Protective Effects of a By-Product of the Pecan Nut Industry (Carya illinoensis) on the Toxicity...

14
0731-8898/10/$35.00 © 2010 by Begell House, Inc. 185 Journal of Environmental Pathology, Toxicology, and Oncology, 29(3):185-197 (2010) Protective Effects of a By-Product of the Pecan Nut Industry (Carya illinoensis) on the Toxicity Induced by Cyclophosphamide in Rats Carya illinoensis Protects Against Cyclophosphamide- Induced Toxicity D.M. Benvegnú, a R.C.S. Barcelos, a N. Boufleur, b P. Reckziegel, b C.S. Pase, b L.G. Müller, b N.M.B. Martins, c C. Vareli, d *M.E. Bürger a a Programa de pós Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; b Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; c Departamento de Patologia, Universidade Federal de Santa Maria, RS, Brazil; d Departamento de Química, Universidade Federal de Santa Maria, RS, Brazil Correspondence author. *Email: [email protected] This study investigated the antioxidant effects of pecan nut (Carya illinoensis) shell aqueous extract (AE) on toxicity induced by cyclophosphamide (CP) in the heart, kidney, liver, blad- der, plasma and erythrocytes of rats. Rats were treated with water or pecan shell AE (5%) ad libitum, replacing drinking water for 37 days up to the end of the experiment. On day 30, half of each group received a single administration of vehicle or CP 200 mg/kg-ip. After 7 days, the organs were removed. Rats treated with CP showed an increase in lipid peroxidation (LP) and decrease in reduced glutathione (GSH) levels in all structures. Catalase (CAT) activity was increased in the heart and decreased in liver and kidney. Besides, CP treatment decreased plas- matic vitamin C (VIT C) levels and induced bladder macroscopical and microscopical dam- ages. In contrast, co-treatment with pecan shell AE prevented the LP development and the GSH depletion in all structures, except in the heart and plasma, respectively. CAT activity in the heart and liver as well as the plasmatic VIT C levels remained unchanged. Finally, AE pre- vented CP-induced bladder injury. These findings revealed the protective role of pecan shell AE in CP-induced multiple organ toxicity. KEYWORDS: cyclophosphamide, Carya illinoensis, pecan nut shells, oxidative stress, antioxidant

Transcript of Protective Effects of a By-Product of the Pecan Nut Industry (Carya illinoensis) on the Toxicity...

0731-8898/10/$35.00 © 2010 by Begell House, Inc. 185

Journal of Environmental Pathology, Toxicology, and Oncology, 29(3):185-197 (2010)

Protective Effects of a By-Product of the Pecan Nut Industry (Carya illinoensis) on the Toxicity Induced by Cyclophosphamide in Rats Carya illinoensis Protects Against Cyclophosphamide-

Induced Toxicity

D.M. Benvegnú,a R.C.S. Barcelos,a N. Boufleur,b P. Reckziegel,b C.S. Pase,b L.G. Müller,b

N.M.B. Martins,c C. Vareli,d *M.E. Bürgera

aProgramadepósGraduaçãoemFarmacologia,UniversidadeFederaldeSantaMaria,RS,Brazil;bDepartamentodeFisiologiaeFarmacologia,UniversidadeFederaldeSantaMaria,RS,Brazil;cDepartamentodePatologia,UniversidadeFederaldeSantaMaria,RS,Brazil;

dDepartamentodeQuímica,UniversidadeFederaldeSantaMaria,RS,Brazil

Correspondenceauthor.*Email:[email protected]

This study investigated theantioxidanteffectsof pecannut (Carya illinoensis) shell aqueousextract(AE)ontoxicityinducedbycyclophosphamide(CP)intheheart,kidney,liver,blad-der,plasmaanderythrocytesof rats.RatsweretreatedwithwaterorpecanshellAE(5%)ad libitum,replacingdrinkingwaterfor37daysuptotheendof theexperiment.Onday30,half of eachgroupreceivedasingleadministrationof vehicleorCP200mg/kg-ip.After7days,theorganswereremoved.RatstreatedwithCPshowedanincreaseinlipidperoxidation(LP)anddecreaseinreducedglutathione(GSH)levelsinallstructures.Catalase(CAT)activitywasincreasedintheheartanddecreasedinliverandkidney.Besides,CPtreatmentdecreasedplas-maticvitaminC(VITC)levelsandinducedbladdermacroscopicalandmicroscopicaldam-ages.Incontrast,co-treatmentwithpecanshellAEpreventedtheLPdevelopmentandtheGSHdepletioninallstructures,exceptintheheartandplasma,respectively.CATactivityintheheartandliveraswellastheplasmaticVITClevelsremainedunchanged.Finally,AEpre-ventedCP-inducedbladderinjury.Thesefindingsrevealedtheprotectiveroleof pecanshellAEinCP-inducedmultipleorgantoxicity.

KEYWORDS: cyclophosphamide, Carya illinoensis, pecan nut shells, oxidative stress,antioxidant

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3186

Introduction

Carya illinoensis (Wangenh.)K.Koch (Juglandaceae),popularly known as pecan, is a tree native to thesouthernUnitedStatesandnorthernMexico,whichreachestoSouthAmerica.1Pecannutsareasourceof monounsaturated fatty acids, which stimulatestheir cultivation and consumption.2 Pecan process-ing results in a great amount (40-50%) of shells(by-product).Thisby-productof thepecanindustryrepresents a promising source of antioxidant com-pounds.3 Recently, Villarreal-Lozoya et al. (2007)4demonstratedthatpecanshellshavehigherlevelsof phenolic compounds and condensed tannin, whichshowed a greater antioxidant capacity than theker-nels. In fact, pecan shells are popularly used in teaformtotreatdiseasesrelatedtotobacconicotineaswellastopreventdifferentpathologies,mainlythoserelated to xenobiotic toxicity.5 Food and its deriva-tiveshavebeenwidelyusedtomaintainthefunctionalintegrityof thebodyandareanimportantsourceof newproductswithlowercostsandlowincidenceof undesirable side effects, often associatedwith drugtreatments.6

Cyclophosphamide(CP)isanantineoplasticdrugwidelyusedinthetreatmentof cancerandimmuno-suppressioninductionbeforeorgantransplantation.7Thetherapeuticeffectsof CPareassociatedwiththephosphoramidemustard,whiletheacroleinislinkedwithitstoxicsideeffects.8Thesemetabolitesaregen-eratedby thehepaticmicrosomalcytochromeP450mixedfunctionaloxidasesystem.9Themajorlimita-tionof CPtreatmentisthedamagetonormaltissues,leading tomultiple organ toxicity.10,11Besides lethalcardiotoxicity,12theCPtreatmentisrelatedtohepato-toxicity,13,14nephrotoxicity,15andurotoxicity.16,17ThebladderisespeciallyaffectedbyCPtreatment,whosedeleterious effects include mucosal edema, hemor-rhage,ulceration,fibrosis,necrosis,contracture,andvesico-ureteral reflux.18 In fact, most of the side-effects of CP, including the urotoxicity, are relatedtoreactiveoxygenspecies(ROS)generation,19whichhavebeenimplicatedintheactionof manycytostaticdrugs,20 such as CP. CP is closely related to oxida-tivestress(OS)andtissuedamageresultingfromtheincrease of lipid peroxidation (LP) and depletionof antioxidant agents,21 such as glutathione (GSH),catalase(CAT),andsuperoxidedismutase(SOD).22-24Inthissense,biologicalcompoundswithantioxidantpropertiesmaycontributetotheprotectionof tissues

againstdeleteriouseffectsof ROS.Multiple clinical studies have suggested that

theuseof antioxidant supplements in combinationwith chemotherapy can prolong the survival timeof patientscomparedwithexpectedoutcomewith-outsupplementation.25-27Thus,naturalantioxidants,especially from plants, foods or nutritional supple-ments,havebecomeanimportantresearchissueataworldwidelevel.

Consideringthatthepecannutshellisanaturalproduct widely used in folkloric medicine to treatxenobiotictoxiceffectsandthatitschemicalcompo-sition is rich inpolyphenols suchasflavonoidsandcondensedtannins,thepresentstudywasperformedtoevaluate theprotectiveeffectsof pecanshellex-tractonCP-inducedtoxicityinvitaltissuesof rats.

Materials and Methods

Drugs and Chemicals

Cyclophosphamide(Genuxal®,AstaMédica,Brazil)was donated from HUSM (Santa Maria UniversityHospital)andwasdissolvedindistilledwaterjustbe-foreuse.

Vegetal Material

Therawmaterialwaskindlydonatedbyapecanpro-cessingcompany,whichalsoprocessesthenutshellsforthepreparationof tea.Thisproductiscurrentlysoldinsupermarkets,withpermissionof theMinis-tryof Agriculture,Brazil.

Aqueous Extract Preparation

Shellsof C. illinoensis wereleftovernightat40°Cinahotairovenandfinelypowdered.Theaqueousex-tract(AE)of theshellswasfreshlypreparedbyinfu-sion(5%,90°C),filteredusingfilterpaper,andcooledtoroomtemperature.Duringthisprocedure,theex-tract was protected from light. Since experimentaldatawerenot found in the literature, thechoiceof the extract concentrationwasbasedonpreliminarystudiesperformed inour laboratory,which showedthehighpotentialantioxidantof thepecanshellex-tract.

Characterization of Aqueous Extract

Furtherqualitativeandquantitativeanalysesof C. il-

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 187

linoensis shellAEwereperformedusingHPLC(con-dition:column XTerraRP-18(4.6x250mm,5µM);eluent:methanol:water(80:20),0.4%aceticacid;flowrate:1mL/min;detection:UVat290nm).Themajorconstituentof theAEdetectedwasgallicacid(GA),correspondingto1.8g/100gof extract(Fig.1Aand1B).

Animals

Wistaradultmalerats(330±40g)wereused.Groupsof seven animalswere kept in Plexiglas cageswithfree access to food andwater in a roomwith con-trolled temperature (22–23°C)andona12h-light/darkcyclewith lightsonat7:00a.m.Animalsweremaintainedandusedinaccordancewiththerulesof the Committee on Care and Use of ExperimentalAnimalof theFederalUniversityof SantaMaria,RS,Brazil.

Experimental Protocol

After2weeksof acclimatization,28ratswereran-domly allocated into four experimental groups(n=7),designatedascontrol(C),cyclophosphamide-treated(CP),pecannutshellaqueousextract(AE),andextractplusCP-treated(AE+CP).Tapwater(CandCPgroups)orthefreshpecanshellAE(AEandAE+CPgroups), similar to tea,which ispopularlyused,wasdailyoffered to animalsad libitum.After30daysof treatmentwithpecanshellAEorvehicle,thegroupsdesignatedasCPandAE+CPreceivedasingledoseof CP(200mg/kgbodyweight-i.p.),whileCandAEgroupswere injectedwithvehicle(distilledwater)andmaintainedwiththeoraltreat-ment (pecan shell AE or vehicle) for another 7days.Onday8,theanimalswereanesthetizedwiththiopental (50 mg/kg/mL, i.p.) and sacrificed byexsanguination (thebloodwascollectedbycardiac

FIGURE 1.Highperformanceliquidchromatogramof gallicacid(GA)authenticstandard(A)andpecanshellAE(B).tR=3.68minand1.8gGA/100gpecanshellAE(monitoredat290nm).

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3188

puncture).Thebloodwascentrifugedforseparationintoplasmaanderythrocytesusedintheevaluationsdescribedbelow.Theheart, liverandkidneyswereremoved,homogenizedin10volumes(10mL/gtis-sue) of 10mMTris-HCl buffer (pH-7.4), and cen-trifuged (5000 rpm/20min) for biochemical evalu-ations. After removal, the bladder was observedmacroscopically and fixed in 10% buffered form-aldehyde for subsequent histological analysis. Thisprocedurewasespeciallydonewiththebladderbe-causetheurotoxicityisthemostserioussideeffectrelatedtoCPtreatment.

Thiobarbituric Acid Reactive Species (TBARS) Levels

TBARSassaymeasuresLPwhichoccursbyexcessiveROSgeneration.LPwasestimatedthroughthepinkchromogen produced by the reaction of thiobarbi-turic acid (TBA) with malondialdehyde (MDA) at100ºC,measuredspectrophotometricallyat535nm.

Inplasmaanderythrocytes,TBARSwasestimatedbythemethoddescribedbyLapennaetal.(2001),28aftermodifications.29Inthetissues,TBARSlevelswerede-terminedinaccordancewithOhkawaetal.(1979).30Resultswere expressed as nmolMDA/mLplasma,nmolMDA/mLerythrocytesandnmolMDA/gtis-sue,respectively.

Estimation of Antioxidants

Reduced Gluthatione (GSH) Levels

GSH tissue content was determined after reactionwith5,5’-dithiobis-(2-nitrobenzoicacid).Theyellowcolorformedwasreadat412nm,inaccordancewithBoyneandEllman(1972),31aftermodifications.29Astandard curveusing cysteinewasused to calculatethecontentof GSHintissuesamples,expressedasmmolGSH/gtissue.

Red blood cell pellets (RBC) obtained aftercentrifugation of whole blood were hemolyzed

FIGURE 2.Effectsof pecanshellAEonTBARS(A)andGSH(B)levelsandCATactivity(C)inheartof ratstreatedwithCP.*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05).

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 189

with 10% triton solution and the protein fractionwasprecipitatedwith20%trichloroaceticacid fol-lowedbycentrifugation.Thecolorimetricassaywascarried out as described above. A standard curveusing GSH was constructed in order to calculatethecontentof GSH,expressedasnmolGSH/mLerythrocytes.

GSH was assayed in plasma using the samemethodof BoyneandEllman(1972).31AstandardcurveusingGSHwasalsoutilized.Resultswereex-pressedasnmolGSH/mLplasma.

Vitamin C Levels

PlasmavitaminC(VITC)wasestimatedasdescribedbyGalley et al. (1996)32with somemodifications.29Thismethodproducesanorangechromogenbythereaction with dinitrophenylhydrazine at 37ºC,mea-suredspectrophotometricallyat520nm.Astandardcurve using ascorbic acidwas used to calculate thecontentof VITCandisexpressedasmgVITC/mLplasma.

CAT Enzyme Activity

CAT activity was spectrophotometrically quantifiedintissuesbythemethodof Aebi(1984)33whichin-volvesmonitoringthedisappearanceof H2O2inthepresenceof cellhomogenate(pH7at25°C)at240nm. The enzymatic activity was expressed in µmolH2O2/min/gtissue.

Macroscopical Analysis

Bladdertissueswereanalyzedbythreeobserversandscoredaccordingtoadamagescaleof 0(normal)to4(severechanges).Thedamagewasscoredaccordingtothetissuecolorintensity.

Histological Evaluation

Afterfixation (minimum time18-24h), thebladdertissuesweretrimmedinto2-4mmthicksectionsforprocessing and sectioning.The tissueswere embed-dedinparaffinandatleastfourcrosssections4-5mmthickweretakenfromeachbladderandstainedwithhematoxylin-eosin(H&E).Histopathologicalexami-nationwasperformedbyapathologistandmicropho-tographsweretakenusingthesoftwareWinTV2000.

Statistical Analysis

Levene’s testwas applied toverify thevarianceho-mogeneity. Parametric data were analyzed by two-way ANOVA followed byDuncan’smultiple rangetest when appropriate. Values were expressed asmean±S.E.M.NonparametricdatawereanalyzedbyKruskal-Wallisanalysisof variancefollowedbytwo-tailedMann-WhitneyU testwhen appropriate, andexpressed as median±quartiles. Statistica softwarepackageforWindowsversion8.0wasusedandvaluesof P<0.05wereconsideredstatisticallysignificantforallcomparisonsmade.Valuesof TBARSof alltissueswereexpressedasmedian±quartile.Valuesof GSH,VITClevelsandCATactivityshowednormaldistri-butionandthereforewereexpressedasmean±S.E.M.

Results

Treatmentswithcyclophosphamide(CP),pecanshellAE(AE),orthecombinationof cyclophosphamidepluspecanshellAE(CP+AE)ontheoxidativestressparameters of the heart, liver, kidneys, plasma anderythrocytesareshowninFig.2-6,respectively.

Heart:TheCPtreatmentincreasedTBARSlevelsintheheartinrelationtoCgroup,andthiseffectwasnotpreventedbytheextract.Infact, theco-treatedgroup showed similar TBARS levels to CP group,whiletheAEtreatedgroupshowedsimilarvaluestoCgroup(Fig.2A).CPdecreasedtheGSHlevels intheheartwhencomparedtocontrol,andthiseffectwaspreventedbytheextractof pecanshells.Theex-tractaloneincreasedtheGSHlevelswhencomparedtoCgroup(Fig.2B).RatstreatedwithCPpresenteda significant increase in CAT activity in relation tocontrol. Alone, pecan shell extract did not changeCATactivity,butpreventedtheeffectof CPintheheart tissue when administered concomitantly (Fig.2C).

Liver: The CP treatment increased the hepaticTBARSlevelswhencomparedtocontrol,andthisef-fectwaspartiallypreventedbytheco-treatmentwiththeextract.Theextract treatedgroup(AE)showedsimilar values to control (Fig. 3A). CP significantlydecreased the hepatic GSH levels in relation to Cgroup,andthiseffectwaspartiallypreventedbytheco-treatment with pecan shell extract. The extractalonedidnotchangetheliverGSHlevels,whichweresimilartoCgroup(Fig.3B).RatstreatedwithCPpre-sentedasignificantdecreaseinliverCATactivityinrelationtoCgroup,andthiseffectwaspartiallypre-ventedbytheextract.TheAEgroupshowedhigher

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3190

TABLE 1.Effectsof pecanshellAEonmacroscopicalchangesintheurinarybladderof ratstreatedwithCP(valuesareexpressedasmedian±quartile,n=7)

Groups Score

C 0(0-0)AE 0(0-0)CP 4(4-4)

AE+CP 0(0-1)0(normal)and4(severechanges).*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05)

FIGURE 3.Effectsof pecanshellAEonTBARS(A)andGSH(B)levelsandCATactivity(C)inliverof ratstreatedwithCP.*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05).

FIGURE 4.Effectsof pecanshellAEonTBARS(A)andGSH(B)levelsandCATactivity(C)inkidneyof ratstreatedwithCP.*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05)

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 191

CATactivitythancontrol(Fig.3C).Kidney: The CP treatment increased renal

TBARSlevelsinrelationtoCgroup,andthiseffectwas partially prevented by the extract. In fact, theco-treatedgroupshowedhigherrenalTBARSlevelsthantheCgroup,whiletheAEgroupshowedsimilarvalues to control (Fig. 4A).CPdecreased theGSHlevelsinkidneywhencomparedtocontrol,andthiseffect was partially prevented by the co-treatmentwith pecan shell extract. The extract alone did notchange theGSH levels when compared to control(Fig. 4B). TheCP treatment significantly decreasedthe renalCATactivitywhencompared toCgroup.Alone, theextract increased theCATactivity in re-lationtocontrol,butdidnotprevent theCPeffectwhenadministeredtogether(Fig.4C).

Plasma: The CP treatment increased TBARSlevelsinplasma,andtheco-treatmentpreventedthiseffect.TheextractalonedidnotchangetheTBARSlevels(Fig.5A).CPreducedtheGSHlevelsinplasmawhencompared tocontrol, and thepecanshell ex-tractdidnotpreventthiseffect.GSHlevelswerenotchangedbytheextract treatment(Fig.5B).TheCPtreatmentreducedtheplasmaticVITClevelswhencomparedtocontrol,andtheextractpreventedthiseffect.PecanshellextractshowedVITClevelssimi-lartocontrol(Fig.5C).

Erythrocytes: The CP treatment increased theTBARS levels in relation to control and this effect

was partially prevented by the co-treatment withpecan shell extract. In fact, the co-treated groupshowedhigherTBARSlevelsinerythrocytesthantheCgroup.TheextractdecreasedtheTBARSlevelsinerythrocytes, when compared to control (Fig. 6A).ThetreatmentwithCPdecreasedtheGSHlevelsinerythrocytesinrelationtocontrol.Theco-treatmentwithpecanshellextractpartiallypreventedthiseffectof CPandtheextractalonedidnotaltertheerythro-cytes’GSHlevels(Fig.6B).

Treatmentswithcyclophosphamide(CP),pecanshellAE(AE)orthecombinationof cyclophospha-midepluspecanshellAE(CP+AE)on themacro-scopicalevaluationof thebladderareshowninTable1,andthehistopathologicalevaluationsareshowninTable2andFig.7.

CP treatment induced damages in the bladder,which were prevented by pecan shell extract. Theco-treated group showed damage scores similar tocontrol.Theextractalonedidnotmodifythescoresof thebladder(Table1).

Urinary bladders from control group presentnormal cytology, showing transitional epithelial lin-ing, narrow lamina propria with epithelial lining infoldsandnormalmusclelayer(Table2;Fig.7Aand7B). Rats treated with CP showed widened laminapropriawithseveredegreeof hemorrhageandedemaaswellasmoderateleukocyteinfiltrationandvascularproliferation.We can also observe a thickening of

FIGURE 5.Effectsof pecanshellAEonTBARS(A),GSH(B)andVITC(C)levelsinplasmaof ratstreatedwithCP.*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05).

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3192

FIGURE 6.Effectsof pecanshellAEonTBARS(A)andGSH(B)levelsinerythrocytesof ratstreatedwithCP.*IndicatesasignificantdifferencefromCgroup(P<0.05);+IndicatesasignificantdifferencefromAEplusCPgroup(P<0.05).

FIGURE 7.Effectsof pecanshellAEonhistologicalchangesintheurinarybladderof ratstreatedwithCP.Theleftcolumnrepresentslowmagnification(40X)andtherightcolumnrepresentshighmagnification(100X).AandB–controlgroup;CandD–pecanshellAEgroup;EandF–cyclophosphamidegroup;GandH–pecanshellAEpluscyclophos-phamidegroup.

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 193

enceof hydroxylgroups,mainlyattheparaposition,is especially efficient for the antioxidant activity of GA.36

LPmediatedby excessiveROSproductionnotneutralized is shown here through an increase of 60.2%of heartTBARSlevels.Otherauthorsalsoob-servedLPdevelopmentinhearttissueof ratstreatedwithCP.37,38Inthissense,cardiacmuscleisparticular-lysusceptibletoFRinjury,mainlybecauseitcontainslowlevelsof enzymaticantioxidantsandGSH.39,40Inourfindings,theCPtreatmentreducedaround37.6%of GSH levels and increased 73%of CAT activityinthehearttissue.Recentlyitwasreportedthatthealkylant agents are potent inactivators of glutathi-one reductase.41 In fact, thealkylantmetabolitesof CPcanreactwithsulfhydrylgroupsof GR,and inturnreducetheregenerationof GSHfromoxidizedglutathione.38 The same authors reported that CPdecreasestheheartCATactivity,whileweobservedanincreaseof itsactivity.Infact,theseexperimentalparadigmswereperformedusingdifferentdosesof CPandthereforecannotbeconsideredcontradicto-ry.Thus,theheartenzymaticchangesdemonstratedherewerepreventedbypecanshellextract,showingits antioxidant potential. The cardiotoxicity of CPtreatment is a serious side effect of CP treatment,mainly by lethal cardiotoxicity described after hightherapeuticdosesof thischemotherapy,12emphasiz-ingtheneedfornovelcompounds,suchasplantsorfoods,whichwouldprotect thenormal tissue fromchemotherapy-inducedtoxicity.

Liver disorderswere observedwhen the thera-peuticdoseof CPneedstobeincreased.13,14,42Herewe could show the liver toxicity by CP treatment,evidenced by an increase of 116.7% in LP and adecreaseof antioxidantdefensesof 84.9%forGSHlevels and 58.12% for CAT activity.Other authorsalso published similar findings,43,44 confirming the

muscle layer in these tissues (Fig. 7E and 7F).Theco-treatmentwithpecanshellextractshowedanim-provementinbladdertissuesbecausetheypresentedmildthickeningof laminapropriawithoutedemaandvascularproliferationaswellaslowdegreeof hemor-rhageandleukocyteinfiltration.Onlythemusclelayerdidnotshowanychangesinthisgroup(Fig.7Gand7H).Pecanshellextractdidnotalterthehistologyof bladdertissueinrelationtocontrol(Fig.7Cand7D)

Discussion

Themost commoneffectof the chemotherapeuticagents is the cytotoxicity in different tissues,whichisrelatedtoanincreaseinthefreeradicals(FR).34Inourstudy,TBARSlevelswereincreasedintheheart,liver,kidneys,plasma,andredbloodcellsduetotheLPinducedbyCP.Theseeffectsmightbeduetotheincreasedproductionof FRand/ordecreasedanti-oxidantdefensesystem.Animalsco-treatedwithpe-canshellsAEplusCPshowedlowerTBARSvaluesinliver,kidney,plasma,andredbloodcells,indicatingreduced levelsof LP in these tissues. In this sense,theCP-inducedOSwaspreventedorattenuatedbypecanshellextract.Thishypothesisisinaccordancewithpreviousexperimentsperformedinourlabora-tory,whenthepecanshellsshowedhighin vitroandex vivoantioxidantpotential(submittedresults).

Theeffectsof pecanshellAEontheoxidativedamages induced by CP may be explained by thepresence of phenolic compounds and condensedtannins inpecanshells.4,35Of particular importanceto our findings, GA (3,4,5-trihydroxybenzoic acid)wasthemostabundantpolyphenolobserved inpe-can shells. Recently, Lu et al. (2006)36 attributed ascavenger activity to this compound on superoxideanion, hydroxyl radicals, singlet oxygen or peroxylradical, showinghealthypotential. In fact, thepres-

TABLE 2.Effectsof pecanshellAEonhistologicalchangesintheurinarybladderof ratstreatedwithCP.

Groups Hemorrhage EdemaLeukocyte infiltration

Vascular proliferation

Thickening of muscle layer

Thickening of lamina propria

C ND ND ND ND ND NDAE ND ND ND ND ND NDCP +++ +++ ++ ++ ++ +++

AE+CP + ND + ND ++ ++++Severe,++Moderate,+Mild,ND=notdemonstrated.

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3194

leukocyteinfiltrationinthebladder.Theco-treatmentwithpecanshellextractshowedonceagain itshighantioxidantpotential observed through the absenceof these deleterious effects of CP on the bladder.Theuseof antioxidantcompoundssoundspromis-ingasalternativestopreventCP-inducedurotoxicity.In fact,Mesna (2-mercaptoethanesulfonic acid) is athiol clinically used as a uroprotective compound.53However this medicine decreases the incidence of cystitisinonly5%.19Thismodestbenefitof Mesnaon theCP-inducedurotoxicity points to the searchformorepotentcompoundsthatmaypreventthesedamages.

Clinical studies have shown that patients whoreceiveantioxidantswiththestandardchemotherapytoleratethetreatmentbetterandhaveprolongedsur-vivaltimecomparedwithexpectedoutcomewithoutthe antioxidant supplements.26,54Moreover, chemo-therapyandantioxidantsmayenhancetheeffective-nessof thetreatment.55,56Thus,naturalantioxidantsmayoffercomparativelysaferalternativestosyntheticantioxidants,whichmay cause seriousor unaccept-able adverse side effects.57 The natural antioxidantstudiedhererevealedapotenteffecttominimizethechemotherapydamagecausedinhealthytissues.

Weknowthatinnovativesubstancescanbefrac-tionatedandisolatedleadingtoanewdrugandanewindustrialtherapeuticarsenal.However,whenanewchemicalsubstanceisisolatedfromthecrudeextractof plants it becomes a new drugwith side effects.On theotherhand, thepopularknowledgemaybeextremelyuseful tominimize side effects related toconventionalpharmacotherapyaswellastocontrib-ute to the therapeuticeffects. In this sense, theuseof natural compounds such as foods or beveragesintheir integralform,asdemonstratedhere,canbeespeciallybeneficialwhenassociatedtomedicines.

Pecan shell is a by-product of the pecan nutindustry with high antioxidant potential which waseffectiveinreducingtheCPdamageonvitaltissues.Thisextractmaybeusefultopreventdeleteriousef-fectsrelatedtothischemotherapy.Fromtheseobser-vations,itispossibletoconcludethatCPtreatmentresults in pronounced damage in the heart, liver,kidneys,bloodandbladdermediatedbyOSduetoitstoxicmetabolites.Pecanshellextractshowedprotec-tiveeffectsagainstthegeneraltoxicityof CP,anditschemicalconstituentsdeservefurtherstudies.

Acknowledgements

toxicityof CPintheliver.Pecanshellextractshowedbeneficial effects through the prevention of theseoutcomesintheliver.

CPtreatment isalsorelatedtonephrotoxicity,45which has been attributed to acrolein metabolite.46Recently, Sugumar andAbraham (2007)47 observedan increaseof 47%of renalLPand adecreaseof 77%of GSHlevels.Themechanismof CP-inducedrenal damage is limited, and oxidative stress isthoughttoplayacentralroleintheseevents.21Thisway,wefoundsimilarresultsobservedbyanincreaseof TBARS (266.8%) aswell as low levels of GSH(74.4%) and CAT activity (32.9%) in renal tissue,demonstrating the wide renal damage mediated byCP.Animportantfindinginthepresentstudyisthatthehighantioxidantpropertyof pecanshellextract35wasabletopreventtheLPandrestoretheGSHlev-elsthatCPinducedinthisvitaltissue.

ThebloodcanalsobeaffectedbyCPtreatment,whichmightbeobservedinplasmaanderythrocytesservingasmarkersof bodydamage.48Here,CPtreat-mentincreased42.4%of plasmaTBARSlevelsandthelevelsof GSHandVITCwerereducedin56.9%and26.3%,respectively.Lowlevelsof plasmaticVITCduringCPtreatmentmayincreasethesusceptibilityof tissuestoROSdamage.49Ourfindingsshowedpe-canshellextractpreservedtheplasmaticVITClevelsandprevented theLP, strengthening its antioxidantpotential.

Redbloodcellmembrane is susceptible tooxi-dativestressdue to itshighcontentof polyunsatu-rated fatty acids, which are vulnerable to oxidativedamage.50 Recently, a study showed an increase of TBARSand adecreaseof GSH in erythrocytesof ratstreatedwithCP,whichwerereversedbythean-tioxidantpropertiesof thesqualene.38Theseresultsare inaccordancewithours,whichshowedthatthepecanshellextractpreservedtheLPandGSHlevelsmodifiedbyCPinerythrocytes.

Oneof themajorsideeffectsof CPadministra-tionisurotoxicity.51Sincethebladderistheprimarystorageorganforurine,thecontentof CPmetabo-lites ishigher than theother areasof urinary tract,increasingthesensitivityof thebladdertooxidativedamage.52 These deleterious effects of CP includeurothelialdamage,edema,necrosis,ulceration,hem-orrhage, neovascularization, and leukocyte infiltra-tion.51 Inourfindings, theCP induced accentuateddamage to theendothelial layer, edemaandhemor-rhage,aswellasmoderatevascularproliferationand

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 195

TheauthorswishtothankPecantea®forprovidingpecanshellsandDolesReagentes®whichprovidedthecommercialkits.FinancialsupportwasprovidedbyCAPES,CNPq.

References

1. HancockBG.Development of pecan industry. In:HancockBG,editor.TexasPecanHandbook.TexasAgriculturalExtensionService;1997.p.1-7.

2. RajaramS,BurkeK,ConnellB,MyintT,SabateJ.Amonounsaturatedfattyacid-richpecan-enricheddietfavorably alters the serum lipid profile of healthymenandwomen.J.Nutr.2001;131:2275–2279.

3. Worley RE. 1994. Pecan physiology and composi-tion. In: Santerre, C.R. editor. Pecan Technology.NewYork:Chapman&Hall;1994.p.39–45.

4. Villarreal-Lozoya JE, Lombardini L, Cisneros-Zevallos L. Phytochemical constituents and anti-oxidant capacity of different pecan [Carya illinoi-nensis (Wangenh.) K. Koch] cultivars. Food Chem.2007;102:1241-1249.

5. Pecantea[homepageontheInternet].Brasil:Pecan-tea–ChádeCascadeNoz-pecã[updated2009No-vember 19]. Available from: http://www.pecantea.com.br/index2.html.

6. VeliogluYS,MazzaG,GaoL,OomahBD.Antiox-idant activity and total phenolics in selected fruits,vegetables,andgrainproducts.JAgricFoodChem.1998;46:4113–4117.

7. Zincke H, Woods JE. Donor pretreatment in ca-daver renal transplantation. Surg Gynecol Obstet.1977;145:183-188.

8. Kern JC,Kehrer JP.Acrolein-inducedcell death: acaspase influenceddecisionbetweenapoptosis andoncosis/necrosis.ChemBiolInteract.2002;139:79–95.

9. SladekN.Metabolismof cyclophosphamidebyrathepaticmicrosomes.CancerRes.1971;1:901–908.

10. Bukowski R. The need for cytoprotection. Eur JCancer.1999;32A:S2–S4.

11. Fraiser LH, Kanekel S, Kehrer JP. Cyclophospha-midetoxicity:characterizingandavoidingtheprob-lem.Drugs.1991;42:781–795.

12. ShanholtzC.Acutelife-threateningtoxicityof can-certreatment.CritCareClin.2001;17:483-502.

13. Snover DC, Weisdorf S, Bloomer J, McGlave P,Weisdorf D.Nodularregenerativehyperplasiaof theliverfollowingbonemarrowtransplantation.Hepa-tology.1989;9:443-448.

14. ShulmanHM,McDonaldGB,MatthewsD.Ananal-ysisof hepaticvenocclusivediseaseandcentrilobularhepaticdegenerationfollowingbonemarrowtrans-plantation.Gastroenterology.1980;79:1178-1191.

15. Rossi R. Nephrotoxicity of ifosfamide - movingtowards understanding the molecular mechanisms.NephrolDialTransplant.1997;12:1091–1092.

16. AbrahamP,SugumarE. Increasedglutathione lev-elsandactivityof phenylacetateesterase(PON1)intheliverof ratsafterasingledoseof cyclophospha-mide: A defensemechanism? Exp Toxicol Pathol.2008;59:301-306.

17. AppelbaumFR,StrauchenJA,GrawJrRG,SavageDD,KentKM,FerransVJ,HerzigGP.Acutelethalcarditis caused by high-dose combination chemo-therapy. A unique clinical and pathological entity.Lancet.1976;1:58–62.

18. LevineLA,RitchieJP.Urologicalcomplicationsof cyclophosphamide.JUrol.1989;141:1063-1069.

19. KorkmazA,TopalT,OterS.Pathophysiologicalas-pectsof cyclophosphamideandifosfamideinducedhemorrhagiccystitis;implicationof reactiveoxygenandnitrogenspeciesaswellasPARPactivation.CellBiolToxicol.2007;23:303–312.

20. KalyanaramanB,NemecJ,SinhaBK.Characteriza-tionof free-radicals producedduringoxidationof etoposide(vp-16)anditscatecholandquinonede-rivatives-anesrstudy.Biochemistry.1989;28:4839-4846.

21. HaqueR,Bin-HafeezB,ParvezS,PandeyS,SayeedI, Ali M, Raisuddin S. Aqueous extract of walnut(Juglans regia L.) protectsmice against cyclophos-phamide-induced biochemical toxicity. Hum ExpToxicol.2003;22:473–480.

22. DorrRT,LagelK.Effectof sulfhydrylcompoundsandglutathionedepletiononrat-heartmyocytetoxic-ityinducedby4-hydroperoxycyclophosphamideandacrolein in-vitro. ChemBiol Interact. 1994;93:117-128.

23. PatelJM.Stimulationof cyclophosphamide-inducedpulmonary microsomal lipid-peroxidation by oxy-gen.Toxicology.1987;45:79-91.

24. PatelJM,BlockER.Cyclophosphamide-inducedde-pressionof theantioxidantdefense-mechanismsof thelung.ExpLungRes.1985;8:153-165.

25. MandaKL,BhatiaAL.Prophylacticactionof mela-Prophylacticactionof mela-tonin against cyclophosphamide-induced oxidativestressinmice.CellBiolToxicol.2003;19:367–72.

26. SinghDK,LippmanSM.Cancerchemopreventionpart 1: retinoids and carotenoids and other classicantioxidants.Oncology.1998;12:1643–1660.

27. SudharsanPT,MythiliY,SelvakumarE,VaralakshmiP.Lupeolanditsesteramelioratethecyclophospha-mideprovokedcardiaclysosomaldamagestudiedinrat.MolCellBiochem.2006;282:39–44.

28. LapennaD,CiofaniG,PierdomenicoSD,Giambe-rardinoMA,CuccurulloF.Reaction conditions af-Reaction conditions af-fecting the relationshipbetween thiobarbituricacid

D.M. BENVEGNÚ ET AL.

JEPTO 2010, Volume 29, Number 3196

reactivityandlipidperoxidesinhumanplasma.FreeRadicBiolMed.2001;31:331–335.

29. Jacques-SilvaMC,NogueiraCW,BrochLC,FloresEM, Rocha JB. Diphenyl diselenide and ascorbicacid changes deposition of selenium and ascorbicacidinliverandbrainof mice.ToxicolApplPhar-macol. 2001;88:119-125.

30. OhkawaH,OhishiH,YagiK.Assayforlipidperox-ideinanimaltissuesbythiobarbituricacidreaction.AnalBiochem.1979;95:351-358.

31. BoyneAF,EllmanGL.Amethodology for analy-sisof tissuesulfhydrylcomponents,AnalBiochem.1972;46:639-653.

32. GalleyH,DaviesMJ,WebsterNR.Ascorbilradicalformation inpatientswith sepsis: effectsof ascor-bateloading. FreeRadicBiolMed.1996;20:139-143.

33. Aebi H. Catalase in vitro. Meth Enzymol.1984;105:121–126.

34. Lee LK,HarmanGS,Hohl RJ,Gingrieh RD. Fa-tal cyclophosphamide cardiomyopathy: its clinicalcourse and treatment. Bone Marrow Transplant.1996;18:573–577.

35. Prado ACP, Aragão AM, Fett R, Block JM. Anti-oxidantpropertiesof Pecannut[Caryaillinoinensis(Wangenh.)C.Koch]Shellinfusion.GrasasAceites.2009;60:330-335.

36. LuZ,NieG,BeltonPS,TangH,ZhaoB.Structure–activity relationship analysis of antioxidant abilityandneuroprotectiveeffectof gallicacidderivatives.NeurochemInt.2006;48:263-274.

37. MythiliY,SudharsanPT,SelvakumarE,VaralakshmiP.Protectiveeffectof dl-a-lipoicacidoncyclophos-phamideinducedoxidativecardiacinjury.ChemBiolInteract.2004;151:13–19.

38. SenthilkumarS,DevakiT,ManoharBM,BabuMS.Effect of squalene on cyclophosphamide-inducedtoxicity.ClinChimActa.2006;364:335-342.

39. OlsonRD,BoerthRC,GerberJG,NiesAS.Mecha-nismof adriamycincardiotoxicity:evidenceforoxi-dativestress.LifeSci.1981;29:1393–1401.

40. TakacsIE,MatkovicsB,VargaSI,HomolayP,FeerG,SeresT.Studyof themyocardialantioxidantdefenseinvariousspecies.PharmacolRes.1992;25:177–178.

41. Ren S, Slatterly JT. Inhibition of carboxyeth-ylphosphoramide mustard formation from 4-hy-droxycyclophosphamide by carmustine. AAPSPharmSci.1999;1:E14.

42. Atkinson K, Biggs J, Ashby M, Concannon A,DoddsA. Preparative regimens formarrow trans-plantation containing busulfan are associated withhemorrhagiccystitisandhepaticveno-occlusivedis-ease but a short duration of leucopenia and littleoro-pharyngealmucositis.BoneMarrowTransplant.1987;2:385-394.

43. BhattacharyaA,LawrenceRA,KrishnanA,ZamanK,SunD,FernandeG.Effectof dietaryn-3andn-6oilswithandwithoutfoodrestrictiononactivityof antioxidantenzymesandlipidperoxidationinliversof cyclophosphamide treated autoimmune-pronenzb/wfemalemice.JAmCollNutr.2003;22:388–399.

44. PremkumaraK,PachiappanaA,AbrahambSK,San-thiyaaST,GopinathaPM,RameshA.Effectof Spir-ulina fusiformis oncyclophosphamideandmitomycin-Cinducedgenotoxicityandoxidativestressinmice.Fitoterapia.2001;72:906-911.

45. Kopecna L. Late effects of anticancer therapy onkidneyfunctioninchildrenwithacutelymphoblasticleukemia.BratislLekListy.2001;102:357–360.

46. HorvathJJ,WitmerCM,WitzG.Nephrotoxicityof the1:1acrolein-glutathioneadductintherat.ToxicolApplPharmacol.1992;117:200–207.

47. Sugumar E, Abraham P. Normal plasma creati-nine level despite histological evidence of dam-ageandincreasedoxidativestressinthekidneysof cyclophosphamide treated rats. Clin Chimi Acta.2007;376:244–245.

48. Ascensao A, Ferreira R, Marques F, Oliveira E,Azevedo V, Soares J, Magalhães J.. Effect of off-roadcompetitivemotocross raceonplasmaoxida-tive stress and damagemarkers. Br J SportsMed.2007;41(2):101-105.

49. LeeIM.Antioxidantvitamins in thepreventionof cancer.ProcAssocAmPhys.1999;111:10–15.

50. Manoharan S,KolanjiappanK,KayalvizhiM.En-hanced lipid peroxidation and impaired enzymicantioxidant activities in the erythrocytes of pa-tientswith cervical carcinoma. CellMol Biol Lett.2004;9:699–707.

51. Bischel MD. Cyclophosphamide-hemorrhagic cys-titis following prolonged low-dose therapy. JAMA.1979;242:238-239.

52. DattaK,ChinA,AhmedT,QingWG,PowellKL,SimhambhatlaP,MacLeodMC,StoicaG,KehrerJP.Mixedeffectsof 2,6-dithiopurineagainstcyclophos-phamidemediatedbladderandlungtoxicityinmice.Toxicology.1998;125:1–11.

53. CavallettiE,TofanettiO,ZuninoF.Comparisonof reduced glutathione with 2-mercaptoethane sulfo-natetopreventcyclophosphamide-inducedurotox-icity.CancerLett.1986;32:1–6.

54. JaakkolaK,LahteenmakiP,LaaksoJ,HarjuE,Tyk-kaH,MahlbergK.Treatmentwithantioxidantandother nutrients in combinationwith chemotherapyand irradiation inpatientswithsmall-cell lungcan-cer.AnticancerRes.1992;12:599–606.

55. Conklin KA. Chemotherapy-associated oxidativestress: impact on chemotherapeutic effectiveness.

PROTECTIVE EFFECTS OF CARYA ILLINOENSIS

JEPTO 2010, Volume 29, Number 3 197

IntegrCancerTher.2004;3:294–300.56. KlimbergVS.Glutamine,canceranditstherapy.Am

JSurg.1996;172:418-424.

57. AliBH.Agentsamelioratingoraugmentingexperi-mental gentamicin nephrotoxicity: some recent re-search.FoodChemToxicol.2003;41:1447-1452.