Phosphorus Heterocycles II

51

Transcript of Phosphorus Heterocycles II

2tTopics in Heterocyclic Chemistry

Series Editor: R.R. Guptat

Editorial Board:D. Enders. S.V. Ley . G, Mehta . K.C. NicolaouR. Noyori. L.E. Overman . A. Padwa

Topics in Heterocyclic ChemistrySeries Ediror: R.R. Gupta'

Recently Published and Forthcoming Volumes

Heterocl'clic Scaffolds I: p-LactamsVolume Ediror: B. BanikVolume 22.2010

Phosphorus Heterocycles IIVblume Editor: R.K. BansalVolume21.2010

Phosphomus Eeterocycles IVolume Editor: R.K. BansalVolume 20, 2009

Aromaticity in Heterccyctic CompoundsVolume Edirors: T. Krygowski, M. CyrairskiVolume 19,2009

Heterocyclic Supramolecules IVolume Hrlitor: K, lvlatsurnotoVolume 17,2008

Bioactive Heterocycles VIL:lavonoids and Anthocyanins in plants,

and Latest Bioaclive Heterocycles IVolumc Edior: N. MotohashiVolume 15,2008

Heteroc"v..clic Polymethine DyesSynthesis. Properties and ApplicationsVolume Editor: L. Str.ekovvski

Volume I4.2008

Synthesis of Heterocycles viaCycloaddltions IIVolume Editor: A. HassncrVolunrc 13,2ff)E

Synthesis of Heterocycles viaCycloaddilions IVolume Editor: A. Ha.ssner

Volume 12,2008

Bioactive Helerocycles V\Iolurne Editi;r: M.TH. KhanVolumc I l, 2{X)7

Bioactire [Ietcrocycles IVVolume Edi$r M-T.H. KhanVolume 10,2007

Bioactive Heterocycles IIIVoltrme Editor: M.T.H. KharrVolurne 9. 2007

Bioactive Heterocycles IIVolume Editor: S, EguchiVolume 8, 2007

Heterocycles from CarbohydratePrecursorsVolunre Edilor: E.S.H. ElAstrryVolume 7.200?

Bioactive Heterocycles IV>lume Editor: S. EguchiVolume 6, 20t)6

Marine Natural ProducbVoiume Editor; H. KiyotaVolunre 5, 2006

QSAR and Molecutar Modeling Studiesin Heterocyclic f)rugs IlVolume Editor: S.P CuptaVolunre 4, 2006

QSAR and Molecular )Vlodeling Studiesin Hetcrocyclic Drugs I

Vblume Ediror: S.P GupraVolume 3. 2006

Heterocyclic Antitumor AntibioticsVolume Ediror: M. Lee

Volume 2. 2006

Phosl

Volume E.

Raj K. B":

With Conr

J. Drabo',rT.S..\ H

A. i-opus,:

SPta

t udirs

tud ics

Phosphorus Heterocycles II

Volume Editor:Raj K. Bansal

With Contributions by

J. Drabowicz D. D. Enchev . D. Gudat . N. GuptaT. S. A. Heugebaert . G. Keglevich . D. KrasowskaA. tr opusiriski , S. Sasaki . C. V. Stevens

-A Springer

The.series Toltics in Hctcrocvclic Chemi.strv presents criticai reviews on "Heterocyclic Compounds"rvithin topic'related volumes dealing with all aspects such as synthesis, reaction mechanisnr"-, struc-ture complexity, ProPerties. lcactivity. s{obility, lirndamentul and tireoretical srudics, biology., biomedicaistudies, pharmacological tspects, applications in material sciences, etc. Metabolisnr will aG be rncludedwhich will pruvide inlbnnarion use{'ul in de.signing pharmacologically active agents. parhways inr,6lyingdesm-rction of.hetenrcyclic rings will also bc dcait with so thai synthesis of siecificatly fuuctlonalizednon-heterocyclic molecules can be de.signed.The overall scope is to cover topics <iealing with most of the areas oI cureot rrcnds in heterocyclicchemisrry u'hich rvill sult to tr largcr heterocyclic colnmunity.As a.rule..contributions are specially comrnis.sioned. The eiitors and publisher.s will, however, alwaysbe plcascd to-receive suggestion-s and supplernentary intbrmation. pipers are accepted fi ropics inHeteroo(Iic Chenistn in English.In references. Ttpics in Heterocvclic Chemistrt'is ahbreviate<.t Top Heterocyt:l Cicm an6 is cite6as a journal.

Springer www home page: springer.comVisir rhe THC con(enr ar springerlink.com

nlpics in Heterocyclic Chemistry ISSN tU6l-9282rsBN 978-3-642- 12253-8 e-lsBN 9t s -3-642- I 2254 -5DOr I 0. 1 007/97 8-3-642- t 22s4-5Springer Heidelherg Dordrecht London Nelr, york

l-ibrary of Congrass Con rrol Nu mber: ZO I 092 42j 1

@ Springer-Verlag Berlin Heidelberg 20l0This wort is subiect to copyrighr. All rights are reserved, whether the whole or part of the rnaterial isconcerned, speciticatly the rights of translation, reprinting, reuse of illustrations. re;itation, brqadcasting,reproduction on rnicrofilm or in ttny other way. and srorage in data banks. Duplication of this publ icationor pans thereof is pernritted only under the provisions of the Cerman Copyright Law ot September 9,1965' in its cufl'ent version, and permission fol use musr always be obtained fiom Springer. Violationsare liablc to pro.secution under fhc German Copyright Law.The use of geremt descriptive names, registered nanrcs, tradenrarks. clc. in this putrlication does notimply, even in thc absence of a specific statement, thrt such names urD exemit from thc relevanlprotective laivs and regularions and therefore frce lbr general usc.

Cover design: lVMX Design Gmbll, Heidelberg, Cernrany

Prin(ed on acid-free paper

Springer is part of Springcr Science+Businsss Media (www.springer.com)

' '- :-r1'trUndS"

- --: ..11:. SlrUC-:i. ::nmedical

-.. :e irrcluded.- .i: . i int olving.. :.--, tionalized

-: ::*ierocyclic

- ...'.. er- alrvays,::.,r fi\tlcs in

,-,: .,:ld rS Cited

-: :'_-:crial is' - - , .:_..1iri ng.' ':--;i.ltion

. ] ::: i ::11)Cr 9.'..' .. Litions

.- - .- is 00t' : -l:r'\ ttllt

Series EditorProf. R.R. Gupta"

l0A, Vasundhara ColonyLane No. I, Tonk RoadJaipur 30201 8India

Volume Bditor

Prol-cssor Raj Kumar Bansal(Emeritus Fellow)

Chernistry DepartmentU niversity of Raja.ithanJaipur 302004lnclia

bunsal56@ gmail.com

Editorial Board

Prol. D, Enders

RWTH Aachen

52074, Aachen, Germanyentle rs @ rwt h- truchen.cle

Prof. Steven V. Ley FRS

BP l7O2 Professor

Univers^ity ol CambridgeDepartment of ChemistryLensfield Road

Cambridgc, CB2 lEW. UK,[email protected]

Prof. G. Mehta FRS

DirectorDcpartment of Organic ChemistryIndian Institute of ScienceBangalore 560 012, tndiagm @ o rgchem. iisc.e rne l. i n

Prof. K.C. Nicolaou

Chairman

The Scripps Research Institute10550 N. Toney Pincs Rd.La Jolla, CA 92037, USAkt:n@ scripps.eduand

Department of Chemistry and BiochemistryUniverr^ity of CASan Diego.9-50{J Cilnran DnveLa Jolla, CA 92093, USA

Institut ftir Or_eanische Chemie Department of Chemistry

and Head of Organic Chemistry Prot'essor ol'Chemistry

VI

Prof. Ryoji Noyori NLPresident

RIKEN (The Instirutc of physicaland Chemical Rcsearch)2-l Hirosawa, W'akoSaitama 35 I -0 I 98, JapanandUnitersity professor

Department of ChemisryNagoya Universitl.Chikusa. Nagoya 464-g602, Japannt t.t'o ri @ che n 3. c.h e n. n u got tt- u. ttt:..jp

Editorial BoanJ

Prof. Larry E. Overman

Distinguished prolessor

Department ol Chemistry516 Rowland HallUniversity ol Cal ifbrnia, IrvineIrvine. CA 9269i-ZOZ|leoverma@ uci.etlu

Prof. Albert Padwa

William P Timmie professor of Chemir^rryDepartment of ChemistryEmory UniversityAilanra, GA 30322, USAc:hernalt@ emory.edtr

TopiAlso

L::a '

Ii _.

Llt \---

Cl:t"'.

Colt': :

Aims i

:-::: i::l Board

r Chenlistry

Topics in Heterocyclic ChemistryAlso Available Electronically

Topics in Heterocyt:lic chemistry is included in Springer:,s eBook packag e chemisrr,-and Materiars science. If a ribrary does not opt for the whole package the boo-kseries may be bought on a subscription basis. Also, all back volumes are availableelectronically.

For all customers who have a standing order to the I

Heterocyclic Chemisrry, we offer the electronic versioncharge.

print version of Topic.r invia SpringerLink free of

If you do not have access, you can still view thc table of contents of each volumeand the absrract of each a'ticle by going to the springerlink homepage, cricking on"Chemistry and Materials Science," under SubjLct collection, rhen .,Book

series,,,under content Type and finalry by selecting Topics in Heterocycric Chemistry.

You will find information abour the

- Editorial Board

- Aims and Scope

- Instructions for Authors

- Sample Contribution

at springer.com using the search function by typing in Topics in HeterocyclicChemisrrl,.

Color figures are pubrished in tuil coror in the erectronic version on springerliok.

Aims and Scope

The series Toltics in Hetero<:ycric chemistry presents criticar reviews on"Heterocyclic Compounds" within topic rerated volumes dearing with ail aspectssuch as synthesis. reaction mechanisms, structure complexity, prcrlerties, reactivity,stability, fundamental and theoreticul studies, biology, blomeaicai srudies, pharma-cological aspects, applications in rnaterial sciences etc. Metabolism is also includedwhich provides information. useful in designing pharmacologica[y active agents.Pathways involving destruction of heterocycli" iing a." also dealt with so that syn-thesis of specifically functionalized non-heterocyclic molecules can be designed.

overall scope i.s to cover topics dealing wirh most of the areas of current trend.sin heterocyclic chemistry which suits a rarger heterocycric community.

The individual volumes of T<tpic.s in Heterocyclic Chemi.rtry are thematic.Review articles are generaly invited by the volume editors.

In references Topics in Hererocyclic Chemistr- is abbreviated Top HeterocyclChent and is cited as a journal.

h"

Preface

The success of the ongoing series "Topics in Heterocyclic Chemistry', beingpublished by Springer verlag motivated the publisher and the then chief

'Editor to

bring out two special volumes on "phosphorus Heterocycles,', and I was invited toshoulder this responsibility in the capacity ol the Guest Editor.

The special volume "Phosphorus Heterocycres I" was published last year whichincluded the following critical review articles:

Anellated AzaphospholesBiological Activity of Aminophosphonic Acids and rheir Short peptidesPhosphinine Derivatives and theirUse as Versatile Intermediates in P-HeterocyclicChemistrySpiro- and Tricyclic Phosphoranes with Six- and Higher_MemberedThe Chemistry of PhosphininesSynthe tic Approaches to I,2-Heteraphosphacyclates,Phosphorus-Containi ng Cali x arenes

Rings

From Phosphorus-containing Macrocycles to phosphorus-containingDendrimers.

After receiving an enthusiastic and active response and support from the aca_demic comm,nity, particularly the organophosphorus chemists, we intensified oureffons to bring out the special volume, "phosphorus Heterocycles II,' at the earliestand now it is in your hands.

This volume includes six chapters.The lust chapter "Heterophenes Carrying phosphorus Functional Groups as Key

structures" presents a detailed description ofthe recent advances made in ir,i, n"lo.The recent studies of all-phosphorus-substituted aromatic compound.s have revealedsome unique properties of these heterocycles.

, The second chapter "synthesis and Biological Activity of 2,5-Dihydro-1,2-oxaphosphole-2-oxide Derivatives" deals with the recent synthetic methods, par-ticularly [hose using phosphorytated alienes as the starting materials, of thesecompounds which show interesting biological properties.

The third chapter "Recent Developments in the chemistry of N-HeterocyclicPhosphines" presents a survey on fir,e- and six-membered phosphorus-nitrogenheterocyclic compounds whose rings combine a phosphazene or pirosphazane unit

ix

Prc'1ace

r:-rntCntS in:i:'.:. hetetO-

I e:.'rtrcvclesi iirhciis and

: Flatteneda thr.ie ccnr-:i!nlatropic

.if'le.

:horpholes"nJ r ersatile

rt Springer,r dedicated

r K. Bansaliuest Editor

Contents

Heterophenes Carrying phosphorus Functional Groupsas Key Structures...Shigeru Sasaki

Synthesls and Biological Activity of 2,S-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives,Dobrontir D. Enchcv

Recent Developments in the Chemistryof N- Heterocyclic PhosphinesDietrich Gudat

Selected Five-Nlembered phosphorus HeterocyclesContaining a Stereogenic phosphorus

)1

63

r03J6zef Drabowjcz, Dorota Krasowska. Anclrzej Lopusifiski,Thomas S.A. Heugebaerr, ancl Christian V. Stevens

l-{2,4,6-Trialkylphenyl)-1l1-phospholes with a FlattenedP-Pyramid: Synthesis and ReactivityGyrirgy Keglevich

Recent Advances in the Chemistry of DiazaphospholesNeelima Gupta

lndex

149

t75

207

Top Heterocycl Chem (2010) 2l:23-62DOI 10. 1007 t7081 _2009 _4@ Springer-Verlag Berlin Heidelberg 2009Published online: 18 September 2009

Synthesis and Biological Activityof 2,5 -Dihyd r o-1,2 -Oxaphosphole- 2- OxideDerivatives

Dobromir D. Enchev

Abstract This chapter deals with the methods for the syntheses of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives, and some recent rlsults of their biologicalactivity testing. The electrophilic addition to I,2-alkadiene- and alkatrienephospho-nate derivatives is one of the easiest and fruitful synthetic strategies for obtainingthese compounds in preparative amounts.

Keywords 1,2-Alkadienephosphonates . 1,2-Alkatrienephosphonates .1,2-Oxaphosphole . Oxaphospholic cyclization

Contents

I Introduction...............2 Methods for Synthesis of 2,5-Dihydro-1,2-oxaphosphole-2-oxide Derivatives................

2.1 HistoricalOverview2.2 Elecrrophilic Addition to 1,2-Alkadienephosphonates............2.3 Electrophilic Addition to 1,2-Alkatrienephosphonares ...........3 Electrophilic Addition to Allenesubstituted-1,3,2-iioxaphospholanes

4 Electrophilic Addition to 1,3-Alkadienephosphonates ............4.1 Electrophilic Addition ro 1,3-Alkadienephosphonic Dichrorides.................4.2 Electrophilic Addition to 1,3-Alkadienephosphonic Dialkyl Esters .........5 Conclusion...............

References..

I Introduction

Organophosphorus compounds are important intermediates in organic synthesis andhave been widely used as pharmaceutical [1-6], agricultural [7], and chemical agenrs[8-14]' Recently phosphorus heterocycles [15, 16] have received considerable interesr

D.D. EnchevDepartment of organic chemistry and rechnology, Konstantin preslavskyUniversity of Shumen, Shumen 9712,Butgariae-mail : enchev @ shu-bg.net

23

2424

305l545656575858

24 D.D. Enchev

because of their unique biological activities as hydrolytic enzyme inhibitors [17] andtheir anticancer effects [18-20], as well as because of their wide-ranging utilitiesas synthetic intermediates in organic syntheses. Consequently, much attention hasbeen directed to the synthesis of these compounds l2l-28]. Among them, particularinterest was paid to the oxaphosphole derivatives. Numerous methods and syntheticprotocols for synthesis of these compounds have been described. The literatureoverview shows that, among the other promising substrates for the preparation ofoxaphosphole derivatives, the most fruitful ones are the phosphorylated allenes.

The unique combination of double bonds in the molecules of those compounds,each with different reactivity along with the easy preparation, makes phosphor-ylated allenes useful substrates for the synthesis of different cyclic and noncyclicorganophosphorus compounds. Recent investigations increase the scope of applica-tion of phosphorylated allenes as precursors in organic syntheses. Most of them areaccompanied by the formation of five- or six-membered phosphorus heterocycles,which in many cases demonstrate certain biological activity.

The subject matter of the present work is summarizing most useful methods forthe preparative synthesis of the titled compounds, as well as submitting some recentdata about their biological activity.

There are a number of other compounds with similar structure however; they areoutside the scope of this review.

2 Methods for Synthesis of 2,s-Dihydro-1,2-oxaphosphole-2-Oxide Derivatives

2.1 Historical Overview

The reaction of diacetone alcohol I with alkyldichlorophosphines afforded3-chloro- 1,2-oxaphospholane-2-oxide 2. The latter undergo isomerization followedby dehydrochlorination to the corresponding l,2-oxaphosphole derivatives 3(Scheme l) t291.

RPCr2

YY -'.....>>a\dro- aaP o-o-o

itR ,/:\

L_ --\ / \c,r\ <,^ 11. v-f)r<) -HC' _)'<)- +,<; -=--->_HCI

scheme I Synthesis of 2-alkyl-3,5,5-trimethyl-5H-[1,2]-oxaphosphole-2-oxide 3

,at

F

:

,:

:

{r*f#ft.B

n

,&

,t,

:

tl!

it**,i[#{+

i4

?,&

4

!

l'h,

ll$

**,*$[]

+

t

i

!r

s.Ir

YYoHO

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivarives 25

Civunin et al. [30-32] described synthesis of similar compounds, from the reac-tion of phosphorus pentachloride with divinyl ether (Scheme2).

PCrs --.,q(-.PpcLP I "1of ____________> ,rr,,) :_::j! [,,u.

4

__Jorl,\

I'/ -i .,n

| -r.,v

-,/ \6

o... fl AcoH

.,) l. oF *^"-' cl3P\o

5

scheme 2 synthesis of 2-chloro-5-methyrene-5 H-[1,2]-oxaphosphole-2-oxide 5

Later Pudovik et al. synthesized 2,5-dihydro-1,2-oxaphosphole-2-oxidederivatives from the reaction of propynoic acid with ethyldichlorophosphine(Scheme 3) t331.

t'l.@,r--\- P -/-LO

et/ I /^ct o(,

/-)\Y '{o,/'/t-t ,/-'\@f- 13 ----->Et- P O"ct/

Scheme 3 Synthesis of 2-ethyl-2-oxo-2H -2?vs -[ 1,2]-oxaphosphol-5-one 7

The same authors also reported the preparation of 1,2-oxaphosphole derivativesfrom the reaction of alkyl(phenyl)dichlorophosphines with unsaturated ketones(Scheme 4) 1331.

o

OH

EtPC12

-------.-.-_>

26

o

il

,"^,_ + RPCr2

wt"/ 8cr

q. a!**"---------')'-..X.;

D.D. Enchev

o\

R,,.

Me_Jtr \-I

-

\o/9

Me

o ):\\1 VPh/ 'o/

11

Scheme 4 Synthesis of 2-alkyl-4-methyl-5-methylene-5F1-[1,2]-oxaphosphole-2-oxides 9

The1,2-oxaphosphole derivatives were also obtained from the reaction of alkyl(aryl)phosphonic acids with Gpunsaturated ketones or aldehydes (Scheme 5) [34,35].

R

).top*rH._-_________>

-Hzo

Ph\ prorortH"__-__________>

-Hzo

t2 13

Scheme 5 Synthesis of 5-alkyl-3-methyl-2-phenyl-SH-fl,2l-oxaphosphole-2-oxides 1l and of4-alkyl-Z,5 -diphenyl-5H- [ 1,2] -oxaphosphole-2-oxides 13

The same authors described obtaining similar compounds from the reaction ofthe chloride of methyl-B-chloroformylvinylphosphonic acid with acetic anhydride(Scheme 6) [36,37].

cl.\ ,/ \ (Aco)ro

EL/ .'o cl/ -2AcoCl

t4

-J(Aco)2o oo ./ \ -. ,. Crz---------------> .e. Y ------_____>-AcOH R'' \o/

---------_->_2HCI

R,/

o.... /:1 - Ph'P \,.'Ph/ to/

Scheme 6

CHCI./CCI4, -8o - -10"C to room

,n---\:o,/

l0

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 2'7

Macomber and coworkers [38, 39] found that the reaction of 2,2,6,6-tetrame-thyl-4-heptyn-3-ol with phosphorus tribromide led to 3,5-disubstituted-2,5-dihy-dro- 1,2-oxaphosphole -2- oxide derivatives (Scheme 7).

,Bu-----:---------r= gu, PBrr- tBu-----E- BurI ....."............-- i

OH -HBr I

OPBr,

t6

[u'.. --l

..........->l ->,,, 1

l_ Br,P- o

__l ,,.n

tBu

o.. la- P. z)- Bul

Br' O'

ItBu Y

\_o/-\Br2P-

o,}- But

,P

Hzo<_-

-HBr

t7

CHCI3/CCI4, -8'- -10"C to room

Scheme 7

These authors also reported the synthesis of 1,2-oxaphosphole derivatives fromthe reaction of hypophosphoric acid with a,B-unsaturated aldehydes (Scheme 8)1341.

RPh^

-/ \,

,1:\._ o HzP(o)oH, il os/:!.-,n-Hzo /Y',-o/18 l"D

Scheme 8 Synthesis of 2-alkyl- I (2-oxo-5-phenyl-2,5-dihy dro-2Ls-lt,2l-oxaphosphol-2-yl)-3-phenylprop-2-en- I -oles 19

Mashida and Sato [40] developed a method for the synthesis of the target com-pounds, based on the intramolecular rearrangement of the butyl esters of 3-hydrox-ipropene- 1-phosphonic acid (Scheme 9).

,-\ ,ro F\ zoHO- -p.

----J> \ _p, ---------->Buno/ aorrrn -BunoH \o/- aorun

F\zo\ .P.tot toH

222t

Scheme 9 Synthesis of 2-butoxy- 5H-11,21-oxaphosphole-2-oxide 21 and 2-oxo-2,5-dlhydro-2fu5-[ 1,2] -oxapho sphol-2- o1 22

i

28 D.D. Enchev

a-Acylallylphosphonates 23, on reacting with ru-chloroperbenzoic acid(z-CPBA) in presence of magnesium sulfate, afforded 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives 24. The subsequent reaction of the latter with lithiocuprateproduced 1,2-oxaphospholanes stereoselectively (Scheme 10) lT4l _

oil

(EtO)rP..- _-^\,,RrY v mCPBA|

-6/tx,

MgSoo

o

o uto-[-q

*,)-\Ap,

oEto_$_o

Rs,culi o / \

R2/ i,

2423

Scheme 10 Synthesis of 1-(5-alkyl-2-ethoxy-2-oxo-2,5-dihydro-2i,5-[1,2]-oxaphosphol-3-yl)-alkanones 24

Petrov and coworkers [41] showed that the reaction of dibromides of alkenephos-phonic acids with acetylenic alcohols involved an acetylene-allene rearrangement.The products so formed hydrolyzed easily to the corresponding phosphinic acids.The latter on heterocyclization afforded 2,5-dihydro-1,2-oxaphosphole-2-oxidederivatives (Scheme 1 1 ).

PB12

25

R

J"oX*'{- o.. ^/-o.-(RrP

:/ to,28 27

Et2O, -5o - -8oC to room, isomerization, hydrolysis, cyclization

Scheme 11

All the synthetic protocols described above have limitations to some extent andthe yields of the products were modest. In some cases the formation of l,2-alkadi-enephosphonate derivatives is essential for obtaining the final cyclic products. Thisis the reason why many authors have used the higher reactivity of 1,2-alkadi-enephosphonates, discovered by Mark $21in 1962 for the preparation of 2,5-dihy-dro-1,2-oxaphosphole-2-oxide derivatives. Since then, the oxaphospholic cyclizationof l,2-alkadienephosphonate system of double bonds has become the easiestmethod for the synthesis of these compounds. The special structure of phosphorylatedallenes is responsible for their special properties, which has attracted the attentionof chemists for a long time 143461.

o\_/

R

r ---.-L-^rr

-

^R

-r/P... RI

or\ _R' pl

_/Rl

26

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-Oxaphosphole-2-Oxide Derivatives 29

The synthesis of 2,5-dihydro- 1,2-oxaphospholes via multicomponent or catalyticreactions has been published recently. For example, it was shown that the reac-tion of ethyl propiolate with triphenylphosphine in the presence of N-alkylisatinsleads to spiroindole-derivatives of 1,2-oxaphosphpole-2-oxide (Scheme lz) L4ll.

corEtt-I

Ph,P .lll +

-"->

29CHzClz, room toC, 24h column chromatography

Scheme 12

A very interesting method for the preparation of 1,2-oxaphosphole-2-oxide deriva-tives, bearing 4-alkenyl- or 4-allyl-substituents in one pot tandem Pd(II) and pd(0)catalytic reactions, was reported by Ma and coworkers (Scheme 13) [27,2g].

R

Pd(rr) o__)-

I

HO

EtO "EtOP

3130

i,II+i

Y

*\ ,R' zRs

'o.^2:"4*, * 1*o_P.p.td *o

Pd(0)_---__--

pa

psBl

ot\.P

EtO

p2

Scheme 13

30 Pd(cat), CaH(cat.)/N al(cat.)/ O 2, Be(leqiv.)

toR3

30 D.D. Enchev

2.2 Electrophilic Addition to l,2-Alkadienephosphonates

Phosphorylated allenes have been widely used as building blocks for the synthesisof five- and six-membered phosphorus heterocycles [48-52].

2.2.1 Electrophilic Addition to l,2-Alkadienephosphonic Acids

In 1911 Braverman and Reisman [53] reported the preparation of 2,5-dihydro-l,Z-oxaphosphole-2-oxide derivatives from the reaction of allenylphosphinic and alle-nylphosphonic acids with bromine (Scheme l4).

HO ,-.--n'*')r.1 '*.

R- ..o

33

Br

o* /:( - r"*,'toX*.

34

R2=R3=Alk n\ Br

P..x r\ft1ABr"

Brz--------r-

HBr

R=Ph,OH CHCI3/CCI4, -10.C to room, 24h

Scheme 14

Macomber, using monosubstituted at C3 atom of the alkadienephosphonatesystem substrates [54], employed the same reaction (scheme 15).

nl

,a,*\- ---JB2 Brz - ,,1't', o'Y.F"1,R% rq):!:l*,x' " o x' "o *A*'

35 Br"

Rl=H,Alk;R2=HR3=Alk 1rill

n\ Br\,/Ho.ol-\... R2

P X" oAR3

I

l-Hnrnivr.\_,--l

o.. /-\ . n2

,'t'oA p:

(BrHo X.oo,x'P" o $n'

I _,,.ni{r.o. ):{ n,

* t'oX*'

3736

CHCI3/CCI4, -10"C to room,24h

Scheme 15

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-oxaphosphole-2-oxide Derivatives 31

In this context, it was suggested [53] that the reaction involved a tertiary carbocationintermediate that was in equilibrium with quasiphosphonium salt. The elimination ofHCI from the latter, reads to the formation oi 2,5-dihydro_1,2_oxaphospholederivatives' Macombet [54], however, has shown that bromination of optically pure1,2-alkadienephos-phonic acids occurred with 4lzo stereoselectivity. This fact hasbeen taken in consideration as evidence that, by the bromination of 3-monosubstituted-1,2-alkadienephosphonic acids, the intermediates of the reaction were presumablybromonium ion or nonplanar secondary carbocation.

The brominarion :f ,!: optically pure arkadienephosphonic acids proceeds withsimilar stereoselectivity [55], while in the case of arienic alcohols complete racemi-zation of the product occurred (Scheme 16) t561.

HO "J\,,P\

o

HB.z

--------->But

o.\

j

HOHO

38 CHCI3/CCI4, -l0oc to room, 24h 39

Scheme 16

In 1989 Macomber and coworkers showed that theenephosphonic acids with different kinds of electrophilicphosphole derivatives (Scheme 17) t51.).

reaction of 1,2-alkadi-reagents gave I ,2-oxa-

Ho ,-1<\,/\

HO

P.\

," P*.P*

-HNuMe

-Joo /-\ ,tvteP.XHo/ 'ot - M.

4ttBu

o 40

1Bu ooE Nu-

_______>

But -HNu

o42CHCIj/CCI4, -10"C to room,

43

24h, E-Nu=Clz, Brz

,t\

os

HOHO

Scheme 17

It was suggested that the reaction of 3-methyl-l,2-butadienephosphinic acidwith bromine in water involved oxaphospholic cyclization and oxidation of thesubstrate (Scheme 18) t581.

32

Me

D.D. Enchev

Br__/ox / -\ ,.''.P Y

Hol \o/ -M"

oo fl ,vt'PX-/

tot -Ma

Hor,r:'-<,'\ Me

Br2lH2O______>

o44 CHCI3/CCI4, -10.C to room, 24h 45

Scheme 18

The same substrate reacted with carbonyl compounds [59, 60] and with azome-thines [60, 61] to afford 2,5-dihydro-1,2-oxaphorphol" derivatives. compounds 49could also be produced by the use of rhe conesponding amides 4g (Schemi g fozl.

Me

46

HPhN

P

Me

Me

RCHO-.--.------->

HO.MeRN. *1 V-tot-M'

R/ 47

PhN. MeHO.dVYJ -'o/ - M.

R49

Me

Me

R

\HCI o... .Me

--------------> "d v,/ -O/ -M"H

5150

HO Fo< RCHO -

gg -\': / - \ L_-,, P.t MeHo44o/

HO48

Scheme 19 Synthesis of 2-substituted-2,5-dihydro- 1,2-oxaphosphole-2-oxides 46, 47 and 49

The reaction of 3,3-disubstituted-1,2-alkadienephosphinic acids with HCI was alsoused to prepare the corresponding l,2-oxaphosphole derivatives (Scheme 20) [63,64].

RCH=NR

Scheme 20

R=H, Alk CHCI3/CCI4, -10"C to room, 24h

t.

i

i,1'

t,ssplr

IIFfF{*P3,|

6-

)rb,

it1

iIf'

?

h

t

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-Oxaphosphole-2-Oxide Derivatives 33

Compounds 53 could be obtained from an acid-promoted oxaphospholic cyclizationof phosphinic acid 52 in the presence of mineral acid and heating ,p to 100"C(Scheme 2l) [4ll

H@ oo /:\ .Me___:i___+ )X X,/ Y)- -Me

Rt' 'p253

Me -Ju:u,, _ oo1-V*.

Me -HBr ,( - O, - Me

Me

Me

R=H, Alk

Scheme 21 Synthesis of 5,5-dimethyl-2-(l,Z-dialkyletenyl) - 5H-11,Z1-oxaphosphole-2-oxides 53

The synthesis of 55 has been accomprished as shown in Scheme 22 t651.

,,P\PKO54 CHC13/CCI4, -lOoc to room, 24h Ss

Scheme 22

On the other hand, the bromination of 3-methyl-1,2-butadienephosphonic acid56 leads to the cyclic acid 57 (Scheme 23) t651.

Ho. u-"{,Ptxo

56

Scheme 23

MeB.,

------l>Me @"--Me

- 10"C to room, 24h

B, -l,/l

Ho efl .Me I op Y l----------->x'-ot -nae | -unt x

--l ",o

The reaction of 1,Z-alkadienephosphonic acids with an electrophile E. [H*, Br*/cHCli, Hg(oAc)r/AcoHl leads to 2,5-dihydro-1,2-oxaphosphole-2-oxides(Scheme 24) 166-691.

4f,f

*,fi',lF

t*lltjl.tilt$,Ita*tl!

$rd

:ir,F

34 D.D. Enchev

Rlr P2\- ./ E*

^. _,/ \^,Rr

or(HO),P:'-\ B2 (HO)2P\

R\ E +- \_Jol\1 \-*',

H& -ot t *, H@

59 CHCI3/CCI4, -10.C to room,24h

Scheme 24

The reaction occurs with high regio- and stereoselectivity.Macomber has described the oxidation of 3-methyl-1,2-butadienephosphonic

acid with 3-chloroperbenzoic acid to the corresponding cyclic allenic oiide, whichundergoes realTangement to produce the corresponding unstable 2,5-dihydro-l,Z-oxaphosphole-2-oxide derivarive (Scheme 25) 1661.

p3p2

o.a\

Hd Me

Scheme 25 Synthesis of 5,5-dimethyl-2-oxo-2,5-dihydro-2t 5-[1,2]-oxaphosphol-2,4-diol 59

2.2.2 Electrophilic Addition to l,2-Alkadienephosphonic Dichlorides

The halogenation of 1,2-alkadienephosphonic dichlorides leads to tetrahalogeno-2,5-dihydro- 1,2-oxaphospholederivatives ortothecorrespondingquasiphosphoniumsalts [70-79].These compounds are stable in nonpolar solvents for several days,but decompose to 1,3-alkadienephosphonates on keeping for a longer time[71,73-801.

A detailed investigation of the reaction shows that, in the case of chlorine asreagent, the compounds with phosphorane structure were isolated, whereas in

(HO)2P\o

M" .-CPBA_-_____>

Me

OH

--o '/, o.'. /:1 Me(HO)z( x ------->' 'P v"^"'z^\o */- r. Hd 'o/ - M"

60 6t

**'$E

Ft

I

##*#*#t$*s+fftlB$*,t

Synthesis and Biological Activity of 2,5-Dihydro-1,2-oxaphosphole-2-oxide Derivatives 35

the case of bromine, only compounds with phosphonium structure were obtained.Both products (with phosphorane or prrosprronlum structures) are unstable anddecompose to the corresponding phosphorylated 1,3-dienes (Scheme 26) 170,73,741.

l-". _l

I :-_.. IlMe- / \ OIlr"X .,-'PCt'Ir__l

65

i

Br*\_

:1-),.,,C;,

66

Br, /<F- :,r'-",a'nP cl2P,r

o62

,rClMe ctz ^, 1:]-r.

,. -

t"t.'otKr.

63

I

I,l .,-

.,//-\_

CI,P.

oCHCI3/CCI4, -10"C to room, 24h

Scheme 26

1,2-Alkadienephosphonates with bulky substituents at the allene moiety reactwith chlorine with formation of 1,2-oxaphosphole-2-oxide intermediate 69(Scheme 27) [78,79].

MeI

tBu

\_CI,P.

o

Me cr:

CH.CI

tBr. ,C-- CH2CI

\._=a Cl,/\CI,P.. CI

o68

tBu cl\- -//-\@/ \ vreCI.P V'^- d -cH,cr

cls'69

67

tBu cl\-/---------+ ,/-\ Me

_HCl cl2P\\ Yo tncr70

Scheme 27

The reaction ofinterhalogenides gave(Scheme 28) i811.

CHCI3/CCI4, -10"C to room,24h

1,2-alkadienephosphonic dichlorides with iodine and4-iodo-2,5-dihydro- 1,2-oxaphosphole-2-oxide derivatives

36

[,-('.1L'""'^.:l

Rl12, rx

----------> 2ROH_____-_____> RO\

Ao"*:

D.D. Enchev

R2

Rr

p2o-

727l

Rl, R2=AlkRl+R2= Cyclohexyl

Scheme 28

CCl4, 50"C, 24h, IX=ICI, IBr

I,/

Ho.. f1 -RlP. .Yo" 'c/ \ R2

73

On reacting the same substrates with phenylsulphenyl- and with phenylselenenylbromides, relatively stable cyclic phosphonium salts 74 were obtained (Scheme 29)1821.

YPhBt

t- ,,,\I ./:1 n' I

l-cl,P"o'K { ,:,/

clrP.r pz

7l

Y=S, Se

Rl, R2 =AlkRl+R2 =Cyclohexyl

Scheme 29

PhYBr__=__> A.------.---->.

-HBrcl^P..,\

74

C2H4Clz, -20C to room, 24h, boiling

75

The possibility of obtaining the desired compounds is due to the higher stabiliza-tion of the phosphonium intermediate. Heating of the compounds 74 leads to thecorresponding 1,3-dienephosphonates 75 [82].

The cyclic phosphoranes so obtained demonstrate properties typical for thecompounds with pentacoordinated phosphorus atom (Scheme 30) [7g, g3].

d+*J&

*d,lt

#*

il*

Synthesis and Biological Activity of 2,5-Dihydro-1,2-oxaphosphole-2-oxide Derivatives 3t

S.

RS/

x

-J/-\ p,t" o'K p'

AI

I viii

lx,-//\prP \-/'toAR'

i

XX,:( o ,-(cL{ )< ^l ,, -

".' p/ - \- *'

i_' o/\R'

-*or'

r o,,'\qzx/t

,"i \ l1"".i ". r-<okn o' \,- *'

vii cll 'ol\R'Rl k"-

S

\\

ct/

x__J

o..... /-\ -n,'P )<'s{ \o"/ \

R2

x

.o.'. /:( Br

=- tr3ro..orK *,

p2

i=2RSH, ii=2ROH, iii=RSH, iv=2HrO,v=HrO/ROH/SO, vi=ROH/SOCI2, vii=HzO, viii=RSH/B-R.RI,R2=AIk ' z

Rl +R2=Cyclohexyl

Scheme 30 Transformation of the cyclic phosphoranes

The phosphorus atom in the cyclic acids obtained from reaction IV is achiralbecause of rapid proton exchange between two oxygen atoms (scheme 31) tg4l.

HO\-r---

o//Scheme 31 Cyclic acids equilibrium

On the basis of X-ray analysis of l,2-oxaphosphole derivatives authors sug-gested [68] that these compounds have planar symmetry or that there is a processof rapid conformational equilibrium.

Similar compounds were prepared by the same method, from the reaction ofsulfuryl chloride and dichlorides of 1,2-alkadienephosphonic acids. It is noteworthyto emphasi ze that, in this case, 2,5-d rhy dro-L,2-oxaphosphole-2-oxide derivativeswere isolated, even when 3-monosubstituted allenephosphonate were used as sub-strates (Scheme 32) [39, 85].

pt

p2

$iFpp,&

*B+,tf},6

l|F$F

rttrilN

F

I1t

I

Ii.

38

,/CI.P..\

o76

s02cl2---_---->

Me Crz

-------+Me

._-.----->p2

CI__J

@l-\ n,cl.P )/.//o'\ (.)

o--

\ -oct/

D.D. Enchev

CI,/

o... /1 Rl.P \,/ct/ \{

77

------>-socl2

Hzorj) --------->

Ci- SO:

R'sorcr, ct

RI

H

Rl=AIk

Scheme 32

CzH4Cl2, -5o - -8"C to room, 24h

A synthetic strategy as described above was employed [39, 79] for the preparationof 79 and 81 (Scheme 33).

P.Ph- \to

78

cl ,-.-1\,/\P.

z\\Y'o80

CI,/

;c,../:{ ,"1

Lnt"x*]o1\

p(

Rr

8l

R, Rl= Alk

Scheme 34

o 7t

o ,-(''__-_-______> .t 1 t-*'-socl2 7 \'ozl -'-Pz

Rl, R2 = Alk

Scheme 33

ct/C2H4C11, -5o - -8'C to room, 24h

'Macomber et al. achieved formation of cyclic phosphoranes 82 [86]. The latteron treatment with water or with alcohols gave the corresponding oxaphospholederivatives (Scheme 34).

o\

HO

HCt / \-RCI.P Yr \o"' \Rl

82

/.:::::1/ \ -RPxo,/(n,

83

o..'. /:\ - R

Rd Pto/<R'

84CzH4Cl2, -5o - -8oC to room, 24h

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivarives 39

The reaction of the 3,3-disubstituted-1,2-alkadienephosphonic dichlorides withalkylsulphenyl chlorides afforded, along with 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives, 1,2-adducts also. The use of sulfur dioxide in this reaction pro-moted the formation of the oxaphosphole product (Scheme 35) lzz, 44,7l-73,87-921.

R'.o

a,t ,". , R'

,/-'.XozClz(' IolI

vRS. Rl\-/

CtzpJ Rr

O

R(\-CI,P.

o

RSCI , R,

;-o-\Cl:P' R'

oI

Rr=R2=H lnscrI

Y

-.4,/------\ ;oClzP' 5-

ooR

Ro,

ClSo

oo

I -,,ct,1r^sn

\n'=n'=g \

x'=x'z=t2r/

u

o ^/-\ R'cr cizp V'ot - R2

SR

-/cr'ql:\M"ollC2HaC12, -5o - -8"C to room, 24h

o

CI,

| ,o,

tsn

"-V *:

'o'-R'

Scheme 35

2,4'Drchloro-2-oxo-1,2-oxaphosphol-2-oxide derivatives could be producedfrom the reaction of dialkylphosphorylsulphenyl chloride with 1,2-alkadienephos-phonic dichlorides (Scheme 36) [87, 89].

.+Me .-

Me

i ,Cr

rd-\) P-.OrK

Me

Me

87

l=(R2O)2P (O)SCl

Rl=H, AlkR=Alk

R\-/croo;\-''

cl/ .oa - M.

88

C2H4CI2, -5'- -SnC to room, 24h

-1n2o;rn1s;ct

Scheme 36

86

D.D. Enchev

2.2.3 Electrophilic Addition to l,2-Alkadienephosphonic Dialkyl Esters

2,5 -Dihydr o - 1,2- oxaphosphole-2-oxide derivatives were the main products obtainedfrom halogenation of dialkyl esters of 1,2-alkadienephosphonic acids (Scheme 37)153, 69, 79, 81, 93-1001.

R, Rl,R2=Alk, Rl+R2= CyclohexylX=Cl, Br

Scheme 37

_ _,/p' xz;-------->

tno)z( 'R''o

89

,,R,,"--ta*z

(RO)2P\o

,, R,__/^ ^. -/ \R'

(RO)2P\o89

C2H4C12, -5o - -8oC to room, 24h

x

------,-

o.. /:(,- *lxO -RX-RO/ -OA*'

90

CI. RI+ \:./,/\(R'

(Ro),|-- 93--o

X

F"***l

It is important to emphasize that in this reaction a spontaneous elimination of alkyl-halide takes place. Detection of the eliminated allrylhalide is an additional evidence forthe mechanism of the formation of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives.

As underlined above, formation of these compounds by halogenation of dialkylesters of 1,2-alkadienephosphonic acids is the major direction of the reaction. Evenin the case of dialkyl esters of propadienephosphonic acid, some 1,2-oxaphospholederivatives could be detected [86]. On using sulfuryl chloride as electrophilic rea-gent, only 3,3-disubstituted- and 3-monosubstituted substrates could be transformedin oxaphosphole derivatives [39]. Thus, the main role of the substituent at the C3atom of the allenephosphonate system, for the formation of 2,5-dihydro-1,2-oxa-phosphole-2-oxide derivatives, was demonstrated.

A similarprocedure was employed [81, 101] forthe synthesis of iodine-substituted1,2-oxaphospholes (Scheme 38).

89

R, Rl, R2=Alk, Rl+R2= Cyclohexyl

I

Ir, ICl, IBr oo /{ -*'

-

P. ,<Rd -o/ \R2

-J,o /-\KICI:. "rr;1. \-*'Hzo Rd 'o/ \ R2

92

9t

Scheme 38

CC14, 50"C, 24h or CHCl.,, room, 20min

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 4l

Early studies carried out by Angelov et al. [102] esrablished the herbicidal activityof 4-iodo-2,5-dihydro- 1,2-oxaphosphole-2-oxide derivatives 91. Some of the testedcompounds showed promising properties for further application as herbicides infarming.

Compounds 95 could be produced from the reaction of 94 with potassiumdichloroiodate as well as with inrerhalides (Scheme 39) I1011.

KIClj, ICl, IBr----------------

EtO/

CHCI3, room,20min

Scheme 39

The hydrohalogenation of phenyl(3-methyl-1,2-butadienyl) phosphinic esrersinvolved protophilic attack of the reagent, followed by heterocycliiation of theallenephosphonate system (Scheme 40) [103, 104].

<"*(Eto)rP(-

94

RO ,,-.-*4tP' t R',,\Pho

96

RI o\

P{HCI______>

_RCI

RI

R2

97

R, Rl, R2=Alk CHCl.r/CCl4, -10.C to room, 24h

Scheme 40

On using 3,3-disubstituted-1,2-alkadienephosphonic dialkyl esters as the sub-strates in the above discussed reaction, a mixture of dialkyl esters of the 1,2-oxa-phospholic acid and l,2-adducts was obtained. The products ratio depends onnature of the substituents at the substrate, and on the polarity of the solvent(Scheme 41) [03, 104].

oil

nr(no).pcux ,R'+..>-<P2 ci 'R2

o\\

RO

HCI

nonpolarsolvent

o\\

RO

ptHCI

polarsolvent

o

99

Scheme 41 Influence of the solvent polarity

f;

t

$

ft)r

I

I

ILh

Ii,t,,

It,

42 D.D. Enchev

Similar compounds were prepared via the same method, from the reaction of thesame substrates with phenylsulphenyl- and phenylselenenyl bromides (Scheme 42)

t1Osl.

, *' tn"',-:\

-

(RO)rP-rO R2 F

ZPh

-,/),P( "\-e-

prIuR2

ZPh,/

X.I:V-,R-i- o' 'o- t

R2

\:7BrrI -RBrI

t zpn__JRo. /-\ -RrP.Y

o" u o' tR2

101

;*rP/

\89

Z=S, Se

C2H4C|2, -20"C to room,24h

Scheme 42

It was established that the reaction of dialkyl esters

acids with phosphorus dithio acids gave small amountoxaphosphole-2-oxide derivatives (Scheme 43) [106].

of 1,2-alkadienephosphonic(5-67o) of 2,5-dihy dro- 1,2-

,*o,.rf'o

o.il

(n'or.P(s)su (R'o)'P\

- /*'

-

/:\,/ 'R:I

P(OR)"

&

6o).n.( -":*"

102 l0,l

Scheme 43 Synthesis of 2-alkoxy-5,5-dialkyl-5H-11,2l-oxaphosphole-2-oxides 104

1,2-Oxaphospholic derivatives were also prepared from the reaction of 3-monosub-stituted alkadienephosphonates with alkylsulphenyl chlorides (Scheme 44) ll}]-l.

"'R'Altscttnlo).p1. rrO

105

AlkS R2\_,/+ )>-rcl-< ,

P(OR'),

{,

o.\ntd

SAIK

/-\.R2P\r-o-

106

R1, R2=Rtt

Scheme 44

c2H4cl2, -20"C to room, 24h

t#*fifi,s*

$

##*s#

**$tffi

,**#*,

$

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 43

It has been reported that same reaction gave a complex mixture of products,r.e.,|,2-oxaphosphole derivatives,1,2- and2,3-adducts in 1:1:4 ratio t107].

On reacting 3,3-disubstituted-1,2-alkadienephonic diatkyl esters with methyl-sulphenyl chloride, 1,2-oxaphosphole derivatives and 1,2-adducts were isolatedt1081. In the case of dialkyl esters of 3-methyl-1,2-butadienephosphonic acid, theformation of dialkyl esters of l,3-butadienylphosphonic acid was also detected(Scheme 45).

(RO),P(-\o

SR3

o\\

RrO' P(ORr)"

o"108 109

C2H4CI2, -20"C to room, 24h

Scheme 45

The analogous reaction with SCl, leads to1,2-oxaphosphole-2-oxide derivativesin high yields t1091. The cyclic compounds prepared in this manner react withnucleophilic reagents easily, allowing incorporation of oxaphosphole ring in manyorganic substrates (Scheme 46) [109, 110].

Ph SCI

t''... -

,*' * oo){- ve . SCrz Ph,. ,M. M.scr Ph.. , SMetP-.<4,\<:Nae Etd'

ro"^'''--,..,,4"-r.*,e,otref! rr,,.cl' P(oEt), o 'z -o ../\

Or; '- -'2 v Ma Cl

113 lll

CH2CI2, -20.C to room,24h

Scheme 46

It has been established that alkadienephosphonates bearing bridge-substituent atC3 atom of the alenephosphonate system on reaction with alkyl(aryl)sulphenylchlorides lead to the formation of spyrocompounds t1l1l.

The reaction of diethyl ester of 3-methyl-1,2-butadienephosphonic acid withPhscl/sbcl' leads to oxaphosphonium salt 115 (Scheme 47) lllz).

il0107

tt4 lt2

Rr Phscr_--_---_>

B2 Sbcls L;*l]115

(,SbCI-t

Scheme 47

89

CHCI,/CCI4, -10"C to room,24h

rIt

;Ilhh

t

44 D.D. Enchev

Compounds 118 could be produced from the reaction of dialkyl esters of3-monosubstituted-1,2-alkadienephosphonic acids with methylselenenyl chlo-ride. It was established that, along with 118, z,3-adducts were also formed[113]. Use of phenylsulphenyl chloride in this reaction leads exclusively to theformation of 2,5-dihydro- 1,2-oxaphosphole-2-oxide derivatives 117 (Scheme 48)[113,114].

-/ _ /-_<

rnolr( 'cHCt rnolr( ts"M.

ob.oEZ

ll9R=Alk

Scheme 48

Compounds 120 were usedlectivity of the reaction of(Scheme 49) [Il4].

SeMe

__J* o.. 1- ler.MeSecr

nd - d (Ro)2p.

ll8

SePh

,P' Phs.cr o.r (-r,

Pr

I

CHCI

o

ll6

C2H4CI2, -20oC to room, 24h

as the starting material for establishing the stereose-allenephosphonates with phenylselenenyl chloride

H 'X"\-tt"tn '1"\- 'sePh

l,-.-\' Phsecl Krl-I-, oo^):/(Ro)2P\ u,'-*d'tfi;;' .*)1t'f,,''

o:r,oR=Alk

l2tC2H4CI2, -20oC to room,24h

122

phosphinic acids2,5-dihydro-1,2-

the molecules ofleads to the for-

Scheme 49

The reaction of dialkyl esters of 1,2-alkadienylphosphonic andwith methyl and phenylsulphenyl chloride, leads excrusively tooxaphosphole-2-oxide derivatives [1 l3-1 15].

Regardless of the nature of the ester groups at phosphorus inthe 1,2-alkadienephosphonic substrate, the electrophilic additionmation of 1,2-oxaphosphole derivatives (Scheme 50) tl16l.

I

t-.ro.' ENu loro'. _o.o.ro-"=*=( *Pl*d'

Aro' -o L

123

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 45

Ar=Ph, PhCH2

C2H4CI2, -20'C to room,24h ENu = Clz,

Scheme 50

The synthesis of 4-phenylseleno-2,5-dihydro- 1 ,2-oxaphosphole-2-oxide derivatives125 is shown below (Scheme 51) t871.

,RI

-r/

o< \n,PhSeNEt, \

(RO\^P/,\o F(O/

-20oC to room,24h

Scheme 51

The 1,2-alkadienephosphonic dialkyl esters react smoothly with dialkoxyphos-phonylsulphenyl chlorides, affording 2,5-dihydro- 1,2-oxaphosphole-2-oxide deriva-tives 126 (Scheme 52) l1lll.

Ph

Rr

>2

c2H4cl2,

Rl (RO)2P(O)SCt -J sP(oxoR)2

o.., /-\ -Rr\/'RO" -o/ \ R'

126

- -/,_o ___{

-^ -,/ \R2(RO)2P\

o

R,R,,Rr=Alk

Scheme 52

C2H4CL2, -20"C to room, 24h

Christov et al. Il l8-120] have described the synthesis of oxaphosphole derivatives128 and 130 from bromination of bifunctionalized allenes (Scheme 53).

46 D.D. Enchev

134

,o,//RSo

,//RS,

OH

pt

(M.o)2Pa

,/tR2

oE,LO< ,,RI

)-.-(tMeO)rP( Rz'o

rzg

Me oEt\./,o----y

(R):.-(

n' .

(EtO;rPo Me''o 132

B.r_______=_-_>

cH2ct2

o\ pt

p2

Rl

R2

)'-..MeO

127

B.,---------+-

cH2c12

Rl, R2=Alk

130

C}{zclz, -20"C to room,24h

Scheme 53

A similar procedure was followed for the preparation of 2,5-dihydro-1,2-oxa-phosphole-2-oxide derivatives 134 possessing CHrOH group at C3 atom of theoxaphosphole ring. The oxaphosphole products were obtained as EIZ mixture fromthe reaction of 1-substituted-1,2-alkadienephosphonic diethyl esters 135 with halo-gens (Scheme 54) 1121,1221.

Me oEro-f/

o'

128o

pl+

p2

(MeO)rPO131

R -tr* o\

Me prd

o1\

Bt{

o'

361

Me

135

R

Me

x2**__--_-_>

rnMeOH, Hv

o\

EtO

R=Alk

Scheme 54

P

'o

CHzCl2, -20"C to room, 24h

o..... / -M.o/P\o'

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-Oxaphosphole-2-Oxide Derivarives 4j

The synthesis of oxaphosphole derivatives 138 has been reported from the reactionof allenephosphonic dialkyl esrers with phenylteluryl halides (Scheme 55) ll23l.

*'\ ., R, phreX

,_4T --------------l>

xalos.Y / \ R3.\ol:7

Rl, R2, R3, R4= Alk CH3OH, 55.C,2h

*'\ ,TePh

o\/ L- n'z

poo/ -\o/ \ R3

138

Scheme 55

A mechanism similar to that proposed for the reaction ofdialkyl esters with halogens has been suggested.

It is noteworthy that compounds 138 are good precursors inbecause oftheir good leaving phenylteluro group tl2,3l.

allenephosphonic

further synthesis,

2.2.4 Electrophilic Addition to l,2-Alkadienephosphonic oxides

The chlorination of dimethyl(3-methyl-1,2-butadienyl)phosphine oxide has beenreported to produce 2,5-dihydro-1,2-oxaphosphonium salts 140 (Scheme 56) t1131.

Me Cr,--._-----__>

Me

"or_6)

CIO Fr

f-cr IlrH Meli '"rt',. ,< I

loMelet_ lcr

/-Me^P

l\

o139

C2H4CI2, -10. - -15"C to room, 24h

Scheme 56

Hydrochlorination of the same substrate leads to the cyclic unstable phospho-nium salt 141 (Scheme 57) t1031.

u.,e.(-'-'oMeMe"P Y

I Hd -M'

142

Me HCr [-..- ,J-________r> tMe p

,Xn " iMe L", It4t

Scheme 57

139

C2H4CI2, -10" - -15"C to room, 24h

D.D. Enchev

The substrate 139 reacts with phenylsulphenyl chloride, affording cyclic phos-phonium salt 143 which decomposes on heating to the corresponding 1,3-diene(Scheme 58) [107].

M" pnsct

- -,/-------r>

MerP( Meo P

f sPh-ll__JlI @i \ Mel

I *"o'.oX *. IL __l

743139

SPhMe----------)-

HCI M",

C2H4CI2, -10" - -15'C to room,24h

Scheme 58

The |,Z-alkadienephosphine oxides react smoothly with dialkoxyphosphonyl-sulphenyl-chlorides affording 2,5-dihydro-1,2-oxaphosphonium salts 145 and 146(Scheme 59) U 171.

, srrolton'1,

Me Rr(o) P(o)scr ^d, Me......"...."...- Krr. ,,^\ -Me '."'o' Mecl-

145

.o ,-(tt1n'orrn'(g _@l \_M.- \'^ R.P x5 --z-\O'l \

14a

146

R^Pl\\ o 139

R=Me, R1=Alk

Scheme 59

C2H4C|2, -10'- -15'C to room, 24h

The cyclic phosphonium salts 140,141, L43,145, and 146 so obtained are evi-dence for the mechanism of the oxaphospholic cyclization and especially for themain role of the tertiary carbocation formation during the process. The additionaldata which support this assumption, come from the investigation of the same reac-tion, but with different substrate, i.e., dimethyl(1,2-hexadienyl)phosphine oxidel47.In this case, the reaction mechanism involved formation of secondary carboca-tion that gives oxaphosphole product 148 only tn llVo yield (Scheme 60) 11241.

EOCI O

MerP(o Pr-M%t6oAo*'Xa, *':!r.147 r4B 149 br

oov.rfl-1 .,Cl - M.,[---y ,P,t'crXpr+-crXcr

Scheme 60

ls0 C2H4CI2, -10" - -15'C to room, 24h

#

*pt,**fr.

#

fr'

m

I

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 49

The mechanism of oxaphospholic cyclization was confirmed by isolating 152 inthe reaction of N-methyl-N-propargylamine with dialkylchlorophosphite(Scheme 61) U25}

(RO)2PC1HN-\

---->t\:Me

151

R=Alk

Scheme 61

CHzClz, -5" -0oC, lh boiling

*"**o'01o"'N'

*rr*_a/-- ^eY-"kliNuo y' *-o

\.\\Nu- |

| -RNu

,1, u

', ,:(*,2".1_ \--*,

ozz \o'l\P2

TH--l

| ,*o,,.- f\ _ l ---- Re e:\L Me --_l cP

,r_Eo. 1u/(cP MeI

Me

152

Other authors followed similar synthetic sequence U26,1271.

2.2.5 Electrophilic Addition to l,2-Alkadienephosphonic Amidoesters

Enchev et al. [128, l29lhas reported the synthesis of 1,2-oxaphosphole derivatives,bearing N,N-dialkylamido-group at phosphorus 154 (Scheme 62).

Rl,/RO /r-c----1- pi.- 'R,

R3zN' - o153

R. Rl, R2. R3=ark

C2H4CI2, -5o --8oC, to room, 24h 154

Scheme 62

This synthetic strategy makes the synthesis of amino derivatives of 2,5-dihydro-1,2-oxaphospholes possible.

Furthermore, these compounds were found to possess growth-regulating activity[130, 131]. The same compounds were tested for their cytotoxic and cytomutageniceffects. As a result, only weak mutagenic and mytostatic properties of the compoundshave been detected [132].

Authors employed similar method to prepare compounds 156 (Scheme 63)t I 331.

FF

?)IPt.

$

T*msbFrI

50 D.D. Enchev

I Br _l .H .r''

Br: l*o, I *'*.af1 _ R,#l .'( Y*' l-_*r?'.oX*,lR3NoD2 lo/

LH r\ __l Br ( ,r"

I

l-ner*s,

H,/nrN. fl Rr

o"'oX*,C2H4C12, -5o --8oC, to room,24h 156

Rl./

- P-- 'R2_ , _o

RJNH 155

R, Rl, R2, R3= Alk

Scheme 63

The synthetic strategy described allowed the synthesis of N-morpholino-1,2-oxaphosphole derivatives [34], as well as 1,2-oxaphosphole derivatives, bearingN-2-chloroethyl group at phosphorus (Scheme 6a) [135].

158

plRO- t-.4.-'-- p, . R2

R3N' -oH 1s9

R, Rl, R2=AlkR3=-CHzCHzCl

u*, l*o .-<t I.-.*Eu'q Y.J -- ^r$T.

NP /"-\ Bro

C2H4Clz, -5o --8"C to room, 24h

Scheme 64

Compounds 160 are still under investigation for their biological activity, as theyare expected to exhibit such activity, because of their structure similarity to phos-phorus amides bearing 2-chloroethyl substituent at nitrogen. It is well known that

{ls,f <I-u*H'att.l

\-/ tsl

R, Rl, R2=AlkRl+R2=6r"lohexyl

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-Oxaphosphole-2-Oxide Derivatives 5l

the latter have wide application as chemosterilizing insecticides or cytostatic agents

lt36-t441.The evaluation of antimicrobial activity of 1,2-oxaphosphole-2-oxides was

reported by Haranath et al. t1451.

2.3 Electrophilic Addition to l,2-Alkatrienephosphonates

2.3.1 Electrophilic Addition to l,2-Alkatrienephosphonic Acids

It was shown that 1,3,4-hexatrienephosphonic acid 161 reacted with hypophos-phoric acid and air to give the corresponding 3-vinyl-2,5-dihydro-1,2-oxaphosp-hole-2-oxide derivatives 162 (Scheme 65) 1641.

,r*"Ho...

,( Me

HO161

6lo,l, Fr----+

:\_

\(-\-*'H' 'o- t

Ma

162

Scheme 65 Synthesis of 5,5-dimethyl-3-vinyl-511-[ 1,2]-oxaphosphole-2-oxide 162

2.3.2 Electrophilic Addition to l,2-Alkatrienephosphonic Dichlorides

Compounds 168 and 169 were synthesized from the reaction of dichlorides of1,2,4-pentatriene- and 1,3,4-hexatrienephosphonic acids with sulfurilchloride(Scheme 66) 1146).

R=-CH=CH,Rl=u

,,CIo

.)t'' "{165R

Me

so2c12-----------*

Rl cl\.//_\/\Rcl3P. ^,rKoMe

164163

R(

cLPoo

Scheme 66

C2HaCl2, -5o --8oC to room, 24h

p*,*;

$

####

$

$

#f,r

$tr

*

il

M}

52

The reactivity of the chlorinereaction of these compounds with

R=Alk

Scheme 68

D.D. Enchev

atom at phosphorus was demonstrated in the

methanol (Scheme 61) 1146).

CI

,. ,-(MeOH ".../ \ --165,166 ---------> ''p- .Y

Meo/ 'o' 'M"

167

CzH4Cl2, -5o --0"C to room, 24h

Scheme 67

2.3.3 Electrophilic Addition to l,2-Alkatrienephosphonic Dialkyl Esters

The above results encouraged authors 195,991to examine the reactivity of dialkylesters of 1,2,4- and 1,3,4-alkatrienephosphonic acids 169 and L70. These substrates

on halogenation gave 3- or 5-vinylsubstituted-2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives 171 and 172 (Scheme 68). Spectral investigations of this reaction

show that, formation of oxaphosphole ring starts immediately after adding of the

reagsnt.

172170

x(cr)

.Me x.(so"cl.) o'/L-LZ'\\

,/\/(RO)rP( -RX(RCI+SO2) RO

,Me X?(SO?CI))\_,/-

---'

-

(Ro)rPa t Mt -Rx(RCl+so2)

CCl4, -5o --SoC to room, 24h

Dialkyl esters of 1,3,4-hexatrienephosphonic acid react with alkyl(phenyl)sul-phenyl halides, to form mixture of 2,5-dihydro-1,2-oxaphosphole-2-oxide derivativesand thiophene derivatives (Scheme 69) fla7-la9\

oI--P

RO

t

IrI]hrr,1-

+flIT*-f,

I

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 53

,*"(RO),P:. Me- r\o

173

Scheme 69

ottrloRy,

-J( \-*-s'

177

Me(Ph)SX ,S(Ph)Me€ o.rf:{-r. +

'P )<Ro/ -o/ -M"

CCl4, -5" --8oC to ,o#, ron

The same substrate 170 reacts with alkyl(phenyl)selenenyl chlorides to givepredominantly 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives 175 (Scheme 70)[1s0].

,*"rnolrn( Me

P(OR)2

Me

MeSeCl -:\ SeMe____> \_/o. /-\ rur.'P X*,Rd 'o

o" a1o*;,

-J( \-..,

Se'

176

o

o\\

170 t7s

ooR.P// 'o clH2c

\

178

CCl4, -5o --8oC to room, 24h

Scheme 70

The same substrates react with phenylselenenyl bromide to give only 2,5-dihy-dro-1,2-oxaphosphole-2-oxide derivatives (Scheme 7 I) U4gl.

Me

Me

179177

,M. phSeBr\-/,/-.:\

--->(Ro)2P( Me

--\ SePh

o,..):( -r,.*o)n- i*,o

170

R=Alk C2H4CI2, -10"

180

--15'C to room,24h

Scheme 71

54

3 Electrophilic Addition to Allenesubstituted-L,3,2-Dioxaphospholanes

D.D. Enchev

The halogenation of the allenesubstituted 2-oxo-1,3,Z-dioxaphospholanes alsoleads to 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives 182 (Scheme72) 1991.

pl f-xlr-""11..Lto'"o l'

x-l-o.ot4 R l

l- o)t'oX*, I- --l

*"

,/

I )r( p2

\o o

nl. n2 = ett

x)-----3

181

x_-/q. /-\ - nr.P Y

xcH2cH2o 'o' - R2

182

C2H4C12, -5o --8oC to room, 24h

Scheme 72

The mechanism of the reaction involves oxaphosphole ring closure followed by1,3,2- dioxaphospholane rind opening.

The reaction of 181 with sulfuric acid was then employed for establishing thepostulated reaction intermediate (Scheme 73) [151].

.-'ot /-":<I ).( 'p2

=\d o

H2so4- [ *-J* I€ lro..'efl -R'| I

l[/"oX*, 1 oL 183 _t HSO4

Rr

181

Rl, R2 = elt

Scheme 73

CCl4, -5o --8oC to room,24h

Compounds 181 react with alkylsulphenyl chlorides to form a mixture of1,2-oxaphosphole derivatives and I,2-adducts in 4:1 ratio. Decreasing the reactiontemperature favored formation of oxaphosphole product. The same substratesreacted with phenylsulphenyl- and phenylselenenyl bromides to give only 1 ,2-oxa-phosphole derivatives [133].

Similar to the reaction pathway discussed above, 181 reacts with dialkoxyphos-phonyl-sulphenyl chlorides affording 184 (Scheme 1 4) [ll7).

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivarives 55

Rl (RO)2P(O)SCl

c2H4c12, -70

184

--15'C to room,24h

In another synthetic strategy allenesubstituted-1,3,2-oxazaphospholanes 185 onreacting with electrophilic reagents afforded 160 (Scheme 75) t1351.

E

.o .rRt ENu o- 4 pr

( )'<- *' ,.io,,N)i'ox:'\N' rg5 H

H 160

Rl, R2 = Alk C2H4Clz, -5" --0oC to room, 24h

Scheme 75

An attempt to obtain other evidence for the mechanism of the oxaphospholiccyclization has been made and is shown in Scheme j6 tl12).

Br

q . /-( ;,-l*)r. ox*,

I

H --l sf

187

plo __./l-. _--____--.1

\P' 'p2*'ooH 186

t-^

[q

oBr

Br

| ).( \R'

t--d' 'o lgl

R, R', R2=Alk

Scheme 74

Rl. n2=e.tk

Scheme 76

oR',.:- 9 F.--4I \p1 'R2

)-ol "oMe' 188

o. o --r*'Y \p1. '- n,)-{"oPh' l9o

C2H4C12, -5" --0oC to room, 24h

sP(oxoR)2

pt

p2

56

4

D.D. Enchev

Electrophilic Addition to l,3-Alkadienephosphonates

4.1 Electrophilic Addition to 1,3-AlkadienephosphonicDichlorides

On chlorination of dialkyl esters of 2-chloro-3-methyl-1,3-butadienephosphonicacid in non-polar media, a mixture of five- and six-membered heterocycli. .o*-pounds was obtained (Scheme 77) [153, 154).

CI

Cr, o... /:( v.€ p v-RCl nd' \O/ \-

61

193

C2H4CI2, -5o --0oC to room, 24h

CIo_J\,/-\ ,.M.+PK / \ / \,xd \o---/ -cl

ty

o\ t(o*,"

cl/ 'Me

x2---------+-

RCI

or\/'P.

RO/ 'o'

Me

Me

19s D6R=Alk C2H4CI2, -5o --0oC to room, 24h

Scheme 78

A similar procedure was followed for the synthesis of 198 (Scheme 19) 1156l.

cl"Me -----t--->.

_RCI

CI

.Me

r98

,:< Me

1RO;,e/ Y'iltgz ll

R=Alk

Scheme 77

The 2,5-dihydro-1,2-oxaphosphole-2-oxide derivatives 196 were also obtainedfrom the reaction of esters of 3-chloro-4-methyl- 1,3-pentadiene-2-phosphonic acidwith halogens (Scheme 78) [155, 156].

Scheme 79

C2H4CL2, -5'- -0'C to room, 24h

rI

1b

$I

$i#*F*k

h

F

rh

nr.Fl[',FFFIIH

Synthesis and Biological Activity of 2,5-Dihydro- 1,2-oxaphosphole-2-oxide Derivatives 57

4.2 Electrophilic Addition to l,3-ArkadienephosphonicDialkyl Esters

The reaction of 2-chloro- 1,3-alkadienephosphonates with arenesulphenylchloridesgave 2,5-dihydro-1,2-oxaphosphole derivatives in good to exceillnt yields(Scheme 80) [157].

^ ArSCIRr -__>-MeCl

ptpz

200

C2H4CI2, -5o --0oC to room, 24h

RsArSCI_cr I o=

-MeCl no/I

R4

p3

p2

obtained from the reaction of 2-chloro-1,3-with areneselenenyl chlorides (Scheme 82)

Scheme 80

The reaction of 1,3-dienephosphonic-1,3,2-droxaphospholanes with arenesul-phenyl chlorides followed the mechanism discussed earlieito give 202 (Scheme g l )t1s8l.

201

Rl, R2, R3, R4, R5=n, Rtt<

Scheme 81

C2H4CI2, -5o --0oC to room, 24h

o\v"{

pt

199

Rl, R2, R3=g, ett

The target compounds were alsoalkadienephosphonic dialkyl esters

tlsel.

202

miFr*Bs.,

rF

t

58

(MeO)2P\

203

Rl. n2, R3=H, ett

Scheme 82

, ArSCIcH2R' ----------)-MeCl

p2

os

rtedcHrn3 o

rl

(MeO)rP

D.D. Enchev

205

SAr

204

C2H4CI2, -5o --0oC to room, 24h

R2

5 Conclusion

The submitted methods for preparation of target compounds based on the electrophilicaddition reactions of 1,2-alkadiene- and alkatrienephosphonates show that they arevery promising from synthetic point of view.

1'2-Alkadiene- and alkatrienephosphonates are available from acetylene-allenereaffangement of acetylene phosphites which could easily be prepaied from thereaction of carbonyl compounds and l-alkynes.

In this context the described methods for preparation of 2,5-dihydro-1,2-oxa-phosphole-2-oxide derivatives have to be considered as synthetic protocols fortransformation of carbonyl compounds in to p-containing heterocyclei.

All the reactions are environmental friendly and proceed with almost total atomeconomy.

It is important to emphasize that all of theactive substances.

tested compounds are biologically

References

1. Kafarski P, Lejczak B (2001) Curr Med Chem l:3012. Colvin OM (1999) Curr pharm Des 5:5553. Zon G (1982) Prog Med Chem 19:2054. Stec W (1982) J Organophosphorus Chem l3:1455. Mader MM, Bartlett PA (1997) Chem Rev 97:l2gt6. Kafarski P,Lejczak B (1991) phosphorus Sulfur Silicon Relat Elem 63:1937'Ftanz JE, Mao MK, Sikorski JA (1997) Gliphosate: a unique global herbicide. American

Chemical Society, Washington, DC8. Bhattacharya AK, Thyagarajan G (19g1) Chem Rev g1:4159. Engel R (1988) Synthesis ofcarbon-phosphorus bonds. cRC, Boca Raton, FL

10. Marianoff BE, Reitz AB (19g9) Chem Rev g9:g631 1. Pudovik AN (1989) Chemistry of organophosphorus compounds. MIR, Moskow12. Motoyoshiya J (1998) Trends Org Chem 7:63

*I*F#

II

*,Pt

s.

$*#H

rr

f,t,rffis&&,*$i'&*E

$tlti'h

4t

:

Synthesis and Biological Activity of 2,5-Dihydro-1,2-oxaphosphole-2-oxide Derivatives 59

13. Kann N, Rein T (2003) Synthesis:57914. Bricklebank N (2003) Organophosphorus Chem 33:2g915' Mathey F (ed) (2001) Phosphorus-carbon heterocyclic chemistry: the rise of a new domain.Pergamon, New yorkl6' Quin LD (198 l) The heterocyclic chemistry of phosphorus: sysrems based on the phospho-rus-carbon bond. Wiley, New york17. Darrow JW, Drueckenhammer DG (1994) J Org Chem 59:297618' Morita I, Kunimoto K, Tsuda M, Tada sI, Kise M, Kimura K (r9g7) chem pharm Buil35:414419. Stewart JD, Liotta LJ, Benkivic SJ (1993) Acc Chem Res 26:39620' Racha S, vargeese C, vemishetri p, Er-Subbagh H, Abushanab E,panizaRp (r996) J MedChem 39:11302l' McReinolds MD, Dougherty JM, Hanson pR (2004) chem Rev ro4:223922. Macomber RS, Krudy GA, Seff K, Rendon-Diur-tvtiro, iEirgs:l J org Chem 4g:142523. christau HJ, pirat JL, virieux D, Monbrum J, ciptadi C, Berko y (2005) J organomet chem690:247224. Hah J, Lee B, Lee S, Lee H (2003) Tetrahedron Lett 44:5gll25' Abramovitch RA, Konieczny M, Pennington w, Kanamatharaddy S, vedachalam M (lgg0)J Chem Soc Chem Commun:269,-9 l"tA-l Ding y_X (2005) Org Lett 7:329927. Ma S, Yu F, Zhao J (2007) Syntett:Sg:28. Yu F, Lian X, Ma S (2007) drg Lett 9:170329. Moedritzer K, Miller RE ( 1 98i) J Org Chem 47 :153030' Civunin vS, Kamay GH, Fridrand ns.-(rqoo) Russ J Gen chem 36:43631. Civunin VS, Fridland ES, Zikova Ty Kamay GH (1966) Russ J Gen Chem 36:142432' Civunin vS, Kamay GH, Fridrand ES (r967) ussR patent 1g6g22:1233' Pudovik AN, Dmitrieva vK, Samirov uu, srragiaulin RR, Hairulin vK (l969) Russ J GenChem2219:3934. Campbell IGM, Raza SM (1971) J Chem Soc:1g3635. udelevich vI, sokolov LB, Ionin BI, petrov AA (r9g0) Russ J Gen chem 50:r41936. Dmitrieva GV pudovik AN, Hairulin vK (1969) uss{ patent 246512:2137' Hairulin vK, Dmitrieva Gy pudovik AN (197r) Russ chem Bull:r25438. Macomber RS (1971) J Org Chem 36:271339' Macomber RS, Elder RS, Frorian LR, Kennedy ER (r973) J org Chem 3g:4rij40. Mashida Y Sato I (1979) J Org Chem 44:g6541. Beliaeva TN, Sendurev MV Dogadina Ay Ionin BA, petrov AA (1982) Russ J Gen Chem52:247242. MarkY (1962) Tetrahedron Lett:2gl43. Khusainova NG, pudovik AN (197g) Russ Chem Rev 47:150744. Khusainova NG, pudovik AN (19g7) Russ Chem Rev 56:97545. Angelov chM (1983) phosphorus Sulfur silicon Relat Etem t5:ti746. Alabugin IV, Brel VK (1997) Russ Chem Rev 66:22547 ' Yavari I, Hossaini Z, Sabbaghan M, Ghazanfarpour-Darjan M (2004) Tetrahedron Lett44:287148. Landor sR (ed) (1982) The chemistry of alrenes. Academic press, Londo n 2: 35149' S_chuster HF, coppora GM (19g4) Airenes in organic synrhesis. wiley, New york50' Krause N, Haschmi ASK (eds) (zoo4) Modern iil"r"

"t".istry. wiley, weinheim51. Padwa A, Meske M, Ni Z (1995) Tetrahedron 51:g952' Elsevier SJ (1995) In: Helmchen G, Hoffman RW, Mulzer J, Schaumann E (eds) Methods of

organic chemistry (Houben-Weyi),821. Thieme, Stuttgart, p 53753. Braverman S, ReismanD (1977) Tetrahedron Lett:175J54. Macomber RS (1977) J Am Chem Soc 99:307255. shingu K, Hagashita S, Nakagawa M (1967) Tetrahedron Lett:437156. Jacobs TL, Macomber RS, Zunker D (1967) J Am chem Soc g9:700r

g

rtI

60 D.D. Enchev

57. Mulla M, Macomber RS (1989) Synth Commw 19:199758. Udelevich VI, Belahov VV, Komarov EV, Ionin BI, Petrov AA (1983) Dokl Chem 269:1377

CA 99:18881a59. Belahov VY Udelevich VI, Komarov EV Ionin BI, Petrov AA (1983) Russ J Gen Chem

53:213960. Belahov vY Udelevich vI, Jakovlev AA, Ionin BI (1986) Russ J Gen chem 56:33361. Belahov VY Udelevich VI,Ionin BI (1986) Russ J Gen Chem 56:11862. Belahov VY Ionin BI (1989) Russ J Gen Chem 59:214363. Belahov VY Ionin BI (1986) Russ J Gen Chem 56:142164. Belahov VV Udelevich VI, Komarov EV Ionin BI, Petrov AA (1983) Russ J Gen Chem

53:275865. Angelov ChM (1980) Russ J Gen Chem 50:244866. Macomber RS (1977) J Org Chem 48:307267. Macomber RS (1978) J Org Chem 49:183268. Angelov ChM, Ignatiev VM et al (1976) USSR Patent 550401:1069. Angelov chM, vachkov KV, Kirilov M, Ionin BI, vasilev GN, petrov AA (1978) compt

Rend Bul Acad Sci 3l:158970. Ignatiev vM, Angelov chM,Ionin BI, Petrov AA (1975) Russ J Gen chem 45:234271. Angelov ChM, Mikhailova TS,Ignatiev VM, Zaharov VI, Dogadina AY Ionin BI, Petrov AA

(1978) Russ J Gen Chem 48:148772. Mikhailova TS, Angelov ChM,Ignatiev VM,Ionin BI, Petrov AA (1979) Russ J Gen Chem

49:57073. Angelov ChM, Christov VCh (1981) Compt Rend Bul Acad Sci 34:6774. Angelov ChM, Christov VCh, Ionin BI (1981) Russ J Gen Chem 5l:123075. Brel VK,Ionin BI, Petrov AA (1982) Russ J Gen Chem 52:81676. Brel VK, Dogadina AV Ionin BI, Perrov AA ( 1980) Russ J Gen Chem 50: I 89077. Brel VK, Ionin BI, Petrov AA (1981) Russ J Gen Chem 5l:262578. Brel VK,Ionin BI, Petrov AA (1983) Russ J Gen Chem 53:23479. Brel VK,Ionin BI, Petrov AA, Marrinov IV (1985) Russ J Gen Chem 55:246580. Berkova GA, Shehade MA, Zaharov vI, Ionin BI, Petrov AA (1977) Russ J Gen chem

47:95781. Angelov ChM, Enchev DD, Kirilov M (1983) Russ J Gen Chem 53:195882. Enchev DD (2005) Phosphorus Sulfur Silicon Relat Elem 180:221183. Angelov ChM, Kirilov M (1980) Compt Rend Bul Acad Sci 33:93784. Purdela D, Vilchanu R (1972) The chemistry of organic compounds of phosphorus. Khimia,

Moskow85. Angelov ChM (1982) Phosphorus Sulfur Silicon Relat Elem 3i:18786. Macomber RS, Kennedy ER (1976) J Org Chem 4l:319187. Husainova NG, Naumova LY Berdnikov EA, Pudovik AN (1982) Russ J Gen Chem

52:104088. Pudovik AN, Khusainova NG, Berdnikov EA (1980) Dokl Chem 250:116CA92:32159a89. Khusainova NG, Naumova LY Berdnikov EA, Kutyrev GA, Pudovik AN (1982) Phosphorus

Sulfur Silicon Relat Elem 13:14790. Khusainova NG, Berdnikov EA, Naumova LY Pudovik AN (1983) Russ Chem Bull:185191. Angelov ChM, Vachkov KY Kirilov M (1982) Russ J Gen Chem 52:53892. Angelov ChM, Vachkov KV (1984) Phosphorus Sulfur Silicon Relat Elem 21:23793. Angelov ChM, Stoianov NM, Ionin BI (1982) Russ J Gen Chem 52:17894. Braverman S, ReismanD (1977) J Am Chem Soc 99:60595. Mikhailova TS, Angelov ChM, Dogadina AY Zaharov VI, Ignatiev VM, Ionin BI, Petrov AA

(1977) Russ J Gen Chem 41:270196. Shehade AM, Zaharov VI, Ignatiev VM, Ionin BI, Petrov AA (1978) Russ J Gen Chem

48:5597. Angelov ChM, Kirilov M,Ionin BI, Petrov AA (1979) Russ J Gen Chem 49:222598. Prudnikova OG, Brel VK, Ionin BI (1986) Russ J Gen Chem 56:764

rt'"

f;$

H

$

rrH.

)rFn,t3Ip

t

II)F

I;),

Synthesis and Biological Activity of 2,5-Dihydro-1,2-Oxaphosphole-2-Oxide Derivatives 61

99. Angelov ChM, Christov ChZh (1983) Heterocycles 20:219

100. Pudovik AN, Husainova NG (1967) Russ J Gen Chem 37:1889

101. Alabugin IV Sereda GA, Abramkin EY Brel VK, Zik NV Zefrov NS (1995) Dokl Chem

345:481 CA 127:12587a102. Angelov ChM, Enchev DD, Kirilov M, Jivkova TD (1984) Bulgarian Patent N

1 0/1 5.10. r984103. Mikhailova TS, Zaharov VI, Ignatiev VM, Ionin BI, Petrov AA (1980) Russ J Gen Chem

50:1 690104. Mikhailova TS, Zaharov VI, Ignatiev VM, Ionin BI, Petrov AA (1978) Russ J Gen Chem

48:701105. Enchev DD (2005) Heteroatom Chem 16:156

106. Angelov ChM, Stoianov NM, Kirilov M, Vasilev GN, DimchevaZP (1978) Bulgarian Patent

25139:8107. Angelov ChM, Vachkov KY Petrova J, Kirilov M (1982) Phosphorus Sulfur Silicon Relat

Elem l47108. Alabugin IY Brel VK, Zefirov NS (1993) Russ J Gen Chem 63:2387

109. Alabugin IV Brel VK, Chehlov AN, Zefirov NS, Stang JP (1994) Tetrahedron Lett

35:8275110. Angelov ChM, Vachkov KV Kirilov M,Ionin BI, Petrov AA (1979) Compt Rend Bul Acad

Sci 32:61 I

111. Husainova NG, Berdnikov EA, Naumova LV Pudovik AN (1984) Russ J Gen Chem

54:1425112. Angelov ChM, Tancheva ChM (1985) Russ J Gen Chem 55:53

I 13. Angelov ChM, Christov ChZh ( I 980) Russ J Gen Chem 50: 1 89 II14. Angelov ChM (1983) Heterocycles 20:791

115. Angelov ChM, Christov ChZh (1984) Synthesis:664

116. Enchev DD (1997) Phosphorus Sulfur Silicon Relat Elem 122:101

117. Enchev DD, Angelov ChM, Krawchik E, Skovronska A, Michalski J (1991) Phosphorus

Sulfur Silicon Relat Elem 57:249

118. Christov VCh, Prodanov B (2002) Phosphorus Sulfur Silicon Relat Elem 177:234

1 19. Christov VCh, Prodanov B (2002) Heterocycl Commun 8:349

120. Christov VCh, Prodanov B (2002) Heterocycles 57:1777

121. Brel VK (2006) Heteroatom Chem 17:547

122. Brel V K (1998) Synthesis:710123. Yuan J, Ruan X, Yang Y, Huang X (2007) Synlett:2871

I24. Angelov ChM, Enchev DD (1988) Phosphorus Sulfur Silicon Relat Elem 37:125

125. Angelov ChM, Enchev DD (1992) Heteroatom Chem 3:651

126. Christov VCh, Vasilev VT, Angelov ChM (1993) Phosphorus Sulfur Silicon Relat Elem

77:185127. Christov VCh, Angelov ChM (1997) Phosphorus Sulfur Silicon Relat Elem 122:221

128. Enchev DD, Angelov ChM (1987) Phosphorus Sulfur Silicon Relat Elem 34:1.63

129. Enchev DD (2008) Phosphorus Sulfur Silicon Relat Elem 183:2649

130. Enchev DD, Nikolov NG, Angelov ChM (1987) Proceedings of the IV international sympo-

sium on plant-growth regulators, Bulgaria, 365

131. Angelov ChM, Enchev DD (1987) Bulgarian Patent N 9/15.09-1987

132. Kalcheva VP, Dragoeva AP, Kalchev KN, Enchev DD (2009) Gen Mol Biol 32:389

133. Enchev DD unpublished data

134. Enchev DD (2005) Phosphorus Sulfur Silicon Relat Elem 180:2131

135. Enchev DD (2005) Phosphorus Sulfur Silicon Relat Elem 180:2141

136. Kohn KW, Hartley JA, Mattes WB (1987) Nucleic Acids Res 15:10531

137. Hemminki K ( 1985) Cancer Res 45:4237

138. Kwon ChH, Moon KY, Baturay N, Shirota FN (1991) J Med Chem 34:588

139. Vu VT, Fenselau CC, Colvin OM (1981) J Am Chem Soc 103:7362

140. Colvin M, Brundrett RB, Kan MNN, Jardine I, Fenselau C (1976) Cancer Res 36:1 121

hh

ffiih*

$

62 D.D. Enchev

141. Rink SM, Solomon MS, Taylor MJ, Rajur SB, Mclaughtin LM, Hopkins pB (1993) J AmChem Soc 115:2551

142. LeRoux C, Baumeister S, Modro TM (1993) J Chem Res (5):372143. Engle TW, Zon G, Egan W (1982) J Med Chem25:1347144. Baumeister S, Modro TM, Modro TA (1989) Tetrahedron Lett3oi2141145. Haranath P, Anasuyamma U, Naga Raju C, Devendranath Reddy C, Suresh Reddy CJ (2005)

Heteroatom Chem 42:775146. Angelov chM, Enchev DD, Kirilov M (r988) phosphorus sulfur silicon 35:35147. Angelov ChM, Vachkov KV (1981) Tetrahedron Lett22:251j148. Zlk NV, Alabugin IY Kutateladze AG, Keis JL, Zefiriv NS (1994) Dokl Chem 337:20g CA

123:25669a149. Enchev DD, Stankolov SP (2007) Phosphorus Sulfur Silicon Relat Elem 182:1857150. Angelov chM, christov vCh, Ionin BI (1992) Russ J Gen Chem 52:264151. Angelov ChM, Christov ChZh, Mondeshka DM (1984) Phosphorus Sulfur Silicon Relat

Elem2l:249152. Enchev DD (2000) Phosphorus Sulfur silicon Rerat Elem 165:2i3153. Shehade AM, Ignatiev YM,zaharov vI, Ionin BI, perrov AA (197j) Russ J Gen Chem

47:720154. Shehade AM, Ignatiev YM,zaharov vI, Ionin BI, perrov AA (1g79) Russ J Gen chem

49:337155. Christov VCh, Angelov ChM (1992) Phosphorus Sulfur Silicon Relat Elem 68:223156. christov vch (1998) Phosphorus Sulfur Silicon Relat Elem 53:132157. Brel vK, Dogadina AY Ionin BI, petrov AA (r980) Russ J Gen chem 50:1625158. Brel vK, Komarov YaY Ionin BI, Perrov AA (1983) Russ J Gen Chem 53:66159. Angelov ChM, Christov VCh (1984) Chem Scr 24:92 CA 102:9ig5a

lsBN 978-3-642-',I 2253-8

.IuJuilffiilil[ffiU[il