3D Mineral Map of Australia

38
3D Mineral Map of Australia Tom Cudahy, Mike Caccetta, Joanne Chia, Ryan Fraser, Klaus Gessner, Maarten Haest, Ian Lau, Carsten Laukamp, Cindy Ong, and Andrew Rodger WA Centre of Excellence for 3D Mineral Mapping CSIRO, Australian Resources Research Centre Kensington, WA, Australia

Transcript of 3D Mineral Map of Australia

3D Mineral Map of Australia

Tom Cudahy, Mike Caccetta, Joanne Chia, Ryan Fraser, Klaus Gessner, Maarten Haest, Ian Lau, Carsten Laukamp, Cindy Ong, and Andrew Rodger

WA Centre of Excellence for 3D Mineral MappingCSIRO, Australian Resources Research CentreKensington, WA, Australia

7ISDE, Perth August 2011

….are fundamental to all rocks and soils and is a key parameter to managing a sustainable Earth

minerals

Image source: www.mrfs.net

7ISDE, Perth August 2011

Mineralogy valuable for?

• Soil characterisation• Productive vertosols (related to smectite clays)• Acid and saline conditions

• Ground cover • Mobile <2 micron fraction (mainly clays) – dust and soil loss

management• Water catchment modelling

• Surface permeability (clay mineralogy)• Mineral and energy exploration

• Mineral/chemical vectors• Resource environmental management

• Baseline mapping, monitoring and closure criteria

But mineralogy is not listed in any current GEO task

7ISDE, Perth August 2011

Hematite : OMEGA

Anhydrous nanophase iron oxide

Ca-pyroxene : TESCa-pyroxene : OMEGA

Mars mineralogy

Polar orbiting hyperspectral sensors• OMEGA (ESA) • TES (USA)• CRISM (USA)

Hydrous clay minerals

OMEGA

There are complete mineral maps of Mars

7ISDE, Perth August 2011

Earth’s mineralogy?

Investment to date on sensor’s like:• Landsat MSS/TM• SPOT• MODIS• High spatial VNIR

There is no mineral map of the Earth

Designed to map green vegetation, not dry vegetation or minerals

The only “geoscience-tuned” satellite that provides global coverage is ASTER

7ISDE, Perth August 2011

• 2020 vision: a public, web-accessible, measured, traceable, 3D mineral map of Australia

• based on drill core logging, airborne and satellite “geoscience-tuned” data.

• CSIRO, government geosurveys, AuScope, iVEC, industry, overseas space agencies, partners, WA Dept Commerce, CSIRO, Centre for Exploration Targeting

• part of NPIEhttp://c3dmm.csiro.au

7ISDE, Perth August 2011

The challenges

• coordination of geoscience EO community • data access (national/international partnerships)

• global science-coordinated hyperspectral satellite systems

• data volumes (Terabytes+)• instrument/data calibration (wavelength, detector

linearity, radiometric, geometric)• removal of obscuring “background” effects:

• atmosphere, vegetation, BRDF, moisture• not-dependent on scene statistics

• geoscience products that are validated, traceable (including error analysis)

• geoscience product sharing standards (interoperability)

• metadata• efficient information access (web) system for users of

the data

Melbourne

7ISDE, Perth August 2011

Composition, wavelength and spectral resolution

-12

13.5

39

64.5

90

115.5

0.35 0.85 1.35 1.85 2.35-12

13.5

39

64.5

90

115.5

7.35 8.35 9.35 10.35 11.35 12.35

Electro-Magnetic Spectrum - Wavelength in Micrometer

Gro

und

Ref

lect

ance

(of

fset

for c

larit

y)

Gro

und

Emis

sivi

ty (

offs

et fo

r cla

rity)

dark soil

green vegetation

green vegetation

dark soil

limestone

limestone

sandstone

sandstone

dry vegetationdry vegetation

ARGUSHymapAsterLandsat TM

From Peter Hausknecht

VNIR

iron oxidesREEs

vegetationSWIR

OH-bearing hydroxyls(kaolin, chlorite, mica, amphibole)

sulphatescarbonates

TIR

Non-OH-bearing silicates(quartz, feldspars, pyroxene, garnet)

sulphatescarbonates

-12

13.5

39

64.5

90

115.5

0.35 0.85 1.35 1.85 2.35-12

13.5

39

64.5

90

115.5

7.35 8.35 9.35 10.35 11.35 12.35

Electro-Magnetic Spectrum - Wavelength in Micrometer

Gro

und

Ref

lect

ance

(of

fset

for c

larit

y)

Gro

und

Emis

sivi

ty (

offs

et fo

r cla

rity)

dark soil

green vegetation

green vegetation

dark soil

limestone

limestone

sandstone

sandstone

dry vegetationdry vegetation

ARGUSHymapAsterLandsat TM

Sensors

0.45

0.65

0.85

1.05

1.25

1.45

1.65

1.9 2.1 2.3 2.5

Wavelength (micrometer) =>

Laboratory

ARGUS / AVIRIS

HYMAP

ASTER

Landsat TM

Spectral Resolution

“multispectral”1-10 bands

“hyperspectral”~100 bands

7ISDE, Perth August 2011

Broken Hill

Redan

Byjerkerno2002

Broken HillBlock

HyMapsurvey

40 flight lines at 3.5 m pixels

http://img135.imageshack.us/i/rfdsduststormri2.jpg/ Dust source

MODIS (simulated) vs HyMap land surface composition mapping, Broken Hill

• 150 Gigabytes of airborne HS data collected in 2002 for GSNSW• L1b and L2 products made publicly available but only 1-2 copies downloaded• C3DMM processed to L3 mineral maps in 2009• together with other C3DMM data, over 60,000 products downloaded

7ISDE, Perth August 2011

Green vegetation content – leaf water @ 940 nm

GIS airborne mineral maps from http://c3dmm.csiro.au

Albedo @ 1650 nm

40 flight-lines

HyMap land surface composition mapping, Broken Hill

7ISDE, Perth August 2011

cellulose absorption depth @ 2080 nm

GIS airborne mineral maps from http://c3dmm.csiro.au

Albedo @ 1650 nm

HyMap land surface composition mapping, Broken Hill

7ISDE, Perth August 2011

Water vapour @930 nm

GIS airborne mineral maps from http://c3dmm.csiro.au

Surface water absorption depth @ 1900 nm

dry

wet

HyMap land surface composition mapping, Broken Hill

Precipitable water

7ISDE, Perth August 2011

MODIS simulation –dry vegetation (NPV) versus “DRY” bare soils

Canonical correlation analysis

Ban

d N

o.

Results show that these “extreme” surface types (pure dry vegetation and bare soil) show weak inverse correlation VNIR wavelengths and weak positive correlation at SWIR wavelength at MODIS spectral resolution

30 airborne hyperspectral pixel spectra collected from cellulose rich and cellulose-poor “dry, bare soil” pixels

Sample - pixel

positive correlationinverse correlation no correlation

Ban

d N

o.

7ISDE, Perth August 2011

MODIS simulation –dry vegetation (NPV) versus “WET” bare soils

Canonical correlation analysis

Ban

d N

o.

Sample - pixel

Results show that the relatively “wet, bare soil” pixels show positive correlation at all VNIR-SWIR wavelengths at MODIS spectral resolution.

30 airborne hyperspectral pixel spectra collected from cellulose rich and cellulose-poor “wet, bare soil” pixels

positive correlationinverse correlation no correlation

7ISDE, Perth August 2011

False colourDry vegetation (cellulose) content

Rodger and Cudahy (2009). Remote Sensing of Environment 113, 2243-2257

Paddock boundary

HyMap clay mapping, Broken Hill

cellulose map

7ISDE, Perth August 2011

False colourApparent kaolin content (exposed soil)

Rodger and Cudahy (2009). Remote Sensing of Environment 113, 2243-2257

HyMap clay mapping, Broken Hill

cellulose map

7ISDE, Perth August 2011

False colourKaolin content vegetation unmixed (as if there was zero groundcover)

Rodger and Cudahy (2009). Remote Sensing of Environment 113, 2243-2257

~40%content

~10%

HyMap clay mapping, Broken Hill

cellulose map

7ISDE, Perth August 2011

Cloud shadow effect

DEM

Tenosols“weakly developed soils”

Sodosols“Na-rich”

Chromosols“Hard clay-rich”

ASRIS Soil Map Level 3

Published soils and DEM, Broken Hill

7ISDE, Perth August 2011

Kaolin content Montmorillonite content

~40%content

~10%

Potential Vertosols?

40 flight-lines

~40%content

~10%

HyMap clay mapping, Broken Hill

7ISDE, Perth August 2011

ASTER Geoscience map of Australia

ASTER scene centreHyperion sceneHyMap surveys (WA)base-map - DEM (GADDS)

y = 0.679x + 966.45R2 = 0.8768

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000

Hyperion ASTER-convolved band 4

AST

ER b

and

4

7ISDE, Perth August 2011

ASTER Geoscience products

• False colour• Green vegetation content• CSIRO “regolith” ratios• Ferric oxide content• Ferrous iron content• Opaques• AlOH group (clay) content

• AlOH group composition • Kaolin and “Advanced argillic”• Fe-OH group content• MgOH/carbonate group• MgOH group composition• Ferrous iron content in MgOH• Ferric iron content in MgOH• “Water content” (new)

• A set of ~15 GIS compatible geoscience maps derived from available ASTER *VNIR-SWIR* data over WA. Products include:

TIR products (no current independent calibration data):• carbonate content• SiO2 content• quartz index• mafic mineral index (incl. pyroxene, garnet)

7ISDE, Perth August 2011

http://c3dmm2.ivec.org/gmap.html

7ISDE, Perth August 2011

WA ASTER Geoscience map – iron oxide content

7ISDE, Perth August 2011

WA ASTER Geoscience map

• Collaborative project with the Geological Survey of Western Australia and supported by the Exploration Incentive Scheme and MDU• Complete 10 year archive over Australia of over 30,000 scenes provided by NASA-JPL, ERDAC (Japan) and the USGS• WA ASTER map comprises ~1500 scenes • ~15 products (Version 1) released in the next couple of weeks • Basis for C3DMM’s “Google-zoom” demonstration

iron oxide5 40

7ISDE, Perth August 2011

WA ASTER Geoscience map

iron oxide5 40

Channel iron ore

7ISDE, Perth August 2011

Airborne hyperspectral mineral maps

airborne HS iron oxide content

iron oxide5 40

airborne HS kaolin disorder

crysallinitylow high

Channel iron ore

7ISDE, Perth August 2011

: RC cores with XRF: RC cores with XRF + HyLogging

Published geology, drilling and the 3rd dimension

In collaboration with Murchison Metals

7ISDE, Perth August 2011

Iron oxide content – spectra & XRF

In collaboration with Murchison Metals

7ISDE, Perth August 2011

Clay composition – spectra & XRD

In collaboration with Murchison Metals

Oblique view SW

Poorly-ordered kaolinite (transported)

Well-ordered kaolinite (in-situ or below water table)

Clay composition characterisation

Poorly-ordered kaolinite (transported)

Well-ordered kaolinite (in-situ or below water table)

Poorly-ordered kaolinite (transported)

Well-ordered kaolinite (in-situ or below water table)

7ISDE, Perth August 201135

Auscope- Grid Discovery Portalhttp://portal.auscope.org/gmap.html

C3DMM

7ISDE, Perth August 2011

Conclusions

• New generation of geoscience-tuned systems can provide currently missing information on land surface composition (including mineralogy, dry vegetation and surface soil moisture)

• Methods for generating the ASTER geoscience map of Australia can be extended globally

• A suite of hyperspectral imaging satellites come on-stream from ~2015 and provide opportunity for accurate mapping and monitoring of the Earth’s land surface composition

• C3DMM is building capabilities to delver a 3D mineral map of Australia by 2020

7ISDE, Perth August 2011

Acknowledgments

• CSIRO Minerals Down Under• Geoscience Australia• Geological Survey of Western Australia• WA Exploration Incentive Scheme• WA Department of Commerce• Geological Survey of Queensland• Geological Survey of Western Australia• Murchison Metals• Auscope• iVEC• ERSDAC• NASA JPL• USGS

Thank you

Contact UsPhone: 1300 363 400 or +61 3 9545 2176Email: [email protected] Web: www.csiro.au

Dr Tom CudahyCSIRO Earth Science and Resource EngineeringDirector Western Australian CoE for 3D Mineral MappingChair International Society for Photogrammetry & Remote Sensing

Work Group VIII/5, Energy and Solid EarthTheme Leader 34IGC, Geoscience information from Proximal

and Remote Sensing Data

Phone: +61 8 6436 8630Email: [email protected]: http://c3dmm.csiro.au, http://nvcl.csiro.au, www.34igc.org, www.isprs2012.org,

http://c3dmm2.ivec.org/gmap.html, http://portal.auscope.org/gmap.html