XA04CO068 Conversion Study from Oxide to Silicide Fuel for ...

26
XA04CO068 Conversion Study from Oxide to Silicide Fuel for the Indonesian 30 MW Multipurpose Reactor G.A. Siwabessy' B. Arbie 2, R. Nabbi3, Prayot04 , T. Sembirin 9' Abstract Studies have been undertaken to provide the key parameters and the safety behaviour associated with the conversion of the Indonesian 30 MW multipurpose reactor from the original design using O,,Al fuel to using the proposedU3S'2Al fuel. Both LEU fuel element designs contain 21 plates with 0 54 mm tick fuel meat. The oly difference is that the oidde has a unnium density of 296 g/cm 3 and 250 g U-235 loading while the proposed Slicide fuel has a uanium density of 355 g cm and 300 g U-235 loading. The neutronic and thermalhydraulic performance of the equilibrium cores are studied first, followed by the detailed results for each burn-up step of a gradual transition fm the Omde to the fficade fuel core configuration. 1. Introduction The neutronic study on direct conversion of the Indonesian multipurpose reactor G.A. Siwabessy (RSG-GAS) to use Silicide fuel has been reported at previous RERTR meeting in 1993 (Arbie, 1993). The summary of the reactor key features are shown in table and fig 1. The by core configuration contains 40 standard fuel elements and control elements. The core is reflected by static Berylium block on two faces and by movable Be reflector elements on the other two faces. One water fled flux trap is located in the center of the core alled Central Irradiation Position and another four irradiation positions around the central irradiation position. Six beam tubes of 6 inches diameter penetrate the Be block to obtain maximum neutron flux from the core. I Paper to be presented to the 18th International Meeting on Reduced Enrichment for Research and Test Reactor, Paris, France, 18-21 September 1995, part of dissertation work to be submitted to Gadjah Mada University, Yogyakarta 2 Multipurpose Reactor Center, BATAN, Serpong 3. KFA Julich, Germany 4. Gadjah Mada University, Yogyakarta 5. Multipurpose Reactor Center, BATAN, Serpong

Transcript of XA04CO068 Conversion Study from Oxide to Silicide Fuel for ...

XA04CO068

Conversion Study from Oxide to Silicide Fuelfor the Indonesian 30 MW Multipurpose Reactor G.A. Siwabessy'

B. Arbie 2, R. Nabbi3, Prayot04 , T. Sembirin 9'

Abstract

Studies have been undertaken to provide the key parameters and the safety

behaviour associated with the conversion of the Indonesian 30 MW multipurpose

reactor from the original design using O,,Al fuel to using the proposedU3S'2Al

fuel. Both LEU fuel element designs contain 21 plates with 0 54 mm tick fuel

meat. The oly difference is that the oidde has a unnium density of 296 g/cm 3

and 250 g U-235 loading while the proposed Slicide fuel has a uanium density

of 355 g cm and 300 g U-235 loading. The neutronic and thermalhydraulic

performance of the equilibrium cores are studied first, followed by the detailed

results for each burn-up step of a gradual transition fm the Omde to the fficade

fuel core configuration.

1. Introduction

The neutronic study on direct conversion of the Indonesian multipurpose reactor G.A.Siwabessy (RSG-GAS) to use Silicide fuel has been reported at previous RERTR meeting in1993 (Arbie, 1993).

The summary of the reactor key features are shown in table and fig 1. The by coreconfiguration contains 40 standard fuel elements and control elements. The core is reflectedby static Berylium block on two faces and by movable Be reflector elements on the other twofaces. One water fled flux trap is located in the center of the core alled Central IrradiationPosition and another four irradiation positions around the central irradiation position. Six beamtubes of 6 inches diameter penetrate the Be block to obtain maximum neutron flux from the core.

I Paper to be presented to the 18th International Meeting on Reduced Enrichment forResearch and Test Reactor, Paris, France, 18-21 September 1995, part of dissertation workto be submitted to Gadjah Mada University, Yogyakarta

2 Multipurpose Reactor Center, BATAN, Serpong3. KFA Julich, Germany4. Gadjah Mada University, Yogyakarta5. Multipurpose Reactor Center, BATAN, Serpong

The Low Enrichment Uranium fuels have 21 plates, 3OgAl fuel and 250 g U-235. Theproposed new LEU fuels U3S'2AI have identical geometry containing 300 g U-235 with a

3uranium density of 355 g/cm

The objective of the study is firstly to achieve higher fuel uilization and bum-up by

increasing the fuel loading from 250 g to 300 g so tat the penalty of using LEU is compensated,

secondly to obtain direct conversion to avoid long term low power transition phase, and thirdly

to achieve better fuel management strategy.

The neutronic and thermalhydraulic performance of equilibrium cores with both Oxide

and Silicide fuels are studied frst, followed by the detailed results for each burn-up step of a

gradual transition from Oxide to Silicide.

2. Calculational Methods

The methods and codes used for lattice cell, WIMSD4, and whole core calculation,

UM2DB, including its verification, basis of calculations, and neutronic alculations results are

described in previous RERTR meeting (Arbie, 1993). The objective was to compare the

operating parameters and safety margins of the Oxide and Silicide equilibrium cores to ensure

that these characteristics were satisfactory before beginning the mixed core calculation.

The existing fuel management consists of 7 different burn-up steps, each step reshufling

6 fuel elements and control element for the first 6 cycles and 6 fuel elements and 2 control

elements for the 7th cycle (SAR, 1989). The equilibrium core criteria consists of 1) composition

of new fuel and used fuel is similar in each cycle, 2 pattern of fuel placement and reshuffling

is smilar in each cycle and 3 neutronic and themxAlydraulic conditions are similar in each cycle

The above criteria are difficult to be met in the eisting core fuel management and it is expected

that improved fuel management could be accomplished using the proposed U3S'2Al.

The euilibmun and transition configuzations were arrived at by Wang into acount four

conditions 1) the shutdown system must povide subcnticality with soft margin in the worst

case, 2 the power density distribution with respects to its maximum radial factor as to be less

than 1. 3 3 sufficient excess reactivity at BC should be available for control and experiments

and 4 maximum bum-up for (bade and Slicide should be less than 60 and 72 respectively.

The transitions from oide to silicide core were effected at each bum-up step by replacing

standard and I control eleffients of the spent oide fuel with standard and control elements

of the fresh silicide fuel. The calculations were performed for transition cores where standard

and I control elements of 355 g/CM3 Silicide replace standard and control element burned

fuel of 2 96 g/CM3 Oxide fuel.

PARET code is used for steady state therma1hydraulic calculation. It calculates heat

transfer in each fuel element on the basis of a one dimensional conduction model in each 21 axial

sections of the fuel. Validation of the calculation model and method, was performed by

comparison with the results of Cobra III C IA, Coolod N, PTEMP and HEATHYD (Praptoriadi ,

1995). The steady state thermalhydr-aulic safety margins that are most important for plate typereactors are the margin to the onset of flow instability, and the argin to the departure fromnucleate boiling (DNB).

Thermal properties and self absorption of both Oxide and Silicide will be used as inputforthermalhydrauUccalculation. UsingfabricationdataandcorrelationavailablefromIAEATecdoc 643 (IAEA, 1992), thermal conductivity constants for oide and silicide were estimatedas 1, = 21.2 W/mOK and A., = 88 W/m'K. Due to the difference in its composition and density,the energy deposition in the Silicide fuel meat was estimated to be 5.5 % higher than that of theOxide fuel Arbie, 1994). The calculation was based on two scenarios 1) limits and conditionsfor operation and 2 overpower conditions.

3. Results and Discussion

The first part of the calculation was to compare the operating parameters and safetymargins of the Oxide and Silicide equilibrium cores to ensure that these characteristics weresatisfactory before beginning the mixed core calculations. It was then followed by the search forthe optimal strategy for the transition from the equilibrium oide core to the equilibrium silicidecore.

3. 1. Equilibrium Cores.

3. 1. 1. Neutrunic Calculation. A burn-up sarch was first performed to determine the cyclelength in the equilibrium Oxide and Silicide cores that would yield an end of cycle (EOC) withexcess reactivity of 27% 6k/k to account for experimental facility 2. 0 %) a control reserve (0. 4%) and the cold to hot reactivity swing (0 3 %). The remaining components of the reactivitybalance am reactivity loss due to burn up 3 %) and the build up of equilibrium Xenon 3.5 %).The lattice ell calculations were done by using WIMSD4 to generate four group cross sectionswith the upper energy boundaries 10 MeV, 821 keV 5531 keV and 0. 625 eV. Two dmensionalcalculations using 2DBUM divide the core region into 89 and 88 meshes for both x: and ydavetions The main results of the clculation for equilibrium cores am the distributions of burn-ups, nuclear power peaking factor and neutron flux within the core area as presented in figure2 to figure 8. The flux figures shows that the thermal neutron flux at irradiation facilities isaround 285 higher than Oxide core at CIP and P-1 while for position IP-2, IP-3 and IP-4 onthe average 1. 76 lower than Oxide core.

The cycle length was computed to be 25 full power days in the Oxide core and 32.8 daysfor the Silicide Core, because of the much higher fissile loading of the Silicide core.

Assuming 100 % duty factor, the core conversion saved about 22.41 kg enHched Uraniumdue to 29 fuel elements saving each year. Longer operation cycle of 30 days will also give betterflexibility for reactor utilization

The average burn up at BOC is 23.3 loss of U-235 and at EOC is 31.5 for Oxidecore, while for Silicide core the average burn up at BOC is 31.5 and 40.5 at EOC.

The power peaking factor for TWC at BOC / EOC for 03dde indicates that for Oxide the

lowest peaking factor is 073/0.77 and the highest is1-2/1.32, while for Silicide core the lowestisO.73/0.67andthel-lighestisl.26/1.29. Thehighestpeakingfactoroccur-ingatEOCinthe

fresh fuel element of the Silicide core is 1. 29 and for Oxide core the highest peaking factor is

1.32 at fuel with 17.3 burn-up.

Fig 9 to I demonstrate the results from three types of reactivity feedback coefficients,change of fuel temperature, change of oderator tmperature and change of water density. The

results are compiled in table 2.

The large oncentration of U-238 in LEU resulted in a harder spectrum and better Doppler

Coefficient. i.e. for High mriched Uranium (HEU) the typical Doppler oefficient is 0. 04 x 1 0-'

6p/5T (Interatom, 1992).

The results reveal that void components consist of 1) reduction of absorption rate in

coolant due to voiding, 2 changes in absorption rate in lattice components due to theredistribution of the thermal neutron flux across the lattice, 3 loss of moderation in the coolant

due to voiding, resulting in spectral hardening in the fuel and lattice components.

Two cases of shutdown margins at BOC are shown in table 3 to table 5. The first, theworths of eight fully inserted control rods with Ag,-In-Cd absorber were computed for both Oxide

and Silicide to determine the shutdown margins. These shutdown margins were based on thetotal excess reactivity and all rods down. The second, stuck md condition was based on the totalexcess eactivity with one of the rud fully withdrawn, each core has eight variations. These shutdown margins are considerably smilar and fully adequate to guarantee the safety of the eactor.

3.1.2. Therma1hydr-aulic Calculation. Therma1hydr-aulic calculations were carried out forTypical Working Core (TWC) under the forced cooling at the thermal power of 30 MW (nominal

power) using total power peaking factor shown in table 6 In the analysis of both TWC Oxide

and Silicide, temperature of the coolant, fuel plate, heat flux and safety parameters for both

aver-age and hot channel were analyzed. For all of the cases, the gener-al design parameters of

the RSG-GAS for SAR have been used (SAR, 1989).

The distributions of fuel plate surface temperature, fuel meat maximum temperature, the

bulk coolant temperature along the fuel plate for the hot and avarage channels are shown inFigure 12 to figure 15. Table 6 lists the results of Paret/ANL calculation for both Oxide and

Silicide fuels for average and hot channels with Total Peaking Factor (TPF) of 4. 25 and 447.

The result shows that for limit and condition for operation no nucleate boiling occurs in

the hot channel for both cores. On the other hand, the bulk coolant temperature rise across the

hot channel is about 29.130C for Oxide and 32.91'C for Silicide channel and across the aver-age

channel the values are 10. 83"C and 10. 90'C for Oxide and Silicide respectively. The safetymargin against the DNB and factor are 297/2.78 and 657/6.05 for Oxide and Silicide cases.

The DNB for Silicide is 68 smaller than Oxide, while factor of Silicide is 8.5 smallerthan Oxide case.

Since the ONB is not a limiting criterion for RSG-GAS, at overpower ndition nucleateboiling occurs in hot annel, the bulk coolant temperature rise is about 44.75"C for Oxide and50.29'C for Silicide, the DNB and factor are 201/2.01 and 2923/2.363 which is below thesafety limit.

The result shows that for a channel with an imposed constant pressure drop and a constantcoolant inlet temperature, the channel power can only reach a certain maximum value. Thiscritical value is a statistical evaluation that in order to be sure with a probability of 95 thatninety five percent of the maximum power channels are protected against the occurence ofexcursive flow instability the parameterqc must be at least 22.1 cm'OK/Ws. The minimumacceptable safety margin defined as the ratio of from table 6 povides an adequate marginto core in cases of overpower and maximum coolant inlet temperature 44.5'C.

3.2. Transition cores

Niany reactors have been reported to be safely operated with the ixed cores composedof elements with different geometries, fissile loadings and enrichments or a combination of them.Since transition cores for RSG-GAS will use the same enrichment and geometry for eachelement, the oly variable is the fissile loading and the relative spatial location of each elementin the core. Since the Silicide elements contain 300 g U-235 and the Oxides contain 250 g U-235, the possibility to have higher nuclear power peaking will be larger in mixed cores ascompared to the equilibrium cores. Since this may result in a reduction of margins to onset ofnucleate boiling (ONB), trial and error in order to fmd radial peaking factor less than 1. 3 shouldbe performed.

Transition strategy is per-formed by stepwise replacement of 5 standard and controlOxide 250 g fuel elements with highest burn-up with standard and control Silicide 300 g fuel.By this procedure, full Silicide core will be reached at the step number eight. Table 7 shows thetransition strategy and table shows the result of neutronic calculation from step one to eight.

Initally it was considered to convert the core from Oxide 250 to Silicide 250 in order toavoid the condition where Oxide 250 may exceed 70 burn-up limit during transition to themixed core. However the detailed calculation of neutronic parameters shows that during thetransition pase the maximum burn-up remains under the 60 burn-up limit for the Oxide fuelelement. This means that a direct conversion from equilibrium Oxide 250 to Silicide 300 coreis possible. Nbximum peaking factor during the transition was found in ixed core number three

where radial peaking factor reached 1. 27.

Core transition scenano including peaking factors and burn-up mappings are summarizedin figures 15 to 23.

4. Summary and Conclusion

The analysis of both typical working core and transition core shows the possibility ofdirect conversion from Oxide 250 g to Silicide 3Og core.

Based on neutronic and thermalhydraulic assessment for TWC, Silicide 300 g core couldbe operated with comparable safety margin as Oxide 250 g core.

Transition to Silicide 300 g from Oxide 250 g could be performed with sufficient safety,radial peaking factor less than 1 3 and burn-up less than 60 .

New fuel timnagement. strategy as been developed for RSG-GAS and by increasing U-235 loading whereby better fuel utilization for core with Si 300 g could be obtained.

Since the silicide core has a longer cycle length, better flexibility for reactor ulizationwill be achieved. In addition, 35 fuel elements would be saved each year if both cores wereoperated with a 00% duty factor.

Sufficient lattice cell data for Oxide and Silicide fuel has been compiled for future dataconfirmation, analysis and further studies.

All the works performed in this conversion study have covered all necessary tasks forbasic studies and part of licencing requirements (Stromich, 1986).

Further studies for licencing such as transient analysis and studies concerning limits andconditions for operation should be performed in the future.

5. Acknowledgement

This work was performed under National Atomic Energy Agency (BATAN) project No.16.1.02.113343 supported by BFT Unvugh Forschungszentrum Juelich GmbH of Gennany, andUniversity Research for Graduate Education (URGE) Program, Director General of HigherEducation, Indonesia and this support is gratefully acknowledged.

6. References

1. Arbie, B et al, Neutrunic Study On Direct Conversion Of The Indonesian Research ReactorRSG-GAS Core To Use Silicide Fuel, RERTR 1993, Oarai.

2. Arbie, Thermal Properties of Oxide and Silicide fuel, IAEA Preliminary Report, May 1994,Julich.

3. IAEA Tec Doe 643, 1992 Research Reactor Core Conversion Guidebook, Vol. 4 Vienna4. Praptoriadi et al, Uji Benchmark Termohidrolika Teras Kerja RSG-GAS Dalam Keadaan

Tunak, Lokakarya Komputasi dalam Sains dan Teknologi Reaktor, Jakarta 1995.5. SAR RSG-GAS 1989 Rev. 7 19896. Stromich, 1986, Activities for the Conversion of Research Reactor, Interatom, Germany

Table 1. RSG-GAS Reactor and Fuel ElementDesign Description

Reactor type Pool type mrRNominal power, MW thermal 30Fuel elements in equilibrium core 40Control lements in an equilibrium core 8Fork type absoeber 2 stainless steell clad AgInCd bladesGrid plate position ]ox 0Lattice pitch, mm' 77.1 x 81.0Moderator, coolant HOBeryllium reflector element dimensions, mm' 75 x 79 x 683

Cycle length, full power days 25Average ... U bum-up at 130C, % 23.3Average 2"U bum-up at C, % 32.0Average 2"U bum-up at discharge, 53.7Excess reactivity at 130C, coK without Xe, % 9.2

Fuel type U30,Al U3S'2-AlUranium Enr., W/o 2311j 19.75 19.75Element Dimensions, mm.] 76.1 x 80.5 x 600 76.1 x 80.5 x 600Plate hickness, mm 1.3 1.3Water channel thickness, mm 2.55 2.55Platcs/standard element 21 21I'lates/control element 15 15Fuel meat dimensions, mm' 0.54 x 62.75 x 600 0.54 x 62.75 x 600Clad material AlMg2 AIMg2Clad thickness, mm 0.38 0.38Uranium density in fuel meat, g/cm' 2.96 3.55`Uffluel element, g 250 standard 300

179.6 control 214.3

Table 2 Reactivity Feedback for Oxide and Silicide.

Oxide Silicide

Doppler Effect (20OC-2000C), BOC. pcm/OK 1.8 1.9

Doppler Effect (60OC-2600C), BOC, IAEA 1.9Benchmark. pcm/OK

Moderator Temperatur (20-100'C), BOC. 9.71 8.95pcm/-K

Moderator Density (at 23'C), BOC, pcm/% 153 183void

Table 3 Shutdown Margins of Oxide and Silicide Cores

Core at BOC Kff All up Kff All down Shut down Margin

Oxide 1.0751420 0.93845540 -13.5%

Silicide 1.0693120 0.9372634 -13.2%

Table 4 Stuck Rod Conditions for Oxide Core

Position of Kff PST

Stuck Rod*

B7 0.96093535 - 11.1 %

F5 0.96182448 - 11.0 %

C8 0.96262240 -10.9

F8 0.96196842 - 10.9

C5 0.96046335 - 11.1 %

G6 0.95780694 - 11.4

E9 0.96207678 - 10.9

D4 0.95991844 - 11.2

see figure

Table 5. Stuck Rod Conditions for Silicide Core

Position of K.ff PST

Stuck Rod

B7 0.95862544 - 10.8 %

F5 0.95932597 - 10.7

C8 0.95787716 - 10.9

F8 0.96291137 10.3

C5 0.95694625 11.0 %

G6 0.95753098 10.9

E9 0.95837104 10.8 %

D4 0.95696604 11.0 %

Table 6 Thermalhydraulic Calculation for TWC, BOC for Nominal Power, Oxideand Silicide Fuel Using Paret/ANL Code for 1) Limit and Condition forOperation (LCO) and 2 Overpower Condition (CIC)

Oxide Silicide SAR

Average Hot Channel Average Hot Channel Safety LimitLCO/OC LCO10C LCO/OC LCO/OC

'I'otal Peaking Factor 4.25 4.47 4.64

T inlet OC 42/44.5 42144.5 42/44.5 42/44. scram point

T outlet C 52.83/59.33 71.13/89.25 52.90/59.33 74.97/94.79

'r cladding maximum C 74.61/90.79 123.22/133.60 74.84/90.79 132.62/134.37 150

T Meat maximum C 81.84/97.14 141.99/151.82 77.03/93-51 139.24/143.37 200

Heat flux max. W/cm, 59.77/75.70 161.07/215.45 60.2On5.70 170.96/242.28

DNB 2.97 201 2.78/2.01 1.82

US = /lc 6.57/2.923 6.05/2.363 1.49

Table 7 Direct Transition Oxide to Silicide

Bumue 8 0 8 16 24 32 40 48 56 64BOC 6/1 6/1 6/1 6/1 6/1 6/1 4/1 0/1 I

All OxideEOC 6/1 6/1 6/1 6/1 6/1 6/1 4/1 0/1

In I I I I I I I Out

BOC 5/1 6/1 6/1 6/1 6/1 6/1 5/1 0/1 0/0 11Mixed

EOC 5/1 6/1 6/1 6/1 6/1 6/1 5/1 0/1 Core (MC)

In I I I I I I I outBOC 5/1 5/1 6/1 6/1 6/1 6/1 6/1 0/1 0/0 III

I MixedEOC 5/1 5/1 6/1 6/1 6/1 6/1 6/1 0/1 Core (MC)

In I I i I I I I outBOC 5/1 5/1 5/1 6/1 6/1 6/1 6/1 1/1 0/0 IV

MixedEOC 5/1 5/1 5/1 6/1 6/1 6/1 6/1 1/1 Core (MC)

In I I i I I I I outBOC 5/1 5/1 5/1 5/1 6/1 6/1 6/1 2/2 0/0 V

MixedEOC 5/1 5/1 5/1 5/1 6/1 6/1 6/1 2/1 Core (MC)

In I I I I I I I outBOC 5/1 5/1 5/1 5/1 5/1 6/1 6/1 3/1 0/0 VI

MixedEOC 5/1 5/1 5/1 5/1 5/1 6/1 6/1 3/1 Core (MC)

In I I I I I I I outBOC 5/1 5/1 5/1 5/1 5/1 5/1 6/1 4/1 0/0 Vil

\1 \1 \11 \1 End ofEOC 5/1 5/1 5/1 5/1 5/1 5/1 6/1 4/1 Mixed

Bumup % In I I I I I I I Out Core (MC)BOC 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 0/0 Vill

\1 AllEOC 5/1 5/1 5/1 5/1 5/1 Silicide

bb

U r- C14 CDCD t-o 09 a) 04 03

dP b-0 W CD 04 a) r- 00CD 141, C) -4 C14 V Lo C-4Lo bb m CD C14 04 C14 C14 CT t- V)

C- oo 00 00 00 00 00 . 00AI IV

I co

LOCD oc Oto u

C;cq 0 00 CD LO m 0 CD

94-4 to " LO LO to LO m LO CO CD " 'V0 0( V" oo C14 E- m

C� C� 00 mz U - U m CD m 00 to M

00 0 0" 04 m m CD v 0 "cl,00 -1 M ZCD I cq M M M M r4 M M

U LO LO CD m 09C14 C14 Cq C14 C14 m cq C140 >) m

P64 u

Lf) CD LOC) C14 am 00 1� 1� O? ot?

w C; LO t- 00 C14 00$4 oo C14 lw CD t- cq to qcTo r- 00 t- r- CID 00 00

4.4

W+., C43 to r- LO LO qw cqu C14

0 C� C� C� C� C� C� C�

EnC.)

ce) CD L- CD LO v C14 mPL4 U LO>1 PL4 0 C� C� C� C� C� 0! 0! C� m4 CO)12L4F-4 co 00 co C14 CD CD 000 m C) to m t- to v LO

O qcT oo t- 00 C) m LOC.) u CD oo co L- t- C14 LO r-

o m (n m t- Lnw LO9 m C14

-4 to m LO lw tf)C4 00 -4 m LO cq m cq

u C) m t- 00 CD CD NT C1410 u 04 CD LO CO) t- r-4 CD ma) o CD tr) CD r- t- CD LO

0 0 C) 0

C�

X X --i X -4 XC) 0 0 0 En 0 V) 0 En 0 m co a)E-4 V '4tll Lr) t- 00

L- to C13 M M C,3o W a)0

u%4

X X0 C) V) 0L13 0 V2 C) CO 0 V) 0 U) V)

$4 0 C) Lr) LO 0 Lr) 0 LO LO 0 0LO Lr) m " C,4 LO04 m LO

V) U0-4 >> > I -

S6r UGHT-WATER EFUCTOR VTD F.dVIV

QFI = S5

CIP

C

_- 0A

NRF M__R".§I.phy 10 9 9 7 a 5 4 3 2 1

F-N*yNTD N.,m,:

T- S4 Beryllium Block Reflector

S S2 Si

Fig. RSG-GAS Core Horizontal Section

its .32 40 ID 0.1cle 250

0 63 Silicide 300

48 46

83 a 63....... 0

a a is

27 27

'36 9

�40 40 A. 2i 32

45 36. 45

32. . . . . .. . . . . 2 4

64 ... w

0 24 �224 1 . .

ID 54 27 27 56

. .. ..... ...

48 0 48 483a 54 63

03 la 0 1

0 40 40 32 40 0

45 5'�4 45 66 0

Fig.2 Burn-up istribution, TWC at BOC Ox 250 Si 300

8.5 23A 38 4&2 46.2. 9.24 Oxide 250

28.72 19.2 Sile 67.52 0. 39 Silicide 300

64. 0 24.9 .17.0. S4Z

86.2t :26.78 ".22 DO:

33.1.1.7.0 15.8 2:& 4 24:5

20:15 18.39 45.7 :1 27.

53A4 :36.04 52.80

40 5 39.1 17 0

a 25.1 32.5 40:5 1 7.4 17. .3

tt.28 I Moo: 3o.42 45.3 27.07. 19.37

54.0 25.2.... 53.6 $4.2

07.vC 2732 43.32 190.69

9.24� 48;3 46.6 39.0 46:2 gap

10,65 5il.12� oolg4 52A4 43.31 10.21

Fig.3 Burn-up DistributionTWC at EOC Ox 2 5 0 / Si 300

1.03 0168 OAT., 0.8s 0..2 1.12

i 20 1-00 llis� D.84 O.W

aeo� Imlo IA i 0.63

0.76 1.24: OAI

1.20 I-ll�: 4 IIle l-A7 t.oa

I.28. 1.09 t. I 5:

O.A00 I.OD0.80 . ......0.64 117 1.17 0.95

0

1,10 1.13

0.89 1.15 1. t I 0.05 1.14

0. PENN

1to. 1.13 1.08 1. to 1408

1,25 0.67. : O.'89 I, 12 I'a I m I I

0.81 IZQ 1114 0.83. .... :Mm" 06.71: I.C7 0.89 0 07 0. 72.

1.12 0.93 0.87 9. go 0.82 1.09

118 0.64 O'8 'O.93 0.84

Fig.4 Power Peaking Factors, TWC at BOC Ox 250 Si 300

7 7 T T 7w +U) (L4 'U4 Ul

+ + +w uiM C-4 N L9

co

co

coUCD CD

CDC13Or CL

co 0

Ge

sz

zz

bo."4rad

ot

T

w LLJ�j U,)p 04C4

xnlq txulnON

7 T

4 4

US 6

B7

car

co Lir

6cLL

NM.N. 'a GC

Ca.r U) A'FFEFFTTTTTTFF:MC) )i . . CDCY)mCD LL a_CD -6Za ATFISAM.U) 0 pj� TFINE.R.R. RIM LZ

GZ

CZAl I

�z

6t

L t

ll*,T t-L4

1 +ilfir

WA M6

L

v m m m m m m m m7 T T w w LU w

wwwwwwwwqj

00Z

LL

OF

C13a.

(D

CO

oz

LL. sz

zz

to

et

OL

TLu LU

U)CD

icnl: uJIrION

I. . 7 . . T T 7i w w w w w w w w

�jw w w w w w w w

i 00r-00 M N i6

w w w w co co EO 0 0 0 w 0 0 0 w w

GOP,

m0IL)

LCLL

04

W

Q) x coa) z i : 0 -6Z a_LL AMESOMI.M. -U) WINHOURNSIM LZ0 _Gz

111M 0. -CZ

FA LZARIMER&INUMIL -61

10el

Li

6

,&,p/1 0 3 5

4

3 -

2

-Oxide

Sificide

20 50 100 150 200

Temperature

Fig.9 Reactivity Coefficients for Change of FuelTemperature Only

AP/1010

4 -

2 -

Oxide

Sificide

20 40 60 80 100

Temperature

Fig. 10 Reactivity Coefficients for Change of Water Temperature Only

AF/101 3

2.5

2

1.5

0.5

Oxide

Silicide

00 0.25 0.50

Void Fraction

Fig. I Coefficient for Change of Water Density Only

Ternp

100

so - - - - - -

60

40

T.Coalant Ox

20 -+-T.Coolont Si,*T.Cladding Ox

-0- T Cladding Si

Tf.Center Ox

Tf.center Si

01 1 10 9 a 7 a 5 4 3 2 1

Node

Fig.12 Temperature Distribution for Average Channel

(Limit and Condition for Operation)

Temp

160

140

120

100

an

60

40

-T.C..I..t 0.-1-T.C..I..t 31

20 *T-C1.dd§.g 0.C�T-Cl.ddina .91,)*T.1.C..t- 0.

0 4-T.(.C..t- SiI I I 0 9 11 7 6 5 4 3 2

Node

Fig. 1 3Temperature Distribution for Hot Channel

(Umit and Condition for Operation)

Temp

100

90

so

70 . . .

60

- TCoolant Ox

4- TCooiant Si

50 -* TCladdin Ox

-0- TCladding Si

-* Tf.Center Ox

4,Tf.Center SI

21 20 19 118 17 16 15 14 13 12 11 1 9 7 6 4 3 2 1

NodeFig.14 Temperature Distribution for Average Channel

(Over Power Condition)

Temp

160

140

120

100

80

T.Coolant Ox

+ TCoolant Si

60 *T.Cladding Ox

-a T.Cladding Si

* TICenter Ox

+ Tf.Center Si

4021 20 19 18 17 16 15 14 13 12 11 10 7 6 4 3 2

Node

Fig.15 Temperature Distribution for Hot Channel(Over Power Condition)

1 0 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 30 9 9 9 3 S. 4 ; 6 2 6 0 BUMUP a.a3 45.0; 17.8; 3 98 79.9 4

0 0.7 3 1 (0 o.ab 0 7 a I. 2 2 2Peaking 0.7 5 i.os 0.8 6 7 1.25 Factor

G 3 9. aa 7 4 2 4 6. 1 4 0. 2 4 6. 5 5 4 6.1 412 5 75 1 .6 9 4 7 .05 5 2 .8 6

0.8 4 i 07 0 7 5 0.90 0.6 7 G 0. 86 pi 0. 7 4 C o.aq o-a5u,p C 1.1 0

9 0 2 6 7 8 . 1 2 5. 1 . 2 5. 0 0 7 3 6. 8.55 2 4 7 5. 7 2 3 S. 7 Z' 33. 2 ; 9 Oa 26.5;

F I 0 9 1 I 0.9 2 13 F '-611 .7�. 2 i Oa C I I I .1 6 I 0 5 0.95c IAS Oa I I II II ,

E 3 3 -0 .59.0; 23.0; 25.3; 70; E 39.a5 44.a; 3i.i; 3 4. 6 ' IP 2) 26.1;0.9 0. 7 7C I 0 5 1 .2 0 .1 7 0.9 I 0.7a C I 6 I .1 91 .1 7

46 1 5 2.3 'E 3D 2 4.5 430.67' 1 7.0; 85 I 0p3 3 2 4 D 33 S. 2 a37.1119

0. I .0 4 1 . 4 0.94C 1.1 0 0. 9 41 0 4 I 0.93 C I I 0

0 32 6 2 3 4 6 24.7; 3 2 2 1S. Ij 9.34' 9.23' 99 5 39 910129,11S 32,al 41.0; 2 3 1 5 iS.7; I B. 6 2

C I 3 0.9 7 0.82C 1 0 5 1 0 9 0.9 5C I .1 9 1 1 9 C .2 3 O.'9 6 o.a3C I .0 4 1 .0 7 0.95c f . 9 1 .1 9

EB 4 6 21 9. 7 9 5 3 .5 1 117 .0 4 46.8; 5 2 .0 7 1 la.. 12 5 S. 4 02 6. 0 6 5 3. 14

0.80 I .05 0.67C 1 6 0.a7 0. 7 9 06 0.66 CI 5 0.8 5

a 4 0. 3 9 39.a3 32.51 38. 7; 9-6S 4 6.4.1 4 6. 2 6 39 .93 4 5. o5 9.aqA I 2 0 .0. a I 0 .8 7 0.9 9 0.8 5 .2 2 A I .1 9 0. a I 0.8 6 0.9 7 0. 0 4 7 I

Fig. 1 6 Burnup Distribution Peaking Factor, First Mixed Core 80C, EOC.Legend

. Oxide

OF MAX. Peaking Fctor

8 Max. Surnup for BOC

E Max Burnup for EOC

C Control Ement

1 0 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 30 9.ag 9.63 Burnup 9.3 6 1 7.9 9 1 8.5 8H 3 9.8 7 4 5.0 1 0 H 45.9; 50.7; 9.6 7

9 I .0 5 1.2 3 I.20 1 0 7 1.17 0 SS 0. 7 9 12 21 1 6 0 .8 4 o.ao PeakingFactor

4 6 .1 4 i a.73 4 4.8 5 4 5.0 5 4 6. 4 1 5 2 .1 925.9; 5 0. 4 9 5 1 .1 9 5 2 .4 5G G 0.8 51 .1 5 0. 77 C0.8 50.8 4O. a 5 1 .1 3 0. 7 8 C 0.8 6 0.8 5

9.9 5 33. 2 81 -0 5 2 5. 7 7 26.5a 0 1 8.1'2 9.9 4 i9-50 40.2 617 .1 9 3 4.3 63 4. 5 6 3 4.5 6 2 6.7 7 1 9 .12F I. 2 4 0.9 5 1 .05 C. I .1 5 , I .0 7 1 C I 1 4 i s 9 F 1.2 4 0.9 5 1.07 C I .1 41 1 .0 7 1 .1 2 C I .1 3 I 9

97 S 7 ag 2 4. 7 4 7 5 .6 7D2 39.56 E 4 6.3 48 43 2.6 a3 4. 4 0 46�5;E 0.88 10.01C 1.06,.Oa 0.81 C I .0 6 i .i 7 0.9 3 I I 50. 9 3

3 3. 7 2 32.a 215.13 2 9.:.j 1 7 .6 40.9; 4 0.5 33 4 .1 9 36.55' 2 5. 4 8D o.9a 1.0 5 1 .0 a 0. C I .03 D 0 .9 71 .0 51 0 a 0.90 C I .0 5

3 4. 6 1 2 3.1 5 2 6.0 6 3 1 . I 1 5. 7 2 1 7.135 8.8; 9.90 4 1 .6 4 2 9.3 6 3 3. 6 8 3 9. 0 4 2 2 .6 9 25.9a I a.26C i 26 0. 9 6 o.a2 I .0 2 1 .0 7 0.91 C I .0 7 12 2 C 1 2 5 0 . 5 OAS CI I 0 2 1 06 0.93 C i.oa 1 2 3

E

4 6. 2; va.6; 5 1 6 0 5 5 1 9 6 2 6.13 5 6. 4 62 6.3 5 2 4B 0 6 7 CI Dp4 117..17 014 7 o.ao I 00 0.6 711

0.80 0.9 9 I 0.8 3 CI 0 2

0 9. 2 a 46 0 6 4 5. 9 8 4 0. 2 6 4 6. 8 0 9. 2 A 4 0. 2 7 39.9; 33. 2 7 4 1 02 0 Ai.ia 0.7 9 o.a4 0.9 5 0. 7 9 I . 7 a 0.89 0. 8 4 O. 9 5 0.80 I I a

Fig.17 Burnup Distribution &Peaking Factor, Second Mixed Core BOC, EOC.

I 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 3Surnup3 4 2 3 1 4 7 40. 1 4 4 6 55.6aH0 9 .2a . 9 . 90 4 5 0 7.... H 9 2 2

I . I 0.9 5 O.aS 0 7 0 7 2 1 2 Peaking .99 0.115 0.61 0 7 2 1 2 2

Factor

4 3 4 7 9 9 .80 45.9 5 1 .7; 2 .2 3. '44 I PC 49. i 4 680 5 a 70 7 1. I C 2 0. g5 0 7 9 1 4 0 7 0.88 0. 5

9.9 4 .5 9 11 7 2 5.4a 2 6 7 0 a 2 5 912 1 8. 7 20 1 . 2 8.50 2 70.9a .3 S. 4 4 4 4 5 8 2 7 7 F I 09 I 4 1 2 6 1. 7 F I I a 0 7 9 1 .01 C 1.1 I .05 I I 2 7 1. 7

o-a7 o. 7a C C.

s 6 55 2 6 I 25.9; 1 2.50 40.80 4 2 1 7 33.4; .34 7; 2 8 2

E 0 . 70. 7aCI 0 0 2 1 P2 I 25 E 0.88 .7 9 CI I 1. 9 1 2 4

40 2 6 4 6 2 40.011 4 7 3 4 1 8. 6D 5 32.6a 6 32 93 6 ( 0. 0.9 C 2

0.59I 0 1 . 3 0.9 7C 2 a 1.2 1 . I

I - - - - - 2 5.0

4 4 22.6; 2 5 7 9 33.6; 17. 9 59 a I a. a 9.3 4 1 2 a 28 a 3 338 4 1 . 5 1 . 4 23 1 2 7 2

C 1 2 4 0.9 610. 2 C I 4 1 . 7 1.0 5C 0 I 2 C 2 0.2 10.8 C I 1 .0 5 cl 0.58 2

170 7 S 1 .7

6.0 9. 7 10 4 0 2 6 9.2 la.27 5 5 .3 4Bo.a iI 1 �4 ;84 0. 71 2 7 0 7 9 1 . 4 o. 6a 0.9 259C ... C

0 4 6 4 4 0 9 2 43.6 4 0 2 6 A 9--3 0 4 7 46 9a 4 1 .3a 4 .3 3 9

1.21 0.81 0.116 o.9a 0. 6 I 0 7 9 10.1 4 10.9 6 0.83 2 2

Fig. 8 urnup Distribution Peaking Factor, Third Mixed Core BOC, EOC.Legend

.Oxide

PF Max. Peaking Factor

aMax. Burnup for c

EMax Bulnut) for EOC

CControl Element

I 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 3Burnup .. .... 9 7 3 2 63 9 la,67 4 63 4 4 .4 2 1 00 5

a 1 8. 7 9 .5 40.1 40.0; 0 HHI zO 0.9 i .i 5 0. 5 2 1 2 4Peaking .0 . I s o.e3 o.ail 2 4

Factor

4 7119 36.5 4 'to. 53;.49 48.040.50 2 77 42. 7 4 7 3 4 13 G 0.89 I .1 5 0 7 9

G0.9 0 1 1 5 o.ao o.a4 0.90 C 0.153 0.82C

0 8 6 930 9 2 4 2 7 5 1 5.88 41 � 41 .0; 8-B9 2 828 1 . 950F 9 2 2 i a.27 a 33. ; 3 3 4 1 .1 0 F 1.2 11.1 5 11 06C 1. 7 0.99 I . I C 1.2 2 1. 9

i 26 1 .1 5 1.0 C i.oa I i.oi C 1 2 1 1 8

47.9; 4 2 7 4 1. 9 42.7; 27.a2- 21 ap2 "a.,4 1 . a3 .4 3 4 3 4 47 .7 E 0.9 9 0 1.1

E 0 a 9 0.83 C 0 99 1. 76 0. 7 o.a2 C

2 7.511 34.3; 25.8; 46.3; D 7A 3 6 7 4 4i.7; 3 5.5 20 6

D 2 Of 3 0.81 I a 0.9 a 0.8 C 0 7 9O.B3 �) 1.2 0.90 0.87 C 0 7

1 77') v2 8 7 2 2 5. 2 3 _ a 2 6 2 2 6 2 2 7 2 9 60 0 2 3 7 1 1 I 2 4 07 3 5. 1 2 35 3 3 5.5 5 I .59

C I 2 6 1 .0 0. 9 C 0.97 1 .1 'O.9 4 C 1. I 1. 3 C 2 .09 0.90 C 0.9 6 1 6 0.96 C I 1. 6

a 7 7 7 4 43 3 53.20 5 0. 5552.j 4 69 4 4 6 �)411 S. 2 3 4 9 4 B 0 7 B0 71t .15 0 70 C�) 0.95 0.80 0 7 4 6 C 0. 5 10.81 .. ...

6 4 7 - 0 9. 7 3 52.6; 2 6; 2 4 4 70 9.0 A 4 6 4 12 2 A 1.2 0 7 0 7 I . 0.711 I I

0 9 11.1 -

Fig.19 Burnup Distribution Peaking Factor, Fourth Mixed Core BOC, EOC.

1 0 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 3.... Surnup

H0 2 7.8 2 9.0 9 4 0.7 3 4 S. 4 2 0 1 0.2 9 35. i 4 i a. 53 4 7Peaking H .06 5 2 4 3 1 0.3 a

I.1 6 0.9 I I 0. I 0.7a 1.2 2 Factor I 1 0.9 2 1 . 4 o.a I 0. 2 2 0. 7 7

4 2. 7 93 6.5 41 2p, 4 2. 7 4 4 1 -0; 5 J. 2 4 9. 4 7G0 .8 6 1 X15 0.7 9 0. 7 9 G 44.86 � 1PI 48- 9 " :.0;159.15

C0. a 9 o.a6 1.06 SL2 0.7ac .88 0.7 7

I 0. 2 1 S. 6 7 s.aq 3 5.5 5 2 5. 4 1 0 2 7.2 5 9. 7 3 2 0. 2 9 2 7. 8 5 75 4 4.6 6 34A4 9. S.S S6.64 19.57

1.2 1 1 .1 2 1 0 3 1 .1 6 1 .1 7 1 I oc I 1 7 1 I a 1 2 2 1 . 3 1 .05CI I .1 4 1 I , I I- C C 1.1 6 1.18

5 2 .6 1 3 5.5 4 a. r, 9 3 5.1 9 1,9..2 4E JP2 5a.48 4 2 .0 92 S. 5 0 4 4. 4 7(S 2a..ao0 .7 1 0.82C 1 2 0 1 I a 17 E 0.7 5 0 -8 2C 1 2 1 1 6 I 1 7

53.4; �' 'P3 3 6. 7 4 E -I8 5 9 3 1 .9 2 4 8.0 4 59.5 4 5. 5 2 213. 4 1 39 .7 0 5 4. 0 9

0.0 01.12 1.2 0 0. 9 7C 0.7 9 D 0. 7a 1 .1 1.2 1 0.9 6 r 0.7 8

0 7 8 .2 8 2 3. 5 3 2 6. 3 9 3 7. 1 1 1 6 -811 4 1 .7 ; I 0.0 5 "I 06 3 3 7 .1 0 3 0.8 7 3 5. 3 2 4 S. 6 5 2 4.8 9 4 8.4 71 9.8 8

C ,2 5 1 1 0 10.9 aC 1 1 I I .0 9 1 0.97C 0.8 6 a- C 25 I 0 9 0.91C I .I I I .08 0.99C 0.8 6 1 .2 01 9 7 3 -Cp4 4 1 7.

B4 7. 9 9 4a. i 7 7 .4; 5 4,. 0 4' 1 9 1 6 5 3 .S 5 3.9 ; 2 6. 4 4

0. 7 9I I 30 .6 9C 0.8 41.1 0 B 0 1 .1 4 0. 6" CCP 4) 0.8 41 .1 2

0 4 1 .6 0 4 6 .3 4 4 7 .0 I' 4 1 .8 ; 0 1 0. i 2 47.6; 52.3; 5 3 9.5 4A A -2 3 4 7. 9 01 .1 9 0. 7 8 0 .7 8 0.81 0. 7 7 1. 12 I I 9 o 7a 0 -7 a 0.8 0 0. 7 7 I .1 3

Legend Fig.20 Burnup Distribution & Peaking Factor, Fifth Mixed Core BOC, EOC.

Oxide

Max Peaking Factor

8Max. Burnup for 60C

EMax. Burnup for EOC

CControl Element

1 0 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 3Ownup 9-519 3 5.6 2 1 8.8 3 5 1 .3 6 10H01 I 2 S. 5 0 9. 5 4 4 7 .6 9 4 4.6 6 0 Peaki H .. 5 3.4 5 .4 9

1. o.aa i .i 0 0.7 4 0.8 6 1.2 2 ng I .1 4 0.90 I .1 2 0.7A o.as 1 .2 2Factor

4 4. E48.0; 3 6.6 4 42�0; 4a.47 5 4.0 4 5 4.1 go 4a.36 54.a3 60.0 5

G G I .1 4 0 -7110.7 8 I .03 0.7 9 o.a2 0.7 9 ..... 0.7 9 pi C O.S I 0.7 7C U

I 0. 6 3 1 9 .1 6 9.3 3 3 7. 1 0 2 7.85 0 2 6 .4 4 1 0.2 9 20.4 12 8.0 6 1 7.7 8 46.00 37.14 9.6 0 3 6. 2 5 2 0. 5 9

F I .1 6 1.0 7 0 -9 9 1.1 2 ,1.1 5 1.12C 1.21 1.2 2 F 0.1 9 1.1 0 1.0 3 1 .1 I 1.1 4 1.1 2C I .1 9 1 .2 2C C

3 9. 7 0ig.sa 3 5.3 2 2- 4 6 -4 22 9. 4 3 4 4.9 6C 310. 3 aE5 3.9 30.8 4 (�2D 2 0.2 9 E 59. 4 P20. 7 2 CI 5 I .2 11.2 2 0.7 2 0.415C I .1 7 1 a .2 1

T 45.913 2 9 .7 73 9.1 4 3 7.5 05 4 'I ap3 3 5. 1 4 1 9. 5 730.8 72 8.80 -D .0 9 D 5 9 -9 20. 7 71 .1 I 1 .2 4 1 .0 2 1 .0 7 0. 7 6 1 .1 0 1 .2 3 00 I .0 7

C

4 4 .4 7 24.a9 28.41 34.a4 1 7.5 1 4 7.0 6 10. 3 8 1 0.4 1 5 1 .7 4 3 2.1 3 3 7 .2 4 4 3.8 1 2 5 8 5 5 3.6 a 2 0 .3 .F' -F`C 1.21 o.94 o.as I og 1.1 3 0 .9 9 0.8 5 1. 2 4 C I. 2 2 0. 9.3 0.8 9 C 1. 0 9 1 .1 I I .0 I 0.114 1.2 4C C

4 5.6 5 1 0.1 2 4 8.9 6 5 3. 2 8.5 i 5 2.3 5 1 9. 4 7 5 4. 3 4 59.4o 2 7 -9 3Bo.a6 I .1 10.6 9CLN 0. ml I .1 3 B 0.8 6 -I I 3 0. 6 aC 0. 7 9i .i 4

0 4 7.9 0 4 5.5 2 4 4 .8 6 4 9. 4 0 I 0.0 7 53.5; 5 2. 2 0 5 i .9 7 5 5. 0 3 9 -8 9A AI .1 7 0. 7 3 0 .9 6 0.9 1 0. 7 2 1.1 5 I -I a 0.7 3 o.a6 0.9 0 0. 7 1 1 .1 5

Fig.21 Burnup Distribution & Peaking Factor, Sixth Mixed Core BOG, EOC.

I 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 3

0 20 a I I 0 9 4 9 3 4 0BurnupH I H 9. 5 4 2 a 4 0 9 4 5 1 1 5 58-511 9. 7 0I 1 0.9 7 1 2 0.8 4 0.7o I 20 ..... Peaking I . 9 0.9 9 1 . 4 0.8 5 0 7 0 1 2 0

Factor -

5 S. 5 6 2 0. 4 4 6. 2 5 1 . � 4 54.1 5 9. 1 2 9. 8 5 2. 2 5 7 8 6 5 9. 5 6G 0. 7 7 1 2 0 0.8 2 0 .8 0 7 5 ...... G lp 0.8 2C... 0.7 7 1 2 1� OA5 0. 7 5

C

F I 0.0 7 3 0 3 8 9 -6 0 3 7. 5 0 2 7 9 3 0 i tf.a3 9.5a F I 9 a I 3 8.3 3 1 7.8 4 4 6. 0 4 3 6.6 S. 7 8 2 9.2 3 1 8 8r,

I 2 1 .0 4 f I .0 IC I . 4 I SC I 2 0 1 6 1 .2 2 1 0 5 1 05C I 3 I 3 I 09 I 2 I aC

4 6.0 0 3 9. 4 2 9 7 7 3 7. 2 4 4 3.8 5 2. 5 3 4 5 7 3 3 8.2 6 4 5 .8 6 5 0. 9 7

E 0.119 0. a 7C 1 I I .1 50.9 7 E 0.89 0.8 6 C I I I 0 9 781o 52.2 0 IP3 3 6. 2 5 2 S. 0 64 8. 3 6 1 0.4 D 5 8.5 3 4 4 .6 0 3 6. a 9 5 3. a , I 9 6 f,

o 1 I I 5 0.7 4 1 1 6 0 a 6 1 0 9 1 . 4 0.7 4 I 8

r- B - - C - (B C.0 5 1 9 7 2 5. S!) 29.413 31.1 4 1 7. 7 a 1 9. 4 7 9.aq 9.9 4 511.30 3 2. 7 3 7 7 0 45.3 9 2 5.9 2111-32 19. 3 9

C 1 2 2 0.88 ti.eal I .08 I I I 0. 9 61 I 3 1 9 C 1 2 1 o.afs 0.89C I 0 7 1 .09 0 .9 7 I .1 4 t 2 0

3 2. 3 5 . 9 s 3. 6 a EB 2 0. 5 9 0 I , 0. 0 0 2 8. 7 2 3 9. 1 21 P4 5 7.94 5 9.0 90.7 21 .0 4 9C S 0.9 I0. 7 5 B 0 .7 1 1 .0 5 0.90C 0.8 9 0. 7 5

0 4 4 .8 0 5 2. 3 5 4 S. 9 8 3 5 -6 2 0 9. 5 2 5 0.9 9 511 .I 8 50.9 1 4 2 .4 2 9. 3 El

7 4 0.9 I 0. 9 4 0. a 9 I .1 5 A 1.1 7 0. 7 3 0 -7 9 0 9 2 0.119 I 5

Fig.22 Burnup Distribution & Peaking Factor, Seventh Mixed Core BOC. EOC.Legend

Oxide

Max. Peaking Factor

8 Max. Burnup for BOC

E Max. Burnup for EOC

C Control Element

1 0 9 7 6 5 4 3 1 0 9 8 7 6 5 4 30 9 1 9. 9 4 4 6. 0 4 5 7 9 0 Burnup 1 0.6 5 2 B. 3 2 2 0.0 35 2. 9 6 3. 6 4 1 (A 5

H Ha 0.98 1. 4 0.a3 0. 7 3 1 aPeaking 1. 9 1. 0 0 1 .1 5 0 .8 3 0.7 2 I 8Factor

2 9.3 5 5 2 8 5 7 7 6 4. 4 5 ...G 18.5 3 i ff.ais 4 S. 7 3 5 0. 7 511.30 G 6 4 7 5

0.90 1.2 1 o.a3 o.a5 o. ?9 0 7 9 1.2 2 oa2C 0.8 4 0.7 7F C I PC,F 9. 3 8 2 9. 7 8 8.7 8 3 6.6 2 S. 2 3 0 1 9 3 9 9. 7 0 F 2 0 2 6 3a.68 I .0 1 4 6. 2 5 3 7 3 9 7 3 29.7 99 7

1.2 3 1 .0 5 1 04C, 6 1 1 .1 1.08C 9 I . 6 1 2 4 1 1.0 6 11 .06C f .1 4 1 1 3 I 0 9 CI t' 19 .

4 6 39.1 2 2 8. 2 36.89 4Z.42 21 4 6.5 0 7 2 4 6 4 4 5 0 4 6

E 0.9 2 o.asc I s 7 � E 0.90 0.117 1. 2 1.1 0.9 7

0.9 8 2 6 C 1 2 a. 7 2 25 2 09. 2 D 5 8 . 5 4 7 6 3 S. 58 7 I 9AD

D 0. 9 1 0 9 1I 0 7 7C1.1 5 0. 7 E 1. 7 1. 2 0. C1. 7

0 5 0.9 9 2 5 -9 2 8 4 0 7 7 7 4 943 9.5 4 1 1 . 0 5 8. 0 3 .5 0 3 75 8 4 6 7 4 2 .1 211.919 9 9 0

C .2 2 0.89 OAS C I .0 a I 09 0.9 5C I . 0 1 . 7 C 1.2 2 0-117 0.98C I 7 1 . 7 0.9 C I . 2 1 . 9

5 8. a 9 6 63 2 7 5 2 .5 357.8r, 6 4.0 3 2 a 9 40.28 L4 5 9 4 5 6 3.8 7

B 0 7 5I .0 4 0 -13 9 L4 0.8 70 7 7 ... B 0 7 4 .' 0 50.8 9C o.aG 0 7 6C

0 4 5.8 6 5 1 .1 5 4 53 9 3 a. 3 3 0 I 0 4 7 25 5 7.63 2 8 0 4 5.4 8 I 0.0 3

A i .i 6 0. 2 0.81 0. I 0.8 6 1 II A I 1 6 a at 0 .7 9 0. a9 0.86 I 3

E I -- - I--

Fig.23 Burnup Distribution Peaking Factor, Eighth Core All Silicide.

1 0 9 8 7 6 5 4 3 1 0 9 8 7 6 5 4 30 a 45 53 0 I O.:3 72 1:.2 51.72 57.52 10-39

HH 0 19.81 a. 0.4 57.9a 0 R 0. 5 2 2 (3 52.79 63.64 10.65 F

03 1 8 54 54 53 08.28 28.78 59.27 60.22 67-98

G 58.53 Ia, a p 1) 45.73 5 7 58.30 G 4114.75 29.35 C 1) 52.58 57.71 84.45

g 27 w 27 0 a 9 P20 11 38.17 1 11.30 45.7 3a.67 9.53 20 35 19.2

F - - 29.7 .,a 36-81 25.23 0 19.39 9.70 F 20.25 3&.88 la.01 46-25 37.83 9.73 29.71 19.97

45 45 3a 45 53.44 51.49 3GA4 45.62 52.6

E 4 6 39.12 22732 311,119 E 2 42.42 E 52.1 0 4a.5 37.02 48.44 50.46

54 36 27 63 9 60.84 45 3:.:7 6a.99 II:.II

D -4 a50 97 38 2a 2a.72 52.52 9.82 D 58.15 a 3 47.3: 3 - 58 7a

18 18 9 34.59 36.42 45.3 19.370 54 27 27 36 11-28 80 .6 2:.2T27 7 17

C 0 50.99 25.91 28.40 37.70 784 19.43 9.54 C 01 58.10 33-50 3 58 46 74 2 2. 987 1 9 9

53 la 3a 54 53 67.90 27.32 43.32 60. 6: 67.98

B 58.18 1 .65 32-71 52.53 57.86 B 64.03 28 .60 40.28 1 P 4 59.4 63.87 1

0 45 54 45 36 0 0.65 51 72 .94 52.44 43.31 10.21

A 0 145.8a151.15 1 45.30 138.331 0 A 110.47 52.53 :7 63 52.a 45 4 10.03

80C, Sillc.de TWC IdealI EOC. Silicide TWC� (PF) Peaking Factor

Real R

pr Max Peaking Factor OF Max Peakng Fctor

Si Ox S, Ox

PF 2 1 21 PF 2 28

PF 1.23 R PF 1 24

Fig.24 Silicide Equilibrium Core