Stresses in Pavements

13
Stresses in Pavements Introduction to Vehicle Pavement Interaction (VPI) Vehicle pavement interaction (VPI) is a system in which mutual forces develop between the vehicle tyre and the pavement surface. The VPI describes all the components related to vehicle and pavement and their effect on each other including their influence on expected output. The basic elements involved with their associated characterises as inputs to the VPI may be broadly classified as three types, which are (a) pavement profile or roughness, (b) vehicle characteristics including its operating conditions and (c) pavement layered structures with their stiffness values. Applications of dynamic loads through tyre rolling cause transient pavement responses that differ from the static type of loading effects. The incorporation of this transient nature of loading effect into the design of pavements and vehicles is the most important issue associated with VPI. 2.1 Components of Vehicle Pavement Interaction (VPI) There are different types of models based on different parametric components and their defined interface conditions. These models are analysed to determine the resulting pavement stresses, strains and deflections. The details of the main components with their representing interface conditions considered for modelling VPI may be categorised as given below (Collop and Cebon, 1995). (a) Longitudinal profile of pavement: - The surface profile characteristics in terms of unevenness (BI), roughness (IRI or PI), texture and surface friction (SN) are considered to be the main causes for dynamic tyre loads (b) The vehicle characteristics: - The Vehicle/ tyre loading history (i.e., time versus loading intensity) under the influence of pavement surface is modelled with vehicular characteristics such as suspension system, axle loads with configuration, tyre contact area, speed, vehicle dimension and acceleration/deceleration. (c) Stiffness or resilience characteristics of pavement layered structure: - The resulting response (i.e., stress/strain/deflection) due to the above input conditions of loading is analysed with defined boundary conditions of pavement layered structure. With reference to the calculated and measured responses in terms of stresses or strains or deflections (or also in combination) are evaluated to evolve failure criteria of pavement and such analysis results are ultimately used for design of mixes and thickness. (d) Criteria considered for evaluation of VPI The type of analysis to be carried out and the decision criteria depend on the type of analysis method used such as linear, elastic or a combination of methods such as non-linear elastic or finite element methods. Based on these results, a suitable type of pavement/structure will be designed with appropriate economic models (i.e., life cycle cost analysis-LCCA), as final decision for construction. The nature of VPI largely depends on special relationship between vehicle tyre dynamic loads, pavement profile characteristics, pavement structural strength variation and the response of

Transcript of Stresses in Pavements

Stresses in Pavements

Introduction to Vehicle Pavement Interaction (VPI)

Vehicle pavement interaction (VPI) is a system in which mutual forces develop between the

vehicle tyre and the pavement surface. The VPI describes all the components related to vehicle

and pavement and their effect on each other including their influence on expected output. The

basic elements involved with their associated characterises as inputs to the VPI may be broadly

classified as three types, which are (a) pavement profile or roughness, (b) vehicle

characteristics including its operating conditions and (c) pavement layered structures with

their stiffness values. Applications of dynamic loads through tyre rolling cause transient

pavement responses that differ from the static type of loading effects. The incorporation of

this transient nature of loading effect into the design of pavements and vehicles is the most

important issue associated with VPI.

2.1 Components of Vehicle Pavement Interaction (VPI)

There are different types of models based on different parametric components and their

defined interface conditions. These models are analysed to determine the resulting pavement

stresses, strains and deflections.

The details of the main components with their representing interface conditions considered

for modelling VPI may be categorised as given below (Collop and Cebon, 1995).

(a) Longitudinal profile of pavement: - The surface profile characteristics in terms of unevenness

(BI), roughness (IRI or PI), texture and surface friction (SN) are considered to be the main causes

for dynamic tyre loads

(b) The vehicle characteristics: - The Vehicle/ tyre loading history (i.e., time versus loading

intensity) under the influence of pavement surface is modelled with vehicular characteristics

such as suspension system, axle loads with configuration, tyre contact area, speed, vehicle

dimension and acceleration/deceleration.

(c) Stiffness or resilience characteristics of pavement layered structure: - The resulting response

(i.e., stress/strain/deflection) due to the above input conditions of loading is analysed with

defined boundary conditions of pavement layered structure. With reference to the calculated

and measured responses in terms of stresses or strains or deflections (or also in combination)

are evaluated to evolve failure criteria of pavement and such analysis results are ultimately

used for design of mixes and thickness.

(d) Criteria considered for evaluation of VPI The type of analysis to be carried out and the

decision criteria depend on the type of analysis method used such as linear, elastic or a

combination of methods such as non-linear elastic or finite element methods. Based on these

results, a suitable type of pavement/structure will be designed with appropriate economic

models (i.e., life cycle cost analysis-LCCA), as final decision for construction.

The nature of VPI largely depends on special relationship between vehicle tyre dynamic loads,

pavement profile characteristics, pavement structural strength variation and the response of

vehicle suspension system (Divine, 1997). The following methods are widely used to consider

the above components (Styen et al., 2012)

Stresses in Flexible Pavements

3.1 Engineering Properties of Bituminous Materials

The behaviour of bitumen is determined with reference to anticipated climatic conditions and

intensity of traffic loads. These input parameters play a vital role during selection of suitable

binders for construction of pavements. Thus, engineering properties of bitumen should be

determined considering the following factors.

β€’ Temperature (maximum, minimum and average values)

β€’ Loading time

β€’ Intensity of load Bitumen behaves differently in different combinations of the above values.

For example, bitumen behaves elastic under short duration of loading at normal temperature.

But, in case of prolonged loading and as the temperature increases, it loses elasticity and flows

like a fluid. This is the reason why bituminous pavements at higher temperature tend to deform

without cracking.

3.1.1 Stiffness Modulus of Bitumen

In 1954, van der Pod developed the concept of a stiffness modulus for thermoplastic polymers

which was useful for determining of the engineering properties of bitumen. The concept NOS

modified by Heukelom and Klomp (1964) and Heukelom (1973). In this method, the bitumen

is characterised by its stiffness modulus, (ail), the ratio between applied stress to the observed

strain at a given time of loading (t in s) and temperature (T in Β°C). The value of the stiffness

modulus of bitumen may be expressed as follows.

Ebit (t,T)= stress/ strain at (t,T)……………….3.1

The above equation holds good and is suitable for in service pavements if the assumed strain

is not more than 1 per cent. If the loading time changes, preferably under variable

temperatures similar to seasonal variations, the value of stiffness of bitumen also changes. To

account for this variability of the stiffness modulus of bitumen, a stiffness nomograph was

developed by van der Poel and modified by Heukelom based on three parameters, viz. time of

loading (t), temperature difference (T-T800 pen) and penetration index (PI). The equation

developed by Heukelom and Klomp (1964) or a method prescribed by Bonnaure et al. (1977)

may be used to determine the stiffness values of bituminous mixes. Measured stiffness values

greatly agree with the values predicted by Bonnaure's method and it is adopted by the Shell

method (1977) of the asphalt pavement design (Ullidtz and Peattie 1980). To understand the

implication of the true engineering properties of bitumen at different ranges of temperatures

from cold to hot under cyclic loading similar to field conditions, it is necessary to know its visco-

elastic properties.

3.1.2 Visco-elastic Properties of Bituminous Materials

Bitumen becomes hard and soft by cooling and heating respectively. These states of bitumen

may be reversed as and when required. This property of bitumen is known as thermos-

plasticity. Based on temperature and rate of loading, the bitumen may behave like a dual

characteristic material. Elastic material at a given temperature, the material undergoes

immediate deformation or strain under loading and immediately recovers upon unloading. In

other words, if the material is linear elastic, the stress is proportional to the strain according to

Hooke's law, i.e., stress = Young's modulus value x strain (Wilhelm Flugge 1975). Viscous

material At a given temperature, the material undergoes delayed deformation or strain under

loading but it may or may not recover its initial conditions. A Newtonian material will recover

completely. But in Bingham materials, power law fluids and pseudo-plastic materials, complete

recovery of strain will not take place due to plastic straining during loading. In other words, if

the material is viscous, the stress is proportional to the strain rate (Wilhelm Flugge 1975).

Bitumen exhibits intermediate characteristics ranging from elastic to viscous and vice versa

due to change in temperature and rate of application of load. Because of this, bituminous mixes

are known as visco-elastic materials. The behaviour of visco-elastic material depends on

temperature, time and frequency of loading.

Figure 3.1 Phase difference between stress and strain (Yang 2004; Relent 2001)

When a visco-elastic material is subjected to sinusoidal loading (Figure 3.1), the occurrence of

strain (Co) is delayed due to the phase difference of the applied stress (0-0) at a given time (t).

This difference of response is known as phase angle (y). As the material transforms from being

elastic to visco-elastic during change of temperature, the value of the phase angle (9) changes

from 0 Β°C to 90 Β°C. The energy dissipated by the material is determined by using the phase

angle value. The values of complex modulus and dynamic complex modulus of bitumen are

determined from the following popularly known relationships (Huang 2004; Di Benedetto et

al. 2001 and Kailas 1970). Complex modulus (E*) = Real part of modulus value + Imaginary part

of modulus value

……………….3.2 πΈβˆ—(𝑓, 𝑑) = (πœŽπ‘œ/πœ€π‘œ) sin (πœ”π‘‘) +i. (πœŽπ‘œ/πœ€π‘œ) sin(πœ”π‘‘ βˆ’ βˆ…)

Dynamic modulus = Absolute value of complex modulus = [E]*. ……………… (3.3)

If the viscous effect is ignored, the ratio between the maximum values of stress to strain is

termed as the elastic modulus. The values of complex bulk modulus (K*) and shear modulus

(G*) may be determined from the following popularly known relationships.

K* = E*/ (3 β€” 6Β΅) ……….. (3.4) G* = E/ [2(1+ Β΅)] …………… (3.5)

Where, Β΅ = Poisson's ratio

To characterise visco-elastic properties of binders at lower temperatures, another parameter

called the creep compliance is used. The creep compliance may be calculated using the

following relationship.

D (t, T) = 1 / E bit (t, T)…………. (3.6)

Shear compliance is also used to characterise the visco-elasticity of bituminous materials. The

following relationship is used to calculate shear compliance (J (t, T)).

J (t, T) = 3/ E bit (t, T) (3.7) …………….3.7

The above equations holds good if the material is assumed to be linear visco-elastic and

isotropic. The values of dynamic modulus, bulk modulus, shear modulus, creep compliance and

shear compliance provide important information to explain the visco-elastic behaviour of the

bituminous mix over a range of temperature and frequency of loading.

STRESS ANALYSIS OF FLEXIBLE PAVEMENTS

3.2.1 BOUSSINESQ'S THEORY (SINGLE LAYER THEORY)

In 1885, Boussinesq presented a theory for calculating the stresses in soil mass based on the

following assumptions.

1. The soil is homogenous (without any stratification) and isotropically linear elastic which

means that it abides by Hook's law.

2. The soil mass boundary is a semi-infinite elastic half-space.

3. The load is applied on to a level surface.

4. The soil mass is weightless.

The following equations are based on Boussinesq's theory and are widely used to calculate

stresses in soil mass.

CASE 1: Point load

Figure 3.2 Stress due to point load

Consider a point load on the soil mass as depicted in Figure 3.2.

Vertical stress due to point load πœŽπ‘§ =3𝑃

2πœ‹π‘§2

1

[+(π‘Ÿπ‘§β„ )2]5/2………….3.8

CASE 2:

Uniformly distributed load over a circular area generally, for pavement analysis, the equivalent

circular contact area of a tyre on pavement surface is taken.

For this purpose, a uniformly loaded circular area is considered for calculating the stresses in

the soil mass. To calculate stresses under a uniformly loaded area using flexible plates (similar

to a rubber tyre), equation (3.8) may be integrated over the circular area (Figure 3.3).

3

Figure 3.3 Stress under a uniformly loaded circular area

∫ ∫ (3𝑃((π‘Ÿπ‘‘πœƒ)π‘‘π‘Ÿ)

2πœ‹π‘§2

π‘Ž

0[

2πœ‹

0

1

1+(π‘Ÿ/𝑧)2]…………1

The above equation can be simplified as

Vertical stress under the centre of the circular area (πœŽπ‘§)= 𝑝(1 βˆ’ [1

1+(π‘Ÿ/𝑧)2]3/2…. 2

Horizontal or radial stress beneath the centre of circular area,(πœŽπ‘Ÿ)

(πœŽπ‘Ÿ)= 0.5𝑃[(1 + 2πœ‡) βˆ’ (2𝑧(1+πœ‡)

√(π‘Ž2+𝑧2)+ (

𝑧3

(π‘Ž2+𝑧2)32

)]………… 3

Elastic vertical displacement at z=0, under a circular flexible plate βˆ†π‘ =2π‘ƒπ‘Ž(1βˆ’πœ‡2)

𝐸………… 3

If πœ‡ = 0.5 the above equation can be written as βˆ†π‘ =1.5π‘ƒπ‘Ž

𝐸 …….. 4

Where, 𝑃= uniformly distributed pressure

π‘Ž= radius of circularly loaded area

𝐸= Elastic modulus of soil

πœ‡= Poisson’s ratio of soil

The stress distribution under the flexible plate is uniform since the flexible plate bends (or

flexes) under loading, similar to a rubber sheet. Therefore; the elastic surface deflection under

the flexible plate is non-uniform. If a circular rigid plate (or steel plate) is used to apply load on

to the soil, the elastic surface displacement is uniform but the stress' distribution is non-

uniform (Ullidtz 1987). Analysis of plate load test data is one of the best examples of an

application of Boussinesq's theory. The following formula may be used to calculate the elastic

surface deflection under a rigid plate.

Vertical displacement at z=0, under a circular rigid plate (βˆ†π‘ ) =πœ‹π‘ƒπ‘Ž(1βˆ’πœ‡2)

𝐸….. 5

If πœ‡ = 0.5 the above equation can be written as βˆ†π‘ =1.18π‘ƒπ‘Ž

𝐸…… 6

Q. A semi-infinite soil mass is subjected to stress under a circular plate having a 15 cm radius.

The load intensity over the plate is 4000 kg. Calculate the vertical stress in the soil under the

axis of the circular plate at 2 m depth.

Solution: - Intensity of pressure over plate = 4000/ (n x 152) = 5.66 kg/cm2.

Use equation 2

(πœŽπ‘§)= 5.66(1 βˆ’ [1

1+(15/2)2]3/2

= 5.64kg/cm2

Q. Calculate the rebound surface deflection on single layer pavement under a wheel load of

40KN with a tyre pressure of 0.8 Mpa. The effective elastic modulus of sub-grade may be taken

as 40MPa and Poisson’s ratio of the soil as 0.5

Solution π‘‘π‘¦π‘Ÿπ‘’ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ = π‘Šπ»πΈπΈπΏ 𝐿𝑂𝐴𝐷

π‘‡π‘Œπ‘…πΈ 𝐢𝑂𝑁𝑇𝐴𝐢𝑇 𝐴𝑅𝐸𝐴

𝑹𝑨𝑫𝑰𝑼𝑺 𝑢𝑭 𝑻𝒀𝑹𝑬 π‘ͺ𝑢𝑡𝑻𝑨π‘ͺ𝑻 𝑨𝑹𝑬𝑨 = 𝒂 βˆšπ‘Ύπ‘―π‘¬π‘¬π‘³ 𝑳𝑢𝑨𝑫

𝝅𝑿 𝑻𝒀𝑹𝑬 𝑷𝑹𝑬𝑺𝑺𝑼𝑹𝑬

𝒂 βˆšπŸ’πŸŽπ‘ΏπŸπŸŽπŸ‘

𝝅𝑿 𝟎.πŸ–π‘ΏπŸπŸŽπŸ”= 0.126m = 12.6 cm

Intensity of pressure =𝒑 =𝒍𝒐𝒂𝒅

𝒂𝒓𝒆𝒂=

πŸ’πŸŽπ’™πŸπŸŽπŸ‘

π…π’™πŸŽ.πŸπŸπŸ”πŸ= 80990.14N/m2

If a flexible pavement is considered, rebound surface deflection= βˆ†π‘ =1.5π‘ƒπ‘Ž

𝐸

βˆ†π‘ =1.580990.14π‘₯0.126

40π‘₯106= 0.00378m= 3.78mm

TWO LAYER THEORY

3.2.2 Burmister's Theory

In 1943, Donald M. Burmister developed a method of analysing a two-layered soil system which

resembled a flexible pavement having its top layer stiffer than its bottom layer. Later, ' in 1945,

he extended the method to include three-layered system. As an important outcome of

Burmister's numerical solutions, the flexible pavement thickness design method was

developed for airfield pavements (ASCE vol.115, 1950).

In 1962, Ahlvin and Ulery of the US Army Corps of Engineers (USACE) reported solutions for

calculating the stresses, strains and deflections on a homogenous half-space withstanding a

uniform circular load (Ahlvin and Ulery) 1962). Since then, the Burmister's theory with required

modifications is being used for various pavement engineering applications.

Many researchers have developed different methods for analysing multi-layered systems

based on elastic, non-linear, visco-elastic and finite element methods. The solution of various

problems related to a multi-layered system is made easy by the use of computers. Burmister's

two-layered system of analysis is briefly explained below.

Assumptions

β€’ Every layer material is homogenous, isotropic and ideally elastic. They are characterised by a

unique elastic modulus and Poisson's ratio.

β€’ A pavement consists of two layers. The elastic modulus value" of the top layer is more than

the bottom layer (i.e., El > E2).

β€’ The layers are weightless and infinite in the horizontal direction.

β€’ The top layer has finite thickness (h) but the bottom layer is infinitely thick.

β€’ The top layer is in full contact with the bottom layer.

β€’ The interface between these layers is rough and there is no loss of transfer of applied stress

from the top layer to the bottom layer.

β€’ There will be no shear and normal stresses outside the loaded area.

β€’ The applied stress is uniform over a circular area. The displacement. equations given by

Burmister for a two-layered system are as follows (Figure 3.4).

Surface deflection under the centre of the flexible plate= βˆ†=1.5π‘π‘Ž

𝐸2x𝐹d

Surface deflection under the centre of the flexible plateβˆ†=1.18π‘π‘Ž

𝐸2x𝐹d

where, βˆ† = Vertical deflection at surface (when z = 0)

β€’ P = Uniform pressure on circular plate

a = Radius of the circular plate

E2 = Elastic modulus of sub-grade

Fd = Displacement factor, depends on ratios of E1/E2 and h/a Refer to Figure 3.5

E1 = Elastic modulus of the top layer

h = Thickness of the top layer

Fig- 3.5 Burmister’s two layered system

By introducing additional pavement layers over the sub-grade; the vertical stress induced on

the sub-grade, exactly under the centre of the loading plate, can be reduced from 68% to 30%.

To make this possible, the radius of the additional layer has to be equal to the radius of the

loading plate, the elastic modulus value of the additional layer has to be approximately equal

to ten times the elastic modulus value of the sub-grade (E1 β‰ˆ 10E2) and Poisson's ratio of both

the layers has to be equal to 0.5. Due to this reason, construction of pavements is carried out

in multiple layers instead of a single thicker layer.

𝑸. π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’† 𝒕𝒉𝒆 π’“π’†π’’π’–π’Šπ’“π’†π’… π’•π’‰π’Šπ’„π’Œπ’π’†π’”π’” 𝒐𝒇 𝒂𝒏 π’‚π’Šπ’“π’‡π’Šπ’†π’π’… π’‡π’π’†π’™π’Šπ’ƒπ’π’† π’‘π’‚π’—π’†π’Žπ’†π’π’•

𝒃𝒂𝒔𝒆𝒅 𝒐𝒏 π‘©π’–π’“π’Žπ’Šπ’”π’•π’†π’“β€²π’” π’•π’‰π’†π’π’“π’š π’–π’”π’Šπ’π’ˆ 𝒕𝒉𝒆 π’‡π’π’π’π’π’˜π’Šπ’π’ˆ 𝒑𝒍𝒂𝒕𝒆 𝒍𝒐𝒂𝒅 𝒕𝒆𝒔𝒕 (𝑷. π‘³πŸ•)𝒅𝒂𝒕𝒂

𝒂𝒏𝒅 𝒐𝒕𝒉𝒆𝒓 π’Šπ’π’‘π’–π’• π’‘π’‚π’“π’‚π’Žπ’†π’•π’†π’“π’”:

π‘«π’Šπ’‚π’Žπ’†π’•π’†π’“ 𝒐𝒇 𝒑𝒍𝒂𝒕𝒆 𝒖𝒔𝒆𝒅 βˆ’ πŸ•πŸ“π’„π’Ž

β€’ 𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒂𝒕 𝟏. πŸπŸ“ π’Žπ’Ž π’…π’†π’‡π’π’†π’„π’•π’Šπ’π’ π’˜π’‰π’†π’ 𝒕𝒉𝒆 𝒑𝒍𝒂𝒕𝒆 𝒍𝒐𝒂𝒅 𝒕𝒆𝒔𝒕 π’Šπ’” 𝒄𝒐𝒏𝒅𝒖𝒄𝒕𝒆𝒅

𝒐𝒏 𝒕𝒉𝒆 π’”π’–π’ƒπ’ˆπ’“π’‚π’…π’† 𝟎. πŸ–πŸπ’Œπ’ˆ/π’„π’ŽπŸ. 𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒂𝒕 𝟏. πŸπŸ“ π’Žπ’Ž π’…π’†π’‡π’π’†π’„π’•π’Šπ’π’ π’˜π’‰π’†π’

𝒕𝒉𝒆 𝒑𝒍𝒂𝒕𝒆 𝒍𝒐𝒂𝒅 𝒕𝒆𝒔𝒕 π’Šπ’” 𝒄𝒐𝒏𝒅𝒖𝒄𝒕𝒆𝒅 𝒐𝒏 𝒂 𝒃𝒂𝒔𝒆 𝒄𝒐𝒖𝒓𝒔𝒆 𝒐𝒇 πŸπŸ”πŸŽ π’•π’‰π’Šπ’„π’Œπ’π’†π’”π’”

= 𝟐. 𝟏 π’Œπ’ˆ/π’„π’ŽπŸ. π‘«π’†π’”π’Šπ’ˆπ’ π’˜π’‰π’†π’†π’ 𝒍𝒐𝒂𝒅 = πŸπŸ‘πŸŽπŸŽπŸŽ π’Œπ’ˆ; π‘»π’Šπ’“π’† 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆

= πŸπŸ“ π’Œπ’ˆ/π’„π’ŽπŸ; (𝒂) 𝑰𝒇 π’‚π’π’π’π’˜π’‚π’ƒπ’π’† π’…π’†π’‡π’π’†π’„π’•π’Šπ’π’

= 𝟎. πŸπŸπŸ“ π’„π’Ž 𝒂𝒏𝒅 (𝒃). 𝑰𝒇 π’‚π’π’π’π’˜π’‚π’ƒπ’π’† π’…π’†π’‡π’π’†π’„π’•π’Šπ’π’. = 𝟎. πŸ“πŸŽ π’„π’Ž

Solution:- (π’Š)π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’•π’Šπ’π’ 𝒐𝒇 𝒕𝒉𝒆 π’†π’π’‚π’”π’•π’Šπ’„ π’Žπ’π’…π’–π’π’–π’” 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒖𝒃

βˆ’ π’ˆπ’“π’‚π’…π’† π’‡π’“π’π’Ž 𝒂 𝒑𝒍𝒂𝒕𝒆 𝒍𝒐𝒂𝒅 𝒕𝒆𝒔𝒕 𝒄𝒐𝒏𝒅𝒖𝒄𝒕𝒆𝒅. 𝒐𝒏 𝒕𝒉𝒆 𝒔𝒖𝒃 βˆ’ π’ˆπ’“π’‚π’…π’†

π‘­π’“π’π’Ž 𝒕𝒉𝒆 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 π’“π’†π’π’‚π’•π’Šπ’π’π’”π’‰π’Šπ’‘, π’…π’†π’‡π’π’†π’„π’•π’Šπ’π’ βˆ†=1.18π‘π‘Ž

𝐸2

π’˜π’‰π’†π’“π’†, π‘¬πŸ π’Šπ’” 𝒕𝒉𝒆 π’†π’π’‚π’”π’•π’Šπ’„ π’Žπ’π’…π’–π’π’–π’” 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒖𝒃 βˆ’ π’ˆπ’“π’‚π’…π’† 𝒂𝒏𝒅

𝒂 =π’…π’Šπ’‚π’Žπ’†π’•π’†π’“ 𝒐𝒇 𝒑𝒍𝒂𝒕𝒆

𝟐=

πŸ•πŸ“

𝟐= πŸ‘πŸ•. πŸ“π’„π’Ž

𝑢𝒏 π’”π’–π’ƒπ’”π’•π’Šπ’•π’–π’•π’Šπ’π’ 𝒐𝒇 𝒗𝒂𝒍𝒖𝒆𝒔

𝟎. πŸπŸπŸ“ π’„π’Ž = 𝟏. πŸπŸ–π‘Ώ

𝟎. πŸ–πŸπ’Œπ’ˆπ’„π’ŽπŸ π‘ΏπŸ‘πŸ•. πŸ“π’„π’Ž)

π‘¬πŸ

π‘¬πŸ = πŸπŸ—πŸŽ. πŸπŸ–πŸπ’ˆ/π’„π’ŽπŸ

(ii) Determination of elastic modulus of granular layer from the results of a plate load test conducted

on a granular layer

Use this equation for deflection βˆ†=

1.18π‘π‘Ž

𝐸2x𝐹𝑑

𝐹𝑑 𝑖𝑠 π‘ β„Žπ‘Žπ‘π‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘› π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘  π‘œπ‘“ β„Ž

π‘Ž π‘Žπ‘›π‘‘

𝐸1

𝐸1 π‘Žπ‘›π‘‘ 𝐸2 𝑖𝑠 π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘”π‘Ÿπ‘Žπ‘‘π‘’

𝐹𝑑 = 0.39 π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘œπ‘“ β„Ž

π‘Ž=

16π‘π‘š

37.5 π‘π‘š= 0.426

π‘π‘œπ‘€ π‘Ÿπ‘’π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 𝐸1

𝐸2 π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘“π‘–π‘”π‘’π‘Ÿπ‘’ 3.5 ∴

𝐸1

𝐸1 = 200 ∴ 𝐸1 = 200𝐸2; 𝐸1 = 200π‘₯290.28 = 58056π‘˜π‘”/π‘π‘š2

(III) DESIGN OF FLEXIBLE PAVEMENT:-

π‘‘π‘¦π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘Žπ‘π‘‘ π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘› π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ = πœ‹π‘‹π‘Ž2 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘π‘¦π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘Žπ‘π‘‘ π‘œπ‘› π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘

πœ‹π‘‹π‘Ž2 =π‘Šπ»πΈπΈπΏ 𝐿𝑂𝐴𝐷

π‘‡π‘Œπ‘…πΈ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’=

23000π‘˜π‘”

15π‘˜π‘”/π‘π‘š2 ∴ π‘Ž = 22.09π‘π‘š

𝑀𝑒 π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘‘β„Žπ‘’ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘› π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿ π‘Ž 𝑓𝑙𝑒π‘₯𝑖𝑏𝑙𝑒 π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘™π‘Žπ‘‘π‘’ 𝑖𝑠 βˆ†π‘Ž= 1.5𝑝. π‘Ž

𝐸2𝐹𝑑

(a)if allowable deflection = 0.125cm therfore on substituting the values, we get

0.125 = 1.515π‘˜π‘”/π‘π‘š2𝑋22.09π‘π‘š

290.28π‘˜π‘”/π‘π‘š2𝐹𝑑

Therefore 𝐹𝑑 = 0.073

π‘›π‘œπ‘€ π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘œπ‘“ β„Ž

π‘Žπ‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘›

𝐸1

𝐸2= 200

β„Ž

π‘Ž= 2.79, β‡’ β„Ž = 2.79π‘‹π‘Ž = 2.79𝑋22.09 = 61.63π‘π‘š

Therefore for the base course provide a thickness of 62cm

(b)if allowable deflection = 0.50cm

0.50 = 1.515π‘˜π‘”/π‘π‘š2𝑋22.09π‘π‘š

290.28π‘˜π‘”/π‘π‘š2 𝐹𝑑 𝐹𝑑 = 0.438

π‘›π‘œπ‘€ π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘œπ‘“ β„Ž

π‘Žπ‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘›

𝐸1

𝐸2= 200

β„Ž

π‘Ž= 0.36, β‡’ β„Ž = 0.36π‘‹π‘Ž = 0.36𝑋22.09 = 7.95π‘π‘š

Therefore for the base course provide a thickness of 8cm

3.2.3 Linear Elastic Multi-Layered Pavement System

𝐼𝑛 π‘Ÿπ‘’π‘Žπ‘™π‘–π‘‘π‘¦, π‘Ž 𝑓𝑙𝑒π‘₯𝑖𝑏𝑙𝑒 π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ 𝑖𝑠 π‘Ž π‘šπ‘’π‘™π‘‘π‘–π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘’π‘‘ π‘ π‘‘π‘Ÿπ‘’π‘π‘‘π‘’π‘Ÿπ‘’ 𝑖𝑛 π‘€β„Žπ‘–π‘β„Ž π‘’π‘Žπ‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖𝑠 π‘π‘œπ‘›π‘ π‘‘π‘Ÿπ‘’π‘π‘‘π‘’π‘‘ π‘€π‘–π‘‘β„Ž π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘ π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  (β„Ž), π‘’π‘Žπ‘β„Ž β„Žπ‘Žπ‘£π‘–π‘›π‘” π‘Ž π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–π‘£π‘’ π‘šπ‘Žπ‘‘π‘’π‘Ÿπ‘–π‘Žπ‘™ π‘β„Žπ‘Žπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘–π‘ π‘‘π‘–π‘π‘  π‘ π‘’π‘β„Ž π‘Žπ‘  π‘‘β„Žπ‘’ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  (𝐸)π‘Žπ‘›π‘‘ π‘ƒπ‘œπ‘–π‘ π‘ π‘œπ‘›β€²π‘  π‘Ÿπ‘Žπ‘‘π‘–π‘œ (Β΅). 𝐴 π‘‘π‘¦π‘π‘–π‘π‘Žπ‘™ π‘π‘œπ‘›π‘“π‘–π‘”π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘Ž π‘π‘–π‘Ÿπ‘π‘’π‘™π‘Žπ‘Ÿ π‘π‘™π‘Žπ‘‘π‘’ 𝑠𝑒𝑏𝑗𝑒𝑐𝑑𝑒𝑑 π‘‘π‘œ π‘Ž π‘’π‘›π‘–π‘“π‘œπ‘Ÿπ‘š π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ (𝑝) π‘π‘™π‘Žπ‘π‘’π‘‘ π‘œπ‘› π‘Ž π‘šπ‘’π‘™π‘‘π‘–βˆ’ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘’π‘‘ π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ π‘ π‘¦π‘ π‘‘π‘’π‘š 𝑖𝑠 𝑑𝑒𝑝𝑖𝑐𝑑𝑒𝑑 𝑖𝑛 πΉπ‘–π‘”π‘’π‘Ÿπ‘’ 3.9. π‘‡β„Žπ‘’ π‘“π‘œπ‘™π‘™π‘œπ‘€π‘–π‘›π‘” π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘Ÿπ‘’ π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘™π‘™π‘¦ π‘šπ‘Žπ‘‘π‘’ π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘Žπ‘™π‘¦π‘ π‘–π‘  π‘œπ‘“ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘ , π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘  π‘Žπ‘›π‘‘ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘›π‘  𝑖𝑛 π‘Ž π‘šπ‘’π‘™π‘‘π‘– βˆ’ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘’π‘‘ 𝑓𝑙𝑒π‘₯𝑖𝑏𝑙𝑒 π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ π‘ π‘¦π‘ π‘‘π‘’π‘š. β€’ π‘‡β„Žπ‘’ π‘π‘œπ‘‘π‘‘π‘œπ‘š (π‘›π‘‘β„Ž) π‘™π‘Žπ‘£π‘’π‘Ÿ 𝑖𝑠 π‘‘β„Žπ‘’ 𝑠𝑒𝑏 βˆ’ π‘”π‘Ÿπ‘Žπ‘‘π‘’ π‘Žπ‘›π‘‘ β„Žπ‘Žπ‘  π‘Žπ‘› 𝑖𝑛𝑓𝑖𝑛𝑖𝑑𝑒 π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘ . β€’ π΄π‘π‘œπ‘£π‘’ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘”π‘Ÿπ‘Žπ‘‘π‘’, π‘’π‘Žπ‘β„Ž π‘™π‘Žπ‘£π‘’π‘Ÿ β„Žπ‘Žπ‘  π‘Ž 𝑓𝑖𝑛𝑖𝑑𝑒 π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘  π‘Žπ‘›π‘‘ 𝑖𝑛𝑓𝑖𝑛𝑖𝑑𝑒 π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘› 𝑖𝑛 π‘‘β„Žπ‘’ β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›.

β€’ π‘‡β„Žπ‘’ 𝑠𝑒𝑙𝑓/π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ 𝑠𝑒𝑏 βˆ’ π‘”π‘Ÿπ‘Žπ‘‘π‘’ π‘Žπ‘›π‘‘ π‘œπ‘‘β„Žπ‘’π‘Ÿ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿπ‘’π‘‘ π‘Žπ‘  π‘€π‘’π‘–π‘”β„Žπ‘‘π‘™π‘’π‘ π‘  π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘™π‘œπ‘ π‘  π‘œπ‘“ π‘ π‘‘π‘Ÿπ‘’π‘ π‘  π‘Žπ‘‘ π‘’π‘Žπ‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘–π‘›π‘‘π‘’π‘Ÿπ‘“π‘Žπ‘π‘’. π‘‡β„Žπ‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘π‘’π‘Ÿπ‘“π‘’π‘π‘‘π‘™π‘¦ 𝑖𝑛 π‘π‘œπ‘›π‘‘π‘Žπ‘π‘‘ π‘‘β„Žπ‘’ π‘‘π‘œπ‘ π‘Žπ‘›π‘‘. π‘π‘œπ‘‘π‘‘π‘œπ‘š π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’π‘ . 𝐡𝑒𝑑 π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘π‘ , π‘Ž π‘ π‘šπ‘œπ‘œπ‘‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘–π‘›π‘‘π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘šπ‘Žπ‘¦ 𝑏𝑒 π‘π‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿπ‘’π‘‘. β€’ π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑖𝑠 π‘›π‘œ π‘ β„Žπ‘’π‘Žπ‘Ÿ π‘ π‘‘π‘Ÿπ‘’π‘ π‘  π‘œπ‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘œπ‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ. β€’ π‘‡β„Žπ‘’ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘œπ‘ π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖𝑠 π‘π‘’π‘Ÿπ‘“π‘’π‘π‘‘π‘™π‘¦ β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘Žπ‘›π‘‘ β„Žπ‘Žπ‘  π‘›π‘œ π‘’π‘›π‘‘π‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘ . β€’ 𝑂𝑛𝑙𝑦 π‘ π‘‘π‘Žπ‘‘π‘–π‘ π‘™π‘œπ‘Žπ‘‘π‘  π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘ π‘–π‘‘π‘’π‘Ÿπ‘’π‘‘. β€’ πΈπ‘Žπ‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖𝑛 π‘‘β„Žπ‘’ π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ π‘ π‘¦π‘ π‘‘π‘’π‘š 𝑖𝑠 π‘™π‘–π‘›π‘’π‘Žπ‘Ÿπ‘™π‘¦ βˆ’ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘œπ‘’π‘  π‘Žπ‘›π‘‘ π‘–π‘ π‘œπ‘‘π‘Ÿπ‘œπ‘π‘–π‘. β€’ π‘‡β„Žπ‘’π‘Ÿπ‘’ 𝑀𝑖𝑙𝑙 𝑏𝑒 π‘›π‘œ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘ , π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘›π‘  π‘Žπ‘›π‘‘ π‘‘π‘’π‘“π‘™π‘’π‘π‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘‘ 𝑖𝑛𝑓𝑖𝑛𝑖𝑑𝑒 π‘‘π‘’π‘π‘‘β„Ž π‘œπ‘“ π‘‘β„Žπ‘’ 𝑠𝑒𝑏 βˆ’ π‘”π‘Ÿπ‘Žπ‘‘π‘’.

Figure 3.9.- Multi-layered pavement system

Ξ¦(r, z) = [{𝐴 + 𝐡𝑧}]π‘’βˆ’π‘šπ‘§ + (𝐢 + 𝐷𝑧)π‘’π‘šπ‘§}]𝐽𝑂(π‘šπ‘Ÿ) π‘Šβ„Žπ‘’π‘Ÿπ‘’, π‘Ÿ = π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝑍 = π‘‘π‘’π‘π‘‘β„Ž 𝐴, 𝐡, 𝐢, 𝐷 = πΈπ‘Žπ‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘  π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 𝐽𝑂 = 𝐡𝑒𝑠𝑠𝑒𝑙 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘˜π‘–π‘›π‘‘ π‘œπ‘“ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ π‘§π‘’π‘Ÿπ‘œ

π‘Šπ‘–π‘‘β„Ž π‘‘β„Žπ‘’ π‘Žπ‘π‘œπ‘£π‘’ π‘ π‘‘π‘Ÿπ‘’π‘ π‘  π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘Žπ‘›π‘‘ π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›π‘  (π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘›π‘ )

π‘‘β„Žπ‘Žπ‘‘ π‘ π‘Žπ‘‘π‘–π‘ π‘“π‘¦ π‘‘β„Žπ‘’ π‘”π‘œπ‘£π‘’π‘Ÿπ‘›π‘–π‘›π‘” π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘π‘–π‘Žπ‘™ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›,

π‘‘β„Žπ‘’ π»π‘’π‘›π‘˜π‘’π‘™ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘“π‘œπ‘Ÿπ‘š 𝑖𝑠 π‘Žπ‘π‘π‘™π‘–π‘’π‘‘ π‘‘π‘œ π‘œπ‘π‘‘π‘Žπ‘–π‘›

π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘  π‘Žπ‘›π‘‘ π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘π‘  𝑖𝑛 π‘‘π‘’π‘Ÿπ‘šπ‘  π‘œπ‘“ π‘›π‘’π‘šπ‘’π‘Ÿπ‘–π‘π‘Žπ‘™ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘™π‘ ..

π‘‡β„Žπ‘’ π‘‘π‘’π‘‘π‘Žπ‘–π‘™π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘Žπ‘›π‘Žπ‘™π‘¦π‘ π‘–π‘  π‘šπ‘Žπ‘¦ 𝑏𝑒 π‘œπ‘π‘‘π‘Žπ‘–π‘›π‘’π‘‘

π‘“π‘Ÿπ‘œπ‘š π½π‘’π‘’π‘“π‘“π‘Ÿπ‘œπ‘¦ π‘Žπ‘›π‘‘ π΅π‘Žπ‘β„Žπ‘’π‘™π‘’π‘§ (1962), π‘‰π‘’π‘Ÿπ‘ π‘‘π‘Ÿπ‘Žπ‘’π‘‘π‘’π‘› (1967; 1972)π‘Žπ‘›π‘‘

π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ (π‘†π‘β„Žπ‘–π‘“π‘“π‘šπ‘Žπ‘› 1962; π΄π‘ β„Žπ‘‘π‘œπ‘› π‘Žπ‘›π‘‘ π‘€π‘œπ‘Žπ‘£π‘’π‘›π‘§π‘Žπ‘‘π‘’β„Ž 1967).

π‘‡β„Žπ‘’ π‘Žπ‘›π‘Žπ‘™π‘¦π‘ π‘–π‘  π‘šπ‘’π‘‘β„Žπ‘œπ‘‘π‘  π‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘› π‘‘β„Žπ‘’

π‘Žπ‘π‘œπ‘£π‘’ π‘šπ‘’π‘›π‘‘π‘–π‘œπ‘›π‘’π‘‘ π‘Žπ‘ π‘ π‘’π‘šπ‘π‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘Ÿπ‘’ π‘’π‘›π‘Ÿπ‘’π‘Žπ‘™π‘–π‘ π‘‘π‘–π‘ 𝑖𝑛 π‘π‘Ÿπ‘Žπ‘π‘‘π‘–π‘π‘’ 𝑑𝑒𝑒 π‘‘π‘œ π‘‘β„Žπ‘’ π‘“π‘œπ‘™π‘™π‘œπ‘€π‘–π‘›π‘” π‘Ÿπ‘’π‘Žπ‘ π‘œπ‘›π‘ . β€’ πΈπ‘Žπ‘β„Ž π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ 𝑖𝑠 π‘›π‘œπ‘› π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘, π‘–π‘›β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘’π‘œπ‘’π‘  π‘Žπ‘›π‘‘ π‘Žπ‘› π‘Žπ‘›π‘–π‘ π‘œπ‘‘π‘Ÿπ‘œπ‘π‘–π‘ π‘ π‘œπ‘™π‘–π‘‘.

π‘‡β„Žπ‘’π‘¦ π‘›π‘’π‘£π‘’π‘Ÿ π‘‘π‘Ÿπ‘’π‘™π‘¦ π‘œπ‘π‘’π‘¦ π»π‘œπ‘œπ‘˜β€²π‘  π‘™π‘Žπ‘€.β€’ β€’ π‘‡β„Žπ‘’β€²π‘šπ‘Žπ‘‘π‘’π‘Ÿπ‘–π‘Žπ‘™π‘  𝑒𝑠𝑒𝑑 π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘π‘Žπ‘ π‘’ π‘Žπ‘›π‘‘ π‘π‘Žπ‘ π‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘”π‘Ÿπ‘Žπ‘›π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘Žπ‘‘π‘’π‘Ÿπ‘–π‘Žπ‘™π‘  π‘€β„Žπ‘–π‘β„Ž π‘ β„Žπ‘œπ‘€

π‘›π‘œπ‘›π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘π‘’β„Žπ‘Žπ‘£π‘–π‘œπ‘’π‘Ÿ π‘œπ‘› π‘™π‘œπ‘Žπ‘‘π‘–π‘›π‘”. β€’ π‘‡β„Žπ‘’ 𝑠𝑒𝑏 βˆ’ π‘”π‘Ÿπ‘Žπ‘‘π‘’ π‘šπ‘Žπ‘¦ π‘π‘œπ‘›π‘ π‘–π‘ π‘‘ π‘œπ‘“ π‘›π‘œπ‘› βˆ’ π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑠𝑑𝑖𝑓𝑓𝑛𝑒𝑠𝑠 π‘€π‘–π‘‘β„Ž π‘‘π‘’π‘π‘‘β„Ž. β€’ π‘‡β„Žπ‘’ π‘π‘–π‘‘π‘’π‘šπ‘–π‘›π‘œπ‘’π‘  π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘ β„Žπ‘œπ‘€π‘  π‘£π‘–π‘ π‘π‘œπ‘’π‘™π‘Žπ‘ π‘‘π‘–π‘ π΅π‘’β„Žπ‘Žπ‘£π‘–π‘œπ‘’π‘Ÿ

π‘€β„Žπ‘–π‘β„Ž π‘£π‘Žπ‘Ÿπ‘–π‘’π‘  π‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘› π‘™π‘œπ‘Žπ‘‘π‘–π‘›π‘” π‘‘π‘–π‘šπ‘’ π‘Žπ‘›π‘‘ π‘‘π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’. β€’ π‘‡β„Žπ‘’ π‘ƒπ‘œπ‘–π‘ π‘ π‘œπ‘›β€²π‘  π‘Ÿπ‘Žπ‘‘π‘–π‘œ π‘œπ‘“ β€²π‘π‘Žπ‘£π‘’π‘šπ‘’π‘›π‘‘ π‘šπ‘Žπ‘‘π‘’π‘Ÿπ‘–π‘Žπ‘™π‘  𝑖𝑠 π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ π‘Žπ‘›π‘‘ 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘œπ‘› 𝑖𝑛 𝑠𝑖𝑑𝑒 π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘›π‘  β€’ π‘‡β„Žπ‘’ π‘€β„Žπ‘’π‘’π‘™ π‘™π‘œπ‘Žπ‘‘π‘–π‘›π‘” 𝑖𝑠 π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘™π‘™π‘¦ π‘‘π‘¦π‘›π‘Žπ‘šπ‘–π‘ π‘Žπ‘›π‘‘ π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘–π‘’π‘›π‘‘β€² 𝑖𝑛 π‘›π‘Žπ‘‘π‘’π‘Ÿπ‘’. β€’ π‘‡β„Žπ‘’ π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘› . π‘œπ‘“ 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛𝑓𝑖𝑛𝑖𝑑𝑒 𝑖𝑛 π‘‘β„Žπ‘’ β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘›π‘’π‘£π‘’π‘Ÿ π‘Ž π‘‘π‘Ÿπ‘’π‘’ π‘π‘œπ‘›π‘‘π‘–π‘‘π‘–π‘œπ‘› β€’ π‘†β„Žπ‘’π‘Žπ‘Ÿ π‘Žπ‘›π‘‘ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™ π‘ π‘‘π‘Ÿπ‘’π‘ π‘ π‘’π‘  𝑀𝑖𝑙𝑙 𝑏𝑒 π‘‘π‘’π‘£π‘’π‘™π‘œπ‘π‘’π‘‘ π‘œπ‘› π‘‘β„Žπ‘’ π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ π‘™π‘Žπ‘¦π‘’π‘Ÿ π‘‘π‘’π‘Ÿπ‘–π‘›π‘” π‘Ÿπ‘œπ‘™π‘™π‘–π‘›π‘” π‘€β„Žπ‘’π‘’π‘™ π‘™π‘œπ‘Žπ‘‘π‘ . β€’ πΆπ‘Ÿπ‘Žπ‘π‘˜π‘’π‘‘ π‘π‘œπ‘’π‘›π‘‘ π‘™π‘Žπ‘¦π‘’π‘Ÿπ‘  π‘π‘Žπ‘’π‘ π‘’ π‘‘π‘–π‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘’π‘’π‘‘ π‘‘π‘–π‘ π‘‘π‘Ÿπ‘–π‘π‘’π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’.

ASSIGNMENT-1

Q1. Write a short note on stiffness modulus of bitumen.

Q2. What is the limitation of Boussinesq's theory of stress analysis?

Q3. Derive an expression for determination of vertical stress under a uniformly loaded circular area

with a neat sketch.

Q4. Explain why the pressure distribution is different under flexible and rigid plates.

Q5. What is the significance of multi-layered flexible pavement analysis? Explain the

considerations/ assumptions made for analysis of stresses, strains and deflections in a multi-

layered flexible pavement system.

Q6. Define how the assumptions made in a multi-layered flexible pavement system are unrealistic

in practice or in service conditions of pavement.

Q7. List out a few programs with salient details of the analytical solution/programs of multi-layered

flexible pavements.