Blue Hydrogen Solutions - Global Syngas Technologies Council

20
Making our world more productive Blue Hydrogen Solutions Klemens Wawrzinek, Thilo von Trotha GSTC, Oct 11, 2021 San Antonio, Texas, US

Transcript of Blue Hydrogen Solutions - Global Syngas Technologies Council

Making our world more productive

Blue Hydrogen Solutions

Klemens Wawrzinek, Thilo von Trotha

GSTC, Oct 11, 2021

San Antonio, Texas, US

2

Agenda

1. Motivation

2. The Colours of Hydrogen

3. Blue Hydrogen Projects

4. Blue H2 Generation Principles and Case Study

5. Conclusion

3

Motivation

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Climate change requires reduction of CO2 emissions

- Paris Agreement: Limit global warming to 1.5 °C

- Europe targets to reach climate neutrality in 2050

- EU: Reduce CO2 emissions compared to 1990 by 55% in 2030

- Linde: Reduction of GHG intensity by 35% in 2028 compared to 2018

Hydrogen

- Will play a major role in decarbonizing industry and energy

- Uses of Hydrogen will change, e.g. as energy carrier

- Approx. 99% of Hydrogen is produced with high carbon emissions

- Hydrogen with low carbon footprint required

- Many national & international hydrogen roadmaps have been sketched around the

world

4

Hydrogen Demand Changes Due to Energy Transition.Demand will multiply in the coming decades.

** Demands compared to 2015; sources: ‘Hydrogen Roadmap Europe’; Fuel Cells and Hydrogen - Joint undertaking, fch.Europe.eu (2019) and ‘Hydrogen Scaling up’, Hydrogen Council, hydrogencouncil.com (2017)

* Source: ‘The future of hydrogen’; International Energy Agency IEA, iea.org (2019)

IndustryFeedstock

TransportationFuel

IndustryHeat

Industry FeedstockHeating & Power for Buildings

Transportation Fuel

Industry Heat

Power Generation & Buffering

Global demand (2018)*: ~115 million tons

Today

2050

~double till 2030**

10x till 2050**

Refinery, NH3, MeOH, Metals & Glass Processing

In addition:Steelmaking (DRI),CCU for MeOH /

olefins etc.

In addition: Synthetic fuels for freight ships & aviation

Seasonal energy storage PowerGen from renewables

NG grid blend and pure H2 use for heat; Micro combined heat & power (mCHP)

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

5

Sustainable H2 production classification – a visual guideExample Technologies (all available through Linde – either proprietary or from partners)

SMR + 60% syngas CO2 capture 5 Water electrolysis from green power

1 SMR standard

2

3

SMR + 60% CO2 capture

+ 20% biogas co-feed4

Wide spread of sustainable H2

production technology offerings

SMR + 95% flue gas CO2 capture

Color descriptive for source & CO2 intensity

of Hydrogen

Assumptions:• Renewable energy use

• All captured CO2 can be

utilized or stored (e.g. EOR)

100%

~40%

Ne

t C

O2

em

issi

on

s in

ten

sity

*

1

100%

-20%

0%

Defined threshold by CertifHy (EU)**

Renewable power and/or feedstock content

*Direct & indirect emission (SMR = 100%)

NET*

1

2

5

4

3

**CertifHy: industry consortium with goal to build Blue & Green H2 certificate marketplace

GSTC 2021 K. Wawrzinek / T. von Trotha Linde

SMR + 60% CO2 capture

feedstock: ROG /product of HVO refinery

6

6

Oct 11, 2021

36.4 g CO2eq/MJ H2

6

Blue Projects in Europe

H2 increase unlikely to be satisfied by electrolysis alone-> clean fossil based solutions

Many projects around north sea, depleted gas/oil fields used as final storage

Overseas projects are also active

Source: Hydrogen Europe

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

7

Generic Example Project Europe

Picture: European Commission

hydrogen plant with CO2 capture

No steam export -> internal power production

CO2 to pipeline

~130 bar

100,000 Nm3/h

pure hydrogen

households

& Industry

natural gas pipeline, 50 bar

fuels

& industry

decarbonized energy & molecule supply

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

8

General BFD SMR for H2 Production without capture

Hydrogen

Steam

SteamReforming

H2

Purification

SteamSystem

Feed Treatment

CO-ShiftConversion

DMW

NG Feed

Fuel

CO2 balance: Flue gas, power import, steam

Steam export adaptable to project specifics from zero high values

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Flue gas to atm

Tail gas

Power generation

9

SMR with Syngas Capture

Steam

SteamReforming

CO2Removal

H2

Purification

SteamSystem

Feed Treatment

CO-ShiftConversion

CO2 to seques-tration

DMW

NG Feed

Fuel

Significant additional components required

CO2 removal: PSA or amine based

Capture rate of 85 % is reasonably feasible

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Power generation

Flue gas to atm

PurificationCompression

Tail gas

Hydrogen

10

SMR with Flue Gas Capture

Hydrogen

Steam

SteamReforming

CO2Removal

H2

Purification

SteamSystem

Feed Treatment

CO-ShiftConversion

DMW

NG Feed

Fuel

Capture rate of 95 % is possible

Low partial pressure of CO2 in flue gas

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Tail gas

PurificationCompression

Flue gas to atm

Power generation

CO2 to seques-tration

11

ATR + GHR or POX with CO2 Capture

HydrogenATR+GHR

OrPOX

CO2Removal

H2

Purification

SteamSystem

ASU

CO-ShiftConversion

PurificationCompression

DMW

NG Feed

(Fuel)

Capture rate of >95 % is possible, Flue gas from tail gas combustion to be considered

More additional components required, ASU with additional power demand

GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Fired Heater

Power generation

Steam

Feed treatment

Tail gas

PowerO2

Oct 11, 2021

Flue gas to atm

CO2 to seques-tration

12

CO2 intensity & avoidance cost

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option CO2 intensityexcl. power

kg CO2/kg H2

SMR base case w/o capture 9.0

SMR syngas capture 1.5

SMR flue gas capture 0.5

ATR + GHR 0.5

POX 0.5

Electrolyser 0.0

13

CO2 intensity & avoidance cost

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option CO2 intensityexcl. power

CO2 intensityincl. grey power

kg CO2/kg H2 kg CO2/kg H2

SMR base case w/o capture 9.0 9.0

SMR syngas capture 1.5 1.7

SMR flue gas capture 0.5 0.7

ATR + GHR 0.5 1.3

POX 0.5 1.4

Electrolyser 0.0 16.0

Grey power:

300 g CO2/kWh

14

CO2 intensity & avoidance cost

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option CO2 intensityexcl. power

CO2 intensityincl. grey power

CO2 intensityincl. green power

kg CO2/kg H2 kg CO2/kg H2 kg CO2/kg H2

SMR base case w/o capture 9.0 9.0 9.0

SMR syngas capture 1.5 1.7 1.5

SMR flue gas capture 0.5 0.7 0.5

ATR + GHR 0.5 1.3 0.5

POX 0.5 1.4 0.5

Electrolyser 0.0 16.0 0.5

Green power:

10 g CO2/kWh

Grey power:

300 g CO2/kWh

15

CO2 intensity & avoidance cost

CO2 load of Power import must be considered

Electrolyser has similar CO2 intensity with green power

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option CO2 intensityexcl. power

CO2 intensityincl. grey power

CO2 intensityincl. green power

CO2 avoidancecost

kg CO2/kg H2 kg CO2/kg H2 kg CO2/kg H2 USD/t

SMR base case w/o capture 9.0 9.0 9.0 n.a.

SMR syngas capture 1.5 1.7 1.5 70

SMR flue gas capture 0.5 0.7 0.5 60

ATR + GHR 0.5 1.3 0.5 70

POX 0.5 1.4 0.5 75

Electrolyser 0.0 16.0 0.5 >100

Power: 100 USD/MWh

NG: 4 USD/GJ Grey power:

300 g CO2/kWh

Green power:

10 g CO2/kWh

16

Levelized Cost of Hydrogen at Varying Unit Rates

Incentives required to make projects viable

High power cost favor SMR solutions over oxygen based processes

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option Power 100 USD/MWhNG 4 USD/GJ

SMR w/o capture 1.00

SMR syngas capture 1.50

SMR flue gas capture 1.45

ATR + GHR 1.55

POX 1.70

Electrolyser > 5

17

Levelized Cost of Hydrogen at Varying Unit Rates

Incentives required to make projects viable

High power cost favor SMR solutions over oxygen based processes

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option Power 100 USD/MWhNG 4 USD/GJ

Power 40 USD/MWhNG 4 USD/GJ

SMR w/o capture 1.00 1.00

SMR syngas capture 1.50 1.30

SMR flue gas capture 1.45 1.25

ATR + GHR 1.55 1.25

POX 1.70 1.35

Electrolyser > 5 ~3

18

Levelized Cost of Hydrogen at Varying Unit Rates

Incentives required to make projects viable

High power cost favor SMR solutions over oxygen based processes

There is no „One fits all“ solution

Best concept depends strongly on project specifics

Green solution with water electrolysis is closing in at very low power cost

Oct 11, 2021 GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Option Power 100 USD/MWhNG 4 USD/GJ

Power 40 USD/MWhNG 4 USD/GJ

Power 20 USD/MWhNG 5 USD/GJ

SMR w/o capture 1.00 1.00 1.00

SMR syngas capture 1.50 1.30 1.25

SMR flue gas capture 1.45 1.25 1.25

ATR + GHR 1.55 1.25 1.15

POX 1.70 1.35 1.25

Electrolyser > 5 ~3 <2

19

Summary

Oct 11, 2021

- Blue hydrogen is required to meet carbon reduction targets

- CO2 balance needs to account for energy and utility imports

- No “One-fits all” solution is available, project specifics decisive on process concept considering full

EPC scope

- Green H2 is within economic reach at sites with cheap green power

- Linde covers the full chain from Feedstock incl. CO2, H2 generation, transport, distribution in design

building and also operating

- Linde as strong syngas leader is optimally positioned to integrate & optimize blue projects together

with the client

GSTC 2021 K. Wawrzinek / T. von Trotha Linde

Making our world more productive

Thank you for your attention.

Linde Engineering

Dr Klemens Wawrzinek

Tel +49 89 7445 4203

[email protected]

www.linde-engineering.com