Appendix: Planetary Facts, Data and Tools - Springer

36
Appendix: Planetary Facts, Data and Tools Planetary Constants See Tables A1 and A2. © Springer International Publishing AG 2018 A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books, DOI 10.1007/978-3-319-65179-8 395

Transcript of Appendix: Planetary Facts, Data and Tools - Springer

Appendix: Planetary Facts, Data and Tools

Planetary Constants

See Tables A1 and A2.

© Springer International Publishing AG 2018A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books,DOI 10.1007/978-3-319-65179-8

395

396 Appendix: Planetary Facts, Data and Tools

Tab

leA1

Bul

kpa

ram

eter

sfo

rpl

anet

s,dw

arf

plan

ets

and

sele

cted

sate

llit

es

Pola

rE

quat

oria

lIn

vers

eM

agne

tic

Atm

osph

eric

Mas

sra

dius

radi

usfla

tten

ing

Den

sity

Gra

vity

field

pres

sure

Dis

cove

ryM

oons

m[�

1024kg

]r p

[km

]r e

[km

]1/f

[–]

�[k

g/m

3]

g[m

/s2]

B[T

]p

[bar

]

Planets

Mer

cury

preh

isto

ric

00:3

30

2439:7

2439:7

–54

273:7

10

3.0�

10�

710

�14

Ven

uspr

ehis

tori

c0

4:8

68

6051:8

6051:8

–52

438:8

70

–92

Ear

thpr

ehis

tori

c1

5:9

72

6356:8

6378:1

298:2

53

5514

9:8

10

2.4�

10�

51.

014

Mar

spr

ehis

tori

c2

0:6

42

3376:2

3396:2

169:8

94

3933

3:7

10

–0.

006

Jupi

ter

preh

isto

ric

67

1898:1

90

66854:0

71492:0

15:4

113

2624:7

90

4.3�

10�

4>

1000

Satu

rnpr

ehis

tori

c62

568:3

40

54364:0

60268:0

10:2

168

710:4

40

2.2�

10�

5>

1000

Ura

nus

1781

27

86:8

13

24973:0

25559:0

43:6

212

718:8

70

2.3�

10�

5>

1000

Nep

tune

1846

14

102:4

13

24341:0

24764:0

58:5

416

3811:1

50

1.4�

10�

5>

1000

Dwarf

plan

ets

m[�

1021

kg]

(134

340)

Plut

o19

305

13:0

30

1187:0

1187:0

–18

600:6

20

–1�

10�

9

(1)

Cer

es18

010

0:9

39

473:0

473:0

–21

610:2

80

––

(136

199)

Eri

s20

051

16:6

00

1163:0

1163:0

–25

200:8

20

––

(136

472)

2005

1<

4:4

00

715:0

�715:0

�20:0

014

00�

0:5

00

–4–

12�1

0�9

Mak

emak

e739:0

739:0

3200

(136

108)

Hau

mea

2004

24:0

10

�620:0

�620:0

–(m

in)

2600

0:6

30

––

Appendix: Planetary Facts, Data and Tools 397

Satellites

m[�

1021

kg]

Ear

th’s

moo

npr

ehis

tori

c73:4

56

1736:0

1738:1

827.

6733

441.

620

1.0

�10

�7

1�1

0�

7

Phob

os(M

ars

I)18

7710

.659

�101

511:3

11:3

–18

760.

006

––

Dei

mos

(Mar

sII

)18

771.

476�

1015

6:2

6:2

–14

710.

003

––

Io(J

upit

erI)

1610

89:3

19

1821:6

1821:6

–35

281.

796

––

Eur

opa

(Jup

iter

II)

1610

47:9

98

1560:8

1560:8

–30

131.

314

1.2�

10�

710

�12

Gan

ymed

e(J

upit

erII

I)16

10148:1

90

2634:1

2634:1

–19

361.

428

1.20

�10�

7–

Cal

list

o(J

upit

erIV

)16

10107:5

98

2410:3

2410:3

–18

341.

235

7.5�

10�

12

Mim

as(S

atur

nI)

1789

0:0

37

198:2

198:2

–11

480.

064

––

Enc

elad

us(S

atur

nII

)17

890:1

08

252:1

252:1

–16

090.

113

–tr

ace

Teth

ys(S

atur

nII

I)16

840:6

17

531:1

531:1

–98

40.

146

––

Dio

ne(S

atur

nIV

)16

841:0

95

561:4

561:4

–14

780.

232

––

Rhe

a(S

atur

nV

)16

722:3

07

763:8

763:8

–1.

236

0.26

4–

Tit

an(S

atur

nV

I)16

55134:5

00

2575:0

2575:0

–18

801.

350

–1.

47

Iape

tus

(Sat

urn

VII

I)16

711:8

06

734:5

734:5

–10

880.

223

––

398 Appendix: Planetary Facts, Data and Tools

Tab

leA2

Orb

ital

and

axis

para

met

ers

for

plan

ets,

dwar

fpl

anet

san

dse

lect

edsa

tell

ites

Orb

itpe

riod

Peri

apsi

sA

poap

sis

Sem

imaj

orax

isO

rbit

ecce

ntri

city

Rot

atio

npe

riod

Orb

itin

clin

atio

nA

xis

obli

quit

y

T[d

]q

[�10

6km

]Q

[�10

6km

]a

[�10

6km

][–

]P

[h]

i[˚]

"[˚

]

Planets

Mer

cury

88:0

46:0

069:8

257:9

10:2

06

1407:6

07:0

00.

03

Ven

us224:7

107:4

8108:9

4108:2

10:0

07

�5832:6

02:6

417

7.36

Ear

th365:3

147:0

9152:1

0149:6

00:0

17

23:9

30:0

023

.44

Mar

s687:0

206:6

2249:2

3227:9

30:0

94

24:6

21:8

525

.19

Jupi

ter

4332:6

740:5

2816:6

2778:5

70:0

49

9:9

31:3

03.

13

Satu

rn10759:2

1352:5

51514:5

01433:5

30:0

57

10:6

62:4

926

.73

Ura

nus

30685:4

2741:3

03003:6

22872:4

60:0

46

�17:2

40:7

797

.77

Nep

tune

60189:0

4444:4

54545:6

74495:0

60:0

11

16:1

11:7

728

.32

Dwarfplan

ets

(134

340)

Plut

o90:6

4436:8

27375:9

35906:3

80:2

49

�153:2

917:1

657

.47

(1)

Cer

es1681:6

3382:6

2445:4

1414:0

20:0

76

9:0

710:5

94.

00

(136

199)

Eri

s203830:0

5723:0

014602:0

010162:5

00:4

41

25:9

044:0

4?

(136

472)

Mak

emak

e112897:0

5772:9

87904:7

56838:8

70:1

56

7:7

729:0

1?

(136

108)

Hau

mea

103774:0

5228:7

47701:7

56465:2

50:1

91

3:9

228:1

9?

Appendix: Planetary Facts, Data and Tools 399

Satellites

q[�

103

km]

a[�

103

km]

Topl

ane

Ear

th’s

moo

n27:3

2362:6

0405:4

0384:0

00:0

55

27.3

25:1

56:6

9

Phob

os(M

ars

I)0:3

29:2

39:5

29:3

80:0

15

sync

hron

ous

1:0

90:0

0

Dei

mos

(Mar

sII

)1:2

623:4

623:4

723:4

60:0

00

sync

hron

ous

0:9

30:0

0

Io(J

upit

erI)

1:7

7420:0

0423:4

0421:7

00:0

04

sync

hron

ous

0:0

5

Eur

opa

(Jup

iter

II)

3:5

5664:8

6676:9

4670:9

00:0

09

sync

hron

ous

0:4

70:1

0

Gan

ymed

e(J

upit

erII

I)7:1

51069:2

01071:6

01070:4

00:0

01

sync

hron

ous

0:2

00:3

3

Cal

list

o(J

upit

erIV

)16:6

91869:0

01897:0

01883:0

00:0

07

sync

hron

ous

0:1

90:0

0

Mim

as(S

atur

nI)

0:9

4181:9

0189:1

8185:5

40:0

20

sync

hron

ous

1:5

70:0

0

Enc

elad

us(S

atur

nII

)1:3

7236:9

2239:1

6238:0

40:0

05

sync

hron

ous

0:0

20:0

0

Teth

ys(S

atur

nII

I)1:8

9294:6

2294:6

2294:6

20:0

00

sync

hron

ous

1:1

20:0

0

Dio

ne(S

atur

nIV

)2:7

4376:5

7378:2

3377:3

00:0

02

sync

hron

ous

0:0

20:0

0

Rhe

a(S

atur

nV

)4:5

2526:5

1527:5

7527:0

40:0

01

sync

hron

ous

0:3

50:0

0

Tit

an(S

atur

nV

I)15:9

51186:1

51257:5

11221:8

30:0

29

sync

hron

ous

0:3

31:9

4

Iape

tus

(Sat

urn

VII

I)79:3

23460:6

03662:0

03561:3

00:0

28

sync

hron

ous

15:4

70:0

0

400 Appendix: Planetary Facts, Data and Tools

Planetary Exploration Missions

A complete list of planetary exploration missions is provided in Table A3. Most ofthose missions are focused on an individual target body (e.g. Mars), several are cov-ering multiple ones (e.g. Cassini-Huygens to the Saturn system, or Clementine to theMoon and asteroid 1620 Geographos). In the majority of cases also disciplines otherthan Geology are covered by missions’ science objectives and their experiments.

Data and Tools

Planetary Geology, with the notable exception of the study of Meteorites or returnedsamples by either robots or humans, is largely based on remotely collected data.Those data have historically been shared within large communities in a relativelyopen fashion. Even during the Cold War, cooperation was active across US andSoviet scientists involved in planetary exploration.

Nowadays, planetary data are hosted and curated in dedicated archives that makeavailable to anyone a range of science data products: from raw to calibrated, deriveddata (often described as higher-level data) (Table A4, as well as outreach productsbased on those, e.g. NASA Planetary Photojournal.1

The Planetary Data System (PDS) stands both for (1) the standards used inarchiving planetary data (used also beyond NASA, that first developed them), (2)the organisation responsible of distributing and preserving data according to thosestandards, as well as (3) the distributed archives physically hosting those data.

Please note that data provided in this appendix might have a lifetime shorterthan that of a book. Most agency and government URLs are likely to be availableindefinitely or suitably redirected, though.

Please refer, for an updated view, to the GitHubrepository.2

We also suggest to monitor resource collections, listed below, maintained bylong-term archives, such as NASA PDSand ESA PSA or any other providerassociated to the IPDA

Code for introductory data handling of planetary data is available on the book’scompanion free GitHub repository.

1http://photojournal.jpl.nasa.gov.2https://github.com/openplanetary/planetarygeology-book.

Appendix: Planetary Facts, Data and Tools 401

Table A3 Planetary missions until the end of 2016 (source: NASA NSSDC)

Launch date Nation Mission name Notes Target

1959-01-02 USSR Luna 1 Flyby Moon

1959-03-03 USA Pioneer 4 Flyby Moon

1959-09-12 USSR Luna 2 Impact Moon

1959-10-04 USSR Luna 3 Probe Moon

1960-10-10 USSR Marsnik 1 Mars Flyby (Failure) Mars

1960-10-14 USSR Marsnik 2 Mars Flyby (Failure) Mar

1961-02-04 USSR Sputnik 7 Venus Impact (Failure) Venus

1961-02-12 USSR Venera 1 Venus Flyby (Failure) Venus

1961-08-23 USA Ranger 1 Test Flight (Failure) Moon

1961-11-18 USA Ranger 2 Test Flight (Failure) Moon

1962-01-26 USA Ranger 3 Impact (Failure) Moon

1962-04-23 USA Ranger 4 Impact Moon

1962-08-25 USSR Sputnik 19 Venus Flyby (Failure) Venus

1962-08-27 USA Mariner 2 Venus Flyby Venus

1962-09-01 USSR Sputnik 20 Venus Flyby (Failure) Venus

1962-09-12 USSR Sputnik 21 Venus Flyby (Failure) Venus

1962-10-18 USA Ranger 5 Impact (Failure) Moon

1962-10-24 USSR Sputnik 22 Attempted Mars Flyby Mars

1962-11-01 USSR Mars 1 Mars Flyby (Failure) Mars

1962-11-04 USSR Sputnik 24 Attempted Mars Lander Mars

1963-04-02 USSR Luna 4 Flyby Moon

1963-11-11 USSR Cosmos 21 Test Flight (Failure) Venus

1964-01-30 USA Ranger 6 Impact Moon

1964-02-19 USSR Venera 1964A Venus Flyby (Failure) Venus

1964-03-01 USSR Venera 1964B Venus Flyby (Failure) Venus

1964-03-27 USSR Cosmos 27 Venus Flyby (Failure) Venus

1964-04-02 USSR Zond 1 Venus Flyby (Failure) Venus

1964-07-28 USA Ranger 7 Impact Moon

1964-11-05 USA Mariner 3 Attempted Mars Flyby Mars

1964-11-28 USA Mariner 4 Mars Flyby Mars

1964-11-30 USSR Zond 2 Mars Flyby (Contact Lost) Mars

1965-02-17 USA Ranger 8 Impact Moon

1965-03-21 USA Ranger 9 Impact Moon

1965-05-09 USSR Luna 5 Impact Moon

1965-06-08 USSR Luna 6 Attempted Lander Moon

1965-07-18 USSR Zond 3 Lunar Flyby—Mars Test Vehicle Mars

1965-07-18 USSR Zond 3 Flyby Moon

1965-10-04 USSR Luna 7 Impact Moon

1965-11-12 USSR Venera 2 Venus Flyby (Failure) Venus

(continued)

402 Appendix: Planetary Facts, Data and Tools

Table A3 (continued)

Launch date Nation Mission name Notes Target

1965-11-16 USSR Venera 3 Venus Lander (Failure) Venus

1965-11-23 USSR Cosmos 96 Attempted Venus Lander? Venus

1965-11-23 USSR Venera 1965A Venus Flyby (Failure) Venus

1965-12-03 USSR Luna 8 Impact Moon

1966-01-31 USSR Luna 9 Lander Moon

1966-03-31 USSR Luna 10 Orbiter Moon

1966-05-30 USA Surveyor 1 Lander Moon

1966-08-10 USA Lunar Orbiter 1 Orbiter Moon

1966-08-24 USSR Luna 11 Orbiter Moon

1966-09-20 USA Surveyor 2 Lander (Failure) Moon

1966-10-22 USSR Luna 12 Orbiter Moon

1966-11-06 USA Lunar Orbiter 2 Orbiter Moon

1966-12-21 USSR Luna 13 Lander Moon

1967-02-04 USA Lunar Orbiter 3 Orbiter Moon

1967-04-17 USA Surveyor 3 Lander Moon

1967-05-08 USA Lunar Orbiter 4 Orbiter Moon

1967-06-12 USSR Venera 4 Venus Probe Venus

1967-06-14 USA Mariner 5 Venus Flyby Venus

1967-06-17 USSR Cosmos 167 Venus Probe (Failure) Venus

1967-07-14 USA Surveyor 4 Lander (Failure) Moon

1967-07-19 USA Explorer 35 Orbiter Moon

1967-08-01 USA Lunar Orbiter 5 Orbiter Moon

1967-09-08 USA Surveyor 5 Lander Moon

1967-11-07 USA Surveyor 6 Lander Moon

1968-01-07 USA Surveyor 7 Lander Moon

1968-04-07 USSR Luna 14 Orbiter Moon

1968-09-15 USSR Zond 5 Return Probe Moon

1968-11-10 USSR Zond 6 Return Probe Moon

1968-12-21 USA Apollo 8 Crewed Orbiter Moon

1969-01-05 USSR Venera 5 Venus Probe Venus

1969-01-10 USSR Venera 6 Venus Probe Venus

1969-02-25 USA Mariner 6 Mars Flyby Mars

1969-03-27 USA Mariner 7 Mars Flyby Mars

1969-03-27 USSR Mars 1969A Mars Orbiter (Failure) Mars

1969-04-02 USSR Mars 1969B Mars Orbiter (Failure) Mars

1969-05-18 USA Apollo 10 Orbiter Moon

1969-07-13 USSR Luna 15 Orbiter Moon

1969-07-16 USA Apollo 11 Crewed Landing Moon

1969-08-07 USSR Zond 7 Return Probe Moon

1969-11-14 USA Apollo 12 Crewed Landing Moon

1970-04-11 USA Apollo 13 Crewed Landing (aborted) Moon

(continued)

Appendix: Planetary Facts, Data and Tools 403

Table A3 (continued)

Launch date Nation Mission name Notes Target

1970-08-17 USSR Venera 7 Venus Lander Venus

1970-08-22 USSR Cosmos 359 Attempted Venus Probe Venus

1970-09-12 USSR Luna 16 Sample Return Moon

1970-10-20 USSR Zond 8 Return Probe Moon

1970-11-10 USSR Luna 17 Rover Moon

1971-01-31 USA Apollo 14 Crewed Landing Moon

1971-05-09 USA Mariner 8 Mars Flyby (Failure) Mars

1971-05-10 USSR Cosmos 419 Attempted Mars Orbiter/Lander Mars

1971-05-19 USSR Mars 2 Mars Orbiter/ Attempted Lander Mars

1971-05-28 USSR Mars 3 Mars Orbiter/ Lander Mars

1971-05-30 USA Mariner 9 Mars Orbiter Mars

1971-07-26 USA Apollo 15 Crewed Landing Moon

1971-09-02 USSR Luna 18 Impact Moon

1971-09-28 USSR Luna 19 Orbiter Moon

1972-02-14 USSR Luna 20 Sample Return Moon

1972-03-27 USSR Venera 8 Venus Probe Venus

1972-03-31 USSR Cosmos 482 Attempted Venus Probe Venus

1972-04-16 USA Apollo 16 Crewed Landing Moon

1972-12-07 USA Apollo 17 Crewed Landing Moon

1973-01-08 USSR Luna 21 Rover Moon

1973-06-10 USA Explorer 49 (RAE-B) Orbiter Moon

1973-07-21 USSR Mars 4 Mars Flyby (Attempted MarsOrbiter)

Mars

1973-07-25 USSR Mars 5 Mars Orbiter Mars

1973-08-05 USSR Mars 6 Mars Lander (Contact Lost) Mars

1973-08-09 USSR Mars 7 Mars Flyby (Attempted MarsLander)

Mars

1973-11-04 USA Mariner 10 Venus/Mercury Flybys Venus

1974-06-02 USSR Luna 22 Orbiter Moon

1974-10-28 USSR Luna 23 Lander Moon

1975-06-08 USSR Venera 9 Venus Orbiter and Lander Venus

1975-06-14 USSR Venera 10 Venus Orbiter and Lander Venus

1975-08-20 USA Viking 1 Mars Orbiter and Lander Mars

1975-09-09 USA Viking 2 Mars Orbiter and Lander Mars

1976-08-14 USSR Luna 24 Sample Return Moon

1978-05-20 USA Pioneer Venus 1 Venus Orbiter Venus

1978-08-08 USA Pioneer Venus 2 Venus Probes Venus

1978-09-09 USSR Venera 11 Venus Flyby Bus and Lander Venus

1978-09-14 USSR Venera 12 Venus Flyby Bus and Lander Venus

1981-10-30 USSR Venera 13 Venus Flyby Bus and Lander Venus

1981-11-04 USSR Venera 14 Venus Flyby Bus and Lander Venus

(continued)

404 Appendix: Planetary Facts, Data and Tools

Table A3 (continued)

Launch date Nation Mission name Notes Target

1983-06-02 USSR Venera 15 Venus Orbiter Venus

1983-06-07 USSR Venera 16 Venus Orbiter Venus

1984-12-15 USSR Vega 1 Venus Lander andBalloon/Comet HalleyFlyby

Venus

1984-12-21 USSR Vega 2 Venus Lander andBalloon/Comet HalleyFlyby

Venus

1985-07-02 EUR Giotto Halley comet Flyby

1988-07-07 USSR Phobos 1 Attempted MarsOrbiter/Phobos Landers

Mars

1988-07-12 USSR Phobos 2 Mars Orbiter/AttemptedPhobos Landers

Mars

1989-05-04 USA Magellan Venus Orbiter Venus

1989-10-18 USA Galileo Jupiter Orbiter/Probe(Venus Flyby)

Venus

1990-01-24 JPN Hiten Flyby and Orbiter Moon

1992-09-25 USA Mars Observer Attempted Mars Orbiter(Contact Lost)

Mars

1994-01-25 USA Clementine Orbiter Moon

1996-11-07 USA Mars Global Surveyor Mars Orbiter Mars

1996-11-16 RUS Mars 96 Attempted MarsOrbiter/Landers

Mars

1996-12-04 USA Mars Pathfinder Mars Lander and Rover Mars

1997-10-15 USA/EUR Cassini-Huygens Saturn Orbiter (VenusFlyby)

Venus

1997-12-24 USA AsiaSat 3/HGS-1 Lunar Flyby Moon

1998-01-07 USA Lunar Prospector Orbiter Moon

1998-07-03 JPN Nozomi (Planet-B) Mars Orbiter Mars

1998-12-11 USA Mars Climate Orbiter Attempted Mars Orbiter Mars

1999-01-03 USA Mars Polar Lander Attempted Mars Lander Mars

1999-01-03 USA Deep Space 2 (DS2) Attempted MarsPenetrators

Mars

2001-04-07 USA 2001 Mars Odyssey Mars Orbiter Mars

2003-06-02 EUR Mars Express Mars Orbiter andLander

Mars

2003-06-10 USA Spirit (MER-A) Mars Rover Mars

2003-07-08 USA Opportunity (MER-B) Mars Rover Mars

2003-09-27 EUR SMART 1 Lunar Orbiter Moon

2004-03-02 EUR Rosetta Comet Orbiter comet 67P

2004-08-03 USA MESSENGER Mercury Orbiter (TwoVenus Flybys)

Venus

(continued)

Appendix: Planetary Facts, Data and Tools 405

Table A3 (continued)

Launch date Nation Mission name Notes Target

2005-08-12 USA Mars ReconnaisanceOrbiter

Mars Orbiter Mars

2005-11-09 EUR Venus Express ESA Venus Orbiter Venus

2006-01-20 USA New Horizons Pluto and Kuiper Belt Flyby

2007-08-04 USA Phoenix Mars Scout Lander Mars

2007-09-14 JPN Kaguya (SELENE) Lunar Orbiter Moon

2007-10-24 CHN Chang’e 1 Lunar Orbiter Moon

2008-10-22 IND Chandrayaan-1 Lunar Orbiter Moon

2009-06-17 USA Lunar ReconnaissanceOrbiter

Lunar Orbiter Moon

2009-06-17 USA LCROSS Lunar Orbiter andImpactor

Moon

2010-05-20 JPN Akatsuki Attempted ISAS VenusOrbiter

Venus

2010-10-01 CHN Chang’e 2 Lunar Orbiter Moon

2011-09-10 USA Gravity Recovery AndInterior Laboratory(GRAIL)

Lunar Orbiter Moon

2011-11-08 CHN Yinghuo-1 Attempted Mars Orbiter Mars

2011-11-08 RUS Phobos-Grunt Attempted MartianMoon Phobos Lander

Mars

2011-11-26 USA Mars ScienceLaboratory

Mars Rover Mars

2013-09-06 USA Lunar Atmosphere andDust EnvironmentExplorer

Lunar Orbiter Moon

2013-11-05 IND Mangalyaan ISRO (India) MarsOrbiter

Mars

2013-11-18 USA MAVEN Mars Scout MissionOrbiter

Mars

2013-12-01 CHN Chang’e 3 Lunar Lander and Rover Moon

2016-03-14 EUR ExoMars TGO Mars Orbiter andLander

Mars

2016-09-08 USA OSIRIS-REx Asteroid orbiter andlander

Asteroid101955Bennu

406 Appendix: Planetary Facts, Data and Tools

Table A4 Processing levels of planetary data: the definition of processing levels might beslightly confusing

Description NASA CODMAC PDS3 PDS4 Isis3

Received telemetry data Packet data L1 (raw) – Telemetry –

Reconstructed, unprocessed data L0 L2 – Raw –

L0 with ancillary information L1A L3 EDR Partially processed L0

L1A processed to sensor units L1B L4 CDR Partially processed L1

Derived physical units per eachsensor unit (pixel) of L1B

L2 L5 (derived) RDR Calibrated L2

Variables mapped at uniform timeand space scales

L3 L5 DDR Derived L3+

Model outputs or derived data L4 L5 DDR Derived L3+

NASA terminology is similar to that currently used for Earth Observation Remote Sensing data.Terminology in Fig. A1 corresponds to the last column of this table

Data Sources

Spacecraft data used in planetary geological studies are available free of charge onthe public domain, after a variable embargo period—in general of few months—where experiment teams have exclusive access to data. Software and extensivedocumentation are typically distributed along with data, but tools and their availabil-ity are very variable across experiments and missions. This section contains somepointers to data and documentation. The level of long-term support varies: archivesare long-term preserved as well as institutionally supported tools, which are alsolong-term supported. The software tool scenario is rapidly changing, though.

Planetary Data Archives

Planetary Data Systems and (sample) analogue archives worldwide typically offerlong term storage, curation and availability of data or samples returned by space-crafts. The amount of extraterrestrial samples is limited, but data are steadilygrowing and from the few Gigabytes of total digital data holdings of few decadesago are moving towards Petabytes, several order of magnitude more. Main spaceagencies maintain archives from data returned by their respective missions.

NASA Planetary Data System Nodes

The NASA Planetary Data System offers data and related documentation and toolstypically by broad disciplines and areas or experiment types, i.e. through several

Appendix: Planetary Facts, Data and Tools 407

nodes (e.g. Geosciences, Imaging Atmospheres, Small Bodies, Rings). The startingpoint to access all PDS resources is the NASA PDS main page.3

Data can be available on more than one node and search functions are availablein all of them as well as from centralised (mainly web) interfaces. The most relevantnode for geological analyses is the PDS Geosciences Node hosted at WashingtonUniversity in St. Louis.4 Originally data were distributed to scientists on physicalarchives (first CD, then DVD-based), lately all data are distributed online-only,although the term volume is still used.

Rover-based data are geometrically much more complex and search of data bytime of observation and activity along a path/traverse is usually easier to explore anduse those data. The PDS Geosciences NODE Analyst’s notebook5 provides accessto Apollo, MER and MSL and more.

ESA Planetary Science Archive

ESA hosts all data coming from its planetary missions on the PSA,6 followingPDS standards. Most data from ESA PSA are also mirrored on PDS nodes (e.g.MEX HRSC). PSA is hosted in a single location at the ESAC establishment of ESA(together with astronomy data archives).

Processing Levels

Data acquired by spacecraft are returned most of the times not as science-readyproducts. The nomenclature of the different levels of calibration and processingcan slightly vary, but its relative order does not (e.g. from PDS), therefore a higherlevel number corresponds to more science-usable data or, higher-level data products(Table A4).

See Figs. A1 and A2.

Web Services

The number of web services providing access, visualisation and analytics forplanetary data is constantly growing, and the individual services fast evolving.Data search and discovery, possible from PDS and PDS, is enhanced within the

3https://pds.nasa.gov.4http://pds-geosciences.wustl.edu.5http://an.rsl.wustl.edu.6http://www.cosmos.esa.int/web/psa.

408 Appendix: Planetary Facts, Data and Tools

Fig. A1 Processing level examples for an imaging experiment. Levels indicated are using USGSIsis3 naming conventions. For comparison see Table A4

Fig. A2 Processing level examples for a spectrometer (NASA MGS TES), in this case, non-imaging: TES spectra undergo various level of processing, after being corrected for instrumental,systematic and atmospheric effects (source: MGS TES, M. D’Amore)

Planetary Virtual Observatory (VO) of EuroPlanet VESPA7: the VO approach,originally developed for Astronomy, allows powerful data search capabilities acrossan arbitrary number of archives.

7http://europlanet-vespa.eu.

Appendix: Planetary Facts, Data and Tools 409

Web mapping services (such as Web GIS systems) are widespread. Several areprovided by USGS Astrogeology.8

Tool Directories

Several directories for planetary data analysis tools are maintained, e.g. by the PDSGeosciences Node,9 and, of a more general nature on PDS10 and IPDA.11

Imaging Tools

Video Image Communication and Retrieval (VICAR)

VICAR, originally developed since the 1960s at JPL and used for processing datafrom several missions, has been recently open-sourced. Its architecture influencedseveral later processing system such as USGS ISIS. Several pipelines use VICAR orits customisations adaptation for delivering higher-level data products to archives,e.g. MEX HRSC.

VICAR is available from JPL.12

USGS Integrated Software for Imaging and Spectrometers (ISIS)

ISIS13 is a modular system developed by the USGS Astrogeology Branch and itsupports several experiments on board NASA missions and beyond (e.g. ESA,ISRO, JAXA). It consists of a large set of programs to import, handle, calibrateradiometrically and geometrically planetary data from imaging cameras and spec-trometers. Extensive documentation and user support is provided by USGS.

Processing of data with ISIS starts from EDR data, i.e. neither radiometrically norgeometrically calibrated data. Radiometric and geometric calibration are performedin sequence. Once imagery is map-projected it can, for example be mosaicked orfurther processed. The workflow to produce digital image maps is simplified inFig. A1.

In most cases, metadata either needed or produced by the processing chains arecontained in separate labels, with standards that are out of scope for this appendix,

8http://astrowebmaps.wr.usgs.gov/webmapatlas/Layers/maps.html.9http://pds-geosciences.wustl.edu/tools/.10https://pds.jpl.nasa.gov/tools/.11https://planetarydata.org/services/registry.12http://www-mipl.jpl.nasa.gov/vicar_open.html.13https://isis.astrogeology.usgs.gov.

410 Appendix: Planetary Facts, Data and Tools

but contained on the PDS standard documents.14 In the simplest case, they appearas keyword= value.

The PDS label of a sample imaging experiment (MRO CTX in this case) issomething like:

PDS_VERSION_ID = PDS3FILE_NAME = "D21_035563_1987_XN_18N282W.IMG"RECORD_TYPE = FIXED_LENGTHRECORD_BYTES = 5056FILE_RECORDS = 20481LABEL_RECORDS = 1^IMAGE = 2SPACECRAFT_NAME = MARS_RECONNAISSANCE_ORBITERINSTRUMENT_NAME = "CONTEXT CAMERA"INSTRUMENT_HOST_NAME = "MARS RECONNAISSANCE ORBITER"MISSION_PHASE_NAME = "ESP"TARGET_NAME = MARSINSTRUMENT_ID = CTXPRODUCER_ID = MRO_CTX_TEAMDATA_SET_ID = "MRO-M-CTX-2-EDR-L0-V1.0"PRODUCT_CREATION_TIME = 2014-07-01T20:11:28SOFTWARE_NAME = "makepds05 $Revision: 1.16 $"UPLOAD_ID = "UNK"ORIGINAL_PRODUCT_ID = "4A_04_10B2034C00"PRODUCT_ID = "D21_035563_1987_XN_18N282W"START_TIME = 2014-02-26T14:46:46.527STOP_TIME = 2014-02-26T14:47:24.963SPACECRAFT_CLOCK_START_COUNT = "1077893243:194"SPACECRAFT_CLOCK_STOP_COUNT = "N/A"FOCAL_PLANE_TEMPERATURE = 293.3 <K>SAMPLE_BIT_MODE_ID = "SQROOT"OFFSET_MODE_ID = "197/200/187"LINE_EXPOSURE_DURATION = 1.877 <MSEC>SAMPLING_FACTOR = 1SAMPLE_FIRST_PIXEL = 0RATIONALE_DESC = "Ride-along with HiRISE"DATA_QUALITY_DESC = "OK"ORBIT_NUMBER = 35563OBJECT = IMAGELINES = 20480LINE_SAMPLES = 5056LINE_PREFIX_BYTES = 0LINE_SUFFIX_BYTES = 0SAMPLE_TYPE = UNSIGNED_INTEGERSAMPLE_BITS = 8SAMPLE_BIT_MASK = 2#11111111#CHECKSUM = 16#13621F48#END_OBJECT = IMAGEEND

14https://pds.nasa.gov/tools/standards-reference.shtml.

Appendix: Planetary Facts, Data and Tools 411

The PDS label contains basic image metadata, such as its size in pixels, thatare used, together with ancillary data, such as SPICE geometrical information, toperform computations of various kind, e.g. map-projecting imagery.

As an example, the corresponding subset of a level-2 (radiometrically andgeometrically calibrated) Isis3 cube is:

Object = IsisCubeObject = Core

StartByte = 65537Format = TileTileSamples = 128TileLines = 128

Group = DimensionsSamples = 9278Lines = 24954Bands = 1

End_Group

Group = PixelsType = RealByteOrder = LsbBase = 0.0Multiplier = 1.0

End_GroupEnd_Object

Group = InstrumentSpacecraftName = Mars_Reconnaissance_OrbiterInstrumentId = CTXTargetName = MarsMissionPhaseName = ESPStartTime = 2014-02-26T14:46:46.527SpacecraftClockCount = 1077893243:194OffsetModeId = 197/200/187LineExposureDuration = 1.877 <MSEC>FocalPlaneTemperature = 293.3 <K>SampleBitModeId = SQROOTSpatialSumming = 1SampleFirstPixel = 0

End_Group

Group = ArchiveDataSetId = MRO-M-CTX-2-EDR-L0-V1.0ProductId = D21_035563_1987_XN_18N282WProducerId = MRO_CTX_TEAMProductCreationTime = 2014-07-01T20:11:28OrbitNumber = 35563

End_Group

412 Appendix: Planetary Facts, Data and Tools

Group = BandBinFilterName = BroadBandCenter = 0.65 <micrometers>Width = 0.15 <micrometers>

End_Group

Group = KernelsNaifFrameCode = -74021LeapSecond = lsk/naif0011.tlsTargetAttitudeShape = pck/pck00009.tpcTargetPosition = (Table, spk/de405.bsp)InstrumentPointing = (Table,

ck/mro_sc_psp_140225_140303.bc,fk/mro_v15.tf)

Instrument = NullSpacecraftClock = ..sclk/MRO_SCLKSCET....tscInstrumentPosition = (Table, pk/mro_psp30.bsp)InstrumentAddendum = iak/mroctxAddendum005.tiShapeModel = dems/molaMars.cubInstrumentPositionQuality = ReconstructedInstrumentPointingQuality = ReconstructedCameraVersion = 1

End_Group

Group = RadiometryFlatFile = calibration/ctxFlat_0002.cubiof = 2.07298495391369e-04

End_Group

Group = MappingProjectionName = EQUIRECTANGULARCenterLongitude = 0.0TargetName = MarsEquatorialRadius = 3396190.0 <meters>PolarRadius = 3396190.0 <meters>LatitudeType = PlanetocentricLongitudeDirection = PositiveEastLongitudeDomain = 360MinimumLatitude = 17.529197173545MaximumLatitude = 19.634177543578MinimumLongitude = 77.520831823657MaximumLongitude = 78.303405709876UpperLeftCornerX = 4595020.0 <meters>UpperLeftCornerY = 1163810.0 <meters>PixelResolution = 5.0 <meters/pixel>Scale = 11854.939504661 <pixels/degree>CenterLatitude = 0.0

End_Group

[...]

The substantially increased amount of items is generated by the processingpipeline and it reflects the increased information content of the data, including

Appendix: Planetary Facts, Data and Tools 413

also geometrical (mapping) information as well as a record of used ancillary data(kernels), useful for reconstructing and reproducing the processing steps applied tothe data product.

NASA Ames Stereo Pipeline (ASP)

Stereogrammetry from remote sensing imagery can produced digital terrain modelsusable as topographic base for detailed geological observations (large scale topogra-phy is often guaranteed by global low-resolution laser altimetry, on most terrestrialplanets at least).

The NASA Stereo Pipeline,15 developed at the AMES research center is anactively developed, powerful Open-Source photogrammetric package, capable ofworking with data from most planetary missions. It is very actively supported via adiscussion group/mailing list.

JMars/JMoon, etc.

JMars16 and its companion tools for other planetary bodies (e.g. Moon) is a popularGIS system. It provided access to a large base of remote sensing data and it isactively developed.

Tools Usable on the Web

The tools above, especially ISIS, can be also run as web services on demand,producing e.g. mosaics, resampling or reprojecting data.

Processing on the Web (POW)17 allows such functionalities and data processingand delivery on demand (not in real time). On demand processing is also providedby the e-Mars MarSI system.18 A recent development of on-line real-time analyticson planetary data is constituted by PlanetServer/EarthServer,19 using OGC WCPSto query data. Access and download of data such as MEX HRSC can be achievedusing tools developed by experiment teams and freely accessible, such as HRSCMaps orbit locator.20

There are numerous other tools and services available from USGS and others.This number is very likely to increase on very short time scales. Please refer to the

15http://ti.arc.nasa.gov/tech/asr/intelligent-robotics/ngt/stereo/.16https://jmars.mars.asu.edu.17http://astrocloud.wr.usgs.gov.18https://emars.univ-lyon1.fr/MarsSI/.19http://planetserver.eu.20http://maps.planet.fu-berlin.de.

414 Appendix: Planetary Facts, Data and Tools

USGS Astrogeology Branch Mercator Lab21 as well as the GitHub repository of thepresent book.22

Additionally, citizen science projects and tools exist, either based on surfacechange detection using multitemporal data or on texture analysis, such as Planet4,23

supported by the HiRISE experiment team.

Documentation and Resources

Documentation on planetary exploration is available on a variety of long-termmaintained web sites (a subset is reported below), as well as on more volatile media(not reported here):

NASA Space Science Coordinated Data Archive (NSSDCA24) contains up-to-date information on planetary missions and facts, also beyond NASA.

Tutorials and Workshops

Planetary data workshops (also known as data user workshops, or alike) are avail-able from PDS, PSA and additional parties. They tend to be updated periodically.

An up to date list of workshop relevant for Planetary Geology is maintained onthe PDS Geosciences Node.25 ESA PSA has a dedicated workshop page.26 Planetarydata analysis and mapping workshops are also regularly run at USGS and materialscollected for anyone to use.27

Few recent representative workshops are listed below (the list is not exhaus-tive):

• MEX HRSC / OMEGA data workshop (2007, 2008)• MEX MARSIS (2008)• MRO CRISM data user workshop (2009, 2012)• Chandrayaan M3 data workshop (2010)• MRO SHARAD data workshop (2014)• USGS Planetary data workshop (2012, 2015)• ESAC Planetary GIS data workshop (2015)• MSL ChemCam (2015)

21http://astrogeology.usgs.gov/facilities/mrctr-gis-lab.22https://github.com/openplanetary/planetarygeology-book.23https://www.planetfour.org.24http://nssdc.gsfc.nasa.gov/planetary.25http://pds-geosciences.wustl.edu/workshops/.26http://www.sciops.esa.int/index.php?project=PSA&page=workshops.27http://astrogeology.usgs.gov/groups/Planetary-Data-Workshop.

Appendix: Planetary Facts, Data and Tools 415

Additional Resources

Additional resources include discussion groups or online communities such asOpenPlanetary,28 Isis Support,29 NASA Stereo Pipeline mailing list.30

28https://github.com/openplanetary.29http://isis.astrogeology.usgs.gov/[email protected].

Locations

103P/Hartley, comet, 331, 332109P/Swift-Tuttle, comet, 10419P/Borrelly, comet, 3321P/Halley, comet, 328, 329, 33221 Lutetia, asteroid, 1503200 Phaethon, 10445P/Honda-Mrkos-Pajdušáková, comet, 33155P/Tempel-Tuttle, comet, 10467P/Churyumov-Gerasimenko, comet, 7, 50,

94, 95, 148, 150, 327, 329–332, 340,348, 379

81P/Wild 2, comet, 329, 330, 3329P/Tempel 1, comet, 7, 329, 330, 332, 339

Agathe, asteroid, 316Allan Hills, Antarctica, 105Antarctica, 104, 105, 281Aorounga Crater, Chad, 134Apollinaris Montes, Mars, 176Arabic desert, 105Aram Chaos, 273Ares Vallis, Mars, 199Argyre Planitia, Mars, 21, 208, 261, 270Artemis Corona, Venus, 167asteroid belt, 126Atacama Desert, 20, 21Athabasca Vallis, Mars, 199Azerbaijan, 172

Barberton greenstone belt, South Africa, 354Barringer Crater, Arizona, 132Beacon Valley, U.S., 19Beethoven basin, Mercury, 175

Beta Regio, Venus, 152, 166Biblis Tholus, 156

Callisto, Jupiter’s moon, 135, 141, 203, 222Callisto, moon, 134, 143, 209, 285–294

Valhalla, 135Caloris basin, Mercury, 166, 175Ceres, 42Ceres, dwarf planet, 148Charon, 307Charon, Pluto’s moon, 124, 148, 170, 182Chassigny, France, 115Chicxulub crater, Mexico, 135China, 190circum-Hellas volcanic province, Mars, 273Clearwater lakes, US, 133Colorado Plateau, U.S., 19, 21Columbia River, WA, US, 179Copernicus crater, the Moon, 278Coprates Chasma, Mars, 203

D/Shoemaker–Levy 9, comet, 329Dasht-e Lut, Iran, 19Deccan Traps, 159Deimos, Mars’ moon, 370Devana Chasma, Venus, 166, 168Dione, Saturn’s moon, 296–298

East African Rift, 166Eberswalde, 201Edgeworth-Kuiper Belt, 326Edgeworth-Kuiper belt, 327Eger, asteroid, 316

© Springer International Publishing AG 2018A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books,DOI 10.1007/978-3-319-65179-8

417

418 Locations

Egeria, asteroid, 316Enceladus, Saturn, 96, 148, 170, 172, 182, 361Europa, Jupiter, 96, 170, 172, 182, 222, 285,

290, 361, 370

Falsaron, Iapetus, 295

Gale crater, Mars, 173, 200Galilean Satellites, 285–294Ganymede, Jupiter, 209, 229Ganymede, Jupiter’s moon, 134, 135, 141, 172,

222, 361Ganymede, moon, 285–294Gaspra, asteroid, 316Gliese 581, 366Gosses Bluff, Australia, 133, 142Greenland, 104Gruithuisen domes, the Moon, 179Gusev Crater, Mars, 87Gusev crater, Mars, 190

Hadriacus Mons, Mars, 176Hale Bopp, comet, 329Haughton Crater, Canada, 18Hawaii, 157Hawaii, U.S., 19Hawaii, US, 18Hellas Planitia, Mars, 261, 270Herschel, Mimas, 295Hestia, asteroid, 316Hyakutake, comet, 329Hygiea, asteroid, 316

Iapetus, Saturn, 209, 210Iapetus, Saturn’s moon, 294–296Iceland, 18Ida, asteroid, 316Io, Jupiter, 209, 290Io, Jupiter’s moon, 123, 143, 172, 174, 285Ishtar Terra, Venus, 167Isua Supracrustal Belt, Greenland, 354Ithaca Chasma, 296–297Itokawa, asteroid, 94

Jupiter, 225, 370

Kasei Vallis, Mars, 199Kenya Rift, 166

Kilauea, Hawaii, U.S., 19, 159

Lakshmi Planum, Venus, 167Ligeia Mare, Titan, 301Lonar Crater, India, 18

Maat Mons, Venus, 176Main Belt, 315, 316Mairan domes, the Moon, 179Maja Vallis, Mars, 199Mangala Fossae, Mars, 273Mangala Vallis, Mars, 199Manicouagan crater, Canada, 133Mare Imbrium, the Moon, 371Mare Orientale, Moon, 131Mars, 19, 190, 198, 209, 211, 225–227,

230–232, 234, 238–243, 361, 369,370

Argyre, 135Matronalia Rupes, Vesta, 321Mauna Loa, Hawaii, U.S., 19Mawrth Vallis, Mars, 214Maxwell Montes, Venus, 167McMurdo Dry Valleys, Antarctica, 19, 21Meade crater, Venus, 261Medusa Fossae Formation, Mars, 277Memnonia, Mars, 152Mercury, 198, 223, 225–227, 229, 231, 238,

239, 241Caloris, 135

Meridiani Planum, Mars, 21, 87, 188, 189, 215Meteor Crater, Arizona, U.S., 18Michalangelo crater, Mercury, 130Mimas, Saturn’s moon, 294–296Moon, the, 18, 198, 223–226, 229, 231, 239,

369Orientale, 135

Nördlinger Ries, Germany, 18Nakhla, Egypt, 115NEA, 370Neptune, 306–307, 370Nilosyrtis Mensae, Mars, 150Nysa, asteroid, 316

Oberon, Uranus’ moon, 303–305Oceanus Procellarum, the Moon, 152, 371Oceanus Procellaurm, the Moon, 257Olympus Mons, Mars, 157, 181, 208Oman, 105

Locations 419

Ontong, Java, 179Oort Cloud, 326, 327Ovda Regio, Venus, 153

P67/Churyumov-Gerasimenko, comet, 42Pallas, asteroid, 316Pantheon Fossae, Mercury, 167Phobos, 379Phobos, Mars’ moon, 150, 370Phoebe Regio, Venus, 166Pilbara Craton, Australia, 354Pingaluit crater, Canada, 132, 134Pluto, 124, 148, 170, 182, 307, 324, 348polar caps, Mars, 207–209Procellarum Terrane, Moon, 115Psyche, asteroid, 315, 316Pu’u ’O o, Hawaii, 159

Rachmaninoff crater, Mercury, 131Rembrandt basin, Mercury, 152, 175Rhea Montes, Venus, 152Rhea, Saturn’s moon, 124, 296–298Richat structure, Mauritania, 73Ries crater, Germany, 18, 139, 143Rio Tinto, Spain, 21

Sahara desert, 105, 190San Andreas fault, CA, US, 153Saturn, 124, 225, 370Scablands, Washington, US, 199Scattered Disk, 326, 327Sedna Planitia, Venus, 160Shergotty (Sherghati), Inida, 115Shoemaker-Levy 9, comet, 140Siberian Traps, 159Sif Mons, Venus, 176Snake River Plains, Idaho, U.S., 19Spider crater, Australia, 142Sputnik Planum (informal name), Pluto, 171,

324Steinheim crater, Mars, 137

Svalbard, Norway, 20swiss cheese terrain, Mars, 209, 210, 340

Taurus-Littrow, the Moon, 25Terra Meridiani, Mars, 274Tethys, Saturn’s moon, 296–298Tharsis bulge, Mars, 273Tharsis, Mars, 152, 199Theia Montes, Venus, 152Thingvellir, Iceland, 150Tinatin Planitia, 156Titan, Saturn, 47, 185, 189, 198, 212, 215, 216,

222, 361, 370Titania, Uranus’ moon, 303–305Triton, 370Triton, Neptune’s moon, 172, 182, 306–307Tuktoyaktuk, Canada, 20Turgis, Iapetus, 295Tyrrhenus Mons, Mars, 176

Ulysses Fossae, 156Umbriel, Uranus’ moon, 303–305Upheaval Dome, USA, 142Uranus, 370

Valhalla basin, Callisto, 289Valles Marineris, Mars, 154, 169, 274Venus, 20, 124, 198, 225Venus, surface, 81Vesta, asteroid, 42, 115, 204, 217, 315

Wunda, crater, 305

Yellowstone caldera, U.S., 21Yellowstone National Park, U.S., 357

Zerga mountain, Mauritania, 208

Persons

Agricola, Georgius (1494–1555), 23

Bernal, J. D. (1901–1971), 348Blagg, Mary A. (1858–1944), 62Brahe, Tyche (1546–1601), 8Bruno, Giordano (1548–1600), 348

Cernan, Eugene A. (1934–2017), 18Copernicus, Nicolaus (1473–1543), 8

da Vinci, Leonardo (1452–1519), 23Digges, Thomas (1546–1595), 348

Edgeworth, Kenneth Essex (1880–1972), 326Engle, Joe H. (�1932), 18Epicurus (341–270), 348

Galilei, Galileo (1564–1642), 9, 285Gilbert, Grove K. (1843–1918), 17, 22

Hörz, Friedrich (�1940), 18Haldane, John B.S. (1892–1964), 350Huygens, Christiaan(1629–1695), 348

Kepler, Johannes (1571–1630), 8Kuiper, Gerard Peter (1905–1973), 326

Le Pichon, Xavier (�1937), 164

Marius, Simon (1573–1625), 285Metrodorus of Lampsacus (331–278), 348Miller, Stanley L. (1930–2007), 350Mitchell, Edgar D. (1930–2016), 18

Newton, Isaac (1642–1726), 9

Oort, Jan Henrik (1900–1992), 326

Ptolemy, Claudius (100–170), 8

Shepard, Alan B. (1923–1998), 18Shoemaker, Eugene M. (1928–1997), 18Snyder, John Parr (1926–1997), 60Steno, Nicolaus (1638–1686), 23, 125Sternfeld, Ary (1905–1980), 348

Thales of Miletus (624–546), 348Turner, Herbert Hall (1861–1930), 62

von Engelhardt, Wolf J. (1910–2008), 18

Whewell, William (1794–1866), 15

© Springer International Publishing AG 2018A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books,DOI 10.1007/978-3-319-65179-8

421

Subjects

’a’a lava, 159

map projectionEquirectangular, 61

Yarkovsky effect, 126

ablation, 209ablation till, 208ablation, meteoroid, 104abrasion, 191absolute age, 124, 125acapulcoites, 113accommodation space, 263accretion, 221, 314Achelous, crater, 289, 290achondrites, 113acidophiles, 359acoustic fluidization, 144active layer, 211active pits, comet, 337aeolianite, 189agglomeration, 313airbrush painting technique, 56alasses, 212albedo, 286, 287ALH84001, 105, 363alkaliphiles, 360alluvial fan, 20, 200, 201alluvial fans, 200alluvial plains, 193, 200alteration, 213, 214Amazonian, 198, 200, 204Amoeboid olivine aggregates (AOA), 111

amphitheater-heads, 196analogy, role of, 16angle of incidence, 141angle of repose, 188Angrites, 119angular momentum, 221angular unconformity, 29anhydrous silicates, 379Antarctica, 215Apollo, 123, 125, 217, 317, 348Apollo 17, NASA mission, 25Apollo samples, 115Apollo seismic experiments, 224Apollo, geophysical equipment, 79Apollo, NASA Program, 72aquifers, 198Arabia Terra, Mars, 190arachnoids, 155, 180Ares Vallis, 212arid (Mars) analogues, 19Ariel, 305–306artificial intelligence, 13asteroid flux, 126asteroids

classification, 106asteroids, resource prospecting, 377–380astrobiology, 347Astrogeology Science Center, 63astronauts, 18Atacama Desert, 215atmosphere

density, 186, 187planetary, 185

atmospheric erosion, 243atmospheric escape, 242

© Springer International Publishing AG 2018A.P. Rossi, S. van Gasselt (eds.), Planetary Geology, Springer Praxis Books,DOI 10.1007/978-3-319-65179-8

423

424 Subjects

atmospheric windows, 41Aubrite meteorites, 316Aubrites, 118aureole, 192authigenesis, 214–215automated mapping, 67avalanches, 206

backlimb, 153ballistic ejecta, 139ballistic sedimentation, 136ballistic trajectory, 136barchan, see dnes189basal stress, 207basaltic rocks, 173basin

multi-ring, 288Bingham fluid, 205biosignatures, 364blind thrust, 153Brachinites, 118breccia, 132, 143bright plains (Ganymede), 288brines, 215brittle deformation, 155bulk composition, 225bundle adjustment, 57, 58buoyancy force, 132, 228Buto Facula, 290

C-group asteroids, 316C-type, asteroid, 378CAI, 111, 221Calcium-Aluminium inclusions (CAI), 314caldera, 157, 307cantaloupe terrain, 307carbohydrates, 302carbon, 379carbonaceous chondrites, 315, 350carbonates, 213, 215cartographic standards, 55cartography, 55Cassini, G. D. (astronomer), 295catastrophic flooding, 199catastrophic floods, 20, 200CCD, 38central peak, 132central uplift, 133, 134Chandrayaan-1, 42channel

inner channel, 198interior channel, 198lava channel, 198

channel, fluvial, 193channelised lava flows, 159channels, 199

anastomosing, 195braided, 195meanders, 195subglacial, 208

chaos regions, 292chaotic terrain, 199Charon, 307chassignites, 115chemical alteration, 213chemical sediments, 215chondrite

carbonaceous, 108Chondrites, 106

carbonaceous, 106enstatite, 106ordinary, 106

chondrules, 110, 314classification, meteorites, 118clathrates, 330clay minerals, 213, 215Clementine, 79clinoforms, 26CMOS, 38CO2 defrosting, 206CO2 ice, 207coating, weathering, 217coherence, reasoning, 17cohesion, 187, 190, 202collapse, 170collisional orogens, 163coma, comet, 328cometesimal, 332comets, 324–340comparative planetology, 249complex crater, 129composition, grains, 187condensation, 113conduction, 228consilience, reasoning, 17consistency, reasoning, 17continental rift, 152control network, 56, 57convection, 228, 229, 231convergence, 16convergent plate boundary, 171cooling history, 154cooling-limited flows, 160coordinate system, 57core, 222coronae, 168, 180, 306cosmic rays, 217

Subjects 425

cosmic sediments, 106crater

central pit, 289dome, 289dome crater, 289pedestal, 289ray, 298

Crater-Size Frequency-Distribution (CSFD),125

creep, 187cross-bedding, 200cross-beddings, 189crust, 222crustal field, 239–241cryo-lava, 305cryokarst, 210cryotectonics, 170cryovolcanism, 170, 172, 285, 291, 293, 299,

300, 305, 307Curiosity, 88, 216Curiosity rover, 200, 214, 215, 375Curiosity, MSL, 50

D/H ratio, 331Darcy–Weisbach, 194dark plains (Callisto), 288dark spots, 209dark streaks, 190, 203, 209Darwinian-type evolution, 351debris flow, 198, 206debris flows, 202, 205, 206decompression, 176Deep Impact, 329Deep Impact, NASA mission, 73degassing, 160Deimos, 379delta, 202

bottomsets, 202fan, 201foresets, 202Gilbert (fluvial), 201topsets, 202

density, 224–228density, grains, 187deposition

delta fan, 201fluvial, 200subaeial, 201subaeqeous, 200subaerial, 200subaqueous, 202

deposition fan, 199depositional fan, 193

depositional lobes, 202diagenesis, 214–215diapirism, 155dichotomy

Ganymede-Callisto, 286dichotomy boundary, Mars, 168differentiated meteorites, 113differentiation, 222differentiation, Earth, 353digital cartography, 57digital geologic mapping, 64dike, 164dike emplacement, 174dike swarm, 168diogenites, 115discharge

bankful, 198bankfull, 195rate, 199, 200subglacial lake, 199

discharge rate, 194, 195dislodgement, grains, 186dissolution, 212, 215divergent plate boundary, 171double planet, 307double ridges, 291downlap, 27drainage, 196drainage area, 195, 196drainage density, 195, 198drainage network, 196drone, 75drones, 72drumlins, 207ductile deformation, 155dune field, 189dune, transversal, 188dunes, 189, 200

barchan, 188–190longitudinal, 188seif, 189star, 189transverse, 189

dust devils, 190, 278dust tail, comet, 329dust, Mars, 190dwarf planet, 7dynamo, chemical, 236dynamo, compositional, 236dynamo, planetary, 236–239

Early Bombardment, 258ejecta

426 Subjects

butterfly ejecta, 142curtain, 141double layer (DLE), 138, 139facies, 136forbidden ejecta zone, 142multiple layer (MLE), 138rampart, 138rayed, 287single-layer, 138

ejecta curtain, 136elliptical threshold angle, 141emission angle, ", 37en echelon, faults, 151Enceladus, 298–300encounter velocities, 103entrainment, grains, 186, 187, 190, 200eolian processes, 186–192, 215eolian sandstone, 190epicycles, 8equatorial bulge, 225equifinality, 16, 218erosion

bedrock, 195, 199, 207fluvial, 193

erosional truncation, 28eruption type, 157eskers, 208etched terrain, 216ethane, 300eucrites, 115evaporation, 196, 215evolved magmas, 174exobiology, 202, 348ExoMars, 50, 363ExoMars 2020, 363exoplanets, 13explanatory surprise, 17explosive eruption, 160extreme environments, 356

facies, 200facies analysis, 90fault degradation, 151fault displacement-length relationship, 151fault true dip, 151fault-bounded terraces, 143fault-propagation fold, 153faults, 150felsic rocks, 173fissure eruption, 158flat-field, 58flocculation, 189flood basalts, 175

flood plains, 200flow

concentrated, 198, 199diluted, 199laminar, 194, 198, 205turbulent, 194, 198, 205

fluidization, 204flute marks, 199fluvial bars, 199fluvial basin, 193fluvial erosion, 193fluvial processes, 193–202forelimb, 153formation age

chondrite parent bodies metamorphism,119

chondrules, 119Earth–Moon system, 119magmatic differentiation of asteroids, 119magmatic iron meteorites, 119Mars core, 119primitive achondrites, 119

fractures, 149fragmentation, meteoroid, 104Fraunhofer Linien, 108Fremdlinge, 111friction angle, 203, 204friction factor, channel flow, 194friction melting, 143friction velocity, 186, 187

threshold, 187frictional heating, 103frost point, 207

Gale crater, 216Galileo (spacecraft), 285, 288Galileo, spacecraft, 316Ganymede

grooved terrain, 291ocean, 289

gas chromatography, 50gas planet, 7gazetteer, 63Gegenschein, 103Geminids, 104geodesy, 55geodetic control, 57Geographic Information System, 57Geographic Information Systems (GIS), 55geologic cross section, 26geological reasoning, 17geometric calibration, 58Gertrude, crater, 304

Subjects 427

giant dike swarms, 170Giotto, 329GIS analysis, 69GIS applications, 64glacial landforms, 206–209glacier, 207glaciers, 207, 208

cold-based, 207, 208wet-based, 207

global volcanic resurfacing, 175GPS, 162graben, 151, 297graben system, 307granite-greenstone belt, 163granular flows, 205, 206granule ripple, 189gravitational focusing, 288gravity, 187, 194gravity flows, 188gravity measurements, 45gravity-dominated cratering, 128Great Oxidation Event, 355greenhouse effect, on Venus, 241Greg crater, Mars, 208grooves, 199ground truth, 72ground-truth, 47gullies, 20, 132, 203, 206gypsum, 189

habitability, 354Hack exponent, 196Hack’s law, 196Hadean Habitable Earth, 352half-graben, 151halophiles, 360hand-mosaics, 56Hawaiian eruption, 158Hayabusa, 50, 51, 60Hayavusa, 75heat flow, 162heat flux, 232heat-pipe mode, 172HED meteorites, 115Helium-3, 370, 373, 388Hellas Planitia, 202Hesperian, 198, 200, 208hollows, Mercury, 340Horton–Strahler classification, 195hot spot volcanism, 172hot spots, 172howardites, 115Hubble Space Telescope, 329, 348

human exploration, 13, 34, 72, 86hummocks, 211hummocky terrain, 212Huygens, 302Huygens, lander, 49hydration, 243hydrocarbons, 295, 300, 370hydrofractures, 164hydrothermal activity, 171hydrothermal systems, 350hydroxides, 214hyperthermophiles, 356hyperthermophilic, 354

ice deformation, 207ice lenses, 212ice sheets, 207ice wedges, 211icy intrusions, 175IDP, interplanetary dust particles, 103ilmenite, 371image processing, 57imaging cameras, 37impact

deformation, 143melt, 143plume, 138shock wave, 127target, 132target composition, 142

impact crater, 18, 185, 200, 202–204central peak, 130central pit, 134central pit crater, 143central uplift, 134, 142chains, 140cluster, 140complex, 129complex crater, 143depth-diameter ratio, 128ellipticity, 141excavation stage, 128excess-ejecta crater, 139impact basin, 143modification stage, 128multi-ring, 135multi-ring basin, 130, 143obliteration, 123palimpsests, 143peak-ring, 130, 134–135, 136pedestal crater, 139perched crater, 139pits, 141

428 Subjects

production function, 123rate, 127rayed crater, 139, 140ring formation, 135ring syncline, 133saturation, 123secondary, 140shape, 141simple, 129simple-to-complex transition, 130terrace, 133trains, 140transient cavity, 129, 132

impact cratercavity, 128impact cratercentral uplift, 144impact craterpeak crater

peak ring, 144impact craters, 213impact craters gardening, 213impact cratersecondary, 141impact melt, 138impact-target weakening, 143impactor flux, 126impactor population, 123impacts

low velocity, 128impactshypervelocity, 128In Situ Resource Utilization, ISRU, 369in-situ analyses, 48in-situ laboratories, 48–50incidence angle, � , 37infiltration, bedrock, 196, 198InSight, 224internal friction, angle, 202International Astronomical Union (IAU), 55intraplate volcanism, 171intrusions, 174inverted channels, 200ion tail, comet, 328iron meteorites, 117iron oxides, 214iron snow, 237iron sulfates, 215ISIS, image processing system, 58–60ISIS3 label, 411ISO, 67isostasy, 147

jökulhlaups, 199jkulhlaups, 273

kaolinite, 214karst, 215

Kepler Space Telescope, 349Kirkwood gaps, 126komatiites, 174KREEP, 115, 258, 371, 372Kuiper belt, 313Kuiper Belt Object (KBO), 127, 306

lacustrine deposits, 189lahar, 205lander exploration, 72–74landing site selection, 75, 92landslide, 203, 204Laplace resonance, 293Large Igneous Provinces, 156laser altimetry, 43Late Heavy Bombardment (LHB), 126, 317,

354lateral transition, 26layer termination, 26lee side, dune, 188Leonids, 104levees, 205, 206LHB, 354librations, 225LIDAR, 72life appearance, 351life on Mars, 362life, definition, 349life, origin, 349linear dunes, see dnes189liquidus, 224lithospheric plates, 161lobate ejecta, 138lobate scarps, 154lodranites, 114loess deposit, 190low-viscosity lava, 181Luna, 123, 125, 317Luna 3, 38Luna samples, 115Lunar Crater Observation and Sensing Satellite

(LCROSS), 373Lunar Prospector, 79Lunar Reconnaissance Orbiter, 41, 42Lunar Reconnaissance Orbiter (LRO), 373

M-type, asteroid, 378Mössbauer spectrometry, 48magma, 174magma ocean, 114, 224magma viscosity, 160magma-water interaction, 161

Subjects 429

magmatic underplating, 162magnesium chlorides, 215magnetic field, 236, 238magnetic measurements, 45magnetization, chemical remanent, 239magnetization, shock remanent, 239magnetization, thermoremanent, 239Main Belt (asteroids), 378Main Belt, asteroids, 313Manning coefficient, n, 194Manning equation, 194mantle, 222mantle flow, 162mantle plumes, 171manual mapping, 67map projection, 60–62

Mercator, 61Polar Stereographic, 62Simple cylindrical, 61Sinusoidal, 61

map projections, 60map quadrangles, 62map scale

mapping, 67published, 67

map series design, 62map symbols, 66map-making process, 67mapping process, 17mapping recommendations, 67maria, 175, 179maria loading, 154Mariner, 38Mariner 4, 38Mariner 9, 18, 20, 362Mars, 185, 189, 198, 199, 204, 206–208Mars 2020, 50Mars analogues, 18Mars atmosphere, 241Mars Exploration Rover (MER), 363Mars Express, 42, 60Mars Global Surveyor, 42Mars Odyssey, 41, 42Mars Orbiter Camera, 38Mars Reconnaissance Orbiter, 38, 42, 376Mars sample return, 93Mars simulation chamber, 21Mars, ground truth, 84–92Mars, resource prospecting, 375–377Mars2020, 363marsquake, 204mascon, 136MASCOT, 50mascot, lander, 75

mass, 224–228mass wasting, 185mass-wasting processes, 202–206MDIM, 38Mean Motion Resonances (MMR), 317meander, 195Medusae Fossae Formation, 191, 192mega-ripples, 200megaripples, 189Melkart, 289melt lense, 133MER, 87Mercury, 199Mesosiderites, 119metadata, 57, 67–68metadata standardisation, 68metadata, mapping, 67meteor showers, 104meteorite

weathering, 105meteorite differentiation, 114meteorites

classification, 106meteorites, lunar, 115meteorites, Mars, 115meteoroid, 104meteroite

naming, 105methane, 181, 300micrometeorites, 104Miller’s experiment, 350Miranda, 305–306Missoula floods, 20mobile-lid regime, 230–231moment of inertia factor, MOIF, 226moment of inertia, MOI, 225Momoy, 300monogenic volcano, 157Moon Treaty, 389Moon village, 98Moon, Earth’s, 199, 204Moon, resource prospecting, 370–375moraines, 206, 208MSL, 88, 363MSL, Curiosity, 50mud volcanism, 172mudflow, 205multi-ring basin, 130, 135multiple working hypotheses, 17

NAIF, Navigation and Ancillary InformationFacility, 59

nakhlites, 115

430 Subjects

Nanedi Vallis, Mars, 198NASA Resource Prospector, 383natural philosophy, 15Navier–Coulomb, 202NEA, 377Near-Earth Objects, NEO, 126Neith, 289Neith, crater, 290Neumann lines, 117New Horizons, 124, 307, 324Newtonian fluid, 205Nirgal Vallis, Mars, 198Noachian, 198nomenclature, 57non-magmatic iron meteorites, 118nonconformity, 29normal faults, 151normal stress, 202novae, 155, 180nucleus, comet, 328

obduction, 266oblique impact, 141, 142oligarchic growth, 222olivine, 189, 214one-plate planets, 149Opportunity rover, 21, 215, 376optical mining, 382ore formation, 376organic compounds, 379organic material, meteorites, 112organic matter, extraterrestrial, 350orogen, 266orogenic belts, 161orthorectification, 60Outer Space Treaty, 389outflow channel, 199, 200outflow channels, 20, 199outgassing, 178outlet, 193overland flow, 196overland flows, 196

pahoehoe lava, 159paleo-resonance, 297paleolake, 202palimpsest, 289, 290Pallasites, 116panspermia, 349paraconformity, 29partial pressure, 207Pathfinder, 225

patterned ground, 19PDS label, 410Peace Vallis, Mars, 200peak-ring crater, 130pedogenesis, 270Peléan eruption, 158pene-palimpsest, 289, 290perchlorates, 213, 215, 277periglacial, 211, 213periglacial landforms, 211–213permafrost, 21, 198, 199, 208, 211, 212Perseids, 104phase angle, ', 37Philae, 50Phobos, Mars moon, 94Phobos-2, 379Phoenix Lander, 50, 211, 213, 215, 376photodissociation, 328photogrammetry, 42, 60photoionization, 328photometric correction, 58phreatomagmatic eruptions, 161piezophiles, 360Pilbara craton, 353pillow lavas, 161pingos, 212, 213pitted cones, 172Planetary Data System, 57planetary dynamics, 254planetary embryos, 222Planetary Image Cartography System (PICS),

58planetary nomenclature, 62Planetary Protection, 364planetary protection, 52planetary resource extraction, 380–382planetary resource mining, 380planetesimals, 222, 257plate tectonics, 149, 156, 162, 200playa deposit, 189Plinian eruption, 158plume, 299Pluto, 307polar lakes, 212polygenetic volcano, 157polygonal cracks, 206polygons, 213polygons, non-sorted, 211polygons, sorted, 211positional accuracy, 59potential fields, 44–45precession, 225precipitation, 196primitive life, 351

Subjects 431

primordial life, 352primordial soup, 350principle of cross-cutting, 24principle of lateral continuity, 23principle of original horizontality, 23production function, 123, 125progradation, 27proto-atmosphere, 242protoplanetary disk, 221, 313pseudotachylites, 143psychrophiles, 358pushbroom, 39pushframe, 39pyroclastic flows, 205pyroclastic material, 179pyroclasts, 176pyroxene, 189

radar, imaging, 44radar, interferometry, 44radial fractures, 155radiance, 36radiogenic heat production, 163radiometric ages, 125radiometric calibration, 58Raman spectrometry, 48Raman spectroscopy, 50Ranger VII, 56Rayleigh number, 228, 229, 232recurrent slope lineae, 21, 203, 206recurring slope lineae, RSL, 376refractory inclusions, 106regmaglypts, 105regolith, 196, 213, 217, 261regressive erosion, 196relative age, 124relative age dating, 24Remote Sensing, 56remote sensing, active, 35remote sensing, ambiguity, 72remote sensing, passive, 35reptation, 189reptation, grains, 187reseau marks, 38resonance orbit, 126resonance zone, 319resonance, Laplace, 290resource processing, 383–385resurfacing, 288resurfacing rate, 123retrograde rotation, 225rheologic boundary, 154ridge belts, 278

ridged plains, 175rifts, 153ring of fire, 171ripple ring basins, 135ripples, 188, 189, 200roches moutonnées, 207rock glaciers, 208rock magnetisatin types, 239rockfalls, 202Rosetta, 42, 348, 379Rosetta spacecraft, 327–330, 332rotational slides, 202roughness, 186roughness length, 186rover exploration, 74–75rover mobility, 74RSL, 278runoff, 196runout distance, landslide, 204

S-type, asteroid, 316, 378sagduction, 163saltation, 187, 189, 190saltation, grains, 187sample caching, 90sample return, 51–52sand dunes, 190sand sheet, 189sand wedges, 211sapping, 19, 21, 269sapping valleys, 196saprolite, 214Saturn, 185scalloped terrain, 210scalloped terrains, 210Scientific Revolution, 8secondary atmosphere, 242secondary craters, 136secular planetary cooling, 167sedimentary rocks, 155sediments

eolian, 191lacustrine, 191

seepage, 196segregation, ice, 211, 212seif (dune), 189seismic measurements, 45seismic methods, 224seismic profiles, 26seismics and subsurface sounding, 45–47SELENE, 60selenography, 6shear force, wind, 186

432 Subjects

shear stress, 202shear stress, critical, 205shergottites, 115shock heating, 144shock melting, 143shock metamorphism, 109, 117, 127shock wave, 127

attenuation, 127sill, 164simple crater, 129sinkholes, 216sinuous rilles, 179sinuous valley, 198skylight, 159slab pull, 161slides, 202slipface, 189slope streaks, 204small bodies, ground truth, 93–94Small Main-Belt Asteroid Spectroscopic

Survey, 316small shields, 181smectite, 214snow avalanche, 204snow line, 324soft sediment deformation, 155Sojourner, 363solar elevation angle, ˛, 37Solar Nebula, 324solar-wind particles, 373solid state crystallisation, 109solid-to-water ratio, 198solidus, 224solifluction, 212, 213solifluction lobes, 212space resource utilization, 385–389Space Studies Board, 364space weathering, 217space-time diagram, 29spallation, 136, 139SPICE, 59spiders, 209spinel, 371Spirit rover, 190stagnant-lid regime, 230–231, 234star, see dnes189Stardust, 51, 329Steno’s principles of stratigraphy, 23stratigraphy, 22stream length, 195stream order, 195strength-dominated cratering, 128strike-slip faulting, 154stromatolites, 351, 364

Strombolian eruption, 158subglacial lakes, 22sublimation, 185, 208–210sublimation polygons, 210sublimation rate, 210subsurface flow, 196superposition, principle of, 23superrotation, 81surface flow, 196suspension, 187, 190synchronous rotation, 285synthetic reasoning, 15

tear-drop shaped islands, 199tectonic style, 161tectonism, 291, 300, 307terrestrial analogues, 18, 71terrestrial planet formation, 222terrestrial weathering, 109tesserae, 167, 266, 278Tharsis, 204thaw, 213thaw slumps, 212the Moon, ground truth, 76–80thermal boundary layers, 230thermal contraction, 211thermal contraction cracks, 210thermal contraction polygons, 211thermal metamorphism, 109thermal segregation, 296thermal state, 222thermal stress, 211thermokarst, 212, 213thermokarst lakes, 212thermophiles, 356thermophilic, organisms, 354thermostat effect, 234Tholen classification, 316tholins, 286, 291, 295, 306threshold velocity, 186, 187thrust fault, 154tidal deformation, 297tidal despinning, 167tidal stress, 293tiger stripes, 299, 300Titan, 300–302transient cavity, 132, 135, 144transient cavity depth, 129transient cavity diameter, 129transverse dunes, see dnes189tranverse eolian ridges (TARs), 189traverse, landing site exploration, 79tree of life, 354

Subjects 433

tube-fed lava flows, 159tuff cone, 176tuff ring, 176tunnel valleys, 208turbulence, wind, 187two-plate planet, 168

UAV, 75, 97uncompressed density, 225unconformity, 28uplift, 132Uranus, 303–306Utopia Planitia, Mars, 210

Valles Marineris, Mars, 204valley

fluvial, 195valley networks, 198valley, fluvial, 193valleys, 199varnish, 216varnishes, 217vector mapping editing, 67Vega, 329Venera, 50Venera, lander, 81ventifact, 191Venus, 192Venus analogues, 20Venus atmosphere, 241Venus, future landers, 82Venus, ground truth, 81–83VICAR, image processing system, 58–60vidicon, 38, 74Viking, 20, 38, 50, 225Viking Mars landers, 19, 364viscosity, 205, 206viscosity, interiors, 229viscosity, mantle, 232viscous creep, 206viscous relaxation, 162

volatile exsolution, 160volatiles, 185, 204–206, 209volcanic analogues, 20volcanic dome, 179volcano, 17volume, 224–228volume-limited flows, 160vortex ring, 138Voyager, 285, 287–289, 294, 297, 303,

305–307Vulcanian eruption, 158

water vapor, 207Water worlds, ground truth, 94–96weathering, 214, 243weathering, chemical, 213–214weathering, mechanical, 213whalebacks, 207whiskbroom, 39Widmannstätten pattern, 117wind, 186wind streaks, 192wind velocity, 186windward side, dune, 188winonaites, 114wrinkle ridges, 153

X-group asteroids, 316X-ray diffraction, 50X-ray fluorescence, 50

yardangs, 19, 20, 191Yarkovsky-effect, 318Yenisey 2, 38yield strength, 205YORP effect, 318

zenith angle, � , 37