The influence of different kinetic rates on the dynamics of a simple model of catalytic reaction...

32
The influence of different kinetic rates on the dynamics of a simple model of catalytic reaction networks Alessandro Filisetti 1,3 , Alex Graudenzi 2 1 Energy and Environment, interdepartmental centre of industrial research (C.I.R.I), University of Bologna. 2 Department of Computer Science, Systems and Communications, University of Milan Bicocca 3 European Centre for Living Technology WIVACE12 (Italian Workshop for Artificial Intelligence and Evolutionary Computation)

Transcript of The influence of different kinetic rates on the dynamics of a simple model of catalytic reaction...

The influence of different kinetic rates on the dynamics of a simple model of catalytic reaction

networks Alessandro Filisetti1,3, Alex Graudenzi2

1Energy and Environment, interdepartmental centre of industrial research (C.I.R.I), University of Bologna.

2 Department of Computer Science, Systems and Communications, University of Milan Bicocca 3 European Centre for Living Technology

WIVACE12 (Italian Workshop for Artificial Intelligence and Evolutionary Computation)

Outline

•  Introduction •  Autocatalytic sets of molecules •  Description of the model •  Previous Results •  Fragility of ACSs •  Simple deterministic model •  Conclusions

2  

Introduction

•  Framework – Complex Systems Biology

•  Topic – Emergence of autocatalytic sets of molecules in

catalytic reaction networks •  Methods – Consider simple models able to capture general

behaviors

3  

Introduction

•  Life that is the result of an evolutionary process���

•  Whatever it is the right scenario (RNA world, metabolism first, …) a minimal level of complexity was surely necessary���

•  Since Eigen (1979) the importance of cycles is a well known property of the living systems

4  

Introduction

•  Our work is an extension of the original work made by Stuart Kauffman (1986).

•  Although autocatalytic sets are frequently seen in models of catalytic networks, they are rarely observed in laboratory.

•  Our aim is to relax some limitations and develop a new model attempting to create a bridge between the theoretical and the experimental approach.

5  

Autocatalytic Sets of Molecules

•  An autocatalytic sets of molecules is achieved when each member is the product of at least one reaction catalyzed by at least one other member, Kauffman (1986)

6  

Description of the model

- Species are linear chains composed of a certain alphabet

- Two types of reaction: -  Condensation -  Cleavage

- A particular species is assumed to catalyse a particular reaction with independent probability P

- Question: Under which conditions does a self consistent autocatalytic subset of molecules emerge?

Kauffman main result

•  As the maximum length of species M increases, the number of species increases exponentially but the number of reactions by which these polymers might interconvert increases yet faster, such that the ratio of reactions to species grows linearly.

Condensations e.g. ABABA -  A + BABA -  AB + ABA -  ABA + BA -  ABAB + A

   

All possible cleavage reactions

, Z

2 3 4 5 6 7 8 9 1011121314151617181920100

102

104

106

108

Maximum Length M

log

# of

pol

ymer

s and

reac

tions

Number of polymersNumber of reactions

A bridge between theory and lab

•  WHY IS IT SO DIFFICULT TO REPRODUCE THAT IN LABORATORY?

These  mathema.cal  models  are  toys  

Increase  molecules  diversity  

System Dynamics

•  Gillespie Stochastic algorithm – Gillespie algorithm allows to

compute which reaction occurs and the time of the reaction

– Open flow reactor

10  

Reaction Graphs •  “Actual” Reaction Graph: Each time that a reaction

occurs, it is drawn on the graph. •  Time window: In order to neglect the presence of very

rare reactions, if the reactions do not occur again within the decay time, they are removed from the graph

11  

Reac.on  1   Reac.on  2   Reac.on  3   Reac.on  4  

Time  

Influence of the reaction probability���i.e. the network connectivity

Filisetti, A., Graudenzi, A., Serra, R., Villani, M., De Lucrezia, D., Fuchslin, R. M., Kauffman, S. A., et al. (2011). A stochastic model of the emergence of autocatalytic cycles. Journal of Systems Chemistry, 2(1), 2. doi:10.1186/1759-2208-2-2

Influence of the incoming flux

•  Increasing the diversity in the composition of the incoming flux the probability of having an ACS increases as well.

Influence of the average residence time

•  Increasing the average residence time of the molecules in the reactor the activity of the system is enhanced.

Average Residence Time

Filisetti, A., Graudenzi, A., Serra, R., Villani, M., Fuchslin, R. M., Packard, N., Kauffman, S. A., et al. (2011). A stochastic model of autocatalytic reaction networks. Theory in biosciences = Theorie in den Biowissenschaften, 1-9. Springer Berlin / Heidelberg. doi:10.1007/s12064-011-0136-x

Introduction of energy constraints

•  Endergonic and Exergonic reactions. •  Introduction of an energy carrier molecule. •  Presence of an incoming flux of energy carriers and

a species energization rate.

Energy Description

A + B + C + LEC à A* + B + C + UECà C.A* + B +UECà C + AB + UEC(+ *)

A B  

LEC  

A   B  

UEC  

C  AA

C  AA

C  AAA  

B  

UEC  

C  AA

UEC  

B  A*  

*  

*  

Loaded  energy  carrier  Unloaded  energy  carrier  

Results���Production of species

In correspondance of particular values of the energetic parameters the system shows a maximum in the species production. Nevertheless the concentration produced within an ACS remains low.

Filisetti, A., Graudenzi, A., Serra, R., Villani, M., De Lucrezia, D., & Poli, I. (2011). The role of energy in a stochastic model of the emergence of autocatalytic sets. In L. T, G. M, H. Bersini, P. Bourgine, M. Dorigo, & R. Doursat (Eds.), Advances in Artificial Life, ECAL 2011 Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems (pp. 227-234). MIT Press, Cambridge, MA.

Results���Chance of having an ACS

0,1

10

1000

0

0.1

0.2

0.3

0

1.00E-23 1.00E-22

1.00E-21 1.00E-20

Knr

g

% A

CS

[EC]

0.2-0.3 0.1-0.2 0-0.1

Although it is not high, also the probaility of having an ACS increasis for a particular combination of the parameters

ACS structure fragility

Concentra)on  produced  within  the  ACSs  as  a  func.on  of  the  number  of  species  with  at  least  

one  exemplar    (20  different  simula.ons)  

Bo/leneck  

The  concentra)on  is  mainly  produced  by  a  reac)on  chain  composed  of  the  species  

 11  à45  à  68  

5474

5474

10290

2261

1313578

578

109

56

56

37

9

2

1145

68

94

3

0

95

12

132

1 93

3590

3590

3323

3323

547454741016

10164944

49441645

1645

1461

1461

148168081930562856283397

1346124596939

19175

19175

5520

2791

3349

5749

5642

9119

7600

4988

10290

3532

5201

4089

3001

1827

1089

1089

959

1188

1188

2762

2021

4498

2151

3740

3740

2261

2117

2209

3076

1369

1369

2175

2175

12751275887

1248537

537

1313

733

733

1078

12842017

589589

824

570

712

531

615

654

426

461

578

578

352

352

189

225225

135

150 109

145

6075

56

56

28

3332 32

37

12

8

10

5

9

9

9

8

66

6

9167

3

3

5

5

3

2

2

3 3

2

2

3

4

23

2

21

1

1

1 1

1

2

11 3

3

1

1

22 1

1

2

1

1

1

1

1

1

1

2

1

1

22

1

2

1 2

1

11

1

1

1

1

1 1

26

19

11

13

217

6

2315

2816

18

17

2410

25

39

33

41

31

30

38

45

43

42

63

61

34

70

68

69

67

81

62

132

159

105

107

133

73

88

94

32

89

123

95

72

29

112

187

151

85

218

106 264

86

903478

103113

117

145

104

167

160

149

183

935

20 3

4

44

1

4037

36

9

8

12

14

64

87

109

65

184 185

126

172

35

96

353

206

186

317

212

84

430

278

5531

5531

10404

2281

479479

707

707

1330386

149396

232

42

42132

45

81

32

32

27 26

23

21

85

7

6

11

45

68

94

95123

166

3

0

1

12

132

13

8133

167

93

2

5

774

36403640

3362 3362553155311022

10224998

4998

1665

1665

1482 1482

14916872194456925692

3437

1358126217023

1938519385

5598

2818

3376

5805

5693

9223

7666

5047

10404

3564

5268

4117

3024

1842

1102

1102

2239

968

11981198

2797

2042

674674

4549

2170

37883788

5051384

1384

2281

2142

1299

1299

187

187

3127479479

542

542

2199

2199

894

577

577

265

849

1094

194

599

59996

707

707

138

747747

1330

477

1257

38

626

198198

560

13072056497282

455

299

195195

749

386

149 396

215

574336

433

422

93

140

232

315

140

116

42

42

71

683

175

33

130

54140

140

55

55

38539

47 47

259132

237496

107

157

45

81

7445

236

60

4141

7272

155

5252

43

3232

15

27

20

22

2815

26 23

23

23

20

5072

30

20

21

25

10

11

12

10

23 16

1613

8

8

5

7

44

4

6

16

4

2

25

5

3

7

3

3

4

3 418

3

2

2

6

11

91

1

1

1 2

1

1 4

4

1

2

31

1

1 1

21

113

31 1

1

1

2

2

2

2

11

1

1

12

1

1

1 1

1

1

11

114 4

1

1

1

1

4

1

1

1

11

2 2

1

1

1

1

12

2 3

3 1

2

1

1

1

1

222

132

1 11

3

21

321

1 44

1

2

1

1 11

1

1

1

1

1 11 11

1

1

1

1

1

26

1911

13

21

76

23

15

28

16

18

17

24

10

25

39

42

33

41

31

30

38

45

43

63

34

68

70

61

72

62

67

29

69

89

105

64

32

81

73

133

86

94

132

8895

11285

107

159

123

104

151

65

166

185

167

149

145

103

184

117

118

138

106

139

265

109

317

263

774

218753264903

111

183

297

338

116

642

430

93

507

203

160

127

113

179

429

213

245

187

659

638

478

1574353

1865203

4

44

1

40

37

36

9

8

14

12

84

87

71

238

126

137

115

35

344

208

125

163

369248

108

157

330

20

559

305

929

267

210225

277

17210862516

96

206

212

278

243

Time  windo

w  =  10  

Time  windo

w  =  100

 

ACS structure fragility (II)

Some observations

•  Which is the right time-frame to observe? •  New layers of species lengths emerge

influx  

The  dots  size  represents  the  concentra.ons  of  the  species    

2°  layer  of  new  species  

1°  layer  of  new  species  

Influence of the kinetics���A very simple Model

Results

K1 = k2 = k3 = k4 = k5 = k6 = 1 K1 = k2 = k3 = 1 k4 = k5 = k6 = 10

The behavior is trivial but the implications could be very important in a protocell context

Autocatalysis Introduction ���D molecules

K1 = k2 = k3 = k4 = k5 = k6 = 1

K1 = k2 = k3 = 1 k4 = k5 = k6 = 10

In this case the original ACS is no longer favored.

Autocatalysis Introduction ���F molecules

K1 = k2 = k3 = k4 = k5 = k6 = 1

K1 = k2 = k3 = 1 k4 = k5 = k6 = 10

Although the first steps of the chain are diluted F and G survives because of the autocatalytic nature of F

Inorganic catalyst Introduction The inorganic catalyst rules the behavior of the system

Conclusions

•  The presence of an autocatalytic set is not sufficient in order to achieve its survival.

•  The introduction of the stochasticity changes completely the dynamics.

•  Big systems composed of several reaction pathways could suppress the ACS.

•  Analytical analysis could be useful in order to decipher the behaviour of the system.

Conclusion •  Compartmentalization could have played an

important role: – The introduction of amphiphilic molecules leads to the

spontaneous formation of micelles. – Some molecules are entrapped within the micelles. – The micelles compete for the same limited resources. – The micelle able to grow and divide synchronizing the

processes of growth and molecules replication is favored in the competition.

– The micelle containing ACSs grow faster than the other.

Protocell Unit

Self-Assembly

Self-Reproduction Self-Maintenance Emergence of the synchronization

between the key processes Catalytic reaction networks and the emergence of autocatalytic cycles

Environment

for free

Cognition

Life as a process

Environment  

Protocell  

Co-­‐emergence  

evolu.on  

Actual Cell Design ���Complex Unit

Thanks for the attention!!!

32  

ACKNOWLEDGEMENTS

[email protected]