Lecture Note 8-1 Hydraulic Systems

71
System Analysis Spring 2015 1 Lecture Note 8-1 Hydraulic Systems

Transcript of Lecture Note 8-1 Hydraulic Systems

System Analysis Spring 2015

1

Lecture Note 8-1Hydraulic Systems

System Analysis Spring 2015

2

Vehicle Model - Brake Model

Brake Model

BrakePedal

VacuumBooster

MasterCylinder

ProportionnigValve

FontWheel

RearWheel

Brake Pedal

Vacuum Booster

Master Cylinder

ProportioningValve

Fundamental structure of a hydraulic brake

System Analysis Spring 2015

3

Conservation of Mass, Force and Pressure

mi mom q q

1 1 1

2 2 2

22 1 1 2

1

1 1 23 2 1

2 2 1

)

( )

iii f p Af p A

Af f P PAL L Af f fL L A

Force

1 1 2 2

12 1

2

)i Volume A dx A dxAdx dxA

2 1) Prii essue p p gh

System Analysis Spring 2015

4

Hydraulic Excavator

Boom Up

Boom Down

Arm Dump

Arm CrowdBucket Crowd

Bucket Dump

Swing(선회)

Travel(주행)

System Analysis Spring 2015

5

유압굴삭기 회로도

System Analysis Spring 2015

6

Hydraulic Brake Systems

Brake System

1 ) Wheel Cylinder2 ) Brake Light3 ) Brake Pedal4 ) Rear Brake Lines5 ) Stop Light Switch (Mechanical)6 ) Front/Rear Balance Valve7 ) Pressure Differentiavl Valve8 ) Brake Warning Lamp9 ) Brake Fluid

10) Brake Pad11) Master Cylinder

System Analysis Spring 2015

7

Vehicle Model - Brake Model

Brake Model

BrakePedal

VacuumBooster

MasterCylinder

ProportionnigValve

FontWheel

RearWheel

Brake Pedal

Vacuum Booster

Master Cylinder

ProportioningValve

Fundamental structure of a hydraulic brake

System Analysis Spring 2015

8

• Pneumatically controlled dexterous hand

• Hydraulically powered dexterous arm

Applications of Fluid Power• Space shuttle Columbia

• Space shuttle vehicle

System Analysis Spring 2015

9

Applications of Fluid Power• Hydraulically powered Sky-tram

• Hydraulic power brush drive

• Hydraulically driven turntable

• Oceanography

System Analysis Spring 2015

10

Automatic Transmission

System Analysis Spring 2015

11

Press

System Analysis Spring 2015

12

Linear Actuators

Airplane

PressMotion Simulator

Robot

System Analysis Spring 2015

13

Landing gear system of AIRBUS A330

Hydraulic Systems : Landing Gear System

System Analysis Spring 2015

14

1P 2P

Tank

Load

Control valve

)( 21 PPAF P

(70 ~ 210 )Hydraulic actuator bar

Hydraulic Systems

Hydraulic pump

15

Why hydraulic ?Internal combustion EngineTurbineElectric motorHydraulic actuator……

16

Why hydraulic ?1. smaller and lighter

horsepower to weight ratio > 2 hp/lb 2. heat/lubrication – long component life 3. no saturation and losses

- saturation and losses in magnetic materials of electrical machine- torque limit only by safe stress levels

4. high natural frequency/high speed of response/high loop gains - electrical motors, a simple lag device from applied voltage to speed

5. dynamic breaking with relief valve without damage

17

Disadvantages1. not so readily available

2. small allowable tolerances result in high costs

3. hydraulic fluids imposes upper temperature limit.

4. fluid contamination: dirt and contamination

5. basic design procedures are lacking and difficult, complexity of hydraulic control analysis

6. not so flexible, linear, accurate, and inexpensive as electronic and/or electromechanical devices

18

Primary Functions of a Hydraulic Fluid

System Analysis Spring 2015

19

Conservation of Mass, Force and Pressure

mi mom q q

1 1 1

2 2 2

22 1 1 2

1

1 1 23 2 1

2 2 1

)

( )

iii f p Af p A

Af f P PAL L Af f fL L A

Force

1 1 2 2

12 1

2

)i Volume A dx A dxAdx dxA

2 1) Prii essue p p gh

System Analysis Spring 2015

20

Gear Pumps (External)– fixed displacement pump– uses spur gear (teeth are parallel to the axis of the gear)– noisy at relatively high speeds

System Analysis Spring 2015

21

Internal Gear Pump

System Analysis Spring 2015

22

Internal Gear Pump

• Gerotor Pump

System Analysis Spring 2015

23

Internal Gear Pump

• Lobe Pump

System Analysis Spring 2015

24

Simple Vane Pump

System Analysis Spring 2015

25

Balanced Vane Pump

System Analysis Spring 2015

26

Piston Pump (Swash Plate Type)

System Analysis Spring 2015

27

Piston Pump

System Analysis Spring 2015

28

Pump

Electric Motor or Engine

System Analysis Spring 2015

29

Hydraulic Pump

– the heart of a hydraulic system– converts mechanical energy into hydraulic energy– hydrostatic pump– Displacement

• the amount of fluid ejected per revolution• unit: cm3/rev, cc/rev, cm3/rad, cc/rad

System Analysis Spring 2015

30

Pump Torque• Mechanical power supplied to pump

• Hydraulic power delivered by pump

• Therefore

: :

pH PQ

P pressure rise across the pumpQ delivery rate

th th p

th p

T PQ P D

T PD

mH T

]/3[ : radmDp 배제용적펌프여기서

System Analysis Spring 2015

31

Hydraulic Motors and Actuators

System Analysis Spring 2015

32

Hydraulic Systems : Valve-motor Combination

System Analysis Spring 2015

33

Application of Hydraulic Motors

System Analysis Spring 2015

34

Gear Motors

System Analysis Spring 2015

35

Valve-piston combination

Hydraulic Systems : Valve-piston Combination

System Analysis Spring 2015

36

Hydraulic Excavator

Boom Up

Boom Down

Arm Dump

Arm CrowdBucket Crowd

Bucket Dump

Swing(선회)

Travel(주행)

System Analysis Spring 2015

37

Hydraulic Excavator

System Analysis Spring 2015

38

Automotive Application

Active Suspension

System Analysis Spring 2015

39

Rough terrain forklift driven by hydraulic cylinders

System Analysis Spring 2015

40

Double-acting Cylinder Design

System Analysis Spring 2015

41

Cylinder Construction

System Analysis Spring 2015

42

Types of Valves: shearing elements

System Analysis Spring 2015

43

Types of Valves: seating elements

System Analysis Spring 2015

44

Directional Control Valve

System Analysis Spring 2015

45

Schematic of a single stage electrohydraulic

servovalve connected to a motor with

inertia load

Hydraulic Systems : Single Stage Electrohydraulic Servovalve

System Analysis Spring 2015

46

Solenoid-Actuated Valves

Solenoid-actuated, three-position,

spring-centered, four-way,

directional control valve

Single solenoid-actuated, two-position,

spring-offset, four-way,

directional control valve

System Analysis Spring 2015

47

Operation of Solenoid to Shift of Valve

System Analysis Spring 2015

48

Schematic of a two-stage electrohydraulic

servovalve with force feedback controlling

a motor with inertia load

Hydraulic Systems : Two-stage Electrohydraulic Servovalve

System Analysis Spring 2015

49

Solenoid-controlled, Pilot-operated Valve

System Analysis Spring 2015

50

Servo Valve StructureMoog 760 Series

Moog 30 Series

System Analysis Spring 2015

51

N N

SS

N S

Operation of Servo Valve

System Analysis Spring 2015

52

Operation of Servo Valve: Torque MotorTorque Motor

Hydraulic Amplifier

System Analysis Spring 2015

53

Operation of Servo Valve: Valve Spool

Valve Spool

System Analysis Spring 2015

54

Hydraulic Servo Systems

System Analysis Spring 2015

55

Hydraulic Excavator

Boom Up

Boom Down

Arm Dump

Arm CrowdBucket Crowd

Bucket Dump

Swing(선회)

Travel(주행)

System Analysis Spring 2015

56

Valve-piston combination

Hydraulic Systems : Valve-piston Combination

System Analysis Spring 2015

57

Operation of Solenoid to Shift of Valve

System Analysis Spring 2015

58

PV 11 PV 22

mRTPV

1

,

V PV

where Compressibility

1 2 2 1

1

, ( )

1 ;

1 1 1

1

B

B

B

PV

VP dP V V V V V dV

dPV K Bulk modulusdV

dP dV K dVV V

dP dVKdt V dt

Hydraulic Servo System : Compressibility

System Analysis Spring 2015

59

System Analysis Spring 2015

60

Basic Modeling of Dynamic Cylinder• Generalized Flow - Continuity equation

• Equation of motion

dtdPV

dtdVQ

e

1111 0

dtdPV

dtdVQ

e

22220

dtdPVuAQ

e

1111

dtdPVuAQ

e

2222

LfbvdtdvmAPAP 2211

v

load

1Q 2Q

1P 2P

1A 2A1V 2V

Lf

mass m

System Analysis Spring 2015

61

0P SP 0P

2Q 1Q

2P 1P

:SP supply pressure

piston

servosystem

21 1

2 ( ) /

: , :

: , :

d S

d

Q C a x P P m s

a area gradient x displacement

density C discharge coefficient

spool

2 2 0

2 0

2 ( )

2 ( 0)

d

d

Q C a x P P

C a x P P

Hydraulic Servo System

x

y

System Analysis Spring 2015

62

no leakage, no compressibility

1 2 1 2 1 2

1 2 1 2

1 2

1 2

2 , 2

,2 2

22

s s

L S L S L

S L S L

S Ld S L

Q Q P P P P P P

P P P P P P P P P P

P P P PP P

P PQ Q Q C a x C x P P

P S L

S L

dyQ A C x P Pdt

dy C x P Pdt

Hydraulic Servo System

System Analysis Spring 2015

63

, , ,

( , ) ( ) ( )

1 1( ) ( ) ( )2

L L

S L L L L

L L Lx P x PL

S L L L

S L

d y C x P P y y y x x x P P Pdt

dy f ff x P x x P Pdt x P

d y C P P x x C x P Pdt P P

1

1

0, 0 , 0

( ).( )

L

S

d yif x Pdt

dy C P x K xdt

KY sT FX s S

Hydraulic Servo System

System Analysis Spring 2015

64

0P

1Q 2Q

SP

12 11 21 22

Ap

0P

1P2P

:sP supply pressure

x

ypA

0

11 0 1

12 0 1

1 11 12

0 ,

2( ) ( )

2( ) ( 0 )

d S

d

x A A

Q C A ax P P

Q C A ax P

Q Q Q

21 0 2

22 0 2

2 22 21

2( ) ( )

2( ) ( 0 )

d S

d

Q C A ax P P

Q C A ax P

Q Q Q

Hydraulic Servo System

Flow equations :

System Analysis Spring 2015

65

Assume no leakage 21 QQ

11

1 21 2

1 2

0,

1 1

1 1 ( )

0,

1 1 1 1( ), ( )p P

y

dP dVdt V dt

QV

y

dp dpQ A y Q A ydt V dt V

1 2

1 2

( )

( )

p

p

my A p p by

my by A p p

Equation of motion :

Hydraulic Servo System

System Analysis Spring 2015

66

Hydraulic Servo System Model

1 2

11

1

22

2

1 11 12 0 1 0 1

2 22 21 0 2 0 2

1 2

( )

1 1 ( )

1 1 ( )

2 2( ) ( ) ( ) ( 0 )

2 2( ) ( 0 ) ( ) ( )

p

p

P

d S d

d d S

my by A p p

dp Q A ydt V

dp Q A ydt V

Q Q Q C A ax P P C A ax P

Q Q Q C A ax P C A ax P P

Q Q

System Analysis Spring 2015

67

1 2 1 2

0 1 2 0 1 2

1 2 1 2

0 1 2 1 2

0

2 2 2 2( ) ( ) ( ) ( )

0,

2 2 2 2( ) ( )

2 2 2 2( ) ( ) 0

d S d S

d S S

d S S

Q Q Q Q

C A ax P P P C A ax P P P

when x

C ax P P P P P P

C A P P P P P P

To make an identical equati

1 2 1 2 1 2

1 2 1 2

, ,

, ,2 2

s s s

s L s LL

Pon P P P P P P P P

P P P Plet P P P P P

Hydraulic Servo System : Linearization

System Analysis Spring 2015

68

Operating point :

1 11 1 0, 0 0, 0

10, 0 1

10, 0 0 2

1 2 2

1 21 2

0, 0

( , ) (0,0) ( 0) ( 0)

12

1

,

L L

L

L

L

L x p x p LL

x p d S

x p dL S

L L

LL

x p

Q QQ x p Q x px p

Q C a p Kx

Q C A Kp p

Q K x K p Q Q

dp dp dpp p pdt dt dt

Hydraulic Servo System : Linearization

1 0 01 1( ) ( ) ( ) ( )

( , )

d s L d s L

L L L

Q C ax A P P C A ax P P

Q Q x P

System Analysis Spring 2015

69

11 2

1 1

21 2

2

1 2

1 2

1 1 1 1( ) ( )

1 1 ( )

1 1 (2 2 2 )

( ) ( ) :( )

p L

L p L p

L p

LL p

my by A p

dp Q A y K x K p A ydt V V

dp K x K p A ydt V

let V V

dp K x K p A ydt V

Y s cubic equation formX s

Hydraulic Servo System

System Analysis Spring 2015

70

Simplification : No compressibility, No leakage

1 2 12

21

2 2

1 22 2

2 2

1 ( )

( )( ) ( 1)

,

L p

L L p L p

pp

p

p p

my by p A

Q K x K p A y p K x A yK

A Kmy b y A xK K

Y s KX s s Ts

K A mKK TK b A K b A

Hydraulic Servo System

System Analysis Spring 2015

71

End of Hydraulic systems 8-1