31-8-^4 M 5i * з 7]$7m - OSTI.GOV

140
KR-97 (C)-40 (KIGAM Research Report) 31-8-^4 M 5i *■§■ 7]$7m A Technology Development for the Purification and Utilization of Rare Metals Korea Institute of Geology, Mining & Materials

Transcript of 31-8-^4 M 5i * з 7]$7m - OSTI.GOV

KR-97 (C)-40(KIGAM Research Report)

31-8-^4 M 5i *■§■ 7]$7m

A Technology Development for the Purification and Utilization of Rare Metals

Korea Institute of Geology, Mining & Materials

KR-97CCM0(KIGAM Research Report)

4^4 9} #4- 7|#7#A Technology Development for the Purification

and Utilization of Rare Metals

^ 4 ^ 'S T1

Korea Institute of Geology, Mining & Materials

disclaimer

Portions of this document may be illegible electronic image products. Images are produced from the best available originaldocument.

a # *9, -a- & 41, 3 si #, <=>17J- y, ^ ^d,

4 i %, ^ y 7), asi^, 7d#g,

A Technology Development for the Purification

and Utilization of Rare Metals

Wonbaek Kim, Hyosin-Yu, Inwha-Chung, Kang-In Rhee, Good-Sun Choi,

Chulkyung Lee, In Ju Youn, Jinki Chung, Chang-Youl Suh, Dong-Hyo Yang

Summary

Domestic production of rare metals has not been achieved due to the low

metal content in their ores in the nation. For these reasons, a strategy for

the value addition of rare metal sponges by processes like vacuum melting

should be seek to meet the growing domestic demand for titanium metals and

alloys. However, current domestic market appears not to be sufficient enough

for the large scale investment for the expensive vacuum-melting equipments.

Besides, related ingot-processing technologies like rolling, extrusion, and

forging of titanium should be prepared in advance. In the mean time, the

attempt to recycle expensive titanium scraps produced in our nation would be

worthwhile in view of the reduction of import from foreign countries and of

saving valuable secondary resources.

7}• ^^9 Si (Mineral Utilization & Materials Division)

1-

The objectives for this research are two fold "• One is to develop technology

for the production of high purity titanium metals from sponges and scraps and

to extend the developed technology to industrial applications. The other is to

develop a Multipurpose inductively-coupled plasma enhanced-surface modification

(ICPESM) process to upgrade powder products. Followings are the main

results of the study.

First, PREP(Plasma-Rotating-Electrode Process) and HDP(Hydride-Dehydride

Process) were adopted to evaluate the possibility of using domestic titanium

scraps in the production of pure titanium powders. Those scraps were

titanium pipes of Grade 2 and various sputtering targets having a purity of

99.995%. The titanium powders produced by both methods were examined and

compared with conventionally prepared ones. Their shape, size distribution,

structure and above of all major impurities were determine to evaluate these

process.

The powders produced by PREP were of round shape having narrow size

distribution at about 200 micron. Meanwhile, HDP powders were irregular

shaped having a much wider size distribution. Both metallic and non-metallic

impurities were lower in PREP powders due to the unavoidable contamination

during crushing processes in HDP. Thus, PREP has advantages towards

purity and uniformity while HDP toward finer sizes. Apparently, for the

production of high purity titanium powders by HDP, special considerations

should be made to prevent contamination during various steps in the process.

In PREP powders, smaller particles contained more oxygen since they have

larger surface/volume ratio. The tendency was also observed in the hardness

measurement revealing the strengthening effect of oxygen in pure titanium.

2

The hydrides obtained from various sputtering targets were identified as

TiHi.924. Both low-temperature tetragonal and high-temperature hydride phases

were identified by X-ray diffraction. The lattice parameter of TiHi.924 was

found to expand as the particle becomes smaller. This may be due to the fact

that smaller particles contain more hydrogen since their diffusion distance of

hydrogen is shorter than that in larger particles. The hydride from Zr ingot

were identified as ZrHz.

Stable plasma was obtained by the impendence harmonization between

plasma generator and matching networks maintaining the reflected power at

near zero. The chamber vacuum went down to 10"3 torr offering no

difficulties to maintain 1.0 torr at which the present experiments were

conducted. However, the fludization in the chamber was unstable when

operated in vacuum. The gas distributor and chamber design may need

modifications.

Argon plasma treatment on the titanium powders changed the surface

morphology slightly even though the effect was not significant due possibly to

the short treatment duration of 60 minutes. Oxygen plasma oxidized the

surface of titanium powders to TiOz as confirmed by XRD. The carbon black

powders were clustered during oxidation treatment by the fludization or

surface activation by the high power of low temperature plasma.

3

Contents

Chapter 1. Introduction............................................................................. 13

Section 1. Status and purpose of the study............................. 131. Purification and utilization of titanium............... 132. Surface modification technology............................ 15

Section 2. Work Scope..................................................................... 161. Purification and utilization of titanium............... 192. Surface modification technology........................... 19

Chapter 2. Purification and utilization of titanium................................ 20

Section 1. Titanium powder production.................................... 201. Metal powder production methods.................... 202. Plasma Rotating Electrode Process (PREP) •••• 223. Hydride Dehydride Process (HDP)..................... 28

Section 2. Experiments.................................................................. 311. Plasma Rotating Electrode Process (PREP) —- 312. Hydride Dehydride Process (HDP)..... ............. 373. Analysis..................................................................... 39

Section 3. Results and discussion.............................................. 401. Titanium powder produced by PREP................ 402. Titanium powder produced by HDP •■•••........... 553. Recycling of domestic titanium scraps............ 80

Chapter 3. Surface modification technology............................................. 83Section 1. Surface modification by plasma............................. 83

1. Definition of plasma.............................................. 832. Low temperature plasma by RE........................ 853. Surface modification.............................................. 894. Contact between plasma gas and particle.... 103

-5-

Section 2. Inductively-Coupled Plasma Enhanced-SurfaceModification................................................................ 1071. System layout....................................................... 107

Section 3. Test operation and results................................... 1181. Surface modification of Ti powder................... 1192. Surface modification of carbon black................ 124

Section 4. Future study............................................................ 124

Chapter 4. Conclusions.............................................................................. 130

References....................................................................................................... 133

- 6 -

-L-

EOI .................. tok-tylk^ ^68 ....................... k^r -#-#rkkW E98 .............................. ffy-fik k^k# ark is to IbdH 2£8 .......................................... tk §?. k to k to k^k-ii T£8 .............................. -feis tok tskRiIF k^k#^ Sr I tkE8 ........................... #k -g: E Ik

08 .................................kktk to^H^7 4k k th-k E99 ...........................M #kk a^tk HHJk dOH '2op............................4k k a^tk S-Q& dmd iOP ...................................................... #%r k kkkk k 8 tk6E .............................................................kk k N'"r' EL£ ................................................................ ^rn-tSEF^ ZIS ................................................................ k-bkkk 'IIE ...................................................................... tH-k t® Ft- S^ Z tk82 ............................................................. (ttoH) EZZ ..................................(dHHd) kkkkl? k^k# 202 ^tk k-R k4 I02 ....................... ^lk -Sr-tata % I tk

0Z ................ -js37^%T ^ ^ W^-cr-Q-^ -& Z |k

61 ....................................... 4 k k kk% to k?k"A 261 ....................................... -k^TT % 8 &?r2-y-# ILX ......... ................................................ k& kkR/kk & 2 tk91 .......................................4k k kto k4k^ 2El ...........................#34%r [& (4kk)?4kk IEl ............................................. fe-S" k%% k 4 k 4 k Sr I tk

ET ................................................... .......... # k & T Ik

i¥ a

14 ^ 14 .......................................................... 1071. 4^ 7]]_S-.................................................................. 107

4 3 1 A]£3 ^ 14................................................. 1191. 14S] SI 7111............................................ 1202. 4-g- #4 144 SI 7111 .................................... 124

4 4 1 If If...................................................................... 124

4 4## #.............................................. .................. 130

#313-#...................................................................................... 133

8-

zi m %

a 4 2-1 Schematic representation pf droplet formation

mechanism[ll]................................................................................ 25

a 4 2-2 44^24 A>-g-El prep 444 7#S................................... 32

a4 2-3 #4^4 4, 4a 4 22.444 442 .................................. 33

a4 2-4 (a) 4 24 44? A2.444 £4 (b) 444244 22.44

(c) 44^24 chuck 4 #44 2£44.................... 35

a4 2-5 42##44 44 Ti 444 42442................................. 38

a^ 2-6 PREP^as. ^]2sj 44? 4-44 4MS

(HTi-A 4&)................................................................................. 41

a4 2-7 PREP42.& ^24 44? 4-44 SEM image

(HTi-A 4 &).................................................................................. 42

a 4 2-8 PREP4AS. Ti-6w%Al 444

(Ti-A 4&)..................................................................................... 44

a^ 2-9 PREP4A2. 424 Ti-6w%Al 444 SEM image

(Ti-A 4&).............................................................. 45

aa 2-10 PREP42.S. 424 Ti-6w%Al 444 44

(Ti-A 4212~250um444 44).......... 47

a4 2-11 PREP4AS. 454 444 4MS4| 4# XRD $144)4

(44 ID : HTi-A, 44 : Mm)....................................... 50

a 4 2-12 PREP42S A]]2:4 444 424 XRD $1444

(44 ID : Ti-6w%Al, 44 : Mm) .................................. 51

a| 2-13 HTi-A 44444 4MS4 4-4 4444 4$>...............53

a4 2-14 HTi-A 44444 42444 44 4442 4#............. 54

-9-

562-15 riSl-t 554l2:-8- 5S 55-^-241 ....................

Zi5 2-16 52## #5412# 24441 54S......................

Zi5 2-17 52##44 5 5 55412 #4 4 5# ................

24 2-18 4^2## 4 41 4# #5 4#w #55 554#....

zz.4 2-19 2-52 44-# #55 X-5 4444......................

24 2-20 #2## 555 425#...........................................

24 2-21 52##425. 4124 555 SEM image

(■US: Ti tube waste, ID: 3)......................................

2 4 2-22 41251 ##5 X-# $1454

(4S: Ti tube waste, ID: 3)......................................

2 4 2-23 555 42#2

(4S: Ti/Al target used, ID: 5) ................................

24 2-24 4125 555 SEM image

(5S: Ti/Al target used, ID: 5)................................

24 2-25 52##4AS 4125 555 X-4 31454

(5S-: Ti/Al target used, ID: 5) ................................

ZZ.5 2-26 52##4AS 4125 555 42##

(55.: Ti target used, ID: 6).....................................

24 2-27 #2##4AS 4125 555 SEM image

(5-5: Ti target used, ID: 6).....................................

24 2-28 52s>#4ss 4125 555 x-4 5545

(5S: Ti target used, ID: 6).....................................

24 2-29 Zr 52## 555 SEM image

(5S.: EB drip melted Zr ingot, ID: 2) ....................

24 2-30 Zr 5Z1S2#5 4l2# 52##5 X~4 $1555

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

-10

3 3 2-31 9^##4 4# X-4 4494 .................................... 75

2-32 %hM=f 944 4^4 4# x-9 4449

(4& m: 6, TEN : Um).............................................................. 77

3^ 3-1 94-4:e4 o)]L-i^] ^-Eflofl n].s 4 sj 7}x] gen .... 85

3^ 3-2 944444 4719^4 7M9&4 44^ 4#4 .... 87

3 4 3-3 RF #4^44 49 9444 ##.......................................... 88

3 9 3-4 4si 4^4 9&944 #5f^4 4-S-71 ................................ 90

39 3-5 #4^4 4si41 44 3.444 99;H9................................ 95

39 3-6 #s}Z:4 4 si (41 44 33-44 &4 %44 -44....................97

39 3-7 9449 494 44^44 49 #4|;H4 44.................... 102

34 3-8 44- #&f 49& 4-8-4 4-4 #4^4 4 si 44.............. 102

39 3-9 hjIsi 4n# 444 444^ #4-^4 4444

44=^........................................................................................... 105

39 3-10 -g-94 4U #4^4 4444 7^5..................................... 106

39 3-11 999441 44: 3-4I4& 4-8-44 ?H9=^........................... 108

34 3-12 3- 49-414 ;H#9 ICPESM.................................................... 109

34 3-13 3- 4944 499 ICPESM 444 /Ms......................... 110

351 3-14 49 #4344 4# 449 94^4119 9#..................... 121

3^ 3-15 49 #434& S47D44 Ti4 X-9 4494.................. 123

*L ^ n

s. 1-1 44 44 44 4444 44 4 440954# ?ie).................m

3 2-1 43*4 °ll 4-g. # 1^1 £L7| 4S}[6]. 21

5 2-2 444 *#^3 41M 4* *#4 4443, 44- 4 371 [6]... 23

3 2-3 4# 444 43S}4 3? 44*3[20]............................... 30

3 2-4 PREP# 4 4* 44: 4)334............................................................ 36

3 2-5 #4" 4) 3 444 4-8-4 4# 444 4&4 44........................37

3 2-6 PREP4 °fl 44) 434 444 434 4444#........................ 46

3 2-7 PREP44) 4# 434 444 434 71-31-41- ........................ 48

3 2-8. 434 43##4 444. a=45 Mm 44, b=125 Pm 44.............. 76

3 2-9. 44)34 444°)1 4-4 444 4444............................ 80

3 2-10. 44-4 3444 4-43* 4-8-44 434 4444

4444..............................................................................................81

3 3-1 3471144 44 44 #4344 4-8-.............................. 92

3 3-2 444 444 44 jl*4 34 ;i)44 4-8-......................... 99

3 3-3 44 *4344 41444 44................................... 100

3 3-4 44 #4344 4444 44 127

*o i a ai

1. 4##4=(44#) ^ ses#

44# 444# M€^z# #44#, €, 4sxi# 4# 4#X|S #4# 5 #4 44# ^4# 45# #4444, 4X14 444s 444s 444 444 #44 44 #4# 444 ##s&44 44##4 44ir 444 X)s4 4-4 #4 44-^4&4 44-4 XI#44 #4. s4# 45 X)s#7>7]- ^ # #4 7lj#4 44, 4-4, t2, 7>5 4#4 ##S5. 44# d:XI4 4-4-447]-

55####, 4147))#7]7), 44-7)7), 4444, 44, #4-4 # 44#4^, 4 X)45.71)5., 454, #SX) # 44=4 54& #44s $14. 44-4X1 #4-4s X154# ##4s 55#### # #44 4444 44 #5#4 4# #X)7> 44 445444 s 44 44 4544 44#4 ses 44 4 444#4*X] 44 #4 s 4X1 #44 s 44.

44 4444# 44s 444 S44S444 4 8004# 4s X|#44 4

4s 44 4 44# 4##(titaniferous magnetite)# 4 4 TiOa 44=4 15—20%

4ss 444 4* 4-8-4 #4 s#4 44# 44# 444# 4X144 #5

4 S3. #44 s $14. 444 4 7)) 5.7)# 54 44##44 X]## 4## 4

## 5 44 4# 4ss 5.44. 444 4*5 s#X)# 4) #7fl 4s# 44

* #44 454s $)S4 s 44 55 4 55447} #X)4s #* 44#

#4 S7D4 3#, #4 X1444 X)#5# #X1 445.54 544 4544 s

#4 44-## 4-8-# s^-7>7>44 #44 ##4 #44s $)4. #44 44

-13-

19964 49 3000*(4 7*4*)7j57} 944# 935 ^£]3I 4#4 9# #

# 4 4**£* a 1-14 344. 44 49 44% 44# 9** #4*34

3 l-l #4 #4 #4 44#4 #4 4 #4(‘95%4 4#)

Unwrought(4 #5) *4 45#,

44 7B*3, 44 =

454495 94 * 41

*9(MT) 1,900 990 560 570 114 4,134

#9(4$) 1,000 650 1,200 800 1,600 1,600 6,850

5*9 44#35*4 43:44 444# #944 4 #-§-4#°] 3944. #,

44#4 4# #49, 3.-§-4 #94 -§-4 4 9&4# #7}4 ##4#-B-4 4

44- #47]*4 A#44 ## *4#7}5 44 444 999 97>7> 1344

#94 4 #5-9 14:71-9495 ^%4444 44. #44 44-## #444

44-# 9*9 4%# 49 #49# 1 9*5 5# 4-3: 4#4 #1 935

444# 44.

44 ## 4444 # 4944# #71-5. 9444 449 #4 471-5 4#

4# 4# 9# 44# 3:#44 44-7199 71)494 444#4- 4 #444#

95994 «# 55%#7> 444 49 #44 44##4 44444 44

* 34 4 4444 44# 5*45*9 ##954 44# #44- 444#

434 714 44## #i>, #4, %7il94 44#4## 4# 9444 4* 4

97}94 9 #493* 944# 1# 494 44.

9445 4944# 44#4 49# 94 #49 #95 44# 45#*

9 *44** 4955 *494 #*19# 494#7> 414. * 494 9

3 #5*4 444 44#4 9#*994 94* 4444 44 99 #444

#914# 5#^* 7}9 957} ** *7}* 5449 4915 #4# 9#4 9

-14

2* #2# 4 4 #4 7Hv # #22 4 #4* *4* 443# 4*22 44

011-5144 El44 44# 42** 44* 44444. 44 444 444 44

*3* 233 #3##4 4)24 444- *#2* 444444 444 *

43 4-44 4442011 ### *2#*# 4 44. 42 4# ##€22*s) #

24 *44 *444 442*4 44424 44*54 44 44* #€4*

4 *44 #** 44 42422 #**3* 444.

2. *42414 5444 4*

*44- 4*4 #44 44 4444 2*4* *4*4 244 424* *2

4*424 5**4* *444224 ## * 4* 4*7} 44 4*4 5*7fl

€ 4** 3*244 4#4 *44* 44* *4. 4#4 42* *4* 4*

** 2* 4*4 42* 4**424* 4*4 42* 4*4 5*4*4 4*

424 3* 3=*# *2*2 %%* oi*3.* ® 5*4*4 44 €4 4 44*

42# *3# 4* 42* *# * *2, (2) 5*7114* 44 7}** **24#

#* 24 4 *** *44 44 4*444, 2*3. © 5*7fl#* 424 44

4 4# *44 €4 4 *4*471 4*44.

4*44 5*7i)*4 *2 o)^.£]j7 02* ^###4#* *, #€#, #4*

a}-§-*3 *4 4*4 44441-4 #79# 4# * 844. 4# *4** 24

*4 4*4 711*43 4* ****** #, #424, 444 # 44# **

4**4 2**, 4##, **, #*(Membrane) ** 5*71)44 #4 4**3 *2* *4 3 ***** 4447}3 #4. 42 3*4* 5** #24 *2

*#3*3. ***#** 3*a} s*4 ***44 2*#* *4# * 4# *

* 4-4# €24 4# 4#*, *4*, 33-3* **4€ * *4. 2 **42

4 €24 44 e#2*» 3*43 Bias Voltage* 7}#* ** ##*44 3

4## ^44€ # ^4 ##4 45, xfl4S4, 7^# - O^cf.

t^i4°1 I^7fll^r EL711 #5454(Hot Plasma)# 4# #5# 4

4 #4 5 4 (Cold Plasma)s. 4# # #4. 4443H14 444^ 4# #454

# 444 #4^44 14#-# 44 4444 *5 45. jl444 444 4#

4 ##4 4* #44 4*4 44 44# €4444 4#4 1#4544 4

44 #4 s# #44 oi#, 71-^s. 44 5*114 gg, 44# #4 4 4**

4 444 44. 4# #4544 4#4 44 £47114# #5. (D 54#4# *11

4(Cleaning 4 Etching), ® 54# €44(4#4 5* 5#4), el45 @ S4

44 444 4l7f4 fEfls 4444 #4 4544- 4# #5 44 ^L4I4 54

44 # 444#4| 44 4*45 4# 44 #44 54/M4 44 ##4#

* 44455 4# 444 44.

44- 4# 414 44 # 4444# 4# #45444 44 #44 54zM

4#7H4 49-4 4455 ## 4*5 #5 #44 #454 #** 54/1144

4 (Inductively-Coupled Plasma Enhanced-Surface Modification, °14 ICPESM, )

4 44, 44, 44 4 44#4# *34-54 4-$4. 44# #4 4 4#*4 #

41# 4#4 4444# #4-4 44444 #44# 44 4 5 7%#44# 4

44-4 4# #444 #44 54*114 4*4 54* 444el4 444..

-16

4 2 3 33

•& y^4 4# yf7ii# y^-i y^ ifi-g- ^ 4#ys y^ 44e 4-

&4 #4.

4# y^;m 4atr 4-B-4- #4.

1. si-B-y-^^y ^ Jies#

1) 44#4 2e&# y#7H#

2) 444 M42: ;ii#

2. #^7# £444 7]*

1) -frs. #4^4 4-^4 5.y7fl 4(ICPESM) ?44# 7114

2) #44 5471144 44 7l^ «oi 4 igyl-

-17

34# 34#4 3 #34 444 #3-.

4 4 3 33

19963

0 3444 33 3 £££3-- 3343 3433 3#7H#- 3443 ££43 4 #3£#-

o 43:37113 S3 3 3 3#- 34 #33443 711# 3 #44#- 3313 3=# 3 44 #3434 372.34

19973

o 3444 33 3 £££3- 3443 343 3- 4444 7il#4 4 £.££3 34

o 4#£7H3 S33 3 7l#- £#£#■ 343 4&34- ICPESM 3-33 #31 4 #3- 3-33 #43 3 7li 43M# ##

19983

o 3444 33 3 £££3- 344# £££3- 347H#- 3133-4 7H#4 43 ;H#

(£££ 33-4 ##7ila 7l#;H#)o 4# £7fl3 S3 #334

- ICPESM 3-33 43, 5.3- 443 444 3-# S37113 ##- #43 3H #7>

-18

444JE 4445 4 41-8-5- 4&4 ^-4.

1. 4 a.e^#

4*Ns. 444-5

1) E)4^- S-4^3: 4^

2) 444# 4 #-8- 93 a.es# 7>44 44

44451 4^4-8-

44# ^3^0.5.^-E^

1) #4^4 444444 44 44# 5-442: 4 44

2) 4^^4-#44 44 44-# 5-44)2: 4 384

2. #4^44 5444 4#

44)451 4##5

1) 551 444 #4^4 444 5471)4 (ICPESM) 444 44

2) 44 4 #4 4 4&44

44)451 4444

1) 5-424 o]s-4 7)244* #4 ICPESM 444 44

2) 444 44, 44 4 45:43) 444 4 44 #4 5471)4 7)2^4

4) ICPESM 444 544 44 4 4444 44

-19-

4 2 #

4 1 ElEl-W SttSl ^|S

1. ###44 4)2

#442 44# 3.4 #4444, ##4 44, 44144455 4# #

SI4. 4# #44444 7>4 4544 4# atomization 4 44. 4 44

44# -8-44 ##4 4-8: 2435. 44444 43444 44444 4

#4 44 44- atomization^! 44 454 #44 4##5# 44455

434 W34 24 #54=4 4:# 444- 444# 435 4:44 $14-.

°14 4-44 44 55e roller atomization, vibration electrode method 4

melt drop technique #5 $134 "o"4 4 Si 4-8-4: 4 #4 4 $I4tl].

##444# #44 #### 44455 #4144 414 #4# 4# 4

444 4##4 #4#4#4 44 #44. 4*#4 42g# ##44

##### #244444 ##### 444424 4-8-44 #4# 4#

4# #44. 4444 4444 44 444# #4#4#2 4 444 #

#43 # # $14. #4 ##4 #4## 4* ?M4 ##43 ### 4

2# #5 $154 # 4444 44##4# 42##4 /}## #2##4

(hydride-dehydride process:HDP)5 4 4#4 ##4. 44444# 44

# 444 4# #4# 44435 #44-4 #4# 4# 4444 4#44

#4# #4# 4544 4444M.

44# #4# 44 #4# 44 44 #44444 4544 atomization

444- #24-1-# 4-8-4-# #444455 #3# # $14-. 44-# #4

-20-

■§• 42:4-4 atomization 4 4 4 $1 44 Si (rotating disk atomization), $1

4 4 (rotating electrode process,REP), 3) 4 4 #"4 (plasma

rotating electrode process,PREP)4°] $) #[2-3). °] 4 -€-§-#-#4 -§-§-# 31

$14 PREP'S 4 £7}-v]7> #e)-^n).a) 44# ##4 7>>i(Ar or

He) 4-44# 4-8-51-7) 444 44 4444i: 4^# 4 $14 4444M.

4&# 4 44-444 £#4:5.3. ^44 #7) #444 7}^% 4

4 3.7)3, 44 f, £#4$! heat sink# 4#4 44. o)# 42%

# 4 44 4y -5,5-4 (D spray(atomization), (2) chill(ribbon), Tie) JL ®

weld(surface) 4^-5.5. 414^ 4 44[5], 4# 4444 444ai 4 5#

4^4 4 44#4 444^4 -8-3&4(#4^ 37) )# 5. 2-14 u)h#^

4.

5. 2-1 -1-31444 4# 444^ 4 44 y 3.4 4#[6]

Coolingrate(K/s) Designation Processes & products Characteristics of

limiting thickness Grain size

A. Normal Solidification Processing

10~ti-10~3 Very low Large sand castings & ingots 6 m 0.5—5.0mm (500~500Qtzm)

10"3~10° Low Standard castings & ingots 0.2—6 m 50—500/tin

10°~103 Medium Thin strip, die casting & normal atomization 6—20 mm 5—50/tin

B. Rapid Solidification Processing

103~10ti HighFine powder atomization,

melt extrusion & melt extraction

0.2—6.0 mm (200 - 6000 /tin) 0.5—5.0/tin

10ti~109 Ultra-highMelt spinning,spray

deposition, electron/laser beam glazing

6—200 /tin 0.05—0.5/tin

21-

4*44 4)4 *44°) 45 4*4 *4(0,N,H,C)4 44*5

e 4 4* *7) 4)44 44* 5** *445 *44) *** 447)- *5

**. 44 levitation «°) 8)5* bulk z)Hl4 444 4 &*.

444—5. cold hearth melting 54 skull melting4 °]44 5 4-5-4, 44

4 %44 4#*5 44) 45= # 4^-4 4" &44 44)4°) 8)*. 44 44-5.5. 444 s4( plasma, electron beam, lazer 4)55 ** z))54

*4* 4#44 444 444 43=44 444 444 #4 447)- *«J4

5 %1*[4,6]. 44455 Ti 444 4444 44-8-5 7]#4 5 444

a 2-241 544584.

2. #*5* *4***(PREP)

7>. 4 4

4444 54-8-4 4 5444 4445 544 444 **4 4*4

4)544 441*4 444 41544°) 5445 44. °14 444 -8-44

4*4 48)7) 444 57>4* 5* &4 44444 4444 °14* 44

444(rotating atomization process)°1 4445 44)4).

4444"^(REP, Rotating Electrode Process)4 5^55 4444 45

44(444) 44)4 #4 445 ^5* 4444 *444 44*55 4

°14 44 44 444 4444°) 44444 44/4544554 4*4

45*4 *4°1*[7]. °H ^5* 4*4 4* 54*4* 4*4 444

4**55 *4* *°>°1 *5, 5 **4 #*5*, 4°)4, 4** 455

**7)5 **.[7-10]. °14 transferred dc arc* °14* #*5* *44*

4(PREP, Plasma Rotating Electrode Process)°) *4*4 *5* 4)2:4

5. 2-2 ^445., <§^- ^ 3.7)16]

Rapid solidification technique Cooling Rate (K/s) Product form Typical product

dimension(/an)

Gas atomization #~# spherical 50-100 dia

Ultrasonic Gas atomization #~# spherical 10-100 dia

Laser spin atomization -# spherical (+needle) 100-1000 dia

Plasma rotating electrode process 10*-# spherical 20-200 dia

Pendant drop melt extraction #~# Fiber, filament 20-100 thick

Electron beam splat quenching 10*-# Elongated splat 40-100 thick

Melt spanning #-# Ribbon 15—50 thick

Melt overflow -# Ribbon 20-50 thick

Hammer-and-anvil quenching #-# Foil 10—50 thick

Laser surface Melting #-# Surface 10—1000 dia

wiM 4&4 #4[4].

(D a. #41, ##

(2) 30-300 nm ##42: 7]-#

(3) f ^4| smoothtb ## IP'S

© 4# 4-# 5#^

© 4# 7l?£

© Sl^i^£2i #4(71711441 5-4)5- W<y£fe 7^##54 #

4. *44H4*

4*44*35 **:4|34, *44 *5*3* *4^4434 4#*4

3i 4-44 OT[ii, 121 4, 3*4 -8-0- *4455-^4 4**^

°i it"8"47]7] 4* *fl34T°)l 4*44 DDFCdirect drop formation),

LDdigament disintegration) 4 FD(film disintegration)5. **# * $14.

***55 4 (2.1)4 44 t? 7l^s 4431 $14-

^)^444(0pl#*4**(MP~)

(QwOW™)/^™/?!,',0.88/ 0.17 .0.71 \(2.1)

Q : -§--§-4 S.(m3/sec )

u, D, p : 44 55*44 44£(rad/sec ), **(m) 4 *5(Kg/m3)

A ?l : 44 3**-4(N/m)4 -§-0-444 **5(Pas)

O^Mp 44 0.07 4444 DDF, 0.07-1.3344 LD, ne]y1 1.33 4 444

LFD7f 444 4 **^*7] 43 444 44 3* 2.14 £4353 3$4.

4# DDF 44c -8-0-457} 44 4 4-8-44. 4, 31444 #4 53

444 44445. 4444 -8-0-4 444 444 7}*-t}5H 4444 4

c torus# *4-4444 44 444 37]4 14 4 4 (main particle)4 4

54 4-4 2444* 44445 **7]l 44. 24444 ** 14444 f4 44 434, 44*4 43*3* bimodal 444 #3* 44$14. 4

4, 44**5 34* 3*4* 24444 *37} 4t)1 4444. 4 4 44

444 37]4444 44 *4* 344444 454-8-4 434,

Taylor[13]444 4*4 44 3444.

-24-

mainparticlesecondaryparticle

anode

protuberances

(b)

particle

ligaments

anode

particles —

liquid film

anode

2-1 Schematic representation pf droplet formation mechanismtll](a) Mechanism of Direct droplet formation mechanism 7] n1(b) Ligament disinteration mechanism(c) Liquid film disintegration mechanism

-25-

d ~ (7

5 / w (2.2)

D p

Champagne ** Al, Fe, Cu 4 Zn4 44* REP* °1 *4* *4* 41

£4* 4 * &)] >| t DDF 7) *4 1*4 7}* *3-*(mean volume-surface

diameter)* £444 4*4 4* 4*4* °1#°1 >&4[15].

Q°i= /dvs = 4.63 xlO6-----------'(— )a43 (2.3)

wO.98gO.64 p

7(1*44 ££*44 ***£* *4t(] 44 *44* *44 °)£45

* *4 4*(process parameter : 4*£, 4*44, ***5.)* ****4

*44 4 *44 4-4- =l **4*7} 44* 44. *, **4*4 ***£

7} *7}#4) 44- DDF 4*s.*4 n4 2.1(bH 444 LD4*& *4 *

4 4-4. DDF 4*^.4 e 4*4 *47} &JL 4 jet4 ligaments #44

.51, Rayleigh 444*4 444 *41 *444 drop6] **44. *-4 44

4 44*517} **# 41, ££44-*-°f| 4* ligament4 t* ***£

4 4*44. *4 *£°ll* ***£7} *7}44 ligament7} **44£5

drop4 3-4* *7}44. 45-44 ** 4£*5* 44 4£5. bimodal £

44 &4451 444)44.

LD 44* **g-*4 ***£7} *)* t44, *711 film4 4* 44

44 *4 44 4 4*5)4 n4 2.1(c)4 444914. Iigament7} 4* 4

44 ££44 4*4£ *4 *-*-# 4 444 *4 film* * * 4 £, * <4

4) film 447} Rayleigh 4 4* * ^l 444 *444 drop0! * * 44. °1

7)44 44 **°1 **444 DDF4 LD 4*m4 4^&4°1 4 4£ 4

£4-57} 44 4444.

-26-

4. #44 ^4#5.

-§--§-444 44 #44 ##4#444# 44444 4444. 44

444 4## 44 4 44 4443., 444 44#2(T)# 444 44

5444E14],

6T =------- [hc(Ts-Te) + <7 £ (Ts4-Tg4)] (2.4)

DpCp

Tg, Ts : 44 #4 #444 -§-§-44 444 #2

Cp, a, e ■ 44 -#--§-#44 44, Stephan~Boltzaman44 4 emissivity

44 444 44# he = Nu 2 / d 43, 444 Nusselt#(Nu)# Prandtl#

(Pr) 4 Reynolds#(Re)4# Nu = 2 + 0.552Pr1/3 Re1/2 4 444 44.

4(2.4)44 #44 44 444# 44#44 # % 4244, 44M2

44 44.

Zdujic## ^444^32 #44^4 500-50//m4 444 10-50m/s4

#2* 43 4# Al, Fe, Ti, Mo 4 W #4444 4# #4444 44

At 4 He 44444 44#S* #4432 4#4 44-3 444^4

[15,163.

jrp «r\ 1.80 . 0.18

(y)Ar = 70.78------ m di,eo (2.5)

i^p rp 1.50

(—)He = 1.04xl04-----o.03V (2.6)dt d(L89 u }

(dT/dt)Ar, (dT/dt)j-ie : 44 Ar 4 He444 44#2(K/s)

d, u, Tm: 44 4 44 (pm), #2(m/s), -§-4(Tm)

27-

7fl5_7> ^4# 44 7HV e 441 441 parameter! 44^

4 #4, 444 421 ## 44 4#1 444.

H4 p]x|12:44 4444 44(12)^24 secondary dendrite arm

spacing(SDAS)l 44 f^H, Fe, Al, Ni, Cu4 «4 414 #4 1

44 OTtl?].

T = 106(SDAS)“3 (2.7)

Ti #44 #4 0 -§-2#, a + 0 & 141471 4€-4 -§-22:4

4 2144-. 444 ^ 1^ 3714 ^44244 441! 4-

14 14-[181.

L(//m) = 3.1 x 106 T"°-9 (2.8)

3. 42### amp)#

7>. 444 42##

444 £fe #44 42* 4444 444 44 44 414 42## 4 4

444-44 4# 42441 3*1 444 44#4 #444 4444 44 4

44. 4S4 444 42##141 7}# #4 #42#4# 44 2! #44

4444 42:44.

4444 424 4444 %M# 42444 444. Ti-H #424 444

[191 Ti4 H4 44441- 44 444 4244 44& a (cph) 0 (bcc) 8 (fee)

44 44. 41 a 4 P 4 424 444 244144 51 #4 424 4=4

x=1.05~2.0 ^44 344 a# TiHx 44##3 #5}# SI 4. 9-# 3# W

4 #344 44 7>3#4 44# J7-g.§>7l Al^j-tb^. 444"

# #34 3#4# ^7>5Hs> oil 3#44 ### rit ##

# 4 Si# 44###33 4#47} 4444.

4. 44### ##

9-444### #a#a ###a# a#-# #4=, 34344711 &, 344# a

5. # 3 ####7} ##=##[20].

(1) 9-4 4 #9- ##44

3#3 9-44 a^a 3.31 #44 4^1 4#3## #4#4 3##7l 4|7l nfl

44 €4 43# 44# 4 4##447} 4)#4 4^#. zl## 5. 2.34 3a

44 #4 44### ## 4 %1# 9-4 #4# Zr, U, Th, Ti# 347} 43

4 44 444 ###4 44### 44# # 444 ##4# 4441-4 #

444 44# 433 #4## 4 44. 4# 44###W# ## #444

a4 44 44# 9-W### #444 49-# 44# 4 434 4 44 43# 4 4 44437}- 49-4### 444# 943# 44 347} si#. #4 4#

4 MM4# 44# #>#» 444# Jl#7> si# 7}^#4## #4 a## #9-# 7}} 33 7}#4#.

(2) 9-#aa 33

9-444### 3337114 #4 3343 7}l#a 447} ##7}J7 2^7fl#

3.4}#44 #4 37)1# ###7}] ##. Alexander# ###44### 4##,

3# ##### W 71144### 3##3 4##4 a##4 4443 43

29-

a 2-3 4# 444 3^4# 4 333^[20]

44 3^##

Ti, Zr, Hf HCP TiHa ZrH2, HfH2V BCC VH, VH2Nb NbH, NbH2Ta TaHCr CrH, CrHzNi FCC NiHPd FCC PdHLa, Pr, Nd, Sc HCP LaH2,PrH2, NdH2, ScH2Ce FCC CeH2Sm Rhombohedral SmH2Gd~Tm, Lu, Y HCP Dihydrides, TrihydridesEu BCC EuH2Yb FCC ybh2, ybh2+6Ac FCC AcH2Th FCC ThH2, ThaisPa BCT PaHsU Orthorhombic P-UHs, a-UHsPu Monoclinic PuHsLi,Na,K,Rb,Cs BCC LiH, NaH,KH,RbH,CsHCa, Sr FCC CaH2, SrH2Ba BCC BaHz

7} e 444:a S.as>S4[21], 44 444 44] Zr4 Zr02i- 34

44 -434 44433# 4# 34-a 44[22].

(3) 3-4-414-4 34

Ti, Th, Zr4 3^4## 43-4 #344 444 %443^ 44-44 44.

3^### 444 414-4 415-4 a444] £142 n 441 4444#

-30-

#31#3I 7}#-2##224 #4*1# &4* 4# * 44- 2 4# ## *.2*

*2#14 444* 44 4* paste* #44^7} s}^ ##*#4 Elsj-l n

44 solderi*, 4*4#)* 914*4. *1#* 7}<#4# *241 EE^ 444

solder?} 4el *14*1 #44 *2414 ### D444 4W4 44[23]. 4

*14#—, 4444, 44# *2 4# 444 4 4 metalizing*! 7}#44.

42#

*424 44# 2*2 44 4 #444* 44#m #444 ##44* 4

44377} 4s. 44#4 **(424 444# 44m), #4 4 244 (*244,

hydride-dehydride process *14 HDP) 4 44444 (plasma rotating electrode

process *14 PREP)*11 4# *4*4, *2444 44 #4* *4444.

1. 444444 44 44# ##42

7}. PREP 44

41*431 441*2:7} 444 44# *4*4* 4)24^1 444 #44 4

424*4 444# *24 * 4* #42*} 44444 (Plasma Rotating

Electrode Process,44 PREP) 444 4*4 4 444t}H 4**444 4

444 4* 4*# 44[24]* 4*4534. 4 *4* PREP *44 444

444* #444 444 4*4 ##4*4 #442, #4 *2*4

#* 444 4*44 #^##24 4-427] 4#f} short bar #*22

PREP 444 711421- 2# 2-24 #534.

31-

Vacuum

1. Plasma gun(cathode)3. Vacuum chamber 5. Precision feeding system 7. Digital tachometer 9. Digital mutichannel recorder

11. Rigid speed spindle unit

2. Consumable electrode(anode)4. DC Ar plasma generator6. Graphite brush 8. High speed electric motor

10. Control box 12. Powder collector

2-2 3-^4Ai-g-y prep

-32-

#4a4 4a 500A4 DC 3#* f $164 DC #424

gun4 4^f64 4a 2.4 hb\3l 242# zl|| 2-34 444

44. 4a %M4 #424 444 #4a44 #44/} 4 20,000

,«»,

Cathode (-) •••*••• Anode (+)

1. Core of arc column (16~27xl 01 2 3 4 K)2. Inner high-temperature region (12xl03 K)3. Visible glow region (6-8x103 K)4. Cold Ar sheath(4.5-5x103 K)

24 2-3 *4a4 4, 4a 4 62.444 »fl^l£

K, 44 2-444 12,000 K, visible glow 444 7,000 K, 2 a] 2 2 44/1

5,000 K 4a 444 44[25]. #4 ^4^ 4 4 visible glow 4 44 envelope

4 62444 444 44424 45&4. 44424 4444 44 444 4

33-

4* 10 mm2 #4482.4, ojnfl ##* 19 V84. 44*4* 4

2 25,000 rpm°)l4 44*24 4** 314*4 # 4% 84(25,000 rpm4|

4 < ±500rpm)S 418484. *41 #44 41:44# chamber^ 44# STS

304 44 a4# 44 630mm , # 30mm42 44 10~3 ton# **;£*■ #4#

* a4. #44124 * 44 444 44-# 444#5. 44444 4#42-3.

#42# 44 44* 4*4 44* 4*44 *42# 44 44*2* 2*4

84.

4. =*3.4*4 414

PREPS. ##412# 3.4444 42.44* 44-4* chuck(44 012.10)

4 4442# 412484 4:4-. 44 10", *41 I4mm8 2*2 44* 414

4M ##(011.5x100mm) 2.3. 7}*#2, chuck# *4* ##* 4* 4

4*#* 4*44 71-44 4*, *##* TIG *444 4*42.2 *24

4* 412:482.4 4414 £4 4 44M4* 34 2-441 284.

4. *4 412

71448 4124*4 #424 gun 44 8 mm, #424 7>28 Ar *4 7

1/min 4 4444 10mm(4 19 V)3. 24484. Chamber 4** Ar #4

42 #4482.4, 4*4 Ar gas4 *2* *8* 2* 5N4 4241*4

84. 4414 41224* s. 2-44 282 8*44 4* 84 4124** 8

4441484.

zi^ 2.4 (a) ^12:4 e)e^ 2.4 4(anode)^(b) zh2-44

(c) #^4^4 chuck ^ #44 2:&44

-35-

*11.

0'

5. 2-4 PREP#°fl ** ** 4**4

44ID Ti-A HTi-A HTi-B HTi-C

**4* 4 4**(rpm) 20,000 25,000 25,000 25,000

#*** 4*(V) 19 19 19 19

4*(A) 140 140 140 140

Ar

#***7}*( i /min) 7 7 7 7* * 7l 7>*( £ /min) 15 15 15 15

* * 3N 5N 5N 5N

4* **w *4 Ti-6w%Al (arc melted)

4*4 *|| *4E(4N5)

(2) ##** 4*

**4*4 4* 7>#4, a^ofl ## *## 4**7] *4-4 *4]e 4

44*51 *#* 44* IfAS 4**^4. 4* ** 44 ^s #4

444 *, *44 4*4* *7] 4*4 4* *** 44*4 4*4 4*

44(5 x 10~2torr)* gas backfill* 34 4#(N2 14 4 Ar 24)*, *7] 4 4

4& #4*71 4*4 chamber *7} **4 4** *47] 7]4* 15 1/min

4 #*** #44*7} n-* 4*4 *4 *%*. *#4 4** ##**

gun* 4444 *4* 4*4 444 4444 *, 44 **4*4 444

4*4 44**4 45.4 #*2:4- 44* 7}#44 grm**#4 **4*

* **4 *4*4-* #44431, # *514*4 *4 4#** *4*4

gun# 44**3- 444444 *#* 4**4*. 4*4 *** ***4

36

4Vg-*H4 4 #44 #414 4-M 14# 484.

2. #S4#1(HDP)4 44 44# 4442:

#S##!4 44 144s#l# 44 4S14* 444ai 44# 44

444S444 4#&4(4)4 4444 4# sal# 444 s%M4 114

4 4#4 ##S4 4 444S44* 4a4a4 484.

7>. 44# sal 4 s.

4 4144 444s4 4#^ 44# 44, 4am, mail #4, 4ml 4

144 444S4 444 44# S2-54 484.

& 2-5 444]s 414 4-8-4 4# 44# 43.4 #1

45.ID 43-4 ## 43.1 444 4 a

1 Ti powder (99.9%) 326.68 g - -325mesh, a #5.41(4)

2 EB Zr ingot 098.3 x 66.6mm HNOs+HF EB drip-melted (sponge Zr) at KIGAM

3 Ti tube 113 g HNO3+HF (44 #4

4 Ti sintered bar 697 g - Vacuum sintered

5 Ti target(TiZAl) 1053 g HNOs+HF A1 removed by NaOH

6 Ti target(Ti) 508 g HNOs+HF Scrab(4N5)

7 Ti target(Ti) 490 g - Scrab(4N5)

-37-

4. 4^24-44

2-51 #241^4 4# 1*42 144 44 7]]4;e44. o^H b}*-

4-1441 42* 441422 41# ^ 7>144 *2# 1-0-4 444-4 4 4. 4S4 44€ #2##* -0-44-4 4444 1-0-4-2441 41144 4 2#1# 7>144 *27> 4*44 44# *4 #12 41-44 41 44.

Ball-MillTitanium ay Sieving?!

Balance

Ball-MillSieving?!

Press

2l 2-5 4^=4194 44 Ti #44 42142.

-38-

4.

44:## *## 4|5#7l 4# *5#(1###)* 560°C°ll4 34#*# rL#

4 5# ##71-11: A}### #4#. OH 44:4 57l#4# # 8 7l*ol4t*

14 44:#### #5# 4 s* ## 5# 4 4 Ball Milling# * 2# ###(#

#71-2)5. #7l ###44 7}##4 44:# ##434. 44 #44:## 700°C

44 10 4### #354 3*5* # 10"3 torr5 #3 #3 4.

3. #4 5 #7>

45# 1*454 3515 #4# 4 #4 35, 48, 60, 70, 80, 100, 120, 140,

170, 200, 230, 270 mesh# 127>4# £445 4##4 **#5, 44 4:43

#4#4#4 44* #3* 4 ####4 %* 3 #34. **4 4## #

# 4454 *4* *##4 gold coating * 5 SEM55 4 ##34. *4

4 44*4 44* ##455 #7115# 4#* 4#4 **4. #7113-* #

##7l 4 #4 X-4 #3*4# f#35 *# ##* matrix4 33355

%##* til** #*#4 3#i- *#57l #4 x-4 #44# #*5#El

lattice parameter# 44#3#. *#45 4)5*3 4 ** *** ### 4 45# 4# #5# 5#3, #45, #5 neljl 415# **5## 45#

4##4 ICP *4# 9#84. ##*# ##4)54 #335# #3#7l 4

#4 45 4 *5* *## LEGO TC-1365 *3#34. 44135*

AKASHI4-4 441357KMVK-E)# 4##4 43434. 35 *3# *

4* *#44 544715 mounting# *, 44* 35*3* 3434. 44 *###** 10 gf4 34.

-39

#13 4 ^ 3i#

l. prep^-2-s. ##5 *#4 *#

#. *#4 $£*£

PREP#£S 42:# ##4 #£#£# n4 2-64 me] 3. 4 ##£(212-250

Pm)4- #£ <75pm4 *##** 3X# 2-74 S##. #4#£5. 75~ 400Um #

#4 #£#31 $1# bimodal# 44 #£#£* S#3l #31 BE# ##4 ##4

£4 4 # 31 # 4 # 4 xr#4# °1 direct droplet formations. #44 #** * t

##. 4-4 *4##S 80% #£ ###3i #* ###£ 212 - 250pm #44

$1# peak# 1#<8#S #*##. ## 180Pm ##44 ##4* peak# 4##-

4 ##45tU #4 ### ##444#* s#4# 4 *## 44* a*

peak#4 90pm *#44 ##4* #£* peak* 2#4#S 31##* #4 #-#-

##3i 44-##. £## 44 ## £# 4## #4* #44* *#4£#*

(££##44, ##*£ *)4 4#4 4# *# #*7> #£#- #4#. *4*

£ 50%44 *# 4544# 240pm##.

## 4#44# 44* ##4 s# 4* *#4 4*4 43.44 4* 4#

* * ##(zi# 2-7(a)4 *4-)). 44# **5* **4 ##4 *s#4 *4

chamber 44 *5144 44 #ss ####. 44 4#4 4£ <75pm44*

44 *#4 ##* **#4 ##4s 4#. 4(2.4, 2.5)44 # * 4*4 **

4 ##*£* 4 #44 ##4#s.£ ## ##*£7}- *44 *3i

#S444 44 ##. #4-4 ££#44 ###444 ##44 44 **-#

4## 4*5*4 *## *37.4 4s chamber 444 *44 #*4#4 *#

4#4 *37* 4s*4 44 4* *£S #4* * ##. ##4 #-#4s4

40-

Wt %

C

umul

ativ

e w

t %HTi-A

Particle size (gm)

2-6 PREP^AS #^4 -gsiM(HTi-A 4 m)

-41

2-7 PREP^-»5- Xlj&g SEM image(HTi-A a] 5.)(a) 212- 250;m (b) <75pm

-42-

#4# 41@## 4l5#7l PREP #3)4) chamber 414 W0! 4

34 4 Ml0} # 444.

#4 Ti-6w%Al 5ls) ##@#(Ti-A)4 1-f #A@3 ^ @#4 4-

4 34 2-8 4 3# 2-941 S4A4 4 1# @4 #3 50%414 4# 1S#1

@ 189um $&4. 21^414 34 44 4 AS ## 44#4 !#34 peak%4 #

4-43 4 a @37} W43 4-8--S- # # #S4 4# @#491 7]^4j 44s)

44-7} ##4# s)4o]4. <4(2.1)41 454 ##°) 1# 4 3##

-o"44@(process parameter : 4"#A, 4441, -§--§-^3)5} -§-#^4 -t}4I44

14(5444, #A)4 SieW. 44 414@# Hi3# 34

°1 14 @ 44-#sl ^-ficl A^KD-n^Hmm, DTi-6Ai=16mm). 4-41 114

AS @#1@ D1/24| #4^433 18% IS 44# 4AS 41444. A

#A# a> 41 4 til sfl #S3 y Ti=25000 4 coTi-6Ai=20000 rpm# 33)44 25% 1

A A44 #71-441 44 Ti-6w%Al4 @#14 4 444 44. 444AS #

#4-71- #@@ 5444 4 4443 A14 4#as 4A7> 444# 1-& 33)4

44 4(2.1) 4 (2.3)4 44 444 34# 444# 444 DDF 4471-

ligament disintegration AS 4444 44 44 4 AS) #57} 444# A4#

54 4443 114AS #44 4 44.

3#44 @-44444# DDF7} 4#4 -M1W3. 4444. 4, #A@3 4

#AS#E) #AS#e) 24#4 peak0) 4444 4# 44# <75um #AS) @

#11#- 34 3# 2-9(b)S#4 #44 37)# 4 60umS 44 4## 4AS

@444. #a 2l2~ 250um°)14A @ 44#4 444 44443 433)4 @

## 44# @ #4. A# e 44# @#4 444# 4@@ featureless @#

°1 @4# 44 Ti-6w%Als) 4#4# 54457} dendrite A# cellular

dendrite 457} #4 ### @4 444 4 4# 1#@ @#s) 37)7} ###

44 #4444. 212~ 250nm 37) °) @#5444 4#4# 4144 dendrite

-43-

Wt %

C

umul

ativ

e wt %

Particle size (gm)

2-8 PREP’S 6.S *11 Ti-6w%Al (Ti-A *13.)

-44-

=i& 2-9 PREP Ti-6w%Al SEM image(Ti-A a] 5.)(a) 212 — 250Um (b) <75um

45 -

=L^ 2-1041 SS4. 4 4#* *t4l^44|* ***aa4

*, ## i34*rAS 44 A-4 *A7|14 44%4-A4 #44A(A1)4 7144

S44 44 A 47}- cl 71^7] 4*4 dendrite 4 A 7} ### 44*A 4444.

4. 4444

PREP^as A* Tllssy* *44tI1 4A #4A4 4 444 444as

4444 Ar 71-A4 £A4* 3N(HTi-A) 4 4A*ll* 5N(HTi-C)AS 4444

4 4A4 *4*4 4244 ****** ICPS 444 44* 2 2-64 44

444. 44 4^4 444as Ar7>A4 *A4 44* 44 4* 4as 4

44 A prep4 44 4s4 44* 4as 7}*4 a£a 44# 444=

(99.995%)4 eA# 4-44 #44A $1* 4AS 44#4. A^4|A **4A

4*4 4 **#4 Fe* 44S4 444 30ppm 4AS 4**7# 3ppm, EB

button melting4 3ppm *4* 104 44 #44 444 4 EB drip melting A4

* 4-44 4* #44.

* 2-6 PREP'S 4 44 4A11 M4 4 At *****

Fe Mg Mn Pb Cu Zn Ni Cr

HTi-A 29 <1 2.7 <5 <1 2.6 <1 <1

HTi-C 26 <1 2.9 <5 <1 2.0 <1 <1

*4 4#* ***(0,C,N,H)4 &* 444* A* 44*4 *4* 4s#

41 A 4 7}*^* AA>sH S7l 444 Ar *A4 e*4 4 Ti-6w%Al 4*4 4

44 PREP 44:* 4- 4a*s 4* 4 4*44 44* *444

46

>_>

to

13MJ

-12,

UaEtoih-1o

1n&1°HuM,HWdaH

>r-lcm?-_12t«r£#a

r>i

5, 2-741 M#. #41433 3# #34 45 353 4445 4# ISOOppm,

343 ##5 #5 3000ppm33 #5.37)14 4 #4 7}# 3-4. 44 #34 4

>1- #43# 3N Argr4M4H4 45 SOOppm, 343 5N Ar£4 7H4fe 4

5 200ppm33 5471 71-34 4 #5 4:3 44 #33 5444. -2-44 44

5. 2-7 PREP44 44 434 #44 43! 7}3#5#

#3 4# 0 (ppm) N (ppm)

1 HTi-A (75 urn 44) 1587 567

2 " (90-106 Um) 1440 529

3 " (180-200 pm) 1427 535

4 “ (200 -212 Um) 1395 467

5 " (300-425 Um) 1416 273

6 HTi-C (75 um 44) 1676 200

7 " (90-106 Um) 1452 211

8 “ (180-200 Um) 1462 269

9 " (200 -212 um) 1533 200

10 " (300 -425 Um) 1358 218

11 Ti-A (75 um 44) 2818 587

12 " (90-106 Um) 2992 682

13 " (180 - 200 Um) 2835 534

14 " (200 -212 um) 2872 512

15 “ (300 -425 um) 2904 507

4 57144-4 Ar 55# 4-# 44 434- 437} 444 444 344 # 4

44 4 4-4 134 3437} 4 444 # 444(4444 5454 #34-

134 444 1143 434 457} 44 34 454). 3# 54354 53

4 34 4 14 $4-3 7}14:4-1 53 4337114 13 #14 5344-. 35

3 44-54 454 SOOppm 444 #14 51435 1500ppm33 #54-14-.

-48-

444 #44 44444 43# ##43 #444 lOOOppm 444 #37} #

#4443 3444. #44 ##4(435.4 aj.^ 310)47} $*)#) #4-4a

5. arc melting33 43# 1200ppm 44 #4435. ##4^4444 4 120

0~1800ppm 4371- 3444-3 f4# # 44-. 4-4-4 ##437} ###%!#

(#4 #3, ti) e#4#44, 4^34, ##, 4# solid particle #4 34#

33 #4 3b)€# 44-. 44 4# 4#& 3444 4N5#4 34# 4#7l

#«04fe ##43 #4#4 444 43##4 4#444 34#44 4*344

4 # 444.

##4 #37} 44### #344 444# 4#4 4#4 44# #44

44### 45.444 44#4 7)4443 # # 44. 344 zl 3##4 4

#4 71-34-43 matrix44 4444 4#4 3=# 34#4(45. #4#4 44,

341-4)3 3#4&#4# ##44 #4.

4. X-# 4444

(1) #3# x-4 4444

PREP#4 4# ##434 3#3 44# §1 Ti-6w%Alir *##33 43

4 #44 #3# x-4 4444# 44- 3# 2-11 4 34 2-124 344. 3#

44 # # 4# 44# #3 4 344 #44 44- XRD3 #44# 43#

phase# 44. 4# 3*3 44#34 Ti-6w%Al ###4 3)4444 #444

4444 #3 Ti-6w%Al ##4 4#44 ###37} 44##4 44444

#44# 443 #4. 44# ##433 A14 ###4 4# 4##44 #7}

3 4444. 44 #71-44 ###34 &# #4-#3(io4~105 K/s)3 444 4

## 344 4# 4 ##44 #44 4# 433 #444. #4 Ti-6w%Al 4

4#4 (/STi) -> (0-Ti) 4434-3 34# #37} #43 #444.

-49-

50-

i

UdaCOI

23agB f.. l°cs ^T ^

- rJH*S

" j2

NJCD

8

6 J

8 J

8

3

§Q) O

Intensity

Inte

nsity

(a)

20

=L% 2-12 PREP'S 55 <S51i XRD(4€ ID : Ti-6w%Al, : ton)(a) 300 -425 (b) 250 -300 (c) 200 - 212 (d) 180 - 200 (e) 160-180 (f) 125-160 (g) 90-106 (h) 75 - 90 (i) <75

(2) 4a# 441"

a£a 44#4 3-Mir **#4 44 4^-4 #*4 ^^4^ *4=-§-a

3:471- 444 4-4-# 4as #44 %4-. 4* #444 444 a# 2-124

XRD 444&^-4 47}44* a# 2-134 a##. «1^e| #44a

7f 4 414) 44 4-#- 4 4-4-# 4 ### #7}# 4 4 4, 4#- a 2-74 7>

i^-4 4o]4o]]4 s. 44. 4<>i 44-7} 44-44- 471-44 4:al-l=4 #7l#4

4--E 47M# 3:4-4- 144^7} #4-44 4# *4= 4-a 3:471- #4 4-0-#

44-s. #444- 44 4# 4#% 44ir 44^1^ #7>44 4 #7)- #a#4-.

4-. 4a

#44 444 44# #e#4 ## g 4a4 44 e 11=# ##4# a>^

4 444 4-^-4 M4 #a# #44# #4# ##4 4 t 44. 444a

s. a#a 9-44 4#4# 441 4a## a 4=4 4f 4a a 47114 4#

444 4# 444 444 a4 &4 4 *4 4 a# 45.# 444 444 44

# 11=# 4444. 44 44 111 4ai 7}a##### 41=4 4444

4as. 444 44. 441 #e#4 la#! 441# ## #ai-4=(oxygen

equivalent)4^ al# #4 4144 #a4 4^444 41-#4 44144.

447-1 #ai-l=# #a#4=(0xygen equivalent) = 2/3 C + O + 2 N (%) °14.

4 4# 7}a#e#4 4a4 441% 4a, #a, 4a#aa 444# 4 & 44) #a 44. a4 2-14# 44w *4441 *a 4 4a*44(0+2*N)

4 #4# #44 441ia&(VHN)44 44* #l*a 44. 44/1 4a# #444 44a# 4a4| 444 ll=a 7>4 ## 4aa 44 514 4a# 4 a&4* 4-4-1-14-. £#4 ia#4# ix>7> e #-44 4^ e *471-

4^-4 44-7)- 44^-4 #4^.45 44fe 4#^-

SL$4. 44% 4%fr 7j-^#4 g4-4^4- 4 e#4 <9£7> 44%

4"# 4444 544471- 47>%3i 44 7iAi£ 44# 41 44.

4.7102.970

4.7082.968 -

4.7062.966 -4.7042.964 -4.702

2.962 -4.700

2.960 -4.698

2.9584.696

2.956 4.6942.954 4.692

- HTi-A2.952 4.690

4.6882.950

Particle size (jam)

n% 2-13 HTi-A #4444 4M54 4# 44-#^ W

120 -

2000 2200 2400 2600 2800

O + 2 x N (ppm)

2-14 HTi-A 4# ##

-54-

2. 534#^(HDP)33 4134 44# *44 44

7\. #3.33^

44471 #^4* 44# 334#544 537} 7># &* #4-8- 3442)

44S(99.995%)4- 44 ff°S 47) 1M 4* Grade 2 Ti tube* 4*33 #

444 534#44 44 44# *4:* *113444. 3# 2-15* * *44)71

4-8-Dr 4# 44# 33*4 44# *453 $14. 444 (a)* 4 44^44

VAR -8-44 4-8-44 44 44#3#%)* 444^4 44 44, (b)* 3*s

44# *44 4 44—# drilling 4 chip, (c)* *41|!33 444 Zr 433

32)3! (d)* 44#* —3^(Grade 2)# *453 $14.

3^ 2-164 35s 44# 3444 43)s4 55* *453 $14. 444

(a)* 4-8-44 #* 44s. (b)* 4-8-f 47)4 44s 32)31 (c)* Ti/Al4 4

4S44 Al# NaOH -8-433 444 44 44# 44s3 *4444 Ti/Al

44** 34# *453 $14. 44 (5)4)4 # 5 $1* 444 4)44 44)s

* 344 444 4444 $14. 444 44#* 444 #44 *4-8-433

444444 71)^4 54# 4t)4 s* $1* 34s ^1-8-44 4444 44

91 #34*# 44* %4.

34 2-17* 534444 44 44# #4# 4)3# 4 z)- 54444 #4

4*4 44# S45s $134 44s i3| -> 534## -> 534* *4

-» 44# *43 444* 44# *453 $14. 53444*4 44#*3^

* 5344 4S4) 44 4s4* 44 -8-444) *44 $14. 4 4433 44

#534#* 4*4# 43 $134 #53454 *44 4* 44*3 444

#4.

-55

2-15 ^4# €5.(a) Sintered Ti bar (b) Ti target chip (c) EB Zr ingot (d) Ti tube waste

-56-

^ C 2-16 Bf-^E(a) ¥-£ 5L<3-(b) A>-g-t|- %) b^e

(c) g#

-57-

^ 2-17(a)(b) ^#^S1€(c) (b)» ^ie4# m

(d) (c)ir e)§j-<^ ^1] 2:^1 BjE)-^- g-'g-

-58

o

4. ris|t

(1). a^a#### (99.9%, 325 mesh)

a# 4# 4"4a4 pipe# #1 bulk #fi# ^1 #4# H##a #-5-##

44711 H4 ####4 A]^>o| ###. 2S14 ##4 ##7-1 El 7>

#4 444-44 -§-44-71] 444 las}## 44# #aa 44444. 44

44 4444 444 aa^4 #444 H# ##! 44 44 £j=# 4a.

o] 4 #11 #1 4444 4444 H#1 444 41-a ### ias}#4

4# #4#a4 45a4. a# 2-18 1 99.9%4 ea# % aea##(!)4

#44 44# 444 i^tS 44 SEM 44144. 444 (a)! 444 4

44 4414# a# a (b)l 411 H444# 441 H41 !#! #4

la #4. 4444 1 4 41 44# 1 !#4 #41 44 #a4 4#4

bl4# #41 4a #4. 44 H4# 441 1#4 #1 O] L7> #>s 3.

#aa 44-4 #4 H# 444 4414 #4- #14 #44 44 444 4

444. 1 ##44 114444# la# 560°C1 4411## 1444 a

44 ##4441 444 #1 la441 44 441H414 1#1 41

#44 #4 4 44 4414 #H4 1444 a# 4 41 44 447} 44

44. 414 1 !#4 14# #4a 414 i4 alas}#(l)2l l#a 1

##444- 44 1^4144 44 4a# 44 447} #4#4.

a4 2-191 las}7-14# ala 3}###4 x-4 414444. 444 (a)

1 14# 444 1# aeja (b)l las} 44# 1#4 4444. 4 la#

#4 fee la# #1 TiHi.924 (JCPDS: 25-982) 4##aa 44 #4.

59

=l^ 2-18 4# tf-g- a-l^ys]-(a) 4=^# AJ--§- aes ^.#(%D l)(b) &M

60

1-0 & 1-1

20

zt^ 2-19 X-id(a) (ID 1) (b) 4^E# A)5lf

(2) Ti pipe scrap (ASTM B338 Grade 2, ID 3)

2-20# E^### ###% Ma} ^SAg-S* 1A<^3L ^4.

AS ##### -S-^^TlI *Mm 4444. 4 ##### 180 Pm

444 <9£* 7>xM °l#a] 63 - 75 pmAS at 30% 444. 4#

pipe^-f-E] *flat! 4^### 44 #4# 3_es ###44 4 #4# 44

tetragonal 4# ^AS 444^4. rz.^ 2-21# #Sz##4A_g.

El El# ^44 SEM 4444 ^ 2-22# 4# ###4 X-# 4444M

(a)# 4#44 #A:## n5]JL (b)# (a)&#Ei 7^4 44##444.

- 61 -

Wt %

C

umul

ativ

e w

t %

Grade 2

53 63 75 90 106 125

Particle size (pm)160 180

2-20 fj:##Ti pipe (ID 3)

-62-

2-21 T’ta] SEM image(-%&: Ti tube waste, ID: 3)(a) M(b) (a)S-^-B^ 7)lif TWo- ##

-63-

20

^ 2-22 ^dhSj-1-^ 4^4 444 X-4 4444(4&: Ti tube waste, ID: 3)

(a) 4db#f 4444 44(b) (a)4 e^dhS)-^ il-

CS) til^^l-g- #44 4

^4-8- #44 4 Ef^)Efe 4N5 (99.995%)7> 4#& 4^2 $14. 44

44 4444 444 44^-4 444 44%as. 4 44- 444^—4 7>44

44 Ti 44^4 All- backup plated 444444 4444 4444 444

5. 44. 444 4 #44 44^* 4#4471 444# 44 44^4 444

64 —

'-bIS aaio-te ^o"

fetklk tab mk lo mkbk kb-§-8- mkb blab f-am-te^m

^^a ba^aw mb amz -kis mama ‘9 ‘s an h

mbkkb? Ip bio moT {zl^ir -h-oIS^kW mmbmb abb mmmk bO

OI) kkmb ^ -®q kbkbba m#m m# it [ar: (£ 01 ‘u™ 90 mbW

'##3^TE b m# kb kirk bmb mk bbk^m klbb^ m#

kbb Ibbrnkm mb^m to kb km ’bamk to-am mbb kk?m# m

(q) TTtar: am#b?m ^(b) bo"IS %rmkm mkbkte k-X b#a mSZ-Z

kc bbbb 5ob-lf bbkuoSB^a; b °°J m#b?m b#a -&k b

*wmb ival ’bb we mam mb a ak?ma m(q) irtair #m

mb^m mb) Mkk was mis ir^aw mm a a#to mre-z fen bb

bb *5*0" m m kb mwm? a # a ma m"5 a aammba ^&a kb kb b

-ffbmmba ^uiri SA-E9 mkrobk aamm#?m ^kb#b amk aw

ti aka ^mmb i° ba trrna^ mk-a^m^a aam m-a^m a mm

kiioMma ma bka * bkm mtv kb a mb & ival msz-z

(g an wmb rnrv/ix (b)

'babzrk =bmk bw

mb lx &ma ko-ab mam <0 ma kwaa *mk km-a a? bwmb mb a m* mm-a a a to kvabkm abma mm-s-Ho^N mw ampeq iv #a mamma m bm aka m a km mb am iv ma a

Wt %

C

umul

ativ

e w

t %

100 TT^e------•------

80 - -

60 -

40 -

20

n

-

100 iI I i I I i I I

80 -

60 - -

40 - -

20 —

n

.......

......._i------- 1------- 1------- 1------ 1------ 1------T—T~53 63 75 90 106 125 160 180

Particle size (pm)

(€&: Ti/Al target used, ID: 5)a^ 2-23

^ 2-24 4^##^ SEM imageTi/Al target used, ID: 5)

(a) ^(b) (a)s] Ur^dtS^ ^aj.

-67-

1-5 & 2-5, Ti/AI target

20

2-25 4^4#^4^4 M4 X-4 S]444 (-€&: Ti/AI target used, ID: 5)

(a) 4 #4 4 ^4(b) (a) 4 IH^SHF £4

(4) 444 Ti 44^ (id 6)

2-26^ Ti 444 444 4«S^f4 ^4 §-44 4£§-

5S &4^3. 44. 2-27-4 444» ^4^ SEM 4444.

2-28^ 4# M#4 x-4 444-4#44.

68

Wt %

C

umul

ativ

e wt %

20

53 63 75 90 106 125 160 180

Particle size (jam)

2-26(^5.: Ti target used, ID: 6)

69-

pickled target

J..... ....__A_^

20

2-28 ^r^hSl-l-^AS- 42^ #^4 X-4 4444 (-#&: Ti target used, ID: 6)(a) 4 #4 4 ##(b) (a)4

(4) Zr 42m

Zr£ -§-°1441 444# 33 <£34 s. 44414# 44

4 44 4 44 Zr °j3iES. xi]242. 4## 4Zz# 4444 44^^44# 4

442x} 4^4. 4444 4# 2444 ^44 44 42m4 44s) 444

4 44444 44 444^4. 4224- 44 4 444 44 44# 424#

5. 4444444 #4 444 4444-2 44-44. 244 44-44 4444

444444- 4-44 4 °J2ec 734 44444 4&4 444 444 24

-71-

2-29 Zr 4^## SEM image(t95.: EB drip melted Zr ingot, ID: 2)

I-o00

I

HiB MJ _A N noM* HV MV ^>v Anr

d2

mini

X4

N*2

Oxii

daHu41rir

da nr 41 11'r$ NMV 3; U M ,12

H> oA dffl MVjolL .la CO CO H>rajatm N

nv

1gr|o

&

nr

Joiimtd

rA a r£&ot

S,

sm|nM*

m|nnn

o|or(oHi

41r|r

§ in?.Hu

It£IU|(1 xfi

h-‘ Mu J2 HV[ujo

-01 JE CO rACO w 0m$a

h-»4^4I

fl2r|o

£> ja

MVN m2

.kX1&

rA1°

41air

Oji HuN£2

At,(l&JW

AM» Ak

,2.

o2g

&0

_A

HVAr$

41|ru22

|m

NI oA

A[U|(U

Ano

rAJ2 1 Hu

_0

uo5icoi

N|mHuM*jaaHVc$MVH>&*J2,%i&

d&4-Jri

4. x-4 44#4

(1) #5## #4

4# 44? 5a^# 4-8-44 HDP455 454 #5##* 4-8-4 53.^

oil 44 45 44# 5 $154 4# #5* 4-8-4 4 #4 5 #44 <9£4 44

4# 4#5 $1S14. a4 2-314 44 7>4 33^# 4-8-44 4154 44?

#5##4 451 X-4 4444# I4r2 44. 444 1# Grade 2 pipe ,

2# 44544 Ti bar, 3# Ti/Al4 4 3! 5, 4 4 5# 44 #41444 Ti 44

4 4X154- 4444 ## 4X1544. 5 a# 45 um 444 444 #44 a

4a b# 125 um 444 2=44 #44 44 44#444» #44a $14.

## Grade 2 tube# 43-5. 4#4 #54# (l-a)4 4# tetragonal #5#

4# TiHi.924 (JCPDS: 25-983)455 444584. 5 VAR# 5#4(2-a,b)4 4

#4# fee #5* 4# 444 TiHi.924 (JCPDS: 25-982)5 #4 4a $14. #4

4 444 TiHi.924 4# 25°C 4444 a#44 fcc(JCPDS 25-982) #5* 7>4

4 25°C 4444# tetragonal #5(25-983)5 4444. # #4444 X-#

4# #4# 5# 25°C 44^14 ##4454 4##54 tetragonal 44 44

4a $14 4 4# #4# 4444 ^a $14.

5. 2-8# i3^ #515 44# #54#### ##44 444 #54#

#44 544 #54##iM 4# #44 444# 4 444 ## 544 4

4# 444a $14. 444 #44 54# #44 44444 44444 5#

54455 4444 ## 4# 4414 #44 4#7> 544 #44 4#54

5# 444#7l- a4. #44 4571- 4# 4# #54 44447> #44 #5

4-71 #44 44 4444 444 #444 4#4 #54 44 444 544

#454 4 44# 7} a X| 444 44 4#7> 5444. a si 4 5-a,b4 4##

445 444 #4# #44 4a* 54#a $154 544 #44 3## fee

-74-

Inte

nsity

Hydrides

VL_____

2-31 4# X-4 4444(l-a,b) Grade 2 pipe, ED 3 (2~a,b) Sintered Ti bar, ID 4 (3-a,b) Ti/A14 n) 5(4-a,b) Ti ID 6(5-a,b) 444444 Ti ro 7

(a=45 Pm 44, b=125 pm 444 W)

##0.3. 1443 S31«H 44# 343 #0.4 0]ofl 4* 4#* 4#44 &4.

5. 2-8. #31 *3### ##*. a-45 Um 44, b=125 Pm 4*

*3#* a(A) c(A) hydrides1-a 4.488843 4.395935

1 phase (hep)1-b 4.488686 4.3983892-a 5.959361

1 phase (fee)2-b 5.9589783-a 5.897525

2 phase3-b 5.8956394-a 5.901700

2 phase4-b 5.8952175-a 5.899195 2 phase5-b 5.930854 1 phase (fee)

(2) 44##1 #4

*34#11 4* 44# #1* *3##4# ^34#* #4 ##4-4#

44 4444 4*4 #14 #3# 1*41 1 4**#4 14# 41# 1

433 4144 434 44-# #1## ##44 #313 X-* $)#### 4

#4. 3# 2-32# #444 443* 4*#4 43# 44# #14 #31 4

*44# 34*3 14. 444 (a)* 425-500 Pm (b)# 300 -425pm (c)# 21

2 - 250 pm (d)# 180 - 200 Pm, (e)# 125-160 pm, (f)# 90-106 Pm, (g)# 63-

75 pm, (h)# 38 -53 pm (i)* 38 Pm 444 #!#4 X # 4#4#4

4.

2-33* 44 3# 4 #1*4 X-# #14*33*4 XI*# 44*4

* #34] 4)4 441 444. 1*34444 4)31 44##!#4 44**

* #37} 441*4 443 14. 444 44* 14 *4#44 14 4#

#14 *3#1 *9M*3 #14134 4# 444 #14 1*7} *34 4

-76-

I

ro q-

8 8i

tnto

8

4^SS

1k

toh-*tolg

uaffltoi

jfl0

t->

m fa# i±.. tt°

tc (-n3 A

$r|niXi

ja(AJWfa (b) M

v

Intensity

B 3

4.7102.966

4.7082.964 -

4.7062.962- 4.7042.960 s- 4.702

2.958 £•4.700

4.6982.954

- 4.6962.952 - 4.6942.950 - - 4.692

2.948 4.690

2.946 4.688

Particle size (gm)

2-33 ##4 <g£o)l 4# 4#(2# 2-32S#4 44)

4444 #4 4#iL4 #^#4 #7j 44442 444 4 4

4. 444 ®1H #4^444 44^ 44 ^44 y-d> 4 4 4 €

#44 4# 4^&44 &44 ^44 #4 4444- 444 44

44 4f 4* 4444 ##4 444# #44# 4444 44# 4 4* 4

-78

4. M4 1341 4*! *#44 ^9=

a. >g#6|)# #E}1 3EL#33 4}3* 44**44 *##*! 7}# #3*

*41*4 #444. 5. 2-9* 413* 44*4 ICP 44441- 4443. #4.

44435. *444 434 1314 43 mi 14 43144 5##4

4 *3 &4. 344 #43 434 7}a 4311 *44 441 4 4X11 1

44 #! 4*1 441 433 444 #34 444 4*1 ***** 14

#1 1341 4-44.

4-1*3 3144 44* 33.^1 S4i 4**1 44 7>4 34114 *

4 #4. 444 341 44*4 4*4* *3*414 #4 4*1 44#*

*14 13# 433 44*#4. 44* 4-** #4*4 44) 44*3*

drills chip! 44 4# #1* *444 (HN03 + HF)*jl 111 #44* *

4 &!*3 ICP *4! *#4. *414 *4*4* 44134 #1 Fe7} 89

ppm 44 28 ppm33 *3##4. 344 Mg, Mn, Zn4 11* 4 ppm *3

17>*3 #4. ** 71-3*114 41* 3* *3* 1350 ppm33 *4|* 4

#1 34*4 #3 #34 #3* 41! 140 ppm#* 120 ppm33 *3*3

#34 *43*1! 4**4 71-3**14 41 *41*4* * 4*4 #* 4

33 34*4.

** 4# **** 413**7} 411* 1**4- 4h#4 Ni, Cu, Cr, Pbll

414* *11*111 31 17}* *33 4443 #4 #44*4* 344

*33 *444.

13*1^4 4# 44* *41 413*! #1 *4 *4|7} 4! *1 7}3

1*14 3444. 413**4 1**4 4*4 4413! 254 ppm4 *3*1 *1*3 #34 44* drilling4 4* *3##4*4|*3 1350 ppm33 1!

*3 #4* *#! # 1 #4. 4! 44* 41114 #1 14 #**#44

-79

*#*4 *****545 4# *44 4454 7}-

2#*#31 44 444 #44 444 #44431 4# 447} 5445 44.

a 2-9. 43154 4444 4# *** 4444

Fe Mg Mn Pb Cu Zn Ni Cr 0 N

1 3.7 <0.01 <0.005 - <0.05 - 0.1 0.3 254 13

2 89 1.9 1.9 <5 <1 0.6 <1 <1 1350 140

3 28 4.9 2.7 <5 <1 4.6 <1 <1 1350 120

4) l: 4315 31244 #44 2: 4315 chip 3:44444 4-34= chip

3. #ifl 44-4- 2a^4 31#*

4- 4444 313:4 44##44 #4***4 7}2*e#* 444 445.4-

4 44454 *5*54 2a^4 3l##7l-*4* 44544. .3. 2-1031 45

44# ialt 4*44 PREP# 4 HDP#55 3154 44##44 4**4

44* 544^4.

5 2-10314 # ^ £c) ^4 4s» 4*44 3124 *44 *

4 4 4*4 *4*4 PREP# 4 4*7} HDP#4 4*54 431 44454 4

* PREP# 4 4* *44 44*4*4 #544 &4 544 7>*44 44 4

*44. *4 #4 4315 chip4 *4314 # =4 4%# 44 44 43131 4#

Fe ***4 454 544 #5 454 43154 ## 5* 47144 <g#* 4

44 44=# 544 &5 44.

4*455 44444 *444531 444 HDP#4 4* Fe7> 4***5

-80-

S. 2-10. 44? £5)4# 4^l£* A}-§-S}cx) A|]2:# ####

34Fe Mg Mn Pb Cu Zn Ni Cr 0 N

£^4(99%) 28 89 9.6 <5 <1 2.3 37 38 1570 130

3.4£4444(99.9%) 24 484 1.3 <5 <1 2.3 <1 1.4 4545 279

£^4(99.99%) 156 30 8.5 <5 <1 2.4 27 7.9 1350 90

4N5 44?44£(#4#44) 3.7 <0.01 <0.005 - <0.05 - 0.1 0.3 254 13

44? 44£ chip 89 1.9 1.9 <5 <1 0.6 <1 <1 1350 140

44? 44£ chip(33134) 28 4.9 2.7 <5 <1 4.6 <1 <1 1350 120

Ti/Al3 43£ 109 7.9 9.0 <5 <1 3.7 15 22 3901 331

Ti #313 44£ (3334) 128 8.9 14 <5 <1 2.9 13 28 5730 316

Ti #33 43H 88 8.5 10 <5 <1 4.0 7.4 16 4050 462

PEEP 34(HTi-A 43343£) 29 <1 2.7 <5 <1 2.6 <1 <1 1453 474

PEEP 34(HTi-C, #31343£) 26 <1 2.9 <5 <1 2.0 <1 <1 1495 219

VAR 3 44? £34 139 57 21 <5 <1 3.0 88 33 4479 271

Grade 2 44? ?5. 316 11 16 <5 <1 4.0 38 25 5347 281

100 ppm 4 £3- ##4 4# #e##^ 4-& iaU ##

#4 4*-§-4#££ ##4 3-44# 7}x)7} #& #££ 4444.

=>1 #-# HDP4 44#4# #-4 4 444#?#4 £#4xH 4# 444 3

4"4#e #e#4. 44 PREP#4 3f HDP #5.4 ^£4-4 44 4 4? 4

3# #-#°14fe- 4# 4#4#4. 444 #£1- 4£ 4#? 9144 £? °1

3£4 #£* 5Hr 43 444 £444 -g-£7> 491# 34 3-44 4£7> 4

81-

2 gg# 44# #4# f ^ f ^jjO^ 7|c|]44

ZL44 cl 4^4 4444# 44# 4##7l 444# ^3im^44 7H&

4 A#44 HDP^444 go) 444 tg44 42# 4## 4 &# 444 %4. 444 PREP4# 4#44 444 2a^A2#4 ji^si 44# M#

4244 444# # 444 14424 4^44 44 #4 2a^& 44444

44 2^24 ^e# Bjn - 444.

82-

am 3 # E^afloj sg*|e| 71#

^ #4^n} 7|^<5] %#

##2#* o)#* S#7fl#* 4##47} A9"#* 4"*% ##(31##, **,

444 #)# 44(4-*4/44*4 44, 44, 44, 4)4 71)2 7H#4 4&4

##271 444-31 44. 44, 444444 #444 ##2#* *1124 ##2

44 * ##* 44 *44-4 #2 44 314144 444 444 4-§-22 44

* #4444 444 1 ##244 44 2.44 ##4 444 #4# * 44

444 44. 444 *24 4# 444 &4 7M# 2# 44 #4 *4=4 4

44 #* 49-7)- 4^431 424, 44 #24 4444^ #444 4-8-2 4

-4 ##4 #444. 244- 44442 #4-24 ##* 424 424 4 4#

24 * * 44. 4 444ir #424 &47H44 #44 #244 44& 4#

4314 #44. [1]

1. #4244 444 44

#424# 44* 9# 4* #7># #44 444 447} 44244 #*4

444(444, 44, #4 4 444(4#) #)4 441 #442414 4#44 7}

* 47}7> 4224 ##422 447I- 24444 4*11 4*4-4 #444. 24

22, #4-24# **#22 4-Sr#4 *4=4 444- 4#*rn«=n«), #4 44#,

#44 #447}fn)*2 9444 7l44- #4 * *4 #4(Quasi-neutral state)

* tt4 ## 4*4 # 4 4(Oscillating Property)# 4 #4# 4-§-(Collective

behavior)* 44-44.[2] ##, #424* 944* 4 7}## 444## 2##

* 4*4* 24, 44, 22)2 442 444* *44 3 #44 4*4 4 4

#44 *427-1 #*##. *#24* 94**4 444 *47} 444-4471

83

47]*-tD3 4 $47} 4* 44 #N3 #4# 4 a 444* ##44 44 4

4 44# *4### 344 7}*44.

t4^4r #7}4 #34 144 #44 44 a^ 3-l[3-l,2]4 #4 44

7>4 #Efl3 ##-44. 4 * 44 4327} 108 ~ 1012 cm'3431, 444447} l ~

30eV #3 444 *4-2243.4 44## 4*4 a*A3 #* #444c 44

* #3* #4(Glow Discharge)44-31 44 *44441 #4 4*431 44.

444 #3* #4(abnormal glow discharge)AS.# 4a, a34 #4*4 *4

71144 4*4a 44.

444AS. *4344 44* 4*44 44*44 #^4c 44 *4-34 (A* a* *434)4 4*44 44M 444 #*4c 4* *4343 **

44. 44 *43.4c *434 4*4 444 *444 4# 444324 #7}#|

444 47}4 *4# 44 444 *# 4*7} ** #43.4, #4#A3 #4-

4 *3(Te)4 714114 *E(Tg)7} 444c 4*44 44#44 34# 4*4

4. 4 4# 4*44 44 *4-34c rfl7144471 4444 4a, 4# #44

3c 4c4/a#4 #3 #* ** 44 7] 4 A3 4 #44 4## 4* *4-3

4 *7}(Plasma Spray), ## 4o"(Extractive Metallurgy), as] a *44 4 44

44 # ## 7H#4 a# 7fl* *4 #4 4#44.

#4, 44 ##* #* 444 4* #7}#4 *3 #33 444 #44 * 7l* 44# 444 ## 5*7} **471 *4 #4 34 44433 #44 4 7} 7}o]6)] o]]47] 3§^o] o]e.01^1%1 4^# 4444. 44# 44^ #4

*43441#* #44 *3* *7l* 47}*# #334 ## **(Te » Ti, Tg) 44* *7]44. 41371 444 *3* 104-105 K(l-lOeV) #33 ** #

*43 #4|#4 7}34 *3* #-*4 4*# * 44. 44# *434* #* *4344a #4. 4# *434* 4* *344 7}3# *4#4a #*##

#**# #A4* ## 4*4 #34 *4 433*El a#x} *#4 a# ;H

84-

zi, p

irtlcle de

nsity

, cm

Shockwave

reactors

fusionGlows

space

0.1 1JD 10 100 1.000 104100

kT, particle energy, eV

Fig. 3-1. 44 4^4 444 4# 44 7H #4^4 U4.

85-

!, &!! 4! *4 !! 1-8-5)31 #!. !1 S!!^] 14 til 7)31

til 1§H tfls 4-114* ZL% 3-21 11. IS #til# 1-8-1 si

71)is 1SS41 111 S#4 in in 111* S4!S! 2)) 114 1

111 1#S 17](Excitation) SS IS!(Ionization)H S 3. S4!!. 1 4

#1^11 *4S *4 111 !S, 111 1S1 IS, *4 11, IS, 11

1 411 MS, IS! IS, t-lsl SS, 11 SS, Debye Length,

Plasma Sheath, ne)s Plasma Frequency*! !S#4 14 11H.[3-3,4]

2. RF4 1! IS #ti! #4

IS #1S!S SS IIKIKDC), RF( 13.56 MHz), Microwave(2.84

GHz))!41 11 SS 11 41114 14 1111. 14 *11 11 a>o]

1 1!4 S#4 14 17) (Excitation) 1 1! (Relaxation), °1 S!(Ionization) 1

7)) 1!(Recombination) *1 11°) 1411 141 SS lift- #Ss! H

* SI!!. S 1S41S RF4 111 #lsl* !4!#!.

IIS SSS(!S in 111 44* sill 13.56 MHzS 1444s s *11 S1S)4 1! #lsl #4 11 s 111 114 11 1-8-1 4

*4 41! H! 14H (Electrode discharge)! 1*7] 1*4 4! ! SI

1! 1411 (Electrodeless discharge) 3 *H1, !!SSS 17)1* !S!

S SS 1!!(Capacitively-coupled) 14111 7}7) 14 1! SS 4f|

(Inductively-coupled) !44l3 SS!!. 3-34 RF4 1! !S7] 1 S

S* !S4#!.[3-4] 1# S4! S 114!S (a)! IS Ss #!! SSs

1 #4 SI# IS!#!. 111S IS! Ss 1!!S !4(!4!)4 IS

* *17] #4!S HIS 4mss IS!!, s SltiCio11 #/cm3)*

SIi}7}o\} l!!l SSI ss 11 14* IS!! S #s! S!

-86

Tem

pera

ture

(°K

)

Hg arc I = const.

Pressure (torr)

Fig. 3-2. 7}%} ^^4 tfl*V

-87-

(a)

AAA

X7X7

Fig. 3-3. RF*z]2nH| 5) si ai«-7|21 a) 4K& b-e) b)

c) 3H4^ #4-, d) 4^-41 >£*]€ e) £*1

-68-

b## k#bk IkM to^Lv b# bbb bb# 'blokkr

bbkb llobbk BlokBbk lo#kkbb b#b kb 'ba## Mk#

k to bb llotta-k to# PrBr" #b b-Bbbb bUrk-Srbb b"B"to #b3##

'btokbB b^blkto ## frumis btoiv-ts =k& k# a Mb

k#3k tk3B tsia-fzr k-k-t&B #B btoir-nkb "irk bib tbbk 'bio 3

bk kb k-kk-B #k #bbb tkb'lbkir to kb- BkB HbkS IkB B

k# bb# ktakB bbk kB blkk Bo3^ #k& bbk k3 -Mr#

bbiR kb-k# to# b k ki& k'S'lb Babbb lo-S-tZ to-fir# o' #b to k k

B B kB kbb bio b # TT-tato## Bkk# loSrb b^b# Bk #■§■#

#k ## bio bB b #kB# klbOo ooz > )#k #bB lb-3-tin k# k

-kv# bkblb kB Bb kbbb -B-S-Bbb bMb-k#3 bkk "bb-B-k

*bk kb lb it kbb kbkk e#k bto#bk ## BB-BB 33 kb

b kbbbto bkbEs# *b# ?b #k# bb bbk *b^b* #k

bB %rbB3 3tbBB bibb blbk ‘kb b## b3

By ‘tak kb blb-Erk ‘B3B 3b-§-lo tbk #k b#BE B #tk bBE ‘-k

b -kb ‘bk BSlkTT bbtta bb^b* #k ‘kb bB kb-k* tb##k

bBb 33-Bb bUb bbb bbW bkr 3tb ##3 'k"3b ‘bb kbk*e

to IbTk bk kbk ta^-obbbb bb^b# #k MbB-S- #b3k

k'Sr b^-ta# "bk b to b#b BE £

'bbkb Ika"iM Ha Bb3b# tfeb

k#k# bk# b3 kbb kb IkbkB 3BBE -#b# #k bk"§"b to

#b bk t£& k-kk #BB3b kbB bMbb^b# B-B# 3b 33k

bB K-srbBbbb tbb-s bktktb IbB-BSV# b^b# B-B# 3b b

tiaB kb kB bbbb 3kbk kbk bbBb kb Ik kbbb 33b b

-06-

(a TT^lT hU^

(p '%k#k F^h (^ "%^-§r ^ls& (q '&k#k #k& (^ k-S-iil {n^-la# SOr Hag* kk> >-e "Bw

RF Power InMatch Box

QuartzVacuumWindow

PermanentSubstrateMagnets (1 Holder

dtund o} <kund o)

41444 si 5# #4 #4# #44^ 4144 11 44#44

41## 4443# #43# 444 7)-i lx}# #444. 44, 44, 44 s

1 44 #41 #4s4 414 4# 4°14 #144#4 543314 441.

4371- &333 if- 444# %3f- #4.

41 #434441 4444 #4S7> 444 444 4-4 44 44c 34

44 44(44 4=44, #44, # 44 44, 44 4 44)1-4 ill #4 4

3, 45. 44) 544 144444 €4-7)- 1444. #444 3311 44 4

44 444(Directionality)6)] 4## 444 S4411 4444 #44 444

#443 44# 4S44. 444 444 #4411 444433 7fl# #44

4# 41 4= &1 #4#3# 4# #44 #41 If 44 1 &4. 41 #4

344 ill #3 7^4 44, 54 414 44#, 343 41 #44 414

41 44- #14141 011.4. s 3-Mi a 44^4.

547111 #41 44 44 14 #41 4#441 #44- 43# 141 5

44 441 #4 S3. 41 # 44. 54 44 4 (Activation), 54 44 (Surface

cleaning), 4§KOxidation) 4#(harding)l 444 ##3, ^Hl #3

4341 4444 #141 44## #44 5444 1 334441 4414 4

#1 44444.

41 #4-34414 4441 431 44(Bulk), 44, 1^4 1 44 7>4 *g

43 # # $134 44 4## 44 #4 41 #43 3ix>, ##, 44-41

4444. 1 4441 3171-4- 4444 54444 4414 4414 4#4$14.

3#7>4 sy /M

3f-7># $3 4433 11 1144 31 4 ##44 4444 4=4.[3-6] ^■

4, 44433 #44 41 43.4 4#44 4444 1444 1144 #1

S7> il #3 31x1-1# 41 54#4# 44 414 41 ill #4, ##

— 91 -

Table 3-1. Xti 7$1* 4* #B}5:n}£) -g~g-

#44 7] A #4-254

444 7}A #eF^nf

4444

&4 44#

444

&4 44#

4# 4# ##(Low ion Bombardment)

#4^4 44

#ej-^4 44

X4 #44

X4 44

2i#44

44 #4

S4 444#4^4 oflAj

(Ashing)#ef^nf 44

## 4# ##(High ion

PrimKor*^mo«+ \

^444

^44 44

444 ^44

4444-4 4# 44

-92-

44 4444 44 $4. o}$\. 4-5 #4£4 5444*114# 44 #

44 ### #4 ^3i 44 544 44& 44-4 4 £5 #44 4444 44

4 44. a-g-44 £44 4£##4 4444 44£5.4 £4 1:44(surface

activation), 44(deposition), £432 31efl5.g.5Kgrafting) #°1 44. 32.44 %D5_

4 £4 4444 £4 #444 44 #£# 4#4 44. 444 #4£

44 £## 3i#4^ 5# £4 £444 #4444 444 #444 444

$14 £44 44431 44 44(Wettability), 432(Cross- linking), 315]31 §-4

4 #4 44# #444. #44£5. £44 4##, ^#4, #4 5.£4, 4&

444, 3x431 4#44 444(biocompatibility)4 44 #£# #4## #4#

# $14. [3-7]

31444 £4 #44# 3i44 £44 444# 4# 431 #44 #4^4

44# 444 4-£ 4#4 444 4 #4 4443-8] #4^4 #444# #£,

#£, 444#£, #£44, 31431 ##4 444 44 31^-4# 4444 &#

4##4 £444 31444 £44 444# 4# 4444 ##4 44 3144

4 ##44# 444£5 £4 444# #4444-. 44# 44## #4^4

4 #44##4 ##4444 444£5 4#4 544 44 44 #4 4#4

4 4444. 44, 54 £4#4 444 ### 31^-4 #5 !#4 ###5.

#444 4# #£4 44 4#5 4444.

#4#44, #44£4, #4 444£, £-432 #£ 31^-4 # 4##4 3i£-

4# 4#4 #£ *4^4# 4#44 ###£5. 4# ^ $1443-9] 44# #

4 #4£4 4 #4 31 ^-x> 54# #444 45-#, 44#, 44£#4, £-431

44£4 4 4# 444 4# #4 4 4 £5. 7>#44. 44 4444 Inagaki#

4#4 4#44 441-5.4# 444 4#4 4#4 4 #4 #£# 4## 44

£ 5.314 tij- $I4.[3-9]

#£ #4-^4# 44 44 4#4 444 544 4444 444# #44

93

4#3| 4-8- 7}#44. 2#44 1#4I# 514 411# 141# 1=

# 114.E3-7] 12 142441# #±.7} x]ig 2#xM 51# 1414

# #-9-4 2#x)- 514 7>h4;e 4144. 41, 144

12 44 #4 44 7M 4 #44## 5## 12 14244 11 2*4 4

4 7fl4€ 514 4# 4#711- 7>14ji #44 4 n. # 4# s.# 444

2*x> 514 45.414- 44441- 1141#l 414 12 14244x1

444 51# 44 2#(0.02%)4 4423-417} 5444 4534. 14-^4 4

44 51# #4 1414 441# 5.14.[3-9]

2-g-x} 514 #4# 444 4# *424 #4# #4 4 24 = 14 44

514 #444 7fi24£ 1#H: # 44. 44 4# 24# 44# 411 H.a

4#4 #4^4 444 225. Hl#4 44 3.#4# 1 # 44 43-4 7}

#44. 224 is. 7}2# 1424441 11444 is. a#x}4 514 2

#4 14s. #444 4&# #14 2#x} 44# 1114. 2#x}#4 51

7B14 41 1 7>4 #e 444 444 3.4 3-54 11414. 4141 51

7fll# H4 a%!, # 411 ee# 44114 44 4 #45. a Til ##14.

44 4#1 444 #424 4141# 7] 444 414114 ##4 x}2*

# 4#44 #424 1441 2#x}# # 14. 4 4# 142# #424 4

4144 441 11# #71144. ## 4 2#x}# #4444 EE# 514 7>h

4-s.l 7H4# 42 7b#44. 4&1 71-2 #4# 44## 4#1 1144

14# 2*x}* #44 # ## 14#1 42.# I-424S. 1444 4242

14.

4411 2#x>4 #4-24 71144# # 7>l ^sfl7> 424 21 3-54 4

4. [3-9] CASING(cross-linking by activated species in inert gas plasma)42

114 #141# 2441 #424* 4#44 2-g-x} 5144 14 #44

2#x} 4441 71-24* 1#14.[3-10]

-94-

Plasma treatment

[—Porous substrate

----------- 1Nonporous substrate

Plasma polymerization of substrate material

Pore size reduction

USM

Cross-linking Functionalizationof substrate surface (grafting)

__ 4L__ ooooooooo

Cross-linking of conventional polimer coating

OnM

Fig. 3-5. M 7H.

95-

2*1 ##* 7)|#4* 1* #12# ##4# #414 2*1

441 #4244 ID *2#* 2Ha44 (plasma-indyced

grafting)* #44 1*4 4* #41 °1 *#4|#*, 4M41 Iw4 #4 ### 7}^44 444 #4247)- a)s.4 ay4 x># 144* ##

42# #4444. 25)2 #44 44 444 2## 7) #4 #&s] a## *

a# 224 °H #444# #44 # 4# a# 44 21224# 2*x> *4

###!2*x> a#l 7) *4* #4244 44 ### 4*7) 4#4 2^=244

14#2 7]-* 41 4244, lal- #a 44#* 2*x> x>44 *4* 44

444 &2 2*x}#s) a# 44 *44 444* ##4*4 4*4 * Sll

41 444 41 #2* #424# #41 44* #a#l* #441# #4

4els] 444 2#4* 44 #*# -NH2# -OHl* 7H444 #*41 4

*4 *-§-4 4*44. 4*444 1* #4*4* #414 4#4 422)4 4

4# 44 4#7)» ##4*4 4*4*, la #4*4* 22*4# 4**4

**##* 44 4-8-44. 4*1 44 41 4*4*144** *13-44) *4

* 44 14 414 2*x> a# 44 7>l *1 21224 n.

*1 3-6* **44 a# ##44 4*4* * 4# #44 #424 #** 24 #2 44.[3-11] la #4244 a) 144* 14* #1414 4*1 *4 a# *1** 47)42 #*4 a#4 4# 7] ### #44444 x>#-y

4. RF #424* 44H* ##! la* *#41 2*x> a#4 #*44

#*4 a# 44 442414 7>*ii ##«-* ##4#4. 411 a#4 #

#4 41* ###*1 #24 *1 2#4 ##4 44# 14* 41# 1 *

* *4*4 1# la* 4414I3-11]#424 41* #lf)-a44m, a 14##, 4a 4M 4212, 442, 4

42, 242 41 1# #14 #4 1* *2* #1-245) m# ### 4

Oxidation

RF1. O, 03 + 02 + 0

0-0 I I

2. C-C-C-C-C-C-C-

H-O O COOKI Z\ Z

C-C-C-C=C-C-C-C-C-C-C

DepositionRF (x>

(CH3)3 -Si-O-Si- (CH 3>3 —> ((CH3)2-SI-0)fi

RF<CH3)x(Sl) <<CH3>jfSiyOx)n (x)

RFFyC=CF„ —> (branched) (CF^ )^-C. CF, CF^ , CF3

Grafting

RF1. Ar ■ Ar

Ar*4,

2. C-C-C-C-C (substrate)

C-C-C-C-C (activated substrate)

C-C(0)0H. (acrylic add)3. C-C-C-C-C - Z

(activated substrate) C-C-C-C-C

Fig. 3-6. #4^4 4^1

-97-

1 714#eM5 o}^ f $14. #454 714* 44 5# 1#%%# 7144 554 447i] 44. 4e4^144^145114_ 44#44^444511 <4 aela 47}

4441^!4# M4 1^# 4°Js4 1#^# %l#7l 44 a### 44 44. 444 444. 44 #4^4 %1%41 31% 4# 4M#& & 3-24 44

%84.[3-lO]

444 4#4 -§-§.4444 1#%1 3.€-71-4 585 #454 444 44

4 414 1-8-4# #444. 44% ##4 !#%# 4&#4 44 4#4 #

14# 44 45., ##442 1%#1 44 44, 71431 44 444 4# 4

4 14 #4 Ai~g-44. 5% 4## 445. W 4#44 111144 45

444 55 4443.4 0.4 jl #44 44 144A-13 Ai~g.44.t3-K)] i7l 3

# 1144 !#%1 4&## 44144 141# 45#4 1# 1#%4 #

71-1-4 1444 44 447-1 oie} 434 £4# 14 1# 54, 44, 71431

4414 41 4444 4-8-454 71431 #0} 1# #444 43

-8-711 1-S.7} 84. 141# 454 44114 73-1-4-4 4344 4-34-8-1

#£41 44 13:4-8-# 4-54444 #47145# ;H44 #545 41% 5

4-4 #4-54 4 4o)i 444 7>#%4. 13:4-## 4#4 14 !#%! 7334

£4 #14 <911 %#4.[3-10]

1. %%4 1# (11-411, 1-14, h-1%, 4#4 41 14)

2. £44 441 15.(31-#4 441 #44, 54 3143 4#4 #81)

3. topography(7l % 15, 7} #5, 44, 411 7l£)

4. 544(171 #14 #£3)

44 7>4 #454 714441:4 ^#41 #Al-#4 444 ##! 44# lll#7l 441 7}^i 4#41 44 444 ### £ 3-34 47l##4.

-98-

Table 3-2. W 5L&*} 7))^S) -g~g

Substrate Plasma gas Plasma conditions

Polyaramid (Kevlar®) Ammonia

Polyaramid Hexamethyldisiloxane 2.45 GHz, 0.2-1 torr

Polyethylene, Acetylene 50 Hz, capacitively coupled,polyvinylidenefluoride,polytetrailuoroethylene

0,1-0.7 tor, 4.742 seem

-99-

Table 3-3.

A. Plasma Treatment (Etching)1. Clean.2. Sterilize.3. Cross-link surface molecules.

B. Plasma Treatment (Etching} and Plasma Polymerization (Deposition)1. Form barrier film:

a. Protective coatingb. Insulating coatingc. Reduce absorption from environmentd. Reduce release rate of leachablese. Control drug delivery rate

2. Modify protein and cell interactions:a. Improve “biocompatibility”b. Promote selective protein adsorptionc. Enhance cell adhesiond. Improve cell culture surfacese. Provide nonfouling surfacesf. Reduce surface friction

3. Provide reactive sites:a. For grafting or polymerizing polymersb. For immobilizing biomolecules

-100-

Vascular prostheses, blood oxygenators, catheters, 3e]3 #4 #347) 7}34

7H34 ^15till^-§-71 7i5.»l S99* 44-9(19*3 #491)# 4* *434

44 99* 44914 4-8-5M 449 #49 3*4* #44 9*49* 4

149 #31* 9^44 94. £t, #e]3499* 444 *134 44, 34

31 43790] 97] 41*9 944 tifl0^44]5. #4 4-8-44 4499 4^4 #

4^-499 Si4 14 4444 %3 9944s ^4 494 93 #4349 99 SI9 #94* 444 SI 99* 999-es tiH#%** 3.4 944

9 * 94I3-11]

4149 xfls9 SI 7H1

4149 xii&i si /H* *3 49*991 (CVD)4 944 si4 4#

*9* *9(94 (overcoating))4944 4*49 94, 3* 944* #933 4344. 9994 1944 99 Sl;H9 4** is^iM 449 43 #414

94 7}# 4 3 14 41 #41 444* 4944 819:4-. 4* 4441 999- 7]

994 99 4*7]1 3949* 9*9 43 *491 $19X1 *9(dispersion), #

9(Mixing), 343 99(Packing) *9 *4*944 4* *39 4#* 94.

49-14 99 7114-9 *49 sl7H* *49 #444* 7}3 7} 9 <9 #94

9#* 444 #** 49*4 91 (Fluidized-bed CVD)9 *3 ^-§-s)i $14.

##* CVD 94 4 99 *4 *94 (powder composites)9 42:44# CVD*

99 4945. 19, 944, 949, 3t]i 499 #44 **9 #4*4 1* * $14. *#* 94* *7]]9 *999 *34 *34971- #99 999 $14

3e] 4 *419 4371- 999 * $134 *44# #94 99 *99 19 99

33 * til] 49 41 3 $134 444 #943 499 7M *tifl#9 947}

9344.U5] 9*44 33 39 3-74 #9 9*44 3(Kiln or Furnace)94

71 99 CVD# 7}#44 s|94 4 #34, 4*4 3*44 7}9* 99 *7%

-101-

Gas inlet HCl Ar H2

XXX

Gas outlet i—[J

Quartz reactor

FurnaceQuartz ___ _distribution plate

Heating tape Mixing chamber

Fig. 3-7. 3M zg SI o] # *.^7% ^

To quadripole mass spectrometer

Cyclone

(15 kHz)

Copper-tape

Plasma-reaction —.section

— Particle storage section

Ground

Mixed gas (He ♦ C?F«) Porous glass plate

Fig. 3-8.

-102-

4 1*# 44 4 #42* *** 4471 (plasma-fluidized-bed

reactor)* 44% 44 4 24 2 44X3-12] 2*4 (13.56 MHz or 2.84 GHz)

4 44 4444 444 444* 4 4444 4# 7I2 4444 44 7>4

41# 44 rf4 DC*%44 #4444 #424 *441 4* *44 M

3 *444 3:4* 7144* £ 44 414 Si4X3-13] 2# 2^4 444#

4 4444 44 471)4* 4444 44444 14 U4m4 44 43.4

4 #4 471 4*4 4444 3444 #4 4 #4 *4X3-14] Tsutsui44

[3-16] 441 #424 1*444 45-4 44zH* 4«H #424# 4

*422 45.4 444 *44* *5*432, *2.44 *4*4* 4*44 4 7]zi#* 444 4 44. Mochizuki**[3-17] 4*4 32 7I24 *##* 4

*4 RF *%4 *** 4*44 44 *4 *4 4*344 #42444*

4*44 *44 44* #424 ^4* 4*7144 5.4 *4 42 447]- *

4444a 22434. 2# 4*4, 2l 3-84 44444 *4 44444 2

*** *4444 4*414 #4^442]* *34*4 44* #* 741 37]

4*4 44444 4442 *34 *424 W44* 43 #2* 44 4*

(Atmospheric-pressure glow (APG) diacharge technology)2 zH *4 34X3-18]

4 *4 7]#* 4*44 Sawada** *4434 *44 *424 2*714 3

424*h.s434(TFE)4 24# ^44 34.

4. #424 712:4 *4 444 34 1X3

7117113 *44 S3* 5344 4444 444* *424 *4 ** 4 3

7l7l 71*4 #344 *** * 34 4* 444. 34# 4S4 *** 44

4244 44 4433* 24 3**2 4144 44. 44* 44* 2444

2 ** 7124 444 34# **44* 1122 2423a 42* 44# *

**! #424 714 4471 44 444, #4* 44 714* *444 34-2

-103-

43 1433 4! 455 -8-71 34! 1454 44 4444, 44455 4

14 44 444 441-4: 1444 44 t4^4s 4441 4455 41

44# 4144 343 444 BE.! magnetic stirorl 4144 45-444 1

^14 4414 44 14! 4444.

s355 *51 444 1##! #4^4 44 4413-19]

444 7l)4s* ri4 3-94 44444 44 44 44 14-54# 4^44

! 14! 44 3455 41444, 4&4 3 34# 5455*54- 44 44

44 44 3.4414 4!4. 4441444 444- 41444 444^ 1114 444 4!- IS. iflc)] ji.43 7}^7} 4444 414] 3 *

53 4 #4 44! 1444 5355 *5 ^3 a) #@44 is* ^54 4

4 34414 4444. 44 41 4455 ”94# 144444 11144 4

^844 14545 4 44! 4144 5444 44.

14 34! 1454 44 44[3-19]

444 71)45* 3! 3-1041 44444 44 444! 31! 1444

(Rotary Evaporator)* 71)444 !4 44 3?lfil 1445* 4 444. 4

335 1444 34171! 545 341 44 4!4! 14 444 4441

443 44111 4144. 444 447]s=3 1155. 1441# 44 44

431 14443 314 14 #5 a#3 3*4 431 114! 44 44

3 15 4455. 3414 34 #4-s3-7> #444. 3 4434! 44 34

3 44^3 4-H4 44# 443 44# 1 44.

41 44 5! 43 4(Magnetic StirrorH 44 4& 1414 44113-20]

44 1371- 45 1443 334# !!444, 13 7> 4143 33 14

-104-

Pump

GlassFilter

PressureGauge

MatchingNetwork

Ooo

oo

o

RFGenerator13.56MHz

Particles

Glass Filter

Gases

Fig. 3-9.

-105-

Inert gas

Pump

oCD

Rotary Evaporator

i

RFGenerator13.56MHz

MatchingNetwork

ReactantReservoir

ProductReserve!

Fig. 3.10. #4^4 4a)4*1

#4# 5**43 5#* &#4s}* #71-?-# 444- 4 ##* 4# *^1*

44*4 #S| 31x11### *4**31 4*444* #*#* 9^4 44*4

#4@ §21-245. 4 s! 4# 4 ##41 441 3E* ### BE# 4rLLii4 ti><q. #

* 9*# 4**4 #4* 4**£&4 £*443 54# *#4s]# ##

##44. #44 7H#£* ZL# 3-114 4-4-4 44.C3-21] s# #*4# ##4|

##41* ### 44 4414 * 7l) #-§-715. ##4 & 4# #44(4442:

#4)* 44 #*44 #7l-#4 4* *42,45 5#* 44*#4 4# *#

# #71144 444# #4M1 4* ##* #3*4 £4 4 #* *£44 £*

4# 447} 7}## 444.

41 2 4 €41 ^ €*1

1. 42:^ 7H_&

#tfl a>314 315#* 4*45 4 4*4&4 7H# S14# #7># # 444.

45.* *##* 7il#* *44 £4# 4e 71154 s# 7H* *44 2144

4*44 #9#* 9# 44 1# 4 444443- 4 #44 #4. * #9-414

#44# 45.711*4 44 944 #94, 44* ** (3*4, 59, /il##

#) 4 #4(4*4/44*4 ##, *4, 4*, *) 4 4 a## 4*44 &#7B

#* #7l 4# *4-54* 4**4 4#* 7)154 ##* #455 zi# 3-12

4 #* 44* 44 ^ 44*#4.

4* 454 7>*4 4*444# *#£4* DC, Microwave, 5E* RF(Radio

Frequency)*# 44* 4**4 #44444 * #944* RF #4*4* 4

*44 *£ #*#£5 *454* #4*#4. 34 3-134 44*44 #4 5.

-107-

Fig. 3-11. a #-§-71 s] 7fl^j

—108 —

oI

Fig. 3-13. 44 ICPESM^44 7^5.

# 4# 7ii#3* t^p} ##44, M44 3# 4444, 4* ***

4*7] (Vacuum Fluidized Bed Chamber), 4# 44 (Vacuum system)# 3.7)1 4

##35. #44# 4 #4*4 ## ^ 7]## 4-6-4 44.

#434 4 4#444 (RF Power supply/Matching Unit)

#434 44# 44 44 M 44# **4 RF 44 #444# #44#

435. 444 444 ENI Power System 44 4#4 Model OEM-50# **

#$#. #4 #44# 444433 434 7}*4 4-#4# 13.56 MHz 44 4

4 #4# 5 KW3 4&4 S444# 44 444 444#. RF #4 4443

# 50 ohms 43 #4# 4#4# 44435) ##4 4-6-43# automatic

impedance matching network 4 44444. automatic impedance matching

network^. 44 ENI Power System 44 4#4 Model MATCHWORK 50# 4

#444. 4 MATCHWORK 50# * 71)4 4# Variable Capacitor# ## 44

4 444# 444 ## 34 4 Inductors #44 T-type Matching Network

34 44 44437} 4* W# #44 44 5 3#44 44 2000 3# 44

4#°1 7}#44, 5000 Watts RF 3*4# 4#433 4*4 s 44#s# *4

44 44. 7]*4 3#4# 44 Control unit# Tuning Unit3 ##44

Control# Monitoring# 4 4 Control Unit# RF H A<§ 44 # 44 Rack mount0!!

35)3 RF 44#4 4144 4# Tuning Unit# 4#4# 7}#44 14#3

# #4 *4# 444# 33#4#. 34, MATCHWORK 50* 4*# 44 44

434 4433 444 *4# 444 *#4 7}*#3 4*e) 44443* %

#3 44 #4 4444 7l# # Programing Operations 7}*##. RF 44 4

4 i! Matching Network4 #3 #4# #*# 1#.

-Ill-

RF Power Generator

Size

Weight

Frequency

Frequency Stability

RF Output Impedance

Power line

Maximum Power Output

Power Output Meter

RF Power Control

Harmonic Distortion

26 1/2" x 17" x 21"

375 Lb

13.56 MHz

±0.005% Maximum

50 ohms

Three Phase 50-60 Hz

More than 5000 Watt into 50 ohms

0 to 6000 Watts

Automatically Forward Power Leveled

More than 30 db down at Max. Power

Automatic Forward Power Leveling :

External RF Power level

Control :

External RF ON/OFF Control

Pulsed Operation :

Cooling :

Maximum water inlet temp.

MATCHWORK 50

Size :

1 Watt to 5000 Watts internally or

externally Controled

0 to 10 VDC Positive Pulse Input

: TTL Compatible

Less than 2ms rise time

Water flow at Minimum 4 Gal/min

: 30 °C

Control unit 19" x 7 1/8" x 3 1/2"

Tuning unit 14.25“ x 15.88" x 6.75"

112-

Weight :

Rate RF Power :

Frequency :

Input impedance

Output Impedance(std) :

Output Impedance(extended)

Operating Temperature :

Power required :

Prepositioning :

Metering :

Operation

Control Output

DC bias Output

Control unit 10.0 Lbs

Tuning unit 45 Lbs

200-5000 Watts

13.56 MHz

50 ohms

10-1000 ohms

: 5-2000 ohms

0- 45 °C

190-240 Volt AC, 1 Amp. 50-60 Hz

Selectable, from front panel or remote

0-10V control for both variable capacitors

Capacitor position voltage Forward

and Reflected power from OEM or ACG

series ENI generators

Manual or Automatic

0-10V Capacitor Position Voltage

2.5 Volts per KV via BNC connector

-£[2flS] matching networks} #4 %}44-3- •§- ^-F°l]Ai 4 RF

51444 # Matching °1 4444 %4 51444 S4444

matching 4 514.

'o'Tt 4 7} (Mass Flow Controller System)444 43-4 sy 7Hir 444te ## #), 4^, 4^,

-113-

^ #*# 7}MCF4, C2F6, NH3, cm #)# 4%=% 7}3#4 4-8-44 44. 4^

4 **=* #3 ** 4*5-4 *414 #4 ?))*# 4% 444 444# 44

3.4% #4444 44 44 444 ** 4-^#4 4# 44# 4444 44

*#*4147} #3*4. # 4444# #*# #*=# 4444 44 #*t1]4

44= 3# 4 (MFC)* *4 4±4 44 "#44 444 2*45* 4144 44

4 #4343 #3* 444 44 MKS 444 5-1 2259C# 4*414. 37}4

74t #4°fl #444 4# 7}3 4=4 44 4 #47)1 44 # 4 13# 37))4

#44* #44585.4, 44 *4* #*7}3 7)50.5. 44 100, 200, 500 seem

44 7}#4 ##4 44 4*4 gas conversion factor* *435-4 3* 7}3

4 444 *44 44 4*4 4147} 7}*e}3# 4584. MFC4 #M4

Monitoringl* MKS*44 4 channel power supply/readout* # 4= 4# 3."#

247C* 4*44 4*444. MFC4 power supply/readout4 #3 H* 4*

4 *4.

MFC (MKS 2259C)

Full scale ranges : 100, 200, 500 seem

Control ranges : 1.5 to 100% of Full scale

Accuracy : ±0.8% of Full scale

Resolution : 0.1% of Full scale

Temperature coefficients

Zero : <0.05% of Full scale/oC(500ppm)3

Span : <0.1% of RdgVoC

Pressure coefficient : 0.005% of RdgVpsi

Minimum pressure drop : 5 torr at atmosphere

warmup time : 30 minutes

114-

Settling time

Operating temp, range

Maximum inlet pressure

input voltage/current required

Max. at startup

Typical at steady state

Input/Command signal :

Output signal/Minimum load

Output Impedance

Leak Integrity

External

Through closed valve

Fittings

: <2sec to within 2% of set point

: 15 oC to 40 oC

: 150 psig

: ±15 VDC @ 250 mA

: ±15 VDC @ 160 mA

0-5 VDC from < 20K ohm source

: 0-5 VDC from > 10K ohm source

: < 1 ohm

: <10"9 scc/sec. He

: <107 scc/sec He

: 1/4" Swagelok

Rower Supply/readout (MKS 347C)

I) Each Channel

Input signal

Range :

Transducer output range =

Corrected Transducer

output range :

Zero Correction :

Set point adjust :

: 0 to +5 VDC (5.5V Maximum)

: 0 to +5 VDC

: 0 to +1 VDC nominal

: +3% of Full scale

0.1% to 100% of full scale (flow)

0.1% to 100% of input level (ratio)

-115-

ii} Main Unit

Operation voltage 100-135/200-270V AC, 50-60 Hz

Power Consumption: 19 Watts @ 115V AC, 60 Hz

Power supply output

Capacity ±15 VDC @ 1 Ampere

MFC capacity

Flow display

Display accuracy

Digital display reading +1.999 max

±0.1% ±1 digit

8 1/2 Lbs

4

Weight

4# **# 4*71 (Vacuum Fluidized Bed Chamber)

*44551 4* 4-0-# 547M* 4* *47)- SMM 4444

5, 4 4 s! 4 4# ## ^ *e|H1 44 Bell-Jar, Radial Flow, Horizontal

5* Vertical Tube<M* 44 444 4*4 7> Af-g-s)^ 44. 7fl* 45x> #

# *113.4 447} *4* 4* #4^4 7}5# #44-4 *#* 4#4 44 #

414 544 544 5471144 4 = 44514 *#** *}*45 444s

4-8-714 44, 4-o- 44# 4-8-44 4544 ##*, z%2)5 magnetic stirrer

* 4*44 ai^o] #414 444 #* #4145 H4± 814. # 49-414

W 4 454 4^*453. #414 54# 7M44 44) 4## 4*4* *4,

*44814. 4# 7fls4 444 54 71)4* 44 44#4, *XI 4-8-4* 45

9 815# *444 814. 4-8-44 XI** RF444* #44 7>44 444 #

4544 4*1) 814 # 44 45# a}*#* 0.4, 3.4# 444 40 mm

45 #4# 300 mm-y *5 #4 4*4# 4*4814. 44*41 **4* 441

4 *4* 4 #4 44 4414 #4l4(Distributor)* #44^5 #*1)4* 5*4

-116-

41mm 444534. &1/W4 1**4444 414444 4*4 1*44 1

* lm# <31*1-71 411 *117114 7^ #!## 1*4 44 Ml# 411

1*4 44-4 14453-04 m* 1-44 1*4 4# 4# 4444 44 **

14 *# 44 7i #4 viton 44 144534. ml 7>is. Vitonll 4# 4

1 14471 44 1444 41# #4 *5. 144534.

Matching Network5*e] 4414 4# RF 144# 1/4“ 44 im# 4-*

44 444 50 mmS. 141 4# 1*1* 14414. ml, OT* RF114

tie]3i 4444 14 453ml, 7]-1!!* 14 14471 444 44 *m4 *

# <3444 144534.

RF 444 !*& 41# 4# 1144 444 stainless steels. !4* 1#

4 1-3-44 14* n 14 114. 414 4# RF11* 144 4## *1 1

44, 4# 41 444 m 41* 414.

1# 41 (Vacuum System)

!!4mm 1* #4^4* 4*1 ai7fll* 1* *44 441 *3141

4 4*4 1*4* 1* *445. 1*4 44 1*41# Filter trap, 1*44

4 14 m*7] (Baratron Pressure Gauge & transducer, Throttle Valve &

Controller), 4 ** 14 *4 7] (Thermocouple pressure gauge), T%4 2. 7] 44

1*1= *ms. #444 414534. Filter trap# #*1 4# *1 4*471-

tifl4*s. overflow!4 tij)7]i44- 1* #1 11 m# 1# 4 = 4 ml* m <3 14 *1 &41# 4* 14 43i4 #1414. Filter# 4## m 14 Til

14 ** 14 11-14. 1*444 14* *m &l 7fl* 14-4 7] 4*4

441 14 447]- IjS.44. 1*444 *41 14* Throttle valve4S *

144 -44 MKS44-! Baratron pressure gauge & transducer! £l 122A*

117-

4-8-4a-2., ^4 44# -8-4471 44 4444 Conductance# s#4#

Throttle valve 4 controller# MKS444 2-# 253A throttle valve4 252C

controller# 4-8-4594. &4 4-8-44 #4# #14 444 Variant4 4#4

thermocouple pressure gauge# 444$4. 4# 4## 44444 2.#

WSVP 90602.5. 4 #‘444 5 x 10’4 torr(without gasballast) °i| 2# f t 2

4. 4# 4#. 4# f 24 #44 4## 444:n. 4-8-4» venting 44 44

4 444 #4^ 444594. 4# 444 4 44 4#4 #

.a. 44# 4#4 44.

Mechanical Vacuum Pump

Displacement speed

Ultimate Pressure

Main power

Oil Filling

Rotational Speed of Pump

Weight

180 l/mim

5 x 10~4 torr (without gasballast)

5 x 10'3 torr (with gasballast)

0.4 kW

1.0 liter

1200 rpm

35 Kg

Throttle valve controller (MKS 252C)

Input signal :

Power Line voltage

Input Power

Ext. Set point signal

Regulation

0 to 10 VDC, 0 to 1VDC, or 0 to 0.1 VDC

: 90-132/198-264V AC 50-60 Hz

: Min=40 watts @ 90V AC 60 Hz

Max=70 watts @ 132V AC, 50 Hz

: 0 to 5 VDC analog

±0.25% of full scale max.

-118-

Repeatability

Temperature

Output Power

Valve output

: ±0.1% of full scale max.

: 0-40 °C

±15 VDC @ 250 MA max. each

24 volts at 1 Amp max.

Throttle Valve (MKS 2530

Inside diameter

Outside diameter

Controllable conductance

Closed Leakage

Flapper Seal

Power Input

Operating temperature

1.27"

2.75"

0.2 (l/sec) min., 50 (l/sec) max.

< 10~7 (torr l/sec)

Viton

±15 VDC, 1 Amp Nominal

80-90 °C for 20-30 °C ambient

*11 3 ^ *1^*1 ^ ^ 44

# 4 #4## 44 444 5### xfls 7H1-2] #4 #-g-S>7l #4

4, ## (n#4, 444 #) 4 #4 4#, #4,

4 #4# #4^4* 4-S-^H 547fl##

xiis.4 4& ### #44 54# 7H 4-71 4# #5

444 #4—4 -fr#ir 547fl# ## (Multipurpose inductively-coupled plasma

enhanced-surface modification (ICPESM)) #7)1 4 414444. °1 #4# °1

-119-

44 44 *435. 44# *44 #2: #4^4* 4*4 4# *4 4 #*

#4343 444 4 44 44* iL7l 4tb #44 fb**^4 *3 #434*

°l*tb tb# #4* t44$14.

1. 44# <M4 A^7M

44# 9? 3 *** U]H^ Afl5*- ^<g7flS.S«j 4# **7b fen

4 550 °C44 3* A^o] ^4 *4 tb 4 44* ^4M14 5# 4**4

714*4444 44*4 **44 ** 4# *44 *** 21* 4-4-0.5. *e)

A>^-£)31 OJJL H #4# 4=#47] 44 4* **7b 4443 $14. 3#4

Kroll’S 9b Hunter'S 44 *11 #4 444 4&3 44*4 *4* 44*

—5-x1 4 H 4*. #^-(Mixing), 4 4 (Forming) 9b 3# (Sintering)*# ofl *£<l. g-

43* 7Hai $14.[22] nEiBS. 4 4 #471 *7fl 9b #4* 54 7H #4*

4*44 4*44 #7b** **#711 ##444 ** 4 ##* # 4*4 A] 7\]t}3L B4 4 4*44 £AH 7b* 4** 4Til 44 444 £* AbSt-y-AS-

4 44*4 *7b7b4### 444 44 *4 tM 484. 300 Watt, 1 torr<4

4 100 sccm4 ** #4^4 444 44*44-4 #44 44* *4-*4 44

4 60* *4 4444 *4 #4#(SEM)* 4*44 2:444 3# 3-144 4

44$14. 4 3fH 44.^44. #0] a|4; ^<?>(60*) 44444 4*4

*44 444 44* 4 * &34, &** 447b 443* * # $14. 44#

4 44 4*4 44 4^4 30#, 14^ 244, 9b 344 f^s 44 44* 4

4444 RF 44 200 Watt, 4*4 *4 1 torHl4 100 sccm4 #4^4

4414 *444* *834$14. *471144 44*4 x-4 4* *4 44* 3

4 3-154 4431 $14. °1 #4 444 444, 444* 444 44 44*4

*44 44 43.7b 444 435 iL3 *4tM 4 44*4 *44 4*7b *

444 4444(Titania)& 3* * * $1$14.

120

Fig. 3-15. 7llt Ti^ x-id -g-4.

-123-

2. 4#- #4 444 54 7M

4# 4## 4# 4#4 #0] <4, #2, 2##3, J:^ # zj-f, #<g# J7^^]

#a] 27j-;t|]5.*] 4 #4 2 &24, sflo]^ 4 2 #a] 444245 4

4447]] 4-0-42. a7] ^ <54^71 #4-24 444-0-4 44 4-4#4

4 54 7W# #44 #44 -0-44- 4444 Si# 54 44# ## 42# 4

##44 4#444 ##4 444 4 2 #7}7>44 ###23.4 7}##44

#4-0- ^4j #4 ###4# 444# # Si# 422 4-247] 4#4 54 7]]

4# 42444".[3-23] 4 4#44# 4 4 #4 4422 SOOWatt, ltorr°l] 4

100 sccm4 #2 #424* 4-0-44 3pm 27] 7]-##4 444 5# 44#

##4424, 44 444 #4* #4-27] 444 #4 444 4-0-44 244

4 2# m-3.4 44-4#4. 4 2#4] 4-4# 44 #4 4# #a] #4# 44

4 27]7> 4## # # #4. 4# ### 2:44 2#4(300W) 4# #424

4 44 4##^l 544 #44 2:4 4#4 42 #444 4444-7]- 44J4

# 423. 4244. 4# #44 4422 #42 42 #4-244 44# 4#

44 C50 WH14 544 C=0 2# O-C-O 2s]2 O-CO 7]#7]a] ^43.

120# 444444 4 4#7]a] 44# 5444 442 #4444.[3-21]

41 4 ^

# 4444 #4 ^ 44# #2 ### #4-24 54 ;]]# 44# 444

4 4#4 4# 2#7>7>44 4# 4## 4# 44# #4 (2#4, ##, 44

4 #) 4 #4 (4#4/44#4 44, #4, ##, #)4 4& 5#7]]#42 ##

124-

4 # 51# 4## a}^44.

#414 54 414 [3-24]

#414 JL Hla^ajt 4# ## 4## 44 4# 3.7)$] *#1

44(metal clusters)*# #444 514. AAA 35)3 4451 #4## 444

A A 4#4 #* 4## 3 444 444 #4444 5444 44 44 44.

44 #44 44 4#4 #44^4 #4 #444- #44 44444. 4#4

#£44 ## 4447} £4 4 # 444# -8-444 #2. 4-8- 544# 4#

444. #4, 5# 44*4 5# 444 444 4444 #47} 1 # 514. 4

* # 44 44# *4#4(## 44 #4 4#4)44 444444 44 4

54 4-8-44 44 444. 44 #44## 4444 444 #4#4* 4-8-4

4 4# 93 4444 #4 4 44 #44 444 4## 3.7) 44 4 4# 3

44 *4 #4# 444 #4#444 #44# 444. 44 #4#4 44#

444 444 343 14 44# 4# 44 4 #4 4 #4 Afls.# 4# 1 4

44. #4 44 #4 #44 4# 4#4-4#4 54 44# (1) 4# 3.44 4

sf} 414, (2) 4#4-4E-4 #4 7fl£, 34# (3) 4#4-4#- ##4 4# ##

4#4 #4 4-1-## #41-##4 444 # 4# #4 4#4- 4£4-4# #

4 #44- 41-4 4# 4#4 #4 4## 44# 514.

1##44 54 44

4# 44- 43 51# 141 4##44# CRT44-4 14 #3 ?M#, 3

1#, 3it, 34##, 3^#1*1, 4#1, 4##41, 4#444, 47}4 1 4444 44# 41 #4 #3# 4##4 93 4#44 444 4##* 7}###

#4 ## @I4##4##4 44#4 1# 4#7} 4*044 ;H# *# 44 #

4 514. 4 441 4#*44* 4*44#4 5144 2*4## 93# 4# 1

-125

*44 7fl*4 ### 5*44 #4. oil- 4an 444, 3i*x} #4 #* #*

4#4 7j)#44 454- 4*1 314x1- 4*4* #* 4# #**, 4* 44* 7j-

5, 4#4*4 *# #1 *4 4 #* **5* 444* #44## 7}

xii $14. 4# *4**# *M*>7i 44* #**4 44 s^* *71 44-1 * 4# 4## #*#44 7111-01 7}* # *44.

7}# *4#44 #44 4# *# 7111 [3-21,23]

** #4-50}# 014401 41x4 444 l#* #4 4^4.4 5**4#

as #4 x}-§-si3i 4* 4#*44 &141 4*4* #45* 4**44 4711

4*4 *#»1 #51 Til 47] 4* #51-45] ### 4 4-31X} #4 014 11:4 0.

s. 514514s. 37# 4-4#5.4 #54* 4-0-# ?445]4 14^ #4 4-4 I #5^x1-514 #*4* 45]#4 ##4 1^5 01 4^-4 31447I*57}

4* 4*4 *# 44 ## 4#* 1*55 44-37 si4 71-##44 4444

* #4-4* 4 -0-4-4 *4 #4-444- 7>l (1##) #4 4 #4 4# 5# 44-4#44- 4#*##4 #4 4*41- 54431 4**44# *#** 4*g

45 #44 #4-. 5* 4e 71-4*4* #4# 444, *5, jiris, s^f

4# *#-0- 374414 5*4 s.#, 44% *51-54, *a *4 4-445 *1

44-711 *1-1431 #7l 4*4 *51-50} ###14 4# 7}#*44 &#4#*

*#4 *4# -0-44- *#*4 4* 5# 4** #* 4 s* *#*44 4#

44# *#4 #*# ^ 31 #7}7}44 #**554 7}##44 #4-0- 54

*# *-0-*#* #* *1# * 4* *4#.

#* #44*4 5# 7H#

#5}5o}l# 1)54- 4 #-^##71 44* 5#* #4#*l7l5, 3145 3)

S.54# ###55* 5# 71114 7}*#7l 414 5. 3-44 4-4# 44 *4

-126-

Tabl

e 3-4

. >g

-fK><

y

-127-

4# 44 ^ #-8-7}#4 4-8-4445 454 #5 &## ;))# #

#455 ##4444 ##a#4 4# a# ;))4# 45#a 44. 44 &4#

####557] #44### #44^45# #4 #4 5#4 444 444#

3 44 444 4444 45.4 £44 ##44# #5#5S4 4#5.4 #4

4 444 #4##5 # 444 #44 44 #4 ## 4 S#4 55#» #

##5. $1#.

Tgti.444 M 4#[3-25]

#e *4 4# ^as ##45 4# 44 4 4#4 4# ### (voc:

Volatile Organic Compounds)4 44# #44# #4#4# #-t-4# ### 4

#7} #44v. si#. #4 4444 44 #4 4#4# ##4#4###4 44

4##5# 444## 4#4#5 #4 # Si5.#, 4#4#5# ###-§: 4-8-

4 #44#54 Si#. 4 #54 #5 ##4 #4#### 557} 4#4 5#

4 4-f 5-8-4 4# € # #5 4#5.# 4# #4 #4 #4 #5# #57)- %

5.4# &a, 2# 5# #4 #444 &5# 44# #45 4# #4# ###.

&# ####4 ###& #5 ###4 4444 #### 44## # S14

44 #5 ### ## # # SI## 4# #4# 4# #4 #4 54 #4 7} a

#55 5*#4 #a ##4 #55 ###4 #4 45-4 4# 4## 4# 4

#4#. 4 4 #4 4 4-8-4c #4 <845 4### 4#4 545# 444# #45 44 #5, #47} 4#44# 5555 4# #a(# um)4## a#55 44 S15# #7)4 4# ##5 # #457} 4-f 5## #7) 4^4 4a#

## ##7)#4 4#4 #444# ##. #5 4455 #54 a3-4 ##4

4-8-47) 45-4 4-f ##5# 7)#& 4-8-44 #54 #4# 4444 5-4

4# a##55# #-*4 &a, 4# #5 a#4 7}###, a### 44#

444 #44# #44# # Si# 44#. 5# 4444 4#4 #5 45 #

-128-

#S}a#4 44 #^1-0] 4443 #»> 4444 71^ 0.5. 54 #4 4%14

a} 713-01 #4# 43, vocsal 357} 3& 4 as] 4 4 #44 43334 #

4# 7>3^ol ^71144 VOCs/444 4457} 3.711 #7}# 7}34 4 &4.

5#, 4343 x-15. #4 #4 434 #3#7} # 4444 t»ES 434

4 #3a# 444 544 #3# 444 344 34# 4-1-71, 4344 44,

43 44# 4344 45.44 43, 345 magnetic stirrer# 4344 45#

44 344 444 #4 43 4# 34#3 34444 44.

4 4344 7U44 43 #4^4# 434 54 ;H4 343 #4 4344

45444 43 3#44 5471144 44 #3 #3 4# 455. 4-544, 3

344 4444 547114# 4443 7}t#44 #4 33 7B# 443 544

#45444 444 434 ##4 44 54# #44#5&4 4344 7}#

# 44 4. &4 434 #314 71-34] 444 344 4 #44 3# 44471

44 jl#4-4- 4:3 4=3 44# 344 434 344 4571- 7}# # 444.

4445, 4 4344 534 #4^4 #34 43 33 343 5a# #45

4 #33(edge of plasma region)44 534 #4 54 434 #3 437} 4

445 43 453714 34 454 #3 # 3 4# 455. 4-5.44.

129-

*8 4 s

SM 4444 4--8-1 f 47>s. #4# Wla &# 44# as^#

4- #4a4 4 4441 (PREP) 4 fa##4(HDP)# 4444 ##& 4a4a

4#4 #£, 11#-# 4444 4#4 41:471-44i- 444-ax} 4-&4. 4

44 4414 444 as^^Ha x}! #517} 44 99.995%4 as)44 44

E, sels 444444 444 #44 444s 4# 444 44#4(Grade 2)

# 44-as. 444-5S4.

4#4 4#44 #4^4# 4#44 &4;H4# 4as.*l 4#4 4#4 4

e# #445. 4& 4## #44 #4# 7H4 44 44 4#a #a 444

#4^4 ### &4;W 44 441 4 114-4-84. °1 44# 4-8-44 44 #

4 44 as. 44# 44-4 la #4&4# 4-8-4 44 4 4# #4a#s. 4

44 144 44# 471 44 44 #4# #1484.

1. sea a441 4711 m a^M x}#44 #4a# 4444laa *fla4

44# #4# 75~ 400ym 444 41##& bimodal 144 4aea* a^a4

44 #4 Hie# direct droplet formation(DDF)5. 4444. 148 x} 4 15

1# 212 - 250 um4 8-9-4 44 4#4# 2444# #144# *a4 90 um #

eas. 1444. 41 #14|2:'Se(#4an]- 4#, a2.444 41 4 44#a)

4 4# 14444 1541# 444# #44# 4(2.3) as. &xi# «# $H%4.

2. 44 ##4 44# aa^f 4-8-44 ea##iaa 4la# 44# ea#

# #4# W# 4a#5£# 7M1# #544 414 14# 4484. 4# #4

# l#as^4 ##4| 44184 63 -75 um°lM 444## 44484. X-4

-130-

4443 3 4344 TiHi.924 & #3^5.3 3s^3.^4 4

43 44 fee 4&# #4 JL444 TiHi.924 (JCPDS: 25-982)4 tetragonal

* 34 343-4 TiHi.924 (JCPDS: 25-983)4 443 3^4 3434& 4432i

4. 44 Zr 4SE 5.44 4^4 45:3*4 tetragonal42* 44 ZrH2

(JCPDS 17-314)5. 34^3. 4* 44444 #443334 444 334 4

44 4S.4 44445.4 #3344 #/}4^44 44444 4* 444 4 444 41445. 5.44.

3. 44 3 444 4444 44444 444 #3^3 344345.5. 4^4

^44 4^4444 445.4 4^4 43 3345.4 44 4444^4 34

44914 441434 444 44 4144 45.5. 3444. 444 443*44

4444 5*53 444 444 4&44 44144 44 4 44 4443414

44444 4 44:4444 444 4444 5.443 44 413*1 4^t 34

4. 44 433434 4444 3zes 444 4#3%4 44 3444

44 3335.5. 44133 4 am* 3*jl 4&43 344 344 3334 4

33 44333.

4. 43 4 34343 333^3 334 333 #3^3 43333 Matching

Network 333 333— 433 3 3433 7)314 33(Forwarded Power)3

33 4333(Reflected Power)7> 33 03 7>33 34 434 #3^3* 44

4 4431, 34 334 447N 434 34 10~3 Torr33 4# 4 43 3- 4

4313 344 1.0 Torr3 345.* *334til 444 437> 443. n33 3

4 333 4433 4444 343 <15. 444 4444 #434 7>i 3*114

4 443 gtM 3431 43 7i)4#4= # #4 4334 33343.

5. 4444 8# 5884# ## 48 #8(60#) 84487) 8#8

^4# 884 84# 8 4 824, 2## 887} 8#^# 8 4" 82, #2

#4-2#8 4# #4 84# 44#4 &84 iJJf7} #448 44882 4#

8 4s 2184. 24, 4# i-44 xj-s). ##4 244 ## 88(300 W)

8# #4-a#8 44 584 444 2.4 n^ofl x^s. #^44 88447} 4

84# 8 4" 884.

6. £ 8444 7fl« 8# #4-24# 8-§-4 58 7M 88# 44 4444

44484 4# uL-g-4-s] 587D88 84 %# 4 4r 8# 425. 4248, 8

#84 4444 587)14# 444# 7}8884 44 4# ?W 44# 584

#4-^444 444 8#4 ##4 44 58# #4##25.4 4#44 7}#

4 484. 24 444 #44 7>#4 884 #44 4 #84 ## #4-4-7]

44 3i#44 4# 8=# 44# #4# 444 #44 427} 7}# 4 484.

8482, 8 8484 #4# #4-24 ##4 4# ## #8# 2a# #4-2

4 ###(edge of plasma region)8 4 44# 44 24 8 #8 8# 8 #7} 4

442 8# 42 27]4 #4 428 ## # 4 8# 422 4244.

132

» 3 e a

2-1. RM.German; Powder Metallurgy Science. Metal Powder Industry

Federation, N.J.m (1984) ch.l

2-2. G.H.Gessinger; Powder Metallurgy of Superallov. Butterworth & Co.,

(1984), ch.1-2

2-3. C.A.Kelto,B.A.Kosmal et all in Ranidlv Solidified Crystalline Alloys.

S.K.Das,B.H.Kear and C.M.Adam(ed.), A Pub. Metall. Society Inc.,

(1985) 1

2-4. A.J.Aller; MPR, Jan. (1990) 51

2-5. SA.Jones: Monograph no.8, The Institute of Metallurgist,

London,London (1982)

2-6. C.Suryanarayana, F.H.Froes, and R.G.Rowe; Int.Met.Rev., 36(3) (1991)

85

2-7. P.R.Roberts and P.Lowenstein; in Powder Metallurgy of Titanium_____

Alloys. F.H.Froes and J.E.Smugeresky(eds.), The Metallurgical Society,

Warrendale, PA, (1980) 21-35

2-8. N.J.Grant; in Powder Metallurgy for High-Performance Application.

J.J.Burke and V.Weiss(eds.), Syracuse Univercity Press, Syracuse, NY,

(1972) 85-97

2-9. T.C.Peng, S.M.L.Sastry and E.O.Neal; Metall. Trans., A15 (1985) 1897

2-10. H.Stephan; Paper sc.2 in Advanced Fabrication Techniques in Powder

Metallugv and their Economic Implications. AGARD Conference

Proceedings No. 200, AGARD, Neuilly sur Seine, (1976)

2-11. A.Lawley and R.D.Doherty; in Rapidly Solidified Crystalline Above.

S.K.das, B.H.Kear and C.M.Adam (eds.), A Publication of Metallurgical

Society Inc., (1985) 77-91

2-12. B.Champagne and R.Angers; Powder Met. Int., 16(3) (1984) 125-128

2-13. G.LTalyor; Proc.Roy.Soc., 201 (1950) 192

2-14. CAcrivos; J.M.Sci., 11 (1976) 1159

2-15. M.Zdujic, M.Sokie et al.; Powder Metall. Int., 18(5) (1986) 325

2-16. M.Zdujic, M.Petrovic and D.Uskokovic! in Proc. of the 1986

IntPowder Metall.Conf., (1986) 61

2-17. S.J.Savage and RH.Froes; J.Metals, 36(4) (1980) 20

2-18. T.F.Broderick, A.G.Jackson et al.; Metall.TransA, 16A (1985) 1951

2-19. T.B. Massalski et al.(eds); Binary Alloy Phase Diagrams (2nd eds).

2066

2-20. W.M.Mueller, J.P.Blackkedge; Metal Hydrides. Academic Press, N.Y.,

(1968) ch.l

2-21. P.P.Alexander; U.S. Pat. No.2,674,542, April (1954)(Cited from ref. 20)

2-22. E.G.Widell; U.S. Pat. No.2,536,673, Jan (1951)(Cited from ref. 20)

2-23. C.S.Pearshall; Materials & Methods; 30 (1949) 61-62

2-24. 4% Ti-Al^l

^ ## 7]a "gf. <34«5L (1992)

2- 25. V.Dombovsky; Plasma Metallurgy. Elsevier Science Pub., N.Y., (1985)

242

3- 1. A. Grill, "Cold Plasma in Materials Fabrication • From Fundamentals to

Applications", IEEE Press, New York(1994)

3-2. H. V. Boenig, "Fundamentals of Plasma Chemistry and Technology",

-134-

Technomic Pub., PennsylvaniaC1988)

3-3. B. Chapmann, "Glow Discharge Process", John Wiley & Sons (1980)

3-4. Y. P. Raizer, M. N. Shneider, N. A. Yatsenko, "Radio-Frequency

Capacitance Discharges", CRC Press, London(1995)

3-5. J. Hopwood, Plasma Sources Sci. TechnoL, 1, 109(1992)

3-6. J. L. Beauchamp, S. E. Buttrill, J. Chem. Phys., 48, 1783(1968)

3-7. H. K. Yasuda, "Plasma Polymerization and Plasma Interactions with

Polymeric Materials", John Wiley & Sons, New York(1990)

3-8. H. K. Yasuda, "Plasma Polymerization", Academic Press, New York(1985)

3-9. P. W. Kramer, Y. Yeh, and H. Yasuda, J. Membr. Sci., 46, 1(1989)

3-10. R. d'Agostino, "Deposition, Treatment and etching of Polymers",

Academic Press, New york(1990)

3-11. R. Cormia, Res. Dev. Mag., 32, 60(1990)

3-12. C.-C. Chen and S.-W. Chen, J. Mat. Sci., 32, 4429(1997)

3-13. C. R. Wierenga, and T. J. Morin, AICHE Journal, 35, 1555(1989)

3-14. A. A. Moissis, and M. Zahn, Chem. Eng. Comm., 67, 181(1988)

3-15. K. Shinohara, B. Golman, K. Watanabe, and S. Chiba, J. Chem. Eng. of

Japan, 30, 514(1997)

3-16. K. Tsutsui, K. Nishizawa, and S. Ikeda, J. Coating Technol., 60,

107(1988)

3-17. Y. Mochizuki, S. Ono, S. Teii, and J. S. Chang, Adv. Power Technol., 4,

159(1993)

3-18. Y. Sawada, and M. Kogoma, Power Technol., 90, 245(1997)

3-19 “!c> 2H5- 7]#”, 10«, 58(1997)

3-20. U.S. #3) 4,867,573, “Powder treatment method and apparatus used

therefor", sept. 19, 1989

3-21. T. Takada, M. Nakahara, II. Kumagai, and Y. Sanada, Carbon, 34,

1087(1996)

3-22. D. Bloor, R. Brook, M. C. Flemings, and S. Mahajan, "The Encyclopedia

of Advanced Materials", vol. 4, 2868(1994)

3-23. Q&n, X)% ## 4t\), 35, 26(1995)

3-24. W. R. Moser, "Advanced Catalysts and Nanostructured Materials",

Chapter 18, Academic Press, New York(1996)

3-25. ^ y (Membrane Journal), 7, 111(1997)

-136-

KR-97(C)-40

^4 3! %-§- 7]#7^

1997M 12# # ysfl

1997# 12# # 1M

#*J4i : 30

# ^ : 0| s e

# 4 = @ eJ # Ah