REPORT ON REVERSE CIRCULATION OVERBURDEN ...

218
GM 46493 REPORT ON REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLING PROGRAM, AABAROCK PROPERTY

Transcript of REPORT ON REVERSE CIRCULATION OVERBURDEN ...

GM 46493REPORT ON REVERSE CIRCULATION OVERBURDEN DRILLING AND HEAVY MINERAL GEOCHEMICAL SAMPLINGPROGRAM, AABAROCK PROPERTY

TABLE OF CONTENTS

Ministère do l'EnergiQ et des Ressources Service de la Céoinformation

1.0 SUMMARY Date i 6 MAI 1988

2.0 INTRODUCTION No G.h1s i**IW ._,......,.:.,...,..._.. _. ., .~

Page

1

3

2.1 Project Outline 3 2.2 Principles of Deep Overburden Geochemistry in

Glaciated Terrain 8 2.3 Property Description and Access 11 2.4 Physiography and Vegetation 11 2.5 Previous Work 14 2.6 Project Costs 15

3.0 DRILLING AND SAMPLING 17

3.1 Drill Hole Pattern 17 3.2 Drilling Equipment 19 3.3 Logging and Sampling 19 3.4 Sample Processing 21 3.5 Sample Analysis 25

4.0 BEDROCK GEOLOGY 27

4.1 Regional Geology 27 4.2 Douay Bedrock Logging Procedures 38 4.3 Bedrock Lithology of the Reverse Circulation Drill Holes 29 4.3.1 Intermediate Volcanics (Unit 1) 31 4.3.2 Felsic Volcanic Flows (Unit 2) 32 4.3.3 Felsic Pyroclastics (Unit 3) 33 4.3.4 Metasediments (Unit 4) 34 4.3.5 Iron - Formation (Unit 5) 35 4.3.6 Quartz-Feldspar Porphyry (Unit 6) 36 4.4 Bedrock Geochemistry 37

5.0 OVERBURDEN GEOLOGY 39

5.1 Quaternary History and Stratigraphy of the Abitibi Region 5.2 Quaternary Geology of the Douay Property 5.2.1 Matheson Till (Abitibi Unit 4) 5.2.2 Ojibway II Sediments (Abitibi Unit 5) 5.2.3 Holocene Sediments (Abitibi Unit 7)

39 42 44 49 50

Page

6.0 OVERBURDEN GEOCHEMISTRY 51

6.1 Regional Gold and Base Metal Background and Anomaly Threshold Levels 51

6.2 Douay Heavy Mineral Gold Anomalies 52 6.2.1 Hole 19 Gold Anomaly 59 6.3 Douay Copper, Zinc and Arsenic Heavy Mineral Anomalies 60

7.0 CONCLUSIONS AND RECOMMENDATIONS 61

7.1 Gold Potential of the Douay Property 61 7.2 Recommended Follow-up 62

8.0 REFERENCES 63

FIGURES

Figure 1 Douay Property Location Map 4

Figure 2 Geological Setting of the Douay Property 5

Figure 3 Schematic of a Typical Reverse Circulation Drilling System 10

Figure 4 Claim Map 12

Figure 5 Sample Processing Flow Sheet 22

Figure 6 Effects of Glacial Transport on Gold Particle Size and Shape 24

Figure 7 Glacial History of the Abitibi Region 40

Figure 8 1975 Air Photo of Drill Area (1:50,000) 43

Figure 9 Section A-A', F-F' 45

Figure 10 Section B-B' 46

Figure 11 Section C-C' 47

Figure 12 Section D-D', E-E' 48

Page

TABLES

Table 1 Drilling Statistics 6

Table 2 List of Mining Claims, Douay Property 13

Table 3 Budgeted and Actual Costs, Douay Property 16

Table 4 Heavy Mineral Gold Dispersion Trains Identified by Overburden Drilling Management Limited Laboratory 18

Table 5 Geochemical Contribution of One Gold Grain to a Fifteen Gram Sample 23

Table 6 Bondar-Clegg Analytical Specifications 26

Table 7 Table of Bedrock Lithologies 30

Table 8 Summary of Bedrock Geochemistry 38

Table 9 Table of Quaternary Formations for the Abitibi Region 41

Table 10 Heavy Mineral Gold Anomaly Screening 54

PLANS

Plan 1 Hole Locations (in pocket)

Plan 2 Bedrock Geology, Geochemistry and Carbonate Alteration (in pocket)

Plan 3 Overburden Thickness (in pocket)

Plan 4 Heavy Mineral Gold Anomalies and Proposed Exploration (in pocket)

APPENDICES

Appendix A Reverse Circulation Drill Hole Logs

Appendix B Sample Weights - Heavy Mineral Circuit

Appendix C Gold Grain Counts and Calculated Visible Gold Assays

Appendix D Binocular Logs - Bedrock Chip Samples

Appendix E Bondar-Clegg Bedrock Analyses

Appendix F Bondar-Clegg Heavy Mineral Analyses

Appendix G Heavy Mineral Gold Anomaly Theory

1

1.0 SUMMARY

This report details the results of a 39-hole reverse circulation overburden drilling/heavy mineral geochemical sampling program conducted by Golden Rule Resources Limited on its Aabarock property option in Joutel and Douay Townships of northwestern Quebec. The drilling was performed with the objective of evaluating the gold potential of the property based on the assumption that the geological setting is similar to that at Inco's nearby Douay Gold Zone. Total

project costs averaged $61.36 per metre.

The Golden Rule drill area is underlain by east-southeast trending Archean

clastic metasediments, intermediate to felsic metovalcanics, iron formation and a

synvolcanic quartz-feldspar prophyry intrusion. The rock units are vertical to steeply north dipping and younging and form the upper part of a central complex-type volcanic succession. The metamorphic grade is subgreenschist to lower

greenschist faces. Two stratigraphically controlled shear zones and one cross-

cutting fault are evident.

Weakly anomalous bedrock gold values, coincident with widespread,

dessiminated Fe/Mg carbonate alteration that is probably syngenetic, were

obtained from metasediments in the eastern portion of the property. A silicified,

Fe/Mg carbonate-veined shear zone intersected in Hole 19 contains 10 to 15 percent very fine disseminated pyrite and of 205 ppb gold.

The overburden in the drill holes averages 35.6 metres in depth and consists

of Late Wisconsinan and Holocene age strata; older units were unprotected during

the Wisconsinan glaciation because the area is topographically elevated. The direction of Late Wisconsinan ice flow was south-southeast and Matheson Till

deposited by this ice forms a nearly continuous horizon across the property. The

only exception is at the east end of the drill area where the till is supplanted by the

esker-like Harricana Interlobate Moraine. The till is in contact with and is largely derived from bedrock which makes it an excellent geochemical sampling medium. Sand, silt and clay units deposited in Lake Ojibway overlie the till and in turn are capped by Holocene accumulations of peat.

-2

The gold background of the Golden Rule concentrates is within the normal northern Abitibi Belt average. Twenty-eight of twenty-nine detected heavy mineral gold anomalies are caused by the nugget effect and are individually of no significance although collectively they appear to coincide with broad bedrock gold anomalies. The only notable heavy mineral gold anomaly (1,730 ppb) occurs in Matheson Till resting on the weakly mineralized shear zone that was intersected in Hole 19. This anomaly could represent dispersion from a nearby source but more probably results from contamination of the till by drill cuttings of the shear zone.

The eastern and south-central parts of the property appear to have the best

gold potential. Line cutting and magnetometer and VLF geophysical surveys are

incomplete in the central area and should be completed. Thirty-four additional

reverse circulation holes costing approximately $190,000 are proposed to fill in the

present coverage and delineate the mineralized shear zone near Hole 19.

3

2.0

INTRODUCTION

2.1

Project Outline

From February 15 to 28, 1987 Golden Rule Resources Ltd. conducted a reconnaissance-scale program of reverse circulation overburden drilling for the purpose of heavy mineral geochemical sampling on its Douay Township property option in the Abitibi Greenstone Belt of northwestern Quebec (Fig. 1 and 2). The objective of the drilling was to test the overburden for glacially dispersed gold concentrations indicative of economic bedrock mineralization that may or may not be associated with previously delineated EM conductors or magnetic anomalies.

Low tonnage, high grade gold mineralization (247,000 tons, 0.3 oz./ton) was

intersected by an Inco/Vior/Soquem joint venture program in southeastern Douay Township in 1983 (Lacroix, 1987, p.4). Airborne magnetic trends suggest that the stratigraphic horizon hosting the Douay Gold Zone crosses the Golden Rule property. This led Golden Rule to option the property.

Golden Rule contracted Heath and Sherwood Drilling of Kirkland Lake,

Ontario to perform the drilling and Overburden Drilling Management Limited

(ODM) of Nepean, Ontario to manage the program. Geologist S. Averill designed

the program in consultation with J. Hansen of Geotest Corporation and B. Evans of

Golden Rule Resources. Geologists T. Burns and P. Collins together with geotechnician B. Bark spotted, logged (Appendix A) and sampled the drill holes and

supervised the drilling.

Thirty-nine drill holes (GR-87-01 to 39) were planned and completed within the budget limits (Plan 1, in pocket). All of the reverse circulation drill holes

extended approximately 1.5 metres into bedrock. Two hundred and seventy

overburden samples and thirty-nine bedrock samples were collected (Table 1).

Heavy mineral concentrates (Appendix -B) were prepared from the overburden samples at ODM's laboratory in Nepean, Ontario. Gold particles sighted during

processing were measured to determine their individual contributions to the overall gold content of the concentrates and were classified according to their distance of glacial transport (Appendix C).

Chibougamau

A Chapais

Quebec Timmins A

ANoranda Vat d'Or

Detour A ASelbaie

Lake AMatagami A Desmaraisville

0DOUAY PROPERTY

IVillebois AJoutei

NormetalA A

~ ALaSarre

A Senneterre

Hearst

AKirkland Lake

1

QUEBEC Montreal

ONTARIO

Ottawa

Figure 1 - Douay Property Location Map

Sudbury A

Toronto

0 200 km

o

le c

a

GP~IPO . .

• S ,P

LEGENI)

Massive granite, syenite, monzonite

Gneissic tonalite, granodiorite, trondhjemite

G Gneiss, migmatite

A Stratiform anorthosite complex

MI Mafic intrusive

S Metasediments

P

FV

MV

UV

IF

Pyroclastics, volcaniclastics,

shales, exhalites (airborne EM conductors)

Felsic metavolcanics

Mafic metavolcanics

Ultrarnafic metavolcanics

Iron formation

S MV

+

P MI y

+ +

Y~ • X

© MV

X X

X K Y i

X x

N X Y MX

~ MI

MV

MV

~!.

MV

F

MV

X X • y

N ` • M y E x y • Y

• Y N Y • K X y

X ` • • N M M X % X x x X x M [

" M "• • X ■ FV ▪ N X N X • y x

` • y X x•N y • X M Y

XXX•XX •

y • K x ▪ • X " X • •

xy M •

X " y i • Y M •

y X y•y, XR •

y

Nxy N y N y M y •

•X X` y X[ .X i • • M

y y yi

Py~ • • • y y X N x y y

"N [` Y M • ~-IF~ Y • • • "

X • y X y X y

[ Y M Y

M [ • • • K y X x X y • .Tu%/,~jo MX X • Yi M ••• X X X • •X •r Y X • y n

F. MV ~ " ' "

X"X XXX N ` Estrades ............... .. "' ' •

Y • N .

i • [ y [1 K •

K X i Y X „ M[ . Y • . x.X~[Iyx ` D.e.

)?QSit..,P~..•........

:•••^•.. •

•"

S I Casa ...

o IF p~ X. 0 Golden Pone,

~old Deposits P /

M % M • ' ■ M ■ M N x M M M x X X N X M M y % y

i

i'

Y

i

K K

Xy

M

Mx

K

" M

x

I " Y M

Y x

Y

Y

Y • ~

x

X

x Y XN

x

x

y

y

-

x

i

Y

y

x

x

x

y

Y

x

Y

N

Y

y

.0

1

•0

2

0

km.

xXXXXXX XXX yI YNyMY• XYNxXM xYyXy ■ NXNYYX•i KYXYyXMYxMXXYKy yX•iMy

XMyyyx YxY YY

4 M

X

K

x

i

•1J

X • X

x y XY%XXY YYrYMY

Yxy xXM%Y XY[ yXyXX

.

XKMXI MYMx

ymxX XX•••••IKXYMXX YX• ,R•NX XXYM`

x%X

KMK N iX%MiiYMY X Y XYYXIii MYYNYYY •M%iNY%YY•

X``

N yxXx XXIY yy"XXX`y•XYY

y

XXXXY yXXXYXMxyyy`XyXXXX

% MxXX•XMY XXXxYXy MXXYY KXX•YXyy

YYxX "YX YiYXY XyXY ■

Xxyi x%MXM

`yyXM yXXMYY•x

""YM

`

XXXX • `

•YXXYY yXXYYX XiYX ■ MXYNNX• NX • XY•i•XXXXyyY y•YyXI• •XXYYXl••i•MX%YMX1•MY•YYYY•••

%XMXyyy yxXMxx

My

```MMMXxXxxyXMX MXMXiXMX

yMXMMyyIXX MMX" iXXX y

XX MXXXNyyY XXMYxxxxxyxMXX X KMXK%

▪ X

X XXX

X"X MYYMXXr x MK•YYXr

x•

yY

•yM% i•

•XX Y•iYY

yy Y

" NMXXXXI••••NNY•XN ■ YY XYXXM

X

yX M• XI•X%XXX•IX ■ XXXYXYiX• •XNN••X

YYY XXMxXMXyXXx

XYNX xXXMxyXxyXMX

NMYyX ■ XyMY %XYr ■■ MXX Y ■ MXXN ■ MX•XX y%X%X

KXYxXX XMY X

MYXxXXXYxX yNXXX• • MM%RXNXYxxxyMXMXN XXXXXXXXXXXXXXXXXX

• xI4 X% Y Y XII

:

X M X X

X N M N M %

MV

Cÿ

•21.2° ~ d V.~ O 0

P

MV

S l~t~ .. ....Grasset..Fautt

••~ M 7

N K X M M i X • •

y X Y M X

x X Y y N x ▪ xXXXX

y N

r x y " " X X x

x X X

K

• x y x X x

R X x

X x

N y K MXX ` X `X y x •MI

y

X

" M M y X y N y y N X x y X X M y y x M x y • • N M M • X X x Y y • • M x X

+ ~.'\+ •'~

+ +

+ + + •. Jr + +

+

MV

• MV

~ P O

1

Pi--'.. 7

O

A

P F IF ~—`IF~ MV

M v ..

::

..............».. ëasa_BerardN.. autt P S

. S ..... .. ,F

Harricana Faut

' IF P IF Golden Rule " P . Q Faim ~~ Property s ~ •.•.

\UV • Douay a ~„,__ Douay~ Fault •w

Gold Zoner'-----3? ' "' ' •.. »........» . MI ~~A~►~o-Eagle Deposi. [ My P

• G••r

" ~... X ■ ` • x N X

Joutel ` X X X K X X " X Y • X X Y X • X i y % X

MI M V M X "X "X y X X X "M X X X M x X Y"X X X " X X X X X X

M X Y N N Y Y • X M M N X Y X

X Y M Y Y M

MV

® MV ~ ~ S ~ w

IF

elitor

XXXX X i

M X X X

Y x • X X

I•

MV

FV

MV FV

Figure 2 - Geological Setting of the Douay Property

-6

Hole Number

Coordinates Metres Drilled Hole

Depth (metres)

,

Samples Collected

Overburden Bedrock Overburden Bedrock

GR-87- 1 L84W;4+00S 16.3 1.7 18.0 01 01

2 80W;4+005 26.8 1.7 28.5 07 01

3 79W;7+ 00S 21.8 1.7 23.5 03 01

4 75W;7+OOS 18.0 1.5 19.5 01 01

5 75W;3+505 25.0 1.5 26.5 05 01

6 72W;3+505 31.4 1.6 33.0 11 01

7 73W;9+00S 18.5 1.5 20.0 03 01

8 72W;15+00S 31.1 1.4 32.5 10 01

9 73W;22+00S 23.1 1.9 25.0 06 01

10 69W; 22+00S 31.9 1.6 33.5 06 01

11 70W;15+OOS 26.2 1.3 27.5 03 01

12 70W;9+00S 25.6 1.4 27.0 06 01

13 67W;8+OOS 21.9 1.6 23.5 05 01

14 65W;9+00S 30.0 1.5 31.5 07 01

15 66W;15+00S 18.0 1.5 19.5 01 01

16 62W;15+005 26.5 1.5 28.0 05 01

17 61 W;10+00S 30.8 0.7 31.5 11 01

18 57W; 10+00S 24.7 0.8 25.5 04 01

19 58W;15+00S 38.5 1.5 40.0 18 01

20 54W;15+00S 27.7 0.8 23.7 03 01

21 53W; 10+00S 29.0 1.5 30.5 07 01

22 49W;10+005 36.5 2.0 38.5 07 01

23 45W; 10+00S 38.1 2.4 40.5 07 01

24 46W;15+ 00S 20.5 1.5 22.0 02 01 25 50 W;15+005 23.5 1.5 25.0 01 01 26 42W;15+0OS 27.0 1.5 28.5 07 01 27 41W;10+005 43.0 1.5 44.5 10 01

Table 1 - Drilling Statistics

-7

Hole Number

Coordinates

Metres Drilled Hole Depth

(metres)

Samples Collected

Overburden Bedrock Overburden Bedrock

GR-87- 28 43W;4+505 51.6 0.9 52.5 18 01

29 39W;4+50S 52.5 1.0 53.5 13 01

30 35 W;4+505 59.1 1.4 60.5 06 01

31 33 W;3+005 69.0 0.4 69.4 08 01

32 32W;7+005 53.6 1.9 55.5 04 01

33 28W;8+00S 43.1 1.5 44.6 03 01

34 24 W;8+00S 52.6 1.4 54.0 10 01 35 29W;3+005 70.3 1.2 71.5 11 01 36 28W;1+50S 54.7 0.8 55.5 01 01

37 24 W;8+00S 55.2 1.3 56.5 11 01

38 22 W;3+005 44.5 1.5 46.0 11 01

39 19W;5+ 00S 51.2 1.3 52.5 17 01

TOTALS 1 , 388 .8 50.4 1 ,439 .2 270 39

Table 1 - Drilling Statistics (cont'd)

-8

The bedrock chip samples were logged under a binocular microscope (Appendix D) and their lithologies were compared to the established Archean stratigraphy (Plan 1; Fig. 2). Subsamples of the bedrock chips and heavy mineral concentrates were analyzed for gold, arsenic, copper and zinc (Appendix E, F).

This report documents the above work and discusses results of significance.

2.2 Principles of Deep Overburden Geochemistry in Glaciated Terrain

During the Pleistocene epoch of the Quaternary period, the crowns of all ore

bodies that subcropped beneath the continental ice sheets of North America were

eroded and dispersed down-ice in the glacial debris. The dispersion mechanisms

were systematic (Averill, 1978) and the resulting ore "trains" in the overburden are generally long, thin and narrow but most importantly are several hundred times larger than the parent ore bodies. These large trains can be used very effectively

to locate the remaining roots of the ore bodies.

Because the dispersion trains originated at the base of the ice, they are

either partly or entirely buried by younger, nonanomalous glacial debris. Most

trains are confined to the bottom layer of debris deposited during glacial recession-

-the basal till. In fact, the sampling of glacial overburden for exploration purposes is commonly referred to as "basal till sampling". It is important to note, however,

that in areas affected by multiple glaciations the bottom layer of debris in the

overburden section may be only the lowermost of several stacked basal tills, and that a dispersion train may occur at any level within any one of the basal till

horizons. Consequently, the term "basal till sampling" is not synonymous with the

collection of samples from the base of the overburden section. Moreover, the term

is not strictly correct because significant glacial dispersion trains can occur in formations other than basal till.

From the foregoing statements, it can be seen that glacial dispersion and glacial stratigraphy are interdependent. Consequently, the effectiveness of overburden sampling as an exploration method is related to the ability of the

9

sampling equipment to deliver stratigraphic information from the unconsolidated

glacial deposits. In areas of deep overburden including most of the Abitibi greenstone belt in northwestern Quebec, drills must be used. Most drills have been designed to sample bedrock and are unsuitable for overburden exploration, but in

the last fifteen years rotasonic coring rigs and reverse circulation rotary rigs have been developed to sample the overburden as well as the bedrock. Both drills

provide accurate stratigraphie information throughout the hole and also deliver

large samples that compensate for the natural inhomogeneity of glacial debris.

Reverse circulation rotary rigs are much more widely used in the Abitibi than are rotasonic coring rigs. They employ dual-tube rods and a tricone bit with the

outer rod tube acting as a casing to contain the drill water for recirculation and to

prevent contamination of samples by material caving from overlying sections. Air

and water are injected at high pressure through the annulus between the outer and inner rods to deliver a continuous sample of the entire overburden section through the small inner rod (Fig. 3). The sample is disturbed but returns to surface instantly, and the precise positions of stratigraphic contacts can be identified. Full

sample recovery is possible in all formations regardless of porosity or consistency,

although sample loss due to blow-out commonly occurs in the first 1 to 3 metres of

the hole until a sediment seal is made around the outer rod.

Reverse circulation holes are normally extended 1.5 metres into bedrock.

Cuttings of maximum 1 cm size are obtained. These cuttings are used to determine the bedrock stratigraphy, structure and geochemistry and are also

compared to the till clasts to help determine ice flow directions and glacial dispersion patterns.

Most of the glacial overburden in Canada is fresh, and metals in the

overburden occur in primary, mechanically dispersed minerals rather than in

secondary chemical concentrations. While ore mineral dispersion trains are very

large, they are also weak due to dilution by glacial transport and are difficult to identify from a normal "soil" analysis of the fine fraction of the samples. Consequently, heavy mineral concentrates are prepared to amplify the primary anomalies, and analysis of the fines is normally reserved for areas where

Sample and Water

Air Out

Air and

Water In

Center Tube

- 10 -

Figure 3 - Schematic of a Typical Reverse Circulation Drilling System

-11 -

significant post-glacial oxidation is evident. The heavy mineral concentrates are very sensitive, and special care must be taken to avoid the introduction of contaminants into the samples. On gold exploration programs, it is advantageous to separate and examine any free gold particles because most gold anomalies in heavy mineral concentrates are caused by background nugget grains that are of no interest.

2.3 Property Description and Access

The Douay property consists of 141 unsurveyed contiguous mining claims covering approximately 2,256 hectares. The property is centered approximately 45 kilometres southwest of Matagami and 15 kilometres northeast of Joutel in northwestern Quebec. One hundred and thirteen of the claims are located in west-central Douay Township and the remaining twenty-eight claims are in the east-central portion of Joutel Township (Fig. 4 and Table 2).

The claims were acquired by Ressources Minieres Aabarock Inc. early in 1984

and were optioned, later the same year, to Golden Rule Resources who can earn a 50 percent interest in the property.

Highway 109, linking Amos and Matagami, passes through the eastern arm of the property while the Joutel-Selbaie road passes within 5 kilometres of the western boundary of the property. A bulldozer was used to clear a winter truck road from the Joutel-Selbaie road to the west-central portion of the property and drill trails to individual drill hole sites (Plan 1).

2.4 Physiography and Vegetation

The Douay property lies within the northeastern portion of the Abitibi Uplands physiographic region (Bostock, 1968). This region is a north-sloping clay belt that was covered by Lake Ojibway 10,000 years ago during Late Wisconsinan

~~° hl.y 3I~y_ K r_L;I:.cz..

h • ~kti v n~. at -

IMh,4=u~0

tilyiy JP zi 1~h44k` 1.4~ 4 44PS4Pti'~k 401

~~y 4i 1 1 I I ~ 1 wl

f— vie E — _ ti

~, S r~ 1/ b I ~h 0'1* t wti ► R kh i d► /,~1

e `

Ÿ k~1 ~ °ti45 a 1M~ % 1 ~i ~ ~7~ ~~ ÿ _ Z11►_ -;41

~1 f— ~ y • 1 45 Ir 1 I 4 ► I'~ ~► I r I a l k~ kg

F-44 *, J ,. S

y4h ♦4 4~i 44 ey es I ~— Sa I 4/1,Z) s~ yglPti ti• t

45 ~ 44 k l ~ ` a ei,~ 1 — ~~ — ~ — z N 1~ k ► • La1. 1 I. 1, I A1. `

_ _ a ~ tSaal b1

~ e 1~'~kti-- f,l►i

45 ~( ~ y 1 ~1 a ~-- P

r1. 1

ti$ til ky4 +,k~ K ahe y4y I yy3~ 64w1 yy41 h44 1 ►~ 1 Z ~. bI —417( - - 1 ~ 1.e ( ~ ' 44 I ~ e ~ 4.? 4 ~ 6~ 5 r

w ~ 1 b 1 1~S 44 r p9 I 1U ~ d'p

a4~ ti b I 6 4 0

ô'

1 ► ~

~1 4►° ~+ 1 Sr I U 1Ih ~i1a 1 K ~IY hI R~ °i h 1 °

~ M~ t~i JA_ ~ MtiS

~~ow ~ I ~1 ~' 1 e,A Î ô

441 -~Vr~ ►;1' 1 ~ ~ y a P~ \Ir ,rI M.y

41hy

"► ` I►,1,b M 1a,~,Ish I ryS° I hh~ I G,~ 1 y

°

- - - 1 ô'I ~

P4I d~~ n f\ ~Y10~-Rt4 ~ I 3~~1 31;,1 e~ 1 •~~ 1 44 ~ ,e4~} e~~1 b~+

►~1 h°I 5~ 101;1 ~>r \ K h' ‘41.1'.._ \ kti P ~ I ti• ~h 1 4y I ti5 \ e4

4P: 5111 6° k1 I 1,41

~

{,I s$S55'j1 h 1~

q 1 V ► ~ ;~ti y 1Ah i llw,►'4 41 e44 I all' 1~4y~4y0~eti 4 4 c~r ----► -~Lk—b~K ~ ► _3F~ ` Y

~ Yti K kt \ Ih Y~t •j 1 Mh a Nh k P1. fj i'h Lj ~ ~ 1 y

-~ ryl,°

~~ a tilr OPT -P,

~~P qo

`Lry '71P~ k

SI ~ 1 ~ • Lt F a~ ~Irti ~rtiS ry~atih \~~.ttlMti ~y 1 ry'(71~ti?`p~ ~ l,t,~° t

p 1 ~ p~ ~ 9~' ~ q~ gtii~ b" Ÿ ~y lk~h~Y lk~~~ I►ryb~ 1ryhK ~~ 3rY~~jtlk.

Ol -L►—

kti~~~ti nti'h~,k15h I ~J iJ

°°j y ✓ y' n~ ~ly 41b, ~ IPti ~ 1 kYb 3;NL~ ti ►~~ 1 4~~~~1 h~ 1 1y f61 ry~a1~' ~~~I °~~ ,~~a q~/~ t`

c 7S°10~

, 1:50,000

Figure 4: Claim Map

- 13 -

License Claim Township

423139 1-4 Douay 425091 1-5 Douay 425092 1-5 Douay 425093 1-5 Douay 425094 1-5 Douay 425095 1-5 Douay 425096 1-5 Douay 425097 1-5 Douay 425098 1-5 Douay 425099 1-5 Douay 428544 1-5 Douay 428545 1-5 Douay 428546 1-5 Joutel 428547 1-5 Joutel 428548 1-5 Joutel 428549 1-5 Joutel 428550 1-.5 Joutel 428551 1-4 Douay 428552 1-5 Douay 428553 1-5 Douay 428554 1-5 Douay 428555 1-5 Douay 428556 2-5 Douay 428557 1-5 Douay 428558 1-5 Douay 428559 1-5 Douay 428567 1-5 Douay 428568 1-5 Douay

TOTAL 137: 2208 ha

Table 2 - List of Mining Claims, Golden Rule Property

- 14 -

ice withdrawal. The southern boundary of the clay belt is the Hudson Bay - St. Lawrence River drainage divide which roughly coincides with the southern edge of

the Abitibi Greenstone Belt. Average overburden thickness in the clay belt typically ranges from 10 metres in the south where Lake Ojibway was shallow to 40 metres in the north where the lake was deeper. The average overburden thickness in the Golden Rule drill holes was 35.6 metres.

Relief is generally low across most of the property due to the levelling effect of Lake Ojibway sedimentation. Elevations range from a minimum of 279 metres

above sea level along the north-flowing Riviere Adam, which drains the central

swampy portion of the property, to a western maximum of 295 metres on a small

hill just northeast of Lac Joutel (Plan 1). In the eastern portion of the property a

north-south trending, 1,000 metre wide, sand and gravel ridge rises abruptly to a

maximum elevation of 325 m. This ridge is the Harricana Interlobate Moraine and formed when the retreating ice front of the last major glaciation divided into a western Matheson lobe and an eastern Chibougamau lobe (Shifts, 1984). A series of

bedrock ridges known as the Cartwright Hills lies just south of the property. These

hills attain a maximum elevation of 445 metres and some of them formed islands in

Lake Ojibway.

The type of vegetation is controlled by the degree of drainage. In the

northeast-central region of the property drainage is non-existent and the only

cover consists of moss, grasses and scattered shrubs floating on 1 to 3 metres of

saturated peat. In the central and western regions of the property, drainage is

sufficient to allow the development of stunted black spruce separated by spongy

moss. Along the flanks of the Harricana Interlobate Moraine, moderate to good

drainage has allowed the growth of a boreal forest consisting of a relatively thick

cover of jack pine reaching a maximum diameter of 15 cm.

2.5 Previous Work

Plan 1 includes a Quebec government compilation (MERQ, 1983) of previous exploration activity in the vicinity of the Douay property.

- 15 -

As a result of the thick overburden cover on the property the closest

government geological mapping surveys have been limited to the nearby Cartwright

Hills (Plan 1).

Prior to Aabarock's acquisition of the property in 1984, there is no record of

any significant mineral exploration being conducted. Subsequent to 1984, limited

magnetometer, VLF, IP and Max-Min II geophysical surveys and some geochemical

(humus) sampling for gold were conducted. Promising geophysical targets in the

southwest portion of the property were diamond drill tested in 1985 but results

were not encouraging or conclusive.

Considerable information on the regional geological setting of the property is

now becoming available as a result of the recent discovery of gold (Golden Pond)

and polymetallic (Estrades) deposits at Casa-Berardi to the west. The Quebec

Ministry of Energy and Resources has mounted a four-year geoscientific program in

the Casa-Berardi-Matagami area; their initial geological interpretation (Lacroix,

1987) is shown in Figure 2.

2.6 Project Costs

Budgeted and actual costs for the reverse circulation drilling program are

presented in Table 3.

The proposed budget figure of $106.80/metre was based on:

1. Thirty-five drill holes totalling 875 metres (average 25 metres per

hole).

2. Drilling productivity of 7 metres per operating hour.

3. An average bit life of 60 metres.

4. A total of 140 overburden samples (average 4 per hole).

5. A final report cost of $160 per hole plus $20 per sample.

Service Company

Budget Actual

$ Total $/Metre $/Foot $Total $/Metre $/Foot

1. Pre-drilling ODM 875.00 1.00 0.30 1,013.00 0.70 0.21

2. Drilling operations H&S 59,850.00 68.40 20.85 49,438.92 34.35 10.47

3. Field supervision, logging, sampling

ODM 13 ,125.00 15.00 4.57 11,352.20 7.89 2.40

4. Sample shipping Various 840.00 0.96 0.29 1,144.50 0.80 0.24

5. Sample processing ODM 6,860.00 7.84 2.39 8,803.00 6.12 1.87 1 o‘

6. Analytical Bondar-Clegg 3,500.00 4.00 1.22 4.,22.00 3.42 1.04 1

7. Report ODM 8,400.00 9.60 2.93 11,640.00 8.09 2.47

TOTALS 93,450.00 106.80 32.55 88,313.62 61.36 18.70

Table 3 - Budgeted and Actual Costs, Golden Rule Property

- 17 -

Hole depth averaged 35.6 metres, 42.4 percent deeper than expected with an associated increase of 92.8 percent in the number of overburden samples per hole.

Drilling productivity was 12.7 metres per hour, an improvement of 81.4 percent while bit life averaged 179.9 metres, an improvement of 199.8 percent. As a result, project costs decreased to $61.36 per metre and, despite the increase in hole depth, sufficient funds were available to drill four extra holes.

3.0 DRILLING AND SAMPLING

3.1 Drill Hole Pattern

Drill holes in the south-central part of the property were positioned 400

metres apart along east-west traverses using a traverse separation of 500 to 700

metres. One traverse was located along the tie line at 15+OOS (Plan 1). Another traverse was positioned 500 metres to the north (10+OOS) with the holes staggered 100 metres to the east of those on the tie line.

Drill holes in the northwestern and northeastern portions of the property

were positioned 300 to 400 metres apart and 100 to 200 metres down-ice from

previously delineated magnetic-high anomalies. The occasional hole was drilled

directly into an anomaly to determine its source.

The major direction of ice flow was 170 to 180 degrees (Prest, 1968). Thus

the east-west traverse orientation is sub-perpendicular to the ice path, maximizing

the probability of intersecting a dispersion train. Staggering the holes on adjacent

traverses narrows the gap across the ice path and should further improve

exploration coverage. East-west traverses are also oblique rather than parallel to

the east-southeast bedrock trend; the oblique orientation is preferred because it

provides more stratigraphic information and ensures detection of stratigraphically-

controlled buried valleys that could influence glacial dispersion patterns.

The 500 to 700 metre traverse separation reflects the average length of

known dispersion trains from gold deposits oriented sub-perpendicular to ice

movement (Table 4), and the 400 metre hole separation reflects the average width

of these trains, which is similar to the cross-ice length of the deposits including

their anomalous alteration halos (the heavy minerals method is sensitive to very

low grade mineralization).

- 18 -

TRAIN LENGTHI(m)

PROVINCE GOLD DEPOSIT TRACED EST. TOTAL

Saskatchewan Lake "X"2 300 300

Saskatchewan Star Lake 300 800

Saskatchewan Lake "Y" 500 1000

Saskatchewan Waddy Lake2 600 2000

Ontario McCool 300 400

Quebec Cooke Mine3 800 1000

Quebec Golden Pond West 300 4004

Quebec Golden Pond 400 5004

Quebec Golden Pond East 100 1000

1 - Based on minimum 10 gold grains of similar size and shape per 8 kg sample for free gold trains and on coincident high gold and base metal assays for invisible gold trains

2 - Deposit oriented parallel to glacial ice advance

3 Invisible gold deposit

4 Train foreshortened by erosion in last ice advance

Table 4 - Heavy Mineral Gold Dispersion Trains Identified by Overburden Drilling Management Limited Laboratory

-19-

3.2 Drilling Equipment

Heath and Sherwood's drill rig employed an Acker MP drill head with a 3 metre feed cylinder. The drill, together with all its ancilliary equipment including air compressor, water pump and logging and sampling facilities, was unitized and enclosed on the bed of a Nodwell Model FN-160 tracked carrier for all-terrain

mobility and all-weather operation.

The rig employed an air compressor with a rated capacity of 300 c.f.m. at 160 p.s.i. and a water pimp having a capacity of 20 g.p.m. at 600 p.s.i. Water flow

was normally restricted to 4-5 g.p.m. to improve recovery of fines. The rig was

equipped with 12 volt DC fluorescent fixtures employing Cool White tubes that simulate natural sunlight for accurate sample logging. All equipment except the air compressor and Nodwell carrier was operated hydrostatically from a central diesel engine.

The rig carried twenty-two 10-foot drill rods. The holes were logged in

metres using the approximate conversion factor of 3 metres to 10 feet which resulted in the logged hole depth being 1.6 percent less than true depth.

Heath and Sherwood supported the drill rig with a Bombardier S-15 muskeg tractor equipped with a 400-gallon, exhaust-heated water tank. Road clearing was done by Aubé Construction Limited of La Sarre, Quebec using a Caterpillar D-6 wide-pad bulldozer.

3.3 Logging and Sampling

ODM collected the Douay samples in two 20 litre buckets coupled with a plastic tube. This procedure ensures a quiet settling environment thus reducing the loss of fines encountered if only one bucket is used and allowed to overflow. Most of the clay is still lost but a recent research study made by ODM (Dimock, 1985) showed that sand loss is insignificant and silt loss is reduced to 40 percent compared to 72 percent with the one-bucket system. Interestingly, fine gold is lost

- 20 -

in direct proportion to fine minerals of low specific gravity such as quartz and

feldspar because the flake shape rather than high density of fine gold is the primary factor controlling the rate of settling. Further research conducted by ODM (Kurina, 1986) on various inlet/outlet attachments on the second bucket showed an additional 33 percent of the fine material in the overflow could be

retained by utilizing a horizontally curved inlet tube for spiral flow and a vertical

stack skimmer on the outlet. The two-bucket system with the modified flow

configuration was employed on the Golden Rule program.

ODM employed a 10-mesh (1700 micron) screen over the first bucket to separate and discard the majority of rock cuttings and thereby increase the

proportion of matrix material, which is needed to identify and trace dispersion

trains. The +10 mesh rock cuttings were constantly monitored to discern any

variations that could give clues to overburden stratigraphy, or for any clasts indicative of an environment suitable for gold or base metal mineralization. Approximately 20 percent of the cuttings were kept for future reference. The degree of sorting of the -10 mesh matrix was monitored to differentiate till from

sand and gravel.

Till units were sampled continuously using an average sample interval of 1.5

metres. Glaciofluvial and related sand and gravel were sampled over longer, 3 to 6

metre intervals because they are far-travelled and thus generally ineffective for mineral tracing. Glaciolacustrine clay and silt were not sampled because they are

of no exploration value.

In the field, both the overburden and bedrock samples were assigned a number

denoting the project area (GR), the year (87), the position of the hole in the drilling sequence and the position of the sample in the drill hole. Thus a designation such as GR-87-35-03 indicates the third sample collected from the thirty-fifth hole drilled in 1987 for Golden Rule Resources.

Following collection, the overburden samples were reduced to 7-9 kilograms with an aluminum scoop, packed in heavy plastic bags and shipped in 20-litre metal pails to the ODM processing laboratories in Nepean, Ontario.

-21-

3.4 Sample Processing

ODM's processing procedures for the overburden samples are illustrated in the flow sheet of Figure 5 and may be summarized as follows:

First, a 250 gram character sample is extracted from the bulk sample using a tube-type sampler. This character sample is dried and stored for future reference.

On some programs, its minus 250 mesh fraction is separated and analyzed to allow

comparison with the heavy mineral analyses.

The remainder of the bulk sample is weighed wet and is sieved at 1700

microns (10 mesh). The +1700 micron clasts are weighed wet and the -1700 micron

matrix is processed on a shaking table to obtain a preconcentrate. The table

concentrate and all fractions obtained from it are weighed dry. The Golden Rule sample weights are listed in Appendix B.

While the samples are being tabled, special procedures developed by ODM are

used to effect the separation of gold grains from the other heavy minerals. These

grains are picked from the deck, placed under a binocular microscope, measured to

obtain an estimate of their contribution to the eventual assay of the concentrate (Table 5), and classified as delicate, irregular or abraded (Fig. 6) to determine their

approximate distance of glacial transport. Photomicrographs (35 mm slides) are taken if more than 10 gold grains are present.

Magnetite, with a specific gravity of 5.2, is the heaviest of the common

minerals and normally forms the top mineral band on the table above garnet and epidote/pyroxene. Common flake gold coarser than 125 microns separates completely from the magnetite and is readily counted. Fine gold, thick gold and

delicate gold travel with the magnetite due to size and shape effects, and only 10

to 20 percent of such grains are readily sighted on the table. Gold particles can also be obscured by pyrite which, if it is abundant, tends to cross the table in the gold path. However, a special panning technique developed by ODM can be used to

recover the hidden particles together with some copper, lead and arsenic

- 22 -

Bulk Sample

8- 10 kg

v + 250 g STORE

Split

Light Fraction STORE

Shaking Table & Gold Grain Count

i Panning

& Gold Grain Count (selected samples)

Light Fraction STORE

Magnetic Fraction STORE

Heavy Liquid Separation (Methylene Iodide SG 3.3)

Magnetic Separation

1/4 STORE < Split

1 3/4 Ship to

Analytical Laborat cry

Figure 5 - Sample Processing Flow Sheet

- 23 -

Size Flake Diameter Classification (microns) ppb Au

Very Fine It

Fine I1

Medium 1, 't

Coarse l' It

Il

to

Very Coarse

50 100

150 200

300 400 500

600 700 800 900

1,000

1,000+

10 100

330 760

2,400 5,400

10,000

16,200 24,000 33,300 43,700 55,000

55,000+

Table 5 - Geochemical Contribution of One Gold

Grain to a Fifteen Gram Sample

- 24 -

DELICATE

0-100 m ice transport; primary crystal faces, pitted leaf

surfaces and ragged leaf edges intact

IRREGULAR

100-1000 m ice transport; gross primary shape and pitted surface

intact

IRREGULAR

Curled leaf variety

ABRADED 0

~ 500

Microns 1000+ ice transport; large primary leaf reduced to smaller flakes with polished

surfaces

ABRADED

Spindled leaf variety

ROUNDED

1000+ m ice and stream transport; polished equidimensional grains

Figure 6 - Effects of Glacial Transport on Gold Particle Size and Shape (Developed by Overburden Drilling Management Ltd.)

- 25 -

pathfinder minerals. Samples are normally panned if two or more gold particles are sighted on the table or if any delicate gold is seen or if the table concentrate contains more than 10 percent pyrite. The Douay table and pan gold counts are listed in Appendix C.

The table and pan concentrates and any gold grains are recombined and the concentrate is dried. A heavy liquid separation in methylene iodide (Specific Gravity 3.3) is then performed. The light fraction (S.G. less than 3.3) is stored and the heavy fraction undergoes a magnetic separation to remove drill steel and magnetite. The Douay magnetic separates were checked to ensure that they contained not more than five percent pyrrhotite.

3.5 Sample Analysis

Subsamples of the bedrock chips (Appendix E) and 3/4 splits of the non-magnetic overburden heavy mineral concentrates (Appendix F) were homogenized

by pulping in a shatter-box and were then analyzed for gold by fire assay with atomic absorption finish, for Cu and Zn by atomic absorption and for As by

colourimetry. All analytical work was done by the Ottawa laboratory of Bondar-

Clegg and Company Limited to the specifications shown in Table 6.

Gold grains are malleable and thus are difficult to homogenize with the rest

of the sample, often forming flattened "metallics" in the pulp. To alleviate this

problem and obtain representative gold assays, concentrates that were known to

contain one or more coarse gold grains (generally over 200 microns) capable of producing an anomalous assay (over 1000 ppb) were screened to 150 mesh after pulping. Separate gold determinations were then made on the -150 mesh pulp and

the +150 mesh metallics, and a weighted average assay was calculated.

Sample Type Sample Preparation Element Lower

Detection Limit Extraction Method

All bedrock chips Pulverize to -200 mesh Cu Copper 1 PPM HC1-HNO3, (1:3) Atomic Absorption and H.M.C.s Zn Zinc 1 PPM HC 1-HNO3,(1:3) Atomic Absorption

As Arsenic 2 PPM HNO3-HC 104 Colourimetric *Au Gold 5 PPB Aqua Regia FA-AA @ 10 gm weight

unless otherwise indicated

Pulp and metallics Pulverize to -200 mesh; Au -150 0.01 PPM Aqua Regia Fire Assay AA H.M.C.s screen 150 mesh, weight Au +150 0.01 PPM Aqua Regia Fire Assay AA

+150 and -150 Au Average 0.01 PPM Aqua Regia Fire Assay AA

*except pulp and metallics samples

Note: All weight measurements are precise to 0.01 grams

Table 6 - Bondar-Clegg Analytical Specifications

- 27 -

4.0 BEDROCK GEOLOGY

4.1 Regional Geology

The Douay property is in the northern, Casa-Berardi - Matagami - Chibougamau section of the Archean, Abitibi Greenstone Belt. The Abitibi Belt comprises repeated komatiitic through tholeiitic to calc-alkalic cycles of lavas and volcaniclastics with coeval clastic sedimentary rocks, porphyries, layered basic-ultrabasic sills, and intrusives of potassium poor dioritic to tonalitic composition. These rocks have been complexly deformed and metamorphosed to sub-greenschist or greenschist facies and intruded by late kinematic granodiorite and monzonite plutons (Gariepy, Allègre and Lajoie, 1984).

Bedrock exposure in most of the region is less than 1 percent; thus the geology has been mainly inferred from airborne geophysical surveys. An early lithostratigraphic interpretation by Latulippe (1975) shows the Douay property on Taibi Group sedimentary and calc-alkalic volcanic rocks between Allard Group mafic volcanic rocks in the north and Gale Group mafic volcanic rocks in the south; the Cartwright hills consist of mafic volcanics and probably belong to the Gale

Group but are included in the Taibi Group. By expanding the work of Latulippe and

incorporating new geological data from recent (i.e. Casa-Berardi) gold discoveries

and airborne geophysical surveys, Lacroix (1987) has proposed two major fault

systems (east-west and northwest-southeast) of similar age (Fig. 2) and four phases of deformation. These major faults occur as wide zones of deformation rather than as single fault planes and are generally coincident with regional sedimentary-

volcanic contacts. The E-W fault system was produced during D1 deformation and includes the Grasset, Detour and Casa-Berardi Faults, the latter of which is

associated with the Golden Pond gold deposits. The NW-SE trending set, produced during D2 deformation, includes the Douay, Harricana, Bapst and Turgeon Faults

(Lacroix, 1987). The Douay Fault, hosting Inco's "Douay Gold Zone", is shown to traverse the southern portion of the Golden Rule property.

- 28 -

The D3 and D4 stages of deformation have NE-SW and NNW-SSE trends, respectively, and are responsible for the kink bands and crenulation cleavage commonly observed in the clastic and volcaniclastic sediments.

4.2 Douay Bedrock Logging Procedures

A binocular microscopic log of all bedrock samples was prepared (Appendix D) to confirm and amplify field descriptions with the objective of producing an

accurate stratigraphic map. Particular attention was paid to primary features, and the rocks were assigned genetic names such as intermediate volcanics rather than

metamorphic names such as chlorite-carbonate schist.

Reasonably accurate measurements of primary mineralogy, structure,

texture, degree of metamorphism and alteration can be made from chip samples with a binocular microscope, but inherent limitations are present. These

limitations include:

1. Inability to differentiate gray plagioclase from pale gray-brown and

gray-green pyroxene where the grain size is less than 0.1 mm as in

many volcanic rocks. This often precludes differentiation of

intermediate volcanics from mafic volcanics in the Abitibi belt as extensive areas have undergone only sub-greenschist facies metamorphism resulting in the preservation of primary pyroxene. In

greenschist facies areas where pyroxene has been largely converted to darker green amphibole and chlorite, intermediate and mafic units can be differentiated.

2. Inability to determine bedding thickness or fragment size where the

dimensions of the beds or fragments are greater than the 1 cm diameter of the coarsest drill cuttings.

3. Inability to recognize tops in bedded sections.

-29-

4. Difficulty in differentiating certain primary structures such as pillow

selvages from secondary veins and shears.

5. Necessity of inferring gross mineralogy of aphanitic samples from rock

colour and hardness.

4.3 Bedrock Lithology of the Reverse Circulation Drill Holes

Bedrock lithologies intersected on the Douay property are listed in Table 7 and their distribution is illustrated on Plan 2. The open reconnaissance-scale drill

hole pattern does not allow identification of detailed stratigraphic and structural

relationships between rock units although broad trends are evident. The MERQ

(1983) geoscientific compilation map (Plan 1) shows a synclinal axis transecting the

property diagonally on a NW-SE trend but this could not be confirmed or disproven by the present reverse circulation drilling program.

The strata, from south to north, follow the general Abitibi Belt cycle

(submarine plain volcanism followed by central complex volcanism) of mafic

volcanics (Cartwright Hills) succeeded by increasingly felsic volcanics then

volcaniclastic, clastic and chemical sediments, suggesting a vertical or steeply dipping, north-facing succession. This is confirmed in the south by strike and dip

measurements taken from outcrops forming the Cartwright Hills (MERQ, 1983;

Plan 1) and in the north from the orientation and density of magnetic contours

associated with an iron formation. Data from the 1985 diamond drill program in the southwestern portion of the property indicate that the volcanic units dip

steeply towards the south (Boraks, 1986). This apparent contradiction is probably the result of localized low-intensity folding.

The central portion of the property is believed to be transected by a north-

south trending fault. This area was not covered by the ground geophysical surveys;

the fault inference is based on observed shearing and alteration in the reverse circulation samples plus the abrupt termination of a thick metasedimentary horizon in the same vicinity. Apparent dextral movement along the fault suggests that the east block is down-thrown, assuming that the actual displacement is vertical and the strata dip north.

6 Quartz feldspar porphyry

Iron formation

'vletasediments 4b siltstone

4a graywacke

F31 Felsic pyroclastics

2

Felsic volcanics

1

Intermediate volcanics

4

5

-30-

Table 7: Table of Bedrock Lithologies

- 31 -

A fault zone previously identified in the bottom of diamond drill Holes AAD-4 and 5 probably continues east as Hole 09, which is along strike, intersected highly sheared and brecciated intermediate volcanic rock. The trend and position of this

fault suggest that it may be related to the Douay Fault proposed by Lacroix.

A shear zone identified in Hole 19 is probably a local feature as there is no

VLF response. An east-west trend is inferred from the magnetic contours and the

orientation of nearby weak EM conductors.

Regional metamorphism of upper zeolite to lower greenschist facies is

evidenced principally by the conversion of primary pyroxene to chlorite. The

chloritization of the pyroxene was accompanied by the albitization of the

plagioclase which resulted in the formation of 1 to 5 percent disseminated calcite

in some samples.

Syngenetic, finely disseminated Fe/Mg carbonate occurs in amounts of 0.5 to

20 percent primarily in the eastern portion of the property where it is associated predominantly with a metasedimentary horizon. The only occurrences of Fe/Mg

carbonate veining are in Holes 14 and 19. In the western portion of the property

disseminated Fe/Mg carbonate is locally associated with a felsic pyroclastic

horizon.

4.3.1 Intermediate Volcanics (Unit 1)

Intermediate volcanics (andesite flows) were intersected in eight holes in the

southwestern portion of the property; diamond drilling in this area intersected the same rocks (Boraks, 1986). The andesite has a highly variable magnetic susceptibility which produces a "bull's eye" pattern when contoured. The contoured

magnetic data suggest that the northern andesite contact trends west-northwest

along a relatively straight line between L56W, 14S and L85W, 12S.

The andesite is generally medium to dark gray-green with a grain size range of 0.05 to 0.2 mm. The texture is hypidiomorphic (equigranular, interlocking) to

locally porphyritic in Holes 15, 16 and 20. The phenocrysts are almost exclusively

plagioclase and range in size from 0.5 to 3.0 mm. The primary massive structure

- 32 -

is preserved only in Holes 08, 11 and 16; elsewhere the regional lower to middle

greenschist facies metamorphism has produced a well developed foliation (Holes 15

and 20) and local schistosity (Hole 10). Subsequent brecciation, alteration and shearing have obliterated any primary and regional metamorphic features from

Holes 09 and 19.

Mineralogically, the andesite contains 70 to 85 percent vitreous plagioclase, 10 to 20 percent gray-green chlorite and 1 to 2 percent visible quartz. Plagioclase phenocrysts, where present, are anhedral to subhedral, equidimensional and evenly distributed throughout the rock; groundmass plagioclase is saussuritized and grain

boundaries are indistinct. Chlorite is an alteration product of primary pyroxene

and occurs as dull, earthy flakes. Quartz occurs primarily as 0.05 to 0.1 mm, light

gray to colourless, anhedral crystals and locally as isolated phenocrysts up to 0.3 mm in diameter (Hole 16). The most common accessory minerals are leucoxene, with a maximum concentration of 3 percent in Hole 10, and ilmenite with a maximum concentration of 5 percent (Hole 11). Other accessory minerals include trace amounts of fuchsite (Hole 19) and chalcopyrite (Hole 20).

The only visually interesting mineralization associated with the andesite is in

Hole 19. This sample gave a weakly anomalous gold value of 205 ppb. It contains 10 to 15 percent very fine-grained disseminated pyrite associated with gray-white

quartz veins (15 percent). The primary features have been obliterated by 5 to 10

percent cherty silicified patches, by 15 percent pervasive Fe/Mg carbonate (dolomite?) alteration and 5 percent Fe/Mg carbonate veins, and by 2 to 3 percent

chlorite-sericite shears containing trace amounts of fuchsite. Intense limonitic and hematitic staining covers 5 percent of the sample.

4.3.2 Felsic Volcanics (Unit 2)

Felsic volcanics (rhyolite flows) were intersected in Holes 07, 17, 18 and 21 in the west-central and central portions of the property (Plan 2). Based on the magnetic response and interpolation of the drill intersections, the rhyolite appears

to form a 450 metre wide west-northwest trending horizon that is bordered to the

south by andesite (Unit 1) and to the north by felsic volcanic tuffs (Unit 3).

- 33 -

The rhyolite is generally yellowish-green to slightly pink with a grain size ranging from aphanitic to 0.05 mm. This fine grain size precludes observation of any textural features; however the rock is very hard and siliceous. Structurally, it is massive with a poorly developed foliation present in Holes 07 and 18 and local fracturing and possible shearing in Holes 17 and 21.

The aphanitic nature of the rhyolite does not allow for accurate identification of the constituent minerals. Undifferentiated quartz and feldspar constitute 80 to 90 percent of the rock. Sericite ranges up to 10 percent (Hole 17) and generally occurs as thin discontinuous ribbons that probably trace original flow bands in the viscous lava. In Hole 21, however, the sericite occurrs as very schistose bands suggesting hydrothermal deposition along shears. Accessory

minerals include a rare trace of fuchsite in the sericite bands of Hole 17 and 0.1

percent disseminated, randomly oriented tourmaline in the sericite bands of Hole 21.

Calcite veining obtains a maximum value of 10 percent in Hole 18 while Hole 17 contains the most (also 10 percent) disseminated Fe/Mg carbonate.

4.3.3 Felsic Pyrodastics (Unit 3)

Felsic pyroclastic rocks (tuff) were intersected primarily in the western part

of the property (Holes 01, 03, 05, 06 and 12), with two isolated intersections in the

east (Holes 32 and 39). The magnetic response of the felsic tuff is identical to that of the rhyolite, precluding any geophysical differentiation. Based on interpolations of the drill intersections, the western horizon is a continuous, 125 to

150 metre wide unit trending west-northwest (Plan 2). The apparent thickening of

this horizon in the vicinity of Holes 05 and 06 is probably the result of local folding. The two pyroclastic intersections in the east probably represent isolated lenses within a predominantly metasedimentary succession.

The tuff has a yellowish-green to yellowish-gray colour with a well developed foliated to schistose fabric. The maximum grain size is probably in the range of

-34-

0.1 to 0.2 mm (ash) although no lithic boundaries were discernable even in the coarser sections (Holes 01, 05, 06 and 12). Lithic fragments generally account for 70 to 80 percent of the sample and consist of aphanitic, quartzofeldspathic material. The balance of the rock is sericite and, locally, 1 to 2 percent quartz

phenocrysts up to 0.5 mm in diameter.

The finer grained tuff (0.05 mm and less; Holes 32 and 39) locally contains

coarse ash beds (Hole 32) as well as seams of soft yellow-green sericite, harder mixed quartz and feldspar and very hard exsolved sugary quartz with, on average a

ratio of 4:3:2:1.

The majority of the tuff samples contain disseminated Fe/Mg carbonate with

a maximum concentration of 15 percent (Holes 06 and 12). Only Hole 01 contains disseminated calcite (10 percent). The maximum sulphide concentration is 3

percent disseminated pyrite in Hole 39.

4.3.4 Metasediments (Unit 4)

Metasediments were intersected in four holes in the western half and in

twelve holes on the eastern half of the property (Plan 2). All of the intersections

are relatively pristine allowing for the differentiation of either graywacke (Subunit

4a) or siltstone (Subunit 4b). Graywacke predominates in the eastern half of the

property and siltstone in the western half although most intersections contain

varying proportions of both lithologies. Siltstone intersections are consistently associated with areas of high magnetic susceptibility reflecting the incorporation of chemically precipitated iron in a deep water environment. On this basis, the

high magnetic anomaly north of Holes 05 and 06 is inferred to be a siltstone horizon although it has not been drill tested. An offset in the magnetic contours

just south of Hole 02 probably reflects local folding or a possible fault structure.

The best example of graywacke was intersected in Hole 33 and consists of

sorted fine to medium sand (0.1 to 0.3 mm) beds intercalated with about 10 percent silt (less than 0.1 mm) beds. Ten percent of the sand-size grains are colourless

quartz with the balance being gray-green, aphanitic volcanic lithics. The matrix

consists of gray-green chlorite and constitutes 10 percent of the sample.

- 35 -

Siltstone is a medium to dark, gray to gray-green, schistose to locally phyllitic rock having a grain size ranging from aphanitic to less than 0.1 mm. This variation in grain size imparts a faint bedding which is generally parallel to the

schistosity. A crenulation cleavage is occasionally present, and in some crenulated samples the schistosity is at an angle of 10 to 60 degrees to the bedding plane. As

in graywacke, the matrix chlorite is a gray to gray-green but it is more abundant (75 to 85 percent versus 10 to 15 percent). Intercalated sandy graywacke beds are

present in amounts from 10 to 20 percent.

Carbonate is widespread in the graywacke and siltstone but generally occurs

at low concentrations. Calcite occurs either as small veins (Holes 13, 28, 29, 31

and 33) with a maximum concentration of 5 percent (Hole 31) or as a pervasive

alteration (Holes 02, 04, 31, 33, 34, 37 and 38) with a maximum concentration of 15 percent (Hole 34). Fe/Mg carbonate generally occurs as fine grained

disseminations (Holes 23, 27, 28, 29, 30 and 35) at concentrations of 1 to 2 percent, reaching a maximum of 5 percent in Hole 30. The preference of the Fe/Mg

carbonate alteration for the sedimentary rocks, the consistent carbonate

concentration levels and the pervasive nature of the alteration collectively suggest

a syngenetic origin with fluid movement through the relatively porous sediments

occurring during diagenesis.

All of the metasediments contain finely disseminated pyrite with a maximum concentration of 3 percent (Hole 04).

4.3.5 Iron Formation (Unit 5)

Banded iron formation was intersected only in Hole 36 which tested the

centre of a magnetic-high anomaly in the northeastern part of the property (Plan 2). The iron content of the rock is sufficient to give magnetic values 2,000 to

5,000 gammas above those for the enclosing rocks. The southern boundary of the iron formation is denoted by closely spaced linear magnetic contours; diffusion of the contours to the north indicates the unit dips in this direction. The contoured

- 36 -

magnetic data indicate that the iron formation horizon is at least 300 m wide and 750 m long, striking west-northwest.

The iron formation is of the oxide facies, containing alternating sugary bands of black magnetite, gray-white chert and white calcite. The iron-rich bands comprise 60 percent of the rock, have a minimum thickness of 0.75 mm and contain from 60 to 90 percent magnetite. The chert bands have a maximum thickness of 1.0 mm and constitute 30 percent of the sample. They locally contain one percent pyrite as fine disseminations and as thin ribbons. The calcite bands vary from 0.5 to 1.5 mm and constitute less than 10 percent of the sample.

4.3.6 Quartz-Feldspar Porphyry (Unit 6)

Quartz-feldspar porphyry was intersected in Holes 24, 25 and 26 in the south-

central portion of the property (Plan 2). The magnetic response of the porphyry is nearly identical to that of the graywacke (Sub-unit 4a) to the north as would be

expected since both lithologies have a low iron content.

The porphyry is massive with either a purple-red hematitic stain (Hole 24) or

a pale yellowish-green colour (Holes 25 and 26). Phenocrysts account for 30 to 60 percent of the rock. Plagioclase phenocrysts vary from 0.3 to 3.0 mm, are anhedral to subhedral in shape and predominate over quartz phenocrysts by a ratio of 30:1. Quartz phenocrysts are a cloudy gray-white colour and are subhedral with a grain size range of 0.2 to 0.6 mm (Hole 25). The ground mass comprises 40 to 70 percent of the porphyry and consists of aphanitic to 0.1 mm, equigranular interlocking grains of plagioclase and quartz in a ratio of 7:3.

Disseminated Fe/Mg carbonate concentrations are 20 and 12 percent in Holes 24 and 25 respectively. Calcite veining ocurrs in amounts of 5 and 2 percent in Holes 25 and 26, respectively. The calcite veins of Hole 25 contain 0.5 percent fine, disseminated cubic pyrite plus 5 percent dark purple fluorite.

- 37 -

4.4 Bedrock Geochemistry

All bedrock chip samples from the reverse circulation drilling program were analyzed for copper, zinc, arsenic and gold. The analytical results are summarized

in Table 8. Anomalous gold values (greater than or equal to 10 ppb) are plotted on Plan 2. Zinc and arsenic occur only in background concentrations, and the highest

copper value is 166 ppm in the intermediate volcanic intersection of Hole 11 which

contains less than 0.0.5 percent finely disseminated chalcopyrite clustered in

epidote veins.

Fifteen of the bedrock gold analyses are greater than or equal to 10 ppb and

are shown on Plan 2 in relation to contoured Fe/Mg carbonate alteration

percentages and bedrock lithologies. Three important trends are apparent:

1. Eight of the thirteen anomalies are in the eastern half of the property,

six of which are within the metasediment horizon (Unit 4).

2. Ten of the thirteen anomalies are associated with Fe/Mg carbonate

alteration, especially in the eastern half of the property.

3. The anomalies are relatively weak (10 to 205 ppb) but often occur in

adjacent drill holes and thus appear to be interrelated.

These trends suggest that the most favourable gold exploration targets are in

the east half of the property. They also suggest that some of the gold

mineralization may be syngenetic, since much of the Fe/Mg carbonate alteration with which the gold is associated appears to be syngenetic.

Geological Unit No. of Copper (ppm)

Sam es Range, Av. Zinc (ppm) Range, Av.

Arsenic(ppm) Range, Av.

Gold (ppb) Range, Av.

Quartz feldspar porphyry Unit 6 3 9-17, 13.3 63-69, 63.7 4-9, 6.3 L 5-10, 5.0

Iron formation - Unit 5 1 18 25 8 5

Metasediments - Unit 4 16 32-56, 43.2 53-98, 70.7 4-52, 17.7 L 5-30, 7.2

Felsic pyroclastics - Unit 3 7 15-42, 29.3 55-118, 73.4 3-54, 13.0 L 5-20, 6.4

oc Felsic volcanics - Unit 2 4 11-54, 23.8 37-100, 68.5 6-23, 16.0 L 5-10, 3.8

Intermediate volcanics - Unit 1 8 27-166, 74.5 42-134, 74.6 2-72, 14.6 L 5-205, 7.9

Table 8 - Summary of Bedrock Geochemistry

- 39 -

5.0 OVERBURDEN GEOLOGY

5.1 Quaternary History and Stratigraphy of the Abitibi Region

The Quaternary geology of the Abitibi region, as determined by ODM from thousands of drill holes and scanty literature, is summarized in Figure 7 and Table 9. Tills from three major glaciations and sediments from two interglacial periods

are present.

The oldest till was deposited by ice moving southward from Hudson Bay --possibly 1 million years ago in Kansan time -- and is enriched in clasts of Proterozoic sandstone and Paleozoic limestone. This till is so rarely preserved that it is of no significance in exploration. The next till (Lower Till) was deposited by ice moving southwestward from Nouveau Quebec in Illinoian time more than 125,000 years ago. It is preserved in many buried valleys and contains the dispersion trains from any mineralization in these valleys. The youngest till was deposited 10,000 years ago by Late Wisconsinan ice that had split into a southeast-moving Matheson/Cochrane lobe west of Val d'Or - Matagami and a southwest-

moving Chibougamau lobe east of Val d'Or - Matagami. The esker-like Harricana Moraine was deposited at the contact between the two ice lobes.

In Yarmouth and Sangamon time immediately following the Kansan and Illinoian glaciations, respectively, interglacial sediments including soil profiles and northward-transported fluvial gravels were deposited on the Kansan and Illinoian tills. The gravels consist mostly of recycled till debris, are oxidized, and often contain wood fragments.

In Early Wisconsinan time 100,000 years ago and in Late Wisconsinan time 10,000 years ago, the region was flooded by glacial Lakes Ojibway I and II respectively, and varved clay, silt and fine sand sheets up to 30 metres thick were deposited. The Ojibway I sediments coarsen upward because they were deposited from a transgressive ice sheet. They were overridden by the thick Wisconsinan ice sheet and are indurated, dry and platy whereas the Ojibway II sediments were deposited from regressive ice, fine upward and are soft. Glaciofluvial esker/delta sands and gravels were deposited by the meltwater rivers that fed both lakes.

1 1 t 7 1 1 1 1 1 1 L 1 I 1! t 1 I I. 1 L 1 1 1 1 1 1 1 1 1 t 1 1 1 J l 1/ - I

I I I I I I l I L I I I J L 1 r L 1 1 I I 1 L L 1 I 1 I 1 1 1 r 1 I 1 t 1 I I 1 L

I I I I I I 1 1 1 I I 1 I 1/ 1 1.1 t l t l 1 L 1 l I 1 1 1 1 I 7 l I ill 1 1 1 1 1 1 1 f lilt I 1 ! I I I I L 1 1 I 1 1_ 1 1 1 1

1 1 1 1 I 1 L 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1

r

Hudson I 1 1 1 1 I11 ' 1 ~ 11r I 7 t11 1 IrrIIILI'IT r1 1I1'1'1 rill!

l ' 1 1 1 ' l' 1 7

1 11 1 1 (Ï 1 L 1 r 1 l I 1 f

1 r I 1 I I 1 1 I t 1 I i I 1 I 1 I 1 1

1 1

1I 1I 11 I 1 I r I 11 1 I 111 I I r`` 1

1 L 1_ I I I_ I

r t 1 1 J ~ I I II-II I 'III I , r11111 -l1ll f,ll l l ' l ' i i~l'11 1'I I 1 1 1'l'1

1 1 1 il I I IIII I

I l

I t

I 1I tI 1I

/1

I 1 11

11

11

11 I r l 1

J 1 1 I 1 1 l 1 J I I f 1 1 I l I I1 I L 1 1 1 1 ! l 1 1 I I LI ' 1 I I I I 17 1 1

LI I I r1 I i I I

1 1 I I t I

I I11 7 1 ' I I 1

t 1 t .'~ r l ' I' t 1 1 I' L L 1 1 1 I

I I L 1 t 1 I f t I 1 I I 1 1 1 1 1 1 . 1 I 1 I 1 I 1 I 1 I I 1 I I 1 I 1 I 1 I 1 I I I

1' I I I I 1" I~ I I 1 1 ' t ' 1 ~ I' l' t' I t t ' 1 11 1 1 ' 1

1~ 1 1 1 I 1 I r 1 1

1 ! t t L l l l

1 1 1 1 1 1 I L I I t I L 1 t 1 1 1 1 I I I

I I L l ' 1 'r11_t 111I 1 I l I l l

I i 1 I 1 t 1 1 L 1 I I 1 t 1

'\IMI MIMEO= MOON OMrMI MR Ilia 1111111M11111• ■~Ir\ Mlle= MI MENEM= MIMI MN MN MI r—•>lW.

\1MMINEMINNINIIIIIIMIM MIN 01111111UM ME el1 110111=1r. _ ansinamoweeemesernowilmm• •11~t~11~~t► umeammim --Ur

[' r 1 l ' l ' l'I I I ' I

I I I l t 1 1 I l 1

IRIM MINIS MI Mrlla MR NM 110 NM EMI rIMMNIM MIN

141.11.100011411:1347 =~=

•••• 1~

OULàAMAU

VAL UUH • HEMLO

Superior

• SUUUUHy ONTAqrO

U11AWAr

i LEGEND

SOURCE ROCKS

Paleozoic Ilma•lon•

~ Prolrrroaoic sandstone

Abitibi 1411 rolc.nlc•

111 Arch•an Sr.nll•

ICE MOVEMENT

--- Wisconsin..

Illlnoian

K ans.. IT)

•c.i.

0 100 200Mm

1:1,000,000

Figure 7 - Glacial History of the Abitibi Region

4

6

5

3 L

2

- 41 -

Abitibi Quaternary Stratigraphy

0 Years B.P. HOLOCENE

7 Holocene sediments 7b - forest-peat member 7a - fluvial member

PLEISTOCENE LATE WISCONSINAN

Cochrane Unit 6c - regressive sediments 6b - till 6a - transgressive sediments

Ojibway II Sediments 5d - littoral and aeolian member 5c - glaciolacustrine clay member 5b - glaciolacustrine sand member 5a - glaciofluvial member

Chibougamau/Matheson Till

EARLY WISCONSINAN AND SANGAMON

Missinaibi Sediments 3c - Ojibway I member 3b - forest-peat member 3a - fluvial member

10,000 Years B.P.

100,000 Years B.P.

ILLINOIAN

Lower Till and Sediments

1,000,000 YARMOUTH AND KANSAN Years B.P.

1

Older Till and Sediments

Table 9 - Table of Quaternary Formations for the Abitibi Region

- 42 -

The final glacial event in the Abitibi was a minor southeastward re-advance of the thin Cochrane ice lobe into the north part of Lake Ojibway II, depositing Cochrane Till which consists mainly of clay recycled from the soft lake bed. When the Cochrane ice melted, Lake Ojibway II drained catastrophically, exposing the Late Wisconsinan eskers which were subject to considerable erosion by wave and wind action until they became stabilized by vegetation.

5.2 Quaternary Geology of the Douay Property

During Late Wisconsinan time the Douay property was covered first by the

Matheson ice lobe and then in the northeastern portion of Lake Ojibway. Based on regionally-spaced data points, Vincent and Hardy (1979) have estimated the maximum lake level to occur at a present elevation of 360 metres above sea level. As the average surface elevation across the property is 290 metres, this implies an average water depth of 70 metres. However, an airphoto examination of the area immediately north of the Douay property (Fig. 8) indicates a water depth of only 45

metres. A prominent strandline with a 335 metre elevation occurs on the western

side of a northwest-southeast trending esker. Kettle depressions along the esker

axis and above the 335 m elevation are dry indicating a sand bottom. These depressions have retained their steep primary slopes while those below 335 m have

washed, gentle slopes and are occupied by lakes, indicating a clay bottom.

Additional evidence of a shallow glaciolacustrine environment is the presence of iceberg scours on a platform area on the southwest side of the esker. These scours are obliquely cross-cutting linear trenches which taper and shallow to the west-

northwest, indicating that the prevailing winds 10,000 years ago were from that direction as they are today.

Prest (1968) believed that the Cochrane ice lobe advanced as far south as the Douay property, implying that the esker and icebergs were associated with this

glaciation rather than Matheson glaciation; however, this is not the case. Cochrane Till is not present on the Douay property or on a property 10 km to the northwest that has been drilled by ODM. Examination of the topographic maps

Golden Rule Property

- 43 -

Figure 8 - 1975 Air Photo of Drill Area (1:50,000)

- 44 -

for the area (32E/9, 10, 15 and 16) indicates the Cochrane limit to be 30 kilometres to the northwest near the junction of the Harricana and Adam Rivers. This agrees with our drill evidence from the Casa-Berardi area, which places the Cochrane limit just north of the Estrades Deposit (Fig. 2).

Conditions in Lake Ojbway I during Early Wisconsinan time 100,000 years ago were probably similar to those in Lake Ojibway II although the earlier lake must have been very shallow as the land surface had not been recently depressed 100 to 125 metres by a heavy ice load as it had during Late Wisconsinan time. Glaciolacustrine sediments deposited in Lake Ojibway I on the Douay property

apparently were too thin to be preserved or to protect any underlying pre-

Wisconsinan units from subsequent erosion as only deposits of Late Wisconsinan and Holocene age were intersected in the drilling. These units are described in detail below and are shown in section in Figures 9 to 12. The lines of section are shown on Plan 3.

5.2.1 Matheson Till (Abitibi Unit 4)

Matheson Till is the oldest unit preserved on the Douay property. It was

intersected in all drill holes except Holes 37, 38 and 39 which were drilled on the

west flank of the Harricana Moraine. Till thickness on the western part of the

property ranges from 1 to 3 metres over bedrock highs (Holes 01, 04, 15) to a

maximum of 27 metres in a bedrock depression (Hole 19; Fig. 11). In the eastern part of the property, Matheson Till is gradually supplanted by esker-like sands and

gravels of the Harricana Interlobate Moraine (Holes 29 to 36; Fig. 12) and finally is no longer present (Holes 37 to 39).

The majority of the till matrix material consists of gray to gray-beige, fine-grained, bedrock-derived sand and silt rather than recycled glaciolacustrine

sediments, reflecting the absence or very shallow depth of Lake Ojibway I in this

area. Abundant gritty grey clay matrix suggestive of recycling is generally confined to the lower 3 to 5 metres of the till section (Holes 05, 06, 08, 09, 17, 19,

21, 22, 23, 28). Erosional sheeting of pre-till sediments was observed only in Hole

22 where a 0.4 metre thick layer of presumed Ojibway I clay was intersected near the base of an 11.2 metre thick section of sandy to clay-rich till.

PAGE(S)45 4‘ 41 43MICROFIL MEE(S) SUR 35 MM

- 49 -

Stratification is evident in the Matheson Till and reflects meltout in Lake Ojibway II where concurrent sedimentation was occurring. The best examples of this occur in Holes 19 and 21 where sand, silt and soft pure to gritty clay beds are

found interlayered with sandy, pebbly till.

Matheson Till is in bedrock contact in all of the drill holes in which it was

intersected. This is reflected in the clast size and lithologies and makes the till very useful for heavy mineral geochemical exploration. About 20 percent of the

holes show a down-hole increase in the proportion of mafic metavolcanic and

metasedimentary clasts and/or an increase in clast size from pebbles to cobbles.

The ratio of local metavolcanic and metasedimentary clasts to distal granitic

clasts varies from 60:40 to 70:30 in the upper part of thicker till sections to 80:20

near the base.

5.2.2 Ojibway II Sediments (Abitibi Unit 5)

Late Wisconsinan sediments related to Lake Ojibway II on the Douay property include the following subunits:

5a Glaciofluvial sand and gravel of the Harricana Interlobate Moraine on

the eastern edge of the property.

5b Moraine-proximal glaciolacustrine sand.

5c Moraine-distal glaciolacustrine clay and silt.

Deposits of the Harricana Interlobate Moraine (Subunit 5a) were intersected

in only three of the eastern-most drill holes (Fig. 12). The maximum thickness of

these sediments is 33 metres in Hole 39. The moraine rests directly on bedrock.

This indicates that prior to deposition of the moraine, all basal debris that would normally have been deposited as Matheson Till was eroded; that is, the moraine is actually a large esker. The thick moraine deposits in Hole 39 comprise fine-

- 50 -

grained grey-beige sand with interbeds of coarse-grained sand, clay and pebbly sand. The thinner intersections in Holes 37 and 38 are of esker-like, pebbly to cobbly gravel with a medium- to coarse-grained sand matrix. Clast lithologies are 65 percent mafic volcanics and 35 percent granitics.

Moraine-proximal glaciolacustrine sand (Subunit 5b) is ubiquitous on the Douay property and was intersected in all reverse circulation drill holes. It overlies either the Matheson Till or the moraine gravel and sand (Holes 37 to 39 only). The average thickness of the glaciolacustrine sand is 33 metres on the eastern part of the property (Fig. 12) and 5.6 metres on the central and western parts. The sand is grey-beige to beige and very fine-grained with common grey clay interbeds. The grain size of the sand increases down-section.

Moraine-distal glaciolacustrine clay and silt (Subunit 5c) blankets the Douay property, overlies glaciolacustrine sand in all drill holes and has an average

thickness of 11 metres. The clay is grey, pure and soft. The upper 5 to 6 metres are commonly underconsolidated and in some drill holes the first 0.5 to 1.5 metres

are oxidized beige, beige-brown or dark-brown and are slightly gritty. The clay

grades downward into silt with clay interbeds, which in turn grades downward into sand (Subunit 5b).

5.2.3 Holocene Sediments (Abitibi Unit 7)

The glaciolacustrine clay on the Douay property is completely blanketed by a thin veneer of Holocene sediments that were deposited during the 8,000 years that

have elapsed since the draining of Lake Ojibway II. The sediments are all peat, with a maximum thickness of 3 metres at Hole 33.

-51 -

6.0 OVERBURDEN GEOCHEMISTRY

6.1 Regional Gold and Base Metal Background and Anomaly Threshold Levels

Heavy mineral gold anomaly threshold levels and properties of significant

gold dispersion trains are detailed in Appendix G. In summary, visible gold

particles of various sizes are randomly scattered through the till and the absence or presence of one or two of these particles in a standard 8 kilogram sample may

result in an analytical background ranging from less than 10 to greater than 50,000

ppb (Table 5). Because of this great variability, which is known as the "nugget

effect", we have established an anomaly threshold level of 10 grains of visible gold.

Recognizing that some anomalies may be caused by gold occluded in sulphides or other minerals rather than by free gold grains, we also investigate any anomalies

over a second, 1,000 ppb threshold. The 1,000 ppb value is based on the observation that heavy mineral concentrates from most gold dispersion trains have a gold content similar to that of the source mineralization; thus 1,000 ppb in the till is suggestive of anomalous bedrock and values over 3,000 ppb are suggestive of ore-

grade mineralization. Significant anomalies, in addition to being caused by more

than 10 gold grains or by occluded gold, also generally display vertical stratigraphic

continuity within the host till horizon and may have an associated pathfinder

metal, particularly arsenic or copper. Delicate or irregular gold grains are also

significant as they normally indicate a proximal source. Finally, the gold grains

should be of a common size, indicating derivation from a single source.

The base metal background of a heavy mineral concentrate, and particularly

of our high-density methylene iodide concentrates, is higher than that of a raw till

sample, ranging up to several hundred ppm, because base metals tend to substitute to a significant extent for other metal ions in the structures of heavy silicate and

sulphide minerals such as pyroxene and pyrite. The established anomaly threshold level for Cu and Zn, indicating the presence of ore-type minerals such as chalcopyrite and sphalerite in the sample, is greater than 800 ppm. Because till concentrates from dispersion train samples tend to grade the same as the bedrock

source mineralization, massive sulphide deposits which typically grade 50,000 ppm

- 52 -

(5 percent) combined Cu-Zn often produce anomalies over 10,000 ppm in each

metal. The anomaly threshold level for arsenic is the same as for Cu and Zn but

only those arsenic anomalies having a gold association are significant.

Significant base metal anomalies, like significant gold anomalies, normally display vertical continuity in the host till and have a pathfinder association. In the case of copper and zinc, the presence of grains of banded massive pyrite-chalcopyrite-sphalerite mineralization in the concentrate is a favourable indicator

whereas the presence of only coarse crystalline vein-type chalcopyrite or

sphalerite is unfavourable.

6.2 Douay Heavy Mineral Gold Anomalies

Twenty-nine of the two hundred and seventy (10.7 percent) Douay heavy

mineral concentrates yielded measured and/or calculated gold assays greater than

or equal to our 1000 ppb anomaly threshold. Visible gold was observed in 79

samples (29.3 percent). The total number of grains was 182 but only one sample

met our second, 10-grain anomaly threshold. This sample, in Hole 19, is one of the

29 that assayed over 1,000 ppb. These 29 anomalies are scattered in 21 (54

percent) of the 39 drill holes. Nineteen of the anomalies are in Matheson Till and

ten are in sand and gravel sections related to the Harricana Interlobate Moraine.

In the north part of the Abitibi region, on average, 10 percent of samples that

contain only background levels of gold yield anomalous results due to:

1. The chance occurrence of one or two coarse gold grains in the

sample ("nugget effect"), or

2. The chance clustering of 10 or more fine gold grains in the sample ("cluster effect").

- 53 -

The fact that only 10.7 percent of the Douay samples are anomalous suggests that most of the anomalies represent background noise. However, 50 percent of the holes with anomalous overburden till samples also have anomalous bedrock

values and these holes are clustered over the favourably (Fe/Mg carbonate) altered

metasediments in the east half of the property; thus the overburden anomalies may

be more significant collectively than they are individually.

A systematic, three-stage screening process has been applied to each of the

anomalous samples (Table 10) with the objective of eliminating high background noise and isolating any dispersion train anomalies that may be present.

The first stage in the screening is to downgrade anomalies which have no

stratigraphic continuity, although no anomalies are eliminated on this basis alone.

An anomaly at the base of a till horizon or in a one-sample thick till horizon is automatically assumed to have stratigraphic continuity even though it generally

does not. A lack of stratigraphic continuity is displayed by a single, isolated anomalous sample within or at the top of a multi-sample till horizon or by an

anomaly in sand or gravel. A gold anomaly with no stratigraphic continuity is generally caused by a single nugget or by an erratic cluster of background gold

grains (the "cluster effect"). These nugget or cluster anomalies sometimes occur in

consecutive samples in a drill hole and occasionally they are contiguous with a gold

anomaly of another type; we refer to this as "chance" continuity and treat the

anomalies as if they had no continuity. Twenty-four of the twenty-nine Douay

anomalies have no stratigraphic continuity, including the 10 anomalies that are in sand and gravel sections.

The second stage in the screening is used for anomalous samples with

observed gold grains. The calculated (predicted) visible gold assays are compared

to the measured Bondar-Clegg assays to eliminate those anomalies in which the

1000 ppb threshold is no longer met after the contributions of one or two observed

nuggets are subtracted from the total assay. In samples with observed nuggets and little or no fine visible gold, either a good correlation of the two assays or a low measured assay indicates that essentially all of the gold in the concentrate is in the nuggets and the anomaly is a false one.

Gold Anomalies Grains

V.G. 1st Stage Screening

2nd Stage Screening

3rd Stage Screening

Hole Sample Au Assay (ppb) (*Not (Strat. (Meas. Assay: (Nugget No. No. Meas. Cale. Panned) Cont.) Calc. Assay) Effect)

GR-87- 02 02 1,580 1,963 1* No Good correlation

Observed

06 01 1,140 1,623 8 No Good correlation

Observed

08 4,400 4,459 1* No Good correlation

Observed

12 06 1,175 NA 0* Basal High Inferred

16 04 2,810 1,838 4 No Good correlation

Observed

17 03 1,585 331 1* No High Inferred

19 15 1,670 1,056 2 No Good correlation

Observed

18 1,730 1,658 31 Basal Good correlation

No

21 03 2,200 1,453 4 No Good correlation

Observed

22 03 5,740 6,591 5 No Good correlation

Observed

23 02 1,560 641 1* No High Inferred

26 04 2,760 1,311 5 No High Observed (slightly)

Anomaly Remarks Class

Pulp and metallics assay, mostly Nugget coarse gold detected.

78% of calc. assay produced by one Nugget

abraded 150x250 micron gold grain. 15% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected.

Check panned 1/4 concentrate, found

Nugget 2 abraded gold grains 75x75 and 75x150 microns, 3% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected. 98% of calc. assay produced by one abraded 200x300 micron gold grain. 5% pyrite.

Check panned 1/4 concentrate: no Nugget

V.G., 2% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected. 85% of talc. assay produced by one abraded 200x250 micron gold grain. No sulphides.

29 of 31 gold grains delicate and

Bedrock of similar size. 70% pyrite contamination

Pulp and metallics assay, mostly Nugget coarse gold detected. 98% of calc. assay produced by one 250x325 micron abraded gold grain. 5% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected. 92% of calc. assay produced by one 400x575 micron gold grain. 7% pyrite.

Check panned 1/4 concentrate, Nugget found no V.G., 2% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected. 88% of calculated assay produced by one 225x25 micron abraded gold grain. 12% pyrite.

Table - Heavy Mineral Gold Anomaly Screening

Gold Anomalies Grains V.G.

1st Stage Screening

2nd Stage Screening

3rd Stage Screening

Hole Sample Au Assay (ppb) (*Not (Strat. (Meas. Assay: (Nugget No. No. Meas. Calc. Panned) Cont.) Calc. Assay) Effect)

GR-87- 27 02 2,500 516 1* No High Inferred

28 05 1,475 934 1* No Good correlation

Observed

29 02 1,020 1,250 2 No Good correlation

Observed

04 1,240 517 1* No High Inferred

30 06 1,270 30 1* Basal High Inferred

32 04 560 1,031 7* Basal Good correlation

Observed

33 03 1,710 994 1* No (sand)

Good correlation

Observed

34 05 1,210 1,017 1 No (sand)

Good correlation

Observed

35 07 930 1,078 5 No (sand)

Good correlation

Observed

11 150 23,979 3 Basal Low Observed

37 07 1,540 NA 0* Chance High Inferred (gravel)

08 1,085 NA 0* Chance High Inferred (gravel)

Anomaly Remarks

Class

Check panned 1/4 concentrate; no

Nugget V.G., 3% pyrite.

Pulp and metallics assay not

Nugget requested.

Pulp and metallics assay, mostly

Nugget coarse gold detected. 99% of calc. assay produced by one 250x250 abraded gold grain. 7% pyrite.

Check panned 1/4 concentrate, Nugget found only one 25x75 micron abraded gold grain, 3% pyrite.

Check panned 1/4 concentrate, found

Nugget no V.G., 5% pyrite.

Pulp and metallics assay, mostly

Nugget coarse gold detected. 90% of calc. assay produced by one 200x250 micron abraded gold grain. 40% pyrite.

Pulp and metallics assay not

Nugget requested.

Pulp and metallics assay, mostly

Nugget coarse gold detected. 15% pyrite.

Pulp and metallics assay, mostly

Nugget coarse gold detected. 92% of calc. assay produced by one 200x275 micron abraded gold grain. 15% pyrite.

Pulp and rnetallics assay, mostly

Nugget coarse gold detected. Check panned 1/4 concentrate, found 500x600 and 600x900 micron abraded gold grains, which contributed 99.5% of the calc. assay. 40% pyrite.

Check panned 1/4 concentrate, Nugget found no V.G., 10% pyrite.

Check panned 1/4 concentrate, Nugget found no V.G., 10% pyrite.

'fable 10 ileavy Mineral Gold Anomaly Screening (cowtt'd)

Gold Anomalies Grains

V.G. 1st Stage Screening

2nd Stage Screening

3rd Stage Screening

Hole Sample Au Assay (ppb) (*Not (Strat. (Meas. Assay: (Nugget No. No. Meas. Calc. Panned) Cont.) Calc. Assay) Effect)

GR-87- 38 01 10 3,053 1* Chance Low Observed (sand)

02 1,170 NA 0* Chance High Inferred (sand)

09 10,010 4,138 1* No High Observed (gravel) (slightly)

11 8,670 5,762 1 No (gravel)

Good correlation

Observed

39 06 1,665 NA No High Inferred (gravel)

Anomaly Remarks Class

Check panned 1/4 concentrate, Nugget found sighted 250x250 micron abraded gold grain, 0.5 pyrite.

Check panned 1/4 concentrate, Nugget found one 125x175 micron abraded gold grain, 0.5% pyrite.

Pulp and metallics assay, mostly Nugget

coarse gold detected.

Pulp and metallics assay, mostly Nugget

coarse gold detected. 20% pyrite.

Total concentrate weight 1.0 gram; Nugget would require only one 100-micron gold grain to produce measured assay.

T hk 10 • l kavy Mineral Gold Anomaly Screening (cclnt'd)

- 57 -

We consider the correlation between a calculated and measured assay to be "good" if the calculated assay is not more than twice as high as or fifty percent less than the measured assay; this allows for a doubling or halving of the normal thickness factor for flake gold particles used in the calculation. Fourteen of the twenty-nine Douay anomalies show good assay correlation and are in concentrates that would assay less than 1000 ppb if the contributions of one or two observed nuggets were subtracted from the total assays. In most cases the nuggets are abraded indicating long transport. Thirteen of the fourteen "good correlation" anomalies have no stratigraphic continuity and thus are twice-eliminated; the other anomaly by chance occurs in a basal till sample.

A low measured assay for a concentrate with one or more observed nuggets indicates nugget retention in the 1/4 library split of the concentrate. If no other gold is present in the concentrate, the measured assay for the 3/4 concentrate will be below the 1000 ppb anomaly threshold. Two of the twenty-nine Douay anomalies (Samples 35-11 and 38-01) are of this type. Two abraded nuggets were

observed during tabling of Sample 35-11 and one abraded nugget was observed in

Sample 38-01. Check panning of the 1/4 concentrates showed that all of these

nuggets had been retained. The Sample 38-01 anomaly has no stratigraphic

continuity and thus is twice-eliminated; the Sample 35-11 anomaly by chance occurs in a basal till sample.

The second-stage screening is very reliable because it is based on direct

observation of the gold grains. This screening has effectively eliminated 16 of the

29 Douay gold anomalies at the 100 percent confidence level. Fourteen of the

same anomalies have no stratigraphic continuity and thus were also eliminated by the first-stage screening.

The third stage in the screening applies to samples in which the measured

assays are over 1000 ppb and are too high to be accounted for by the gold grains, if

any, observed during processing. High measured assays can be caused by any one of the following:

-58-

1. A nugget that was recovered but not sighted during processing.

2. A sighted nugget for which the actual thickness is greater than the

assumed thickness (0.1-0.2 X diameter) used in the assay calculation.

3. The difference in weight between the total concentrate on which the

calculation is based and the portion of 3/4 concentrate that is assayed (applies only to samples in which a nugget is present, as fine gold would

be evenly distributed through the sample).

4. A large number of missed fine gold grains.

5. Gold occluded in pyrite or another heavy mineral.

Unsighted nuggets normally account for about 80 percent of unexpectedly high assays, the thickness and weight factors for 10-20 percent, and fine gold and

occluded gold for less than 10 percent. Only the fine gold and occluded gold

anomalies are significant.

The third-stage screening is basically an indirect method in which a

mineralogical investigation of the retained 1/4 concentrate is made, principally by

panning, to determine the probable cause of the high assay in the 3/4 concentrate.

The 3/4 concentrate itself cannot be panned as it is pulped (ground) and largely

consumed during analysis unless the analysis is by the non-destructive instrumental neutron activation (INA) method.

An absence or minimal amount of fine visible gold in the 1/4 concentrate

precludes the occurrence of fine gold in anomalous concentrations in the 3/4

analytical split, and such anomalies can be assumed to have been caused by a

missed or unusually thick nugget or by occluded gold. The potential for occluded

gold is greatest in samples that contain pathfinder minerals or more than 10 percent pyrite. Where uncertainty exists the 1/4 concentrate can be analyzed by the non-destructive INA method with the hope of duplicating the 3/4 analysis and

- 59 -

thereby proving the presence of occluded gold. The third-stage screening then becomes a direct rather than indirect method and is essentially 100 percent

reliable.

Twelve of the thirteen anomalies that could not be eliminated by the second-

stage screening gave unexpectedly high measured assays and thus are amenable to third-stage screening. Check panning of the 1/4 concentrates of these twelve

samples yielded zero to two or three grains per sample. These grains are all of the abraded background type and are so fine that no grain would contribute more than

300 ppb gold to the assay; thus the anomalies were not caused by fine visible gold.

Occluded gold can also be discounted since pyrite levels are generally less than 10

percent and often less than 4 percent, and no arsenopyrite or other pathfinder minerals are present. Thus these 12 anomalies can be inferred with a high level of

confidence to be due to erratic background nuggets that were recovered but not sighted during sample processing. Ten of the same anomalies have no stratigraphic

continuity and thus are twice eliminated; the other two by chance occur in basal till samples.

With 16 and 12 anomalous samples now eliminated with complete confidence

by the second and third-stage screenings, respectively, only Sample 19-18 has been

identified as being potentially significant.

6.2.1 Hole 19 Gold Anomaly

The anomaly in Hole 19 occurs at the base of a 22.3 metre section of

Matheson Till resting on bedrock. Thirty-one gold grains were sighted during

processing; 29 are delicate and 2 are irregular and the average diameter is between 50 and 75 microns.

The observed abundance, shape, size and position of the gold grains indicate

either glacial dispersion from a very local source or milling of gold from a cobble or bedrock by the drill bit. The underlying bedrock yielded a 205 ppb gold anomaly

and thus is the most probable source of the overburden anomaly. The most

- 60 -

conclusive piece of evidence for a bedrock source would be to observe drill bit striae on the gold grain surfaces. The small size of the gold grains in this case makes identification of striae impossible but the +10 mesh clast fraction of the till does contain 10 to 15 percent bedrock cuttings. As well, the gold grain panning

description mentions several grains with limonite in their pitted surfaces, implying preglacial oxidization and leaching of the source mineralization, and 5 percent of

the bedrock chips show similar hematite and limonite staining.

6.3 Douay Copper, Zinc and Arsenic Heavy Mineral Anomalies

The heavy mineral anomaly threshold for copper, zinc and arsenic is 800

ppm. On the Douay property, background levels for copper and zinc (40-200 and

20-150 ppm, respectively) are relatively consistent with Abitibi Belt averages while arsenic levels tend to be slightly higher (20 to 600 ppm).

None of the 270 heavy mineral concentrates are anomalous in zinc. Sample

18-04 is slightly anomalous in copper (1,060 ppm). Examination of the 1/4

concentrate identified 0.3 percent chalcopyrite grains as the mineral source but

the style and host of the mineralization could not be determined. This anomaly is

not considered significant as there is no zinc or gold association.

Samples 17-06 and 28-11 are marginally anomalous in arsenic with respective values of 1750 and 1225 ppm. Both samples are from Matheson Till at the bedrock

interface. Examination of the 1/4 concentrate splits identified arsenopyrite as the

mineral source with respective concentrations of 0.4 and 0.3 percent. The arsenopyrite occurs as coarse (250 to 500 micron) grains suggesting a vein-type

source. Neither anomaly is considered significant as there is no gold association.

All seven till samples from Hole 23 returned elevated but sub-anomalous

(generally 200-500 ppm) values of copper, zinc and arsenic. The 1/4 concentrates contain traces of chalcopyrite, sphalerite and arsenopyrite and 45 to 60 percent pyrite. Ninety percent of the pyrite occurs as coarse cubic grains while ten

- 61 -

percent occurs as fine disseminations within quartz-carbonate rock chips

suggesting vein-type mineralization.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Gold Potential of the Douay Property

The Douay reverse circulation drilling has shown that the property has a

geological environment that could host significant gold deposits. Golden Rule's

assumption that the property is along strike from Inco's Douay Gold Zone appears

to be correct as the stratigraphic patterns are very similar in both areas and the

Douay Fault that is said to control the Inco mineralization appears to pass through

the southern Golden Rule claims.

The south-central and eastern areas of the property have the highest gold

potential. In the south-central area, weak gold mineralization (Hole 19) occurs in a

silicified and Fe/Mg carbonate-veined, east-west trending shear zone in

intermediate volcanic rocks in close proximity to a quartz-feldspar porphyry intrusion. Pyrite and Fe/Mg carbonate enrichment, traces of fuchsite along some

shear surfaces and the nearby occurrence of fluorite (Hole 25) attest to the movement of hydrothermal fluids.

In the eastern area, gold enrichment occurs in several adjacent holes and

appears to be related to disseminated Fe/Mg carbonate alteration of probable

syngenetic origin in the thick graywacke/siltstone sequence rather than to hydrothermal Fe/Mg carbonate veining.

The gold content of the till is relatively low but, considering the wide hole

spacing, is not particularly detrimental to the overall gold potential of the property. Indeed, a high background is generally a nuisance as it is caused by the cluster and nugget effects. Most of the overburden gold anomalies on the property

are nugget anomalies but these anomalies may collectively be significant as they

are clustered in the east where the bedrock alteration and gold geochemistry are the most favourable.

- 62 -

7.2 Recommended Follow-Up

The gold mineralization on the Douay property is restricted to the eastern half and all future exploration efforts should be restricted to the area bounded by

lines 30W to 60W.

The first priority is to establish grid lines at the west end of the target area,

which was not covered in Golden Rule's earlier geophysical surveys, and to extend all grid lines between lines 40W and 60W to the southern property boundary.

Magnetometer and VLF geophysical surveys should then be performed on these lines and tied in to the earlier surveys.

The gold mineralization intersected in Hole 19 should be further assessed

with fourteen reverse circulation drill holes using a 100 x 100 metre pattern as shown in Plan 4. The initial reconnaissance reverse circulation drill coverage

should also be enhanced with twenty fill-in holes as shown in Plan 4. Assuming an average hole depth of 40 metres for the 34 proposed reverse circulation drill holes

and an average all-inclusive cost of $65/metre, the cost of the follow-up drilling would be $88,400.

- 63 -

8.0 REFERENCES

Averill, S.A. Overburden Exploration and the New Glacial History of 1978: Northern Canada; Canadian Mining Journal, Vol. 99, No. 4, p.

58-64.

Bostock, H.S. Physiographic Subdivisions of Canada: in Geology and 1968: Economic Minerals of Canada, 5th Edition, edited by R.J.W.

Douglas; Geological Survey of Canada, Economic Geology Report No. 1, p.16.

Boraks, R.S., Geological Report on Drilling Activities in Douay and Joutel 1986 Townships in Northwestern Quebec for Resources Minieres

Aabarock Inc.

Clifton, H.E., Marine Sediment Sample Preparation for Analysis for Low Hubert, A., Concentrations of Fine Detrital Gold; U.S. Dept. Interior, Phillips, R.L. Geol. Surv. Circ. 545, 11p. 1967:

Dimock, B.K. A Comparative Study of Sample Recovery Systems in Glacial 1985: Overburden Exploration; Student Work Report Prepared for

Overburden Drilling Management Limited and Faculty of Science, University of Waterloo, 32 p.

Gray, R.S. 1983:

Overburden Drilling as a Tool for Gold Exploration; 85th Annual General Meeting of CIM-1983, Paper No. 19.

Kurina, K.P. Modifications to the Two-Bucket System for Reverse 1986: Circulation Drill Hole Sampling: Effects on Fine Particle

Retention; Student Work Report Prepared for Overburden Drilling Management Limited and Faculty of Science, University of Waterloo, 20 p.

Lacroix, S. Gold Bearing Casa-Bérardi Fault Zone. MERQ promotion 1987: document No. 17, pg 2-17.

Latulippe, M. The stratigraphic divisions of the Abitibi-Temiscamingue 1976: Area of North-Western Quebec; Quebec Dept. of Mines and

Nat. Resources unpublished Map, 1:633,600.

Cartes de Compilation Géoscientifique, 32E/9-0102, 32/19-0103, 32E/9-0104; Edwin Gaucher et Associés.

Prest, V.K., Grant, O.R., Rampton, V.N. 1968:

Geology and Economic Minerals of Canada, 5th Edition: Maps and Charts, Map 1253A, Glacial Map of Canada, edited by R.J.W. Douglas; Geological Survey of Canada; Economic Geology Report No. 1.

MERQ 1983:

- 64 -

Shilts, W.W. 1980:

Vincent, J-S., Hardy, L. 1979:

Flow Patterns in the Central North American Ice Sheet; Nature, Volume 286, p. 213-218.

The Evolution of Glacial Lakes Barlow and Ojibway, Quebec and Ontario; Geol. Surv. Can., Bull. 316, 18 p.

APPENDIX A

REVERSE CIRCULATION DRILL HOLE LOGS

4 —1 4

4 5-

6

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO Ci LOCATION L',3,-; 2i• 6-7, 5 /-',/..e.„ 2 Li C yrk DATE 19 L2

GEOLOGIST . DRILLER e4-, 110'-- BIT NO /ILrn't12 BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE

TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER r? MOVE TO TO •NEXT HOLE

INT

ER

VA

L

DESCRIPTIVE LOG

2 —3.

3

7

8

• 14— L c '

15— G c,

c 16- ,

N\'+'

7

18

20-2

Let. ,xt 'I

DESCRIPTIVE LOG

-J O. fz

= 2 U Q F- 2 2~ > a2 .• a0 ¢ W w Q W C

(r J Z 7 —

cr)

C

â _ . 2 _

3~_a

~—' -

ls~

Jt~

4.41,f1ti'-',~/_.o,.:.n•./~f

"! r .•v !% /lnj~G,

:>~

~L9 ~.~-r•••~C ,w_- Cr-~:

— o

1-a _

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE ✓-L4.T 19&

HOLE NO 37 fr). • LOCATION ~~nw~~fiT` ~Î~•'. ~~çvrt

GEOLOGIST 1 'ÎI1/%-/'v DRILLER -:%i/3-,-- BIT NO /, BIT FOOTAGE ~-'f ~'•~

SHIFT HOURS TO

MOVE TO HOLE , 45 '-v

DRILL 7, ?r' ICa'T.S—

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DESCRIPTIVE LOG

,24;. ~ ✓r^~/~ia~ef«~y. ~

-104 6~~~ „ , ~

~~ ,

J ¢.0

~

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE T? "";19 ryn HOLE NO '-e'~;7- nÿ- LOCATION $-ô~?6~ i ,c ELEA. 290 61 GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE

TO

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

9

30-1

11 -~

12-

13-

14~

15-

16-

17-J

18-

19

20-

4

7

4

8

11 • • •

12— .

; • • • 13 —]

14

15 —

20—

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE HOLE NO 9" 0 LOCATION L j 290

--relri 194

SHIFT HOURS

TO DRILL 01) -' fr:z•c7.)

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

GEOLOGIST 1 j?Z(/-114 DRILLER ,,ét 44 -- BIT NO A457)-?4-93 BIT FOOTAGE

MOVE TO HOLE

2 L.,

Lir uj 0 2

<qcJ

INT

ER

VA

L

DESCRIPTIVE LOG

C.1 •

f,

1. 5- r-ç-

.ne-r, 21?- )

s, 41.

/ -2

rt- '6

ret .741.. 4.17

_ , (

/ 1.

- ) -4e,;1• (Lazetn'te7.41-2;

-•••,b).". ;

t••• 7,/ n•-(.2::<;.,

)1l /5",

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE' ~'~~'~~:` ) 193-7

SHIFT HOURS TO

HOLE NO <TC - S i — O ; LOCATION L.• :"J ? 7%`C0 E-lEV. 2 C m GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

i W h- d2¢ w w o ~

U_ a0 aJ ¢ ~

~ z

âp

âZ ~ DESCRIPTIVE LOG

: d ° ~~_ ~ A! ~ ~1 -

6 ~

r ^3

~s-

/ -- ^i

1

TT

F T 77

- IT

TT

rrT

1 II

1

~ ; ~j,5 ~ ~'7 1 o~l .'{-> ' JfY \ ''~`!/'. ~'//(

~

~,~~ ~~ 1~.~

I „43:5 F_. c, Ff,

12-

13-

191

201

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE ▪ ~▪ " f % 19 HOLE NO (;(2 - "3?- 641 LOCATION

GEOLOGIST -T-7 5./.1.1.9'' DRILLER fl" MOVE TO HOLE 1,?-. DRILL A:), /4

1. 7.J vL' 7'Q,2 _ 1J. at% - BIT NO f"t '-"'S BIT FOOTAGE 7n12' r?'

SHIFT HOURS

TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

= W az¢ w w O g C7

L

w ✓ z

DESCRIPTIVE LOG

.,'• a n,s" C-

c_-

7

, /I,j

( C .✓~.~ ~~l~.C,~ 11471 -- ~j,-~~e ~f

/~,,,,Z, -7.0 ih'~~~ Cgr•~tt.

,~.: (.n~,J ,/

(._i.,, //..:- -7 /5; 7 > 7

7,~ ,/ll _- ./~_~L' ,t- ~`~.1p~. 1 ~~ ,lâ.

! / , ✓I

~n.+:/ iCo-G.~ --../A7 -^a.4.>.,.d.

1 ~ ~

4

T 5

~.~._~~

ril i ✓1Yr,a.~~+T,.~~ J

tq„y, _ ~:. l _A.-al 1-.0-•

__,//[ ~ c /,,

74- 0,t7

,! f

f 5.-

~

j

1ÇY~:~ ~•,

(,S %,c% F{,

/ /.0 -/9.7- g.%~ tic.y c

.6ô ÿ ô-~:rf /72

/?.6

9

/12 10

ti

6 J :I

7 i

8

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG ,C/.t•.~%,c +~ . .0 SC` .,, .

HOLE NO G'C '2'77 -Os LOCATION 4/ ;15-Gr/ 3 "-''C GEOLOGIST ~•ec-'^> DRILLER &. Ho“./6 BIT NO /7757~ -,. MOVE TO HOLE //S - /'- c DRILL

MECHANICAL DOWN TIME

DRILLING PROBLEMS

OTHER

MOVE TO NEXT HOLE

BIT FOOTAGE

•io

DESCRIPTIVE LOG

/i/o. /,♦~~rti

rewoy r ~ Ec/nF.vrs

CS- /S ~~4 ; c%y -

ti '/_'O - 4l l' /~+n cOn~i. r/'/

y

/ ? O - //C -

nn

_ ay .~i/.( ,'rt/6p"&.4/csi

--~-- 7

INT

ER

VA

L

DATE ` 19

SHIFT HOURS TO

TOTAL HOURS

CONTRACT HOURS

= w aZ¢ Lu —y o g

C7 QO

c7 INT

ER

VA

L

27-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE 19

SHIFT HOURS TO

HOLE NO °/".77 os LOCATION

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

C, 4 cf ,,2__

1 5 -d

16-

17—

~ 18--~

19

DESCRIPTIVE LOG

- s /3E42o c k

- - q,«,

-

- _Jl/ c~✓<~~..1 fo~~~,oh

<4.5 FD.f/

DESCRIPTIVE LOG

= w aZ¢ Lu o f

4

9~--

1,...

p-

11-_~

1 2—

I

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE PP h 23 19 HOLE NO rr2-50 -Oio LOCATION L i2 \id 3 TSO S LEV 2gC rh

GEOLOGIST T bueNS DRILLER G 1-lok,,JCZ BIT NO #1593Y3 BIT FOOTAGE Ilb y 148 SHIFT HOURS MOVE TO HOLE 2.3U TC 245

TO DRILL 2 45 7 `t•30 -. TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER 4 30 y 5.15 CTRAvEL To TRuL1:S )

MOVE TO NEXT HOLE

O.C.) To 0 .6 - ORaAn;T.CS

O.S TO IS 4- -O7ïSWA~ IZ SEPS.

C.LA - puKE ;

TOOERaTELv CcvnP.acT

(3ELOw APPROX. 3.0 TO ci

ANL, - aT 0 TO IS, (..f.

GRA, l3E=GE Tc aE=sE;

1/GP-I) FLN6 GArN60

— LCCAL GLAUj SFArnS

— Gi,AOüA10 INc.e.ERS-

ENG 5tAIN Si~E

DCWN SeC1i1.01.!

15 .4 To 31 Lt - T1LL (maTHEsoN)

GR A-.) TO QEIGE ; FINE

sAfvO mATRTX r1S i S,

PEULES b0`/. vcicAnrïCS

L10°7, SRaNîTLG , LCCG4L

GKR:9 rRtTT‘ CLAy LurnPS

z3~, ° A•"•\ •n • ♦-

~ a ~t C~

24 -a A •

0~1

IC

I1

32

33

14-2

15-

16-

18-

19 -

20-

G4 2.1

OS 2.2 /

U_ 20 Q0 a J CC

~ INT

ER

VA

L

= w H aZ¢ W W

2

2 ce 2

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE PEG 2 19 HOLE NO GR' -Ob LOCATION L LV 3t505 ElLC-- J. 2g Cm

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DESCRIPTIVE LOG

For 2b,5 To 27.5 rn

2y 8 To 31 2 ✓h A GRZTTh GKAy c4_Ay rnAr2'cw

PRGSSNT

31.'1 To 33.G 3EpRocK

- SNTEIZfhEOLrjTE To

YY1A~=~ V•oLCANîC

-GRAY-GQvCrv 1 FLNG G&ALNEo I PGCR To

MOOERriTE, FCLLF4TZON

/IMO AgurvIDANT 5RFEN Ci-1L0?ST~

33.0 VNO o i{GL.E

HOLE NO -0-37 -0 7 LOCATION 4-72w Sts /Tie v- .,-2qo GEOLOGIST T /544 ^+9 DRILLER r` • ~S BIT NO IYï39

DATE 4 4- g 19 BIT FOOTAGE

U_

a0

~

2 w aZ¢ Lu w a î

15— ta\

Q 16-

/S o

-0 4 17-

o ,Q 18

19

20

44,„„ o•s G ~yo~u~g

.✓

r,c 1,9 0 - 1~IL 44:-.0,1- AO ~q•s

"1br

/ /(,<.%=-0

•5p~7.o

~G` ~ *+1 O

4-0l 4•,-~ /l•

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

SHIFT HOURS TO

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

INT

ER

VA

L

DESCRIPTIVE LOG

6-

7-:

~

9 î ~

.4,21 7,7 ,17

iy,q , 1Ks '17,41 ( q/ t?i-i0✓1)

t~~~~/-~~ ~ G~►q~N rio %

m5---;a0 8iOuac-IC,

~~„

tt:f,t

~..~~f

~

'

~ ~ J

744i.r

Q7

)4.7,0r:.0.H,

L1 ~ !S

A

19

~a 16—

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE —Lr.~B 19 32

SHIFT HOURS

HOLE NO GE-.R J - OR LOCATION L u+), /5 -ccS t led, .190 GEOLOGIST 1 B u4î4 DRILLER 4• K-+-^4 BIT NO /4„->-7_1"1.3 BIT FOOTAGE 7.-'3 ~ ~~'

MOVE TO HOLE 4. lJ q, 75l

TO DRILL 9, IS- /L/ 4

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

= aZ¢

LL, Ci î

U

w ~ z

DESCRIPTIVE LOG

D

e•s iS,j

2

3- "

4-

5-

6

/5; 't -

8- -

9~..~- .~__

10-

11

15H

a•s ~ ll, o

717 4.1i <-ne,-

/W

Aiti..4 il.o 7 /5./7

7

INT

ER

VA

L

a ïz

U_ _~ a0

Q (,?

= N cr

W w z

22-

32

33

4

35-

316-

37-

~

.27-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO -R77 - OR LOCATION 2- iA% ! çi- 07as GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE TO

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

Z6Z

DATE ~X 19 2_,7

DESCRIPTIVE LOG

- 74-1 g (c, o

31, I 32.•.51.6ga/44 G}~}~, q)#-%, , c64.2 )

21" "rvw.,14,4„,

I

3a.s l=, o, ~t,

2

3-

10-

12-

13-

14—r

• 15—'

40 (?

16-

18—

3

04

61

02

1 OVERBURDEN DRILLING MANAGEMENT LIMITED

REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO -09 LOCATION Î 33 u/ 2 2 S I 1.c.. 1/4/ 290 rh

GEOLOGIST T. bUKn1S DRILLER r t-IOWG BIT NO P154143 BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE i1 i5 IL 30

TO

DRILL 1130 -o 12. 30

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DATE FER 2S 1911 zoc.5y z24

= w Z¢

w o g DESCRIPTIVE LOG

0.0 TO 0.5 No RETUkN

O.5 TO 15,0 OS=Q 'WA~ II SEOrmENTS

CLR 0.5 To G.a;CrKAy

BE16E TO 4EL66 ; SOFS

PURE YVONCOr.1SGLLOATbO

R6LOw APPROx TD

4.0 m .

SAN° ' S,0 To Ir,.O ;GKA_i

dEtGE TO BEIGE FLNE GRASNEp LOCAL

cL.A'S sEArmS

15.0 TO 23.I TtLL (MATHESON)

GKAy -C3s=GE ; FTNE

SFirvO nnATRzX ; PEf3BLSS (CLASTS ) 630f0 VOLCANiCj 40'10 GRANTTrC

GRANotDTo2iTE f3ouLdER

AT 15.-7 1(0.0 m

GRrTTy GRA‘ C,LA`)

MWT2TX 4EI,.ow APPQOX

VI .5

2 oF Z OVERBURDEN DRILLING MANAGEMENT LIMITED

REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO Gf-R-+ -09 LOCATION L 73 \n/ 22 S 6LEV. 290 M GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

APH

IC

LOG

INT

ER

VA

L

SAM

PLE

NO

.

DESCRIPTIVE LOG

2 2 —~

z3=;

z4 -

- 7.5

Z 1—/° ' -6,\_,\t:

:6

-../4

6

'

A~

b4

_0(.0 D iNTGHLy

13.1 TO 25.o L3EOKDC c

TurERrhE OZATE To mAFiC vOLCANiL CSr16A4Eb) ' Gt6EtV ', Fi1NE GRAî1UEü ;

51-1EK14£n ; AND

EAs~ To qKLu

25.0 ENO OC HOLE

1

i`

0~

_

z6- =

8—

g=

10—

11—

12—

_

14—

15—

16—

17—

18—

l 19

2

7—

13— L

- r

_

-

r

DATE VE6 2S 19 fa

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE ( 19.2 HOLE NO 62— xi— iO LOCATION L 6g i-ces E/-,_,, 1.

GEOLOGIST 1 544'4414 DRILLER 4 BIT NO /MSQ3Hy BIT FOOTAGE 33, MOVE TO HOLE /g.3d ;/ SHIFT HOURS

TO

DRILL l2•y 5-- a•/}

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

APH

IC

LOG

J W Q J > a CC gZ

a z u)

DESCRIPTIVE LOG

I

I

O -, D,.5 /yo &Z., (d•r,..„14)

1 -/T 0.,5' -~ ~6, 0 0~ 404;•.,,,,,t^—

l3, °. s~ 0

46(2410077- •04rn41,:44,4,4/ 3- ~%

1 5-, is /3, o

4— _ 44.4,,4 l,j.o .--• 02G, 0

5-,~- - r7 - -/-1-.J 1.---~ . . . U /

4,,,, ~c.C.~ 6 — —

C

7—

1 94

-_ 10

ii-:--

1z-

6----

_ —

_

~

K - -

-

- ~^ ro,. "~`~- ~»'v • (((///

13-.

141.. a

a . i s..

-

_

15 v . y —

• . . • ..

16

17

18— -,

19 f ( ,

• . .

e+ INz. ...L

01

`` '

.. -

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE

TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

Z ~Z

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE

//

LOG

21

~-

°Z4-

26=

- ,Z7-7-

: ,2,67

29- =

33~

,

3 z -

-,.. .

13y jj0 ~

;5-;ïp

+ é "

t

• • â `é 000

d oo00

A 0

~ ~

do

~

Q e

b d d o

o A

~

~ • ~

~

DA

q

0

o~

03

~5"

06

r%

p I

-C4~d af o24 5,/;4' Z2, U

- /71,124.4•11 y~o~ N~ 2-2,0

ac,0 D31•Y Te ( 4)

33,3- I-, 0, H",

~ .

,~G,R ,

4

„o! ~Ô~.--~~,

, 6

6

/gtd!~; v~ ~ fr o;

~n

~ ( wn.t~

--141-149 ,/ //-t~~- ! D-~ aZ-r%, 0 !!!

3!, q~ 37 S Q,~r~y

~~'~

LC, cl/t-,

~~ ~1 ~a~K

1

~Q/~ ~y^o4u.~ ~~

~~ 4442-1,

,

~ _/

34-

35 _

36-

3'_

3a=

,,N

_ ~

-

-

-

_

~

HOLE NO GR- 3'7 - (0 LOCATION ' ?W ta-4S Ei et), DATE 19

OVERBURDEN DRILLING MANAGEMENT LIMITED i REVERSE CIRCULATION DRILL HOLE LOG

DATE FEÛ 28 191:3

SHIFT HOURS TO

HOLE NO r5R- El- II LOCATION GEOLOGIST T. RUCNS DRILLER G. 4iÛ - BIT NO JNS9 344 BIT FOOTAGE 335 MOVE TO HOLE 2 1S .-ro 2.30

DRILL 2.30 ro '3.30

L 15 Y0 r ELEV. 2g0 M

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

AP

HIC

LO

G

INTE

RV A

L

SAM

PLE

NO

.

DESCRIPTIVE LOG

1~ -1.5

_ -

0.0 TO 1.5 nn OKG ANLC S

ro 22 .,-,- m03rtiw+9,6 ITSbS.

i

2' — _ GLAy '. GRA,-',ScFr, ()Met;

= 1\101U•• cONSoLTdATEd FkOm 3.o ro 1$.O ,"'N 3

^_ SILT iS AIND: 18.0 ro 22.4m 4 --ii

~ — -+ = ', GR,4y - BEIGE dEfty

5 1 FîNE GKALNEO SAAPD

- ANO SILT .

s B M C - ~-

9 r

10 = 11 .... = ..... 12 ~ - 13~

14 ~ C

~ _

15 .■I.

. 111111111.111

17

a 1B ~- -

19

2

- - -

~

OVERBURDEN DRILLING MANAGEMENT LIMITED z of 2 REVERSE CIRCULATION DRILL HOLE LOG

DATE F6(3 28 ig HOLE NO GK -Fil -11 LOCATION Leo VJ IS too S ELEV. 2gow1

SHIFT HOURS TO

GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

APH

IC

LOG

IN

TE

RV

AL

SAM

PLE

NO

.

DESCRIPTIVE LOG

21-`

22.4 To 2b.2 TLIL (/YIATAson-I)

z2-- _ = GRAy - QCZGE CLAy mATKr

cLAS j S PE (313LEs (00'/0 z3 ÿ

:p \ \ 17-

0 VOLC14N2C$ , 40 0 /o GRANrTl

-„,6/ z4

- \ L:

25- 4•

Q ~ Z ~ '2(0.2 TO 2î~5 QEOQOCK -Mf1FrC

~Q ~0 3 VOLcANSC '. OARK 26- / \

V GR“.N ; FSNE. GRArNf

Z,\V/-o 4 ) LOcalc y SN642c 0 \ /- AN C' A LT'(--12 E Ip

Z8- -

- 27.5 ENO oç HOLE z 97 ~—

_ 10- -

11 - -

12- -

13- -

14- -

15- -

16- -

17- - y-

18- ~ k

19 - I- ~ r

20-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE ~~!!' ôô 19 51

SHIFT HOURS TO

HOLE NO 6R-39-12 LOCATION 2- 70 ü) C 1-9os Ç I e ✓. ago GEOLOGIST 1 / 5:444.4 DRILLER BIT NO. MS-211tiK BIT FOOTAGE dcr. 5 MOVE TO HOLE 3.30'!1• ~C

DRILL 1.015 ~ 3Q MECHANICAL DOWN TIME

DRILLING PROBLEMS --,,++--- //~~

OTHER 5/ 30 6, 3a / „4..r

MOVE TO NEXT HOLE

TOTAL HOURS

CONTRACT HOURS

DE

PT

H

IN

ME

TRE

S

GR

APH

IC

LOG

INTE

RV A

L I

SAM

PLE

NO

.

DESCRIPTIVE LOG

0 ~ o,"'" Alp____ (

-- •C041 ,V~t/C4/ f ~ S

~

'.

~~

1 ~ _ !~~ 4,..,,,,,rO,J 7 IS î 7 _IT

2 i - O.S --> y O i?1 n -

3 - ) ~I p,r.r,,.t..)

-) 9, a. s 0 a -t-- - q.a --m /s0 ._.. l.

'v ~) / n- - ! /~-~-~/~~[ ~ 1 J~ ,

~L99CCQQ..ti~~ I.r✓v+/~ ~

7—,

{-- `

— /5",7-> as, 4.21) ( 9i~~

,o-

t 2- -

13,'

14

15

16-- ü' ,6 -

17=

18 ~

2o-I

-.,

19 I

—IA

. •. •.~

. ~ J

~

• 4 [ v . . . . . • . . . ..

e , .

py

o d 6c ik

A e

o

_ =

- _

'"

.

, oI

% 0.2 03

~ _641,J=

_1(10

"~

7, - / ~~ 1 ,r"//J tQ~ 6 ot

,),,,,,& 0.~co," ~uce 4-.,a/r

7y Fo4 ..~„t /~,~,, H~i,

_ -4.),/,,,I I/`~dirl,~j I3%0-5.18-,s

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO Ge- /A LOCATION L70J 9tor7S GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VAL

SA

MP

LE

NO

.

DESCRIPTIVE LOG

03 -~ 144-4,e) 4-7 aa,o

~' -

_ ba~

eo lei - ~G.~-P~, ~~uti~

~ ~z - eo ~ C `~ 3-8

: ®e ~ .2a - 4 0 ~ ~J5

,0 ~ Z 4- O

e . •~ N .,-6 l•ii: 0

C,6 ,Lii.;,75_::

as,6 -027,0~L

tru °T- Yi41

o e

,t,v44,d~~

v16

~ 41411 07 h-t44 ri-41 '1,411-414) 400

23 ~~~

a6- = a7,0 i_, ©, 0-,

.2.9-

30- -

31= =

3z- t

73- -

34= -

36- _

.36- -

317 _

36~ _ J

J9 ' -

~ _

DATE r4zjr 19d2

SHIFT HOURS TO

7c0,14rAtum

~ o iS,,2 0

l, o k2-5—

/5";2.

l,0 0 -

al

2 N Z¢

W w o 2

12

3

14-

15-

16—

17-

IS-

19-

20—

03

Oil

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE '77/2kei+ / 19 ffi HOLE NO GR-g'7-ü LOCATION

~/-67k)f- 'DS Ei €i. eZQO.~

GEOLOGIST 7

%3uv144 DRILLER +may BIT NO MOl'rfq BIT FOOTAGE gg:S ) /1,"7,C

MOVE TO HOLE 7,30 —> $;.70

DRILL g,0O —>9,3 ✓

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER G•30 23o .1`01 MOVE TO NEXT HOLE

DESCRIPTIVE LOG

_71 -4-7-7) di, 1-4

rS..1 N T.r,d (fln°.îX,~„+) I

, ~ co%

4.4~~ l+o f

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

G~ (

19 HOLE NO 5E- R7 — /? LOCATION

DATE L671, 0,3tacs

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

AsZe?z.z

DE

PT

H

ME

T RE

S

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

v

m

m

o

77

U

-I

<

M

r

O

0

Q d ~`j /." - 44 idea) ;.J. 0. ) 30~-,,,,Y -

a' = V ~. cee.z a ~ ~~n ~ ï ' .,6~

OS ,9_6. g %~~

06

°Z - _ .21 q -› .23,3-12d624 sJn~~~

â 5

â6 -

~

r 01—i .1-7

. ~ A .(Ncrt.C.é 1 $;,._ ~ ~~~

~7 1

_

_ ~o~Z«. 4 i

;2.8 _ F ~~

a9= _ a3. 5— L, a, N,

3D, _

3'

3z= _

33— _

ja_ —

35 , _

36- _

3 = _ :

38— —

39 — _

40

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE A0CH 1 19 II

SHIFT HOURS

HOLE NO GR - - 14 LOCATION L ( ,S J q T OO S

GEOLOGIST P (.OLLrNS DRILLER (71-. I-kOWG BIT NO r1i56I344 BIT FOOTAGE )1Z ) 143.5

MOVE TO HOLE a•30 a Q. 45 TO DRILL 1,45 11 15

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

{{{1

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

- - 1-

0,0 To I.Svn OKGgNi:CS

I. S To 18.0 INA o3S 8usi. SEpirtitE.vr]

~7QANL TLC

I.S To 3.0.., ~~_ GR A , SoFT I 2- - QUfE ; Mo'TL opt

3.0 ro 4.5,., No QErue.rv on) SAYYIP-F_ -

4.5m To 11.S CLAN,.C-RA,2) , a-

_

_

-

s- Sari 1 Pu e 6, NoN coNSoLrr:wrEu

‘I•5 To I4.S rv, SANO '. 50,5I -

B[ LG E FrW EGRAt6R 0

14.5 To 13.0 5ANO LOCAL

6

7

c.L4y BEOS (SEAmS)

IS • TO 3o .O TILL (MAIHESoN)

C=NE SANOy mAr2C X

GKA,6-(2,LGE tN coLOUe ?owl- A C~ASTS (oO ~o Vo:.CaN1 ~s

AND SCOSMEYVT$ ) 4010

o 4

_ _

- 9- - r-

10

- - 11_

14

12L-..-':::•...

13.-.-.-

,

• -

_

15

16-- • ' -

17—`

18 r

A 19

2

AG, CI ,,A.0~

1

20K Z OVERBURDEN DRILLING MANAGEMENT LIMITED

REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO «- F<4 - 1'4 LOCATION L (05 W q too 5 GEOLOGIST DRILLER

MOVE TO HOLE

BIT NO BIT FOOTAGE

DRILL TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

21-p

22-"-...A

13-~

'24

zs

28 ~- -

27-

-

_ ,

29,~ ,

30

g1—

32- -

33—

14—

15—

18-- ~

17—

18—

19 y

2

_\

p

- •t A

/ \ iA

1n '\ \ a/

o~

` @ p , 7

• ' A\ A " ' . p , o a

. ~

02

20.0 To 22•5 DECKEASrNG GRA=N

Si}~. oF cLASTS (pARTLALLy SOkTE D )

22.0 TO 2 S GRA y cLAy y ~ G~rr l~IATerX

25.5 Tv 2(D,0 00~lLOE2

(6RA1v00TOKLTE 7.)

2ie,0 Ta 28.S GRrrTy cLAy/sAti

m ar rzTx

(3ELOW zc0.o ry. AN îNCetASE

IN VoLcANicS KIrvO Saf71rtic.iJf

C LASSS C 50 Yi204) ~20°/e6R TI AUL

25' +~+ .S TO 30.0 COBQL£S ,

FINE VINO MATQI X28- GoBLiLES bo`/u VOIcANiO SED 1

40°(° GKAiumc

30.0 To 31.5 rn 3E0 ROCK

GRAy - GREEN vhA FL( VOLC ,

wELL FoLLAZ E0, FTrJE GKATNEp

-

)

' / 03

~ `04 11,

OS

/`' C

06

,

01.

OS,

\

d;

_

_

.. —

r= I-7 r

~

DATE MARCH 1 19 i

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE ~L19a.7 HOLE NO 6W-39-15- LOCATION -

66u)) /s j-00S Fi a4cL GEOLOGIST r 17GLtn1Q DRILLER .ty • BIT NO M S9 3Yif BIT FOOTAGE /113,5- 1C,3,0 MOVE TO HOLE // 30

DRILL //• 3a 7 /~, ~1S

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TRE

S

GR

AP

HIC

LO

G

INT

ER

V AL

SA

MP

LE

NO

.

DESCRIPTIVE LOG

_~ A 0 ~/.5

dad/ ~ ~ ~

1-^~, - LS>/6,6 ♦ . _, ., ,

r~ - l.~>9,S z~ _ • f: ~ y2ii-'9-)

- 9.5- +~n ,0 _ Klan-‘01( q..)-- - //,.6 _

s - _ - ~ lr~~ l~Cd C ~ 71-7O _ ~

6- _ -

r ~~ ~/i✓ #2

>

s 2 _ — =

16,6 > l$,0 2&

~ 77 ~ 1~ ~

60

~~ 4,4

Ito `Z, ,o i ' ÿ „,

' . . -

C _

!~

,~ / ,, , ,1 18,0 ~ 19.~ ~1aD~.cl~ 7)74/4-6 VV ~

12-

13- - _ o°

' ' .

` ' • . , •

_ _

.'-_.

u~

19.5- !_ , D, H, 14— ,e

15— -

16—•

17

18

-

' •

<.

p 0 6

°p~

~ \

, .

19

2. ,`~ e \ ~

~. ~~

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 1

DATE MARCH 1 19 1

SHIFT HOURS

HOLE NO >7k- K lfi - It. LOCATION i (7 lJ 16100S ,~/eu07, -290,...

GEOLOGIST P. COLLINS DRILLER G. HOWL BIT NO M54344 BIT FOOTAGE 161.0 I'll ,

MOVE TO HOLE 12 45 t . co

TO DRILL .00 ) 2.15

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

_ CO I w

LU o

~

QJ

S INTE

RV A

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

O. m ':.O TO ORGAN.T_CS

= 0.S To M O5S(3WAy IQ.; Jr $ÉprMENfS 2 ~ —

CLI4,6 ; 0•5 To 14 O n1

— — -

GRAy- BEIGE, SOFT , pu2E, _ NON CONSOLIDATED

4- SAND1 14.0 To 19 SA"

- 5 - GR14 6 - aE1GE FINE GRATNEO,

~ LocIAL GRA' CLAy SEAv✓IS

- 4—

— Ici TO 210.Syn TILL (r/1AtHESaN) C

l': GQAy - QELGE FZNE SAIVO s —

F. mATRiX , PE613Ly LLASTS

j00% VOLCANiCS IVIAfSC 10 -

- AN 0 SE OZmfNTS 40 04

11 ~ - G~F}NiTLL

~ -

= 12

13

14

15

16 • , -

7

18

. . . -

19-

20=•

. .

-a`4 ~

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO rR- Ri - 16 LOCATION Llo2 tN 15 4O0 S GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

APH

I C

LOG

IN

TE

RVA

L

SAM

PLE

NO.

DESCRIPTIVE LOG

22- 4

23—

2

2.5-

zs

27

28

2 1-~

4 _

A • , : . e

~

- . ° ,

: c

-p

Q -

. !~ .

, e \ A

- DI

_

- CZ

- 03

_

-pt

^7,L

OS

06

i 5 To 2~.S H~üN PbKcEnrtAGE

O F FINE SA NO »114TEMI

2b, S To 28, O BEDBEDCO(

MAFIc VOtCA1viC

-GRA`,6REe1J

- ✓nASSSVE

28'. O ENO OP 1-k 0)-C

= —

IF

z9-

:11 ~o-

11~

12—

13-

14—

15 — _

16—

17-1 _

18—

20-

-1

19—

~

~

_

-

-

_ —

-

DATE MARCH 1 19 1.1

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

~, / HOLE NO JR .R7- 17 LOCATION 4G1 lid, Jo teoS /, E/e, 30 CLL

s DATE @ L19a2

GEOLOGIST 1-7 13-/.14- DRILLER .1 Lg• BIT No 45640.0'1 BIT FOOTAGE 4,- .3/` SHIFT HOURS MOVE TO HOLE ol,/fer 2 k5 O TO DRILL r-ZYS ~, /5

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER 11,/5"> D-C, MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

: = a -- o,S Nn P.Y<.,.,

-

Or ..'› 11,7 _(:):4,, 2t -4,/.;,,„.„r

a, > /0,5— 2

3 _.- ` ---- - ~iQ~s ) '`''f-e; ~"1Z

~ ol lo,;-- 11.7 4 _

m

_ ~ q.(oy.- ,1 ~/`` / / (/p /r~r,r C~ 4

t_ ~ î30

1y '

,T4C~n~~) 4 ~ MN F - ~,

~.4J~

,~ y~

~Lë G 0gy'id,

10 9'` r ~o

~ ~ ,a-la4.~~

ri~

,1 •

12

13

I • • y.. ...

_ r

14-

: 15-

=

is—

,7-

,8_,

,9

2

; o A 4

~

.

.1 . .

QO 0 d o\ 0 4 eD

od~ 6O Ili odr

6J1

\

r oa

03

oy

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NOGR X7-/7 LOCATION LOU), /01-CS

GEOLOGIST DRILLER BIT NO BIT FOOTAGE SHIFT HOURS MOVE TO HOLE TO DRILL TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

= N LL,

wz¢ U-1 w o g

U

Qp ¢J

0 INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

~ : d °

° ~ ~ 0 Lf

- 4%(rT~nQan i~ ~d ~` ~

-6.4...) L a_ o = A 0 ~

o d a ~„

OS

- //13 _ O -r"-42=

~ : A ~ D6 fr., ~ .2.570-z> n•-,0

.24 bd A _Qo p~

â5— e Q - ~~~►

~6~ ~.~

A o / % 6.3 3o,S'~31s' ~?„~,.~L~«.~ ~ _~~ - o

,2.7- â ô'\ 77n471.4,`v,lc.a..,,«

16= \4\6

a ,

~ l

- ,....#6,-,,,, 7.,,,,,, 6.4",&.41?)_ e

~ ~9~ 0 4 10

j ~~. Jdo0

30_ o d / 3/.5-- 5 O. /f, = ~ o ~ il

3 \~ 1 '"1-

3z_

33-

34-1 -

35- -

.36- _

37_. _

36 -

- 39- ~

10-:.-

DATE rf 79ûÎ

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE a fL 19 3.2

SHIFT HOURS TO

HOLE NO Ga- frhg LOCATION L 5-7 k) /O 1-0.C6 fie Ja +10A) d92,,.1 GEOLOGIST 1 DRILLER BIT NO Gii488‘91. BIT FOOTAGE 3/,5 ' 67,C MOVE TO HOLE

DRILL A.4445

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER 4.30 c.+v 1n~Le Xj -40 MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

_ . 0-'7 O 5 ~ti 0,, i1~.Z 0 jr1J- 41....Z

2 —

3

1s'~ 3, (

o~ 4.4l

-

(

i

g3.0 ;— — -.._,9,D--- 4

5 —

= -

_ _

=

_ d/ 4, 4-e----1/?•,2

y q.r~, - ,~cc~- ~R ~, a~

6

- — — ~ /~~Ql

/ ~~ ~ 7-~

— 8 — —

ï-= _ _ i9a ~~l '7 ~~

\~")

9--,~.

— — e~p / y— ~m~,~~ ( — = y y - /1-,4•/.., ~n.i 10—

I

` / i/~1~ ~/

6

oZ ~_

11 - , _

.,. .

_ (7~ iirLG(ctr{3~

lfp%

~ 12L- . . . —

13— • .., —

14— . a . _

' • . • _ 15— .. _

=••s =

16— -

177 . .,. -

16— • .. _

19— • ..

- d `' O I 20- o e

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE Mi .1 19S2 HOLE NO I:54-R7- lR LOCATION LS? t) JOtOOS

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TRE

S

GR

AP

HIC

LO

G

INTE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

.22

.2 3 _:,

' .,4_-..'

-

~

Z6 —

z~-

1.9L.

01.s

3o-1

3i-=

32=

4- 3

35.

36—

36—

3s

41- 0 d -

-r

A d

d0

o d

A a 0 d e o

/

~

0â~-

°I %:

~ O

~ 3 ~

o,~

I' a•1.? -*'ass 1 J7-w4.4,12.G.~~ -*-

~ 4Jat'cm., ~G ( ~.,...~„1 ,

~ 1 r...4,-,,),y . , %~ ~~~ -~~ ,

~ ~9 . • , t/~i'LGOi~M

~

ass E, a ft,

~5J~/f / ~s 1

33—

37——

_

_

=

=

~

_

_

_— r =

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO rR -fl- - Il LOCATION L581.A) 1SrooS

GEOLOGIST P. LOLL - J DRILLER rt'•NOWG BIT NO C 8626801 BIT FOOTAGE (0 1-, SHIFT HOURS MOVE TO HOLE q 4.30

TO DRILL q . ,2.00

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TRE

S

GR

AP

HIC

I LO

G

INTE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

0.0 --) C.-)S 01Z6ArvLCS

0_2, c, —) i3, 01 GRAy 6RSrry <1)1,6

Be as vl P To OS m THILf.AkSï I

t -

5 11:2 T O, —, (")Tr_RwAh itprmEtiiz

2- — GLA`~ • GRFly SMOOTrt t SoUPy- r LO'S ''S•0.3 SILT,/

3 - ~ STALT GaAy LocAL CLA`6 SEMIS . ,

~ ~~.o > R. 01

s ` ~ SAND : GKAy - (3E16E I FLNE SRArn,ea.

G^ _ [4.0-4II.Z] 6 = —

7 —

~ -

8 ~ _ -- It 2- 38.5 TtLL (MATHESocv1

,01

t 2- _

13—

14—,

t5

:

,a^

,9_

- j.

=\

s-~e

P

O -_~

,~•-• :6

'

• i

: a.,.. 4 -

~ o i~

o n, .

A. A ~

p~ / ~ \1

.

A o

., ~~05

,- L

OI

03 ,

04

\

~

1 20- ~

07.- L117.;—'p.S

&RAy - Qc tGE FrNE-SANr7 mArRrK

Y C.LASTS (00 1AFLC• ?EMI. % ry

voLCANS.cS AN() sEgrmE NiS

i10°/0 GRAr‘;rcLc

mATR.rX

O GRAh ~Rc4j CLAs-j [14 > .0 IS LT MATR= X

ici 53 LOLAL SANO

DATE MAR-LH 2- 1911

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

z

DATE MARCH 2 1912 HOLE NO C,2- - I' LOCATION L58'w 16 i- ODS

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE

TO

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VAL

SA

MP

LE

N

O.

DESCRIPTIVE LOG

Z1 _

12-

23 -,

24 ~

25—d

zs-d

27- -

29-__

jD—.

311-.

32. _

3-p

- 94=;

35-. d

-167

3~

38

28— AII

-~

1.6'

"d‘. .

_.

-, '

' h

. i~

-A . , A

o

. A

o V ,

• ~. . •

=

n-

~~

p

°';

A

. 4, _ Ar o

~ v

.4:6. fl

p\,_~

~ 0(n

/"

0~ \:

~Q9

\ 10

`

~ 0-1-20'/0

t--: [253.0

L%- [3

L23 0 --> 21.03 PEBBLY cLAsr3

r01,.. VOtCgnliC ANC) SEOi/~1ENT

GkATrrc lv

—7 2N.03 vREY BEcGIE SSLr/

filvE54Nû (VERY FEw PE66LY cotsr5)

L 31.o> 3t-Si GQEy 4E.r6E SïLr/ fïrvE SANO

ÿ o ~ 315• 51 ABuNOArJr FrNE SA rvO vnRrR=x

[3b.0 —)3'7.5j mAFLc VoccArvrc

AArn/oR mETA 5E0 coBOLE S

3a.5 i3€Oz9c.r

'

,

12

k

~T rnéRm60rWTE VOLCNN=C

-- LTGHT bQAvyrSH SKEEr.1 - VER, FrNE SQArnJEQ - SPECKS of mETALLrC

min,ERAL

+ ~ 13 4 ~

I

iS

Îb

I}

Iii 1$ \

â9

~

:411

~ I~

/

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE iiriduA Z 19 XI

SHIFT HOURS TO

HOLE NO 6R-R'7 o LOCATION / 5-1/ Lk)) ) /51.S /5/e1)01-,0,..) oZ cia GEOLOGIST T R JA44 DRILLER 6+• BIT NOGR6f3A'01 BIT FOOTAGE /07~/3s5 MOVE TO HOLE a ev 4,z• DRILL 1,'ar147 /iJa

MECHANICAL DOWN TIME

DRILLING PROBLEMS

OTHER

MOVE TO NEXT HOLE

TOTAL HOURS

CONTRACT HOURS

= N w

aZ~ LL% w 3 î

o

CL ,..< J C7

(IN

TE

RV A

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

O -6.,' ..Q142.z.

1 - m., -,...23.7 O JD: 4.40/4" ,. _ 0.s--> S,0

2 qM~,_ ~1 /9".&a...- j = ~ - - /~/,1

5-0J $1X,I /SS

~ ~ a3 9 4424r5,~ _

Z u1't4.6.4..,6~/'

6

11 -

12--

i3 L-

_

14—_44.

i6— •r

17—

18-

19

6

9-1-

1-

15—— "•.

_

-

- _ - _

_ - - —

— — — .....

4...

• • e

••

" •

...

. •

i +•

10 -

1= i-

~

F

- _ _

L.

r —

— -

_

w

r

=

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO GR - S? - LOCATION

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

INTE

RVA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

,Z1-<

„l3-

~ _

,Z7-

~e

.2.97- .

3o~

31 =

32-9

33=

34-.1'

35-

36-

37-

38-_,

39----_

- ~D-

/2 — •

2

a~C

>5~

= Q ° P

. • +

/ • I . •

. . • . .

s I •

Q d ~

0

o d il a

0 d o

\~%

_ ~

_

_ _

o I

; 1

~~

~/\ V

~j\ D3

o~

~ _

-

-

-

-

_

~

- -

,2.3. 7 > 7,7 T.ccP (//naaGte„)

V ~

~~

I.

Î

~EC,~g/

-

- -4*-, 4 v

1 ~ a~Q ~ /Zr.~. se-144t Ca 0~ ~nca~. , p_

~ Qao~4

~~O%

~~6 tc,..,Z,

_ ~r -yy~~ 1/ 7~1 7~

o27 % i3a,3] .~~ ~.IvL3y~nJep4.4Q/lY/ /~

/771a,/,4-<,

4I ~r~u-m ~~/~

/ ~~

;,/f141"n

'~

~Q ~~d"

Zo" C, °, I-6

DATE #PJ z 19 $.ç

SHIFT HOURS TO

1-6-41,07 /5-roaS

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE t1ARcN 2 19a/ HOLE NO ÇÇR _g - -21 LOCATION / 5 3 of 101- oo

GEOLOGIST P. CO -LI-NS DRILLER HOWG BIT NO (Rt^gS°1 BIT FOOTAGE 1N.S SHIFT HOURS MOVE TO HOLE 1.00 —3' 1.15

DRILL 1• i5' 3.35 TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DESCRIPTIVE LOG

0,0 7 I.S nRAANiGS

I.5 19,5 DNzAWAA fT Sf-DrMENTS

LAy : 6RA-1 SoFT , RARE , Non - [L5 LOT'SOL LOATE D

SILT GRAY , LOCAL dRAy CLAy

[11.0>14.01 SEAMS

SAUD GRAO -6E16E , FLwE GRAtroeq [l4,0 19 ;3 LOCAL G212 SE/{r+1S

19.5 2q o TILL (MATHESON)

(jQAy - QESGE FINE- SA Nil) MATIGI/

P6613LY CLASTS b0°/o mAF c

VOLCANIC-5 ANO SEOzrvmEnrTS

40 °4 GRZANrTTC

041.4; --)20. 03 GRAy CLA y m ATQS X

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO «-83 -21 LOCATION I 53W 10t DOS GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DATE JV1(RLti 2 1911

DESCRIPTIVE LOG

[23.0 > 29.02 LOcWI SANO 5E0✓l'IS

ESPEc>:ilLLv 25.5 2G.0

2

[27.0 240] pE06Lr cI.ASTS 3

80°/o rvIAFLL yoLC a nit cS qNO

SEOrrnENTS 2044 GQANrrr C

4-

29.0 30.5 3EOKOcr

FELsrc voLC ANvIC

-G4zEEN (.WEATH'0} ' ORAni6E (FKESH)

7y -FLIV6 GRA=NEO

8-

9-

10-

11-

12-

13-

14-

15-

r

5-

6-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO 6-R-R7-22 LOCAT~IJ/ONN

~L'i9w~ lOt ~ti L/ 2Jgf%o4 o~24C1...

GEOLOGIST r1 DRILLER f7 BIT NO jiff '3OY BIT FOOTAGE //L- 'i.$ SHIFT HOURS MOVE TO HOLE ¢, 3o >~• Y>J

TO DRILL LA'1r -, II', 3v TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS ~j CONTRACT HOURS OTHER hl. 31, a6 , 017 .4/-i Â- .Ca..

MOVE TO NEXT HOLE /

_ (J) w

a2¢ Lu w O

U

aO0 ¢J

C7 I NT

E RVA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

-

= _ _

_

=

- F ~

-

_ .-

_

- J-r

-

-

-

0 --.D O' )

<91w.1c :24w~rh .

o,~ ~as,3 ~ -~. l. es" >~~3o,v • ~^ Pu, t ~/oM

1 , ~ ! a.o ,7s,a

4e0•01 aO,o-.34 as,3

,.

1 z

2 _

3 _J -__

~ 4_

_

_

-

-

" Y ~ ainid

~ ;.CPca~/ „ ~J ✓

10------ -

6—

7-7 1

J

tt

8 -: -._._

v _ _

— =_

___

--1

- _

~~_-,

1 2-- 1_7

-_--__.y

13-_-_.~.

_-'—___

14--_

15-

_

16-

t7-r--_

18-

19 --~y ' r

20-

DATE IntAzil a• 19 El

DATE "...4 3 19 81

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

/I HOLE NO GR- 87 - 3a LOCATION / ~fi I W IOt~ ~l~ I/QTioxl-

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

APH

IC

4 LO

G

INT

ERV

AL

SA

MPL

E

NO

.

DESCRIPTIVE LOG

qq

dl

.22-

.23- ~

24

Z-

ze

27_

.Za - -

029 _

307

~ ..3 i=

_ 3 3

34-1.' 1 -i

35

3a

~ 7

3e

39--

~ •

. •

„ -

. . u

' '` :

A . A e

J A ~ . J Q d o ,

('

6d~

Q o D a o d A 0

° d d °

r!

' ~

., ..

~

°

03

0~

°S

06

07

%

3.53 --

36.5'

o,1

36.s Tiii (o'nae,sen)

~ / 0 1 ~Q

/~t~,

~cQae~ ~0 of 4

re-eco..cu €41-qi 404.,"e-ze if o%

— (.e,~r,w .3 /.%/~ GS%

~~V G~~~ a .d -e°o~.~.~ iMn~

3s 7

_ /~ ~ria~ , J 0 0.~~6.5 ~KWu) 3y.o

~~,~ ~ Lia,...32-do ~

3s:/ ~ 3s;5-

a3ô,î ~oLecA 0%71~~~~~~t~,,~

C <i,~:(.~GLs-A4

~

I.

~1

//

G

„~

~ q~. *.l~a.~ 7

/4-.1L' ~~ ~ ! 11~ Qg / U~~ % I .

04i420/ ` ' ~

38,~ I=, 0, ~

-

#o=

s`

~~ \ ~

OVERBURDEN DRILLING MANAGEMENT LIMITED ,6"-/e004on X90 „ REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO 6/2-977 '2'3 LOCATION !ys c~ /O s DATE /Hatt 3 19 P c,16 5,804 lo/ y - ?vi z GEOLOGIST 774 ins DRILLER G' /46 -'2)BIT NO /-/+t Xg%O BIT FOOTAGE p vo w

SHIFT HOURS MOVE TO HOLE 7.10-8" o4-3 TO DRILL -?cc, 93o - /O:

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS 9.0(' - 9.3o c-47‘. .er,{ CONTRACT HOURS OTHER ~D" )' /r of /. ,-,/(

MOVE TO NEXT HOLE

009 C ~.

DE

PT

H

IN

ME

TR

ES

U_ 20 Q. ¢ C7 IN

TE

RV A

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

;A = o - o.s 0t9anies

C/aY Sc /.ON

, 0.,Y- .? 7/ OST/Ow AY el S6Gv~F_rorf

as-7.o_ G/~, -,6c.9< o6-•c ,.~~S...J

y / y 4 4«, .r.s"-,..- 3 -4

- Soft/ ,/ ,o..,L

4 7.0 -4570 _S;•/./ _ 9'ay

5 _ ;,,~~,6«/.1,0.0 c%

Y ~ Sccfôns

6 = /5,0 -....2 / Sana -9 toy - Zee" t,,, 1,,,- G

= 7 ~ - r , G. y/a,ntoil

-SL94i tnc,e.te.- 12 51";;n s;1? c chwns.cho;,

9—_

10

-_ _

- /ota! inlic6c.id4i

11 - _ _ --

13-

14

:1-----

_

- - r - -

:

- -

-

1 6-

-

181

19

2

15-,---

17-i..•

~ '

a.•

a.

-

-

_ -

r

-

-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE 19 HOLE NO 6'4-97 -23 LOCATION

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

I I

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

Z 1 -

~2 -.

13— ' '

• . .

~

of

oL

~

a

\ ~

e~

06 ►

,

111

` p g `~ dealro

l~

,? 7 / . ,.?g. / 1i« (rn,r/lesokj

- '31-ay -6e,9e F<,.c 5 „„.;- ,,e

SOnst! D•laf~// riy

- C 451 Gon:/.005-c4un

0% ,/,„,4,-

yo,.e 9rv..,4' c

.78.27,1if- "go,:./jet- (.,./err ao 4a,,.,) // - 9Jr r ii?r 9ray c%y inar~;

r+✓

i rOM .7 9S- -19/% Y On ~i ro ,w 3~-/ .z .38

38•/ -S/os /ED.2oCft

~ - (A f~ir,~c/,df~ t6o rnaf,/~

,./coni a L

~

/ / J - Qbcenda ~ G/ ~Y ~s.fe,r ©(~ - w// 5/ r~

4

_ `-10/,\ ~o /172-1'; am. q/'CCn CO'pu/-

~.,~/%, (;,/../.. .

-I

k.. .

• • r • .

24

28—

= 7 ÿ .27

z8 _

19

30

3 2

_ 34-=‘,.;

j5_

38^

3T,'f

3e

39 YD

. .

"

~11'.'."

3 1

_~•

:0_.~

.1~' / G,

. . • r

,

..~. 4.v. . `~u 4 ~ •

à: p - o.

. ~~ . , '~

4: ~.

'

A .:.` c _.

1 \

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE MA&C 14 3 19 HOLE NO (- - cal-2-4 LOCATION L y6 60 /Stop S E/.•ef„ ,790

GEOLOGIST P. ie1.1.IIu S DRILLER HOWL BIT NO f• Rtf2U IO BIT FOOTAGE 40, S (c2.S

SHIFT HOURS MOVE TO HOLE I0•ti S -) 11. JO

TO DRILL 11.00 I I. 4

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INTE

RV

AL

SA

MP

LE

NO

.

DESCRIPTIVE LOG

' 1 "

,-. -

- —

~

~

`

r = -

_

-

_

-

~

,

` OI

\ I

-.- ,

0.0 TO 1.0 rn t^QGANTCS

•~RAN•rTtC

'.

,

‘,0 TO 156.0 r" O-Sz(3WA 4 SEOImE"1

CLA`h G2ny Pu2E soFr, , , z-f [i.0 --q.0]

S1LT • GRA-) , LOCAL 6RA5 3-

La1.O-,) IZ.SJ cLAy (3bloS

VINO GRl . -cEL'6C—. 0)E.2 ,)

q i .

[12.5 -- IS' 03 Fr,uE GRALIVC u ,

Locq~ GR/4t6 LLAy

aos

Isi.o TO 20.5 TILL (rhr}TNESON)

s-

s

7

1- mATttx

1. CIk

02

GRA-6ELGE fTNE SAivO . PEBOLy CLASTS

(0 0°/o mAftc voiLqn;~c.s

AfJO SEDtMbNTAey 4tO.4

0 -> IG.S^,, COBgLEY Ti LL MAFSC vo.cqn,SC S

8- -~ I

9-

10

=- —

i1-- -

12-. -,— n___ F

13~ ,

14-

151'.

18

17

18 ~

19-

29--

-04 o

A'

1.

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE MARcH 319 8} HOLE NO GR- 7' -24 LOCATION Z /5-7,005

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

°• 0~ 20.5 -~ 22.0 j3eD2o cK

1, /

g

o3 FFLS=C VOLCAnISc 7

~~ — mown' -co GQAy ~ - FoLrnrEO,Fit,+tôQAtNEO

- ûLlyACHEO 2.3 .r-1EMATL TE STRCN 7

2.4 ~ 2 2.0 ENO OF o

25'

NLE

z6— -

17-

18-: - r _

292 F

30-7 1

3-1-:

32- -

33- L .

3<- ;5- —

s~ _ 3

V- -

38-

39 _

-

OF

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

,

DATE //%c3 19 g2

SHIFT HOURS

HOLE NO G.P-97 -2S LOCATION DSO lw %S foo,S

GEOLOGIST r"' '^sDRILLER G• ~1 BIT

MOVE TO HOLE fi;Yr,- o NO C4:5•'588/0 BIT FOOTAGE

fir_ 8•Ps

TO DRILL 42.00 -~•oo

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INTE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

,

2

=

-

o-a.o /24 ..4.e7'~.ti (6.7',04"„,,I%

20 ' .0 3. 0 OT/8c.../9y g 1,-A-4,4-4,r5

I

~ ..9.0 -9.0 - C~e y/ groj- ~it•rt ~ J .Ç'OfT, / ~ 3 ~ 90 ./..,--,./..,--, -Sr64 9r•y w01/i Ac./

/

CIOy iCPS: 4 /

/s.0-.T ..?.O - S6n•! q~oy - it, ~ C 5 _ ✓Co~

/..••• fo 6s.' c

- F,,,< g,e,..:••aC li„1.4 s

~.cc./ c4y. .6~.

7 ~

8 - ..1

9

-

12--

13-•

- 14--

e.

15--

16-

17

-y-

-_-

-- --

- -

- -

- -

- -

, ,

` '

~

-

- -

-

_

-

-

182

19

• • •

,

P-

-

Z g • • 20- . • •

- _

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE 19 _ GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

/o'9` 25;/..Z.

DE

PT

H

IN

ME

TR

ES

U_ 2 a.âp ¢ 0 IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

,d3 -o -23.3- T// (mATHeson/) 1-, - ~ : , ~ - 9roy "~eyG itnG ~,1.e fita if ,Y

2- a a. -- - C4S4 Gon./oo,rifr.. ;,,,,e6.14_%- : o . • ~• .. - da/U X.4a..1 .c

3-, - L1.0: ... 01 S/0,1 l'ra.. ,I..,<..

4 -

1\ 0..2

-.- 73'7 5

&/i,k ,235 ,BE//DQoc~

,,''//

- /n 4, ,,,,...4,..:4 r /Y///./~ C /~Ow., - -

6— - 19.t' -

/ Lo AJI~ ' (lM gree,a.

~ co~w~ J

G - 4.,4 9rao;e0i 7- i-.

; _ - 9snria//y /P7 9SS/dc ~p0r /0 B- _ ,470,/,,,i..(2,/,./,„,arG .(2,/,./,„,

-' i/~~~ 7ii.a 0 ~ 96 9,

10- = a570 E. 0.N.

„_ -

12-

-

,3- -

14- -

15- -

_

16-

17- -

18- -

19 - -

20- ~ I

HOLE NO 6R-87-25— LOCATION

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO (if.- A1- -2( LOCATION 1

GEOLOGIST P.CoLL'EN S DRILLER Q, HDIAIG BIT NO Ca to S'$/OBIT FOOTAGE 31•5 7 11b.,L SHIFT HOURS MOVE TO HOLE i' °G ) I IS

DRILL I. IS 3.35

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INTE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

-

_

_ '

~ -

.

/ 01 A

` ` 02 ►

0 , 3

0.0 —3 O,SM n2eANTC5

TAT, 6RAy ,SofT,

0.5 —0,16.5 r., OStBw'Ay tL SEDSm En7TS 1—

CLA"j IuiTIAL O.Sm (3E-(3E 2 -

[0,S-.5.5) SL=cHT1Y 642TTy c1.Ay

PI1eE

Si..LT ' GRA y , c L Fl y LOCAL

l

4 _ [5.5 1o,0] 6€O5

SANO ' GRAy -QGScSE ,VE/CY s-

w _ L10.0 >Ib•51 FLnIE GRAINEd I

LOCAL CLAy 13E05 ESPCCsALLy IS 0-0 I(a.S

Ib•5 — > Z~.Om T2LL (IYjqTHESON)

7--.-- —

8

' 6RA`5 -GESGE FTNE SANO MATI~IX

PE60LS CLASTS I/O7. MAP-Cc VOLCANrCS ANO SEu.I:riE^/ TARY

LI O 'I Gk ANSTSC.

.o b\g.5 psi Gk=rry cLAy

(IT - Ih AT ei X

18

9

— _

11

10--..—

.

12 -

13 . .

4

15

17

18

1s_A

20-

A • '' . _ ~ '/

A \

\ '4

~

DATE MAC_ 3 19 11 /S fooS

f/coafa,, o290 ,„

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO GK- $3 -2G LOCATION L yaW /,S fioo

GEOLOGIST P.COLLLNS DRILLER Il. H01.46

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

21-

22-

24 -

~- o

ZB

17

231,a + or

.0

> -a

~,~ ~

t1 -

' d

~

~

~~y

•~~~

~

(- ~~o L

~ OJ /

1

~- O Y

C21.o

23.0 -?

2g.5

OELOW

-a 21 o) PECSNLY ccASTS

go '4, nAF Ic. YOLCA nsCS AN $LUÎMENTA2ï 2-0°A,

_ GRANIT Tc

23.0,n (.0680,3L

28.5 REORaCK

I

INTEe~1E0SATE Tp ynAE.LC V OLCA NSC

- LLG H T 6REEN (3EIc~6

- FçNE 6RASNtO

E NO OF 1-10 LE 2B-•

- 291

301

3p_

73

J4—

35-

76-

3T-i

3B-

J9-

443-

r

~\\

~ O~ ``` /~~,

L

_

- `

7.

-

-

- _

-

-

_ ri_

DATE MARua 3 19 IT

SHIFT HOURS

TO

BIT NO BIT FOOTAGE

2 oFZ

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO C R- ff1--23 LOCATION / 4/W , JOft/OS •,,,, GEOLOGIST T- C3IAIMS DRILLER (• PIbWû BIT NO. CR (Cg R 10 BIT FOOTAGE I lb I LO-:

SHIFT HOURS MOVE TO HOLE 2 • 30 — 3.00 TO DRILL -1. 0O -3 S. 15

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER 5. 15 — le,. 30 TQAVEl. r0 C A ✓ I P

MOVE TO NEXT HOLE

DEP

TH

IN

ME

TRES

GRA

PHIC

LO

G

I IN

TERV

AL

SAM

PLE

NO.

DESCRIPTIVE LOG

= = 0.0 —, O. 5 CI GANres

1 _

27 - D,S ~ 22.11 0-s~rv3wpy SEDCrnfNrS 2L

3-- — Cl-14`) O,s -9 CI .0

- - GRAy, SOFT , PuleE 4 J —

_ = SI LT 9.0 --- 14. 0

5- - Ggay - SANO 14.0 7 ZA.lo

s1 — - - GRA`5 QOWk1 TO BEIGk,

7_ - - F=ive 6RAZnIEY)

- LOCAL C LAy 66pS a- E

12—

13

14----

15—

18—

17—

1

19 —

20—

t0— _ _

1_-

18——

L__

^ — - — _

'

.

`

-

-

-

DATE MARCO Q9 Ÿ}

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE MAQci 3 19 87

SHIFT HOURS TO

TOTAL HOURS

HOLE NO GI Z - 81 -21" LOCATION - 4I1 (&)

GEOLOGIST T. OU1W 5 DRILLER a- BIT NO BIT FOOTAGE MOVE TO HOLE

DRILL

MECHANICAL DOWN TIME

DRILLING PROBLEMS

OTHER

MOVE TO NEXT HOLE

CONTRACT HOURS

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

.. '

= 22.4 PE6131- SAND flEY) 21 7 . —

' - 1-1.,s cLr9y 8E0

_a•oo

\-

2/;,o ‘,0o00 CHS~PS

~ i

24 ' \C- 24.(0 -a 43.0 TILL (MATHESON )

25 GRA`-' -6Es6E FINE SAN0

26 — - O I YY~RTRIX . PEQ6Ly cLASTS

: (4,5°), mA Ft( voLCANrcS

z72. — Atoo EDSrIlENTqR‘-..) 3S '4 - _ GRqru=Trc .

28- . _ ; • . _ 'DLO> 33.53 co66Ly

29—! -, - HzGN PERcENTAGE oF

FLNE 5RN0 /11AT2TX 30- _0V . p 100

-+~•~ï~,i mAl f to kETUKh1 _ n OL (36LoW 33 3 To 43.0 3i-0 1 - ~ -e ,.

32=•c>'0 _& ~0

13-

?a-o 0 •

p /. 0 4

A o

351c Q ` 05 - °

,i6- , ► - p

./T _ p ,c 0(0

~ V n 38— a ; o \ 0T

39- t O r C`d

40-1

DATE MA2C11 3 19ia

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO 9Q -ô3 - 21 LOCATION L-Z1/L1) /0 *0125 GEOLOGIST T. fbdilN S DRILLER G• 140`"JÛ BIT NO BIT FOOTAGE MOVE TO HOLE

DRILL TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

13°-/3

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

I

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

1.1-Q a\~~ Gq

)f2- o Q

b,

`i3 G

LA ,k 43.0 ~ 44.5 t3EOROc.<

\\4_ I, 1YlCiASEOLrV1ENT -CVAy wACKe ~fa-~~~ - ~QA2K 62ray TO 4LACK

-VE2‘6 FINE GRASNEiO 45- - Lk+tTl-4 V62y vJELL

= AEVE),OP610 fOLrgTSoN 6- -

7- —

â = 8- - j ~

91 -

10-; ,-

11 _

' 12— -

13— -

14- —

15— —

16— —

17— —

181 —

19 Li [r~

20—

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE A1AeLN 4 19 II HOLE NO C-r9 -Sl -28 LOCATION L-4.3 \J Lr t- So 5 F/ 4.. Jet 4;e ,2 gel ., GEOLOGIST 1 aaeni C DRILLER.I4C .JGi BIT NO. C. r IQ 4 b2BIT FOOTAGE 0-7 52 •5

SHIFT HOURS TO

MOVE TO HOLE

DRILL 57. I

—7 25 i5

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER 1a. O 1,45

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VAL

SA

MP

LE

NO

.

DESCRIPTIVE LOG

:

- =

_ -

- — ;

~

r—

-

-

0.0 ---.9 0,S pRGAn1Sc S

i

0, C, •a 24.3 oSrRwAw Tr_ Snri.ntrvTS 1-

=

CGLAy 0.S 7 1Z.0 2- i::- -GRAy 1 So Fr, Pue6

SIL-r izD ~ 15.0

- 3-

_

-GRAv

SAlvh 15 . 0—,243 5- -GR A i G3120WN To

8E GE- ,FTWE 5Rn,F. ar15 LOCAL CLAY 16605

19 -

—I 0 ,-

e=

9 -~{

10— •-i

-,—

11

0 12

15--

_

16-

17

13

y~_

14 1—

~

1

_

— • .

_

18- •

20- .

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO Gk-vl Z LOCATION GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE DRILL

DATE MAi(N4 7911

SHIFT HOURS TO

L43 vv ÿ rSc s

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TRE

S

GR

AP

HIC

LO

G

INTE

RV

AL

SAM

PLE

NO

.

DESCRIPTIVE LOG

zi —

-

z3

z4-:

' 25— -

; 2B —d

-

2s -

3D-

31_

33-Q

4

35

36

39

-

DI

DL

2.1i 3 --. Silo TSLL (MATIiESGN\

.

2z.-

. .

.

G,eAy - ÇiEIEiE Fln)E SAniO MATRI)( PEC38L'l LLRSTS

1,0 "/. vr+AFrc VoLL A wïCS

1{N0 SEDrI✓IENTSgkY 4o% 6Rr9rvTTC •

L35.1 —, 34.(0] ApUrvPAnzl-

6E=GF 5AIvO (HARRrCwNW maQAirv~. ? )

L 3K.(o --', 43.13 GRZTT~

6KAy SILT /cL13 rrlAratx

~

`

-e 2s-°• e

27- e â

_ h

d , e ' 4

_ d

e ° o e

II°

'

o

° r32- o ~ d

o

c d

d °

r6 .

I

/

~

~

03

04

C5

06

c

T ::

, I

~

~

,

p IG

DATE MAe(I1 4 19 ai SHIFT HOURS

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

LOCATION L 9-3 u)

4 t S o S GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

"g3 13

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

42? ° '

~3- t4

~Q

y 5—A

46—a

- 5'8-

-

51

q2

93

17—

18--

r,°

i7—`.

50-.:6„/

:a ,;

:°'a /41- ~°

/1

o . ~

°' p

°

o

°

. 4

b. °

a ,

' p

•=D

k

~

II

I z

13

14

15

Ilo

ly

~4t. ~ ro 51 .1.03 coaBLY cL19STS

~O °~ r11F1 FSc

VOLCr'{rn1SC ArvU

SC.Ot1'r~ENTr9RY 3 0 -I. G2Ar~tTr

5 I, ce —a 52 5 s';c-OQoc K

o~`

I

~ ~`` -

,- -

i''

Y92Q

15—

I8

TN1-E(Zr11Ea.L'14?E TO mHFSL vcLCArvrc.

- Og21C ro AMEOrUm GIQEEnI

FINE 612AtrvE0 I,uELL pEvELoPEO FoLtWTson1

(51-1Ee92En ? )

52.5 ENO OP IiOLE

~~

i k

54-1

16—

19

— -

_

HOLE NO Ge-si - z

OVERBURDEN DRILLING MANAGEMENT LIMITED

1 REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO - 26t2 t LOCATION L 3G W -f + 50 S C'_'='/ 20,Orn

GEOLOGIST T RuRN S DRILLER G. 1.4n 1.06 BIT NO (4 X 41• Z BIT FOOTAGE 57 s -' /06. C

SHIFT HOURS MOVE TO HOLE I, O Alert it Ÿ TO DRILL I•ob ç- 3o

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER . 30 ) (n 30 177E4VE' 77 ( A>r1P

MOVE TO NEXT HOLE

= 0 w

aZ¢ Lu w O ï

U ci.-0 ¢J ü IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

: 1 -

: - =

r

~ -

-

-

-

-

_-

F

- -

1:2 O~GAiscs O.p --'? n

1 ,2 -- Z to. (, O ZZfSwAy SL SE17Lo1rNrS .,_

cLqy 1 2 --) (,.b 2 -

GRa,- , SofT, Pu2C-

SîLr 6..0 --3 1-2.0 3

_

604y , Lock{L <4Lr4y LiEDS

Ni)SA 12. o -) 2(...L,

4 -

5-

-

GR/4y J3ELGE ro 13EiGE,

FL1v E G RAZNEO , L oCIAL

cigy (SCbS

20-

_ 6 —

6

_

10--

11 ...._

12=

13 -

14-{

15 -

_

16- .

17-

18-

L

_

7-^

9,—

i

— -

— —

— —

_

, ' '

' • .

.

DATE An AK H S 19 Li

OVERBURDEN DRILLING MANAGEMENT LIMITED 2 oF Z REVERSE CIRCULATION DRILL HOLE LOG

DATE MA Roi 5 19 g}

SHIFT HOURS TO

HOLE NO GR-8 - 21 LOCATION G 34 î 4+ So 5 IELEV 2_400%

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

INTE

RV A

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

ZI -

12-

;

25 _ ,

= z6=

'Z7—

-~,8-

2.911

3° ~ -

, _a 31:

A _

3 2= `

33 ,

i4— - 35-

36-.

37_ •,

38-

3s-

1°-

' t3- _

z4 -- _ .

:6,

~^

_,

_d

:

,

' o 'd

, o

,

°_ o 5 °

- .

A . ' A

'' o . •~

.

' • .

- _

- _

_

-

_ k

01

I

~ 02

2(o.to —j y,3 TLLL li-o~ATHESGIvI

~.

~

' 4o`~0

eP\Ay (3L--sGE I Er :vs SANO

MATRZX , pE36LH LLRSTS

✓YiF1FLL t/OLCW^Jt( S

gN Q 5E Oî PYI Hv I~1R / 4o°/0 G~ANZTSC

34.-3 -->s0.0 S E OLm F N TS e

-COARSE SAND 04.3>34.i,J

-FINE. 6RATNEd SAND

L3y .ta --) 38 4i1

- P~(3f3Ly Y3ÉOS Ai 3$•4 1

40.2.

,,___03

~

Dy

o~

p I,

\ u}

~

°g

r

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3 JF 3

DATE 'WWII CI1 5 rg HOLE NO GR - g}- 21 LOCATION L 3ÿ UJ y + 50 S EI EV• 2`0; 9"

GEOLOGIST DRILLER BIT NO BIT FOOTAGE SHIFT HOURS MOVE TO HOLE

TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VAL

SA

MP

LE

NO

.

DESCRIPTIVE LOG

/ 08

itI 7. _ ' . - iY1EOLUlrV1 GkATNEO SAND 1

Ctis,S --- 44,53 Q2- • oq

- PEC3(3iY SriNOS

y3= . '

~

~

j Di8. 5 -, 50.01

44 ' I -EOO —)Sl.b TELL I (MF)rHESoN)

= GRA y 6ErGE FrwE 5glvp f8 10

46 _ (.05 '4,

mArnLX ; 19E8I31.Y ccASrs ~YIPFZG VDLtIA„/=CS 4A/13

~ 5E pimENrx1-11-y 35 /,GRANrTIC

`17--4 i

18= ' ,

l I

-CrGI-4T G2,4^-j G21rr`~J co-It rrticrrRrX CSo.g --0 51,~3

y9~ o - rnA Frc voLc6NrC tbvtALOEIe

_ ° I. (.sl,(, > 52.13

50- • o• ~ - cor3(3LY Q6Lo w (52.( --)

g,_~ td. 52.5J

42

,.., \~ ,

3

13

93 \\\%, 14 52.5 -~ 53-5 3E0Koc K

TNTERMEoIATL ro wrAF=c _w 54— V ULCANZC

- _ -mbLLirN TU pAKK 616ov 152_,

gs _ - TO 61OOE•kf1T~ FOLZATronJ

FLNE GtZArnlED I Poo..

_ = GENc-r.4LLi rnr}sSSJF

3T1

_

s8-

gg _ :

53.5 CND OF I-► oL~~.

oo-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE M4,((H Gigal

SHIFT HOURS TO

HOLE NO -30 LOCATION L -Ts 'f-1-505 EL€'. Z o v1

GEOLOGIST T. Rile1VS DRILLER G.-IOWG BIT NO ç13(,%-TV BIT FOOTAGE (0 )C,O•S

MOVE TO HOLE

DRILL -7 ~O 7 I Q •~•(-S

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

U_

QÔ ¢ 0 IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

• - 0.0 -) 1•0 Q1Ch19NrCl t

1

j .0 -a SS.2 S7 SrY{u,1e9 y~ SEO.LrYlEA1TS 2-

_

-, - C L.A y. [ I.O ---) -1. 01 3 —

- - GRAy, SOFT , PuKE

_ y 4 SILT ; [-r.b -~ t-2 Si

E _ - GRAi

= C 12-•5 -)5S.21 SANd .

6

11-

12-_

13-

1

9 .-

0 ._

-- — ___

_

• "

-

_

r

_

-

-

-

GRA,- -3EL,3E To (31:•.56,7 E _ -

- FLrvE 6k'.AT N L O -LoCc1L cLt; (~EO A3'JvE

2\. o

14-

15-

- 7.

-

16-

17 ^

• -

,a-

19

2

• •

r

_

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 or

DATE ffCP,( II ~19~ HOLE NO r;P& S? l LOCATION L '7.1v ? t OOS EL£i . 2cic 0,1

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS

MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DESCRIPTIVE LOG

- Woo() OcCLII: r4T

AN0 33 4 ,4

pe8F3Ly t3C-317 vccu2 Ar

2q.

.5- _ cLriy 13EU5 ncckm2 Ar

33.C, , 3 . , 38,~ 26 —

27-

>8—

291 .

90-~

32-

33=

36-

37~

j 38, •

7

U_ 0

Q J cr a IN

TE

RV

AL

LU J

az ~

~

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

3 0c 13

DATE MAYLN 19 a HOLE NO LOCATION L 3 f'w 3t e '~f-, ELEV. 2q.0 %h

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

_ N w âZ¢ LU-11] O m

U â00 ¢J ,U

INT

ER

V AL

SA

MP

LE

N

O.

DESCRIPTIVE LOG

41- '

- -W0O0 (HIPS. AT SI ,L, m

4 2 - ' , - - - C.LA6 6E6`, AT 5t Ÿvr

4 3— ," —

--t.- PE et. Y dEC1~ OCLUIC 14T - ~4

y4—' G 5 4 on A rJ 10 S fa . lo .r.

i51. i\ ,_'\-

-

,t8— `

N7-- . /

5~ -! -% bÿ.1Nl ÎÏ,LL (Ib1F3TF1~L- OfV~ a8— r/

_

'

/ -~RA~ 13t FL IG~ 1vE s'41\11-)ss

rnHTq~TX , PEBi~iv cL~1STS

~ (Dr]°~o YYIriFIC VOLCu~lt1+CS 90

~i~O ~eozmE.YVTS 3Gojo

, ` 3 GAlvrrrc

::. • . - , 3.I.IT6-4111EilIAjE ?7n)AFr.G

34— - V OL ti 1 r l c r J4

~ - 01ccrur>7 To OHKK 6KÉEN

9s=' , - ir\), c72.ArNEa

58-- - WELL OEVCIoPEo FOLtYl-TLbJ _ 05 C.sHEAeiNG ? )

V-. . . - f'-iQ14YVIDAr"T tTG}jl GRLk,iu -

38 - ~ GL/ti~j (I:OCK PowDbi2 )

39 - -

°(*() to0"-i. e1VD i;F Ia DL~

_ \

bo-= 6r 1i. I

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE MAR/ IA u 1911

SHIFT HOURS TO

HOLE NO (r.R-T} -s1 LOCATION Or %S eLLU. GEOLOGIST T nid ' DRILLER n • 110k.06 BIT NO S (44 1 - BIT FOOTAGE a

MOVE TO HOLE 1O'Lt — 11.00

DRILL 11.00 -) F,.Oû

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE 5.00 5 20

= w dz¢ w w o g

11

GR

OG

IC

INTE

RVA

L

SA

MP

LE

I N

O.

DESCRIPTIVE LOG

= O.0 -) 1•O pR,GrT1vzCS

..

1

1 -

1.0 --' (,3.3 Qitf{,wt9y, Ti SeCSmE,vTS z =

CLAY rip -- q.O] _ GRHy , SGçT , PuKE

STI.T (9.D -- (4.0 -1 4 -

GQ14y

_ sA1vC iD 4 0 -) f.0-1- .3] _ -G(4.Ô GF=6E 70 L?SûE

6- - FI'rvE •LSR?IZtvÉL>

7-. r 1

e- -

9-

10--

11._,-

12-

13---

14--

:

15-

16-

17-

19 -

20-

__

_--_

18-

_ -- _ -

...-

-

i ,

,

I ,

- kL

- -

-

L-

_

-

L

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2oP 4

HOLE NO GK-'Of- 31 LOCATION L 33w 3t o0.3 £ L.1.1. 'Zgo m GEOLOGIST T. ELtrZZIUS DRILLER V. 1-1(.;,.Y

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INTE

RV A

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

2,= -

- - ~-LriIj 13Ei)5 AT-

39.5

Z1,~ 24.4 ~ 3U.3,

22 — - — - -- w 0o0 t HtP5 AT 2R-.0

23- —

- Z4 _—

15— —

26— —

27— . —

- ' r r

294 —

90 —` ' —

11 —.. —

12- —

__ • 33—

34— • ' —

75- - ' ' -

36— • —

37—

I6= _

39 —

4' . ..

DATE I'élARt H lr 19 .Z BIT NO BIT FOOTAGE

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE !i RRLN fo 19 HOLE NO Gk - S -1- - 1 LOCATION 33 vv ? - CO E 1_E'J '90 ivN GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

a1—

q2—

~ ~ ~ -

— PEISBLv

— C I_r;y

5lgnso Own as AT g; -2_,,,

8 &ll AT 41.• -7- m

43 — •„,„,c. - — wOUt~ CH~r'S AT 410.$ ,';4 4, 4 i.. ~ _ LJ 5 . 4 --> Sfs.3 M

45—,.

44 -1' .

' 462 * - GeAhf NLrQ R t30‘.;

5 I . fo vv% _

oCcU.e Pi T-

t6-.

17— • ‘

48 — . .~i l _

49-~ - . `

SO-- •

!1- - / ~'

S2— G _ o ~ or'~ . /

g3— _.

94- 03

_ -

Ni

ki

g5 ~ . *

36-

57—

,

'.•

98— - y• •

g9 —

DS.

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG /-I o f 4

DATE h 19 .ïÎ HOLE NO GR-83 -31 LOCATION L 3ik+ -t 003 CL EV 2q(- GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

= V7 w

aZ~ W W 0

U

ap ~J

5 INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

•~1

,c2_

b3-

a4 -

~

b5-

e7—

06 _o

:

,A

,

' . ';~--

~ ,

' .

- ..

. . •

:%; ao

°

L~

6

b6- e

•..r

\\ -

~5 / r

/, OU

/

\_

~

üt

\`

/ .~

e •

- \••A

-

(Q -3--3~

6:q.0 >

Vt.- y

(~ -.3 --..W

PLY -CO ATD OCCUS T L~3.I IA-,

v(ZAVEL AT {clo.5 -~.io}.3 i.'‘

wEtFi PEa13Ly LLHSTS (0O ° /o

L A SEOm S - vCtc+~Z f~t1

~ t3FZG l4 n

lv~ 40°% Ge/ir•zTrc .

TILL i MtiaTHESN b9C o\

..

- ,31S6 ÉE ; FL N rs SAb ~~}~j

mr~re.zx ; P~63L Y ccri-srS

bC°Io rV119F.LC 1/DLCfi11iLL

ANC) SEL'1L✓VIErVTT 4c' '' L GR >4 t\J S TI-_c

(ag ,4 13E0eOCIC 69

O' `10-

"I-

- 12—

_

13

14~

15y

16- _

17-

1B-

19

I

~////,~I

_

_

-

_

- _

C

META ÿEO=YnE64T

_

-BLACK , JE-Ky ELNE 6"2tiruVEU

-VE-2Y SSSTLE C ✓✓tt,tbST -CNE)

-(iBvtNtDANVT' CL~y CkoCK

PovJDEk-)

)6 THIS I-101E WAS Ais'ANr70N E~p AT (oft .4 L'UE T EXCESS TOeQUf ON goes.

END OF 1-30LE

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG .1-

DATE MARCIi 1 19i{ HOLE NO rC -3Z LOCATION / 32vJ -3-100 S LLF V. a1 R)? nri

GEOLOGIST T QN JZAIS DRILLER ( I-O' G BIT NO fpatogl8 4 BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE 7 IS - 7.'15

DRILL - 'IS - 10.00

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

APH

IC

LOG

IN

TERV

AL

SAM

PLE

NO.

DESCRIPTIVE LOG

_ 0,0 —)1. `f QK GANLCS

1 2- --, ‘-}ci. , OltQwAY 1,4 ,ff SEDrrnL/.,TS.

2 - CLAY Llo't -a -3...1 }

= GRAY SoF r PI/ EE , , 3

1~_ SLLT [3 5 > 12.0]

5—

9-,----

10--

11=

12.

14

1 5

16

17

4 --

6~_

7r

8--- -- -- ~_

13 •-

— i—

_

i---

L — -1

—I ..- =

• .

_

— ~

C

~

1- i- r - H r

-

--, ~

E FINE

GRAY

SAND E 12.0 > ~► g.lej

(2114H QEIuF TO 6EL6E

GRArrvED

LOLAL CLAL6 QEDS AT 14.1 I t8,2 , I q.2 , 21.g rya

18 • —

1

19

2e

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 vF 3

HOLE NO G1-1} - 32 LOCATION L32 in., .T+ooS E~F4'. GEOLOGIST % Avkizt-ii DRILLER G . HowG

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GRA

PHI C

LO

G

INT

ER

VA

L

SAM

PLE

NO.

DESCRIPTIVE LOG

21- ' - - W000 LNEPS RT 22.S

2z- ~ - CLAY 3E0S OCCUR Ar = 26.1-,31.4 , Ss c; 111

23- . - _ -- ME In: UI'n GR,gZn1E 0 SAN'd

2a- - t3EGZn,S A7 2:3-.5 A IN, 0

= :

ConlTINuES . zs— , —

2s-, • - ~

274 , -- , 1 ,

28- • - -

29-. " ' -

30- '

31- • -

92 - - rl

334 -

C._

. .734- -

35- . - _ _

3e- ' -

37-i ~

3e- -

39 - _ -

DATE MAkCli 1- 19 3.3- BIT NO BIT FOOTAGE

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3oF 3

L 32uJ it 005

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE

TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

U_ ~ry

o-p aJ cc 0 IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

y27 —

43— —

.4 -

4a — • —

- ' r 45— • '

LOA, ~5 3.(o TILL (mATli6sON)

46 —

7.4• ~—

-

q

— 5QAy -6EI66 FîAIE sAN10

my-iT~x QLow 50.1iv,

/i (ÿ6V E So . 1 M, A GRz-rry LtGHT 6RA1 <-Lfly ynWrnrx

46- - 01 wAS PKESENT.

— COLiBLE 55~Q CLv9STS 49- -- `

~ 7010 yy1AFLC voLCAn7EC

ANC) SE0T07ENTS 30`~ so—

4% 0 L ao C7RANITTC.

51- d~` — PAQ r SRLIy SOKT60 TTLL

_c 4 n3 F20w1 4et•6 0, -ro 4g.9

1-22.6 ` 53.e --) SS-G 3E0RocK :,-_—_,',6.,

1.3-:6' ~7/ %/

p4 FEL3.~L VGLC/jNLC

" YELLOW -WHZTE , VE12y ~ •~ sa ~ ~ FIrvE 6-?ASIVEe , WELL

j5 ~/~ ~\ 05 OEvtLOPEO FoLShiT,LON ,

A 6UN0A~rVT SERSCLrE ~ - wHLrC- C LAY (noCK PoWOER)

3c ROCK Pow.oE-R WASHES Awgy, fF1E2EFoL6, ALLoW LoN rtgmtN-

37 Atiolu fROm ovEz LYItvG VC--

55.5 ENO OF HOLE

59-

ao= =

DATE MARCH 19 3. HOLE NO c e-~s-1- - 32 LOCATION

HOLE NO GR-k + -33 LOCATION L 28 W 8-+ oeS EL EV a.go.wt GEOLOGIST P•COLLENS DRILLER G• HOWô DATE 01VI li tg ~}

BIT NO CBbXig`t BIT FOOTAGE 55. -?/01

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 1.

SHIFT HOURS MOVE TO HOLE 10,00 7 , 0', 5

DRILL 10.15 —> f2.0o

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

U

QÔ ¢ 0 IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

0.0 --) 3.0 OQGANscS

1 7 3.0 --> 43 b 031.6WAy b SEDrmENTS

2 CLAY (3.0 7 g• O ml

-- Goy , pu2E , SoFT

: _ iLT EA.() —3 12.5,.,3

6QAY , LOCAL CLAy(3EAS : C

SJ ^ SA ►ulp 112.5 --- 43.0rw3

To GRAy-3ErGE 6EIGÉ

6= - Frn, E 5Rt1rn1E0 , LoCAL

l H Ct.Ay (3énS EC. 11,.01 - 11.5 Ict.O w1 ,

~ e—

9— —

10— — -

11-- ~

,.— J

-t1

-

~ ~~

12,

13=

14 -

15 -.

— '

'• •

_

-

-

-1

167,

. ,

`

_

_ .

_

18-

,

19 •

-

-

20— —

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 of 3

DATE MARLH 1 19 li HOLE NO 6-S i - 33 LOCATION L 2$ vnl SS + 00 S

GEOLOGIST

(2. COL DRILLER NOU 6 BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SAM

PLE

NO

.

DESCRIPTIVE LOG

22—

-

-

- UJ 000 CNtPS oCcü2 gT 20.5,.,

- MEplurn TO coA2SC G2ArniEn

- _

SANü cccL1KS AT 22.0 -)24-1.00,13- AM) AT 37-.0 7 40•S m

24 ; ' _ - CLAY GEO oCCURS AT -2 -2 I ✓n

25- -

26- • • -

z7-- -

z8- • -

I- 29- , . Î-

30- -

31-' ' -

32- -

_ Z 33-

34—

- 35_. ~ /

3s-- 01

37-J /

38- , `

39-\ OL

~0 4°-= ~

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG '3 o 3

HOLE NO ,G1-81-33

LOCATION L 23 S too S

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

DATE 1NIA4Lii 19.x}

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

S W â Z¢r ww

a M GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

• ~~ ô2

41- • 1 " eE86Ly 430 OCCu12S 14T 4 1 .2 rN

~

-

. -'/~

• ' /~

03 -cLAy c3Ea oCCU2S far 142.6m

4~ •

43= • ~^ 43.0 -'~ 43.1 m TILL (iNA7HES6N) ?

\''-: AVPERKED TO GE vERY SMAGL

y4-/~ 04 AMOuNT OF TILL WiTI-F /r\ - FLYVE SANd yy1(-1iM 31AST 13Efaa

gs_ r- OEOKOC(.

4a- C -

43.i --) 4,-1.10 m L3E02OCt<

iNTE2mEtliATE TO ry1AftC voLC 1 - '..

47- :4

r - L=GH7 6QA•I1SH 612E6 A.) , - WELL >7E'vELOPEO foLrvlrroN

ya- _ - FEN( GQATIuED

_ - rnoOEeATE AMOUNT OF 491 ^ CLAy (RoCK pow DE2 )

r o 1 - - 44.LI ENO r7F ROLE

J1 —

92

D3 -. -

r<— —

55- _

g6~ ~

97- 38— - 59- - go- L

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 1

HOLE NO e?â -B- -14 LOCATION L 24 u/ F' -I Oo 2q --4-

GEOLOGIST P (OLLL&Vs DRILLER ~. NOWS BIT NO. C B6U}$i}

SHIFT HOURS MOVE TO HOLE 17.00 9 12-15 TO DRILL 12.15 -) 3.55

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE 3,53 ~ 4• 45

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

- _ 0,0 --.3 O. ORGANICS

1 - -

p,S -t 4q OzrQvvAY II 560.TMENTs .o z- -

_ = CLAN/ r [o.j -') It•b,h]

i INLTLAL O.S M RQOW ✓V - QLTGE SLIGHTt y GarrTY 1 1 ,

4- = OTr1EKWiSE GQA ,SoFr, - = PtAgE

5 - SILT : (II.io -> IS .O]

GkAy LOCAL GRA1/ s- ,

CLAy ûEOS -

_ = SAND • [IS.o --2 49.0]

B- C'JKA6 - (3EIGE TO (36SGE FINE

9~ = 6 2errN6 p , 1.ou1L

GRAY CLAY ,(-SOS rSPEY = S.ALCY (.(o.Q rvt

lo-

11-

12L--- _,-

13.-:--

- .--

r

14- _

15-----7

16-

_ -

-

17-

18-

191

_ -

-

~ r

201 l-

DATE MA k.1-1 19 IT BIT FOOTAGE 100 . 5-715"C'

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 of 3

DATE flI)tIKCN l ig Si HOLE NO Cre-S -3Y LOCATION X4 Ut 2 1 6 - Oc S

GEOLOGIST DRILLER BIT NO BIT FOOTAGE SHIFT HOURS MOVE TO HOLE

TO DRILL TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

COAP.SE. 5AN0 (3E0$ OCCUt2 AT

2' TN£ FOLLOWïN6 rlVTEKVALS - _ 20. b —, 22.o n-,

22- ' - 23.0 7 24-S en

23 ~ =

2G.2 --31,U .1-1~ 32 .O 7 34. 7 rri

2a-, - (YI EOZUm TO COA2SE ER/al-NE 0

SA NO occu2S AT •. 25- . ~ _

" 2.C..0-? a8-0 0"

3 Y. 0-4 ~{ O. S n,. 26-

P CL19y E0 []CCL7t2-1 AT 22.2 /3 )1, i_'-1 01

::i. `

aO- S 02

'31_:: `

32_.

34-

33 ;'

.

~ 03

i

- : a35

04 36-

_ ``

37 ` II

1 r 381

:01 0

05

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3°F 3

DATE 1YlA2CH 119 3.1

SHIFT HOURS TO

HOLE NO Ce- -14 LOCATION L. 24 uo 4 OC S GEOLOGIST DRILLER BIT NO. BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HI C

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

42 7

- -

yo --i

15- _

y6 _

47—

qg_ -

49-

= SD

it—a

42

9.1- ~

4437

_ "

.

-

-

'

6 •

~~

e ~ Q

Q A. ~~

~ OS

~ oç \- ~

~—

~ ~ 07 ~ /17-- \

\ p$

- coAeSE GRATN6Y~ 5Arvfl CLCUQs

AT +4.2 ~ 4b.2 m

'1`i C ---", ;2.~~rn Tt LL Crv1hTtiE.Scr~)

w

-LIGHT To OryCK 6ieEEN

~iÛi.+NC{NT GCA-5 f3tL.~E

t-LN.0 TC rnEOSuM GRr1Sn,ES, SA N 0 (11 K1TXS X•

L49. o --4 50 •C3 P(36L Y CL AST.)

(c0i, v11AFLL VOLCArVïC AIVO

Sc"OTrYIEniiS y Cgo GRgN1T1C LSo.o ---) 62.b3 coc3aLY CLAM

-}G`/~ (YI(iF.rc vOLC An6-,C

AAA!) 5EOrrYiEn1T5 30-4

vRAn,i TTc

52 10 — 54.0 L-3C. 0k'L~CK

O4

;

_ 10 'NIGfMEOTraTF TOolAFLC JOLc.

- EL.c OC~G 0 Li 1oPE FortrCuu

- FLNJE G fATN6O

- ASIAN ppnrT CLr9 ti (WHITE RO1K 1o6w(XR)

54-0 END OF HOLE

93

sa

/

,J

~

II

~

95

37

18—

19

= _

_

-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO - V? 3s` LOCATION L 02 Q 3t a'> F 1- GEOLOGIST TI Jt14lC DRILLER "744417 BIT NOG4;~'R781 BIT FOOTAGE'S" SS-~a?S.'-

SHIFT HOURS MOVE TO HOLE ff DRILL

TOTAL HOURS MECHANICAL DOWN TIME 7.. Gn a 7:/S e..t. R-/5 DRILLING PROBLEMS

.~- a CONTRACT HOURS OTHER ,,3o 12 AI ,cuu c-/ ,7" I3-!s,

MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

V I II G

RAP

HIC

LO

G IN

TER

VAL

SAM

PLE

NO.

DESCRIPTIVE LOG

~ n 0-> /,t, .1:21AL

l l:oNûy,.2 O

~~11

. ..;4+."....;4+."..~ +~ ~~k,n.2x4 ~

2 " _ ~d~ r0 ~ 7%i0

_ irie2/1 3- 1

/2-1-441-- J !/ !

.~ 7,0 --, P1. 0 71

/~1/~y

y U

5— =~ ~ .../ ,at.o --",b4,,,Z,

/f 6~.-~ — ~n~ /+~ 1,,,..".."„„,,f-i.,,,,,

'~- ~~~1 "~/ 4 f 7_.

~ 6 -~

107

11 ~

,4

=

1—

__ _ 13--

--

_ _

~

_

_= ,-

- —

— — • / ,

=

_

_ ~

~

~

==

✓✓Y~

t~w ~ ~ h.S, a~ . 7, lS, 3, », g ~ 1?f./

- _.<_.<4,-,,n1 "4 4d .....74 4q,,,Zs

9~_

MOM 15 • + • -

16—

17— + r

18—

e •

— —

L.

y

19 —

2D—

d .

.

'

. .' .

r

DATE 0/1044-43 19 2

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO &le- 7" 3SJ LOCATION / ,2q k) 3rcY'S

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

/KV -2":(

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

~

,

:

- ^~ ,1•4.6.6I/ aA 04.35 ../.2, -, 23, G

2'~.L._

2 .6

22 - ., -/s^~ (4 ,./e g i, d, 3v, s-

-13-i.

Ï :- .

24 - • • ° -

— -

. [ . - ;,5--,' • .

-

r-

.1.6 • • ' :- _ J . . r

_ i ~~^ . •

Y - ~

^8 _ • Y °

2s-••- F

_ r I - ~~I

30- „ ° -

1 i _=f, i ,^• • • ,

r_ -

3z=-.

33= , . • -

14 `' - - 4-",'-‘4. ~ .4.44.,"(p.„..)QC~o6,/ /~ 35=

_ r . ° re

i:- =

311,5- nGw 4- ~,,~ ~„i

~~e

~2`°

36- . ~ . _

3~= • t ,. _ - -.1"--4536:0"0 g~,,~J ~.~r,~-~ 3',. n

3a ~ ~

-, _

o, _ .'7"i.- k: ,~ 9

,9 d - •"•

440— 4 • Y —

DATE "Jill 19 22

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO 6;P-37 33 LOCATION

GEOLOGIST DRILLER BIT NO. BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

I G

RA

PH

IC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

0

m

~

n

D

~

-

m

r

O

O

~+i -

~ ;fq _

~ =1

fis ~

0-

J.-1 -:

72• — -

73

â

y's

ÿs

..5—f~

~~.

_s o

4~~

q

• a o ..,...„_\;_-

e . .

.

W ,,

e

O

a o U J o o O

106,_,„

513-

5~,.~

n

oo:: T' ~n

_

03

&. ~ /

% ~~j

-

-

~K7- .

. ,g~.~.-„2)

.„. 5;2,.5—

r'-' & 1 'sa fi e~ -.4,4 ~

~ /4„-,02,~/

,„4,40 ,::1 dfr 0 i

H

~.S

_~~ ~ i ~~U.i✓iS

_57,, ~w,~X ~

~g~ rrn -5 l, 5-'4”

— 4,..,C v-,,de .,,,4J rG/~.~ Z, ,.~ -e-414 1-4-. : ;l~~, .~i

/7

58 ::.~

i J-y„ -,G?'1

II

~~

. . • 0

0 ab 67 :.0 . r .

" .id

~\ 9

Op FLO

. " ,\ .

DATE z.)11,2ezia 19 1.7 SHIFT HOURS TO

1- 4 u) 3 7,- arm

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

DATE fin 4- 19 $: GEOLOGIST DRILLER BIT NO BIT FOOTAGE

SHIFT HOURS MOVE TO HOLE TO DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

APH

IC

LOG

IN

TE

RVA

L

SAM

PLE

NO

.

DESCRIPTIVE LOG

67

62-

(04--

_

5-

La-

68- _

s-f.

0

~'

~ 2

17-

9a_.

1

E3-"

e7-. .„,

' "

î

' • e

u . . . o •

. • '

e vv

. . •

. . ;

e , ..

• . ® ~

\\\\\\\\\\\\\

A u

\ ~

.

c '1~/ 0g

~

0B

~_

~ \

'

\ OQ

tL

r- \ \ II ~

p 1

~

ô ~.,.7--

'p, 3 ~

_ .,/~

- /_aG?/7,1/4r.l.ww

- 4)~ u

~ Ll~

/A

A~to ~

~Ÿ2

Ath ?24,4j:i

~ 70,3 l ~"~4f ( /'KV~t~I~

~ ~ '44"-ye' ~

~' ~

,~ /

,~.. 4a,.g0 ~~ I P"'_,~"~ *~

~ ~

~~ ~0 2 7,.....e;~

l '7/, S^

/0~~it,/C ~~a.aav~~wr,y,~

~" ~~7 /

'Ii, ).- t, 0, lt,

_

80 :/-044.07.„4:41

,4'+..x~~ J {..tc tz„,.. ~t,,.2~m~

33

74_

75-

'7a-

-

HOLE NO a4.-R7 - 35— LOCATION 2 i) -/-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

1

DATE ''r1i'QL1-1 K 19ïî HOLE NO GR- -3L LOCATION / 2.:•5 iAJ 1 t bo S GLC J 29 on

GEOLOGIST P COLLINS DRILLER G• Hi J6 BIT NO sai,,K7k+, BIT FOOTAGE I% L' 9.5S.S m SHIFT HOURS MOVE TO HOLE I.0O 1•IS

DRILL k.IS —9 S - 3G

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER S•30 --> (,.30 TAU6C

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

w J , G- ïz a (r)

DESCRIPTIVE LOG

0.0 > 1.0 OkgANiC S

I

1 - : _ ( •L% ---' 54-0 Ç3TRV4AY TT SEQIMENT$

2 _ = GLAy [1-0 --z> G.5]

3 - YNiTrAL J.Lrti 803.- , 5124 on. Y GKrTTy ; iuLREAFIflS

-+ GRi , SORT, Pu2E

511.r t5i.5 --, 13.5 ] = ..-.;RA ,3 , LOCAL cLA ~

5 — -

=

6EDs -9 Sy.o] SAND [.13.5

s - 512Ati GrrGE ro (3ErGE FINE SRAI n/E0 • LOCP1L

7 C.1_41`9 fJEoS AT 1b.o 1

IR O m s ^

-woos CHIPS OCcu(t 1 L 9 AT 18.0 rv.

10- _

— —

-

11 _

12::,-- — —

— —

I-

F

13

14—

15—

16

~~ — -

17

18~•

-+

19 y

-

.

h-

~ -

20=

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED 2 of 3 REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO ( -$1- - 3 (o LOCATION L 256 W 1+SG S GEOLOGIST 1 DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE DRILL

TOTAL HOURS MECHANICAL DOWN TIME DRILLING PROBLEMS

CONTRACT HOURS OTHER MOVE TO NEXT HOLE

DE

PTH

IN

M

ETR

ES

GR

AP

HIC

LO

G

INTE

RVA

L

SAM

PLE

NO

.

DESCRIPTIVE LOG

Z - MIOOtO (HIPS Ccc inK tiT" _ = 2 0 .3 , 2 4 . 0 eY1

22 - . -

- MEorum GfZacnrE D St9N0 23- •

LZS /--, 2 Y. I m 1 1•

24- • — COAES-E GRFlTwED SArUD

252, . _ E2 7 1 —) 33. S m 3

26- • — - FT 1..) TO Y✓1EDtU✓11 GRArrvEG

- ' = SAN D [ 33.5 --) 4t- f. O m1

t7- _

-

Z8-

2s —• -

30 .- • -

3i_ . - ~

32—-

33- -

y . ' ' - 34--

j5_ - _

36- • -

37- -

36= kk

• .

. É '

DATE iY1AKCI-Î g 1911

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3 of 3

HOLE NO Gk -33 LOCATION GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

DATE MALH 3 19.13

SHIFT HOURS TO

L2W 1 +5o S

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

V AL

SA

MP

LE

NO

.

DESCRIPTIVE LOG i

-

µI—

y2 =

q3-

44ti

45—•

46-.

;

48=

49

sO-

iz_

- 53=

-

r< =é -

5

sB

S7=

is = -

ta

_•-

474

i1 ,

-

'-

~

-

.

.•

' .

- - •

~ p ~

-

- -

-

_

^

— _

~

_

_ _

L

_ =

=

~l

- rv11YV02 CLumPs CF rRr iry GR ✓i ,3 CIA j IN SANG. C37-.o -.3 3a.o3

_ cl.,EmLLIgL min0 ApOtp TG

\^111-tEK Qvlfi TO PeESSLIeE SriitiO

AT 40,soi

- rr1EOlUrn ro C o AIeSE SarwD

[4H.0 ~ 54.0]

- L~)0Ofl CHrGS OCCb12 14T- SO-$ ✓h

- 9E6BL ,:i r3Go oCcu1RS AT 5r.bw,

5`~.O -i S ti ,~- m TILL ( rvIWTHESGI~)

5kAy (3ErGE FrNE SANA MRTRtX , CO(38LY CLASÎS ~0 % vn AFSX- VOLCANrLS

ANO SEO_rrrlEn,r-s 3o° o GeANrrrC

5 4 -i 7 55.SM aF1222cI<

t'vI E T A $ F pr m Hu'i

dqQK GRAvj Tb (3LaCK

- Fe 0 /I-IFrn srrarNzrvc, - vii-LET(-vii-LET(-QT2/ rAQ/jONATE

LArYIirVFlÉ-

— FINE GRArNE 17

55 S m . 1'-; p Ce HO (E

y!/~ ~~

~ 62

;

s8=

- I-

=

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 1

HOLE NO ,":75e..- 17t - ~ 4- LOCATION f ~, T. + "G 7. E t. • /. DATE ~I I~ l 19 _t

GEOLOGIST RuiRN S DRILLER BIT NO {4 BIT FOOTAGE 5•'S•- (12 4

SHIFT HOURS MOVE TO HOLE TO DRILL 1.3C -4 II 30

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

_ COU w

az¢

LU W

o ï

aÔ ~J

c~ INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

1 -

- - _

— ^

,-

-

F —

0.0 --V I.0 rvn CFSAivTC S

I,(> -a Li7.-•Sm 051-C3iA;Ay IL Std'TrnEl~;~ 2

-

(.Irav L..1 -0 --) u.oj

GKA j, ScFT , huRC.

SI11%;0 19.0 -.-- 47.BJ

3 ;

4-

JQfly - (SEL GE , FLruE 9-eAT11iE0 CLA`a ûEOS O<<biP AT )02, tl.b , 12 3, 13.2 , 14.û,Ibb ANd IS.S m

— -

-

s

10-1 ;.. , '

11

1 2 , ~

13 •

14-

16— : ' '

17-. 18- 1

'

20—

19-_ ,

DATE NIAiLN 9 191i

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 cF 3

HOLE NO &-r -17. LOCATION 1- = f 7-

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

= _ — P>rciG(..Y (3LOS AT 21 L, 2; 4m , 21H - " -

oc _ - CLAy 13EOS AT 2 ,. - I 22- -

23 â - - cOAi;SE SPrlrNeO AT 3G 't -32.c

~""-` _ - 5f:iaVEL Fkom 32.c --, 32.4 24 - -

= _ - FSlvt 6gATNb13 aL1_00.: 32-4 25- _

262 -

= C rr~

13 2, G

29- -

30- -

/2— a ° , —a ° ~ YY

13 E‘

14 ibil

35-

36- 0 2. y " •

17-'

J6-

J9- I ~3

ao-

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG ? c F 3

DATE lT1AF.i N q 19 al HOLE NO K 7 - LOCATION

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

L

OG

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

; o3

41- . /-~ - GRrgNalA~ ut0i AT ti5.z M

42- , -0(s

43- . /:

Lii.i --'55 2 e GRAVFJ C t ) 54 2,'

. -COi3(iLY I mEOLv,rVl -1-CJ cLA+c(i=

45 - O • , G‘) Sr4NO (nth-Rix, iLS %.

m11Ft c. 11OLCv~hli'cS ANO SC- 0~

~- " IY`~1ÉNTS 35'/o G£An+lT=l .

IN(-Cf•AeQt)rzoK cF o1iCeLYïIk6 47-

_ . Cb

SANo V~+V T.r S~~c.S Die

48-4 , At'PEA2r1NCE CT TLLL FOQ

_ o } TI-16 FZ~S7 2 Yn

v92. _ o

.`

` 2 5 5. ~ 5c~.5 3e0~oC 1C .

40-' / CS TN 'Ca MEDIATE VùLCr{NiL l'

Si_ ° a ~ 'Y11EOIUrp G~E~N E , vERY FrrJE _ , c ,SKflTnIÉO ;vC-QY vJ(:LL DtV'EL-

~2=a '~'\~0`1 OF'EO FOL ïii7rcN (.1--Li FE '7)

= c `r 93= • IC 5b.5 tNe) CF HOLE

0 f4 , . ~

11

55 D " \

36 !'-\/ i Z

37

58-1

_19- -

8D- -

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 1.

HOLE NO GC-X} -33 LOCATION I.22 w "3rCDS '2(1 ( 4

GEOLOGIST P CCLiï ' DRILLER /• l IC "; BIT NO r

SHIFT HOURS MOVE TO HOLE 11.3C -4 i•yS

TO DRILL iI -I 1•IS

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE 1 15 --

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

J

LOG

J IN

TE

RV

AL

SA

MP

LE

N

O.

DESCRIPTIVE LOG

O 0 --* 1.0 CR(;ANSCS

..

1.0 --.3 35.Lt csr¢,A.,a'5 iT s~ Armcl~ Ts

2 -

- CwAy C I.0 -1 IO.oi

tivï TSAL u S rr, GtSSe 3

- _ SLZGHTLY GKiTTV , CiELo,"

c• c>on ~QAy 6r16e, Pliw'E, 4 S OG T

_ 5 = 5111V0 t10.o --> ;5i]

= - :5-6A-) ûtr'TE , FIN Te

e — — .'V1tPSL1tY1 ûRIALrvE O

Os - Loc AL C.LA-j 6G cCCL;P. 7J - AT I1.3 t1NJ I?.Or~

- AT M6OrUY11 TO COA/Lsâ

82 - 12.2 TO \ 1/40.0 vr

— A N6813i.y OL0 occLlRs

9 AT L 16.0

~ - - 6E~LGe , Pc~313Ly COAgSE 10 _

1 4

1 5

17

19

2

1, _

12,

13= .

.

18

.

, .

. •

.

_

1- r

~

SHNO Fkowl Ib•5 TO 31.G

DATE J 1Af (H q 1912 BIT FOOTAGE 112 -3 I5`5

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 c

DATE MAU.11 a 19 3.1 HOLE NO rg.-Y41. - 38 LOCATION L 22î: 3T COS

GEOLOGIST DRILLER BIT NO BIT FOOTAGE MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

— 6e6-'E , PÉSRLY , MEDIUM ,!'rinvre _ 31 0 TO -34.6 rti

22-

23~-

7' 24- [^,I

25- , /~

26-

27- . ~- OZ 34.S -) (f4-5 G12rav6t

- Pt(36LY MEDT.Livn T'0 00ARSE , ze -

_ ~ SarvO MrT9-rx , G.c..t-1ST3

2g~ • (00V, vhAfSC vOLC r-1r\,ïC r',n,0

_ kOSrntNTs 40 /o Gc,)NrTLL

30- • ~ O3

_ PL-fSCiLY CoA UI IZSC SANO DCC cS

31 • F I'rV LNTERIlALS (3}.O .a3?-S] ;2_ , ' r L3A.0 --> 40 0,1

_ . 1-. -

3,3--, • 0 'k

34-

. '

35 - _, ' e r O5 I '

- s "16- a'

O

ï7- 0 0b

_• o

3e 4

0 -3..~

49 y

~

9 '

~OS

~~ ' T i

SHIFT HOURS

TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3 3

DATE Mekili `i 19

SHIFT HOURS TO

HOLE NO re--/ -15 LOCATION

GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

ii

y2 ---

43--:-

44 ,e

4e

.

= -c•roi ,

3~

o

a '

~ o

ih, 0 ,3

C<1 G

- A Sr'✓1iaLL zivr~R L.' AL L4c:5 ay1 0i

OF r~r'f`NgfNT TrLI UCLUK S ; D iC

m00(-R,11-6 m00(-R,11-6E F1motiNr OF FrNtr Ar SAND mTTX

- `y1.2 —)z4 ,-1.3 5 c,CBBLY S~AuEL

COr1~jE SriNt7 (Y1AT2IX CLASTS

(051. MAFIL 1/LLCr1N.LC AIvJ

SEaLr11iNT3 3 -1,3 GRAruiT-L c

4 4 5 ti tv.0 C3tokocK

I

~

'6/~

` 10

~ J

46

` 12

_

47-

-

_ yo

Ni-

yz—

931

1<-1

95—

96—

97—

sa—

'9 1

ao-1

, F

49= _

-

_ -

_ ^

F- ~

- C —

c:.

,

{-

~

mETR StOLmfnri

`

- GRAh 61..11c1(48 - ÉLhlf Gt2(1INED • SLAY CLEAvAGf - mDDERHiE rimotArUî

OE LLH Y (.Roi: POwUEÂ)

LN .0 END OF }1016

DATE MAR.(1.1 ,19

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG

HOLE NO ~%- $ } - -119 LOCATION i r , CF'✓ T .- .

GEOLOGIST f ri 1 TIC. DRILLER - LLC,"- BIT NO Cr! L'd ?BS BIT FOOTAGE )ef 10 S

MOVE TO HOLE 11 S -> I• y

DRILL I .45 S•IS SHIFT HOURS TO

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG

- 1 `

_ CL

~

0

Oi

O~

-

~C1

O C a 0.C.) Og-68N1.2(..S

,:;12/1Ni: r1L . 141'} i4ir6 A/'ANc6

CtHbrS

TO cCvif--lE SAND YiAr+1.tx

i.ÉTLi1CN CA.; S Ani FLE

AND SEùrMtNri

.,

..

D,S a 51-Z CSIII~~~~ Ty ~rO1MEN'~S 2~%

Cray Lo f., ) g.0]

/-

- prIRK L;ESGé -6-(Z1.11')cLAY

S AND :1..1.L) ~ 1~.1)

y /"-., 4 r

- 5-~:

. ~

~ 6cLGE 1 PE(SRLY,ccRF E SAN/6.

wiTH LOcAL (StrGE ûRrrry

CLA•5 Arai

- La 4 ~ 4. 4 JL r5é ,r-Ty CLA~ fit)

- Llo.o > 1z5) ALrELtiAir•~u, cos a~ ~r.,~vct Lc1~1LSE

‘-‘31:::9S0 ~1a~0 1 13LL51: .5~crrv cLAr UP To 0.4m rNr,KNiEiS

- 1_,2.5 ---> 05. -2-J ABLIrupANT

B>rLS~ FINE SrIN(j -. PeGCLy, co8l3LY clAS1S VO% mar:.“... vCLL A n.îL Rn10 SEUtmtAsS 10/

oF TÎLL . 8NT 12`0 F fiw

CT(-'AUL LId.'_ SI.$]

8 . .

g_ ' r

~ 9

10 . ; , a '

11 m

12 •~ 4. 2

\

13

14_

_ 1s

=

18-c

17 ÿ

18--

19-

20-

-

, ' F

3 ~

~ '

.~

Q e Pr

• • c /_

, .

0‘) VOL(lln;âC

A 407„

0 +

-Pe6c3LY LcrlSrs 1,00q.1,00q. mRFr.c

5£AN+LTIC . r11EDfum

- Li 2 ~ Zl..i1 r~,2y aC~ cc:

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 2 c 3

DATE MAC( 11 ig q? HOLE NO G£—`5~ — ici LOCATION GEOLOGIST DRILLER BIT NO BIT FOOTAGE

MOVE TO HOLE

DRILL

TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS

CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

o QÔ ¢ C7 IN

TE

RVA

L

SA

MP

LE

NO

.

DESCRIPTIVE LOG I

~

21 _y

_

,~_ -

V-: ~

24—

; Z8_

26

~ 28-

L9 ~

O.

~~ ~

32—

~3-.

14-

3 5— _

.9e_= _

37—•

- 38—

_ 3g ~:

1.O

~ `

27-:':'.'\

~~~~~^^^

-a

f O . e

,' 4 ' ' e

o Y

,_

,'

^

' • s ,

•~ .. ~ d °

..~

- '

; •

.

~

. c. 03

,

-

P

5

",

rf

~ ~ u

~- \—

\Y- ,_

\

`` ~$ `

~

./- GI /- / —

`L ~ 10

~

r-- ~

~ i

~' /

A

~- IS /~

~

.. ,,-

II

IL

'-'1 .

-4,...20,1. ~ 2I •73 GL6Q Q6iNKN CT.,

SMr/1PE r FINe rorT+EOINM friti'~ MAtYtix

L2-i. Z 7 21,.5~ ‘.1 -.Y Y LI Tit E (YIATRik

y Sr1N o

— C2.145 —7 2~r.0) PL.aaL t~ ~

- L27,0 ' 31-51 Pcgi3Lv uHSn

$e`~c rnraFrC; VOLCFIrvic ra A.; 1J

S60LrY16NTS 20.7. G~iNNCfLc-

C oil eSE SAn;J M1riC.ïX

- [25•5 ~ 3(.1 VE~4 EsrfLE

RC-TURN ON SA-m PI e = possï Qcr .,RAvEI

•31•5 —9S1.2 SA NO

I

3O—

$c.à6E r✓1LOCN rr7 TO (OARS(

GRY~IA+GO PE3i3L/ 5i1(VO

- L3h..43(,.l`1~QAvFI , 3cr5t

f-SNF sAn;O mATCIx PEB&r

LLraS(S (fl0`/n ✓v1AFi C v ~LC HNIC /11\.:0 SEOLrntrUiS

40'/0 00ri NSTIL..fDi.-wA P~ùGAdLy LorL.~kC.1St~J PCo.~ AéM.e ,AwZT

— L3.O.1 LOCru- 13EIGE cow

(40

- t3`5.3 --3`1 °i GnAVGL

13LrGE FtNE SA NO rYfATRix

POOL LLAM lv0`/ mRFic vGL (YiNîC r1N1J SÈOCMENi1

4.10 q. Gfr1NITSC. t SYinJ eF:J3H131.Y LaCor:PC:.yitd F CUi'n AOw~ ,wN:7

- L3a -, 440-r,3 JERr LrrrcE

AETLSKN ON sr3rn fLE PO SLP,tY

r> RA Vt l .

SHIFT HOURS TO

OVERBURDEN DRILLING MANAGEMENT LIMITED REVERSE CIRCULATION DRILL HOLE LOG 3(-)F 3

DATE i ~g 8~ HOLE NO lL-K1 -3t1 LOCATION GEOLOGIST DRILLER

SHIFT HOURS MOVE TO HOLE

'T;,•1"

BIT NO BIT FOOTAGE

DRILL TOTAL HOURS MECHANICAL DOWN TIME

DRILLING PROBLEMS CONTRACT HOURS OTHER

MOVE TO NEXT HOLE

DE

PT

H

IN

ME

TR

ES

GR

AP

HIC

LO

G

INT

ER

VA

L

SA

MP

LE

N

O.

DESCRIPTIVE LOG

0 -

q2-

43-

44-

45~

4 7— _ -

-

qo

1

93

74-

_IS-

j6-:

17-24

Je

-

ye

y9-.1

'

_ :

~

. •

'

~ ~3

/-- /t

' 14 _

r

\- 15 \r

~

~ /7- /= ~ ib

. ~

13

\

-

-

C

r r

- [4'3.2 -1 44.o)

_ [44.0 -) 44•43

- [y4 .a > 61.2 )

i•2 -') r,2 S

ri, -.1 v,ti(r}n.rc ).

y6-

Pt86cY Frn;r AnIJ

R11UL 604 ?

FC-BûIY rrw SNru;)

3t-O/1-OL‹

I--

Lz6Hr ùti/ yrSH OQEtN

- Frn+E G2A1NE0

- mz+vog varITE [Lilt)

tCOLK rb(NOte_)

- FOLrrlrb O .

9 21 `IS

_

1s -

;D-

VzP

TO

APPENDIX B

SAMPLE WEIGHTS - HEAVY MINERAL CIRCUIT

PAGE 1 GOLDEN RULE

03'17/87

RGR1MAR.WR1 TOTAL # OF SAMPLES

AMPLE WEIGHT NO. --------_

TABLE SPLIT

IN THIS REPORT

(KG.WET)

= 40

WEIGHT (GRAMS

OVERBURDEN DRILLING

LABORATORY SAMPLE

DRY) AU

MANAGEMENT LIMITED

LOG

DESCRIPTION CLASS

+10 TABLE CHIPS FEED

TABLE CONC

M.I. LIGHTS

M. I. CONC

NO. MAG V.G.

CLAST

CALE SIZE 7. PPB

MATRIX

CONC. NON TOTAL MAG

S/U 5D ST CY COLOR

V/S GR LS OT SD i;Y

3R-ë7 01-01 8.5 0.6 7.9 1.,:~~ . 109.2 :8.1 16.3 11.8 NA P.BK 60 40 NA TILL

02-01 7.7 1.4 6.3 166.1 139.4 26.7 15.7 11.0 NA C 85 15 NA TILL -02

-03 6.8 6.5

0.5 0.4

6.3 6.1

170.3 160.8

145.6 133.5

24.7 27.3

14.5 17.2

10.2 10.1

,

1963 C,P 90 i 0

1~- C.P 95 5 ~;: NA NA

TILL TILL

-+)4 6.5 0.7 5.8 187.7 160.5 27.2 17.4 9.8 21 P.BL 95 5 NA TILL -05 8.1 1.2 6.â 244.9 219.0 25.9 15.1 10.8 306 P 90 10 NA TILL -06 7.4 0.5 5 6.9 170.3 178.8 31.5 19.0 12.5 P 70 30 NA TILL -07 7.8 1.., 6.5 189.3 163.4 25.9 15.5 10.4 NA P.BK 75 25 NA TILL

03-01 2.0 0.9 1.1 218.3 178.4 39.9 18.5 21.4 NA C 85 15 NA TILL -02 7.5 0.7 6.8 193.4 159.4 34.0 14.2 19.8 NA C 65 35 NA TILL -,1, 7.4 1.1 6.3 222.1 199.1 23.0 15.0 8.0 NA C. BK: 60 40 NA TILL&BDK

04-01 9.7 /.6 7.1 228.6 193.2 35.4 20.2 15.2 NA C.BK 90 10 NA TILL 05-01 -.2 !i.6 7,'2 176.7 146.1 30.6 18.0 12.6 NA TR N N NA SAND -02 8.8 1.9 6.9 200.8 169.2 31.6 19.0 12.6 NA P 85 15 NA TILL -Ci:} ..8 1.7 6.1 211.7 181.9 29.8 18.1 11.7 NA P 85 15 NA TILL -04 0.4 0.8 5.6 95.4 80.1 15.3 10.7 4.6 NA P 85 15 NA TILL -05 5.7 0.7 5.0 104.7 93.6 11.1 9.0 3.1 NA P.BK 95 5 NA TILL&SDK

05-01 8.4 1.6 6.8 221.3 200.1 :1.2 9.0 12.2 162' P 75 25 NA TILL -02 7.8 1.,. 6.5 247.9 219.7 28.2 17... 11.0 363 P 70 30 NA TILL -! i._ 8.1 1.0 0.5 183.4 147.1 36.3 23.3 13.0 NA P 60 40 NA TILL -04 a.. 1... 7.2 190.1 159.3 30.8 17.5 13.7 O 70 30 NA NA TILL -05 9.4) 1.8 7.- 128.1 96.8 71.3 19.0 12.3 ) NA P 70 30 NA TILL -t't6

-07 yç-,à

i,.t7 1.8 1.7

b.1

6. 9 133.9 132.8

112.1 101.7

21.8 31.1

13.1 18.3

8.7 12.8

NA P 70 30 NA P 70 nJ

NA NA

TILL TILL

-08 8.5 1.8 6.7 156.5 127.6 28.9 18.3 10.6 4459 P 70 30 NA TILL -09 7.1 1.2 5.9 132.2 112.5 19.7 12.6 7.1 NA P 70 30 NA TILL -10 7.4 1.8 5.6 137.7 113.9 19.8 12.3 7.5 NA P 80 20 NA TILL -11 8.4 1.0 7.4 146.8 120.4 26.4 16.4 10.0 NA P. BM: 95 5 NA TILL &BDK

07-01 8.6 1.7 o.9 178.0 144.7 33.3 17.3 16.0 NA P.BK 90 10 NA TILL&BLD -02 8.4 1.0 7.4 295.6 260.7 34.9 21.0 13.9 31 P 85 15 NA TILL -03 8.1 6.1 221.0 189.8 31.2 20.6 10.6 140 P,BK 85 15 NA TILLUDK

; i8-a} 1 8.1 1.0 7.1 703.6 267.4 36.2 21.9 14.3 NA P.BK 90 10 NA TILL&BLD -02 9.0 1.2 7.8 237.1 203.0 74.1 21.1 13.0 71 C. P 90 10 NA TILL -03 6.6 1.1 5.5 199.1 178.0 21.1 17.: 7.9 NA C.P 90 10 NA TILL -04 8.2 1.8 6.4 223.2 195.7 27.5 17.3 10.2 NA C 90 10 NA TILL -05 8.7 1.0 7.7 208.4 182.8 25.6 15.7 9.9 NA C 80 20 NA TILL -06 8.9 2.0 6.9 153.1 123.1 30.0 19.1 10.9 198 C 70 30 NA TILL -07 8.0 1.5 6.5 156.4 135.1 21.3 12.6 8.7 NA C 80 20 NA TILL -08 8.6 1.5 7.1 85.3 56.7 28.6 17.3 11.3 NA C,P 85 15 NA TILL

08-09 8.4 1.7 6.7 196.9 177.1 23.8 14.6 9.2 NA F.BD 30 70 NA TILL&:BLD

WAGE 1 GOLDEN RULE 03/18/87

3R6R2MAR.WRI OVERBURDEN DRILLING MANAGEMENT LIMITED TOTAL 4 OF SAMPLES IN THIS REPORT = 41

LABORATORY SAMPLE LOG

SAMPLE NO.

WEIGHT (KG.WET)

TABLE FEED

WEIGHT (GRAMS DRY) AU DESCRIPTION CLASS

_----

TABLE +10 SPLIT CHIPS

TABLE CONC

M.

M.I. CONC. LIGHTS TOTAL

I. CONC

NO. V.G.

CLAST MATRIX

COLOR --

NON MAG MAG

CALC SIZE PPB

X S/U SD ST CY -----._------ V/S GR LS OT SD CY

GR-87 08-10 8.5 2.2 6.3 155.9 133.3 22.6 14.3 8.3 0 NA C,BK 80 20 NA NA U Y Y Y GB GB TILLUDiC 09-01 7.0 0.5 6.5 181.0 159.2 21.8 11.3 10.5 0 NA P 90 10 NA NA U Y Y Y 68 GB TILL -02 8.8 1.2 7.6 195.1 165.9 29.2 17.3 11.9 0 NA P 85 15 NA NA U Y Y Y GB GB TILL -03 9.2 1.3 7.9 186.0 151.2 34.8 22.4 12.4 0 NA P 85 15 NA NA U Y Y Y GB GB TILL -04 9.4 1.7 7.7 172.6 147.1 25.5 15.5 10.0 0 NA C 90 10 NA NA U Y Y Y GB GB TILL -05 9.1 1.7 7.4 140.6 115.9 24.7 15.5 9.2 1 247 P 85 15 NA NA U Y Y Y GB GB TILL -06 5.3 0.5 4.8 94.8 81.2 13.6 9.3 4.3 1 161 P,Bk 95 5 NA NA U Y Y Y GG GY TILL?BDK

10-91 8.5 0.2 8.3 97.0 66.2 30.8 20.0 10.8 0 NA G 60 40 NA NA S F Y 'Y GB GY SAND -02 5.2 0.9 4.3 89.3 67.2 22.1 13.9 8.2 0 NA P 80 20 NA NA S F Y Y GB GY SAND -03 9.0 1.9 7.1 224.2 185.1 39.1 22.6 16.5 1 218 P 70 30 NA NA U Y Y Y GE! GB TILL -04 8.8 2.0 6.8 193.7 142.3 51.4 31.6 19.8 8 865 P 85 15 NA NA U Y v Y GB GB TILL -05 8.0 1.2 6.8 268.0 234.5 33.5 20.6 12.9 0 NA P 85 15 NA NA U Y Y Y GB GB TILL -06 8.0 1.5 6.5 213.1 185.8 27.3 16.6 10.7 0 NA P 85 15 NA NA U Y Y Y GB GB TILL

11-01 8.7 1.8 6.9 141.7 101.8 39.9 26.6 13.3 0 NA P 95 5 NA NA U Y Y Y GY GY TILL -02 7.8 1.3 6.5 189.1 158.7 30.4 20.3 10.1 1 9 P.BL 99 1 NA NA U Y Y Y GB GB TILLODk -03 8.2 0.7 7.5 435.7 389.3 46.4 25.6 20.8 3 81 P.Bk 95 5 NA NA U Y Y Y GB GB TILL

12-01 8.0 1.8 6.2 244.1 217.3 26.8 16.7 10.1 1 22 P 85 15 NA NA U Y Y Y GB GB TILL -02 7.8 1.5 6.3 254.1 224.4 29.7 16.4 13.3 1 91 P 85 15 NA NA U Y Y Y GB GB TILL -03 8.5 3.2 5.3 185.5 144.8 40.7 25.0 15.7 0 NA P,C 85 15 NA NA U Y Y Y GB GB TILL -04 8.3 1.4 6.9 170.8 133.1 37.7 23.7 14.0 0 NA C 80 20 NA NA U Y Y Y GB GB TILL -05 7.0 1.0 6.0 166.3 129.7 36.6 23.1 13.5 0 NA C 85 15 NA NA U Y Y Y GB GB TILL -05 8.3 0.8 7.5 175.0 132.1 42.9 27.8 15.1 0 NA C 90 10 NA NA U Y Y Y GB GB TILL

13-01 8.7 1.8 6.9 197.2 162.0 ;v.2 21.8 13.4 0 NA L' 80 20 NA NA U ,/ V'Y B 8 TILL -02 5.5 0.7 4.8 204.4 178.8 25.6 16.9 8.7 0 NA C 75 25 NA P1h U Y Y Y B B TILL -03 9.2 1.1 8.1 192.5 154.7 37.8 23.8 14..0 0 NA C 75 25 NA NA U Y Y Y B B TILL -04 9.2 2.0 7.2 222.4 177.1 45.3 28.0 17.3 0 NA C.BL 80 20 NA NA U Y Y Y B B TILL -05 9.1 1.6 7.5 263.8 181.8 82.0 30.2 51.8 0 NA C,Bk 70 30 NA NA U Y Y Y B B TIL LUDr:

14-01 9.2 1.9 7.3 238.8 205.3 33.5 21.4 12.1 0 NA P 75 25 NA NA U Y Y Y B H TILL -02 `?.V 2.5 6.5 210.5 175.4 35.1 22.2 12.9 0 NA P 75 25 NA NA U Y Y Y GB +3B TILL -03 8.0 2.0 6.0 176.8 147.8 29.0 17.9 11.1 0 NA P 75 25 NA NA U Y Y Y GB !3B TILL -04 9.0 1.0 8.0 194.5 155.8 38.7 23.8 14.9 0 NA P 70 30 NA NA U Y Y Y GB GB TILL -05 9.5 1.5 8.0 178.4 144.5 3.3.9 21.2 12.7 1 48 P 7i! 30 NA NA U Y Y Y GB GB TILL -06 9.1 0.8 8.3 206.3 163.3 43.0 27.1 15.9 0 NA P 80 20 NA NA U Y Y y B GB TILL -07 9.2 0.8 8.4 157.2 114.2 43.0 26.0 17.0 0 NA C 90 10 NA NA U Y Y Y GB GB TILL

15-01 8.4 1.4 7.0 154.6 125.1 29.5 17.7 11.8 0 NA P 70 30 NA NA U Y Y Y GB GB TILL 16-01 9.2 2.4 6.8 137.2 98.1 39.1 21.0 18.1 1 138 P 75 25 NA NA U Y Y Y B GB TILL -02 8.5 2.7 5.8 208.5 180.2 28.3 16.6 11.7 0 NA P 40 60 t41 NA U Y Y Y B GB TILL -03 9.0 2.0 7.0 140.6 107.7 32.9 20.5 12.4 1 141 P 70 :0 NA NA U Y VV B GB TILL -04 9.1 0.8 8.3 158.9 137.1 21.8 12.9 8.9 4 1838 P 30 70 NA NA U Y VV B GB TILL -05 9.8 1.3 8., 127.9 102.3 25.6 13.3 12.3 0 NA P 85 15 NA NA U Y Y Y B GB TILL

17-01 7.7 1.1 6.6 86.0 60.6 25.4 14.8 10.6 0 NA P 85 15 NA NA U Y Y Y B GB TILL

PAGE 1

GOLDEN RULE 03/19/A7

GRGR3MAR.WR1 OVERBURDEN DRILLING MANAGEMENT LIMITED TOTAL # OF SAMPLES IN THIS REPORT = 39

LABORATORY SAMPLE LOG

SAMPLE

GR-97

NO. WEIGHT (KG.WET)

TABLE FEED

WEIGHT (GRAMS DRY) AU

NO. V.G.

CALC PPS

DESCRIPTION

CLAST MATR I X

S; U SD ST

OT -___-_--=__

CY

CLASS

TABLE +10 SPLIT CHIPS

TABLE CONC

M. I. CONC

M.I. CONC. NON

LIGHTS TOTAL MAG MAG SIZE

V/S SR LS

CY COLOR

SD

17-:t2 8.3 0.8 7.5 101.5 74.0 27.5 15.6 11.9 0 NA P 90 10 NA NA U Y Y Y B GB TILL -03 8.7 1.2 7.5 109.5 30.0 29.5 14.9 14.6 1 3•31 P 85 15 N>~ NFi U 1: f Y B G8 TILL -04 8.4 1.6 6.8 147.0 120.8 26.2 15.0 11.2 1 329 C 80 20 NA NA U Y Y Y S GB TILL -95 8.8 1.6 7.2 112.1 81.0 31.1 16.4 14.7 0 NA P 80 20 NA NA U Y Y I R !GB TILL -06 8.5 1.1 7.4 119.1 91.0 28.1 15.6 12.5 0 NA P 30 20 NA NA U Y Y Y B GB TILL -07 9.0 1.0 8.0 94.7 66.3 27.9 17.0 10.9 0 NA P,GL 80 20 NA NA U

Y`Y. 8 GB TILL

-08 7.1 0.9 6.2 113.8 85.7 28.1 18.2 9.9 0 NA P 75 25 NA NA U Y Y Y GB GB TILL -09 7.6 1.2 6.4 126.1 104.4 21.7 10.9 10.8 1 93 P 80 20 NA NA U Y Y Y B GB TILL -10 9.6 1.7 7.9 126.1 99.3 26.8 15.9 10.9 0 NA P 81.j 20 NA NA U Y Y Y r ;r TILL -11 8.3 1.4 6.9 139.2 117.4 21.8 13.8 8.0 1 154 C, 81: 90 20 NA NA U Y Y Y BGN GB TILL ?:BDk:

18-01 9.3 1.8 7.5 126.9 99.5 27.4 16.5 10.9 0 NA P 6ti 40 NA NA U Y Y Y 8 GB TILL -02 8.6 1.3 7.3 158.0 121.2 36.8 23.3 13.5 1 64 P 60 40 NA NA U Y Y Y ù GB TILL -03 9.4 1.2 8.2 196.9 160.1 36.3 71.7 14.1 1 502 F 75 25 NA NA U t f Y B GB TILL -04 5.8 2.2 3.6 99.6 83.7 15.9 10.6 5.3 0 NA 8K 100 NA NA NA U Y YYP GB ':ILL:BDK.

19-01 9.7 2.1 7.6 176.4 141.7 34.7 20.7 14.0 0 NA P 75 25 NA NA U Y Y'Y GB GB TILL -02 9.7 1.6 8.1 147.4 116.7 30.7 17.1 1.3.6 0 NA P 75 25 NA NA U Y Y Y GB GB TILL -03 9.0 1.9 8.0 1.39.6 105.0 34.6 19.1 15.5 0 NA P 75 25 NA NA U Y Y GB GB TILL -04 8.4 1.8 6.6 104.5 80.5 24.0 14.0 10.11 0 NA P 70 30 NA NA U Y i Y G8 GB TILL -05 8.5 9.8 7.7 244.1 213.4 30.7 19.4 12.3 0 NA P 7i i 30 NA NA U Ÿ Ÿ Y GB GB TILL -06 8.5 1.4 7.1 111.0 84.2 26.6 14.9 11.9 0 NA P 60 40 NA NA U Y Y f GB GB TILL -t!7 4'.6 1.2 8.4 70.7 51.2 19.5 9.9 9.6 0 NA C 95 5 NA NA U Y V

.Y GB GB TILL

-08 9.1 1.4 7.7 128.4 101.8 26.6 14.9 11.8 0 NA P 80 20 NA NA U Y Y Y' !GB GB TILL -09 9._ 1.6 7.7 34.9 63.2 21.7 11.8 9.9 0 NA C 80 20 NA NA U + Y GB +;8 TILL -10 9.1 9.5 8.6 28.4 61.6 26.6 15._ 11.3 U NA P 8O 29 NA NH U ~` Y Y ;46 iiN TILL -11 6..2 0.5 5.7 63.6 44.0 19.6 12.1 7.5 0 NA P. BL 90 20 NA NA U Y Y . GB GB TILL -12 7.8 j. ' 7.5 71.5 47.5 24.3 15.5 8.5 0 NA F9C 15 NA iASr YY G 6 GB ND SAND -13. 2.9 0.9 8.1 65.5 43.3 22. 2 12.7 9.5 0 NA P 90 10 NA NA U Y Y Y GB GB TILL -14 8.9 1.2 7.7 136.1 105.9 30.2 12.3 17.9 0 NA P 85 15 NA NA U Y Y Y!`B GB TILL -15 8.9 1.8 7.1 193.0 158.9 34.1 17.9 16.2 2 1056 P 80 20 NA NA U Y V`Y B GB TILL -16 9.1 2.0 7.1 205.3 170.9 :14.4 21.7 12.7 1 133 P 85 15 NA NA U Y Y Y B +GB TILL -17 9.2 2.5 6.7 227.1 194.9 72.2 20.7 11.5 4 296 P 85 15 NA NA U Y Y' `f B GB TILL -18 9.3 2.3 7.0 192.5 121.6 70.9 57.8 13.1 31 1658 P 85 15 NA NA U Y Y Y B GB TI!i

20-01 9.4 1.2 8.2 125.0 86.7 38.3 24.0 14.3 0 NA F' 80 20 NA NA U( Y Y tGN G6+ TILL -02 a.1 1.4 7.7 112.4 79.3 33.1 19.8 13.•3 i1 NA F' 70 ;0 NA NA U Y Y Y GB GB TILL -03 7.° 1.0 6.9 141.1 104.0 37.1 22.8 14.3 0 NA P 80 20 NA NA U Y Y Y GB GB T I L L

21-01 7.9 1.1 6.8 133.3 97,8 36.0 22.9 13.1 1 338 P 80 20 NA NA U`i Y v GB GB TILL -02 9.2 1.9 7.3 185.4 138.1 47._ 29.9 17.4 0 NA P 80 20 NA NA U Y Y Y B +GB TILL -03 9.9 2.1 6.8 157.5 119.1 38.4 22.7 15.7 4 1453 P 80 20 NA NA U Y Y Y B GB TILL

21-04 8.9 2.2 6.7 102.8 78.0 24.8 15.3 9.5 1 66 P 80 20 NA NA U Y Y N B N TILL

PAGE 1 GCLDEN RULE

grar4>Rar.wri OVERBURDEN L1RILLING MANAGEMENT LIMITED _TUTAL 4 OF SAMPLES IN THIS REPORT = 41)

LABORATORY SAMPLE LOG

SAMPLE Nn

HEIGHT (h:G.WET) WEIGHT (GRAMS DRY) AU

NO. CALC SIZE PPP

DESCRIPTION

CLAST MATRIX

6iL1 °6D ST _vY C1SLLR

CLASS

TABLE +10 TABLE TABLE SPLIT CHIPS FEED CONC

M. I. CONC

M.I. CONC. NON

LIGHTS TOTAL MAG MAG V.G. VIS GR LS rT 55 ~f

GR-37 21-05 9.3 2.2 7.1 144.5 113.7 _0.8 20.2 10.6 1 32 P 80 20 NA NA U Y 'i N B NA TILL

-06 9.4 1.9 7.5 161.7 110.0 51.7 '7.7 24.0 6 586 P 80 20 NA NAUY TNP NA TILL

-07 3.: 1.2 8.0 141.4 97.0 44.4 25.0 19.4 0 NA F' 6i3 40 NA NA U Y Y N B NA TILL

22-01 -02 a. i

8.9 1.4 0.8

7.7 8.1

112.7 175.6

72.7 130.3

40. ù 45.'

26.3 29.9

13.7 15.4

0 0

NH F NA P

6, 30

41 20

NA NA

NA NA

U r S F

Y Y BB r',+' B B

TILL SAND

-07 8.5 1. '. 114.2 75.4 38.3 2:.2 15.6 5 6591 P 75 25 NA NA U Y f Y GB GB TILL -04 9.2 ...+? 7.2 135.5 99.4 76,1 21.8 14.3 4 409 P 70 `ü hir! NA U Y r . uB Gr TILL

-05 9.5 2.4 7.1 180.3 144.0 36.3 21.5 14.8 0 NA P 30 S:? NA NA U Y Y Y!SB GB TILL -06 3.7 1.1 7.6 151.5 110.5 41.0 26.1: 15.0 0 NA F' 8! i2(r NA NA i J Y Y YGB GE TILL _°7 _ . ?. .~. ~ ; ~. L 127.3 9? :.. !~ 34.: - ;; .__ . 1 ' 1 . vJ .J ; NA C40 {}~~ }~{~~~ NA NA U Y

.Y Y !. ..// iv'L' TILL D_-fi;

-1'2

9,7

9.d 1.0 2._

8.7 7.1

175.0 161.2

126.11 115.3

49.0 45.9

;2.5

33.8 16.5 12.1

0 1

NA ,

641 C 0 ë5

30 15

NA NA

NA NA

U Y II Y

rr B

Y Y k !jB1

B

TILL -I!!

-ü3 8.9 1.6 7.3 167.9 115.6 52.2 _9.1 12.5 13 NA C 85 15 NA NA U Y Y v B H TILL -04 7._I 1.2 3.3 158.: 108.9 9.5 :7.54 12.0 1 17 P 80 NA U UL i_i•i Ti, _

-05 9.1 1.9 3.1 158.3 106.8 51.5 36 .2 15.7 0dAP80 20 rA 3'A J Y tYDETILL

-y6 6.: 0.8 5.9 108.5 72.5 :6.0 th.'? 9.1 2 57 F' aü :V NA NH U Y Y r trt! 8 TILL -07 8,4 0.8 ?.b 1ï7.: 71.0 52._ 73.0 19.. 11 NA P 86 itl NA A !J Y r Tr P TILL

24`131 9.5 2.6 6.9 102.5 76.5 26.i1 16.1 9.9 :.y NA 1; 6!li 211 NA NA iJ Y ; Y k P TILL `IJi 4.L . 1. 1~ ~.~ 1 03. 6 .. :~ !.6 1y .1 ° 11. J i_i lY1 NA "r' 8" :rj

~.t NA t,•, U ~~, B ' YB TILL

=5-01 9.9 1.. ..6 105.7 75.7 30.0 19.5 11.5 ti NA P.Bk 90 111 NA NA U Y B B '--L'.iDl.

~ il _..`:1 8, 3 .. i1 7.3144.8 f`~ - 75.3 1 ~:. _~ 21.8 t+ c 1:~. J 0 NA ~c J NA NA ! f 'i ! !J_ ` TI! i ! ~ ~ -05 9.5 1.5 8.13 133..2 97.1 38.1 24.6 13.5 0 NH P 90 19 NA NA u f t f !3$ L+ 7I _L `03 9.D 1.6 7.6 1:4.5 99.1 35.4 23.5 11.9 0 NA P 40 10 NA NA % f Y r B B TILL -04 9.8 2.7 7.1 151.9 112.7 :9.2 .. :'4.6 14 . 6 5 1311 P 9010 NA ~ NA! L ,Y

Y i

6B+ B T IL -07 9._ 2.1 7.2 108.1 76.o 31.5 18.9 12.o 0 NA F' 90 10 NA NA U Y Y N B NA TILL -06 9.3 1.4 7.8 194.7 148.6 46.1 31.1 15.0 4 212 P 90 10 NA NA U'.r N K N. TILL -07 9.1 1.8 7.3 151.6 110.2 35.4 2::.6 1::.8 0 NA P ù0 10 NA NA U! Y N B Nil TILL

27-01 7.6 0.0 7.6 148.1 112.1 36.0 24.1 11.9 0 NA TR NA NA NA NA S F Y N B !aA SAND -02 9.4 1.5 7.9 109.9 175.4 34.5 22.1 12.4 1 f t_-F~C d rEM tN9 NA GRAVEL -03 9.6 2.0 7.6 9•'•:.6 67.3 26.3 16.5 9,8 0 NA P 90 10 NA NA U r' Y Y A B TILL -04 5.0 0,5 4. c P .- 58.2 26.1 19.2 6. a: 114 P è- 15 NA hh UT YV k PTIL_

-05 2.9 1.1 7.8 169.2 116.7 52.5 40.1 1:.4 0 NA P 80 20 NA NA U r f Y= P TILL -Vo 4.5 0.7 7.8 155.1 J .1 l07.7 47.8 37.6 10.0 0 Ph F ?l vr NA NA U'i Y Y P B TILL `137 9.1 ' ~. 8 3.5 129.5 84.3 45.2 :4.4 10.8 0 NA P 70 '0 NA NA ii Y YYBO T I LL -I:rR 5.1 0.4 7.7 140.0 88.0 51.4 41.1 10.3 1 5 F', BL 70 :0 NA NA U Y Y Y B k 'ILL -09 S'. 1.9 7.0 112.6 68.7 43.9 34.1 9.8 2 0 P. BL 8f3 :l' NH idA U Y ? Y2 _ T 1__

-10 8.2 0.8 7.4 127.0 84._ 42.7 73.4 9._ : 467 P.PK: 95 5 NA NA U Y r Y B B TILL'-.BE:'r:: :3-01 7.9 1.0 6.9 152 .5 117.2 35.3 23.: 12.0 0 ua F 70 10 NA Nn U Y r rP i; TI_L

-<<< 6.9 1.0 5.; 1::7.8 109.7 28.1 17.9 10.2 U NA P 90 10 NA NA U i Y t; B ! ILL 78-03 8.7 1.2 ,.,, 10.6 76.0 30.o 18.7 11.? 1 80 P.0 85 15 NA NA Lt 'f Y 5

PAGE 1

GOLDEN RULE 03/24/87

grgr5mar.wrl OVERBURDEN DRILLING MANAGEMENT LIMITED _.TOTAL # OF SAMPLES IN THIS REPORT = 40

LABORATORY SAMPLE LOG

SAMPLE NO.

GR-87

WEIGHT

TABLE SPLIT

(KG.WET) WEIGHT (GRAMS DRY) AU DESCRIPTION CLASS

+10 CHIPS

TABLE TABLE CONC

M.I. LIGHTS

M. I. CONC

NO. V.G.

CLAST

7.

OT

MATRIX

CONC. NON TOTAL MAG MAG

CALC SIZE 5/U SD ST CY COLOR ======

SD CY fh1) PPB =====---==--===

V/S GR LS

28-04 9.1 1.2 7.9 189.3 127.2 62.1 26.3 35.8 0 NA P.0 80 20 NA NA U Y Y Y B B TILL -05 8.3 0.5 7.8 140.2 103.1 37.1 23.2 13.9 1 934 P,C 80 20 NA NA U Y Y Y B B TILL -06 8.3 1.2 7.1 162.4 126.7 35.7 22.2 13.5 0 NA P 80 20 NA NA U Y Y Y B B TILL -07 8.2 1.0 7.2 152.8 99.8 53.0 29.5 13.5 0 NA P 75 25 NA NA U Y Y Y B B TILL -08 7.4 0.4 7.0 196.3 146.9 49.4 30.7 18.7 0 NA P 75 25 NA NA S F Y N B NA SAND -09 8.1 0.0 8.1 96.1 70.1 26.0 18.2 7.8 0 NA TR NA MA NA NA S F Y N B NA SAND -10 9.0 0.9 8.1 112.3 86.7 25.6 16.0 9.6 0 NA P 60 40 NA NA S F Y N B NA SAND -11 9.0 2.6 6.4 140.4 96.1 44.3 26.0 18.3 0 NA P 80 20 NA NA U Y Y Y B B TILL -12 8.9 0.9 8.0 109.7 76.1 33.6 21.1 12.5 0 NA P 80 20 NA NA U Y Y Y B B TILL -13 8.2 0.6 7.6 157.2 116.9 40.3 26.0 14.3 1 58 P 80 20 NA NA U Y Y Y B B TILL&BLD -14 7.7 0.8 6.9 138.0 99.3 38.7 26.8 11.9 0 NA P 60 40 NA NA U Y YIB B TILL -15 8.2 1.0 7.2 144.4 103.8 40.6 28.0 12.6 0 NAP SOSONANAUV Y Y B B TILL -16 8.9 0.9 8.0 125.7 87.7 38.0 25.1 12.9 1 85 P 55 45 NA NA U Y Y Y B B TILL -17 9.0 1.1 7.9 108.1 90.6 17.5 11.9 5.6 0 NA P 55 45 NA NA U Y Y Y B B TILL -18 8.9 0.9 8.0 117.5 83.2 34.3 22.c 11.7 0 NA P 70 30 NA NA U Y Y Y GB B TILL

29-01 8.8 1.4 7.4 99.8 71.5 28.3 17.2 11.1 0 NA P 70 30 NA A U Y Y V B B TILL -02 8.4 1.5 6.9 100.8 71.0 29.8 17.5 12.3 2 1250 P 70 30 NA NA U Y Y Y B B TILL -0.3 9.2 1.9 7.3 116.3 73.2 43.1 25.6 17.51 39 P 70 30 NA NA U Y Y Y B B TILL -04 8.1 1.6 6.5 91.6 61.5 30.1 18.3 11.8 1 517 P 65 35 NA NA U Y YYB B TILL -05 9.2 3.0 6.2 90.3 70.8 19.5 12.0 7.5 1 125 P 80 20 NA NA U Y' Y Y B B TILL -06 7.2 0.4 6.8 173.5 152.9 20.6 12.6 8.0 1 119 P 80 20 NA NA U Y Y Y B B TILL -07 5.2 0.0 5.2 105.3 75.9 29.4 20.0 9.4 0 NA TR NA NA NA NA S M Y Y B B SAND -08 7.4 0.2 7.2 171.6 130.1 41.5 27.1 14.4 1 37 P 60 40 NA NA S F Y Y B B SAND -09 8.7 1.5 7.2 128.5 89.6 38.9 25.4 13.5 0 NAP 75 25 NA NA U Y Y Y B B TILL -10 8.7 0.2 8.5 313.6 294.8 18.8 12.4 6.4 0 NA P 60 40 NA NA U Y YYBBTILL -11 8.5 0.9 7.6 184.2 156.1 28.1 14.7 13.4 0 NA P 70 30 NA NA U Y Y Y B B TILL -12 9.3 3.4 5.9 207.9 146.4 61.5 32.6 28.9 1 46 P 75 25 NA NA U Y Y Y B B TILL -13 8.5 0.7 7.8 167.6 137.2 30.4 27.9 2.5 0 NA P,BK 90 10 NA NA U Y Y Y B B TILL&BDK

30-01 8.3 0.0 8.3 117.8 78.0 39.8 23.3 16.5 0 NATRNANANANASF Y Y B B SAND -02 7.5 0.0 7.5 169.5 136.0 33.5 20.2 13.3 0 NA TR NA NA NA B S F Y `Y B B SAND -03 8.1 0.0 8.1 173.0 127.8 45.2 26.9 18.3 1 38 TR NA NA NA NA S F Y Y B B SAND fi4 8.3 0.0 8.3 112.4 74.5 37.9 24.1 13.8 0 NATRNANANANASF Y Y B B SAND -05 8.4 0.1 8.3 180.8 144.0 36.8 21.9 14.9 0 NA P 60 40 NA NA U Y Y Y B B TILL -06 8.8 2.2 6.6 117.1 80.4 36.7 21.4 15.31 30 P,BK 60 40 NA NA U Y Y Y B B TILL

31-01 8.4 0.0 8.4 159.1 127.2 31.9 20.3 11.6 0 NA TR NA NA NA NA S F Y Y B B SAND -02 8.2 0.0 8.2 159.8 127.9 31.9 19.9 12.0 0 NATRMANANANASF Y Y B B SAND -03 8.2 0.0 8.2 198.9 155.8 43.1 28.8 14.3 0 NA TR NA NA NA NA S F Y Y B B SAND -04 8.2 0.0 8.2 150.2 114.3 35.9 21.2 14.7 0 NA TR NA NA NA NA S F Y Y B B SAND -05 8.2 0.0 8.2 155.4 124.8 30.6 19.6 11.0 1 33 TR NA NA NA NA S F Y Y B B SAND

31-06 7.9 0.0 7.9 141.6 105.3 36.3 22.9 13.4 0 NA TR NA NA NA NA S F Y Y B B SAND

'ATE 1 GOLDEN RULE 03/27/87

RGR6MAR.WR1 'DIAL # OF

AMPLE NO.

SAMPLES IN THIS

WEIGHT (KG.WET)

REPORT = 40

WEIGHT (GRAMS

OVERBURDEN DRILLING

LABORATORY

DRY) AU

NO. V.G.

SAMPLE

MANAGEMENT LIMITED

LOG

DESCRIPTION

CLAST MATRIX

S/U SD ST CY COLOR

CLASS

- -

TABLE +10 TABLE SPLIT CHIPS FEED

TABLE CONC

M. I. I. CONC

M.I. CONC. NON

LIGHTS TOTAL NAG MAG CALC SIZE f

- PPB V/S GR LS OT SD CY

R-37 31-07 8.8 1.9 6.9 128.9 97.5 31.4 20.1 11.3 1 75 P 80 20 NA NA S F Y Y B B GRA'dEL -08 8.8 0.7 8.1 137.1 90.6 46.5 27.7 18.8 2 26 P 90 10 NA NA U Y Y Y GB GB TILL

32-01 7.8 0.0 7.8 136.4 103.3 33.1 21.6 11.5 0 NA TR NA NA NA NA S F Y Y B B SAND -02 8.0 0.3 7.7 97.6 62.8 34.8 21.0 13.8 0 NA F 35 15 NA NA U Y Y Y B B TILL -03 8.4 1.4 7.0 117.2 87.4 29.8 19.2 10.6 0 NA P 80 20 NA NA U Y Y Y B B TILL -04 8.5 1.4 7.1 117.9 91.0 26.9 17.2 9.7 7 1031 P,C 80 20 NA NA U Y Y Y G S TILL

33-+?1 3.4 0.0 8.4 106.6 64.5 42.1 24.3 17.8 0 NA TR NA NA NA NA S F Y Y B B SAND

-02 8.4 0,0 8.4 150.7 112.8 37.9 19.0 18.9 0 NA TR NA NA NA NA U 'f Y Y B B TILL -03 8.1 0.i? 8.1 74.6 38.2 36.4 21.8 14.6 1 994 TR NA NA NA NA 5 F Y Y B B SAND

34-01 7.2 0.0 7.2 78.1 50.8 27.3 14.5 12.8 0 NATRNANANANASF Y Y B B SAND -02 8... 0.2 8.1 78.7 43.8 34.9 19.6 15.3 1 148 P 60 40 NA NA U `f Y Y B B TILL -03 8.2 0.5 7.7 65.8 41.4 24.4 13.0 11.4 0 NA P 60 40 NA NA U Ÿ Ÿ Y B B TILL -04 8.2 0.0 8.2 84.4 46.3 38.1 22.6 15.5 1 504 TR NA NA NA C S C Y Y B B SAND -95 8.5 0.1 8.4 101.6 67.8 33.8 18.4 15.4 1 1017 P 50 50 NA NA U Y Y Y B B TILL -+?6.'.9 0.2 7.7 100.6 67. 3 33. 3 17. 6 15. 7 0 NAG 60 40 NA NA U Y Y Y B B T I LL -07 8.2 0.2 8.0 87.2 53.0 74.2 19.0 15.2 0 NA b 60 40 NA G U Y Y N r N TILL -08 8.3 0.3 8.0 71.7 48.0 23.7 13.3 10.4 0 NA P,G 60 40 NA NA U Y Y N B N TILL -09 9.2 3.3 5.9 79.2 54.9 24.3 14.7 9.6 0 NA P 80 20 NA NA U Y Y Y GB B TILL -19 8.5 0.5 8.0 82.6 58.2 24.4 14.1 10.3 1 14 P 80 20 NA NA U Y Y Y B B TILL

35-01 8.0 0.3 7.7 89.8 60.2 29.6 16.5 13.1 0 NA P 60 40 NA NA U Y Y Y B B TILL -02 9.0 0.0 i 9. 9 90.2 55.8 34.4 21.1 13.3 1 1:7 TR NA NA NA NA S Y Y Y B B SAND -03 8.2 0.2 8.0 69.4 44.8 24.6 15.0 9.6 0 NA P 61i 40 NA NA U Y Y Y B B TILL -04 8.6 0.3 8.3 211.6 182.2 29.4 17.8 11.6 0 NA F' 60 40 NA NA U Y Y Y B B TILL -05 7.8 0.0 7.8 144.6 99.2 45.4 26.5 18.9 0 NA TR NA NA NA NA U Y Y Y B B TILL -96 8.2 0.0 8.2 123.3 95.3 28.0 17.5 10.5 0 NA TR NA NA NA NA S F Y Y B B SAND -07 8.7 0.0 8.7 120.6 89.1 31.5 18.9 12.6 5 1078 TR NA NA NA NA U Y f p B B TILL -')+? 8.0 0.1 7.9 80.8 50.1 30.7 20.6 10.1 0 NA P 90 10 NA NA S F Y Y B B SAN;J -09 8.0 0.0 8.0 134.4 102.0 32.4 19.9 12.5 0 NA TR NA NA NA NA S F f r B B :AND -10 8.1 0.3 7.8 152.6 114.7 37.9 23.4 14.5 0 NA P,BL 95 5 NA NA S F Y Y B B ;SAND -11 9.9 3.3 6.6 122.2 80.2 42.0 26.0 16.0 3 23979 F', Bk. 95 5 NA NA u Y Y YEI B 1 I LL

36-01 7.7 2.4 5.3 85.1 33.4 51.7 14.7 37.0 0 NA P,BK 90 10 NA NA U Y Y Y B B TILLt;BDk~: 37-01 8.2 0.3 7.9 39.7 16.2 23.5 11.5 12.0 0 NA P 80 20 NA NA U Y Y N B N TILL -02 8. 2 0.0 8.2 124.3 102.5 21.8 12.5 9.3 0 NA TR NA NA NA NA U Y Y N B N TILL -03 3.4 0.0 8.4 125.7 95.4 30.3 16.•'-: 14.0 0 NA TR NA NA NA NA U Y Y N B N TILL -04 8.0 0.0 8.0 62.2 32.2 30.0 16.2 13.8 0 NA TR NA NA NA NA U Y f N B N TILL -05 8.3 0.0 8.3 1440.5 132.0 14.5 8.5 6.0 0 NA TR NA NA NA NA S M Y N B N iANB,

-06 8.4 0.0 8.4 112.8 90.8 22.0 12.9 9.1 1 224 TR NA NA NA NA S M Y N S N SAND -07 9.2 1.7 7.5 92.0 61.9 30.1 16.6 13.5 0 NA P 70 30 NA NA U Y Y Y B B TILL -08 9.2 2.8 6.4 113.1 89.0 24.1 12.2 11.9 0 NA P 70 30 NA NA U'f Y Y GB GB TILL

37-09 8.7 3.0 5.7 157.2 1:2.6 24.6 12.B 11.8 0 NA P, G 75 25 NA NA U ? Y Y GB GB TILL

AGE 1 GOLDEN RULE 03/27/87

RGR7MAR.WR1

DOTAL #

AMPLE

NO.

-_- . R-87

OF SAMPLES IN THIS

WEIGHT (KG.WET)

TABLE +10 TABLE

SPLIT CHIPS FEED

REPORT = 70

WEIGHT (GRAMS - ---

OVERBURDEN

LABORATORY

DRY)

DRILLING MANAGEMENT

SAMPLE LOG

AU

NO. CALC SIZE

V.G. PPB

LIMITED

---

CLAST

%

=-_-

DESCRIPTION

MATRIX

S:U SD ST CY COLOR

__--- LS OT SD CY

CLASS

TABLE

CONC

M. I. CONC

M.I. CONC. NON

LIGHTS TOTAL MAG MAG

VIS GR

77-10 8.3 2.2 6.1 274.2 246.4 27.8 16.5 11.3 0 NA P 60 40 NA NA J Y Y ŸGB GB TILL

-11 8.4 2.0 6.4 314.1 296.4 17.7 10.1 7.6 0 NA P 70 30 NA NA U .r Y Y Gn GB TILL

38-01 8.1 2.1 6.0 119.6 103.5 16.1 7.1 9.0 1 3053 G,P 55 45 NA NA S C N N B N SAND

-02 8.1 0.6 7.5 141.8 128.5 13.3 6.0 7.3 !? NA G,P 50 50 NA NA S C ;4 `4 B N E.AND

-03 7.7 0.2 7.5 87.9 71.0 16.9 7.7 9.2 0 N'A'. G,F' 55 45 NA NA U Y N N B N TILL -04 8.1 1.5 6.6 75.0 57.8 17.2 9.0 8.2 0 NA P 65 35 NA NA Li Y N N B N TILL

-05 8.2 0.8 7.4 95.0 71.6 23.4 10.8 12.6 0 NA C 60 40 NA NA U Y Y i 1 B N T I 'LL -06 8.1 1.4 6.7 101.0 82.5 13.5 8.9 9.6 0 NA P60 60 40 NA NA U Y Y N K N TILL

-07 5.8 3.0 2.8 60.5 47.8 12.7 6.2 5.5 0 NA P 60 40 NA NA U Y Y N B N TILL -08 3.6 0.: 8.7 143.8 127.8 16.0 8.4 7.6 0 NA P 60 40 NA NA U Y N B N T I LL -09 8.1 1.0 7.1 71.6 44.3 27.3 13.0 12.3 1 4132 C 65. 35 NA NA U Y Y N B N TILL -10 8. 2 4.o 4.2 2~ ~?3. 2 201.2 7.0 3.3 3.2 0 NA P 65 ~v NA NA S Y Y N 3 N ERAVEL

-11 7.9 -... 4.7 277.0 226.6 10.4 7.1 3.3 1 5762 P 65 35 NA NA S Y B N GRAVEL

79-01 8.: 0. • 7.4 49.7 34.6 15.1 9.2 5.9 0 NA P 20 2u 6() A U Y Y i B B TILL -02 3.3 0.1 8.2 149.1 131.3 17.8 9.1 8.7 0 NA P 50 50 NA NA U Y Y ': B B TILL -03 7.8 0.4 7.4 80.4 65.1 15.3 7.7 7.6 9 NA C 40 60 NA NA U Y !` Y : 3 TILL -04 8.4 0.6 7.8 118.7 96.4 22.3 9.8 12.5 0 NA P 50 50 NA A U Y Y Y B B TILL -05 8.4 2.5 5.3 276.5 26o.6 15.9 7.1 8.8 o NA F' tO 40 NA NA t { N r N ;RAi'EL -06 5.0 2.2 2.8 83.5 81.6 1.9 1.0 0.9 0 NA P 60 40 NA NA 6,M . N u N Gh:AVEL -07 7.7 2.9 4.3 95.4 91.5 3.9 2.0 1.9 0 NA P 60 40 NA N.A S M Y Fd B N iERA 'vEL -+?8 8.3 7.1 5.2 123.4 117.9 5.5 2.8 2.7 0 NA P 60 40 NA NA S M Y N B ii GRAVEL -09 7.3 3.3 4.0 38.7 86.2 2.5 1.3 1.2 0 NA P 00 40 NA NA S M Y N B N GrtHvEL -10 8. 4 3. 4 5. t! 84.0 76.7 7.: 4.0 o NA P 65 35 NA NA ti M YN 9 N GRAVEL -11 8.8 0.2 8.6 107.1 77.2 29.9 15.3 14.1 0 NA P 70 30 NA NA 5F Y N B N SAND -12 8.5 1.3 7.2 167.2 140.1 27.1 15.8 11.3 0 NA P 70 30 NA NA S F Y N S N SANü' -13 8.5 0.5 8.r? 141.8 111.5 30.3 16.1 14.2 0 NA P 75 25 NA !tiA S F Y N B N SAND -14 8.1 0.2 7.9 87.1 62.7 24.4 14.4 10.0 0 NA P 60 40 NA NASF Y N û N SriN?} -15 8.3 0.2 3.1 109.1 76.8 32.3 17.7 15.0 0 NA P 60 40 NA NA S F Y N B N SAND -16 8.2 0.2 3.0 127.4 99.0 28.4 16.8 11.6 0 NA P 60 40 NA NA S F l' N B N SAND

39-17 8.: 1.2 7.1 156.5 114.2 42.3 29.1 1.3.2 0 NA P,Ba: 80 20 NA NA S F Y N B N SAsJD &BDI:.

APPENDIX C

GOLD GRAIN COUNTS AND CALCULATED VISIBLE GOLD ASSAYS

PAGE 1

GOLDEN RULE 03l17i87

SOLD CLASSIFICATION

.VISIBLE GOLD FROM SHAKING TABLE AND PANNING

SRGRIMAR.WR1 NUMBER OF GRAINS TOTAL # OF PANNINGS

SAMPLE #

SR-87

01-01

02-01

PANNED Y!N DIAMETER THICKNESS

N NO VISIBLE GOLD

N NO VISIBLE GOLD

ABRADED =_--=_=

T P

IRREGULAR DELICATE TOTAL NON MAC; GMS

GALL V.G. ASSAY PPB REMARKS

-_--__- _---- - T P T P

-02 N 150 X 400 50 C 1 1

1 14.5 1963

-03 N 75 X 150 22 C 1 1

1 17.2 4 ,17

-04 N 50 x 75 13 1 1 1

1 17.4 21

-05 Y 25 X 25 5 G 1 1 EST. 10% PYRITE 25 X 50 8 G 2 2 50 X 50 10 E 1 1 75 X 150 22 E 1 1

100 X 125 22 E 1 1

15.1 306

-06 N 25 > 25 5 C 1 1

1 19.0 1

-07 N NO VISIBLE GOLD

03-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

04-01 N NO VISIBLE GOLD

05-01 N NO VISIBLE SOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

'AGE 2 GOLDEN RULE 03/17/87

SOLD CLASSIFICATION

_PISIBLE GOLD FROM

3RGR1MAR.WR1 TOTAL # OF PANNINi3fi

-AMPLE # PANNED YIN

SHAKING TABLE AND PANNING

DIAMETER THICKNESS

NUMBER OF GRAINS

NON MAG GMS

CALC V.G. ASSAY PPS REMARKS

ABRADED IRREGULAR DELICATE TOTAL --------

T P

------=-- -======= --- T P T P

3R-87

06-01 Y 25 X 25 5 C 2 2 EST. 157. PYRITE 25 X 50 B C 1 1 25 X 75 10 C 1 1 50 X 75 13 C 1 1 50 X 125 18 C 1 1 100 X 100 20 C 1 1 150 X 250 36 C 1 1

8 9.0 1623

-02 N 150 X 175 31 C 1 1

1 17.E 363

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO 'VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

-08 N 300 X 500 68 C 1 1

1 18.3 4454

-09 N NO VISIBLE GOLD

-10 N NC VISIBLE GOLD

-11 N NO VISIBLE GOLD

07-01 N NO VISIBLE GOLD

-02 N 50 X 100 15 C 1 1

1 21.0 31

-03 N 100 X 150 25 C 1 I

1 20.6 i40

08-01 N NO VISIBLE GOLD

'AGE 3 GOLDEN RULE IIJ/17/8i

sOLD CLASSIFICATION

_,VISIBLE GOLD FROM SHAKING TABLE AND PANNING

dRGRIMAR.WR1 TOTAL # OF PANNINGS

NUMBER OF GRAINS

CALC V.G. ABRADED IRREGULAR DELICATE TOTAL NON ;AMPLE # PANNED =------ ASSAŸ __------- ----- == NAG

Y/N DIAMETER THICKNESS T P T F' T P GMS PPB REMARKS

R—G7 —02 N 100 X 100 20 C 1 1

1 21.1 71

—03 N NO 'VISIBLE GOLD

—04 N NO VISIBLE GOLD

—05 N NO VISIBLE GOLD

—06 v 50 X 50 10 C 1 1 2 EST. 5% PYRITE 50 X 75 13 G 1 1 50x 125 18 1 1 75X 100 18C 2 2

6 19.1 198

—07 N NO VISIBLE GOLD

—08 N NO VISIBLE GOLD

08-09 N 40 VISIBLE GOLD

AGE 1 GOLDEN RULE 03/18/87

OLD CLASSIFICATION

- "ISIBLE GOLD FROM SHAKING TABLE AND PANNING

GRG'R2MAR.WR1 NUMBER OF GRAINS TOTAL # OF PANNINGS 3

SAMPLE #

GR-87

PANNED YIN DIAMETER THICKNESS

ABRADED IRREGULAR DELICATE TOTAL NON - MAG

T P GMS

CALC V.G. ASSAY PPB REMARKS T P T P

08-10 N NO VISIBLE GOLD

09-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N 100 X 175 27 C 1 1

1 15.5 247

-06 N 75 X 125 20 C 1 1

1 9.3 161

10-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N 150 X 150 29 C 1 1

1 22.6 218

-04 Y 25 X 25 5 C 1 1 EST. 157.. PYRITE 25 X 50 8 C 2 1 1 4 50 ii 75 13 C 1 1 150 X 150 29 C 1 1 200 x 300 46 C 1 1

8 31.6 865

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

11-01 N NO VISIBLE GOLD

-02 N 50 X 50 10 C 1 1

1 20.3 9

-03 Y 50 X 50 10 C 1 1 EST. 5% PYRITE 50X 75 13C 1 1 75 X 125 20 C 1 1

RAGE 2 GOLDEN RULE 03/18/87

SOLD CLASSIFICATION

"/ISIBLE GOLD FROM SHAKING TABLE AND PANNING

GRGR2MAR.WRI NUMBER OF GRAINS

-.TOTAL # OF PANNINGS

SAMPLE #

GR-87

PANNED YEN DIAMETER THICKNESS

ABRADED IRREGULAR DELICATE TOTAL NON HAG GMS

CALC V.G. ASSAY PPB REMARKS

------= T P T P T P

_ 25.6 81

12-01 N 50 X 75 13 C 1 1

1 16.7 22

-02 N 75 X 125 20 C 1 1

1 16.4 91

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

13-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

14-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N 75 X 100 18 C 1 1

1 21.2 48

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

15-01 N NO VISIBLE GOLD

T

.'AGE 3 GOLDEN RULE 03/18/87

%OLD CLASSIFICATION

ISIB E GOLD FROM SHAMING TABLE AND PANNING

GRGR2MAR.WR1 _TOTAL # OF PANNINGS 3

NUMBER OF GRAINS

CALC V.G. ABRADED IRREGULAR DELICATE TOTAL NON :AMPLE # PANNED ASSAY - MAG

Y/N DIAMETER THICKNESS T P T P T P GMS PPB REMARKS

GR-87 16-01 N 100 X 150 25 C 1 1

1 21.0 138

-02 N NO VISIBLE GOLD

-03 N 100 X 150 25 C 1 1

1 20.5 141

-04 Y 50 X 75 13 C 1 1 EST. 5% PYRITE 75 X 75 15 C 1 1 75X 100 18C 1 1

200 X 300 46 C 1 1

4 12.E 1838

-05 N NO VISIBLE GOLD

17-01 N NO VISIBLE GOLD

CAGE 1 GOLDEN RULE 0/19/57

JOLD CLASSIFICATION

-"'ISIBLE GOLD FROM SHAKING TABLE AND PANNING

GRGR3MAR.WR1 NUMBER OF GRAINS

_TOTAL # OF PANNINGS 4

SAMPLE #

.;R-87 17-02

PANNED YIN DIAMETER THICKNESS

N NO VISIBLE GOLD

ABRADED IRREGULAR DELICATE TOTAL NON MAG GMS

CALL V.G. ASSAY PPB REMARKS T P T P T P

-03 N 100 X 200 29 C 1 1

1 14.9 331

-04 N 100 X 200 29 C 1 1

1 15.0 ~ 329

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

-08 N NO VISIBLE GOLD

-09 N 75 X 100 13 C 1 1

1 10.9 93

-10 N NO VISIBLE GOLD

-11 N 100 X 125 22 C 1 1

1 13.8 154

18-01 N NO VISIBLE GOLD

-02 N 50 X 150 20 C 1 1

1 23.3 64

-03 N 150 X 250 38 c 1 1

1 22.7 502

-04 N NO VISIBLE GOLD

19-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE BOLD

PAGE 2 GOLDENRULE 03d9/9

3OL Qe%@RCAGæ

OSRÆ GOLD F§MSHAKING TABLE AND PANNING

SR MÆ,3! NUMBER OF GRAINS TAL # OF mmlmS 4

SAMPLE #

3R-87

PANNED ¥a DIAMETER THICKNESS

ABRADED IRREGULAR

P T P

DELICATE 3#LNON NAG

T P 5MS

CALC «& ASSAY PPB REMARKS T

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

2e N NO VISIBLE GOLD

w9 N NO VISIBLE GOLD

-10 N NO VISIBLE GOLD

-11 N Æ VISIBLE GOLD

-12 N NO VISIBLE GOLD

-13 N NO VISIBLE SOLD

-14 N NO VISIBLE GOLD

-15 7 !æ & 150 3 c ! 1 NO SULPHIDES 200 * '50 42 L 1

2 17.9 1056

@6 N !m X 150 3 c 1 1

1 21.7 !2

-17 f 75 X 100 m C I EST. R PYRITE !m X !m 20 C 100 X 125 22 C 1 !

4 20.7 296

a@ , 3 k 25 5e 2 2 EST. 3; PYRITE 3 X 150 e c 1 1 +* 50 10 C 10 10 g*!m 5C 1 1 2 X 125 æ c 3 3 y X 200 2 c 1 1 3# 75 e c 4 4 75 X !W 18 C 1 1 2

100 x 100 20 C 2 2 100 X 175 2 C 1 1 100 X 275 36 C 1 1

PAGE 3

GOLDEN RULE 0.3/19/57

3OLD CLASSIFICATIQN

_'VISIBLE GOLD FROM SHAKING TABLE AND PANNING

GRGR3MAR.WR1 --TOTAL # OF PANNINGS 4

NUMBER OF GRAINS

CALC V.G. ABRADED IRREGULAR DELICATE TOTAL NON SAMPLE # PANNED ------- ASSAY -- _--==_ ---_= MAG

Y/N DIAMETER THICKNESS T P T P T P GMS PPB REMARKS

.GR-67

125 X 125 25 C 1 1

1::5x 200 31C 1 1 250 x 450 61 C 1 1

31 57.8 1658

20-01 N NO 'VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

21-01 N 150 x 200 34 C 1 1

1 22.9 336

-02 N NO VISIBLE GOLD

-+ ~3 Y 25 X 25 5 C 1 1 2 EST. 5 PYRITE 50x 100 15C 1 1 250 x 325 52 C 1 1

4 22.7 1453

21-04 N 75 X lUu 16 C 1 1

1 15.3 66

PAGE 1 GOLDEN ka 7622

GOLD CLASSIFICATION

22ÆE ±3 FROM SHAKING TABLE AND PA +IÆ

mrr4 r. r1 -TOTAL ■ +F Ims 2

6±a ■ PANNED 9N DIAMETER +ICK~E@

NUMBER T GRAINS

NON

CALC V.G. ASSAY

FB REMARKS

ABRADED -~-~

T F

IRREGULAR

-~--- I P. . ~A

DELICATE TOTAL'

~~ ~- P

±2z 21-05 N 3* 75 TIE 1

20.2 2

w6 * 25 X 25 5E 1 1 a« 10% PYRITE 75 ; 100 18 C 1 1 GRAIN COPPER (y;a±

3 X 125 y : 1 1 100 4 125 2 1 !y » 225 % E !

97 § NO VISIBLE GOLD

»2 STE

&w! N NO VISIBLE GOLD

w2 N NO VISIBLE GOLD

-03 f S: 50 10 C 1 1 2 EST. 2 PYRITE 3* 100 18 C 1 1 200z 200 2E ! 400 573 79 C 1 I

5 23.2 gg

-04 Î 75 f 100 18 C balm SR IE 3 : 150 2 E 1 100 * 150 25 C 1 13 * 125 3 I

4 21.8 4(Y9

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE ROLL)

3=! N NO VISIBLE GOLD

w2 N 200 X 300 45 C ! !

1 33.8 641

-03 N NO VISIBLE æG

44 * 3i SE 1 1 EST. 90% Ewle

RAGE

GOLDEN +L 03,2.J

W11 CLA DÆIG2+

Æer£ GOLD FROM SHAKING TABLE AND PANNING

lmr4em*! TOTAL # OF wglms 12

SAMPLE # PANNE) 9N DIAMETER THICKNESS

+7

ABRADED

T E

NUMBER OF GRAINS

IRREGULAR DELICATE TOTAL

I P T P

NON

?S

»±«a ASSAY PPB REMARKS

! 2

75 NO VISIBLE æU EST. 90% BRIS

-06 * 3X 25 5 1 1 EST. 50:PYRITE 3 X 125 y E 1 1

2 76.9 2

-07 Z m VISIBLE KID EST. Ü:@gI+

aw! N 6 dgÆE2G

92 N NO 22£Eæ3

25-01 N NO VISIBLE GOLD

6w1 N NO VISIBLE GOLD

a2 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 Ï y* 75 SC i et la Re+ 50Xl00 15 C 3X 75 15 1 g * 150 2 C ! 1 725i 32. Sc 1 !

1311

255 N NO VISIBLE GOLD

w6 * 2 X 50 §E ! Ga a PYRITE 3 ! 173 y E .

100 » 125 22 C 1 !M X 150 5 C 1

4 22 212

-07 N NO VISIBLE SOLD

77-01 N NO VISIBLE GOLD

-02 N !S # 250 35 C 1

PARE

GOLDEN RULE 037231E7

GOLD CLASSIFICATION

«SIBS GOLD FROM SHAKING TABLE AND PANNING

9mr4n .«I NUMBER OF GRAINS

-TOTAL # OF ~ 4ING 3 12

SAMPLE #

+a7

PANNED 6N DIAMETER a!~ ~E s

ABRADED

:~~~ . P

IRREGULAR DELICATE TOTAL- NON

----~ +§

! P T e ae

1 22.1

CALC V.G. wPAY PPB REMARKS

516

N NO VISIBLE æG

-04 N 7* 75 g E 1 1

19.2 R

95 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

we Y SK 50 b( 1 1 EST. 65% FRITE

1 41.1 5

3l 25 5E 1 1 EST. 40%PYRITE

50 X 50 R E ! 1

.1

-10 50 3 2E 1 I EST. 10% PYRITE

3 i 200 27 E ! 1 200 Z 200 a C !

3 3.4 #7

25-01 N S VISIBLE GOLD

-02 N NO VISIBLE GOLD

2R-03 N !W X 100 3 C !

1 18.7 80

PAGE 1 GOLDEN RULE 03/24/87

GOLD CLASSIFICATION

ISIBLE GOLD FROM SHAKING TABLE AND PANNING

ygr5mar.wrl NUMBER OF GRAINS OTAL # OF PANNINGS 1

SAMPLE #

GR-87 28-04

-05

PANNED YIN DIAMETER THICKNESS

N NO VISIBLE GOLD

N 200 X 300 46 C

ABRADED IRREGULAR --------

T

DELICATE TOTAL NON MAG 6MS

CALC V.G. ASSAY PPB REMARKS

-- T P

1

-------- P T

----= P

1

1 23.2 934

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

-08 N NO VISIBLE GOLD

-09 N NO VISIBLE GOLD

-10 N NO VISIBLE GOLD

-11 N NO VISIBLE GOLD

-12 N NO VISIBLE GOLD

-13 N 75 X 125 20 C 1 1

1 26.0 58

-14 N NO VISIBLE GOLD

-15 N NO VISIBLE GOLD

-16 N 75 X 150 22 C 1 1

1 25.1 85

-17 N NO VISIBLE SOLD

-18 N NO VISIBLE GOLD

29-01 N NO VISIBLE GOLD

-02 Y 50 X 50 10 C 1 1 EST. 7% PYRITE 250 X 250 46 C 1 1

2 17.5 1250

-03 N 75 X 100 18 C 1 1

1 25.6 39

PAGE 2 GOLDEN RULE 03/24/87

GOLD CLASSIFICATION

'ISIBLE GOLD FROM SHAKING TABLE AND PANNING

grgr5mar.wrl DIAL # OF PANNINGS 1

NUMBER OF GRAINS

SAMPLE #

GR-87

PANNED YIN DIAMETER THICKNESS

ABRADED IRREGULAR DELICATE TOTAL NON MAG GMS

CALC V.G. ASSAY PPB REMARKS

=----- T P

-------- T P

----- T P

-04 N 100 X 275 36 C 1 1

1 18.3 517

-05 N 100 X 100 20 C 1 1

1 12.0 125

-06 N 100 X 100 20 C 1 1

1 12.6 119

-07 N NO VISIBLE GOLD

-08 N 75 X 100 18 C 1 1

1 27.1 37

-09 N NO VISIBLE GOLD

-10 N NO VISIBLE GOLD

-11 N NO VISIBLE GOLD

-12 N 75 X 125 20 C 1 1

1 32.6 46

-13 N NO VISIBLE GOLD

— 30-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N 75 X 100 18 C 1 1

1 26.9 3a

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N 50 X 100 15 C 1 1

1 21.4 30

31-01 N NO VISIBLE GOLD

PAGE 3 GOLDEN RULE 03/24/87

GOLD CLASSIFICATION

?ISIBLE GOLD FROM SHAKING TABLE AND PANNING

9rgr5mar.wrl NUMBER OF GRAINS

'OTAL # OF PANNINGS 1 ABRADED IRREGULAR DELICATE TOTAL NON CALC V.G.

SAMPLE # PANNED MAG ASSAY

Y/N DIAMETER THICKNESS T P T P T P GMS PPB REMARKS

GR-87

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N 75 X 75 15 C 1 1

1 19.6 33

31-06 N NO VISIBLE GOLD

AGE 1 GOLDEN RULE J3/27/.87

OLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

RGR6MAR.WR1

TOTAL # OF PANNINGS

AMPLE # PANNED

YIN DIAMETER THICKNESS P

NUMBER OF GRAINS

IRREGULAR DELICATE TOTAL NON

- ------- --_= ilAG

T P T P GMS

CALO .5.

ASSAY

PPB REMARK.5

ABRADED

- T

P'-87

31-07 N 75 :X 125 20 C 1 1

1 20.1 75

-48 Y 25 X 5i_~ 8 C 1 1 EST. 10% PYRITE

75 X 75 15 C 1 1

2 27.7 26

32-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 Y 25 :X 25 5 C 2 2 EST. 40:; PYRITE

25 X 50 ? C 1 1 50 GRAINS GALENA

50 X 50 10 C 1 1

50 75 13C 1 1

75 X 100 18C 1 1

200 X 250 42 C 1 1

17.2 1031

33-01 N NO VISIBLE GOLD

-02 N NL? VISIBLE GOLD

-0: N 225 X 27 46 !, 1

1 21.8 994

34-01 N NO VISIBLE GOLD

-A2 N 100 X 150 25 C 1 1

1 19.6 148

-03 N NO VISIBLE GOLD

-04 N 175 X 225 38 C 1 1

1 2..ry.6 504

-05 Y 200 X 275 44 C 1 1 EST. 15% PYRITE

1 18.4 1017

-

AGE 2

GOLDEN RULE 03/27/87

OLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

RGR6MAR.WP1 NUMBER OF GRAINS

TOTAL # OF PANNINGS 7

AMPLE #

R-87 -06

-07

-08

-09

PANNED Y/N

N

N

Y

N

DIAMETER THICKNESS

NO VISIBLE GOLD

NO VISIBLE GOLD

NO VISIBLE GOLD

NO VISIBLE GOLD

ABRADED

T P

IRREGULAR

T P

DELICATE TOTAL NON MAG

T P GMS

CALE V.G. ASSAY PPB REMARKS

1 C?, EST. 1J: PYRITE

-10 Y 50 X 50 10 C 1 1 EST. 10'i. PYRITE

1 14.1 14

35-01 N NO VISIBLE GOLD

-02 N 100 X 150 25 C 1 1

21.1 137

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 Y 50 X 50 10 C 1 1 2 EST. 15% PYRITE

50 X 100 15 C 1 1

75 X 75 15 C 1 1

200 X 275 44 C 1 1

5 18.9 1078

-08 N NO VISIBLE GOLD

-09 N NO VISIBLE GOLD

-10 N NO VISIBLE GOLD

-11 Y 125 X 125 25 C : EST. 407. PYRITE

500 X 600 85 C 1 600 X 900 101 C 1

3 26.0 23979

36-01 N NO VISIBLE GOLD

1GE 3 GOLDEN RULE 03/27/57

1LD CLASSIFICATI!vN

yISiBLE GOLD FROM SHAKING TABLE AND PANNING

_°GR6MAR.WR1 NUMBER OF GRAINS TOTAL it OF PANNINGS 7

1MPLE *

JI

ABRADED FANNED YIN DIAMETER THICKNESS T

IRREGULAR —__

P T P

DELICATE TOTAL NON --_____- ---- Mtn

T P GMS

CALC V.G. ASSAY PPB REMARKS

37-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NC VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N 75 X 175 25 C 1 1

1 12.9 -,; 4

-07 N NO VISIBLE GOLD

-08 N NO VISIBLE GOLD

37-09 N NO VISIBLE GOLD

AGE 1

GOLDEN RULE 03:27/8

OLD CLASSIFICATION

VISIBLE GOLD FROM SHAKING TABLE AND PANNING

RGR7MAR.WR1 TOTAL # OF PANNINGS 3

AMPLE # PANNED Y/N DIAMETER THICKNESS

R-87

NUMBER OF GRAINS

NON

GMS

CALC V.G. ASSAY PPB REMARKS

ABRADED

T

IRREGULAR DELICATE TOTAL - --=-__ ----_- --_ MAG

P T P T P

37-10 '1 NO VISIBLE GOLD EST. 40. PYRITE 5 GRAINS BORNITE

-11 NO VISIBLE GOLD EST. 40% PYRITE (MASSIVE)

38-01 N 250 X 250 46 C 1 1

1 7.1 3053 J

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

-08 N NO VISIBLE GOLD

-09 N 350 X 375 63 C 1 1

1 15.0 4138

-10 N NO VISIBLE GOLD

-11 Y 225 X 400 56 C 1 1 EST. 0% PYRITE

1 7.1 5762

39-01 N NO VISIBLE GOLD

-02 N NO VISIBLE GOLD

-03 N NO VISIBLE GOLD

-04 N NO VISIBLE GOLD

-05 N NO VISIBLE GOLD

-06 N NO VISIBLE GOLD

-07 N NO VISIBLE GOLD

-08 N NO VISIBLE GOLD

AGE 2 GOLDEN RULE 03/27/27

;OLD +CLASSIFICATION

VISIBLE GOLD FROM SNAKING TABLE AND PANNING

;RGR?MAR.WRI NUMBER OF GRAINS TOTAL # OF PANNINGS

ABRADED IRREGULAR DELICATE TOTAL NON CALC V.G. AMPLE I PANNED =_-- --------- ------- -= MAG ASSAY

YIN DIAMETER THICKNESS T P T P T P GMS PPB REMARKS

R-27

-09 N NO VISIBLE GOLD

-10 N NO VISIBLE GOLD

-11 N NO VISIBLE GOLD

-12 N NO VISIBLE GOLD

-13 N NO VISIBLE GOLD

-14 N NO VISIBLE GOLD

-15 N NO VISIBLE GOLD

-16 N NO VISIBLE GOLD

39-17 N NO VISIBLE GOLD

APPENDIX D

BINOCULAR LOGS - BEDROCK CHIP SAMPLES

SAMPLE NUMBER COLOUR STRUCTURE

„ ~" dd-- ~~

GRAIN SIZEImm)

TEXTURE MINERALOGY

NAME Silicates Carbonates Sulphides Other

G ~ - 8'7

o I o a

P~

y~°",

7^."44-~

-)rleoitta~2, ~rcALaA

~ o ? "`

.,p~,, .~u,

,i" 0.0.5- ~ , .1oca.Q ~a~..~

1,0 ~ /.5,,,..,.

~ „0.-a.4 d~~ -4/-_,4---...,

/ "~~ ~

® 7o-80`f. ~ rr►~c • ao-s°7, oa,,~.e,,;rc,

~ /..,,/, 4.--t,....„) T-u

lb% ~4s ta.Ic.Xc. D.Sa 1 % ~ ,cw~c tort,

FEL S/G As It

F

p a- og 8a•.,~ t .G~~JN

` ' ~ ~ -~*~~, ,c-colo~.eal V°~.,.`.Gl.c

~ D. o~ tâ o.!

` Ex~ t Q~y w~l

~l ''// 1 ~ .aea..e.c -0+-c~+ ~d .

s~o 907, ~

c,iPo+ ~

Slo~ -0ûa0 cs~cl~i 4 0.19 ~ ^,~.. 77;~

~~w~

Sii+sfoNe

• 03- oil P-0,.4.

~~

-~+e-, ~ ~„"ôl. t „~F (, p °

~

"^~+~n ~~~ir

~~ N-'~ o•' ' o. a

~

~,;~c,

,n`,,;L

ff ~.."& , ~

~ D.S % ~, °~ ~ _G.w,~.. « .fnc.c,,l~..~ol ,,(,~1.,.,~.~r . ~

75-80% o.fc• (lld..1Î' ' N

1 s 2° Z .~~

1-d% -a~i:.a F` _M, -ca,~. .~

aoZ

.oLi.c

-^ ~ -G*o(o.

Fe/5i(

T U F F

o~t- 0a D-a.,,~ ~

~~, ~~

) tti`n. ~sn -~-~~1t- 0

~' 4,,...4, ao- `" ? , oy~C, ,.

~ i..lûc~ "mY° ""- So 7, ~ ~ ~

p `~ • (~•s !4

/~

~!~n.g,c.~ -e~✓H"al.

~ o....s- Es %

~~,~ ,s-.2o ; .t,,,1~G~.

~ 7-~

17 ..~~-~r ~P co la<iCc

D1- ./2"47,4 p--~ s

c 7c ~

~:s

0 ~ n~sc

.Ihu ~i v u~~

s ~ 1 is t°~,</

‘Pay wac k e

~~,,.°"é` 0.1

y~ as

i~ 0.3-.4.5-

o s -0 6

~

Pc, I e I,

.~ u~

S c 1, :1-{ ,A, , loc~ c,-e.-,~4-1eJ

y(1 [/

1 S / y 1 L - C~4f "~ . /(

U<a-.-.: t y 1

r71,,., k e J b

SC ~'S-iui:%,~ o6~bY

~+ 0.1 _

G'e,,,,.,,4, 0,1_ c,s l, 4~pe,.,.wn cr

1,~..J, wi.Q I;-i~: L

~ 5,~~1~ ~ N j. J Sl.yl,-1f.y y,n~l.y.7-);L.

~,,..r..~c.,. ,es o~,s,....ce~ Y

k a /. -{'e Is '1 c, .. o Ic . (I,,.n4 l s:l,ceow,

/1""4"-) Is Z( I. Se.,;(,-ti.. ) / I- L',./. colowleS jig.pl,e „as-40 0.~s

S-/. P.R./mg J:ssew, Cr..,%.

~ 50/. w+gE~.

""AS

o ., I '/. -~,,.-.. Q~.1

c~isu-.,n 1 cC,swn ~1 J

~a. j;ssv.vr..~Qy V `~ -

FI=L s I (` PS I-1

jurh

-

SAMPLE NUMBER COLOUR STRUCTURE GRAIN

SIZE (mm) TEXTURE MINERALOGY

NAME Silicates Carbonates Sulphides Other

G R-is1

(7 G - l02

ydex,~, re?-.~r

a

~~ ~~ aaJ+ o.~D..2

44.,,,r G~ ~ i . ,

~ , ~ /

go-ss'% ~iw~ ~ '/s ( ~~ .~...o() IS 'o2D a ~ ~-2~

~

% ~ F~ - M ,444.1%-.

J

Fe(s; c

gs ti TLc FF

O 7 D ti

,

eltt?^` i!„A (_1_,.,_

-1114-'

~ _,,,,,,,,,,A .„,nadotuK. ~ 6~

J

/,~~

r

1,4,4

,_

,,,,,,4...„-, ) ~l, A '

t "°4/~~ ~ ~,~-tLeuB

l

i% af e/ ‹..2,lc"rrli

G o. / z ~ Fe 's i c

/ p

Uo 1c a

1

nv r c,

I~ ~ s 1 i~~a) r

0$ ti .A7

7'4 .01.,,,I. ,d

- 671444;v4. .é

_

VN-,~Gta~

O.! --,0,XI

i

• •,

~, ,

75--9- 07. ..,141

~ 10

d%. '3 ~^d.

,)/7

rs- zo ~ t,., f~

12ô caQeZ [;,4

3o No7.~.

oC. :a .4441

..m .F'r^el`

.2 P. 7...;,..,L

0.S /pyye 4

-

h[ctv ine, r-at.

0-4-v.~

~•ne~~

Oq - 0'7 0..td4, /4-- 6:,ctc.,n,utd ,--ci

~ ~ • w , --->--a4-4‘4,4-'

t„rl~~.~~~a

Au.,,Z,.— < o. oS a~~

Z-,,,....1;. ,

~~~~ . ~

~c.c~,,,~(~~C/o7 ~~ ~ ~ / ~~t ~ ~

pal ~„

;o- 3s' ~f{J,,apc ro -17 % tkL..X 0- SS

~« 7 /

7/~; 5 >

T~~ ~~

N ~ ~.

,ca~- ,~_

~

z~.

~i 04--

C~n10FSITF

^j /0 —V / //

U/ikc%.Gf~

a~c ' ~

/ / _ç< X;$"(01-(_. o. 2.

</~ o6stw.. bJ S c/; r+ -Us;el)

L GU, ~rw.~(1.~-~ I ~

;~-I~1~( /,:,-, ~ ~ f

i!/c ~/

o s c a

~J1 Sc %i1~ oS,~j.)

FS% S`~T~ C.~J Hd ~ ~

o-/ eac ~ ~ i 6 ~ ~1. ~( rG.~. (~/j-v,~ . t ~i Io ...-L,

% Y. Gi2~

S'/. ~.c,.,,. â /

c(.sse,~. c t Q,

r plu 6„,--0( v~~c . !/Q;~s ~ ~w, l~. ., 1 '/, cf(r~

sys w~ c o. b,c

0 J

~3 ~ /PN .~ x~ TNT

~RNDC-CSITz ,

SAMPLE NUMBER COLOUR

,

STRUCTURE GRAIN SIZEImm) TEXTURE

MINERALOGY ~ NAME

Silicates Carbonates Sulphides ~ Other

GR-°

II- 09- Mel' n . ao t.~p~C

5n

6 f Ô%~Gss:vni u ~e~1 +i-c.ck....t-r~i w~ ~u// ,,~ JO t.- SicclTwntic ~

0 .2 L' ,-,:t. ~i ~n~-~ o6scw b A„(t ,

1

( ln, wnc.~Gv. v M° c~r ; w ~~.t

~ obsc. v~.J~ ,~, t.~~ . V

6o i. 11w,J „ n

cl4

an- lk~.,na

L...r

6.16.-t....., / ef;c/o4; e~ '101J "

lu IS y, ~1k5 l h . c c,1.

IoY. j,Ss~.. Ca

c;b. w~ bo~l, {, S~ -1 v1~v,s

1-z~ d iJSBv+'7,

c~,L'

~ (p~.

O.Or-o.cU /. c,p ~,,,,,,,.,( , J;r~~ . in ,À ,+e~s ,~ e~. ~,r .r, e

,SSi-Wl. S/ ~'

i (..,e :t

rrv î V 0 LC .

(H•vDLSiTr)

la-07 ~ ~ ..1<.~.~~

~

~pf<d,.~,

t O•o5—

. ~.uw ~"

.~i! /_...~~

40-4,44.61 .~~ ~C i~ ~~'r"~..-/-1-friat- 44.4,e,.

log 6

~ vdfc. ( ,Ay.,pl, ~)

lsg - ~~

lS7 ~sta-m . Cc -M, -ea...Îr.

,o.o~'

I --%

yy .G:a,

p~v~ T~ ~.~ 2Ca*....,.y / ~

4.*, ..„4-v...

re(s/ic

f}sn

ru~

e9-7-, ~

~' ~

/3-o6, 5,1,,,../ re- , Up

4-45.2Z-R- ~—

I /

e~u~ 7r2/c~st ~J

,ap./b` o. °,

~ (~ o -65-'7°

(D s" %, ,G~

lu /5-Z ~] .¢ua,vk /

% , ~-6 J~ .4;t1CGI

l °I° -c4)-Ci,

~ 441

as-

O, S~ LS ~ J~,,.a~

3d 7D t,~

s i ifs iati ,

fcf 0$ 41" r" ~Ie~:

,a/~Dt,Lf 't -------te

'°~"'/~ ~~

Q~„- ,ô 0• 3,„,.,,

9 ~,4a a%~ P `^ y Q (f

+G~"~=' 8°~°~ S Io% F M9

-co.,..G.

1% dNo ps~ 0,

Si l fS{on0 e/

G'r0.yi.vacKQ.

r...4, ;21..4 174

o - D %,

dL, . I5-'24

, $o-85 7

9'«,i- 9.....1,4 -aelitA.

~S 0L P944-1 hi

~ II Y. .✓1.L.,a~

,~ ~

/; -IP ~ G./JAL-Co % a 11 / /

~v~c~ NS.~Moc✓~Sif VA

C ~ o ~( N++L.j-1 ;

p.OS

~~as

U.S Z. ~

~(~p~ r~ c w E~ Ü ~~ 1

Lht;✓.IoCrin

5~0 ~~:..,~rs y

7v %, , !, p U u~6;f:~.e1 lag

n~oS. ~ J ~ ~~~~. ./w.~4Jl ci 3s / tp l o w~ o. S JI' ~j k~ afb:f. so'/ jIY

~ 4n . i !, i.n .~i ~

(.vlfG...:..5

/1--).e ci -r,. ~MCi ~

%Y/ L,f,.~x v" ~~ Il-. ~i 1J C+M.

~~~

p /- 2 ~ i vr~ /

C~;.fSY.w~~ I~rvi.

%Y. vvrA~v; X

''_~/`'y ~.J

J N î VUCC. ~

CANs~

NUMBER COLOUR STRUCTURE SIZE(mm) TEXTURE

SAMPLE ,

NAME Silicates Sulphides

~~

Other

G+z-~~

l6 - 0 6

i

~ts.~ ~- !-

l Y

j~ ~~I,,,,~

'T!

V~_ ~ !'~ ~

°' r ~~ z

,~,r„P p%4 _4c/40 45-

,

~~~~,l~~,,~~~)

~ P~ l/

~0~• ~~

"sr. ~ ••y- ckC

I-~7, ~

e

C

~

arb

y

o

-

na

,

t

~.

e

~

s

;n I 0Co .NW14.[t~G~Y

~~,

~~~yv ~ aiNl ~yA.~c-

/'

1 ~Allerlweaii. e

vor~aNr ~ f (f}A)desifG)

17- Ye4—~ -

~ /4,,,,r,..1

01.4,,, ,t ~~ ~ I -y/

Jâ~~/~^"~

"~`~:.~ 0. o s'

a~c; ,

( -iG.~i~aou6 ~ ~

e°~` ~® °'~f~~~

~~1 ~

~ y lot .Q.acuXc, s-.s

~

//

n.~

-

y

~

p

/

n0

/o% F. - Mi .u,.ir , (~•J

.~•v p.svc~:~. ~ (/

~+.a~.t. ~.a.e~ /j a4' ~

./}

f e I s i c uO i C 4 N ! G (Pity, J l \ ( 1 ( GJ

13. - ii 5 ~e~ i~ L Y

~~nx~a~yl _ a

~yn "/' I ake

.cvG

~ G •~~- (4~i,++(ayt~ ~rs~suh

~~ )

,e,/,....A.,

ÂO.o~

-~y:~

~+is.ue. ~ ~

/ D 1 ,~ l -~~u`,`~.~~U`x~

`

7t

•ca~u4

o a r ~•

I /1) % .fa,Ce~,

~~

„~,~R- ,0~ipq

PY ri is e-

/1 ~~f -yy-- .X~M.e,u.c~

~

i

,/

..a~~/oc.

i

~

e

..,

.r, /0%. J /'"G

t-~ I S i G

lJo /uNt~

Ckh y o I ; te-)

fq - 19 %e,QPe,,I,d- pup., I- II.

e,„,,,,,zd A-"fe',,.,~-

(

'0~

~L.

r+e4+i; ~

led . ~„ÿ . o. I-9

0.2

e-(Ate`.c/ .1,-, -,tt.t...-.+1 ~l ~ <Ay~

,

is- 9. ~..~

,

s7 44e. Fe - MJQ .Gy

~ 7 Fe./41 ,....j.-

~w

e

l5 -ao%

• 44,44...i.

Co.r9 11-0.6144~ '°.°"~

it't‘‹ •

~ F /....._044

4mank ~Ju~awc

• • -orS/i

/ f ',

Sili c iFleâ T-N -f, ~J a Îe .

[ /P n) d2J T2 1

50% 4~0~ j ~~, „^~.~~~

l0 13% c~LH.Lf

`°a°` aqç ®~

2 a 0 q- rned. ~ . -}~

(.J.I✓IL.

II.

.tie 2-bYJiwl 1

S~Q4N

p.,.ye.,~i sC l,: s-F J y G+'4^"J-

M'~431:

`(1.

°5

eh coo S l. J -.3•o

~in ~ r ~ ~i~. l..~i~. ~ ~ Jj

P lai C/~.. vn4SS%

S vw 1 pv Je. ~ 1

s: c , 111-ios '~y 4,.~-vl

<I`~~~ .nwb•Q-,'r, d mow(1:n +r' i~ I.W,.O S J J

\ Ÿ

3o-S-27 % reJa;s ls (5

1~4:hPc~ ~ (~I(~ 4 .

~IcMJC. Q J

C 0w~,cl ,,, ,.s t~

71a/. ~

3

y) ~oQ~

~! 7 ~Y % r l J411.1144 fff e

S /~ ~ isse..~n. ~ /J {-- CCn-lCiel-

CCW C ` ~,i Sch $~USi{ l'' II } 5.....-hate S )

~ l' ~~ IY. C qn'

y)

~ 1 -i I

G'•SSQMi..

1:1- i'ivie.Y.~~i. G~,c~ ~r/'+- SOfC~Gn k QsM.

0U

i N 1 . n VL)L`,

( A N ►i -ES

sSAMPLE NUMBER

COLOUR STRUCTURE GRAIN SIZE (mm)

TEXTURE MINERALOGY

NAME =

Silicates Carbonates Sulphides Other

~7 G~ - ~ !

a! o$

~ ~ ~ `

~~ ~>~

yy~~/~//~ ~~ ,,,,,,4„,,;„6

,.~ ~~ -14-c4-13' (___~

~ la°`Q

~n

i

I"°1 ~,,,

o.rs., _. _

~°ca-~

~~ , J.,/ ..4.4.1a,‘,4 (t'na[~ ~~Dr s , ~c

~

~

Q

e~

~

~ „,, ~- ~/ t _ _ )244--S ~ .„.,--z, ,e4,4.1.4-e,P

3-57, 1,~ ~” ~~i

1-2- %. o~+~J ,ttt!e: i a ~i+~ ~

~

~ c~.°.

0 .,,ii f [ 0./ 7; .c~ds. I ~,~ J~..~a~t[

,Ga•bla.

/~-~] - TL~tAt,

a ~ a~t..

~~ 0 O

aa og 9o.k r....4. ~ (.k

,

a4it..- Clfeht1 /40

~

~~ o. o~ 4 o. i

17.~a 0.1> 0.a

4, (~,,.h)

.4zi titi,,,l

so 002 ~~~

~{o -so ~

7 O

~ 0./ 70 ~~

.

-~`~"'

23- o8 1"7-pi-m„

~ ~

4.6142W, leta-r ,t~lz.,uy

t.,44.47.J

o.r>o.Z

- ~ o.y

14,*

` ~ s7 ~~~ -~

7070 .4~.ca ,20-30% ,20 -30 ~J, y~r a , es.,

c u,.~~.„,..~A

1-a% .a4,a,t Fe - M' -ea,-ir •

~iaet- .o4;.a ~

'4~.

a w - 03 o,cLA 4-

~ ~

01 44.,,w.e.

~ ~ {~~

~

P~,:

,~0-G + ~l.o

P,,~ ~

~`"~`~`~ ~~

~

60 z ,„~ r z ~~ Y~~ .

A

,5---,20 % fa M. . l~)

~ &c 4, p,y~

5 Z ~ ~

~ ~

a +Z . F, Pa(.

1), ,art.

~

2 s-a2 /dc~k_ /yJGSS,• J2, ,r,,, v._ 1

~'/, cl,I~,.:a:c s1,e,,,.S . ~f l/ ~^- ~ /. CGn.b .

~,c.~., S

i~iv0•....11 w1a.tS : o. 1

/ ~h GNu S

6 . .3 -2. 0

p Vc!`~~y~y~:L L,.,,-ta,Zo-3o/'Al.t.,~

_ J 1 ay ~-.,....Q~.,. ) l ~-,/y~~

I 1 h ~ f.t 1 J C K; l~ ç C,. fv,l..TS J ~J

1,,,O-r,- ,,k

/-L /. -(-a . 4e-04.S. ~ ~% Ir ~0 4_,,,111,,,,,,1 1 C,M1:.r%

get-I- W . I.CJJVJh 3 6 / 1 ~ e

•Y

-Si,et...s 0.111 i1..,2 Z ô.C<1û

/7 -(-

/o'/. J;sre„~ Fe//Y1 lc.~ li . ~

(~G.~C C / lL

~~ Vp'c.-,~n

y

//~~ U.3/-f~ ~,~se,-n . ~a 6:~ e- -5

I~ ~(~.

Ly, .{.. C'Cw~C1~. -f ruli. V.

04.--1.=.a5

I S~ de2p QT...- 0 P-1/6---0,,..»: ~-~ Ln

( )y, ~+4„~c ; ~I.QQ ~•

1RPI?V tp2..-v~~

J

SAMPLE NUMBER COLOUR STRUCTURE GRAIN

SIZE Om) TEXTURE MINERALOGY

~ _ Silicates Carbonates Sulphides Other

NAME

OR-S1

o2% -og

~

O~ti.. A

~ i ~`"

6111 dss+v c r~^^~..MtI

y~i..ôo.j ~.

o. s- 4. !. o c~1.r3.o

Pa ~~ , , ~E~Iu~e~ I-z~

~~..q ru-.4..".44. OO

02 D - 307, a...af

t dd

6S- 70% o ..,.~..:.~ 30? ~... ~

~/~„+'d. NiL , I -L; --44.,...4..

a

~ .~ct

a ~Qun.,;Z` Q+z.

~

r~e~.m~,

I p4 v V

cn - 11 -"..7- y~1 4_,L...._, (.4,a,/)

IU G,..uc~y ~r

~

4 0,1

l.

0.0‘-.( o- ~

4 d/ ✓

-a,,,p/ ~d~(

3s--44Un'

4.4.0,....r. 0.1

.4......,:,..1.4.4......,.4......,:,..1.4...- Qzr

7o %0

Lira,. C3oY 4,0-1.,7. —.7..4 t,LL 3o- Hn7, .42.7...cu

1-2,7. Fe- M

<.a,. oN ~~) t

tat".

?6,27......G-

1-7_7

-L..C/L.

23 - 1,1 1,14 - 7.,,w, -p-c.Ftit~o-~e. 0,1->o , a

h4/1""- ,~,w~~;,y

~o.~ -

~

( o -70 7, -G;7~

1 2 % raj,~ 30-407 / d~

( ~-~~t~n)

I `~% ~.4,;~ ~J..

°,5-Z ~is d

/434,c4.

• ~'L~ ~

~ 1-L% t' - - mi

~~

aq-19 r_û -

r~ 4 ~

~v.~ 0./ >o,? ~

9o- 7s %, -2~~i,cg ~o-as7

t ~ ~ ~ `" s 10 7, g~a~ y.,ΰ v /

O. °Ja L -ca.Bc..4

1 2 ~ o~,"~ Fe M~ co„~r

,tac.c, .4.4

??-44.'t

~~ca~e,ée.

0-1a

s, ~ ~ ~

3U-o7

o

(}1ecl Ç\r

~J

SrQ.t-v~

Sc;7;1-/otR

.s1, 5 b-1/ ~ /,, .J ~f Cl•t•✓' ~NIC~

Fu.,r.al 6eJaeJ / r~ ~J sc~;,tos;Ft

o.oS .-....,7(

I L..,nd en.

Si II ~{\ -~J

11 rDx. So'~ ( d'G' / C ✓tlJvi~. (V(wA:4LIy )

GrA,1

~/—y/ ~Jf~

)) ha IC.....~c.L SW111~

P l~ ). (50 44).

S/ Jill ern. UQti SID.wr ~

4. Fe/i1Î.n~ G

cc," ~.

r -

;Stew . ~,~.

— SI~r,,roNF

SAMPLE NUMBER COLOUR STRUCTURE GRAIN

SIZEfmm)

MINERALOGY NAME TEXTURE

Silicates Carbonates Sulphides Other

Grz a 7

31- Oq

fl~k ~

~ ~a.uf.

~1u,.~ ,~, ~ I~1

~~

~`"~ ~~o.os

~ 1,1,5_ , ,~~( fr

l't"tte rr-

Go-9o%, ~ .~~~. ~`

ao -309, .ou,,.,

/0-/3 °jy VG;.~

.a,.,,/.,4;,-~.~ o•S% ~e~ay..~ 5i ~t5{,.vc

3a-0S yea«vcl - ~^

4./...,...., .u~,i 4,6„,„,,r -

r^441.

„.1.4.va.

-"a-4 ,â[oo~ ~„...a(.c

4/.1-----6 ) -ht-alt A,;,,, ,G,.44

1,4~

~~'

.

0•S7 .04.44,w

..

+

Fc.-N9 •e - 'e.t.a,/~

Go.a 7 o4p ~G~~

33 - oH "~â- nuM Mrdu~25 ,w~.CQ

uJw. Y /+j_ .a~peca~r

46A.-1~ <D,os ~0,3~

0 ,L,/,,,,,* .4.441

1~ ~ /0 % 4.tt7u-

-I/44a

clog -w„a(~u,~ Quaaa 9~ ~/s?~

~~~

1% 04~ .a.a/

~.+ -ea.ceTi I

^ a-X

"Aix

O.~ % ~

/nG„^~/ 4~

3H — ~ ( ~ ~

~r ~~

~ ~ ~ `

~~4'ce~ ,~ .~v~c-c.0

46.4141

~~

~10~ ~`”

6'1-'0.7- -

~`

~ O.oS

~0 % ~y~.aL~ a

,3070 ~ ~

,~z~ : 3o-35-Z,

.Qcta ~ ~ Ho%~a.e~. n~

~s % ~ `~~ ~C.

y(c;~,c, , 703 ~

t , 30% r71+K~Z

15-Z, ~aa .

c4.Cc,.cC~

~.Ca.6e~ ,o(.y,~

~ "'~

,m.,,,f

d~.

3S 1 Z ~/,tii ~~ PGA_ nmel. t~vay,

J J

S c~: t 1 e S Q Cre.~ Qai e ~

a

/ AG/Jed L~ 1S o -~ 0

Stl~tsias { ~

3 0/,rl %e Js ~ U a~

7o/~-~ zeds O.o~

o.~i

S: 1 i 1 O

--~`.,.`x S cj y ( ecls . ~

s; RI beds: 3o-S'J%

v[~~ c 1, (. c..(c,,,, J ~ Le I

ss~.r e~ rial 1 Sc.,~dy (Oeds: 10% çol,w~lesS

i2. • ' ba(o..,c~ c_~lw~~c+~

in4 .v.k. I:4I,:u. Alsolf

3-~ /d:sfQvh,

~ u 1Q~.-~: ~ 1 ( w.oa. l,eacf:,.~J

V. q voy Ca

O,I% cuGti-cl.

~ tS.IQiv✓7 .

c,..,li :c p~l. ll J

C2F1YWAck1

pRl~ stl7sraUg

, SAMPLE NUMBER COLOUR STRUCTURE GRAIN TEXTURE

MINERALOGY

Silicates SIZE (mmlNAME

D~Sutphides Other

GR' 8rl 36 - o

~

A O~[ re- ~ ~4

(f ~.' . f~._ i,,,,/,,la , ~fVTy, ~

4 0. 025-.7,,.., ~y ~ .,;y ,

(l~( „„.~~

a20-3°%n ~=~- , '

Carbonates

)® ~~ /o °/a ~Cv~(.

~ / ~° ~ ~-,607

~~ ^ 1. 4°la Lw.V(e.,

~

/'0/t)

F°/-w4a f, cR)

3 7 - tZ •vÛ

- ~t 9z1eP c(w.:peo

/~4 ~.

%tuC tw,.~

~~.~,~-,.,s-

4.4,

o.(~0•Z

'1°-`44

~~t J~f%~~°f

`lS~

3° 7 -~- r4 ~'o:i~2G~

as7

~ 5-70 r~•as ~dGt

o O. •° 1~°7`I~

'y~

.. é - /

3 8 - /a Da..k ry-

't 14'4

-4e.Lrr-tx. ) 4,4) Q,.,( ,..,.~p- 4 (f,^e ~,p.`a~ (T~~

®

u#4 0.06-"--

4,3)

.GÇa.P .,,,,,,,*

C ~a~Q

3o7. f„,`Ô`

41.1"..Z...

7070 f......3- -ea.Qc~i co.51 ,,44,,, 0.1 7. .eGQ,

/4-e"

(L~,~ .

— 3q - ( g Y-t,14v*d1

C

,

4-t).Xeka_. .t ,c.,•-.CQ

,

.-ad 10"--xii 44.L.....44.L......4., 9°.LsL ./rd.„k,/ J.-01

A...41,

J~

,✓+L , /

?° „.,.~,_,Z

5- r _,,,-.-0_,,,-.-01#-a

~

t

n" 0 4-,:-.t. ?.' i

z .4.i,. Fe -M, 'calk

/-

g-3 % 44

/7A4;

gi4 , --7-4

APPENDIX E

BONDAR-CLEGG BEDROCK ANALYSES

Geochemical Lab Report

Bonder-Clegg h Company Lid.

13' Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

502 PAGE I [ RO•.ûCTJ-

Z.

?.,:5"IENT,. , .. CO. ~ =.F ~t ~ ; Au +~n

t r .~3 PPM i'PM PPM PPE

ï~ s~ -31--02B -37-02 -08B

43B-87-04-02B (1M7-05 -06B 1.

JJ

J

,

nr,

5i= û,ai 52 LJ

1sZ Cej

48 63 35 89 33 ,~t,3 42 59 .~.y. li.

ÛJ 54. ';J 45~

_`t 4 E,

10

454

.~_— ..............; ........__._~~y'

; a;;. 118 `..J

=3J :. .~ î i C ü

J 93 ? .5

134 13 ...

. 100 21 i'~ ~.,,

14 3 J

`:'1. .., rs.»

'~tl

.,

r . . ~ 4 10

}_e

. - ~sn ~~1F- ~a: ,.a -. t • i•~.a~. ~n ~. T Mw::

• GR.,-.87-738•'-1-2B • .... / . _LL'-

3.

9

13 J

APPENDIX F

BONDAR-CLEGG HEAVY MINERAL ANALYSES

Geochemical Lab Report

Bortdv-Clegg & Co npsny ua.

5420 Canor-k Rd., Ottawa, Ontario, Canada KI3 8X5 Phone: (613) 749.2220 Telex: 053-3233

I PROJECT: J

_ ~,.~-1..~5:!~. Lt.Gi. •~131~.., ~1:ft

Pi.

ELEMENT

UNIIS

111 âi:st4i;

PPM PPM : ;'E~)s. 'i

(( ~~ 3.~4 _.

V1-3/4.'

G37-32-03--3/4 3E87-02-04-314 GE>i . 0>-3i 4

' Rw7-0s`06-314 G127-02-07-314 ..

0E87-03-0 ' _ _,~,4

i31w }} --v.} t-2-3.~-4 j31it.Fat-03 t J. /4.

%: ,, - _)_1--3i'4 G1'37-02-02-3/ 4

j'' 17Ü -4E.r f4 -37`4 ...

5E87-06-04-3/4 5E27-06-05-3/4 c

• 154 64 • 139. . 4 9.00

131 56 263 60 .I0.00

65 40 101 90 . 10.00

106 40 151 4J . 10.00

":,. 43 .99 J00 9.00

62 36 130 10..00 .

84. 44 127 110 10.00

150 55 123 480 10.00

s.' ~ . .

1a,3 49 102 155 '9.00 ~ ! l

1` 61 +t'4 110 -.v,

174 25 10.40

35 250 10.0+;

162 ,7::J h~~C 1.i~f5

. 4 •, ~ .

107 110 10.50 ~ '

Vl 15 '.J.ti:ls

•179. 00 41 <, =

u~ 11J 5.00 s

115 46 166 660 10.00 44

91 43 1ù3J 7J 10.00. • :.::. .rd 184 . 495 10.00

113 68 108 • 20 1.0.00

64

51'

44 r•n

GO

. . ..613706-06-3/1.. 105 127 G`J 65. 7.00 5.327-06.07. 3/4. 53 34 ' .~J e. 1'. ~ i;'U ::.~U .~. 3~3Ÿ~ •. . ~ ~4 ,it}. -,. . a. ~, ` ; 1 1.,o• 7.00. 00

37-03-10-3/4 0 ~1 zs 59 • . :`0 11.00 ; ••0127-0671.1.-31.4.......• • 205 48 .:i. 0 . 55 10.00

• 032707-51-3/4.

.3E87 .0.2!-01-31. 4 . i6E87-08-02-3/4 .

CL' 155 75 126• '}~_i~ 10.00

i7;5 36 113 11t.'3 • 10.00

149 35 113 300. 10.00• 9759 • 1t:t! 20. . 10.00

•• 66 35 . 33. 440 10..00

5E87-08-03-3/4 r'Ti~lz...(~ri-~ -i f A *Si.ü) :'J ~. s j .. 5127-02-05-314 U27-08-06-3/4 3E27-02-07-3/4

r1 t

(. 43 3+: RJJ: 7.00

^_ .tc _ ~{ ,. ryy

7]J JJ yt~ l.till L.~)~F

61 34 42 35 10.00 lilh 2,,

375 tw

a' ^

Jr .L .`J',j

_ ,.,1 ' 3 n t, Jc

Os/ 3:i 4 ,- .if0

Fyy.,~.e, i:4 R.z-R 7.i . ~ = 55 ,.i..i., 69 34 . ~ >7 ~ . ... ~ .~ 10.00 ^~n.Y• ...:r_.V £7_,~. ~

- vP"1-::,} U.' ~. - 43 ;C' 895 10.00 1i vt

Battdnr- Teng & Company Ltd.

5420 Canotek Rd., Ottawa, Ontario, Canada KU 8X5 Phone: (613) 749-2220 Telex: 053-3233

415

Bonder-Clegg & Company Ltd.

5420 Canotek Rd., Ottawa, Qntario, Canada KIJ 8X5 Phone: (613) 749.2220 Telex: 053-3233

Geochemical Lab Report

Bonder- aegg & Comtism Ltd.

5420 Canotek Rd.. Ottawa, Ontario, Canada K1J 8X5 Phone: 1613) 749-2220 Telex: 053-3733

SAMPLE NUMBER

I PROJECT: NONE

Cu PPM

Zn PPM

As :NPM

Au PPP

Testwt g®s

84 3.3 106 280 8.00 57 37 135 1585 8.00 55 17 112 45 8.00 98 26 53 30 9.00 116 23 1750 60 8.00

66 29 114 54 92 26 68 44 95 32 131 240 110 36 140 65 9.00 163 66 168 860 6.00

96 36 332 65 8.00 78 40 308 210 80 34 152 255

1060 150 366 520 5.00 149 46 198 435

135 39 179 20 8.00 91 29 64 55 168 38 50 135 6.00 55 24 66 35 225 77 135 735 3.00

6e 33 78 890 4.00 72 35 71 140 7.00 73 43 92 145 5.00 65 34 92 65 6.00 84 26 21 55 4.00

70 29 20 30 7.00 65 29 44 55 6.00 76 30 38 <10 6.00 110 26 52 610 85 25 32 300

68 26 179 160 66 24 190 85 102 24 201 330 97 39 138 90 16 32 153 30

49 25 69 100 7.00

REPORT: 017-1303

6k-87-17-07-3/4 6k-87-17-08-3f4 6k-87-11-09-314 uR-87-17-10-3/4 GR-87-17-11-3/4

6R-37-13-01-3/4 6k-•637-18-02-3/1 Gk-87-18-03-;314 6k-87-18-04-3/4 Gk-87-19-01-3/4

6€:-87-19-02-3/4 66k-87-19-03-3/4 )3k-87-19-04-3/4 6R-87-19-05-3/4 GR-87-19-436-314

-17-02-314 -Fi-03-3/4

k-87-17-04-3/4 7-17-05--3/4'

-17-06-;3/4

Gk-87-19-07-314 6k-87-19-06-319 ~.ak-87-19-09-3/ 4 6k-87-19-10-3/4 86k-87-19-11-3/4

6R-87-19-13-3/4 6R-87-19-14-3/4 6R--87-19-16-3I4 Gk-87-19-17-314

6k-87-19-12-3/4

6k-67-20-01-3/4 Glt-87 -20-02-2/4 GR -87 -20.-03-311 GR-87-'1-01-3l4 6R--87-21-02-:3/4

tîk- 87 -21-04.-3/4

PAGE

ELEMENT UNIIS

: 017-13 ROJECT: NGt4E,

Zn As Au iestwt

PPfi PPR 3ns

1-05-3/4 #/4

1Y47-3/4 -t}1-314 42-3/4

126 270

134 730 28 181 365 32 105 45 25: 35 60

45 25 72" 20

95 50 242 90

117 98 272 160

120 102 148 230

219 140 210 ' 265,

4 7-22-0

87-22-06-3I4 GE-87-42-07-3/4 6Ik-87-23-01-3/4

R-87-23-02-3l4

-87-23-03-3/4 292

7-23-04-314 313 7-23-05-3/4

23-06-314

191. 210 1560:, 270 450

~ 31., 28,r 230 610 224 350

87=23,07-374 -87-24-01-3/4 fi7-24-42-3/4 87--25-01-3!4 87-26-01-3/4

276 - 245 101 > 435 9.00 127 220 115 75

55 70

296 281

98 50

75 41

114 42

76 31

3?-26-02-3/4 7-26-03-3f4 =26-05--314

26-06-3/4 26-07-3/4

149 59 290 62 230

-01-3/4 -27-02-3/4

-03-3/4 -87-27-04-3/4 417-27i45-3/4.

174 75 100 105 136 41 187 2500

54 109 180 9:00 '

26 15 180

177 147 150

7-27-06-3/4 -27-07-3/4

7-27-08-3/4 -27-09-3f4 -27-10-3/4

104 120 166 117 293 140 200 136 164 131

122 1;;5

~ 1~4

qp4~... ~ 120 '...

290 242...

234 220 156 ; 282

-28-01-3/4 -28-02-3/4 -28-03-3/4

6 38

264 200

57 ?.a

148 215

7.00:

10 20

1'40' 390 7.04' 390

cR V FAG; PK3ECT;: i1(~.NE:.

fPL LEtiEtiT: t1ii11•R -• .

Ln As Au Testwt

PPM PPM PP8 3u

112 165 31 121 1475 28 105 64 29 118 55. 21 54 55

k-87-28-44- 4 -28-05-3/4

-87-28-06-3/4 7-28-47~3!4 7-28-48-3f4

-87-&-07-3/4 -87-23-08-3/4 87-29-09-3/4.

f7-29-10-3/4 r-25-11-3/4

7=29-13-3/4: G1-87-30-01-314 k-87-3g-02-3/4

87-30-03-3/4

38 76 140

73 31 106 200

93 35 270 70

94 37 96 70 7.00

405 41 278 70,

165 . 10 165 100 175 80

1 163 145

7 59

162 1.85 168

GR- 30-04-3f4 Gk-87-30-05-3/4 11-87-30-06-3/4

-87-31=01-3/4 `7-31-02-3/4

154 164 521 169

6

160 139 95 800 , 1270 169 100 131 155 93

62 31-03-3/4 150 62-87-31-04-3/.4 183 68-87-31-05'3/4 165. 6137-31-06-314 166

71 107 93 129 73 68 73 84

6R 87:28-09-314 Gk 87 7.8-14-3I4 ~87-28-1I3/4 GR-87-28-12-3/4 ~&-R7-2fl-1:1-114

35 41 67 65 63

28 23 24 38 30'

rik-87-28-14-3/4 65 34 G8-87-28-15-3/4 60 33 GR-87-28-16-3/4 51 31 ~-87-28-17-314 96 45 6l - 87 Ÿ8-18 3ef4 108 53

-87-39-4I-3/4 95 39 -87-29-03-3/4 37

G1t-87-29-04-314 84 38 6k-877-29-45-3/4 109 46

87-29-01-3/4 107 47 '

32 <5

99 25-

1225 115

133 80

168 685

256 200 174 405 180 995 7.00 244 ' 490 282 225

302 648 508 422; .

. 280

59r 210 4• 152. 114 ~

84 143 4• 222 7& 290

66

G —3/4 I.34. 73 6R87-33 144 73

220 55 308 65 148 1710 278 - 125 210 90

-~a:a/4 03-3a°4

7-34-01-314 34-02-3f4.

8R87--34-43 3/4 139 75 264 110 ~? 34-4f4:3/4 145 89 178 4€~1 ~=3 3/4 155 ?3 173 75 ~? ~4-67-3i4 130 ?6 130 195 GR87-34-08-314 155 l;r. 40 8.00

GR87~~34••49-3t4: G~f 34-IQ-314

I45:

215 75

250 70 8.50

223 0? 99 4

,4

2 4 rR87-35-0a-3/4

87- 4 -35,46-3/4

7..35-08-3/4 3f4

155 136 139 141 64

70 105 55 45

76 140 35

G11437—M-1 4 144 8 &R87-36-4i-3~4 1~ 9 6R87=37-01-3i4. 113 â

17 660 183 ` 180 181 250 320 184 1.

`37-44-3 —37-05-3/4 37-06-3/4 ~-07-3/4

~-E18-3/4.

260 605 252 ` 280 4.00

85 232 330 8.00 1 432 1540

_274 136 325 " 1085 6.00

-11 —l4". 2-314 ~-3t4

139 346 100 B. 305 144 476 140 5.00 252 123 496 125 9.00

41 32 16 ' 1170 3.00 28 25 7 40 4.00

74

644 568 173 127 216

Zn As Au PPM PPtf __PPN- QP.B'

60 54

54 L.

~9 26

55. 25 ~4. 24 24

0 6.4t1;

30 5.00

50. 2.50

70 4.00

39-01-314 7-39-02-3/4 -39-03-3/4 ~-39-04-3/4

141 67 32 38

99 39

3. 4.4 4.00 4.50.

..7-39-07-11 T-39-418-8

—35-09-41

59 35 72 44 47 48 48 31 78 25

.50 0.03 0.80 1.64

{260' 0.19

154 143

.

185 100 131,

110 44 35 95 1.85

144 114 307 95

145 125 169 145 8.00

66 44 82 250

41 31 _20 ' 135 8.Q0

~ 39-1S-3f4 â$ 49 106 Y87-39 i6-314 145 94 1aP'- : 95 887~~-17-314 192 82 464 355

[ ~ AmÆ2• NONE

Cu a As Au-1:50 Wgm + & lest( 9tTOa ?PM

.«.... ?PM . 9h PPM . ~ 9h~ ~ PPM as ~ -: y: 7ç

..m& m . 21.9 GG' 20.7S . 6 . S.& %Æ :20&. 59 22.$=p . 15.36 1.14 2m 12.69.: -. 0...69.- ~ ~ ~ 104 0.63.• 45..08. 4.40.\ « /.a' • « 1.12' •

m2 017-1253

hLEM»I UNITS :~

6237-027 -#£ .~~§~3A>

87-06-08-3/4

Bondar6ClegiaCompany Ltd.

5420 Can _ Rd.. m_,__. Canada w,s Phone: (613) 749-2220 Telex: 053- m,

Geochemical Lab Report

PORT: 12 rt • 'R ',iECl: NONE •

vi 0.41 10.36.. 2y~ 81 6',. 00 6.76 2.~15 64 18

DEN/ Di UNITS ~lrt€~ tP, •

77 4 ir.'i 7Z vt 1} •. 'Crei~ tj,. bF

#ti As Au-10•u+10 ~13-~1:JÛ~ ~i3 hl5r' ICS~aa ~ ~,.~':3i+tû *i~vlë4.

PP

t! ~ Î [ .tt • ?Ph' iÎiM LGh 3iiÿ 9ni3

Bottdir[]egg & Company Lld.

5420 Canotek Rd., Ottawa. Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

Geochemical Lab Report

,1~ ~ --af's, s ~

u ~

f.24 zt•:>

2.37

A.3 -.

i.l~.~.

`i

Be dirCkgk C maPan ua.

5420 Canotek Rd.. Ottawa, Ontario, Canada Kt3 8X5 Phone: (613) 749-2220 Telex: 053-3233

Geochemical Lab Report

T: Q17-1362:; PROJECT: NONE

PAGE

As Au-150 Au+150 Au Au TestWt -150Vt +15014t PP~f PPM PPM PPM 9fits

~ e a~u4#x

7~.

28 20 75 0.22 42.83 5.74 11.00 14.39 4.1'

100 27 178 0.40 24.02 2.76 13.0 15.13 1.6',

?PM ~~

k: : i-' u. .~ .♦'.:~L u.i. UN 'ITS

_,,.' ;i.L;. -2.Z.5 37-29-02-3R

,17-1 N1

Boodar aegg & Company Ltd.

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R.5 Phone: (604) 985-0681 Telex: 04-352667

GeochemiCal Lab Report

7-I4: PAGE PRQJEG"s: ?4ONE

Zn As Au-I50 A►r+150 Au Av , TestBt; -150Wt +150W ~ s P~ FFi~ PPit EP14 - FP1,1 . grim.:

345 4.27 156 0.98

78 141 :' 0.61 8? 632 0.12

64 32 10 0.01.

5.63 0.56 7.00 5.39 1.21 10.00 2.90 0.93 9.00 0.71 0.15 15.00

<0.01 <0.01 2.00

304 119 139 129

~iT~7-38-09-3J4 G~7-38-1I-3/4

5 15 4.87 33.27 10.01 7.00 3.14 1.80 ~3 160 ' 584 6.89 77.09 8.67 3.00 4. 0.11

APPENDIX G

HEAVY MINERAL GOLD ANOMALY THEORY

1. Regional Gold Background

Most gold occurrences in the Abitibi belt are of the free gold type. Even in Casa-Berardi or Hemlo-type deposits having a high pyrite/arsenopyrite content,

most of the gold is free although very fine grained (50 microns). Thus, all tills over the Abitibi belt contain scattered free gold particles. Due to the nugget

effect — the chance occurrence of a coarse gold particle in a given sample -- the gold backgrounds of small till samples collected at the same site will vary by

several orders of magnitude.

The nugget effect can be overcome if a sample of sufficient size is collected

and all of the gold is concentrated into a small heavy mineral fraction that is then

analyzed in its entirety (Clifton et. al., 1967). We have found that at least 50 kg of

till would be needed to overcome the nugget effect. However, it is impractical to

collect, process or analyze samples of this size. We have standardized to 7-9 kg samples because reverse circulation drills deliver this quantity of material during one metre of advance.

Rather than trying to eliminate the nugget effect, we have developed procedures for recognizing and discounting anomalies that are caused by it.

Specifically we measure the dimensions of all gold grains sighted on the table or

recovered by panning and use these dimensions to calculate the expected

contribution of each gold grain to the concentrate assay. In this way, the cause of

each high assay is identified and nugget anomalies are screened out.

Most gold particles occur as thin flakes and it is difficult to position these flakes on edge to measure their thickness. However, we have found that each flake

can be treated as a disc in which the thickness is a function of the diameter. For flakes of less than 1000 microns diameter, this relationship is expressed by the following equation:

t = 0.2d - 0.01(d-100) d 100

-2

Thus, by simply measuring the diameters of the gold flakes that separate from the

samples during tabling, it is possible to calculate the relative volume of gold in a

given flake and from this relative volume to calculate the geochemical assay that

the flake would .produce in a sample of specific size. Clifton (1967) showed that a

100-micron flake will produce a value of approximately 100 ppb in a 15-gram

sample. Conveniently, the analyzed 3/4 concentrates of reverse circulation

samples also weigh about 15 grams. The range of assays produced in a concentrate

of this size by a single gold flake of varying size is shown in Table 5.

It is apparent from the figures in Table 4 that till concentrates that contain

no free gold will assay less than 10 ppb provided occluded gold is also absent.

Concentrates containing a single gold particle will assay from 10 ppb to more than

55,000 ppb depending on the size of the gold particle. Thus the normal background for till concentrates ranges from less than 10 ppb to more than 55,000 ppb.

We have found that fewer than 30 percent of till concentrates from the

Abitibi region yield gold assays lower than 10 ppb. Most samples give assays of 20

to 500 ppb, because they contain one to five gold particles in the 25 to 150 micron

range. Erratic clustering of these fine grains occasionally results in an assay over

1000 ppb. Another five to fifteen percent of samples contain a coarser gold grain

that produces an assay over 1000 ppb. Occluded gold is rarely present.

2. Gold and Base Metal Anomaly Threshold Levels

Gray (1983) observed that heavy mineral gold assays in a number of dispersion

trains tested by Asarco were 3000 ppb or higher. We have arrived at the same 3000

ppb threshold figure in a different manner. As early as 1976, we recognized that

the grade of our concentrates within 1 km of source on base metal and uranium

dispersion trains was similar to the grade of the source provided the source was of

normal width (5 to 10 metres) and was oriented perpendicular to the direction of

glacial ice advance. We have since proved that the same relationship applies to gold dispersion trains. Thus, assuming that gold mineralization must grade a

-3

minimum of 3 g/tonne (3000 ppb) to be significant, the anomaly threshold level in

our concentrates is 3000 ppb.

It is not uncommon for gold deposits in the Abitibi belt to have a subcropping

strike length of only 100 metres. Most of these deposits strike sub-parallel to

bedrock stratigraphy and sub-perpendicular to glaciation. Using the 3000 ppb

anomaly threshold level, a cross-ice reverse circulation drill hole separation of 100

metres would be needed to detect the deposits. However, most of the deposits

occur in anomalous horizons that are much larger than the deposits themselves. If

a low anomaly threshold is used and careful gold grain counts are made, the

anomalous horizons can be detected with confidence using a 300-400 metre hole

separation. This greatly reduces. exploration costs. We therefore consider any gold

values over 1000 ppb to be potentially anomalous.

3. Stratigraphic Properties of a Dispersion Train

Glacial processes are systematic and heavy mineral dispersion trains in tills

have specific configurations (Averill, 1978). For example, dispersed material tends

to be sheeted progressively upward in the ice with increasing distance from source,

causing the trains to rise in the till and thicken down-ice. Lateral spreading, in

contrast, is minimal and most trains are tapered ribbons rather than fans.

ODM has traced nine. gold dispersion trains (Table 4) and several base metal

and uranium trains to source on both new discoveries and known deposits. These

trains have had the following properties:

1. At a specific distance from source, the mineralization was confined to

a specific level within a specific till unit.

2. The train was at least two samples (2-3 m) thick unless:

(a) The host till was very thin;

or (b) The train was intersected within 100 m of source.

-4

3. The width of the train was not more than twice the cross-ice length of

the source mineralization.

4. The maximum length of the train for deposits oriented perpendicular to

glaciation was 1 km (gold) to 5 km (base metals/uranium).

4. Properties of a Visible Gold Dispersion Train

Five to fifteen percent of background till samples over the Abitibi belt

produce heavy mineral gold anomalies higher than our 1000 ppb threshold due to

the nugget effect. For the reverse circulation/heavy mineral method to be

effective, significant free gold dispersion trains, which are relatively rare, must be differentiated with confidence from the numerous nugget anomalies. This is done

on the basis of the gold grain counts rather than the assays. We have found that

the gold particles in significant dispersion trains have the following properties:

1. At least 10 gold particles are present per 7 kg of till matrix.

2. The gold particles are of a common size, reflecting the size of

crystallization at source.

3. The gold particles are of a common shape, reflecting a common

distance of transport from source.

4. Since most gold dispersion trains are traceable for less than one km

(Table 4) and gold particles become abraded after one km of ice

transport (Fig. 6), the shape of the gold particles is usually irregular or

delicate. We have never been able to trace an abraded gold anomaly to

a bedrock source.

Background nugget anomalies, unlike dispersion trains, do not normally repeat

vertically or horizontally in the section, although with 10 to 15 percent of samples

containing anomalies of this type, chance repetition does occur. Another property

common to some gold dispersion trains is the presence of pathfinder minerals

-5

because many gold deposits are polymetallic. Even deposits that are considered to be strictly free gold occurrences often have alteration halos containing sufficient

pyrite, arsenopyrite, galena, chalcopyrite or molybdenite for a pathfinder

association to be evident in the dispersion train. Nugget anomalies have no

pathfinder association.

5. Properties of an Occluded Gold Dispersion Train

We have encountered only one occluded gold dispersion train among nine gold

trains tested. In one other train, the gold was very fine and more was recovered as

composite gold/sulphide grains than as free grains.

In occluded gold trains it is not possible to use gold particle shape to predict distance to source. The distance must be gauged from the vertical positions of the

anomaly in the host till and of the till in the stratigraphic succession. In several

other respects, however, occluded gold dispersion trains are easier to trace than

free gold dispersion trains, especially if the gold is occluded in sulphide minerals. The following specific advantages are cited:

1. A pathfinder mineral association is generally present.

2. The pathfinder minerals often occur in sufficient concentrations that

they can be seen in pebbles as well as in the heavy mineral fraction, and the host rock can therefore be determined.

3. The source mineralization is often conductive and can be located by geophysical methods.

4. Gold/pathfinder metal ratios in the concentrates are relatively

constant, and any interference from background nuggets is readily recognized.

5. The dispersion trains are longer and more uniform than free gold trains.

6

Some of these advantages apply only to unoxidized till samples from drill

holes. Occluded gold is chemically reconstituted into the clay fraction if the host

sulphides are destroyed by oxidation. Thus, in surface pit sampling programs, heavy mineral analysis will detect only the visible gold. Conventional geochemical analysis should be used if occluded gold targets are expected.