t^VlSsONOF ATfy^SPf-ERfC research aspendale VIC.

Transcript of CSIRO-EPA Melbourne Aerosol Study. Final Report J.L. Gras ...

SYSTEM

CSIRO-EPA Melbourne Aerosol Study.

Final Report

J.L. Gras, R.W. Gillett, S.T. Bentley, G.P. Ayers,and T. Firestone

CSIRO Division of Atmospheric Research

March 1992

C.S.I.RO.t^VlSsONOF

ATfy^SPf-ERfCresearchaspendale

VIC.

This study report is presented as three sections:

Part A comprises a report on the ambient study design, results

and discussion.

Part B comprises a report on the design and results of a studyof aerosol sources.

Part C is a data summary.

LIBRARY

C.S1R.0.

DfVISIOfhlF

A"jM)SFl-EF!jCRESEA.F1CH

A^EhSALE

v'k;.

U9R^\RY

C.ai.flO.

OF

AT^)SP{-€R3C

REScAROI

ASF£?"i(}Ai£

VK).

Broadmeadows

MelbourneAirport

Preston

Heidelbero

;ALPHINGTONB Templestowe

Sunshiny

FOOTSCRAY^vvmelbourne Baiwyn

Nunawading

Richmond

Newport

St KildaAltona

BentleighBrighton

Springvale

Sandnngham

Dandenong

Mordialloc

•tAspendale

Map of Melbourne and surrounding suburban areas showing

the locations of the Alphington and Footscray sampling

sites.

PART A: AMBIENT STUDY AND INTERPRETATION

Contents page

Executive svimmary 4

Tables. 7

Figures 8

1. Introduction 13

2. Experiment description 13

2.1 Background-Pilot study 13

2.2 Study design 13

2.3 Sampling procedures

ambient sites, source studies and instrumentation 14

2.4 Analytical techniques 16

2.4.1 Chemical Measurements 16

2.4.2 Physical measurements 18

2.4.3 Particle sizing 19

2.4.4 Scattering coefficient (dry) Bsd 19

2.4.5 Data editing 19

3. Analyses and interpretation 20

3.1 Analytical techniques, intercomparisons,

data base 20

3.1.1 Comparison of Fluoropore and Nuclepore

collected mass 20

3.1.2 Comparison of PIXE elemental and soluble

ion concentrations 23

3.2 Scattering and Fine Particle Mass (FPM) 27

3.3 Fine Particle Mass (FPM) 32

3.3.1 Calculated and observed FPM - 32

3.3.2 Composition of FPM 35

3.4 Seasonal variation carbon 38

3.5 Bsd, Bap 45

3.5.1 Annual cycle of Bsd 45

3.5.2 Bap 4 5

3.6 Source contributions to the FPM and Bsd 45

3.7 Seasonal changes of source contributions 51

3.7.1 Aerosol acidity /Photochemistry /nss-S04 55

3.8 Late autumn early winter 64

3.9 Multiple linear regression models for FPM -

source contributions 72

3.10 Multiple linear regression models for Bsd -

source contributions 82

3.11 Organic trace compounds 90

3.12 Concluding.comments 93

4. Acknowledgements 95

5. References 96

APPENDIX 1, MLR model mass contributions 100

APPENDIX 2, MLR model Bsd contributions 108

Executive sxumnary

Ttie study

The Melbourne Aerosol Study was a collaborative projectcarried out by CSIRO Division of Atmospheric Research and the

Victorian EPA between April 1990 and February 1991. The studysought to understand the chemistry and microphysics of aerosol

particles responsible for periods of reduced visibility inMelbourne during this period. To achieve this, particles withradii less than 1.25 ^im radius were collected for analysis attwo field sites, Footscray and Alphington. In addition at

. Alphington, a laser particle size spectrometer was used to

measure the particle size distribution in the "opticallyactive" range between 0.045 and 1.5 ̂ m radius. From thesedistributions the size of particles responsible for visibilityreduction was determined to be typically 0.1 to 0.15 jimradius.

A self-contained source-sampling study was included to

characterise a range of aerosol sources known or thought to beimportant contributors to the Melbourne aerosol.

Aerosol samples from both the ambient and source studies were

analysed for fine particle mass (FPM), elemental and organiccarbon, and the concentration of sol;ible ions: hydrogen,

ammonium, calcium, potassium, chloride, nitrate, sulfate and

bromide. PIXE. (Proton Induced X-ray Emission) analyses werecarried out for the elements Al, As, Ba, Hi, Br, Ca, Cl, Cr, -Cu, Fe,- Ga, K, Mn, Ni, P, Pb, Rb, S, Si, Sr, Ti, V, Y and Zn.As well, a range of specific organic compounds (over 70) were

determined quantitatively as possible tracers for combustion

products in selected samples. Aerosol scatteringcoefficients, a range of trace gas concentrations and

meteorological variables were determined in parallel with theambient sampling program by the EPA.

Findings

The major finding of this study is that overall, 66% ofthe fine aerosol mass in Melbourne during the sampled

conditions was comprised of carbon. Elemental carbon, whichis produced only by primary combustion sources, accounts for

about 18% of that carbon. The aerosol carbon fraction is

large by international standards but in absolute concentration

terms the concentrations are reasonably typical of.thoseobserved in other large (developed) cities.

A seasonal pattern was observed in aerosol mass loading,scattering coefficient and aerosol composition, with elevatedscattering and FPM confined to the autumn period. Resultsfrom our source sampling program enabled selection ofrepresentative tracer compounds and elements for use inmultiple linear regression (MLR) analyses of the ambientchemical samples to examine source contributions to the finemass and scattering coefficient. Some coarse seasonalresolution was possible. The main factors identified throughthe MLR models were non-sea-salt potassium, nssK, a tracer forsmoke or biomass burning, aerosol "acidity", , anindicator for secondary production, bromide, Br , a tracer forvehicle emissions, sodium, Na"*", an indicator for sea-salt andnon-sea-salt calcium, nssCa, an indicator for soil.

Three main factors, nssK, Br and emerged in

the FPM analyses for the autumn samples. For days with FPMgreater than 3 0 |ig m"^ the contribution associated withbromide (vehicle emissions) was found to be similar at bothsites (around 20%). At Footscray the contribution associatedwith non-sea-salt potassium (smoke), 13%, was about one halfthat associated with bromide and at Alphington, 55%, it wasgreater than double the bromide contribution. At Footscraythe major contribution was associated with aerosol acidity(around 37%), about twice that at Alphington. Sulfate plusnitrate comprised relatively small fractions, around 10% atFootscray and 3% at Alphington. The pattern of sourcecontributions continued into early winter with a reduction inthe acidity contribution at Footscray to a level similar toAlphington. Few samples were collected through the summer andloadings were generally low. Those collected showed anincrease in the fraction associated with aerosol acidity whichbecame the major tracer. Sulfate plus nitrate comprised onlyabout 25% of the mass fraction associated with the acidityvariable (H'^+NH4"^) during autiomn, although this fractionincreased to around 50% during spring and summer. The

residual mass is attributed to converted organics thatcontribute to the non-primary fraction of the total carbonloading.

MLR models for aerosol scattering coefficient were

resolved into two periods, autumn-winter and summer. Theseshowed a similar pattern to that for FPM. At Alphingtonduring autumn the main contribution to scattering is clearlyassociated with non-sea-salt potassium (smoke). At Footscray

for the same period bromide (vehicles) and aerosol acidity

(secondary production) were major contributors, while massassociated with potassium was a minor component. During

summer the data for the sites were combined and showed that

the major contribution was from aerosol acidity (secondaryproduction) with a minor contribution from bromide (vehicles),potassium (smoke) was not significant.

Conclusions

Because of unusual meteorological conditions during the

study period, fewer widespread visibility-reducing events wereobserved than were expected from the historical record. Even

so, the present study has shown that reduced visibility inMelbourne is associated with fine aerosol mass and that the

major component of this is carbon. During autumn when reducedvisibility was most common the major contribution to theaerosol mass came from-organic carbon compounds.

MLR models were used to show that both the FPM and scattering-

coefficient increases at Alphington were predominantly

associated with non-sea-salt potassium, a smoke tracer. It

was not possible to distinguish unambiguously between possiblesources for the smoke aerosol that characterised the elevated

scattering in autumn. Both indirect evidence of the seasonal,and time of day, patterns of visibility events point todomestic wood burning. The ratios of organic carbon marker

compounds to elemental carbon are also indicative of a wood-burning source, as distinct from a general biomass burningsource. At Footscray the MLR models indicate that secondaryproduction and vehicle emissions were the main sources inautumn and winter. In summer at both locations secondary

production is the indicated major source of FPM and scatterwith a smaller contribution from vehicles. For this study

period visibility reduction appears to have been dominated byrelatively localised aerosol sources.

Tables.

Table 1. Alphington, 106 < day < 180 coefficients for

FPM multiple linear regression model 75

Table 2. Footscray, 106 < day < 180 coefficients for

FPM multiple linear regression model 76

Table 3. Alphington, 180 < day < 300 coefficients for

FPM multiple linear regression model 76

Table 4. Footscray, 180 < day < 300 coefficients for ■

FPM multiple linear regression model 76

Table 5. Alphington and Footscray, 300 < day < 425

coefficients for FPM multiple linear

regression model 76

Table 6. Alphington day < 300 coefficients for Bsd

multiple linear regression model 89

Table 7. Footscray day < 300 coefficients for Bsdmultiple linear regression model 89

Table 8. Alphington and Footscray, 300 < day < 425,

coefficients for Bsd multiple linear

regression model 89

Table 9. Concentration ratios of organic compounds,

with molecular weight mw, to elemental carbon

(compound / elC) 93

Figures

Figure 1. Ion balance plot for all valid soluble

extract samples. 21

Figure 2. Gravimetric mass concentration from

samples on Nuclepore and Fluoropore filters. 22

Figure 3. Bromide concentration determined using

PIXE on Nuclepore filters compared with bromide

concentration determined in soluble extracts from

Fluoropore filters. 24

Figure 4. Sulfur concentration determined using

PIXE on Nuclepore filters compared with sulfate

concentration determined in soluble extracts

from Fluoropore filters. 25

Figure 5. Potassium concentration determined using

PIXE on Nuclepore filters compared with potassium

concentration determined in soluble extracts from

Fluoropore filters. 26

Figure 6. Calcium concentration determined using

PIXE on Nuclepore filters compared v/ith calcium

concentration determined in soluble extracts from

Fluoropore filters. 28

Figure 7. Chloride concentration determined using

PIXE on Nuclepore filters compared with chloride

concentration determined in soluble extracts from

Fluoropore filters. 29

Figure 8. Dry aerosol scattering coefficient Bgp^as a function of gravimetric mass concentration. 31

Figure 9. Variation of scattering efficiency (Bgp,^/FPM) as a function of time during the study period. 33

Figure 10 . Comparison of simnmed fine aerosol

chemical component masses and gravimetric mass. 34

Figure 11. Total carbon mass concentration as a

function of gravimetric mass concentration. 36

9

Figure 12. Variation of total carbon mass concen

tration as a function of time during study period. 37

Figure 13. Elemental carbon mass concentration as

a function of gravimetric mass concentration. 39

Figure 14. Elemental carbon mass concentration as

a function of total carbon mass concentration. 40

Figure 15. Ratio of elemental carbon mass concen

tration to gravimetric mass concentration (Nuclepore

filter) as a function of time during study period. ' 41

Figure 16. Ratio of total carbon concentration to

elemental carbon concentration as a function of time

during study period. 42

Figure 17. Cumulative concentrations of inorganic

components, inorganic sum plus elemental carbon and

inorganic sum plus total carbon, as a function of

time during the study period, at Alphington. 43

Figure 18. Cumulative concentrations of inorganic

components, inorganic sum plus elemental carbon and

inorganic sum plus total carbon, as a function of

time during the study period, at Footscray. 44

Figure 19. Measured scattering coefficient Bg^ (airplus dry aerosol) as a function of time during

the study period. 46

Figure 20. Ratio of scattering coefficient to

aerosol absorption coefficient as a function of timeduring the study period. 47

Figure 21. Ratio of sea-salt mass to gravimetric

mass concentrations as a function of gravimetric

mass concentration. 48

Figure 22. Sea-salt mass loadings as a function

of time during the study period. 49

Figure 23. Ratio of sea-salt mass to gravimetricmass concentration as a function of time during the

study period. 50

10

Figure 24. Crustal (soil) fraction of FPM (by mass)based on pixFe and pixSi concentrations, as afunction of gravimetric mass. 52

Figure 25. Crustal (soil) fraction of FPM (by mass)based on pixSi, pixAl and non-sea-salt pixCaconcentrations, as a function of time during the

study period. 53

Figure 26. Variation of non-sea-salt calciumconcentration, as a function of time during the

study period. 54

Figure 27. Ratio of molar concentration of H++ NH^"^to fine particle mas, as a function of time duringthe study period. . _ 56

Figure 28. NSS-SO4 mass concentration, as afunction of time during the study period. 57

Figure 29. Ozone concentration as a function of timeduring the study period. 58

Figure 30. Ratio of concentrations of NO2/NO, as afunction of time during the study period. 59

Figure 3L. Relationship between nss-S04 and H++ NH4"^in three time periods. These are: prior to July1990, August-October 1990, and after October 1990. 60

Figure 32. Concentration ratio (H"'"+ NH4'^)/ nss-S04^as a function of time during the study period. 61

Figure 33. Ratio of mass concentrations of nitrateto gravimetric mass, as a function of time during thestudy period. 62

Figure 34. Molar concentration ratios of bromide andlead (pixBr/pixPbl) as a function of time during thestudy period. 63

Figure 35. Concentration ratio of non-sea-saltpotassium and fine particle mass (Nuclepore filter)as a function of time during the study period. 65

11

Figure 36. Ratio of potassium concentration and

scattering coefficient as a function of time during

the study period. 66

Figure 37. Ratio of potassium concentration and

elemental carbon mass concentration as a function of

time during the study period. 67

Figure 38. Ratio of potassium concentration and leadconcentration as a function of time during the study

period. 68

Figure 39. Ratio of potassium concentration and

sodium concentration as a function of time during the

study period. 69

Figure 40. Ratio of chloride concentration and

sodium concentration as a function of time during the

study period. 70

Figure 41. Mass concentration ratio of phosphorous

to gravimetric mass concentration, as a function of

time during the study period. 71

Figure 42. Ratio of magnesium concentration and

sodium concentration, as a function of time during

the study period. 73

Figure 43. Molar concentration of magnesium as a

function of time during the study period. 74

Figure 44. Calculated cumulative contributions to

fine particle mass at Footscray, as a function oftime during the study period. 78

Figure 45. Calculated cumulative contributions to

fine particle mass at Alphington, as a function of

time during the study period. 79

Figure 46. Calculated cumulative contributions to .

the dry scattering coefficient, Bg^j, at Footscray,as a function of time during the study period. 83

Figure 47. Calculated cumulative contributions to

the dry scattering coefficient, Bg^, at Alphington,as a function of time during the study period. 84

12

Figure 48. Calculated cumulative contributions to

the diry scattering coefficient, at Footscray,

as a function of time during the study period. 85

Figure 49. Calculated cumulative contributions to

the dry scattering coefficient, at Alphington,

as a function of time during the study period. 86

Figure 50. Individual calculated contributions to

the dry scattering coefficient, Bg^, at Footscray,as a function of time during the study period. 87

Figure 51. Individual calculated contributions to

the dry scattering coefficient, Bg^, at Alphington,as a function of time during the study period. 88

13

1. Introduction

This report describes a study of atmospheric aerosol and

visibility reduction in Melbourne conducted in collaboration

by CSIRO Division of Atmospheric Research (DAR) and the EPAV.

Ambient samples were collected for the Melbourne Aerosol Study

during the period April 1990 to February 1991. The main

product of this study is a data set of fine particle chemical

and physical properties linked to ambient air quality data

obtained by the EPAV during the sampling periods. The data

set comprises ambient data obtained at two locations,

Footscray and Alphington and an associated data set of source

chemical compositions obtained under essentially the same

sampling conditions as those used for the ambient sampling.

2. Experiment description

2.1 Background-Pilot study

Widespread reduced visibility events occur quite

frequently in Melbourne in association with stable atmospheric

conditions. The highest frequency of these events is usually

observed during autumn. During these events, visibility is

reduced because of increased light extinction by small aerosol

particles. Both scattering and absorption contribute to this

extinction.

A pilot study examining the relationship between the fine

fraction aerosol (r < 1.25 |im) and visibility was carried out

in Melbourne during April-May 1989 (Gras et al. 1989) . This

short, single site study revealed that at Footscray, during

autumn 1989, carbon species on average constituted around 70%

of the fine aerosol mass. It also showed that the major

fraction of the carbon species was in fact organic and that

organic carbon constituted around 50% of the fine particle

mass during periods with pronounced visibility reduction.

These findings and others relating to the composition and

microphysics of the Melbourne aerosol and its relation to

visibility were reported by Gras et al. (1989) however these

initial findings must be qualified by the very short duration

and single location of the pilot study.

2.2 Study design

The present Melbourne Aerosol Study was planned to expand

on the findings of the pilot study by taking measurements at

two sites over a longer period. Based on the statistical

14

frequency of low visibility events a three months study was

designed for autumn 1990. During the actual study period it

became apparent that the conditions experienced in 1990 wereless settled than usual and consequently low visibility events

occurred less frequently than expected. In response, the

study period was extended to include almost a complete year of

observations.

It was evident from the pilot study that a better

understanding of local source composition profiles, compatiblewith the ambient sampling procedures, was required. Thus the

Melbourne Aerosol Study also incorporated a study of the

composition of aerosol from several selected sources. These

included vehicles using leaded fuel and vehicles using

unleaded fuel, light diesels, woodstoves and biomass burning(gum leaves and twigs,,and dry grass hay). A description ofthe source study and a summary of the results are given inPart B of this report.

The principal measurements for the ambient study are the(dry) volume scattering and aerosol absorption coefficientsand fine particle (r < 1.25 |im) chemical composition. Thiscomprises soluble inorganic species, elemental composition,total and elemental .carbon content and for a subset of samples

organic marker compounds. The source profiles are similar butexclude the scattering coefficient determination.

2.3 Sampling procedures: ambient sites, source studies andinstrumentation.

Sampling sites for the Melbourne aerosol visibility studywere located at Footscray and Alphington. These were selectedfor their locations relative to the main city area and a

previous record of high incidence of sustained visibilityreduction events. Footscray is an inner suburb approximately8 km west of the city centre, this was also the site of thepilot study. Alphington is located close (1 km) to the YarraRiver around 7.5 km north-east of the city centre, (see Map,

page 2). Instrumentation at Footscray was housed in the EPAVair quality monitoring station and at Alphington in a CSIROBAR mobile laboratory located within the EPAV air qualitymonitoring station site.

Particles were collected for chemical and physical

analyses using automated low volume samplers with a stackinlet height 4 m above ground level. The samplers used in the

15

Melbourne aerosol visibility study differed in several ways

from those used in previous studies, including the pilot

study. A new 75 mm diameter inlet stack system was

constructed to give a low Reynolds niomber at the design

sampling rate and thus minimise turbulent deposition. Other

improvements included reduction in the number of bends in the

inlet to two broad 90° bends. A single inlet impaction stagewas incorporated to provide a consistent cut size for the

different sampling filters; this was located at the inlet to a

large plenum from which all filter housings connected with

short, direct inlets.

As in the previous samplers the design allows for the

parallel collection on three different filters- simultaneously

and the separate logging of the three sample flows. Up to

five different sets of filters can be exposed sequentially.

The sampler is controlled by a personal computer (PC) which

receives the (dry) scattering coefficient signal from the EPAV

integrating nephelometer. The PC is also used to log the

operation of the sampler, flow rates, filter sequence,

pressure drop etc. At both locations the nephelometer used

was an MRI 1550B with a heated inlet, located within the air

quality monitoring station.

Aerosol samples were taken over eight hour periods. The

actual sample volumes depend on the filter substrate type.

These are typically 24 m^ for glass filters, 15 m^ for PTFEfilters and 12 m^ for Nuclepore filters, the actual integratedsample volumes are given in the main data file (as floF, floN

and floG for the Fluoropore, Nuclepore and glass filters

respectively, see Part C Table C2).

Only the fine aerosol fraction was collected (r < 1.25

pm) for analysis, the large fraction being removed by the

greased preimpaction stage. For this study each set of

filters comprised three 47mm diameter filters, a 1.0 [im

Fluoropore PTFE for inorganic analyses, a 1.0 )im Nuclepore

filter used for absorption coefficient, elemental carbon and

PIXE elemental analysis and a prebaked Gelman A/E glass fibre

filter for total carbon determination and organic marker

determination.

PTFE and Nuclepore filters were stored in sealed, plastic

petri dishes before and after collection and Glass filters

were stored in aluminium foil. After collection the filters

were refrigerated until analysis.

16

The sampler was operated automatically throughout the

study, selecting occasions where the measured scattering

coefficient was greater than 1.175 x lO""^ or LVD < 40 km.In addition, during the autumn-winter period, samples were

initiated manually when an automatic sample had not been taken

for one week. Approximately 10% of the loaded sample PTFE and

Nuclepore filters were removed from the sampler without being

exposed to act as field blanks. Glass filters were removed

after one week whether exposed or unexposed, unexposed filters

were used as blanks.

2.4 Analytical techniques

2.4.1 Chemical Measurements

(i) Soluble inorganic•ions

Soluble ion concentrations were determined in aqueous

extracts from the Fluoropore filters. Filters were

transported to and from the study site in clean, closed petri

dishes to avoid loss of material from the filters, or

contamination, during transport. For extraction, filters were

placed into clean polyethylene bags which were also used to

store the extract. Soluble ions were extracted using 20.0 mL

of Milli-Q (HPLC-grade) ̂water after first wetting the filter

with 250 p,L of AR grade methanol. Chloroform (200 p,L) was

added to the extract- to act as a bacteriocide.

The majority of the soluble ion analyses were carried out

by AGAL (Tas.). Atomic absorption spectrophotometry (AA) was

used for determination of sodium, potassium, magnesiijm and

calcium and suppressed ion chromatography (IC) (Dionex AS3

columns with carbonate-bicarbonate eluent) for anions:

chloride, nitrate, sulfate and bromide. Precision for a

single analysis ion concentration is rated at better than

±10%.

Ammonium ion concentration was determined using

colorimetry (indo-phenol blue method, Dal Pont et al. 1974) at

CSIRO DAR. The expected uncertainty for these determinations

is around ±20%. A combination Ross pH electrode was used at

DAR to determine pH; this was standardised at pH 4.10 and 6.97

using low ionic strength pH buffers.

17

(ii) PIXE

Proton induced X-Ray emission analysis (PIXE) was used to

obtain additional information on aerosol composition, in

particular to determine insoluble components such as lead and

other metals. This non-destructive technique provides a large

suite of element concentrations that should be useful for

source identification although in low volume samples such as

these the full suite of elements is not usually detectable.

PIXE analyses were performed by the "Nuclear Science

Application Group" at ANSTO.

Elemental concentrations were determined in the fine

particle mass collected on Nuclepore filters. Elements

determined using PIXE are: As, Ba(l), Br, Ca, Cl, Cr, Cu, Fe,

K, Mn, Ni, P, Pb(l), S, Si, Sr, Ti, and Zn. Not all

determinations include all these species. Where species were

not detected a .null result is indicated in the data tabulation

(see Part C) and reference should be made to Table C7 for

minimum detection limits for the particular species.

(iii) Total carbon

Total fine particle aerosol carbon was determined at

CSIRO DAR for particles collected on glass fibre filters.

These filters were precleaned by baking at 450 °C for six hours

and were then stored in individual aluminium foil packages.

Total carbon was determined by oxidation of the samples to CO2at 800 °C, followed by catalytic conversion to methane and FID

detection. Calibration was by injection of pure CO2.

(iv) Organic Speciation

Organic compounds have been used as vehicle tracers

(Hering.et al. 1984; Pyysalo et al. 1987), as tracers for

woodstoves and biomass burning (Standley and Simoneit, 1987;

Standley and Simoneit, 1990; Hawthorne et al. 1988; Hawthorne

et al. 1989; Edye and Richards, 1991), as tracers for the

natural organic fraction of the primary aerosol (Simoneit,

1985; Simoneit, 1989; Edgerton and Holdren, 1987) and as

tracers of material incorporated in rain (Simoneit and

Mazurek, 1989).

Specific organic compounds were determined on segments of

the same glass filters used to determine total carbon. For

analysis, the area of portions of the glass fibre filters cut

from the filter circle were determined gravimetrically. The

filter sections were then extracted in a 5 ml mixture of

benzene: ethanol: dichloromethane (4.5:1:1.5). Extractions

18

were carried out in glass flasks in an ultrasonic bath for 2

hours at 50 °C. After extraction the samples were evaporated

to about 1 ml and then transferred to a glass vial insert,

evaporated to dryness at ambient temperature and sealed with a

crimp top.

The source samples were analysed first to establish the

range of organic molecules present in the various sources.

Organic compounds were determined using gas chromatography

with a mass spectrometer detector (GCMS). Compounds were

separated in the gas chromatograph on a 25 meter 0.32 mm

diameter 0.17 |im film thickness HPl column using helium as thecarrier gas. Temperature programming was 40-290 °C at 10 °Cmin~^. A Finnigan Mass Selective Detector (MSB) was employed.These analyses were carried out by the Central Science

Laboratory at the University of Tasmania.

2.4.2 Physical measurements

Collected aerosol mass on the Fluoropore and Nuclepore

filters was determined using a microbalance at the EPAV. Both

pre-exposed and exposed filters were equilibrated in the

weighing room for at least 24 hours before each determination.

Weighing was only conducted when the relative humidity was

within a narrow range around 40% RH. Glass filters were not

weighed. This procedure is not appropriate for the glass

filters which shed fibres and lose mass due to clamping in the

filter"holders.

Aerosol light absorption (and elemental carbon

concentration) was determined using a CSIRO monochromatic

photometer at a wavelength of 565 nm, based on the integratingplate method of Lin et al. (1973) (with the "filter facetowards light source" modification). Nuclepore filters wereused, with the absorption of each filter determined before and

after exposure. The volume absorption coefficient wasdetermined from the measured change in filter absorption and

the measured flow through each filter. This method has been

reported to produce an over-estimate of absorption by around

35% (Lewis and Dzubay 1986, Horvath and Habenreich 1989).This must be considered in determination of the aerosol

absorption coefficient but does not impact on thedetermination of elemental carbon mass using this technique

since the mass-specific absorption was determined empiricallyusing the same measurement technique. This empiricalcalibration factor, 7.23 m^ g~^ was determined using pyrolisedacetylene and is similar to other reported values, for example

19

7-11 g~^ (Weiss and Waggoner 1982) and 9.1 and 12.8 g~^(Cowan et al. 1982).

2.4.3 Particle sizing.

Between May 23 - Oct 3 1990 at the Alphington site,

during the periods that filters were exposed, airborne

particles were sized using a Particle Measuring Systems ASASP-

X aerosol particle size spectrometer. A stainless steel tube- '

oven on the inlet, operating at 40 °C was used to dry the

aerosol before sizing. A small personal computer was used to

control the measurement of particle size and flow-rate and

storage of the data. '

Flow rate for the ASASP-X was typically 90 cm^ min~^.Four ranges of 15 size channels were recorded giving 60

channels overall with.nominal limits of 0.05 and 1.5 |im

radius.

Size calibration was by means of mono-disperse

polystyrene latex (PSL) particles at 6 sizes from 0.117 to 1.1

[im radius. The refractive index of these particles, m=l. 6 was

also assumed for atmospheric particles. This value is

consistent with a primarily organic composition. For a given

refractive index, sizing is expected to be accurate to about

5%.

2.4.4 Scattering coefficient (dry)

Scattering coefficients were determined as five - minute

integrations from the EPAV air quality station MRI 1550G

nephelometers at the respective sampling locations. These are

calibrated regularly using Freon 12, and automatic zero and

span checks are made daily. Scattering coefficients were

determined following the EPA procedure for API with no

subtraction of the molecular (air) component but used the 20 °C

calibration values for molecular air and Freon'12. The

calibration values used were 2.1 x 10"^ m~^ for air at 20 °Cand 3.31 x 10"^ m~^ for Freon 12 at 20 °C. The MRI 1550G is abroad band instrument with an effective wavelength of about

470 nm. An approximation to dry aerosol is made by heating

the inlet of the nephelometer to 50°C.

2.4.5 Data editing

Reported concentrations of soluble ions below the minimumdetection limit were replaced with a value of one half the /

minimum detection limit. Concentrations of all chemical

20

species were blank corrected using a subset of unexposed

filters; these were treated identically to sample filters.

The blank - corrected soluble ion concentrations were required

to pass an ion balance test. Ion balances were determined on

the assumption that the measured cations and anions

constituted the entire soluble species. A reduced major axis

regression of the cation and anion sum was calculated. Values

falling outside a ± 3 standard deviation limit were rejected.

The procedure was repeated to convergence. All samples that

had integrated flow values substantially below that expected

for a normal eight hour period were also rejected. The ion

balance for all the remaining samples is shown in Fig. 1.

3. Analyses and interpretation

3.1 Analytical techniques, intercomparisons, data base

The main data base comprising the ambient and source

chemical and physical data and supporting EPAV data is given

in two ASCII files, in PC format in the attached data disk.

Source data are also summarised in Tables B1-B8 (Part B of

this report) and ambient data in Tc.bles C1-C8 (Part C of this

report). Particle size distributions obtained at Alphington

are presented in Appendix 3 (in Part C).

3.1.1 Comparison of Fluoropore and Nuclepore collected mass

Some differences in the collec

different filter types is expected

sample the same size-selected parti

Fluoropore and glass filters are fi

the Nuclepore is a membrane filter,

particles predominantly by diffusic

by interception and impaction for

that for a given flow rate there i

where particles are not caught effi

used the collection efficiency of

been measured to be effectively abs

concentrations for the Fluoropore e

compared in Fig. 2. Regression of

Fluoropore blank-corrected aerosol

average mass collection efficiency

of 88.9 ± 0.9% (in this size range

rate). This 11% difference in coll

tion efficiencies of the

although all three types

cle population. The

bre type filters whereas

Membrane filters collect

n for small particles and

large particles. This means

a range of particle sizes

ciently. At the flow rates

tlhe Fluoropore filters has

olute. Gravimetric mass

nd Nuclepore filters are

the Nuclepore and

mass loadings indicates an

for the Nuclepore filters

and at the operating flow

ection efficiencies may

21

CTOJ

3

m

ca•IH

cin

350

300 -

250 -

200 -

150 -

100 -

50 -

ion balance - ambient samples

50 100 150 200

cations (ueq/1)250 300 350

Figure 1. Ion balance plot for all valid soluble extract

samples (micro equivalents per litre).

22

m

e

OI

D

Ul

enID

E

(U

L.□d0)

1—I

uD

BO

70 -

60 -

50 -

40 -

30 -

20 -

10 -

Nuclepare mass vs Fluropore mass

10 20 30 40 50Fluoropore mass (ug/m3)

60 70 80

Figure 2. Gravimetric mass concentration from samples onNuclepore and Fluoropore filters {|ig m~^) . Indicatedregression (constrained l.l.s.) has slope 0.889.Alphington (0). , Footscray ( + )

23

have some effect on comparison of elemental concentrations

determined using PIXE (on the Nuclepore filters) and elemental

carbon loadings which are also determined using these filters

with the soluble ion concentrations determined in extracts

from the Fluoropore filters. Actual differences will depend

on'the mass-size distribution for each species. In species

where the average particle size is small (compared to the

Nuclepore cutoff size) little difference should be observed.

3.1.2 Comparison of PIXE elemental and soluble ion

concentrations

Five species were determined using both PIXE and either

atomic absorption spectroscopy or ion chromatography. These

are sulfur/sulfate, bromide, potassium, calcium and chloride.

For bromide, comparison of the two procedures is very good.

The relationship between the molar concentrations is shown in

Fig. 3 and regression of these data shows that:

Br (PIXE) = 0.96 ± 0.02 Br - 0.23 ± 0.1, nm m"^ (+ SE),

where nm is the concentration in nanomoles.

Sulfur determined using PIXE and sulfate determined with ion

chromatography also agree very well as shown in Fig. 4. Using

all the paired data gives a regression relationship between

the molar concentrations of:

S (PIXE) = 0.96 ± 0.03 SO4 - 0.2 ± 0.6 nm m"^.

Eliminating five outlying points (outside the 95% confidence

range) gives the relationship:

S '(PIXE) = 0.99 ± 0.02 SO4 -0.2+0.4 nm m"^.

For potassium measured using PIXE and AA there is a systematicdivergence, as shown in Fig. 5, possibly indicating partial

collection of potassium on the Nuclepore filter. Regressionof PIXE K on soluble K shows

K (PIXE) = 0.66+0.02 SO4 -0.13+0.9 nm m~3.

The correlation between the methods is still good, with five

obvious outlying points removed the correlation coefficient is0.97 (from 81 samples).

24

PIXE Br vs SQluble Br

T

cn

E

ZC

C.m

UJX

10 15 20

soluble Br (nM/m3)

Figure 3. Bromide concentration (n mole m 2). determinedusing PIXE on Nuclepore filters compared with bromideconcentration (n mole m~^) determined in soluble extractsfrom Fluoropore filters. Indicated,regression line: ■

pixBr = 0.96 sol. br - 0.23 (nmole m"^).Alphington (0), Footscray (+)

25

PIXE S vs soluble S04

T

me

zc

tn

UJX

©+0

30 40

soluble 504 (nM/m3)

Figure 4. Sulfur concentration (n mole m"^) determinedusing PIXE on Nuclepore filters .compared with sulfateconcentration. (n mole m"^) determined in soluble extractsfrom Fluoropore filters. Indicated regression line:

pixS = 0.99 sol. SO4 - 0.2 (nmole m~^).Alphington (0), Footscray (+)

26

PIXE K vs soluble K

T

m

E

C

IDX

6 a

soluble K (nM/m3)

Figure 5. Potassium concentration (n mole m~^).determined using PIXE on Nuclepore filters compared withpotassi\jm concentration (n mole m~^) determined insoluble extracts from Fluoropore filters. Indicatedregression line:

pixK = 0.66 sol. K + 0.13 (nmole m"^).Alphington (0), Footscray {+)

27

Comparison of calcium determined using PIXE and AA is

shown in Fig. 6. At low concentrations the data are noisy but

distributed about the 1:1 line, at higher levels PIXE derived

concentrations are larger. This suggests the presence of some

insoluble calcium probably associated with soil derived

particles.

Chloride concentrations determined using PIXE almost all

fall well below concentrations determined using ion

chromatography as shown in Fig. 7. The reason for this is not

clear, but we consider the soluble extract values to be more

reliable.

Lower concentrations of potassium and chloride obtained

from the Nuclepore-PIXE analyses may be related to size

discrimination in the.Nuclepore filter collections. Sea-salt

is a source of both aerosol potassium and chloride, and the

mass median radius of sea-salt is typically larger than 1 |im.This means that most sea-salt mass will be in the region where

the Nuclepore filters are likely to be size sensitive.

For analyses of the contributions to the fine particle

mass (FPM) and scattering coefficient given in this report,

PIXE derived concentrations for potassium and calcium and

soluble extract values for sulfate, bromide and chloride, have

been used.

3.2 Scattering and Fine Particle Mass (FPM)

Local visual distance (LVD) is an instr-umental measure of

the visual range due to scattering at a sampling point. It is

usually measured using dried sample to remove the major

effects of relative humidity on the ambient aerosol. This

allows a much more direct comparison of the scattering

coefficient with underlying physical and chemical parameters

in the aerosol than would be otherwise possible. LVD is

proportional to the reciprocal of the aerosol volume

scattering coefficient through what is known as Koschmieder's

relationship. Other factors that determine this relationship

are the target contrast ratio and wavelength. In the general

form the relationship is usually given as:

LVD (km)=0.0039/ Bg^ (m (at 550 nm).

28

m

E

ZC

10

o

UJX

Q.

PIXE Ca vs soluble Ca

3 4

soluble Ca (nM/tn3)

Figure 6. Calcium concentration (n mole m~^) determinedusing PIXE on Nuclepore filters compared with calciumconcentration (n mole m"^) determined in soluble extractsfrom Fluoropore filters. A 1:1 reference line isincluded.

Alphington (0), Footscray (+)

29

cn

E

U

lUXM

a

#ii»ni' iMir> © 1+ c»o

PIXE C1 vs soluble C1

r

j_ _L

30 40 50

soluble C1 (nM/m3)

60 70 80

Figure 7. Chloride concentration (n mole m~^.) determinedusing PIXE on Nuclepore filters compared with chlorideconcentration (n mole m~^) determined in soluble extractfrom Fluoropore filters. A 1:1 reference line isincluded.

Alphington (0) , Footscray { + )

30

For the instrumentation used during this study, an MRI 1550G

nephelometer, the relationship

LVD (km) =0.0047/ (m~l) (at 470 nm)

is used. Bg^ ~®spd ®mol' ®sd measured volumescattering coefficient at an effective wavelength of 470 nm.

It comprises a "dry" aerosol component, Bgp^^ (obtained byusing a heated 50 °C inlet) and the scattering coefficient of

®mol•

In the six week pilot study in Footscray (Gras et al.

1989), the aerosol particles responsible for essentially all

of the light scatter at visible wavelengths are shown to be

less than 1 |im in radius, and typically they are around 0.1 to0.2 |lm in radius. The _ same result has been found in thepresent extended study. This is shown in Appendix 3 (in Part

C) by the plots of differential scatter as a function of

particle radius obtained at Alphington from May to September

1990. These were derived by calculating the integrated

scattering coefficient from the aerosol size distribution

measured using a PMS ASASP-X aerosol size spectrometer, also

with a heated (40 °C) inlet. There is a recognised close

correlation between fine particle mass and scattering

coefficient in urban.environments, including Melbourne

(Waggoner and Weiss 1980, Dzubay et al. 1982, Bardsley 1987).

These close correlations are an indirect indication that fine

particles generally dominate aerosol scattering in these

environments. The expected close relationship between the

aerosol scattering coefficient and FPM was observed in the

present study as is shown in Fig. 8. For reference, similar

relationships reported by Bardsley (1987) for two suburban

Melbourne locations, Camberwell and Footscray, are also

included. Overall relationships obtained by (constrained)

linear least squares regression for the present study are:

FPM (|lg m"3) =26.2 Bgp^^ (10"^ m~l) , SE=0.7 [r2 = 0.93] C,FPM (|lg m~3) =27.2 Bgp^ (10~^m~l), SE=1.0 [r2 = 0.94] A,FPM (|lg m~3) =24.8 Bgp^ (10~^m~l), SE=1.0 [r2 = 0.92] F,

or

Bspd (10~^ m"^) = 0.036 FPM (p-g m~3) SE=0.001 C,Bgpd (10~^ m"l) = 0.034 FPM (M,g ) SE=0.001 A,Bgpd (10~^ m~l) = 0.037 FPM (|lg m"^) SE=0.002 F,

31

T

I

OJ

O

■aauia

2.5

2 -

1.5

0.5

bs'pd vs weighed massr~

10 20 30 40 50weighed mass (ug/m3)

60 70 80

Figure 8. Dry aerosol scattering coefficient Bgp^(10"'^ m~^) as a function of gravimetric massconcentration (|lg m"^) . The regression line (constrainedl.l.s.) for Bgpjj = 0.03 6 FPM, "R", and two relationshipsreported by Bardsley (1987) are also given. Bardsley'srelationships are for Footscray "F" and Camberwell "C".Alphington (0) , Footscray (+)

32

where A refers to Alphington, F to Footscray and C the two

sites combined and is the dry aerosol scatteringcoefficient.

Seasonal variation in the aerosol scattering efficiency(Bspd/FPM) is shown in Fig. 9. Relatively close clustering ofthe scattering efficiency points is evident in the late autumn

of 1990 when both Bgp^^ and FPM were elevated. This indicatesa more homogeneous aerosol in late autumn-winter than in

spring-summer when aerosol loadings were lower and possibly

derived from a wider mixture of sources.

3.3 Fine Particle Mass (FPM)

3.3.1 Calculated and observed FPM

Combining the masses of the soluble inorganic species,

total carbon and the most abundant elements (Pb,Zn,Fe,Si)

explains a substantial fraction of the observed FPM.

Constrained regressions give the following relationships

Sum (|lg m~^) = 0.85 FPM (|i.g m~^) , SE=0.02 C,Slim (|j.g m~^) = 0.84 FPM (|lg m~^), SE=0.03 A,Sum (|lg m~2) = 0.85 FPM (|lg m"^) , SE=0.02 F.

If allowance is made for known missing components,

particularly oxygen and hydrogen in organic carbon compounds

(assumed equal to 20% of the organic carbon mass) and

silicates in soils (assumed Si02),-this gives

Slum (|lg m~^) = 0.96 FPM (|lg m~^) , SE=0.02 CSum (|lg m~3) =0.96 FPM (p.g m~3), SE=0.04 ASum (|lg m~^) = 0.95 FPM (p.g m~^), SE=0.02 F.

Given that the particle mass is determined at approximately

40% RH and so some small fraction of water may be present in

the determined FPM, an effective mass closure can be

considered as established with no significant unaccounted

components.

The relationship between calculated mass (with allowance

for compounds) and observed FPM, for the combined data is

shown in Fig. 10.

33

0.11

oi

D\CME

I

0)

O

0101

m

E

•D01

ai•fi

013

TD01

n

100

bspd/welghed mass vs time

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 9. Variation of scattering efficiency (Bgp^j/FPM)(IC)^ g~^) as a function of time ciuring the stuciyperiod.

Alphington (0), Footsoray (+)

34

m

E

cn□

uiinIDE

13(UEEDUl

13OJ4Ju0)c.c.ou

go

80

70

60

50

40

30

20

10

corrected summed mass vs weighed mass1 1 1 \ 1 1 ^ 1

-

+

0

0

o

0 ̂

+ o^

-

0o

0 +

o

o-

-

1

O

I

0 0

< >

o

• 1 •

10 20 30 40 50

weighed mass (ug/m3)50 70 80

Figure 10. Comparison of summed fine aerosol chemicalcomponent masses and gravimetric mass (|ig m~^) . Organiccarbon is increased by a factor of 1.2 to account forcompounds and Si is assumed to be crustal and in the formSi02. The regression line (constrained l.l.s.) has aslope of 0.96.Alphington (0) , Footscray (+)

35

3.3.2 Composition of FPM

The major fraction of the FPM for the study period was

found to consist of carbon-species. The following regression

relationships were found for total carbon (as C) and FPM:

tote (|lg m~^) = 0.66 FPM (fig m~^), SE=0.02 C,tote (^lg m~3) = 0.69 FPM (^.g m"3) , SE=0.03 A,tote (|lg m~3) =0.60 FPM (|lg m"^) , SE=0.02 F.

This finding confirms and generalises the earlier Footscray

pilot study results obtained by Gras et al. (1989) for autumn

1989. The relationship between FPM and total carbon

concentration is shown in Fig. 11.

The carbon fractign of the FPM in Melbourne is quitelarge compared with other urban study results, as reported by

Gras et al. (1990). However, in absolute terms the FPM carbon

loadings are typical of other large cities. Fig. 12 shows the

seasonal variation of total carbon FPM loading and is a good

basis for comparison with other reported values. In general,

Melbourne loadings are below 2 0 |J.g m~^, apart from the lateautumn-winter period when they frequently exceed this value.

A maximum loading in excess of 60 p.g m"^ was observed atAlphington over one eight-hour period. lypical values for Los

Angeles (in 1982) reported by Gray et al. (1986) are

8-14 |lg m~2 (as G) and for the summer of 1984 Larson and Cass(1989) reported values that are typically 12-24 |lg m"^ (as Ccompounds). Countess et al. (1981) reported an overall

average concentration of 13.9 |lg m"^ (as C) for a study inDenver during Nov.- Dec. 1978. For high pollution days the

average concentration averaged 2 8.2 |ig m~^ (as C) and themaximum eight hour value was 59.9 |ig m~^ (as C) . Loadings ofcarbonaceous FPM in "street canyons" in Athens were reported

by Valoaras et al. (1988); in summer 1982 these averaged

33.9 ^ig m~2 (as C compounds) and winter 1982, 27.2 |ig m~^ (ase compounds).

Carbon can be further divided into elemental and organic

fractions, the average fraction of the observed FPM as

elemental carbon was:

elC (p,g m~3) ^ 0.124 FPM (|lgm~3), SE=0.004 C,elC (jig m~3) :::: 0.119 FPM (^ig m~3), SE=0.004 A,elC (fig m~3) = 0.133 FPM (|lgm~3), SE=0.006 F.

36

total aerosol C vs weighed mass

cn

s

01

D

U

o(/)

oC-03

(0

O4-1

70

60 -

50

40

30

20 -

10 -

10 20 30 40 50

weighed mass (ug/m3)60 70 80

Figure 11. Total carbon mass concentration as a functionof gravimetric mass concentration (FPM, jig m

Regression relationships (constrained l.l.s.) have slopes

of 0.69 for Alphington (A) and 0.60 for Footscray (F).

Alphington (0), Footscray (+)

37

tn

E

Ol

D

CJ

□inoc.lUm

70

60 -

50 -

40 -

30

20 -

10 -

100

total aerosol C vs time

150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 12. Variation of total carbon mass concentration(p.g m~3) as a function of time during study period.Alphington (0) , Footscray (+)

38

The relationships for the data from both sites is shown in

Fig. 13. Considering the fraction of observed total carbon as

elemental carbon gave the following:

elC (jig m~3) = 0.177 totC (pigm'^), SE=0.007 C,elC (|lg m~3) = 0.158 totC (Jig m~3), SE=0 .009 A,elC (Jig m~3) = 0.220 totC (|ig m"^) , SE=0.006 F,

these are shown graphically in Fig. 14.

There are also seasonal changes in these ratios that help

in understanding the overall pattern of aerosol generation in

Melbourne.

3.4 Seasonal variation carbon

Elemental carbon is a primary combustion product, it is

not produced in secondary processes so its abundance is an

indicator of the fraction of primary combustion aerosol

present. Fig. 15 for example, is a plot of elemental carbon

as a fraction of particle mass; the primary combustion

component in the FPM is clearly much greater in autumn and

winter than summer, with intermediate spring levels. The

corollary of this relationship is that either secondary

aerosol or other non-combustion primary aerosol is relatively

more important over summer (absolute C loadings are a minimum

in summer, see Fig. 12). As we will show later, the evidence

suggests that the dominant cause is the increase in

photochemistry and hence secondary aerosol over summer. The

ratio of total carbon to elemental carbon. Fig. 16, also shows

a greater fraction of organic carbon over summer than during

winter although overall these summer ratios are similar to

values observed in autumn. In this case, this is probably the

result of a larger primary organic fraction in autumn and a

larger secondary organic fraction in summer. Enhanced levels

of organic carbon during days with increased FPM loadings in

autumn is demonstrated clearly in Figs. 17 and 18. The role

of the different sources responsible for producing this

organic contribution to the FPM will be discussed in

subsequent sections in relation to the abundance of other

(trace) species. (Note, Figs. 17 and 18 show the cumulativesum of the determined masses of inorganics, elemental carbon

and total carbon. This does not include oxygen or other

contributions to the organic fraction so will not equate

directly with observed FPM values).

40

elemental C vs total aerosol C

"T

cn

e

u

c0)

(Ur-«

03

%

20 30 40 50

total aerosol C (ug/m3)

Figure 14. Elemental carbon mass concentration as a

function of total carbon mass concentration (}xg m~^) .Regression relationships (constrained l.l.s.) have slopes

of 0.16 for Alphington (A) and 0.22 for Footscray (F).

Alphington (0), Footscray (+)

41

elemental C mass fraction vs time

enen<0

E

"D0}

szD1•r-t

03

3:

03

C-o

a03I—1

u

3

cOJsOJ

0.3

0.25 -

0.2

0.15 -

0.1 -

0.05 -

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 15. Ratio of elemental carbon mass concentrationto gravimetric mass concentration (Nuclepore filter)(|ig m~3) as a function of time during study period.Alphington (0), Footscray (+)

42

n

u

c0)

e0)

u

IQ4J

a

total C / elemental C vs time

X

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 16. Ratio of total carbon concentration■toelemental carbon concentration (both [ig m as afunction of time during study period. The calculatedratio for all vehicles in the Melbourne region isindicated (totC/elC = 3.27, see report Part B) .Alphington (0) , Footscray (+)

eo

43

mass components vs time - Alphington

70 -

cn

oi

3

C0)c

o

aEOu

cn(n

(0

E

O0)

oc.0)

CD

60 -

50

40 -

30 -

20 -

10 -

^ %o □

°.+r

a

0^0 t o 0

1

100 150

+o

_L

200 250 300time (days since 1 Jan 1990)

§

+

350, 400

Figure 17. Cumulative concentrations (^ig m"^) of.inorganic components, inorganic sum plus elemental carbonand inorganic sum plus total carbon, as a function oftime during the study period, at Alphington.Inorganic sum (0) , inorganic sum plus elementalcarbon (+) , inorganic sum plus total carbon (square) .

44

mass components vs time - Footscray

nr

oi

3

C0)

co

aE0u

V)01(0

E

o0)

ac.0)

03

+0 +-0

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 18. Cumulative concentrations (|lg m"^) ofinorganic components, inorganic sum plus elemental carbon

and inorganic sum plus total carbon, as a function oftime during the study period, at Footscray.

Inorganic sum (0), inorganic sum plus elementalcarbon (+), inorganic sum plus total carbon (square).

45

3.5 Bsd, Bap

3.5.1 Annual cycle of Bsd

Previous EPAV studies in Melbourne, for example (Bardsley

1987) and EPAV (1988) have shown that FPM and aerosol

scattering peak during the autumn-winter period (May - July).

The present study shows this expected pattern with more

frequent excedences of the sampling threshold (Bgp(j+Bj^Q2=l. 175X 10"^ m~^) and larger scattering coefficients. This is shownclearly in Fig. 19. The minimum frequency of excedences and

Bsd observed occurred during the late spring-summer period.

3.5.2 Bap

Reference to Fig. 20 which shows the annual variation of

Bsd/^ap indicates a systematic change in the scattering toabsorption coefficient ratios with a maximum in summer. This

is another indication -that the simmer aerosol either contains

a greater proportion of non-combustion primary material or a

greater fraction of secondary production.

3.6 Source contributions to the FPM and Bsd

Upper limits on the average contributions to the FPM from

some sources can be relatively easily determined using the

concentration of species of known abundance in these'sources.

Sea-salt and soil are two good examples. Using sodium and

magnesium as independent tracers for (primary) sea-salt,

whilst recognising that other sources maybe present (e.g.

soil) gives the overall estimated contributions shown in Fig.21. Elemental abundances for sea water from Millero (1974)

were used to estimate sea-salt mass. As shown in Fig. 21, for

low mass loadings, (FPM around 10 |ig m~^), the sea-saltcontribution is typically up to around 20%-25% of FPM. Thefraction falls with increasing FPM to less than 10% at 20 |lg

m~^ and less than 5% for FPM greater than 30 |J.g m~^.Estimated absolute loadings of sea-salt, based on sodium or

magnesiim show some seasonal variation (see Fig. 22) . On

average, loadings are lowest in autumn and highest in summeralthough a number of days in autumn and summer show enhanced

loadings (2 for sodium and magnesium, 4 for magnesium alone,

and 1 sodium alone. Where both species are elevated, sea-salt

is the likely cause. As a fraction of the FPM the sea-saltcontribution tends to be small in autumn (large cluster of

points) and relatively large and scattered in summer when lowFPM levels are observed (Fig. 23).

46

V

I01o

"Om

a

2.5 -

2 -

1.5 -

1 -

0.5 -

bsd vs time

100 150 200 250 300 350

time (days since.1 Jan 1990)400 450

Figure 19. Measured scattering coefficient Bg^ (air plusdry aerosol) (10"'^ as a function of time duringstudy period. (Calibration based on Freon 12,B = 3.31 lO"'^ m~^ at 20 °C) . The sampling threshold ofBgd=1.175 (10"4 m~l) is also shown.

Alphihgton (0), Footscray (+)

47

bsd/bap vs time

(/}

4J

c

3

a

n

•aen

D

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 20. Ratio of scattering coefficient to aerosolabsorption coefficient (Bg^/B^p) as a function of timeduring the study period.

Alphington (0), Footscray (+)

48

cQ

uto

c.

(00)

<T30)cn

0.45

0.4 -

0.35

0.3 -

0.25 -

0.2 -

0.15 -

0.1

0.05 -

sea salt mass fraction vs weighed mass

0 <^+I I O I ^

30 40 50

weighed mass

Figure 21. Ratio of sea-salt mass ([ig m"^) togravimetric mass concentrations (|ig m~^) as a function ofgravimetric mass concentration. Sea-salt concentration

determined from sodium (0) and determined from

magnesiiom- { + ) .

49

sea salt mass vs time

m

E

cn

3

cn

(n

(0

E

(D

cn

ro

Q)

(Si

0»-+ 00^

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 22. Sea-salt mass loadings (|ig m"^) as a functionof time during the study period. Sea-salt mass

determined from sodium concentration (0) and determinedfrom magnesium concentration (+).

50

co

u

10c.

03

cn

m

01U3

0.45

0.4 -

0.35 -

0.3 -

0.25 -

0.2 -

0.15

0.1 -

0.05 -

100

sea salt mass fraction vs time

log

150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 23. Ratio of sea-salt mass (jig m 2) togravimetric mass concentration (FPM,_ |J,g m ■^) as afunction of time during the study period. Sea-saltmass determined from sodium concentration (0) anddetermined from magnesium concentration {+) .

51

There are number of elements that are potentially useful

as tracers for soil aerosol. The major constituents of

"average" crust are Si, 0, Al, Fe and Ca (Fairbridge 1972).

The estimated fraction of soil in the FPM using Si and Fe as

tracers, with abundances from Fairbridge (1972) is shown as a

function of FPM in Fig. 24. Clearly, iron is enhanced

relative to the average crust and either there is another

source of iron or the local soil composition (in the FPM size

range) doesn't match average crust. Iron was found in the

source studies in burning and vehicle exhaust samples (see

Part B), so its use as a soil tracer (using this simple

approach) appears compromised. Other measured species include

Al and non-sea-salt calcium (nss-Ca). Non-sea-salt

concentrations are determined by subtracting the proportion of

the observed variable attributable to sea-salt, based on the

measured sodium concentration and sea water concentration

ratios given by Millero (1974). The soil fraction in FPM

using Si, Al, and nss-Ca are plotted in Fig. 25. Nss-Ca shows

some enhancement over silicon at low FPM levels but otherwise

the fraction doesn't depend strongly on FPM. Estimated soil

fractions of FPM (medians) using the indicated elements and

average crustal abundances are 1.5% (Si), 2.4% (Al) and 1.4%

(nss-Ca). All three show soil contributions to FPM to be

quite small on average. The annual variation of nss-Ca is

plotted in Fig. 26, this shows some enhancement during autumn.

3.7 Seasonal changes of source contributions

Some indications of seasonal differences in FPM

composition have already been discussed. These include a

larger fraction of primary combustion aerosol mass (elemental

carbon) in late autumn - early winter, (Fig. 15) and increases

in total carbon to elemental carbon ratio in late autumn-early

winter and in summer (Fig. 16). Sodium and magnesium also

demonstrate small seasonal differences and possibly the

presence of some non-sea-salt source in autumn (Fig. 22).

Soil (crustal) aerosol also shows some possible systematic

change with season. This appears as a relative increase inautumn and appears to be greater at Footscray than Alphington.

Other evidence of seasonal change in the Melbourne FPM

has been observed in the present study; this is discussed inthe following sections.

52

co

u(D

C-

(n0}

<0

£

(0

DC.

u

0.3

0.25 -

crystal mass fraction vs weighed mass

0,2

0.15 -

0.1

.0.05 -

Oo oo

V ̂ + + o +t^^ A r* . *

30 40 50

weighed mass (ug/mB)

Figure 24, Crustal (soil) fraction of FPM (by mass)based on pixFe and pixSi concentrations, as a function of

gravimetric mass, pixFe (0) , pixSi ( + ) .

53

co

uro

c.

in

in(0

E

in

3C.u

0.2

0.15 -

0.1 -

0.05 -

crustal mass fraction vs weighed mass

-0.05

I m

10 20 30 40 50

weighed mass (ug/m3)60 70 SO

Figure 25. Crustal (soil) fraction of FPM (by mass)based on pixSi, pixAl and non-sea-salt pixCaconcentrations, as a function of time during the study

period, nss pixCa (0), pixSi (+), pixAl (square).

54

fn

E

Ol

D

10UI

inin

c

0.3

0.25 -

0.2 -

0.15 -

0.1 -

0.05 -

nss-Ca vs time

-0.05

100 150 200 250 300 350

time (days'since 1 Jan 1990)400 450

Figure 26. Variation of non-sea-salt calcium

concentration (n mole m~^), as a function'of time duringthe study period.

Alphington (0), Footscray (+)

55

3.7.1 Aerosol acidity /Photochemistry /nss-S04

Some of the changes discussed so far suggest a

photochemical origin. This includes the summer increase in

the ratio of organic to elemental carbon (Fig. 16) and the

closely related ratio of Bsd'^^ap which alsoincreases over summer.

Other changes include a general rise in FPM acidity over

summer as indicated in Fig. 27 by the ratio of the sum of the

concentrations of H"*" and NH4'^ (H+NH^) to aerosol FPM. Freeammonia in the atmosphere will rapidly titrate any free acid

in the aerosol and so this combined factor (H+NH^), gives abetter indication of the amount of aerosol acidity that has

been produced than H"*" alone. The increase in (H+NH^) oversiommer is broadly similar to increases in non-sea-salt sulfate

(nss-S04) and ozone concentrations as shown in Fig. 28 and 29,also to the photochemically-driven ratio of nitrogen dioxide

to nitric oxide (NO2/NO), shown in Fig. 30. The driving forcefor this seasonal change in acidity can be attributed to

photochemistry with increased conversion of both inorganic and

organic acids during simmer. Ayers et al. (1991) have shown

that loadings of natural nss-S04 in Southern Ocean maritimeair, observed in Tasmania during summer are typically around 2

nmole m"^ (200 ng m~^) and in winter about 0.2 n mole m~^ (20ng m~2). These concentrations are negligible compared withnss-SO^ concentrations observed in the Melbourne FPM; see, forexample. Fig. 31 which shows the relationship between nss-SO^and (H+NH4) for seasonally grouped data. Figure 32 gives theratio of (H+NH4)/nss-SO'^ as a function of time of year. Bothindicate the presence of two separate "modes". During autumn

and winter a substantial fraction (at times the main fraction)

of the acidity is not associated with sulfate whereas during

the remaining winter period through to summer nss-S04 and(H+NH4) are relatively well correlated (see Fig. 31).

The seasonal variation of aerosol nitrate. Fig. 33, is

different to that of sulfate. During autumn at Alphington the

relative nitrate levels in the FPM (mass fraction) are

typically less than at Footscray. This is consistent with

other evidence suggesting a larger contribution of vehicles to

the overall FPM at Footscray during autumn. The ratio of

nitrate/FPM at Footscray does not show any marked annual

variation whereas at Alphington there is possibly a slight

increase in this ratio during summer. At both locations there

is a systematic change in the ratio of bromide to lead, as

56

(n(/)(0

£

T30)

r:O)•fH

OJ3

■TIZ

+I

(H+ + NH4)/weighed mass

X

vs time

100 150- 200 250 300 350time (days since 1 Jan 1990)

400 450

Figure 27. Ratio of molar concentration of H''"+(n mole m"^) to fine particle mass (FPM, |ig m"^) , as afunction of time during the study period.Alphington (0) , Footscray (+)

57

nss-S04 vs time

m

£

OID

Ocn

(0ui

c

1 1 1 1 1

1

0

+

++ +

+ + o

+ +

0

o

o

+

+ +

+ + + 0 ++<>0 ^ +

%>%$0 ^c +

r1

0

I

100 150 200 250 " 300 350

time (days since 1 Jan 1990)400 450

Figure 28. Nss-SO^ mass concentration ([Ig m~^) , as afunction of time during the study period.

Alphington (0) , FootsCray ( + )

58

ozone vs time

enaa

01

coN

o

5 -

4 -

3 -

2 -

1 -

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 29. Ozone concentration (pphm), as a function of

time during the study period.

Alphington (0), Footscray (+)

59

18

N02 / NO

I

vs time

1

16 -

14 -

12 -

oz

10 -

fUoz

a -

6 -

4 -

2 - +

O

0+

+

oO o

o ̂

oL_

-

o -

+

100 150 200 250 300 350time (days since 1 Jan 1990)

400 450

Figure 30. Ratio of concentrations of NO2/NO, as afunction of time during the-study period.

Alphington (0), Footscray (+)_

60

80

60m

cuI—I

a

0

CO

1tn

tn

c

40

20

0

nss-S04 vs (H+NH4]date

, both sites, threegroups

1 ' ' 1 ' ' 1 '

• day < 180

1 1 1 1 1 1 1

M

1

+ 180 - 300

day > 300

+-

+

-

-

, + •

i .■ *< •

-

K 1^ 1

I I 1 I 1 I . I 1_ I I t , I I I I

0 30 12060 90

H + NH4 (n.Mole m-3)

Figure 31. Relationship between nss-S04 and H"''+ NH4+(n'mole in"^) in three time periods. These are: prior toJuly 1990, August-October 1990, and after October 1990.

150

(H + NH4)/nss-S04 vs time

61

T

0cn

U1

tn

cv.

1

+

I

5.5

5

4.5

4 -

3.5

3

2.5

2

1.5

1

o S o

+ oo

+

+

+

O ̂ ,0

O %

o;5

-H- ^

+ +

o +

+

o

I '

+ +

J_

0

L

+oo

o

100 150 200 250 - 300 350

time (days since 1 Jan 1990)400 450

Figure 32. Concentration ratio (H"'"+ nss-S04^ as afunction of time during the study period.

Alphington (0), Footscray (+)

62

0)(n

03

B

T3OJ

szD)•rl

<U2\cn

oz

0.16

0. 14 -

0.12 -

0.1 -

o.oa -

0.05 -

0.04

0.02 -

100

N03/weaghed mass vs time

150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 33. Ratio of mass concentrations of nitrate to

gravimetric mass ({ig m~^), as a function of time duringthe study period.

Alphington (0) , Footscray ( + )

Br / Pb vs time

63

n

a

LUX

c.m

LUX

i.a

1.6 -

1.4 -

1.2

o +

O CO*" *+ So oo o -y.

o

+ 0 0* 0 ^+ 3-

00

+

1 -

0.8 - + +

0.6

0.4 -

+

+ O

+

s +

0.2 -

_L J_ X

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 34. Molar concentration ratios of bromide and

lead (pixBr/pixPbl) (n mole m~^), as a function of timeduring the study period.

Alphington (0), Footscray (+)

64

shown in Fig. 34, indicating (greater?) volatilization of

bromide to bromine during the summer.

3 .8 Late autiimn early winter

Some significant changes are evident during the late

autumn-early winter period. The fraction of elemental carbon,

or primary combustion aerosol has been shown to be enhanced in

this period (Fig. 15) as is the ratio (H+NH^)/nss-SO^.Possibly the most obvious additional changes are in the

"biological" elements potassium, chloride and phosphorous,

particularly potassium (a known tracer for biomass burning,

see Part B, Source Studies) . The mass fraction of potassiiom

in the FPM is maximum in this period. Fig. 35, and the amount

of potassium for a given scattering coefficient is

correspondingly enhanced. Fig. 36. At Alphington in late

autumn there is enhancement of the ratio of potassium to

elemental carbon, as shown in Fig. 37. This ratio (K/elC)

gives one indication of the mixture of smoke carbon to vehicle

exhaust carbon which is clearly different at these two sites

during autiomn 1990 with relatively more smoke at Alphington.

Another indication of this is shown in Fig. 38 which is the

ratio of potassium to lead, with lead a good tracer for motor

vehicle emissions. This ratio also indicates a decreasing

fraction of smoke compared with vehicle emissions for

Alphington from autumn to summer. At Footscray there is a

slight (not statistically different from zero) increase in the

ratio from autumn to summer, suggesting no real change in the

■fraction of smoke relative to vehicle emissions.

In sea water the mole ratio for potassium/sodium is0.0219 (Millero 1974) . Calculation of the potassiiom to sodiummole ratio for the ambient samples is an effective procedurefor looking at enhancements of potassium. Ratios for theambient samples and the sea water ratio are given in Fig. 39.This figure indicates that potassium is enhanced above its seawater reference level in nearly all non-summer samples. Manylate autumn and winter samples show marked enhancement.Alphington shows the most cases of larger enhancement. Thesame procedure for the ratio of chloride to sodium. Fig. 40,also reveals a marked enhancement of chloride over the sea-

water ratio during the late autumn-winter period. Very fewsamples show a chloride to sodium ratio typical of sea water,chloride is usually either enhanced, (relative to sodium) ordepleted. Phosphorus was only observed above backgroundduring the late autumn period when potassium and chloride arestrongly enhanced. Fig. 41. All these elements are typical of

65

(n

en

COB

QiC.o

aOJ»—(

u

u

■a0)£1O)

OJz

I<nuic

0.012

0.01

0.008 -

0.006

0.004

0.002 -

nss-K / weighed mass

-0.002 -

-0.004100 150 200

time

250

(days since300 350

1 Jan 1990)400 450

Figure 35. Concentration ratio of non-sea-salt potassium(n'mole m"^) and fine particle mass (Nuclepore filter)(Jig m"3) , as a function of time during the study period.Alphington (0) , Footscray (+)

66

OJ

£

ZcX

■T03O

13tnn

100

K / bsd vs time

T

150 200 250 300 350time (days since 1 Jan 1990)

400 450

Figure 36. Ratio of potassium concentration (n mole m. . _A _1 .

and scattering coefficient (10 ^ m ■^) , as a function oftime during the study period.Alphington (0) , Footscray (+)

67

2.5

nss-K / elemental C vs time

T 1 1

2 -

□I3

ZC

u

c(Ue0)

Oo

1.5 -

0.5

o

+ o

V. ^ ̂ O^ O

o o 4o ©

© ̂

■ + *+ <!** ̂^0+ ^ o+ 4.0+ ^ ©

I

inin

c

-0.5 -

-1 -

-1.5 JL J_

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 37. Ratio of potassium concentration (n mole m~^)and elemental carbon mass concentration (|ig m~^), as afunction of time during the study period.

Alphington (0), Footscray (+)

68

Ol

D

ZC

n

a

LUX

IuiUl

c

6 -

3 -

-1 -

-2

nss-K / Pb vs time

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 38. Ratio of potassium concentration (n mole m""^)and lead concentration (n mole m~^), as a function oftime during the study period.

Alphington (0), Footscray (+)

69

K / Na vs time

(0

z

1.2

1 -

0.8 -

0.6

0.4 -

0.2 -

+ %\-f>

100 150 200 250 300 350

time (days since 1 Jan 1990)400 -450

Figure 39. Ratio of potassiiom concentration (n mole m~^)and sodium concentration (n mole m~^), as a function oftime during the study period. The sea water mole ratio0.0219 is indicated.

Alphington (0), Footscray (+)

70

C1 / Na vs time

la

z

u

5 -

4 -

3 -

2 -

1 -

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 40. Ratio of chloride concentration (n mole m~^)and sodium concentration (n mole m~^), as a function oftime during the study period. The sea water mole ratio

1.163, is. indicated.

Alphington (0), Footscray (+)

71

0.0025

P / weighed mass vs time

0.002

0.0015

0.001

0.0005

10 onoio<> awi—la ♦ oi——b »i in ♦» oig100 150 200 ■ 250 300 350

time (days since 1 Jan 1990)400 450

Figure 41. Mass concentration ratio of phosphorousto gravimetric mass concentration (jig m-3 , as a

function of time during the study period.Alphington (0) , Footscray (+)

72

biological material and are present in smoke (see source

profiles, report Part B). The ratio of magnesium to sodium

tends to the sea water value over summer; however, magnesium

shows some occasions with enhancement during autumn (and some

periods with deficiency relative to sea water), see Fig. 42.

Absolute loadings of magnesium. Fig. 43, show a greater

increase in autumn at Footscray. Magnesium is present with

similar mass fractions in vehicle emissions and fire emissions

(see source profiles) so the relative abundances at Footscray

and Alphington do not allow simple interpretation.

3.9 Multiple linear regression models for FPM - source

contributions

Determination of the contributions of the major sources

to the fine particle mass, or scattering, requires some form

of inversion on the ambient concentration data; the source

profiles described in Part B of this report were collected for

that purpose. However, the initial assessment described below

relies on the determination of multiple linear-regression

models and our consideration that enough (near) specific

tracer variables are present to broadly interpret the

calculated source contributions associated with these tracers.

In 'view of the very clear difference in trace, chemistry

during the late autumn period, as shown in Fig. 35-40 and the

possibility of enhanced photochemistry effects _over summer,

the data were arbitrarily divided into three "seasonal" groups

for examining contributions to the FPM. The three groups are

"autumn" from day 106 to 180, "winter", days 180-300 and

"summer" days 300-425, where days are numbered from the start

of 1990. For the autumn and winter groupings the data were

further segregated by collection site: Alphington and

Footscray. Insufficient events were recorded during summer to

justify any subdivision of the summer data based on site.

Many regression models were tested with the aim ofproducing the maximum correlation coefficient and the minimumunexplained contribution (constant term) in the resultingmodels. Another consideration was to choose variables that

had valid data for the largest number of events. Some

variables are practicably or potentially interchangeable, for

example the use of nitric oxide (NO) and bromide or lead as

tracers for vehicles (see report Part B). Generally there

were more cases with missing NO than bromide and the lead

record has more "outliers" than the bromide record so the

73

10

z

D1

Z

0.5

0.45 -

0.35 -

Mg / Na vs time

0.25

0.15

i

0.05 -

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 42. Ratio of magnesium concentration (n mole mand sodium concentration (n mole m~^), as a function oftime during the study period. The sea water mole ratio0.1134, is indicated.

Alphington (0), Footscray (+)

74

12

Mg vs time

-I r T

+

m

B

SC

O)

z:

10 -

a -

6 -

4 -

2

o

L+ +

^ * Oo

o

«>oOo

+<:«■♦ +o<> 0 0"^+0 O +

+

o o + +

J_

Oo

0'

t

AOO 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 43. Molar concentration of magnesium (n mole

m~^), as a function of time during the study period.Alphington (0), Footscray (+)

75

latter has been used as a vehicle tracer. PIXE-derived

potassium was used in preference to soluble potassium as a

fire/smoke tracer.

Aerosol acidity, the combined concentration of (H+NH^),frequently was a highly-significant factor. This overall

indicator of aerosol acidity has been used an indicator for

photochemical processes.

PIXE-derived calcium has been used as a "soil" tracer.

In some of the FPM models a sea-salt calcium fraction, based

on the concentration of sodium has been subtracted to give

nss-Ca. Where it has not, calcium should be considered as

representing a combination of soil and sea-salt. Magnesium

has been used as a sea-salt tracer in some models and sodium

in others; the choice was made on the basis of improvement in

correlation coefficient and/or the constant term. Where

possible, the use of variables such as temperature has been

avoided. These can produce significant coefficients that may

be acting as surrogates for other unspecified (chemical)

variables. Wind speed is used in one Bg^ model.

The final set of multiple linear regression models for

FPM (|ig m~2) are given in Tables 1-5, (units for chemicalvariables are nmole m~^). It is evident from these tablesthat the relative contributions of bromide and .potassium at

Alphington and Footscray during autumn, and the sources that

these are taken to represent, vehicles and .smoke, were

different at these two locations. The winter models. Tables 3

and 4, show this even more strongly; bromide was not a

statistically significant factor at Alphington (and was

excluded from the model) and potassium was not significant at

Footscray (and was also excluded). Both species are present

in the combined-site summer model. Table 5, although bromide

is not statistically significant.

Table 1. Alphington, 106 < day < 180 coefficients for FPM

multiple linear regression model

independent variable coeff. st.error sig.level

constant 1.56 1.53 0.3188

h+nh4 0 .32

O

o

0.0025

br 0.91 0 .24 0.0009

pixK 3 .68 0.06 0.0000

pixCa -na*.0219 2 .40 1.63 0.1551

R-SQ (ADJ) 0.9658, 27 observations fitted.

76

Table 2. Footscray, 106 < day < 180 coefficients for FPM

multiple linear regression model

independent variable coeff. St.error sig.level

constant 5.08 1.17 0.0005

h+nh4 0.29 0 .03 0.0000

br 1.40 0.26 0.0001

pixK-na*.0219 1.75 0.60 0.0100

pixCa 1.84 0 .54 0.0037

mg 0 . 60 0 .53 0.2694

R-SQ (ADJ) 0.9800, 22 observations fitted.

Table 3. Alphington, 180 < day < 300 coefficients for FPM

multiple linear regression model

independent variable coeff. St.error sig.level

constant 0.91 1.16 0.4565

h+nh4 0.25 0.06 0.0035

pixK 5.15 0 .33 0.0000

pixCa 4.31 1. 60 0.0275

R-SQ (ADJ) 0.9805, 12 observations fitted.

Table 4. Footscray, 180 < day < 300 coefficients for FPM -

multiple linear regression model

independent variable coeff. St.error sig.level

constant 2 .69 0 .99 0.0298

h+nh4 0 .15 0.02 0.0002

br 3 .11 0.28 0.0000

pixCa 2 .93 0.45 0.0003

R-SQ (ADJ) 0.9594, 11 observations fitted.

Table 5. Alphington and Footscray, 300 < day < 425

independent variable coeff. St.error sig.level

constant 1.59 1.68 0 .3711

h+nh4 0 .17 0-. 02 0.0000

br 2 .94 3 .05 0.3627

pixK-na*.0219 2 .97 1.65 0.1087

pixCa-na*.0219 5.18 2 .91 0 .1131

mg 1.13 0.29 0.0046

R-SQ (ADJ) 0.9342, 14 observations fitted.

77

Information on the contributions of different sources to

the FPM is given in Appendix 1, Tables A1-A5. The estimated

absolute contributions to the FPM are also shown as cumulative

component plots in Fig 44 for Footscray and Fig. 45 for

Alphington. Tables A1-A5 and Figs. 44-45 give the calculated

estimates for contributions to the FPM (in [ig m"^) for the MLRmodel appropriate to each sample assuming that the model

applies equally well to all samples in the set from which the

model was derived. The equivalent contributions for 1

standard error in the coefficient estimate from the MLR models

are given in Tables A1-A5 below each component mass estimate.

The measured sample FPM and sum of the estimated mass

associated with the different tracers are also included. The

variable "on" is the time in days since the start of 1990 that

the sample started and nF is the Fluoropore number of the

sample.'

Considering the "dirtier" days in the autumn grouping,

specifically those with FPM over 30 |J.g m"^ (nF = 23, 13, 32,33 and 14 at Footscray and nF=25, 29, 26, 20, 22, 35, 39,

47, 60, 36, 68 and 69 at Alphington), average fractional

contributions from the three "major" variables are as follows:

Footscray, (H+NH^) 37%, br 23% and pixK 13% and at Alphington(H+NH^) 21%, br 20% and pixK 55%. The estimate of the(average) absolute FPM associated with the bromide source is

similar for both sites for these selected samples; 10.5 |ig m~^at Footscray and 9.9 [ig m~^ at Alphington, but the estimatedmass (FPM) associated with potassium at Footscray is

5.7 |lg m~^ whereas at Alphington the corresponding estimate is24.6 }lg m~2 . (Footscray has a higher unexplained mass 5.1 |lgm~^, compared with 1.6 ^ig m~^ at Alphington, this is alsoshown in Figs. 44 and 45). Calculation of the fraction of

nss-S04 and N03~ in the FPM for these same samples isinstructive, at Footscray the average nss-SO^ fraction was4.5% and the nitrate fraction was 6% whereas at Alphington the

average nss-S04 fraction was 1.5% and the nitrate fraction1.6% of the FPM. In both cases it is clear that the acidity

indicator, (H+NH4) is not acting just as a surrogate forsulfuric and nitric acids. As well, any possible contribution

of natural nss-S04 during these events must be very minor.

78

80 -

Calculated FPM associated with variablesin MLR models. Footscray

'i' « J r~T r j r r " i —i—1"~ i "i ■ i—r*1 * I r—j I—I—I—I—I—]—I—I—I—I—p

cn 60 -

Dl

3

CLU_

CU

>• i-H

to1—1

3

e3

CJ

40

20 -

0 -

^ H+NH4

^ nss K

IZl Ca

Q Mgconst

-j I I \ j t i l l

^ y y ^ X X x' X 'x k_i « ' t t t 1 I t

100 150 200 250 300 , 350

Time (days from Jan 1 1990)400 450

Figure 44. Calculated cumulative contributions to fine

particle mass (|ig m~^) at Footscray, as a function oftime during the study period. Masses shown are those

associated with variables used in the selected multiple

linear regression, models.

79

i-n

C31

ZD

CLlJ_

03

>

toI—I

ZD

EU

u

100

80

60

40

20

0

Calculated FPM associated with variablesin MLR models, Alphington

■T I I I 1 ■ I I I ] I I I—r—]—I—I—I—T—]—r—I—I—I—I—I—I—I—I—p

S H+NH4. ̂ nss K

0 nss Caconst.

J 1 1 1 1 1 * 1 1 1 1 1 1 1 ! ! 1 1 1 I i t f . t I t t , » I . t . t I

100 150 200 . 250 300 350 400 450Time (days from Jan 1 1990)

Figure 45. Calculated cumulative contributions to fineparticle mass (jig m~^) at Alphington, as a function oftime during the study period. Masses shown are thoseassociated with variables used in the selected multiplelinear regression models.

The simpler models for the winter period give a

correspondingly simpler prediction of the fractional

contributions. For the winter period absolute loadings were

lower than in the autumn period, particularly at Footscray.

There were two events at Footscray with FPM in excess of 25 ^Lgm~^ (nF = 99, doy 190.85 and nF=124, doy=214.53). Theestimated fractions of FPM associated with the two variables

are:

(H+NH^) 14% and br 69%, (nF=99) and(H+NH^) 31% and br 29%, {nF=124).

Observed fractions of the FPM as nss-S04 and N03~corresponding to these are:

(nss-SO^) 4.3% and N03~ 3% (nF=99) and(nss-S04) 11% and N03~ 6% (nF=124).

At Alphington, samples with FPM in excess of 3 0 |J.g m~^ show aconsistent pattern of a large mass fraction associated with

■potassium. For these samples (nF= 79, 138, 145, and 148) theaverage FPM fraction associated with potassium was 72% andwith (H+NH4) was 22%. Corresponding FPM fractions were nss-SO4 2.4% and N03~ 3.9%. At Footscray one sample (nF=158, doy280.42) showed a high fraction of calcium, this is possiblyassociated with sea-salt since this model did not carry avariable directly related to a sea-salt source

At both sites later samples indicate an increase in thefraction associated with aerosol acidity (H+NH4) , although ingeneral the absolute FPM loadings decrease (see Figs. 44 and45) . Greater than 44% of estimated FPM was associated withthe acidity variable for nF=149, 151, 157 at Footscray andnF=155 (doy 296.52) at Alphington. For these spring samplesnss-S04 comprises 14% of the FPM and N03~ 9.3%.

An increase in the fraction of (H+NH4) is typical in thesummer samples. For samples with measured FPM in excess of 16p,g m~^ (nF=153, 154, at Alphington and 159, 189 and 191 atFootscray) the average estimated contribution of massassociated with (H+NH4) is 57% with only small fractionsassociated with primairy sources of potassium and bromide, 5%for each. The fraction associated with (H+NH4) is in factbiased down by sample nF= 191, this has a very large fractionevidently associated with magnesium (sea-salt) and acorresponding lower (H+NH4) fraction (only 29%) . On averagenss-S04 comprises 22% of the FPM in these samples and N03~ 5%,whereas for nF=191 the fractions are nss-S04 12.5% and N03~15.7%. In this one sample the estimated mass fraction

81

associated with acidity (29%) is similar to the observed mass

fraction of sulfate plus nitrate (28.2% of FPM), whilst in

general during winter and summer the observed fraction of

sulfate in the FPM is typically equivalent to about 30% of the

estimated mass fraction associated with (H+NH^) and nitrate isequivalent to close to 20% of this estimated mass fraction.

This indicates that even in summer, strong inorganic acids

only make up about 50% of the mass associated with this

secondary production indicator. During summer the total

inorganic mass fraction is also maximtom. The residual mass

associated with (H+NH^) is attributed to the photochemicallyconverted organics (hydrocarbons) that make up the non-primary

fraction of the total carbon loading. Sample nF=191 is also

noteworthy because it was collected during the period with the

highest hourly ozone for the period (and summer), 11.6 pphm.

This occurred during a sea-breeze when winds were southerly at

3 ms~^ (S. Ahmet, private communication).

The MLR models indicate that during autumn there are

similar contributions to the FPM from vehicles at Footscray

and Alphington but a much stronger contribution from smoke at

Alphington. At Footscray the contribution from smoke was

about one half that from vehicles whereas at Alphington it was

over twice the contribution of vehicles. Footscray on the

other hand shows a greater contribution associated with

aerosol acidity (secondary production) not associated with

identifiable primary sources (37% compared with 21%)._ The

pattern of attainment of the sampling threshold is consistent

with these contributions. There were an equal number of

sampling periods (six) initiated between midnight and noon at

the two sites. In the period noon to 6 pm, ten samples were

initiated at Footscray and five at Alphington whereas from 6

pm to midnight eight samples were initiated at Footscray and

eighteen at Alphington. This source contribution pattern

continued into the early part of winter with some reduction in

the fraction associated with acidity at Footscray to a level

similar to that at Alphington, just over 20%. The main

contribution to the FPM■during winter at Footscray wasassociated with primary emissions from motor vehicles whereasat Alphington the main source was smoke. The later samples inthe winter group are more typical of the summer samples wherethe mass fraction associated with secondary production thatcannot be associated with any one particular primary source isthe main contributor to the FPM. Summer samples can becharacterised as being associated predominantly with thesecondary production source on the dirtier days, whilst on

82

several of the days sampled with lower FPM values (typicallyFPM < 10 [ig but in one case FPM = 27 |ig ) sea-salt made

a considerable contribution to the FPM (nF=182, 187, 173,

191) .

3.10 Multiple linear regression models for Bsd - source

contributions

Procedures used to derive MLR models for the FPM were

also followed for deriving models of the scattering

coefficient In this case however the data were divided

into three groups, autumn and winter at Alphington (doy <

300), autumn and winter at Footscray, and summer at the

combined sites (doy > 300). The final MLR models are given in

Tables 6-8. One difference between the models for scattering

coefficient and those.for FPM is the constant fraction which

is due principally to the scattering coefficient of air, .

At the nephelometer wavelength, is 0.21 10"'^ m~^ at 20 °C.This value is within one standard deviation of the predicted

constant values. At Footscray the best model for autumn-

winter also included a coefficient (significant only at the

13% level) related to wind speed. The exact role of wind

speed is not clear but it may be acting as a surrogate for

coarse particles that are not collected in the chemical

sampling system.

Contributions to the- scattering coefficient were

calculated for each sample based on the MLR model applicable

for the time of collection and location. These contributions

are given in Tables A6-A8 (Appendix 2). The calculated

contributions to the scattering coefficient are also plotted

in Figs. 46-51. Figures 46 and 47 show absolute contributions

from ail the coefficients included in the MLR models. Overall

these figures show a similar pattern of contribution to those

for the corresponding FPM in Figs. 44 and 45. The maincontributing factors are potassium, bromide and acidity taken

to represent smoke (biomass burning), vehicles and secondary

production respectively. Figures 48 and 49 show the

contributions to Bg,^ of these main factors in cumulative formand Figs. 50 and 51 individually. At Alphington, during the

autumn periods with elevated scattering, the main contributionto the scattering coefficient is clearly associated with

potassium (biomass burning/smoke). At Footscray in the same

period bromide (vehicles) and aerosol acidity (secondary

production) were both significant contributors whereas the

potassium related factor (smoke) made a very minor

83

Io

■aa.cn

CQ

cu>

• rH

4-}ro

=3EZ3O

2.5

1.5

0.5

0

Calculated Bspd associated with MLRmodel variables. Footscray

-I—I—I—r 'I I '~i J I i I ' I I j *' I ' r 'T"*"! r~T—I I I ' I i j r j ■ I ' f ■"»' ' i j ■

H+NH4

nss K

nss Ca

H wind speedconst.

i ! 1 1 1 ! I I I I I I 1 I I 1 ' I ' '

100 150 200 250 300 350 400 450

■ Time (days from Jan 1 1990)

Figure 46. Calculated cxjmulative contributions to thedry scattering coefficient, (10~^ m~^) at Footscray,as a function of time during the study period.Contributed scattering coefficients shown are thoseassociated with variables used in the selected multiplelinear regression models.

84

Io

■aCL03m

OJ>

• rH

-1-J(11

=JCJ

3 -

2.5

2 -

1.5 -

1 -

0.5

0 -

Calculated Bspd associated.with MLRmodel variables. Alphington

S H+NH4nss K

nss Ca

const.

100 150 200 250 300 350

Time (days from Jan 1 1990)400 450

Figure 47. Calculated cumulative contributions to thedry scattering coefficient, Bg,^ (10"'^ m~^) at Alphington,as a function of time during the study period.Contributed scattering coefficients shown are thoseassociated with variables used in the selected multiplelinear regression models.

85

"a

CL

in

CO

QJ

>•rH

4-1

ro

ZJCJ

i.a -

1.5 -

1.2

0.9

0.6

0.3

0 -

Calculated Bspd. associated with MLRmodel variables (selected]. Footscray

"I—I—I—I—I—1—I—I—I—I—I—I—I—I—[—I—I—I—I—I—I—I—I—I—]—1—I—I—1—[—I—1—I—r

^ H+NH4

nss K

100 150 200' 250 300 350

Time (days from, Jan 1 1990)

400 450

Figure 48. Calculated cumulative contributions to thedry scattering coefficient, (10~^ m~^) at Footscray,as a function of time during the study period.

Contributed scattering coefficients shown are those

associated with variables used in the selected multiple

linear regression models. This figure shows onlycontributions associated with the three "main" variables,

Br, nss-K and acidity (H+NH4).

86

Calculated Bspd associated with MLRmodel variables (selected], Alphington

2.4 -

I

o

TJ

CL

cn

in

OJ

>•rH

-M

(U

nu

1.6

1.2 -

0.8 -

0.4 -

0 -

Br

H+NH4

nss K

100 150 200 250 300 350

Time (days from Jan 1 1990]

400 450

Figure 49. Calculated cumulative contributions to the

dry scattering coefficient, (10~^ m~^) at Alphington,as a function of time during the study period.

Contributed scattering coefficients shown are those

associated with variables used in the selected multiple

linear regression models. This figure shows only'

contributions associated with the three "main" variables,

Br, nss-K and acidity (H+NH4).

1.2 -

87

Contributions to Bsd associated with MLR

model variables, Footscray

^ 1 -

Io

f

0.8 -

• H+NH4

+ br

5K pixK

co•fH

4-»

ZJX2•iH

c_4J

co

u

■aCDm

0.6 -

0.4 -

0.2 -

+

+

+

+

+ +

+« +

5K

0" -*1% i.** 14fef jJi

I ' ■ « ■ I ' ' ' ■ I ' ' ' I 1 I I : L. _1 I I 1 I I I I I I 1 I I I

+ ++

■w MAk'•nK

L

100 150 200 250 300 " 350

time (days since 1 Jan 1990)400 450

Figure 50. Individual calculated contributions to thedry scattering coefficient, (10~^ m~^) at Footscray,as a function of time during the study period.Contributed scattering coefficients are the same as thosein Figure 48 but are not summed.

88

Contributions to Bsd associated with MLRmodel variables, Alphington

1.5 --I—1—I—I—I—I—I—I—r- "1—I—1—I—I—]—I—1—I—I—p

-c-H

I

1o

co

♦ rH

4-)

=3

• iH

c_+J

co

u

X3

m

cn

1.2 -

— 0.9 -

0.6 -

0.3 -

*

3K

3fi

5fi

*

3K* ̂

3K

)K

3K

3K

3(f

0 -

+++5^ • 5^?*

J I I 1 I I I I I I L

3K

+

i I I i_ _i I I i_ 4 I I I L_

• H+NH4

+ br

^ pixK

■f+

m» » ' *

100 150 200 250 300 350

time (days since 1 Jan 1990)400 450

Figure 51. Individual calculated contributions to thedry scattering coefficient, (10"'^ m"^) at Alphington,as a function of time during the study period.Contributed scattering coefficients are the same as thosein Figure 49 but are not summed.

89

contribution. During winter at Alphington, potassium (smoke)

still comprised the major factor. At both sites in summer,

aerosol acidity (secondary production) assumes the major

contribution with a minor contribution from bromide (vehicles)

and an insignificant contribution associated with potassium

(smoke) (this was excluded from the MLR model as statistically

insignificant).

Table 6. Alphington day < 300 coefficients for multiple

linear regression model

independent variable coeff. St.err sig.level

constant 0 .266 0.051 ■ 0.0000

h+nh4 0.010 0 .002 0.0001

br 0.018 0.008 0 .0236

pixK-na*.0219 0 .123 0 .018 0.0000

pixCa 0 .114 0.059 0.0594

R-SQ (ADJ) 0.9421, 35 observations fitted.

Table 7. Footscray day < 300 coefficients for Bg^ multiplelinear regression model

independent variable coeff. St.err sig.level

constant 0 .151 0 .166 0.3725

h+nh4 0.009 0.002 0.0002

br ' 0.081 0 .023 0.0018

pixK-na*.0219 0.019 0.057 0.7373

pixCa-na*.0219 0.083 0.045 0.0764

sws 0.075 0 .042 0.0907

R-SQ (ADJ) 0.7634, 30 observations fitted.

Table 8. Alphington and Footscray, 300 < day < 425,

coefficients for 3^,^ multiple linear regression model

independent variable coeff. St.err sig.level

constant 0 .066 0 .130 0 . 6226

h+nh4 0.012 0.002 0.0000

br 0.396 0 .238 0.1275

pixCa-na*.0219 0.083 0 .147 0.5852

R-SQ (ADJ) 0.8571, 14 observations fitted.

90

3.11 Organic trace compounds

Source samples were analysed initially for specific

organic compounds with the Mass Sensitive Detector (MSB) in

the ion current mode to allow the widest possible range of

compounds to be determined. A range of organic compounds was

selected from these analyses. They were then analysed again

with the MSB in the selected ion monitoring mode (SIM). This

mode allows particular molecular weights.bo be targeted

thereby increasing the sensitivity by a factor of 100-1000.

Increased sensitivity is required for determination of the

concentration of organic compounds in the ambient samples.

The list of molecular weights targeted in the selected ion

monitoring mode is given in Table B9 (in Part B). Cresols

were included as possible tracers for secondary aerosol

■ although structures similar to cresols have been detected in

the aerosol from fires. Although 1-methyl Naphthalene and 2-

methyl Naphthalene were not detected in the scanning GC/MS

analysis they were included in the SIM runs because of their

previous use as tracers for petrol vehicles. The C22hydrocarbon was detected as a fragment of mass 85 (0113(0112)5)and was selected as a possible tracer of aerosol contributed

from diesel vehicles.

The output from the MSB is a series of peaks at given

retention times, which are subsequently integrated. A

problem, which is typical of mass spectrometers, is that the

respdnse of the MSB changes on time scales of less than one

day. To overcome this problem deuterated anthracite

(anthracite]_Q) was used as an internal standard. During thiswork 500 ng of the anthracite^o was added to the 5 ml of theextracting solution by adding 100 jiL of a solution of 0.5 mg

of anthracite^^Q per 100 ml. The use of mass spectrometrypresents a second problem in the quantification of the organic

compounds identified. This is that the response of the mass

spectrometer is not the same for all compounds so that the

response of an individual compound needs to be referred back

to the internal standard. During previous work the response

of a range of structurally similar individual compounds,

including anthracite2_Q, was determined. This enabled responsefactors to be determined for each compound.

The concentrations of compounds measured in the various

source samples are given in Table B8 (Part B). The most

obvious set of tracer compounds are those for biomass burning

(open fire dry grass hay, twigs and leaves). These are the

91

compounds in Table B8 which have masses between 152 and 196.

Such compounds have been previously identified as possible

tracers for such sources as woodstoves and biomass burning

(Edye and Richards, 1991; Gillett et al;, 1989; Hawthorne et

al. , 1988; Hawthorne et al. , 1989)'. Some of these compounds

are found in both the woodstove emissions and in biomass

burning but because they have significantly higher

concentrations in the biomass burning samples they may still

be suitable tracers for biomass burning. In particular these

are .3-methoxy-4-hydroxy benzaldehyde (vanillin), 2 , 6-dimethoxy

phenol, 3-methoxy-4-hydroxy-acetophenone and 3,5-dimethoxy-4-

hydroxy-acetophenone. Some other compounds appear to be

almost entirely confined to .the biomass burning source

samples. These are 3-methoxy-4-hydro>cy benzole acid,

2,6-dimethoxy-4-(2-propenyl)phenol^and the compound of

molecular weight 194 with a retention time of 11.917 min.

Two compounds with molecular weights of 218 were measured

in all the source samples investigated in this study but

concentrations measured in the woodstove source samples were

significantly higher than those measured in the other sources.

Both compounds appear to be possible tracers for woodstove-

type combustion. A second possible tracer for woodstoves is

the compound with a molecular weight of 206 and a retention

time of 17.224 min. This compound also was found almost

exclusively in the woodstove source samples.

Whilst GCMS analysis for organic compounds offers

considerable promise in identifying specific sources, the

number of samples actually analysed in this study was quite

small (14 source, 7 ambient). The principal reason for this

was logistic rather than technical. Within the time-frameallowed for analyses this was the maximum number that the

contracting laboratory could process. Because of the time

required to edit output files of the various mass components

these analyses are also relatively expensive.

Given the above discussion on possible source tracers the

ambient data, which were obtained for days with high carbon

loadings, can be examined to see whether these suggestions tiein with the other data. Ambient organic compound data which

include late autumn and winter samples are given in Table C8

(Part C). Three of the samples (nG=22 @ 1840 28/5/90 at

Alphington and nG=32 @ 1910 28/5/90 and nG=33 @ 0740 29/5/90

at Footscray) are associated with a single "event". Thesesamples show some interesting features. Over a wide range of

92

organic species the concentrations at Footscray are lower than

those at Alphington by a factor of around 3 or 4. One notable

exception is C22/ a possible tracer for diesel fuelledvehicles, which has similar concentrations at the two sites.

The MLR models for FPM predicts that for nG=22 (at

Alphington), the relative source contributions associated with

the main tracers are:

K 38%, Br 25% and (H+NH4) 20%.

This is equivalent to 63% from primary combustion sources and

20% secondary production. For the Footscray samples nG=32 the

model predicts the following associated FPM contributions:

K 8%, Br 12%, (H+NH4) 18%

giving 20% from primary combustion sources. For nG=33, taken

on the following morning, the MLR model predicts associated

contributions of:

K 8%, Br 10%, (H+NH4) 34%

giving 18% from primary combustion sources. The increase in

predicted secondary fraction .(associated with the (H+NH4)

variable) from nG=32 to nG=33 is interesting (whilst not

unexpected for a multi-day event), as is the ratio of close to

3 for the predicted primary combustion contributions at the

two sites, which is consistent with the ratio of observed

organic concentrations.

Compounds with molecular weights 218 and 206, which were

suggested as possible woodstove tracers, were only observed in

one ambient sample (nG=22). However, it would be premature to

claim that this meant woodfires were not implicated in the

other samples. The range of compounds with molecular weights

between 152 and 196 offers more clues. The concentrations of

several of these were observed to be considerably greater in

the open fire samples burning grass hay, leaves and twigs than

in the woodstove samples. This is consistent with the

observation that emission of primary organic material in

general (relative to elemental carbon) is considerably greater

in these samples (see report Part B). From the 152-196 range

of molecular weights, three compounds present in both the open

fire and woodstove samples were selected, they also had the

previously mentioned concentration difference. These

compounds have molecular weights of 152, 166 and 196. In

93

order to compare source and ambient samples it is necessary to

normalise the concentrations using a conservative component

such as elemental carbon. The range of concentration ratios

for compounds with the selected molecular weights and

elemental carbon are given below for the two sources and the

ambient samples.

Table 9. Concentration ratios of organic compounds, with

molecular weight mw, to elemental carbon (compound / elC)

(units all lE-4 ̂ ig/|ig)

mw ambient fire woodstove

152 0.27 -.2.3 2.4 - 91 0, 0.4,5

166 0.32 -0.79 57 - 390 1.6 - 9

196 0.48 - 29 18 - 240 0.85 - 4.6

These ratios give a clear indication that the ambient samples

are much more consistent with woodstove emissions than our

open fire source of burning grass hay, leaves and twigs.

This can not be taken as conclusive proof that woodstoves

dominate the primary carbon emissions during autumn and winter

(at Alphington), however it is suggestive. It also appears to

confirm that discrimination of these two potential sources is

possible using organic,tracers. Determination of the organicsin actual bushfire samples or controlled burn source aerosol

would be of value to supplement our open fire approximation to

general biomass burning.

3.12 Concluding comments

The presence of stable air over the Melbourne area during

autumn is clearly a predominant driving force for the

conditions that produce increased aerosol scattering at that

time. The present study shows that when these conditions

prevail the local sources of pollutants are most important and

that a region-wide uniform aerosol mix does not occur. It

should be noted however that because of meteorological

conditions, the expected frequency of widespread visibilityreducing events did not occur during the study period. The

I

94

main sources were determined to be motor vehicles at Footscray

and some form of burning/smoke at Alphington. The location of

Alphington close to the Yarra River may increase the

probability of advection of smoke from outlying rural and

semi-rural regions in the Yarra basin (or elsewhere) but the

source of the smoke may also be of local origin. The two main

possible local sources are the burning of leaves in autumn and

the use of woodfires for heating. . Unambiguous differentiation

between these potential sources has not been possible in this

study. However, the available data on the ratios of a number

of organic compounds to elemental carbon is strongly

suggestive of a wood burning source rather than a general

biomass burning source. Wood burning is a popular heating

source in Melbourne as reported by Todd et al. (1989) . Todd

et al. (1989) estimated that in 1988, 7.6% of Melbourne

households used wood as their main heating fuel and 10.7% used

wood for secondary heating. Their estimated consumption of

wood was 400,000 tonnes per year. Survey results showed

greater household consumption and more households using wood

in the outer suburbs. Both the timing of the peak in

scattering around the later part of autumn and early winter,

and 18 out of 29 excedences of our sampling threshold between

6 pm and midnight for April to June, compared with 5 between

noon and 6 pm, are consistent with wood burning as a major

aerosol source at Alphington.

The present visibility reduction study, carried out over

11 months at two Melbourne sites has shown that scattering

(and reduced visibility) is largely associated with the fine

particle mass. The major component of the FPM in Melbourne

was found to be carbon (organic plus elemental). During

autumn, when reduced visibility was most common, the major

contribution to the fine particle mass came from carbon

compounds and was mainly organic. During this period,

elements typical of "biological" origin were also considerably

enhanced.

We have also determined contributions to the FPM and Bg^using multiple linear regression procedures and from this have

broadly identified the main sources of aerosol related

visibility reduction during the 1990-1991 study period. We

have shown that the factors producing increased FPM and Bg^are different at the two sites which are only about 15 km

apart, but that they are similar for both FPM and Bg,^ at eachsite. The main sources for increased scattering (Bg^j) , in •autumn and winter at Footscray were vehicles and secondary

95

production. For the same period at Alphington the main source

was smoke. During summer at both locations secondary

production was the major source and primary emissions from

vehicles made a small contribution. Sources contributing tothe fine mass were similar to those for scattering but vehicle

primary emissions were not statistically significant in summer

and a small contribution came from smoke in summer.

4. Acknowledgements

We gratefully acknowledge the assistance of EPA

Environmental Studies and Technical Services Branches in

facilitating this study. Particular thanks go' to Trevor

Bardsley, and to David Whyte who assisted in the initial

stages of the field work and analysis.

96

5. References

Ayers G.P., J.P. Ivey and R.W. Gillett, Coherence between

seasonal cycles of dimethyl sulphide, methansulphonate and

sulphate in marine air. Nature, 349, 404-406, 1991

Bardsley T., Comparison of light scattering extinction

(Nephelometer) and fine particulate mass concentration

(Dichotomous sampler) in Melbourne aerosol. EPAV report SRS

87/001, 1987

Countess R.J., S.H. Cadle, P. Groblicki and G.T. Wolfe,

Chemical analysis of size segregated samples of Denver's

ambient particulate, JAPCA, 31, 247-252, 1981.'

Cowan S., D.S. Ensor and L.E. Sparks. Light absorption

measurements using the integrating plate method. In: Light

Absorption by Aerosol Particles, Eds. H.T. Gerber and E.E.

Hindman, Spectrum Press, 1982. ■

Dal Pont G., M. Hogan and B. Newell. Laboratory techniques in

marine chemistry (II). Determination of ammonia in sea-water

and the preservation of samples for nitrate analysis. CSIRO

Division of Fisheries and Oceanography, Report No. 55, 1974.

Dzubay T.G., R.K. Stevens, C.W. Lewis, D.H. Hern, W.J.

Courtney, J.W. Tesch and M.A. Mason, Visibility and aerosol

composition in~Houston, Texas, Environ. Sci. Technol., 16,"

514-525, 1982.

Edgerton S.A. and M.W. Holdren, Use of pattern recognition

techniques to characterise local sources of toxic organics in

the atmosphere. Environ. Sci. Technol., 21, 1102-1107, 1987.

Edye L.A. and G.N. Richards, Analysis of condensates from wood

smoke: Components derived from polysaccharides and lignins.

Environ. Sci. Technol., 25, 1133-1137, 1991.

EPAV, Air quality monitoring results 1986, Environment

Protection Authority, Victoria, Publication 263, 1988.

Fairbridge R.W. Ed. The Encyclopedia of Geochemistry and

Environmental Sciences. Van Nostrand Reinhold Company, 1972

Gillett R.W., Ayers G.P. and Mainwaring S.J., Source

contributions to atmospheric aerosols using organic tracers.

97

L.J. Brasser and W.C. Mulder (Eds.), Proceedings of the 8th

World Clean Air Conference, volume 3, Elsevier Science

Publishers B.V., Amsterdam, 1989.

Gras J.L., G. P. Ayers, R.W. Gillett and S.T. Bentley.

Atmospheric particles and visibility in Melbourne - a pilot

study. Report to EPAV Sept. 1989.

Gras J.L., G.P. Ayers, R.W. Gillett and S.T. Bentley.

Regional visibility and aerosol properties in South - Eastern

Australia. In proceedings of the 10th Clean Air Conference,

Clean Air Society of Australia and New Zealand, Auckland,

1990.

Gray H.A., G.R. Cass, J.J. Huntzicker, E.K. Heyerdahl and J.A.

Rau, Characteristics of atmospheric organic and elemental

carbon particle concentrations in Los Angeles, Environ. Sci.

Technol., 20, 580-589, 1986,

Hawthorne S.B., Frieger M.S., Miller D.J. and Barkley R.M.,

Methoxylated phenols as candidate tracers for atmospheric wood

smoke pollution. In; Proceedings of the 1988 EPA/APCA

international symposium on Measurement of Toxic and Related

Air Pollutants, Research Triangle Park, North Carolina, 1988.

Hawthorne S.B., Frieger M.S., Miller D.J. and Mathaison M.B.,

Collection and quantitation of methoxylated phenol tracers for

atmospheric pollution from residential wood stoves. Environ,

Sci. Technol., 23, 470-475, 1989.

Hering S.V., Miguel A.H. and Dod R.L., Tunnel measurements of

the PAH, carbon thermogram and elemental source signature for

vehicular exhaust, Sci. Tot. Environ., 36, 39-45, 1984.

Horvath H. and T.A. Habenreich. Absorption coefficient of the

Vienna Aerosols: comparison of two methods. Aerosol Sci. and

Tech., 10, 506-514, 1989.

Larson S.M. and G.M. Cass, Characteristics of summer midday

low-visibility events in the Los Angeles area. Environ. Sci.

Technol., 23, 281-289, 1989

Lewis C.W. and T.G. Dzubay. Measurement of light absorption

extinction in Denver. Aerosol Sci. and Tech., 5, 325-326,

1986.

98

Lin C.I., M. Baker and R.C. Charlson. Absorption coefficient

of atmospheric particles. Appl. Opt., 12, 1356-1363, 1973.

Millero F.J., The physical chemistry of sea-water. Ann. Rev.

Earth Plan. Sci., 2, 101-150, 1974.

Pyysalo H., Tuominen J., Wickstrom K., Skytta E., Tikkanen L.,

Salomaa S., Sorsa M., Nurmela T., Mattlia T. and Pohjola V.,

Polycyclic organic material (POM) in urban air.

Fractionation, chemical analysis and phenotoxicity of

particulate and vapour phases in an industrial town in

Finland, Atmos. Environ., 21, 1167-1180, 1987.

Simoneit B.R.T., Characterisation of Organic constituents in

aerosols in relation to their origin and transport: a review.

Int. J. Environ. Analyt. Cham., 23, 1985.

Simoneit B.R.T.', Organic matter in the troposphere - V:

Application of molecular marker analysis to biogenic emissions

in the troposphere for source reconciliations, J. Atmos.

Cham., 8, 251-275, 1989.

Simoneit B.R.T. and Mazurek M.A., Organic tracers in ambient

aerosols and rain. Aerosol Sci. Technol., 10, 267-291, 1989.

Standley L.J.- and Simoneit B.R.T., Characterisation of

extractable plant wax, resin and thermally matured compounds

in smoke particles from prescribed burns. Environ. Sci.

Technol., 21, 163-169, 1987.

Standley L.J. and Simoneit B.R.T., Preliminary correlation of

organic molecular tracers in residential wood smoke with the

source fuel, Atmos. Environ., 24B, 67-73, 1990.

Todd J.J, K.M. Craig and L.R. King, National Fuelwood Survey,

Final Report for Dept. of Primary Industries and Energy, 248

pp, 1989.

Valoaras G., J.J. Huntzicker and W.H. White, On the

contribution of motor vehicles to the Athenian "nephos": an

application of factor signatures. Atmos. Environ., 22, 212-

216, 1988.

99

Weiss R.E. and A.P. Waggoner (1982) . Optical measurements of

airborne soot in urban, rural and remote locations. In:

Particulate Carbon, Atmospheric Life Cycle. Eds. G.T. Wolff

and R.L. Klimisch, Plenum Press, New York.

100

APPENDIX 1, MLR model mass contributions

Table Al - Table A5, model calculations of fractional

contributions to fine particle mass using the variables in,

and coefficients from, multiple regression models described in

the main text, Tables 1-5.

Variables considered are:

N line number

on on time, as fractional day of year

nF Fluoropore filter number

massF observed fine mass from Fluoropore filters

SUM sum of mass components calculated for

considered variables and constant term,

h contribution associated with hydrogen ion

nh4 contribution associated with ammonium ion

br contribution associated with bromide ion

pixK contribution associated with PIXE derived potassium

na* contribution associated with sea-salt fraction of

preceding variable, either potassium or calcium

pixCa contribution associated with PIXE derived calcium

mg contribution associated with magnesium

101

Table Al, Alphington, 106 < day < 180. Fractional

contribution to FPM from different MLR variables, using model

in Table 1, with observed variable concentrations. First line

gives mass contributed (|ig m~^), second line mass equivalentto 1 standard error of variable coefficient from MLR model.

massF is the observed FPM, SUM is the summed mass for all

variable contributions (including constant). The missing data

code is -9.00.

N on nF massF SUM h nh4 br pixK pixCa na*

1 112.68 3 7.27 8.35 0.33 1.06 0.52 4.11 1.16 -0.40

0.10 0.31 0.14 0.66 0.79 -0.27

2 119.67 6 8.15 10.33 0.38 0.41 0.88 5.42 1.87 -0.20

0.11 0.12 0.23 0.88 1.27 -0.14

3 120.62 8 8.02 9.21 0.43 0.92 1.04 3.76 1.61 -0.10

0.13 0.27 0.27 0.61 1.10 -0.07

4 122.52 11 7.67 13.73 0.36 0.24 . 0.20 9.78 1.89 -0.30

0.10 0.07 0.05 1.58 1.29 -0.20

5 123.71 18 13.11 21.34 2.02 1.43 3.42 12.06 1.25 -0.40

0.59 0.42 0.89 1.95 0.85 -0.27

6 130.49 24 22.85 18.45 1.69 3.09 3.99 8.27 0.26 -0.42

0.50 0.91 1.04 1.34 0.17 -0.28

7 130.94 19 15.19 18.17 2.12 2.71 1.95 9.82 0.22 -0.21

0.62 0.79 0.51 1.59 0.15 -0.15

8 134.79 25 32.00 33.30 2.99 6.03 4.04 18.37 0.60 -0.29

0.88 1.77 1.05 2.97 0.41 -0.20

9 139.88 29 41.88 41.96 1.69 3.36 7.12 28.27 0.00 -0.04

0.50 0.98 1.85 4.57" 0.00 -0.03

10 140.90 26 30.19 28.33 2.77 5.51 2.01 16.76 0.00 -0.28

0.81 1.61 0.52 2.71 0.00 -0.19

11 143.94 30 11.77 8.70 1.46 0.97 2.18 2.71 0.22 -0.40

0.43 0.28 0.57 0.44 0.15 -0.27

12 144.82 31 16.24 18.18 1.70 1.17 4.76 8.40 0.99 -0.40

0.50 0.34 1.24 1.36 0.67 -0.27

13 145.93 20 38.41 37.96 2.91 5.55 5.31 22.96 0.00 -0.33

0.85 1.63 1.38 3.71 0.00 -0.23

14 147.36 21 21.02 21.41 1.84 6.36 2.72 5.63 3.53 -0.23

0.54 1.86 0.71 0.91 2.40 -0.15

15 147.78 22 78.32 84.94 4.77 15.43 24.85 37.75 1.05 -0.47

1.40 4.52 6.47 6.10 0.71 -0.32

102

Table Al continued.

N on nF massF SUM h nh4 br pixK pixCa na*

16 148.45 34 23.59 19.91 2.14 3.25 4.13 6.06 2.89 -0.12

0.63 0.95 1.08 0.98 1.96 -0.08

17 148.82 35 37.48 39.29 3.59 6.49 6.88 20.94 0.27 -0.44

1.05 1.90 1.79 3.38 0.19 -0.30

18 149.76 39 48.44 41.65 3.50 3.47 8.26 24.87 0.30 -0.32

1.03 1.02 2.15 4.02 0.20 -0.22

19 155.35 46 15.60 17.51 1.21 5.01 2.52 3.80 3.93 -0.52

0.35 1.47 0.66 0.61 2.67 -0.35

20 156.84 47 33.99 33.80 2.84 4.73 6.48 18.18 0.27 -0.25

0.83 1.39 1.69 2.94 0.18 -0.17

21 157.76 60 38.99 35.10 2.94 2.43 10.05 17.26 1.20 -0.34

0.86 0.71 2.61 2.79 0.81 -0.23

22 158.87 61 10.85 12:38 1.65 0.77 1.43 7.06 0.21 -0.31

0.48 0.23 0.37 1.14 0.15 -0.21

23 160.83 36 66.29 59.59 4.21 10.76 13.66 30.16 0.00 -0.76

1.24 3.15 3.56 4.87 0.00 -0.52

24 161.19 37 25.86 11.00 2.30 8.28 -9.00 8.25 0.00 -0.40

0.68 2.43 -9.00 1.33 0.00 -0.27

25 163.82 68 61.84 61.36 4.54 3.87 19.37 31.09 1.48 -0.55

1.33 1.14 5.04 5.02 1.01 -0.38

26 168.35 72 12.68 10.04 1.72 0.38 3.35 2.19 1.38 -0.55

0.50 0.11 0.87 0.35 0.94 -0.37

27 168.87 69 46.42 48.52 3.62 4.53 10.30 28.35 0.61 -0.45

1^06 1.33 2.68 4.58 0.41 -0.31

28 175.76 75 10.98 8.56 1.75 0.70 1.20 3.42 0.21 -0.28

0.51 0.20 0.31 0.55 0.15 -0.19

29 67.00 177 -2.11 1.56 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

-9.00 -9.00 -9.00 -9.00 -9.00 -9.00

constant =1.56

std.error=l.53

103

Table A2, Footscray, 106 < day < 180. Fractional contribution to

FPM from different MLR variables, using model in Table 2, with

observed variable concentrations. Other details as in Table Al.

N on nF massF SUM h nh4 br pixK na* pixCa mg

1 106.00 1 -9.00 5.08 -9.00 -9.00 -9.00 -9.00 -9.00 16.60 -9.00

-9.00 -9.00 -9.00 -9.00 -9.00 4.89 -9.00

2 107.52 2 17.74 21.06 0.72 4.33 4.58 2.39 -0.50 3.17 1.29

0.07 0.43 0.85 0.82 -0.17 0.93 1.13

3 112.63 4 7.87 9.41 0.33 0.85 0.34 1.07 -0.69 1.05 1.37

0.03 0.08 0.06 0.37 -0.24 0.31 1.20

4 119.64 7 10.77 11.64 0.44 0.74 0.62 1.75 -0.66 2.30 1.37

0.04 0.07 0.12 0.60 -0.23 0.68 1.20

5 120.66 9 -9.00 5.08 -9.00 -9.00 -9.00 -9.00 -9.00 16.60 -9.00

-9.00 -9.00 -9.00 -9.00 -9.00 4.89 -9.00

6 122.69 12 20.34 19.61 0.86 0.31 2.94 7.70 -0.67 1.09 2.28

0.08 0.03 0.55 2.64 -0.23 0.32 1.99

7 126.90 17 25.19 24.70 1.79 2.04 6.89 3.73 -0.74 2.99 2.91

0.18 0.20 1.28 1.28 -0.25 0.88 2.54

8 130.60 23 35.22 34.44 2.15 9.11 6."74 4.84 -1.07 6.47 1.12

0.21 0.90 1.25 1.66 -0.36 1.90 0.98

9 134.81 13 44.75 46.53 2.28 8.12 14.67 8.79 -2.44 8.46 1.56

0.22 0.80 2.73 3.01 -0.84 2.49 1.37 ,

10 140.52 27 13.23 13.01 1.08 1.11 1.56 0.79 -0.46 2.21 1.64

0.11 0.11 0.29 0.27 -0.16 0.65 1.43

11 141.46 28 21.69 21.12 1.56 3.77 2.42 4.49 -1.12 2.96 1.96

0.15 0.37 0.45 1.54 -0.38 0.87 1.71

12 147.80 32 46.87 46.09 3.02 14.59 12.25 7.49 -0.32 3.23 0.75

0.30 1.44 2.28 2.57 -0.11 0.95 0.65

13 148.32 33 69.10 69.32 3.83 30.95 10.43 7.50 -1.01 10.17 2.37

0.38 3.04 1.94 2.57 -0.35 3.00 2.07

14 148.68' 14 38.96 36.42 2.69 11.92 8.47 5.31 -0.46 2.66 0.74

0.26 1.17 1.58 1.82 -0.16 0.78 0.65

15 149.28 15 20.95 19.73 1.35 1.70 6.22 2.49 -0.19 2.45 0.62

0.13 0.17 1.16 0.85 -0.06 0.72 0.54

16 156.39 41 28.02 27.01 1.89 5.48 4.11 4.27 -0.46 5.21 1.43

0.19 0.54 0.77 1.46 -0.16 1.53 1.25

17 156.83 42 25.38 24.76 1.79 4.40 8.74 4.11 -0.22 0.47 0.39

0.18 0.43 1.63 1.41 -0.07 0.14 0.34

18 157.32 43 21.36 16.75 1.21 1.98 5.20 1.00 -0.39 1.89 0.77

0.12 0.19 0.97 0.34 -0.13 0.56 0.68

19 157.87 44 27.54 29.07 1.94 6.52 10.89 3.96 -0.21 0.40 0.49

0.19 0.64 2.03 1.35 -0.07 0.12 0.43

104

Table A2 continued.

N on nF massF SUM h nh4 br pixK na* pixCa mg

20 160.88 62 24.21 25 .36 1.89 4.61 7 .75 3 .77 -0 .88 2 .54 0 .59

0.19 0 .45 1.44 1.29 -0.30 0 .75 0 .52

21 161.50 . 63 12 .88 15.80 1.87 3 .50 2.00 2 .90 -0 .32 0 .18 0.58

0.18 0 .34 0 .37 0.99 -0 .11 0 . 05 0 .50

22 163.88 66 18.28 18.66 2.21 1.33 6.71 2.31 -0 .42 0.76 0.67

0.22 0 .13 1.25 0 .79 -0.14 0 .22 0 .59

23 164.88 67 23 .82 25.05 1.14 9.65 5.24 3 .43 -0 .33 0 .52 0-32

0 .11 0.95 0 .98 1.17 -0 .11 0 .15 0.28

24 177.53 77 8.86 7 .47 0 .84 0.00 0.39 0 .78 -0 .53 0.36 0 .55

0 .08 0.00 0.07 0 .27 -0 .18 0 .11 0 .48

constant =5.1

std.error=l.2

105

Table A3, Alphington, 180 < day < 300, Fractional

contribution to FPM from different MLR variables,

using model in Table 3, with observed variable

concentrations. Other details as in Table A1.

N on nF massF SUM h nh4 pixK pixCa

1 181.80 78 14.07 12 .09 1.80 0.69 8.70 0 .00

0 .44 0 .17 0 .55 0.00

2 190 .37 101 15.71 16.94 1.26 4.86 6.01 3.90

0.31 1.19 0.38 1.45

3 190.86 79 34.86 34.98 2 .51 8.25 22 .35 0 .97

0.61 2 .01 1.41 0.36

4 199.79 104 19 .73,18.20 1.47 0.79 12 .94 2 .08

0.36 0 .19 0 .82 0 .77

5 206.47 111 9 .32 8.50 1.11 0 .19 4.18 2 .12

0 .27 0.05 0.26 0.79

6 207.98 105 7 .42 11.39 1.12 0 .43 8.92 0.00

0 .27 0.11 0.56 0.00

7 214.87 129 6.72 5.45 1.39 1.38 1.77 0.00

0 .34 0 .34 0 .11 0.00

8 229.81 132 19 .28 19 .21 2.20 2 .58 12 .72 0.81

0 .54 0 .63 0.80 0.30

9 237.88 138 42 .12 43 .59 2 .82 2 .24 37.62 0.00

0.69 0 .55 2 .37 0.00

10 250.88 145 43 .83 42 .45 3 .59 4.5-6 33 .39 0.00

0 .88 1.11 2 .11 0 .00

11 259.82 148 42 .23 41.62 2 .32 8.06 24.06 -6.27

0 .57 1.97 1.52 2 .33

12 296.52 155 18.39 19.25 1.48 8.36 3 .97 4.54

0.36 2.04 0.25 1.69

constant =0.9

std.error=l.2

106

Table A4, Footscray, 180 < day < 300, Fractional

contribution to FPM from different MLR variables,

using model in Table 4, with observed variable

concentrations. Other details as in Table A1.

N on nF massF SUM h nh4 br pixCa

1 183.60 74 6.25 6.30 0 .66 0 .11 1.95 0 .89

0.09 0.02 0 .18 0 .14

2 190.85 99 27 .52 26.70 1.04 2.79 18 .40 1.79

0 .14 0.38 1.65 0 .27

3 191.34 100 -9.00 2 .69 -9 .00 -9.00 -9 .00 -9 . 00

-9 .00 -9.00 -9 .00 -9 . 00

4 203.43 102 7 .74 5.36 0 .48 0 .42 0.83 0.94

0.07 0 .06 0.07 0.14

5 214.53 124 2 9.11 28.17 0.98 7.97 8.09 8.44

0.13 1.09 0 .73 1.29

6 218.57 125 7 .16 7.76 0 .71 0 .16 2 .51 1.68

0.10 0.02 0.23 0.26

7 259.89 146 16.21 15.62 0.98 2 .98 7 . 61 ■ 1.37

0.13 0 .41 0.68 0.21

8 265.00 131 12 .87 15.50 0.98 1.13 9.66 1.05

0.13 0 .15 0 .87 0.16

9 272 .81 149 17.02 16.95 1.26 10.68 0.61 1.72

0 .17 1.46 0.06 0.26

10 273.21 151 15.48 16.71 0 .80 6.47 0.99 5.75

0 .11 0 .89 0.09 0 .88

11 276.52 157 17 .28 17 .46 0 .84 7.21 2 .79 3.93

0 .12 0.99 0.25 0.60

12 280.42 158 19.99 20.08 0.93 2 .61 3 .25 10.61

0 .13 0.36 0.29 1.62

13 297.36 160 -9 .00 -9 .00 -9.00 -9.00 -9 .00 8.68

-9.00 -9 .00 -9.00 1.33

constant =2.7

std.error=l.0

107

Table A5, Alphington and Footscray, 300 < day < 425, Fractional

contribution to FPM from different MLR variables, using model in Table 5,

with observed variable concentrations. Other details as in Table Al.

' N on nF massF SUM pixK na* h nh4 br mg pixCa na*

1 331.55 165 14.37 14.94 2.86 -1.48 0.89 4.50 2.25 2.32 4.60 -2.58

1.58 -0.82 0.10 0.51 2.33 0.60 2.58 -1.45

2 336.12 153 19.76 20.72 0.88 -0.68 0.93 15.02 1.81 1.26 1.10 -1.19

0.49 -0.38 0.11 1.71 1.88 0.32 0.62 -0.67

3 336.49 154 21.84 21.84 1.76 -0.97 1.45 11.67 1.14 1.70 5.19 -1.68

0.97 -0.54 0.17 1.33 1.18 0.44 2.92 -0.95

4 337.58 71 11.34 12.46 4.18 -0.18 1.29 1.17 1.20 0.83 2.68 -0.31

2.32 -0.10 0.15 0.13 1.25 0.21 1.51 -0.17

5 344.55 181 3.34-15.04 -9.00 -0.61 0.44 0.54 0.95 1.13 -9.00 -1.07

-9.00 -0.34 0.05 0.06 0.98 0.29 -9.00 -0.60

6 344.92 178 2.02-15.63 -9.00 -0.30 0.42 0.21 0.42 0.55 -9.00 -0.52

-9.00 -0.17 0.05 0.02 0.44 0.14 -9.00 -0.29

7 345.28 179 3.90-14.47 -9.00 -0.27 1.14 0.00 1.48 0.05 -9.00 -0.47

-9.00 -0.15 0.13 0.00 1.53 0.01 -9.00 -0.26

8 347.63 182 5.32 5.86 0.95 -1.23 0.46 0.25 1.66 2.06 2.27 -2.15

0.53 -0.68 0.05 0.03 1.72 0.53 1.28 -1.21

9 352.95 183 6.85 8.02 0.36 -0.54 0.70 4.64 1.39 0.82 0.00 -0.94

0.20 -0.30 0.08 0.53 1.44 0.21 0.00 -0.53

10 378.42 190 11.89 12.85 0.95 -1.69 0.93 7.73 0.76 2.57 2.97 -2.96

0.53 -0.94 0.11 0.88 0.78 0.66 1.67 -1.66

11 381.60 187 8.26 6.10 0.34 -1.44 0.53 1.38 1.06 2.71 2.45 -2.51

0.19 -0.80 0.06 0.16 1.10 0.70 1.37 -1.41

12 383.60 188 13.50 10.72 1.33 -1.00 1.16 3.49 1.72 1.54 2.64 -1.74

0.74 -0.55 0.13 0.40 1.78 0.40 1.49 -0.98

13 331.46 164 24.42 1.59 5.33 -9.00 -9.00 -9.00 -9.00 -9.00 19.29 -9.00

2.95 -9.00 -9.00 -9.00 -9.00 -9.00 10.84 -9.00

14 336.08 161 -9.00 1.59 1.16 -9.00 -9.00 -9.00 -9.00 -9.00 3.19 -9.00

0.64 -9.00 -9.00 -9.00 -9.00 -9.00 1.79 -9.00

15 336.45 159 26.21 24.91 2.71 -0.92 1.14 14.61 0.43 1.71 5.26 -1.61

1.50 -0.51 0.13 1.67 0.44 0.44 2.96 -0.91

16 353.55 173 5.20 5.83 0.00 -0.63 0.63 1.10 0.59 1.91 1.73 -1.09

0.00 -0.35 0.07 0.13 0.61 0.49 0.97 -0.61

17 383.51 189 16.12 14.36 2.68 -0.96 1.45 6.03 0.82 1.79 2.64 -1.68

1.48 -0.53 0.17 0.69 0.85 0.46 1.48 -0.94

18 399.55 191 27.29 27.20 7.22 -7.43 1.07 6.74 0.85 12.92 17.22-12.97

4.00 -4.12 0.12 0.77 0.88 3.33 9.68 -7.29

19 403.50 197 12.88 15.02 2.13 -2.18 0.79 5.89 0.54 3.44 6.62 -3.80

1.18 -1.21 0.09 0.67 0.56 0.89 3.72 -2.14

constant = 1.6

std.error= 1.7

108

APPENDIX 2, MLR model Bsd contributions

Table A6 - Table AS, model calculations of fractional

contributions to Bsd using the variables in, and coefficients

from, multiple regression models described in the main text.

Tables 6 - 8.

Variables considered are:

N line number

on on time, as fractional day of year

nF Fluoropore filter number

Bsd observed scattering coefficient

SUM sum of scattering coefficients calculated for

considered variables and constant term,

h contribution associated with hydrogen ion

nh4 contribution associated with ammonium ion

br contribution associated with bromide ion

pixK contribution associated with PIXF derived potassium

na* contribution associated with sea-salt fraction of

preceding variable, either potassium or calcium

pixCa contribution associated with PIXF derived calcium

sws contribution associated with wind speed

109

Table A6, Calculated contributions to Bsd, Alphington autumn-

winter (day < 300). Uses MLR model in Table 6. Values given

are coefficients for each variable with the correspondingvalue for 1 standard error below.

N on nF bsd SUM h nh4 br pixk na* pixCa

1 112.68 3 -9.00 0.49 0.01 0.03 0.01 0.14 -0.02 0.06

0.00 0.01 0.00 0.02 -0.03 0.03

2 119.67 6 -9.00 0.57 0.01 0.01 0.02 0.18 -0.01 0.09

0.00 0.00 0.01 0.03 -0.01 0.05

3 120.62 8 -9.00 0.53 0.01 0.03 0.02 0.13 -0.01 0.08

0.00 0.01 0.01 0.02 -0.01 0.04

4 122.52 11 -9.00 0.69 0.01 0.01 0.00 0.33 -0.02 0.09

0.00 0.00 0.00 0.05 -0.02 0.05

5 123.71 18 0.42 0.89 0.07 0.05 0.07 0.40 -0.02 0.06

0.01 0.01 0.03 0.06 -0.03 0.03

6 130.49 24 0.73 0.77 0.05 0.10 0.08 0.28 -0.02 0.01

0.01 0.02 0.03 0.04 -0.03 0.01

7 130.94 19 0.59 0.79 '"0.07 0.09 0.04 0.33 -0.01 0.010.02 0.02 0.02 0.05 -0.02 0.01

8 134.79 25 0.12 1.27 0.10 0.20 0.08 0.61 -0.01 0.03

0.02 0.04 0.03 0.09 -0.02 0.01

9 139.88 29 0.33 1.51 0.06 0.11 0.14 0.95 -0.00 0.00

0.01 0.02 0.06 0.14 -0.00 0.00

10 140.90 26 1.02 1.12 0.09 0.18 0.04 0.56 -0.01 0.00

0.02 0.04 0.02 0.08 -0.02 0.00

11 143.94 30 0.50 0.47 0.05 0.03 0.04 0.09 -0.02 0.01

0.01 0.01 0.02 0.01 -0.03 0.01

12 144.82 31 0.77 0.76 0.06 0.04 0.09 0.28 -0.02 0.05

0.01 0.01 0.04 0.04 -0.03 0.02

13 145.93 20 1.46 1.40 0.09 0.18 0.11 0.77 -0.02 0.00

0.02 0.04 0.04 0.11 -0.02 0.00

14 147.36 21 0.87 0.93 0.06 0.21 0.05 0.19 -0.01 0.17

0.01 0.05 0.02 0.03 -0.02 0.09

15 147.78 22 2.56 2.71 0.16 0.50 0.49 1.26 -0.02 0.05

0.04 0.11 0.21 0.18 -0.04 0.03

16 148.45 34 0.87 0.86 0.07 0.11 0.08 0.20 -0.01 0.14

0.02 0.02 0.03 0.03 -0.01 0.07

17 148.82 35 1.27 1.42 0.12 0.21 0.14 0.70 -0.02 0.01

0.03 0.05 0.06 0.10 -0.03 0.01

18 149.76 39 1.47 1.49 0.11 0.11 0.16 0.83 -0.02 0.01

0.03 0.03 0.07 0.12 ' -0.02 0.01

19 155.35 46 0.72 0.81 0.04 0.16 0.05 0.13 -0.03 0.19

0.01 0.04 0.02 0.02 -0.04 0.10

110

Table A6 continued.

N on nF bsd SUM h nh4 br pixk na* pixCa

20 156.84 47 1.17 1.25 0.09 0.15 0.13 0.61 -0.01 0.01

0.02 0.04 0.05 0.09 -0.02 0.01

21 157.76 60 1.37 1.26 0.10 0.08 0.20 0.58 -0.02 0.06

0.02 0.02 0.08 0.08 -0.02 0.03

22 158.87 61 0.64 0.60 0.05 0.03 0.03 0.24 -0.02 0.01

0.01 0.01 0.01 0.03 -0.02 0.01

23 160.83 36 1.99 1.99 0.14 0.35 0.27 1.01 -0.04 0.00

0.03 0.08 0.11 0.15 -0.06 0.00

24 161.19 37 1.02 -9.00 0.08 0.27 -9.00 0.28 -0.02 0.00

0.02 0.06 -9.00 0.04 -0.03 0.00

25 163.82 68 2.07 2.01 0.15 0.13 0.39 1.04 -0.03 0.07

0.03 0.03 0.16 0.15 -0.04 0.04

26 168.35 72 0.50 0.51 0.06 0.01 0.07 0.07 -0.03 0.07

0.01 0.00 0.03 0.01 -0.04 0.03

27 168.87 69 1.81 1.69 0.12 0.15 0.20 0.95 -0.02 0.03

0.03 0.03 0.09 0.14 -0.03 0.01

28 175.76 75 0.58 0.48 0.06 0.02 0.02 0.11 -0.01 0.01

0.01 0.01 0.01 0.02 -0.02 0.01

29 181.80 78 0.65 0.59 0.08 0.03 0.03 0.21 -0.02 0.00

0.02 0.01 0.01 0.03 -0.03 0.00

30 190.37 101 0.75 0.77 0.05 0.21 0.00 0.14 -0.01 0.10

0.01 0.05 0.00 0.02 -0.02 0.05

31 190.86 79 1.44 1.44 0.11 0.35 0.17 0.53 -0.02 0.03

_ 0.02 0.08 0.07 0.08 -0.02 0.01

32 199.79 104 0.85 0.77 0.06 0.03 0.09 0.31 -0.04 0.06

0.01 0.01 0.04 0.04 -0.06 0.03

33 206.47 111 0.61 0.50 0.05 0.01 0.06 0.10 -0.04 0.06

0.01 0.00 0.03 0.01 -0.05 0.03

34 207.98 105 0.53 0.55 0.05 0.02 0.03 0.21 -0.02 0.00

0.01 0.00 0.01 0.03 -0.03 0.00

35 214.87 129 0.43 0.41 0.06 0.06 0.01 0.04 -0.03 0.00

0.01 0.01 0.01 0.01 -0.04 0.00

36 229.81 132 0.93 0.80 0.09 0.11 0.04 0.30 -0.04 0.02

0.02 0.03 0.02 0.04 -0.05 0.01

37 237.88 138 1.74 1.47 0.12 0.10 0.14 0.90 -0.04 0.00

0.03 0.02 0.06 0.13 -0.06 0.00

38 250.88 145 1.60 1.49 0.15 0.20 0.10 0.80 -0.03 0.00

0.04 0.04 0.04 0.12 -0.04 0.00

39 259.82 148 1.81 1.58 0.10 0.35 0.16 0.57 -0.04 0.17

0.02 0.08 0.07 0.08 -0.05 0.08

40 296.52 155 0.93 0.84 0.06 0.36 0.02 0.09 -0.08 0.12

0.01 0.08 0.01 0.01 -0.11 0.06

Ill

Table A7, Footscray autumn-winter Bsd calculated contributions to Bsd

using MLR model given in Table 7. Values given are coefficients for each

variable with the corresponding value for 1 standard error below.

N on nF bsd SUM h nh4 br pixk na* pixCa na* sws

2 107.52 2 -9.00 0.84 0.02 0.14 0.26 0.03 -0.01 0.14 -0.02 0.12

0.01 0.03 0.08 0.08 -0.02 0.08 -0.01 0.07

3 112.63 4 -9.00 0.58 0.01 0.03 0.02 0.01 -0.01 0.05 -0.03 0.36

0.00 0.01 0.01 0.03 -0.02 0.03 -0.02 0.20

4 119.64 7 -9.00 0.74 0.01 0.02 0.04 0.02 -0.01 0.10 -0.03 0.43

0.00 0.01 0.01 0.06 -0.02 0.06 -0.02 0.25

6 122.69 12 0.63 0.67 0.03 0.01 0.17 0.09 -0.01 0.05 -0.03 0.22

0.01 0.00 0.05 0.25 -0.02 0.03 -0.02 0.12

7 126.90 17 0.78 0.93 0.06 0.07 0.40 0.04 -0.01 0.14 -0.04 0.13

0.01 0.02 0.11 0.12 -0.02 0.07 -0.02 0.07

8 130.60 23 1.20 1.33 , 0.07 0.29 0.39 0.05 -0.01 0.29 -0.05 0.14

.0.02 0.07 0.11 0.16 -0.03 0.16 -0.03 0.08

9 134.81 13 1.59 1.84 0.07 0.26 0.85 0.10 -0.03 0.38 -0.12 0.17

0.02 0.06 0.24 0.29 -0.08 0.21 -0.06 0.10

10 140.52 27 0.42 0.55 0.03 0.04 0.09 0.01 -0.01 0.10 -0.02 0.15

0.01 0.01 0.03 0.03 -0.02 0.05 -0.01 0.09

11 141.46 28 0.90 0.81 0.05 0.12 0.14 0.05 -0.01 0.13 -0.05 0.23

0.01 0.03 0.04 0.15 -0.04 0.07 -0.03 0.13

12 147.80 32 1.64 1.75 0.10 0.47 0.71 0.08 -0.00 0.15 -0.02 0.11

0.02 0.11 0.20 0.25-0.01 0.08 -0.01 0.06

13 148.32 33 2.68 2.48' 0.12 1.00 0.60 0.08 -0.01 0.46 -0.05 0.11

0.03 0.23 0.17 0.25 -0.03 0.25 -0.03 0.07

14 148.68 14 1.69 1.41 0.09 0.39 0.49 0.06 -0.01 0.12 -0.02 0.-14

0.02 0.09 0'.14 0.17 -0.01 0.06 -0.01 0.08

15 149.28 15 1.69 0.96 0.04 0.06 0.36 0.03 -0.00 0.11 -0.01 0.23

0.01 0.01 0.10 0.08 -0.01 0.06 -0.00 0.13

16 156.39 41 1.08 1.01 0.06 0.18 0.24 0.05 -0.01 0.23 -0.02 0.13

0.01 0.04 0.07 0.14 -0.02 0.13 -0.01 0.07

17 156.83 42 1.15 1.05 0.06 0.14 0.51 0.05 -0.00 0.02 -0.01 0.14

0.01 0.03 0.14 0.13 -0.01 0.01 -0.01 0.08

18 157.32 43 0.77 0.92 0.04 0.06 0.30 0.01 -0.00 0.09 -0.02 0.29

0.01 0.01 0.09 0.03 -0.01 0.05 -0.01 0.17

19 157.87 44 1.21 1.27 0.06 0.21 0.63 0.04 -0.00 0.-02 -0.01 0.16

0.01 0.05 0.18 0.13 -0.01 0.01 -0.01 0.09

20 160.88 62 0.92 0.99 0.06 0.15 0.45 0.04 -0.01 0.11 -0.04 0.08

0.01 0.03 0.13 0.12 -0.03 0.06 -0.02 0.04

21 161.50 63 0.78 0.72 0.06 0.11 0.12 0.03 -0.00 0.01 -0.02 0.26

0.01 0.03 0.03 0.10 -0.01 0.00 -0.01 0.15

22 163.88 66 0.73 0.79 0.07 0.04 0.39 0.03 -0.00 0.03 -0.02 0.11

0.02 0.01 0.11 0.08 -0.01 0.02 -0.01 0.06

112

Table A7 continued.

N on nF bsd SUM h nh4 br pixk na* pixCa na* sws

23 164.88 67 1.09 1.02 0.0^ 0.31 0.30 0.04 -0.00 0.02 -0.02 0.180.01 0.07 I).09 0.11 -0.01 0.01 -0.01 0.10

24 177.53 77 0.33 0.59 0.03 0.00 0.02 0.01 -0.01 0.02 -0.03 0.39

0.01 0.00 0.01 0.03 -0.02 0.01 -0.01 0.22

25 183.60 74 0.43 0.50 0.04 0.01 0.05 0.01 -0.01 0.03 -0.03 0.25

0.01 0.00 0.01 0.02 -0.02 0.01 -0.01 0.14

26 190.85 99 1.07 1.02 0.07 0.18 0.48 0.05 -0.01 0.05 -0.03 0.08

0.02 0.04 0.14 0.14 -0.02 0.03 -0.02 0.05

33 203.43 102 0.82 0.75 0.03 0.03 0.02 0.00 -0.00 0.03 -0.01 0.50

0.01 0.01 0.01 0.01 -0.00 0.01 -0.00 0.28

34 214.53 124 0.79 1.33 0.06 0.50 0.21 0.05 -0.00 0.24 -0.02 0.14

0.01 0.12 0.06 0.14 -0.01 0.13 -0.01 0.08

35 218.57 125 0.55 0.51 - .0.04 0.01 0.07 0.03 -0.00 0.05 -0.02 0.18

0.01 0.00 0.02 0.08 -0.01 0.03 -0.01 0.10

37 259.89 146 0.88 0.81 0.06 0.19 0.20 0.03 -0.00 0.04 -0.01 0.16

0.01 0.04 0.06 0.08 -0.01 0.02 -0.00 0.09

38 265.00 131 0.71 0.70. 0.06 0.07 0.25 0.03 -0.00 0.03 -0.01 0.12

0.01 0.02 0.07 0.08 -0.01 0.02 -0.01 0.07

39 272.81 149 1.05 1.07 0.08 0.67 0.02 0.01 -0.01 0.05 -0.03 0.13

0.02 0.15 0.00 0.03 -0.02 0.03 -0.02 0.07

40 273.21 151 1.10 0.98 0.05 0.41 0.03 0.02 -0.00 0.16 -0.02 0.19

0.01 0.09 0.01 0.05 -0.01 0.09 -0.01 0.11

41 276.52 157 0.94 1.04 0.05 0.45 0.07 0.02 -0.00 0.11 -0.01 0.19

0.01 0.10 0.02 0.05 -0.01 0.06 -0.01 0.11

42 280.42 158 1.04" 0.86 0.06 0.16 0.08 0.03 -0.01 0.30 -0.03 0.120.01 0.04 0.02 0.08 -0.02 0.16 -0.02 0.07

113

Table A8, Footscray and Alphington, suinmer (day > 300),

calculated contributions to Bsd using MLR model given in

Table A6.

N on nF bsd SUM h nh4 br pixCa na*

1 331.55 165 0.67 0.80 0.07 0.33 0.30 0.07 -0.04

0.01 0.04 0.18 0.13 -0.07

2 336.12 153 1.43 1.49 0.07 1.11 0.24 0.02 -0.02

0.01 0.13 0.15 0.03 -0.03

3 336.49 154 1.41 1.25 0.11 0.86 0.15 0.08 -0.03

0.01 0.10 0.09 0.15 -0.05

4 337.58 71 0.55 0.45 0.10 0.09 0.16 0.04 -0.00

0.01 0.01 0.10 0.08 -0.01

5 344.55 181 -9.00 -9.00 0.03 0.04 0.13 -9.00 -0.02

0.00 0.00 0.08 -9.00 -0.03

6 344.92 178 -9.00-9.00 0.03 0.02 0.06 -9.00 -0.01

0.00 0.00 0.03 -9.00 -0.01

7 345.28 179 -9.00 -9.00 0.08 0.00 0.20 -9.00 -0.01

0.01 0.00 0.12 -9.00 -0.01

8 347.63 182 0.36 0.34 0.03 0.02 0.22 0.04 -0.03

0.00 0.00 0.13 0.06 -0.06

9 352.95 183 0.90 0.63 0.05 0.34 0.19 0.00 -0.01

0.01 0.04 0.11 0.00 -0.03

10 378.42 190 0.61 0.81 0.07 0.57 0.10 0.05 -0.05

0.01 0.07 0.06 0.08 -0.08

11 381.60 187 0.38 0.35 0.04 0.10 0.14_ 0.04 -0.04

0.00 0.01 0.09 0.07 -0.07

12 383.60 188 0.61 0.66 0.09 0.26 0.23 0.04 -0.03

0.01 0.03 0.14 0.07 -0.05

13 331.46 164 0.82 -9.00 -9.00 -9.00 -9.00 0.31 -9.00

-9.00 -9.00 -9.00 0.55 -9.00

14 336.08 161 0.97 -9.00 -9.00 -9.00 -9.00 0.05 -9.00

-9.00 -9.00 -9.00 0.09 -9.00

15 336.45 159 1.44 1.35 0.08 1.08 0.06 0.08 -0.03

0.01 0.13 0.03 0.15 -0.05

16 353.55 173 0.32 0.28 0.05 0.08 0.08 0.03 -0.02

0.01 0.01 0.05 0.05 -0.03

17 383.51 189 0.68 0.75 0.11 0.45 0.11 0.04 -0.03

0.01 0.05 0.07 0.07 -0.05

18 399.55 191 0.83 0.83 0.08 0.50 0.11 0.28 -0.21

0.01 0.06 0.07 0.49 -0.37

19 403.50 197 0.48 0.68 0.06 0.44 0.07 0.11 -0.06

0.01 0.05 0.04 0.19 -0.11

114

CSIRO-EPA Melbourne Aerosol Study.

Final Report: Part B, Source Study

115

Contents, Part B: Source Study-

page

List of Tables 116

List of Figures 117

1. Source studies. 118

1.1 Results from source sampling 120

1.2 Carbon constituents, TC/elC, vehicles and

biomass 120

2. TC/EC ratios in vehicle emissions 120

3. TC/EC in biomass burning emissions 124

4. Source tracers - inorganic 125

5. Acknowledgements 130

6. References 131

list of Tables.

116

Table Bl. Source sampling summary.

Table B2. Medians of mass concentration ratios

(species/FPM) for indicated sources.

Table B3. Means of mass concentration ratios

(species/FPM) for indicated sources.

Table B4. Ratio of species mass to FPM for all

source samples.

Table B5. Concentrations of soluble inorganic

species in source samples.

Table B6. PIXE elemental concentrations, Al-Cr,

Table B7. Collected mass, sample flows, carbon

and FPM.

Table B8. Concentrations of organic compounds.

Table B9. GC/MS Target Compounds.

page

132

134

135

136

140

141

144

145

148

List of Figures

117

Figure Bl.

Figure B2.

Figure B3.

Figure B4.

Figure B5.

Figure B6.

Fine particle carbon and total

inorganic mass contributions to the

source FPM, (medians).

Fine particle elemental contributions

(PIXE analysis) to source FPM,(medians).

Fine particle soluble inorganic species

contributions to source FPM, (medians).

Relationship between ambient samples

lead concentration and bromide

concentration.

Relationship between ambient samples

lead concentration and nitric oxide (NO)

concentration.

Relationship between ambient samples

bromide concentration and nitric oxide

(NO) ooncentration.

page

121

122

123

127

128

129

118

1. Source studies.

An important aspect of the Melbourne Aerosol Study is the

characterisation of a number of different possible major

sources to the Melbourne (fine fraction) aerosol. A short

list of possible major sources includes both primary and

secondary particle production. Primary sources include sea-

salt, soil, stationary industrial sources, motor vehicle

emissions, domestic heating and incineration, and biomass

burning, either as controlled burns or wildfires. Additional

minor organic sources include natural emissions from plants

and waste products from meat cooking. Secondary fine aerosol

material is produced within the atmosphere from gaseous

precursors emitted along with primary emissions. The

association with these.primary emissions will be lost however

because of interposing meteorological and chemical conditions

which govern whether the potential for particle production is

realised and which also control the rate of particle

production. Examples of secondary production are the

conversion of NO^ and SO2 to nitric and sulfuric acids and arange of possible aerosol nitrates and sulfates and the

important case of conversion and condensation of volatile

organic .compounds into an aerosol phase.

Some of the possible primary sources require little

further characterisation, for example sodium is a frequently

used tracer for sea-salt aerosol and other constituents such

as magnesium may also be useful. Si, 0, Al, Fe and Ca are the

major crustal elements (Fairbridge, 1972), several of these

are frequently used for tracers of soil dust. For both of

these spurces the contributions to the reduced visibility and

fine aerosol mass in Melbourne are known to be quite small

(Gras et al. 1990 and Part A of this report). Some form of

combustion is associated with most other major sources.

In Melbourne during reduced visibility periods a very

high proportion of aerosol is comprised of carbon in both

organic and elemental forms. Elemental carbon can be

considered a general tracer for combustion processes but

cannot immediately be further subdivided with regard to its

possible origins. We have examined a number of primary

sources for additional constituents in the fine aerosol that

can be used as tracers for these sources. This includes known

tracers such as lead (and bromide) for motor vehicles but also

we have sought possible unique organic marker compounds in the

119

sources examined. These sources included vehicles using

leaded petrol, vehicles using unleaded petrol, light diesels,

woodstoves and biomass burning (approximated with gum leaves

and twigs, and dry grass hay).

Motor vehicle emissions were collected from in-service

vehicles operating on an "urban drive" cycle on the EPAV

vehicle test dynamometer at Altona after a standard cold

period. Vehicles using leaded and unleaded fuel were

considered separately. Collections were made in the start-up

period, usually the first one or two minutes and then over the

subsequent fifteen minutes. Air from the vehicle exhaust

system was diluted with filtered ambient air to assist in

drying the sample air and prevent clogging of the sampling

system. The collections were otherwise identical to those

made at the ambient sampling sites.

Diesel vehicles were sampled whilst static, after being

allowed to cool to ambient conditions. Samples were taken

during the start-up period and when warm, this was typically

for periods of about 10 seconds. A range of in-service light

diesels were considered including four-wheel drive passenger

vehicles and light trucks. Sampling procedures were otherwise

identical to those used for petrol fuelled vehicles.

Woodstove emissions were examined with the cooperation of

Coonara Heaters Pty. Ltd. in the Coonara test facility at

Fe~rntree Gully. This used a closed slow-combustion stove

burning dried split red-girm timber. The stove was operated

according to the draft Australian measurement standard for the

amount, size, moisture content and disposition of fuel in the

combustion chamber. A range of operating conditions were

examined including periods with the initial flaming combustion

and subsequent slow combustion when glowing coals were

present. The Coonara test facility incorporates a dilution

tunnel from which the aerosol samples were drawn. These were

further diluted with filtered air for size segregation and

collection.

Other possible biomass burning sources were examined by

constructing an open fire-box at CSIRO Division of AtmosphericResearch in which various fuels could be burnt. Fuels

considered in this study included dry grass hay and a mixture

of dry grass, eucalypt leaves and twigs. Aerosol samples were

collected during active flaming and smoking from a positionapproximately 60 cm above the combustion source. The sampled

120

material was diluted with filtered air before size segregation

and collection.

1.1 Results from source sampling

Source chemical data are summarised in Tables B2 - B4

which give the component mass fractions (component/ FPM) for

the five sources sampled. Comparable data for sea-salt from

Millero (1974) and "average crustal" composition (soil) from

Fairbridge (1972) are incorporated in Tables B2 and B3 for

reference. Table B2 is based on median concentrations and

Table B3 on means. Comparison of the two tables shows some

differences as can be expected for the relatively small number

of samples in each group and the range within groups. Table

B4 gives the individual sample mass loadings. Components of

the five sampled sources are also given in Figs. Bl - B3.

1.2 Carbon constituents, TC/elC, vehicles and biomass

The fractions of organic carbon in all five samples,

shown in Fig. Bl are relatively uniform with unleaded vehiclescontributing the lowest.fraction. This is expected since the

majority of the vehicles using unleaded fuel were relatively

new vehicles fitted with catalytic converters (required to

meet to Australian design Rule ADR 37 emission standard, - see

table Bl). Average ratios of total to elemental carbon

concentration for these sources are included in Table B3.

2. TC/EC ratios in vehicle emissions

Pratsinis et al. (1984) reported a ratio of TC/EC = 2.3

for fresh vehicle emissions in Los Angeles. The

concentrations of TC and EC for (post 1985 manufacture)

vehicles using unleaded fuel, (pre 1986) vehicles using leaded

fuel, and light diesels were determined individually in thepresent study. Average TC/EC values were determined for thethree vehicle types, giving:

TC/EC= 3.4, unleaded,

TC/EC= 5.1, leaded and

TC/EC= 2.8, diesel.

To derive an overall average ratio, these individual ratioswere weighted using estimated PMIO emissions for all petrol

fuelled vehicles and all diesel fuelled vehicles in the Port

Phillip Control Region (PPCR), from the EPA emission inventory

121

to**

o

*

Co

■-4-Jo□

cnO

wood stove

unleaded

open fire

00 elC tote aillnoro

species

Figure Bl. Fine particle carbon and total inorganicmass contributions (p.g m~^) to the source FPM, (componentmass / FPM) based on median concentrations. "OC" isorganic carbon, "elC" elemental carbon, "totC" totalcarbon and "allinorg" the summed inorganic contribution.

122

CD**

O

c,0

o

.2

o

'oio

pixSi pixS pixK plxCr pixFe pjxCu pixBr pixBdpixr pixCI pixCa pixMn pixNi pixZn pixSr pixPbl

species

wood stove

unleaded

leaded

^Hidiesel

open fire

Figure B2. Fine particle elemental contributions(PIXE analysis) to.source FPM, (element mass / FPM) based

on median concentrations.

123

CD**

o

c.O

u□

0

01O

wood stove

unleaded

open fire

no

nh4 mgcl CO

k

speciesno3

br"so4

Figure B3. Fine particle soluble inorganic speciescontributions to source FPM, (species mass / FPM) , baseddn median concentrations.

124

(EPA 19 91) . The petrol fuelled vehicle contribution was

divided into two parts, 70% for leaded and 30% for unleaded

vehicles, based on the 1990 fleet ratio. The fraction of

vehicle kilometers driven in arterial/freeway, over-dimension

roads, residential and minor roads was also taken into

account. The resulting weightings were, unleaded vehicle

7.8%, leaded vehicle 18.3% and (all) diesel 73.9% (motor

cycles and LPG fuelled vehicles were ignored). With these

weightings the overall estimated vehicle exhaust TC/EC ratio

is 3.3, somewhat larger than the value measured by Pratsinis

et al. (1984) for Los Angeles, but consistent with the minimixm

observed values of TC/EC in the ambient part of the Melbourne

Aerosol Study, as shown in (Part A) Fig. 16. It is also very

similar to the basin-wide primary emission TC/EC ratio

estimate of 3.2 for 1980 Los Angeles (which is also dominated

by diesel vehicles), as reported by Gray et al. (1986) .

3. TC/EC in biomass burning emissions

Much larger TC/EC ratios are reported as typical in

emissions from burning plant material, particularly in

bushfires or wildfires. Ambient measurements in suspected

fire-impacted air in Arizona with a TC/EC ratio of 30 were

reported by Marcias et al. (1981). Milne et al. (1983) report

a TC/EC value of 16.1 for Australian bushfire smoke and

similar values have been reported elsewhere. Andreae et al.

(1988) reported TC/EC ratios in smoke plumes from biomass

burning in Brazil; in the plume, ratios of 3.3, 876 and 7.7

were observed with general sampling in the impacted boundary

layer air giving ratios of 12.6 ± 8.7.

Our source samples for combustion stoves were obtained in

a variety of flaming and glowing coals conditions and have a

fairly wide range of TC/EC ratios (see comments Table Bl).

These range from 1.2 for sample nF=57 with active flamingusing mixed wood, to 41.9 for sample nF=55 with a moderate

flame burning redgum, the average TC/EC ratio excluding sample

nF=55 is 6.6 (median 4.1 from 10 samples). The open fire pit,

burning hay and eucalypt twigs and leaves gave TC/EC ratiosfrom 4.7 to 41.4 with an average ratio of 24.5 (median 24.7

from 6 samples). This latter case gives an approximation to abiomass burning source and is in agreement with the reported

ambient measurements from similar sources.

125

4. Source tracers - inorganic

The mass fractions of soluble ions in the source FPMs are

shown in Fig. B2 and elemental concentrations using PIXE

analysis in Fig. B3. These show that for vehicle sources lead

and/or bromide should provide near unique markers. Whilst the

use of bromide or lead strictly applies only to vehicles using

leaded fuel, providing the mixture of vehicles does not change

substantially with either time or location these tracers can

be used to represent the contribution of all vehicles. The

relationships between lead, bromide and nitric oxide (NO) in

the ambient samples were found by regression, they were:

pixPbl = 0.54 ± 0.01 pixBr + 0.35 + 0.04, r^=0.99, nm m"^

(± 1 std. error), from 86 samples, two outlying points

(outside the 95% confidence limits) removed.

pixPbl = 0.51 ± 0.01 br + 0.22 ± 0.08, r2=0.97 , nm m"^

using soluble bromide, for 82 samples (two outliers removed).

Corresponding mole ratios in the source samples for vehicles

using leaded fuel were:

lead = 0.65 bromide, nm m ,

for both pixBr (6 points) and soluble br (4 points, one-

suspect br value deleted). Some bromide was also observed in

emissions from vehicles using unleaded fuel (Tables B2-B4)

which probably accounts for the difference in the source and

ambient mole ratios. The relationship between lead and NO in

the ambient samples was:

pixPbl = 0.26 ± 0.01 NO + 0.27 ± 0.06, r2=0.98 ,

lead in nm m~^ and NO in pphm, from 66 points, (one outlierdeleted). For bromide the relationship with NO was:

pixBr = 0.49 ± 0.01 NO - 0.1 ± 0.1, r2=0.98 ,

bromide in nm m~^ and NO in pphm, from 65 points, (2 outliersdeleted). Clearly any of these three variables would

represent vehicles quite satisfactorily. We used soluble

bromide as this consistently gave the largest nuxnber of events

and usually resulted in slight improvements in multipleregression model correlation coefficients. The inter-

126

relationships between lead, bromide and NO in the ambient

samples (using PIXE lead and soluble br) is shown in Figs. B4-

B6.

Potassium, a known indicator for biomass combustion shows

strongly in both the woodstove and open fire samples, chloride

is also prominent in these samples. Phosphorous was only

detected in the woodstove samples. Chloride is also the major

component in sea-salt so the chloride concentration is less

specific for detection of burning. Potassium is present in

sea-salt at the 1% level which is comparable with combustion

sources however the use of the non-sea-salt potassium (based

on sodium concentration) together with the general pattern of

its abundance enables its very effective use as a biomass

burning tracer. We have used PIXE derived potassi-um as the

main indicator for smoke/biomass burning type aerosol. We

also used GCMS analysis of extractable organic material to

examine specific organic compounds that are potentially useful

as smoke/biomass burning indicators. Some of these appear to

offer prospects for differentiating between smokes from lower

temperature biomass burning, where the organic content is high

and may contain a greater fraction of distillation products,

and the high temperature combustion of diy eucalypt wood

typical of woodstoves (this is also discussed in Part A

section 3.11).

Aerosol acidity, expressed as the combination of the

concentrations of hydrogen ion and ammonium (H+NH4) is a

factor that frequently gave very significant coefficients in

our MLR models of FPM and Bg^. This factor shares a similarseasonal cycle to other constituents that are known to be

photochemically driven. In our MLR models we have interpreted

aerosol acidity as a measure of secondary production. This

variable may contain some contribution from primary acidic

aerosol emitted directly by stationary industrial sources,

however, in the lack of large smelting operations and high

sulfur fuel power stations in the Melbourne region this

fraction is assumed to be small.

127

Pb vs Br

cn

E

na

18

16

14

12

10

1 1

+

,,1

0

r

0

+0

-

0 0

0

-

o

* O 0^.

+ O^r ■><>

t *P 0 . 1 1 •

10 15Br (nM/m3)

20 25. 30

Figure B4. Relationship between ainbient samples leadconcentration (n mole m~^) and bromide concentration(n mole m"^) .

128

Pb vs NO

m

zc

£3

a

O <K&

20 25 30

NO (pphm)

Figure B5. Relationship between ambient samples leadconcentration (n mole iri"^) and nitric oxide (NO)concentration (pphm).

129

Bn vs NO

m

E

ZC

C.cu

30

25

20

15

10

1 1 I I 1 1 1 1 1

0

0

0 O o

O ̂ ^

^ o %0* ̂ce>•H-

0+

-

o I 1 I 1 1 1 I 1 1

10 15 20 25 30

NO (pphm)35 40 45 50

Figure B6. Relationship between ambient samples

bromide concentration (n mole m~^) and nitric oxide (NO)concentration (pphm).

130

5. Acknowledgements

We gratefully acknowledge the willing assistance of staff

at the EPAV Vehicle Testing Facility in our collection of

vehicle emission samples. We thank the Engineering Department

of Chelsea Council, CSIRO Chemicals and Polymers Division,

Janice Bathols and Patrick Bradley of CSIRO Atmospheric

Research for the use of their vehicles for emission testing.

We also thank Coonara International for allowing us the use of

their woodstove test facility. Special thanks go to David

Whyte for assistance in the sample collections.

131

6. References

Andreae E.E., E.V. Browell, M. Garstang, G.L. Gregory, R.C.

Harriss, G.F. Hill, D.J. Jacob,. M.C. Pereira, G.W. Sachse,

A.W. Setzer, P.L. Silva Bias, R.W. Talbot, A.L. Torres and

S.C. Wofsey, Biomass-burning emissions and associated haze

layers over Amezonia, J. Geophys. Res.,93, 1509-1527, 1988.

EPAV, Air emissions inventory. Port Phillip Control region.

Planning for the Future, EPAV SRS 91/001,1991.

Fairbridge R.W. Ed. The Encyclopedia of Geochemistry and

Environmental Sciences. Van Nostrand Reinhold Company, 1972

Gras J.L., G.P. Ayers, R.W. Gillett and S.T. Bentley.

Regional visibility and aerosol properties in South - Eastern

Australia. In proceedings of the 10th Clean Air Conference,

Clean Air Society of Australia and New Zealand, Auckland,

1990 .

Gray H.A., G.R. Cass, J.J. Huntzicker, E.K. Heyerdahl and J.A.

Rau, Characteristics of atmospheric organic and elemental

carbon particle concentrations in Los Angeles, Environ. Sci.

Technol., 20, 580-589, 1986.

Marcias E.S., J.O. Zwicker, J.R. Ouimette, S.V. Bering, S.K.

Friedlander, T.A. Cahill, G.A. Kuhlmey and L.W. Richards,

Regional haze case studies in the Southwestern U.S.- 1.

Aerosol chemical composition. Atmos. Environ., 15, 1971-1986,

1981.

Millero F.J., The physical chemistry of sea-water. Ann. Rev.

Earth Plan. Sci., 2. 101-150, 1974.

Milne J.W.,D.B. Roberts, S.J. Walker and D.J. Williams,

Sources of Sydney Brown Haze. In The Urban Atmosphere -

Sydney a case study. Eds. J.N Carras and G.N. Johnson, CSIRO.

PP181-197, 1983.

Pratsinis S.,T. Novakov, E.C. Ellis, and S.K. Friedlander, The

carbon containing component of the Los Angeles aerosol: source

apportionment and contributions to the visibility budget.

JAPC.A, 34, 643-650, 1984.

132

Table B1. Source sampling summary

nF nN nG description

woodstoves burning dry timber48 48 52 2. 45 kg redgum vigorously flaming and some

coals at start, subsided, 4.6 kg redgum addedmid sample, (17 min. sample)

.49 49 53 3.25 kg from previous load at start, stillflaming , no visible smoke, (7 min.)

50 50 54 1.5 kg coals from previous load at start.6 kg redgum added mid sample, (3 min.)

51 51 55 5.5 kg flaming wood and coals from previousload, hose slipped off

52 52 56 4.6 kg flaming wood and coals from previousload, Fluoropore filter leaked

53 53 57 3.25 kg wood and coals remaining, moderatelyactive flame (7 min 40 sec.)

54 54 58 2.45 kg remaining mostly coals, little flame.(15 min.)

55 55 59 1.1 kg coals remaining after last sample,4.1 kg new redgum added 6 min. beforesampling, (1 min. 30 sec.)

56 56 60 4.5 kg remaining from last load, moderateflame, (6 min.)

57 57 61 3.5 kg heavy bed of coals remaining. Added4.3 kg mixed wood, bark, packing case.New load 7.3 kg, actively flaming at start ofsampling, (2 min.)

58 58 62 6.35 kg actively flaming still with previous ■load of mixed wood pieces at start.(1 min. 15 sec.)

59 59 63 4.45 kg actively flaming still with previous-mixed load at start. 3.45 kg at end.no visible smoke, all effectively coals(10 min.)

vehicles - unleaded fuel

80 81 91 Nissan Maxima, cold start, new car81 83 92 Nissan Maxima, hot run.82 84 93 Nissan Pulsar GX, cold start, new car83 85 93 b- Nissan Pulsar GX, hot run.84 86 94 Nissan Pulsar GX, stabilized hot run.85 87 95 Holden Camira, MWJ 224, 10/1988, 2400 km.

cold start

86 88 96 Holden Camira, MWJ 224, hot run87 89 97 Nissan Pintara wagon, MWL 326, 11/1989, 7276

km, cold start

88 90 98 Falcon wagon, MWQ 955, 7/1989, 29198 km, coldstart

89 91 99 Falcon wagon, MWQ 955, hot run90 92 100 CSIRO Magna wagon, ZCE 561, 11/1989, 9995 km.

cold start

91 93 102 CSIRO Magna wagon, ZCE 561, hot run92 94 103 Mitsubishi Colt, MWL 146, 12/1988, 24578 km.

cold start

133

Table Bl cont. Source sampling summary.

93 95 104 ToYOta 4WD, no catalytic converter, 66907 km,cold start.

94 96 105 Toyota 4WD, 66907 km, hot run98 100 106 CSIRO Falcon wagon, ZCE 304, 4/1989, 23928

km, cold start95 97 107 CSIRO Falcon wagon, ZCE 304, hot run

vehicles - leaded fuel

117 119 130 CSIRO Toyota Landcruiser, ZCD 251, 78958 km,cold start

118 120 13 CSIRO Toyota Landcruiser, ZCD 251, hot run119 121 132 Datsun 1200, ECQ 125, 29677 miles, cold start

burning oil120 123 133 Datsun 1200, ECQ 125.96 98 108 Mazda 929, CKJ716, 125000 km, cold start97 99 109 Mazda 929, CKJ716, hot run114 116 134 Mazda 929, CKJ716, stabilized hot run115 117 135 Daihatsu Charade, BEW 438, 217000 km, cold

start

116 118 136 Daihatsu Charade, BBW 438, hot run121 125 137 Toyota Corona, BFH 509, 74215 km, cold start,

sample damaged in storage122 126 138 Toyota Corona, BFH 509, hot run

sample damaged in storage123 128 139 Toyota Corona, BFH 509, stabilized hot run

vehicles - diesel

133 149 165 Toyota Landcruiser, AWP 597, 180000 km,cold start

134 148 166 Toyota Landcruiser, AWP 597, hot run135 147 167 Toyota Landcruiser, AWP 597, second hot

run

136 146 168 Landcruiser, CDC 070, 95606 km, cold start137 145 169 Landcruiser, CDC 070, hot run139 143 174 Toyota Hilux truck, DKD 670, 40932 km, cold

start

140 142 175 Toyota Hilux truck, DKD 670, hot run141 140 176 Mazda T3500 small tip-truck, DCT 779, 42790

km, cold start142 141 177 Mazda T3500 small tip-truck, DCT779, hot run143 151 178 Ford Trader 0811 small tip-truck, PMJ 793,

19250 km, cold start144 152 179 Ford Trader 0811 small tip-truck, PMJ 793,

hot run

fire in open pit205 209 347 hay 2 min206 210 348 hay, twigs, leaves 2.5 min207 211 349 hay 1.5 min208 212 350 hay, twigs, grass, leaves 1.5 min209 213 351 hay, twigs, leaves 1.5 min210 214 352 twigs leaves 1.5 min

134

Table B2. Medians of mass concentration ratios (species/FPM) for indicated sources.

Corresponding values are given for seawater (Millero, 1974) and for crust

(Fairbridge, 1972) .

species woodstove unleaded leaded diesel open fire sea crust

pixSi 2.771e-04 4.663e-04 2.864e-04 1.179e-02 l.Olle-04 -2.820e-01

pixP 2.216e-04 0.OOOe+00 0 . OOOe+00 0 . OOOe+00 0.OOOe+00 -1.050e-03

pixS 5.384e-04 1.952e-04 2.072e-03 1.869e-03 7.362e-04 -2.600e-04

pixCl 2.133e-02 5.579e-02 9.082e-03 5.627e-04 1.151e-02 5.503e-01 1.300e-04

pixK 1.483e-02 1.145e-03 0 . OOOe+00 0. OOOe+00 1.178e-02 1.135e-02 2.090e-02

pixCa 0.OOOe+00 0.OOOe+00 4.589e-04 0.OOOe+00 0.OOOe+00 1.171e-02 4.150e-02

pixCr 4.304e-05 0.OOOe+00 0. OOOe+00 0 . OOOe+00 0 . OOOe+00 -l.OOOe-04

pixMn 4.432e-05 0.OOOe+00 0.OOOe+00 0.OOOe+00 0.OOOe+00 - 9.500e-04

pixFe 5.318e-05 1.926e-03 2.540e-04 1.360e-04 2.667e-05 -5.630e-02

pixNi 3.202e-05 5.558e-05 3.262e-05 2.435e-05 0 . OOOe+00 - 7 .500e-05

pixCu 3.639e-05 2.991e-05 3.268e-05 0.OOOe+00 0.OOOe+00 - 5.500e-05

pixZn 6.886e-04 1.996e-04' 1.035e-03 5.751e-05 1.881e-05 - 7.000e-05

pixBr 8.2330-05 5.770e-05 1.188e-01 0.OOOe+00 1.2820-04 1.916e-03 2.500e-06

pixSr 1.959e-04 3.298e-04 0 . OOOe+00 1.956e-04 0.OOOe+00 2.246e-04 3 .750e-04

pixBal 0.OOOe+00 0.OOOe+00 0.OOOe+00 0.OOOe+00 0.OOOe+00 - 4.250e-04

pixPbl 0.OOOe+00 0.OOOe+00 1.845e-01 0.OOOe+00 0.OOOe+00 - 1.250e-05

oc 5.354e-01 1.829e-01 6.733e-01 5.426e-01 8.257e-01 - -

elC 1.440e-01 2.684e-01 1.297e-01 3.612e-01 3 .849e-02 - -

tote 6.094e-01 5.798e-01 7.835e-01 1.007e+00 8.584e-01 - 2.000e-04

alllnorg 1.054e-01 2.743e-02 6.713e-02 1.964e-02 4.678e-02 - -

h 2.179e-04 2.829e-04 6.545e-05 3.365e-04 1.655e-04 - -

nh4 2.485e-03 1.930e-04 2 .588e-04 1.040e-03 4.594e-05 - -

na 1.054e-02 3.534e-03 -1.257e-03 3.920e-03 4.477e-03 3.061e-01 2 .360e-02

mg 3.207e-04 1.042e-03 1.478e-03 9.508e-04 3.536e-04 3 .680e-02 2 .330e-02

cl 5.523e-02 3.080e-03 2.670e-03 1.233e-03 2.584e-02 5.503e-01 1.300e-04

k 2.275e-02 1.005e-03 2.760e-04 1.144e-03 1.193e-02 1.135e-02 2.090e-02

ca 6.461e-04 2.526e-03 1.548e-03 1.343e-03 7.265e-04 1.171e-02 4.150e-02

no3 3 .'6536-03 2.374e-03 5.586e-04 2.488e-03 4.277e-04 - -

br 1.853e-04 3.897e-04 5.308e-02 1.953e-03 0.OOOe+00 1.916e-03 2.500e-06

so4 4.967e-03 3.284e-03 4.014e-03 8.832e-03 4.730e-03 7 .712e-02 -

Table B3. Means of mass concentration ratios (species/FPM) for indicated

Corresponding values are given for seawater (Millero, 1974) and for crust

(Fairbridge, 1972]

135

sources.

species woodstove unleaded leaded diesel open fire sea crust

pixSi 3.397e-04 2.609e-03 2.9470-04 1.1190-02 1.6190-04 -2.8200-01

pixP 2.807e-04 5.925e-05 0.OOOe+00 0.OOOe+00 0 . OOOe+OO -1.0500-03

pixS 3.697e-03 6 .441e-04 6.579e-03 2.1020-03 6.3140-04 - 2.6000-04

pixCl 4.014e-02 8 .143e-Q2 9.8220-03 2.3230-03 1.2190-02 5.5030-01 1.3000-04

pixK 3.677e-02 3.816e-Q3 0.OOOe+00 0.OOOe+OO 1.1520-02 1.1350-02 2.0900-02

pixCa 8.222e-06 0.OOOe+00 5.2150-04 6.4010-06 0.OOOe+OO 1.1710-02 4.1500-02

pixCr 4.685e-05 0.OOOe+00 2.7250-05 2.6920-06 0.OOOe+OO - 1.0000-04

pixMn 1.202e-04 0.OOOe+00 0.OOOe+00 0.OOOe+OO 1.0540-05 - 9 .5000-04

pixFe 8.581e-05 2.758e-03 1.283e-03 1.2720-04 9.4450-05 - 5 .6300-02

pixNi 3.023e-05 1.171e-04 4.388e-05 4.4710-05 1.2820-05 - 7.5000-05

pixCu 8.744e-05 5.266e-05 3.3810-05 1.5220-06 0.OOOe+OO - 5.5000-05

pixZn 1.026e-03 4.8216-04* 9.9440-04 6.9160-05 2.7300-05 - 7.0000-05

pixBr 3.819e-04 8.353e-05 1.1920-01 9.1490-05 1.3000-04 " 1.9160-03 2 .5000-06

pixSr 2.827e-04 9.6270-04 0.OOOe+00 2.5620-04 0.OOOe+OO 2.2460-04 3.7500-04

pixBal 1.381e-04 0.OOOe+00 0.OOOe+00 0.OOOe+OO 0.OOOe+OO - 4.2500-04

pixPbl 0.OOOe+00 1.428e-04 1.7670-01 1.3230-04 0.OOOe+OO - 1.2500-05

oc 1.210e+00 9.269e-01 5.9210-01 6.0800-01 1.2120+00 - -

elC 1.471e-01 2.799e-01 1.436e-01 3.4250-01 4.1480-02 - -

tote 1.357e+00 9.3780-01 7.3250-01 9.5320-01 1.2540+00 - 2.0000-04

alllnorg 1.992e-01 5.088e-02 1.087e-01 2.3450-02 5.0200-02 - -

h 2.635e-04 5.430e-04 1.9810-04 4.0970-04 1.8900-04 - -

nh4 3.752e-03 3.1100-03 2.4770-03 1.1450-03 1.1090-04 -

na 2.373e-02 5.1200-03 2.9520-03 3.9060-03 5.5000-03 3 .0610-01 2 .3600-02

mg 6.977e-04 1.367e-03 1.5660-03 1.3000-03 6.6910-04 3 .6800-02 2 .3300-02

cl 7.508e-02 1.225e-02 1.0920-02 1.9400-03 2.4930-02 5.5030-01 1.3000-04

k 5.748e-02 1.632e-03 2.2710-03 1.6320-03 1.2380-02 1.1350-02 2.0900-02

ca 2.983e-03 3.4836-03 1.6770-03 2.4970-03 1.1410-03 1.1710-02 4.1500-02

no3 4.'5486-03 3.426e-03 8.187e-04 2.6640-03 4.8090-04 - -

br 5.912e-04 9.8800-03 9.4740-02 2.3300-03 0.OOOe+OO 1.9160-03 2.5000-06

so4 2.753e-02 9.1910-03 5.4550-03 1.0400-02 4.3650-03 7.7120-02 -

TC/EC 6. 6**

9.2*

3.4 5.1 2.8 30.2

note, * this average biased by one large value (41.88 for nF=55)

* ★ this average has nF=55 deleted

136

Table B4. Ratio of species mass ho FPM for all source samples (see Table C1 for

key to variable names)

nF type tote pixZn pixSr pix:Si pixS pixPbl

48 c 2.958e-01 9 . 6080-04 8.7570-05 1.2390-04 1.0130-04 0.0000+00

49 c 8 .433e-01 1.0820-03 1.4910-04 2.1090-04 4.6010-04 0 . OOOe+OO

50 c 8.023e-01 4.3910-05 5.7990-05 8 .2010-05 2.4270-04 0.0000+00

53 c 5.782e-01 7.8540-04 8.3190-04 5.7590-04 1.4770-02 0.0000+00

54 c 6.406e-01 5.918e-04 2.1910-04 3 .1000-04 1.8230-02 0 .0000+00

55 c 6.731e-01 2.257e-05 1.1280-04 1.5960-04 1.3060-04 0.OOOe+OO

56 c 8.367e+00 2 .242e-.04 1.9620-04 2 .7750-04 6.1660-04 0.OOOe+OO

57 c 3.106e-01 2 .8790-04 1.9560-04 2.7670-04 2.2640-04 0.0000+00

58 c 6.939e-01 1.0730-03 7.7440-04 1.0950-03 8.9610-04 0.OOOe+OO

59 c 3.695e-01 5.1900-03 2.0220-04 2.8590-04 1.2970-03 0.0000+00

80 V - - - - - -

81 V - - - - - -

82 V - - - - - -

83 V 1.235e-01 1.4160-04 0.OOOe+OO 2.5960-04 0. OOOe+OO 0.OOOe+OO

84 V 5.800e-01 2 .2040-03 2.7640-04 3.9100-04 0.OOOe+OO 8.5690-04

85 V . - 0.OOOe+00 2.1790-03 3.0820-03 2.5220-03 0 . OOOe+OO

86 V 3 .093e+00 0.OOOe+00 2.6610-03 1.0990-02 0.OOOe+OO 0 . OOOe+OO

87 V 7 .947e-01 2.8920-04 3.3740-04 4.7710-04 3 .9030-04 0.OOOe+OO

88 V 1.1420+00 2.5760-04 3.2210-04 4.5550-04 9.5230-04 0 . OOOe+OO

89 V - - - - - -

90 V 8.776e-01 - - - - -

91 V - - - - - -

93 V 5.796e-01 - - - - -

94 V 4.943e-01 - - - -

98 V 7 .551e-01 - - - - -

95 V - - - - - -

117. V 9 .533e-01 1.9290-03 0.OOOe+OO 1.8190-04 2 .3040-03 6.7420-02

118 V - - - - - -

119 V 7.913e-01 1.2000-03 0.OOOe+OO 1.0590-04 1.8400-03 2.6610-02

120 V - - - - - -

96 V 8.690e-01 4.9290-04 O.OOOe+OO 5.3040-04 4.3390-04 1.5720-01

97 V 7 .757e-01 8.6970-04 0.0000+00 0.OOOe+OO 1.9290-02 3 .8100-01

115 V 3.146e-01 1.2830-03 0.OOOe+OO 3.9080-04 1.4670-02 2.1590-01

123 V 6.909e-01 1.9190-04 0.OOOe+OO 5.5890-04 9.3720-04 2.1180-01

133 V 1.022e+00 0 . OOOe+00 2.1090-04 1.4040-02 3 .3000-03 0.OOOe+OO

134 V 1.076e+00 0.OOOe+00 1.8030-04 1.4200-02 2 .7320-03 0.OOOe+OO

13 5 ■' V - - - - - -

136 V 9.877e-01 O.OOOe+OO 0.OOOe+OO 9.2390-03 1.0590-03 6.8380-04

137 V 1.242e+00 2.5860-04 8.7860-05 1.5750-03 1.346e-03 6.389e-04

139 V 1.052e+00 0.OOOe+OO 0.OOOe+OO 2.4470-02 1.0410-03 0.OOOe+OO

140 V 9.929e-01 1.0510-04 5.2550-04 1.3160-02 3.5880-03 0.OOOe+OO

141 V 4.120e-01 1.6390-05 0.OOOe+OO 2.6060-03 8.3930-04 0.OOOe+OO

142 V 7.283e-01 9.8630-05 4.9320-04 1.0500-02 2.0290-03 0 . OOOe+OO

143 V 9.185e-01 1.0180-04 5.0890-04 1.3090-02 1.7080-03 0.0000+00

144 V l.lOle+00 1.1110-04 5.5560-04 9.0080-03 3.3730-03 0.OOOe+OO

205 o 9.635e-01 1.3250-05 0.OOOe+OO 9.3700-05 7.8550-04 0.OOOe+OO

206 o 7.7980-01 4.9070-05 0.OOOe+OO 1.0560-04 9.1730-04 0.OOOe+OO

207 o 8.695e-01 0.0000+00 0.0000+00 8.9590-05 6.8680-04 0.OOOe+OO

208 o 8.473e-01 2.4370-05 0.OOOe+OO 1.7230-04 8.7710-04 0.OOOe+OO

209 o 3.0750+00 0.OOOe+OO 0.OOOe+OO 4.1350-04 3 .3830-04 0.OOOe+OO

210 o 9.8700-01 7.7100-05 O.OOOe+OO 9.6620-05 1.8350-04 0.OOOe+OO

137

Table B4 continued (1).

pixP pixNi pixMn pixK pixFe pixCu pixCr pixel

126e-04

917e-04

455e-05

236e-04

0 . OOOe+00

1.4510-04

2.522e-04

2 .515e-04

9 .9570-04

2 .5990-04

1.626e-05

2 .7700-05

1.0770-05

7 .5660-05

4.0690-05

2.0960-05

3 .6430-05

3 . 6330-05

0 . OOOe+00

3 .7540-05

252e-05

833e-05

4910-05

0030-04

6320-04

9020-05

0440-05

031e-05

0 .0000+00

1.3280-04

2 .759e-

2.960e-

2.869e-

8.4790-

8.7370-

2.3210-

2.881e-

5.495e-

2.4170-

1.275e-

03

02

03

02

02

04

03

03

02

01

,377e-

,0480-

.1420-

.9090-

.9480-

,0630-

,325e-

,3100-

,102e-

,490e-

05

05

05

04

05

05 0

05 3

05 3

04 0

05 3

.6260-05

.2990-04

.0770-05

.5620-05

.8790-04

.0000+00

, 645e-05

,6330-05

, 0000+00

,812e-04

2.878e-05

4.9000-05

1.9050-05

1.3380-04

7.2010-05

3 .7080-05

6.4470-05

6.4280-05

0.OOOe+00

0.OOO0+OO

2.5350-03

5.5050-02

3.6300-03

4.6110-02

3 .5860-02

1.1930-04

2.0740-04

6.8050-03

6.0770-02

1.9030-01

O.OOOe+00 3.4070-05 O.OOOe+00 O.OOO0+OO 3.3570-04 O.OOOe+00 O.OOO0+OO 2.7990-01

3.5550-04 5.1360-05 O.OOO0+OO O.OOO0+OO 8.0370-03 1.935e-04 O.OOO0+OO 7.IIO0-O2

O.OOOe+00 O.OOOe+00 O.OOOe+00 1.6750-02 4.234e-03 O.OOOe+OO O.OOO0+OO 4.0470-02

O.OOO0+OO 4.9450-04 O.OOO0+OO O.OOO0+OO 2.3190-03 O.OOOe+OO O.OOOe+00 7.431e-02

O.OOO0+OO 6.2590-05 O.OOO0+O6 2.2890-03 1.532e-03 6.2620-05 O.OOO0+OO 1.7690-02O.OOOe+OO 5.9800-05 O.OOOe+OO 3.8550-03 8.7410-05 5.9810-05 O.OOO0+OO 5.0840-03

O.OOO0+OO O.OOO0+OO O.OOOe+OO O.OOO0+OO 6.3880-03 5.144e-05 1.6350-04 6.1530-03

O.OOOe+OO 1.3910-05 O.OOOe+OO O.OOOe+OO 6.311e-04 1.3910-05 O.OOOe+OO 2.4400-03

O.OOOe+OO 6.9650-05 O.OOO0+OO O.OOO0+OO I.OI80-O4 6.964e-05 O.OOOe+OO 1.948e-02

O.OOO0+OO 1.284e-04 O.OOOe+OO O.OOO0+OO 7.1560-05 6.7890-05 O.OOO0+OO I.2OI0-O2

O.OOO0+OO 5.1330-05 O.OOO0+OO O.OOO0+OO 2.3690-04 O.OOO0+OO O.OOO0+OO 1.2000-03

O.OOO0+OO O.OOO0+OO O.OOOe+OO O.OOOe+OO 2.7100-04 O.OOO0+OO O.OOO0+OO 1.7650-02

O.OOO0+OO 3.9170-05 O.OOO0+OO O.OOO0+OO 3.0740-04 O.OOOe+OO O.OOO0+OO 4.5200-04

O.OOO0+OO 3.3480-05 O.OOO0+OO O.OOO0+OO 4.8930-05 O.OOO0+OO O.OOO0+OO 2.8280-03

0.OOOe+00

0 . OOO0+OO

0.OOOe+00

0 . OOOe+00

0.OOOe+00

0. OOO0+OO

0.OOO0+OO

0 . OOOe+OO

0.OOO0+OO

0 . OOOe+OO

0 . OOO0+OO

0 . OOO0+OO

O.OOOe+OO

0 .OOOe+OO

0.OOOe+OO

0.OOO0+OO

1.6710-04

9.7590-05

1.5220-05

0.OOOe+OO

9 .4510-05

0.OOOe+OO

0.OOOe+OO

0.OOOe+OO

0 .OOOe+OO

2 .2620-05

5.4290-05

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOOe+OO

0.OOOe+OO

0.OOOe+OO

0.OOOe+OO

4.6930-05

1.6290-05

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

O.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOO0+OO

0.OOOe+OO

0.OOOe+OO

1.9480-02

1.5860-02

7.4560-03

1.3990-02

9.5760-03

2.7280-03

5.9870-05

2.3850-05

2.4430-04

1.4260-04

2.2240-05

1.3390-04

1.3810-04

1.5080-04

1.7980-05

2.0270-05

6.3340-05

3.3060-05

4.1350-04

1.8540-05

O.OOOe+OO 0,

O.OOO0+OO 0,

O.OOO0+OO 0.

O.OOO0+OO 0,

1.5220-05 2,

O.OOO0+OO 0.

O.OOO0+OO 0.

O.OOOe+OO 0.

O.OOOe+OO 0.

O.OOOe+OO 0.

O.OOO0+OO 0.

O.OOOe+OO 0.

O.OOOe+OO 0.

O.OOO0+OO 0.

OOOe+OO

OOO0+OO

OOOe+OO

OOO0+OO

6920-05

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOO0+OO

OOO0+OO

OOOe+OO

OOOe+OO

2.3130-03

9 .2880-05

9 .4760-03

6.3360-03

8.6620-05

5.2130-04

5.3800-04

5.8730-04

0830-02

944e-02

2050-03

5100-02

8.1150-03

2 .4370-03

138

Table B4 continued (2)

pixCa pixBr pixBal elC br so4 no3 cl

0 . OOOe+00

0 . OOOe+00

0 .BOOe+00

0 . OOOe+00

0 . OOOe+00

8 .222e-05

0 . OOOe+00

0.OOOe+00

0.OOOe+00

0. OOOe+00

5.505e-05

9 .373e-05

3.645e-05

8.494e-04

5.761e-04

7.093e-05

0.OOOe+00

4.360e-04

0.OOOe+00

1.701e-03

O.OOOe+00 1.154e-04

O.OOOe+00 1.738e-04

O.OOOe+00 O.OOOe+00

O.OOOe+00 O.OOOe+00

O.OOOe+00 2.120e-04

O.OOOe+00 O.OOOe+00

OOOe+00

OOOe+00

OOOe+00

167e-04

OOOe+00

709e-04

971e-04 7

963e-04 2

OOOe+00 1

OOOe+00 1

OOOe+00

OOOe+00

OOOe+00

OOOe+OQ

OOOe+00

OOOe+00

.167e-

.589e-

.758e-

.390e-

.235e-

. 634e-

.707e-

.617e-

,413e-

,466e-

.256e-

.603e-

.803e-

.693e-

.442e-

.008e-

■01

01

01

02

02

02

02

01

01

01

03

02

01

03

01

01

1.549e-03 3.592e-02 O.OOOe+00 1.022e-01

3.059e-04 1.219e-02 O.OOOe+OO 1.635e-01

O.OOOe+00 1.018e-01

6.624e-04 2.890e-01

6.119e-04 1.408e-01

O.OOOe+00 1.357e-01

O.OOOe+00 O.OOOe+00

O.OOOe+00 O.OOOe+00

0.OOOe+00

6.401e-05

0.OOOe+00

0 . OOOe+000.OOOe+00

0 . OOOe+00

0.OOOe+00

0.OOOe+00

0 . OOOe+OO

0.OOOe+OO

0.OOOe+OO

0.OOOe+OO

0.OOOe+OO

0 . OOOe+OO

0. OOOe+OO

0 . OOOe+OO

5.657e-04

0 . OOOe+OO

0 . OOOe+OO

0.OOOe+OO

0.OOOe+OO

492e-04

798e-04

571e-04

982e-05

657e-05

838e-04

4.294e-05

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

OOOe+OO

1,

1,

3 .

2.

4.

5.

3 ,

1,

9 ,

4.

5.

1.

1.

4.

4.

2.

5.

2.

4.

6.

3 .

422e-

172e-

339e-

613e-

904e-

855e-

150e-

473e-

094e-

074e-

133e-

580e-

745e-

271e-

576e-

484e-

980e-

141e-

404e-

585e-

294e-

01

01

01

03

01

01

01

01

02

01

01

01

01

01

01

02

02

02

02

02

02

2 . "7776-

1.422e-

5.295e-

4.902e-

2.513e-

1.353e-

2.283e-

1.371e-

9.627e-

3.483e-

2.423e-

2.820e-

7.963e-

■05

04

05

04

04

04

04

04

04

03

04

04

05

623e-

462e-

876e-

097e-

218e-

837e-

972e-

516e-

472e-

204e-

589e-

939e-

979e-

03 2,

03 4,

04 1,

01 9.

01 1.

04

03

03

03

02

04

03

03

OOOe-

987e-

348e-

967e-

213e-

175e-

173e-

319e-

241e-

OOle-

714e-

043e-

483e-

03 1

03 8

03 9

03

02

04

03

03

03 8

03 2

04 6

03 4

03 2

.047e-02

.647e-02

.435e-03

.213e-01

.362e-02

.968e-03

.801e-02

.657e-02

.388e-02

.971e-01

.719e-04

.087e-03

.214e-03

3 .302e-04

3.632e-04

5.100e-04

3.004e-04

2.987e-04

5.448e-04

9.219e-04

3.965e-02

4.161e-04

9.756e-02

9.913e-04

5.707e-03

4.069e-02

6.547e-02

1.310e-02

3.030e-02

1.193e-01

2.461e-03

1.921e-02

7.767e-03

3.395e-03

3.172e-03

3.930e-03

1.219e-02

5.923e-02

2.802e-03

5.333e-03

2.670e-03

9.333e-03

5.830e-03

2.839e-03

2.311e-03

3.581e-03

4.447e-03'

076e-03

765e-03

499e-03

005e-03

409e-04

919e-03

458e-03

2 .704e-03

8.397e-03

2 .973e-03

6.155e-04

3 .543e-03

3.272e-04

1.666e-04

1.865e-04

1.608e-03

1.083e-03

052e-01

289e-02

961e-02

052e-03

590e-03

668e-03

227e-03

945e-03

2.031e-03

3 .718e-04

1.056e-03

1.418e-02

8.418e-04

5 .857e-03

9.062e-04

1.953e-03

1.053e-02

1.303e-01 1.346e-02 7.899e-04 3.387e-032.640e-01 5.716e-03 1.570e-03 5.295e-02

1.092e-03 9.450e-03 1.355e-03 9.686e-049.334e-04 7.183e-03 1.449e-03 6.625e-04

3.357e-03 2.099e-02 2.084e-03 4.171e-039.312e-04 7.166e-03 2.891e-03 8.263e-044.756e-03 1.144e-02 2.953e-03 3.376e-03

2.813e-03 1.137e-02 3.494e-03 1.498e-038.685e-04 5.012e-03 1.078e-03 4.624e-04

3.050e-03 8.214e-03 4.734e-03 3.247e-033.171e-03 1.281e-02 3.937e-03 2.251e-030.OOOe+OO 5.998e-03 3.527e-04 3.733e-020.OOOe+OO 5.718e-03 6.217e-04 3.644e-02

0.OOOe+OO 3.151e-03 1.190e-04 1.334e-02

0.OOOe+OO 5.105e-03 3.887e-04 2 .720e-020.OOOe+OO 4.354e-03 9.368e-04 2.448e-02

0.OOOe+OO 1.864e-03 4.666e-04 1.081e-02

139

Table B4 continued (3).

k mg ca na nh4 h oc alllnorg

2.677e-03 5.579e-05 1.393e-04 7.719e-04 9.285e-04 1.332e-04 7.904e-02 1.932e-02

3.4170-02 3.202e-04 5.277e-04 1.412e-02 8.286e-03 1.606e-04 5.844e-01 1.579e-Ql

3.913e-03 3.868e-05 1.859e-04 1.920e-03 1.316e-03 1.166e-04 5.264e-01 1.955e-02

1.399e-01 4.774e-04 1.820e-03 4.133e-02 1.772e-03 3.245e-04 5.443e-01 4.314e-01

1.246e-01 3.212e-04 8.066e-04 3.263e-02 5.676e-04 1.552e-04 5.982e-01 3.886e-01

1.228e-03 1.328e-04 3.009e-04 2.903e-03 1.232e-04 2.688e-04 6.567e-01 1.138e-02

8.803e-03 3.474e-04 8.016e-04 6.963e-03 3.197e-03 3.164e-04 8.290e+00 5.242e-02

1.132e-02 2.753e-04 3.437e-04 5.079e-03 3.406e-03 2.791e-04 4.887e-02 5.283e-02

8.197e-02 4.571e-03 2.414e-02 7.972e-02 4.349e-03 7.133e-04 5.526e-01 2.903e-01

1.662e-01 4.374e-04 7.645e-04 5.186e-02 1.357e-02 1.670e-04 2.229e-01 5.686e-01

4.447e-05 4.610e-05 1.519e-04 1.743e-04 9.579e-05 2.661e-05 - 2.284e-03

1.380e-03 1.431e-03 2.829e-03 2.705e-03 2.124e-04 7.013e-04 - 1.861e-02

3.897e-04 4.040e-04 2.130e-03 5.041e-03 5.997e-05 1.935e-04 - 1.398e-02

- . - 1.152e-01 5.115e-04

4.847e-04 5.025e-04 2.650e-03 3.610e-03 3.774e-02 2.452e-04 5.440e-01 1.663e-01

3.555e-03 3.685e-03 6.073e-03 9.753e-03 2.735e-04 9.524e-04 - 9.394e-02

2.496e-03 2.587e-03 8.528e-03 1.370e-02 3.841e-04 1.301e-03 3.084e+00 8.284e-02

4.410e-04 4.571e-04 1.507e-03 2.420e-03 6.786e-05 2.390e-04 2.505e-01 1.565e-02

1.462e-03 3.788e-04 7.492e-04 1.432e-03 5.623e-05 1.972e-04 6.408e-01 1.169e-02

2.e66e-03 2.764e-03 9.109e-03 1.045e-02 4.102e-04 1.386e-03 - 4.685e-02

1.128e-03 1.169e-03 6.166e-03 4.421e-03 1.736e-04 5.906e-04 - 3.445e-02

8.820e-04 9.143e-04 3.014e-03 3.457e-03 3.529e-03 5.489e-04 - 1.179e-01

6.109e-04 1.267e-03 2.087e-03 2.395e-03 9.401e-05 3.105e-04 - 2.041e-02

4.393e-04 1.640e-03 2.402e-03 4.133e-03 3.245e-03 2.552e-04 - 1.194e-01

2.911e-03 4.828e-04 1.989e-03 1.940e-03 4.479e-05 1.306e-04 - 1.283e-02

5.5860-03 2.779e-03 2.863e-03 1.117e-02 2.579e-04 1.067e-03 - 5.649e-02

2.579e-04 2.631e-03 2.115e-03 1.031e-03 2.381e-05 7.289e-05 8.511e-01 5.401e-02

1.313e-04 1.339G-03 1.346e-03 5.250e-04 2.497e-03 5.800g-05 - 8.024e-02

2.940e-04 5.851e-04 9.041e-04 1.210e-03 1.357e-05 5.761e-05 6.278e-01 1.969e-02

1.584e-04 1.616e-03 1.299e-03 1.304e-03 4.388e-04 5.572e-05 - 4.233e-02

-1.059e-02 1.699e-03 1.750e-03 5.220e-03 7.882e-05 2.573e-04 7.268e-01 1.566e-01

- 6.584e-01 1.660e-03"

1.992e-03 1.859e-03 1.787e-03 3.807e-03 8.048e-04 2.707e-04-l.930e-02 1.605e-01

2.475e-03 1.231e-03 2.537e-03 7.566e-03 1.348e-02 6.147e-04 6.883e-01 3.542e-01

5.342e-04 5.316e-04 1.095e-03 1.131e-03 1.775e-03 2.103e-04 5.314e-01 1.870e-02

4.568e-04 4.546e-04 4.682e-04 9.669e-04 1.603e-03 1.636e-04 4.906e-01 1.460e-02

- - - - - - - O.OOOe+00

3.286e-03 '1.6350-03 3.368e-03 6.569e-03 2.427e-03 5.927e-04 8.404e-01 4.922e-02

9.1140-04 4.535e-04 9.343e-04 5.573e-03 5.8900-04 1.9720-04 1.1510+00 2.0580-02

4.6550-03 2.3150-03 2.386e-03 4.926e-03 2.149e-04 6.856e-04 6.443e-01 3.812e-02

1.3770-03 1.3700-03 5.645e-03 2.914e-03 1.780e-03 4.635e-04 4.796e-01 3.359e-02

4.2500-04 4.2300-04 8.713e-04 8.996e-04 1.491e-03 2.424e-04 2.540e-01 1.187e-02

.- 5.5380-01 2.3250-04

1.4920-03 2.9700-03 6.1190-03 5.967e-03 1.378e-04 4.3060-04 4.9140-01 3.6690-02

1.5520-03 1.5440-03 1.590e-03 6.2040-03 2.8650-04 7.0140-04 6.4360-01 3.4310-02

2.6950-02 3.5390-04 2.9160-03 1.092e-02 1.1940-05 l.lOle-04 9.387e-01 8.506e-02

2.0240-02 3.395e-04 7.121e-04 6.973e-03 4.581e-04 1.8870-04 7.2000-01 7.193e-02

9.0380-03 2.444e-04 5.127e-04 4.012e-03 8.246e-06 7.5180-05 8.480e-01 3.068e-02

1.4820-02 7.9860-04 1.675e-03 4.941e-03 2.694e-05 1.423e-04 8.033e-01 5.559e-02

3.516e-04 1.925e-03 2.883e-04 3.969e-03 6.493e-05 4.1240-04 3.009e+00 3.796e-02

2.906e-03 3.532e-04 7.408e-04 2.185e-03 9.531e-05 2.051e-04 9.540e-01 2.001e-02

140

Table B5. Concentrations of soluble inorganic species in source samples

(n mole m~^), nF is Fluoropore filter number.

row nF h nh4 na ca mg k cl no3 so4 br

1 48 1403 548 357 37 24 729 3145 343 180 4

2 49 435 1257 1682 36 36 2394 6680 220 184 5

3 50 2111 1333 1527 85 29 1830 4868 398 131 12

4 53 234 72 1310 33 14 2607 2494 117 832 4

5 54 117 24 1084 15 10 2432 2016 149 968 2

5 55 3513 90 1667 99 72 414 1477 68 135 23

7 56 665 376 643 42 30 478 1079 177 154 6

8 57 2304 1574 1843 72 94 2415 6252 312 132 14

9 58 1535 524 7534 1309 408 4555 5141 79 79 26

10 59 215 976 2928 25 23 5520 10881 105 298 57

11 80 223 45 64 32 16 10 161 51 40 26

12 81 552 9 93 56 47 28 92 26 24 3

13 82 2424 42 2773 672 210 126 790. 303 261 13

14 83 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9

15 84 213 1831 137 58 18 11 2598 15 22 4

16 85 331 5 ,149 53 53 32 128 38 70 2

17 86 66 1 . 31 11 5 3 29 8 4 0

18 87 97 2 43 15 8 5 24 13 14 2

19 88 895 14 286 86 71 171 206 40 151 17

20 89 127 2 42 21 10 6 25 9 4 1

21 90 1584 26 521 417 130 78 323 151 344 31

22 91 135 48 37 19 9 6 '28 11 153 123

23 93 173 6 29 588 294 294 88 324 765 165 29

24 94 131 93 93 31 35 6 5 25 34 63 4

25 98 1440 28 939 552 221 829 331 110 309 138

26 95 13 6 2 63 9 15 18 52 7 13 9

27 117 1455 27 904 1064 2181 133 479 106 1223 10266

28 118 256 617 102 150 246 15 737 12 132 3655

29 119 2749 36 2536 1087 1159 362 1232 145 1159 7899

30 120 415 183 427 244 500 30 414 195 280 2852

31 96 1160 20 1034 199 318 1233 1352 80 211 6799

32 97 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9

33 115 1170 195 723 195 334 223 417 56 612 7121

34 123 493 605 267 51 41 51 1211 21 48 2678

35 133 5081 2400 1200 667 533 333 667 533 2400 333

36 13 4 2296 1258 596 166 265 166 265 331 1060 166

37 135 -9 -9 -9 -9 -9 -9 -9 -9 ' -9 -9

38 136 8313 1905 4048 1190 952 1190 1667 476 3095 595

39 137 8547 1429 10612 1020 816 1020 1020 2041 3265 510

40 139 10559 185 3333 926 1481 1852 1481 741 1852 926

41 140 5767 1239 1593 1770 708 442 531 708 1487 442

42 141 15774 5429 2571 1429 1143 714 857 1143 3429 714

43 142 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9

44 143 13963 250 8500 5000 4000 1250 3000 2500 2800 1250

45 144 21876 500 8500 1250 2000 1250 2000 2000 4200 1250

46 205 2177 13 9485 1453 291 13765 21030 114 1247 0

47 206 3990 542 6477 379 298 11057 21951 214 1271 0

48 207 3152 19 7389 542 426 9787 15938 81 1389 0

49 208 1680 18 2562 498 391 4520 9146 75 633 0

50 209 1944 17 822 34 377 43 3288 72 216 0

51 210 7431 193 3478 676 531 2720 11159 275 710 0

141

Table B6. PIXE elemental concentrations (n mole m 3) , Al-Cr, nF is

fluoropore filter number.

row nF A1 As Bal Bil Br Ca C1 ' Cr

1 48 0.0 0.0 0.0 0.0 7.3 0.0 761.4 5.9

2 49 0.0 0.0 0.0 0.0 3.2 0.0 4252 .9 2.6

3 50 0.0 0.0 0.0 0.0 8.3 0.0 1872 .9 6.7

4 53 0.0 0.0 3.3 0.0 7.7 0.0 947 .7 1.9

5 54 0.0 0.0 0.0 0.0 5.5 0.0 772 .2 1.1

6 55 143 .5 0.0 16.4 0.0 11.7 27.1 44.4 9.4

7 56 0.0 0.0 4.6 0.0 0.0 0.0 12.4 2.6

8 57 0.0 0.0 18.0 0.0 45.5 0.0 1601.1 10 .3

9 58 0.0 0.0 0.0 0.0 0.0 0.0 3724.8 0.0

10 59 0.0 0.0 0.0 0.0 27.6 0.0 6970 .5 0.0

11 80 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

12 81 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

13 82 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

14 83 0.0 0.0 0.0 0.0 1.9 0.0 10327.0 0.0

15 84 0.0 0.0 0.0 0.0 1.9 0.0 1756.0 0.0

16 85 0.0 22.1 . _ 0.0 0.0 0.0 0.0 400 .3 0.0

17 86 0 . 0 0.0 0.0 0.0 0.0 0.0 108.0 0.0

18 87 0.0 0.0 0.0 0.0 1.1 0.0 204.1 0.0

19 88 0.0 0.0 0.0 0.0 0.0 0.0 657 . 6 0.0

20 89 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

21 90 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

22 91 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9 . 0 -9.0

23 93 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

24 94 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

25 98 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

26 95 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

27 117 0.0 0.0 0.0 0.0 9063.2 779 .0 3498.9 63 .4

28 118 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

29 119 0.0 0.0 0.0 0 .0 7353 .9 367.8 3316.7 0.0

30 120 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

31 96 0.0 0.0 0.0 0.0 5801.2 0.0 2501.6 0.0

32 97 0.0 250.5 0.0 0.0 16634.1 76.0 1558 .7 0.0

33 115 0.0 0.0 0.0 0.0 7698.2 66.7 147 .9 0.0

34 123 0.0 0.0 0.0 0.0 1376.4 0.0 403 .6 0.0

35 133 0.0 0.0 0.0 0.0 0.0 0.0 311.1 0.0

36 13 4 0.0 0.0 0.0 0.0 0.0 0.0 1130.4 0.0

37 135 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

38 136 0.0 0.0 0.0 0.0 0.0 0.0 924.3 0.0

39 137 0 .0 0.0 0.0 0 .0 0 .0 69 .9 114 .7 0 .0

40 139 0.0 0.0 0.0 0.0 110 .1 0 . 0 4158.0 0 . 0

41 140 0.0 0.0 0.0 0.0 0.0 0.0 2246.1 0.0

42 141 0.0 0.0 0.0 0.0 0.0 0.0 160.6' 34.0

43 142 0.0 0.0 0.0 0.0 0.0 0.0 386.6 0.0

44 143 0.0 0.0 0.0 0.0 0.0 0.0 497.0 0.0

45 144 0.0 0.0 0.0 0.0 137 .7 0.0 521.9 0.0

46 205 0.0 0.0 0.0 0.0 45.0 0.0 11736.2 0.0

47 206 0.0 0.0 0.0 0.0 68.7 0.0 11709.5 0.0

48 207 0.0 0.0 0.0 0.0 21.1 0.0 8505.3 0.0

49 208 0.0 42.1 0.0 0.0 11.4 0.0 5077.0 0.0

50 209 0.0 0.0 0.0 0.0 10 .9 0.0 1089.7 0.0

51 210 0.0 0.0 0.0 0.0 19 .7 0.0 2515.6 0.0

Table B6 cont. PIXE elemental concentrations (nmole m

is Fluoropore filter number.Cu - Pb, nF

142

row nF Cu Fe Ga K Mn Ni P Pbl

1 48 2.7 4.5 0.0 . 750 .9 4.4 2.9 38.7 0.0

2 49 5.6 2.0 0 . 0 2073.2 1.9 1.3 17.0 0.0

3 50 3.1 13 .6 0.0 1341.9 5.0 3.4 44.0 0.0

4 53 0.9 3.8 0.0 1580.1 6.6 0.9 12.3 0.0

5 54 2.3 0.8 0.0 1705.7 5.0 0.5 0.0 0.0

6 55 0.0 7.2 0.0 78.4 7.0 4.7 61.8 0.0

7 56 1.2 2.0 0.0 156.5 2.0 1.3 17 .3 0.0

8 57 4.8 7.9 0.0 1172.1 7.6 5.2 67 .7 0.0

9 58 0.0 8.2 0.0 1343 .3 0.0 0.0 69.9 0.0

10 59 7.8 1.3 0.0 4232.8 3.1 0.8 10 .9 0.0

11 80 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

12 81 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

13 82 -9.0 -9.0 -9.0 -9.0 -9.0 -9,. 0 -9.0 -9.0

14 83 0.0 7.9 0.0 0.0 0.0 0.8 0.0 0.0

15 84 2.7 126.0 0.0 0.0 0.0 0.8 10.0 3.6

16 85 0.0 26.6 . 0.0 150.2 0.0 0.0 0.0 0.0

17 86 0.0 2.1 0.0 0.0 0.0 0.4 0.0 0.0

18 87 0.4 11.2 0.0 23 .9 0.0 0.4 0.0 0.0

19 88 4.3 7.2 0.0 452.2 0.0 4.7 0.0 0.0

20 89 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

21 90 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

22 91 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

23 93 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

24 94 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

25 98 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

26 95 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

27 117 16.3 2305.8 0.0 0.0 0.0 0.0 0.0 6559.8"

28 118 -9.0 -9^0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

29 119 10 .5 544.5 0.0 0.0 0.0 11.4 0.0 6189 .3

30 120 -9.0 - -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

31 96 5.0 8.3 0.0 0.0 0.0 5.4 0.0 3454.3

32 97 4.9 5.9 0.0 0.0 0.0 10 .1 6.0 8456.2

33 115 0.0 18.5 0.0 0.0 0.0 3.8 0.0 4550.1

34 123 0.0 3.9 0.0 0.0 0.0 0.0 0.0 828.8

35 133 0.0 13 4.3 0.0 0.0 0.0 16.3 0.0 0.0

36 134 0.0 12.4 0.0 0.0 0.0 8.1 0.0 0.0

37 135 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

38 136 0.0 , 15.2 0.0 0.0 0.0 0.0 0.0 46.8

39 137 0 .0 18.7 0 .0 0 .0 0 .0 0 .0 0 .0 135 . 0

40 139 0.0 68.0 0.0 0.0 0.0 44.3 0.0 0 . 0

41 140 0.0 32.1 0.0 0.0 0.0 20.9 0.0 0.0

42 141 15.7 26.2 0.0 0.0 0.0 17.0 0.0 0.0

43 142 0.0 63 .0 0.0 0.0 0.0 0.0 0.0 0.0

44 143 0.0 81.0 0.0 0.0 0.0 52 .7 0 . 0 0.0

45 144 0.0 85.0 0.0 0.0 0.0 0.0 0.0 0.0

46 205 0.0 6.4 0.0 9953.2 0.0 0.0 0.0 0.0

47 206 0.0 7.7 0.0 8663.0 18.2 0.0 0.0 0.0

48 207 0.0 48.0 0.0 8073 .4 12.6 0.0 0.0 0.0

49 208 0.0 7.1 0.0 4265.6 0.0 4.6 0.0 0.0

50 209 0.0 35.2 0.0 1165.9 0.0 4.4 0.0 0.0

51 210 0.0 12.1 0.0 2553.0 0.0 0.0 0.0 0.0

143

Table 36 conh. PIXE elemental concentrations (nmole m ^), Rb - Zn, nFis Fluoropore filter number.

row nF Rb s Si Sr Ti V Y Zn

0 0 0.0 0.0 0 . 0 0.0 0.0 0.0 0.0 0.0

1 48 0.0 33 .6 46.9 10 .6 10.8 8.1 0.0 156.4

2 49 0.0 39.3 20.6 4.7 4.8 0.0 0.0 45.3

3 50 0.0 138.5 53 .4 12.1 0.0 9.2 0.0 12.3

4 53 0.0 335.7 14.9 6.9 3.5 0.0 0.0 8.8

5 54 0.0 434.1 8.4 1.9 0.0 0.0 0.0 6.9

6 55 0.0 53 .8 75.0 17.0 0.0 • 0.0 0.0 4.6

7 56 0.0 40 .8 21.0 4.8 4.8 0.0 0.0 7.3

8 57 0.0 58.9 82 .2 18.6 0.0 14.2 0.0 36.7

9 58 0.0 60 .7 84.7 19 .2 0.0 0.0 0.0 35.7

10 59 0.0 52 .5 13 .2 3.0 3.1 2.3 0.0 103 .1

11 80 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

12 81 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9 . 0

13 82 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

14 83 0.0 0.0 12 .1 0.0 0.0 0.0 0.0 2.8

15 84 0.0 0.0 12.2 2.8 0.0 0.0 0.0 29 .5

16 85 0.0 27 .6 38.5 8.7 0.0 0.0 0.0 0.0

17 86 0.0 0.0 20 .1 1.6 0.0 0.0 0.0 0.0

18 87 0.0 5.0 6.9 1.6 0.0 0.0 0.0 1.8

19 88 0.0 13 6.2 74.4 16.9 0.0 0.0 0.0 18.1

20 89 -9.0 -9.0 -9 . 0 -9.0 -9.0 -9.0 -9.0 -9.0

21 90 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

22 91 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

23 93 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

24 94 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

25 98 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

26 95 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

27 117 0.0 1448.7 130 .5 0.0 0.0 0.0 0.0 594.8

28 118 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0

29 119 0.0 2765.4 181.7 0.0 0.0 0.0 0.0 884.6

30 120 -9.0 -9.0 -9.0 - -9.0 -9.0 -9^.0 -9.0 -9.0

31 96 0 . 0 61.6 86.0 0.0 0.0 0.0 0.0 34.3

32 97 0.0 2767.2 0.0 0.0 0.0 0.0 0.0 61.2

33 115 0.0 1998.4 60 .8 0.0 0.0 0.0 0.0 85.7

34 123 0.0 23 .7 16.1 0.0 0.0 0.0 0.0 2.4

35 133 0.0 2511.4 12198.2 58.7 0.0 0.0 0.0 0.0

36 134 0.0 1207.8 7162.8 29.2 0.0 0.0 0.0 0.0

37 135 -9.0 -9.0 -9 . 0 -9.0 -9.0 -9.0 -9.0 -9.0

38 136 0.0 467.9 4659.8 0.0 0.0 0.0 0 .0 0 .0

39 137 0.0 1837 .2 2454.8 43 .9 0.0 0.0 0.0 173 .1

40 139 0.0 505.3 13549 .3 0 . 0 0.0 0 . 0 0.0 0 . 0

41 140 0.0 1406.6 5887.4 75.4 0.0 0.0 0.0 20.2

42 141 0.0 1720 .3 6095.8 0.0 0.0 0.0 0.0 16.5

43 142 0.0 1663.5 9829.5 147 .9 0.0 0.0 0.0 39.7

44 143 0.0 1745.2 15265.6 190.2 0.0 0.0 0.0 51.0

45 144 0.0 3314.1 10101.5 199 .7 0.0 0.0 0.0 53 .5

46 205 0.0 489 .4 66.6 0.0 0.0 0.0 0.0 4.0

47 206 0.0 611.0 80.3 0.0 0.0 0.0 0.0 16.0

48 207 0.0 907.1 135.0 0.0 0.0 0.0 0.0 0.0

49 208 0.0 326.2 73.1 0.0 0.0 0.0 0.0 4.4

50 209 0.0 50.2 70.1 0.0 0.0 0.0 0.0 0.0

51 210 0.0 209 .4 125.9 0.0 0.0 0.0 0.0 43 .2

144

Table B7. Collected mass, sample flows, carbon and FPM (see Table

C1 for label names and units).

row nF nN nG floF f loN floG massF massN elC tote FPM

1 48 48 52 0 .270 0.075 0.671 2877 946 2306.9 3148 10644

2 49 49 53 0.205 0 .171 0.444 562 387 709 .0 2310 2739

3 50 50 54 0.083 0.066 0 .181 1509 1115 5045.2 14674 18291

4 53 53 57 0 .224 0.236 0 .456 163 101 24.7 421 729

5 54 54 58 0.417 0.418 0 .872 318 197 32 .3 489 763

6 55 55 59' 0.044 0.047 0.093 586 461 215.7 8883 13198

7 56 56 60 0.165 0 .168 0.022 350 192 163 .7 17769 2124

8 57 57 61 0.070 0.043 0 .391 583 364 2183.0 2591 8341

9 58 58 62 0 .038 0.042 0 .073 83 59 307.0 1508 2173

10 59 59 63 0 .283 0 .267 0.601 367 272 190 .3 480 1298

11 80 81 91 0 .311 0 .343 0 .594 2638 -9 -9.0 -9 8477

12 81 83 92 0 .107 0.045 0.176 85 -9 -9.0 -9 794

13 82 84 93 0.024 0.099 0.043 301 -9 -9.0 -9 12647

14 83 85 93 0 .398 0.292 0 .985 520 249 10 .8 162 1308

15 84 86 94 0.276 0 .289 0 .522 242 125 31.5 508 876

16 85 87 95 0 .188.9.092 0.108 66 49 203 .5 -9 351

17 86 88 96 0.912.6.511 0.505 47 34 0.5 159 52

18 87 89 97 0.650 0.507 1.229 266 186 222.5 325 409

19 88 90 98 0.070 0.047 0.117 321 207 2296.3 5235 4586

20 89 91 99 0.477 0.473 0 .854 44 27 -9.0 -9 92

21 90 92 100 0.038 0.031 0.065 104 64 -9.0 2377 2708

22 91 93 102 0 .537 0 .416 0 .962 133 84 -9.0 -9 248

23 93 95 104 0 .034 0 .028 0 .064 192 135 -9.0 3273 5647

24 94 96 105 0.514 0.469 0.968 267 203 -9.0 257 520

25 98 100 106 0.036 0.028 0.062 403 -9 -9.0 8406 11133

26 95 97 107 0.542 0 .397 0 .978 70 -9 -9.0 -9 129

27 117 119 13 0 0.038 0.027 0.070 758 485 2060.1 19218 20160

28 118 120 131 0 .334 0 .359 1.147 1489 -9 -9.0 -9 4461

29 119 121 132 0.028 0 .019 0 .074 1330 722 7879.0 38131 48188

30 120 123 133 0.164 0.089 0.587 1234 - -9 -9.0 -9 7520

31 96 98 108 0.050 0.041 0 .089 229 159 647.3 3956 4553

32 97 99 109 0 .296 0.119 0.742 1360 742 539.1 3567 4599

33 115 117 135 0.072 0.058 0 .348 314 236 1458.4 1374 4367

34 123 128 139 0 .195 0 .219 0.492 158 95 2.1 560 811

35 133 149 165 0.015 0.014 0.036 366 271 11964.8 24930 24400

36 134 148 166 0.030 0.027 0.060 428 340 8297.3 15251 14172

37'135 147 167 0.008 0 .008 0.016 213 127 7987.4 -9 25357

38 136 146 168 0.008 0.022 0.017 119 80 2087.0 13993 14167

39 137 145 169 0 .010 0 .018 0 .010 429 290 3981.1 54354 43776

40 139 143 174 0.005 0.005 0 .010 84 53 6338 . 0 16361 15556

41 140 142 175 0.011 0.011 0.022 142 123 6450.9 12478 12566

42 141 140 176 0 .007 0.013 0.012 460 281 10383.4 27072 65714

43 142 141 177 0.007 0.005 0 .011 184 96 4587.8 19145 26286

44 143 151 178 0.004 0.004 0.008 131 124 13986.7 30080 32750

45 144 152 179 0.004 0 .004 0.007 126 120 14414.1 34688 31500

46 205 209 347 0.076 0 .053 0.139 1512 845 496.1 19245 19974

47 206 210 348 0.074 0.044 0.180 1576 738 1277.1 16652 21355

48 207 211 349 0 .052 0.026 0.107 2189 1045 906.6 36813 42340

49 208 212 350 0.056 0.048 0 .100 670 488 525.1 10101 11922

50 209 213 351 0.058 0.050 0.098 278 211 313 .4 14637 4760

51 210 214 352 0.041 0 .028 0.108 1515 828 1205.6 36117 36594

Table B8. Co

ncen

trat

ions

of organic c

ompo

unds

(pg m"^).

Retention

Molecular

Name

GF54

GF53

GF81

GF348

GF352

GF350

GF97

GF105

GF135

GF109

GF132

GF168

GF176

GF165

Time

weight

Coonara

Coonara

Coonara

Fire

Fire

Fire

Unleaded

Unleaded

Leaded

Leaded

Leaded

Diesel

Diesel

Diesel

7.962

142

0.20

0.18

1

0.06

0.05

8.721

142

'

0.13

13.817

178

Phenanthrene

189.65

3.90

3.32

4.04

10.48

21.34

0.07

0.09

0.48

3.82

85.71

1.64

13.926

178

Anthracene

17.10

0.33

0.29

0.92

2.48

5.37

0.02

0.01

22.62

13.277

180

9-H fluorene-9-one

71.59

5.51

3.95

1.17

2.03

6.35

0.08

0.54

0.67

2.41

14.927

180

1-H phenalene-1-one

155.68

36.43

9.39

1.52

2.48

4.77

0.03

2.30

0.19

16.702

202

PAH

598.81

107.29

39.60

7.24

8.81

25.14

1.41

0.61

89.10

14.22

198.45

37.02

296.63

34.61

16.896

202

Fluoranthene

148.75

16.84

7.96

3.75

5.10

12.30

0.26

0.06

23.04

1.79

88.47

6.87

81.29

4.91

17.167

202

Pyrene

625.78

108.00

43.16

7.79

9.13

25.59

1.45

0.89

118.05

20.08

261.68

62.12

613.38

48.88

15.848

204

2-phenyl Naphthalene

50.73

3.98

3.04

1.06

1.69

4.48

0.22

0.11

4.67

2.48

27.32

1.93

15.93

5.92

16.438

204

cyci

o penta(d,e,f)Phenanthrene

90.68

35.90

7.00

0.66

0.93

0.08

3.19

1.19

1.42

3.78

1.87

16.334

206

PAH

0.09

0.13

6.38

3.01

25.93

4.58

20.69

19.34

16.5CB

206

PAH

0.09

0.09

5.16

2.24

18.52

5.76

29.93

22.18

16.597

206

PAH

0.08

0.06

2.99

1.22

10.01

2.97

19.17

10.13

16.687

208

PAH

0.06

0.06

3.93

1.57

12.:^

2.60

12.75

10.05

17.224

208

PAH

10.37

2.54

0.51

0.01

15.34

208

PAH

15.666

208

9,10 anthracene dione

27.32

10.74

2.74

0.80

0.47

1.82

0.30

0.14

3.03

2.27

9.59

11.22

16.943

208

PAH

17.388

218

PAH

17.469

216

PAH

18.039

218

PAH

18.083

218

PAH

45.52

8.50

3.79

2.03

2.83

8.22

0.82

0,17

33.46

4.56

40.99

3.40

42.98

6.65

18.257

218

PAH

2.77

1.38

1.30

1.00

1.37

3.71

0.17

8.52

1.41

28.50

13.47

0.67

18.297

216

PAH

12.97

3.18

1.25

0.56

0.69

2.62

0.43

0.20

18.80

2.77

14.71

2.49

27.68

4.07

18.499

218

PAH

15.93

3.33

1.34

0.82

1.13

2.96

0.35

0.10

11.98

1.92

10.33

3.10

25.57

4.14

18.563

218

PAH

15.30

3.47

1.35

0.73

0.98

2.33

0.33

0.07

13.84

1.64

10.44

2.32

29.22

4.08

17.301

218

benzo(b)naphthol(2,3d)Furan

70.92

23.04

5.68

0.73

0.82

2.44

0.14

0.08

1.71

0.86

2.03

0.91

7.34

2.10

M ili'

(Jl

Table B8

continued. Co

ncen

trat

ions

of org

anic

com

poun

ds (p

g m"

3).

Retention

Molecular

Name

GF54

GF53

GF61

GF348

GF352

GF350

GF97

GF105

GF135

GF109

GF132

GF166

GF176

GF165

Time

weight

Coonara

Coonara

Coonara /

Fire

Fire

Fire

Unleaded

Unleaded

Leaded

Leaded

Leaded

Diesel

Diesel

Diesel

17.581

218

PAH

28.45

10.72

2.51

0.37

1.08

0.05

0.01

0.91

1.55

0.58

1.44

19.62

226

PAH

146.64

49.26

9.85

1.90

1.93

4.91

4.18

0.69

71.24

9.56

68.45

16.27

220.72

16.05

20.03

226

PAH

58.02

6.22

1.74

3.38

3.83

11.36

2.16

0.13

19.00

3.23

204.91

2.34

115.22

1.93

20.125

228

benz(a)Anthracena

120.00

24.99

7.52

2.56

3.28

7.55

4.16

0.39

32.74

5.47

49.82

59.71

4.35

20.194

228

Chiysene

192.12

81.80

15.08

4.07

5.73

11.51

9.14

1.00

102.65

13.01

65.80

14.54

201.17

17.14

19.245

230

terphenyl Isomer

1.99

0.75

30.12

6.67

10.13

2.26

4.00

19.742

230

terphenyl Isomer

54.02

23.88

4.62

78.45

2.10.

1.00

31.18

6.58

5.04

1.36

2.63

20.395

230

terphenyl isomer

135.44

42.10

10.59

1.17

138.34

1.72

0.32

12.07

4.17

14.62

1.26

3.83

22.596

252

benzo(e)Pyrene

326.49

8.17

23.33

3.35

3.48

9.22

14.86

1.15

143.86

21.64

79.46

17.29

267.22

22.52

22.79

252

PAH

45.19

8.03

2.65

1.28

1.50

1.69

2.41

20.01

1.62

25.83

2.48

34.97

3.41

23.092

252

benz

o(a)

Pyre

ne106.08

26.51

8.16

1.01

1.42

2.86

4.00

0.49

62.20

10.56

30.97

7.65

154.31

11.82

23.193

252

Peiylene

174.85

22.54

11.58

2.10

2.42

5.38

5.77

0.12

51.48

5.18

52.20

5.98

130.70

16.92

23.114

254

PAH

133.53

32.61

11.06

0.90

0.85

2.49

1.12

0.21

10.36

7.38

20.26

3.01

14.63

3.56

25.221

276

PAH

42.61

5.29

3.84

0.46

0.78

1.22

1.77

15.81

2.43

14.54

25.368

276

PAH

117.67

1.83

11.65

0.84

1.09

3.42

4.98

0.17

51.13

9.02

40.48

2.11

16.80

3.10

25.803

276

PAH

112.02

22.14

11.05

1.19

0.95

2.85

4.92

0.59

88.64

21.61

82.52

213.29

8.17

26.057

276

PAH

27.71

22.46

0.49

0.84

0.01

19.69

9.63

0.11

25.18

278

PAH

12.49

2.40

1.20

0.30

0.39

4.29

0.52

2.58

25.703

278

PAH

11.18

0.86

7.19

1.31

4.32

28.415

300

Coronene

19.52

1.43

0.22

37.99

9.036

152

0.13

9.136

152

0.14

1.01

0.17

9.184

152

3-methoxy-4-hydroxy Be

nzal

dehy

de0.22

0.36

3.03

10.93

15.70

8.683

154

2,6 di

meth

oxy Phenol

0.09

0.20

2.50

13.86

21.18

8.996

154

0.30

0.86

1.48

9.11

154

BIphenyl

0.08

0.27

0.03

0.42

9.232

166

0.33

10.342

166

3-methoxy-4-hydroxy Acetophenone

0.83

0.40

1.96

2.55

6.89

20.22

i->

CTl

Table B8

con

tinu

ed. Co

ncen

trat

ions

of o

rgan

ic com

poun

ds (p

g m"3).

Retention

Molecular

Name

GF54

GF53

GF61

GF348

GF352

GF350

GF97

GF105

GF135

GF109

GF132

GF166

GF176

GF165

Time

weight

Coonara

Coonara

Coonara

Fire

Fire

Fire

Unleaded

Unleaded

Leaded

Leaded

Leaded

Diesel

Diesel

Diesel

10.472

166

0.23

0.11

-

10.866

166

0.24

0.12

9.967

168

3-methoxy-4-hydroxy lienzolc Acid

0.07

2.83

12.30

10.058

168

0.48

10.79

168

0.03

0.34

11.917

194

0.92

3.29

3.12

12.33

194

0.30

,

12.478

194

0.02

0.53

13.044

194

2,6 dimethoxy -4-(2-propenyl) Ph

enol

0.06

0.75

3.48

3.79

11.136

196

0.05

12.036

196

0.33

0.90

1.86

13.266

18.62

196

85

3,5-dlmethoxy-4-hydroxy

Acetophenone

022 Hyd

roca

rlxj

n

0.43

1.51

0.15

5.87

1.01

0.59

2.25

6.39

5.29

23.97

12.41

45.16

4.33

2.29

21.03

18.23

146.13

917.37

297.26

<i

148

Table B9. GC/MS Target compounds

Compound Molecular Weight

C22 hydrocarbon 85

Cresols 108

1-methyl Naphthalene 142

2-methyl Naphthalene 142

Phenanthrene 178

Anthracene 178

IH Phenalen-l-one 180

9H Huorene-l-one 180

Anthracene-djo 188

Cyclopentaphenanthrene 190

PAH 192

PAH 202

2-Phenylacenaphthalene 204

Cyclopenta(d,e,f)phenanthrene 204

PAH 206

9,10 Anthracenedione 208

Benzo(b)naphtho(2,3d)furan 218

PAH 216

PAH 226

PAH 228

PAH 230

PAH 252

PAH 254

PAH 276

PAH 278

PAHcu

PAH 302

2,6 Dimethoxy phenol 154

Biphenyl 154

3-methoxy-4-hydroxy Benzaldehyde 152

3-methoxy-4-hydroxy Benzole Acid 168

3-methoxy-4-liydroxy Acetqphenone 166

2,6-dimethoxy-4-(2-propenyl) Phenol 194

3,5-dimethoxy-4-hydroxy Acetophenone 196

3,5-dimethoxy-4-hydroxy Benzaldehyde 182

149

CSIRO-EPA Melbourne Aerosol Study.

Final Report: Part C, Data Suirttnary

150

Data summary

The data suininary given in this part of the report parallelsthe main ambient data file on the PC format data disk. It alsoincludes some data on organic constituents that are not includedon the data disk (Table C8 and Appendix 3). The data aresummarised in eight data tables.

These tables are:

page

Table Cl. Key to field names used in other tables. 151

Table C2. Filter number, site, sample flows and masses. 153

Table C3. Concentration of soluble inorganic species. 155

Table C4. FIXE elemental concentrations. 157

Table C5. Bsd, Bap, carbon mass, FPM - Alphington. 163

Table C6. EPA air quality data, mean values for

sampling periods. 165

Table C7. PIXE detection limits and statistics. 167

Table C8. Concentrations of organic compounds. 168

Appendix 3: Size distributions and differential

scatter plots for Alphington 170

151

Table C1. Key to field names used in other tables.

nF

nN

nG

on

off

site

type

floF

f loN

floG

massF

massN

h

nh4

na

ca

mg

k

cl

no3

so4

br

Fluoropore filter numberNuclepore filter numberglass filter numbertime of start of ambient exposure, yyitimddhhmm AESTtime of start of ambient exposure, yymmddhhinin AESTsampling site a=Alphington, f^Footscraysample type c=woodstove, v=vehicle, o=:open fire pitflow through Fluoropore filter (m~^)flow through Nuclepore filter (m~^)flow through glass filter (m~-^)aerosol mass, Fluoropore filter (|ig)aerosol mass, Nuclepore' filter (|ig)cone. of soluble H"'" (nmole m 2), Fluoropore filtercone.

cone,

cone,

cone,

cone.

cone.

cone.

cone.

cone.

of

of

of

NHsoluble

soluble Na^ (nmolesoluble Ca^"*"

(nmole Fluoropore filterm 3)

(nmole m ;^) , Fluoropore filterFluoropore filter

of soluble Mg^"^ (nmole m"^), Fluoropore filterof soluble K"^ (nmole m~^), Fluoropore filter

Cl~ (nmole m~^), Fluoropore filtersoluble6 '

(nmole m ,of

totlnorg mass304-2-,bapelC

pixAlpixAspixBalpixBilpixBrpixCapixClpixCrpixCupixFepixGapixKpixMnpixNipixPpixPblpixRbpixSpixSipixSrpixTipix'VpixYpixZntote

bspdbsd

CO

o3

cone

dry a

soluble

soluble

solubleT +

^2-(nmole m-2) ,(nmole m'^)SO4

Br (nmole m -^ ) ,+ i\T=i + r" =. 2 +

Fluoropore filter, Fluoropore filterFluoropore filter2; 10ns n- , NH4"^, Na"^, Ca-_,

Fluoropore filter ()ig m-2)m

Mg

L)

+ CI NQ-:

.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

cone.

total

(nmole m 2)

of soluble NO^

of

of

of ions H

and Br"

absorption coefficient il.OE-5elemental carbon (|lg m~^)

of Al determined by PIXEof As determined by PIXE (nmole m"-^)of Ba (L-line) determined by PIXE (nmole m-2)of Bi (L-line) determined by PIXE (nmole m-2)of Br determined by PIXE (nmole m-2 )of Ca determined by PIXE (nmole m-2)of Cl determined by PIXEof Cr determined by PIXEof Cu determined by PIXEof Fe determined by PIXEof Ga determined by PIXEof K determined by PIXE (nmole m"-^)of Mn determined by PIXE (nmole m-2)of Ni determined by PIXE (nmole m-2)of P determined by PIXE (nmole m-2)of Pb (L-line) determined by PIXE (nmole mof Rb determined by PIXE (nmole m-2)

(nmole m-2)(nmole m-2)(nmole m~^)(nmole m-2)(nmole m-2)

-3

of S determined by PIXE (nmole m -^1I

r3(nmole mof Si determined by PIXE

of Sr determined by PIXE (nmole mof Ti determined by PIXE (nmole m.

-3-

-3:

of V determined by PIXE (nmole m";:)of Y determined by PIXE (nmole m-3)of Zn determined by PIXE (nmole m-3)carbon (|ig m~^)

m 3-)m-1'

erosol scattering coefficient (l.OE-4dry scattering coefficient (includes air) (l,0E-4mean CO over ambient exposure as measured by EPA (ppm)mean O3 over ambient exposure as measured by EPA (pphm)

152

Table C1 continued.

no mean NO over ambient exposure as measured by EPA (pphm)no2 mean N02 over ambient exposure as measured by EPA (pphm)api mean API over ambient exposure measured by EPA (1.OE-4 m~^)so2 mean S02 over ambient exposure as measured by EPA (pphm)nmhc mean NMHC over ambient exposure as measured by EPA (ppm)tsr mean TSR over ambient exposure as measured by EPA (W m"^)uv mean UV over ambient exposure as measured by EPA (W m~^)dbt mean DBT over ambient exposure as measured by EPA (deg C)sws mean SWS over ambient exposure as measured by EPA (m sec~^)FPM fine particle mass (|lg m~^)

153

Table C2. Filter number, site, sample flows and masses

row nF nN nG date on site floF f loN floG massF massN

0 3 3 3 900423 1615 a 43 , 86 35.49 63 .13 319 217

1 6 6 6 900430 1558 a 46.62 37.18 73 .10 380 253

2 8 8 8 900501 1455 a 48.40 41.45 71.15 388 240

3 11 11 11 900503 1235 a 49 .41 36.71 81.32 379 354

4 18 18 18 900504 1655 a 14.71 13 .88 23.56 193 127

5 24 24 24 900511 1145 a 15.79 13 .02 22 .16 361 216

6 19 19 19 900511 2230 a 16.39 13 .90 23 .55 249 156

7 25 25 25 900515 1900 a 15.62 11.31 23 .26 500 303

8 29 29 29 900520 2100 a 14.75 11.53 23 .80 618 393

9 26 26 26 900521 2130 a 15.93 13 .50 22 .64 481 300

10 30 30 30 900524 2230 a 16.40 13 .65 23 .48 193 115

11 31 31 31 900525 1945 a 19 .02 11.88 22 .52 309 214

12 20 20 20 900526 2225 a 15 .33 12 .39 26 .22 589 383

13 21 21 21 900528 0840 a 15.12 11.98 23 .14 318 223

14 22 22 22 900528 1840 a 13 .27 6.77 24.69 1040 518

15 34 34 34 900529 1045 a 15.26 13 .07 22 .94 360 244

16 35 35 35 900529 1945 a 16.62 11.14 22 .93 623 378

17 39 39 39 900530-*1815 a 15.38 10 .29 24.36 745 388

18 46 46 46 900605 0830 a 16.34 12 .43 23 .80 255 187

19 47 47 48 900606 2010 a 16 .50 11.21 24.52 561 359

20 60 60 " 64 900607 1810 a 16.10 10 .47 24.24 628 344

21 61 61 65 900608 2050 a 17 .23 14 .27 23 .77 187 137

22 36 36 49 900610 1950 a 15.19 9 .53 24.82 1007 602

23 37 37 50 900611 0440 a 14.81 13 .90 23 .94 383 244

24 68 68 72 900613 1940 a 14.95 6.89 25.34 '925 402

25 72 72 76 900618 0830 a 16.09 11.81 24.72 204 144

26 69 69 73 900618 2055 a 16.07 10 .11 24.38 746 454

27 75 75 79 900625 1815 a 15.30 14.27 24.53 168 135

28 78 79 86 900701 1915 a 15 .21 14.51 24.15 214 155

29 101 103 115 900710 0850 a 15.78 12 .77 23 .97 248 147

30 79 80 116 900710 2035 a 15.71 11.20 24.43 548 344

31 104 106 125 900719 1850 a 15.76 11.78 24.50 311 206

32 111 113 141 900726 1120 a 16.40 13 .71 26.39 153 113

33 105 107 142 900727 2330 a 15 .23 14.78 23 .23 113 92

34 129 134 153 900803 2050 a 13 .99 14.16 26.99 94 70

35 132 139 161 900818 1920 a 14.72 13 .86 26.33 284 207

36 138 144 170 900826 2110 a 15.66 11.20 24.27 660 400

37 145' 155 184 900908 2100 a 11.22 11.01 23 .48 492 375

38 148 154 192 900917 1945 a 15.22 9.32 23 .80 643 404

39 155 160 208 901024 1235 a 14.46 14 .10 23 . 02 266 209

40 165 171 240 901128 1305 a 17.04 13 .21 22.78 245 185

41 153 161 241 901203 0255 a 15.99 13 .17 23 .27 316 278

42 154 162 242 901203 1140 a 14.51 14.90 24.46 317 333

43 71 71 243 901204 1355 a 15.25 14.71 22 .36 173 167

44 177 181 254 -9 a -9 -9 -9 19 49

45 181 185 258 901211 1315 a 21.86. 14.02 21.99 73 -9

46 178 182 255 901211 22 00 a 21.24 14.14 22.03 43 -9

47 179 183 256 901212 0645 a 8.45 6.28 9.66 33 -9

48 182 186 262 901214 1510 a 19 .18 13 .47 22 .19 102 89

49 183 187 263 901219 2255 a 20 .87 11.60 22 .38 143 104

50 190 194 286 910114 1000 a 15.72 11.16 23 .39 187 127

51 187 191 287 910117 1425 a 15.60 12.32 23 .81 129 87

52 188 192 288 910119 1430 a 14.81 12.07 23 .71 200 139

154

Table C2. contd. Filter, site, sample flows and masses

row nF nN nG date on site floF f loN floG massF massN

53 1 1 1 900417 0000 f -9 -9 -9 276 179

54 2 2 2 900418 1230 f 33 .94 38.30 57 .45 602 405

55 4 4 4 900423 1505 f 45.63 40 .83 75.46 359 231

56 7 7 7 900430 1520 f 38.43 32 .04 60 .63 414 235

57 9 9 9 900501 1555 f -9 -9 -9 383 245

58 12 12 12 900503 1630 f 13 .81 12 .28 22 .09 281 198

59 17 17 17 900507 2130 f 9 .96 12 .50 23.01 251 ■ 253

60 23 23 23 900511 1430 f 13 .94 10 .96 22 .30 491 310

61 13 13 13 900515 1930 f 15.37 9.09 22 .63 688 404

62 27 27 27 900521 1235 f 15.26 12 .76 21.78 202 132

63 28 28 28 900522 1110 f 14.52 10 .58 22 .52 315 209

64 32 32 32 900528 1910 f 14.29 9 .32 22 .85 670 410

65 33 33 33 900529 0740 f 13 .30 9 .10 22 .28 919 553

66 14 14 14 900529 1620 f 15.71 10.66 21.19 612 386

67 15 15 15 900530 0640 f 14.65 11.51 22 .20 307 210

68 41 41 41 900606 0925 f 15.34 10 .80 22 .43 430 258

69 42 42 42 900606.'2000 f 13 .63 11.73 23 .11 346 253

70 43 43 43 900607 0745 f 13 .20 11.04 22 .46 282 215

71 44 44 44 900607 2045 f 13 .76 12 .05 22 .62 379 275

72 62 62 66 900610 2100 f 15.36 12 .31 22 .20 372 222

73 63 63 67 900611 1200 f 13 .34 12.90 21.98 172 123

74 66 66 70 900613 2115 f 13 .56 12 .43 22 .53 248 199

75 67 67 71 900614 2110 f 13 .64 11.50 23 .01 325 245

76 77 77 81 900627 1240 f 14.55 13 .77 21.99 129 89

77 74 74 82 900703 1420 f 14.40 13 .56 22 .25 90 89

78 99 101 110 900710 2030 f 15.04 11.80 22 .10 414 222

79 100 102 111 900711 0810 f -9 -9 -9 1697 749

80 112 114 145 -9 f -9 -9 -9 675 -9

81 113 115 146 -9 f -9 -9 -9 -9 -9

82 64 64 147 -9 f -9 -9 - -9 -9 -9

83 65 65 148 -9 f -9 -9 -9 -9 -9

84 45 45 124 -9 f -9 -9 -9 -9 -9

85 102 104 120 900723 1015 f 15.12 14.59 21.26 117 62

86 124 129 140 900803 1245 f 13 .46 11.96 24.08 392 287

87 125 130 149 900807 1345 f 13 .68 13 .50 22 .26 98 93

88 130 137 157 -9 f -9 -9 -9 30 48

89 146' 153 188 900917 2120 f 15.05 12 .59 22 .12 244 227

90 131 138 189 900922 2355 f 13 .20 12 .33 22 . 66 170 146

91 149 157 192 900930 1930 f 13 .39 13 . 64 21.57 228 208

92 151 158 193 901001 0505 f 13 .30 13 .23 22 .30 206 207

93 157 163 200 901004 1230 f 14.52 12 .63 21.60 251 194

94 158 164 201 901008 1010 f 14.40 11.14 21.99 288 228

95 160 166 212 901025 0835 f 13 .89 12 .28 21.22 -9 243

96 163 169 228 -9 f -9 -9 -9 -9 164

97 164 170 236 901128 1105 f 13 .63 13 .06 21.37 333 281

98 161 167 237 901203 0200 f 12 .82 13 .67 21.71 -9 258

99 159 165 238 901203 1045 f 12.78 13 .43 21.09 335 291

100 173 178 266 901220 1310 f 19 .24 12 .59 20.30 100 102

101 189 193 282 910119 1215 f 13 .76 10 .52 21.46 222 156

102 191 195 298 910204 1315 f 13 .26 9.84 22 . 62 362 275

103 197 201 306 910208 1200 f 14.44 13 .06 21.83 186 167

155

Table C3. Concentration of soluble inorganic species (n mole in~^).

na ca mg k cl no3 so4 br

17.60 0.481 2 .562 1.71 12 .96 STTS 4732 OTFT13.80 0.774 1.879 2.10 9.40 6.08 2.85 0.97

11.99 1.196 1.471 2.18 8.83 3.48 4.00 1.14

5.72 0.164 0.842 1.98 1.17 3.17 1.35 0.22

67.59 2.915 8.195 11.52 30.96 29.53 11.52 3.747.97 0.892 1.798 2.99 3.36 7.28 8.91 4.37

4.08 0.000 0.732 2.70 0.47 3.83 6.60 2.14

5.49 0.000 0.871 7.08 13.90 10.28 8.83 4.42

10.83 0.006 1.707 12.18 28.14 12.17 3.84 7.80

5.34 0.000 0.703 7.43 13.62 12.29 6.95 2.20

7.62 0.000 0.829 1.26 6.08 2.84 5.11 2.38

7.53 0.000 0.284 2.22 6.30 3.05 5.18 5.21

6.34 0.000 0.939 10.22 18.07 11.79 8.53 5.81

4.30 0.932 0.899 2.25 1.23 3.61 14.81 2.98

8.95 0.760 1.340 13.34 44.89 28.62 16.10 27.19

2.32 0.661 1.114 2.19 1.38 4.78 9.36 4.52

8.35 0.000 0.722 9.58 24.65 9.99 6.86 7.52

6.."04 0.721 1.534 9.02 15.11 9.93 4.72 9.049.83 0.617 1.040 1.54 2.83 2.73 16.11 2.76

4.84 0.006 0.582 9.18 22.71 8.12 4.82 7.09

6.37 1.508 1.291 8.10 13.42 6.77 6.51 10.99

5.84 0.000 0.650 2.18 3.33 2.46 3.56 1.57

14.53 0.000 1.975 13.18 73.33 11.13 9.74 14.95

7.62 0.303 0.702 5.40 7.62 12.49 16.80 -9.00

10.53 0.675 1.685 11.57 39.69 8.45 5.95 21.20

10.41 0.627 1.566 0.00 11.92 4.00 2.67 3.67

8.55 0.628 0.448 10.39 31.84 7.24 8.53 11.27

5.32 0.268 0.470 0.00 6.25 2.77 2.68 1.31

6.41 0.000 0.868 3.62 6.16 2.79 2.83 1.65

5.03 1.146 0.836 0.82 3.91 2.31 14.00 0.26

6.20 0.000 0.840 6.04 16.02 15.17 15.46 9.10

16.08 1.148 1.852 4.12 20.54 5.61 2.85 4.76

13.37 0.493 1.780 1.40 13.51 1.85 2.62 3.35

7.58 0.000 0.866 0.85 4.84 2.78 2.69 1.51

10.68 0.000 0.943 0.21 7.41 1.60 13.79 0.79

13.68 0.000 0.896 4.41 8.27 9.67 13.10 2.1116.17 0.000 0.842 10.02 25.51 12.02 4.66 7.47

10.28 0.000 1.176 7.57 8.35 19.46 7.22 5.62

13.76 1.188 1.117 4.44 17.85 31.29 15.17 8.8329.00 1.071 2.476 0.97 4.49 7.55 26.07 0.87

22.73 0.886 2.053 1.51 0.00 6.49 26.46 0.77

10.48 0.344 1.113 0.49 0.40 11.56 66.23 0.6214.84 0.833 1.502 1.03 0.00 2.20 55.74 0.39

2.72 0.400 0.734 1.29 0.00 1.17 7.23 0.41

-9.00-9.000 -9.000 -9.00 -9.00 -9.00 -9.00 -9.00

9.40 0.279 0.997 0.01 7.59 1.21 4.69 0.32

4.58 0.023 0.489 0.00 3.64 (i.77 3.60 0.144.10 0.000 0.047 0.00 2.74 0.42 2.32 0.50

18.95 0.422 1.825 0.57 14.17 3.01 5.81 0.57

8.24 0.000 0.728 0.57 0.25 2.57 23.81 0.47

26.04 1.176 2.277 0.24 1.55 12.39 33.77 0.26

22.13 0.390 2,396 0.04 11.43 7.26 10.22 0.36

15.35 0.303 1.363 1.12 2.37 6.79 17.07 0.58

row nF h nh4

0 3 1.03 3.26

1 6 1.18 1.27

2 8 1.32 2 .83

3 11 1.10 0 .75

4 18 6.24 4.42

5 24 5.22 9 .56

6 19 6.55 8.36

7 25 9 .23 18.63

8 29 5.22 10 .37

9 26 8 .57 17.01

10 30 4.52 2 .99

11 31 5.24 3 . 63

12 20 8.98 17 .15

13 21 5.68 19.63

14 22 14.72 47.67

15 34 6.61 10.02

16 35 11.10 20.03

17 39 10 .82 10 .73

18 46 3 .73 15.48

19 47 8.78 14.60

20 60 9.08 7 .51

21 61 5 .10 2.38

22 36 13 .02 33 .25

23 37 7 .12 25.59

24 68 14.03 11.97

25 72 •5.30 1.18

26 69 11.19 14.00

27 75 5.40 2 .16

28 78 7.33 2 .83

29 101 5.14 19 .83

30 79 10 .22 33 .-66

31 104 6.02 3 .23

32 111 4.52 0 .79

33 105 4.58 1.77

34 129 5.68 5.65

35 132 8 .97 10 .52

36 138 11.51 9 .13

37 145 14.65 18.62

38 148 9 .47 32 .90

39 155 6 . 04 34 . 09

40 165 5.34 26.93

41 153 5 .59 89.87

42 154 8.67 69 .79

43 71 7 .74 7.02

44 177 -9.00 -9.00

45 181 2 .63 3.25

46 178 2 .50 1.27

47 179 6.84 0.00

48 182 2 .73 1.51

49 183 4.18 27 .74

50 190 5 .55 46.23

51 187 3.20 8.26

52 188 6.95 20 .85

Table C3 contd.. Soluble inorganic species (n mole m

156

row nF h nh4

53 1 -9.00 -9 .00

54 2 2 .51 15 .11

55 4 1.15 2.96

56 7 1.53 2 .58

57 9 -9.00 -9.00

58 12 3 .00 1.09

59 17 6.24 7.12

60 23 7 .49 31.77

61 13 7 .95 28.30

62 27 3 .75 3 .87

63 28 5.44 13 .15

64 32 10 .54 50 .86

65 33 13 .34 107 .89

66 14 9 .37 41.57

67 15 4 .71 5.94

68 41 6.59 19.09

69 42 6.26 15 .33

70 43 4.21 6.89

71 44 6.77 22 .74

72 62 6.60 16.08

73 63 6.51 12 .21

74 66 7.70 4.64

75 67 3 .99 33 .64

76 77 2 .94 0.00

77 74 4.49 0.76

78 99 7.07 18.94

79 100 -9.00 -9 .00

80 112 -9.00 -9 .00

81 113 -9.00 -9.00

82 64 -9 .00 -9.00

83 65 -9.00 -9.00

84 45 -9.00 -9.00

85 102 3 .28 2 .84

86 124 6.65 54.13

87 125 4 .84 1.10

88 130 -9.00 -9.00

89 146 6.63 20.26

90 131 6.63 7.65

91 149 8.53 72 .48

92 151 5.43 43 .96

93 157 5.73 48.95

94 158 6.33 17.70

95 160 -9.00 -9 .00

96 163 -9.00 -9 .00

97 164 -9.00 -9 .00

98 161 -9 .00 -9.00

99 159 6.80 87 .40

100 173. 3 .77 6.60

101 189 8.67 36.10

102 191 6.37 40 .33

103 197 4.75 35.24

na ca mg

-9.000

2 .145

cl no3 so4 br

-9

13

17

17

-9

17

19

27

63

12

29

8

26

11

4

12

5

10-

5

23

8

10

8

13

13

15

-9

-9

-9

-9

-9

-9

3

11

9

-9

4

7

15

8

6

17

-9

-9

-9

-9

14

9

14

114

33

.00-9

.13 3

.98 0

.37 0

.00-9

.42 0

.43 0

.86 2

.79 2

.07 0

.26 1

.50 0

.39 6

.94 1

.92 0

.11 1

.72 0

.12 0

.61 0

.02 1

.26 0

.87 0

.75 0

.84 0

.99 0,

. 65 1,

.00-9.

.00-9,

.00-9,

,00-9.

.00-9.

.00-9.

.00 0.

.10 2,

.60 0.

.00-9,

.89 0.

.09 0.

49 0,

61 1.

98 0.

73 3.

00-9 .

00-9 .

00-9 .

00-9 .

20 0.

64 0.

78 0.

24 3.

47 1.

,000

.179

.624

.845

.000

.513

,551

.115

.725

,491

342

594

984

241

825

401

000

265

000

438

262

744

300

000

000

203

000

000

000

000

000

000

535

086

000

000

073

113

000

164

970

464

000

000

000

000

712

472

472

233

253

-9

3

2

2

-9

3

4

1

2

2

3 .

1.

3 .

283

279

000

792

836

865

602

725

263

245

940

1.235

1.037

2 .385

0.646

1.288

0.814

0 .989

0.959

1.120

0 .528

0.907

0 .917

0 .877

-9.000

00 -9

26 6

0.75 12

1.11 10

9.00 -9

6.53 11.

2.73 18.

0.89 2.

1.51 55.

1.02 5.

00 10.

41 13.

62 20.

95 4.

1.2.70

3 .11 8

3.51 21

1.53 9

4.33 23

2.37 12

2.13 1

0.00 6

0.00 9

1.58 10

0.21 9

2

9

00

99 9

00 -9

-9.000 -9.

-9.000 -9.00 -9

-9.000 -9.00 -9

-9.000 -9.00 -9

-9.000 -9000 00

00 -9

24 11

43 6

99 8.59

00 -9

53 11

98 9.61

51 15

66 14

03 7

78 11

12 48

85136

63 42

92 2

34 19

22 7

81 3

36 8

51 10

75 4

76 7

07 28

01 1

29 2

15 11

00 -9

-9

-9

-9

-9

.00

00

00

00

00

.19

.53

.27

.47

-9

.56 13

. 65 4

00

82

25

53

.00 -9.00

.71 3.52

8.59

.26 30.76

.56 14.55

.55 5.90

.14 19.36

.71 19.35

.18 33.32

.90 16.35

.43 5.92

.29 12.07

-9.00

■3 .270 .240 .44

-9.002 .10

9281

56

509111

16.66.01 13.47.69 4.05.76 18.69.54 3.23.39 2.99.33 13.23.00 -9.00.00 -9.00.00 -9.00

99

0000

0000

0 .8730.9800.380

-9.0000 .5850 .7271.6271.1420 .4821.125

0.202 .601.68

.00 -9

.25 1

.88 28

.66 2-9.00 -9.00 -92.351.790 .631.701.14

18

4.0 .0 .0 .0.1.

02 1395 708 160600

33

97 15-9.000 -9.00 -9.00 -9

29

-9.000 -9.00 -9.00-9.000 -9.00 -9.00-9.000 -9.00 -9.001.518 1.33 0.571.694 1.92 9.061.583 1.95 2.55 12.

11.443 2.83 35.56 68.3.046 0.65 7.20 20.

-9.-9 .-9 .3 .5.

000000

10 .481.121.728.757 .456.054.442 .946.243.717.785.541.434.793 .740.280.635.92

-9.00-9-9-9

000000

00 -9.0035 2.8439 32.89

8700

51 300 -918 12.3851 8.7200 51.5838 36.8948 35.0558 19.0900 -9.0000 -900 -900 -985 66.7446 8.9429 25.0678 42.2910 31.09

-9.00-9.00

0 .272.600 .81

-9.002 .453 .110.200 .32

0.901.04

-9.00-9.00-9.00-9.00

0 .140.200.280.290.18

Table C4. PIXE elemental concentrations (n mole m~^), Al-Crrow nF Al As Bal Bi Br Ca C1 Cr

0 3 0.190 0.000 0.000 0.000 0.384 0.483 7.927 0.012

1 6 0.678 0.055 0.000 0.000 0.835 0.777 5.789 0.012

2 8 1.018 0.049 0.019 0.042 0.872 0.671 3.848 0.011

3 11 1.357 0.055 0.021 0.000 1.177 0.788 4.239 0.0124 18 0.486 0.000 0.056 0.000 0.493 0.519 0.150 0.032

5 24 2.273 0.400 0.000 0.000 3.601 1.107 0.160 0.034

6 19 0.485 0.146 0.000 0.000 1.018 0.092 0.000 0.0327 25 1.766 0.000 0.068 0.000 4.219 0.251 0.185 0.039

8 29 3.076 0.000 0.067 0.000 6.147 0.000 8.088 0.038

9 26 0.499 0.150 0.000 0.000 1.324 0.000 0.155 0.033

10 30 0.494 0.000 0.057. 0.000 1.030 0.093 0.153 0.032

11 31 2.257 0.171 0.000 0.000 5.280 0.413 0.176 0.037

12 20 0.544 0.164 0.062 0.000 4.576 0.000 0.168 0.036

13 21 0.563 0.169 0.000 0.000 2.428 1.469 0.174 0.03714 22 21.102 0.994 0.114 0.000 25.205 0.438 9.882 0.065

15 34 2.143 0.000 0.000 0.000 3.474 1.202 0.160 0.11616 35 3.871 0.182 0.069 0.000 6.187 0.114 0.187 0.04017 39 4.851 0.406 0..'075 0.000 7.889 0.124 0.203 0.04318 46 0.542 0.163 0.000 0.000 1.919 1.637 0.168 0.036

19 47 3.717 0.181 0.069 0.000 6.350 0.113 0.186 0.039

20 60 7.370 0.403 0.074 0.000 9.352 0.498 0.199 0.04221 61 0.473 0.000 0.054 0.000 1.207 0.089 0.146 0.03122 36 7.322 0.535 0.000 0.000 12.471 0.000 22.852 0.046

23 37 0.000 0.146 0.056 0.000 1.266 0.000 0.150 0.03224 68 17.782 0.294 0.000 0.000 22.599 0.616 10.402 0.064

25 72 1.569 0.000 0.065. 0.000 3.818 0.573 1.089 0.037

26 69 6.713 0.201 0.000 0.000 11.132 0.252 7.471 0.04427 75 0.000 0.142 0.000 0.000 0.895 0.089 0.146 0.031

28 78 0.000 0.000 0.000 0.000 1.070 0.000 1.131 0.00029 101 0.000 0.000 0.000 0.000 1.613 0.904 1.144 0.00030 79 0.000 0.000 0.000 0.000 8.954 0.225 1.946 O.OOO31 104 0.000 0.000 0.000 0.000 4.534 0.483 13.732 0.00032 111 0.000 0.000 0.000 0.000 3.215 0.491 11.745 0.09733 105 0.000 0.000 0.000 0.000 1.139 0.000 5.949 0.00034 129 0.000 0.000 0.000 0.000 0.483 0.000 1.130 0.00035 132 0.000 0.000 0.000 0.000 1.440 0.187 0.151 0.00036 138 0.000 0.536 0.000 0.000 6.878 0.000 12.523 0.00037 145 b.OOO 0.000 0.000 0.000 5.760 0.000 1.405 0.00038 148 0.000 0.000 0.000 0.000 9.274 1.454 4.585 0.00039 155 0.000 0.000 0.055 0.000 0.712 1.052 3.868 0.00040 165 0.000 0.000 0.000 0.000 0.368 0.887 0.158 0.00041 153 0.000 0.000 0.000 0.000 0.310 0.212 1.685 0.00042 154 0.,000 0.000 0.000 0.000 0.338 1.001 0.821 0.00043 71 0.000 0.000 0.000 0.000 0.258 0.517 5.435 0.00044 177 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000

45 181 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00046 178 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 ,-9.00047 179 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00048 182 0.000 0.000 0.000 0.000 0.384 0.439 10.806 0.00049 183 0.000 0.000 0.000 0.000 0.047 0.000 0.797 0.03850 190 0.000 0.000 0.000 0.000 0.147 0.574 0.187 0.00051 187 0.000 0.000 0.000 0.000 0.262 0.472 2.181 0.03652 188 0.000 0.000 0.000 0.000 0.285 0.510 2.032 0.037

157

158

Table C4 contd. PIXE elemental concentrations (n mole m ̂ ), Al-Cr

row nF A1 As Bal Bi Br Ca C1 Cr

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1

2

4

7

9

12

17

23

13

27

28

32

33

14

15

41

42

43

44

62

63

66

67

77

74

99

83

84

-9.000

1.488

0.165

0 .210

-9.000

0 .549

1.402

0.615

8 .534

0 .528

0 . 000

7 .207

5.435

1.436

1.507

0 .625

1.955

0 . 611

2 .810

1.192

0 . 000

1.356

0 .586

0.000

0.000

0.000

79 100

80 112

81 113

82 64

65

45

85 102

86 124

87 125

88 130

89 146

90 131

91 149

92 151

93 157

94 158

95 160

96 163

97 164

98 161

99 159

100 173

101 189

102 191

103 197

-9 .000

0.053

0.050

0.000

-9.000

0 .165

0 .162

0.000

0 .487

0 .159

0 .192

0 .000

0 .223

0.190

0 .176

0 .188

0 .173

0 .184

0 .168

0 .165

0 .157

0 .163

0 .000

0 .147

0 .150

0 .000

000

000

000

000

0-00

000

0 . 000

0 .000

0.000

-9 .000

0.000

d.ooo0.000

0 .000

0.000

0.000

0.000

-9.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-9.000

0.02 0'

0.000

0.000

-9 .000

0 .000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.072\

0.000

0 .000

0.000

o.'ooo0.000

0.000

0.000

0.000

0 .067'

0 .000

0.000

0.000

-9.000

0.000

0.000

0.000

-9.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

000

000

000

000

000

000

0.000

0.000

0.000

9.000

0 .161

0.000

0.000

0 .000

0 .161

0.000

0.000

9 .000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

000 -9.000

000

000

-9

-9

-9

-9

-9

-9

0.000

0.000

0 .000

000

000

000

-9.000

000 -9.000

000 -9.000

0.000

0.000

0.000

-9.000 -9.000

0.000 0.000

0.000

0 .000

0 .000

0 .000

0.000

0.251

0.000

0.000

0 .000

0 .000

0.000

0.000

-9.000 -9.000

0 .323

0.000

0.338

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0 .000

-9.000

1.791

0 .180

0 .439

-9

1

4

4

.000

,772

.659

.749

11.200

0 .976

1.621

10 .300

7 .557

4

3

2

4

3 .

5,

3 ,

.317

.928

.648

,423

,910

,335

,957

0 .955

3 .926

2 .734

0 .270

0.477

086

000

5

-9

-9.000

-9

-9

-9

-9

000

000

000

000

0 .256

2 .667

0 .779

-9.000

2 .059

2 .464

0 .166

0.280

0 .913

1.165

0.396

-9.000

0 .267

0 .147

0 .156

0 .109

0 .278

0 .356

0.109

-9.000

1.718

0 .571

1.247

-9 .000

0 .591

1.624

3 .507

4.590

1.196

-9

1

1

5

1

1

2

,605

,750

,517

,442

,330

,825

0 .253

1.025

0 .219

1.378

0 .099

0 .411

0 .282

0 .197

0 .302

0 .609

000

000

000

000

000

000

0.321

2 .876

0.574

000

0.466

0 .358

0 .585

-9

-9

-9

-9

-9

-9

-9

961

339

615

958

000

723

0.615

1.016

0 .333

0.509

3 .324

1.278

000

0.054

5 .372

7 .804

000

468

238

-9

3

4

0 .190

31.589

0 .163

0 .197

0 .224

0 .229

0 .196

0 .181

0 .193

3 .084

0 .189

0 .173

0 .170

0 .162

0.168

0 .181

9 .421

7.038

4:933

-9.000

-9.000

-9.000

-9.000

000

000

1.027

1.535

590

000

0 .166

0 .169

0.153

0 .158

0 .000

0 .187

3 .083

-9.000

1.773

5.900

0 .155

2 .639

0 .555

10.641

0.160

-9

-9

4

-9

-9.000

0 .012

0.011

0.014

,000

.036

.035

. 040

.049

.035

.122

.047

.112

.041

. 038

.151

.038

.040

.037

. 036

.104

.036

.038

.000

,000

,000

.000

,000

000

,000

,000

000

000

000

033

000

000

000

000

000

000

000

000

000

000

032

000

000

100

000

000

/\ \r<. 2.qi^ 0-U^ o-c)c,T Q-0^(f8

159

Table C4 contd. PIXE elemental concentrations (n mole in~^), Cu-Pb

row nF Cu Fe Ga K Mn Ni P Pbl

0 3 0.016 0.409 0.000 1.118 0.025 0.0061 6 0.006 0.876 0.000 1.474 0.051 0.0062 8 0.122 0.864 0.000 1.022 0.047 0.005

3 11 0.025 1.395 0.000 2.658 0.046 0.0064 18 0.015 0.928 0.000 3.279 0.024 0.0165 24 0.138 3.409 0.000 2.248 0.137 0.0176 19 0.015 1.069 0.000 2.670 0.024 0.0167 25 0.018 2.089 0.000 4.994 0.029 0.0428 29 0.018 1.118 0.000 7.684 0.028 0.0199 26 0.015 1.114 0.000 4.556 0.024 0.016

10 30 0.015 0.852 0.000 0.736 0.064 0.01611 31 0.017 1.145 0.000 2.283 0.028 0.019

12 20 0.017 0.607 0.000 6.243 0.026 0.01813 21 0.129 4.585 0.000 1.530 0.128 0.01814 22 0.030 5.289 0.089 10.263 0.116 0.033

15 34 0.088 4.780 0.000 1.647 0.106 0.01716 35 0.018 2.137 ,0.054 5.693 0.070 0.02017 39 0.055 3.184 0.000 6.762 0.032 0.022

18 46 0.044 2.304 0.000 1.032 0.026 0.01819 47 0.104 2.394 0.000 4.941 0.063 0.02020 60 0.071 3.435 0.000 4.692 0.031 0.02121 61 0.035 0.652 0.000 1.919 0.023 0.01622 36 0.097 1.502 0.000 8.198 0.034 0.000

23 37 0.015 1.030 0.000 2.242 0.024 0.01624 68 0.190 4.781 0.087 8.451 0.098 0.03225 72 0.017 2.092 0.000 0.596 0.028 0.01926 69 0.020 2.106 0.000 7.707 0.032 0.00027 75 0.014 0.502 0.000 0.930 0.023 0.01628 78 0.000 0.352 0.000 1.689 0.000 0.01529 101 0.033 2.298 0.000 1.167 0.118 0.00030 79 0.018 2.739 0.000 4.340 0.067 0.00031 104 0.335 1.504 0.000 2.513 0.000 O.OOO32 111 0.015 1.290 0.000 0.811 0.000 0.00033 105 0.000 0.312 0.000 1.732 0.000 0.00034 129 0.000 0.287 0.000 0.343 0.000 0.01635 132 0.000 0.628 0.000 2.470 0.000 0.01636 138 0.260 1.528 0.000 7.305 0.029 0.02037 145 0.019 2.421 0.000 6.483 0.000 0.02038 148 0.062 3.798 0.000 4.671 0.035 0.02439 155 0.038 1.937 0.000 0.771 0.075 0.01640 165 0.040 1.464 0.000 0.962 0.000 0.00041 153 0.000 0.718 0.000 0.297 0.000 0.00042 154 0.014 1.665 0.000 0.592 0.022 0.00043 71 0.014 1.808 0.000 1.407 0.022 0.00044 177 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00045 181 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00046 178 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00047 179 -9.000 -9.000 -9.000 -9.000 -9.000 -9.00048 182 0.000 0.861 0.000 0.319 0.000 0.00049 183 0.018 0.341 0.000 0.121 0.028 O.OOQ50 190 0.018 1.049 0.000 0.321 0.000 0.00051 187 0.000 0.740 0.000 0.114 0.000 0.00052 188 0.000 1.303 0.000 0.449 0.000 0.000

0 .000 0 .315

0.000 0 . 676

0.000 0 . 686

0.000 0 .897

0.000 0 .298

0.000 2 .369

0.209 0 .869

0 .257 2 .789

0 .000 3 .704

0 .215 0 .923

0 .213 0 .787

0 .549 3 .009

0.000 2 .311

0.000 1.844

0.000 13.621

0.000 2 .638

0.000 3 . 649

0 .282 4.605

0.000 1.551

0.000 3 .732

0.000 5 .330

0.204 0 .741

0.000 7 .110

0.000 0.965

0 .000 12.092

0 .246 2 .228

0 .287 5.927

0 .204 0 .739

0 . 000 0 .793

0.000 1.358

0.000 4.621

0.000 2 .992

0 .000 2 .331

0 .000 0.800

0.000 0 .420

0.000 1.126

0.000 3 .786

0 .000 3 .695

0.000 6.101

0 .000 0 .767

0.000 0 . 688

0.000 0 .579

0.000 0 .546

0 .000 0 .492

-9 .000 -9.000

-9.000 -9.000

-9 .000 -9.000

-9.000 -9.000

0 .000 0 .313

0.000 0 .250

0 . 000 0 .295

•0.000 0 .269

0.000 0 .450

Table C4 contd. PIXE elemental concentrations (n mole m 3), Cu-Pb160

row nF Cu Fe Gs. K Mn Ni Pbl

-9.000 -9.000 -9.000

1.368 0.075 0.012

0.611 0.008

1.003 0.068

0.005

0.007

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1

2

4

7

9

12

17

23

13

27

28

32

33

14

15

41

42

43

44

62

63

66

67

77

74

99

79 100

80 112

81 113

82 64

83

84

65

45

85 102

86 124

87 125

88 130

89 146

90 131

91 149

92 151

93 157

94 158

95 160

96 163

97 164

98 161

99 159

100 173

101 189

102 191

103 197

-9.000

0 .089

0.094

0 .229

-9.000

0 .150

0.064

0 .166

0 .346

0 .229

0 . 052

0.181

1.353

0 .168

0 . 086

0 .207

0 .091

0 .524

0 .205

0.061

0.016

0.016

0 .103

0 .117

0.077

0 . 060

-9.000

-9.000

-9.000

-9.000

-9.000

-9.000

0 .030

0 .114

0.047

-9.000

0.040

0.000

0.015

0 .061

0.000

0 .175

0 .038

-9.000

0 .076

0.015

0.000

0 .000

0.000

0.000

0.000

-9 .000

2 .716

0 .640

1.542

-9.000

1.909

3 .622

4.685

7 .560

1.557

2 .199

11.964

11.820

.048

.255

.144

.258

.966

.065

0 .756

0 .555

2 .217

2 .723

0 .881

0 .567

1.966

4

2

4

2

2

2

,000

,000

-9 .000

-9 .000

.000

.000

0.655

5.789

1.754

-9 .000

2 .193

1.036

0 .708

3 .383

2 .017

3 ;811

4.536

-9 .000

5 .757

1.388

2 .090

0 .216

1.549

3 .153

.1.810

-9 .000

0.000

0.000

0 .000

-9.000

0.000

0.000

0.000

0.066

0 .000

0.000

0 .065

0.066

0.000

0.000

0.000

,0.000

.0.055

0.000

0 .000

0.000

0 .000

0.000

0.000

0.000

0 .000

-9.000

-9.000

-9.000

-9.000

-9.000

-9.000

0.000

0.000

0.000

-9.000

0 .000

0.000

0 .000

0 .000

0.000

0.000

0 .000

-9.000

0 .000

0.000

0.000

0.000

0.000

0.000

0.000

-9.000 -9.000

4.414

2 .139

2 .772

5.034

0 .453

2 .573

,293

,298

,044

,426

,448

,356

0 .574

2 .266

2 .158

1.663

1.322

1.965

0 .446

0 .305

2 .479

4

4

3

1

2

2

0 .067

0 .127

0.229

0 .262

0.054

0 .101

0 .490

0 .746

0 .082

0.028

0 .335

0.079

0 .168

0 .163

0 .027

0.025

0.026

0 .158

0.024

0.024

0.066

-9.000

0.018

0 .018

0 .053

0.000

0 .017

0.021

0 .024

0.024

0.021

0.019

0.021

0 .019

0.020

0 . 018

0 .018

0.017

0.018

0.019

0.016

0 .000

0 .019

-9 .000

0 .000

0 .071

0.091

-9.000

0.000

0 .000

1. 057

0 .000

0 .228

0 .275

0 .312

0.000

0.000

0 .000

0 . 000

0 .248

0.000

0.000

1.190

0.000

0 .000

0.000

0.000

0.000

0.000

-9.000 -9.000 -9.000 -9.000

-9.000 -9.000 -9.000 -9.000

000

000

-9.000 -9.000 -9.000

-9.000 -9.000 -9.000

-9

-9

-9.000

-9 .000

0 .217

2 .467

1.386

-9 .000

1.440

1.405

0 .560

0 .835

0.913

1.377

1.034

-9 .000

1.794

0 .391

0.912

0 .000

0.901

2 .428

0 .717

000 -9.000

000 -9.000

0.000

0.019

0.000

-9

-9

0.000

0 .307

0.050

-9.000 -9.000

0.066

0.027

0.071

0 .054

0 .026

0 .154

0 .120

-9 .000

0 .117

0 .024

0.000

0.026

0.000

0.000

0.000

0.000

0 . 000

0 .016

0.000

0 .018

0.020

0.000

-9.000

0.000

0.016

0.000

0.0,00

0.000

0.000

0.000

-9 .000

-9.000

0.000

0.000

0.000

-9 .000

0.000

0.000

0.000

0 . 000

0 .000

0 . 000

0.000

-9 .000

0.000

0.000

0 .000

0.000

0.000

0.000

0.000

-9 .000

1.342

0 .223

0 .549

-9.000

1.814

2 .751

3 .914

16.263

0 .763

1.578

6.547

6

3

2

2

2

3

2

2

,905

.265

,555

.675

. 674

, 075

,870

,398

0 .820

2 .203

2 .303

0 .350

0 .259

836

000

000

2

-9

-9

-9.000

-9.000

-9.000

-9.000

0 .205

2 .311

0 .727

-9.000

1.329

1.688

0 .226

0 .455

0 .856

1.390

0 .724

-9 . 000

0 .505

0 .166

0.343

0 .000

0 .280

0.360

0.248

f\ \J^ O'(0l , ■2.2^? a-oU o-on OoiH' 0-itl 2 21^

rH

aIS]I

CCi

ro1fi

(U

1—i

oCO

ao-HJJ

(0

4JaQ)uaou(0jj

a0g0wXHa^

Tijj

aouu01—I

XI0

Eh

aNl

r-

ro rH

rH

O O O H

o o o o

o o o o

o o o o

o o o o

>•HEh

CO

-H

CO

CO

XoiaoEl

LT)o

CNo

CMoO

r*Hl>l> I>

LT)\oCOtH

if)o

\—1

rHoo

inro'LD

LT)

CN]

t—1

roo

roCNogLDinl>

ro

ro

ro o

COo

LDCMo

CO

LT)O

rHCOt>rooo

roCD

Oo

\—1roLOCN

'=cf<<N

COo

CM

LT)

rH

intHo

(N

rHrorH

LT)LDro

OcnCN

oCN

0

o

1

0

1

1

0

1

2

1,0 ,1.1.0.

•0

■0

1.

■0

■I

■0

1. ■0

•0

2.

•0

\—1

*0

•0

*0

•0

Oooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooo

oooo

0

0

0

0

0

0

0

0

'0

0.

■0

0.

■0

■0

■0

•0

•0

0.

■0

■0

•0

•0

•0

0.

•0

•0

•0

•0

0*•0

•0

•0

OrHooooocriChcrio-iooooo

I I

I I

ooooooooooooo

ooooooooooooo

ooooooooooooo

ooooocTicricriooooo

I I

I I

oLT)ooo

oroLO

LT)T—1ooooooooo

roo

COCNoooooooooo

oT—1ooo

oLT)

inoooo

LOooo

KOo

COLOooooooooo

ooooooooooooooooooooooooooooooooooo

ooooo

0

0

o

0

0

0,0,

0

■0

'0

0.

■0

■0

■0

0.

•0

•0

•0

■0

0.0.

•0

0.

•0

•0

0.0.0.

•0

•0

CNLOLOo

(No

CN

t—1oo

COo

T—1o

CNroo

LDo

COl>LDo

COo

orHoooooo

CN

r--LDm

LT)

r--

r--"O

NDCDo

CNVDr-

r--o

l>

LT)COLOrH

VX)COLDooo

oooo

oooo

\—1ooooooo

\—1rHooooooooo

rHoooo

CNo

rHoooo

ooooooo

0

0

0

0

0,

0

'0

'0'0

■0

■0

■0

•0

•0

•0

■0

■0

•0

•00,0.

•0

•0

0.0.0.

■0

•0

oo

o o

ooooooooooooooo

ooooooooooooooo

ooooooooooooooo

0

'0'0

0.

■0

■0

9,9

.9.9 ,0.0,0.0.0.

I I

I

ooooooooooooo

COoooooooooooo

ooooooooooooo

'0

■0

■0

■0

■0

0.9 ,9

,9.9

.

■0

•0

•0

oo

o o

I I

I I

rOCDCriCNCOOI>-vHOOCril>^t^CXDrH*HOO'^Og'^CD'^t>I>CX5rOCDLr)rOvHCX)CX)"=:i<CDCX3

rHrOoqooOOOOOOOOOOO

CNOrHCNLnCOLOt^OLDLnCDOO^—ICDOC^CDLD*—ILncOLnt^CDC^LnLnOt^OLpLDLDLnC^r^T—lOOOOOOOOOOOOO

OOOOOr^OOOOOOOO^^OCNOOOqCNOOOCNO^^OOOOOOOOOO~~"~~~~~~^" - -

CNooooooooooooo

oooooooooooooooooooooooo

o

rHoooooooooooooo

CNoooooooooooooo

0

■00

'0

0,

■0

9.9

,9,

0.0.0,

■0

•0

II

I I

rH

CNCOONo^oooo

CNo

LDrH

LDroCO

CO\>oooo

LDo

LT)CO

\—1

oo

LDI>rooooo

CNroCNCNCO

CN

CNrHroo

ON

C7N

CTiONoo

\—1o

CN

rH

11

I1

oo

COLD00LOCNLOLD

LT)

LOO

CNLD

(ONrHr-

(ON

CONo

^—[COCOo

CM00

CONO

I>COCOLDCO

IT)LOLDo

CNCO

IT)I>1>CO

3

2

3

3

,4,

o

7 .

o

4.6,4,7

.9

.

I>COCN

^—1

rH

rHrHrH

C3NLDLO

rHCO

LOO

\—!

CON(ONOO

LOLOLOCN

(ONrHCOC-CO

t—1LOOOOO

CO^\—1CN

CONO

COCNrHLOCOCOLDrHCOO

LOCNr-rHrH

^—1COLDLDO

LDLDCOr-LO

CNCOOOOO

COCOLO

\—1

LOLO

T—1(ONCOrHLDO

I>rHLDCN

LDCNCNO

COCNI>COO

CONr-CO

CONCOLDOOOO

CONo

I>CN

\—!

COLDrHLO

COONLOCOl>

CNrH

CNLOO

rHO

COLDCNLO

CN00

l>LO

(ON

CON(ON

CONCO

CONCOCOCN

CN

rH

rHrH

rH

CNrHLDLO

11

11

rHCN

\—!

o o o o

o o o o

o o o o

o o o o

Oooo

COoooooooooooooooooooooooooooooooooo

Oooo

LOoooooooooooooooooooooooooooooooooo

oooo

CNoooooooooooooooooooooooooooooooooo

oooo

0

0

o

0

0

0

0

0

0

'0

■0

0,

'0'0

0.

■0

■0

•0

•0

0.0.

•0

0.0.

•0

0.

•0

•0

•0

•0

•0

•0

0.

•0

0.

oooooooooo

oooooooooo

oooooooooo

oooooooooo

I I

I I

COLDCO

^—1CO

CONLO

CONLDO

rHO

rHCN

LO

CONLDC^O

rHLDI>COCN

(ONLOCOrHo^

rHLO

(ONCNCO LO00

LOLOCO

rHI>rHCO

CONCNCOo

CO

T—1\—1CN

\—1CNCNCNCOCOCN

CNCNCOCOCO

LDLDCOCOLDI>LDI>r-o

orHO

CNCOCO ̂

LOLDLOLOl>

COI>t>COCO

CONCOCO

rH

rHrHrHrHrHrH rHrHrHrHrHrH

rHrH

\—1rH

^—1

T—1

X—1rH

X—1

orHCNCO

LT)LD1>CO

CONO

rH

CNro

LOLDl>CO

CONO

rHCNCO

LOLD

00

C7NO

^—1CNCO

LOLD I>CO

(ONO

rHCNCO

LOLDr-COONO

T—1CN

rH

\—1rH

\—1rHrH

\—1rHrHrHCN

CNCNCN

CNCNCNCNCNCNCOCOCOCOCOCOCO COCOCO

LOLOLO

162

Table C4 contd. PIXE elemental concentrations (n mole Rb-Zn

Ti V Y Znrow nF Rb s Si Sr

0.020 0.015 0.000 0.817

0.025 0.000 0.000 0.714

-9.000 -9.000 -9.000 -9.000

0.066 0.050 0.000 4.851

0.065 0.000 0.000 1.236

0.152 0.206 0.000 2.447

0.413 0.000 0.000 12.502

0.064 0.048 0.000 1.644

0.077 0.057 0.000 1.698

0.235 0.065 0.000 2.434

0.466 0.000 0.289 7.710

0.076 0.000 0.000 1.683

0.071 0.053 0.000 1.866

0.982 0.000 0.000 3.423

0.253 0.000 0.000 4.287

0.497 0.000 0.000 6.944

0.213 0.000 0.000 3.462

0.066 0.049 0.000 0.457

0.063 0.047 0.000 0.716

0.065 0.049 0.000 0.845

0.071 0.000 0.000 3.427

0.000 0.000 0.000 1.437

0.000 0.000 0.000 0.210

0.000 0.000 0.000 0.695

-9.000 -9.000 -9.000 -9.000

-9.000 -9.000 -9.000 -9.000

-9.000 -9.000 -9.000 -9.000

-9.000 -9.000 -9.000 -9.000

-9.000 -9.000 -9.000 -9.000

-9.000--9.000 -9.000 -9.000

0.000 0.000 0.000 0.530

0.414 0.000 0.000 4.021

0.060 0.000 0.000 0.402

-9.000 -9.000 -9.000 -9.000

0.065 0.000 0.000 2.236

0.000 0.000 0.000 0.259

0.000 0.000 0.000 0.891

0.200 0.000 0.000 1.208

0.177 0.000 0.000 0.467

0.189 0.000 0.000 1.862

0.000 0.000 0.000 1.382

-9.000 -9.000 -9.000 -9.000

0.000 0.000 0.000 1.376

0.000 0.000 0.000 1.504

0.000 0.000 0.000 0.647

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.328

0.000 0.000 0.000 0.356

0.000 0.000 0.000 0.114

0-10 O-OZf

53 1 -9.000 -9.000 -9 .000 -9 .000

54 2 0 .000 10.469 4.803 0.021

55 4 0.000 2 .587 1.233 0.020

56 7 0.000 3 .478 3 .220 0 .025

57 9 -9.000 -9.000 -9.000 -9.000

58 12 0.000 3 .969 4.289 0.065

59 17 0.000 9.070 8.687 0.064

60 23 0.000 36.722 14.287 0 .073

61 13 0.000 12.285 19.970 0.088

62 27 0.000 5.792 3 .028 0 . 063

63 28 0 .000 21.359 1.749 0.075

64 32 0.000 24 .759 11.248 0.086

65 33 0 .000 42 .916 21.788 0 .371

66 14 0.000 23.163 10 .859 0.075

67 15 0.000 8.333 2 .251 0 . 069

68 41 0.000 15.112 6.984 0.074

69 42 0.000 6.138 . 6.665 0.068

70 43 0 .000 8.838 3.645 0 .072

71 44 0.000 8.860 1.781 0.151

72 62 0.000 15.791 0 .286 0.065

73 63 0.000 13.897 0 .602 0.062

74 66 0 .000 5.642 2 .476 0.064

75 67 0.000 18.817 2 .376 0.069

76 77 0.000 1.487 1.300 0 .058

77 74 0.000 1.448 1.674 0.059

78 99 0 .000 10 .896 8 .243 "0.068

79 100 -9.000 -9.000 -9.000 -9.000

80 112 -9.000 -9.000 -9.000 -9 . 000

■ 81 113 -9.000 -9.000 -9.000 -9.000

82 64 -9.000 -9.000 -9.000 -9.000

83 65 -9.000 -9.000 -9.000 -9.000

84 45 -9 .000 -9.000 -9.000 -9.000

85 102 o.ooO 0 .842 1.142 0 . 0|^586 124 0.000 30.091 16.322 0.067

87 125 0.000 1.399 4.024 0.059

88 130 -9.000 -9.000 -9.000 -9.000

89 146 0.000 10.808 2 .847 0.063

90 131 ■ 0.000 7 .195 . 1.867 0 .065

91 149 0.000 46.983 0.704 0.059

92 151 0 .000 37 .417 8 .897 0 .060

93 157 0 .000 35.566 7 . 002 0 .063

94 158 0.000 18.597 5 .478 0 . 072

95 160 0.000 23.163 15.245 0.000

96 163 -9.000 -9.000 -9.000 -9.000

97 164 0.000 23.447 21.457 0.000

98 161 0.000 46.207 3 .046 0.000

99 159 0.000 64.793 8.459 0.000

100 173 0.000 5.551 0 .280 0.000

101 189 0.000 19.010 3 .506 0 .000

102 191 0.000 29.760 9.865 0.000

103 197 0 . 000 19 .960 5.310 0 . 000

ae-

163

Table C5. Bg^, B^p, carbon mass, FPM -Alphington (see Table C1 for variable key).

row nF bsd bap elC totC FPM

0 3 -9.000 0.554 0.766 4799 TTTT1 6 -9.000 0.848 1.172 4.35 8.15

2 8 -9.000 0.761 1.053 5.27 8.02

3 11 -9.000 1.047 1.448 5.19 7.674 18 0.421 0.598 0.827 20.79 13.11

5 24 0.734 2.199 3.041 16.30 22.85

6 19 0.592 1.018 1.408 10.36 15.197 25 1.116 2.850 3.941 16.43 32.00

8 29 1.326 2.850 3.942 23.29 41.88

9 26 1.021 1.685 2.331 17.64 30.1910 30 0.502 1.004 1.389 10.65 11.7711 31 0.767 2.424 3.353 16.25 16.24

12 20 1.461 2.198 3.040 26.74. 38.41

13 21 0.866 2.703 3.738 14.66 21.02

14 22 2.558 8.032 11.110 44.38 78.32

15 34 0..869 2.957 4.090 20.39 23.5916 35 1.275 3.404 4.708 32.79 37.48

17 39 1.468 3.651 5.049 -9.00 48.44

18 46 0.722 2.228 3.082 12.00 15.6019 47 1.174 3.165 4.378 31.95 33.9920 60 1.373 3.671 5.077 35.18 38.9921 61 0.643 1.037 1.435 11.04 10.8522 36 1.991 3.981 5.506 66.09 66.29

23 37 1.020 1.505 2.082 19.79 25.8624 68 2.074 6.434 8.899 39.11 61.84

25 72 0.502 2.524 3.491 11.61 12.6826 69 1.814 4.146 5.735 37.32 46.4227 75 0.576 1.196 1.654 7.75 10.98

28 78 0.651 1.024 1.416 10.34 14.0729 101 0.755 2.107 2.914 12.46 15.7130 79 1.443 3.233 4.472 20.61 34.8631 104 0.849 2.489 3.443 13.68 19.7332 111 0.612 1.199 1.658 8.58 9.3233 105 0.529 0.717 0.992 8.57 7.4234 129 0.425 0.512 0.708 6.46 6.7235 132 0.925 1.299 1.796 14.06 19.2836 138 1.738 2.934 4.057 15.10 42.1237 145 1.596 3.026 4.185 19.33 43.8338 148 1.814 4.420 6.114 -9.00 42.2339 155 0.934 1.357 1.876 9.46 18.39

40 165 0.673 1.264 1.749 11.51 14.3741 153 1.435 1.488 2.058 10.16 19.7642 154 1.415 1.278 1.768 11.23 21.8443 71 0.545 0.793 1.097 6.27 11.3444 177 -9.000 -9.000 -9.000 -9.00 -9.0045 181 -9.000 -9.000 -9.000 -9.00 3.3446 178 -9.000 0.168 0.232 -9.00 2.0247 179 -9.000 -9.000 -9.000 -9.00 3.9048 182 0.360 0.333 0.460 3.91 5.3249 183 0.898 0.502 0.695 5.25 6.8550 190 0.605 0.509 0.704 6.27 11.8951 187 0.377 0.214 0.296 2.79 8.2652 188 0.606 0.417 0.577 7.06 13.50

164

Table C5 contd. Bg^j, B^p, elemental andtotal carbon mass, FPM - Footscray (seeTable C1 for key to variable names andunits)

bsd bap elC totC FPM

-9.000 -9.000 -9.000 -9.00 -9 .00

-9.000 1.286 1.778 8.80 17.74

-9.000 0.354 0.490 3.87 7.87

-9.000 0.663 0.917 5.68 10.77

-9.000 -9.000 -9.000 -9.00 -9.00

0.633 2.007 2.776 13.31 20.34

0.776 2.498 3.456 11.89 25.19

1.201 3.613 4.997 17.08 35.22

1.587 4.782 6.614 30.85 44.75

0.420 0.982 1.359 9.47 13.23

0.899 2.589 3.580 13.83 . 21.69

1.642 4.913 6.795 32.14 46.87

2.684 7.247 10.024 44.94 69.10

1..688 3.770 5.214 -9.00 38.96

1.691 2.990 4.136 -9.00 20.95

1.076 3.244 4.486 15.17 28.02

1.149 2.382 3.294 15.32 25.38

0.773 3.165 4.378 15.26 21.36

1.207 2.523 3.490 15.30 27.54

0.922 1.776 2.457 14.37 24.21

0.780 0.901 1.246 7.17 12.88

0.734 2.347 3.246 13.83 18.28

1.085 2.454 3.395 14.88 23.82

0.329 0.635 0.878 2.85 8.86

0.434 0.595 0.823 5.03 6.25

1.072 2.623 3.628 16.42 27.52

-9.000 -9.000 -9.000 -9.00 -9.00

-9.-000 -9.000 -9.000 -9 .00 -9.00

-9.000 -9.000 -9.000 -9.00 -9.00

-9.000 -9.000 -9.000 -9.00 -9.00

-9.000 -9.000 -9.000 -9.00 -9.00

-9.000 -9.000 -9.000 -9.00 -9.00

0.824 0.568 0.785 4.50 7.74

0.791 2.751 3.805 15.76 29.11

0.548 0.790 1.093 8.59 7.16

-9.000 -9.000 -9.000 -9.00 -9.000.880 1.766 2.443 12.00 16.21

0.710 1.382 1.912 10.85 12.87

1.053 0.394 0.545 -9.00 17.02

1.097 1.001 1.384 -9.00 15.48

0.945 1.221 1.689 8.71 17.28

1.043 2.955 4.087 15.84 19.990.973 1.633 2.258 11.42 -9.00

-9.000 -9.000 -9.000 -9.00 -9.00

0.818 1.298 1.795 11.07 24.420.967 0.608 0.841 6.36 -9.001.440 0.965 1.334 9.79 26.210.325 0.287 0.398 5.85 5.200.682 0.470 0.650 6.43 16.12

0.828 1.240 1.715 9.50 27.29

0.481 0.568 0.785 5.86 12.88

row nF

53 1

54 2

55 4

56 7

57 9

58 12

59 17

60 23

61 13

62 27

63 28

64 32

65 33

66 14

67 15

68 41

69 42

70 43

• 71 44

72 62

73 63

74 66

75 67

76 77

77 74

78 99

79 100

80 112

81 113

82 64

83 65

84 45

85 102

86 124

87 125

88 130

89 146

90 131

91 149

92 151

93 157

94 158

95 160

96 163

97 164

98 161

99 159

100 173

101 189

102 191

103 197

165

Table C6. EPA air quality data, mean values for sampling periods (seeTable C1 for key to variable labels and units) .

row nF CO o3

0 3 0.36 -9.00

1 6 0 . 61 -9.00

2 8 -9.00 -9.00

3 11 0.56 -9.00

4 18 0 .40 -9.00

5 24 1.95 -9.00

6 19 0 .51 -9.00

7 25 1.93 -9.00

8 29 2.14 0.00

9 26 0 .90 0.01

10 30 0 .53 0 .49

11 31 2.13 0.19

12 20 2.21 0 .00

13 21 1.39 0 .45

14 22 7 .17 0.00

15 34 1.62 0.80

16 35 2.16 0.00

17 39 3 .16 0.00

18 46 0 .85 0 .50

19 47 2.00 0 .01

20 60 3 .39 0.00

21 61 0.61 0.73

22 36 4.16 0.00

23 37 0.77 0.27

24 68 5.81 0.00

25 72 0 .95 1.25

26 69 3.39 0.03

27 75 0 .89 -9.00

28 78 1.06 -9.00

29 101 0 .81 -9.00

30 79 2.36 -9.00

31 104 1.70 -9.00

32 111 ,0.57 1.08

33 105 0.67 0.51

34 129 0.36 1.23

35 132 1.21 0.44

36 138 2.74 0 .00

37 145 2.27 0.00

38 148 3 .74 0.01

39 155 0 .74 1.47

40 165 1.12 2.47

41 153 0 .56 -9.00

42 154 0.69 2 .80

43 71 0 .71 3 .78

44 177 -9.00 -9.00

45 181 0 .25 0.20

46 178 0.04 0.66

47 179 0.30 0.63

48 182 -9.00 -9 .00

49 183 0.33 0.60

50 190 0.47 2.55

51 187 0.34 1.31

52 188 0.57 2.94

no- no2 api so2 nmhc tsr uv dbt sws

0.51

1.65

1.77

1.95

0.33

10.11

2.09

10 .64

12.94

3 .49

1.49

11.83

11.36

7.01

49 .09

7 .22

12.50

18.33

4.62

10.92

21.50

2.31

26.90

2.75

-9.00

5.50

21.73

3 .04

4.21

3 .59

15.27

9.44

2 .28

1.71

-9.00

4.63

16.03

12.09

20 .24

2 .22

0 .77

1.22

0 .94

0.38

-9.00

0.90

0 .24

1.50

-9.00

0.63

-9.00

-9.00

-9.00

1.21

1.11

1.69,

1.49

1.23

2.86

0.83

2.03

,00

,41

,64

,67

,69

,06

0.56

2.67

'l.071.39

-9.00

0.54

1. 09

1.27

0.54

1.34

-9.00

2.09

1.21

1.74

1.34

2.39

0.59

96

23

67

00

11

01

13

39

92

39

1.80

2.39

2 .24

-9.00

1.35

0.51

0.80

0.43

0 .43

0.46

0.62

0.48

0 .82

0 .56

1.33

1.50

1.10

0.47

0 .88

1.60

0 .94

2.90

0 .99

1.49

1.70

0.70

1.30

1.61

0.68

3 .02

1.21

2 .32

0 .51

2.24

0.70

0 .80

0 .83

1.59

0 .94

0.46

0.47

0.44

16

96

67

89

0.95

0 .75

1.61

1.51

0 .58

00

27

00

00

00

,00

,00

,00

,00

,00

0.68

-9.00

-9 . 00

0.58

0.00

0.01

0.01

0.01

0.00

0.14

0.00

0.09

0.06

0.01

0.01

0.10

0.07

0 .25

0.23

0 .15

0.07

0 .13

0.21

0.06

0.11

0 .00

0.13

0.00

0.19

0.05

0.14

0.03

0.01

0.17

0.07

0.09

0.10

0.01

0.01

0.00

0.00

0.01

0 .13

0 .16

0 .17

0.00

0 .12

0.00

-9 .00

0 .10

0.01

0.07

-9 .00

0.04

0.15

0.07

0.12

-9.00 -9 .00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9 .00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

1

Oo -9.00

-9.00 -9.00

1

oO

-9 .00

-9.00 -9 .00

-9.00 -9.00

-9 . 00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

1

Oo

-9.00

-9.00 -9.00

-9.00 -9.00

1

oo

-9.00

-9.00 -9.00

-9.00 -9.00

-9 .00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9 .00

-9.00 -9.00

-9.00 -9.00

-9.00 -9 . 00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

-9.00 -9.00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

do00

00

00

-9.00

-9.00

-9.00

-9.00

-9.00

-9.00

17.95

13 .01

-9.00

-9 .00

-9,

-9,

-9 ,

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

10.59

11.10

10 .74

13 .31

6.12

15.96

6.27

12.01

12.71

6.05

8.32

8.60

6.17

8.64

5.61

11.35

7.90

7 .75

7.94

13 .39

6.51

6.91

12.56

7.04

11.02

9 .29

2.71

5.36

7.10

18.25

20 .94

17.84

23 .65

32 .84

-9.00

16.20

14.34

15.03

-9.00

16.59

25.92

17 .90

24.75

-9 ,

-9,

-9 ,

1,

3 ,

1,

1.

1,

1,

1,

1,

2 ,

1,

1,

1,

1,

2 ,

1,

00

00

00

49

27

51

11

29

85

87

05

05

02

89

35

20

06

21

1.29

2.16

0 .86

1.24

0 .92

3 .01

0.92

2.91

2,

1,

1,

1,

3 ,

1,

3 ,

2,

86

54

17

90

74

54

19

27

0.91

1.15

1.37

2.76

3 .25

1.37

4.17

3.21

-9.00

2 .80

3.30

4.90

00

11

41

69

01

166

Table C6 contd.. EPA air quality data, mean values for sampling periods

row nF co o3 no no2 api so2 nmhc tsr uv . dbt sws

~53 i 0.06 0.70 -9.00 -9.00 o'TTt 0.12 0.11 -9.00 2.50 15.76 TTtT54 2 0.61 0.47 -9.00 -9.00 0.73 0.18 1.59 -9.00 4.09 14.99 1.60

55 4 0.20 -9.00 0.47 -9.00 0.39 0.00 0.05 -9.00 1.68 16.99 4.79

56 7 0.22 -9.00 0.98 -9.00 0.39 0.00 0.03 -9.00 5.12 17.24 5.80

57 9 0.38 -9.00 1.23 -9.00 0.42 0.05 0.19 -9.00 2.11 17.87 3.62

58 12 0.76 -9.00 3.31 2.47 0.63 0.06 0.24 -9.00 0.00 16.55 2.92

59 17 1.33 -9.00 8.31 2.17 0.79 0.10 0.75 -9.00 0.00 6.97 1.72

60 23 2.00 -9.00 -9.00 -9.00 1.23 1.02 1.01 -9.00 0.88 16.15 1.91

61 13 2.53 -9.00 17.83 2.47 1.62 0.24 0.98 -9.00 0.00 10.87 2.29

62 27 I 0.37 -9.00 -9.00 -9.00 0.45 0.05 0.09 -9.00 3.25 13.45 2.05

63 28 0.77 -9.00 -9.00 -9.00 1.00 0.22 0.24 64.00 5.75 13.42 3.05

64 32 3.10 -9.00 -9.00 -9.00 1.87 0.23 1.52 -9.00 0.00 7.26 1.45

65 33 2.97 -9.00 -9.00 -9.00 2.45 0.60 1.10 -9.00 7.63 14.57 1.54

66 14 1.74 -9.00 -9.00 -9.00 1.96 0.31 0.61 -9.00 0.13 10.82 1.91

67 15 1.46 -9.00 -9.00 -9.00 1.24 0.30 0.92 -9.00 6.63 15.07 3.04

68 41 1.35 0.69 7.62 3.30 1.11 0.30 0.42 -9.00 8.50 15.00 1.77

69 42 1.26 0.00 10.67 .'1.80 1.03 0.04 0.47 -9.00 0.00 7.67 1.9470 43 1.42 0.96 8.19 1.91 0.79 0.11 0.37 -9.00 9.38 15.51 3.95

71 44 1.46 0.00 12.49 1.80 1.11 0.06 0.57 -9.00 0.00 8.84 2.17

72 62 1.36 0.00 8.47 2.06 1.00 0.07 0.69 -9.00 0.00 8.75 1.05

73 63 0.45 0.91 1.75 1.91 0.82 0.01 0.07 -9.00 5.38 14.40 3.49

74 66 1.47 0.00 -9.00 -9.00 0.86 0.04 0.84 -9.00 0.00 7.64 1.41

75 67 1.29 0.04 8.80 2.00 1.27 0.07 0.57 -9.00 0.00 6.71 2.40

76 77 0.11 1.20 -9.00 -9.00 0.33 0.07 0.50 -9.00 1.25 7.89 5.25

77 74 0.40 0.81 -9.00 -9.00 0.40 0.00 0.08 -9.00 0.88 11.07 3.39

78 99 1.73 0.00 -9.00 -9.00 1.16 0.17 1.21 -9.00 0.00 8.24 1.12

79 100 2.55 0.00 -9.00-9.00 1.78 0.20 0.99 -9.00 3.50 6.95 1.75

80 112 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

81 113 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

82 64 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

83 65 -9.00--9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

84 45 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

85 102 0.20 1.05 -9.00 -9.00 -9.00 0.00 0.02 -9.00 9.63 15.76 6.69

86 124 1.45 0.56 -9.00 -9.00 -9.00 0.49 0.64 -9.00 3.88 13.59 1.89

87 125 0.25 0.75 -9.00 -9.00 0.37 0.00 0.32 -9.00 2.38 12.30 2.45

88 130 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

89 146 0.97 0.06 5.74 2.56 1.02 0.11 0.32 -9.00 0.00 8.54 2.14

90 131 1.04 0.06 5.81 1.33 0.73 0.03 0.37 -9.00 0.75 6.16 1.66

91 149 0.13 2.34 0.00 1.14 1.18 0.13 0.06 -9.00 0.00 12.56 1.71

92 151 0.27 1.85 0.81 1.50 1.20 0.10 0.03 -9.00 14.50 16.54 2.51

93 157 0.41 1.96 0.74 2.35 0.98 0.16 0.18 -9.00 8.38 17.12 2.57

94 158 0.91 0.37 5.39 3.37 1.12 0.45 0.41 -9.00 4.75 12.95 1.56

95 160 -9.00 3.17 1.06 2.21 0.98 0.10 0.17 -9.00 20.38 25.14 2.95

95 163 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00 -9.00

97 164 0.51 4.31 0.39 2.11 0.84 0.39 0.12 -9.00 12.13 22.94 3.72

98 161 0.21 1.42 0.21 0.91 0.98 0.00 0.05 -9.00 2.13 17.81 1.81

99 159 0.33 4.28 0.25 1.18 1.24 0.48 0.05 -9.00 21.13 23.81 4.30

100 173 0.21 1.42 0.27 0.88 0.32 0.11 0.01 -9.00 12.25 20.90 5.49

101 189 0.21 4.69 0.06 1.06 0.77 0.19 -9.00 -9.00 17.63 25.77 3.11

102 191 0.37 5.25 0.16 2.12 0.89 0.97 -9.00 -9.00 12.13 26.49 3.39

103 197 0.20 3.14 0.21 -9.00 0.51 0.24 -9.00 -9.00 16.75 23.82 3.39

167

Table C7. PIXE detection limits and

statistics

species no. mean min max

pixAl 47 0.3644 0 .304 0 .417

pixAs 47 0 .3032 0 .027 1.642

pixBal 30 0.2125 0.181 0 .239

pixBil 1 0.7360 0 .736 0 .736

pixBr 124 0.0874 0 .041 0.396

pixCa 95 0.1010 0 .080 0.135

pixCl 151 0.1470 0 .114 0.247

pixCr 77 0.0465 0.038 0 .058

pixCu 96 0.0262 0.013 0.050

pixFe 153 0.0384 0.020 ■ 0.054

pixGa 7 0.0841 0.053 0 .135

pixK 117 0.1097 0.090 0 .134

pixMn 93 0.0365 0.028 0.051

pixNi 104 0.0266 0.015 0.042

pixP 34 0.1801 0 .154 0 .225

pixPbl 102 0.4335 0.113 2 .458

pixRb 1 0.5070 0 .507 0 .507

pixS 137 0.1616 0 .129 0 .235

pixSi 152 0.1987 0 .167 0 .255

pixSr 108 0.1403 0 .000 0 .220

pixTi 70 0.0783 0.067 0.093

pixV 30 0.0624 0.054 0 . 072

pixY 1 0.4680 0 .468 0 .468

pixZn 128 0.0284 0.013 0.065

MDL (minimum detection limits) are in unitsof |ig per filter. "no." is the number offilters use to calculate the MDL statistics

mean= mean of MDLs

min=minimum MDL

max=maximum MDL

In the tables of PIXE results an element

concentration of 0.0 indicates that no

concentration was reported by ANSTO.

168

Table C8. Concentrations of organic compounds (ng m"^).Retention Molecular Name GF22 GF32 GF33 GF49 QF64 GF72 GF73

Time weight Alph Foots Foots Alph Alph Alph Alph

28/5/90 28/5/90 29/5/90 10/6/90 7/6/90 13/6/90 18/6/90

7.962 142

8.721 142

13.817 178 Phenanthrene 0.41 0.26 0.40 0.27 0.23 0.34 0.26

13.926 178 Anthracene 0.09 0.06 0.10 0.06 0.17 0.06 0.16

13.277 180 9-H fluorene-O-one 1.10 0.51 0.25 1.91 0.87 1.52 0.96

14.927 180 1-H phenaiene-1-one 0.69 0.09 0.22 0.76 0.20 0.58 0.20

16.702 202 PAH 2.34 0.65 0.85 0.66 0.39 1.11 0.62

16.896 202 Huoranthene 0.66 0.23 0.42 0.33 0.19 0.43 0.26

17.167 202 Pyrene . 2.98 1.23 1.66 1.21 0.77 1.71 1.30

15.846 204 2-phenyl Naphthalene 0.20 0.19 0.18 0.20 0.14 0.20 0.18

16.438 204 cyclo penta(d,e,f)Phenpnthrene 0.30 0.14 0.16 0.08 0.18 0.12

16.334 206 PAH 0.08 0.11

16.506 206 PAH 0.11 0.20 0.06 0.06 0.10

16.597 206 PAH 0.06 0.07

16.687 206 PAH 0.30

17.224 206 PAH 0.33

15.34 208 PAH 1.52 0.43 2.90 0.75 Z06 ^02

15.666 208 9,10 anthracene dione 0.17 0.40 0.28 0.20 0.26 0.24

16.943 208 PAH 1.78 0.96 0.35 0.51 0.32 0.76

17.388 216 PAH 0.09 0.13 0.22 0.14 0.11

17.469 216 PAH 0.03 0.04 1.05

18.039 216 PAH 0.04

18.083 216 PAH 0.76 0.17 0.30 0.55 0.20 0.59 0.35

18.257 216 PAH 0.07 0.10 0.24 0.08 0.26 0.15

18.297 216 PAH 0.10 0.16 0.21 0.09 0.23 0.15

18.499 216 PAH 0.13 0.14 0.25 0.13 0.30 0.18

18.563 216 PAH 0.09 0.11 0.21 0.08 0.22 0.14

17.301 218 benzo(b)naphthol(2,3d)Furan 0.27 0.05 0.12

17.581 218 PAH 0.12

19.62 226 PAH 3.97 1.08 1.63 2.79 1.09 2.93 1.50

20.03 226 PAH 9.28 1.75 5.38 2.02 6.52 2.71

20.125 228 benz(a)Anthracene &) 1.24 0.87 (6 '̂ &> (&1? Ci?20.194 228 Chrysene 15.12 5.26 3.13 12.46 4.32 10.77 6.05

19.245 230 terpheny! isomer 2.58 0.60 0.73 1.99 0.73 2.09 1.17

19.742 230 terpheny! isomer 4.54 0.51 0.97 3.93 2.10 3.99 2.91

20.395 230 terpheny! isomer 10.94 3.67 1.71 9.23 4.48 9.03 6.52

22.596 252 benzo(e)PyrBne 51.03 17.86 11.19 36.33 17.45 34.46 25.41

22.79 252 PAH 11.97 3.99 1.35 9.71 4.38 9.20 5.86

23.092 252 benzo(a)PyrBne 21.85 7.55 5.33 13.62 7.18 13.98 10.01

23.193 252 Petylene 28.48 9.10 4.02 21.10 10.54 21.23 14.71

23.114 254 PAH 12.36 2.63 2.99 8.83 1.10 7.09

169

Table C8 continued. Concentrations of organic compounds (ng m"3).Retention Molecular Name GF22 GF32 GF33 GF49 GF64 GF72 GF73

Time weight Alph Foots Foots Alph Alph Alph Alph

28/5/90 28/5/90 29/5/90 10/6/90 7/6/90 13/6/90 18/6/90

25.221 276 PAH 6.49 5.14 2.14 5.32 3.60

25.368 276 PAH 20.15 1.88 1.50 15.91 7.17 14.78 11.47

25.803 276 PAH 33.13 8.62 8.07 21.86 12.21 25.03 17.59

26.057 276 PAH 10.18 0.02 7.03 ^83 6.32 5.07

25.16 278 PAH 0.76 0.27 0.33 0.60 0.58 0.% 0.51

25.703 278 PAH 2.79 0.49 0.37 2.68 0.69 ^35 1.48

28.415 300 Coronene 9.58 1.82 1.90 5.30 ^37 7.62 4.72

9.036 152 0.27 0.19

9.136 152 0.19

9.184 152 3-methoxy-4-hydroxy BenzaWehyde 1.03 0.55 0.27 1.24 0.92 1.22 0.96

8.663 154 2,6 dimethoxy Phenol 1.26 0.37 0.16 1.07 0.69 1.57 1.12

8.996 154

9.11 154 Biphenyt 0.22 0.11 0.11 0.13 0.15 0.25 0.08

9.232 166

10.342 166 3-methoxy-4-hydroxy Acetophenone 0.35 0.32 0.36 0.60 0.45

10.472 166

10.866 166 0.37

9.967 168 3-methoxy-4-hydroxy benzole Acid 0.98 0.92 0.30 1.52 1.22 1.22 1.41

10.058 168 0.05

10.79 168

11.917 194 0.08 0.04 0.06 0.06

12.33 194

12.478 194 0.07 0.08

13.044 194 2,6 dimethoxy -4-(2-propenyl) Phenol 1.79 0.32 0.21 1.20 0.34 1.10 1.66

11.136 196

1Z036 196 0.07 0.03 0.11 0.09 0.11

13.266 196 3,5dlmethoxy-4-hydroxy 7.55 3.64 0.48 16.12 6.65 11.78 7.24

Acetophenone18.62 85 022 Hydrocartjon 16.45 17.50 15.90 11.69 6.79 10.70 10.52

170

APPENDIX 3

This appendix contains plots of particle size

distribution and differential scattering coefficient

determined at Alphington from May to September 1990.

Particles were sized using a PMS ASASP-X size spectrometer

with a heated inlet. Data for the plots typically represent

integrals over eight hours sampling concurrent with a chemical

filter sample. The ASASP-X file write-times and the

corresponding filter (Fluoropore number) are indicated on each

plot. A refractive index of m = 1.6 - Oi was used for the

size distributions. Differential scatter was calculated from

the measured size distributions using the relationship:

d(scatter)/dlog r = Q.A.dN/dlog r

where Q is the calculated Mie scattering efficiency at the

Nephelometer wavelength of 470 nm and particle radius, A is

the particle cross-sectional area and dN/dlog r the

(differential) particle concentration.

Size distribution samples were initiated in parallel with

filter samples and are thus biased to lower visibility

conditions. For all distributions the peak in scattering

consistently occurs between about 0.1 and 0.2 |im radius. This

demonstrates a strong dynamic influence maintaining the shape

of the aerosol size distribution in this size region.

m I E U DC cn

o I—I

■Q

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n.

May

24

2

52

9 -

May

25

0

63

0

nF

30

1 I

I 1

11

11

1 I—

1

1 I

11

11

4-

3-

2 1

2 0

-cn 5

-1 _2

[-

- 3

1—J

I I

t I I

tt

J \

I I

I I

I I

I

. 0

2.

1 1

Ra

diu

s (/J

in)

□:

cn

o I—I

"O -p m u in cn

o _J

4 3 2 1 0

- 1

-2

-3

1 I

I I

11

11

"1 I

I I

1 I

I I

I

I I

II

I i

ll

J I

I I

I 1

11

1

. 0

21

1R

ad

ius

(/um

)<

1

cn I

E U □C cn

o I—I

"□ cn

o _1

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r

at

47

0

nm

Alp

hin

gto

n.

May

2

5

20

43

-

May

2

6

03

43

n

F3

1

51

I I

I I

I I

4 3 2 1 0

-

1

-2

1 I

I I

I I

i I

. 0

2I

I I

II

I I

I 1

11

1 1

Ra

diu

s

i^m

]

q: cn

□ I—I

4J ra u in cn

o

51

I 1

I I

I 111

I I

I I

I I 1

11

4 3 2 1 0 1 2

-3

. 0

2I

I I

I 1

11 1

j I

I I

I I

11

1 1R

ad

ius

(/u m

)-j

to

cn I E U CT cn

□ I—I

"a z CD

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n,

May

2

6

23

19

-

May

27

0

61

9

nF

20

5|

T I

I I

I I I

I I

I I

1 I

I I I

I

4 2 1 0

-

1

-2

-3

j I

I I

I 1

11

I I

±L

02

. 1

1R

ad

ius

(/um

)

cr CD

□ I—1

4-1 m u CO "D CD

5|

I I

I I

I 11

4 3 2 1 0 1

-2

"1

1 I

I I

I I

I I

I I

I 1

1j

I I

I 1

1

. 0

2.

1 1

Ra

diu

s

(/jm

)<

1LO

□c cn

o rH oi

O

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n,

Ju

ne

5

08

37

-

16

25

n

F4

6

m 4

I ̂

E U

2 1

-a

0

-

1

-2

-3

I I

I I

I1

I I

I I

I 1

11

J—I

I I

I I

I I

I I

I I

M

I I

I0

2. 1 Ra

diu

s (^

im)

q: oi

□ I—1

u -p ra u m D)

o

5[

I I

I I 1

111

4 3 2 1 0 1

-2

-

3'

' '

■ ■ '

. 0

2

1 r

I I

11

1

j I

I I

I I

I

Ra

diu

s

(^m

)<

1

mI E u

(Z cn

o I—I

JD cn

o _J

Size distribution and calculated scatter at 470 nm

Alphington, June 6 2008 - June 7 0356 nF47

51

I I

I I

111

4 3 2 1 0

- 1

-2

"1

rI

I 1

11

02

\

I I

11

I 1

11

1

1 1

Radius

(^im

)2

□c cn

D I—I

ID -P m u m cn

D

5|

I CT

"

4 3 2 1 0 1 2

- 3

1 I

I I

I I

11

1

j I

I I

I 1

11

02

1 1

Ra

diu

s

ipm

)U

1

cn I E U □: D1

□ I—1

ID TJ cn

Siz

e

dis

trib

utio

n,

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n,

Ju

ne

7

18

14

-

Ju

ne

8

02

02

nF

BO

4 3 2 1 0

-

1

-2

1 I

I I

11

11

j I

I I

02

"1 I

I I

I

j I

I I

I 1

1

. 1

. 1

2R

ad

ius

(/jm

)

cr cn

□ I—I

4-> ra u CO "□ cn

o _J

Ra

diu

s

i^m

)<

1C

Tl

m

I E U cr en

o I—i

TD

z

cn

□ _J

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

tA

lph

ing

ton

. Ju

ne

B

20

54

-

Jun

e

9 0

44

2

nF

Bl

47

0

nm

4 2 1 0

-

1

- 2

1 I

I I

11

i I

. 0

2. 1

1R

ad

ius

[^m

]

cr cn

□ I—I

"D -U fd U cr

ID O)

o

1 I

I I

I 1

1 i

1 I

I I

I I

I

4 3 2 1 0 1

j I

I I

I 1

11

J 1

I !

I I

I I

I0

2.

1 Ra

diu

s

(/jm

)i-

»-J

mI E U d Dl

□ I 1

TD

T3 cn

O

Siz

e

dis

trib

utio

n

and

ca

lcu

late

d

sca

tte

r a

t 47

0 nm

Alp

hin

gto

n.

Ju

ne

10

1

95

8

- Ju

ne

11

0

34

6

nF

3B

I M

I

I I

I

. 0

2. 1

1R

ad

ius

[pm

]

oc cn

o I—I

TD\ 4-

1 ra u in cn

D

51

I I

I I 1

111

4 3 2 1 0 1

1 I

TT

T

_ 3I

1

I I

I0

2J

I I

I I

I I

I I

Ra

diu

s

(/um

)<

1C

O

Size distribution and calculated scatter at 470 nm

Alphington, June 13 1944 - June 14 0332 nFBB

mI E U □c CD

0 1 1

"O ID CD

O

I I

I M

I

M Ra

diu

s

CE CD

□ I—1

~o

4-1 fD U CO ID CD

O _J

(A^m

)

Mi

ll Ra

diu

s(/^

m)

m 1 E U □C Dl

□ I—I

"D U D)

O

Siz

e

dis

tnib

utio

n

an

d

ca

1cu

1 a

ted

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n.

Ju

ne

18

0

83

5

-16

23

n

F7

2

4 3 2 1 0

-

1

-2

1 I

I I

I 1

11

1

V

J I

I I

IJ

I I

II

I 1

11

. 0

2.

1 1

Ra

diu

s

(^im

)

5|

I I

I I

1111

□c cn

o r-H

T3

-P OD U CO CD

O

4 3 2 1 0

-

1

-2

1 I

I I

I 1

1

J I

I I

I M

IJ

I I

I I

I I

. 0

2.

1 Ra

diu

s

i^m

)0

0o

cn I E U □C C

DD I

1

"a CD

o

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r

at

47

0

nm

Alp

hin

gto

n,

Ju

ne

1

8

21

03

-

Ju

ne

1

9

04

51

n

F6

9

51

I I

I I

1111

4 3 2 1 0

-

1

-2

I I

I 1

11

. 0

2j

I I

I 1

11

1j

I I

I I

I

1 1

2R

ad

ius

(/um

)

□c CD

□ 1—I

"□ -p ra u cn CD

51

I I

I 1

I I I

I I

I \

TT

4 3 2 1 0 1 2

-3 .

02

_1_L

J I

I I

I I

I I

. 1

1R

ad

ius

i^m

)C

O

Size distribution and calculated scatter at 470 nm

Alphington, June 25 1821 - June 26 0209 nF75

TTT

1 I

I I

I I

I I

I

mI E U CE CD

□ I 1

"D CD

□ _1

4-

3-

2 1

u 0

-

- 1

-

2-

3I

I I

I I I

I I I

I L

i_L

I I

I I

I I

I1

I I

I I

I I

I I

. 0

2. 1

12

Ra

diu

s

ipm

)

□c CD

o I—I

■a

-n CD u in "□ CD

o

4 3 2 1 0 1

-3

j I

I I

J L

02

1 1

Ra

diu

s

(y^m

)0

0C

O

cn I E U cr cn

□ I—I

"□ z cn

o _J

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r

at

47

0

nm

Alp

hin

gto

n,

Ju

ly

1 1

91

9 -

Ju

ly

2 0

30

7

nF

78

51

I I

I I

1111

I I

I I

I 11

11

4 2 1 0

-

1

-2

j I

I I

11

11

. 0

2J

I L

. 1

1R

ad

ius

if^m

)

oc cn

□ I—I

"D 4-1 fD U in □n

o

5|

I I

I I

1111

I—I—

I I

I 11

11

4 3 2 1 0 1

-2

-3

. 0

2I

MIN

I

1 1

Ra

diu

s

(/um

)0

0(j

J

Size distribution and calculated scatter at 470 nm

Alphington, July 10 0854 -1642 nFlOl

m I E u CE CD

O I—1

■n CD

□ _l

4 2 1

-□

0

- 1

-2

-3

1 1

i I

11

1 I

I I

I 1

11

1

j I

I I

11

11

j I

I I

I 1

11

1

02

. 1 R

ad

ius

□c CD

o I—I

-p m u in CD

o

4 3 2 1 0

- 1

-2

1 I

I I

11

1 I

I I

I 1

11

1

. 0

2J

I I

I 1

11

1J

I

1 1

Ra

diu

s

if^m

)H

'C

O

cn I E U CE cn

o I—I

TD

\ Z

CD

Q

Size distribution and calculated scatter at 470 nm

Alphingten. July 10 2106 - July 11 0436 nF79

4 2 1 0 1

-3

1 I

I I

11

11

1 I

I I

11

1

\

j I

I I

11

j I

I I

I 1

1

. 02

. 1

1

Radius (^m)

□c CD

o I—I

"D 4-)

fD U cn TJ CD

D _J

1 I

I I

I I

I I

"I \

I I

I I

I I

I

4-

3 2 1 0 1

-2 .

02

J I

MIN

IJ

1 I

MIN

I

. 1 Ra

diu

s0

00

1

cn I E U OC CD

O I—I

TO

z "O cn

o _l

Size distribution and calculated scatter at 470 nm

Alphington, July 19 1854 - July 20 0242 nF104

4-

2 1 0 1

-2 . 02

3

TTT

1 I

I I

I I

I I

V

1 I

I I

I I

IJ

I I

I I

I 1

11

1 1

Radius

(/um

)

cr cn

o I—I

TD

-M fO

U CD CD

O

I I

I I

I I

I~I

I

I I

I I

4 3 2 1 0

- 1

-2-

- 3I—' ' ' '

02

j I

I I

I 1

1

Radius

(/jm

)1

00

CTl

cn I E U CE CD

□ r-H

"D z "O CD

O

Siz

e

dis

trib

utio

n

and

ca

lcu

late

d

sca

tte

r a

t 47

0 nm

Alp

hin

gto

n,

Ju

ly

26

1

12

5

- 1

91

3 n

Flll

51

I I

I I 1

111

4 2 1 0

-

1

-2

- 3

. 0

2j

I I

I 1

1j

I I

I I

11

. 1

1R

ad

ius

[pm

)

CL CD

□ I—I

TJ

-U ra u in CD

o

I I

I I

I 1

11

4 3 2 1 0 1

-2

- 3

1 I

I I

I 11

110

2

1 I

I I

I 1

11

1

J I

I I

11

1 Ra

diu

s

ipm

)H

'0

0<

1

m 1 E U □C □ rH z "D cn

Siz

e

dis

trlb

utia

n

and

ca

lcu

late

d

sca

tte

r a

t 47

0 nm

Alp

hin

gto

n,

Ju

ly

27

2338

-

Ju

ly

28

0726

nF

105

1 I

I I

I I

I I

"1 I

I I

I I

I I

I

4-

3-

2 1 0 1 2-

31—

I I

I I

11.1

1. 0

2.

1 Ra

d iu

s(/J

m)

1 I

I I

11

11

1 I

I I

I 1

11

1

cr cn

o I—I

"□ -M fO U in "D cn

o

4 3 2 1 0

- 1

-2

-3 .

02

J I

I I

I M

. 1

1R

ad

ius

i^m

)C

O0

0

cn 1 E U □C c

n□ I—

I

"□ cn

o _J

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r

at

47

0

nm

Alp

hin

gto

n,

Aug

3

20

54

-

Aug

4

04

42

n

F1

29

51

' I

I I

1111

I I

I I

I 11

11

4 3 2 1 0 1 2

j I

I I

11

11

I I

I I

I 1

11

1

. 0

2.

1 .

1R

ad

ius

(/^m

)

□:

cn

□ I—I

"□ -p fD U LO 2 cn

D

Ra

diu

s

-2

-

(/^m

)0

0(£

1

cn I E U □C D

1□ I

1

"□ 2 CD

Q _J

Siz

e

dis

trib

utio

n

and

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n.

Aug

IB

19

28 -

Aug

19

03

16

nF13

2

5|

I I

I I

1111

I I

I I

I 11

11

4 3 2 1 0 1 2

J—

I I

I I

I 1

1 I

I I

I I

I I n

. 0

2.

1 ,1

Ra

diu

s

(/jm

)

cr CD

o (—I

-n (D u CD

o

51

' I

I I

I 111

I I

I 1

III

II

4 3 2 1 0

- 1

-2

-3

/

J—

I I

I I

II

I I

I I

I I

11

11

02

. 1 Ra

diu

so

cn I E U OC Ol

o I—I

"C O

Size distribution and calculated scatter at 470 nm

Alphington, Aug 26 2118 - Aug 27 0506 nF138

51

I i

II

111

1

4 3 2 1 0

- 1

-2

-3

1 I

I I

I 1

11

I I

I I

11

11

j I

I I

I

. 02

1 Radius ipm)

2

cr cn

□ I—I

-M fD U cn cn

o _J

5|

I—I

I I

1111

4 3 2 1 0

- 1

-2

-3

1 1

—I

I M

il

l

J i

I I

I I n

J I

I I

I I

I I

I

02

1 1

Ra

diu

s

(/jm

)

mI E U q:

CD

□ I—I

TD CD

O

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r

at

47

0

nm

Alp

hin

gtc

n,

Au

g

31

1

22

6

- 1

70

5

nF

3B

4 3 2 1 0

-

1

-2

I I

I 1

1"1

—\—

r

J I

I I

MJ

I L

_L

LL

02

. 1

1R

ad

ius

(fim

)

CE CD

o I—i

"□ -p ra u in CD

o

5i

I—I

I I

1111

4 3 2 1 0 1

-2

-3

I M

I

02

T—

I I

I I

I I

I

Jl 1

J I

I I

I I

I I

I

1 Ra

diu

s

(/um

)to

mI E u DC cn

□ I—1

TD

"O CD

O _J

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n,

Se

pt

8 2

10

4

- S

ep

t 9

04

52

n

F1

45

51

> I

I I

1111

4 3 2 1 0 1

-3

1—

I I

I 1

11

1

J 1

I I

I I

I I

I I

I I

I I

M I

. 0

21

1R

ad

ius

(/jm

)

□:

CD

o I—I

-p ro u in TD CD

o

5|

i I

Mi

ll

4 3 2 1 0 1

1—

I—I

I I

11

1

-2

-

- 3I

\

I I

I I I

n I

II

I. 0

2.

1 1

Ra

diu

s

(^im

)C

O

cn I E U CE O)

□ I 1

2 CJ)

o

Siz

e

dis

trib

utio

n

an

d

ca

lcu

late

d

sca

tte

r a

t 4

70

nm

Alp

hin

gto

n,

Se

pt

17

1952

-

Se

pt

18

03

40

n

F1

48

1 I

I I

I 1

11

1

3 2 1 0

_J -1 -2

-3 .

02

J_L

LJ

I I

I I

I I

I I

. 1 Ra

diu

s

(^im

)

DC D)

□ rH TD

-P ra u cn 2 cn

4 3 2 1 0 1 2

-3 .

02

1 1

1 1

1 1

11

11

1 1

11

11

1

;■V

;1

1 1

11

11

1 1

1 t

1 1

11

11

. 1

1R

ad

ius

(^m

)ID