ME 240 Dynamics

323
University Course ME 240 Dynamics University of Wisconsin, Madison Fall 2017 My Class Notes Nasser M. Abbasi Fall 2017

Transcript of ME 240 Dynamics

University Course

ME 240Dynamics

University of Wisconsin, MadisonFall 2017

My Class Notes

Nasser M. Abbasi

Fall 2017

Contents

1 Introduction 11.1 syllabus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 study notes 52.1 Solving pendulum example, lecture Nov 30l 2017 . . . . . . . . . . . . . . . . 62.2 Solving example 7.8, Textbook, page 554, using graphical method . . . . . . 102.3 cheat sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Discussions 153.1 week 14, my solution to first problem . . . . . . . . . . . . . . . . . . . . . . . 163.2 week 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3 week 11 NOV 12 to NOV 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Exams 234.1 First exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.2 Second exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.3 Final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 practice exams 455.1 practice first midterm exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2 practice second midterm exams . . . . . . . . . . . . . . . . . . . . . . . . . . 965.3 practice exam for finals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 HWs 1656.1 HW 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666.2 HW 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706.3 HW 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1796.4 HW 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.5 HW 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1966.6 HW 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056.7 HW 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136.8 HW 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2206.9 HW 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2316.10 HW 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2396.11 HW 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2526.12 HW 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

iii

Contents CONTENTS

6.13 HW 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7 Quizzes 2857.1 Quizz 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2867.2 Quizz 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2907.3 Quizz 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2917.4 Quizz 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2927.5 Quizz 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2957.6 Quizz 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2977.7 Quizz 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3017.8 Quizz 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3057.9 Quizz 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3097.10 Quizz 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3127.11 Quizz 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

iv

Chapter 1

Introduction

Took this course in fall 2017 to help me remember some dynamics which I forgot. InstructorDr. Sonny Nimityongskul was one of the best Dynamics teachers I had and explained thingsvery clearly. Class was very large, over 250 students. Course was hard (Dynamics is a hardsubject) but was useful also.

Links

1. class canvas site https://canvas.wisc.edu/courses/57180 requires login.

1

1.1. syllabus CHAPTER 1. INTRODUCTION

1.1 syllabus

UNIVERSITY OF WISCONSIN-MADISON

DEPARTMENT OF ENGINEERING PHYSICS

EMA 202 โ€“ ME 240: DYNAMICS

Fall 2017

Lectures: Tuesday & Thursday 1:20-2:10pm 1800 Engineering Hall

Textbook: Engineering Mechanics Dynamics, Gray/Costanzo/Plesha (2nd Edition) + Connect Plus

Access Card, McGraw-Hill

Prerequisites: EMA 201 (Statics) and Math 222 (Calculus 2)

Instructor: Dr. Sonny Nimityongskul 509 ERB, [email protected]

Office Hours: Thursday 11:00-12:00, 509 ERB

Teaching Assistants:

Instructor Email

Jenna Thorp [email protected]

Shu Wang [email protected]

Guannan Guo [email protected]

AJ Gross [email protected]

Peter Grimmer [email protected]

Aaron Wright [email protected]

Discussion Sections:

EMA 202 Time Room TA

Section 301 8:50 am 3418 EH Peter Grimmer

Section 302 9:55 am 3418 EH Peter Grimmer

Section 303 11:00 am 3418 EH Peter Grimmer

Section 304 12:05 pm 2540 EH Aaron Wright

Section 305 1:20 pm 3418 EH Aaron Wright

Section 306 2:25 pm 3418 EH AJ Gross

Section 307 12:05 pm 1209 EH Shu Wang

ME 240 Time Room TA

Section 301 8:50 am 2108 ME AJ Gross

Section 302 9:55 am 2108 ME Shu Wang

Section 303 11:00 am 2108 ME Jenna Thorp

Section 304 12:05 pm 2108 ME Jenna Thorp

Section 305 1:20 pm 2108 ME Guannan Guo

Section 306 2:25 pm 2108 ME Guannan Guo

Office Hours: Location 2355 Engineering Hall

Monday 4-6 pm Aaron, AJ

Tuesday 5-6 pm Shu

Wednesday 5-6 pm Jenna

Thursday 5-6 pm Guannan

2

1.1. syllabus CHAPTER 1. INTRODUCTION

Walk-In Tutoring (Undergrads): Typically Sunday through Thursday 6:30-9:00pm on the 3rd floor of

Wendt Library. Open to all.

PrEPs labs and tables: Supplemental instruction provided by the College of Engineering. Enrollment

in InterEGR 150 is required to attend. Three sections are available that meet twice per week. MW 9:30-

10:45am, MW 6:30-7:45pm, TR 9:30-10:45am. See https://www.engr.wisc.edu/academics/student-

services/ulc/supplemental-instruction/ for more info.

Course Website: https://canvas.wisc.edu/courses/57180 Note that this is the site for ME 240. Those of

you enrolled in EMA 202 should also have access to the ME 240 webpage. The canvas page for EMA

202 will not be used for this course.

Homework: Through McGraw-Hill Connect at: http://connect.mheducation.com/class/s-nimityongskul-

fall-2017-dynamics-ema-202-me-240 Homework will be assigned each week and is due the following

Monday at 11:55pm. No late homework will be accepted.

Weekly Quizzes will be given on the course Canvas page. Quiz work must be done independently. You

may consult your book and notes during the quiz, but you may not work with anyone else, nor ask for

assistance with the quiz. Your lowest quiz grade will be dropped to accommodate unanticipated events.

The quizzes will have 1-2 questions and must be completed within 30 minutes of beginning the quiz.

Each quiz will be accessible through Canvas from Tuesday at 2:15pm to Wednesday at 11:55pm.

Midterm Exams: Monday Oct. 23rd and Tuesday Nov. 21st. You may choose to take the

midterm exams in either of two time slots, 5:30-7:00 PM or 7:30-9 PM, but you must take the

midterm during one of those times, due to the large enrollment in the course.

Final Exam: Monday December 18th at 10:05am No alternate times are available.

Weighting: Midterm Exams (2) 25% each

Final Exam 25%

Textbook HW (Connect) 10%

Weekly Quizzes 10%

Discussion Section Participation 5%

Grading: Course grading will follow the scale A 92.0 โ€“ 100 %, AB 87.0 โ€“ 91.9 %, B 82.0 โ€“ 86.9 %, BC

77.0 โ€“ 81.9 %, C 72.0 โ€“ 76.9 %, D 62.0 โ€“ 71.9 %, F < 62.0 % unless otherwise announced (e.g., an exam

may be curved if an adjustment is warranted).

McBurney: If you have McBurney accommodations regarding exams, notify Dr. Nimityongskul during

the first two weeks of the semester, the sooner the better. If you arrange accommodations after that

time, notify instructor as soon as possible.

3

1.1. syllabus CHAPTER 1. INTRODUCTION

EMA 202 / ME 240 Schedule Fall 2017

Date Mtg Text Sec HW Problems, Notes

T 9/5 1 No class

R 9/7 2 2.1 HW1: 2.6, 2.19

T 9/12 3 2.2 2.66, 2.77

R 9/14 4 2.3 2.94, 2.99

T 9/19 5 2.4 & 2.6 HW2: 2.127, 2.128, 2.182, 2.191

R 9/21 6 2.5 2.159, 2.172

T 9/26 7 2.7 HW3: 2.227, 2.241, 2.253

R 9/28 8 3.1 3.25, 3.31, 3.38

T 10/3 9 3.2 HW4: 3.58, 3.69, 3.74

R 10/5 10 3.3 3.115, 3.116, 3.133

T 10/10 11 4.1 HW5: 4.7, 4.20, 4.31

R 10/12 12 4.2 4.39, 4.60, 4.62

T 10/17 13 4.3 HW6: 4.73, 4.81, 4.87

R 10/19 14 4.4 & Review 4.104, 4.109, 4.111

M 10/23 Exam 1 chapter 2-4

T 10/24 15 5.1 HW7: 5.12, 5.26, 5.31

R 10/26 16 5.2 5.66, 5.70, 5.80

T 10/31 17 5.2-5.3 HW8: 5.94, 5.99, 5.117

R 11/2 18 5.3 5.125, 5.128, 5.133

T 11/7 19 6.1 HW9: 6.7, 6.22, 6.35

R 11/9 20 6.2 6.40, 6.42, 6.58

T 11/14 21 6.2 HW10: 6.60, 6.65, 6.74

R 11/16 22 6.3 6.112, 6.124, 6.128

T 11/21 23 Review Exam 2 in evening, chapter 5-6

R 11/23 24 THANKSGIVING (No discussions Wednesday or Friday)

T 11/28 25 7.1-7.2 HW11: 7.5, 7.7, 7.19

R 11/30 26 7.3 7.29, 7.42, 7.52

T 12/5 27 7.4 HW12: 7.61, 7.77, 7.91

R 12/7 28 8.1 8.6, 8.25, 8.40

T 12/12 29 8.2 HW13: 8.54, 8.88, 8.91, 8.105, 8.107, 8.110

R 12/14 No class

M 12/18 Final

Exam 10:05am chapters 7 & 8

4

Chapter 2

study notes

Local contents2.1 Solving pendulum example, lecture Nov 30l 2017 . . . . . . . . . . . . . . . . . . 62.2 Solving example 7.8, Textbook, page 554, using graphical method . . . . . . . . 102.3 cheat sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5

2.1. Solving pendulum example, lecture . . . CHAPTER 2. STUDY NOTES

2.1 Solving pendulum example, lecture Nov 30l 2017

2.1.1 Problem 1

Example 2: The pendulum consists of a mR = 10 kg uniform slender rod

and a sphere of mass mS = 15 kg. If the pendulum is subjected to a

moment of M = 50 N-m, and has an angular velocity of = 3 rad/s when

q = 45o, determine the reaction force from pin O

L =

=R

The FBD and inertia diagram is

6

2.1. Solving pendulum example, lecture . . . CHAPTER 2. STUDY NOTES

Fx

Fy

Mg

system C.G.

OIoฮฑ

Max

May

H

ฮธ

ฮธ

ฮธ

Mg cos ฮธ

Mg sin ฮธ

x

y

ฯ„ (torque)

fbd.ipe, Nasser M. Abbasi, Dec 1, 2017. ME 240 dynamics

Where๐‘€ = ๐‘š๐‘‘๐‘–๐‘ ๐‘˜+๐‘š๐‘๐‘Ž๐‘Ÿ and ๐ป is location of system center of mass. Total mass is๐‘€ = 15+10 =25 kg.

๐ป =๐‘š๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ (๐ฟ + ๐‘…) + ๐‘š๐‘Ÿ๐‘œ๐‘‘

๐ฟ2

๐‘š๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ + ๐‘š๐‘Ÿ๐‘œ๐‘‘

=15 (0.6 + 0.1) + 10 (0.3)

15 + 10= 0.54 m

And

๐ผ๐‘œ = ๐ผ๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’0 + ๐ผ๐‘๐‘Ž๐‘Ÿ0

= 25๐‘š๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’๐‘…2 + ๐‘š๐‘ ๐‘โ„Ž๐‘’๐‘Ÿ๐‘’ (๐ฟ + ๐‘…)2 +

13๐‘š๐‘๐‘Ž๐‘Ÿ๐ฟ2

=โŽ›โŽœโŽœโŽœโŽ2 (15) (0.1)2

5+ 15 (0.6 + 0.1)2

โŽžโŽŸโŽŸโŽŸโŽ  +

13(10) (0.6)2

= 8.61 kg-m2

7

2.1. Solving pendulum example, lecture . . . CHAPTER 2. STUDY NOTES

From FBD we obtain 3 equations.

๐น๐‘ฅ = ๐‘€๐‘Ž๐‘ฅ๐น๐‘ฆ โˆ’๐‘€๐‘” = ๐‘€๐‘Ž๐‘ฆ

โˆ’๐œ โˆ’ ๐‘€๐‘” cos๐œƒ๐ป = ๐ผ๐‘œ๐›ผ

Or

๐น๐‘ฅ = 25๐‘Ž๐‘ฅ๐น๐‘ฆ โˆ’ (25) (9.81) = 25๐‘Ž๐‘ฆ

โˆ’50 โˆ’ (25) (9.81) cos 45 ๐œ‹180

(0.54) = (8.61) ๐›ผ

Or

๐น๐‘ฅ = 25๐‘Ž๐‘ฅ (1)

๐น๐‘ฆ โˆ’ 245.25 = 25๐‘Ž๐‘ฆ (2)

โˆ’16.684 = ๐›ผ (3)

3 equations with 4 unknowns: ๐น๐‘ฅ, ๐น๐‘ฆ, ๐‘Ž๐‘ฅ, ๐‘Ž๐‘ฆ. But looking at this diagram, which relates ๐‘Ž๐‘ฅ, ๐‘Ž๐‘ฆto ๐›ผ.

ฮฑ, ฯ‰

ax

ay

fbd 2.ipe, Nasser M. Abbasi, Dec 1, 2017. ME 240 dynamics

Hฯ‰2Hฮฑ

ฮธ

ฮธฮธH

We see that

๐‘Ž๐‘ฆ = ๐ป๐œ”2 sin๐œƒ + ๐ป๐›ผ cos๐œƒ

= (0.54) (3)2 sin 45 ๐œ‹180

+ (0.54) (โˆ’16.684) cos 45 ๐œ‹180

= โˆ’2.934 m/s2

8

2.1. Solving pendulum example, lecture . . . CHAPTER 2. STUDY NOTES

And

๐‘Ž๐‘ฅ = ๐ป๐›ผ sin๐œƒ โˆ’ ๐ป๐œ”2 cos๐œƒ

= (0.54) (โˆ’16.684) sin 45 ๐œ‹180

โˆ’ (0.54) 32 cos 45 ๐œ‹180

= โˆ’9.807 m/s2

Using these in (1,2), we find the reaction forces

๐น๐‘ฅ = 25๐‘Ž๐‘ฅ= 25 (โˆ’9.807)= โˆ’245.175 N

And

๐น๐‘ฆ โˆ’ 245.25 = 25๐‘Ž๐‘ฆ๐น๐‘ฆ โˆ’ 245.25 = 25 (โˆ’2.934)

๐น๐‘ฆ = 171.9 N

Total reaction force is๐น2๐‘ฆ + ๐น2๐‘ฅ = (171.9)2 + (โˆ’245.175)2 = 299.4334 N

9

2.2. Solving example 7.8, Textbook, page . . . CHAPTER 2. STUDY NOTES

2.2 Solving example 7.8, Textbook, page 554, usinggraphical method

10

2.2. Solving example 7.8, Textbook, page . . . CHAPTER 2. STUDY NOTES

11

2.3. cheat sheets CHAPTER 2. STUDY NOTES

2.3 cheat sheets

2.3.1 First exam

Dynamics Equation Sheet โ€“ EMA 202 / ME 240 โ€“ Spring 2017 (2017/03/14 version)

Disclaimer: This formula sheet is provided for your convenience, and is not guaranteed to include all formulas or expressions needed to solve problems on homework, quizzes, or exams. Students are responsible for all relevant material regardless of its presence or absence on the formula sheet. This sheet will be provided to you with your Midterm Exam and Final Exam. No additional equations or formulas may be brought in written form by the student for either exam.

Geometry: Particle Rectilinear Kinematics: ๐‘Ž๐‘Ž = ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘= ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

= ๐‘ฃ๐‘ฃ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

๐‘ฃ๐‘ฃ = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

๐‘Ž๐‘Ž ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐‘ฃ๐‘ฃ ๐‘‘๐‘‘๐‘ฃ๐‘ฃ

Special case: constant acceleration ac, assuming initial conditions are specified at t = 0: tavtv co +=)( 2

21)( tatvsts coo ++= )(222

oco ssavv โˆ’+=

Particle Curvilinear Motion: Cartesian: kjiv ห†ห†ห† zyx

++= kjia ห†ห†ห† zyx

++=

Normal/Tangential:

tsuv ห†= nt

vv uua ห†ห†2

ฯ+=

where |/|])/(1[

22

2/32

dxyddxdy+

=ฯ

Polar/Cylindrical: ku uv ห†ห†ห† zrr r

++= ฮธฮธ ku ua ห†ห†)2(ห† )( 2 zrrrr r

+++โˆ’= ฮธฮธฮธฮธ

Time Derivative of a Vector: Unit Vector: uฯ‰u ห†)(ห† ร—= ut

General vector A

: Aฯ‰uA

ร—+= AAAt ห†)( ,

)(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

ร—ร—+ร—+ร—+= AAAAAA AAt General Relative Motion:

ABAABB //A rฯ‰vvvv ร—+=+=

( ) ABABABABAABABABABABAABB /2

////A rrฮฑarrฮฑaaaa ฯ‰ฯ‰ฯ‰ โˆ’ร—+=ร—ร—+ร—+=+=

Work and Energy: ฮฃU1โ†’2 = T2 โ€“ T1 where U1โ†’2 = r F2

1

dโˆซ โ‹… and T = 2

21 mv

Conservation of Energy (assumes only conservative forces): ๐‘‡๐‘‡1 + ๐‘‰๐‘‰2 = ๐‘‡๐‘‡1 + ๐‘‰๐‘‰2 Rigid Bodies: use Total Kinetic Energy: ๐‘‡๐‘‡ = 1

2๐‘š๐‘š๐‘ฃ๐‘ฃG

2 + 12

๐ผ๐ผG๐œ”๐œ”2

12

2.3. cheat sheets CHAPTER 2. STUDY NOTES

(Graphics from www.msdgeometry.com, www.mei.org.uk/month_item_12)

Potential Energy:

Terrestrial Gravity: ๐‘‰๐‘‰ = ๐‘š๐‘š๐‘š๐‘šโ„Ž (Rigid Body: ๐‘‰๐‘‰ = ๐‘š๐‘š๐‘š๐‘š๐‘ฆ๐‘ฆ๐บ๐บ). ๐‘š๐‘š โ‰… 9.81 m

s2 or 32.2 fts2

Linear Elastic Spring: Compression/Extension: ๐‘‰๐‘‰ = 1

2๐‘˜๐‘˜(๐‘™๐‘™ โˆ’ ๐‘™๐‘™0)2

Rotational: ๐‘‰๐‘‰ = 12

๐‘˜๐‘˜t(๐œƒ๐œƒ โˆ’ ๐œƒ๐œƒ0)2 Power: ๐‘ƒ๐‘ƒ = ๐น โˆ™ ๐‘ฃ 1 hP = 550 ft-lb/s โ‰ˆ 745.7 W Efficiency: ๐œ€๐œ€ = power output

power input

Linear Impulse and Momentum: โˆ‘ ๐ผ๐ผ1โ†’2 = ๐‘๐‘2 โˆ’ ๐‘๐‘1, where ๐ผ๐ผ1โ†’2 = โˆซ ๐น ๐‘‘๐‘‘๐‘‘๐‘‘2

1 and ๐‘๐‘ = ๐‘š๐‘š๐‘ฃ Rigid Body: ๐‘๐‘ = ๐‘š๐‘š๐‘ฃG Linear Impulse-Momentum for Systems of Particles: โˆ‘ ๐‘š๐‘š๐‘ฃ1 + โˆ‘ โˆซ ๐น ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘2

๐‘‘๐‘‘1= โˆ‘ ๐‘š๐‘š๐‘ฃ2

Coefficient of Restitution for Systems of Particles: ๐‘ฃ๐‘ฃB

+ โˆ’ ๐‘ฃ๐‘ฃA+ = โˆ’๐‘’๐‘’(๐‘ฃ๐‘ฃB

โˆ’ โˆ’ ๐‘ฃ๐‘ฃAโˆ’)

Impulse-Momentum for Rigid Bodies:

Linear Angular

๐‘š๐‘š๐‘ฃG1 + ๐น ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘2

๐‘‘๐‘‘1

= ๐‘š๐‘š๐‘ฃG2 ๐ผ๐ผG๐œ”๐œ” 1 + ๐‘€๐‘€ G ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘2

๐‘‘๐‘‘1

= ๐ผ๐ผG๐œ”๐œ” 2

โ„Ž P

1 + ๐‘€๐‘€ P ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘2

๐‘‘๐‘‘1

= โ„Ž P2

โ„Ž P = ๐ผ๐ผG๐œ”๐œ” + ๐‘Ÿ๐‘Ÿ ร— ๐‘š๐‘š๐‘ฃG Coefficient of Restitution - Rigid Bodies: (๐‘ฃ๐‘ฃB

+)๐‘›๐‘› โˆ’ (๐‘ฃ๐‘ฃA+)๐‘›๐‘› = โˆ’๐‘’๐‘’((๐‘ฃ๐‘ฃB

โˆ’)๐‘›๐‘› โˆ’ (๐‘ฃ๐‘ฃAโˆ’)๐‘›๐‘›)

Equations of Motion: ๐น = ๐‘š๐‘š๐‘Ž๐บ๐บ ๐‘€๐‘€ P = ๐ผ๐ผG๐›ผB + ๐‘Ÿ๐‘ŸG/P ร— ๐‘š๐‘š๐‘ŽG Mass Moment of Inertia: ๐ผ๐ผ = โˆซ ๐‘Ÿ๐‘Ÿ2๐‘‘๐‘‘๐‘š๐‘š

๐ผ๐ผ = ๐‘˜๐‘˜2๐‘š๐‘š (k = Radius of Gyration) Parallel Axis Theorem: ๐ผ๐ผ = ๐ผ๐ผG + ๐‘š๐‘š๐‘‘๐‘‘2 Centroidal Moments of Inertia:

Thin Uniform Rod: 112

๐‘š๐‘š๐ฟ๐ฟ2 Thin Ring: ๐‘š๐‘š๐‘…๐‘…2 Circular Disk: 12

๐‘š๐‘š๐‘…๐‘…2

Sphere: 25

๐‘š๐‘š๐‘…๐‘…2 Rectangular Plate: 112

๐‘š๐‘š(๐‘Ž๐‘Ž2 + ๐‘๐‘2)

13

2.3. cheat sheets CHAPTER 2. STUDY NOTES

2.3.2 mass moment of inertia

14

Chapter 3

Discussions

Local contents3.1 week 14, my solution to first problem . . . . . . . . . . . . . . . . . . . . . . . . . 163.2 week 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.3 week 11 NOV 12 to NOV 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

15

3.1. week 14, my solution to first problem CHAPTER 3. DISCUSSIONS

3.1 week 14, my solution to rst problem

In[77]:= L0 = 2 * 0.75;

mBar = 2;

mDisk = 4;

w1Disk = 5;

rDisk = 0.15;

Find initial h1 about O. Since there are two disks, and the rod is not rotating initially, then only contribu-tion to angular momentum comes from the spinning disks (two of them).

In[82]:=

I1 = 2 *1

2mDisk * rDisk2

Out[82]= 0.09

In[83]:= h1 = I1 * w1Disk

Out[83]= 0.45

Now we find final angular momentum about O. Assume final angular speed of the whole system (now as rigid body) is w2. Notice use of parallel axis theorem now

In[85]:= I2 =1

12mBar L02 + 2 *

1

2mDisk * rDisk2 + mDisk * L0 2

2

Out[85]= 4.965

In[86]:= h2 = I2 w2

Out[86]= 4.965 w2

Now equate h1=h2 and solve for w2

In[87]:= equation = h1 โฉต h2

Out[87]= 0.45 โฉต 4.965 w2

Printed by Wolfram Mathematica Student Edition

16

3.2. week 10 CHAPTER 3. DISCUSSIONS

3.2 week 10

My solution is below

3.2.1 Problem 1

3.2.1.1 Part 1

Notice that the point ๐ธ is not on the bar ๐ถ๐ท. It is the point where the disks meet at thisinstance shown.

๐ท = ๐ถ + ๐ถ๐ท ร— ๐ท/๐ถ= 0 + ๐œ”๐ถ๐ท ร— (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šค= ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šฅ (1)

But we also see that ๐ท can be written as

๐ท = ๐ธ + ๐‘‘๐‘–๐‘ ๐‘˜ ร— ๐ท/๐ธ= 0 + ๐œ”๐‘‘๐‘–๐‘ ๐‘˜ ร— ๐‘Ÿ๐ต ๐šค= ๐œ”๐‘‘๐‘–๐‘ ๐‘˜๐‘Ÿ๐ต ๐šฅ (2)

17

3.2. week 10 CHAPTER 3. DISCUSSIONS

Where in the above we used the fact that ๐ธ = ๐ถ = 0 at the instance shown. Equating (1)and (2)

๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) = ๐œ”๐‘‘๐‘–๐‘ ๐‘˜๐‘Ÿ๐ต

๐œ”๐‘‘๐‘–๐‘ ๐‘˜ = ๐œ”๐ถ๐ท๐‘Ÿ๐ด + ๐‘Ÿ๐ต๐‘Ÿ๐ต

(3)

3.2.1.2 Part 2

๐น = ๐‘‰๐ท + ๐‘‘๐‘–๐‘ ๐‘˜ ร— ๐น/๐ท= ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šฅ + ๐œ”๐‘‘๐‘–๐‘ ๐‘˜ ร— ๐‘Ÿ๐ต ๐šฅ

Hence

๐น = โˆ’๐œ”๐‘‘๐‘–๐‘ ๐‘˜๐‘Ÿ๐ต ๐šค + ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šฅ

= โˆ’๐œ”๐ถ๐ท๐‘Ÿ๐ด + ๐‘Ÿ๐ต๐‘Ÿ๐ต

๐‘Ÿ๐ต ๐šค + ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šฅ

= ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šค + ๐œ”๐ถ๐ท (๐‘Ÿ๐ด + ๐‘Ÿ๐ต) ๐šฅ

3.2.2 Problem 2

๐ท = ๐ต + ๐ท/๐ต

= ๐ต + ๐ต๐ท ร— ๐ท/๐ต (1)

18

3.2. week 10 CHAPTER 3. DISCUSSIONS

But

๐ต = ๐ด + ๐ด๐ต ร— ๐ต/๐ด= 0 โˆ’ ๐œ”๐ด๐ต ร— ๐ฟ1 cos๐œƒ ๐šค + ๐ฟ1 sin๐œƒ ๐šฅ

= โˆ’๐œ”๐ด๐ต๐ฟ1 cos๐œƒ ๐šฅ + ๐œ”๐ด๐ต๐ฟ1 sin๐œƒ ๐šค (2)

Where

๐œ”๐ด๐ต = 2000 2๐œ‹60

=2003

๐œ‹ = 209.4395 rad/sec

The angle ๐›ฝ can be found as followssin๐œƒ๐ฟ2

=sin ๐›ฝ๐ฟ1

sin ๐›ฝ =๐ฟ1๐ฟ2

sin๐œƒ =38

sin 40 ๐œ‹180

= 0.241 radians

= 13.8080

Now we know everything to evaluate (1). Therefore

๐ท = ๐ต + ๐ต๐ท ร— ๐‘Ÿ๐ท/๐ต= โˆ’๐œ”๐ด๐ต๐ฟ1 cos๐œƒ ๐šฅ + ๐œ”๐ด๐ต๐ฟ1 sin๐œƒ ๐šค + ๐œ”๐ต๐ท ร— ๐ฟ2 cos ๐›ฝ ๐šค โˆ’ ๐ฟ2 sin ๐›ฝ ๐šฅ

= โˆ’๐œ”๐ด๐ต๐ฟ1 cos๐œƒ ๐šฅ + ๐œ”๐ด๐ต๐ฟ1 sin๐œƒ ๐šค + ๐œ”๐ต๐ท๐ฟ2 cos ๐›ฝ ๐šฅ + ๐œ”๐ต๐ท๐ฟ2 sin ๐›ฝ ๐šค

= ๐šค ๐œ”๐ด๐ต๐ฟ1 sin๐œƒ + ๐œ”๐ต๐ท๐ฟ2 sin ๐›ฝ + ๐šฅ โˆ’๐œ”๐ด๐ต๐ฟ1 cos๐œƒ + ๐œ”๐ต๐ท๐ฟ2 cos ๐›ฝ (3)

But the ๐‘ฆ componenent of ๐ท = 0 since ๐ท can only move in ๐‘ฅ direction. Therefore from theabove

โˆ’๐œ”๐ด๐ต๐ฟ1 cos๐œƒ + ๐œ”๐ต๐ท๐ฟ2 cos ๐›ฝ = 0

๐œ”๐ต๐ท = ๐œ”๐ด๐ต๐ฟ1 cos๐œƒ๐ฟ2 cos ๐›ฝ (4)

Substituting (4) into the ๐‘ฅ component of (3) gives the answer we want

๐ท = ๐šค ๐œ”๐ด๐ต๐ฟ1 sin๐œƒ + ๐ฟ1 cos๐œƒ๐ฟ2 cos ๐›ฝ๐œ”๐ด๐ต ๐ฟ2 sin ๐›ฝ

= ๐šค ๐ฟ1 sin๐œƒ + ๐ฟ1 cos๐œƒ๐ฟ2 cos ๐›ฝ ๐ฟ2 sin ๐›ฝ๐œ”๐ด๐ต

= ๐šค

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ3 sin 40

๐œ‹180

+3 cos 40 ๐œ‹

180 sin 13.808 ๐œ‹

180

cos 13.808 ๐œ‹180

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  209.4395

= 522.170 ๐šค inch/sec= 43.514 ๐šค ft/sec

And ๐œ”๐ต๐ท = ๐œ”๐ด๐ต๐ฟ1 cos๐œƒ๐ฟ2 cos ๐›ฝ = 209.4395

3 cos40 ๐œ‹180

8 cos13.808 ๐œ‹180

= 61.955 rad/sec

19

3.3. week 11 NOV 12 to NOV 18 CHAPTER 3. DISCUSSIONS

3.3 week 11 NOV 12 to NOV 18

My solution is below

3.3.1 Problem 6 3 Example 1

Acceleration

31

in. radius drum is

in. radius drum as

2, both

directed to the left

Determine the accelerations of points A, B, and C of the drum.

Given

๐ท = โˆ’8 ๐šค๐‘Ž๐ท = โˆ’30 ๐šค

But also (assuming cord is not extensible)

๐ต = โˆ’8 ๐šค๐‘Ž๐ต = โˆ’30 ๐šค

Since the point ๐ต is also on the large disk, its velocity can be used to find the angular velocityof the disk. The disk is spining in the clockwise direction. Using ๐‘‰๐ต = ๐‘Ÿ๐œ”๐‘‘๐‘–๐‘ ๐‘˜, where ๐‘Ÿ = 5inch, then ๐œ”๐‘‘๐‘–๐‘ ๐‘˜ =

โˆ’85 = โˆ’1.6 rad/sec or

๐‘‘๐‘–๐‘ ๐‘˜ = โˆ’1.6

Similarly ๐‘Ž๐ต = ๐‘Ÿ๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ in the clockwise direction, hence ๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ =๐‘Ž๐ต๐‘Ÿ = โˆ’30

5 = โˆ’6 rad/sec2

20

3.3. week 11 NOV 12 to NOV 18 CHAPTER 3. DISCUSSIONS

๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ = โˆ’6

Now

๐‘Ž๐ด = ๐‘Ž๐ต + ๐›ผ๐ด๐ต ร— ๐ด/๐ต โˆ’ ๐œ”2๐ด๐ต๐ด/๐ต

Where ๐ด/๐ต = (๐‘Ÿ2 โˆ’ ๐‘Ÿ1) ๐šฅ = (5 โˆ’ 3) ๐šฅ = 2 ๐šฅ and the above becomes

๐‘Ž๐ด = โˆ’30 ๐šค + โˆ’6 ร— 2 ๐šฅ โˆ’ (โˆ’1.6)2 2 ๐šฅ

= โˆ’30 ๐šค + (12 ๐šค) โˆ’ 5.12 ๐šฅ= โˆ’18 ๐šค โˆ’ 5.12 ๐šฅ

Now

๐‘Ž๐ถ = ๐‘Ž๐‘‚ + ๐›ผ๐‘‚๐ถ ร— ๐ถ/๐‘‚ โˆ’ ๐œ”2๐‘‚๐ถ๐ถ/๐‘‚

Where ๐‘‚ is the center of the disk. Since disk is not sliding, then ๐‘Ž๐‘‚ = 0 and ๐ถ/๐‘‚ = 5 ๐šค. Theabove becomes

๐‘Ž๐ถ = โˆ’6 ร— 5 ๐šค โˆ’ (โˆ’1.6)2 5 ๐šค= โˆ’30 ๐šฅ โˆ’ 12.8 ๐šค

21

3.3. week 11 NOV 12 to NOV 18 CHAPTER 3. DISCUSSIONS

3.3.2 Problem 6 3 Example 2 rev2

22

Chapter 4

Exams

Local contents4.1 First exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.2 Second exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.3 Final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

23

CHAPTER 4. EXAMS

24

4.1. First exam CHAPTER 4. EXAMS

4.1 First exam

4.1.1 key solution to rst exam

25

4.1. First exam CHAPTER 4. EXAMS

26

4.1. First exam CHAPTER 4. EXAMS

27

4.1. First exam CHAPTER 4. EXAMS

28

4.1. First exam CHAPTER 4. EXAMS

29

4.1. First exam CHAPTER 4. EXAMS

30

4.1. First exam CHAPTER 4. EXAMS

31

4.1. First exam CHAPTER 4. EXAMS

32

4.2. Second exam CHAPTER 4. EXAMS

4.2 Second exam

4.2.1 key solution to Second exam

33

4.2. Second exam CHAPTER 4. EXAMS

34

4.2. Second exam CHAPTER 4. EXAMS

35

4.2. Second exam CHAPTER 4. EXAMS

36

4.2. Second exam CHAPTER 4. EXAMS

37

4.2. Second exam CHAPTER 4. EXAMS

38

4.2. Second exam CHAPTER 4. EXAMS

39

4.2. Second exam CHAPTER 4. EXAMS

40

4.2. Second exam CHAPTER 4. EXAMS

41

4.2. Second exam CHAPTER 4. EXAMS

42

4.2. Second exam CHAPTER 4. EXAMS

43

4.3. Final exam CHAPTER 4. EXAMS

4.3 Final exam

4.3.1 key solution to Final exam

Not available

44

Chapter 5

practice exams

Local contents5.1 practice first midterm exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2 practice second midterm exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965.3 practice exam for finals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

45

CHAPTER 5. PRACTICE EXAMS

46

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1 practice rst midterm exams

5.1.1 Fall 2016

5.1.1.1 exam questions

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Instructions

โ€ข Show all of your work.

โ€ข To maximize opportunities for partial credit, solve problems symbolically to the extent possible and

substitute numerical values at the end.

โ€ข Include free body diagrams for all equilibrium equations.

โ€ข The only notes allowed are the equations provided with this exam.

โ€ข The use of cell phones is prohibited.

โ€ข The instructors and the University of Wisconsin expect the highest standards of honesty and integrity

in the academic performance of its students. It is important that the work submitted on this

examination is yours and yours alone.

โ€ข Receiving or giving aid in an examination or using notes on a closed note exam will be considered

cheating and will result in a grade of F and the case being reported to the Dean of Students Office.

Circle Your Discussion Section:

EMA 202 Time TA

301 8:50 Peter Grimmer

302 9:55 Aswin Rajendram Muthukumar

303 11:00 Aswin Rajendram Muthukumar

304 12:05 Zz Riford

305 1:20 Peter Grimmer

306 2:25 Peter Grimmer

307 12:05 Aaron Wright

ME 240

301 8:50 Jenna Lynne

302 9:55 Jenna Lynne

303 11:00 Chembian Parthiban

304 12:05 Chembian Parthiban

305 1:20 Aaron Wright

306 2:25 Zz Riford

Grading:

Q1 /10

Q2 /30

Q3 /30

Q4 /30

Total

/100

47

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Question 1 (10 points) For the following short answer problems, please include any relevant calculations and/or a brief

explanation for your answer.

1A (5 points)

A block is traveling with a speed vo on a smooth surface

when the surface suddenly becomes rough with a

coefficient of friction of ยต causing the block to stop after a

distance d. If the block were traveling twice as fast ( 2vo ),

how far will it travel on the rough surface before stopping?

1B (5 points)

Marble A is placed in a hollow tube that is pinned at point

B. The tube is swung in a horizontal plane causing the

marble to be thrown from the end of the tube. As viewed

from the top, circle the trajectory 1-5 that best describes

the path of the marble after leaving the tube?

B

48

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Question 2 (30 points)

The block has a mass M = 0.8kg and moves within

the smooth vertical slot. It starts from rest when the

attached spring is in the un-stretched position at A.

Determine the constant vertical force F which must

be applied to the cord so that the block attains a

speed VB = 2.5 m/s when it reaches SB = 0.15m.

Note that the spring is still attached to the block at

position B.

Given:

M = 0.8 kg l = 0.4 m VB = 2.5 m/s

b = 0.3 m SB = 0.15 m k = 100 N/m

49

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Question 3 (30 points)

The train in the figure is supported by magnetic repulsion

forces exerted in the direction perpendicular to the track.

Motion of the train in the transverse direction is prevented

by lateral supports. The 20,000-kg train is traveling at 30

m/s on a curved segment of track described by the equation

y=.0033x2 where x and y are in meters. The bank angle of the

track is 40ยฐ when x=0. When the train is at this point in the

curve:

a) Draw the forces acting on the train in the outline below.

c) What force must the magnetic levitation system exert to

support the train and what force is exerted by the lateral

supports?

b) For what speed would the lateral force at this point of

the curve be zero? (This is the optimum speed for the train

to travel on the banked track. If you were a passenger, you

would not need to exert any lateral force to remain in

place in your seat.)

Tra

ck

50

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Question 4 (30 points)

For an amazing stunt, Steve runs off a 10m tall ramp with a 30o incline at a speed of 10m/s. He

hopes to jump over a pit and impact a block of ice at a height of 2m.

A) At what distance, d, should the ice block be placed from the end of the ramp?

B) Assume that the 2000 kg ice block slides without friction on the ground. Given the coefficient

of restitution between Steve and the ice block is 0.2, at what angle ฯ† will Steve bounce off of

the wall?

C) Given that the impact between Steve and the ice block takes 0.25 seconds. What is the average

force felt by Steve during the impact?

51

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

Geometry:

c

C

b

B

a

A

sinsinsin==

cBABAC cos2222 โˆ’+=

1sin cos 22 =+ ฮธฮธ

Particle Rectilinear Motion:

dt

dva =

dt

dsv = vdvads =

For the special case of constant acceleration (ac), and assuming initial conditions are

specified at t = 0:

tavtv co +=)( 2

2

1)( tatvsts coo ++= )(222

oco ssavv โˆ’+=

Particle Curvilinear Motion:

Cartesian Results: kjiv ห†ห†ห† zyx &&&r

++= kjia ห†ห†ห† zyx &&&&&&r

++=

Normal/Tangential Results:

tsuv ห†&r

=

nt

vv uua ห†ห†

2

ฯ+= &

r where

|/|

])/(1[22

2/32

dxyd

dxdy+=ฯ

Polar Results:

ฮธฮธ u uv ห†ห† &&r

rr r +=

ฮธฮธฮธฮธ u ua ห†)2(ห† )( 2 &&&&&&&r

rrrr r ++โˆ’=

Spherical Results:

ฮธฯ† ฯ†ฮธฯ† uu uv ห† sinห†ห† &&&r

rrr r ++=

ฮธ

ฯ†

ฯ†ฮธฯ†ฯ†ฮธฯ†ฮธ

ฯ†ฯ†ฮธฯ†ฯ†ฯ†ฮธฯ†

u

u ua

ห†)cos2sin2sin(

ห†)cossin2(ห† )sin( 2222

&&&&&&

&&&&&&&&&r

rrr

rrrrrr r

+++

โˆ’++โˆ’โˆ’=

General Time Derivatives of a Vector:

uฯ‰u ห†)(ห† ร—= utr&

Aฯ‰uArr

&&rร—+= AAAt ห†)( )(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

rrrr&r&

r&&&&r

ร—ร—+ร—+ร—+= AAAAAA AAt

Principle of Work and Energy: ฮฃU1โ†’2 = T2 โ€“ T1 where U1โ†’2 = r F2

1

rvdโˆซ โ‹… and T = 2

2

1mv

Conservation of Energy (assumes only conservative forces): T1 + V1 = T2 + V2

(For rigid bodies, these results are unchanged except for the fact that T = 22

2

1

2

1ฯ‰GG Imv + )

c

b a C

B A

52

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

ME 240 / EMA 202, Fall 2016 Name: ______________________________ Midterm #1, closed book/notes, 90 min.

V is potential energy and takes different forms depending on the source. For terrestrial gravity,

V = mgy, (mgyG for a rigid body) while for a linear elastic spring, V = 2

2

1ฮดk

Power: vFPrr

โ‹…=

Efficiency: inputpower

outputpower =ฮต

Linear Impulse and Momentum: 1221 ppIvvv

โˆ’=โˆ‘ โ†’ where dtโˆซ=โ†’

2

1 21 FI

vv and vp

vvm=

(For rigid bodies, the linear impulse and momentum expressions are identical but with Gvvvv

= )

Coefficient of restitution: ( ) ( )( ) ( )

11

22

BA

AB

vv

vve

โˆ’

โˆ’=

Principle of Angular Impulse and Momentum: 1221 HHI OOM

vvvโˆ’=โˆ‘ โ†’ where

dtOM โˆซ=โ†’

2

1 21 MI

vv and vH

vvvmr ร—=

(For rigid bodies, this principle holds as long as O is either the center of gravity G or a point of

fixed rotation. If the center of gravity, HG = IGฯ‰; if a fixed axis, HO = IOฯ‰.)

Relative General Plane Motion:

Translating Axes: ABAABB //A rฯ‰vvvvvvvvvv

ร—+=+=

ABABAABB /

2

//A rrฮฑaaaavvvvvvv

ฯ‰โˆ’ร—+=+=

Rotating Axes: ( ) ABxyABB //A rvvvvrvvv

ร—ฮฉ++=

( ) ( ) ( )xyABABABxyABB ////A 2 vrraaa

vvv&rvvvร—ฮฉ+ร—ฮฉร—ฮฉ+ร—ฮฉ++=

Equations of Motion: xGx amF )(=โˆ‘ ; yGy amF )(=โˆ‘

or tGt amF )(=โˆ‘ ; nGn amF )(=โˆ‘

ฮฑGG IM =โˆ‘ or ฮฑOO IM =โˆ‘ or ... if you must ...

ฮฑGyGxGP IamxamyM ++โˆ’=โˆ‘ )()(

Mass Moment of Inertia: Definition, and in terms of radius of gyration, k: mkdmrI22 == โˆซ

Parallel axis theorem: 2

mdII G +=

53

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1.1.2 key solutions

54

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

55

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

56

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

57

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

58

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

59

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

60

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

61

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

62

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1.2 Spring 2015

5.1.2.1 exam questions

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Instructions

โ€ข Write your name on every sheet.

โ€ข Show all of your work.

โ€ข To maximize opportunities for partial credit, solve problems symbolically to the extent

possible and substitute numerical values at the end.

โ€ข Include free body diagrams for all equilibrium equations.

โ€ข This is a closed book examination.

โ€ข The only notes allowed are the equations provided with this exam.

โ€ข Calculators are allowed.

โ€ข The use of cell phones is prohibited.

โ€ข The instructors and the University of Wisconsin expect the highest standards of honesty and

integrity in the academic performance of its students. It is important that the work submitted

on this examination is yours and yours alone.

โ€ข Receiving or giving aid in an examination or using notes on a closed note exam will be

considered cheating and will result in a grade of F and the case being reported to the Dean of

Students Office.

Circle Your Discussion Section: 301 (Tu 1:20, Harsha)

302 (Tu 2:25, Harsha)

303 (W 3:30, David)

304 (Th 8:50, David)

305 (Th 12:05, David)

306 (Th 1:20, David)

Grading:

Q1 /10

Q2 /30

Q3 /30

Q4 /30

Total

/100

63

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 1 (10 points)

1A (4 points) A child walks across a merry-go-round with constant speed u relative to the platform.

The merry-go-round is rotating about its center at a constant angular velocity, ฯ‰, in the direction

shown. When the child is at the center of the platform, write an expression for the acceleration

vector and note all of the terms that are equal to zero. Additionally, draw the acceleration vector

(with coordinate system) at the instant shown on the figure below.

1B (6 points)

A 500kg elevator starts from rest and travels upward with a

constant acceleration of 2m/s2. Determine the power output of

motor M at t = 3 seconds.

u

ฯ‰

64

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 2 (30 points)

At the bottom of a loop in the vertical plane, an

airplane has a horizontal velocity of 315mph

and is accelerating at a rate of 10 ft/s2. The

radius of curvature of the loop is 1 mile. The

plane is being tracked by radar at O. What are

the values for ๐‘Ÿ, , , ๐‘Ž๐‘›๐‘‘ at this instant?

2400ft

1800ft

315mph

1 mile

r

1 mile = 5280 feet

65

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 3 (30 points)

Each of the two blocks has mass m. The

coefficient of kinetic friction on all surfaces

of contact is ยต. If a horizontal force P

moves the bottom block, determine the

acceleration of the bottom block in cases

(a) and (b).

Additionally, solve for the force P, in

which case (a) and (b) have the same

acceleration.

66

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 4 (30 points)

A 3-lb collar C may slide without friction along the

vertical rod. It is attached to 3 springs, each with spring

constant k = 2 lb/in and an undeformed length of 6 inches.

Given that the collar is released from rest, determine the

speed of the collar after it has traveled 6 inches down.

g

C

A

B

D

67

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Geometry:

c

C

b

B

a

A

sinsinsin

cBABAC cos2222

1sin cos 22

Particle Rectilinear Motion:

dt

dva

dt

dsv vdvads

For the special case of constant acceleration (ac), and assuming initial conditions are

specified at t = 0:

tavtv co )( 2

2

1)( tatvsts coo )(222

oco ssavv

Particle Curvilinear Motion:

Cartesian Results: kjiv ห†ห†ห† zyx

kjia ห†ห†ห† zyx

Normal/Tangential Results:

tsuv ห†

nt

vv uua ห†ห†

2

where

|/|

])/(1[22

2/32

dxyd

dxdy

Polar Results:

u uv ห†ห†

rr r

u ua ห†)2(ห† )( 2

rrrr r

Spherical Results:

uu uv ห† sinห†ห†

rrr r

u

u ua

ห†)cos2sin2sin(

ห†)cossin2(ห† )sin( 2222

rrr

rrrrrr r

General Time Derivatives of a Vector:

uฯ‰u ห†)(ห† ut

Aฯ‰uA

AAAt ห†)( )(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

AAAAAA AAt

Principle of Work and Energy: U12 = T2 โ€“ T1 where U12 = r F2

1

d and T = 2

2

1mv

Conservation of Energy (assumes only conservative forces): T1 + V1 = T2 + V2

(For rigid bodies, these results are unchanged except for the fact that T = 22

2

1

2

1GG Imv )

c

b a C

B A

68

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

V is potential energy and takes different forms depending on the source. For terrestrial gravity,

V = mgy, (mgyG for a rigid body) while for a linear elastic spring, V = 2

2

1k

Power: vFP

Efficiency: inputpower

outputpower

Linear Impulse and Momentum: 1221 ppI

where dt

2

1 21 FI

and vp

m

(For rigid bodies, the linear impulse and momentum expressions are identical but with Gvv

)

Coefficient of restitution:

11

22

BA

AB

vv

vve

Principle of Angular Impulse and Momentum: 1221 HHI OOM

where

dtOM

2

1 21 MI

and vH

mr

(For rigid bodies, this principle holds as long as O is either the center of gravity G or a point of

fixed rotation. If the center of gravity, HG = IG; if a fixed axis, HO = IO.)

Relative General Plane Motion:

Translating Axes: ABAABB //A rฯ‰vvvv

ABABAABB /

2

//A rrฮฑaaaa

Rotating Axes: ABxyABB //A rvvv

xyABABABxyABB ////A 2 vrraaa

Equations of Motion: xGx amF )( ; yGy amF )(

or tGt amF )( ; nGn amF )(

GG IM or OO IM or ... if you must ...

GyGxGP IamxamyM )()(

Mass Moment of Inertia: Definition, and in terms of radius of gyration, k: mkdmrI 22

Parallel axis theorem: 2mdII G

69

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1.2.2 key solution

70

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

71

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

72

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

73

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

74

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

75

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

76

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

77

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1.3 Fall 2014

5.1.3.1 exam questions

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Instructions

โ€ข Write your name on every sheet.

โ€ข Show all of your work.

โ€ข To maximize opportunities for partial credit, solve problems symbolically to the extent

possible and substitute numerical values at the end.

โ€ข Include free body diagrams for all equilibrium equations.

โ€ข This is a closed book examination.

โ€ข The only notes allowed are the equations provided with this exam.

โ€ข Calculators are allowed.

โ€ข The use of cell phones is prohibited.

โ€ข The instructors and the University of Wisconsin expect the highest standards of honesty and

integrity in the academic performance of its students. It is important that the work submitted

on this examination is yours and yours alone.

โ€ข Receiving or giving aid in an examination or using notes on a closed note exam will be

considered cheating and will result in a grade of F and the case being reported to the Dean of

Students Office.

Circle Your Discussion Section: 301 (Tu 1:20, David)

302 (Tu 2:25, David)

303 (W 3:30, David)

304 (Th 8:50, Matt)

305 (Th 12:05, Matt)

306 (Th 1:20, Matt)

Grading:

Q1 /25

Q2 /25

Q3 /25

Q4 /25

Total

/100

78

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 1 (25 points)

Conceptual questions: please include a few sentences or equations to justify your answers

1A (6 points) The trajectory of a particle is shown on the figure below. At point A the speed of

the particle is decreasing. Draw the acceleration and velocity vectors at point A (magnitude is not

important)

1B (5 points) A windmill sits in an inertial coordinate system. Itโ€™s blades are rotating at a

constant rate ฯ‰. Is the acceleration of point A equal to 0?

A

tu

nu

X

y

A

79

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

1C (8 points) Determine the equation for the trajectory of a projectile, y(x). Assume x(t=0) = 0

and y(t=0) = 0. (hint: your equation should look like Y = C1X+C2X2 , Find C1 and C2)

1D (6 points) A toy car is riding a track with a circular loop of radius R. What is the minimum

speed that the car must be going at point A to maintain contact with the track? Let m=car mass

A g

80

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 2 (25 points)

A ball is thrown horizontally from the top of a 20m tall building with a velocity of 10m/s. A

short time later, a person on the ground (point B) throws another ball such that the two balls

collide at point C. Given that the person on the ground throws from a height of 1m and an angle

ฮธ = 35o,

a) Find the height at which the balls collide

b) Find the velocity of the ball thrown from point B

c) Find the time delay between when ball A and B are thrown

81

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 3 (25 points)

A 10kg mass, m, rotates around a vertical

pole in a horizontal circular path with

radius R=1m. The angles of the ropes

with respect to the vertical direction are

35o and 55o.

Find the range of the velocity of the mass

such that the mass will remain on the

circular path described above?

35o

82

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Question 4 (25 points)

Crates A and B of mass 50 kg and 75 kg, respectively, are released from rest. The linear elastic spring has stiffness k=500Nm. Neglect the mass of the pulleys and cables and neglect friction in the pulley bearings.

If ยตk=0.25 and the spring is

initially unstretched, determine the speed of B after A slides 4 m.

83

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

Geometry:

c

C

b

B

a

A

sinsinsin

cBABAC cos2222

1sin cos 22

Particle Rectilinear Motion:

dt

dva

dt

dsv vdvads

For the special case of constant acceleration (ac), and assuming initial conditions are

specified at t = 0:

tavtv co )( 2

2

1)( tatvsts coo )(222

oco ssavv

Particle Curvilinear Motion:

Cartesian Results: kjiv ห†ห†ห† zyx

kjia ห†ห†ห† zyx

Normal/Tangential Results:

tsuv ห†

nt

vv uua ห†ห†

2

where

|/|

])/(1[22

2/32

dxyd

dxdy

Polar Results:

u uv ห†ห†

rr r

u ua ห†)2(ห† )( 2

rrrr r

Spherical Results:

uu uv ห† sinห†ห†

rrr r

u

u ua

ห†)cos2sin2sin(

ห†)cossin2(ห† )sin( 2222

rrr

rrrrrr r

General Time Derivatives of a Vector:

uฯ‰u ห†)(ห† ut

Aฯ‰uA

AAAt ห†)( )(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

AAAAAA AAt

Principle of Work and Energy: U12 = T2 โ€“ T1 where U12 = r F2

1

d and T = 2

2

1mv

Conservation of Energy (assumes only conservative forces): T1 + V1 = T2 + V2

(For rigid bodies, these results are unchanged except for the fact that T = 22

2

1

2

1GG Imv )

c

b a C

B A

84

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #1, closed book/notes, 90 min.

V is potential energy and takes different forms depending on the source. For terrestrial gravity,

V = mgy, (mgyG for a rigid body) while for a linear elastic spring, V = 2

2

1k

Power: vFP

Efficiency: inputpower

outputpower

Linear Impulse and Momentum: 1221 ppI

where dt

2

1 21 FI

and vp

m

(For rigid bodies, the linear impulse and momentum expressions are identical but with Gvv

)

Coefficient of restitution:

11

22

BA

AB

vv

vve

Principle of Angular Impulse and Momentum: 1221 HHI OOM

where

dtOM

2

1 21 MI

and vH

mr

(For rigid bodies, this principle holds as long as O is either the center of gravity G or a point of

fixed rotation. If the center of gravity, HG = IG; if a fixed axis, HO = IO.)

Relative General Plane Motion:

Translating Axes: ABAABB //A rฯ‰vvvv

ABABAABB /

2

//A rrฮฑaaaa

Rotating Axes: ABxyABB //A rvvv

xyABABABxyABB ////A 2 vrraaa

Equations of Motion: xGx amF )( ; yGy amF )(

or tGt amF )( ; nGn amF )(

GG IM or OO IM or ... if you must ...

GyGxGP IamxamyM )()(

Mass Moment of Inertia: Definition, and in terms of radius of gyration, k: mkdmrI 22

Parallel axis theorem: 2mdII G

85

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

5.1.3.2 key answers

86

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

87

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

88

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

89

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

90

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

91

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

92

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

93

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

94

5.1. practice first midterm exams CHAPTER 5. PRACTICE EXAMS

95

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2 practice second midterm exams

5.2.1 Fall 2014

5.2.1.1 exam questions

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Instructions

โ€ข Write your name on every sheet.

โ€ข Show all of your work.

โ€ข To maximize opportunities for partial credit, solve problems symbolically to the extent

possible and substitute numerical values at the end.

โ€ข Include free body diagrams for all equilibrium equations.

โ€ข This is a closed book examination.

โ€ข The only notes allowed are the equations provided with this exam.

โ€ข Calculators are allowed.

โ€ข The use of cell phones is prohibited.

โ€ข The instructors and the University of Wisconsin expect the highest standards of honesty and

integrity in the academic performance of its students. It is important that the work submitted

on this examination is yours and yours alone.

โ€ข Receiving or giving aid in an examination or using notes on a closed note exam will be

considered cheating and will result in a grade of F and the case being reported to the Dean of

Students Office.

Circle Your Discussion Section: 301 (Tu 1:20, David)

302 (Tu 2:25, David)

303 (W 3:30, David)

304 (Th 8:50, Matt)

305 (Th 12:05, Matt)

306 (Th 1:20, Matt)

Grading:

Q1 /25

Q2 /25

Q3 /25

Q4 /25

Total

/100

96

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Question 1 (25 points)

Conceptual questions: please include a few sentences or equations to justify your answers

1A (7 points) A 1000kg helicopter starts from rest at t = 0 sec. Given the force components below,

find the velocity vector of the helicopter after 10 seconds.

0

3602160

720

z

y

x

F

tF

tF

1B (6 points) Draw the instantaneous center of velocity of link AB for the two cases below

X

Y

97

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

1C (6 points) For a given instant, a rigid body has velocity at point A parallel to the velocity at

point B. Does this guarantee that the angular velocity of body is zero at this instant?

1D (6 points) At this instant, pulley A has an angular acceleration of 6 rad/s2. What is the

acceleration of block B?

B

A

98

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Question 2 (25 points)

A 1 lb ball is dropped from rest and falls a distance of 4ft before striking the smooth plane at A.

If e = 0.8, determine the distance d to where the ball again strikes the plane at B.

99

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Question 3 (25 points)

Three small spheres are welded to the light rigid

frame which is rotating in a horizontal plane about

point O with an angular velocity of 20 rad/s in the

counter clockwise direction. If a moment Mo = 30

Nm in the clockwise direction is applied to the frame

for 5 seconds,

A) compute the angular impulse vector

B) compute the new angular velocity after 5

seconds

100

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Question 4 (25 points)

Bar AB rotates with a clockwise angular velocity of 10 rad/sec. Find

a) velocity vector for pt B b) velocity vector for pt C c) angular velocity of bar

BC d) velocity vector of rack,

vR

vR

101

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

Geometry:

c

C

b

B

a

A

sinsinsin

cBABAC cos2222

1sin cos 22

Particle Rectilinear Motion:

dt

dva

dt

dsv vdvads

For the special case of constant acceleration (ac), and assuming initial conditions are

specified at t = 0:

tavtv co )( 2

2

1)( tatvsts coo )(222

oco ssavv

Particle Curvilinear Motion:

Cartesian Results: kjiv ห†ห†ห† zyx

kjia ห†ห†ห† zyx

Normal/Tangential Results:

tsuv ห†

nt

vv uua ห†ห†

2

where

|/|

])/(1[22

2/32

dxyd

dxdy

Polar Results:

u uv ห†ห†

rr r

u ua ห†)2(ห† )( 2

rrrr r

Spherical Results:

uu uv ห† sinห†ห†

rrr r

u

u ua

ห†)cos2sin2sin(

ห†)cossin2(ห† )sin( 2222

rrr

rrrrrr r

General Time Derivatives of a Vector:

uฯ‰u ห†)(ห† ut

Aฯ‰uA

AAAt ห†)( )(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

AAAAAA AAt

Principle of Work and Energy: U12 = T2 โ€“ T1 where U12 = r F2

1

d and T = 2

2

1mv

Conservation of Energy (assumes only conservative forces): T1 + V1 = T2 + V2

(For rigid bodies, these results are unchanged except for the fact that T = 22

2

1

2

1GG Imv )

c

b a C

B A

102

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Fall 2014 Name: ______________________________

Midterm #2, closed book/notes, 90 min.

V is potential energy and takes different forms depending on the source. For terrestrial gravity,

V = mgy, (mgyG for a rigid body) while for a linear elastic spring, V = 2

2

1k

Power: vFP

Efficiency: inputpower

outputpower

Linear Impulse and Momentum: 1221 ppI

where dt

2

1 21 FI

and vp

m

(For rigid bodies, the linear impulse and momentum expressions are identical but with Gvv

)

Coefficient of restitution:

11

22

BA

AB

vv

vve

Principle of Angular Impulse and Momentum: 1221 HHI OOM

where

dtOM

2

1 21 MI

and vH

mr

(For rigid bodies, this principle holds as long as O is either the center of gravity G or a point of

fixed rotation. If the center of gravity, HG = IG; if a fixed axis, HO = IO.)

Relative General Plane Motion:

Translating Axes: ABAABB //A rฯ‰vvvv

ABABAABB /

2

//A rrฮฑaaaa

Rotating Axes: ABxyABB //A rvvv

xyABABABxyABB ////A 2 vrraaa

Equations of Motion: xGx amF )( ; yGy amF )(

or tGt amF )( ; nGn amF )(

GG IM or OO IM or ... if you must ...

GyGxGP IamxamyM )()(

Mass Moment of Inertia: Definition, and in terms of radius of gyration, k: mkdmrI 22

Parallel axis theorem: 2mdII G

103

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2.1.2 key solutions

104

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

105

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

106

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

107

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

108

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

109

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

110

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

111

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

112

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2.2 spring 2015 2014

5.2.2.1 exam questions

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Instructions

โ€ข Write your name on every sheet.

โ€ข Show all of your work.

โ€ข To maximize opportunities for partial credit, solve problems symbolically to the extent

possible and substitute numerical values at the end.

โ€ข Include free body diagrams for all equilibrium equations.

โ€ข This is a closed book examination.

โ€ข The only notes allowed are the equations provided with this exam.

โ€ข Calculators are allowed.

โ€ข The use of cell phones is prohibited.

โ€ข The instructors and the University of Wisconsin expect the highest standards of honesty and

integrity in the academic performance of its students. It is important that the work submitted

on this examination is yours and yours alone.

โ€ข Receiving or giving aid in an examination or using notes on a closed note exam will be

considered cheating and will result in a grade of F and the case being reported to the Dean of

Students Office.

Circle Your Discussion Section: 301 (Tu 1:20, Harsha)

302 (Tu 2:25, Harsha)

303 (W 3:30, David)

304 (Th 8:50, David)

305 (Th 12:05, David)

306 (Th 1:20, David)

Grading:

Q1 /10

Q2 /30

Q3 /30

Q4 /30

Total

/100

113

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Question 1 (10 points)

1A (5 points)

The expected damage from two types of perfectly plastic collisions are to be compared. In case 1,

two identical cars traveling at the same speed impact each other head on. In case 2, the same car

driving the same speed impacts a massive concrete wall. Would you expect the car to be more

damaged in Case 1, Case 2, or equal damage in both cases? Use the impulse-momentum principle

to justify your answer.

1B (5 points) Points A, B, and C are attached to the circular body shown below. Given the velocity at point A

is 6 m/s in the vertical direction and the angular velocity of the circular body is clockwise at 2

rad/s. Locate the instantaneous center of velocity and draw the velocity vectors for points B and

C in a clear and unambiguous fashion.

How does the magnitude of the velocity at point C compare to the magnitude of the velocity at

point A?

Avv

114

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Question 2 (30 points)

A boy located at point A throws a ball at the wall

in a direction forming an angle of 45o with the line

OA. Knowing that after hitting the wall the ball

rebounds in a direction parallel to OA, determine

the coefficient of restitution between the ball and

the wall. ( hint: the law of sines may be helpful to

figure out the geometry)

1800ft

315mph

r

115

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Question 3 (30 points)

The 10-lb block is originally at rest on the smooth

surface. It is acted upon by a radial force of 2lbs and

a horizontal force of 7lbs that is always directed at

30o from the line tangent to the path as shown. If the

cord fails at a tension of 30lbs, determine the time

required to break the cord. What is the speed of the

block when this occurs? The block may be treated

as a point mass.

116

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Question 4 (30 points)

At the instant shown, bars AB and CD are vertical. In addition,

point C is moving to the left with an increasing speed of 4m/s.

The magnitude of the acceleration at point C is 55m/s2. If L =

0.5m and H = 0.2m, determine the angular accelerations of bars

AB and BC.

117

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

Geometry:

c

C

b

B

a

A

sinsinsin==

cBABAC cos2222 โˆ’+=

1sin cos 22 =+ ฮธฮธ

Particle Rectilinear Motion:

dt

dva =

dt

dsv = vdvads =

For the special case of constant acceleration (ac), and assuming initial conditions are

specified at t = 0:

tavtv co +=)( 2

2

1)( tatvsts coo ++= )(222

oco ssavv โˆ’+=

Particle Curvilinear Motion:

Cartesian Results: kjiv ห†ห†ห† zyx &&&r

++= kjia ห†ห†ห† zyx &&&&&&r

++=

Normal/Tangential Results:

tsuv ห†&r

=

nt

vv uua ห†ห†

2

ฯ+= &

r where

|/|

])/(1[22

2/32

dxyd

dxdy+=ฯ

Polar Results:

ฮธฮธ u uv ห†ห† &&r

rr r +=

ฮธฮธฮธฮธ u ua ห†)2(ห† )( 2 &&&&&&&r

rrrr r ++โˆ’=

Spherical Results:

ฮธฯ† ฯ†ฮธฯ† uu uv ห† sinห†ห† &&&r

rrr r ++=

ฮธ

ฯ†

ฯ†ฮธฯ†ฯ†ฮธฯ†ฮธ

ฯ†ฯ†ฮธฯ†ฯ†ฯ†ฮธฯ†

u

u ua

ห†)cos2sin2sin(

ห†)cossin2(ห† )sin( 2222

&&&&&&

&&&&&&&&&r

rrr

rrrrrr r

+++

โˆ’++โˆ’โˆ’=

General Time Derivatives of a Vector:

uฯ‰u ห†)(ห† ร—= utr&

Aฯ‰uArr

&&rร—+= AAAt ห†)( )(ห†2ห†)( Aฯ‰ฯ‰Aฯ‰uฯ‰uA

rrrr&r&

r&&&&r

ร—ร—+ร—+ร—+= AAAAAA AAt

Principle of Work and Energy: ฮฃU1โ†’2 = T2 โ€“ T1 where U1โ†’2 = r F2

1

rvdโˆซ โ‹… and T = 2

2

1mv

Conservation of Energy (assumes only conservative forces): T1 + V1 = T2 + V2

(For rigid bodies, these results are unchanged except for the fact that T = 22

2

1

2

1ฯ‰GG Imv + )

c

b a C

B A

118

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

EMA 202, Spring 2015 Name: ______________________________ Midterm #2, closed book/notes, 90 min.

V is potential energy and takes different forms depending on the source. For terrestrial gravity,

V = mgy, (mgyG for a rigid body) while for a linear elastic spring, V = 2

2

1ฮดk

Power: vFPrr

โ‹…=

Efficiency: inputpower

outputpower =ฮต

Linear Impulse and Momentum: 1221 ppIvvv

โˆ’=โˆ‘ โ†’ where dtโˆซ=โ†’

2

1 21 FI

vv and vp

vvm=

(For rigid bodies, the linear impulse and momentum expressions are identical but with Gvvvv

= )

Coefficient of restitution: ( ) ( )( ) ( )

11

22

BA

AB

vv

vve

โˆ’

โˆ’=

Principle of Angular Impulse and Momentum: 1221 HHI OOM

vvvโˆ’=โˆ‘ โ†’ where

dtOM โˆซ=โ†’

2

1 21 MI

vv and vH

vvvmr ร—=

(For rigid bodies, this principle holds as long as O is either the center of gravity G or a point of

fixed rotation. If the center of gravity, HG = IGฯ‰; if a fixed axis, HO = IOฯ‰.)

Relative General Plane Motion:

Translating Axes: ABAABB //A rฯ‰vvvvvvvvvv

ร—+=+=

ABABAABB /

2

//A rrฮฑaaaavvvvvvv

ฯ‰โˆ’ร—+=+=

Rotating Axes: ( ) ABxyABB //A rvvvvrvvv

ร—ฮฉ++=

( ) ( ) ( )xyABABABxyABB ////A 2 vrraaa

vvv&rvvvร—ฮฉ+ร—ฮฉร—ฮฉ+ร—ฮฉ++=

Equations of Motion: xGx amF )(=โˆ‘ ; yGy amF )(=โˆ‘

or tGt amF )(=โˆ‘ ; nGn amF )(=โˆ‘

ฮฑGG IM =โˆ‘ or ฮฑOO IM =โˆ‘ or ... if you must ...

ฮฑGyGxGP IamxamyM ++โˆ’=โˆ‘ )()(

Mass Moment of Inertia: Definition, and in terms of radius of gyration, k: mkdmrI22 == โˆซ

Parallel axis theorem: 2

mdII G +=

119

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2.2.2 key solutions

120

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

121

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

122

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

123

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

124

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

125

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

126

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2.2.3 my solution to some of the problems of above exams

Problem 3, EMA 202 midterm exam, spring 2015

127

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

Problem 4, EMA 202 midterm exam, spring 2015

128

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

129

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

130

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

5.2.3 Prep exam practice for second midterm

131

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

132

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

133

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

134

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

135

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

136

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

137

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

138

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

139

5.2. practice second midterm exams CHAPTER 5. PRACTICE EXAMS

140

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

5.3 practice exam for nals

5.3.1 nal spring 2015

141

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

142

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

143

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

144

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

145

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

146

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

147

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

5.3.2 nal Fall 2014

148

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

149

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

150

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

151

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

152

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

153

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

154

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

155

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

156

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

5.3.3 PERP practice exam Fall 2017

157

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

158

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

159

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

160

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

161

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

162

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

163

5.3. practice exam for finals CHAPTER 5. PRACTICE EXAMS

164

Chapter 6

HWs

Local contents6.1 HW 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666.2 HW 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1706.3 HW 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1796.4 HW 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.5 HW 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1966.6 HW 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056.7 HW 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2136.8 HW 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2206.9 HW 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2316.10 HW 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2396.11 HW 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2526.12 HW 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2616.13 HW 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

165

6.1. HW 1 CHAPTER 6. HWS

6.1 HW 1

166

6.1. HW 1 CHAPTER 6. HWS

167

6.1. HW 1 CHAPTER 6. HWS

168

6.1. HW 1 CHAPTER 6. HWS

169

6.2. HW 2 CHAPTER 6. HWS

6.2 HW 2

6.2.1 Problem 1

= ๐‘Ÿ + ๐‘Ÿ๐œƒHence

|| =2 + ๐‘Ÿ

2

= (โˆ’22490)2 + (21000 ร— (โˆ’2.933))2

= 65571 ft/sec

Since

๐‘Ÿ = ๐šค cos๐œƒ + ๐šฅ sin๐œƒ๐œƒ = โˆ’ ๐šค sin๐œƒ + ๐šฅ cos๐œƒ

Then the velocity vector in Cartesian is

= ๐šค cos๐œƒ + ๐šฅ sin๐œƒ + ๐‘Ÿ โˆ’ ๐šค sin๐œƒ + ๐šฅ cos๐œƒ

= ๐šค cos๐œƒ โˆ’ ๐‘Ÿ sin๐œƒ + ๐šฅ sin๐œƒ + ๐‘Ÿ cos๐œƒ

170

6.2. HW 2 CHAPTER 6. HWS

Plug-in numerical values

= ๐šค โˆ’22490 cos 38 ๐œ‹180

โˆ’ (21000) (โˆ’2.933) sin 38 ๐œ‹180

+ ๐šฅ (โˆ’22490) sin 38 ๐œ‹180

+ (21000) (โˆ’2.933) cos 38 ๐œ‹180

Or

= (20198.08) ๐šค โˆ’ ๐šฅ (62382.17)

To check, we find magnitude of in Cartesian

|| = (20198.08)2 + (62382.17)2 = 65571

Which is the same as before. Hence the velocity vector makes angle tanโˆ’1 โˆ’6238220198

= โˆ’1.2577

rad or โˆ’1.2577 180๐œ‹ = โˆ’72.061 degrees with the x-axis.

6.2.2 Problem 2

= โˆ’ ๐‘Ÿ2 ๐‘Ÿ + ๐‘Ÿ + 2 ๐œƒ171

6.2. HW 2 CHAPTER 6. HWS

Hence

|| = โˆ’ ๐‘Ÿ2

2+ ๐‘Ÿ + 2

2

=187300 โˆ’ (21400) (โˆ’2.944)2

2+ ((21400) (โˆ’5.407) + 2 (โˆ’22490) (โˆ’2.944))2

= 16810.49 ft/sec2

Since

๐‘Ÿ = ๐šค cos๐œƒ + ๐šฅ sin๐œƒ๐œƒ = โˆ’ ๐šค sin๐œƒ + ๐šฅ cos๐œƒ

Then the acceleration vector in Cartesian is

= โˆ’ ๐‘Ÿ2 ๐šค cos๐œƒ + ๐šฅ sin๐œƒ + ๐‘Ÿ + 2 โˆ’ ๐šค sin๐œƒ + ๐šฅ cos๐œƒ

= ๐šค โˆ’ ๐‘Ÿ2 cos๐œƒ โˆ’ ๐‘Ÿ + 2 sin๐œƒ + ๐šฅ โˆ’ ๐‘Ÿ2 sin๐œƒ + ๐‘Ÿ + 2 cos๐œƒ (1)

But

โˆ’ ๐‘Ÿ2 = 187300 โˆ’ (21400) (โˆ’2.944)2 = 1823.290

๐‘Ÿ + 2 = ((21400) (โˆ’5.407) + 2 (โˆ’22490) (โˆ’2.944)) = 16711.32

Hence (1) becomes

= ๐šค 1823.290 cos 44 ๐œ‹180

โˆ’ (16711.32) sin 44๐œ‹180

+ ๐šฅ 1823.290 sin 44๐œ‹180

+ (16711.32) cos 44 ๐œ‹180

= ๐šค (โˆ’10297.09) + ๐šฅ (13287.68)

To verify things, we check the magnitude of is the same as found above (since the magnitude

of vector does not depend on coordinates. We see that || = (โˆ’10297.09)2 + (13287.68)2 =16810.49 which is the same as before.

Hence the acceleration vector makes angle tanโˆ’1 13287.68โˆ’10297.09

= 127.7 degrees with the x-axis.

6.2.3 Problem 3

172

6.2. HW 2 CHAPTER 6. HWS

= ๐‘ก +๐‘‰2

๐œŒ๐‘›

But = 0 since velocity is constant. Hence || = ๐‘‰2

๐œŒ . Therefore

๐‘‰2

๐œŒ= 9๐‘”

750 52803600

2

9 (32.2)= ๐œŒ

๐œŒ = 4175.3 ft

6.2.4 Problem 4

173

6.2. HW 2 CHAPTER 6. HWS

= ๐‘ก +๐‘‰2

๐œŒ๐‘›

Maximum normal acceleration is ๐‘‰2

๐œŒ . Hence it occurs when ๐‘‰ is maximum, which is at start

of turn. Then we want๐‘‰2

max๐œŒmin

= 2๐‘”

๐œŒmin =๐‘‰2

max๐‘”

=85 52803600

2

2 (32.2)= 241.33 ft

Now since

๐‘ฃ2๐‘“ = ๐‘ฃ2๐‘œ + 2๐‘Ž๐‘ก๐‘ 

Where ๐‘Ž๐‘ก is tangential acceleration and ๐‘  is distance travelled which is 14 of circumference of

circle or 142๐œ‹๐œŒmin, therefore

๐‘Ž๐‘ก =๐‘ฃ2๐‘“ โˆ’ ๐‘ฃ2๐‘œ

2 12๐œ‹๐œŒmin=

80 52803600

2โˆ’ 85 52803600

2

๐œ‹ (241.33)= โˆ’2.341 ft/sec2

174

6.2. HW 2 CHAPTER 6. HWS

Therefore to find time of travel, since acceleration is constant

๐‘ฃ๐‘“ = ๐‘ฃ0 + ๐‘Ž๐‘ก๐‘ก

๐‘ก =๐‘ฃ๐‘“ โˆ’ ๐‘ฃ0

๐‘Ž๐‘ก=

80 52803600 โˆ’ 85 52803600

โˆ’2.341= 3.133 sec

6.2.5 Problem 5

Since velocity is horizontal, then

= ๐‘ฃ0 ๐šค

But ๐šค = cos๐œƒ๐‘Ÿ โˆ’ sin๐œƒ๐œƒ, hence

= ๐‘ฃ0 cos๐œƒ๐‘Ÿ โˆ’ ๐‘ฃ0 sin๐œƒ๐œƒ= ๐‘Ÿ + ๐‘Ÿ๐œƒ

Therefore

= ๐‘ฃ0 cos๐œƒ๐‘Ÿ = โˆ’๐‘ฃ0 sin๐œƒ

175

6.2. HW 2 CHAPTER 6. HWS

We are given that ๐‘ฃ0 = 560 mph and ๐œƒ = 31, hence solving gives

= 560 cos 31 ๐œ‹180

(6.9) = โˆ’ (560) sin 31๐œ‹180

Or

= 480.014 mph

= โˆ’41.8 rad/h

The acceleration vector is

= โˆ’ ๐‘Ÿ2 ๐‘Ÿ + ๐‘Ÿ + 2 ๐œƒSince constant velocity, then acceleration is zero. This gives us two equations to solve for,

โˆ’ ๐‘Ÿ2 = 0๐‘Ÿ + 2 = 0

Or

โˆ’ (6.9) (โˆ’41.8)2 = 0(6.9) + 2 (480.014) (โˆ’41.8) = 0

Solving gives

= 12054.23 mph

= 5815.477 rad/h2

6.2.6 Problem 6

176

6.2. HW 2 CHAPTER 6. HWS

= ๐‘Ÿ + ๐‘Ÿ๐œƒ= (448.1 cos๐œƒ + 13.17 sin๐œƒ) ๐‘Ÿ + (13.17 cos๐œƒ โˆ’ 448.1 sin๐œƒ) ๐œƒ

Hence

||2 = (448.1 cos๐œƒ + 13.17 sin๐œƒ)2 + (13.17 cos๐œƒ โˆ’ 448.1 sin๐œƒ)2

= (448.1)2 cos2 ๐œƒ + (13.17)2 sin2 ๐œƒ + 2 ((448.1) (13.17) cos๐œƒ sin๐œƒ)

+ (13.17)2 cos2 ๐œƒ + (โˆ’448.1)2 sin2 ๐œƒ โˆ’ 2 ((448.1) (13.17) cos๐œƒ sin๐œƒ)

Which simplifies to

||2 = (448.1)2 cos2 ๐œƒ + (13.17)2 sin2 ๐œƒ + (13.17)2 cos2 ๐œƒ + (โˆ’448.1)2 sin2 ๐œƒ

= (448.1)2 cos2 ๐œƒ + sin2 ๐œƒ + (13.17)2 cos2 ๐œƒ + sin2 ๐œƒ

= (448.1)2 + (13.17)2

= 200967.1

Hence

|| = 448.294 mph

177

6.2. HW 2 CHAPTER 6. HWS

Let ๐‘ฆ be vertical distance. Hence ๐‘ฆ = ๐‘Ÿ sin๐œƒ and

= sin๐œƒ + ๐‘Ÿ cos๐œƒ= (448.1 cos๐œƒ + 13.17 sin๐œƒ) sin๐œƒ + (13.17 cos๐œƒ โˆ’ 448.1 sin๐œƒ) cos๐œƒ= 448.1 cos๐œƒ sin๐œƒ + 13.17 sin2 ๐œƒ + 13.17 cos2 ๐œƒ โˆ’ 448.1 sin๐œƒ cos๐œƒ= 13.17 mph

Hence it is ascending. Convert to ft/sec

= 13.175280๐‘š๐‘–๐‘™๐‘’

โ„Ž๐‘Ÿ3600

= 13.1752803600

= 19.316 ft/sec

178

6.3. HW 3 CHAPTER 6. HWS

6.3 HW 3

6.3.1 Problem 1

The time to reach the top edge of the river is

๐‘ก =378

= 4.625 sec

The distance travelled in horizontal direction is therefore

๐‘ฅ = (7) (4.625) = 32.375 ft

6.3.2 Problem 2

179

6.3. HW 3 CHAPTER 6. HWS

Length of rope ๐ฟ is

๐ฟ = 2๐‘ฅ๐ต + ๐‘ฅ๐ดWhere ๐‘ฅ๐ต is distance from top to ๐ต and ๐‘ฅ๐ด is distance from top to ๐ด. Taking derivativesgives

0 = 2๐‘ฃ๐ต + ๐‘ฃ๐ด

๐‘ฃ๐ต = โˆ’๐‘ฃ๐ด2

= โˆ’โˆ’1.52

= 0.75 m/s

6.3.3 Problem 3

180

6.3. HW 3 CHAPTER 6. HWS

๐‘‘๐œƒ๐‘‘๐‘ก

= (1950) 2๐œ‹

rotation minute

60

= (1950)2๐œ‹60

= 204.2035 rad/sec

But

๐ฟ2 = ๐‘…2 + ๐‘ฆ2๐‘ โˆ’ 2 (๐‘…) ๐‘ฆ๐‘ cos (๐œƒ)

๐‘ฆ2๐‘ โˆ’ 2๐‘…๐‘ฆ๐‘ cos (๐œƒ) + ๐‘…2 โˆ’ ๐ฟ2 = 0

Or

๐‘ฆ๐‘ =โˆ’๐‘2๐‘Ž

ยฑ โˆš๐‘2 โˆ’ 4๐‘Ž๐‘2๐‘Ž

= ๐‘… cos๐œƒ ยฑ12

4๐‘…2 cos2 ๐œƒ โˆ’ 4 ๐‘…2 โˆ’ ๐ฟ2

= ๐‘… cos๐œƒ ยฑ12โˆš4๐‘…2 cos2 ๐œƒ โˆ’ 4๐‘…2 + 4๐ฟ2

= ๐‘… cos๐œƒ ยฑ12

4๐‘…2 cos2 ๐œƒ โˆ’ 1 + 4๐ฟ2

= ๐‘… cos๐œƒ ยฑ12

โˆ’4๐‘…2 sin2 ๐œƒ + 4๐ฟ2

= ๐‘… cos๐œƒ ยฑ ๐ฟ2 โˆ’ ๐‘…2 sin2 ๐œƒ

At ๐œƒ = 0, ๐‘ฆ๐‘ = ๐‘… + ๐ฟ, therefore we pick the plus sign

๐‘ฆ๐‘ = ๐‘… cos๐œƒ + ๐ฟ2 โˆ’ ๐‘…2 sin2 ๐œƒ

181

6.3. HW 3 CHAPTER 6. HWS

Taking derivative with time

๐‘ = โˆ’๐‘… sin๐œƒ +12

1

๐ฟ2 โˆ’ ๐‘…2 sin2 (๐œƒ)โˆ’2๐‘…2 sin๐œƒ cos๐œƒ

= โˆ’๐‘… sin๐œƒ โˆ’๐‘…2 sin๐œƒ cos๐œƒ

๐ฟ2 โˆ’ ๐‘…2 sin2 (๐œƒ)

Plugging in values ๐‘… = 3.412 ft, ๐ฟ = 5.7

12 ft and ๐œƒ = 400 and = 204.2035 gives

๐‘ = โˆ’ 3.412

(204.2035) sin 40180

๐œ‹ โˆ’3.4122(204.2035) sin 40

180๐œ‹ cos 40180๐œ‹

5.7122โˆ’ 3.4

122sin 40

180๐œ‹2

= โˆ’55.59 ft/sec

6.3.4 Problem 4

Resolving forces in vertical direction

๐‘š๐‘” โˆ’ 2๐‘‡ = ๐‘š (1)

To find ๐‘ฆ , since rope length is

๐ฟ = 2๐‘ฆ + ๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)2

182

6.3. HW 3 CHAPTER 6. HWS

Taking derivative gives

0 = 2 +๐‘ฅ๐ด๐ด

๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)2

=โˆ’๐‘ฅ๐ด๐ด

๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)2

Taking another derivative

=โˆ’2๐ด

2๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)2+

๐‘ฅ2๐ด2๐ด

2 ๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)232

But ๐ด = ๐‘ฃ0 = 3.2 ft/sec. Hence

=โˆ’๐‘ฃ20

2๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)2+

๐‘ฅ2๐ด๐‘ฃ20

2 ๐‘ฅ2๐ด + (๐‘™ โˆ’ โ„Ž)232

When ๐‘™ = 14.5, โ„Ž = 6.4, ๐‘ฅ๐ด = 9.5 then

=โˆ’ (3.2)2

29.52 + (14.5 โˆ’ 6.4)2+

(9.5)2 (3.2)2

2 9.52 + (14.5 โˆ’ 6.4)232

= โˆ’0.172 64 ft/sec2

From (1) we solve for tension

๐‘‡ =๐‘š๐‘” โˆ’ ๐‘š

2

=๐‘š ๐‘” โˆ’

2

=550 (32.2 โˆ’ (โˆ’0.172 64))

2= 8902.476 lb force

Hence

๐‘‡ =8902.47632.2

= 276.474 lb

6.3.5 Problem 5

183

6.3. HW 3 CHAPTER 6. HWS

Resolving forces in the ๐‘ฅ direction gives equation of motion

๐‘š + ๐‘˜๐‘ฅ = 0

= โˆ’๐‘˜๐‘š๐‘ฅ

Let ๐‘‘2๐‘ฅ๐‘‘๐‘ก2 = ๐‘‘๐‘ฃ

๐‘‘๐‘ก =๐‘‘๐‘ฃ๐‘‘๐‘ฅ

๐‘‘๐‘ฅ๐‘‘๐‘ก = ๐‘ฃ๐‘‘๐‘ฃ๐‘‘๐‘ฅ and the above becomes

๐‘ฃ๐‘‘๐‘ฃ๐‘‘๐‘ฅ

= โˆ’๐‘˜๐‘š๐‘ฅ

This is now separable

๐‘ฃ๐‘ ๐‘ก๐‘œ๐‘

๐‘ฃ๐‘–๐‘ฃ๐‘‘๐‘ฃ = โˆ’

๐‘ฅ๐‘–

0

๐‘˜๐‘š๐‘ฅ๐‘‘๐‘ฅ

But ๐‘ฃ๐‘ ๐‘ก๐‘œ๐‘ = 0 and the above becomes

๐‘ฃ2๐‘– =๐‘˜๐‘š๐‘ฅ2๐‘–

For ๐‘ฃ๐‘– = 4.3 mph and ๐‘ฅ๐‘– = 0.21 ft, we solve for ๐‘˜ from the above

๐‘˜ =๐‘š๐‘ฃ2๐‘–๐‘ฅ2๐‘–

=334032.2

(4.3) 52803600

2

(0.21)2

= 93551.7 lb/ft= 9.355 ร— 10โˆ’4 lb/ft

Question, why had to divide by ๐‘” in above to get correct answer? Problem said ๐‘™๐‘ in statement?

184

6.3. HW 3 CHAPTER 6. HWS

6.3.6 Problem 6

185

6.3. HW 3 CHAPTER 6. HWS

Resolving forces in the ๐‘ฅ direction gives equation of motion

๐‘š + ๐›ฝ๐‘ฅ3 = 0

= โˆ’๐›ฝ๐‘ฅ3

๐‘š

Let ๐‘‘2๐‘ฅ๐‘‘๐‘ก2 = ๐‘‘๐‘ฃ

๐‘‘๐‘ก =๐‘‘๐‘ฃ๐‘‘๐‘ฅ

๐‘‘๐‘ฅ๐‘‘๐‘ก = ๐‘ฃ๐‘‘๐‘ฃ๐‘‘๐‘ฅ and the above becomes

๐‘ฃ๐‘‘๐‘ฃ๐‘‘๐‘ฅ

= โˆ’๐›ฝ๐‘ฅ3

๐‘šThis is now separable

๐‘ฃ๐‘ ๐‘ก๐‘œ๐‘

๐‘ฃ๐‘–๐‘ฃ๐‘‘๐‘ฃ = โˆ’

๐›ฝ๐‘š

๐‘ฅ๐‘ ๐‘ก๐‘œ๐‘

0๐‘ฅ3๐‘‘๐‘ฅ

But ๐‘ฃ๐‘ ๐‘ก๐‘œ๐‘ = 0 and the above becomes

๐‘ฃ2๐‘– =12๐›ฝ๐‘š๐‘ฅ4๐‘ ๐‘ก๐‘œ๐‘

For ๐‘ฃ๐‘– = 3 km/h and ๐›ฝ = 650 ร— 106 and ๐‘š = 75000 kg, we solve for ๐‘ฅ๐‘ ๐‘ก๐‘œ๐‘ from the above

๐‘ฅ๐‘ ๐‘ก๐‘œ๐‘ = 2๐‘š๐‘ฃ2

๐›ฝ

14

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

2 (75000) 3 10003600

650 ร— 106

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

14

= 0.11776 m

186

6.4. HW 4 CHAPTER 6. HWS

6.4 HW 4

6.4.1 Problem 1

The velocity in meter per second is

๐‘ฃ = 228 1000๐‘˜๐‘š

โ„Ž3600

= (228)10003600

= 63.333 m/s

In normal direction, the acceleration is ๐‘Ž๐‘› = ๐‘ฃ2

๐œŒ = (63.333)2

115 = 34.879 m/s2 or in terms of ๐‘”, it

becomes 34.8799.81 = 3.555 g.

Now, force balance in vertical direction gives

๐ฟ โˆ’ ๐‘š๐‘” = ๐‘š๐‘Ž๐‘›๐ฟ = ๐‘š ๐‘” + ๐‘Ž๐‘›

= 970 (9.81 + 34.879)= 43348.33 N

6.4.2 Problem 2

187

6.4. HW 4 CHAPTER 6. HWS

For maximum speed, friction acts downwards as car assumed to be just about to slideupwards. Resolving forces in normal and tangential gives

๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ = ๐‘š๐‘ฃ2max๐œŒ

(1)

โˆ’๐‘š๐‘” + ๐‘ cos๐œƒ โˆ’ ๐œ‡๐‘ ๐‘ sin๐œƒ = 0 (2)

From (2)

๐‘ =๐‘š๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒFrom (1)

๐‘ฃ2max =๐œŒ๐‘š

๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ

=๐œŒ๐‘š ๐œ‡๐‘ 

๐‘š๐‘”cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ

cos๐œƒ + ๐‘š๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒsin๐œƒ

= ๐œŒ ๐œ‡๐‘  ๐‘”

cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒcos๐œƒ +

๐‘”cos๐œƒ โˆ’ ๐œ‡๐‘  sin๐œƒ

sin๐œƒ

= ๐œŒ๐‘” ๐œ‡๐‘ 

1 โˆ’ ๐œ‡๐‘  tan๐œƒ+

tan๐œƒ1 โˆ’ ๐œ‡๐‘  tan๐œƒ

= ๐œŒ๐‘” ๐œ‡๐‘  + tan๐œƒ1 โˆ’ ๐œ‡๐‘  tan๐œƒ

= 324 (9.81)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ0.2 + tan 31 ๐œ‹

180

1 โˆ’ 0.2 tan 31 ๐œ‹180

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 2893.165 m/s

188

6.4. HW 4 CHAPTER 6. HWS

Hence

๐‘ฃmax = 53.788 m/s

= 53.788 (0.001) (3600)= 193.637 km/hr

For minimum speed, friction acts upwards as car assumed to be just about to slide downwards.Resolving forces in normal and tangential gives

โˆ’๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ = ๐‘š๐‘ฃ2min๐œŒ

(3)

โˆ’๐‘š๐‘” + ๐‘ cos๐œƒ + ๐œ‡๐‘ ๐‘ sin๐œƒ = 0 (4)

From (4)

๐‘ =๐‘š๐‘”

cos๐œƒ + ๐œ‡๐‘  sin๐œƒFrom (3)

๐‘ฃ2min =๐œŒ๐‘š

โˆ’๐œ‡๐‘ ๐‘ cos๐œƒ + ๐‘ sin๐œƒ

=๐œŒ๐‘š โˆ’๐œ‡๐‘ 

๐‘š๐‘”cos๐œƒ + ๐œ‡๐‘  sin๐œƒ

cos๐œƒ + ๐‘š๐‘”

cos๐œƒ + ๐œ‡๐‘  sin๐œƒsin๐œƒ

= ๐œŒ๐‘” โˆ’๐œ‡๐‘  1

cos๐œƒ + ๐œ‡๐‘  sin๐œƒcos๐œƒ +

1cos๐œƒ + ๐œ‡๐‘  sin๐œƒ

sin๐œƒ

= ๐œŒ๐‘” โˆ’๐œ‡๐‘ 

1 + ๐œ‡๐‘  tan๐œƒ+

tan๐œƒ1 + ๐œ‡๐‘  tan๐œƒ

= ๐œŒ๐‘” tan๐œƒ โˆ’ ๐œ‡๐‘ 1 + ๐œ‡๐‘  tan๐œƒ

= 324 (9.81)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

tan 31 ๐œ‹180

โˆ’ 0.2

1 + 0.2 tan 31 ๐œ‹180

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 1137.425 m/s

Hence

๐‘ฃmin = 33.726 m/s

= 33.726 (0.001) (3600)= 121.414 km/hr

Hence

121.414 โ‰ค ๐‘ฃ โ‰ค 193.637

6.4.3 Problem 3

189

6.4. HW 4 CHAPTER 6. HWS

190

6.4. HW 4 CHAPTER 6. HWS

6.4.3.1 part (1)

Since acceleration is constant along barrel, then using

๐‘ฃ2๐‘“ = ๐‘ฃ20 + 2๐ฟ

We will solve for . Assuming ๐‘ฃ0 = 0 then

16812 = 2 (4.2)

=16812

2 (4.2)= 336400.1 m/s2

But

= โˆ’ ๐ฟ2 ๐‘Ÿ + ๐ฟ + 2 ๐œƒBut = 0, hence the above becomes

= 336400.1 โˆ’ (4.2) (0.18)2 ๐‘Ÿ + (2 (1681) (0.18)) ๐œƒ= 336400 ๐‘Ÿ + 605.16 ๐œƒ

6.4.3.2 part (2)

Free body diagram for bullet gives

๐‘ƒ = ๐‘š๐‘Ž๐‘Ÿ + ๐‘š๐‘” sin๐œƒ

but ๐‘Ž๐‘Ÿ = 336400 m/s2 and ๐‘š = 16.9 kg and ๐œƒ = 230, hence

๐‘ƒ = (16.9) (336400) + (16.9) (9.81) sin (23)๐œ‹180

= 5685225 N= 5.685 ร— 106 N

6.4.3.3 Part (3)

Free body diagram for bullet gives

๐‘ = ๐‘š๐‘Ž๐œƒ + ๐‘š๐‘” cos๐œƒ

= (16.9) (605.16) + (16.9) (9.81) cos (23) ๐œ‹180

= 10379.81 N= 10.379 ร— 103 N

6.4.4 Problem 4

191

6.4. HW 4 CHAPTER 6. HWS

The free body diagram is

A

BF0

A

BF0

FBD

WA

FA

NA

WB NA

FA

FB

NB

โ‡โ‡’

A

B

maAx

maAy = 0

maBx

maBy = 0

For ๐ด,๐น๐‘ฅ = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

๐น๐ด = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ (2)

๐น๐‘ฆ = ๐‘š๐ด๐‘Ž๐ด๐‘ฆ

๐‘๐ด โˆ’๐‘Š๐ด = 0 (3)

For ๐ต๐น๐‘ฅ = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ

๐น๐‘œ โˆ’ ๐น๐ด โˆ’ ๐น๐ต = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ (4)

192

6.4. HW 4 CHAPTER 6. HWS

๐น๐‘ฆ = ๐‘š๐ต๐‘Ž๐ต๐‘ฆ๐‘๐ต โˆ’๐‘Š๐ต โˆ’ ๐‘๐ด = 0 (5)

Hence (3) becomes

๐‘๐ด = ๐‘Š๐ด (6A)

= ๐‘š๐ด๐‘”

And (5) becomes

๐‘๐ต = ๐‘Š๐ต + ๐‘๐ด

= ๐‘š๐ต๐‘” + ๐‘š๐ด๐‘”= (๐‘š๐ต + ๐‘š๐ด) ๐‘” (6B)

But ๐น๐ด = ๐‘๐ด๐œ‡1 then (2) becomes

๐‘๐ด๐œ‡1 = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

But from (6) the above reduces to (since ๐‘๐ด = ๐‘š๐ด๐‘”)

๐‘š๐ด๐‘”๐œ‡1 = ๐‘š๐ด๐‘Ž๐ด๐‘ฅ

Hence

๐‘Ž๐ด๐‘ฅ = ๐‘”๐œ‡1

= (32.2) (0.26)

= 8.372 ft/s2

Similarly ๐น๐ต = ๐‘๐ต๐œ‡2 hence (4) becomes

๐น๐‘œ โˆ’ ๐‘๐ด๐œ‡1 โˆ’ ๐‘๐ต๐œ‡2 = ๐‘š๐ต๐‘Ž๐ต๐‘ฅBut ๐‘๐ต = (๐‘š๐ด + ๐‘š๐ต) ๐‘”, then above becomes

๐น๐‘œ โˆ’ ๐‘š๐ด๐‘”๐œ‡1 โˆ’ (๐‘š๐ด + ๐‘š๐ต) ๐‘”๐œ‡2 = ๐‘š๐ต๐‘Ž๐ต๐‘ฅ

๐‘Ž๐ต๐‘ฅ =๐น๐‘œ โˆ’ ๐‘š๐ด๐‘”๐œ‡1 โˆ’ (๐‘š๐ด + ๐‘š๐ต) ๐‘”๐œ‡2

๐‘š๐ต

๐‘Ž๐ต๐‘ฅ =438 โˆ’ (50) (0.26) โˆ’ (50 + 71) (0.46)

7132.2

= 167.504 ft/sec2

6.4.5 Problem 5

193

6.4. HW 4 CHAPTER 6. HWS

194

6.4. HW 4 CHAPTER 6. HWS

Free body diagram for block ๐ต results in

2๐‘” โˆ’8๐‘‡๐‘š๐ต

= ๐‘Ž๐ด

Free body diagram for block ๐ด resuts in

โˆ’๐‘š๐ด๐‘” sin๐œƒ โˆ’ ๐œ‡๐‘š๐ด๐‘” cos๐œƒ + 2๐‘‡ = ๐‘š๐ด๐‘Ž๐ดIn addision, since rope length is fixed, we find that ๐‘Ž๐ด = 2๐‘Ž๐ต. The above are 3 equations in3 unknowns ๐‘‡, ๐‘Ž๐ด, ๐‘Ž๐ต. Solving gives

๐‘Ž๐ด = 4.439 m/s2

๐‘Ž๐ต = 2.2197 m/s2

๐‘‡ = 37.95 N

6.4.6 Problem 6

maximum displacement is 2 ft. Maximum speed is 9.404 ft/sec.

195

6.5. HW 5 CHAPTER 6. HWS

6.5 HW 5

6.5.1 Problem 1

Landing speed is ๐‘ฃ2 = 4 m/sec.

๐‘ˆ12 = ๐‘‡2 โˆ’ ๐‘‡1

=12๐‘š๐‘ฃ22 โˆ’

12๐‘š๐‘ฃ21

=12๐‘šโŽ›โŽœโŽœโŽœโŽœโŽ4

2 โˆ’ 2411000๐‘˜๐‘š

โ„Ž๐‘Ÿ3600

2โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

=1270

โŽ›โŽœโŽœโŽœโŽœโŽ(4)

2 โˆ’ 241 10003600

2โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

= โˆ’156294.6

Hence work on person is โˆ’156.295 kJ

6.5.2 Problem 2

196

6.5. HW 5 CHAPTER 6. HWS

Force in the ๐‘ฅ direction is

๐น = ๐น๐‘ โˆ’ ๐น๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›= (20 + 12๐‘ฅ) โˆ’ ๐œ‡๐‘˜๐‘= (20 + 12๐‘ฅ) โˆ’ (0.4) (32)

Hence

๐‘ˆ12 = ๐‘‡2 โˆ’ ๐‘‡1

15

0 โ‹… ๐‘‘ =

12๐‘š๐‘ฃ22 โˆ’

12๐‘š๐‘ฃ21

15

020 + 12๐‘ฅ

12 โˆ’ (0.4) (32) ๐‘‘๐‘ฅ =

12

3232.2

๐‘ฃ22

Since ๐‘ฃ1 = 0 then above becomes

15

020 + 12๐‘ฅ

12 โˆ’ (0.4) (32) ๐‘‘๐‘ฅ =

12

3232.2

๐‘ฃ22

15

012๐‘ฅ

12 + 7.2๐‘‘๐‘ฅ = 0.49689๐‘ฃ22

(12) (2)

3๐‘ฅ32 + 7.2๐‘ฅ

15

0= 0.49689๐‘ฃ22

(12) (2)3

(15)32 + 7.2 (15) = 0.49689๐‘ฃ22

572.758 = 0.49689๐‘ฃ22

๐‘ฃ22 =572.7580.49689

= 1152.686

197

6.5. HW 5 CHAPTER 6. HWS

Hence

๐‘ฃ2 = โˆš1152.686= 33.951 ft/sec

6.5.3 Problem 3

Since all forces we can use conservation of energy ๐‘‡1 + ๐‘‰1 = ๐‘‡2 + ๐‘‰2 Where ๐‘‰1 = 0 since

198

6.5. HW 5 CHAPTER 6. HWS

spring is not compressed yet and ๐‘‡2 = 0 since the car would be stopped by then. Hence12๐‘š๐‘ฃ22 =

12๐‘˜ฮ”2

ฮ”2 =๐‘š๐‘ฃ22๐‘˜

=(1324) 5.5 1000๐‘˜๐‘š

โ„Ž๐‘Ÿ3600

2

9.4 ร— 104

=(1324) 5.5 10003600

2

9.4 ร— 104ฮ”2 = 0.033

Hence

ฮ” = 0.182 meter

We could also have solved this using work-energy. Force on car is โˆ’๐‘˜๐‘ฅ, hence ๐‘ˆ12 = โˆซ๐‘ฅ

0 โ‹… ๐‘‘

and therefore

๐‘ฅ

0 โ‹… ๐‘‘ =

12๐‘š๐‘ฃ22 โˆ’

12๐‘š๐‘ฃ21

๐‘ฅ

0โˆ’๐‘˜๐‘ฅ๐‘‘๐‘ฅ = โˆ’

12๐‘š๐‘ฃ21

12๐‘˜ ๐‘ฅ2

๐‘ฅ

0=

121324 5.5

10003600

2

9.4 ร— 104๐‘ฅ2 = 1324 5.5 10003600

2

๐‘ฅ2 =1324 5.5 10003600

2

9.4 ร— 104๐‘ฅ = 0.182 meter

6.5.4 Problem 4

199

6.5. HW 5 CHAPTER 6. HWS

Distance is ๐ฟ = 51 meter (not clear in problem image).

Taking zero PE at horizontal datum when car comes to a stop at the bottom of hill, thenusing

๐‘‡1 + ๐‘‰1 + ๐‘ˆ12 = ๐‘‡2 + ๐‘‰2

Where ๐‘‡1 is KE in state 1, when the car just hit the brakes, and ๐‘‰1 is its gravitational PEand ๐‘ˆ12 is work by non-conservative forces, which is friction here. ๐‘‡2 = 0 since car stops instate 2 and ๐‘‰2 is PE in state 2 which is zero. Hence we have

12๐‘š๐‘ฃ21 + ๐‘š๐‘”๐ฟ sin๐œƒ +

๐ฟ

0โˆ’๐œ‡๐‘๐‘‘๐‘ฅ = 0

12๐‘š๐‘ฃ21 + ๐‘š๐‘”๐ฟ sin๐œƒ โˆ’

๐ฟ

0๐œ‡ ๐‘š๐‘” cos๐œƒ ๐‘‘๐‘ฅ = 0

12๐‘š๐‘ฃ21 + ๐‘š๐‘”๐ฟ sin๐œƒ โˆ’ ๐ฟ๐œ‡๐‘š๐‘” cos๐œƒ = 0

๐œ‡ =12๐‘ฃ

21 + ๐‘”๐ฟ sin๐œƒ๐ฟ๐‘” cos๐œƒ

Hence

๐œ‡ =

1258 10003600

2+ 9.81 (51) sin 21 ๐œ‹

180

(51) (9.81) cos 21 ๐œ‹180

=129.784 0 + 179.295 1

467. 0796= 0.662

6.5.5 Problem 5

200

6.5. HW 5 CHAPTER 6. HWS

๐‘‡1 + ๐‘‰1 = ๐‘‡2 + ๐‘‰2

Where state 1 is initial state, and state 2 is when bob at bottom. Datum is taken when bobat bottom. Hence

0 + ๐‘š๐‘” (๐ฟ โˆ’ ๐ฟ cos๐œƒ) = 12๐‘š๐‘ฃ22 + 0

๐ฟ๐‘š๐‘” (1 โˆ’ cos๐œƒ) = 12๐‘š๐‘ฃ22

Now let state 3 be when bob is up again on the other side. Hence we have

๐‘‡2 + ๐‘‰2 = ๐‘‡3 + ๐‘‰3

201

6.5. HW 5 CHAPTER 6. HWS

But ๐‘‡3 = 0 and ๐‘‰3 = ๐‘š๐‘”โ„Žmax, therefore12๐‘š๐‘ฃ22 = ๐‘š๐‘”โ„Žmax

Or, since 12๐‘š๐‘ฃ

22 = ๐ฟ๐‘š๐‘” (1 โˆ’ cos๐œƒ), then the above becomes

โ„Žmax = ๐ฟ (1 โˆ’ cos๐œƒ๐‘–)

= 1.86 1 โˆ’ cos 16 ๐œ‹180

= 0.0721 m

6.5.6 Problem 6

202

6.5. HW 5 CHAPTER 6. HWS

6.5.6.1 Part (a)

๐‘‰ = ๐‘ฅ๐‘˜๐›ฟ โˆ’ ๐›ฝ๐›ฟ3๐‘‘๐›ฟ

=๐‘˜๐‘ฅ2

2โˆ’๐›ฝ๐‘ฅ4

4

6.5.6.2 Part (b)

Let datum be at top. Hence

๐‘‡1 + ๐‘‰1,๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ + ๐‘‰1,๐‘Ÿ๐‘œ๐‘๐‘’ = ๐‘‡2 + ๐‘‰2,๐‘”๐‘Ÿ๐‘Ž๐‘ฃ๐‘–๐‘ก๐‘ฆ + ๐‘‰2,๐‘Ÿ๐‘œ๐‘๐‘’

0 + 0 + 0 =12๐‘š๐‘ฃ22 โˆ’ ๐‘š๐‘”โ„Ž +

๐‘˜๐›ฟ2

2โˆ’๐›ฝ๐›ฟ4

4

๐‘ฃ =2๐‘”โ„Ž โˆ’

2๐‘š

๐‘˜๐›ฟ2

2โˆ’๐›ฝ๐›ฟ4

4

=

๐›ฝ๐›ฟ4 โˆ’ 2๐‘˜๐‘ฃ2 + 4๐‘š๐‘”โ„Ž2๐‘š

=

(0.000014) (150)4 โˆ’ 2 (2.6) (150)2 + 4 (170) (150)

2 17032.2

= โˆšโˆ’749.360 3

=

(0.000013) (250)4 โˆ’ 2 (2.58) (250)2 + 4 (170) (250)

2 17032.2

But ๐›ฟ = โ„Ž โˆ’ 150 = 400 โˆ’ 150 = 250, hence

๐‘ฃ =

(0.000014) (250)4 โˆ’ 2 (2.6) (250)2 + 4 (170) (400)

2 17032.2

= 12.64184 ft/sec

6.5.6.3 Part (c)

๐›ฟ =

๐‘˜3๐›ฝ

=

2.63 (0.000014)

= 248.806 7

203

6.5. HW 5 CHAPTER 6. HWS

Hence

๐‘Ž = ๐‘” 1 โˆ’๐‘˜๐›ฟ โˆ’ ๐›ฝ๐›ฟ3

๐‘Š

= 32.2โŽ›โŽœโŽœโŽœโŽ1 โˆ’

(2.6) (250) โˆ’ (0.000014) (250)3

170

โŽžโŽŸโŽŸโŽŸโŽ 

= 49.48382 ft/s2

=49.4838232.2

= 1.537 g

204

6.6. HW 6 CHAPTER 6. HWS

6.6 HW 6

6.6.1 Problem 1

Let state 1 be when the crate is thrown at the platform. Let the crate by body ๐ด and theplatform be body ๐ต. We will use work-energy to solve this.

๐‘‡1 + ๐‘‰1 + ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 + ๐‘ˆ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™

12 = ๐‘‡2 + ๐‘‰2

Where ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 is work done due to internal forces between the two bodies, which is the

friction. We will use notation ๐‘ฃ๐ด1 to mean velocity of ๐ด in state 1 and ๐‘ฃ๐ด2 to mean velocityof ๐ด in state 2 and the same for body ๐ต. Therefore the above equation becomes

12๐‘š๐ด๐‘ฃ2๐ด1

+12๐‘š๐ด๐‘ฃ2๐ต1 โˆ’

๐‘‘

0๐œ‡๐‘˜๐‘š๐ด๐‘”๐‘‘๐‘ฅ =

12๐‘š๐ด๐‘ฃ2๐ด2

+12๐‘š๐ด๐‘ฃ2๐ต2

Notice that ๐‘‰1 = ๐‘‰2 and hence they cancel. Also since in state 2 both body ๐ด and ๐ต movewith same speed ๐‘ฃ, and also ๐‘ฃ๐ต1 = 0, then the above simplifies to

12๐‘š๐ด๐‘ฃ2๐ด1

โˆ’ ๐œ‡๐‘˜๐‘š๐ด๐‘”๐‘‘ =12(๐‘š๐ด + ๐‘š๐ต) ๐‘ฃ2

We now solve for ๐‘‘, the distance that body ๐ด (the crate) slides. The above is one equationwith one unknown.

๐‘‘ =12๐‘š๐ด๐‘ฃ2๐ด1

โˆ’ 12(๐‘š๐ด + ๐‘š๐ต) ๐‘ฃ2

๐œ‡๐‘˜๐‘š๐ด๐‘”

=12(210) (15)2 โˆ’ (210 + 741) (2.652)2

(0.28) (210) (32.2)= 10.712 ft

205

6.6. HW 6 CHAPTER 6. HWS

6.6.2 Problem 2

206

6.6. HW 6 CHAPTER 6. HWS

Let state 1 be just before release and state 2 after it moves by 1.5 meter

k

A

Bdatum

state 1 T1 = 0, V1 = 0

kA

B

datum

state 2

1.5 meter

Therefore

๐‘‡1 + ๐‘‰1 + ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 + ๐‘ˆ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™

12 = ๐‘‡2 + ๐‘‰2

๐‘‡1 = 0,๐‘‰1 = 0 and ๐‘ˆ12 = 0 since there is no friction and no external force. ๐‘‡2 =12(๐‘š๐ด + ๐‘š๐ต) ๐‘ฃ2

since both bodies will have same speed. ๐‘‰2 comes from spring and gravity. The distanceโ„Ž = 1.5 meter. Therefore ๐‘‰2 =

12๐‘˜โ„Ž

2 โˆ’ ๐‘š๐ต๐‘”โ„Ž since spring extend by same amount ๐‘š๐ต and ๐‘š๐ดmoves. The above becomes

0 =12(๐‘š๐ด + ๐‘š๐ต) ๐‘ฃ2 +

12๐‘˜โ„Ž2 โˆ’ ๐‘š๐ต๐‘”โ„Ž

Where ๐‘ฃ above is 1.3 since both bodies move with same speed. We want to solve for ๐‘š๐ต theonly unknown in this equation

0 =12๐‘š๐ด๐‘ฃ2 +

12๐‘š๐ต๐‘ฃ2 +

12๐‘˜โ„Ž2 โˆ’ ๐‘š๐ต๐‘”โ„Ž

= ๐‘š๐ต 12๐‘ฃ2 โˆ’ ๐‘”โ„Ž +

12๐‘š๐ด๐‘ฃ2 +

12๐‘˜โ„Ž2

๐‘š๐ต =๐‘š๐ด๐‘ฃ2 + ๐‘˜โ„Ž2

2๐‘”โ„Ž โˆ’ ๐‘ฃ2

Plug-in numerical values gives

๐‘š๐ต =(4) (1.3)2 + (9) (1.5)2

2 (9.81) (1.5) โˆ’ (1.3)2

= 0.974 kg

6.6.3 Problem 3

207

6.6. HW 6 CHAPTER 6. HWS

Let state 1 be just before release and state 2 after it rotation.

A

B

ฮฑ = 36

L1 = 10โ€ฒ

L2 = 5โ€ฒ

datum

STATE 1

A

B

ฮฑ

STATE 2

ฮฒ 1100

ฮฒ = 110โˆ’ ฮฑ

T1 = 0

V1 = โˆ’mBgL1 sinฮฑ+mAgL2 sinฮฑ

ฮฑ

T2 = 12mB(L1ฯ‰)

2 + 12mA(L2ฯ‰)

2

V2 = mBgL1 sinฮฒ โˆ’mAgL2 sinฮฒ

ฮฒdatum

๐‘‡1 + ๐‘‰1 + ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 + ๐‘ˆ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™

12 = ๐‘‡2 + ๐‘‰2

But ๐‘ˆ12 = 0 since there is no friction and no external forces. Now ๐‘‡1 = 0 since at rest. And

๐‘‰1 = โˆ’๐‘š๐ต๐‘”๐ฟ1 sin๐›ผ + ๐‘š๐ด๐‘”๐ฟ2 sin๐›ผ

Where ๐›ผ = 36๐‘œ. In state 2

๐‘‡2 =12๐‘š๐ต (๐ฟ1๐œ”)

2 +12๐‘š๐ด (๐ฟ2๐œ”)

2

208

6.6. HW 6 CHAPTER 6. HWS

Where ๐œ” is the angular velocity, which we do not know, but will solve for. And

๐‘‰2 = ๐‘š๐ต๐‘”๐ฟ1 sin ๐›ฝ โˆ’ ๐‘š๐ด๐‘”๐ฟ2 sin ๐›ฝ

Therefore (1) becomes

โˆ’๐‘š๐ต๐‘”๐ฟ1 sin๐›ผ + ๐‘š๐ด๐‘”๐ฟ2 sin๐›ผ =12๐‘š๐ต (๐ฟ1๐œ”)

2 +12๐‘š๐ด (๐ฟ2๐œ”)

2 + ๐‘š๐ต๐‘”๐ฟ1 sin ๐›ฝ โˆ’ ๐‘š๐ด๐‘”๐ฟ2 sin ๐›ฝ

โˆ’๐‘š๐ต๐‘”๐ฟ1 sin๐›ผ + ๐‘š๐ด๐‘”๐ฟ2 sin๐›ผ โˆ’ ๐‘š๐ต๐‘”๐ฟ1 sin ๐›ฝ + ๐‘š๐ด๐‘”๐ฟ2 sin ๐›ฝ = ๐œ”2 12๐‘š๐ต๐ฟ21 +

12๐‘š๐ด๐ฟ22

๐œ”2 =๐‘š๐ด๐‘”๐ฟ2 sin๐›ผ + sin ๐›ฝ โˆ’ ๐‘š๐ต๐‘”๐ฟ1 sin๐›ผ + sin ๐›ฝ

12๐‘š๐ต๐ฟ21 +

12๐‘š๐ด๐ฟ22

๐œ” =

2 ๐‘š๐ด๐‘”๐ฟ2 โˆ’ ๐‘š๐ต๐‘”๐ฟ1 sin๐›ผ + sin ๐›ฝ๐‘š๐ต๐ฟ21 + ๐‘š๐ด๐ฟ22

Now we solve for ๐œ” and use it to find speed of ๐ต from ๐‘ฃ๐ต = ๐ฟ1๐œ”. Since ๐‘š๐ด = 814,๐‘š๐ต =129, ๐ฟ1 = 10, ๐ฟ2 = 5, ๐›ผ = 36, ๐›ฝ = 110 โˆ’ 36 = 74๐‘œ then

๐œ” =2((814) (32.2) (5) โˆ’ (129) (32.2) (10)) sin 36 ๐œ‹

180 + sin 74 ๐œ‹

180

(129) 102 + (814) 52

= 2.888 rad/sec

Hence

๐‘ฃ๐ต = ๐ฟ1๐œ”= 10 (2.888)= 28.88 ft/sec

6.6.4 Problem 4

Power ๐‘ƒ is

209

6.6. HW 6 CHAPTER 6. HWS

๐‘ƒ = ๐น๐‘ฃ

Where ๐น is force generated by cyclist. From force balance we see that ๐น = ๐‘š๐‘” sin๐œƒ. Hencefor constant power, we want

๐‘š๐‘” sin 130 ๐‘ฃ1 = ๐‘š๐‘” sin 200 ๐‘ฃ2

Solving for ๐‘ฃ2

๐‘ฃ2 =๐‘š๐‘” sin 130 ๐‘ฃ1๐‘š๐‘” sin 200

=sin 13 ๐œ‹

180

sin 20 ๐œ‹180

21

= 13.812 mph

6.6.5 Problem 5

๐œ€ =๐‘ƒ๐‘œ๐‘ข๐‘ก๐‘ƒ๐‘–๐‘›

Where ๐œ€ is the eciency and ๐‘ƒ๐‘œ๐‘ข๐‘ก is power out and ๐‘ƒ๐‘–๐‘› is power in. But ๐‘ƒ๐‘œ๐‘ข๐‘ก = ๐น๐‘ฃ๐‘. So we justneed to find force in the cable that the motor is pulling with. This force is ๐‘Š

4 , since there

210

6.6. HW 6 CHAPTER 6. HWS

are 4 cables and hence the weight is distributed over them, and then the tension in the onecable attached to the motor is ๐‘Š

4 . Now we have all the information to find ๐œ€

๐‘ƒ๐‘œ๐‘ข๐‘ก = (4.5) 4604

= 517. 5 lb-ft/sec

But โ„Ž๐‘ = 550 lb-ft/sec, therefore in hp the above is 517. 5550 = 0.941, hence

๐œ€ =0.9411.37

= 0.687

6.6.6 Problem 6

๐œ€ =๐‘ƒ๐‘œ๐‘ข๐‘ก๐‘ƒ๐‘–๐‘›

Mass of crate is 21632.2 slug. (note, number given 216 is weight) These problem should make it

more clear if ๐‘™๐‘ given is meant to be weight or mass.

We need to find ๐‘ƒ๐‘–๐‘›. We are given ๐œ€. We now calculate ๐‘ƒ๐‘œ๐‘ข๐‘ก and then will be able to find ๐‘ƒ๐‘–๐‘›.But ๐‘ƒ๐‘œ๐‘ข๐‘ก = ๐น๐‘ฃ, where ๐น is force given by motor to pull the crate. From free body diagram, wesee that this force is ๐น = ๐œ‡๐‘š๐‘” cos๐œƒ + ๐‘š๐‘” sin๐œƒ. Hence

211

6.6. HW 6 CHAPTER 6. HWS

๐‘ƒ๐‘œ๐‘ข๐‘ก = ๐œ‡๐‘š๐‘” cos๐œƒ + ๐‘š๐‘” sin๐œƒ ๐‘ฃ

= ๐‘š๐‘” ๐œ‡ cos๐œƒ + sin๐œƒ ๐‘ฃ

= 21632.2

(32.2) 0.24 cos 28 ๐œ‹180

+ sin 28 ๐œ‹180

(6.6)

= 971.374 lb-ft/sec

=971.374550

= 1. 766 hp

Hence

๐‘ƒ๐‘–๐‘› =๐‘ƒ๐‘œ๐‘ข๐‘ก๐œ€

=1. 7660.78

= 2.264 hp

212

6.7. HW 7 CHAPTER 6. HWS

6.7 HW 7

6.7.1 Problem 1

Using impulse momentum

๐‘1 +๐‘ก

0๐น๐‘Ž๐‘ฃ (๐‘ก) ๐‘‘๐‘ก = ๐‘2

But ๐‘1 = ๐‘š๐‘ฃ1 = 0 since starting from rest and ๐‘2 = ๐‘š๐‘ฃ2, therefore

๐‘ก

0๐น๐‘Ž๐‘ฃ (๐‘ก) ๐‘‘๐‘ก =

1817000

32.2(3347)

= 2.688 lb-sec

Therefore

๐น๐‘Ž๐‘ฃ (0.0011) = 2.688

๐น๐‘Ž๐‘ฃ =2.6880.0011

= 2443.636 lb

6.7.2 Problem 2

213

6.7. HW 7 CHAPTER 6. HWS

๐‘1 +๐‘ก

0๐‘‡๐‘‘๐‘ก = ๐‘2

Where ๐‘‡ is the thrust. But ๐‘1 = 0, therefore

๐‘‡๐‘ก = ๐‘š๐‘ฃ2

๐‘ก =๐‘š๐‘ฃ2๐‘‡

=45500

32.2 162 52803600

33000= 10.174 sec

To find how long a runway is needed

๐‘ฅ๐‘“ = ๐‘ฅ1 + ๐‘ฃ1๐‘ก +12๐‘Ž๐‘ก2

But ๐‘ฅ1 = 0 and ๐‘Ž = ๐‘ฃ2โˆ’๐‘ฃ1๐‘ก , and ๐‘ฃ1 = 0 since starting from rest, hence

๐‘ฅ๐‘“ =12๐‘Ž๐‘ก2

=12๐‘ฃ2๐‘ก ๐‘ก2

=12๐‘ฃ2๐‘ก

= 12

162 52803600

(10.174)

= 1208.671 ft

This is 4 times as long as without the catapults.

214

6.7. HW 7 CHAPTER 6. HWS

6.7.3 Problem 3

1 +๐‘ก

0๐‘‘๐‘ก = 2

โˆ’๐‘š๐‘ฃ1 ๐šค + ๐‘ก

0๐น๐‘ฅ ๐šค + ๐น๐‘ฆ ๐šฅ ๐‘‘๐‘ก = ๐‘š๐‘ฃ2 cos๐›ผ ๐šค + ๐‘š๐‘ฃ2 sin๐›ผ ๐šฅ

๐šค (โˆ’๐‘š๐‘ฃ1 + ๐น๐‘ฅ๐‘ก) + ๐šฅ ๐น๐‘ฆ๐‘ก = ๐‘š๐‘ฃ2 cos๐›ผ ๐šค + ๐‘š๐‘ฃ2 sin๐›ผ ๐šฅ

Hence we obtain two equations

โˆ’๐‘š๐‘ฃ1 + ๐น๐‘ฅ๐‘ก = ๐‘š๐‘ฃ2 cos๐›ผ๐น๐‘ฆ๐‘ก = ๐‘š๐‘ฃ2 sin๐›ผ

215

6.7. HW 7 CHAPTER 6. HWS

Or

๐น๐‘ฅ๐‘ก = ๐‘š๐‘ฃ2 cos๐›ผ + ๐‘š๐‘ฃ1๐น๐‘ฆ๐‘ก = ๐‘š๐‘ฃ2 sin๐›ผ

Now ๐‘š =5.1251632.2 = 0.00994 slug, and ๐‘ฃ1 = 89 52803600

= 130.533 ft/sec and ๐‘ฃ2 = 160 52803600 = 234.667

ft/sec. Hence

๐น๐‘ฅ๐‘ก = (0.00994) (234.667) cos 32 ๐œ‹180

+ (0.00994) (130.5333)

๐น๐‘ฆ๐‘ก = (0.00994) (234.667) sin 32 ๐œ‹180

Or

๐น๐‘ฅ๐‘ก = 1.978 + 1.298 = 3.276๐น๐‘ฆ = 1.236

Hence impulse is๐ผ = 3.276 ๐šค + 1.236 ๐šฅ

To find average force, we divide by time

๐‘Ž๐‘ฃ =3.2760.001

๐šค +1.2360.001

๐šฅ

= 3276 ๐šค + 1236 ๐šฅ

6.7.4 Problem 4

Since there is no external force, then ๐‘1 = ๐‘2 or

๐‘š๐ต๐‘ฃโˆ’๐ต + ๐‘š๐ด๐‘ฃโˆ’๐ด = ๐‘š๐ต๐‘ฃ+๐ต + ๐‘š๐ด๐‘ฃ+๐ด (1)

Where + means after impact and โˆ’ means before impace. Therefore (using positive going

216

6.7. HW 7 CHAPTER 6. HWS

to the right)

๐‘ฃโˆ’๐ด = โˆ’57 52803600

= โˆ’83.6 ft/sec

๐‘ฃโˆ’๐ต = 32 52803600

= 46.933 ft/sec

๐‘š๐ด =811032.2

= 251.8634 slug

๐‘š๐ต =207032.2

= 64.2857 slug

Hence (1) becomes

(64.2857) (46.933) โˆ’ (251.8634) (83.6) =207032.2

๐‘ฃ+๐ต +811032.2

๐‘ฃ+๐ดโˆ’18038.66 = 64.286๐‘ฃ+๐ต + 251.863 4๐‘ฃ+๐ด (2)

And since ๐‘’ = 0, then

๐‘’ = 0 =๐‘ฃ+๐ต โˆ’ ๐‘ฃ+๐ด๐‘ฃโˆ’๐ด โˆ’ ๐‘ฃโˆ’๐ต

๐‘ฃ+๐ต = ๐‘ฃ+๐ด (3)

Using (2,3) we solve for ๐‘ฃ+๐ต , ๐‘ฃ+๐ด. Plug (3) into (2) gives

โˆ’18038.66 = 64.286๐‘ฃ+๐ด + 251.863 4๐‘ฃ+๐ดโˆ’18038.66 = 316. 1494๐‘ฃ+๐ด

๐‘ฃ+๐ด =โˆ’18038.66316. 1494

= โˆ’57.057 39 ft/sec

Hence

๐‘ฃ+๐ต = โˆ’57.057 39 ft/sec

6.7.5 Problem 5

217

6.7. HW 7 CHAPTER 6. HWS

Let ๐‘ฃโˆ’๐ต be speed of bullet befor impact. Assume that after imapct bullet and mass ๐ด arestuck togother with speed ๐‘ฃ+. Hence

๐‘š๐ต๐‘ฃโˆ’๐ต = (๐‘š๐ต + ๐‘š๐ด) ๐‘ฃ+ (1)

Now we apply work-energy. Hence12(๐‘š๐ต + ๐‘š๐ด) (๐‘ฃ+)

2 = (๐‘š๐ต + ๐‘š๐ด) ๐‘” (๐ฟ โˆ’ ๐ฟ cos๐œƒ) (2)

Where datum is taken at the horizontal level. From (2) we solve for ๐‘ฃ+ and use it in (1) tofind ๐‘ฃโˆ’๐ต. (2) becomes

12(0.09 + 5.8) (๐‘ฃ+)2 = (0.09 + 5.8) (9.81) (1.7) 1 โˆ’ cos 51 ๐œ‹

180

2.945 (๐‘ฃ+)2 = 36.410 94

๐‘ฃ+ =

36.410 942.945

= 3.516 m/sec

Then (1) becomes

0.09๐‘ฃโˆ’๐ต = (0.09 + 5.8) (3.516)

๐‘ฃโˆ’๐ต =(0.09 + 5.8) (3.516)

0.09= 230.103 m/sec

6.7.6 Problem 6

218

6.7. HW 7 CHAPTER 6. HWS

Applying impulse momentum

๐‘š๐ต๐‘ฃโˆ’๐ต = (๐‘š๐ต + ๐‘š๐ด) ๐‘ฃ+

Solving or ๐‘ฃ+

๐‘ฃ+ =๐‘š๐ต๐‘ฃโˆ’๐ต

๐‘š๐ต + ๐‘š๐ด

=(1860) 38 10003600

1860 + 1524= 5.802 m/sec

Now applying work-energy

๐‘‡1 + ๐‘ˆ12 = ๐‘‡2

12(๐‘š๐ต + ๐‘š๐ด) (๐‘ฃ+)

2 โˆ’๐‘‘

0๐œ‡ (๐‘š๐ต + ๐‘š๐ด) ๐‘”๐‘‘๐‘ฅ = 0

We now solve for ๐‘‘12(1860 + 1524) (5.802)2 โˆ’ (0.67) (1860 + 1524) (9.81) ๐‘‘ = 0

๐‘‘ =12(1860 + 1524) (5.802)2

(0.67) (1860 + 1524) (9.81)= 2.561 meter

219

6.8. HW 8 CHAPTER 6. HWS

6.8 HW 8

6.8.1 Problem 1

The before and after impact diagram is

v0

ฮฒ

xy

A

B

BEFORE AFTER

v+Ax

v+Bx

v+By

v+Ay

v0 sinฮฒ

v0 cosฮฒ

Along the ๐‘ฆ direction

๐‘š๐ด๐‘ฃ0 cos ๐›ฝ = ๐‘š๐ด๐‘ฃ+๐ด๐‘ฆ+ ๐‘š๐ต๐‘ฃ+๐ต๐‘ฆ

โˆ’๐‘’ = โˆ’1 =๐‘ฃ+๐ด๐‘ฆ

โˆ’ ๐‘ฃ+๐ต๐‘ฆ๐‘ฃโˆ’๐ด๐‘ฆ

โˆ’ ๐‘ฃโˆ’๐ต๐‘ฆ=

๐‘ฃ+๐ด๐‘ฆโˆ’ ๐‘ฃ+๐ต๐‘ฆ

๐‘ฃ0 cos ๐›ฝ

220

6.8. HW 8 CHAPTER 6. HWS

These are 2 equations with 2 unknowns ๐‘ฃ+๐ด๐‘ฆ, ๐‘ฃ+๐ต๐‘ฆ. From the second equation

โˆ’๐‘ฃ0 cos ๐›ฝ = ๐‘ฃ+๐ด๐‘ฆโˆ’ ๐‘ฃ+๐ต๐‘ฆ (1)

Substituting this in the first equation (and canceling the mass since they are the same), gives

โˆ’๐‘ฃ+๐ด๐‘ฆ+ ๐‘ฃ+๐ต๐‘ฆ = ๐‘ฃ+๐ด๐‘ฆ

+ ๐‘ฃ+๐ต๐‘ฆ๐‘ฃ+๐ด๐‘ฆ

= 0

Therefore from (1)

๐‘ฃ+๐ต๐‘ฆ = ๐‘ฃ0 cos ๐›ฝ

= 9 cos 45 ๐œ‹180

= 6.364 m/s

Along the ๐‘ฅ direction, since this is perpendicular to the line of impact then we know that

๐‘ฃ+๐ด๐‘ฅ= ๐‘ฃโˆ’๐ด๐‘ฅ

= ๐‘ฃ0 sin ๐›ฝ = 9 sin 45 ๐œ‹180

= 6.364 m/s

๐‘ฃ+๐ต๐‘ฅ = ๐‘ฃโˆ’๐ต๐‘ฅ = 0

Hence velocity of ๐ต is

๐ต = 0 ๐šค + 6.364 ๐šฅ

And velocity of ๐ด is

๐ด = 6.364 ๐šค + 0 ๐šฅ

6.8.2 Problem 2

221

6.8. HW 8 CHAPTER 6. HWS

The before and after impact diagram is

x

y

AB

BEFORE

vโˆ’A cosฮฑ

vโˆ’A sinฮฑ

vโˆ’A

AFTER

v+Axv+Bx

v+Ayv+By

ฮฑ

vโˆ’B

vโˆ’B cosฮฒ

vโˆ’B sinฮฒ

ฮฒ

v+Bx

Along the ๐‘ฅ axis, the conservation of linear momentum gives

๐‘š๐ด๐‘ฃโˆ’๐ด cos๐›ผ โˆ’ ๐‘š๐ต๐‘ฃโˆ’๐ต cos ๐›ฝ = ๐‘š๐ด๐‘ฃ+๐ด๐‘ฅ+ ๐‘š๐ต๐‘ฃ+๐ต๐‘ฅ

(1.48) (26.7) cos 45 ๐œ‹180

โˆ’ (2.75) (22.6) cos 15 ๐œ‹180

= (1.48) ๐‘ฃ+๐ด๐‘ฅ+ (2.75) ๐‘ฃ+๐ต๐‘ฅ

โˆ’32.09 = (1.48) ๐‘ฃ+๐ด๐‘ฅ+ (2.75) ๐‘ฃ+๐ต๐‘ฅ (1)

And

โˆ’๐‘’ =๐‘ฃ+๐ด๐‘ฅ

โˆ’ ๐‘ฃ+๐ต๐‘ฅ๐‘ฃโˆ’๐ด๐‘ฅ

โˆ’ ๐‘ฃโˆ’๐ต๐‘ฅ

โˆ’0.58 =๐‘ฃ+๐ด๐‘ฅ

โˆ’ ๐‘ฃ+๐ต๐‘ฅ๐‘ฃโˆ’๐ด cos๐›ผ + ๐‘ฃโˆ’๐ต cos ๐›ฝ

โˆ’0.58 =๐‘ฃ+๐ด๐‘ฅ

โˆ’ ๐‘ฃ+๐ต๐‘ฅ(26.7) cos 45 ๐œ‹

180 + (22.6) cos 15 ๐œ‹

180

โˆ’0.58 =๐‘ฃ+๐ด๐‘ฅ

โˆ’ ๐‘ฃ+๐ต๐‘ฅ40.71

โˆ’23.612 = ๐‘ฃ+๐ด๐‘ฅโˆ’ ๐‘ฃ+๐ต๐‘ฅ (2)

Now ๐‘ฃ+๐ด๐‘ฅ, ๐‘ฃ+๐ต๐‘ฅ is solved for using (1),(2). From (2) ๐‘ฃ+๐ด๐‘ฅ

= โˆ’23.612 + ๐‘ฃ+๐ต๐‘ฅ, substituting this in (1)gives

โˆ’32.09 = (1.48) โˆ’23.612 + ๐‘ฃ+๐ต๐‘ฅ + (2.75) ๐‘ฃ+๐ต๐‘ฅโˆ’32.09 = โˆ’34.945 + 4.23๐‘ฃ+๐ต๐‘ฅ

๐‘ฃ+๐ต๐‘ฅ =โˆ’32.09 + 34.945

4.23= 0.675 m/s

222

6.8. HW 8 CHAPTER 6. HWS

From (2)

๐‘ฃ+๐ด๐‘ฅ= โˆ’23.612 + 0.675= โˆ’22.937 m/s

Now we do the same for the ๐‘ฆ direction. But along this direction we know that

๐‘ฃ+๐ด๐‘ฆ= ๐‘ฃโˆ’๐ด๐‘ฆ

= ๐‘ฃโˆ’๐ด sin๐›ผ

= (26.7) sin 45 ๐œ‹180

= 18.88 m/s

And

๐‘ฃ+๐ต๐‘ฆ = ๐‘ฃโˆ’๐ต๐‘ฆ= โˆ’๐‘ฃโˆ’๐ต sin ๐›ฝ

= (โˆ’22.6) sin 15 ๐œ‹180

= โˆ’5.849 m/s

Therefore, after impact

๐ด = โˆ’22.938 ๐šค + 18.879 ๐šฅ๐ต = 0.675 ๐šค โˆ’ 5.849 ๐šฅ

6.8.3 Problem 3

Using

๐œ = 4๐ผ223

6.8. HW 8 CHAPTER 6. HWS

Where ๐œ is applied torque and ๐ผ is mass moment of inertia around the spin axis of one blade

(we have 4). But ๐ผ = ๐‘š ๐ฟ22= ๐‘š๐ฟ2

4 , since blade is modeled as point mass. Therefore

=๐œ

4๐‘š๐ฟ2

4

=๐›ฝ๐‘ก๐‘š๐ฟ2

But = ๐‘‘๐‘‘๐‘ก , then the above becomes

๐‘‘๐‘‘๐‘ก =

๐›ฝ๐‘ก๐‘š๐ฟ2

๐‘‘ =๐›ฝ๐‘ก๐‘š๐ฟ2

๐‘‘๐‘ก

๐‘“

0๐‘‘ =

๐›ฝ๐‘ก๐‘š๐ฟ2

10

0๐‘ก๐‘‘๐‘ก

๐‘“ =๐›ฝ

๐‘š๐ฟ2 ๐‘ก2

2 10

0

=๐›ฝ

2๐‘š๐ฟ2100

=(63)

2 (89) (4.5)2100

= 1.748 rad/sec

6.8.4 Problem 4

224

6.8. HW 8 CHAPTER 6. HWS

The angular momentum โ„Ž is the moment of the linear momentum. The linear momentumis ๐‘š. Using radial and tangential coordinates, then

๐‘š = ๐‘š ๐ฟ๐œƒ + 0๐‘Ÿ

Therefore

โ„Ž = ร— ๐‘š= ๐ฟ๐‘Ÿ ร— ๐‘š๐ฟ๐œƒ

=

๐‘Ÿ ๐œƒ ๐ฟ 0 00 ๐‘š๐ฟ 0

= ๐‘š๐ฟ2 (1)

The above is what we want. But we need to find . Taking time derivative of โ„Ž gives๐‘‘๐‘‘๐‘กโ„Ž = ๐‘š๐ฟ2

But ๐‘‘๐‘‘๐‘ก โ„Ž is the torque ๐œ, which we can see to be

๐œ = โˆ’๐‘š๐‘”๐ฟ sin๐œƒ

The minus sign, since clockwise. Using the above 2 equations, then we write

โˆ’๐‘š๐‘”๐ฟ sin๐œƒ = ๐‘š๐ฟ2

= โˆ’๐‘”๐ฟ

sin๐œƒ (2)

To integrate this, we need a trick. Since

=๐‘‘๐‘‘๐‘ก

= ๐‘‘๐‘‘๐œƒ

๐‘‘๐œƒ๐‘‘๐‘ก

= ๐‘‘๐‘‘๐œƒ

= ๐‘‘๐‘‘๐œƒ

Then (2) becomes

๐‘‘๐‘‘๐œƒ

= โˆ’๐‘”๐ฟ

sin๐œƒ

225

6.8. HW 8 CHAPTER 6. HWS

Now it is separable.

๐‘‘ = โˆ’๐‘”๐ฟ

sin๐œƒ๐‘‘๐œƒ

0๐‘‘ = โˆ’

๐‘”๐ฟ

๐œƒ

330sin๐œƒ๐‘‘๐œƒ

2

2= โˆ’

๐‘”๐ฟ(โˆ’ cos๐œƒ)๐œƒ330

2

2=

๐‘”๐ฟcos๐œƒ โˆ’ cos 330

= ยฑ

2๐‘”๐ฟ

cos๐œƒ โˆ’ cos 330

All this work was to find . Now we go back to (1) and find the angular momentum

โ„Ž = ๐‘š๐ฟ2

= ยฑ

2๐‘”๐ฟ

cos๐œƒ โˆ’ cos 330๐‘š๐ฟ2

= ยฑ2๐‘”๐ฟ3 cos๐œƒ โˆ’ cos 330๐‘š

= ยฑ

2๐ฟ3

๐‘”cos๐œƒ โˆ’ cos 330๐‘Š

Substituting numerical values

โ„Ž = ยฑ1.8

2 (5.3)3

(32.2)cos๐œƒ โˆ’ cos 33 ๐œ‹

180

= ยฑ1.89.247 (cos๐œƒ โˆ’ 0.839)

= ยฑ1.8โˆš9.247(cos๐œƒ โˆ’ 0.839)

= ยฑ5.474(cos๐œƒ โˆ’ 0.839)

6.8.5 Problem 5

226

6.8. HW 8 CHAPTER 6. HWS

There is no external torque, hence angular momentum is conserved. Let โ„Ž1 be the angularmomentum initially and let โ„Ž2 be angular momentum be at some instance of time later on.Therefore

โ„Ž1 = 1 ร— ๐‘š1= ๐‘Ÿ0๐‘Ÿ ร— ๐‘š (๐‘Ÿ0๐œ”0๐œƒ)

=

๐‘Ÿ ๐œƒ ๐‘Ÿ0 0 00 ๐‘š๐‘Ÿ0๐œ”0 0

= ๐‘š๐‘Ÿ20๐œ”0

And at some later instance

โ„Ž2 = 2 ร— ๐‘š2= ๐‘Ÿ๐‘Ÿ ร— ๐‘š (๐‘Ÿ + ๐‘Ÿ๐œ”๐œƒ)

=

๐‘Ÿ ๐œƒ ๐‘Ÿ 0 0๐‘š ๐‘š๐‘Ÿ๐œ” 0

= ๐‘š๐‘Ÿ2๐œ”

Equating the last two results gives

๐‘š๐‘Ÿ20๐œ”0 = ๐‘š๐‘Ÿ2๐œ”

๐œ” = ๐‘Ÿ0๐‘Ÿ2๐œ”0 (1)

Now the equation of motion in radial direction is ๐น = ๐‘š๐‘Ž๐‘Ÿ, but ๐น = 0, since there is no force

227

6.8. HW 8 CHAPTER 6. HWS

on the collar. Therefore

๐‘š๐‘Ž๐‘Ÿ = 0

๐‘š โˆ’ ๐‘Ÿ๐œ”2 = 0 = ๐‘Ÿ๐œ”2

Using (1) in the above

= ๐‘Ÿ ๐‘Ÿ0๐‘Ÿ22

๐œ”20

=๐‘Ÿ40๐‘Ÿ3๐œ”20

But = ๐‘‘๐‘‘๐‘Ÿ , hence the above becomes

๐‘‘ =๐‘Ÿ40๐‘Ÿ3๐œ”20๐‘‘๐‘Ÿ

Now we can integrate

0๐‘‘ =

๐‘Ÿ

๐‘Ÿ0

๐‘Ÿ40๐‘Ÿ3๐œ”20๐‘‘๐‘Ÿ

2

2=

12๐œ”20๐‘Ÿ40

โˆ’1๐‘Ÿ2

๐‘Ÿ

๐‘Ÿ0

=12๐œ”20๐‘Ÿ40

1๐‘Ÿ20

โˆ’1๐‘Ÿ2

Therefore

= ๐œ”0๐‘Ÿ201๐‘Ÿ20

โˆ’1๐‘Ÿ2

To find when it hits the end, we just need to replace ๐‘Ÿ by ๐‘Ÿ0 + ๐‘‘ in the above

๐‘’๐‘›๐‘‘ = ๐œ”0๐‘Ÿ20

1๐‘Ÿ20

โˆ’1

(๐‘Ÿ0 + ๐‘‘)2

Numerically the above is

๐‘’๐‘›๐‘‘ = (1.6) (0.5)2

1(0.5)2

โˆ’1

(0.5 + 1.9)2

= 0.782 m/s

228

6.8. HW 8 CHAPTER 6. HWS

6.8.6 Problem 6

Using

โ„Ž1 +๐‘ก

0๐œ๐‘‘๐‘ก = โ„Ž2

Where โ„Ž1 is initial angular momentum which is zero, and โ„Ž2 is final angular momentumwhich is ๐ผ๐œ”๐‘“ where ๐ผ = 2๐‘€๐‘…2 where ๐‘€ is mass of large ball and ๐ผ is the mass moment ofinertial of the large ball about the spin axis.

But torque ๐œ = ๐ผ2 where ๐ผ2 = 2 ๐‘š๐‘Ÿ2 where ๐‘š is mass of each small ball and ๐ผ2 is the mass

229

6.8. HW 8 CHAPTER 6. HWS

moment of inertial of the small ball about the spin axis. Hence the above becomes

๐‘ก

0๐œ๐‘‘๐‘ก = โ„Ž2

2 ๐‘š๐‘Ÿ2 ๐‘ก

0๐‘‘๐‘ก = โ„Ž2

Since is constant. Hence

2 ๐‘š๐‘Ÿ2 ๐‘ก = 2๐‘€๐‘…2๐œ”๐‘“

Solving for final angular velocity

๐œ”๐‘“ =2 ๐‘š๐‘Ÿ2 ๐‘ก2๐‘€๐‘…2

=2 4.3

32.2 (0.75)2 (4.7) (12)

2 17232.2

(3.7)2

= 0.05793 rad/sec

230

6.9. HW 9 CHAPTER 6. HWS

6.9 HW 9

6.9.1 Problem 1

The tangential acceleration at the point where disk ๐ด and disk ๐ต meet is ๐‘…๐ด๐›ผ๐ด. But thisis also must be the same as ๐‘…๐ต๐›ผ๐ต since the gears assumed not to slip against each others.Therefore

๐›ผ๐ต = โˆ’๐‘…๐ด๐‘…๐ต

๐›ผ๐ด

The minus sign, is because gear A moves anti-clockwise, but ๐ต moves clockwise, hence innegative direction. Therefore

๐›ผ๐ต = โˆ’201114

(51)

= โˆ’89.921 rad/sec2

Since ๐ถ moves with ๐ต as one body, then ๐›ผ๐ต = ๐›ผ๐ถ and then

๐›ผ๐ถ = โˆ’89.921 rad/sec2

Similarly

๐›ผ๐ท = โˆ’๐‘…๐ถ๐‘…๐ท

๐›ผ๐ถ

= โˆ’162133

(โˆ’89.921)

= 109.528 rad/sec2

231

6.9. HW 9 CHAPTER 6. HWS

6.9.2 Problem 2

Since ๐‘Ž๐‘ = ๐‘Ÿ๐›ผ๐‘  then

๐›ผ๐‘  = โˆ’๐‘Ž๐‘๐‘Ÿ= โˆ’

11.31

= โˆ’0.763 rad/sec2

Since ๐‘ฃ๐‘ = ๐‘Ÿ๐œ”๐‘  then

๐œ”๐‘  = โˆ’๐‘ฃ๐‘๐‘Ÿ= โˆ’

9.21.31

= โˆ’7.023 rad/sec

232

6.9. HW 9 CHAPTER 6. HWS

6.9.3 Problem 3

233

6.9. HW 9 CHAPTER 6. HWS

๐‘…๐ถ = 105.5 mm

๐‘…๐‘† = 26.4 mm

๐‘…๐‘Š =7202

= 360 mm

๐œ”๐ถ = 2๐œ‹

Hence

๐œ”๐‘คโ„Ž๐‘’๐‘’๐‘™ =๐‘…๐ถ๐‘…๐‘†

๐œ”๐ถ

=105.526.4

2๐œ‹

= 25.109 rad/sec

Or

๐œ”๐‘คโ„Ž๐‘’๐‘’๐‘™ =25.109

0.104719775= 239.773 RPM

Hence

๐‘‰ = ๐œ”๐‘คโ„Ž๐‘’๐‘’๐‘™ (๐‘…๐‘Š)

= 25.109 360 10โˆ’3

= 9.039 m/s

6.9.4 Problem 4

234

6.9. HW 9 CHAPTER 6. HWS

๐ต = ๐ด + ร— ๐ต/๐ด= ๐‘ฃ๐ด sin๐œ™ ๐šค + cos๐œ™ ๐šฅ + ร— ๐ต/๐ด (1)

And

= โˆ’20 = โˆ’0.03491

And

๐ต/๐ด = ๐‘‘ cos๐œƒ ๐šค + ๐‘‘ sin๐œƒ ๐šฅ

Hence (1) becomes

๐ต = ๐‘ฃ๐ด sin๐œ™ ๐šค + cos๐œ™ ๐šฅ + ๐œ” ร— ๐‘‘ cos๐œƒ ๐šค + ๐‘‘ sin๐œƒ ๐šฅ

= ๐‘ฃ๐ด sin๐œ™ ๐šค + cos๐œ™ ๐šฅ +

๐šค ๐šฅ 0 0 ๐œ”

๐‘‘ cos๐œƒ ๐‘‘ sin๐œƒ 0

= ๐‘ฃ๐ด sin๐œ™ ๐šค + cos๐œ™ ๐šฅ + โˆ’๐œ”๐‘‘ sin๐œƒ ๐šค โˆ’ ๐šฅ (โˆ’๐œ”๐‘‘ cos๐œƒ)

= ๐šค ๐‘ฃ๐ด sin๐œ™ โˆ’ ๐œ”๐‘‘ sin๐œƒ + ๐šฅ ๐‘ฃ๐ด cos๐œ™ + ๐œ”๐‘‘ cos๐œƒ (2)

But

๐‘ฃ๐ด = 30 (1.852) 1000๐‘˜๐‘š

โ„Ž๐‘Ÿ3600

= 30 (1.852) 10003600

= 15.433 m/s

And ๐‘‘ = 231, hence (2) becomes

๐ต = ๐šค (15.433) sin 34 ๐œ‹180

โˆ’ (โˆ’0.0349) (231) sin 20 ๐œ‹180

+ ๐šฅ (15.433) cos 34 ๐œ‹180

+ (โˆ’0.0349) (231) cos 20 ๐œ‹180

Or

๐ต = 11.388 ๐šค + 5.217 ๐šฅ

235

6.9. HW 9 CHAPTER 6. HWS

6.9.5 Problem 5

๐œ”๐‘ (2๐‘…) = ๐‘ฃ๐ฟ

๐œ”๐‘ =๐‘ฃ๐ฟ2๐‘…

=5

2 2.312 = 13.043 rad/sec

And

๐‘ฃ๐‘œ = ๐œ”๐‘๐‘…

= 13.043 48 2.312

= 2.5 m/s

236

6.9. HW 9 CHAPTER 6. HWS

6.9.6 Problem 6

Since

๐œ”๐ฟ sin๐œƒ = ๐‘ฃ๐ตThen

๐œ” =๐‘ฃ๐ต

๐ฟ sin๐œƒ

=5

3512 sin 77 ๐œ‹

180

= 1.759 rad/sec

And

๐œ”๐ฟ cos๐œƒ = ๐‘ฃ๐ด

237

6.9. HW 9 CHAPTER 6. HWS

Then

๐‘ฃ๐ด = โˆ’ (1.759 ) 3512

cos 77 ๐œ‹180

= โˆ’1.154 m/s

The minus sign since ๐ด moves down.

This can also be solved using vector method as follows

๐ด = ๐ต + ๐ด๐ต ร— ๐ด/๐ตWhere ๐ด/๐ต = โˆ’๐ฟ cos๐œƒ ๐šค + ๐ฟ sin๐œƒ ๐šฅ and ๐ต = 5 ๐šค is given. Hence the above becomes

๐ด = 5 ๐šค + ๐œ”๐ด๐ต ร— โˆ’๐ฟ cos๐œƒ ๐šค + ๐ฟ sin๐œƒ ๐šฅ

= 5 ๐šค + โˆ’๐œ”๐ด๐ต๐ฟ cos๐œƒ ๐šฅ โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ ๐šค

= ๐šค (5 โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ) + ๐šฅ (โˆ’๐œ”๐ด๐ต๐ฟ cos๐œƒ) (1)

And now comes the main point. We argue that ๐ด can only move in vertical direction, hencethe ๐šค component above must be zero. Therefore

5 โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ = 0

There is only one unknown in the above. SOlving for ๐œ”๐ด๐ต gives

๐œ”๐ด๐ต = 1.759 rad/sec

Now we go back to (1) and find ๐ด

๐ด = ๐šค (0) โˆ’ ๐šฅ 1.759 3512

cos 77 ๐œ‹180

= ๐šค (0) โˆ’ ๐šฅ (1.154)

Which is the same as method earlier. Notice we did not need to use ๐‘…, the radius of thedisk.

238

6.10. HW 10 CHAPTER 6. HWS

6.10 HW 10

6.10.1 Problem 1

Since the wheel rolls without slip with angular velocity ๐œ”๐‘‘๐‘–๐‘ ๐‘˜ = 15 rad/sec and its radius is๐‘Ÿ = 5

12 ft, then the center of the wheel moves to the left (since disk is rolling with counterclock wise) with velocity

๐‘‰๐ต = ๐‘Ÿ๐œ”๐‘‘๐‘–๐‘ ๐‘˜

= 512

(15)

= 6.25 ft/sec

In vector format

๐ต = โˆ’6.25 ๐šค + 0 ๐šฅ

239

6.10. HW 10 CHAPTER 6. HWS

For the point ๐ด

๐ด = ๐ต + ๐ด๐ต ร— ๐ด/๐ต= โˆ’6.25 ๐šค + 0 ๐šฅ + ๐œ”๐ด๐ต ร— โˆ’๐ฟ cos๐œƒ ๐šค + ๐ฟ sin๐œƒ ๐šฅ

= โˆ’6.25 ๐šค โˆ’ ๐œ”๐ด๐ต๐ฟ cos๐œƒ ๐šฅ โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ ๐šค= ๐šค (โˆ’6.25 โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ) + ๐šฅ (โˆ’๐œ”๐ด๐ต๐ฟ cos๐œƒ) (1)

Since point ๐ด can only move in vertical direction, then its ๐šค component above must be zero.Therefore

โˆ’6.25 โˆ’ ๐œ”๐ด๐ต๐ฟ sin๐œƒ = 0

๐œ”๐ด๐ต =โˆ’6.25๐ฟ sin๐œƒ

Numerically ๐œ”๐ด๐ต = โˆ’6.25

3312 sin48 ๐œ‹180

= โˆ’3.058 rad/sec.

Now from (1) we find ๐ด since now we know ๐œ”๐ด๐ต

๐ด = ๐šฅ (โˆ’๐œ”๐ด๐ต๐ฟ cos๐œƒ)

= ๐šฅ 6.25๐ฟ sin๐œƒ

๐ฟ cos๐œƒ

= ๐šฅ 6.25tan๐œƒ

Since ๐œƒ = 480 then the above becomes

๐ด =6.25

tan 48 ๐œ‹180

๐šฅ

= 5.627525 ๐šฅ= 5.628 ๐šฅ ft/sec

240

6.10. HW 10 CHAPTER 6. HWS

6.10.2 Problem 2

The first step is to find the vector velocities of point ๐ต and ๐ถ and then resolve them alongthe ๐‘ฅ, ๐‘ฆ directions as follows

241

6.10. HW 10 CHAPTER 6. HWS

Rฯ‰

ฮธ

C

A

B

p2 draw 1.ipeNasser M. Abbasi Nov 19, 2017

ฮธ

ฯ‰CB

ฯ‰

Lฯ‰CB

ฯ†R cos ฮธ = L sinฯ†

L

R

Rฯ‰ sin ฮธ

ฮธ

C

A

Bฮธ

ฯ‰CB

ฯ‰

Lฯ‰CB cosฯ†

ฯ†

L

R

Lฯ‰CB sinฯ†

Rฯ‰ cos ฮธ

step 1: Find the vector velocites

step 2: Resolve along x and y directions

Now we look at point ๐ถ. We see that its ๐‘ฅ component of the velocity is

๐‘‰๐‘๐‘ฅ = ๐ฟ๐œ”๐ถ๐ต cos๐œ™ โˆ’ ๐‘…๐œ” sin๐œƒ

This is just read from the diagram. In other words, the ๐‘ฅ component of the velocity of ๐ต isadded. Since ๐ถ can only move in the vertical direction, then ๐‘‰๐‘๐‘ฅ = 0. We use this to solvefor ๐œ”๐ถ๐ต

๐œ”๐ถ๐ต =๐‘…๐œ” sin๐œƒ๐ฟ cos๐œ™ (1)

Everything on the right above is known. We find ๐œ™ using ๐‘… cos๐œƒ = ๐ฟ sin๐œ™, hence

๐œ™ = arcsin ๐‘… cos๐œƒ

๐ฟ

= arcsin

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ(2.3) cos 26 ๐œ‹

180

5.3

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 22.9570

242

6.10. HW 10 CHAPTER 6. HWS

And ๐œ” = 4890 2๐œ‹60 = 512.0796 rad/sec. Hence from (1)

๐œ”๐ถ๐ต =(2.3) (512.0796) sin 26 ๐œ‹

180

(5.3) cos 22.957 ๐œ‹180

= 105.7955 rad/sec

In vector form

๐ถ๐ต = 105.7955

From the diagram, we see that the vertical component of the velocity of point ๐ถ is

๐‘‰๐‘๐‘ฆ = ๐ฟ๐œ”๐ถ๐ต sin๐œ™ + ๐‘…๐œ” cos๐œƒ

= (5.3) (105.7955) sin 22.957 ๐œ‹180

+ (2.3) (512.0796) cos 26 ๐œ‹180

= 1277.286 in/sec= 106.441 ft/sec

In vector form

๐‘ = 106.441 ๐šฅ

6.10.3 Problem 3

243

6.10. HW 10 CHAPTER 6. HWS

The first step is to find the vector velocities of point ๐ด and ๐ต and then resolve them alongthe ๐‘ฅ, ๐‘ฆ directions as follows

B

A

L

vB = 6

ฯ‰

Lฯ‰

Nasser M. Abbasi. Nov 19, 2017 (p3 draw.ipe)

B

A

vB = 6

ฯ‰

Lฯ‰ cos ฮธ

ฮธLฯ‰ sin ฮธ

step 1: Draw the velocity vectorsstep 2: resolve the velocity vectors

Point ๐ด will have velocity in ๐‘ฅ direction of

๐‘‰๐ด,๐‘ฅ = ๐ฟ๐œ” sin๐œƒ โˆ’ ๐‘‰๐ต๐‘ฅ

But sin๐œƒ = ๐‘‘๐ฟ = 1.8

6 = 0.3, hence ๐œƒ = arcsin (0.3) = 17.4580. Since ๐ด can only move in verticaldirection, then the above is zero. We use this to find ๐œ”

๐ฟ๐œ” sin๐œƒ โˆ’ ๐‘‰๐ต๐‘ฅ = 0

๐œ” =๐‘‰๐ต๐‘ฅ

๐ฟ sin๐œƒ

=6

6 sin 17.458 ๐œ‹180

= 3.333 rad/sec

In vector format = 3.333 rad/sec. Hence the velocity of ๐ด in vertical direction is

๐‘‰๐ด๐‘ฆ = โˆ’๐ฟ๐œ” cos๐œƒ

= โˆ’6 (3.333) cos 17.458 ๐œ‹180

= โˆ’19.076 83 ft/sec

In vector format

๐ด = โˆ’19.077 ๐šฅ

244

6.10. HW 10 CHAPTER 6. HWS

This is the same velocity as weight ๐ถ but ๐ถ will be going up. Hence

๐ถ = 19.077 ๐šฅ

6.10.4 Problem 4

The first step is to find the acceleration vectors of point ๐ด and ๐ต and then resolve themalong the ๐‘ฅ, ๐‘ฆ directions as follows

245

6.10. HW 10 CHAPTER 6. HWS

B

p4 draw.ipeNasser M. Abbasi Nov 19, 2017

ฯ‰

R

step 1: Find the acceleration vectors

step 2: Resolve along x and y directions

A

VB = Rฯ‰

ฯ‰AB

LฮฑAB

ฮฑAB

Lฯ‰2AB

B

ฯ‰

R

A

VB = Rฯ‰

ฮธ

ฮธ

ฮธ

Lฯ‰2AB cos ฮธLฮฑAB sin ฮธ

Lฯ‰2AB sin ฮธ

LฮฑAB cos ฮธ

step 2: Resolve the acceleration vectors

ฮธ

ฮธ

To find ๐œ”๐ด๐ต we need to resolve velocity vectors and set the ๐‘ฅ component of the velocity of๐ด to zero to solve for ๐œ”๐ด๐ต. If we do that as before, we get

๐‘‰๐ต๐‘ฅ โˆ’ ๐ฟ๐œ”๐ด๐ต sin๐œƒ = 0 (1)

The above is just the ๐‘ฅ component of ๐ด. We know ๐‘‰๐ต which is velocity of center of wheel.It is

๐‘‰๐ต๐‘ฅ = ๐‘…๐œ”๐‘‘๐‘–๐‘ ๐‘˜

= 1.58 (2.1)= 3.318 m/s

And to the right. Hence ๐ต = 3. 318 ๐šค. Now we use (1) to solve for ๐œ”๐ด๐ต

๐œ”๐ด๐ต =๐‘‰๐ต๐‘ฅ

๐ฟ sin๐œƒ=

3.318(3.43) sin 69 ๐œ‹

180

= 1.0362 rad/sec

Hence ๐ด๐ต = 1.0362. Now we have all the information to solve for ๐›ผ๐ด๐ต. The ๐‘ฅ componentof ๐‘Ž๐ด is zero, since ๐ด does not move in ๐‘ฅ direction. Hence from the figure, we see that

๐ฟ๐œ”2๐ด๐ต cos๐œƒ โˆ’ ๐ฟ๐›ผ๐ด๐ต sin๐œƒ = 0

246

6.10. HW 10 CHAPTER 6. HWS

There is no acceleration to transfer from point ๐ต since ๐ต is not accelerating. Solving theabove for ๐›ผ๐ด๐ต gives

๐›ผ๐ด๐ต =๐ฟ๐œ”2

๐ด๐ต cos๐œƒ๐ฟ sin๐œƒ

=๐œ”2๐ด๐ต

tan๐œƒ

=1.03622

tan 69 ๐œ‹180

= 0.41216 rad/sec2

In vector format ๐›ผ๐ด๐ต = 0.41216. Hence the vertical component of the acceleration ๐‘Ž๐ด is(from the diagram)

๐‘Ž๐ด๐‘ฆ = โˆ’๐ฟ๐œ”2๐ด๐ต sin๐œƒ โˆ’ ๐ฟ๐›ผ๐ด๐ต cos๐œƒ

= โˆ’ (3.43) 1.03622 sin 69๐œ‹180

โˆ’ (3.43) (0.41216) cos 69 ๐œ‹180

= โˆ’3.945 m/s2

In vector format

๐‘Ž๐ด = 0 ๐šค โˆ’ 3.945 ๐šฅ

6.10.5 Problem 5

๐›ผ๐ต๐ถ = 7.507 rad/sec2

247

6.10. HW 10 CHAPTER 6. HWS

Need to type the solution. This uses constraints method.

6.10.6 Problem 6

We need to first find ๐œ”๐ต๐ถ. This follows similar approach to problem 2. The first step is tofind the vector velocities of point ๐ต and ๐ถ and then resolve them along the ๐‘ฅ, ๐‘ฆ directions asfollows

248

6.10. HW 10 CHAPTER 6. HWS

Rฯ‰

ฮธ

C

A

B

p2 draw 1.ipeNasser M. Abbasi Nov 19, 2017

ฮธ

ฯ‰CB

ฯ‰

Lฯ‰CB

ฯ†R cos ฮธ = L sinฯ†

L

R

Rฯ‰ sin ฮธ

ฮธ

C

A

Bฮธ

ฯ‰CB

ฯ‰

Lฯ‰CB cosฯ†

ฯ†

L

R

Lฯ‰CB sinฯ†

Rฯ‰ cos ฮธ

step 1: Find the vector velocites

step 2: Resolve along x and y directions

Now we look at point ๐ถ. We see that its ๐‘ฅ component of the velocity is

๐‘‰๐‘๐‘ฅ = ๐ฟ๐œ”๐ถ๐ต cos๐œ™ โˆ’ ๐‘…๐œ” sin๐œƒ

This is just read from the diagram. In other words, the ๐‘ฅ component of the velocity of ๐ต isadded. Since ๐ถ can only move in the vertical direction, then ๐‘‰๐‘๐‘ฅ = 0. We use this to solvefor ๐œ”๐ถ๐ต

๐œ”๐ถ๐ต =๐‘…๐œ” sin๐œƒ๐ฟ cos๐œ™ (1)

Everything on the right above is known. We find ๐œ™ using ๐‘… cos๐œƒ = ๐ฟ sin๐œ™, hence

๐œ™ = arcsin ๐‘… cos๐œƒ

๐ฟ

= arcsin

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ(2.1) cos 28 ๐œ‹

180

5.8

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

= 0.325 4 radians= 18.64410

249

6.10. HW 10 CHAPTER 6. HWS

And ๐œ” = 5030 2๐œ‹60 = 526.740 4 rad/sec. Hence from (1)

๐œ”๐ถ๐ต =(2.1) (526.740 4) sin 28 ๐œ‹

180

(5.8) cos (0.325 4)= 94.495 rad/sec

In vector form

๐ถ๐ต = 94.495

Now we draw the acceleration vectors and resolve them

Rฮฑdisk

ฮธ

C

A

B

p6 draw 1.ipeNasser M. Abbasi Nov 19, 2017

ฯ‰CB , ฮฑCB

ฯ‰, ฮฑdisk

LฮฑCB

ฯ†R cos ฮธ = L sinฯ†

L

Rฯ‰2 cos ฮธ

ฮธ

C

A

Bฮธ

LฮฑCB cosฯ†

ฯ†

L

R

LฮฑCB sinฯ†

Rฮฑdisk cos ฮธ

step 1: Find the acceleration vectors

step 2: Resolve along x and y directions

Rฯ‰2

Lฯ‰2CB

Rฮฑdisk sin ฮธ

Rฯ‰2 sin ฮธ

Lฯ‰2CB cosฯ†

Lฯ‰2CB sinฯ†

ฯ†

The ๐‘ฅ component of the acceleration of point ๐ถ is zero. Hence from the diagram

๐ฟ๐›ผ๐ถ๐ต cos๐œ™ + ๐ฟ๐œ”2๐ถ๐ต sin๐œ™ โˆ’ ๐‘…๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ sin๐œƒ โˆ’ ๐‘…๐œ”2 cos๐œƒ = 0

Solving for ๐›ผ๐ถ๐ต

๐›ผ๐ถ๐ต =๐‘…๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ sin๐œƒ + ๐‘…๐œ”2 cos๐œƒ โˆ’ ๐ฟ๐œ”2

๐ถ๐ต sin๐œ™๐ฟ cos๐œ™

Since ๐›ผ๐‘‘๐‘–๐‘ ๐‘˜ = 0 since we are told ๐œ” is constant, then the above simplifies to

๐›ผ๐ถ๐ต =๐‘…๐œ”2 cos๐œƒ โˆ’ ๐ฟ๐œ”2

๐ถ๐ต sin๐œ™๐ฟ cos๐œ™

250

6.10. HW 10 CHAPTER 6. HWS

Using numerical values gives

๐›ผ๐ถ๐ต =(2.1) (526.740 4)2 cos 28 ๐œ‹

180 โˆ’ (5.8) (94. 494 71)2 sin (0.325 4)

(5.8) cos (0.325 4)= 90598.94 rad/sec2

In vector form

๐›ผ๐ถ๐ต = โˆ’90598.94

The acceleration of point ๐ถ is only in vertical direction. From diagram

๐‘Ž๐ถ,๐‘ฆ = ๐ฟ๐›ผ๐ถ๐ต sin๐œ™ โˆ’ ๐ฟ๐œ”2๐ถ๐ต cos๐œ™ โˆ’ ๐‘…๐œ”2 sin๐œƒ

= (5.8) (90598.95) sin (0.325 4) โˆ’ (5.8) (94.495)2 cos (0.325 4) โˆ’ (2.1) (526.740 4)2 sin 28๐œ‹180

= โˆ’154624.9 in/sec2

= โˆ’12885.41 ft/sec2

Hence in vector form

๐‘Ž๐ถ = โˆ’12885. 37 ๐šฅ ft/sec2

251

6.11. HW 11 CHAPTER 6. HWS

6.11 HW 11

6.11.1 Problem 1

Let us assume the center of mass of the overall system is at some distance ๐‘ง from point๐ด somewhere between ๐ด and ๐ถ. It does not matter where it is. Therefore the rotationalequation of motion for the hanging system is

๐‘€๐‘๐‘” = ๐ผ๐ด๐›ผ

Where ๐‘€ is the moment of external forces around this center of mass and ๐ผ๐ด is the massmoment of inertia around ๐ด. But since we want the system to be translating, then ๐›ผ = 0.

252

6.11. HW 11 CHAPTER 6. HWS

Therefore

๐‘€ = 0๐น๐‘ฆ๐‘ง sin๐œƒ โˆ’ ๐น๐‘ฅ๐‘ง cos๐œƒ = 0 (1)

Notice the weights do not come into play, since we are taking moments about center of massof the overall system.

So we just need to find ๐น๐‘ฅ, ๐น๐‘ฆ. These forces are the reactions on point ๐ด where it is connected.These can be found by resolving forces in the horizontal and vertical direction. In horizontaldirection

๐น๐‘ฅ = (๐‘š๐ด๐ต + ๐‘š๐ถ) ๐‘Ž0 (2)

In vertical direction (where these is no acceleration)

๐น๐‘ฆ โˆ’๐‘Š๐ด๐ต โˆ’๐‘Š๐ถ = 0๐น๐‘ฆ = ๐‘Š๐ด๐ต +๐‘Š๐ถ (3)

Plugging (2,3) into (1) and canceling ๐‘ง (as we see, we really did not need to find where ๐‘งis), gives

(๐‘Š๐ด๐ต +๐‘Š๐ถ) sin๐œƒ โˆ’ (๐‘š๐ด๐ต + ๐‘š๐ถ) ๐‘Ž0 cos๐œƒ = 0

tan๐œƒ =(๐‘š๐ด๐ต + ๐‘š๐ถ) ๐‘Ž0(๐‘Š๐ด๐ต +๐‘Š๐ถ)

Plugging the numerical values

tan๐œƒ = 12832.2 +

46232.2

9

(128 + 462)= 0.279

Hence

๐œƒ = arctan (0.279)= 0.272= 15.6160

6.11.2 Problem 2

253

6.11. HW 11 CHAPTER 6. HWS

Taking moments about ๐บ (and assuming no friction from the ground as problems says toneglect rotational inertia of wheels, which seems to imply this).

โˆ’๐นโ„Ž + ๐‘๐ต๐ฟ๐ต โˆ’ ๐‘๐ด๐ฟ๐ด = ๐ผ๐›ผ

For ๐›ผ = 0

โˆ’๐นโ„Ž + ๐‘๐ต๐ฟ๐ต โˆ’ ๐‘๐ด๐ฟ๐ด = 0

And when ๐‘๐ด = 0

๐น =๐‘๐ต๐ฟ๐ตโ„Ž

But ๐‘๐ด + ๐‘๐ต = ๐‘š๐‘” or since ๐‘๐ด = 0 then ๐‘๐ต = ๐‘š๐‘” and the above becomes

๐นmin =๐‘š๐‘”๐ฟ๐ตโ„Ž

=(37) (9.81) (0.35)

(0.71)= 178.929 N

And the acceleration is

๐น = ๐‘š๐‘Ž178.929 = 37๐‘Ž

๐‘Ž =178.929

37= 4.836 m/s2

254

6.11. HW 11 CHAPTER 6. HWS

6.11.3 Problem 3

๐น = ๐‘š๐‘Ž๐œ‡๐‘ = ๐‘š๐‘Ž

๐‘Ž =๐œ‡๐‘๐‘š

=(0.51) ๐‘š๐‘”

๐‘š= (0.51) (32.2)

= 16.422 ft/s2

Hence

๐‘ฃ = ๐‘Ž๐‘ก

๐‘ก =๐‘ฃ๐‘Ž

=18.216.422

= 1.108 sec

255

6.11. HW 11 CHAPTER 6. HWS

6.11.4 Problem 4

Resolve forces in vertical direction for hanging mass

๐‘‡ โˆ’ ๐‘š๐ต๐‘” = ๐‘š๐ต๐‘Ž๐‘ฆBut ๐‘Ž๐‘ฆ = ๐‘…๐›ผ where ๐›ผ is angular acceleration of spool. Hence

๐‘‡ โˆ’ ๐‘š๐ต๐‘” = ๐‘š๐ต๐‘…๐›ผ (1)

For the spool, the equation of motion is ๐‘€ = ๐ผ๐›ผ or

โˆ’๐‘‡๐‘… = ๐‘š๐‘Ÿ2๐บ๐›ผ (2)

Where ๐‘Ÿ๐บ is radius of gyration. We have two equations and two unknowns ๐›ผ, ๐‘‡., solving gives

๐›ผ =โˆ’๐‘š๐ต๐‘”๐‘…

๐‘š๐‘Ÿ2๐บ + ๐‘š๐ต๐‘…2

๐‘‡ = ๐‘š๐ต๐‘…๐›ผ + ๐‘š๐ต๐‘”

Hence

๐›ผ =โˆ’ (6) (9.81) (0.18)

(4) (0.11)2 + (6) (0.18)2= โˆ’43.636 rad/sec2

256

6.11. HW 11 CHAPTER 6. HWS

And

๐‘‡ = (6) (0.18) (โˆ’43.636) + (6) (9.81)= 11.733 N

6.11.5 Problem 5

I will use ๐ฟ for ๐‘ค so not to confuse it with ๐œ”. Resolving forces in ๐‘ฅ direction

โˆ’๐‘‚๐‘ฅ = ๐‘š๐‘Ž๐บ๐‘ฅin the ๐‘ฆ direction

๐‘ƒ + ๐‘‚๐‘ฆ = ๐‘š๐‘Ž๐บ๐‘ฆ

But ๐‘Ž๐บ๐‘ฅ = ๐ฟ2๐œ”

2 and ๐‘Ž๐บ๐‘ฆ = โˆ’๐ฟ2๐›ผ where ๐›ผ is angular acceleration of gate. Hence the above

257

6.11. HW 11 CHAPTER 6. HWS

becomes

โˆ’๐‘‚๐‘ฅ = ๐‘š๐ฟ2๐œ”2 (1)

๐‘ƒ + ๐‘‚๐‘ฆ = โˆ’๐‘š๐ฟ2๐›ผ (2)

Now the angular acceleration equation for the gate is, taking moments around center ofmass

๐‘‚๐‘ฆ๐ฟ2= ๐ผ๐‘๐‘”๐›ผ

=๐‘š๐ฟ2

12๐›ผ (3)

From (2) ๐‘‚๐‘ฆ = โˆ’๐‘š๐ฟ2๐›ผ โˆ’ ๐‘ƒ, plug this in (3) gives

โˆ’๐‘š๐ฟ2๐›ผ โˆ’ ๐‘ƒ

๐ฟ2=

๐‘š๐ฟ2

12๐›ผ

โˆ’๐‘ƒ๐ฟ2=

๐‘š๐ฟ2

12๐›ผ + ๐‘š

๐ฟ2

4๐›ผ

โˆ’๐‘ƒ๐ฟ2= ๐›ผ

๐‘š๐ฟ2

12+๐‘š๐ฟ2

4

๐›ผ = โˆ’๐‘ƒ๐ฟ2

13๐ฟ

2๐‘š

= โˆ’32

๐‘ƒ๐ฟ๐‘š

Plug-in numerical values

๐›ผ = โˆ’32

(21)

(14) 21332.2

= โˆ’0.340

From (3)

๐‘‚๐‘ฆ =๐‘š๐ฟ6๐›ผ

=21332.2

(14)6

(โˆ’0.3408)

= โˆ’5.25 N

To find ๐œ”, from ๐œ” = ๐›ผ๐‘ก = โˆ’0.340 (2.2) = โˆ’0.748 rad/sec, hence from (1)

โˆ’๐‘‚๐‘ฅ = ๐‘š๐ฟ2๐œ”2

=21332.2

142 (โˆ’0.748 )2

๐‘‚๐‘ฅ = โˆ’25.929 N

258

6.11. HW 11 CHAPTER 6. HWS

6.11.6 Problem 6

Resolving forces in ๐‘ฅ direction, where ๐น๐‘ฅ, ๐น๐‘ฆ are forces in hinge

๐น๐‘ฅ = โˆ’๐‘š32๐ฟ๐œ”2 (1)

In ๐‘ฆ direction

๐น๐‘ฆ โˆ’ 2๐‘š๐‘” = ๐‘š32๐ฟ ๐›ผ (2)

Taking moments about the hinge ๐‘‚

โˆ’๐‘š๐‘”๐ฟ2โˆ’ ๐‘š๐‘”๐ฟ = ๐‘š

๐ฟ2

3 + 112๐‘š๐ฟ2 + ๐‘š๐ฟ2 ๐›ผ (3)

259

6.11. HW 11 CHAPTER 6. HWS

Solving (2,3) for ๐น๐‘ฆ, ๐›ผ gives

๐น๐‘ฆ = 40.394 N

๐›ผ = โˆ’5.52503 rad/sec2

We are given ๐œ” = 6.9 rad/sec., hence from (1)

๐น๐‘ฅ = โˆ’1342.6 N

260

6.12. HW 12 CHAPTER 6. HWS

6.12 HW 12

6.12.1 Problem 1

A ball will roll with slip when the linear velocity ๐‘ฃ of its center of mass is dierent from ๐‘Ÿ๐œ”where ๐‘Ÿ is the radius and ๐œ” is the spin angular velocity. Therefore, to find when the ball willroll without slipping, we need to find when ๐‘ฃ = ๐‘Ÿ๐œ”. Let the initial state be such that ๐‘ฃ1 = ๐‘ฃ0(given) and ๐œ”1 = ๐œ”0 (given). So we need to find the time ๐‘ก to get to new state, such that๐‘ฃ2 = ๐‘Ÿ๐œ”2

v1

ฯ‰1

F = ยตN

N

mg

state one (slip)

v2

ฯ‰2 = v2r

F = ยตN

N

mg

state two (No slip)

Nasser M Abbasi, Nov 23, 2017. p1 ball.ipe

261

6.12. HW 12 CHAPTER 6. HWS

Using linear momentum

๐‘š๐‘ฃ1 +๐‘ก๐‘“๐‘–๐‘›๐‘Ž๐‘™

0๐น๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘‘๐‘ก = ๐‘š๐‘ฃ2

But ๐น๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘› = โˆ’๐œ‡๐‘ = โˆ’๐œ‡๐‘š๐‘” and the above becomes

๐‘š๐‘ฃ1 โˆ’ ๐œ‡๐‘š๐‘”๐‘ก = ๐‘š๐‘ฃ2 (1)

Using the angular momentum gives

๐ผ๐œ”1 +๐‘ก๐‘“๐‘–๐‘›๐‘Ž๐‘™

0๐น๐‘“๐‘Ÿ๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘Ÿ๐‘‘๐‘ก = ๐ผ๐œ”2

๐‘š๐‘Ÿ2๐บ๐œ”1 โˆ’ ๐œ‡๐‘š๐‘”๐‘Ÿ๐‘ก = โˆ’๐‘š๐‘Ÿ2๐บ ๐‘ฃ2๐‘Ÿ (2)

Where in (2), ๐‘Ÿ๐บ is radius of gyration, and we replaced ๐œ”2 by๐‘ฃ2๐‘Ÿ . Notice the sign in RHS

of (2) is negative, since we assume ๐‘ฃ2 is moving to the right, so in state 2, the ball will bespinning clock wise, which is negative,. Now we have two equations (1,2) with two unknowns๐‘ก, which is the time to get to the state such that center of mass moves with same speed as๐‘Ÿ๐œ” (i.e. no slip) and the second unknown is ๐‘ฃ2 which is the speed at which the ball will berolling at that time. We now solve (1,2) for ๐‘ก, ๐‘ฃ2

(1) becomes

1532.2

17 52803600

โˆ’ (0.11) 1532.2

(32.2) ๐‘ก = 1532.2

๐‘ฃ2 (1A)

1532.2

2.412

2

(9) โˆ’ (0.11) 1532.2

(32.2) 4.2512 ๐‘ก = โˆ’

1532.2

2.412

2โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฃ24.25

12

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

(2A)

Or

11.615 โˆ’ 1.65๐‘ก = 0.466๐‘ฃ2 (1A)

0.168 โˆ’ 0.584 ๐‘ก = โˆ’0.0526๐‘ฃ2 (2A)

Solution is:

๐‘ก = 1.919 6 sec๐‘ฃ2 = 18.134 ft/sec

Now that we know the time and the final velocity, we can find the acceleration of the ball

๐‘ฃ2 = ๐‘ฃ1 + ๐‘Ž๐‘ก

๐‘Ž =๐‘ฃ2 โˆ’ ๐‘ฃ1

๐‘ก

=18.134 โˆ’ 17 52803600

1.9196= โˆ’3.542 ft/s2

262

6.12. HW 12 CHAPTER 6. HWS

Hence the distance travelled is

๐‘  = ๐‘ฃ0๐‘ก +12๐‘Ž๐‘ก2

= 17 52803600

(1.9196) +12(โˆ’3.542 ) (1.9196)2

= 41.336 1 ft

6.12.2 Problem 2

Using the following FBD

263

6.12. HW 12 CHAPTER 6. HWS

T

N

F = ยตN

mg

ฯ‰, ฮฑ

x

y

Nasser M Abbasi, Nov 23, 2017. p2 ball.ipe

Notice that the Friction force ๐น is pointing downwards since the spool is spinning counterclockwise. Resolving forces along ๐‘ฅ gives

๐น โˆ’ ๐‘‡ + ๐‘š๐‘” sin๐œƒ = ๐‘š (1)

Taking moment about CG, using clockwise as positive now, since we changed ๐‘ฅ positivedirection from normal

๐น๐‘… โˆ’ ๐‘‡๐œŒ = ๐ผ๐‘๐‘”๐›ผ (2)

Where ๐›ผ is angular acceleration of spool. But = โˆ’๐œŒ๐›ผ then (1) becomes

๐น โˆ’ ๐‘‡ + ๐‘š๐‘” sin๐œƒ = โˆ’๐‘š๐œŒ๐›ผ (3)

But

๐น = ๐œ‡๐‘˜๐‘= ๐œ‡๐‘˜๐‘š๐‘” cos๐œƒ

Therefore (2) and (3) become

๐œ‡๐‘˜๐‘š๐‘” cos๐œƒ๐‘… โˆ’ ๐‘‡๐œŒ = ๐ผ๐‘๐‘”๐›ผ (2A)

๐œ‡๐‘˜๐‘š๐‘” cos๐œƒ โˆ’ ๐‘‡ + ๐‘š๐‘” sin๐œƒ = โˆ’๐‘š๐œŒ๐›ผ (3A)

In (2A) and (3A) there are 2 unknowns, ๐›ผ and ๐‘‡. Plugging numerical values gives

(0.31) (213) (9.81) cos 27 ๐œ‹180

(2.24) โˆ’ ๐‘‡ (1.74) = (213) (2)2 ๐›ผ

(0.31) (213) (9.81) cos 27 ๐œ‹180

โˆ’ ๐‘‡ + (213) (9.81) sin 27 ๐œ‹180

= โˆ’ (213) (1.74) ๐›ผ

Or

1292.823 โˆ’ 1.74๐‘‡ = 852.0๐›ผ (2A)

1525.78 โˆ’ 1.0๐‘‡ = โˆ’370.62๐›ผ (3A)

264

6.12. HW 12 CHAPTER 6. HWS

Solution is:

๐‘‡ = 1188.547 N

๐›ผ = โˆ’0.9099 rad/s2

Now since = โˆ’๐œŒ๐›ผ then

= โˆ’ (1.74) (โˆ’0.9099)

= 1.583 m/s2

6.12.3 Problem 3

The forces in play are

265

6.12. HW 12 CHAPTER 6. HWS

F

N

ฯ†

ฮธ

mg

Resolving forces along ๐œ™

โˆ’๐น โˆ’ ๐‘š๐‘” sin๐œ™ = ๐‘š๐‘… โˆ’ ๐œŒ (1)

Taking moment around C.G. of ball

โˆ’๐น๐œŒ = ๐ผ๐‘๐‘” (2)

The above are 2 equations in 3 unknowns (๐น, , ). So we need one more equation. Resolvingalong ๐‘Ÿ will not give us an equation in any of these unknowns so it will not be useful forthis. Here we must notice that acceleration of point ๐ท, where the ball touches the bottomof the bowl will be zero. This is because the ball rolls without slip. We can use this to comeup with the third equation. The acceleration of this point in the ๐œ™ direction is zero, andgiven by

๐‘Ž๐ท,๐œ™ = ๐‘… โˆ’ ๐œŒ + ๐œŒ = 0 (3)

Now we have three equations with three unknowns. Plug-in numerical values, using ๐ผ๐‘๐‘” =25๐‘š๐œŒ

2

โˆ’๐น โˆ’ (2.9) sin 40 ๐œ‹180

= 2.932.2

(4.2 โˆ’ 1.2) (1A)

โˆ’๐น (1.2) = 25

2.932.2

1.22 (2A)

0 = (4.2 โˆ’ 1.2) + (1.2) (3A)

Or

โˆ’๐น โˆ’ 1.864 = 0.27 (1A)

โˆ’1.2๐น = 0.0519 (2A)

0 = 1.2 + 3 (3A)

266

6.12. HW 12 CHAPTER 6. HWS

Solving gives

๐น = โˆ’0.5326 N

= 12.32 rad/s2

= โˆ’4. 928 rad/s2

To find ๐‘, we resolve forces along ๐‘Ÿโˆ’๐‘ + ๐‘š๐‘” cos๐œ™ = โˆ’๐‘š ๐‘… โˆ’ ๐œŒ 2

But = ๐‘ฃ๐‘…โˆ’๐œŒ

, where ๐‘ฃ = 9 ft/sec in this problem. Hence the above becomes

โˆ’๐‘ + ๐‘š๐‘” cos๐œ™ = โˆ’๐‘š๐‘ฃ2

๐‘… โˆ’ ๐œŒ

๐‘ = ๐‘š๐‘” cos๐œ™ + ๐‘š๐‘ฃ2

๐‘… โˆ’ ๐œŒ

= (2.9) cos 40 ๐œ‹180

+2.932.2

โŽ›โŽœโŽœโŽœโŽ

(9.1)2

(4.2 โˆ’ 1.2)

โŽžโŽŸโŽŸโŽŸโŽ 

= 4.708 N

Now to find ๐‘Ž๐บ. Since

๐‘Ž๐บ = ๐‘… โˆ’ ๐œŒ ๐œ™ โˆ’๐‘ฃ2

๐‘… โˆ’ ๐œŒ๐‘Ÿ

Then

๐‘Ž๐บ = โˆ’ (4.1 โˆ’ 1.2) 4. 928๐œ™ โˆ’(9.1)2

(4.2 โˆ’ 1.2)๐‘Ÿ

= โˆ’14.291๐œ™ โˆ’ 27.603 ๐‘Ÿ

267

6.12. HW 12 CHAPTER 6. HWS

6.12.4 Problem 4

Let ๐‘Ÿ be radius of disk. Then, about joint ๐‘‚ at top,

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ = ๐‘š๐‘‘๐‘–๐‘ ๐‘˜๐‘Ÿ2

2+ ๐‘š๐‘‘๐‘–๐‘ ๐‘˜ (๐ฟ + ๐‘Ÿ)2

= (0.37)(0.08)2

2+ 0.37 (0.75 + 0.08)2

= 0.256 077

And

๐ผ๐‘๐‘Ž๐‘Ÿ = ๐‘š๐‘๐‘Ž๐‘Ÿ๐ฟ2

3

= (0.7)(0.75)2

3= 0.131

Hence overall

๐ผ๐‘œ = ๐ผ๐‘‘๐‘–๐‘ ๐‘˜ + ๐ผ๐‘๐‘Ž๐‘Ÿ= 0.256 + 0.131= 0.387

268

6.12. HW 12 CHAPTER 6. HWS

Therefore

๐พ๐ธ =12๐ผ๐‘œ๐œ”2

=12(0.387) (0.23)2

= 0.01024 J

6.12.5 Problem 5

Since wheel rolls without spin, then friction on the ground against the wheel does no work.Therefore we can use work-energy to find ๐‘ฃ๐‘“๐‘–๐‘›๐‘Ž๐‘™ since we do not need to find friction forceand this gives us one equation with one unknown to solve for.

๐‘‡1 + ๐‘ˆ1 = ๐‘‡2 + ๐‘ˆ2

0 + ๐‘š๐‘”โ„Ž =12๐‘š๐‘ฃ2๐‘๐‘” +

12๐ผ๐‘๐‘”๐œ”2 โˆ’ ๐‘š๐‘”โ„Ž (1)

Where in the above, the datum is taken as horizontal line passing through the middle of thewheel. But

๐ผ๐‘๐‘” = ๐‘š๐‘Ÿ2๐บWhere ๐‘Ÿ๐บ is radius of gyration. And

๐‘ฃ๐‘๐‘” = ๐‘ฃ๐‘œ(๐‘… โˆ’ โ„Ž)

๐‘…And ๐œ” = ๐‘ฃ๐‘œ

๐‘… since rolls with no slip. Now we have all the terms needed to evaluate (1) andsolve for ๐‘ฃ๐‘œ. Here

๐‘š =26032.2

= 8.075 slug

269

6.12. HW 12 CHAPTER 6. HWS

Hence (1)

๐‘š๐‘”โ„Ž =12๐‘š ๐‘ฃ๐‘œ

(๐‘… โˆ’ โ„Ž)๐‘…

2

+12๐‘š๐‘Ÿ2๐บ

๐‘ฃ๐‘œ๐‘…2โˆ’ ๐‘š๐‘”โ„Ž

260 (0.6) =12

26032.2

๐‘ฃ๐‘œ(1.76 โˆ’ 0.6)

1.76 2

+12

26032.2

(1.32)2 ๐‘ฃ๐‘œ1.76

2โˆ’ 260 (0.6)

156 = 4.025๐‘ฃ2๐‘œ โˆ’ 156

Therefore

๐‘ฃ๐‘œ = 8.805 ft/s

Where the positive root is used since it is moving to the right.

6.12.6 Problem 6

The velocities at each point are given by

ฯ‰AB

VB = Rฯ‰AB

R

L

A

BC

D

H

ฯ†

ฯ‰BC

Lฯ‰BC

C.G.

Hฯ‰CD

ฯ†

ฯ‰AB

VB = Rฯ‰AB

R

L

A

BC

D

H

ฯ†

ฯ‰BC

Lฯ‰BC

C.G.

Hฯ‰CD cosฯ†

Hฯ‰CD sinฯ†

VBโˆ’โ†’

270

6.12. HW 12 CHAPTER 6. HWS

๐‘‰๐ต = ๐‘…๐œ”๐ด๐ต

= 4 (3)= 12 ft/s

Looking at point ๐ถ, we obtain two equations

๐ฟ๐œ”๐ต๐ถ = โˆ’๐ป๐œ”๐ถ๐ท cos๐œ™โˆ’๐‘‰๐ต = โˆ’๐ป๐œ”๐ถ๐ท sin๐œ™

Or

(5.5) ๐œ”๐ต๐ถ = โˆ’ (6.5) ๐œ”๐ถ๐ท cos 49 ๐œ‹180

โˆ’12 = โˆ’ (6.5) ๐œ”๐ถ๐ท sin 49 ๐œ‹180

Solving gives

๐œ”๐ต๐ถ = โˆ’1.897 rad/sec

๐œ”๐ถ๐ท = 2.446 rad/sec

We now need to find velocity of center of mass of bar ๐ต๐ถ. We see from diagram that it isgiven by

๐ถ๐บ = โˆ’๐‘‰๐ต ๐šค โˆ’๐ฟ2๐œ”๐ต๐ถ ๐šฅ

= โˆ’12 ๐šค โˆ’5.52

(โˆ’1. 897) ๐šฅ

= โˆ’12 ๐šค + 5. 217 ๐šฅ

Hence

๐ถ๐บ = โˆš122 + 5. 2172

= 13.085 ft/sec

Now we have all the velocities needed. The K.E. of bar ๐ด๐ต is

๐‘‡๐ด๐ต =12๐ผ๐ด๐ต

12๐œ”2๐ด๐ต

=12

13๐‘š๐ด๐ต๐‘…2๐œ”2

๐ด๐ต

=12

13

332.2

(4)2 (3)2

= 2.236

271

6.12. HW 12 CHAPTER 6. HWS

For bar ๐ต๐ถ it has both translation and rotation KE

๐‘‡๐ต๐ถ =12๐ผ๐ต๐ถ

12๐œ”2๐ต๐ถ +

12๐‘š๐ต๐ถ๐‘ฃ2๐ถ๐บ

=12

112๐‘š๐ต๐ถ๐ฟ2๐œ”2

๐ต๐ถ +12๐‘š๐ต๐ถ๐‘ฃ2๐ถ๐บ

=12

112

6.532.2

(5.5)2 (โˆ’1. 897)2 +12

6.532.2

(13. 085)2

= 18.197

And for bar ๐ถ๐ท it has only rotation KE

๐‘‡๐ถ๐ท =12๐ผ๐ถ๐ท

12๐œ”2๐ถ๐ท

=12

13๐‘š๐ถ๐ท๐ป2๐œ”2

๐ถ๐ท

=12

13

1132.2

(6.5)2 (2.446)2

= 14.392

Therefore the total KE is

๐พ๐ธ = ๐‘‡๐ด๐ต + ๐‘‡๐ต๐ถ + ๐‘‡๐ถ๐ท= 2.236 + 18.197 + 14.392= 34.825 J

272

6.13. HW 13 CHAPTER 6. HWS

6.13 HW 13

6.13.1 Problem 1

273

6.13. HW 13 CHAPTER 6. HWS

Free body diagram is

F

Kx

mg

M

x

ฮธ

ฮธmg cos ฮธ

mg sin ฮธ

ฮธ

y

Method one, using work-energy

Applying work energy

๐‘‡1 + ๐‘ˆ1 +๐œƒ๐‘“๐‘–๐‘›๐‘Ž๐‘™

0๐‘€๐‘‘๐œƒ = ๐‘‡2 + ๐‘ˆ2 (1)

But ๐‘‡1 = 0 and ๐‘ˆ1 = 0 (using initial position as datum).

๐œƒ๐‘“๐‘–๐‘›๐‘Ž๐‘™

0๐‘€๐‘‘๐œƒ = ๐‘€๐œƒ๐‘“๐‘–๐‘›๐‘Ž๐‘™ = ๐‘€

๐‘‘๐‘…

Where ๐‘‘ is distance travelled (since no slip, we use ๐‘‘ = ๐‘…๐œƒ).

๐‘‡2 =12๐‘š๐‘ฃ2๐‘๐‘” +

12๐ผ๐‘๐‘”๐œ”2

=12๐‘š (๐‘…๐œ”)2 +

12๐‘š๐‘˜2๐บ๐œ”2

And

๐‘ˆ2 =12๐‘˜๐‘‘2 โˆ’๐‘Š๐‘‘ sin๐œƒ

274

6.13. HW 13 CHAPTER 6. HWS

Hence (1) becomes

๐‘€๐‘‘๐‘…

=12๐‘š (๐‘…๐œ”)2 +

12๐‘š๐‘˜2๐บ๐œ”2 +

12๐‘˜๐‘‘2 โˆ’๐‘Š๐‘‘ sin๐œƒ

๐‘€๐‘‘๐‘…โˆ’12๐‘˜๐‘‘2 +๐‘Š๐‘‘ sin๐œƒ = ๐œ”2

12๐‘š๐‘…2 +

12๐‘š๐‘˜2๐บ

๐œ”2 =๐‘€ ๐‘‘

๐‘… โˆ’ 12๐‘˜๐‘‘

2 +๐‘Š๐‘‘ sin๐œƒ12๐‘š๐‘…

2 + 12๐‘š๐‘˜

2๐บ

=2 ๐‘€ ๐‘‘

๐‘… โˆ’ 12๐‘˜๐‘‘

2 +๐‘Š๐‘‘ sin๐œƒ๐‘Š๐‘”๐‘…2 + ๐‘˜2๐บ

=๐‘”

๐‘Š๐‘…2 + ๐‘˜2๐บ2๐‘€

๐‘‘๐‘…โˆ’ ๐‘˜๐‘‘2 + 2๐‘Š๐‘‘ sin๐œƒ

Or

๐œ” =

๐‘”๐‘Š๐‘…2 + ๐‘˜2๐บ

๐‘‘ 2๐‘€๐‘…

+ 2๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘‘ (2)

Hence choice ๐ต. Plug-in numerical values gives ๐‘˜ = 4, ๐‘… = 1.4,๐‘Š = 10, ๐œƒ = 280, and since

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ =12๐‘š๐‘…

2 = ๐‘š๐‘˜2๐บ then ๐‘˜2๐บ = ๐‘…2

2 = 1.42

2 = 0.98, then (2) becomes for ๐œ” = 0

0 =

32.210 1.42 + 0.98

(4) 2๐‘€1.4

+ 2 (10) sin 28 ๐œ‹180

โˆ’ (4) (4)

0 = 1.047โˆš5.714๐‘€ โˆ’ 26.442

Solving for moment ๐‘€ gives

๐‘€ = 4.627 ft-lb

Method two, using Newton methods

โˆ‘๐น๐‘ฅ gives (where positive ๐‘ฅ is as shown in diagram, going down the slope).

๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ โˆ’ ๐น = ๐‘š = ๐‘š๐‘… (1)

Taking moment about CG of disk. But note that now anti-clock wise is negative and notpositive, due to right-hand rule)

โˆ’๐‘€ โˆ’ ๐น๐‘… = โˆ’๐ผ๐‘๐‘” (2)

From (2) we solve for ๐น and use (1) to find . From (2)

๐น =๐ผ๐‘๐‘” โˆ’ ๐‘€

๐‘…

275

6.13. HW 13 CHAPTER 6. HWS

Plug the above into (1)

๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ โˆ’๐ผ๐‘๐‘” โˆ’ ๐‘€

๐‘…= ๐‘š๐‘…

๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ = ๐‘š๐‘… +โŽ›โŽœโŽœโŽœโŽ๐ผ๐‘๐‘” โˆ’ ๐‘€

๐‘…

โŽžโŽŸโŽŸโŽŸโŽ 

๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ = ๐‘š๐‘… +๐ผ๐‘๐‘”๐‘…

โˆ’๐‘€๐‘…

๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ = ๐‘š๐‘… +๐ผ๐‘๐‘”๐‘… โˆ’

๐‘€๐‘…

๐‘€๐‘…

+๐‘š๐‘” sin๐œƒ โˆ’ ๐‘˜๐‘ฅ = ๐‘š๐‘… +๐‘š๐‘˜2๐บ๐‘…

Hence

=๐‘€๐‘… +๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘ฅ

๐‘š๐‘… + ๐‘š๐‘˜2๐บ๐‘…

=๐‘€ +๐‘Š๐‘… sin๐œƒ โˆ’ ๐‘˜๐‘…๐‘ฅ

๐‘Š๐‘”๐‘…2 + ๐‘˜2๐บ

=๐‘”

๐‘Š๐‘…2 + ๐‘˜2๐บ(๐‘€ +๐‘Š๐‘… sin๐œƒ โˆ’ ๐‘˜๐‘…๐‘ฅ)

The above shows that is not constant. To find ๐œ” we need to integrate both sides. Since = ๐‘‘๐œ”

๐‘‘๐‘ก = ๐‘‘๐œ”๐‘‘๐‘ฅ

๐‘‘๐‘ฅ๐‘‘๐‘ก =

๐‘‘๐œ”๐‘‘๐‘ฅ๐‘…๐œ” then the above can be written as

๐‘…๐œ”๐‘‘๐œ” =๐‘”

๐‘Š๐‘…2 + ๐‘˜2๐บ(๐‘€ +๐‘Š๐‘… sin๐œƒ โˆ’ ๐‘˜๐‘…๐‘ฅ) ๐‘‘๐‘ฅ

Integrating

๐‘…2๐œ”2 =

๐‘”๐‘Š๐‘…2 + ๐‘˜2๐บ

๐‘€๐‘ฅ +๐‘Š๐‘…๐‘ฅ sin๐œƒ โˆ’ ๐‘˜๐‘…๐‘ฅ2

2

When ๐‘ฅ = ๐‘‘, the above becomes

๐‘…2๐œ”2 =

๐‘”๐‘Š๐‘…2 + ๐‘˜2๐บ

๐‘€๐‘‘ +๐‘Š๐‘…๐‘‘ sin๐œƒ โˆ’ ๐‘˜๐‘…๐‘‘2

2 (3)

Hence

276

6.13. HW 13 CHAPTER 6. HWS

๐œ”2 = 2โŽ›โŽœโŽœโŽœโŽœโŽ

๐‘”๐‘Š ๐‘…2 + ๐‘˜2๐บ

๐‘€๐‘‘๐‘…

+๐‘Š๐‘‘ sin๐œƒ โˆ’ ๐‘˜๐‘‘2

2

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

=๐‘”

๐‘Š๐‘…2 + ๐‘˜2๐บ๐‘‘

2๐‘€๐‘…

+ 2๐‘Š sin๐œƒ โˆ’ ๐‘˜๐‘‘ (4)

Compare (4) to (2) in first method, we see they are the same.

6.13.2 Problem 2

277

6.13. HW 13 CHAPTER 6. HWS

โ„Ž๐ด๐ต = ๐ผ๐ด๐œ”๐ด๐ต

= 13๐‘š๐ด๐ต๐‘…2๐œ”๐ด๐ต

=13(2.2) (0.76)2 (5)

= 2. 119 kg m2/๐‘ 

For bar ๐ต๐ถ, it has zero ๐œ”๐ต๐ถ at this instance. Therefore the only angular momentum comesfrom translation. WHich is

โ„Ž๐ต๐ถ = ๐‘š๐ต๐ถ๐‘ฃ๐‘๐‘”๐‘…

But ๐‘ฃ๐‘๐‘” for bar ๐ต๐ถ is ๐‘…๐œ”๐ด๐ต, hence

โ„Ž๐ต๐ถ = ๐‘š๐ต๐ถ๐‘…2๐œ”๐ด๐ต

= (3.4) (0.76)2 (5)

= 9. 819 kg m2/๐‘ 

Finally, for bar ๐ท๐ถ, since it point ๐ถ moves with speed ๐‘ฃ = ๐‘…๐œ”๐ด๐ต, then

๐‘…๐œ”๐ด๐ต = ๐ป๐œ”๐ถ๐ท

๐œ”๐ถ๐ท =๐‘…๐ป๐œ”๐ด๐ต

Therefore

โ„Ž๐ถ๐ท = ๐ผ๐ถ๐ท๐œ”๐ถ๐ท

=13๐‘š๐ถ๐ท๐ป2 ๐‘…

๐ป๐œ”๐ด๐ต

=13๐‘š๐ถ๐ท๐ป๐‘…๐œ”๐ด๐ต

=13(5.2) (1.54) (0.76) (5)

= 10. 143 kg m2/๐‘ 

278

6.13. HW 13 CHAPTER 6. HWS

6.13.3 Problem 3

๐‘ก๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’ = ๐ผ๐‘๐‘”โˆ’๐‘€0 (1 + ๐‘๐‘ก) = ๐‘š๐‘˜2๐บ

๐‘‘๐‘‘๐‘ก

= โˆ’๐‘€0

๐‘š๐‘˜2๐บ(1 + ๐‘๐‘ก)

0

๐œ”๐ด๐ต

๐‘‘ = โˆ’๐‘€0

๐‘š๐‘˜2๐บ

๐‘ก๐‘ 

0(1 + ๐‘๐‘ก) ๐‘‘๐‘ก

โˆ’๐œ”๐ด๐ต = โˆ’๐‘€0

๐‘š๐‘˜2๐บ๐‘ก๐‘  +

๐‘2๐‘ก2๐‘ 

๐œ”๐ด๐ต =๐‘€0

๐‘š๐‘˜2๐บ๐‘ก๐‘  +

๐‘2๐‘ก2๐‘  (1)

Hence

(1150)2๐œ‹60

=3400

340032.2

(15.1)2๐‘ก๐‘  +

0.0122

๐‘ก2๐‘ 

120. 428 = 0.141 ๐‘ก๐‘  + 0.006๐‘ก2๐‘ 

Solving

๐‘ก๐‘  = 302.763 seconds

Another way to solve this is to use conservation of angular momentum.

279

6.13. HW 13 CHAPTER 6. HWS

โ„Ž1 +๐œ๐‘‘๐‘ก = โ„Ž2

๐ผ๐‘๐‘”๐œ”๐ต +๐‘ก๐‘ 

0(โˆ’๐‘€) ๐‘‘๐‘ก = 0

๐‘š๐‘˜2๐บ๐œ”๐ต โˆ’๐‘ก๐‘ 

0๐‘€0 (1 + ๐‘๐‘ก) ๐‘‘๐‘ก = 0

๐‘š๐‘˜2๐บ๐œ”๐ต โˆ’๐‘€0 ๐‘ก๐‘  +๐‘2๐‘ก2๐‘  = 0

๐œ”๐ต =๐‘€0

๐‘š๐‘˜2๐บ๐‘ก๐‘  +

๐‘2๐‘ก2๐‘ 

Which is the same as (1).

6.13.4 Problem 4

280

6.13. HW 13 CHAPTER 6. HWS

It is easier to solve this using conservation of angular and linear momentum. There aretwo bodies in this problem. One has angular momentum and the second (cart) has linearmomentum. So we need to apply

๐‘1 +๐‘ก

0๐‘“๐‘‘๐‘ก = ๐‘1 (1)

Where ๐‘ = ๐‘š๐‘ฃ, the linear momentum. The above is applied to the cart. And also apply

โ„Ž1 +๐‘ก

0๐œ๐‘‘๐‘ก = โ„Ž1 (2)

Where โ„Ž = ๐ผ๐œ”, the angular momentum, and this is applied to the drum. Using the abovetwo equations we will find final velocity of cart. We break the system to 2 bodies, using freebody diagram. Let tension in cable be ๐‘‡. And since in state (1), ๐‘ฃ๐ด = 0, then equation (1)becomes

๐‘ก

0(๐‘‡ โˆ’๐‘Š๐ด) ๐‘‘๐‘ก = ๐‘š๐ด๐‘ฃ๐ด

๐‘ก

0๐‘‡๐‘‘๐‘ก = ๐‘Š๐ด๐‘ก +

๐‘Š๐ด๐‘”

๐‘ฃ๐ด (3)

In the above, โˆซ๐‘ก

0(๐‘‡ โˆ’๐‘Š๐ด) ๐‘‘๐‘ก is the impulse, and ๐‘ฃ๐ด is the final speed we want to find. We do

not know the tension ๐‘‡.

Equation (2) becomes (โ„Ž1 = 0, since drum is not spining then)

๐‘ก

0๐‘‡๐‘Ÿ๐‘‘๐‘ก = ๐ผ๐‘๐‘”๐œ”๐ท

Where ๐‘‡๐‘Ÿ is the torque, caused by the tension ๐‘‡ in cable. But ๐‘ฃ๐ด = โˆ’๐‘Ÿ๐œ”๐ท, where the minussign since it is moving downwards. Hence the above becomes

๐‘ก

0๐‘‡๐‘‘๐‘ก = โˆ’

๐‘Š๐ท๐‘”

๐‘Ÿ2

2 ๐‘ฃ๐ด๐‘Ÿ2

= โˆ’ ๐‘Š๐ท2๐‘” ๐‘ฃ๐ด (4)

Comparing (3,4) we see that

281

6.13. HW 13 CHAPTER 6. HWS

โˆ’ ๐‘Š๐ท2๐‘” ๐‘ฃ๐ด = ๐‘Š๐ด๐‘ก +

๐‘Š๐ด๐‘”

๐‘ฃ๐ด

๐‘Š๐ด๐‘ก +๐‘Š๐ด๐‘”

๐‘ฃ๐ด + ๐‘Š๐ท2๐‘” ๐‘ฃ๐ด = 0

๐‘ฃ๐ด ๐‘Š๐ด๐‘”

+๐‘Š๐ท2๐‘” +๐‘Š๐ด๐‘ก = 0

๐‘ฃ๐ด =โˆ’2๐‘Š๐ด๐‘”๐‘ก

2๐‘Š๐ด +๐‘Š๐ท

Therefore

๐‘ฃ๐ด =โˆ’2 (325) (32.2) (2.5)2 (325) + (117)

= โˆ’68. 22 ft/sec

6.13.5 Problem 5

282

6.13. HW 13 CHAPTER 6. HWS

283

6.13. HW 13 CHAPTER 6. HWS

284

Chapter 7

Quizzes

Local contents7.1 Quizz 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2867.2 Quizz 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2907.3 Quizz 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2917.4 Quizz 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2927.5 Quizz 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2957.6 Quizz 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2977.7 Quizz 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3017.8 Quizz 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3057.9 Quizz 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3097.10 Quizz 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3127.11 Quizz 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

285

7.1. Quizz 1 CHAPTER 7. QUIZZES

7.1 Quizz 1

286

7.1. Quizz 1 CHAPTER 7. QUIZZES

287

7.1. Quizz 1 CHAPTER 7. QUIZZES

288

7.1. Quizz 1 CHAPTER 7. QUIZZES

289

7.2. Quizz 2 CHAPTER 7. QUIZZES

7.2 Quizz 2

290

7.3. Quizz 3 CHAPTER 7. QUIZZES

7.3 Quizz 3

291

7.4. Quizz 4 CHAPTER 7. QUIZZES

7.4 Quizz 4

292

7.4. Quizz 4 CHAPTER 7. QUIZZES

293

7.4. Quizz 4 CHAPTER 7. QUIZZES

294

7.5. Quizz 5 CHAPTER 7. QUIZZES

7.5 Quizz 5

7.5.1 Problems

295

7.5. Quizz 5 CHAPTER 7. QUIZZES

7.5.2 Problem 1 solution

Angular speed of earth around sun is

=2๐œ‹

(364) (24) (60) (60)Force on earth is therefore ๐‘š๐‘Ÿ2. Equating this to ๐น = ๐บ๐‘š๐‘’๐‘š๐‘ 

๐‘Ÿ2 and solving for ๐‘Ÿ gives

๐‘Ÿ2 = ๐บ๐‘š๐‘ ๐‘Ÿ2

One equation with one unknown ๐‘Ÿ. Solving gives (taking the positive root)

๐‘Ÿ = 149.26 ร— 109 meter

7.5.3 Problem 2 solution

๐‘ฆ (๐‘ฅ) = 8 sin (๐œ‹๐‘ฅ)

We want to solve for ๐‘ฃ in๐‘ฃ2

๐œŒ= ๐‘”

But ๐œŒ =1+๐‘ฆโ€ฒ(๐‘ฅ)2

32

๐‘ฆโ€ฒโ€ฒ(๐‘ฅ). To find what ๐‘ฅ to use, since at top of hill, then we want sin (๐œ‹๐‘ฅ) = 1 or

๐‘ฅ = 12 . Plugging this into ๐œŒ gives

๐œŒ = 0.0126651

Hence๐‘ฃ2

0.0126651= 9.81

Or

๐‘ฃ = 0.3525 m/s

296

7.6. Quizz 6 CHAPTER 7. QUIZZES

7.6 Quizz 6

7.6.1 Problem 1

This diagrams shows the setup.

297

7.6. Quizz 6 CHAPTER 7. QUIZZES

h

ฮธ

state 1: v1 = 4 m/s

state 2: v2

F = ยตNL

sin ฮธ = hL

F = ยตN

mg

ฮธ

mg cos ฮธ

N

Free body diagram

x

y

298

7.6. Quizz 6 CHAPTER 7. QUIZZES

Work-energy is used. There are two states. First state is at the top and the second state iswhen child reaches the bottom of the hill. Zero datum for gravity potential energy is takenat the bottom of the hill.

We now apply work-energy

๐‘‡1 + ๐‘‰1 + ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 + ๐‘ˆ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™

12 = ๐‘‡2 + ๐‘‰2 (1)

Where ๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 is work due to internal non-conservative forces. In this case, this is the friction

only. And ๐‘ˆ๐‘’๐‘ฅ๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 is work due to external applied forces, which is zero in this case, as there

are no external applied forces. Hence

๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 = โˆ’

๐ฟ

0๐น๐‘‘๐‘ฅ

Where ๐‘‘๐‘ฅ is taken as shown in the diagram. But ๐น which is friction force is ๐น = ๐œ‡๐‘ = ๐œ‡๐‘š๐‘” cos๐œƒ.Therefore

๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 = โˆ’

๐ฟ

0๐œ‡๐‘š๐‘” cos๐œƒ๐‘‘๐‘ฅ

= โˆ’๐œ‡๐‘š๐‘” cos๐œƒ๐ฟ

But ๐ฟ = โ„Žsin๐œƒ therefore

๐‘ˆ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘›๐‘Ž๐‘™12 = โˆ’๐œ‡โ„Ž๐‘š๐‘”

cos๐œƒsin๐œƒ

Now, ๐‘‡1 =12๐‘š๐‘ฃ

21 and ๐‘‰1 = ๐‘š๐‘”โ„Ž and ๐‘‰2 = 0 since we assume datum at bottom and ๐‘‡2 =

12๐‘š๐‘ฃ

22

where ๐‘ฃ2 is what we want to solve for. Putting all this in (1) gives12๐‘š๐‘ฃ21 + ๐‘š๐‘”โ„Ž โˆ’ ๐œ‡โ„Ž๐‘š๐‘”

cos๐œƒsin๐œƒ

=12๐‘š๐‘ฃ22

๐‘ฃ22 =2๐‘š

12๐‘š๐‘ฃ21 + ๐‘š๐‘”โ„Ž โˆ’ ๐œ‡โ„Ž๐‘š๐‘”

cos๐œƒsin๐œƒ

๐‘ฃ2 = ๐‘ฃ21 + 2๐‘”โ„Ž โˆ’ 2๐œ‡โ„Ž๐‘”

cos๐œƒsin๐œƒ

(2)

We notice something important here. The velocity at the bottom do not depend on mass ๐‘š.This is the answer for problem 2. We now just plug-in the numerical values given to find ๐‘ฃ2

๐‘ฃ2 =42 + 2 (9.81) (15) โˆ’ 2 (0.05) (15) (9.81)

cos 30 ๐œ‹180

sin 30 ๐œ‹180

= 16. 876 m/s

7.6.2 Problem 2

299

7.6. Quizz 6 CHAPTER 7. QUIZZES

Velocity at the bottom do not change if the mass doubles. We see from (2) in problem 1that ๐‘ฃ2 do not depend on mass.

300

7.7. Quizz 7 CHAPTER 7. QUIZZES

7.7 Quizz 7

7.7.1 Problem 1

๐ผ = ๐‘ก

0๐น๐‘‘๐‘ก

= ๐‘ก

0๐‘š๐‘”๐‘‘๐‘ก

= ๐‘š๐‘”๐‘ก= (1) (9.81) (41)= 402.21 N-s

7.7.2 Problem 2

301

7.7. Quizz 7 CHAPTER 7. QUIZZES

โˆ’๐‘’ =๐‘‰+๐ต โˆ’ ๐‘‰+

๐ด๐‘‰โˆ’๐ต โˆ’ ๐‘‰โˆ’

๐ด

Where ๐ต is the wall. Hence ๐‘‰+๐ต = ๐‘‰โˆ’

๐ต = 0 since wall do not move. Therefore

โˆ’๐‘’ =โˆ’๐‘‰+

๐ดโˆ’๐‘‰โˆ’

๐ด

=โˆ’ (โˆ’1.10)โˆ’ (+4.48)

=1.10โˆ’4.48

= โˆ’0.24554

Hence

๐‘’ = 0.245 54

7.7.3 Problem 3

๐‘š๐‘ฃโˆ’๐ด +0.29

0๐น๐‘Ž๐‘ฃ๐‘‘๐‘ก = ๐‘š๐‘ฃ+๐ด

But ๐‘š = 1 then

0.29

0๐น๐‘Ž๐‘ฃ๐‘‘๐‘ก = ๐‘ฃ+๐ด โˆ’ ๐‘ฃโˆ’๐ด

= โˆ’1.47 โˆ’ 5.13= โˆ’6.6

302

7.7. Quizz 7 CHAPTER 7. QUIZZES

Hence

๐น๐‘Ž๐‘ฃ (0.29) = โˆ’6.6

๐น๐‘Ž๐‘ฃ = โˆ’6.60.29

= โˆ’22.759

The magnitude is 22.759 N. The negative sign, since force is in negative ๐‘ฅ direction.

7.7.4 Problem 4

Energy lost is

ฮ” =12๐‘š ๐‘ฃโˆ’๐ด

2โˆ’12๐‘š ๐‘ฃ+๐ด

2

=12(6.4)2 โˆ’

12(0.12)2

= 20.473 J

7.7.5 Problem 5

303

7.7. Quizz 7 CHAPTER 7. QUIZZES

Let ๐ด be the fallcon and ๐ต be the drone. Hence

๐‘š๐ด๐‘ฃโˆ’๐ด + ๐‘š๐ต๐‘ฃโˆ’๐ต = (๐‘š๐ด + ๐‘š๐ต) ๐‘ฃ+

(1.023) (107) + 0 = (1.023 + 1) ๐‘ฃ+

๐‘ฃ+ =(1.023) (107)

2.023= 54.108 m/s

304

7.8. Quizz 8 CHAPTER 7. QUIZZES

7.8 Quizz 8

7.8.1 Problem 1

Let โ„Ž๐‘‚ be the angular momentum of ๐ด w.r.t to ๐‘‚. Therefore apply the definition

โ„Ž๐‘‚ = ๐ด/๐‘‚ ร— ๐‘š๐ด

= 3

๐šค ๐šฅ 1.5 5.8 โˆ’1.24.1 4.4 5.3

= 3 36.02 ๐šค โˆ’ 12.87 ๐šฅ โˆ’ 17.18

= 108.06 ๐šค โˆ’ 38.61 ๐šฅ โˆ’ 51.54

305

7.8. Quizz 8 CHAPTER 7. QUIZZES

Hence

โ„Ž๐‘‚ = โˆš1082 + 38.612 + 51.542

= 125.794 kg-m2/sec

7.8.2 Problem 2

By conservation of angular momentum

๐‘Ÿ0๐‘š๐‘ฃ๐ด = 2.29๐‘Ÿ0๐‘š๐‘ฃ2

๐‘ฃ2 =๐‘ฃ๐ด2.29

=9.872.29

= 4.31 m/s

306

7.8. Quizz 8 CHAPTER 7. QUIZZES

7.8.3 Problem 3

Angular momentum initially

โ„Ž1 = ๐ด/๐‘‚ ร— ๐‘š๐ด๐ด

= 9.8

๐šค ๐šฅ 5 0 00 โˆ’3.7 0

= โˆ’181.3 (1)

In new state, we first note that ๐ด2 = |๐ต| since both are the same radius from origin. This

307

7.8. Quizz 8 CHAPTER 7. QUIZZES

means ๐‘ฃ๐ด๐‘ฆ = ๐‘ฃ๐ต๐‘ฆ since they move only in ๐‘ฆ direction. Then

โ„Ž2 = ๐ด/๐‘‚ ร— ๐‘š๐ด๐ด2 + ๐ต/๐‘‚ ร— ๐‘š๐ต๐ต

= 9.8

๐šค ๐šฅ 2.5 0 00 โˆ’๐‘ฃ๐ด๐‘ฆ 0

+ 8.3

๐šค ๐šฅ โˆ’2.5 0 00 ๐‘ฃ๐ต๐‘ฆ 0

= 9.8

๐šค ๐šฅ 2.5 0 00 โˆ’๐‘ฃ๐ต๐‘ฆ 0

+ 8.3

๐šค ๐šฅ โˆ’2.5 0 00 ๐‘ฃ๐ต๐‘ฆ 0

= โˆ’46.5๐‘ฃ๐ต๐‘ฆ (2)

Since (1) and (2) are equal (conservation of angular momentum) then

๐‘ฃ๐ต๐‘ฆ =โˆ’181.3โˆ’46.5

= 3.899 m/s

308

7.9. Quizz 9 CHAPTER 7. QUIZZES

7.9 Quizz 9

7.9.1 Problem 1

2๐‘Ÿ๐œ”

309

7.9. Quizz 9 CHAPTER 7. QUIZZES

7.9.2 Problem 2

Point ๐ต

7.9.3 Problem 3

Equal and opposit

310

7.9. Quizz 9 CHAPTER 7. QUIZZES

7.9.4 Problem 4

Between ๐ด and ๐ต

311

7.10. Quizz 10 CHAPTER 7. QUIZZES

7.10 Quizz 10

7.10.1 Problem 1

312

7.10. Quizz 10 CHAPTER 7. QUIZZES

7.10.2 Problem 2

313

7.10. Quizz 10 CHAPTER 7. QUIZZES

7.10.3 Problem 3

314

7.10. Quizz 10 CHAPTER 7. QUIZZES

7.10.4 Problem 4

20.69 rad/sec

7.10.5 Problem 5

1.24

Calculation is below

315

7.10. Quizz 10 CHAPTER 7. QUIZZES

ma=2.3;b=0.02;h=0.08;oA=0.3;IAo=1/12 ma (b^2+h^2) + ma * oA^2Out[140]= 0.2083033333333333mb=2.6;rb=0.06;oB=0.22;IBo=mb * rb^2/2 + mb * oB^2Out[144]= 0.13052mc=2.9rc=0.05oC=0.49;ICo=mc *rc^2 + mc * oC^2Out[148]= 0.7035399999999999md=2.7;rd=0.09;oD=0.26;IDo=2/5 md rd^2 + md * oD^2Out[152]= 0.1912680000000001total=IAo+IBo+ICo+IDoOut[153]= 1.233631333333333

316

7.11. Quizz 11 CHAPTER 7. QUIZZES

7.11 Quizz 11

7.11.1 Problem 1

Applying work energy for rigid bodies

๐‘‡1 + ๐‘‰1 +๐œƒ2

0๐‘€๐‘‘๐œƒ = ๐‘‡2 + ๐‘‰2

But ๐‘‰1 = ๐‘‰2, and let ๐น = ๐œ‡๐‘˜๐‘ƒ, where ๐‘ƒ is the force pushing down and ๐น is the friction force,then

12๐ผ๐‘๐‘”๐œ”2

1 +๐œƒ2

0๐‘€๐‘‘๐œƒ = 0

12๐‘š๐‘Ÿ2๐œ”2

1 +๐œƒ2

0โˆ’๐น๐‘Ÿ๐‘‘๐œƒ = 0

12๐‘š๐‘Ÿ2๐œ”2

1 + ๐‘ƒ๐œ‡๐‘˜๐‘Ÿ๐œƒ2 = 0

But ๐œƒ2 = 6๐œ‹ since 3 revolutions, then12๐‘š๐‘Ÿ2๐œ”2

1 โˆ’ ๐‘ƒ๐œ‡๐‘˜๐‘Ÿ (6๐œ‹) = 0

317

7.11. Quizz 11 CHAPTER 7. QUIZZES

Solving for ๐‘ƒ

๐‘ƒ =12๐‘š๐‘Ÿ2๐œ”2

1

๐œ‡๐‘˜๐‘Ÿ (6๐œ‹)

=12(1.1) (0.3)2 (13.3)2

(0.3) (0.3) (6๐œ‹)= 5.161 N

7.11.2 Problem 2

When the disk is pulled, it gains potential energy ๐‘‰1 = 12๐‘˜๐‘ฅ

2 where ๐‘ฅ is amount of springextension from equilibrium, which is 1.7 meter in this example. When released, all thisenergy will be converted to kinetic energy when the disk reaches its original equilibriumposition. The final kinetic energy is ๐‘‡2 =

12๐‘š๐‘ฃ

2๐‘” +

12 ๐ผ๐‘๐‘”๐œ”

2. But since the disk rolls without slip,then ๐‘ฃ๐‘๐‘” = ๐‘Ÿ๐œ” and

๐‘‡2 =12๐‘š๐‘ฃ2๐‘” +

12๐ผ๐‘๐‘”

๐‘ฃ2๐‘๐‘”๐‘Ÿ2

318

7.11. Quizz 11 CHAPTER 7. QUIZZES

But ๐ผ๐‘๐‘” =12๐‘š๐‘Ÿ

2 and the above becomes

๐‘‡2 =12๐‘š๐‘ฃ2๐‘” +

14๐‘š๐‘Ÿ2

๐‘ฃ2๐‘๐‘”๐‘Ÿ2

=12๐‘š๐‘ฃ2๐‘” +

14๐‘š๐‘ฃ2๐‘๐‘”

=34๐‘š๐‘ฃ2๐‘๐‘”

Hence equating the initial potential energy to the final kinetic energy we obtain12๐‘˜๐‘ฅ2 =

34๐‘š๐‘ฃ2๐‘”

Solving for ๐‘ฃ๐‘” gives

๐‘ฃ2๐‘๐‘” =12๐‘˜๐‘ฅ

2

34๐‘š

=23๐‘˜๐‘ฅ2

๐‘š

=23(20) (1.7)2

14= 2.7524

Therefore

๐‘ฃ๐‘๐‘” = โˆš2.7524= 1.659 m/s

319