Late Triassic cliamte humidification and kaolinite formation (Western Carpathians, Tatric Init of...

28
Geological Quarterly, 2013, 57 (4): 701–728 DOI: http://dx.doi.org/10.7306/gq.1123 Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) Otília LINTNEROVÁ 1 , Jozef MICHALÍK 2, *, Peter UHLÍK 1 , Ján SOTÁK 3 and Zuzana WEISSOVÁ 2 1 Comenius University, Department of Economic Geology, Faculty of Science, Mlynská dolina, pav. G, 842 15 Bratislava, Slovakia 2 Geological Institute, Slovak Academy of Sciences, Dúbravská 9, PO Box 106, 840 05 Bratislava, Slovakia 3 Geological Institute, Slovak Academy of Sciences, Ïumbierska 1, 974 01 Banská Bystrica, Slovakia Lintnerová O., Michalík J., Uhlík P., Soták J. and Weissová Z. (2013) Latest Triassic climate humidification and kaolinite for- mation (Western Carpathians, Tatric Unit of the Tatra Mts.). Geological Quarterly, 57 (4): 701–728, doi: 10.7306/gq.1123 The Tomanová Formation, of Rhaetian age, overlying the Norian Carpathian Keuper in the Tatra Mts. is built of cyclic parasequences of mudstones and sandstones. Quartz (15 to 70 wt.%), kaolinite (13 to 46 wt.%) and 2:1 Al dioctahedral phyllosilicates (dioct 2:1: muscovite, illite, illite/smectite: 5 to 39 wt.%) represent the major mineral phase. The kaolinite/dioct 2:1 ratio decreases upwards in the section (from 4.3 to 0.5) and signals variability in weathering/erosion intensity and chang- ing water salinity. Major and trace elements (LILE, HSFS, REE) indicate a uniform source – felsic rocks located probably in the Vindelician Highlands. The sedimentation rate (83 mm/ky) was controlled by climate. Alternation of dry and humid peri- ods is refered by sedimentary textures and by maturity of quartz (aeolian vs. fluvial grains), and organic matter content and composition (C org and d 13 C org ). Authigenic siderite or bethierine documents wet and reduced conditions in the upper part of the Tomanová Formation. The sedimention rate of the marine Dudzinec Formation attained 25 mm/ka and the character of cycles preserved in the sequence is similar as that of the Tomanová Formation (fining upwards parasequences). However, the different clay mineralogy, the recycled character of the silicates, the different d 13 C org and elevated imput of carbonate de- tritus with specific C and O isotopic patterns document a discontinuity in the section. The transgressive character of the Dudzinec Fm. was deduced from the stratigraphic distribution and environmental characteristics of the benthic foraminifera present. Involutinids and spirillinids dominate in the lower part, endothyrinids govern the middle part, and in the upper part nodosariids and Ammodiscus-type microfauna occur. These age-diagnostic microfossils indicate a late Rhaetian age. Sea level rise in the Tatric Zone triggered by thermal expansion of the Central Atlantic Rift was gradual, being affected by input of terrestrial clastic sediment both by freshwater and by wind. The Tatric Triassic sequence in the Western Carpathians helps understanding of the development of sedimentation, palaeoclimate (kaolinite weathering), and palaeogeography of the northernmost Tethyan Domain. Key words: sedimentology, foraminifers, clay minerals, carbon isotopes, REE, palaeogeography. INTRODUCTION The understanding of Triassic climatic regimes has been significantly refined by knowledge gained over the past decade (e.g., Berra et al., 2010; Bonis et al., 2010; Preto et al., 2010). Climate change at the end of the Triassic period is usually as- cribed to Pangea break-up associated with formation of the At- lantic oceanic rift when Central Atlantic Magmatic Province (CAMP) volcanoes released large amounts of CO 2 and/or meth- ane (Beerling and Royer, 2002; Prochnow et al., 2006; Berner and Beerling, 2007; Cohen and Coe, 2007; Hori et al., 2007; Bonis et al., 2010; Preto et al., 2010) into the atmosphere. Biotic extinction at the end of the Triassic (McRoberts, 1994; McRoberts et al., 1997; Pálfy et al., 2001; Hautmann, 2004; Ward et al., 2004, 2007; Huynh and Poulsen, 2005; McElwain and Punyasena, 2007) was probably caused by this climate change. Appreciation of the region dispersion of Upper Triassic CAMP volcanic products from a nearly rift in a passive shelf is constrained by the composition of continental deposits along the northern edge of the Tethyan shelf (Blackburn et al., 2013). Temperature, precipitation, and the dynamics of the atmo- sphere, and also the intensity of weathering processes at the Earth´s surface were affected by fluctuations in CO 2 concentra- tion (Hesselbo et al., 2002; Ruhl et al., 2010, 2011). Clay-rich se- quences with a high kaolinite content in southern Sweden and Poland document the formation of extensive Upper Trias- sic/Lower Jurassic weathering profiles and palaeosols on granitoids (Kraus, 1989; Ahlberg et al., 2003; Œrodoñ et al., 2006). Rhaetian to Lower Jurassic continental and paralic * Corresponding author, e-mail: [email protected] Received: July 1, 2013; accepted: September 19, 2013; first published online: October 23, 2013

Transcript of Late Triassic cliamte humidification and kaolinite formation (Western Carpathians, Tatric Init of...

Geo log i cal Quar terly, 2013, 57 (4): 701–728 DOI: http://dx.doi.org/10.7306/gq.1123

Lat est Tri as sic cli mate humidification and kaolinite for ma tion (West ern Carpathians, Tatric Unit of the Tatra Mts.)

Otília LINTNEROVÁ1, Jozef MICHALÍK2, *, Pe ter UHLÍK1, Ján SOTÁK3 and Zuzana WEISSOVÁ2

1 Comenius Uni ver sity, De part ment of Eco nomic Ge ol ogy, Fac ulty of Sci ence, Mlynská dol ina, pav. G, 842 15 Bratislava,Slovakia

2 Geo log i cal In sti tute, Slo vak Acad emy of Sci ences, Dúbravská 9, PO Box 106, 840 05 Bratislava, Slovakia

3 Geo log i cal In sti tute, Slo vak Acad emy of Sci ences, Ïumbierska 1, 974 01 Banská Bystrica, Slovakia

Lintnerová O., Michalík J., Uhlík P., Soták J. and Weissová Z. (2013) Lat est Tri as sic cli mate humidification and kaolinite for -ma tion (West ern Carpathians, Tatric Unit of the Tatra Mts.). Geo log i cal Quar terly, 57 (4): 701–728, doi: 10.7306/gq.1123

The Tomanová For ma tion, of Rhaetian age, over ly ing the Norian Carpathian Keuper in the Tatra Mts. is built of cy clicparasequences of mudstones and sand stones. Quartz (15 to 70 wt.%), kaolinite (13 to 46 wt.%) and 2:1 Al dioctahedralphyllosilicates (dioct 2:1: mus co vite, illite, illite/smectite: 5 to 39 wt.%) rep re sent the ma jor min eral phase. The kaolinite/dioct2:1 ra tio de creases up wards in the sec tion (from 4.3 to 0.5) and sig nals vari abil ity in weath er ing/ero sion in ten sity and chang -ing wa ter sa lin ity. Ma jor and trace el e ments (LILE, HSFS, REE) in di cate a uni form source – fel sic rocks lo cated prob a bly inthe Vindelician High lands. The sed i men ta tion rate (83 mm/ky) was con trolled by cli mate. Al ter na tion of dry and hu mid pe ri -ods is refered by sed i men tary tex tures and by ma tu rity of quartz (ae olian vs. flu vial grains), and or ganic mat ter con tent andcom po si tion (Corg and d13Corg). Authigenic sid er ite or bethierine doc u ments wet and re duced con di tions in the up per part ofthe Tomanová For ma tion. The sedimention rate of the ma rine Dudzinec For ma tion at tained 25 mm/ka and the char ac ter ofcy cles pre served in the se quence is sim i lar as that of the Tomanová For ma tion (fin ing up wards parasequences). How ever,the dif fer ent clay min er al ogy, the re cy cled char ac ter of the sil i cates, the dif fer ent d13Corg and el e vated imput of car bon ate de -tri tus with spe cific C and O iso to pic pat terns doc u ment a dis con ti nu ity in the sec tion. The transgressive char ac ter of theDudzinec Fm. was de duced from the strati graphic dis tri bu tion and en vi ron men tal char ac ter is tics of the ben thic foraminiferapres ent. Involutinids and spirillinids dom i nate in the lower part, endothyrinids gov ern the mid dle part, and in the up per partnodosariids and Ammodiscus-type micro fauna oc cur. These age-di ag nos tic microfossils in di cate a late Rhaetian age. Sealevel rise in the Tatric Zone trig gered by ther mal ex pan sion of the Cen tral At lan tic Rift was grad ual, be ing af fected by in put ofter res trial clastic sed i ment both by fresh wa ter and by wind. The Tatric Tri as sic se quence in the West ern Carpathians helpsun der stand ing of the de vel op ment of sed i men ta tion, palaeoclimate (kaolinite weath er ing), and palaeo ge ogra phy of thenorth ern most Tethyan Do main.

Key words: sedimentology, foraminifers, clay min er als, car bon iso topes, REE, palaeo ge ogra phy.

INTRODUCTION

The un der stand ing of Tri as sic cli ma tic re gimes has beensig nif i cantly re fined by knowl edge gained over the past de cade(e.g., Berra et al., 2010; Bonis et al., 2010; Preto et al., 2010).Cli mate change at the end of the Tri as sic pe riod is usu ally as -cribed to Pangea break-up as so ci ated with for ma tion of the At -lan tic oce anic rift when Cen tral At lan tic Mag matic Prov ince(CAMP) vol ca noes re leased large amounts of CO2 and/or meth -ane (Beerling and Royer, 2002; Prochnow et al., 2006; Bernerand Beerling, 2007; Co hen and Coe, 2007; Hori et al., 2007;

Bonis et al., 2010; Preto et al., 2010) into the at mo sphere. Bi oticex tinc tion at the end of the Tri as sic (McRoberts, 1994;McRoberts et al., 1997; Pálfy et al., 2001; Hautmann, 2004;Ward et al., 2004, 2007; Huynh and Poulsen, 2005; McElwainand Punyasena, 2007) was prob a bly caused by this cli matechange.

Ap pre ci a tion of the re gion dis per sion of Up per Tri as sicCAMP vol ca nic prod ucts from a nearly rift in a pas sive shelf iscon strained by the com po si tion of con ti nen tal de pos its along the north ern edge of the Tethyan shelf (Blackburn et al., 2013).Tem per a ture, pre cip i ta tion, and the dy nam ics of the at mo -sphere, and also the in ten sity of weath er ing pro cesses at theEarth´s sur face were af fected by fluc tu a tions in CO2 con cen tra -tion (Hesselbo et al., 2002; Ruhl et al., 2010, 2011). Clay-rich se -quences with a high kaolinite con tent in south ern Swe den andPo land doc u ment the for ma tion of ex ten sive Up per Tri as -sic/Lower Ju ras sic weath er ing pro files and palaeosols ongranitoids (Kraus, 1989; Ahlberg et al., 2003; Œrodoñ et al.,2006). Rhaetian to Lower Ju ras sic con ti nen tal and paralic

* Corresponding author, e-mail: [email protected]

Received: July 1, 2013; accepted: September 19, 2013; firstpublished online: October 23, 2013

coal-bear ing se quences in Spitsbergen (Nagy et al., 2011),Green land (McElwain et al., 2007, 2009), Den mark (Lund, 1977) and the Hun gar ian Mecsek Moun tains (Ruckwied et al., 2008;Götz et al., 2011) in di cate cli mate hu mid ity. Warm ing dur ing theT/J bound ary in ter val and as so ci ated in crease in at mo sphericcar bon di ox ide lev els fa voured a dom i nance of broad leafvedplants that were burned by nu mer ous storm-trig gered fires(Belch er et al., 2010).

The Tomanová For ma tion, which filled a con ti nen tal ba sin inthe West Carpathian Tatric Zone, has been stud ied with re spectto palaeoflora, palaeoichnology and sedimentology (Raciborski,1890; Radwañski, 1968; Michalík, 2003; Michalik et al., 1976,1988; NiedŸwiedzki, 2011). The pres ence of kaolinite andsmectite re flects the weath er ing re gime in a par tic u lar sed i men -tary ba sin, and al lows its cor re la tion with pat terns in neigh bour -ing ar eas (Weaver, 1989; Ahlberg et al., 2003; Ruffell et al.,2002; Œrodoñ et al., 2006; Dera et al., 2009; Zajzon et al., 2012).

The in ten sity of weath er ing, the com po si tion of the par entrocks and the sed i ment prov e nance of the ma te rial can be in di -cated by means of chem i cal anal y sis, par tic u larly by ra tios ofma jor el e ments and by trace el e ment dis tri bu tion (Murray et al.,1992; Cullers, 2000; Price and Velbel, 2003; Mongelli et al.,2006; Prochnow et al., 2006; Ohta and Arai, 2007; Shel don andTa bor, 2009; Galbarczyk-G¹siorowska, 2010). The spe cific dis -tri bu tion of REE known from ter res trial de pos its and palaeosolsmay act as an an other in di ca tor of cli mate as well as of sed i men -tary con di tions (e.g., Nesbit et al., 1990; Condie,1993; Hannigan and Sholkovitz, 2001; Haley et al., 2004; Shields and Webb,2004; Ounis et al., 2008).

The strati graphic pat terns of car bon iso tope in or ganic mat -ter may be com pared with ichnological and palynological data(Kuerschner et al., 2007; Ruckwied et al., 2008; Ruckwied andGötz, 2009; Michalik et al., 2010, Götz et al., 2011; Sha et al.,2011) and with the geo chem is try of ter res trial shale. Car bon iso -tope anal y sis is a gen er ally ac cepted in di ca tor of chages in theglobal car bon cy cle es pe cially in ma rine se quences (e.g.,McRoberts, 1994; Pálfy et al., 2001; Ward et al., 2004, 2007).Car bon iso tope pat terns are also pres ent in con ti nen tal sed i -ments but are sig nif i cantly less ex pres sive (Hesselbo et al.,2002; Lucas and Tan ner, 2007).

The most com plete T/J bound ary se quences in the Cen tralWest ern Carpathians are pre served in the Fatric Zliechov Ba sin(Michalik, 2007; Michalik et al., 2007, 2010, 2013). Be sidesbiostratigraphy and C-iso tope stra tig ra phy, clay min er al ogy isalso con sid ered as a use ful tool for eval u a tion of cli ma tic andweath er ing con di tions. Quan ti ta tive anal y sis of clay frac tions re -sulted in the find ing of sharp in creases in kaolinite con tent in ma -rine shales of the Hettangian Kopieniec For ma tion (Michalik etal., 2010).

This pa per aims to in te grate sedimentological, min er al og i caland geo chem i cal stud ies of a ter res trial se quence in theÈervený Úplaz sec tion of the Tatra Mts. and to sum ma rize LateTri as sic palaeoclimatic data. Al though the Tatric se quence con -tains sed i men tary gaps and the re cord of the Tri as sic-Ju ras sictran si tion was ap par ently af fected by a trans gres sion, de taileddoc u men ta tion of the kaolinite weath er ing crust pro vides valu -able palaeoclimatic in for ma tion. An other aim of this work is topres ent new data on the dis tri bu tion of or ganic car bon and onthe iso to pic com po si tion of or ganic mat ter in these con ti nen talde pos its in terms of in di ca tions of dis tur bances of the car bon cy -cle dur ing cli mate change. The source of the ma te rial that ac cu -mu lated in the se quence stud ied may be con strained by the dis -tri bu tion of ma jor and trace el e ments, in clud ing rare earth el e -ments. Fi nally, we dis cuss the palaeogeographic po si tion notonly of the Tomanová For ma tion within Tatric se quences in the

Cen tral West ern Carpathians, but also within a wider Tethyanframe work.

MATERIALS AND METHODS

SAMPLE PREPARATION

Sixty four rock sam ples were col lected (Figs. 1 and 2) fromthe Èervený Úplaz ra vine sec tion in the Tichá Dol ina Val ley.Sam pling (31 sam ples) in 2008 con cen trated on the TomanováFm. argillites. An ad di tional thir teen sam ples (in clud ing thin sec -tions) were col lected by M. Sýkora in 1975 from the TomanováFm. sand stones have been in volved. Later, in 2011, a com ple -men tary set of twenty sam ples was taken from over ly ing sandyand de tri tal lime stone se quence of the Dudziniec Fm.

Thin sec tions were ex am ined by trans mit ted light mi cro scope. Mea sure ments of quartz grain size and quan tity were made bymeans of the NIS-El e ments sys tem of screen anal y sis.

Sam ples for min er al og i cal and geo chem i cal anal y sis weremilled to than 0.16 mm; ho mogen ised and equiv a lent parts ofsam ples were used to ana lyse min eral and chem i cal com po si -tions (Fig. 2).

702 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 1A – lo ca tion of the Èervený Úplaz sec tion in Slovakia, B– in ves ti gated area, C – the sec tion doc u mented on Fig ure 4

1, 5, 7, 10, 19 – num ber of the beds

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 703

Fig. 2. Strati graphic, lithostratigraphic di vi sion and se quence strati graphic di vi sion of the Èervený Úplaz sec tion A

AST – aggradational sys tems tract, DST – degradational sys tems tract, HST – highstand sys tems tract, LST – lowstand sys tems trac, TGS –transgressive sys tems tractt, TST – tran si tional sys tems tract; sam ple num bers (both for thin sec tions and for chem i cal anal y ses) left col umn– “new” sam ple set, right – a sam ple set kindly sup plied by Dr. M. Sýkora

MINERALOGICAL ANALYSIS

The min eral com po si tion of clastic and car bon ate en richedsed i men tary rocks was ana lysed us ing X-ray dif frac tion tech -niques. Both, clay and bulk rock frac tions were stud ied. Theiden ti fi ca tion of clay min er als in the less than 2 µm (clay) wasper formed in 25 sam ples. The mod i fied Jack son treat ment ofŠucha et al. (1991) was ap plied to 10 g of milled and ho mog e -nized sam ple. Sam ples were ul tra son i cally dis in te grated in dis -tilled wa ter and then chem i cally treated to elim i nate car bon ates,free iron ox ides and or ganic mat ter sep a rated by grav ity set tlingin cyl in ders and by centrifugation re spec tively. The clay frac tionwas sat u rated with so dium ions. Fi nally, the sus pen sion waspoured into semi-per me able tub ing and all chlo ride ions were re -moved by di al y ses in redistilled wa ter. The glass slide methodwas used to pre pare ori ented spec i mens (Moore and Reynolds,1997). Two X-ray dif frac tion pat terns of each sam ple were made in Na-sat u rated air-dried and eth yl ene gly col (EG – over nightvapor ised at 60°C) forms in or der to iden tify pos si ble ex pand -able clay min er als. X-ray dif frac tion anal y ses were per formed on a Phillips PW1710 diffractometer us ing CuKa ra di a tion (40K, 20mA) and a dif fracted beam graph ite mono chro ma tor. Sam pleswere scanned from 2–50°2Q with a step size of 0.02°2Q and us -ing a 1 sec onds count ing time.

Quan ti ta tive min eral anal y sis of the clay frac tion was per -formed on five se lected sam ples and on 29 bulk rock sam ples.Three grams of each sam ple were mixed with 0.333 grams ofthe in ter nal stan dard zincite (ZnO) and with 4 ml of de na tured al -co hol. The mix ture was milled for 5 min utes in a McCroneMicronizing Mill to di min ish grain size less to than 20 µm and toelim i nate pref er en tial ori en ta tion of crys tals in the sam ple. Eachspec i men was dried and a side-loaded sam ple tech nique wasused (Œrodoñ et al., 2001). X-ray dif frac tion anal y ses were per -formed on a Phillips PW1710 diffractometer. Sam ples werescanned from 4-65°2Q with a step size of 0.02°2Q and us ing two a sec ond count ing time. The per cent ages of min er als were es ti -mated from the XRD pat tern us ing RockJock soft ware. Mea -sure ment er ror in the kaolinite and quartz mix ture was cal cu lated to ±4%. The er rors for min er als in many sam ples could be largerthan ±4%, as min er als in the sam ples were not iden ti cal with themin er als used as stan dards (Eberl, 2003).

TOTAL CARBON ANALYSIS

The con tents of to tal or ganic car bon (TOC) and to tal in or -ganic car bon (TIC) were de tected in 35 rock sam ples on aC-MAT 5500 de vice of the Ströhlein firm in the Geo log i cal In sti -tute Lab o ra tory of the Slo vak Acad emy of Sci ence in BanskáBystrica. The TIC con tent was re-cal cu lated on the con tent ofCaCO3.

ISOTOPE ANALYSIS

Eleven lime stone sam ples and four sam ples with sid er itewere se lected for sta ble C and O iso tope anal y sis of the car bon -ate min er als. The iso tope ra tio of ox y gen and car bon was ana -lysed in CO2 af ter stan dard de cay of sam ples in 100% phos pho -ric acid. The anal y ses were made in lab o ra to ries of both theCzech Geo log i cal In sti tute in Prague on a Finigan MAT-2 massspec trom e ter, and at the Geo log i cal In sti tute of the Slo vak Acad -emy of Sci ence in Banská Bystrica on a Mass Spec trom e terMAT253 equipped with the Gasbench de vice (Thermo Sci en tific Sam ples) of car bon ate finely ground to ca. 2 µm. The re sults aregiven in stan dard del – no ta tion (d) in promille (‰) be ing re lated

to the Vi enna In ter na tional Iso to pic Stan dard (VPDB) with0.01‰ ac cu racy.

The car bon iso tope ra tio of or ganic car bon was ana lysed in30 sam ples. To tal or ganic car bon iso tope anal y sis was car riedout af ter car bon ate dis so lu tion. Sam ples were boiled in di lute(10%) hy dro chlo ric acid, then re peat edly rinsed with de-ion izedwa ter to re move chlo rides and dried at 60°C. Mea sure ments ofd13C were per formed by flash com bus tion in a Fisons 1108 El e -men tal Ana lyser cou pled with a Mat 251 iso tope ra tio massspec trom e ter in a con tin u ous flow re gime. The sam ple size wasad justed to con tain a suf fi cient amount of or ganic car bon to ob -tain ex ter nal reproducibility of 0.15‰ for d13Corg for all types ofsam ples with NBS 22 as the ref er ence ma te rial. Iso tope data are re ported in the usual delta (d) no ta tion rel a tive to the VPDB (Lab -o ra tory of the Czech Geo log i cal Sur vey in Prague).

TOTAL ROCK CHEMICAL ANALYSIS

In this study, four teen sam ples were ana lysed geochemi callyus ing a Perkin Elmer Elan 6000 ICP at the ACME An a lyt i cal Lab -o ra to ries, Ltd in Van cou ver, Can ada. To tal abun dances of thema jor ox ides and sev eral mi nor el e ments (SiO2, Al2O3, Fe2O3,CaO, MgO, Na2O, K2O, MnO, TiO2, P2O5) are re ported on a 0.2 gsam ple ana lysed by ICP-emis sion spec trom e try fol low ing a lith -ium metaborate/tetraborate fu sion and di lute ni tric di ges tion. Loss on ig ni tion (LOI) is by weight dif fer ence af ter ig ni tion at 1000°C.Both trace el e ments (Ba, Co, Cs, Ni, Rb, Sc, Sr, Th, V, Y, Zr) andRare Earth El e ments (REE) were de ter mined by ICP mass spec -trom e try fol low ing a lith ium metabo rate/tetraborate fu sion and ni -tric acid di ges tion of 0.2 g sam ples. In ad di tion, a sep a rate 0.5 gsplit was di gested in Aqua Regia and ana lysed by ICP massspec trom e try for pre cious and base met als (the ACME An a lyt i calLab o ra to ries, Ltd., 2008).

Sam ples for chem i cal anal y sis were se lected ac cord ing tostrati graphic po si tion (nine shale + four car bon ate sam ples) andac cord ing to the min eral com po si tion de ter mined. Data werecom pared to Post Archaean Aus tra lian Shale (PAAS) chem i calcom po si tion (Tay lor and McLennan, 1985). Inter-el e men tal re la -tion ships were eval u ated us ing the Pearson´s Cor re la tion Fac -tor. The chem i cal In dex of Weath er ing CIW = [Al2O3/Al2O3+Na2O]*100) was used to com pare the in ten sity of weath -er ing of the shales stud ied (see e.g., Ohta and Arai, 2007, Shel -don and Ta bor, 2009). The chem i cal In dex of Al ter ation (CIA =[Al2O3/ Al2O3 + CaO + Na2O + K2O] ´ 100) was used to doc u -ment sed i ment al ter ation (Nesbit and Young, 1984; Price andVelbel, 2003). K2O vs. TiO2 and Al vs. Ti as ra tios of ma jor la bileand sta ble el e ments in the weath er ing pro cess were cal cu latedto check the in flu ence of trans port and re cy cling. In di ces werecal cu lated us ing mo lec u lar pro por tions of the ma jor el e ment ox -ides in el e men tary ex pres sion. The chem i cal char ac ter of par ent rock was tested on the ba sis of trace el e ments. Con tents in ppmwere used in in di ces. REE were nor mal ized to chondrite and toPAAS (Tay lor and McLennan, 1985). The Eu/Eu* ra tio (val uesof Eu anom aly) was cal cu lated us ing Eu/Eu* = EuPAAS /(SmPAAS ́GdPAAS)0.5 or Ce/Ce* = CePAAS/(LaPAAS ´ PrPAAS)0.5 (val ues of Ceanom aly), re spec tively.

GEOLOGICAL SETTING

The Tatra Mts. are sit u ated at the mar gin of the Cen tralCarpathians. This moun tain sys tem con sists of imbricatednappe units. The deep est (Tatric) part of the High Tatra Mts. isformed by a Variscan crys tal line block with large granitoid bod ies cov ered by Lower Tri as sic–mid dle Cre ta ceous strata (Uhlig,

704 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

1897; Dumont et al., 1996). This base ment is over lain by a su -per fi cial nappe com plex con sist ing of the lower (Fatric) KrížnaNappe and of the up per (Hronic) Choè Nappe (Andrusov et al.,1973; Kotañski, 1979). Dur ing the Tri as sic, the Cen tral West ernCarpathian units be longed to the north ern Tethyan shelf formedof Variscan con sol i dated crust (Kozur 1991; Michalík, 1993,1994, 2003; Michalík et al., 2007; Kuerschner et al., 2007).

Raciborski (1890) de fined the “Tomanová Beds” as an up -per most Tri as sic (Rha etic) com plex of var ie gated clastic de pos -its (Michalík, 1977, 2003). The Tomanová For ma tion is un der -lain by the Carpathian Keuper (Uhlig, 1897; Michalík et al.,1976). Carpathian Keuper strata were de pos ited in a dry and hot cli mate on an emer gent Mid dle Tri as sic car bon ate ramp(Al-Juboury and Ïuroviè, 1992; Jaglarz and Szulc, 2003;Jaglarz, 2010). A var ie gated claystone suc ces sion ofCarpathian Keuper is de vel oped in two fa cies: a more prox i malred-bed fa cies con tains siliciclastic in ter ca la tions, while a moredis tal vi o let suc ces sion is in ter ca lated by dolostone lay ers in di -cat ing short-lived ma rine in gres sions (Michalík, 1994;Rychliñski, 2008; Michalík et al., 2013). The Keuper strata aremostly de void of in dex fos sils and so their age de ter mi na tion isdif fi cult. They are over lain by ma rine transgressive de pos its ofthe Fatra For ma tion in the Fatric Zliechov Ba sin (Michalík, 1977,2007; GaŸdzicki, 1974; GaŸdzicki et al., 1979), and by con ti nen -tal siliciclastic de pos its, lac us trine to palustrine black silty shalesand quartz sand stones with plant re mains in the Tatric Do main(e.g., in the Èervený Úplaz sec tion; Michalík et al., 1976, 1988).

Sev eral sec tions of the Tomanová For ma tion both in theSlovakian and Pol ish parts of the Tatra Mts. area have beenstud ied for more than a hun dred years (for re view see Michalík,2003; NiedŸwiedzki, 2011). Pub lished data in di cated that the de -pos its of the Tomanová Fm. ac cu mu lated from the lat est Tri as -sic un til the ear li est Ju ras sic (Raciborski, 1890; Kotañski, 1959,1961; Radwañski, 1968; Michalík et al., 1976, 1988; Fija³kowska and Uchman, 1993). Valu able strati graphic and ecologic a in for -ma tion on this ter res trial sed i men tary se quence has been pro -vided by ichnological study since the first di no saur traces weredis cov ered in the Tichá Dol ina Val ley sec tion (Michalík et al.,1976; NiedŸwiedzki, 2005). Michalík et al. (1976) de scribed anew ichnospecies Coelurosaurichnus tatricus based on threetridactyl ichnites pre served on a sand stone slab. NiedŸwiedzki(2011) con cluded that ichnotaxa pre served in the TomanováFm. are com pa ra ble with sev eral Tri as sic di no saur track typesand also with Early Ju ras sic ichnomorphotypes.

Stud ied sec tion. The Èervený Úplaz ra vine is ex posed in asteep side of the Tichá Dol ina Val ley in a cut of one of the trib u -tar ies of the Tichý Potok Brook ap prox i mately 1350 m above sea level (E 19°56´51.36´´; N 49°13´35.04´´, alt. 1340 m abovesea l.) 700 m be low the Slo vak-Pol ish state fron tier (Fig. 1).

This sec tion has been stud ied in de tail by sev eral au thorsdeal ing with the Tatric Up per Tri as sic cover se quence (Gorek,1958; Rabowski, 1959; Kotañski, 1961; Radwañski, 1968). Di -no saur traces and macro and mi cro plant re mains were col -lected by Michalík et al. (1976, 1988). Planderová (in Michalík etal., 1976) de scribed two microfloral as so ci a tions: blackclaystones in the lower (older) part of the sec tion con tain pre -dom i nantly Taeniasporites, Protohaploxypinus, while the sand -stone-shale part in the up per part yields pol len grains ofClassopollis and Gliscopollis. This fern flora in di cates sta bi liz ingof a wet ter cli mate with a palustrine flora (Michalík et al., 1988).The flora de scribed in di cates palaeo eco logi cal andpalaeoclimatic/palaeogeographic changes as so ci ated withtrans gres sion grad u ally af fect ing the Tatric sed i men tary ba sin.

Uhlig (1897) rec og nized a con tin u a tion of the TomanováFm. sed i men ta tion from the Carpathian Keuper de pos its, whichform un der ly ing beds in other re gions (the Czerwone ¯lebki, or

Tomaniarski Twardy Up³az ra vines on the Pol ish side of themoun tains). Gorek (1958) sug gested that the base of the for ma -tion is deeply ero sive, rest ing on Lower Tri as sic “Campilian”strata in the Tichá Dol ina Val ley. This view was ques tioned byKotañski (1961) and Radwañski (1968), who noted the tec tonicde for ma tion of this Tri as sic strata slice, overthrust by theGoryczkowa Mt. granitoid body. Michalík et al. (1988) andMichalík (2003) pre sented the re sults of a lithological andcyclostratigraphic anal y sis and pro posed a sed i men tary model.They rec og nized sev eral more or less com plete sed i men tary cy -cles in about 60 m of strata (Fig. 2).

The char ac ter of the up per bound ary of the Tomanová Fmhas not been doc u mented in de tail. In the sec tion, stud ied theTomanová Fm. is fol lowed by quartz sandy lime stones and cal -car e ous sand stones (Michalík et al., 1976). Gorek (1958),Rabowski (1959) and Kotañski (1961) as sumed a Hettangianage, while Radwañski (1968) placed it in the up per Rhaetian.

SEDIMENTOLOGY

LITHOLOGY OF THE ÈERVENÝ ÚPLAZ RAVINE SECTION

The Tomanová For ma tion is a se quence of fine-grainedclastic rocks – si li ceous pelites, sillstones and me dium-grainedsand stones (Figs. 2 and 3A, B). The ar chi tec ture of the ap prox i -mately 80 m thick se quence is ar ranged in five more-or-less reg -u lar prograding and fin ing-up wards parasequence cy cles(Michalík, 2003; Fig. 2). Al though fre quent synsedimentary ero -sion and gaps oc cur in the se quence (four of the cy cles aremerged into cou plets), a typ i cal com plete cy cle at tains a thick -ness of 830 cm.

Each cy cle starts with a light col oured sand stone bed with an ero sive base, lo cally with Rhizocorallium traces. Quartz sand -stone (with 55–75% of quartz; Fig. 4) with a quartzosesilty-clayey ma trix with Fe-ox ide ad mix ture is grad ing to lam i -nated clayey sand stone and silty claystone (Figs. 3A, B and5G, H). Michalík et al. (1988) noted that monocrystalline grainsfrom plutonic rocks pre vailed in the lower part of the se quencewhile higher up in di vid ual polycrystalline grains were most prob -a bly de rived from meta mor phic rocks. Some quartz grains arepen e trated by nu mer ous par al lel fis sures.

A sub stan tial part of the Tomanová For ma tion is formed bydark mudstones of fluviatile or i gin with a sig nif i cant con tent ofae olian tiny (<0.2 mm) an gu lar quartz grains (Figs. 4 and 5A, B).The ma jor part of the sec tion is formed by thick shaly beds. De tri -tal quartz grain size de creases from 3 mm in the sand stones to1 mm in the graded part and to less than 0.2 mm in siltymudstones .

Claystones con sist of mica, quartz kaolinite and or ganic mat -ter (mostly plant frag ments stud ied by Michalík et al., 1988; Figs. 4 and 5C, D). The autochthonous palustrine flora is rep re sentedby horse tails; other rem nants were more or less trans ported.Coal oc curred as laminae or thin in ter ca la tions though only neg -a tive im prints of fos sil wood were found at this lo cal ity (Fig. 3C).Early fusinisation of many frag ments in di cates lo cal for est firessim i larly as de scribed by Belch er et al. (2010) or Petersen andLindström (2012).

Ac cu mu la tions of con cen tric ferruginous nod ules (up to 25cm in di am e ter; Fig. 3D) form rec og niz able lev els in com pletelyde vel oped cy cles, be ing more ex pres sive in the up per part of the se quence (Figs. 3C and 4). They are com posed of tiny glob u larsid er ite bod ies (0.7–2 mm across; Fig. 5B) in a clayey ma trix.Gorek (1958) re garded them as spher i cal heavily ox i dized py ritecon cen tra tions which pro vide the name of the Èervený Úplaz lo -

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 705

706 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 3. Field pho tos of typ i cal macrofacies

A – thin-bed ded sand stones and mudstone (beds 02–03); B – sand stone/silty mudstone/si der it ic mudstones (beds 10–19); C – up per sur -face of sand stone bed 05 with im prints of nu mer ous horse tail stems; D – silty mudstone with sphaeroidal con cre tions of sid er ite (bed 13); E –sandy lime stone to cal car e ous sand stone with silty mudstone interbeds (beds 40–46); F – aleurolitic shale; G – sandy lime stone with bandsof fluviatile quartz grains (bed 53); length of ham mer 31 cm

cal ity (“Red Glen”). How ever, Radwañski (1968) ques tioned thisopin ion and stressed their car bon ate com po si tion. He com pared them with pisoliths in the Czerwone ¯lebki lo cal ity where theirero sion and redeposition pre ceded the limonitization pro cess.The con tent of quartz grains in si der it ic lay ers is low (18–22%),and their small grain size (0.01 to 0.2 mm; Figs. 4 and 5B) sug -gests an ae olian or i gin. This se quence is cov ered by scree andbrook al lu vial de pos its

The Dudziniec For ma tion was de fined by Lefeld et al.(1985). The se quence ex posed in the Èervený Úplaz sec tion(32 m) con sists of five in for mal mem bers (Fig. 2) com posed ofprograding parasequences. Each parasequence shows a trendpar al lel with ter res trial cy cles of the Tomanová Fm., from fluvially de rived sand stone through cal car e ous rock in flu enced by ae -olian dust, to fully ma rine lime stone. Radwañski (1968) men -tioned lydite frag ments, zir con, tour ma line, and rutile grainswhich oc cur spo rad i cally in a low di ver sity spec trum of heavymin er als.

The lower mem ber com prises two parasequences (re sem -bling the “Kopieniec Starorobociañski Bed” of Lefeld et al., 1985) and is built of grey cal car e ous sand stone fol lowed by shalyargillites, sandy oolitic and organodetrital lime stone with frag -ments of coral de ter mined by Prof. E. Roniewicz (2010, pers.comm.) as Phacelostylophyllum cf. robustum, bi valves, cri noidsand gas tro pods. An gu lar quartz grains of ae olian size(0.1–0.24 mm) are formed of monocrystalline undulose (rarelynon-un du late) quartz (Figs. 6G, H and 7).

The mid dle mem ber is formed of cal car e ous sand stones.They com prise graded beds, quartz grains in the basal parts ofthe lay ers at tain ing di am e ters of 1 to 5 mm; they are subangular,partly ar ranged in laminae. Subangular to suboval grains formed of polycrystalline quartz (Figs. 6E and 7).

The up per mem ber is more clayey, of dark gray siltymudstones in clud ing wood frag ments and quartz peb bles. Fre -quent dark col oured (brown weath er ing) sandy biomicrite lime -stone lay ers are also rich in pel lets, small peb bles andmonocrystalline quartz grains (Figs. 6A–D, F and 7).

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 707

Fig. 4. Lithostratigraphy of the Tomanová Formation, the Èervený Úplaz sec tion in the Tichá Dol ina Val ley, High Tatra Mts.

Left – sche matic se quence strati graphic di vi sion; in the lithological log, iron-rich mudstone ho ri zons (Fe), di no saur foot print (tridactyl) ho ri -zons and con glom er atic beds (cir cles) are in di cated; in the dis tri bu tion of quartz grain di am e ter the min i mum (left line), me dian (thick line)and max i mum di am e ter (right line) are marked; in the col umn of rock con stit u ents, the amount of micrite (mostly clay min er als) in creases tothe left, the amount of quartz and phytoclasts in creases to the right; the right two col umns in di cate changes in the an gu lar ity of clasts and thecon tent of polycrystalline and monocrystalline undulous/non-undulous quartz grains; other ex pla na tions as in Fig ure 2

708 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 5. Microfacies of the Tomanová For ma tion in the Èervený Úplaz sec tion

A, B – iron-rich mudstone beds (A – S-8 bed, B – S-4 bed with sid er ite ag gre gates and with abun dant ae olianquartz grains); C – (04-c) beds with frag ments of wood and in de ter min able plant de bris; D – (13-b) mudstone with ae olian quartz sand grains; E – (01-b) sand stone with mixed ae olian and flu vial quartz sand grains; F – (S-6)sand stone with com mon large (fluviatile) sand quartz grains; G, H – (07 and 05) quartz grains of flu vial or i gin;note dense par al lel frac tures in in di vid ual grains

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 709

Fig. 6. Microfacies of the Dudziniec For ma tion in the Èervený Úplaz sec tion

A – (40 bed) biodetrital shelly lime stone; B – (42 bed) sandy oolitic lime stone, fluviatile sand stone (beds 01b and04c, re spec tively); C, D – (55 and 41,1 beds, re spec tively) laminae of flu vial quartz grains in mudstone withstrong ae olian quartz ad mix ture; E – (38.5 bed, crossed nicols) large polycrystalline well-rounded quartz grain;F – (38.5 bed, crossed nicols) biomicritic silty lime stone with ae olian quartz; G – (46 bed) sand stone com posedof flu vial monocrystalline quartz grains; H – (36 bed) sand stone with fluviatile quartz grains dom i nant over ae -olian grains

REMARKS RECORDING CYCLOSTRATIGRAPHIC INTERPRETATION

The cy cli cal vari a tion of rock com po si tion and the stra tal ar -chi tec ture of the up per most Tri as sic se quences were driven byor bital forc ing of cli mate and/or ocean cir cu la tion (Blackburn etal., 2013). The char ac ter of the de pos its build ing the TomanováFor ma tion cy cles in di cates that their de po si tion was con trolledby mega-mon soonal cli mate vari a tions (mas sive fresh wa tersup ply dur ing pe ri odic plu vial events) rather than by eustaticfluc tu a tions of the wa ter ta ble.

The sand stone lay ers rep re sent a re cord of flu vial ep i sodesdur ing deg ra da tion phases of sed i men tary cy cles (Fig. 4). Thedy nam ics of their ac cu mu la tion may be doc u mented by di no saur track casts (the foot prints were made on the sur face of siltstonelay ers and im me di ately filled and cov ered by flu vial sand), or bydis con tin u ous peb ble ho ri zons on the bases of sand stonebenches, as well as by many frag ments of horse tail stems con -cen trated on the up per sur faces of sand stone lay ers (Fig. 3C).

As the sandy ma te rial ac cu mu lated dur ing brief events, aproxy of elapsed time is re corded by mudstone be tween thesand stone lay ers. They were laid down in a calm lac us trine(paludal) with in put of both fine flu vial mud and ae olian dust.Over all the sed i men ta tion rate of the Tomanová For ma tion mayhave at tained 83 mm/ky. If cy cles are at trib uted to or bital shortec cen tric ity, the sec tion doc u mented would rep re sent a time pe -riod of about 0.78 My.

As al ready stated, the trend from flu vial-dom i nated tofine-grained sed i ments is com mon both in ter res trial and ma rinecy cles. This re flects a per sistent prin ci pal char ac ter of the cli -mate dur ing sed i men ta tion of the Tomanová and Dudziniec for -ma tions. The sed i men tary rate of the Dudziniec For ma tion hasbeen es ti mated as 25 mm/ky. If we as sume a short ec cen tric itychar ac ter of these cy cles, the ex posed part of the se quence rep -re sents a time span of 0.5 My.

710 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 7. Lithostratigraphic scheme of the Dudziniec For ma tion in the Èervený Úplaz sec tion

Left – sche matic se quence strati graphic di vi sion (ex pla na tions as in Fig. 2); in the lithological log dis tri bu tion of quartz grain di am e ter themin i mum (left line), me dian (thick line) and max i mum di am e ter (right line) are marked; in the col umn of rock con stit u ents, the amount ofmicrite (mostly clay min er als) in creases to the left, the amount of quartz, pel lets and bioclasts to the right; the right two col umns in di catechanges in the an gu lar ity of clasts and in con tents of polycrystalline and monocrystalline undulose non-undulose quartz grains

TRANSGRESSIVE MARINE LITHOFACIES AND RECOVERY OF BENTHIC LIFE

The transgressive se quence of the Dudziniec For ma tion re -veals grad ual sta bi li za tion of the ma rine en vi ron ment and re cov -ery of ben thic life. This trend may be in ferred from the strati -graphic dis tri bu tion and en vi ron men tal sig nif i cance of the ben -thic foraminifera pres ent.

The Èervený Úplaz sec tion can be di vided to three ben thicforaminifer as sem blage zones: a lower one with pre dom i nanceof involutinids and spirillinids; a mid dle one with pre dom i nanceod endothyrinids; and an up per one with pre dom i nance ofnodosariids and Ammodiscus-type micro fauna (Fig. 8A–J). Thelower as sem blage zone (beds 36–39) con tain spe cies ofSemiinvolutina clari Kristan, Trocholina blaui Senowbari- Daryan, Rashidi and Torabi, Trocholina umbo Frentzen,Aulotortus? sp., Spirillina oberhauseri Styk (Fig. 8A–K) andOphthalmidium sp. Endothyracean foraminifera dom i nate in themid dle as sem blage zone (beds 39–40), com pris ing spe cies ofEndothyra badouxi Zanninetti and Bronnimann, Endothyrakeupperi Oberhauser, E. austrotriadica Oberhauser, E.gruenbachensis Oberhauser and Endothyra salaji GaŸdzicki(Fig. 8D–H). These spe cies likely in di cate a Rhaetian age, sincethe lat est oc cur rence of Endothyra is known from the Late Tri as -sic. The endothyrid foraminifers are as so ci ated with Reophaxsp., Trochammina alpina Kristan-Tollmann, Agathamminaaustroalpina Kristan-Tollman and Tollmann, Duotaxis inflata(Kristan), and Siphovalvulina sp. Foraminiferal as sem blages inthe up per part of the sec tion are en riched in nodosariid and ag -glu ti nated spe cies – Ammodiscus parapris cus Ho, Nodosariasim plex (Terquem), Dentalina zlambachen sis Kristan,Pseudonodo saria sp., Geinitzinita sp. (Fig. 8A–C).

The transgressive se quence started with sand-rich de pos its, which con tain a high por tion of ooids and other coated grains(ini tial ooids with mi cro bial rims around quartz grains, Fig. 8K).The mix ture of siliciclastic and car bon ate par ti cles in a high-en -ergy en vi ron ment may re flect storm-in flu enced oolitic shoals.Mi cro bial encrustations and stromatolitic rims on the quartzgrains im ply in creased trophic re sources due to riverine in put(Fig. 8L, M). The se quence grades up to a fully ma rine shelf en -vi ron ment (no. 38–39) with foraminifers of the discoidal-flat tened and plano-con vex morphogroups (Spirillina, Trocholina). Theseforaminifers be long to a graz ing her bi vore and detritivore ben thic epifauna (Tyszka, 1994; Reolid et al., 2008), which de pends onfood avail abil ity (phytodetritus, bac te rial pop u la tions) and tol er -ates ox y gen de ple tion (Tyszka, 2001; Reolid and Martínez-Ruiz, 2012).

The max i mum flood ing of the transgressive cy cle is re corded in in ter vals of lime stone beds (bed 40; Fig. 8), which were de -pos ited in the low-en ergy en vi ron ment of a car bon ate ramp.These muddy lime stones con tain skel e tal and coated grains,black peb bles, oolitic and peloidal sands, off shore tempestites(gas tro pod oo lites) and a small ad mix ture of siliciclastic ma te rial. The sta bi li za tion of ma rine con di tions is also re corded by richben thic foraminifera, which im ply an ini tial col o ni za tion of bot tom sub strates by an epifaunal biota. The most com mon areEndothyra-type foraminifera, the acme of which oc curs in bed40. Endothyra-bear ing lime stones rep re sent the re cov ery in ter -val of a ma rine en vi ron ment. In crease in foraminiferal ben thicpro duc tiv ity re sulted from food avail abil ity and bot tom-wa ter ox y -gen a tion (Tyszka, 1994; Jorrisen et al., 1995; Reolid andMartínez-Ruiz, 2012). The shell mor phol ogy of Endothyra withstreptospiral coil ing may re flect of shal low infaunal hab i tats(Olóriz et al., 2003), and a feed ing strat egy of detritivores and

bac te rial scav en gers (Reolid et al., 2008). Con sid er ing that, theEndothyra acme in the Èervený Úplaz sec tion (bed 40) mayhave re sulted from in crease of or ganic mat ter pro duc tiv ity andphytodetritus, the de com po si tion of which pro vided nu tri ents(mesotrophic con di tions) and led to ox y gen de ple tion of bot tomwa ters (dysoxic con di tions).

A new sed i men tary cy cle started with re gres sion and high-en -ergy de po si tion of sand-rich sed i ments (beds 43–50). The sand -stones con tain rare cri noid par ti cles, echinoid spines, thick-walledbi valves (oys ters), ostracods and other skel e tal grains. Thetransgressive phase is ex pressed by up wards in creas ing cal car e -ous allochems and a tran si tion to car bon ates. The micro fauna ofthe car bon ate beds (beds 52–56) con tains both ag glu ti nated andcal car e ous foraminifera, in di cat ing a low-en ergy en vi ron ment withnodosariids (cf. Tyszka, 2001), in flu enced by deltaic as sem blageswith Ammodiscus (cf. Nagy et al., 2010).

MINERALOGY OF MUDSTONES

Kaolinite is a ma jor min eral phase in the clay frac tion of theshales stud ied (Fig. 9A). The sec ond most fre quently oc cur ringmin eral phases in the clay frac tion are 2:1 dioctahedral clay min -er als (illite and mixed-lay ered illite-smectite – I–S). Dis tinc tivebasal peaks of illite as an unswelling phase with out changes ap -pear af ter eth yl ene gly col (EG) sat u ra tion (001 ~1nm and 002 ~5nm in Fig. 9). On the other hand, small changes in the 8-9°,17–18° and 27–28° 2 theta ar eas af ter EG sat u ra tion re veal thepres ence of I–S with small amounts of swell ing smectiteinterlayers. Long-range or der ing R3 with 10–15% of smectiteinterlayers was de ter mined by po si tion of the I–S peaks af ter EGsat u ra tion (Dudek and Œrodoñ, 1996; Moore and Reynolds,1997). 2:1 dioctahedral clay min er als dom i nate over kaolinite insam ple 15 only. The amount of kaolinite is sig nif i cantly higherthan that of 2:1 dioctahedral clay min er als in all other shale sam -ples stud ied. The pres ence of a small, broad ~1.4 nm peak sug -gests to pres ence of the small amount of chlorite in prac ti cally allsam ples. A low dis crete 0.426 nm peak in di cates an ad mix ture ofquartz in all sam ples (Fig. 9A).

An other clay min eral phase was dis tin guished si mul ta -neously with kaolinite, illite and I–S in a more sig nif i cant amountin sam ple 14. It was the sec ond 0.7 nm phase (0.707 nm) af terkaolinite (0.719 nm; Fig. 9B). For dis tinc tion of Fe-chlorite(chamosite, that has odd basal peaks in clud ing ~1.4 nm peak),sig nif i cantly less in tense than even basal peaks) and berthierine(1:1 ser pen tine min eral with Fe2+ dom i nant as the oc ta he dralcat ion). The sam ple was heated to 550°C. This con firmed thepres ence of kaolinite and also showed the pres ence ofberthierine (Odin et al., 1988; Hornibrook and Longstaffe, 1996;Moore and Reynolds, 1997). Both phases col lapsed af ter heat -ing (Fig. 9B). A small amount of a chlorite sim i lar phases is alsode tect able in the Fig ure 9B. It is not known whether this ischlorite be cause an un usual low d-spac ing was de ter mined forthat phase in com par i son to com mon chlorite (1.41–1.42 and0.7–0.7 nm).

Five sam ples of the clay frac tion were se lected for quan ti ta -tive anal y ses. The re sult of XRD quan ti ta tive anal y ses con -firmed the dom i nance of kaolinite in the clay frac tion. Thekaolinite con tent var ies from 28 to 61 wt.% (Ta ble 1). The dataand rel a tive wide ranges of the main min eral con tents con firmeda more var ied clay com po si tion in sam ple 15. De crease in thekaolinite con tent (28 wt.%) is coun ter bal anced by in crease ofillite and illite-smectite (46 wt.%; Ta ble 1).

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 711

712 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 8. Dis tri bu tion of microfaunal el e ments in the Dudziniec Formation of the Èervený Úplaz sec tion

Quan ti ta tive data are com pleted by il lus tra tions of the most char ac ter is tic spe cies of foraminiferal as sem blages, al galencrusters, coated grains and other allochems in se lected beds; A – Ammodiscus parapriscus Ho; B – Nodosaria sim -plex (Terquem); C – wackestone with thin-walled ostracod shells; D – Endothyra badouxi Zanninetti et Bronnimann; E –Endothyra austrotriadica Oberhauser; F – Endothyra keupperi Oberhauser; G – Endothyra gruenbachensis Oberhauser; H – Endothyra salaji GaŸdzicki; I – Trocholina blaui Senowbari-Daryan, Rashidi et Torabi; J – Trocholina umbo Frentzen; K – ra dial ooids and coated grains with serpulids and cri noids sug gest ing their storm-in duced mix ture with large-sizedquartz grains; L – quartz grains with dark mi cro bial rims de vel oped as ini tial coated grains; M – quartz grains with mi -cro-stromatolitic over growth show ing the struc ture of cyanobacterial fil a ments; other ex pla na tions as in Fig ure 2

MINERALOGY OF THE BULK ROCK

Quan ti ta tive min eral com po si tions of the bulk rock in ter -preted from XRD pat terns of ran domly ori ented spec i mens within ter nal stan dard are shown in Ta ble 2 and Fig ure 10. Quartz,kaolinite and 2:1 Al dioctahedral phyllosilicates (dioct 2:1: mus -co vite, illite, illite/smectite) rep re sent the ma jor min eral phases.These phases are in ter preted as their sum be cause a pre cisequan ti ta tive dis tinc tion be tween dioct 2:1 phases is prob lem atic.Quartz con tent is var ies be tween 15 to 70 wt.%. This wide rangere flects a typ i cal com po si tion vs. grain size de pend ency ofquartz in (silici)clastic sed i ments only (Fig. 10).

Kaolinite is the ma jor clay min eral in the bulk frac tion. Ac -cord ing to XRD pro files, the struc ture of the kaolinites stud ied isdis or dered. Its con tent changed from 13 to 46 wt.% with av er age 32 wt.% of 22 shale sam ples stud ied. Dioct 2:1 phyllosili catesare also pres ent in sig nif i cant amounts. The con tent of dioct 2:1ranges from 5 to 39 wt.% with av er age 17 wt.% (Ta ble 2). Gen -er ally, mul ti ple sources and trans port pro cesses to gether withmu tual di lu tion of in di vid ual clay min er als make it dif fi cult to as -sign ver ti cal changes of one clay min eral in the se quence as in -di ca tor of a sin gle palaeoclimatic change. The com par i son oftwo com po nents by their ra tio in di cates the ad van tage of elim i -nat ing di lu tion ef fects by other com po nents (Gingele et al.,

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 713

Fig. 9A – ori ented XRD pat terns of the clay frac tion of the sam ples 3, 5, 15, B – ori ented XRD pat tern of sam ple 14

AD – air dried, Ber – berthierine, CH – chlorite, EG – eth yl ene gly col evaporised (B – heated at 550°C), I – illite,I–S – illite-smectite, K – kaolinite, Q – quartz

1998). The autor used a kaolinite/smectite ra tio to es ti mate theex ten sion of the river plume and in ten sity of wa ter dis charge inlate Qua ter nary de pos its. Here, the kaolinite/dioct 2:1 ra tio isused as proxy of the par ent rock com po si tion and palaeoclimateand of the depositional en vi ron ment and diagenesis. Val ues ofthe kaolinite/dioct 2:1 ra tios show a de creas ing trend up sec tion(from 4.3 to 0.5) and in creased dioct 2:1 con tent in the up per part of the sec tion (Fig. 10), re spec tively.

The berthierine and prob a bly the Fe-chlorite (chamosite)that are pres ent in all sam ples rep re sent the fourth min eralphase. How ever, ac cord ing to the heat ing test and pat tern fit tingof the quan ti ta tive anal y ses berthierine is the dom i nant phase ofthese two Fe phyllosilicates. It is sig nif i cant mainly in the part ofthe sec tion that con tains a larger amount of Fe phyllosilicates(from 5 to 24 wt.%; sam ples 8–19). The high est amount is re -corded in sam ples 14 and 15 (24 and 14 wt.%). Fe car bon ate(sid er ite) is the dom i nant phase in sam ple 13R (39 wt.%). Sid er -ite was de ter mined in this sam ple to gether with other Fe min er -

714 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Min er als

Sam ples

CU3 CU6c CU8a CU13 CU15

[wt.%]

Quartz 3 4 4 4 5

Kaolinite 57 58 58 65 41

2:1 Al dioctahedralmica (illite + I–S) 29 35 37 28 48

Chlorite (Berthierine + Fe chlorite) 11 3 1 3 6

Sum [%] 100 100 100 100 100

T a b l e 1

Quan ti ta tive min eral com po si tion of the clay frac tion in se lected sam ples

Min er als of theTomanová

Fm.

Quartz Kaolinite Mica* Chlorite K-feldsp. Bi o tite Goethite** Cal cite Sid er ite Kaolinitera tio[wt.%]

CU1 70 19 6 3 1 3.2

CU2 44 43 10 3 4.3

CU3 40 46 11 0 1 4.2

CU4 40 26 9 6 2 1 16 2.9

CU5 38 38 14 3 2 2 1 2.7

CU6 62 23 12 2 1 1.9

CU6b 28 38 28 3 1 1.4

CU7 25 43 23 3 2 1 1.9

CU8a 25 43 23 5 1 1 1.9

CU8b 21 36 27 5 2 6 1.3

VU9a 24 42 21 6 2 1 2.0

CU9b 36 40 13 6 1 2 1 3.1

CU10a 36 30 18 6 2 1 2 1.7

CU10b 41 30 14 11 1 1 2.1

CU11a 29 35 26 7 1 1 1.3

CU11b 56 20 11 7 0 0 1.8

CU12 49 25 13 5 1 2 4 1.9

CU13 40 35 16 7 1 1 1 2.2

CU13R 15 13 5 7 1 2 11 + 4** 39 2.6

CU14 27 21 24 24 1 1 1 0.9

CU15 20 20 39 14 3 2 2 0.5

CU19 26 45 20 6 1 2 2.3

Dudziniec Fm. Cal cite Do lo mite

CU36 63 1 6 1 1 26 2 0.2

CU37 71 1 3 0 24 0.3

CU40 14 1 4 1 79 0.3

CU44 69 1 3 0 26 0.3

CU51 52 16 3 21 4 0.0

CU55 28 14 4 49 3 0.0

* – 2.1 Al dioctahedral phyllosilicates, ** – geothite + he ma tite

T a b l e 2

Quan ti ta tive min eral com po si tion of the Tomanová For ma tion mudstones (beds 1–15) and from the Dudziniec For ma tion car bon ates (beds 37–55)

als only: goethite (11 wt.%) and he ma tite (4 wt.%). Goethite wasfre quently iden ti fied in the sam ples stud ied but usu ally not inamounts more than 2 wt.%. How ever, 9 wt.% of goethite was de -ter mined in sam ple 4a, to gether with Fe phyllosilicates andlepidocrocite both at 6 wt.%. This rep re sents the high est pro por -tion of Fe phyllosilicates in the lower part of the sec tion in ves ti -gated (Fig. 10; Ta ble 2).

Bi o tite and K-feld spar were de ter mined in most sam ples stud -ied sam ples but they do not ex ceed 2 wt.%. Al bite, oligoclase, do -lo mite, ana tase, rutile, il men ite were de tected only in traceamounts (<1%) and these min er als are not shown in Ta ble 2.

Quartz (14 to 71%) and DO-M (6–4%) were eval u ated in these quence over ly ing the Tomanová shale. Chlorite (0–4%) and

traces of kaolinite were only iden ti fied in the bulk rock sam ples.The beds are en riched in cal cite (21 to 70%; Ta ble 2, Fig.11).

CHEMISTRY

TOTAL CARBON AND C ISOTOPE ANALYSES

Anal y ses doc u ment the con tent of the re sid ual or ganic car -bon (Corg) as proxy of or ganic mat ter pro duc tion and ac cu mu la -tion (Fig. 11). In con trast to the state ment of Radwañski (1968),mudstones of the Tomanová Fm. are car bon ate-free (Fig. 11).

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 715

Fig. 10. Quan ti fied con tent curves of quartz, kaolinite, dioctahedral 2:1 phyllosilicates (DO-M), chlorite, goethite in the bulkrocks and dis tri bu tion of kaolinite/dioctahedral 2:1 phyllosilicate ra tio (kaolinite/DO-M) in te grated with sedimentology

and lithofacies

Ex pla na tions as in Fig ure 2

Only in iron-rich mudstone (13R, 13R1) was car bon ate iden ti fied and 39% of sid er ite has been quan ti fied by XRD anal y sis (Ta -ble 2). In this min er al og i cal (Ta ble 2) and mi cro scop i cal study,in or ganic car bon con tent has been ad justed to “stoichiometriccal cite” in the sam ples from beds 36 to 55 (Fig. 10). The cal citecon tents vary widely (from 18 to 78%, Fig. 11), mostly from 25 to50%. De spite that a con tent higher than 50% oc curred only intwo sam ples (40 and 51.5; Figs. 6 and 11) rocks of the Dudziniec Fm. des ig nated as “car bon ates” in the text bel low.

Al though the con tent of re sid ual or ganic car bon is rel a tivelylow (Corg 0.1–1.5%) it lo cally in creases (2.5% or 8.12%), in di cat -ing higher bio-pro duc tion and/or or ganic mat ter in put into the ba -sin (Fig. 11). The high est Corg con tent is in bed 5 in which di no -saur traces have been dis cov ered (Michalík et al., 1976;Michalík, 2003). Dis tri bu tion of Corg or or ganic mat ter could co in -cide with the for ma tion of sed i men tary cy cles as the os cil la tion of wa ter level in a con ti nen tal ba sin must have been strongly re -lated to cli mate.

The shale d13Corg iso tope ra tios are showen in the rangefrom –27 to –25‰ (VPDB; Fig. 11) and dem on strate that the or -ganic mat ter de rived from ter res trial plant de bris was mixed withsubaquatic or ganic mat ter in the sed i ments. The high est (morepos i tive) val ues, which in di cate plant de bris dom i nance (Cerlinget al., 1991; Shulte et al., 2011), were as cer tained in beds 13and 5. The d13Corg val ues of beds 46–55 are more neg a tive (–27to –28‰; Fig. 11), be ing com pa ra ble e.g., with val ues of or ganicmat ter ana lysed from shal low-ma rine car bon ate and sil i caterocks across the Tri as sic–Ju ras sic bound ary se quence doc u -mented in the Zliechov Ba sin of the Fatric Unit (Michalík et al.,2011, 2013) and else where (Pálfy et al., 2001; Hesselbo et al.,2002; Kuerschner et al., 2007). How ever, any spec u la tion on the sig nif i cance of the rel a tive shift of d13Corg is lim ited by our abil ityto prove the strati graphic con ti nu ity of the Tomanová Fm.mudstones and the car bon ate se quence of the Dudziniec Fm. inthe sec tion stud ied.

716 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 11. Di a grams of to tal con tents of or ganic (TOC) and in or ganic car bon ex pressed as CaCO3,

and C iso tope com po si tion of the or ganic mat ter (d13Corg) in te grated with sedimentology and lithofacies

Ex pla na tions as in Fig ure 2

SIDERITE – A PROXY OF HUMIDITY

The car bon iso tope data of the sid er ite d13Csid –12.0 to–16.4‰ VPDB (Fig. 12: 13R, 13R1) fall into data range ofsphaerosiderite palaeosols (+ 8 to –45‰) as sum ma rised byShel don and Ta bor (2009). This wide span of data in di cates re -cy cling of mi cro bial and es pe cially methanogenic car bon in wa -ter-sat u rated (and dysoxic-anoxic) sed i ments or soils (White etal., 2001). Ac cord ing to this, the neg a tive d13Csid val ues of theTomanová For ma tion sug gest a com plex C-iso tope sys temwhere me te oric and soil CO2 were equil i brated with CO2 whichcame from bac te rial meth ane ox i da tion. Corg is not el e vated inbed 13 (Fig. 11), but meth ane and/or CO2 gases could lo callyhave been eas ily re leased and pen e trated through soil/sed i -ment. In hu mid and Eh-reductive con di tions, iron as fer rous ionwas mo bi lised and sid er ite could pre cip i tate in still, rel a tive acidwa ter/sed i ment con di tions (for re view see Shel don and Ta bor,2009). The d18O val ues (–6.7 to –7.0‰ VPDB) in sid er ite aremore neg a tive as found in Ce no zoic or re cent soilsphaerosiderites (? –2.0‰ PDB; Shel don and Ta bor, 2009). Asusu ally ob served, a heat per me ated through bur ied (Rhaetian)beds for a sub stan tially lon ger time and d18O was shifted to more neg a tive val ues. Al though the d18O shift sug gests rel a tive weakdiagenetic al ter ation, the d18Osid (or soil d18O cal cite gen er ally)val ues usu ally was not used as an in de pend ent ther mom e ter(Cerling et al., 1991; Retallack, 2009). The sid er ite C and O iso -tope data (Fig. 12) doc u ment wa ter-sat u rated con di tions wheniron rich mudstones formed in a hu mid cli mate (An drews, 2006;Shel don and Ta bor, 2009).

STABLE C AND O ISOTOPES OF CALCITE

The iso tope com po si tion of the cal cite-rich beds (37 to 55) isun usual (d13C from –1.98 to +0.28‰ VPDB, d18O from –10.69 to–9.34‰ VPDB; Fig. 12) in com par i son with ma rine lime stonesand also with cal cite pre cip i tates from me te oric wa ter (riverinetufas, An drews, 2006). More pos i tive d13C val ues oc curred inbed 40 only with about a 80% con tent of CaCO3. Data are com -pa ra ble to that of the sid er ite (Fig. 12). Re-equil i brated C and O

iso tope data are not in line with the typ i cal iso tope trend of me te -oric wa ter (An drews, 2006; Schulte et al., 2011). Smith et al.(2004) found a sim i lar shift of data in Pleis to cene spring tufas(car bon ates from the cur rently hyperarid West ern Desert ofEgypt) as in di ces of an ear lier hu mid (plu vial) cli mate. In our sec -tion the strongly de creased d18O iso tope data to gether with themicrostructural char ac ter (Figs. 6 and 12) may in di catediagenetic iso tope frac tion ation in the wa ter-sed i ment sys tem. Alarge vol ume of bur ied me te oric wa ter (plu vial events dur ingtrans gres sion) may have mod i fied the iso tope com po si tion ofthe ma rine car bon ates. In se quel a large (as d13Ccal) neg a tived18Ocal shift re flects tem per a ture-de pend ent iso tope frac tion -ation of O iso topes dur ing diagenesis.

BULK ROCK CHEMICAL ANALYSES

The bulk rock anal y ses (Ta ble 3) of the se lected sam pleswere used to the com pare sed i men tary rock com po si tion in these quences and to test ma te rial and strati graphic con ti nu ity of the se quences. Geo chem i cal data may also be used as proxy for cli -mate changes as dis cussed be low.

Ma jor and trace el e ments com po si tion showed the chem i calho mo ge ne ity of the mudstones and their dif fer ence to that of theover ly ing car bon ates (Ta ble 3). En rich ment of sta ble (Si, Al, Ti)and de ple tion of la bile (K, Na, Ca, Mg) ma jor el e ments are typ i -cal fea tures of deeply weath ered sil i cate rocks (Ta bles 3 and 4;Fig. 13). This was taken into ac count when com par ing the chem -is try of the sam ples with PAAS or with val ues of cal cu lated in di -ces (Ta bles 3 and 4). Low Na con tents and rel a tive weakNa2O-K2O covariance (Fig. 13B) are the re sult of pref er en tial Na re moval from rock-min er als, in com par i son to K (McLennan,1993). High con tents of Fe (23–48%) are doc u mented only atcer tain lev els and sig nal ised short-lived in put of iron into the sed -i ments (Fig. 13A). This “Fe event” re flects a wet cli mate (Shel -don and Ta bor, 2009). Iron con tent is ex pressed as to tal Fe2O3

and only ap prox i mates Fe con tent in Fe-min er als (Ta bles 2 and3). Be cause both fer ric and fer rous ions are in the Fe-min er als,the to tal iron con tent could be lower than shown in the iron rich(Price and Velbel, 2003; Ohta and Arai, 2007). In com par i sonwith the PAAS, in creased TiO2 con tents doc u ment TiO2 ac cu -mu la tion in mudrocks due to weath er ing. Min i mal (about de tec -tion limit) con tents of to tal S and P2O5 in the se quence are typ i cal of prod ucts of in tense chem i cal weath er ing in con ti nen tal con di -tions (Otha and Arai, 2007; Shel don and Ta bor, 2009). Thehigher MnO in Fe- rich mudrock may be linked with spe cific re -dox de pend ent mo bi li za tion of Fe and Mn in sed i men tary ordiagenetic con di tions in lac us trine bas ins (Ta ble 3).

Con tents of the large ion lithophile el e ments (LILE: Rb, Cs,Sr and Ba) as el e ments with high af fin ity to al kali bases (Ta ble 3) are frac tion ated by weath er ing. Fig ure 13C doc u ments highco-vari a tion of Rb with K. The K/Rb ra tio val ues lower thanPAAS (Ta ble 4) also in di cate rel a tive Rb en rich ment in themudroks. The high est Rb con tent oc curs in bed 15 with higherdioctahedral 2:1 phase (mus co vite, illite) con tent. Con tentchanges of other LILE – Cs, Sr and Ba ana lysed are not as ev i -dent as of Rb through the sec tion. Cs has ac cu mu lated in theclay ma trix while Ba is de pleted as in PAAS (Ta ble 3). Car bon -ate con tents are linked with Sr and prob a bly with Ba con tents inthe up per part of the sec tion only.

High field strength el e ments (HFSE): Y, Hf, Nb, Th, U, Zr and REE in the mudstones are en riched as in PAAS, slightly de -pleted in the Fe-rich mudstones and de pleted in the lime stone

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 717

Fig. 12. Scat ter di a gram of car bon ate iso to pic com po si tion

Com par i son of C and O iso tope com po si tion of sid er ite (13R1iron-rich mudstone ore sam ple) and other car bon ates from beds 37to 55, disequlibrated by plu vial me te oric wa ter dur ing trans gres sion

718 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Sam ples CU1 CU3 CU5 CU7 CU10A CU13 CU13R CU13R1 CU15 CU37 CU40 CU44 CU55 PAAS

Analyte [wt.%]

SiO2 57.24 62.94 56.33 54.73 58.61 63.02 23.77 43.12 51.5 75.55 20.71 70.74 63.54 62.80

Al2O3 25.94 23.3 19.5 26.2 21.55 21.82 7.13 13.33 25.75 2.29 2.37 2.15 11.67 18.90

Fe2O3 2.08 1.07 2.95 4.06 6.44 2.56 48.31 24.3 5.65 1.42 1.14 1.02 2.35 6.50

MgO 0.49 0.38 0.23 0.65 0.65 0.75 0.98 1.92 0.81 0.15 0.73 0.22 0.98 2.20

CaO 0.05 0.1 0.03 0.19 0.09 0.13 0.19 0.77 0.32 10.79 39.55 13.41 7.66 1.30

Na2O 0.26 0.31 0.21 0.4 0.27 0.25 0.01 0.05 0.45 0.05 0.04 0.03 0.10 1.20

K2O 1.32 0.63 0.78 1.21 0.93 0.89 0.21 0.41 2.83 0.43 0.70 0.54 3.24 3.70

TiO2 1.28 1.6 1.14 1.39 1.46 1.18 0.42 0.82 0.89 0.12 0.13 0.15 0.82 1.00

P2O5 0.03 0.03 0.04 0.04 0.03 0.02 0.02 0.03 0.03 <0.01 0.03 0.02 0.07 0.11

MnO <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.51 0.18 0.01 0.08 0.10 0.03 0.03 0.16

S tot 0.04 <0.02 0.05 <0.02 <0.02 <0.02 <0.02 <0.02 0.02 <0.02 0.02 <0.02 0.7

LOI 11.2 9.5 18.6 11 9.8 9.2 18.4 15.9 11.6 9.1 34.4 11.6 9.3

C tot 0.4 0.27 7.4 0.53 0.22 1.46 3.96 3.51 1.46 2.24 9.43 2.85 1.76

Analyte [ppm]

Ba 317 255 239 231 225 206 49 82 231 119 74 43 216 650

Co 8.7 8.8 2.7 8.7 26.7 11.5 25.3 18.3 11.8 1.2 1.8 2.3 7.4 23

Cs 19.2 9.9 15.2 16.1 13.5 11.6 2.9 4.6 16.9 0.3 1 0.7 8.3 4.6

Cr 76 90 86 66 62 83 41 45 66 6.9 6.9 10.35 41.4 110

Ga 32.4 30.8 25.6 32.2 27.8 27.7 8.4 15.3 34.3 0.8 1.4 1.4 12.8 20

Hf 7.0 12.8 9.6 5.6 8.1 11.6 5.1 10.0 3.5 2.5 4.4 6.4 19.9 5.8

Nb 35.4 42.2 30.3 34.9 35.4 29.1 12.2 19.2 23.9 2.2 2.5 2.1 18.2 19

Ni 50 56 <20 36 75 59 30 25 22 4.7 4.8 6.4 15.4 55

Rb 84 40 64 88 68 59 13 26 158 13 21 18 111 160

Sc 20 18 17 21 20 16 11 20 7 1 2 2 8 16

Sr 41 39 46 48 36 35 15 29 58 44 272 62 82 200

Th 22.5 24.5 18.7 25.9 32.7 24.5 8.8 17 14.7 3.2 4.5 5.9 16.1 14.6

U 6.7 15.6 23.3 5.5 5.6 4.3 4.5 4.5 3.7 0.7 1.1 1.5 4.4 3.1

V 132 199 169 161 177 121 46 78 130 8 10 13 83 150

Zr 245 460 357 207 297 411 180 363 120 99 164 252 730 210

Y 33.5 44.4 49.6 41.8 44.1 44 28.2 39.1 28.7 5.1 8.1 8.6 26.2 27

La 48.9 41.5 70.8 88.1 71.8 34.7 18.0 23.5 39.5 8.5 13.7 16.5 45.4 38.2

Ce 102.6 96.2 154.2 165.5 187 72.5 40.5 51.8 79.5 14.7 27.5 32.4 90.8 79.6

Pr 10.88 10.70 16.50 17.45 19.97 9.74 4.32 6.03 9.87 1.77 3.13 3.72 9.81 8.83

Nd 41.3 37.5 58.1 61.5 73.1 41.3 16.4 25.1 37.0 5.5 11.4 15.2 34.8 33.9

Sm 7.09 6.01 10.10 10.54 12.67 9.01 3.39 4.61 7.17 1.28 2.22 2.71 5.92 5.55

Eu 1.27 1.08 1.97 1.91 2.31 2.50 1.93 1.49 1.28 0.20 0.35 0.26 0.76 1.08

Gd 6.17 5.72 9.00 8.18 9.04 8.27 3.69 4.60 5.42 1.02 1.67 2.06 4.98 4.66

Tb 1.07 1.19 1.60 1.38 1.47 1.31 0.73 0.94 0.89 0.13 0.26 0.29 0.77 0.774

Dy 6.15 7.22 8.41 7.44 7.71 7.18 4.41 5.92 4.93 0.95 1.36 1.61 4.69 4.68

Ho 1.23 1.58 1.68 1.51 1.59 1.46 1.00 1.35 0.99 0.15 0.26 0.27 0.93 0.991

Er 3.52 4.65 4.54 4.21 4.50 4.16 2.84 3.74 2.97 0.49 0.70 0.87 3.21 2.85

Tm 0.50 0.71 0.66 0.61 0.67 0.63 0.43 0.57 0.45 0.07 11.00 13.00 48.00 0.405

Yb 3.34 4.66 4.09 3.76 4.43 3.94 2.69 3.67 2.92 0.42 0.81 0.93 3.44 2.82

Lu 0.51 0.71 0.62 0.55 0.66 0.62 0.40 0.55 0.45 0.05 0.13 0.15 0.54 0.433

TREE 234.5 219.4 342.3 372.4 396.9 197.3 100.7 133.9 193.3 35.23 63.6 77.1 206.53 184.77

LREE 218.2 198.7 320.7 353.2 375.9 178.0 88.2 117.1 179.7 32.97 59.97 72.85 192.47 167.16

HREE 16.3 20.7 21.6 19.5 21.0 19.3 12.5 16.7 13.6 2.26 3.69 4.25 14.06 17.613

T a b l e 3

Re sults of bulk rock sam ple chem i cal anal y ses

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 719

Mo lec u larin di ces CU1 CU3 CU5 CU7 CU10A CU13 CU13R CU13R1 CU15 CU37 CU40 CU44 CU55 PAAS

CIW 98 97 98 96 97 97 95 89 95 nd nd nd nd 0.81

CIA 93 94 94 92 93 93 92 86 85 nd nd nd nd 0.69

K2O/TiO2 0.87 0.33 0.58 0.74 0.54 0.64 0.43 0.43 2.70 3.04 4.57 3.06 3.36 3.14

Ti/Al 0.12 0.16 0.14 0.12 0.16 0.13 0.11 0.16 0.08 0.13 0.13 0.17 0.17 0.13

wt.% in di ces

K/Rb 65 65 50 57 56 62 65 65 73 135 134 125 119 95

Rb/Sr 2.0 1.0 1.4 1.8 1.9 1.7 0.9 0.9 2.7 0.3 0.1 0.3 1.4 0.8

V/V + Ni 0.7 0.8 0.9 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.9 0.7

Zr/Hf 35 36 37 37 37 35 35 36 34 40 37 39 37

Zr/Sc 12 26 21 10 15 26 16 18 17 99 82 126 91 13

Th/U 3.4 1.6 0.8 4.7 5.8 5.7 2.0 3.8 4.0 4.6 4.1 3.9 3.7 4.7

Th/Sc 1.1 1.4 1.1 1.2 1.6 1.5 1.3 1.6 0.7 3.2 2.3 2.3 2.0 0.9

Cr/V 0.6 0.5 0.5 0.4 0.4 0.7 0.9 0.6 0.5 0.9 0.7 0.8 0.5 0.7

Cr/Th 0.7 0.8 2.5 1.2 0.6 0.8 1.3 1.3 1.2 1.1 1.7 1.3 1.7 7.5

Y/Ni 3.4 3.4 4.6 2.5 1.9 3.4 4.7 2.6 4.5 2.6 1.5 1.8 2.6 0.5

La/Th 2.2 1.7 3.8 3.4 2.2 1.4 2.0 1.4 2.7 2.7 3.0 2.8 2.8 2.6

The data are used in di a grams; CIW – Chem i cal In dex of Weath er ing, CIA – Chemical Index of Alteration

T a b l e 4

List of in di ces cal cu lated from data in the Ta ble 3 (as mo lec u lar or wt.% mass ra tios and nor mal ized to PAAS)

Fig. 13A – ma jor el e ment ox ide dis tri bu tions in the sec tion, K2O vari a tion doc u ments dif fer ent weath er ing and diagenetic his tory of bed 15 and in creased sil i cate ma trix in the beds 37 to 55; B – vari a tion di a grams

of K2O vs. Na2O; C – K2O vs. Rb val ues

sam ples (Ta ble 3). Y, Hf, Nb, Th, U and Zr have been dif fer en ti -ated in the weath er ing pro cess as sug gested by strongcovariance of TiO2 with Nb, Y and Th (R2 ?0.9, R2 ?0.7, R2 ?0.8)and weak with U, Zr and Hf (R2 ?0.3, R2 ?0.2, R2 ?0.2). Max i mum Zr (460 ppm) and Nb (42.2 ppm) con tents oc curred in bed 3 witha high kaolinite con tent, and de ple tion of Zr and Nb oc curred inbed 15 with high dioct 2:1 phyllosilicates and some K-feld -spar.This could sug gest Nb, Y, Th fix a tion to gether with Ti in theclays. Higher Th/U val ues (>4, Ta ble 4) doc u ments in tenseweath er ing (McLennan et al., 1993), but ura nium pos i tive vari a -tion with Corg in di cates ad di tional re dox-re lated U dif fer en ti a tionin the sed i men tary ba sin (Fig. 14).

To tal REE (TREE) con tent of sam ples is higher than inPAAS (Nesbitt and Markovics, 1997; Galbarczyk-G¹siorowska,2010), es pe cially the con cen tra tion of the light REE (LREE) inbeds 5, 7 and 10, as is also re flected by rel a tive higher Ce* val -ues there (Ta ble 3; Fig. 15). TREE de ple tion rel a tive to PAASand no or pos i tive Eu-anom a lies char ac ter ise Fe rich mudstone

sam ples (Ta ble 3; Fig. 15B, D). REE ac cu mu lated in sil i catesand only Eu as a re dox sen si tive el e ment was mo bi lised in fa -vour able con di tions, as noted above (Shel don and Ta bor, 2009). TREE con tent in creased with raised dioct 2:1 sil i cate con tents incar bon ate beds (Fig. 15A, C).

DISCUSSION

CHEMICAL ANALYSIS AS A PROXY OF SOURCE ROCK WEATHERING

The high CIW and CIA val ues, higher than in PAAS (Ta ble 4)are quite gen er ally typ i cal of weath ered kaolinite-en riched pro files (e.g., Nesbitt and Young, 1984; Condie, 1993; Cullers, 2000;Ohta and Arai, 2007) gen er ated in a tem per ate hu mid cli mate.The higher K2O con tent slightly de creased the CIA value of bed15 in com par i son with other (car bon ate free) mudrocks. Chem i cal in dex of al ter ation val ues are in ac cor dance with the bed min er al -ogy (K-feld spar, dioctahedral 2:1 phyllosilicates; Ta ble 2). Theshifts of CWI and CIA val ues re flect Ca-Fe sub sti tu tion in sid er iteof the Fe-rich mudrocks sam ples (13R, 13R1). Be cause cal citeoc curred in beds 37, 40, 44 and 55 (Ta ble 2; Figs. 10 and 11) theCIW and CIA in di ces were not cal cu lated and other in di ces havebeen used for com par i son.

Ti and Al can be used as prox ies of rel a tive chem i cal andme chan i cal weath er ing in ten sity of source rocks in mudstonesand car bon ate se quences (McLennan et al., 1993; Mongelli etal., 2006). Ti is fractioned in Ti-ox ides (iden ti fied in XRD pat tern)and clays as in di cated by low but var ied Ti/Al val ues in themudstones (Ta ble 4). De creased Ti/Al to gether with higherK2O/TiO2 in bed 15 re flects rel a tive weath er ing in ten sity. An a -log i cally, K2O/TiO2 and Ti/Al val ues in bed 37–55, higher than inPAAS in di cate a dif fer ent “his tory” of weath er ing and sed i men ta -

720 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 14. Th, U and Corg dis tri bu tion in mudstones of the Tomanová Fm.

Fig. 15. N–chondrite and N-PAAS pat terns from the Èervený Úplaz sam ples

tion. In ten sity of par ent rock weath er ing is in di cated by the Rb/Sr ra tio, or K/Rb ra tio is used re spec tively be cause of the po ten tialSr af fin ity to Ca in cal cite (McLennan et al., 1993; Vïaèný et al.,2013). The Rb/Sr val ues are higher than in PAAS (Ta ble 4) andin com bi na tion with mudstones min er al ogy they may de note the depth of weath ered rock ero sion and ma te rial sort ing if the same rock source is in formed. Changes in mudstones K/Rb ra tios aresmaller (on av er age 61, 73 in bed 15) as in sil i cate of the lime -stone beds (119–134).

There is rel a tive good cor re la tion be tween LREE and quan ti -fied clay con tent (R2 = 0.34) of shale beds. Nev er the less, LREEac cu mu la tion in kaolinite or in illitic min er als could not be sim plydoc u mented (Nesbitt et al., 1990; Honty et al., 2008). Cor re la tion be tween quartz con tents and HREE is more tight (R2 = 0.78).

HREE cor re lates better with Ti, Th, Y, Zr and in di cates oc cur -rence in “heavy min er als”.

REWORKING

The chem i cal com po si tion of the de pos its has been af fectedby me chan i cal sort ing and re cy cling (Cullers, 2000; Mongelli etal., 2006; Vïaèný et al., 2013). Be sides vary ing Ti-HFSE dis tri -bu tions, raised Zr con tent and near-chondrite val ues of Zr/Hf ra -tio (34–40) in all sam ples (Ta ble 4) in di cate zir con oc cur rence orme chan i cal sort ing in the se quence, re spec tively. The Al-Ti-Zrdi a gram (Fig. 16A) in di cates shales (cir cles) sim i lar to PAASand slight vari a tion in the sand/clay ra tios (Figs. 4 and 6; Ta ble 2;

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 721

Fig. 16A – tri an gu lar Ti-Al-Zr plot of Èervený Úplaz sam ples; B–E – scat ter di a grams of trace el e ment dis tri bu tion as weath er ing and prov e nance proxy

PAAS – stan dard con tent

Gar cia et al., 1994). As usual, Al-en riched (dioct 2:1 mica andillite) bed 15 is shifted more, but Fe-rich mudstones(sphaerosiderite – empty cir cles; Fig 16A) is lo cated in side of the shale set. The po si tions of sam ples 37-55 (tri an gles) are rel a tiveshifted to sand stones in the di a grams, in di cat ing re cy cled ma te -rial. This could be sup ported also by the sam ple set po si tion inFig ure 16D, E. Th/Sc vs. Zr/Sc di a gram (Fig. 16D; Mongelli etal., 2006) shows two sets and sug gest Zr (prob a ble as zir con)ac cu mu la tion in grav ity sorted quartz sand-frac tion. A fresh wa -ter event at the be gin ning of the ma rine trans gres sion is in di -cated by lithological data and by sta ble iso topes (Figs. 4, 8 and12). La/Th vs. Hf (Fig. 16E) also in di cates sort ing and in creasedHf con tent in re cy cled sed i men tary ma te rial from the hin ter land.

PROVENANCE

The chondrite-nor mal ised (N-chondrite) REE di a gramsshow two po ten tial sources, be cause a neg a tive “Eu-anom aly” is typ i cal of fel sic (gran ites) and an ab sent or pos i tive Eu anom alychar ac ter izes mafic par ent rocks (Fig. 15A, B). How ever, thepat terns with out the Eu anom aly be long to Fe-rich mudstones(13R, 13R1), where Eh-re dox con di tion and prob a ble Fe ox ides(MacRae et al., 1992; Galbarczyk-G¹siorowska, 2010) changed REE pat terns (Fig. 15B, D). REE pat terns of the com mon shalewhere LREE are hun dred times higher and HREE are ten timeshigher than in a chondrite with typ i cal neg a tive Eu anom a lies are typ i cal to mudrocks. This trend doc u ments the mix ing of con ti -nen tal sources dur ing ero sion and de po si tion of ma te rial(Condie, 1993; Cullers, 2000). Cal car e ous sand stones are de -pleted in REE but de tailed N-PAAS pat terns (Fig. 15A, C) did not re cover the REE trend typ i cal of ma rine car bon ate where MREEac cu mu late (in phos phates) or are en riched by diagenesis(Shields and Webb, 2004; Haley et al., 2004; Ounis et al., 2008;Michalík et al., 2013). The REE-pat tern of beds 37 to 44 can bere garded as a sign of re cy cled sil i cates only (Fig. 16A, D, C). Asdioct 2:1 mica and illite con tent in creased the REE pat tern (bed55) has taken the char ac ter of con ti nen tal shales.

The char ac ter of the protolith is also in di cated by met alscom pat i ble to Mg and Fe (Ni, Co, Cr, V, and Sc) and other HFSE (Y, Hf, Th, Zr). The di a gram of Th/Sc vs. Cr/Th ra tios shows(Fig. 16B) that shales fall into the field of fel sic par ent rocks(Condie, 1993; Cullers, 2000; Mongelli et al., 2006). The Cr/V vs. Y/Ni (Fig. 16C) vari a tion sig nal ises a com po si tion com pa ra ble to PAAS and a fel sic source again. The iron-rich mudstones withdom i nant Fe2+ min er als are rel a tively de pleted in V, Ni (and U),but their val ues do not change and in di cate that these el e mentswere con cen trated in weath ered sil i cates de rived from fel sicprotolith. The re cy cled char ac ter of the up per part of the se -quence sug gests a dif fer ent source and prov e nance of the sed i -ment (Fig. 16D, E). How ever, a rel a tive in crease Hf and a higherZr/Sc ra tio in the beds sug gest only fel sic or mixed fel sic (mag -matic or meta mor phic) ma te rial from pas sive con ti nen talsources but not vol ca nic rocks (Floyd and Leveridge, 1987).

SEDIMENTARY AND CLIMATIC CONDITIONS

Or ganic mat ter ac cu mu la tion was fa cil i tated by a hu mid cli -mate when larger flooded ar eas cre ated op ti mal con di tions forpalustrine veg e ta tion. Coal ho ri zons and laminae with plant rootre mains could in di cate palaeosols (fos sil soils) which have beensub se quently eroded (Michalík et al., 1988). The cy cle li thol ogyis con sis tent with pe ri odic changes (deep en ing and shallowing)with flu vial in put of or ganic mat ter from spo rad i cally flooded ar -eas. Dis tri bu tion of re dox-sen si tive el e ments and or ganic mat terare used to spec ify sed i men tary con di tions. While the lack of sul -

phur or the Fe-en rich ment in the se quence can not rep re sent asim ple sed i men tary sig nal (be ing a prob a ble re sult of deepweath er ing, lac us trine wa ter sat u ra tion, vol ca nic in put, oxic con -di tions), trace el e ments – U, V, Ni, Eu and their ra tios are morere call ing (Ta ble 3 and 4). Higher con tents of U and other el e -ments were re corded in these “black shales” by Michalík et al.(1988). The con tent of U (higher than in PAAS) in di cates U mo -bi li za tion in a sed i men tary ba sin due to pro duc tion of bio massand ac cu mu la tion of or ganic mat ter (Ta ble 4; Fig. 14). Low toneg a tive U vs. V and V/V + Ni with Corg vari a tion oc curred in thesuc ces sion. The V/V + Ni (Ta ble 4) data do not change throughthe sec tion in di cat ing con sis tent link of V and Ni with the par entrock weath er ing and gen er ated clays and no mo bi li za tion due toor ganic mat ter ac cu mu la tion in a sed i men tary ba sin. Theiron-rich mudstones sam ples are rel a tive more de pleted in Vand Ni be cause new-formed sid er ite di luted the clay. Mudstones sam ples are slightly en riched in U, Mn and Co (Ta ble 3) andsome U, Mn and Co mo bi li za tion in the sed i men tary ba sin canbe sup posed. The palaeosol sid er ite (Shel don and Ta bor, 2009)formed in Eh-re duced and pH-acidic chem i cal sys tems whichde vel oped dur ing wet and bio-pro duc tive times. The el e mentsmay have been leached and gained by newly formed or sur -face-ac tive min er als. The Eu dis tri bu tion in the sec tion (Ta ble 3;Fig. 15B, D) and high pos i tive Eu anom aly in the Fe-richmudstones sam ples re flects the more Eh-re duced but mainly HCO3

- sat u rated realm where Eu was se lec tively re mobi lisedand en riched the Fe-en riched mudstones. Other REE dis tri bu -tions (Ta ble 3; Fig. 15) in di cates an en rich ment dur ing weath er -ing pro cess only.

BURIAL HISTORY AND PALAEO-RECONSTRUCTION

As sem blages of clay min er als are used as a tool for re con -struc tion of palaeoclimate and palaeoenvironment in var i oussed i men tary mod els (e.g., Chamley, 1989; Weaver, 1989;Gingele et al., 1998; Heimhofer et al., 2008; Bristow et al., 2009). Kaolinite, illitic min er als, berthierine and chlorite have been de -ter mined in the Tomanová Fm. of the Èervený Úplaz ra vine (Ta -ble 2; Figs. 9 and 10). They can be authigenic but also de tri tal.

Con tin u ous illitization of smectite via in ter me di atemixed-layer illite-smectite (I–S) is among to the most im por tantphe nom ena of burial his tory of shales (Kisch, 1983; Œrodoñ andEberl, 1984). Illitic I–S (10–15% of smectitic interlayers) was de -ter mined in the sec tion stud ied. This stage of illitization could re -sult from the burial tem per a ture (about 180–200°C; Polastro,1993; Šucha et al., 1993). How ever, we do not in fer that thestud ied sed i ments ex pe ri enced late diagenesis be cause of thepres ence of berthierine which is a typ i cal min eral of very earlydiagenesis (Odin et al., 1988; Morad et al., 2000). It is trans -formed to chamosite at tem per a ture over 70°C (Hill ier, 1994;Hornibrook and Longstaffe, 1996). I–S and chlorite are as sumed as de tri tal min eral phases that did not un dergo sig nif i cantchanges af ter de po si tion. The pres ence of dis or dered kaolinite,the ma jor clay min eral in the sec tion stud ied, also sup ports theas sump tion that the Èervený Úplaz ra vine clay min er als werenot mark edly trans formed af ter de po si tion. Kaolinite is a typ i calprod uct of lateritic weath er ing in a warm cli mate where pre cip i ta -tion is greater than 80–120 cm per year (Chamley, 1989;Weaver, 1989). The triclinic struc ture of kaolinite from the weath -er ing zone is de stroyed dur ing ero sion, trans port, sed i men ta tionand early diagenesis to dis or dered kaolinite (Shutov et al., 1970;Kisch, 1983). The ini tial struc ture is re cov ered and con sec u tively trans formed to dickite. Kaolinite is very of ten neo-formed at anearly stage of diagenesis and, sub se quently, it may be trans -formed to illite dur ing late diagenesis. How ever, these pro cesses

722 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

are char ac ter is ti cally of po rous, sandy rocks. Kaolinite dis ap -pears with burial depth (Kisch, 1983; Lanson et al., 2001). Noneof these fea tures were ob served, ex cept the pres ence of dis or -dered kaolinite. This in di cates rather a re sid ual or i gin of thekaolinite.

As men tioned above, berthierine is an authigenic clay min -eral in the sec tion stud ied. Berthierine forms in shal low-wa termar ginal ma rine or estuarine and deltaic sed i ments in a warmsub trop i cal cli mate (Odin et al., 1988; Weaver, 1989; Hornibrook and Longstaffe, 1996; Morad et al., 2000). It re quires an ironsup ply and anoxic con di tions, but they should be mar gin allymore oxic than the en vi ron ment in which sid er ite pre cip i -tates.The amount of sid er ite (39 wt.%; Ta ble 4, Fig. 10) in sam -ple 13R is a proxy of in creas ing an oxia. A sig nif i cant amount ofkaolinite, over 30 wt.% on av er age, also in di cates a mar ginaldepositional en vi ron ment be tween con ti nen tal and ma rine in awarm and hu mid cli mate. A de crease in the kaolinite vs. 2:1 Aldioctahedral phyllosilicates ra tio up wards in the sec tion re flectschanges in the weath ered host rock and/or in creas ing sa lin ity ofthe trans port ing river. Illite floc cu la tion and de po si tion rate in -crease with in creases in sa lin ity in com par i son with kaolinite(Weaver, 1989) and set tle out a lit tle faster. Com pa ra ble claymin eral dis tri bu tions ex cept for pres ence of the berthierine havebeen re ported by sev eral au thors (Ahlberg et al., 2003; Michalíket al., 2010; Zajzon et al., 2012) from Tri as sic-Ju ras sic bound ary sec tions. How ever, the strik ing dif fer ence be tween the min er al -ogy of the Rhaetian Tomanová and Dudziniec for ma tions (Ta -ble 2) sug gests a sed i men tary gap con nected with a ma rinetrans gres sion.

PALAEOGEOGRAPHICAL POSITION OF THE AREA

Ka olin weath er ing crusts formed dur ing the lat est Tri as sic toEarly Ju ras sic world wide can be po ten tially used as cli ma tic andpalaeogeographic proxy of the T/J bound ary se quence andlong-dis tance ba sin cor re la tion (Ruffell et al., 2002; Prochnov etal., 2006; Dera et al., 2009; Michalík et al., 2010; Zajzon et al.,2012). In Cen tral Eu rope, the ka olin prov ince com prised a part of the Bo he mian Mas sif and part of the Bal tic Shield (e.g.,Chamley, 1989; Kraus, 1989; Ahlberg et al., 2002, 2003;Brañski, 2009). By con trast ka olin and ka olin clays oc cur ring in a wider area along the north ern Tethyan shore arestratigraphically un cer tain, be ing mostly re de pos ited. The com -plex geo log i cal evo lu tion of the Al pine Belt was not fa vour ableei ther for pres er va tion of ka olin weath er ing crust or for iden ti fi ca -tion of hypergene kaolinitization.

Dur ing lat est Tri as sic and early Ju ras sic times, re de pos itedkaolinite was pre served in the West ern Carpathians only (Kraus, 1989). Quan ti ta tive sedimentological, min er al og i cal and geo -chem i cal char ac ter is tics in di cate redeposition of ka olin sed i -ments from the for mer weath er ing crusts. They orig i nated frompar ent fel sic rocks of the ad ja cent con ti nent in a warm hu mid cli -mate. Both the trans port and the ac cu mu la tion of ma te rial insed i men tary bas ins were cli mate-con trolled as shown by the cy -clic sed i men ta tion, dis tri bu tion and de tri tal char ac ter of the clay,prop er ties of the quartz grains and geo chem i cal pa ram e ters.

The in ten sity of diagenetic change of the sed i ment doc u -mented by clay min er als is no ta bly low and suit able forpalaeoclimatic and palaeogeographic de duc tions. The pres ence of kaolinite, mainly berthierine, doc u ments sed i men tary con di -tions. Berthierine along with sid er ite points to re duc tion con di -tions in sed i ment re flect ing ac cu mu la tion of or ganic mat ter. Thiscon clu sion is sup ported by geo chem i cal pa ram e ters such as the dis tri bu tion of re dox-sen si tive el e ments. Thus, the TomanováFor ma tion was de pos ited in a re gime af fected by in creas ing hu -

mid ity (if com pared with Carnian and Norian mod els) and by at -mo spheric changes as so ci ated with the be gin ning of CAMP vol -ca nism world wide (McRoberts et al., 1997; Pálfy et al., 2001;Hautmann, 2004; Huynh and Poulsen, 2005; McElwain et al.,2007; Berner and Beerling, 2007; Ruckwied and Götz, 2009;Haas et al., 2010).

In the Tethyan shelf area, the Tatric Zone as a part ofVariscan con sol i dated belt oc cu pied a spe cial po si tion (Fig. 17).Due to its thick sialic base ment this block was el e vated, emergedand ex posed to ka olin weath er ing dur ing the Late Tri as sic (Szulcin Feist-Burkhardt et al., 2008). Ka olin bear ing sed i ments oc cur ina sec ond ary po si tion on sev eral lo cal i ties, but with the ex cep tionof the Tomanová Fm. (Michalík et al., 1976, 1988; Œrodoñ et al.,2006) they have not been stud ied in de tail yet.

The re sult ing model re sem bles the con clu sions of Feist- Burkhardt et al. (2008, in clud ing their fig ure 13.15) ex plain ingthe re gime in the Ger man Keuper Ba sin by pe ri odic (400 ka ec -cen tric ity cy cles) “mega-mon soonal” cir cu la tion from theTethyan Ocean im ping ing on the Vindelician moun tain belt. Thismodel (Fig. 17) would ex plain the cli mat i cally con trolled cyclicitywith semiarid and hu mid in ter vals ob served in our sec tion and“pluvialized” con di tions (Feist-Burkhardt et al., 2008) trig ger ingkaolinite crust for ma tion, its de struc tion and flu vial trans port.

Sim i lar cli ma tic fluc tu a tions in flu enced also the ma rine sed i -ments of the Dudziniec Fm. Sed i men ta tion was pe ri od i cally in -flu enced by ae olian in put, and, in ter mit tently by freshwa ter in putbring ing coarse quartz grains and resedimented fel sic ma te rial.How ever, there is a lack of kaolinite, and the clay con tent in thema trix is re duced.

These facts con cern the ques tion of the age of the ma rinetrans gres sion at the end of the Tri as sic. Szulc (in Feist-Burkhardet al., 2008) pro posed a mid-Rhaetian trans gres sion in the Ger -man Ba sin. The lithostratigraphy of top Tri as sic se quence of Al -pine-Carpathian shelf does not sup port this age de ter mi na tiondue to the lack (or rar ity) of in dex fos sils: the ma rine Koessen For -ma tion over lies the Plattenkalk in the Al pine Bajuvaric Zone, theFatra For ma tion fol lows the Carpathian Keuper in the Fatric Zone(Michalík et al., 2013). The Hybe and Norovica for ma tions oc curon top of the Dachstein Lime stone in the Hronic Zone of the West -ern Carpathians. In all ar eas, trans gres sion (pre sum ably) starteddur ing the mid-Rhaetian. In the south ern most zones only, with acon tin u ous fully ma rine se quence, Sevatian strata yield aammonite and cono dont fauna (Pálfy et al., 2001; Haas et al.,2010; Csaszár et al., 2013). The mar ginal Tatric zone may havebeen flooded some what later, but prob a bly be fore the end of theTri as sic (in ac cor dance with the coclusion of Radwañski, 1968): itis sup ported by pre vi ous find ings of Rhaetian bi valves in the basal lime stone lay ers near to Valaská Belá in the Strážovské VrchyMts. (Kochanová in Mahe¾, 1966). Ad di tional stud ies such as(palyno- and magnetostratigraphy) are needed to re solve the pre -cise tim ing of the transgressive event.

CONCLUSIONS

De spite the trun ca tion of the Tri as sic/Ju ras sic sed i men taryre cord by ero sive events a de tailed study of the Èervený Úplazse quence of fers valu able data on palaeoclimate, sed i men taryde vel op ment and palaeo ge ogra phy of the Tatric Unit in thenorth ern most part of the Tethyan Do main.

1. The Tomanová For ma tion is built of shale with a highkaolinite con tent (kaolinite » dioctahedral 2:1 phyllosilicates ±chlorite), in di cat ing a wet cli mate dur ing late Rhaetian times con -sis tent with con di tions else where across the Eu ro pean con ti nent (Rhaetian–Hettangian kaolinization pe riod).

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 723

2. Kaolinite crusts of in tensely weath ered el e vated ar easwere eroded and trans ported into bas ins as in di cated bylithofacies, by the min er al og i cal ho mo ge ne ity of the rock and byits chem i cal com po si tion. The ra tio of kaolinite vs. dioctahedral2:1 phyllosilicates in the shale in di cates changes in the pat ternof ero sion and sed i men ta tion. The chem i cal com po si tion in di -cates a uni form source of strongly weath ered fel sic rocks.

3. The sand stone lay ers con tain mixed ae olian and flu vialquartz grains with tex tural im ma tu rity of the sed i men tary ma te -rial. Clastic grains reached min er al og i cal ma tu rity due to pro -longed chem i cal weath er ing. The cy clic char ac ter (prob a bly400 kyr ec cen tric ity cy cles) of the lithofacies, min er al ogy andchem i cal prop er ties in di cate pe ri odic ero sion of kaolinite crustsfrom a dis tant source area and their trans port down river.

4. The sedimention rate (83 mm/kyr ac cord ing to thecyclostratigraphic anal y sis) re flect pat tern of rain fall. The pro -duc tion and de cay of or ganic mat ter was con trolled by hu mid ity.Chem i cal el e ments (U, V, and Eu) in clud ing large Fe in puts withsuc ces sive sid er ite and berthierine for ma tion were mo bi lized byre duced con di tions.

5. The char ac ter is tic C iso tope com po si tion in di cates a con ti -nen tal or i gin of the or ganic mat ter. A rel a tive de crease in d13Corg

val ues of the Dudziniec For ma tion car bon ates in di cates ma rineor ganic mat ter in puts and, in prin ci ple, it doc u ments ma rine

trans gres sion. The strati graphic dis tri bu tion and en vi ron men talsig nif i cance of the ben thic foraminifera are used to char ac ter izea grad ual sta bi li za tion of ma rine biota. Foraminifera in di cated alate Rhaetian age.

6. The cy cles pre served in these transgressive beds are ofsim i lar char ac ter as fin ing up wards parasequences of theTomanová For ma tion, be ing also of long ec cen tric ity type. How -ever, the min er al ogy and geo chem i cal in di ces in di cate dif fer entsources and trans port pro cesses. Their sed i men ta tion rate at -tained 25 mm/ka. Val ues of d18O and d13C in car bon ates doc u -ment me te oric re-equil i bra tion within parasequences.

7. Sands and clays of the Tomanová For ma tion orig i natedfrom me chan i cal and chem i cal weath er ing of the VindelicianHigh land. Pe ri od i cal cli ma tic changes (“megamonsoons” fromthe Tethyan Do main) pro vided trans port of eroded ma te rial andenroused palaeosoils for ma tion and bioproductivity in lac us trinebas ins. Sea-level rise trig gered by ther mal ex pan sion of theCen tral At lan tic Rift was grad ual in the Tatric re gion be ing af -fected by in put of ter res trial clastic sed i ment both via fresh wa ter and by wind.

Ac knowl edg ments. The au thors ac knowl edge Dr. V. Šimo, of the Geo log i cal In sti tute of the Slo vak Acad emy of Sci ence,Bratislava and Prof. E. Roniewicz from the In sti tute of

724 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Fig. 17. Palaeogeographic sketch of the north ern Med i ter ra nean Tethys shore belt with prob a ble di rec tion of “megamonsoons”and riverine trans port dur ing Late Tri as sic times; adapted from Ziegler (1980), Stampfli et al. (1998), Michalík (2003, 2011),

Csontos and Vörös (2004), Feist-Burkhardt et al. (2008), and Berra et al. (2010)

Palaeobiology of the Pol ish Acad emy of Sci ence, War saw, fortheir help in de ter min ing the fos sils. Prof. J. Szulc,Dr. P. Brañski, Prof. A. Goetz are ac knowl edged for valu ablecrit i cal re marks and Dr J. Zalasiewicz for care ful Eng lish cor rec -tion, which con sid er ably en hanced the qual ity of the pa per.Thanks to R. Milovský, Ph.D., for pro vid ing iso tope anal y ses, toDr. ¼. Puškelová for carefull XRD anal y ses and to Dr. M. Sýkorafor lend ing of thin sec tions set. We are also in debted to the Ad -min is tra tion of the Tatra Na tional Park for per mis sion of en tryinto the area and for its kind sup port of field work. This pa per

orig i nated as a con tri bu tion to the VEGA grant pro jects0065/2012, 0042/2012 and IGCP 609 (Cli mate en vi ron men talde te ri o ra tions dur ing green house phases). It was spon sored bythe Op er a tional Programme Re search and De vel op mentthrough the pro ject: Cen tre of Ex cel lence for In te grated Re -search of the Earth’s Geosphere (ITMS: 26220120064), co-fi -nanced through the ERDF.

REFERENCES

Ahlberg A., Andorff L., Guy-Ohlson D. (2002) On shore cli matechanges dur ing the Late Tri as sic ma rine in un da tion of the Cen -tral Eu ro pean Ba sin. Terra Nova, 14: 241–248.

Ahlberg A., Olsson I., Šimkevièius P. (2003) Tri as sic-Ju ras sicweath er ing and clay min eral dis persal in base ment ar eas andsed i men tary bas ins of south ern Swe den. Sed i men tary Ge ol ogy,161: 15–29.

Al-Juboury A.I., Ïuroviè V. (1992) Paleoenvironment in ter pre ta tionof the Carpathian Keuper rocks as re vealed by clay min eral anal -y sis. Geologica Carpathica, Clays, 2: 73–76.

An drews J.E. (2006) Palaeoclimate re cord from sta ble iso topes inriverine tufas: syn the sis and re view. Earth-Sci ence Re views, 75:85–104.

Andrusov D., Bystrický J., Fusán O. (1973) Out lines of the struc -tures of the West Carpathians. In tro duc tory Ex cur sion Guide -book. X Con gress of Carpathian-Bal kan Geo log i cal As so ci a tion.Geologický ústav Dionýza Štúra, Bratislava.

Beerling D.J., Royer D.L. (2002) Fos sil plants as in di ca tors of thePhanerozoic global car bon cy cle. An nual Re views of Earth andPlan e tary Sci ences, 30: 527–556.

Belch er C.M., Mander L., Rein G., Jer vis F.X., Haworth M.,Glasspool I.J., Hesselbo S.P., McElwain J.C. (2010) In creased fire ac tiv ity at the Tri as sic/Ju ras sic bound ary in Green land due tocli mate-driven flo ral change. Na ture Geoscience, 3: 426–429.

Berner R.A., Beerling D.J. (2007) Vol ca nic de gas sing nec es sary topro duce a CaCO3 undersaturated ocean at the Tri as sic-Ju ras sicbound ary. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 244: 368–373.

Berra F., Jadoul F., Anelli A. (2010) En vi ron men tal con trol on theend of the Dolomia Principale/Hauptdolomit depositional sys temin the cen tral Alps: Cou pling sea-level and cli mate changes.Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 290:138–150.

Blackburn T.J., Olsen P.E., Bowring S.A., McLean N.M., KentD.V., Puffer J., McHone G., Rasbury E.T., El-Touhami M.(2013) Zir con U-Pb geo chron ol ogy links the End-Tri as sic Ex tinc -tion with the Cen tral At lan tic Mag matic Prov ince. Sci ence, 340:

941–945.

Bonis N.R., Ruhl M., Kürschner W.M. (2010) Milankovitch-scalepalynological turn over across the Tri as sic–Ju ras sic tran si tion atSt. Audrie’s Bay, SW UK. Jour nal of Geo log i cal So ci ety, 167,877–888.

Brañski P. (2009) In flu ence of paleoclimate and the green house ef -fect on Hettangian clay min eral as sem blages (Holy Cross Mtsarea, Pol ish Ba sin). Geo log i cal Quar terly, 53 (3): 363–368.

Bristow T.F., Ken nedy M.J., Derkowski A., Droser M.L., Jiang G.,Creaser R. (2009) Min er al og i cal con straints on thepaleoenvironments of the Ediacaran Doushantuo For ma tion.Pro ceed ings of the Na tional Acad emy of Sci ences of the UnitedStates of Amer ica (PNAS), Au gust 11, 106 (32): 13190–19195.

Cerling T.E., Sol o mon D. K., Quade J., Bow man J.R. (1991) Onthe iso to pic com po si tion of car bon in soil car bon di ox ide.Geochimica et Cosmochimica Acta, 55: 3403–3405.

Chamley H. (1989) Clay Sedimentology. Springer-Verlag, Berlin,Hei del berg.

Condie K.C. (1993) Chem i cal com po si tion and evo lu tion of the up -per con ti nen tal crust: Con trast ing re sults from sur face sam plesand shales. Chem i cal Ge ol ogy, 104: 1–37.

Co hen A.S., Coe A.L. (2007) The im pact of the Cen tral At lan tic Mag -matic Prov ince on cli mate and on the Sr- and Os- iso tope evo lu -tion in sea wa ter. Palaeo ge ogra phy, Palaeoclimatology, Palaeo -ec ol ogy, 244: 374–390.

Császár G., Szinger B., Piros O. (2013) From con ti nen tal plat formto wards rift ing of the Tisza Unit in the late Tri as sic to Early Cre ta -ceous. Geologica Carpathica, 64: 279–290.

Csontos L., Vörös A. (2004) Me so zoic plate tec tonic re con struc tionof the Carpathian re gion. Palaeo ge ogra phy, Palaeo climatology,Palaeo ec ol ogy, 210: 1–56.

Cullers R.L. (2000) The geo chem is try of shales, siltstones andsand stones of Penn syl va nian-Perm ian age, Col o rado, U.S.A.:im pli ca tions for prov e nance and meta mor phic stud ies. Lithos,51: 305–327.

Dera G., Pelleard P., Neige P., Decomick J-F., Pucéat E.,Domergues J.-L. (2009) Dis tri bu tion of clay min er als in the Early Ju ras sic Peritethyan sea: Paleoclimatic sig nif i cance in ferredfrom multiproxy com par i son. Palaeo ge ogra phy, Palaeo -climatology, Palaeo ec ol ogy, 290: 39–51.

Dudek T., Œrodoñ J. (1996) Iden ti fi ca tion of illite/smectite by X-raypow der dif frac tion tak ing into ac count the lognormal dis tri bu tionof crys tal thick ness. Geologica Carpathica – Clays, 5: 21–32.

Dumont T., Wieczorek J., Bouillin J.P. (1996) In verted Me so zoic rift struc tures in the Pol ish West ern Carpathians (High-Tatra units).Com par i son with sim i lar fea tures in the West ern Alps. EclogaeGeologicae Helvetiae, 89: 181–202.

Eberl D.D. (2003) User´s Guide to Rockjock - a pro gram for de ter -min ing quan ti ta tive min er al ogy from pow der X-ray dif frac tiondata. U.S. Geo log i cal Sur vey Open File Re port, 2003: 3–78.

Feist-Burkhardt S., Götz A., Szulc J., Borkhataria R., Geluk M.,Haas J., Hornung J., Jor dan P., Kempf G., Michalík J.,Nawrocki J., Reinhardt L., Ricken W., Röhling H.-G., RüfferT., Török Á., Zühlke R. ( 2008) Tri as sic. In: The Ge ol ogy of Cen -tral Eu rope, 2. Me so zoic and Ce no zoic (ed. T. McCann). TheGeo log i cal So ci ety of Lon don.

Fija³kowska A., Uchman A. (1993) New data on the palynology ofthe Tri as sic of the Pol ish Tatra Mts (in Pol ish with Eng lish sum -mary). Przegl¹d Geologiczny, 41: 373–375.

Floyd P.A., Leveridge B.E. (1987) Tec tonic en vi ron ments of the De -vo nian mode and geo chem i cal ev i dence from turbiditic sand -stones. Jour nal of Geo log i cal So ci ety, 144: 531–542.

Galbarczyk-G¹siorowska L. (2010) REE mo bil ity in the weath er ingpro file – a case study from the Karkonosze Mas sif (SW Po land).Acta Geologica Polonica, 60: 599–516.

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 725

Gar cia D., Fontailles M., Moutte J. (1994) Sed i men taryfractionations be tween Al, Ti, Zr and gen e sis of stronglyperaluminous gran ites. Jour nal of Ge ol ogy, 102: 411–422.

GaŸdzicki A.(1974) Rhaetian microfacies, stra tig ra phy and fa cial de -vel op ment in the Tatra Mts. Acta Geologica Polonica, 24: 17–96.

GaŸdzicki A., Michalík J., Planderová E., Sýkora M. (1979) An Up -per Tri as sic – Lower Ju ras sic se quence in the Krížna Nappe(West Tatra Mts, West ern Carpathians, Czecho slo va kia).Západné Karpaty, Geológia, 5: 119–148.

Gingele F.X, Müller, P.M., Schnei der R.R. (1998) Or bital forc ing offresh wa ter in put in the Zaire Fan area – clay min eral ev i dencefrom the last 200 kyr. Palaeo ge ogra phy, Palaeoclimatology,Palaeo ec ol ogy, 138: 17–26.

Gorek A. (1958) Die geologischen Verhältnisse der GebirgsgruppeÈervené Vrchy, der Täler Tichá und Tomanová. Geologickýsborník Slovenskej Akadémie Vied, 9 (2): 203–240.

Götz A.E., Ruckwied K., Barbacka M. (2011) Paleoenvironment ofthe Late Tri as sic (Rhaetian) and Early Ju ras sic (Hettangian)Mecsek Coal For ma tion (south Hun gary): im pli ca tion from macro and microfloral as sem blage. Palaeo ge ogra phy,Palaeoclimatology, Palaeo ec ol ogy, 91:75–88.

Haas J., Götz A.E., Pálfy J. (2010) New in sight on Late Tri as sic toearly Ju ras sic paleogeography and eustatic his tory of the NWTethyan Realm: im pli ca tion from sed i men tary and or ganic fa ciesof the Csóvár Ba sin, Hun gary. Palaeo ge ogra phy, Palaeo -climatology, Palaeo ec ol ogy, 291: 456–468

Haley B.A., Klinkhammer G.P., MacManus J. (2004) Rare earth el -e ments in pore wa ter of ma rine sed i ments. Geochimica etCosmochimica Acta, 68: 1256–1276.

Hannigan R.E., Sholkovitz E.R. (2001) Rare earth el e ment chem is -try of nat u ral wa ters: chem i cal weath er ing and dis solved REEcon tents in ma jor river sys tems. Chem i cal Ge ol ogy, 175:495–508.

Hautmann M. (2004) Ef fect of end-Tri as sic CO2 max i mum on car -bon ate sed i men ta tion and ma rine mass ex tinc tion. Fa cies, 50:257–261.

Hesselbo S.P., Rob in son S.A., Surlyk F., Piasecki S. (2002) Ter -res trial and ma rine ex tinc tion at the Tri as sic-Ju ras sic bound arysyn chro nized with ma jor car bon-cy cle per tur ba tion: a link to ini ti -a tion of mas sive vol ca nism? Ge ol ogy, 30: 251–254.

Heimhofer U., Adatte T., Hochuli P.A., Burla S., Weissert H. (2008) Coastal sed i ments from the Algarve: low-lat i tude cli mate ar chivefor Aptian-Albian. In ter na tional Jour nal of Earth Sci ences, 97:785–797.

Hill ier S. (1994) Pore-lin ing chlorites in siliciclastic res er voir sand -stones: elec tron microprobe, SEM and XRD data, and im pli ca -tions for their or i gin. Clay Min er als, 29: 665-679.

Honty M., Clauer N., Šucha V. (2008) Rare-earth el e men tal sys tem -at ics of mixed-lay ered illite-smectite from sed i men tary andhydrotherme en vi ron ments of the West ern Carpathians(Slovakia). Chem i cal Ge ol ogy, 249: 167–190.

Hornibrook E.R.C., Longstaffe F.J. (1996) Berthierine from thelower Cre ta ceous Clearwater for ma tion, Al berta, Can ada. Claysand Clay Min er als, 44: 1–21.

Hori R.S., Fujiki T., Inoue E., Kimura J.I. (2007) Plat i num group el e -ment anom a lies and bioevents in the Tri as sic-Ju ras sic deep- seased i ments of Panthalassa. Palaeo ge ogra phy, Palaeo -climatology, Palaeo ec ol ogy, 244: 391–406.

Huynh T.T., Poulsen C.J. (2005) Ris ing at mo spheric CO2 as a pos si -ble trig ger for the end-Tri as sic mass ex tinc tion. Palaeo ge ogra -phy, Palaeoclimatology, Palaeo ec ol ogy, 217: 1–21.

Jaglarz P. (2010) Fa cies and sed i men tary en vi ron ment of the car -bon ate-dom i nated Carpathian Keuper from the Tatricum do main: Re sults from the Dol ina Smytnia Val ley (Tatra Mts., South ern Po -land). Annales Societatis Geologorum Poloniae, 80: 147–161.

Jaglarz P., Szulc J. (2003) Mid dle Tri as sic evo lu tion of the Tatricumsed i men tary ba sin: An at tempt of se quence stra tig ra phy to theWierchowa Unit in the Pol ish Tatra Moun tains. AnnalesSocietatis Geologorum Poloniae, 73: 169–182.

Jorissen F.J., Stigter H.C. de, Widmark J.G.V. (1995) A con cep tual model ex plain ing ben thic foraminiferal microhabitats. Ma rineMicropaleontology, 26: 3–15.

Kisch H.J. (1983) Min er al ogy and pe trol ogy of burial diagenesis(burial meta mor phism) and in cip i ent meta mor phism in clasticrocks. De vel op ments in Sedimentology, 25B: 289–493.

Kotañski Z. (1959) Stra tig ra phy, sedimentology and paleogeo -graphy of the high-Tatric Tri as sic in the Tatra Mts. Acta Geolo gica Polonica, 9: 113–145.

Kotañski Z. (1961) TectogénÀse et re con sti tu tion de lapaléogéographie de la zone haut-tatrique dans les Tatras (in Pol -ish with French sum mary). Acta Geologica Polonica, 11:187–476.

Kotañski Z. (1979) The po si tion of the Tatra Mts. in the west ernCarpathians (in Pol ish with Eng lish sum mary). Przegl¹dGeologiczny, 27: 359–369.

Kozur H. (1991) The evo lu tion of Meliata–Hallstatt Ocean and its sig -nif i cance for early evo lu tion of the East ern Alps and West ernCarpathians. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol -ogy, 8: 109–135.

Kraus I. (1989) Ka olins and kaolinite clays (in Slo vak). ZápadnéKarpaty, séria Mineralógia, Petrografia, Geochémia, Metalo -genéza, 13: 7–287.

Kuerschner W.M., Bonis N.R., Krystyn L. (2007) Car bon-iso topestra tig ra phy and palynostratigraphy of the Tri as sic–Ju ras sictran si tion in the Tiefengraben sec tion – North ern Cal car e ousAlps (Aus tria). Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec -ol ogy, 244: 257–280.

Lanson B., Beau fort D., Berger G., Bauer A., CassagnabéreMeunier A. (2001) Authigenic ka olin and illitic min er als dur ingburial diagenesis of sand stones: a re view. Clay Min er als, 37:1–22.

Lefeld J., GaŸdzicki A., Iwanow A., Krajewski K., Wójcik K. (1985) Ju ras sic and Cre ta ceous lithostratigraphic units of the TatraMoun tains. Studia Geologica Polonica, 84: 3–93.

Lucas S.G., Tan ner L.H. (2007) Tetrapod biostratigraphy andbiochronology of the Tri as sic-Ju ras sic tran si tion on the south ernCol o rado Pla teau, USA. Palaeo ge ogra phy, Palaeoclimatology,Palaeo ec ol ogy, 244: 242–256.

Lund J.J. (1977) Rha etic to Lower Li assic palynology of the on shoresouth-east ern North Sea Ba sin. Danmarks GeologiskeUndersÝgelse, 2nd Se ries, 109: 1-129.

MacRae N.D., Nesbitt H.W., Kronberg B.I. (1992) De vel op ment of a pos i tive Eu anom aly dur ing diagenesis. Earth and Plan e tary Sci -ence Let ters, 109: 585–591.

Mahe¾ M., ed. (1966) Re gional Ge ol ogy of Czecho slo va kia II, West -ern Carpathians, pt. 1. Ac a de mia Praha.

McElwain J.C., Punyasena S.W. (2007) Mass ex tinc tion events and the plant fos sil re cord. Trends in Ecol ogy and Evo lu tion, 22:10–11.

McElwain J.C., Popa M.E., Hesselbo S.P., Haworth M., Surlyk F.(2007) Macroecological re sponse of ter res trial veg e ta tion to cli -ma tic and at mo spheric change across the Tri as sic/Ju ras sicBound ary in East Green land. Paleobiology, 33: 547–573.

McElwain J.C., Wag ner P.J., Hesselbo S.P. (2009) Fos sil plant rel a -tive abun dance in di cate sud den loss of Late Tri as sic biodiversityin East Green land. Sci ence, 324: 1554–1556.

McLennan S.M. (1993) Weath er ing and global de nu da tion. Jour nalof Ge ol ogy, 101: 295–303.

McLennan S.M., Hem ming S., McDaniel D.K., Hanson G.N. (1993) Geo chem i cal ap proaches to sed i men ta tion, prov e nance and tec -ton ics. GSA Spe cial Pa per, 248: 21–40.

McRoberts C.A. (1994) The Tri as sic-Ju ras sic ecostratigraphic tran -si tion in the Lombardian Alps, It aly. Palaeo ge ogra phy,Palaeoclimatology, Palaeo ec ol ogy, 110: 145-166.

McRoberts C.A., Furrer H., Jones D.S. (1997)Palaeoenvironmental in ter pre ta tion of a Tri as sic-Ju ras sic boun -d ary sec tion from West ern Aus tria based on palaeo eco logi caland geo chem i cal data. Palaeo ge ogra phy, Palaeoclimatology,Palaeo ec ol ogy, 136: 79–95.

726 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová

Michalík J. (1977) Paläogeographische Untersuchungen der FatraSchichten (Kössen For ma tion) der nördlichen Teiles desFatrikums in der Westkarpaten. Geologický zborník GeologicaCarpathica, 28: 71–94,

Michalík J. (1993) Me so zoic ten sional bas ins in the Al pine-Carpa -thian shelf. Acta Geologica Hungarica, 36: 395–403.

Michalík J. (1994) Notes on the paleogeography and paleo tectonicsof the West ern Carpathian area dur ing the Me so zoic.Mitteilungen der Österreichischen Geologischen Gesellschaft,86: 101–110.

Michalík J. (2007) Sed i men tary rock re cord and microfacies in di ca -tors of the lat est Tri as sic to mid-Cre ta ceous ten sional de vel op -ment of the Zliechov Ba sin (Cen tral West ern Carpathians).Geologica Carpathica, 58: 443–453.

Michalík J. (2011) Me so zoic paleogeography and fa cies dis tri bu tionin the North ern Med i ter ra nean Tethys from West ern Carpathiansview. Ira nian Jour nal of Earth Sci ences, 3: 185–193.

Michalík J., ed. (2003) Tri as sic/Ju ras sic Bound ary Events. Spe cialVol ume to the 3th An nual Work shop of the 458 (TRIBE) IGCPUNESCO Pro ject, Stará Lesná, Oc to ber 2003, VEDA Bratislava.

Michalík J., Planderová E., Sýkora M. (1976) To the strati graphicand paleogeographic po si tion of the Tomanová For ma tion in theup per most Tri as sic of the West Carpathians. Geologický Zborník Geologica Carpathica, 27: 299–318.

Michalík J., Kátlovský V., Hluštík A. (1988) Plant re mains in theTomanová For ma tion (up per most Tri as sic, West Carpathians):their or i gin, com po si tion and diagenetic al ter ation. GeologickýZborník Geologica Carpathica, 39: 523–537.

Michalík J., Lintnerová O., GaŸdzicki A., Soták J. (2007) Re cord of en vi ron men tal changes in the Tri as sic-Ju ras sic bound ary in ter -val in the Zliechov Ba sin, West ern Carpathians. Palaeo ge ogra -phy, Palaeoclimatology, Palaeo ec ol ogy, 244: 71–88.

Michalík J., Biroò A., Lintnerová O., Götz A.E., Ruckwied K.(2010) Cli ma tic change at the T/J bound ary in the NW TethyanRealm (Tatra Mts, Slovakia). Acta Geologica Polonica, 60:535–548.

Michalík J., Lintnerová O., Wójcik-Tabol P., GaŸdzicki A.,Grabowski J., Golej M., Šimo V., Zahradníková B. (2013)Paleoenvironments dur ing the Rhaetian trans gres sion and thecol o ni za tion his tory of ma rine biota in the Fatric Unit (West ernCarpathians). Geologica Carpathica, 64: 39–62.

Mongelli G., Critelli S., Perri F., Sonnino M., Perrone V. (2006)Sed i men tary re cy cling, prov e nance and paleoweathering fromchem is try and min er al ogy of Me so zoic con ti nen tal redbedmudrocks, Peloritani Mts, south ern It aly. Chem i cal Jour nal, 40:197–209.

Moore D.M., Reynolds R.C. Jr. (1997) X-Ray dif frac tion and theidentificat ion and anal y sis of clay min er als, sec ond edi tion. Ox -ford Uni ver sity Press, USA.

Morad S., Ketzer J.M., Ros L.F. de (2000) Spa tial and tem po ral dis -tri bu tion of diagenetic al ter ations in siliciclastic rocks: im pli ca tionfor mass trans fer in sed i men tary bas ins. Sedimentology, 47:95-120.

Murray R.W., Buchholtz ten Brink M.R., Gerlach D.C., Russ G.R.III., Jones D.L. (1992) Interoceanic vari a tion in the rare earth,ma jor and trace el e ment depositional chem is try of cherts: Per -spec tive gained from DSDP and ODP re cord. Geochimica etCosmochimica Acta, 56: 1897–1913.

Nagy J., Hess S., Alve E. (2010) En vi ron men tal sig nif i cance offoraminiferal as sem blages dom i nated by small-sized Ammo -discus and Trochammina in Tri as sic and Ju ras sic delta-in flu -enced de pos its. Earth-Sci ence Re views, 99: 31–49.

Nagy J., Hess S., Dypvik H., Bjærke T. (2011) Ma rine shelf to paralicbiofacies of Up per Tri as sic to Lower Ju ras sic depositsinSpitsbergen. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol -ogy, 300: 138–151.

Nesbitt H.W., Markovics G. (1997) Weath er ing of the granodioriticcrust, long-term stor age in the weath er ing pro files and petro gen -esis of siliciclastic sed i ments. Geochimica et CosmochimicaActa, 61: 1653–1670.

Nesbitt H.W., Young G.M. (1984) Pre dic tion of some weath er ingtrends of plutonic and vol ca nic rocks based on ther mo dy namicand ki netic con sid er ation. Geochimica et Cosmochimica Acta,48: 1523–1534.

Nesbitt H.V., McRae N.D., Kronberg B.I. (1990) Am a zon deep-seamuds: light REE en riched prod ucts of ex treme chem i cal weath er -ing. Earth and Plan e tary Sci ence Let ters, 100: 18–123.

NiedŸwiedzki G. (2005) A new find of di no saur foot prints in the Up -per Tri as sic of the Tatra Moun tains, south ern Po land (in Pol ishwith Eng lish sum mary). Przegl¹d Geologiczny, 53: 410–413.

NiedŸwiedzki G. (2011) A Late Tri as sic di no saur-dom i nated ichno -fauna from the Tomanová For ma tion of theTatra Mts, cen tral Eu -rope. Acta Palaeontologica Polonica, 58: 291–300.

Odin G.S., Knox R.W., Gygi R.A., Guerrak S. (1988) Green ma rineclays from the oolitic iron stone fa cies: habit, min er al ogy, en vi ron -ment. De vel op ments in Sedimentology, 45: 29–52.

Ohta T., Arai H. (2007) Sta tis ti cal em pir i cal in dex of chem i cal weath -er ing in ig ne ous rocks: A new tool for eval u at ing the de gree ofweath er ing. Chem i cal Ge ol ogy, 240: 280–297.

Olóriz F., Reolid M., Rodríguez-Tovar F.J. (2003) Palaeogeo -graphic and strati graphic dis tri bu tion of mid-late Oxfordianforaminiferal as sem blages in the Prebetic Zone. Geobios, 36:733–747.

Ounis A., Koczis L., Chaabani F., Pfeifer H.R. (2008) Rare earth el -

e ments and sta ble iso tope geo chem is try (d13C and d18O) ofphosphorite de pos its in the Gafsa Ba sin, Tu ni sia. Palaeo ge ogra -phy, Palaeoclimatology, Palaeo ec ol ogy, 268: 1–18.

Pálfy J., Demény A., Haas J., Hetényi M., Or chard M.J., Vetö I.(2001) Car bon iso tope anom aly and other geo chem i cal changesat the Tri as sic/Ju ras sic bound ary from a ma rine sec tion in Hun -gary. Ge ol ogy, 29: 1047–1050.

Petersen H.I., Lindstöm S. (2012) Syn chro nous wild fire ac tiv ity riseand mire de for es ta tion at the Tri as sic-Ju ras sic bound ary. PlosOne, 7 (10): 1–15.

Pollastro R.M. (1993) Con sid er ations and ap pli ca tions of theillite/smectite geothermometer in hy dro car bon-bear ing rocks ofMio cene to Mis sis sip pian age. Clays and Clay Min er als, 41:119–133.

Preto N., Kustatscher E., Wignall P.B. (2010) Tri as sic cli mate -state of the art and the per spec tives. Palaeo ge ogra phy,Palaeoclimatology, Palaeo ec ol ogy, 290: 1–10.

Price J.R., Velbel M. (2003) Chem i cal weath er ing in di ces ap plied toweath er ing pro files de vel oped on heterogenous fel sic meta mor -phic par ent rocks. Chem i cal Ge ol ogy, 202: 397–416.

Prochnow S.J, Nordt L.C., Atchley S.C., Hudec M.R. (2006)Multi-proxy paleosol ev i dence for mid dle and late Tri as sic cli -mate trends in east ern Utah. Palaeo ge ogra phy, Palaeoclimat -ology, Palaeo ec ol ogy, 232: 53–72.

Rabowski F. (1959) Tatric se ries in west ern Tatra Mts. (in Pol ish).Prace Instytutu Geologicznego, 27: 5–178.

Raciborski M. (1890) Rha etic flora in the Tatra Mts. (in Pol ish)Rozprawy Wydzia³u Matematyczno-Przyrodniczego, AkademiaUmiejêtnoœci Kraków, 21: 243–260.

Radwañski A. (1968) Pet ro graph i cal and sedimentological study ofthe high-Tatric Rha etic in the Tatra Mts. (in Pol ish with Eng lishsum mary). Studia Geologica Polonica, 25: 1–146

Reolid M., Martínez-Ruiz F. (2012) Com par i son of ben thicforaminifera and geo chem i cal prox ies in shelf de pos its from theUp per Ju ras sic of Prebetic (south ern Spain). Jour nal of Ibe rianGe ol ogy, 38: 449–465.

Reolid M., Nagy J., Rodríguez-Tovar F., Olóriz F. (2008)Foraminiferal as sem blages as palaeoenvironmental bioindi -cators in Late Ju ras sic epicontinental plat forms: re la tion withtrophic con di tions. Acta Palaeontologica Polonica, 53: 705–722.

Retallack J.G. (2009) Re fin ing and pedogenic car bon ate CO2

paleobarometer to quan tify a Mid dle Mio cene green house spike.Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 281:57–65.

Righi D., Meunier A. (1995) Or i gin of clays by rock weath er ing andsoil for ma tion. In: Velde B. (ed.): Or i gin and Min er al ogy of Clays.Springer, 43–161.

Latest Triassic climate humidification and kaolinite formation (Western Carpathians, Tatric Unit of the Tatra Mts.) 727

Ruckwied K., Götz A.E. (2009) Cli mate change at the Tri as sic/Ju -ras sic bound ary: Palynological ev i dence from the Furkaska sec -tion (Tatra Moun tains, Slovakia). Geologica Carpathica, 60:139–149.

Ruckwied K., Götz A.E., Pálfy J., Török Á. (2008) Palynology of ater res trial coal-bear ing se ries across the Tri as sic/Ju ras sicbound ary (Mecsek Mts, Hun gary). Cen tral Eu ro pean Ge ol ogy,51: 1–15.

Ruffell A., Mc Kin ley J.M., Worden R.H. (2002) Com par i son of claymin eral stra tig ra phy to other palaeoclimate in di ca tors in the Me -so zoic of NW Eu rope. Philo soph i cal Trans ac tion of the Royal So -ci ety of Lon don, A 360: 675–693.

Ruhl M., Veld H. W.M., Kürschner W.M. (2010) Sed i men tary or -ganic mat ter char ac ter iza tion of the Tri as sic–Ju ras sic bound aryGSSP at Kuhjoch (Aus tria). Earth and Plan e tary Sci ence Let ters, 292: 17–26.

Ruhl M., Bonis N.R., Reichart G.J., Damsté J.S.S., KürschnerW.M. (2011) At mo spheric car bon in jec tion linked to end-Tri as sicmass ex tinc tion. Sci ence, 333: 430–434.

Rychliñski T. (2008) Fa cies de vel op ment and sed i men tary en vi ron -ments of the Carpathian Keuper de pos its from the Tatra Mts., Po -land and Slovakia. Annales Societatis Geologorum Poloniae, 78: 1–18.

Schulte P., Geldern R. van, Freitag H., Karim A., Petelet-GiraudP.N.E., Probst A., Probst J.L., Telmer K., Veizer J., BarthJ.A.B. (2011) Ap pli ca tions of sta ble wa ter and car bon iso topes in wa ter shed re search: Weath er ing, car bon cy cling, and wa ter bal -ances. Earth-Sci ence Re views, 109: 20–31.

Sha J., Vajda V., Pan Y., Larsson L., Yao X., Zhang X., Wang Y.,Cheng X., Jiang B., Deng Sh., Chen S., Peng B. (2011) Stra tig -ra phy of the Tri as sic-Ju ras sic suc ces sion of the S mar gin of theJunggar Ba sin, NW China. Acta Geologica Sinica, 85: 421–436.

Shel don N.D., Ta bor N.J. (2009) Quan ti ta tive paleoenvironmentaland paleoclimatic re con struc tion us ing paleosols. Earth-Sci enceRe views, 95: 1–52.

Shields G., Webb G.E. (2004) Has the REE com po si tion of sea wa ter changed over geo log i cal time? Chem i cal Ge ol ogy, 204:103–107.

Shutov V.D., Aleksandrova A.V., Losievskaya S.A. (1970) Ge neticin ter pre ta tion of the poly mor phism of the kaolinite group in sed i -men tary rocks. Sedimentology, 15: 69–82.

Smith J.R., Giegengack R., Schwarcz H.P. (2004) Con straints onPleis to cene plu vial cli mates through sta ble-iso tope anal y sis offos sil spring tufas and as so ci ated gas tro pods, Kharga Oasis,Egypt. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy,206: 157–175.

Œrodoñ J., Eberl D.D. (1984) Re views in Min er al ogy, 13: 495-544.

Œrodoñ J., Drits V.A., McCarty D.K., Hsieh J.C.C., Eberl D.D.(2001) Quan ti ta tive X-ray dif frac tion anal y sis of clay-bear ingrocks from ran dom prep a ra tions. Clays and Clay Min er als, 49:514–528.

Œrodoñ J., Kotarba M., Biroò A., Such P., Clauer N., Wójtowicz A.(2006) Diagenetic his tory of the Podhale–Orava Ba sin and the

un der ly ing Tatra sed i men tary struc tural units (West ernCarpathians): Ev i dence from XRD and K-Ar of illite-smectite.Clay Min er als, 41: 751–774.

Stampfli G.M., Mosar J., Bono A. de, Vavasis I. (1998) Late Pa leo -zoic, early Me so zoic plate tec ton ics of the West ern Tethys. Bul le -tin of the Geo log i cal So ci ety of Greece, 31: 113–120.

Šucha V., Œrodoñ J., Zatkalíková V., Francù J. (1991) Mixed lay -ered illite/smectite: sep a ra tion, identification, use (in Slo vak withEng lish ab stract). Mineralia Slovaca, 23: 267–274.

Šucha V., Kraus I., Gerthofferová H., Peteš J., Sereková M. (1993) Smectite to illite con ver sion in bentonites and shales of the EastSlo vak ba sin. Clay Min er als, 28: 243–253.

Tay lor S.R. McLennan S.M. (1985) The Con ti nen tal Crust: its Com -po si tion and Evo lu tion. Blackwell Ox ford.

Tyszka J. (1994) Re sponse of Mid dle Ju ras sic ben thic foraminiferalmorphogroups to dysoxic/anoxic con di tions in the PieninyKlippen Ba sin, Pol ish Carpathians. Palaeo ge ogra phy, Palaeo -climatology, Palaeo ec ol ogy, 110: 55–81.

Tyszka J. (2001) Microfossil as sem blages as bathymetric in di ca torsof the Toarcian/Aalenian „Fleckenmergel“ fa cies in the Carpa -thian Pieniny Klippen Belt. Geologica Carpathica, 52: 147–158.

Uhlig V. (1897) Geologie der Tatragebirges I. Einleitung und derstratigraphisches Theil. Anzeiger der AkademischeWissenschaften, Mathematisch-Naturwissenschafliche Klasse,64: 643–684.

Vïaèný M., Vozárová A., Vozár J. (2013) Geo chem is try of thePerm ian sand stone from the Malužiná For ma tion in the MaléKarpaty Mts (Hronic Unit, West ern Carpathians, Slovakia).Geologica Carpathica, 64: 23–38.

Ward P.D., Gar ri son G.H., Haggart J.W., Kring D.A., Beat tie M.J.(2004) Iso to pic ev i dence bear ing on Late Tri as sic ex tinc tionevents, Queen Char lotte Is lands, Brit ish Co lum bia, and im pli ca -tions for the du ra tion and cause of the Tri as sic/Ju ras sic mass ex -tinc tion. Earth and Plan e tary Sci ence Let ters, 224: 589–600.

Ward P.D., Gar ri son G.H., Williford K.H., Kring K.H., Goodwin D.,Beat tie M., McRoberts C. (2007) The or ganic car bon iso to picand paleontological re cord across the Tri as sic-Ju ras sic bound -ary at the can di date GSSP sec tion at Fergusson Hill, Mul ler Can -yon, Ne vada, USA. Palaeo ge ogra phy, Palaeoclimatology,Palaeo ec ol ogy, 244: 281–289

Weaver C.E. (1989) Clays, Muds, and Shales. Elsevier, De vel op -ments in Sedimentology, 44: 1–819.

White T., Gon za lez L., Ludvigson G., Poulsen C. (2001) Mid dleCre ta ceous green house hydrologic cy cle of North Amer ica. Ge -ol ogy, 29: 363–366.

Zajzon N., Kristály F., Pálfy J., Németh T. (2012) De tailed clay min -er al ogy of the Tri as sic-Ju ras sic bound ary sec tion atKendelbachgraben (North ern Cal car e ous Alps, Aus tria). ClayMin er als, 47: 177–189.

Ziegler P.A. (1980) North west ern Eu rope: sub si dence pat terns ofPost-Variscan Bas ins. Mémoires BRGM, 108: 249–280.

728 Otília Lintnerová, Jozef Michalík, Peter Uhlík, Ján Soták and Zuzana Weissová