Aerodynamic Characteristics of a 1/24-Scale F-111 Aircraft ...

133
I i i - ." i M ,1 I • ,, , " ' AEBO-TII-iS-N AFATL-TII-7$-§§ ARCHIVE COPY DO NOT LOAN AEIIOi)YNAMIO OIIAIIAOTEIlISTIOS OF A 1/24-SOALE F-111 AIIIOIIAFT WITH VARIOUS EXTERNAL STORESAT IIAm NUMBERS FROM 0.6 TO 1.3 C. F. Ande'rson ARO, Inc., a Sverdrup Corporation Company PROPULSION WIND TUNNEL FACILITY ARNOLD ENGINEERrNG ~DEVE1.OPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389 July 1978 Final Report for Period 23 December 1977 - 9 January .1978 I i I Approved for public release; distribution unlimited. I Prepared for PrOperly ef L; S Air r. ,, " Force ~,.D,., L~R4~y FJo~bO- "/ /.O,.~jO~ ,3 AIR FORCE ARMAMENT LABORATORY/DLJCA EGLIN AIR FORCE BASE, FLORIDA 82542

Transcript of Aerodynamic Characteristics of a 1/24-Scale F-111 Aircraft ...

I

i

• i

- . " i

M

,1 I

• ,, , " '

AEBO-TII-iS-N AFATL-TII-7$-§§

ARCHIVE COPY DO NOT LOAN

AEIIOi)YNAMIO OIIAIIAOTEIlISTIOS OF A 1/24-SOALE F-111 AIIIOIIAFT WITH VARIOUS EXTERNAL

STORES AT IIAm NUMBERS FROM 0.6 TO 1.3

C. F. Ande'rson ARO, Inc., a Sverdrup Corporation Company

PROPULSION WIND TUNNEL FACILITY ARNOLD ENGINEERrNG ~DEVE1.OPMENT CENTER

AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389

July 1978

Final Report for Period 23 December 1977 - 9 January .1978 I

i

I Approved for public release; distribution unlimited. I

Prepared for

PrOperly ef L; S Air • r . , , " Force ~,.D,., L~R4~y

FJ o~bO- "/ /.O,.~jO~ ,3

AIR FORCE ARMAMENT LABORATORY/DLJCA EGLIN AIR FORCE BASE, FLORIDA 82542

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any fights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto,

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commerical products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Information Office (Of) and is releasable to the National Technical Information Service (NTIS). At .NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

Project Manager, Research Division Directorate of Test Engineering

Approved for publication:

FOR THE COMMANDER

Director of Test Operatio CHAUNCEY D. SMITH, Jn R, Lt Colonel, ~/SAF

Deputy for Operations

UNCLASSIFIED R E P O R T D O C U M E N T A T I O N P A G E

, REPORT NUMBER AEDC-TR-78-35 "!2 GOVT ACCESS,ON NO.

AFATL-TR-78- 55 1 4 T I T L E ( ~ d Subrmete)

AERODYNAMIC CHARACTERISTICS OF A 1 / 2 4 - SCALE F - i l l AIRCRAFT WITH VARIOUS EXTERNAL STORES AT MACH NUMBERS FROM 0 . 5 TO 1 . 3

? AU T H O R f s )

C. F. Anderson, ARO, Inc.

9 P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D ADDRESS

A r n o l d E n g i n e e r i n g Deve lopment C e n t e r Air Force Systems Command Arnold Air Force Station, TN 37389

11 C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

A i r Fo rce Armament Laboratory/DLJCA E g l i n A i r F o r c e B a s e , F l o r i d a 32542

t4 M O N I T O R I q G A G E N C Y N A M E 8 ADDRESS.* I ! d l f fe ren f fJ'om Conr ro | i i n l l O f f i c e )

READ [NSTRUCTZONS BEFORE COMPLETING FORM

't R E C I P I E N T ' S C A T A L O G N U M B E R

S TYPE OF REPORT 6 PERIOD COVERED F i n a l R e p o r t , 23 Dec 1977 - 9 J a n 1978

6 P E R F O R M I N G ORG. R E P O R T N U M B E R

0. C O N T R A C T OR G R A N T N U M B E R f s )

10. P R O G R A M E L E M E N T . P R O J E C T . T A S K A R E A & WORK U N I T N U M B E R S

P r o g r a m E l e m e n t 65807F S y s t e m 06ZA, T a s k 01

12. R E P O R T D A T E

J u l y 1978 13 N U M B E R OF P A G E S

129 IS S E C U R I T Y CLASS. (o f ~h#a repor t )

UNCLASSIFIED

ISe D E C L ASSI F IC A T I O N ' D O W N G R A D I N G SC.EDULE N/A

16 D I S T R I B U T I O N S T A T E M E N T (o f t h i l RepotJ)

A p p r o v e d f o r p u b l i c r e l e a s e ; d i s t r i b u t i o n u n l i m i t e d .

17 D I S T R I B U T I O N S T A T E M E N T (e l the ebmtrect entered in Brock 30, I t d i l l e ten l Item Report )

18 S U P P L E M E N T A R Y N O T E S

A v a i l a b l e i n DDC.

19 K E Y WORDS "Cont inue ~ reve rse a;de i f n e c e ~ J a ~ ~ d I d e n r t ~ by block number)

F - 1 Z 1 a i r c r a f t e x t e r n a l s t o r e s a e r o d y n a m i c c h a r a c t e r i s t i c s w i n d t u n n e l t e s t s t r a n s o n i c f l o w

20 A B S T R A C T "ConJtnue ~ r eve rse sJde t f necesnRty end | den t l f y by b lock numbe~

T h i s r e p o r t p r e s e n t s a n d d i s c u s s e s t h e r e s u l t s o f t r a n s o n i c w i n d t u n n e l t e s t s c o n d u c t e d t o e v a l u a t e t h e e f f e c t s o f e x t e r n a l s t o r e s on t h e a e r o d y n a m i c c h a r a c t e r i s t i c s o f t h e F - 1 1 1 a i r c r a f t a t w i n g sweep a n g l e s o f 26 , 45 , a n d 54 d e g . The a n a l y s i s i n c l u d e s e v a l u a t i o n o f t h e i n c r e m e n t a l c h a n g e s i n t h e d r a g , s t a t i c m a r g i n , a n d l a t e r a l - d i r e c t i o n a l d e r i v a t i v e s a s s o c i a t e d w i t h t h e v a r i o u s s t o r e c o n f i g u r a t i o n s . Wind t u n n e l c o e f f i c i e n t d a t a f o r a c l e a n

D D FORM ' JAN ?, 1 4 7 3 ED,T,ON OF ' NOV SS ,S OBSOLETE

UNCLASSIFIED

UNCLASSIFIED

20. ABSTRACT ( C o n t i n u e d )

b a s e l i n e c o n f i g u r a t i o n a r e a l s o p r e s e n t e d . Da ta a r e p r e s e n t e d w i t h p y l o n s a l o n e , GBU-Z0, GBU-15CCW, GBU-15CCW w i t h e x t e n d e d Pave Tack pod , AGM-65, R o c k e y e , SUU-30H/B, and ~K-82SE s t o r e s . Da ta a r e p r e s e n t e d f o r Mach numbers r a n g i n g f rom 0 . 5 t o 1 . 3 a t a n g l e s o f a t t a c k f rom -2 t o 16 deg a t z e r o s i d e s l i p a n g l e , and f o r s i d e s l i p a n g l e s f r o m -10 t o 10 deg a t a n g l e s o f a t t a c k o f 5, 10, and 15 deg .

AF|C Arnold AFS Tenn

UNCLASSIFIED

AEDC-TR-78-35

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), at the request of the Air Force Armament Laboratory (AFATL/DLJCA) under Program Element 65807F. The Armament

Development and Test Center (ADTC) project monitor was Lt. Thomas Speer. The results of the test were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Number P41C-O4A. Data reduction was completed on February 3, 1978,

and the manuscript was submitted for publication on May 16, 1978.

A EDC-TR-78-35

CONTENTS

Page

1.0 INTRODUCTION ................................ 5

2.0 APPARATUS ................................... 5

2.1 Test Facility and Model Support System . . . . . . . . . . . . . . . . . . 5

2.2 Test Articles ................................ 5

2.3 Instrumentat ion ............................... 6

3.0 TEST DESCRIPTION ............................... 6

3.1 Test Conditions, Procedures, and Test Program . . . . . . . . . . . . . . . 6

3.2 Data Reduction and Corrections . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Data Uncertainty ............................... 8

4.0 TEST RESULTS .................................. 8

5.0

4.1

4.2

4.3

4.4

SUMMARY OF RESULTS

Aerodynamic Characteristics of the Baseline Configuration . . . . . . . . . 8

Effects of Reynolds Number, Transition Grit, and Afterbody

Modifications ................................. 9

Aerodynamic Hysteresis Effects . . . . . . . . . . . . . . . . . . . . . . . 10

Effects of External Store Loadings . . . . . . . . . . . . . . . . . . . . 10

. . . . . . . ' . . . . . . . . . . . . . . . . . . . . . 12

ILLUSTRATIONS

1. Tunnel Installation ............................... 13

2. F-111 Model ................................... 14

3. External Store Suspension Equipment . . . . . . . . . . . . . . . . . . . . . 20

4. External Stores ................................. 23

5. Boundary-Layer Transition Grit Pattern . . . . . . . . . . . . . . . . . . . . 30

6. Pylon/Store Configuration Identification . . . . . . . . . . . . . . . . . . . . 31

7. Tunnel Flow Angularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8. Aerodynamic Characteristics o f the F-111 Aircraft,

Clean Configuration ............................... 33

9. Static Stability Derivatives and Drag Coefficients o f the

F-111 Aircraft, Clean Configuration . . . . . . . . . . . . . . . . . . . . . . 51

10. Reynolds Number Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11. Transition Grit Effects, A = 26 deg . . . . . . . . . . . . . . . . . . . . . . . 62

12. Sting Fairing Effects, A = 26 deg . . . . . . . . . . . . . . . . . . . . . . . . 65

3

AE DC-TR-78-35

13. Typical Hysteresis Effects, a = 15 deg, A = 45 deg, M.. = 1.2 . . . . . . . . .

14. Effects o f External Stores on the Static Margin . . . . . . . . . . . . . . . .

15. Effects o f External Stores on the Drag Coeff ic ient . . . . . . . . . . . : . . .

16. Effects o f External Stores on the Static Directional Stabil i ty

Derivative ....................................

17.

68 74

84

94

Effects o f External Stores on the Effective Dihedral . . . . . . . . . . . . . . 104

TABLES

1. Part Number Index . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 114

2. A e r o d y n a m i c Coefficient Uncertain,ties . . . . . . . . . . . . . . . . . . . . . 127

3. Incrementa l Drag Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 128

N O M E N C L A T U R E ............................... 129

4

A E D C-TR-78-35

1.0 INTRODUCTION

Wind tunnel tests were conducted to evaluate the effects of various external store loa(lings on the performance and stability of an F-111 aircraft model. The tests were

conducted in the Aerodynamic Wind Tunnel (4T) of the AEDC Propulsion Wind Tunnel

Facility (PWT) using a 1/24-scale F - I l l aircraft model. Static longitudinal stability, drag,

and static lateral-directional stability data were obtained for the clean aircraft model, mod~l with pylons alone, and model with various external store configurations. These data were obtained for wing sweep angles of 26, 45, and 54 deg at Mach numbers from 0.5 to 1.3. Angle of attack was varied from -2 to 16 deg at zero sideslip angle. Sideslip

angle was varied from -10 to 10 deg at angles of attack of 5, 10, and 15 deg.

2.0 APPARATUS

2.1 TEST FACILITY AND MODEL SUPPORT SYSTEM

Tunnel 4T is a continuous flow, closed-loop, variable density wind tunnel equipped with a sonic nozzle. The normal Math number range is from 0.1 to 1.3; however, removable nozzle block inserts can be installed to give Math numbers of 1.6 and 2.0. The stagnation pressure can be varied from 300 to 3,700 psfa. The test section is 4 ft square and 12.5 ft long with perforated, variable porosity (0.5- to 10-percent open) walls. A detailed description of the tunnel and its capabilities may be found in the Test Facilities Handbook. 1

The model support system consists of a pitch sector and sting which provide a pitch capability from -8 to 28 deg with respect to the tunnel centerline. The pitch center is located at tunnel station 108. The model support system has a remote-control roll system that allows the model to be rolled -+ 180 deg.

A schematic of the test section showing the model location is presented in Fig. 1, and model details and installation photographs are presented in Fig. 2.

2.2 TEST ARTICLES

The test articles were 1/24-scale models of the F-111 aircraft, AGM-65, Rockeye, MK-82SE, SUU-30H/B, GBU-10, and GBU-15CCW stores, an extended Pave Tack pod, and associated suspension equipment. The F-I 11 model had flow-through ducts and was equipped with Type II inlets (no splitter plates) containing fixed 10-deg inlet spikes and

lTest Facilities Handbook (Tenth Edition). "Propulsion Wind Tunnel Facility, Vol. 4." Arnold Engineering Development Center, May 1974.

AEDC-TR-78-35

nozzle plugs. The aft fuselage and exhaust nozzles were modifed to allow insertion of the

balance and sting. The model had a fairing above and below the sting between the

exhaust nozzles; however, it was removed to avoid fouling the sting. Limited data were obtained with steel shimstock faMngs installed between the exhaust nozzles to evaluate

the effects of removing the sting fairing on the aerodynamic coefficients. The model is shown with and without the fairing in Fig. 2. The model stabilator was held constant at

zero deg with respect to a waterline throughout the test.

The LAU-88 triple rail launchers used with the AGM-65 stores were modified by deleting the stop normally installed at the aft end of each rail to allow for the installation of store balance sting mounts; however, the AGM-65 stores were bolted directly to the launchers for the current test. Basic details and dimensions of the models

are presented in Figs. 2 through 4. The transition grit pattern used in evaluating possible

boundary-layer transition effects is shown in Fig. 5. Only limited testing was conducted

with transition grit installed on the model.

Pylons were installed at the pivot stations (3 through 6) for all testing except for

data obtained for the clean configurations. BRU-3AA racks were installed only on those

pylons carrying MK-82SE, SUU-30H/B, or Rockeye stores. The pylon loadings for all

configurations tested are presented in Fig. 6.

The Pave Tack pod is semisubmerged in the weapons bay when extended. A model representing the exposed portion of the extended Pave Tack pod was attached to the

centerline of the weapons bay at MS 12.78 when required.

2.3 INSTRUMENTATION

A six-component, internal strain-gage balance was used to measure the forces and

moments on the F - I l l model. Two base pressure measurements were made using

transducers and orifice tubes which extended just aft of the base of the nozzle plugs.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS, PROCEDURES, AND TEST PROGRAM

Static stability data were obtained for all configurations at Maeh numbers from 0.5

to 1.3 at a constant total pressure of 1,200 psfa. Limited data were also obtained at

2,000 psfa for M.. = 0.5, 0.9, and 1.3 with A = 26 and 54 deg with the clean model in order to evaluate possible Reynolds number effects. Transition grit effects were evaluated with the clean model at Pt = 1,200 psfa for Mach .numbers from 0.6 to 0.95 with A = 26

deg. The nominal test conditions were:

6

M= Pt' psfa Re x 10 -6

0.5 1,200 1.71

0.5 2,000 2.80

0.7 1,200 2.11

0.8 1,200 2.30

0.9 1,200 2.41

0.9 2,000 4.09

0.95 1,200 2.44

1.05 1,200 2.50

1.10 1,200 2.53

1.20 1.200 2.55

1.30 1,200 2.55

1.30 2,000 3.99

, pe r foot

A E DC-TR-78-35

The test procedures were conventional in nature, consisting of varying the model

angle of attack incrementally at zero sideslip angle, or varying the model angle of sideslip

at a constant angle of attack. The test program that was completed during these tests is presented in Table 1 and provides a key to all the wind tunnel data obtained.

3.2 D A T A R E D U C T I O N A N D C O R R E C T I O N S

Wind tunnel force and moment data were reduced to coefficient form in the

stability axis system. Base drag was calculated using an average of two nozzle plug

pressure measurements and was used to calculate forebody coefficients. However, all data

presented in this report are measured coefficients. Moments were referenced to MS 21.951 (45-percent MAC at A = 16 deg), WL 7.396, and BL 0 (see Fig. 2).

The angle of attack an.d angle of sideslip were corrected for sting and balance deflections caused by the aerodynamic loads. The model was tested both upright and

inverted at' the three wing sweep angles to provide the data to correct for tunnel flow

angularity. On the basis of these data, the angle of attack was corrected as indicated by the curve faired through the data presented in Fig. 7. Corrections for the components of model weight, normally termed static tares, were also applied to the data.

7

AE DC-TR-78-35

3.3 DATA UNCERTAINTY

The data uncertainties determined for a confidence level of 95 percent are presented in Table 2. The aerodynamic coefficient uncertainties include the uncertainties of Math

number and dynamic pressure together with the uncertainty contribution associated with

the balance and instrumentation system. Model angle-of-attack uncertainty has been estimated to be -0.1 deg and model roll angle +0.4 deg.

4.0 TEST RESULTS

The static stability and drag characteristics of the clean F-111 aircraft model are presented together with data showing the incremental effects of various external stores on

the drag and on the static longitudinal and lateral-directional stability derivatives. All aerodynamic coefficients are presented for the baseline (clean) configuration; however,

only incremental data are presented to show the effects of external stores. The incremental data were obtained by subtracting coefficients and derivatives of the baseline configuration from the coefficients and derivatives of the configurations with stores.

Drag increments were calculated at specific lift coefficients from nonlinear curve fits

of the lift and drag coefficients. The static margins were evaluated by taking the slope of a linear least-squares curve fit of Cm versus CL for nominal angles of attack from -2 to 6 deg. Lateral-directional derivatives were also evaluated from linear least-squares curve fits of the data for nominal sideslip angles from -4 to 4 deg.

All moment coefficients and stability derivatives are referenced to a standard moment reference center located at 45 percent of the MAC with the wing at 16 deg sweep angle (see Fig. 2).

4.1 AERODYNAMIC CHARACTERISTICS OF THE BASELINE CONFIGURATION

The static aerodynamic characteristics of the clean F-1 I1 model are presented in

Fig. 8. Although the characteristics are generally well behaved, the lift coefficient variation with angle of attack exhibited unusual changes in slope at M= = 0.9 and 0.95

with A = 26 deg. Also, the rolling-moment coefficient was less well behaved at M** i> 0.8

for A = 26 deg. The reason for the rolling-moment coefficient behavior is not known; however, hysteresis checks made at a = 15 deg indicate that the data repeated within the

data uncertainty when the model was yawed in both directions. Hysteresis is responsible for the shift in the Cn curves at a =15 deg at supersonic Math numbers (Fig. 8e) and is discussed further in Section 4.3.

8

A EDC-TR-78-35

The data presented in Fig. 8 are summarized in Fig. 9 in terms of static longitudinal and lateral-directional stability parameters and drag coefficients at specific values of the

lift coefficient. These data show that the F - I l l model has essentially"neutral static

longitudinal stability at A = 26 deg. Static longitudinal stability increases with increasing

wirig sweep angle and with increasing Math number for M** > 0.9.

The static margin was calculated by a linear fit of the CL versus Cm curves in order to provide a single figure representative of the static longitudinal stability over a

moderate angle-of-attack range. This procedure provides a reasonable approximation for A =

45 and 54 deg; however, both CL and Cm have significant nonlinearities at low angles of

attack at A = 26 deg. Therefore, static margins for A = 26 deg were also calculated by

determining the slope of a nonlinear curve fit of CL versus Cm at specific values of CL to

show the effects of nonlinearities on the static margin (Fig. 9b). The linear curve fit

rel~resents a reasonable approxinaation of the static margin in the angle-of-attack range of

interest for Mach numbers through 0.8. At M = 0.9 and 0.95, at A = 26 deg, SM and ASM should be used with caution because of the nonlinearities in CL and Cm.

As shown in Fig. 9, the F-111 model was directionally stable at all conditions tested

except at a = 15 deg at M,, = 1.05 and 1.1, where the model became directionally unstable. The F-I 11 model also had favorable effective dihedral except at a = 5 deg for

Maeh numbers near 0.8 and 0.9 at A = 26 deg.

4.2 EFFECTS OF REYNOLDS NUMBER, TRANSITION GRIT, AND AFTERBODY MODIFICATIONS

The effects of Reynolds number were investigated by testing the clean model at Pt = 2,000 psfa at M**= 0.5, 0.9, and 1.3 for A = 26 and 54 deg (Fig. 10). A~ qrent Reynolds

number effects are evident for angles of attack above 8 deg at M® = 0.5 and at all angles

of attack at M** = 0.9 for A = 26 deg. At A = 54 deg, increasing Reynolds number had

no effect at M** = 0.9; at M** = 1.3, increasing Reynolds number decreased CL, increased

Cm, and had little effect on CD for angles of attack above 8 deg. The addition of transition grit (Fig. 11) had no significant effect on the aerodynamic coefficients of the

clean model at A = 26 deg, indicating that the changes produced by increasing total pressure are not necessarily boundary-layer transition effects.

High balance dynamic loads limited the testing that could be accomplished at Pt =

2,000 psfa. Since the primary purpose of the test was to evaluate the incremental changes in aerodynamic coefficients by adding external stores to the F-111 aircraft, and the

effects produced by increasing total pressure are not believed to affect the incremental

data, all store effect data were obtained at Pt = 1,200 psfa and without transition grit.

9

AE DC-TR-78-35

The model was designed with fairings above and below the sting between the nozzle ducts. These fairings were deleted to prevent the sting from fouling the model (Fig. 2c). The effects of removing the fairings were investigated at A = 26 deg by welding steel shimstock between the nozfle ducts as shown in Fig. 2c. The effects of the sting fairings

on CL, Cm, and Co are shown in Fig. 12. As expected, the principal effect of the sting falrings was to increase the nose-down pitching moment at all Mach numbers. There was

also a slight increase in CL at angles of attack above 6 deg at M. = 0.95. All data

presented in this report were obtained with the sting fairing removed except for the data presented in Fig. 12.

4.3 AERODYNAMIC HYSTERESIS EFFECTS

Aerodynamic hysteresis occurs when the value of an aerodynamic coefficient depends on the past history of the model motion, and this phenomenon makes analysis and application of the data difficult. Aerodynamic hysteresis had been observed in pitch and yaw polars at angles of attack below 20 deg during recent transonic wind tunnel tests of a fighter configuration. Therefore, a brief survey was conducted to determine whether aerodynamic hysteresis occurred within the angle-of-attack and sideslip range of the current test.

Hysteresis effects were investigated by pitching and yawing the model in both directions. No significant hysteresis effects were observed for pitch polars; however,

significant hysteresis effects were observed in yaw polars with the clean configuration for

a = 15 deg at supersonic Mach numbers. Typical hysteresis effects obtained while yawing the model from -10 to 10 to -10 deg for the clean aircraft and with 12 SUU-30H/B

stores, at M = 1.2 and a = 15 dec, are presented in Fig. 13. At these test conditions, all aerodynamic coefficients except CN exhibited some hysteresis for the clean configuration, with yawing moment showing the most pronounced effect. Only limited hysteresis data were taken with external stores; however, the data suggest that the addition of pylons, with or without external stores, significantly reduced hysteresis effects during yaw polars. Because test time was limited, all yaw polars could not be run in both directions. Therefore, most of the yaw polars were run with increasing ~3, and all yaw data presented in the remainder of this report were obtained while increasing/$ from -10 to 10 dec.

4.4 EFFECTS OF EXTERNAL STORE LOADINGS

The effects of pylons and various loadings of external stores on the static margin are presented in Fig. 14. Pylons-alone and single-carriage store effects are shown in Figs. 14a through d, and multiple-carriage store effects are shown in Figs. 14e through j. All

10

AE DC-TR-78-35

external store loadings were generally destabilizing, except at M** = 0.8 and 0.9 with A =

26 deg. Single-carriage loads were generally less destabilizing than multiple-carriage loads. Adding the extended Pave Tack pod to the model with four GBU-15CCW stores had little

effect on the static longitudinal stability at subsonic Math numbers and produced a slight

increase in static longitudinal:stability at supersonic Mach numbers.

Incremental drag data showing the effects of pylons and various external store loadings on the drag of the clean F-111 model are presented in Fig. 15. The variations of the incremental drag coefficients exhibit the normal transonic drag rise. The incremental drag coefficients also decrease with increasing wing sweep angle. Drag increments produced by the various external stores at representative level flight values of CL are also

presented in tabulated format in Table 3.

The effects of various external store loadings on the static directional stability derivative are presented in Fig. 16 in the form of incremental changes in the static

directional stability derivative. Most pylon store configurations had little effect on static directional stability except at M** = 0.9 and 0.95 where the GBU-i0, GBU-15CCW, and

AGM-65 stores generally degraded the static directional stability at a = 15 deg. At supersonic Math numbers, pylon store configurations generally increased the static

directional stability (positive ACnl3). The static directional stability contribution of all

pylon store configurations increased with increasing Math number and wing sweep angle at supersonic Math numbers. Adding the extended Pave Tack pod to the fuselage

centerline degraded the static directional stability at all wing sweep angles, angles of attack, and Math numbers.

The effects of external store configurations on the effective dihedral are presented in Fig. 17. At A = 26 deg, pylon stores generally increased the effective dihedral (negative AC£/3) at a = 5 deg. At higher angles of attack, most pylon store configurations decreased the effective dihedral. In .particular, the incremental data in Figs. 17c and d, when compared to the clean configuration data in Fig. 9e, show that the GBU-15CCW with and without the extended Pave Tack pod degraded C~l 3 sufficiently to change the effective dihedral from favorable to unfavorable at a = 15 deg at M-- 0.7.

Increasing the wing sweep angle decreased the effect of pylon stores on the effective dihedral. However, at A = 45 deg, the low effective dihedral of the clean aircraft at a = 5

and 10 deg for M= > 0.9 allowed all pylon store configurations to reduce the effective

dihedral to near zero. Adding the extended Pave Tack pod to the aircraft with four GBU-15CCW stores had no significant effect on the effective dihedral.

11

AE DC-TR-78-35

5.0 SUMMARY OF RESULTS

Transonic wind tunnel tests were conducted to determine the effects of external stores on the aerodynamic characteristics of the F-I ! 1 aircraft. The results obtained are summarized as follows:

. For the moment reference point chosen, the clean aircraft model exhibited

near-neutral longitudinal stability for a 26-deg wing sweep angle and was

directionally unstable at high angles of attack at Math numbers 1.05 and 1.10.

. The clean aircraft model exhibited hysteresis effects during yaw polars for

all coefficients except the normal-force coefficient. The yawing-moment coefficient exhibited the most hysteresis effects. Addition of pylons, or

pylons and stores, significantly reduced hysteresis effects.

.

.

Generally, all pylon store and pylon configurations tested decreased the static longitudinal stability, except for Math numbers 0.8 and 0.9 at wing sweep angles of 26 deg, where pylons, single carriage, and AGM-65 store configuations increased the sta'tic longitudinal stability.

Adding pylon stores generally had little effect on the static directional stability at subsonic Math numbers except at M** = 0.9 and 0.95, where

the GBU-10, GBU-15CCW, and AGM-65 were destabilizing at high angles

of attack. All external stores increased the static directional stability at supersonic Math numbers.

.

.

Most pylon store configurations produced a favorable dihedral effect at an angle of attack of 5 deg and an unfavorable dihedral effect at higher

angles of attack at a wing sweep angle of 26 deg. Increasing wing sweep

angle decreased the effect of pylon stores on the effective dihedral.

Adding the extended Pave Tack pod increased the static longitudinal stability at Mach numbers above 1.0, increased the drag coefficient, decreased the static directional stability, and had no significant effect on the effective dihedral.

12

600"~ ~ . ~ / ~ 0.500 DIA. ~-AIRSTREAM SURFACE

o,~_ p'/////////////////z/~'-~.~ L~ ~ " ~'~'//'/ TYPICAL PERFORATED WALL CROSS SECTION

TUNNEL STATIONS AND DIMENSIONS ARE IN INCHES

uJ

~_ FLOW [ EXPANSION --~1

REGION l STA. STA. 0 . 0 36 .0

"OLID AREAS

7 PERFORATED WALLS ( I0 To MAXIMUM OPEN AREA)

5 . 8 5 °

,L•• ,., __- ~ ~~ _

84 .2 108.0 120.0 150.0 PITCH

- CENTER

Figure 1. Tunnel installation.

m o c) 11 O0

01

WL 6 4 7 5 - - I - - W L

I I FS 0 2 4 0 FS 21,951 FS 35792

7 396

3> m 0 C)

Co

ol

A

/6(Ref) 26 45 54 60 72 5

INBD PYLON PIVOT POINT FS BL

20.962 4 913 21.297 4.771

2 I, 843 4.352 22 047 4.096 22 160 3,910 22.238 3.488

OUTBO PYLON PIVOT POINT F-~ aC

21 291 7 873 22.135 7 629 23566 6.782 24 129 6 226 24-452 5.8 I0 24 978 4.847

EL -15

PYLON PIVOT

WING PIVOT

BL 2 929

, u ~. PIVOT PYLON 3

PIVOT PYLON 4

§L 2

m f p

~. PIVOT PYLON 6

FS 20.319 \ J STATIONS IN INCHES

BL 15.750 ~ (TAC WING TIP)

a. General arrangement Figure 2. F-111 model.

1.358

0 . 9 2 0 - - ~ - - ~

SECTION A-A

0.784 - - ~

1.129-~ SECTION B - B SECT,ON C-C

I ° 5 . 3 8 3 °

BALANCE

I_

5.85 °

- - 6 .000

b. iVIodel base details Figure 2. Cont inued.

-7 .594 - cJ DIMENSIONS IN INCHES

~> I11 o (3

-n

¢o

01

) O v IP LP D O LD D D D •

D o D o e ...... " o !

D e- o~~ 0

0 e O ° 0 ~ •

o e

'-"2-'.'.." ~O O • _ ° o ° o ~ W 0

O t 0

° I P o D e D O O O O O

c. Model photographs Figure 2. Continued.

AE DC 104-78

~> m c~ c)

:D

O0

01

-4

i!~ ~,, i'i ~ i~

~.i. ii/¸III ! iili iiiill i̧ i̧!i̧ i~i̧ i̧i̧ ~̧

• ,

• iiiii~!~ ~ iii.ii,i!i~ii

. ~ . ~ . ~ i .~ ~ . ~ : ~ ~" . ~ \ ~ ~ . - . . . . . . •

~ . "~i ~ ° ~ ~ . . ~

~;"~ • ~:i

~F

~i~ ̧

.......... i ~ ~

S t i n g F a i r i n g R e m o v e d m A E D C

c. Continued Figure 2. Continued.

m

.q -n

w

9 9 e ' O t i ~ ~ O

Q t O g S t i n ~ ' F a i t ' i n ~ I n s t a l l e d

9 ~ O e ~ O

t t :

ID

Q

O

Q

c. Continued Figure 2. Continued.

A E DC 275-78

I l l

c~

-I1

O0

¢JI

',,o

c. Concluded Figure 2. Concluded.

m

o

::0

0o

oi

0

O. 2 2 8 0 . 8 5 9 R - - 3 . 0 9 8 R

3 . 4 5 8 r ]

SECTION A - A

WL LOCATION POINT

WING CHORO'--T

i • WL ~

3* 0.325l 2 6 . 3 *

AXIS OF ROTATION

0 .750 o.l~, ;o~-\ 1, t"

1.718

A

ISrael)

-WL INSD PIVOT PY LON

8 . 0 2 2 26 8 . 0 1 6 45 a.ooe 54 8 . 0 0 3 6 0 8.0 0 I

72.5 8 . 0 0 0

OUTBD PIVOT PYLON 8.061 8 . 0 4 6 0.021 8 . 0 1 2 s. oo6 7 . 9 9 7

BRU-3A/A AND LAU-88 ATTACHMENT POINT

FWD 14-IN. SUSPENSION POINT

FWD 30* IN . SUSPENSION POINT

~> m 0 C)

oo

ol

Figure 3.

DIMENSIONS IN INCHES

a. Pylon External store suspension equipment.

WL

I . i °

L 6.885 -"

5.200

E 3.194 ~ 0.860 I~- ] I_

POINTS

0.141 ~ 0 . 3 3 5 J 14~0.235

I o N o2 o

p p / 3e

SECTION A-A OIMENSIONS IN INCHES

b. BRU-3A/A rack Figure 3. Continued.

}> I l l c~ -I :o CO

01

O. 166 - a

i . , _ _

m C) C~

0o

o l

-f" i

I - 3 . 9 8 9 1 DIMENSIONS IN INCHES

b J MAVERICK MS Q 4 8 8 AT CARRIAGE

1 . 4 8 8

, * " - I m I

, r " - -

_1_ / TAC PIVOT 7- 0.860 ~ ~ Y L O N ATTACHMENT

I

C -~ ÷ ' t ,I I

I 0.205

f

PYLON

~0.434~

c. LAU-88 triple-rail launcher Figure 3. Concluded.

0 560- 0387"" 0 286- ."

0 0 6 8 R - - \ _L. , \

I_}_o~56~- N o 2 . a o I I

0 1 8 4 ~

7 193

- - - 3609 ~ - - ~ POINT

-,.~3,-] _ .

_ I 0.6 FWO 3 0 - I N .

/ / -SUSPENS,ON ,S, , . - 0.,~,

-~'X

_ - - - - T ~ _ _ ~_

F-'I: o . . . . ,j 4~ ~--~,oo:~ o o , ~ . ~

DIMENSIONS IN INCHES

a. GBU-IO Figure 4. External stores,

~> m 0

o0 oi

i-0.012 FLAT WITH ,f]L.~.,,,~,ROU NDE 0 CORNERS

0.006 FLAT WITH /'J~ "~ FROUNDED CORNERS ~ [ ~

t / / ' ~ S 4 - O e 9 0.41TR(TYP) ~ ' ~ J ,., [ ~ " ~ HALF-ANGLE ~ L " - - - - 1 1 9 " - '

/ ~ "~ / - -O .uS2 ~ ~ ' J WEDGE (TYP) - ~ F ,- 7

(TYP)" O017R T 13 DEL SURFACE (~:yp) 0.979

o o , ; , 1 / \ _ L (TYF) v"~l"" ~" ~ ~ - - - - ' ~ " - ~ ~ t . - - - - . ,

- - / i t I "~,1 ; T - - S 3 I'--- '-Gs3 R----'~__J ~,,-~,_: MODEL '-"-" r ' ~ .~so s u R . c E 2 7 s o

SIDE v.sw S.DE V.EW S.DE V.EW STRAKE ANTENNA FIN

0.023 FLAT WiTH ROUNDED

~ - 0 . " 0 (

I H-o,4 ~~.~ f / r L,o-o,~

"~ ~ .

"~--MODEL SURFACE

)> rn 0 c)

-n

Do u1

t~

0 ,448 -

0.203R /

2.918 2.125 - -

_ [--0.625 D

6.433 • ~ - - - 2.612 -- FWD 30- IN.

SUSPENSION POINT ~ =

3.217 - - - - - 4.142

SIDE VIEW

,500N

" - - -0 .227

DIMENSIONS IN INCHES 2 . 4 5 ~

END VIEW

b. GBU-15CCW Figure 4. Continued.

BL 0.000 ~ m

t 0.834

I . i 6 8

MS 12.780

DIMENSIONS IN INCHES

c. Extended Pave Tack pod Figure 4. Continued.

0.667

83, ~ ° I _

" - 0 . 9 5 8 "-~

)> m

o ?

GO

01

1) m

w

b~

I.133R ~--~

1.321

4,O71 0.257-- ~ GOreS

L

DIMENSIONS IN INCHES

0 5 0 0 ~ . ~

oo,o_y~.\ y " ~" ~ 1 8 8

d. AGM-65 Maverick Figure 4. Continued.

~J

0 .155

l -

-FWD 1 4 - I N . SUSPENSION POINT

0 . 4 7 6 --

- - , . 5 4 3 ~ ° - '43- '1 I'- I

~ - 0. 7

. 7 0 4 R

: 3 . 7 5 3 L.. F 3 . 8 3 5 i

e. Rockeye Figure 4. Continued.

0 . 3 5 0 - - ~

. -0.090

DIMENSIONS IN INCHES

m o

::0 00

O1

3> m o c)

-n

O0

U1

t,,) OO

L

f 2.218 ,- 1.425 Ln ,moJ FIM) 14-IN. I I- " " " 1 susl~mmN I

-~ 0.3ff ~-I P O I N T ~

o.~-,~/~ O.I04D 0.147R ---/ /

/ 0.333R

3.833 ~. " I - - - o.7~s--

0.178 --- 0.149

_ 0.215

J T--0.031

0.181

45"

~ 0.!33 o~~ F--~ 0.100

O o . 2 2 _ ~ ~ o,~

OEMENSlONS IN INCHES

f. S U U - 3 O H / B Figure 4. Cont inued.

t,,.) %0

X,ifl. I R°IR

0.2 221 0.096 0.297 J 0.117 0.357 I O. 130 0.485 I O. 154 0.656 I 0.177 o.6z61 o.199 0.997 I 0.209 I . I 66 I 0.220 1.338 [ 0 =)24 CONST ImAM 1.893 I 0.224 2.o6 3 1 o.zzz 2.234 I 0 .2~" 2 .40410.206 2.479 i 0 201 2.47910 209 CONST. SLOPE 2.675 J 0.210 CONS~ SLOPE

3.440J O.088 CONST OIAM

3.74 210.088

0.222.--

O. 125D-~

T

~ 1 . 3 4 6

- - - ~ X

- 3.785

l f wo , , . , ,

SPENSION INT

g. M K-82SE Figure 4. Concluded.

J-'~--- I. 185

1

SLOT~IS " 0 0.073 DEEP

)43 45*

0.019 R " , ~ , ~ ~ 0.-

DIMENSIONS IN INCHES

m C~ c')

2)

co ol

A E DC-TR -78-35

0.05 (TYP)

- ~ - - 0.40

NOTE : TRANSITION GRIT USED ONLY FOR LIMITED TESTING TO EVALUATE TRANSITION GRIT EFFECTS

DIMENSIONS IN INCHES -1~ 150 TRANSITION GRIT

Figure 5. Boundary-layer transition grit pattern.

30

A E DC-TR -78-35

STORES

CLEAN

PYLONS ALONE

4 GBU- IO

4 GBU-15CCW

4 GBU-15CCW AND CENTERLINE PAVE TACK POD

12 AGM-65 ON LAU-88 RACKS

16 ROCKEYE (Slon! 4 Looding)

12 ROCKEYE

12 SUU-50 H/B

12 MK-82SE

22 MK- 82SE

BRU-3AIA RACK

N/A

N/A

N/A

N/A

N/A

FORWARD AFT

FORWARD AFT

FORWARD AFT

FORWARD AFT

FORWARD AFT

± LEFT

OUTBOARD

8

6 6

? ?

LEFT INBOARD

8

6 6

RIGHT INBOARD

8

6 6

RIGHT OUTBOARD

6 6

¢ ?

Figure 6. Pylon/store configuration identification.

31

t,J

0.6

A(2 DEG U PWAS H

0 . 4

0 ,2

0

WING SWEEP o 26 DEG z~ 45 DEG o 54 DEG

/ ~ . . . . . _ - . - - - . - ~

m 0 ¢3 :4 -n

00

01

- 0 . 2 0.5 0.6 0.7 0 .8 0.9 1.0 I.I 1.2 1.3

Figure 7. Tunnel flow angularity. Me=

CL 1.6

1.2

0.8

O.q

0

-O.q -I 0

~=o.5o

• d " ,, • d " . d l

.¢ i ),,,1¢

/ j , . ,j

,~.d / / .

/

- i

0 0 0 0 q 8 12 16 ~0

0.70 0.80 0.90 0.95 ( ] [

a. Li f t coefficient, A = 26 deg Figure 8. Aerodynamic characteristics of the F-111 aircraft,

clean configuration. ~> m O C)

-11

oo

¢n

CL 1.6

1.2

0 .8

O.q

0

-O.q -zl

..m==iimmm,~.=.,,'~ mum o i m l m m H K i P G i ~ I / K i I ~ limm)m olm

IN [Rimtimln/ / /ol i~_d F H / H / H B J / F J / ~ J / m l i imm/Bn Himm H~Jmm Hl~lm .HEIB mm~mm m

J~

F

_n

0 0 0 0 0 0 0 q 8

H==0.70 0.80 0.90 0.95 1.05 1.10 I. 20

L2

G[

]> m

¢o

O1

a. Continued, A = 45 deg Figure 8. Continued.

CI_ 1.6

1.2

0.8

0.tl

-0.~ -tl

( i i i

0 0

H~=0.90 o.95

w

C

mmmlmmmmEMllmm_mm mmEmm mmm um)mE

am! a m . ul Im.,, m u)m,.:,mmam)mu )m m)mmmmmmmm )k mm. m mm.mm

mNmmmmmNmmmmmm !. !I!!lllllll

0 0 0 0 q 8 12 16

1.05 I.I0 1.20 1.30

a. Concluded, A = 54 deg Figure 8. Continued.

if> m

o

::0 .b (DO

tin

CL 1.6

1.2 ~'~

0,8

° $

-O.q 0.2 0

Ho==O. 50

$

(~.

d Y , /

()

)

0 0 0 0

0.70 0.80 0.90 0.95

/

b. Pitching-moment coefficient, A = 26 deg Figure 8. Continued.

-0.2 -o.q -0.6

Cm

m 0

-n

¢0

01

taJ

CL ! .6

1.2

0.8 l~

0,4

i -0,4

0.2 0

H==o. 70

i ;/

f

2

? f

c/

n

- d J

? /

/ /

~ o ~

,4 f

/

d

X f

J

mr

J .j

/

P /

EY

/ P

/

0 0 0 0 0 0

0.80 0.90 0.95 1.05 1 . ]0 1.20

J /

d

-0.2 -0 .4 -0.6

Cm

b. Continued, A = 45 deg Figure 8. Continued.

~> m o c~

30

(%)

oi

CL

1.6

! . 2

0 .8

O.tt

-0 .~

/ ~r p,

I

/

r i

I

I 0

1.05

0.2 0 0

~=0.90 0.95

,I , /~/o

• :i" o

0 0 0

1.10 1.20 1.30

-0 .2

b. Concluded, A = 54 deg Figure 8. Continued.

A P

~o

-0.~ -0.6

Cm

m 0 c~

~o

O0 & 01

CL 1.6

1.2 r t: ~ )

'.~ ~ g J <i' ~ J° f °." ~ ~ '~ 2 ~'

0~ ~: ~; ~

-o.q 0 0 0 0 0

1~:0.50 0.70 O.BO 0.90 0.95

c. Drag coefficient, A = 26 deg Figure 8. Continued.

/ P .o . _

0.2 O.q 0.6

CD

m

? "-I

Co

Ol

0

CL 1.6

] .2

0.8

O.Ll

/

-O.q~ 0 0 0

!'4o==0.70 O. 80 O. 90

t ' : l

Y

;i

Y

t "

T ? ? ? ? ?

.o

J,

0 0 0 0 0.2 O.q 0.6

0.95 1.05 I.I0 1.20

c. Continued, A = 45 deg Figure 8. Continued.

CD

3) m o o

-n

G0

O l

J

1.6

CL

1.2

0 .8 ¢

O.tt (~

o8

-O.q 0

M.=0.90

1 4

f:.

¢

¢:. :F f , ~ ,m

4

0 0 0 0

0.95 1.05 1 . !0 ].20 0 0.2

I. 30

0.~ 0.6

CD

C. Concluded, A = 54 deg Figure 8. Continued.

~> I l l

,o -4 "n

O0

01

A EDC-TR-78-35

5YM ALPHA

O 5 OEG D 10 DEG ~ ' 15 DEG

0.95 o

0. q

' [ 0.2 ~ ~ ,

• ~ ~ , ~=0.50 o

0.70 o

0.80 0 . ~--

o.9oo ~ , ~-

-0.2 ! i f

i J I -12 -8 -q 0 q 8 12

B

d. Side-force coefficient. A = 26 deg Figure 8. Continued.

42

AE DC-TR-78-35

5YM ALPHA

0 5 DEG [] 10 OEG A 15 OEG

O.tl Cy

0.2

M==0.70 o

0.80 o

0.90 o

0.95 o

1.05 0

1.10o

1.20 o

-0.2

l

|

-O.q -12 -8 -q 0 q 8 12

d. Continued, A = 45 deg Figure 8. Continued.

B

43

A E D C - T R - 7 8 - 3 5

5YM RLPHR

® 5 DEG [] IO DEG

15 DEG

O.q Cy

0.2 1

H==O. 90 o

0.95 o

1.05 o

I,I0O

1.20 o

1.30 o

-0.2

-o.q -12

-"~s.. h I I I

I -8

r

I -q 0 q, 8 12

B

d. Concluded, A = 54 deg Figure 8. Continued.

44

AE DC-TR-78-35

SYH RLPHR

® 5 OEG Q lO OEG

I5 DEG

0.0q

Cn 1 o o

M==o.soo ~ ~ ~ ~ ,

0 . 7 0 o ~ ~ ~ - ~ - ~

o~oo ~ ~ ; ~ ~ ~ ~,~¢~~

0.900 , ~ ~ ~ ~,~ ~,, ~ .~=~~-~-

0.95 o

-o.o2 ' - ~ ~ ~ ~ "

-o.oq -12 -8 -q 0 q 8 12

B

e. Yawing-moment coefficient, A = 26 deg Figure 8. Continued.

45

A EDC-TR-78-35

5YH RLPHR

0 5 DEG [] 10 DEG A 15 DEG

0.04 co [

O. 02 [

H~=O. 70 o - ,

o.~oo '~ "i .~ ~ _

1.05 o ~-'~ ~="~

1.1oo ~ ~ - ~ ~ ~

1.20 0 . ~ ~ ~ -0.02

-0.04 -12 -8 -q 0 q 8 12

e. Continued, A = 45 deg Figure 8. Continued.

B

46

A E D C - T R -78 -35 =

5TH RLPHR

O 5 OEG B 10 DEG z, 15 DEG

O.Oq

Cn

0.02

.==0.900 ~ ~ . . . ~

0 .95 o

1.05 o

I.I0O

1.20 o

1.30 o

-0.02

. . m l °

E .,..~ f -

-0. Oq -12 -8 -q 0 q 8 12

i

e. Concluded, A = 54 deg Figure 8. Continued.

8

4?

AEDC-TR-78~5 5YM RLPHR

¢ 5 DEG D 10 DEG A 15 DEG

0.0q CI

0.02 i ~ 1 ~ ~

,~:o.5oo -~N~..~ _N..~~

o.~oo , ~ ,. - - , ~ ~ ~ - ~

_3_ ~L. G.._ o.8oo , -.~~,~~..~

o.ooo

O. 95 o ~--~,,~

-0.02 ~ , ~ , , ~

-0.0~ 1 ] ' :1 " - ]2 -8 -4 0 ~ 8 12

B

f. Rolling-moment coefficient, A = 26 deg Figure 8. Continued.

48

A E DC-TR-78-35

5TM RLPHR

O 5 BEG O I0 OEG A 15 DEG

0 . ~

CI

0.02

~ ~:~

~ " ~ • ~ ~ 0.95 o. ",~.~, , ~ ! ~ -

1.05 0 ,~ -;.--~ " " - -

1 . 2 0 o ~ i ~ ,- :

-0 .02 - - : " ~ , ~

-12 -8 -Li 12

f. Continued, A = 45 deg Figure 8. Continued.

13

49

AEDC-TR-78~5

$YH RLPHR

O 5 OEG [] I0 OEG A 15 DEG

o.oq CI

o

~=o.,oo ~~ ,,~:~. 0 .95 o [ ~

. ~ - - -

N~ t 1.20 o

1.3oo ~ ~ ~

-o.o~ I ~

-0. Oq I -12 -8 -q 0 I& 8 12

13

f. Concluded, A = 54 deg Figure 8. Concluded.

50

A E D C - T R - 7 8 - 3 5

CL(~

0.20

O. I 0 ? ~ - - ~"---~...(~.-o

A = 26 DEG

0

CLa

0.20

0.10

0

A = 45 DEG

CL a

0.20 A = 54 DEG

0.10

0 0.4 0.6 0.8 1.0 1.2 1.4

M=

Figure 9. a. Li f t curve slope

Static stability derivatives and drag coefficients of the F-111 aircraft, clean configuration.

5]

A E D C -T R -78 -35

SM

0.40

0

0 LINEAR CURVE FIT, -2 < ~ <_ 6 DEG [] SLOPE AT CL= 0 0 SLOPE AT CL= 0 .2 Z~ SLOPE AT, C L - 0 .4 0 SLOPE AT C L = 0.6

A = 26 DEG

- 0 . 4 0

SM

0.80

0.40 / Y

A=45 DEG

SM

0.80

0 . 4 0 . J

A=54 DEG

0 0.4 0.6 0.8 1.0 1.2 1.4

b. Static margin Figure 9. Continued.

Me=

52

AEDC-TR-78-35

CD

0.20

O,IO

0

CL o 0 z~ 0.2 n 0.6

4~

A = 26 DEG

CD

0.20

0 .10

0

A = 45 DEG

CD

0.20

0.10

0 0.4

A = 54 DEG

0.6 0.8 I.O 1.2 M=

1.4

c. Drag coefficient Figure 9. Continued.

53

A E D C-TR-78-35

0.002

Cn/~

0

- 0 .002

¢1

o 5 DEG o I0 DEG A 15 DEG

A = 26 DEG

0 002

Cn8

0

- 0 . 0 0 2

A = 4 5 DEG

0 002

Cn/~

0

- 0 . 0 0 2 0.4

d.

A = 54 DEG

0.6 0.8 1.0 1.2 1.4

Me=

Static directional stability derivative Figure 9. Continued.

54

J

AEDC-TR-78-35

0 .004

C ~

0

- 0 . 004

G

0 5 DEG n I0 DEG A 15 DEG

A = 26 DEG

c l .e

0 .004 A =45 DEG

0

- 0 . 0 0 4

0 .004 A = 54 DEG

0

- 0 . 0 0 4 0.4 0 .6 0 .8 I .0 1.2

e. Effective dihedral Figure 9. Concluded.

1.4

M =

55

1 , 6

Re x 10 -6

PT M= = 0 .50 M= = 0.90 O 1200 1.71 2.41 zl 2000 2.80 3.99

~> .m 0 0 H "11

u1

U'I O~

CL

1.2

0 . 8

0 , 4

0

J

Mea = 0 .50 Me= = 0 . 9 0 _ _ D

J

- 0 . 4 - 4 0 0 4 8 12 16 20

(2

a. L i f t coefficient, A -- 26 deg Figure 10. Reynolds number effects.

Re x I0 -6

PT Me= = 0.90 Me= = 1.30 0 1200 2.4 I 2.55

2000 4.09 3.99

CL

1.6

1.2

0.8

0.4

0

- 0 . 4 - 4

S

I M~ = 0 .90

D

S, f S ,o_

/

0 0 4 8 12 16

a. Concluded, A = 54 deg Figure 10. Continued.

1.30 - -

20 O(

]> m o o

O0

1.6

CL

1.2

0.8

0 .4

0

Re x 10 -6 PT M,.. : 0 .50 M=o = 0.90

0 1200 1.71 2.41 "~ 2000 2 .80 :3.99

Moo = 0.50

U Moo = 0 .90 /C

f

m 0 ¢3

3J

(]0

01

- 0 . 4 - 0 . 2 0 0 -0 .2 -0 .4 - 0 .6

b. Pitching-moment coefficient, A = 26 deg Figure 10. Continued.

-0 .8 Cm

O A

Re x 10 -6

PT Me= = 0.90 Me= = I.:50 1200 2.41 2.55 2000 4.09 :5.99

CL

1.6

1.2

0.8 /

/ 0.4

S 0

/

/

I Me= = 0.90

/

M.,~=

¢ /

/

I . 3 0

/

- 0 . 4 0.2 0 0 -0.2 -0 .4 -0 .6 -0.8

b. Continued, A = 54 deg Figure 10. Continued.

Cm

~> I11

¢3

;0

00

O1

O

1.6

CL

1.2

0.8

0.4

(

o-I (

- 0 . 4 0

Re x 10 -6 PT M== = 0 .50 M== = 0.90

O 1200 1.71 2.41 Z~ 2000 2.80 3.99

r j t

w r

# J

u

IJ

o

v

0

M= = O. 5 0 j . . ~

J /

0 0.1 0.2 0.3

I M== = 0.90

. i o J

c. Drag coefficient, A = 26 deg Figure 10. Continued.

f

0.4 CD

0.5

m

o :4

00

O1

o zl

Re x I0 -6

PT Me= = 0 .90 M=o = 1.30 1200 2.41 2.55 2 0 0 0 4 .09 3.99

CL

1.6

1.2

0 .8

0 .4

O.

- 0 . 4

1, __I I ------4'

/ :

M= = 0 . 9 0

,..O

M= = I .30

/ /

O 0 0 I 0 .2 0,5 0 .4 O,5

C. Concluded, A = 54 deg Figure 10. Concluded.

CD

~> ITI

(1

-n

00

O1

O~ t ' J

GRIT OFF

1.6 ON

c L 1 i ~ I i i I i , I . I I ! • , J ~

i~ .(i, ./!/F,, I i-t I o . , j ' ~ " i ~ ' I " , III

J I e I I - o . q '

-q 0 0 0 0 0 q ' 8 12 16

M~=0.50 O. 70 0.80 0.90 0.95

a. Lift coefficient Figure 11. Transition grit effects, A = 26 dell.

20

3> m

9 =0

co

Ol

( ~

GRIT

0 OFF A ON

C L ; ! f . . . . . . . . . . . . . i " . . . . . tZ i . . . . . . . . ~ . . . . . . . .

- - - T ~ f ~- i 3 ~ o,, - [ -~,-~ - - ~ - - " ' ~ .... ! -~ ! - - - r

o,, -FI~ -!-r ~ q ! . - - ' - 4 5 . . . . .:-':~ . . . . - ~

i ' ~ , Z

o ..... ~ . . . . . ~.~ . . . . . ._:~ %

I ! ! , i -o.q

0.2 0 0 0 0 0 -0 .2 -0.4 -0 .6

L

-0 .8 -! .0

M ~ = 0 . 5 0 O. 70 0 . 8 0 0 . 9 0 0 . 9 5 Cm

b. Pitching-moment coefficient Figure 11. Continued.

m o

.h

4j

O~

GRIT

-O.q 0 0 0

OFF

"° ,I ! ! i., J c L i -i , • ' - .

0 .8

o.~ ~ I

!, i 1 0 0 0.2 0.q 0.6

H~=0.50 O. 70 0 .80 0 .90 0 .95 CO

m O (3

:0

0o

ol

c. Drag coefficient Figure 11. Concluded,

O WITHOUT STING FAIRING WITH STING FAIRING

O~ u ' l

CL 1.6

1.2

0 . 8

O.q

0

-o .q ' -q

m

4 i , !

= ! I i ; i

, i i l i

, !

i i I I

i I

I L 0

M==O. 50 0

O. 70

0

O. 8 0

Figure 12,

I ! l I

i !

i

I i i ! =

0 0

0.90 0.95

a. L i f t coef f ic ient

,tL 1 ~-,-q I

q 8 12 16

OC

Sting fair ing effects, A = 26 deg.

I

20

> I l l

O o q -n 4j

f,,11

CL 1.6

] . 2

0.8

0.q

0

-0 .q

O A

WITHOUT STING FAIRING WITH STING FAIRING

, I = I ' i

P p . . . . ~ . . . .

.{ , J !

; I

i

i

' i

!

{

0.2 0

M==O. 50

}

i I I ! = 0 0 0 0

0 . 7 0 0 . 8 0 0 . 9 0 0 . 9 5

b.

I } I }

Pitching-moment coefficient Figure 12. Continued.

-0 .2 -o.q -0 .6 -0 .8 -1 .0

Cm

m [3

3] 4j O0

01

0~ -..I

WITHOUT STING FAIRING WITH STING FAIRING

l . B ; . I , , I i

c, ~ 1 ~ . . . . L_J_~ k_v ._/.~_ ; , 1 ) "~-- " ~-~," - - -

. I

! -O.q

0 0 0 0 0 0 . 2 o.q 0.6

C ) ! . ~ . ~_

Mco=0.50 0.70 0.80 0.90 0.95 C O

c. Drag coefficient Figure 12. Concluded.

m

c) 11 ,b w

01

A E D C - T R - 7 8 - 3 5

CN

1.4

1.2

I.O

_ J J i

o INCREASING /3 A DECREASING /3

CLEAN

' t

!

I I

CN

1 . 4 ,

12

1.0 w

I 2

I - 8 -~ 0

I

I 4

Figure 13.

12 SUU- 30 STORES

a. Normal-force coefficient Typical hysteresis effects, ~ = 15 deg, A = 45 deg, M= = 1.2.

8

- j

12

68

AEDC-TR-78-35

Cm

- 0 . 5 0

- 0 . 6 0

- 0 . 7 0

0 INCREASING B A DECREASING B

CLEAN

Cm

- 0 . 5 0

- 0 . 6 0

- 0 . 7 0 - 1 2 -8 -4 0 4 8

b.

12 SUU-30 STORES

Pitching-moment coefficient Figure 13. Continued.

12

P

69

A E D C - T R - 7 8 - 3 5

CA

0.060

0.050

0.040

0.030

0 INCREASING /3 /x DECREASING /3

I

c ~ t ' i

I I

i

I t !

i I i

CLEAN

CA

0.8

0.7

0.6 -12 - 8 - 4

I i

J ! I

0 4 8

1.2 SUU-30 STORES

c. Axial-force coefficient Figure 13. Continued.

12

70

A E D C - T R - 7 8 - 3 5

Cy

0,4

0,2

0

-0.2

-0.4

o INCREASING ,8 A DECREASING ,8

CLEAN

Cy

0.4

0,2

0

-0.2

- 0,4 -12

I I I

I I - 8 - 4 0 4

12 SUU-30 STORES

d. Side-force coefficient Figure 13. Continued.

I

I

8 12

7l

A E D C - T R - 7 8 - 3 5

Cn

0 . 0 2

0.01

0

- 0 0 1

- 0.02

o INCREASING ,8

"~ DECREASING

i i

, / I

I

I

CLEAN

I

Cn

0 .02

0 0 1

0

-0 .01

- 0 .02 -12

I , I - 8 - 4 0 4

I

I

J

12 SUU- 30 STORES

e. Yawing-moment coefficient Figure 13. Continued.

I

8 #

12

72

AE DC-TR-78-35

Cl

0.04

0 .02

0

- 0 .02

- 0 .04

O INCREASING ,8 z~ DECREASING ,8

i !

I I I

CLEAN

Cl

0 .04

0 02

0

-o.o2

-0.04 -12 -8 - 4 0 4 8

12 SUU-$O STORES

f. Rolling-moment coefficient Figure 13. Concluded.

12

73

AE D C - T R - 7 8 - 3 5

O. 20 ^=26 DEG

ASM 0

~,.-------.....~

1

-0.20

O. 20 ^=q5 0E0

ASM

0

-0.20

0.20 ^=5q DEG

ASM

0

-0.20 0.q 0.6 0.B 1.0 1.2 I.~

Figure 14. a. Pylons alone Effects of external stores on the static margin.

74

A E DC-TR-78-35

0.20 ^=26 DEG

z~SM 0

-0.20 I

\/

0.20 ^:L15 0EG

~SM

0

-0.20

O. 20

ASH

0

-0.20 0.u,

A=5~ DEG

0.6 0.B 1.0 1.2 1.4 M®

b. Four GBU-10 stores Figure 14. Continued.

75

AEDC-TR-78-35

O. 20 ^=2B DEG

ASM

0

-0.20

O. 20

zxSM

0

I

r(p-

^=45 OEG

-0.20

0.20

z~$M

0

=̂5u, DEG

-0.20 0.Ll 0.6 0.8 1.0 1.2 1.4

c. Four GBU-15CCW stores Figure 14. Continued.

76

A E D C - T R - 7 8 - 3 5

0.20 ^=26 DEO

ASM

0 C ~-----

-0.20

0.20

z~SM

O

-0.20

A=45 DEG

0.20

ASM

0

-0.20 0.L~

I |

0.6

d.

L_

0.8 H®

^:54 DEG

1.0

|

I I

1.2 1,L~

Four GBU-15 stores and extended Pave Tack pod

Figure 14. Continued.

77

~-. E D C - T R - 7 8 - 3 5

O. 20 ^=26 DEG

~SM

0

-0.20

0.20

zxSM

0

-0.20

I I i

^=45 DEG

0.20

ZXSH

0

-0.20 O.LI 0.6 0,8

V

I

1.0 M®

^=54 OEG

1.2 1.Lt

e. 12 AGM-65 stores Figure 14. Continued.

?8

AE DC-TR-78-35

0.20 ^=26 OEG

ASM

0

-0.20

0.20

z~SM

0

",,(i)...-(~>~ )

^=q5 OEG

-0.20

z~SM

0.20

0

^=5LI OEG

~ J ( " " ' - ~ " D

- 0 . 2 0 O.q 0.5 0.8 1.0

M O0

f. 16 Rockeye stores (slant 4 loading) Figure 14. Continued.

I I

1.2 1.u,

?9

A EDC-TR-78-35

0.20 ^=2B OEG

z~SM

0

. _ _ _ _

!

-0.20

O. 20 ^=45 DEG

aSM

0

-0.20

~5M

0.20

0

^:5LI DEG

-0.20 O.LI 0.6 0.8 1.0 1.2 I.~

g. 12 Rockeye stores (outboard pylons) Figure 14. Continued.

80

A E DC-TR-78-35

0.20 A=2B OEG

z~SM

0

-0.20

(i)------

0.20 A=q5 OEG

z~SM

0

-0.20

0.20

z~SM 0

A=5q

..._--<

OEG

- 0 . 2 0 O.q

h.

0.6 0.8 1.0 M=

12 SUU-30 stores (outboard pylons) Figure 14. Continued.

1.2 l . q

81

A E D C-TR-78-35

O, 20 ^=26 DEG

ASM

0 C)----.

-0, 20

O. 20 ^=LI5 DEG

z~SM

0

-0.20

0.20 ^=5Li OEG

z~SM

0

-0.20 o.q 0 .6 0 .8 1.0

I I

1.2 1.Ll

i. 12 MK-82SE stores (outboard pylons) Figure 14. Continued.

82

AE DC-TR-78-35

O. 20 ^=26 OEG

z~SM 0-----

0

-0.20

O. 20

ASH

0

^:~5 OEG

-0.20

0.20

ASH

0

- 0 . 20 O.U,

^=5~ DEG

0.6 0.8 1.0 1.2 1.q H®

j. 22 MK-82SE stores Figure 14. Concluded.

83

A E D C - T R - 7 8 - 3 5

O A

o

CL 0 0.2 0.6

0.08

O. 06

O.Oq

0.02

0

-0.02

^=26 DEG

I I I I l

0.06

O.Oq

0.02

0

-0.02

0.08 I I

I ^=U,5 DEG

O. 08

0.06

^=SLI DEG

O. Oq

O. 02

0

-0.02 I T 0.~ 0.5 0.6 0.7 0.8 0.9 1.0 I.I 1.2 1.3 I.~

a. Pylons alone Figure 15. Effects of external stores on

the drag coefficient.

84

0 A []

CL 0 0.2 0.6

AE DC-TR-78-35

0.08

0.06

O. Oq ,'Co

0.02

0

-0.02

¢ m , - , ~

^=26 DEG

0.08

0.06

O.Oq

O. 02

0

-0 .02

I i

, I

^=q5 DEG

t

0.08 ^=5u, DEG

0.06

O.Oq

~co O. 02

0

-0 .02 I i

I !

!

I a

O.q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 M®

I •

I !

1 . 2 1 . 3 1 . ~

b. Four GBU-IO stores Figure 15. Continued.

85

A E D C - T R - 7 8 - 3 5

o t .

' 7

CL 0 0.2 0.6

O. 08

O. 06

0.0~

0.02

0

-0.02

i==.===

I !

^=26 DEG

0.08

0.06

O. Oq ",Co

0.02

0

-0 .02

I I : ' i

[ ; , i

^=L~5 DEG

I

I

0.08

0.06

O. OLt

O. 02

0

-0.02 0.Lt

A=5U, DEG

0.50.60.70.8

I I I

0.9 1.0 1.1 1.2 1.3 H®

c. Four GBU-15CCW stores Figure 15. Continued.

].u,

86

O A

CL 0 0.2 0.6

A EDC-TR-78-35

0,08

0,06

0,0~

0,02

0

-.",02

O, C8

F

^=26 DEG

I I

^=~5 DEG

0,06

O, Oq

0,02

0

-0, 02

0,08

0,C6

O.OU.

O, 02

0

-0, 02 O.q 0.5

^:5tL DEG

I I i ~ ' l

i I!111 I i ~ I I I I I

0.6 0.7 0.8 0.9 1.0 1.1 '..2 1.3 P®

d. Four GBU-15CCW stores and extended Pave Tack pod

Figure 15. Continued.

87

A E D C - T R - 7 8 - 3 5

CL o 0.0 ~- 0.2 [] 0.6

0.08

0 .06

0.0'4

0.02

0

-0.02

J

^=26 DEG

0.08

O. 06

O. Oq

O. 02

0

-0.02

^='45 DEG I i , I I t

I I '

I

1 I I

O. 08

0.06

0.0'4 i ~co r

0.02 I 1

i

a i -0° 02 1

I I , I ! I ' ' I !

I I

^=5'4 DEG

0.4 0 .5 0 .6 0 .7 0 . 8 0 .9 1,0 1.1 1.2 1,3 1,'4 H®

e. 12 AGM-65 stores Figure 15. Continued.

88

0 A [ ]

CL 0.0 0.2 0.6

A E D C - T R - 7 8 - 3 5

O. 08

0.06

0.04

O. 02

0

-0.02

A=26 DEG

= t

I I

-,co

0.08

0.06

0.04

0.02

0

-0.02

A=45 DEG

i===d

0.08

0.06

O. 04 "co

0.02

0

-0.02 0.4 0.5 0 . 6 0 . 7 0 . 8 0 . 9

A=54 DEG

!

1 . 0 1 . I 1 . 2 M®

1.3 1,q

f. 16 Rockeye stores (slant'4 loading) Figure 15. Continued.

89

A E D C-TR-78-35

0

[ ]

CL 0 0.2 0.6

0.08

0.06

0.0q ~ro

0.02

0

-0.02

T i

^=26 DEG

0.08

0.06

0.0q ,,r. o

0.02

0

-0.02

^=u,5 DEG

,%

0.08

0.06

0.0q

0.02

0

-0.02

^=5Lt DEG

~ r

O.q O.S 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.q M®

g. 12 Rock~,e stores (outboard pylons) Figure 15. Continued.

90

0.08

O. 06

0.04 ,,co

0.02

0

-0.02

0.08

0.06

O. 04

0.02

0

-0.02

0.08

0.06

O.Oq

O. 02

0

-0.02 0.4

CL ® 0 ~" 0.2 0 0.6

^=26 DEG

~======== ~=- - - - - - . . . , I = , - = ' ~ - -

^=45 DEG

,=,=~!

^=54 DEG

0.5 0.8 0.7 0.8 0.9 ] . 0 I. 1 1.2 M=

h. 12 SUU-30 stores (outboard pylons) Figure 15. Continued.

=

AE DC-TR-78-35

1.3 l .q

91

A E D C - T R - 7 8 - 3 5

CL o o A 0.2 o 0.6

O. 08

0.06

O. OLI

O. 02

0

-0.02

^=26 DEG !

f

0.08

O. 06

0.0~

0.02

0

-0.02

^=q5 DEG

I

I i I

I

0.08

O. 06

O. OLI

0.02

0

-0 .02

^=5q DEG = I

i

I

O.q 0.5 0.6 0.7 0.8 Om9 1.0 1.1 1.2 1.3 1.q

i. 12 MK-82SE stores (outboard pylons) Figure 15. Continued.

92

CL

o o A 0.2 [] 0.6

A E D C-TR-78-35

0.08

0.06

O.Oq I ",co

0.02

-0.02

, P

i

^=28 OEG

O. 08

O.OB

O.OLt

0.02

0

-0.02

^=q5 DEG

^co

0.08

0.05

O. 0q

0.02

0

-0.02

, ^=5L1 DEG

I

0.~ 0.5 0.6 0.7 0.8 0.9 1.0 1.! 1.2 1.3 1.4 M®

j. 22 MK~2SE stores Figure 15. Concluded.

93

AEDC-TR-78-35

0 5 OEG o I0 DEG

15 DEG

0.002 ^=26 OEG

0

-0.002

7" , . i t

• A

&

!

0.002 ^=LI5 OEG

0

-0 .002

0.002 ^=5~ OEG

A% 0

-0. 002 0.4 0.6 0.8 1.0 1.2

a. Pylons alone Figure 16. Effects of external stores on the static

directional stability derivative.

1.q

94

A EDC-TR-78-35

0 5 DEG [] I0 DEG A 15 DEG

O. 002 ^=26 DEG

0

-0. 002

O. 002

'%B 0

-0. 002

^=q5 OEG

O. 002

,,% 0

-0. 002 O.q

^=5q DEG

0.6 0 .8 1.0 1.2 1.~ M®

b. Four GBU-10 stores Figure 16. Continued.

95

AE DC-TR-78-35

Q 5 OEG [] I0 DEG

!5 DEG

O. 002 ^:26 DEG

0

-0. 002 [

O. 002

0

-0. 002

^=LI5

I I

OEG

O. 002

0

-0. 002 0.~

^=5~ DEG

0.6 0.8 1.0 1.2 1.~ M®

c. Four GBU-15CCW stores Figure 16. Continued.

96

AE DC-TR-78-35

o 5 DEG [] 1o DEG

]5 OEG

0.002 ^=26 OEG

~CnB 0

-0.002 nmmiml 0.002

^=45 DEG

~r~B 0

-0,002

, , ~ _ M

! o. 0o2 !

,,c~ B 0

-0. 002 O.L~

^=5~ DEG

d.

0.6 0.8 1.0 M®

Four GBU-15CCW stores and extended Pave Tack pod

Figure 16. Continued.

1.2 1.Ll

97

A E DC-TR-78-35

C) [] A

5 DEG 10 DEG 15 DEG

0.002 ^=26 DEG

~c~B 0

-0.002

t

n L i

0.002

0

-0.002

^=~5 DEG

0.002

~c~ 0

-0. 002 O.LI 0.6 0 .8

^=5g DEG

±

1.0 M®

1.2

e. 12 AGM-65 stores Figure 16. Continued,

98

A EDC-TR-T8-35

0 5 DEG 0 lO DEG

15 DEG

0.002 ^=26 OEG

~CnB 0

-0.002 I I

0.002

~c~ 0

-0.002

I f

A=~5 OEG

0.002 ^=54 DEG

~CnB

-0. 002 O.LI 0.6 0.8

I

i I 1.0

i 1.2

f. 16 Rockeye stores (slant 4 loading) Figure 16. Continued.

1.L;

99

A E D C - T R - 7 8 - 3 5

0 5 DEG [] I0 DEG

15 DEG

O. 002 ^:26 OEG

~c~ B

-0. 002

°

I

i

O. 002 A=U,5 DEG

~c~ 0

-0. 002

O. 002

,,c~ B 0

-0.002 0.~ 0.6 0.8

^=5~ DEG

I i

1.0 1.2 1.L1

g. 12 Rockeye stores (outboard pylons) Figure 16. Continued.

100

AE DC-TR-78-35

0 5 DEG 0 IO DEG

15 DEG

O. 002 ^=26 OEG

0

-0. 002

O. 002 ^=~5 DEG

c.B 0

-0. 002 I

O. 002 ^=5g DEG

0

-0.002 O.g 0.6 0.8

I 1.0

h. 12 SUU~O stores (outboard pylons) Figure 16. Continued.

I 1.2

101

AEDC-TR-78-35

0 5 DEG [] I0 DEG

15 DEG

O. 002

0

-0. 002

8 a

I I

^=2B DEG

O. 002 ^=LI5 DEG

~r~B

0

-0. 002

O. 002 ^=5LI DEG

~c~ B

-0. 002 O.L~ O.B 0.8 1.0 1.2 I.~

i. 12 MK-82SE stores (outboard pylons) Figure 16. Continued.

102

A E D C - T R - 7 8 - 3 5

0 5 DEG o 10 OEG z~ 15 DEG

0.002 ^=26 OEG

0

-0.002

{ {

O. 002

~c~ B 0

-0.002

T "

^:q5 DEG !

0.002 ^=5q DEG

At-. B

0

-0. 002 o.q 0.6 0.8 1.0

j. 22 MK-82SE stores Figure 16. Concluded.

I

1.2 l . q

103

AE DC-TR-78-35

0 5 DEG 0 I0 DEG A 15 DEG

O. OOLI ^=26 DEG

~CI~

-0. OOq

O. OOL~ =̂L15 DEG

AC~ B

0

-0. ooq

O. OOU, ^=5q DEG

ACre B

0

- 0 . OOL~ O.q 0.B 0.8 1.0 1.2 l.U,

Figure 17. a. Pylons alone

Effects of external stores on the effective dihedral.

104

AE DC-TR-78-35

0 5 DEG [] I0 OEG

15 DEG

O. OOLI ^=26 DEG

z~C~ B

-0. OOL~

O. OOq ^=q5 DEG

z~Cii3

0

-0. OOLI

O. OOC. ^=5L~ DEG

0

-0. OOL~ 0.~ 0.6 0 .8 1.0 1.2 I .~

b. Four GBU-10 stores Figure 17. Continued.

105

AEDC-TR-78-35

0 5 DEG [] lO DEG

15 DEG

O. OOg

AC~ B 0

-0. OOq 1 L

t

^=2B DEG

O. OOq

AC~ B 0

^=q5 DEG

-0. 004

O. OOLI ^=5LI DEG

AC~I~

0

-0. OOg O.Lt 0.6 0 .8 1.0 1.2 1.q

c. Four GBU-15CCW stores Figure 17. Continued.

106

A E D C - T R - 7 8 - 3 5

o 5 BEG o I0 OEG

15 DEG

,0. OOq

z~Cii3

0

-0 . ooq

I I I I

^=26 OEG

O. ooq

AC~ B

0

-0. OOq

i i

[ i

^=q5

! I J

OEG

O. OOq ^=54 OEG

z~C~ 8

0

-0 . OOq I o .q 0 .6 0 .8 1.0 1.2 1.q

d. Four GBU-15CCW stores and extended Pave Tack pod

Figure 17. Continued.

107

A E D C-T R -78-35

0 5 DEG D I0 DEG

15 DEG

O. OOLI ^=26 DEG

ACII3

0

-O.OOq

O. OOq ^=LI5 OEG

z~C~is

0

-0.00~

.. ~J

0. 004 ^=5q OEG

z~Cl B

0 L..F ~ ~ , , , 0 , ~ - ~ - ~ a

-0 . OOq o .q 0.6 0.8 1.0

M

t J

1.2 1.LL

e. 12 A G M - 6 5 stores Figure 17. Continued.

108

A EDC-TR-78-35

o 5 DEG [] 10 DEG A 15 DEG

O.OOg ^=26 OEG

ACI B

0

-O.OOq

0.00~ ^=g5 OEG

z~Crl3

0

-0. OOg

O. OOg ^=5q OE6

ACII3

-0. OOg o.q

r-"l

I J 0.6 0.8 1.0

16 Rockeye stores (slant 4 loading) Figure 17. Continued.

1.2

b....

1.tl

109

A EDC-TR-78-35

O 5 DEG Q 10 DEG A 15 DEG

O. OOq ^:2B DEG

z~C1B

0

-0.00~

O. 004 ^=~5 DEG

z~C~is 0

-0. OOtl

O. 004 ^=5q DEG

AC~IB 0

-0. OOLi O.LI 0.6 0.8 1.0

g. 12 Rockeye stores (outboard pylons) Figure .17. Continued.

!

1.2 1.Lt

110

AE DC-TR-78-35

o 5 DEG B lO DEG

15 DEG

O. OOLl ^=26 DEG

AC,IB

-0. OOq

O. OOq ^=t15 DEG

z~C~B

0

-0. OOLI

O. ooq

z~C~

0

-O.OOq O.q

h.

, I i I I

1 i I I

0.6 0.8

i

1.0 M®

12 SUU-30 stores (outboard pylons) Figure 17. Continued.

^=5q DEG

p----(~ -q, i

I 1.2 1.u,

I I1

AEDC-TR-78-35

0 5 DEG [] I0 DEG

15 DEG

O. OOLI ^=26 DEG

z~CIp

0

-0.00~

O. OOll =̂L15 DEG

ACip

0

-0. OOLI

O. 00Ll ^=Sq DEG

AC~ B

0

-0. OOtl O.tl

-.- ~------t

0.6 0.8 1.0 1.2 1.q M®

i. 12 MK-82SE stores (outboard pylons) Figure 17. Continued.

112

AE DC-TR-78-35

0 5 DEG 0 I0 DEG

15 DEG

O. 00'.t ^:26 DEG

z:C~is 0

-0 . OOq

O. 00~ ^:q5 DEG

z~Ci B

0

-0. OOq J i

O. OOq ^=5LI DEG

z~C~ e

0

-0. OOq O.q

I 0.6 0.8 1.0 1.2 1.q

j. 22 MK-82SE stores Figure 17. Concluded.

113

Table 1. Part Number Index

Config. Store Loading

Outboard

Clean

Inboard

Clean

CL

Clean

Wing a , 8, Sweep, deg deg deg

26 V 0

V 0

5 V

I0 V

15 V

45 V 0

V 0

5 V

10 V

15 V

Mach Number

0.5 0.7 0.8 0.9 0.95 1.05 1.1 1.2 1.3

32 39 45 51 61 . . . . . . . .

* * * * * . . . . . . . .

38 40 47 52 62

36 43 49 59 64 . . . . . . . .

37 44 50 60 65

** ** ** ** **

34 41 48 55 63

-- 217 222 227 233

-- 218 223 228 234

-- 220 225 231 236

238 243 248

239 244 249

241 246 251

-- 221 226 232 237

** ** ** **

-- 219 224 230 235

242 247 252

* * * * * *

240 245 250

*Model inverted for tunnel flow angularity check.

**Model yawed from 0 to -i0 to +i0 to -i0 deg for yaw hysteresis check.

***Model pitched from -2 to 18 to 0 deg for pitch hysteresis check.

m o o

00

Table 1. Continued

t~

Config.

1

1 a

13 b

14 c

L

_ Store Loading

Outboard

Clean

Clean

1 nboa rd

Clean

Clean i

Clean

Clean

L

CL

Clean

Clean

Clean

Clean

deg

Wing Mach Number up ""

Sweep, dee dee 0.5 0.7 0.8 0.9 0.95 1.05 i.i 1.2 1.3

54 V 0

V 0

5 V

26

I0 V

15 V

. . . . . . 450 460 465 470 475 480

. . . . . . 456 461 466 471 476 481

. . . . . . 459 464 469 474 479 484

Clean

Clean

. . . . . . 458 463 468 473 478 483

. . . . . . 457 462 467 472 477 482

V 0 29 .... 30 . . . .

54 0

15 V

26

2 6

. . . . . . 770 . . . .

. . . . . . 773 --

.... 774

-- 775

V 974 975 976 977 978 -- m m ) m m

V 982 984 986 988 990 --

m

aP T = 2 , 0 0 0 f o r R e y n o l d s n u m b e r e f f e c t s .

b A f t e r b o d y m o d i f i c a t i o n .

C A f t e r b o d y m o d i f i c a t i o n a n d t r a n s i t i o n g r i t .

m

o

0%

Config. Store Loading

Outboard

3 AGM65

Inboard

3 AGM65

CL

Clean

Table 1. Cont inued

Wing Sweep ~g 8,

deg ' deg

26

45

54

0.5

V 0 69

5 V 70

I0 V 71

15 1 V 72

V_y__[ 0 --

5 V

I0 V

15 V --

V 0

5 V

i.0 V

L5 V

0.7

73

74

75

76

256

257

258

259

Mach Number

0.8 0.9 0.9. c

77 81 85

78 82 86

79 83 87

80 84 88

260 264 268

261 265 269

262 266 270

263 267 271

-- 491 495

-- 492 496

-- 493 497

-- 494 498

1.05 i.I 1.2

272 276 280

273 277 281

274 278 282

275 279 283

499 503 507

500 304 508

501 305 509

502 ~06 510

1.3

311

312

;13

~14

m o f)

:0

CO & O1

Table 1. Continued

Config.

_ - m

3

Store Loading

Outboard

4 Rockeye

I I i I ! I

Inboard

4 Rockeye

CL

Clean

Wing Mach Number Sweep, a' 8, _. deg deg deg 0.5 0.7 0.8 0.9 0.95 1.05 i.i 1.2 ].3

26

V 0 146 150 154 158 162 . . . . . . . .

5 V 147 151 155 159 163

i0 V 148 152 156 160 164 . . . . . . . .

" 15

45

V

V 149 153 157 161 165 . . . . . . . .

0 -- 349 353 357 364 368 372 376 --

5 V

i0 V

-- 350 354 361 365 369 373 377 --

-- 351 355 362 366 370 374 378 --

54

15

V

V -- .352 356 363 367 371...3.__7..5 379 --

. . . . . . 572 576 580 584 588 592

5

i0

15

V . . . . . . 573 577 581 585 589 593

V

V

. . . . . . 574 578 582 586 590 594

)> m

o

=0

0D

O1

Config.

oo

Store Loading

Outboard

GBU-15 CCW

Inboard

GBU-15 CCW

CL

Clean

Table 1. Continued

Wing Sweep, deg

26

45

54

B. d e g

v

5 V

10 V

15 V

V 0

5 V

10 V

15 V

V 0

5 V

io v

15 V

0.5 0.7 0.8

120 124 128

121 125 129

122 126 130

123 127 131

-- 318 322

-- 319 323

-- 320 324

--i 321 325

iI--

Mach Number

0,9

132

133

134

135

326

327

328

329

545

546

547

548

0.95

136

137

138

139

330

331

332

333

549

550

551

552

] .05

334

335

336

337

553

554

555

556

1 .1

338 1

339

340

341

557

558

559

560

1.2

342

343

344

345

561

562

563

564

1.3

m - -

. - - h

565

566

567

568

m o o

nl

00

~n

Table 1. Continued

Con fig.

Store Loading

Outboard

GBU-15 CCW

Inboard

GBU-15 CCW

CL

Pave Tack

Wing Mach Number Sweep, e, 8 . . . . deg deg deg 0.5 0.7 0.8 0.9 0.95 1.05 I.I 1.2 1.3

26

v 0 92 96 102 106 ii0 . . . . . . . .

i

45

5 V 93 97 103 107 iii

i0 V 94 98 104 108 112

99 15 V 95 i00 105 109 113

V 0 -- 287 291 295 299 303 307 311 --

5 V

I0 V

-- 288 292 296 300 304 308 312 --

-- 289 293 297 301 305 309 313 --

" 15 V

54

V 0

5 V

i0 V

15 V

-- 290 294 298 302 306 310 314 --

. . . . . . 518 522 526 530 534 538

....... 519 523 527 531 535 539

....... 520 524 528 532 536 540

. . . . . . 52~ 525 529 533 537 541

m

o

o

Confi8. Store Loadin E

Outboard

6 MK-82SE

Inboard

Pylon

CL

Clean

Table 1. Continued

Wing u, 8,

Sweep, de E de E de8

26

v 0

5 v

i0 V

15 v

45

V 0

5 v

10 v

15 v

54

V 0

5 v

i0 V

15 V

0.5 0.7 0.8

169 17" 177

170 174 178

171 17. ~ 179

172 17E 180

-- 38~ 387

- - 384 3 8 8

-- 38. = 3891

- - 38(5 39C

Mach Number

D.9 0.95

181 185

182 186

183 187

184 188

391 395

392 396

393 397

394 398

708 712

709 713

71o 714i

711 715

1.05

399

400

401

4 0 2

719

720

721

722 I

i.i 1.2

~Q

403 408

404 409

405 410

406 411

723 727 i

724 728

725 729

726 730

].3

731

732

733

734

m

Table 1. Continued

Config. Store Loading

Outboard

6 SUU 30

Inboard

Pylon

CL

Clean

Wing Mach Number Sweep, ~ ' 8, deg deg deg 0.5 0.7 0.8 0.9 0.95 1.05 I.i 1.2 1.3

26 V 0 193 197 201 205 209 . . . . . . . .

5 V 194 198 202 206 210 . . . . . . . .

10 V 195 199 203 207 211 . . . . . . . .

15 V 196 200 204 208 212 --

45 V 0 -- 415 419 423 427 435

5 V -- 416 420 424 428 436

439 443 --

440 444 --

10 V

15 V

-- 417 421 425 429 437 441 445 --

-- 418 422 426 430 438 442 446 --

54

I

V

V

. . . . . . 599 603 607 611 615 619

. . . . . . 600 604 608 612 616 620

10

15

V

V

. . . . . . 601 605 609 613 617 621

. . . . . . 602 606 610 614 618 622

m o o

O0

k.d

b~

Conflg. Store Loading

Outboard

6,

Rockeye

Inboard

Pylon

CL

Clean

Table 1. Continued

Wing Mach Number Sweep, I d~eg I B ,

deg ueg 0 .5 0 .7 0 .8 0 .9 0 .95 1 .05 1 .1 1 .2 1 .3 ! I . . . .

26 V 0 856 860 864 868 873

5 V 857 861 865 870 874

I0 V 858 862 866 871 875

,, 15! V 859 863 867 872 876

45 V 0 -- 880 884 888 892 896 900 904 --

5 V ,

i0 V

15 V

--I .881 885 889 893 897 901 905 --

-- 882 886 890 894 898 902 906 --

-- 883 887 891 895 899 903 907 --

54 V 0 . . . . . . 626 630 634 638 642 646

5 V . . . . . . 627 631 635 639 643 647

i0 V . . . . . . 628 632 636 640 644 648

15 V --~ .... 629 633 637 641 645 649

m

o

00

T a b l e 1. C o n t i n u e d

b.d

Confl 8 .

I0

Store Loadin 8

Outboard

GBU-10

Inboard

GBU-10

CL

Clean

Wing Mach Number Sweep, a, B, deg deg dee 0.5 0.7 0.8 0.9 0.95 1.05 1.1 1.2 1.3

36 V 0 832 836 840 844 848 . . . . . . . . • . ....

5 V 833 837 841 845 849 - -

45

i0 V 834 838 842 846 850 . . . . . . . .

~ 1 mL*Jmll:Kf-'ll I I :K~:I l IE:[Kl l E : ] ~ I ~:]IL-")II m ~ -

Y 0 - - 9 1 1 9 1 5 9 1 9 9 2 4 9 2 8 9 3 2 9 3 6 - -

5 V - - 9"12 9 1 6 9 2 0 9 2 5 9 2 9 9 3 3 9 3 7 - -

1 0 V

15 V

- - 9 1 3 9 1 7 9 2 1 9 2 6 9 3 0 9 3 4 9 3 8 - -

- - 9 1 4 9 1 8 9 2 2 9 2 7 9 3 1 9 3 5 9 3 9 - -

5 4 V 0 . . . . . . 6 5 3 6 5 7 6 6 1 6 6 5 669 6 7 3

5 V . . . . . . 6 5 4 6 5 8 6 6 2 6 6 6 6 7 0 6 7 4

10 V - - - ~ - - 6 5 5 6 5 9 6 6 3 6 6 7 6 7 1 6 7 5

1 5 V . . . . . . 6 5 6 6 6 0 6 6 4 6 6 8 6 7 2 6 7 6

m

cJ

"n

.%

Table 1. Continued

m [2 O

? O1

Config.

11

Jl

Store Loadin 8

Outboard

Pylon

Inboard

Pylon

CL

Clean

Wing Sweep, deg

26

J,

54

U, B, Mach Number

dee Ideg 0.5 0.7 0.8 0.9 0.95 1.05 I.i 1.2 1.3

V 0 786 790 794 798 802 --

5 V 7 8 7 7 9 1 7 9 5 7 9 9 8 0 3 - -

l O V 7 8 8 7 9 2 7 9 6 8 0 0 8 0 4 - -

15 V 789 793 797 801 805 --

N M m

V 0

5 V

i0 V

. . . . . . 680 684 688 692 696 701

. . . . . . 681 685 689 693 698 702

. . . . . . 682 686 690 694 699 703

15 V . . . . . . 683 687 691 695 700 704

Table 1. Concluded

Config.

1 2

Store Loading

Outboard Inboard

5 6 MK-82SE MK-82SE

I

I

CL

Clean

Wing Mach Number Sweep, ~, 8, deg deg deg 0.5 0.7 0.8 0.9 0.95 1.05 I.i 1.2 1.3

26

v 0 808 813 817 821 825 . . . . . . . .

V 809 814 818 822 826

4~

i0

15

V 811 815 819 823 827

V 812 816 820 824 828

V 0 -- 943 947 951 955 959 963 967 --

5

i

i0

" 15

54

V

i0

' 15

V

V

V

0

-- 944 948 952 956 960 964 968 --

-- 946 950 954 958 962 966 970 --

. . . . . . 738 742 746 750 754 759

V . . . . . . 739 743

V

V

747 751 755 760

. . . . . . 740 744 748 752 756 761

. . . . . . 741 745 749 753 757 762

m

o

AE DC-TR-78-35

Table 2. Aerodynamic Coefficient Uncertainties

M q=, psf ±6C L ±~C m

0.50 180

0.70 295

0.80 350

0.90 400

0.95 425

1.05 460

1.10 475

1,20 500

1.30 515

±6C D ±6C£ ±6C n ±6C£

0.0350 0.0136 0.0124 0.0101 0.0016 0.0010

0.0188 0.0084 0.0071 0.0060 0.0010 0.0006

0.0144 0.0071 0.0057 0.0050 0.0008 0.0005

0.0122 0.0064 0.0050 0.0043 0.0007 0.0005

0.0117 0.0062 0.0048 0.0041 0.0007 0.0005

0.0100 0.0063 0.0043 0.0037 0.0006 0.0004

0.0093 0.0059 0.0041 0.0036 0.0006 0,0004

0.0082 0.0055 0.0038 0.0034 0.0006 0.0004

0.0073 0.0051 0.0035 0.0033 0.0006 0.0004

126

AE DC-TR-78-35

Table 3. Incremental Drag Coefficients

Stores

Pylons alone

4 GBU-10

4 GBU-15CCW

4 GBU-15CCW Pave Tack Pod

12 AGM-65

16 Rockeye

12 Rockeye

12 SUU-30H/B

12 MK-82SE

22 MK-82SE

Pylon Loading

B

Single

Single

Single

Multiple

Multiple Slant 4

Multiple Outboard

Multiple Outboard

Multiple Outboard

Multiple

Rack

LAU-88

BRU-3A/A

BRU-3A/~

BRU- 3A/~

BRU- 3A/A

B RU- 3A/A

AC D

A = 26 ° M~= o.7 C L = 0,6

0.004

0.011

0.013

0.018

0.022

0.017

0.010

0.018

O. 010

0.016

A = 45 °

I~= 0.9

C L = 0.4

0.014

0.017

0.023

0.031

0.019

0.012

0.021

0.011

0.019

A = 54o M = 1.2

C L = 0.2

0.005

0.019

0.025

0.031

0.035

0.023

0.021

0.0-3-2

0.016

0 . 0 2 8

127

AE DC-TR-78-35

b

BL

CA

CD

CD o

ACD

CL

CLo.

CL

C~fl

Cm

CN

Cn

AC.~

NOMENCLATURE

Model reference span, 31.500 in.

Model buttline, in.

Axial-force coefficient, axial force/q**S

Drag coefficient, drag]q**S

Drag coefficient at zero lift

Incremental changes in drag coefficient caused by adding external stores; positive values indicate a drag increase

Lift coefficient, lift/q**S .

Lift curve slope, slope of a linear least-squares curve fit of the lift coefficient versus angle of attack from -2 < a < 6 deg, per degree

Centerline

Rolling-moment coefficient, rolling moment/q**Sb

Effective dihedral, slope of a linear least-squares curve fit of the rolling-moment • coefficient versus sideslip angle from -4 ~</3 < 4 deg, per degree

Incremental change in the effective dihedral caused by adding external stores; positive values indicate a favorable dihedral effect

Pitching-moment coefficient, pitching moment/q** SE (see Fig. 2 for moment reference location)

Normal-force coefficient, normal force/q. S

Yawing-moment coefficient, yawing moment/q**Sb

Static directional stability derivative, slope of a least-squares curve fit of the yawing-moment coefficient versus sideslip angle from -4 < /t < 4 deg, per degree

Incremental changes in the static directional stability derivative caused by adding external stores: positive values indicate a destabilizing effect

128

AE DC-TR-78-35

Cy

Cy~

FS

M.

Pt

q..

Re

S

SM

ASM

WL

t~

At~

A

Side-force coefficient, side force/q**S

Side-force derivative, slope of a linear least-squares curve fit of the side-force

coefficient versus angle of sideslip from -4 ~</3 ~< 4 deg, per degree

Theoretical mean aerodynamic chord at A = 16 deg, 4.521 in.

Model fuselage station, in.

Free-stream Mach number

Free-stream total pressure, psfa

Free-stream dynamic pressure, psf

Unit Reynolds number, per foot

Model reference area, wing area, 0.911 ft z

Static margin, slope of a linear least-squares curve fit of the pitching-moment

coefficient versus lift coefficient from -2 ~< a ~< 6 deg, fraction of ~; negative when the center of pressure is aft of the moment reference center

Incremental change in static margin caused by adding external stores; positive

values indicate a destabilizing effect

Model waterline from reference horizontal plane, in.

Model waterline angle of attack, deg

Tunnel flow angle, deg, positive for flow upwash

Angle of sideslip, deg

Wing leading-edge sweep angle, deg

129

ERRATA

AEDC-TR-78-35, July 1978 (UNCLASSIFIED REPORT)

AERODYNAMIC CHARACTERISTICS OF A 1/24-SCALE F-111 AIRCRAFT WITH VARIOUS EXTERNAL

STORES AT MACH NUMBERS FROM 0.5 TO 1.3

C. F. Anderson, ARO, Inc.

A r n o l d E n g i n e e r i n g D e v e l o p m e n t C e n t e r A i r F o r c e S y s t e m s Command

A r n o l d A i r F o r c e S t a t i o n , T e n n e s s e e 37389

R e c e n t t e s t s w i t h t h e 1 / 2 4 - s c a l e F - 1 1 1 m o d e l u s e d t o o b t a i n t h e d a t a p r e s e n t e d i n AEDC-TR-78-35 r e v e a l e d t h a t t h e m o d e l c a n f o u l t h e s t i n g i n t e r n a l l y a h e a d o f t h e f o u l i n g s t r i p i n s t a l l e d f o r t h a t t e s t . T h e r e f o r e , a l l d a t a o b t a i n e d w i t h t h e 1 / 2 4 - s c a l e F - I l l m o d e l w e r e e x a m i n e d f o r p o s s i b l e f o u l i n g . The d a t a i n d i c a t e t h a t f o u l i n g may h a v e b e e n p r e s e n t f o r m o s t c o n f i g u r a t i o n s a t h i g h a n g l e s o f a t t a c k a t Mach n u m b e r s a b o v e 1 . 0 . The maximum a n g l e o f a t t a c k f o r w_hich_~o_indication_of_fouling~was o b s e r v e d i s p r e s e n t e d i n t h e t a b l e b e l o w f o r e a c h t e s t c o n f i g u r a t i o n . A l l d a t a a t a n g l e s o f a t t a c k a b o v e t h o s e l i s t e d s h o u l d be u s e d w i t h c a u t i o n .

~ximum Angle of Attack without Possible Fouling

A = 45 d e g /', = 54 d e g Con f i g

M = I . i M = 1 . 2 M = 1 . 0 5 M = 1 . 3

I

2

3

4

5

6

7

8

i 0

I I

12

M = 1 . 0 5

12

14

14

14

14

14

10

14

14

14

14

14

10

14

14

14

14

14

14

14

12

14

14

12

M = 1 . 1 M = 1 . 2

lO 10

14

14

14 14

14 14

14 14

12 12

10

14

14

14

14

12

14

14

12

10

14

N o t e : N o e v i d e n c e o f f o u l i n g was o b s e r v e d i n t h e d a t a w h e r e a n g l e s a r e n o t s h o w n . ( S y m b o l - - i n d i c a t e s no d a t a t a k e n . )