ILC最終収束システムテストビームライン - Physics and Detector ...

43
ATF2 ILC最終収束システムテストビームライン 参照文献 : ATF2 Proposal, KEK Report 2005-2 ATF2 Proposal Vol.2, KEK Report 2005-9 ホームページ:http://atf.kek.jp/collab/ap/projects/ATF2/index.php OHO’06高エネルギー加速器セミナー (http://cocoa.kek.jp/oho06/ ) - 講義ノート:奥木敏行 (KEK)、最終収束系の設計 ILC School ( http://www.linearcollider.org/cms/?pid=1000272 ) - 講義:A. Seryi (SLAC), Beam Delivery

Transcript of ILC最終収束システムテストビームライン - Physics and Detector ...

ATF2 ILC最終収束システムテストビームライン参照文献 :ATF2 Proposal, KEK Report 2005-2ATF2 Proposal Vol.2, KEK Report 2005-9ホームページ:http://atf.kek.jp/collab/ap/projects/ATF2/index.phpOHO’06高エネルギー加速器セミナー (http://cocoa.kek.jp/oho06/) - 講義ノート:奥木敏行 (KEK)、最終収束系の設計ILC School ( http://www.linearcollider.org/cms/?pid=1000272 ) - 講義:A. Seryi (SLAC), Beam Delivery

iii

Boris Ivanovich Grishanov, Pavel Logachev, Fedor Podgorny, Valery Telnov(BINP SB RAS, Novosibirsk)

Deepa Angal-Kalinin, James Jones, Alexander Kalinin(CCLRC/DL/ASTeC,Daresbury, Warrington, Cheshire)

Olivier Napoly, Jacques Payet(CEA/DSM/DAPNIA, Gif-sur-Yvette)

Hans-Heinrich Braun, Daniel Schulte, Frank Zimmermann(CERN, Geneva)

Robert Appleby, Roger Barlow, Ian Bailey, Leo Jenner, Roger Jones, German Kourevlev(The Cockcroft Institute, Daresbury, Warrington, Cheshire)

Eckhard Elsen, Vladimir Vogel, Nick Walker(DESY, Hamburg)

Nikolay Solyak, Manfred Wendt(Fermilab, Batavia, Illinois)

Tohru Takahashi(Hiroshima University, Higashi-Hiroshima)

Jie Gao, Weibin Liu, Guo-Xi Pei, Jiu-Qing Wang(IHEP, Beijing)

Nicolas Delerue, Sudhir Dixit, David Howell, Armin Reichold, David Urner(John Adams Institute at Oxford University)

Alessio Bosco, Ilya Agapov, Grahame A. Blair1, Gary Boorman, John Carter, Chafik Driouichi,Michael Price

(John Adams Institute at Royal Holloway, Univ. of London)

Sakae Araki, Hitoshi Hayano, Yasuo Higashi, Yosuke Honda, Ken-ichi Kanazawa, Kiyoshi Kubo,Tatsuya Kume, Masao Kuriki, Shigeru Kuroda, Mika Masuzawa, Takashi Naito,

Toshiyuki Okugi, Ryuhei Sugahara, Toshiaki Tauchi,1 Nobuhiro Terunuma,Nobu Toge, Junji Urakawa, Hiroshi Yamaoka, Kaoru Yokoya

(KEK, Ibaraki)

Yoshihisa Iwashita, Takanori Mihara(Kyoto ICR, Uji, Kyoto)

Maria Alabau Pons!, Philip Bambade, Olivier Dadoun(LAL, Orsay)

!LAL, Orsay and IFIC, Valencia

ATF2 Proposal, Volume 2, 2005

iv

Benoıt Bolzon, Nicolas Ge!roy, Andrea Jeremie, Yannis Karyotakis(LAPP, Annecy)

Andy Wolski(LBL, Berkeley, California)

Je! Gronberg(LLNL, Livermore, California)

Stewart Takashi Boogert, Alexey Liapine, Stephen Malton, David J. Miller, Matthew Wing(University College London, London)

Masayuki Kumada(NIRS, Chiba-shi)

Samuel Danagoulian, Sekazi Mtingwa(North Carolina A&T State University, North Carolina)

Eric Torrence(University of Oregon, Eugene, Oregon)

Jinhyuk Choi, Jung-Yun Huang, Heung Sik Kang, Eun-San Kim, Seunghwan Kim, In Soo Ko(Pohang Accelerator Laboratory)

Philip Burrows, Glenn Christian, Christine Clarke, Anthony Hartin, Hamid Dabiri Khah,Stephen Molloy, Glen White

(Queen Mary University of London, London)

Karl Bane, Axel Brachmann, Thomas Himel, Thomas Markiewicz, Janice Nelson, Yuri Nosochkov,Nan Phinney, Mauro Torino Francesco Pivi, Tor Raubenheimer, Marc Ross, Robert Ruland,

Andrei Seryi1, Cherrill M. Spencer, Peter Tenenbaum, Mark Woodley(SLAC, Menlo Park, California)

Sachio Komamiya, Tomoyuki Sanuki1, Taikan Suehara(University of Tokyo, Tokyo)

1The Editorial Board

ATF2 Proposal, Volume 2, 2005

世界25の研究機関から110人以上の参加ヨーロッパ20ケ国による欧州合同素粒子原子核研究機構のセルン、9ヶ国

XTF LUCX

S-BandKlystron

RF-GunLaser

MB5G

BA1G

QA1G

QA2G

QA3G

ZH2G,ZV2G

ZH3G,ZV3G

ZH4G, ZV4G

GV2

QF1G

QD1G

QD2G

QF2G

MB4G

MS3G(DESMARQUEST, OTR)

MB6G

CP1G

RF-GUN

SOLENOID

ZH1X,ZV1X

GV1

MT1G(ICT1)

MB1G

BH1G

BH2G

BH3G

BH4G

MS1G(DESMARQUEST)

MB2G

MB3G

LUCXControl Room

CathodicArcDepositionroom

LUCX

52675.51

= atf2-ff-beamline

Drawing S.Araki: Modify by July 2006

52675.51

= atf2-ff-beamline

Optics v3.5, 1 July 2006

6m

最終収束システム

西側 テキスト

ビーム診断・計測ATF取り出しビームライン

の改良:分散の減少

Final GoalEnsure collisions between nanometer

beams; i.e. luminosity for ILC experiment

FACILITYconstruction, first result

ATF2/KEK2005-07-08?

FFTB/SLAC1991-93-94

OpticsPantaleo's local choromaticity

correction scheme; very short and longer L*

(β*y=100μm, Ltot=36.6m)

Oide's conventional (separate) scheme; non-local and

dedicated CCS at upstream; high symmetry; i.e. orthogonal tuning (β*y=100μm,, Ltot=185m)

Design beam size

34nm / 2.2μm, aspect=65(γεy=3 x 10-8 m)

60nm / 1.92μm, aspect=32(γεy=2 x 10-6 m)

Achieved ? 70nm ( beam jitter remains !)

Reduction of Risk at ILC

3.1 ATF2 FF optics and comparison with the ILC-FF 21

order of 104. Thus even with a small energy spread !E = 10!3 the beam size may easily grow by an or-der of magnitude. The chromaticity is corrected introducing sextupole magnets in dispersive regions.Most of the chromaticity comes from the final focus quadrupole magnets, therefore it is most e!ectiveto have the sextupoles in the final doublet, providing local compensation of chromaticity. The secondorder dispersion, arising from sextupoles, can be compensated simultaneously with chromaticity ifone allows that half of the total horizontal chromaticity would come from upstream of FD. Higherorder aberrations cancelled by proper beam transport relations with the upstream sextupoles. Thelocal chromaticity compensation for ILC optics is beneficial, because then the optics is less sensitiveto synchrotron radiation, can be reasonably short, even for TeV energy and can have large bandwidth(of about a percent or higher).

3.1.2 Proposed optics designs

The final focus beam line of the ATF2 is extending the existing ATF extraction line as shown inFig. 1.1. The optics of the ATF2 final focus with the new diagnostics section is shown in Fig. 3.3.The FF optics has L" = 1 m (distance from last focusing quadrupole to IP), "# = −0.14 (derivativeof dispersion at IP) with IP beta-functions #"

x/y = 4/0.1 mm. The total chromaticity of this optics isapproximately the same as in the ILC FF. The vertical beam size will be focused to 37 nm with theaspect ratio of about 100:1 similar to the ILC. The ATF2 beam parameters are compared with ILCparameters in Table 3.1.

The ATF2 proposal was originally considered with an alternative final focus optics proposed by Kurodaet al. in [5]. We have compared performance of both proposed designs and found that the optics sug-gested in [5] has fewer magnets and would be less expensive, however in this optics the chromaticitycorrection is not purely local, the tolerances on magnet strength and position are tighter, the band-width is narrower and scaling to TeV energy is more di"cult. Therefore, the NLC-like optics waschosen as a baseline design for the ATF2. A detailed report on comparison of these two optics optionsis in preparation [8].

Table 3.1: ATF2 proposed optics IP parameters in comparison with ILC.params ATF2 ILCBeam Energy [GeV] 1.28 250L" [m] 1 3.5 – 4.2$ %x [m-rad] 3e-6 1e-5$ %y [m-rad] 3e-8 4e-8#"

x [mm] 4.0 21#"

y [mm] 0.1 0.4"# (DDX) [rad] 0.14 0.094&E [%] ∼0.1 ∼0.1Chromaticity Wy ∼ 104 ∼ 104

The ATF2 optics was designed primarily using codes MAD, Transport, Turtle and DIMAD. However,

ATF2 Project, 2005

~ L*/β*y

(f*)

2つの最終収束光学システム13.1. Layout of Beam Delivery System 455

Collimator (1200 m)Momentum: chicane

Transverse: nonlinear collimator

Final Focus (1600 m)asymmetric dispersion

momentum acceptance: ±1%

Big Bend (8 mrad, 200 m)

Crossing angle (8 mrad)optional crab crossing

Transv. sep

=20 m

longitudinal separation =200 m

Linac Linac

IP1

IP2

Figure 13.1: Schematic layout of the beam delivery system. A common beam line will be used for

collision energies of from 250 GeV up to 1.5 TeV C.M. An exception is the final quadrupole magnets,

which need to be replaced as the beam energy is increased.

• While the exact relative orientation of two main linacs may depend on the condition of the site,it appears natural to build the two linacs along a common straight line. Hence, this is assumedto be the case in this design study.

The JLC-I report presented a design of the beam delivery system for a 500 GeV C.M. collider. Itslayout included eight big bend sections (i.e. two big bends / beam / IR. Hence, 8 big bends in total).At that time this layout was chosen mainly because of the short length of the transformer beam line(600 m), which was optimized for beam collisions at lower energies below 500 GeV.

For the present study the goal of the design was to have the entire final focus system capable ofhandling the whole future energy range of the collider up to 1.5 TeV, without major reconstruction.It has been found to be possible to arrive at such a design. In this new design, almost all magneticcomponents are commonly used with the strengths simply scaled with the beam energy, withoutrequiring any physical relocation. The final doublets are the only exceptions. They are supposed tobe replaced at least in three steps for beams energies of 250, 500, and 750 GeV. Also, in this latestdesign the number of big bend sections has been reduced to four (i.e. one big bend / beam / IR).

A large number of muons are generated at the collimation section when the tail particles hit thecollimator material. If the IP is on the straight line extrapolated from the beam direction in thecollimation section, it will result in a large flux of muon background tracks to traverse the detectorfacility. Therefore, a relative transverse o!set needs to be introduced between the IP and linac axis.This requirement determines the minimum bending angle of the big bend, together with the bendingangle of the final transformer.

In addition, it is preferable to have the two interaction regions (IRs) built with a longitudinal o!set,

JLC Design Study, April, 1997

4.9. Beam Delivery Section 221

4.9 Beam Delivery Section

4.9.1 Introduction

The electron and positron beams, after exiting from the main linac, before arriving at the interactionpoint (IP), pass through a beam line section which is about 1.4 km long. This section, togetherwith the beamline downstream of the IP is called ‘beam delivery section’. The beam delivery sectionconsists of four parts: switch-yard, collimator, final focus system (FFS), and beam dump. Fig. 4.63shows a schematic layout of the beam delivery section.

CollimatorBypass

Main Linac

Final Focus SystemBeam Dump

IP1

IP2

7 mrad

30 mrad

Switchyard

& diagnostics

Figure 4.63: Schematic plan of the beam delivery section.

In addition to making a tiny beam spot at the IP, the beam delivery section serves multiple purposes,as follows:

• Focus the beams at the IP.

• Switch beamlines. (The beam comes from the main linac or from the bypass line and goes tothe first or to the second IP.)

• Create a finite crossing angle at the IP (7 mrad).

• Collimate the beam for eliminating the background for physics experiments.

• Protect the machine from damages due to potential failures.

• Dump the beams after collisions safely.

JLC Project Report, Revised, March 12, 2003, 3:21 P.M.

~700m

~700m

(1) Non-local chromaticity correction : JLC Design Study

(2) Local correction : NLC, GLC  ILC

Tested at FFTB/SLAC

Not tested

L*=2mEb<750GeV

L*=3.5mEb<650GeV

特徴:コンパクトで、大きな L*

光学システムの選択

(1) Non-local correction

A plan of KEK-ATF Final Focus Test Beam Line (ATF2)!

Shigeru Kuroda, J.Urakawa, H.Hayano, K.Kubo, T.Okugi, S.Araki, N.Toge, T.Matsuda and T.Tauchi

High Energy Accelerator Research Organization(KEK), 1-1 Oho, Tsukuba-shi, Ibaraki, Japan

Abstract

This report describes one of the possible programs which

is being investigated as the near-future extension of Ac-

celerator Test Facility (ATF) at KEK. In this program, a

36.6m long final focus test beam line, which we call ATF-

2, adopts the new final focus optics proposed by P. Rai-

mondi and A. Seryi. The goal of ATF-2 will be to test ex-

perimentally this new optics and to realize the beam size

of 50nm or less for the E = 1.5GeV beam extracted

from ATF. We present in this short report the basic design

of ATF-2, results of tracking simulation and a simulation

study of a possible beam tuning procedure.

1 INTRODUCTION

ATF [1] was built to investigate the feasibility of future Lin-

ear Collider (LC), in particular, the feasibility to provide

an extremely-flat multi-bunch beam to the LC main linac

[2]. Recently we focus on the development of beam-tuning

techniques and the stabilization of key machine compo-

nents to extract the small emittance beam from the ATF

damping ring. Table 1 summarizes the accelerator parame-

ters so far achieved at ATF.

With the successful demonstration of the production of

ultra-low emittance beams, the ATF group has initiated in-

vestigations on its next-stage research programs, which are

collectively called ATF-II. One possibility is called ATF-

1, where a bunch compressor will be added in the beam

extraction line of ATF, followed by a short X-band linac

unit. This allows ATF-II to serve as a complete test injec-

tor for an LC. Another possibility is called ATF-2, where

the issues associated with the final focus system at linear

colliders will be studied. The ATF-2 takes advantage of the

ultra-low emittance beam at ATF, which offers a unique

opportunity to experimentally study the LC final focus sys-

tem. Fig. 1 shows a proposed plan view for ATF-II.

In the following we present the basis of the LC final fo-

cus system, the new final focus optics recently proposed,

the current design of ATF-2 and finally a short summary.

2 BASIS OF LC FINAL FOCUS SYSTEM

The LC final focus system is to squeeze electron and

positron beams from the main linacs to obtain maximum

luminosity. The vertical size of the beams at the interaction

point (IP) must be a few nm. One of the critical issues in

designing the final focus optics is how to suppress the beam

size growth due to the energy deviation ! = (E "E0)/E0.

!Correponding author: J.Urakawa, email:[email protected]

ATF- II

50.4

m

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 Lec2 L13 L14 L15 L16Lec1

120m

X-band Section

Bunch Compressor

1.54 GeV S-band Linac

1.54 GeVDamping RingControl Room

Final Focus

ATF1 ATF2

(compress from 30ps to 3ps)

Figure 1: Layout of ATF-II

The growth is approximately expressed as;

!"! = #!"!0 (1)

where # and "!0 are the chromaticity and the linear-optics

beam size, respectively. For the standard final focus optics

the chromaticity # is in the order of 103 # 104. Thus, even

with the small energy spread ! of # 10"3, the beam size

easily grows by a factor of 10. The chromaticity can be

corrected by introducing sextupole magnets (sextupoles) in

the dispersive regions. The sextupoles, however, have non-

linear magnetic field that also causes the beam size growth.

This nonlinear effect, the geometric aberration, can be can-

celled by the magnet configuration shown in Fig. 2. Only

IIII PPPP

- I -

I

SSSS FFFF 1111

SSSS

FFFF

2222

SSSS

DDDD

1111

SSSS

DDDD

2222

QQQQ

FFFF

QQQQ

DDDD

Figure 2: Cancellation of the Geometric Aberration

sextupoles and final quadrupole magnets (quadrupoles) are

shown in the figure. Between them there are many other

quadrupoles that are not shown. The two pairs of sex-

tupoles are required for the correction of horizontal and

vertical chromaticity. The transfer matrix between the two

sextupoles of each pair is set to be "I so that the nonlinear

kick by the first sextupole may be cancelled by the sec-

ond. This scheme of the geometric aberration cancellation

Chromaticity : Δσ* = ξδσ* , δ=(E-Eo)/Eo

6極磁石による色収差 ( ξ=L*/β* ) 補正 2対の6極磁石での幾何収差の補正

FFTB/SLACで実証

幾何収差補正

(2) Local correction

Table 1: Achieved and design parameters of ATF.

Items Achieved Values Design

Maximum Beam Energy 1.28GeV 1.54GeV

Circumference 138.6 ± 0.003m 138.6mMomentum Compaction 0.00214 0.00214Single Bunch Population 1.2 ! 1010 2 ! 1010

COD(peak to peak) x " 2 mm, y " 1 mm 1 mmBunch Length " 9 mm 5 mmEnergy Spread 0.08% 0.08%Horizontal Emittance (1.7 ± 0.3) ! 10!9 m 1.4 ! 10!9 m

Vertical Emittance (1.5 ± 0.75) ! 10!11 m 1.0 ! 10!11 m

Multibunch(M.B.) Population 12 ! 1010 m 20 ! 1010 m

M.B. Vertical Emittance (1 " 3) ! 10!11 m 1.0 ! 10!11 m

has been applied, with some modifications, to the JLC fi-

nal focus system [3] and also in the JLC Design Study [4].

The scheme was verified experimentally at the Final Fo-

cus Test Beam (FFTB) at SLAC, where beam was success-

fully squeezed to !y " 60nm [5]. A simple extrapolation

from FFTB, which takes only the physical emittance into

account, predicts the beam size of 36nm for ATF-2.

Recently P.Raimondi and A.Seryi has proposed a new

final focus optics [6]. With this optics that squeezes beam

as small as the standard optics does, the final focus beam

line for JLC or NLC can be as short as 500 m, much shorter

than those by the conventional design [7]. Therefore it is

very important to verify this new optics experimentally and

here ATF-2 will provide a unique opportunity.

3 NEW FINAL FOCUS SYSTEM

The new final focus system is shown schematically in

Fig. 3. In Fig. 3 some quadrupoles upstream of SF2 are

IIII PPPP

SSSS FFFF 1111

SSSS

DDDD

1111

SSSS

FFFF

2222

QQQQ

FFFF

SSSS

DDDD

2222

QQQQ

DDDD

PPPP

MMMM

QQQQ

NNNN

TTTT

rrrr

aaaa

nnnn

ssss

ffff

eeee

rrrr

MMMM

aaaa

tttt

rrrr

iiii

cccc

ssss

Figure 3: New Final Focus Optics

not shown. P, M, Q and N represent the transfer matri-

ces as shown in the figure. The chromaticity is corrected

by the sextupoles. Two of them are placed close to the final

quadrupoles that are major chromaticity sources because of

large beta-function there. The second order geometric aber-

ration is cancelled by other two sextupoles with the transfer

matrix given below;

MP =

!

"

"

#

F 0 0 0F21

1F 0 0

0 0 F 00 0 F43

1F

$

%

%

&

(2)

QM =

!

"

"

#

D 0 0 0D21

1D 0 0

0 0 D 00 0 D43

1D

$

%

%

&

(3)

Here the strength of the sextupoles must be chosen as

k2SF1 = #F 3k2SF2 and k2SD1 = #D3k2SD2. With

this conditions, however, still remains the 3rd order geo-

metric aberration that can be given by the coefficients of

polynomial expansion of the nonlinear map including the

sextupole actions. In the thin lens approximation, it is ex-

pressed as;

U3444 $ N234Q12(N33Q34 + N34Q44)2 (4)

U1244 = U3224 $ N234Q12 + N2

12Q12(NQ)234# 4N12N34Q34(NQ)12(NQ)34 (5)

The indices 1, 2, 3 and 4 represent x, px, y and py , respec-

tively. Thus the 3rd order geometric aberration is deter-

mined only by the two transfer matrices Q and N. With

adequate choice of the strength of the final quaduapoles,

U1244 = U3224 becomes zero and thus U3444 becomes

small.

4 DESIGN OF ATF-2

As we have discussed above, it is important to test exper-

imentally the new final focus optics at ATF-2. We here

propose a design of ATF-2. All the calculation in this sec-

tion was done by the computer program SAD developed at

KEK [8].

Before we discuss the design, we summarize in Table 2

the parameters of the extracted beam from ATF. The beam

emittance is same with that of the JLC design. The energy

高次の幾何収差の補正、x ,yの結合補正など非線形光学

P.Raimondi and A.Seryi, Phys. Rev. Lett. 86 3779 (2001)

ATF2で実証

光学システムの最適化:   現在は職人技、反復学習 (非線形光学)   自動化が課題; 主にヨーロッパで進行中

焦点

6極磁石

2極磁石

4極磁石

!

!x! =K1

(1 + !)(x + "!) ! K1("!x " "!2)

!x! =K2

2(x + !")2 ! K2!("x +

!"2

2)

!x! =K1

(1 + !)(x + "!)2 +

K!"match

(1 + !)x ! 2K1("!x "

"!2

2)

K!!match = K1 K2 =2K1

!

4極磁石:

6極磁石:

2対の4極磁石:

色収差 2次分散

FDでの分散の大きさはこれによるビームサイズの増大が10~20%になるようにする。

色収差補正と2次分散補正

x2項=幾何収差補正

4

SP2

SP3

FD phase

IP phase

ILCFF6.mad

SPE

ABE

AB9

AB7

ILC version with survivable ILC version with survivable

betatron-spoilers for x- betatron-spoilers for x-ing ing IRIR

AB10

12

Blue dashed- existing extraction line

Red – new final focus

FF optics is NLC-like

ATF2-FF (35m)

電子ビーム

ILC-FF (700m)

ATF2の光学システム

焦点

電子ビーム

D

F

SF6

SF5

SD4

SF1

SD0

B1 B2 B5

XTF LUCX

S-BandKlystron

RF-GunLaser

MB5G

BA1G

QA1G

QA2G

QA3G

ZH2G,ZV2G

ZH3G,ZV3G

ZH4G,ZV4G

GV2

QF1G

QD1G

QD2G

QF2G

MB4G

MS3G(DESMARQUEST,OTR)

MB6G

CP1G

RF-GUN

SOLENOID

ZH1X,ZV1X

GV1

MT1G(ICT1)

MB1G

BH1G

BH2G

BH3G

BH4G

MS1G(DESMARQUEST)

MB2G

MB3G

LUCXControl Room

CathodicArcDepositionroom

LUCX

52675.51

= atf2-ff-beamline

Drawing S.Araki: Modify by July 2006

2091

!"#$%

!&'()

!&'()*+&,!(

-!(&.*)//0

123$%

'45567

-289%26*)":;*<*1-

,'0

+"=6$

'>?89";$@A28?92%

!2:"6*:289%26*%22A

LASERWIRE5m x 8mShintake Monitor

5m x 9m

5個のワイヤスキャナー, レーザーワイヤー5個のストリップラインBPM3個のスクリーンモニター

BSM

CLICテーブル

ATF2最終収束システムの電磁石と計測機器

H VVHV

5個のステアリング磁石

SF5

H

53 m

22個の4極磁石 5個の6極磁石 3個の2極磁石 ( QM16から焦点まで37.5m)

QM16

SD4 SF6B5B2B1QD0 QF1

SD0SF1

4極と6極のすべての磁石に空洞型ビーム位置モニター(QBPM)を設置3.5m

焦点

新竹モニター(BSM, レーザー干渉計を用いたビームサイズ測定)QBPM(100nmのビーム軌道位置分解能)とIPBPM(<5nmの分解能)Monalisa (レーザー干渉計を用いたナノメータレベルの位置モニター)レーザーワイヤー(1μmのビームサイズ測定)高速フィーッドバックシステム(150-300nsのビームバンチ間隔内)磁石用可動台(BBA用)、電磁石用電源システム(HA仕様)

10!4

10!3

10!2

10!1

Field strength error giving 2% effect on beam size!

K/K

QM

16

QM

15

QM

14

QM

13

QM

12

QD

10

QD

10

QF

9

QF

9

QD

8

QF

7

B5

QD

6

QF

5

QF

5

QD

4

QD

4

B2

QD

2B

QF

3

QD

2A

B1

QF

1

QD

0

ILCATF2

100

101

102

103

104

Magnet tilt error giving 2% effect on beam size

! til

t ,

mic

rora

dia

n

QM

16

QM

15

QM

14

QM

13

QM

12

QD

10

QD

10

QF

9

QF

9

QD

8

QF

7

B5

QD

6

QF

5

QF

5

QD

4

QD

4

B2

QD

2B

QF

3

QD

2A

B1

QF

1

QD

0

ILCATF2

10!3

10!2

10!1

100

101

102

Jitter position error giving 2% effect on beam size

! Y

,

mic

ron

QM

16

QM

15

QM

14

QM

13

QM

12

QD

10

QD

10

QF

9

SF

6

QF

9

QD

8

QF

7

QD

6

QF

5

SF

5

QF

5

QD

4

SD

4

QD

4

QD

2B

QF

3

QD

2A

SF

1

QF

1

SD

0

QD

0

ILCATF2

10!1

100

101

102

103

Static position error giving 2% effect on beam size

! Y

mic

ron

QM

16

QM

15

QM

14

QM

13

QM

12

QD

10

QD

10

QF

9

SF

6

QF

9

QD

8

QF

7

QD

6

QF

5

SF

5

QF

5

QD

4

SD

4

QD

4

QD

2B

QF

3

QD

2A

SF

1

QF

1

SD

0

QD

0

ILCATF2

ΔK/K(K, Ltot)

Δtilt(σx/σy)

Δy_jitter(σx ,σy)

Δy_static(σx ,σy)

Δσ*/σ*=2% or Δy=0.15σ*

Δσ*/σ*=2% or Δy=0.15σ*

Δσ*/σ*=2% or Δy=0.15σ*

Δσ*/σ*=2% or Δy=0.15σ*

Δσ*/σ*=2% or Δy=0.15σ*

Δσ*/σ*=2% or Δy=0.15σ*

Mode-I A. Achievement of 37nm beam size A1) Demonstration of a new compact final focus system; proposed by P.Raimondi and A.Seryi in 2000, A2) Maintenance of the small beam size (several hours at the FFTB/SLAC)

Mode-II B. Control of the beam position B1) Demonstration of beam orbit stabilization with nano-meter precision at IP. (The beam jitter at FFTB/SLAC was about 20nm.) B2) Establishment of beam jitter controlling technique at nano-meter level with ILC-like beam (2008 -?)

Future prospects ILC-style beam; 20 bunches sb=300nsec - requires completetion of fast extraction kicker with rise time of less than 1ns and stable amplitude - intra-pulse feedback (active feedback) Optional Photon facility - laser and optical cavities for photon linear collider - generation of photon beam by back-scattering with the focused electron beam at IP ”Strong QED” experiments

- Non-linear QED with Laser intensity of > 1019 W/cm2

ATF2は国際協力で、設計、建設そして運転

ミニILCモデル

(1) Optics, beam tuning and commissioning! KEK, IHEP, KNU(2) Shintake monitor! KEK, University of Tokyo(3) Quadrupole magnets: 28 in total design (KEK, IHEP, SLAC), production (IHEP),! magnetic field measurement (KEK, IHEP)(4) Cavity BPMs (QBPMs) with 100nm resolution ; 39 in total! design (KEK, PAL), production (PAL)! digital readout electronics (SLAC)(5) IPBPM with 2nm resolution ; a IPBPM in BSM and a quartet at IP! design (KEK), production (KEK), electronics (KEK)! lower Q type R&D (KNU) (6) S-band BPM ; ! design and production (KNU)!

Asian Contributions

Contribution to ATF2 from America

Participation in optics designElectronics for Q-BPMsParticipation in design and measurements of Q-magnets (being made at IHEP)Movers for beamline magnetsHigh availability power supplies Quads for final doubletSextupole & octupole magnets, design, production maybe in IHEPFinal focus bends Participation in commissioning and operation

(1) Optics, beam tuning and commissioning! Daresbury lab.(2) Laserwire! RHUL, Oxford University (3) Beamline simulation by BDSIM (Geant4)! RHUL (4) Fast feedback system, FONT and feedforward system! Oxford University, Daresbury lab.(5) Monalisa ; Compact Straightness Monitor (CMS) at IP! Oxford University (6) S-band BPM ; ! University of London!

UK Contributions

CERN/France Contributions

• Development and implementation of the beam

correction algorithms

• Beam line modeling with an optimised version of the

GEANT4 simulation

• Active stabilisation of critical mechanical support

structures for the final Focus

• Development of specific beam instrumentation

DESY at ATF2

• Stabilisation study for the FD system and the site (ground motion at the ATF2 floor)

• Laserwire; interest in Compton detector and in data taking + analysis (part of EUROTeV)

• Fast kicker to produce the ILC like bunch structure at ATF2 in the future.

• DESY may also be interested in fabrication of magnets.

• Remote operations or monitoring ( GAN )

• Example : a power system with Ethernet control that will provide 200A in a 4 out 5 redundant module configuration.

HA system by SLAC

for a bend

KEK ATF2 Project – High Availability Redundant Power Supply

Phase 1 Final Report 31 Mar 06

5

Figure 4: Current Recovery Response at 150A output current;

Ch1: Current 15A/V; Ch4: Voltage

7.2 Using a Hall probe, magnetic measurements conducted by SLAC’s Magnetic

Measurements Department determined the effects of the current drop on the magnetic

field. The magnetic field suffered a drop of 100 Gauss when the output current drops by

6A. During this test, the current was set at 150A and the nominal field was 3.1 kGauss.

Similar to the current, the magnetic field does not overshoot when returning to its

nominal field, and thus will not require re-standardization. Figure 5 below shows the

measurement of the magnetic field when a module fails.

Figure 5: Magnetic Field Recovery Response at 3.1 kGauss, 100A

Ch1: Magnetic Field 10 kGauss/V; Ch4: Voltage

7.3 By lowering the rating of an output fuse to 15A from 60A in one of the modules, it

opened when the system current exceeds its rating. The reaction of the system to the

KEK ATF2 Project – High Availability Redundant Power Supply

Phase 1 Final Report 31 Mar 06

5

Figure 4: Current Recovery Response at 150A output current;

Ch1: Current 15A/V; Ch4: Voltage

7.2 Using a Hall probe, magnetic measurements conducted by SLAC’s Magnetic

Measurements Department determined the effects of the current drop on the magnetic

field. The magnetic field suffered a drop of 100 Gauss when the output current drops by

6A. During this test, the current was set at 150A and the nominal field was 3.1 kGauss.

Similar to the current, the magnetic field does not overshoot when returning to its

nominal field, and thus will not require re-standardization. Figure 5 below shows the

measurement of the magnetic field when a module fails.

Figure 5: Magnetic Field Recovery Response at 3.1 kGauss, 150A

Ch1: Magnetic Field 10 kGauss/V; Ch4: Voltage

7.3 By lowering the rating of an output fuse to 15A from 60A in one of the modules, it

opened when the system current exceeds its rating. The reaction of the system to the

200ms

150A HA-PS性能試験 : 3 +1システム

電流6Aダウン

磁場100Gダウン磁場 3.1kG

電圧降下

1モジュール OFF

短期的安定性 2-3ppm長期的安定性 5ppm温度係数 2.5ppm/℃

ATF2でのアップグレード

波長を1/2の532nm光学システムの更新

FFTBの結果

『40nm』のジッターの除去目標:10nm以下

東京大学

新竹モニター

独立した干渉縞のモニターによる安定化(位相制御)

3.2nm

7.5nm

安定化前

安定化後最初の試み:むき出しの光学システム等

新しいビームサイズモニター新竹モニター 350nmまで測定可能5μmのカーボンワイヤースキャナーは1μm以上測定可能350nmから1μmまでの新モニター

サブミクロンのパターンターゲット?他に?

数umから35nmまで焦点でのビームサイズ測定を行う

principle

• Put a thin film target that has a fine structure in its

thickness

• Beam produces a background when it hits the target

• yield will be proportional to the convolution of

beam density and the thickness of the target

• wire-scanner type detector

• Beam size measurement

• measure the fluctuation of the signal yield

• small beam: signal strength becomes two states,

beam hits at thin area or thick area.

• large beam: constant signal strength

• Expendable target

• The target may be destroyed by the beam. Move

the target in each beam pulse to use new area.

• position is not controllable

• statistical approach

• works even if beam position has a jitter

example

• This is just a mathematical calculation of the convolution of

• gaussian shape beam

• rectanglar shaped pattern target

• fluctuation of the signal in many pulses assuming random

beam position

• distance of the two peaks is a good measure to estimate the

beam size

• beam size is bigger, distance becomes narrower

• sensitive if beam size is in the range of 0.2~0.7 pattern unit

σ= 0.1u

σ= 0.2u

σ= 0.4u

σ= 0.6u

σ= 0.8u

example

• This is just a mathematical calculation of the convolution of

• gaussian shape beam

• rectanglar shaped pattern target

• fluctuation of the signal in many pulses assuming random

beam position

• distance of the two peaks is a good measure to estimate the

beam size

• beam size is bigger, distance becomes narrower

• sensitive if beam size is in the range of 0.2~0.7 pattern unit

σ= 0.1u

σ= 0.2u

σ= 0.4u

σ= 0.6u

σ= 0.8u

example

• This is just a mathematical calculation of the convolution of

• gaussian shape beam

• rectanglar shaped pattern target

• fluctuation of the signal in many pulses assuming random

beam position

• distance of the two peaks is a good measure to estimate the

beam size

• beam size is bigger, distance becomes narrower

• sensitive if beam size is in the range of 0.2~0.7 pattern unit

σ= 0.1u

σ= 0.2u

σ= 0.4u

σ= 0.6u

σ= 0.8u

Honda Monitorwith a pattern target

σ=ビームサイズ

σ=ビームサイズ

2つのピークの距離

例)3μmパターンで、σの300nmから2.4μmまで測定可能

!"#$%&'()*'+$%,'-$)./01*.-0120/0!%$#0'!.3)/04'∗∗∗∗'

!"#$%&'()'*(+,#&-.(/,%#0,#*(12"3%"#(+4(15'2%*(1)67*(8169(:&;&0%'(<&'2,*(=>=*(/&3&#9(/"??@"A(

+'?;'#*()A#B"&#(:"B%#,-,$'"0*(816(

(

(((((((((((((((((((((((((((((( (((((((((((((((((((((((((((((∗(C,@;(0D33,@2".(EA(2%"(8414(FG>(7,#2@&B2(<,4(F>H67IJHKL1MIINON4(

(

!"#$%&'$(P#( 2%'0( 3&3"@*( Q"( 3@"0"#2( &( #,R"-( 3,0'2',#( 0"#0'2'R"(

0'$#&-( 3'B;D3( 0B%"5"( ?,@( &( B&R'2A( STU4( :%"( 0B%"5"(

D2'-'V"0( 2%"( WH3-&#"( ,?( 2%"( Q&R"$D'."( 2,( B,D3-"(

5&$#"2'B&--A( 2,( 2%"( 0'."(,?( 2%"(B&R'2A*(Q%'B%( @"0D-20( '#(&(

0"-"B2'R"(B,D3-'#$(2,(2%"(.'3,-"(5,."(&#.(&(2,2&-(@"X"B2',#(

,?(2%"(5,#,3,-"(5,."4(:%'0(0B%"5"($@"&2-A(0'53-'?'"0(2%"(

STU($",5"2@A(&#.(@"-&Y"0(5&B%'#'#$(2,-"@&#B"04(C"(Q'--(

3@"0"#2(."2&'-".(#D5"@'B&-(02D.'"0(,#(0DB%(&(B&R'2A(STU*(

&#&-AV"('20(@"0,-D2',#(-'5'2(&#.(2,-"@&#B"(@"ZD'@"5"#20(?,@(

&( #&#,5"2"@( @"0,-D2',#4(M'#&--A(3@"0"#2( 2%"(5"&0D@"5"#2(

@"0D-20(,?(&([HE&#.(3@,2,2A3"4(

5'$6%4.-3!%$.6'

+"ZD'@"5"#20( ,#( 2%"( S"&5HT,0'2',#( U,#'2,@( \STU](

0A02"5(?,@(2%"(3@,3,0".(<"Y2()'#"&@(7,--'."@(^O_(&@"(R"@A(

02@'#$"#2*("03"B'&--A(,#(3,0'2',#(02&E'-'2A4(P#(,@."@(2,(5""2(

2%"0"( @"ZD'@"5"#20( '2( Q&0( ."B'.".( 2%&2( B&R'2A( STU0(

^`*J*a*N_( Q"@"( 2%"( E"02( B%,'B"4( P#( &( B,#R"#2',#&-( B&R'2A(

STU( ."0'$#*( 3'B;D30( B,D3-"( 2,( E,2%( :UOO( \3,0'2',#(

0"#0'2'R"](&#.(:UIO(\,#-A(B%&@$"(0"#0'2'R"](5,."04(1'#B"(

?,@(05&--(E"&5(,??0"20*(2%"(:UIO(0'$#&-('0(5&#A(,@."@0(,?(

5&$#'2D."( -&@$"@( 2%&#( 2%"( :UOO( 0'$#&-*( ,#"( B&##,2( D0"(

.'@"B2-A(2%"(0'$#&-(?@,5(,#"(3'B;D3(2,(."2"@5'#"(2%"(E"&5(

3,0'2',#4( :%"( B,55,#( 3@&B2'B"( '0( 2,( "-'5'#&2"( 2%"( :UIO(

B,55,#(5,."(D0'#$( &(5&$'BH:( -';"( 0DE2@&B2',#b&..'2',#(

."R'B"*(Q%'B%(0DE2@&B20( 2%"(0'$#&-(,?( 2%"(:UIO(5,."(&#.(

B,5E'#"0( 2%"( :UOO( 0'$#&-( ?@,5( 2Q,( 3'B;D30( 3-&B".(

0A55"2@'B&--A( ,#( 2%"( B&R'2A4( :%'0( B,53-'B&2"0( 2%"( STU(

0A02"5( &#.( 0DEX"B20( '2( 2,( 2'$%2( 2,-"@&#B"04( :,( "-'5'#&2"(

2%"0"( B,53-'B&2',#0*( Q"( 3@,3,0"( &( #,R"-( ."0'$#( ?,@( &(

B&R'2A( STU( 2%&2( D0"0( 2%"( WH3-&#"( ,?( 2%"( Q&R"$D'."( 2,(

B,D3-"( 5&$#"2'B&--A( 2,( 2%"( 0'."( ,?( 2%"( B&R'2A4( :%'0(

B,D3-'#$( 0B%"5"( 0"-"B2'R"-A( B,D3-"0( 2%"(Q&R"$D'."( ,#-A(

2,(.'3,-"(5,."04(:%"( 0D33@"00',#(,?( 2%"(:UIO( &#.(,2%"@(

5,#,3,-"( 5,."0( $@"&2-A( 0'53-'?'"0( 2%"( $",5"2@A4( :%"(

0'$#&-( ?@,5( 2%"( Q&R"$D'."( B&#( 2%"#( E"( .'@"B2-A( D0".( 2,(

,E2&'#(E"&5(3,0'2',#4(:%'0(B,D3-'#$(0B%"5"(&-0,(3@,R'."0(

-,,0"@( 2,-"@&#B"04( P#( 2%'0( 3&3"@*( Q"( Q'--( 3@"0"#2( 2%"(

."2&'-".(#D5"@'B&-(&#&-A0'0(,#(0DB%(&(B&R'2A(STU(."0'$#(

&#.( &#&-AV"( 2,-"@&#B"( @"ZD'@"5"#20( 2,( @"&B%( #&#,5"2"@(

@"0,-D2',#( D0'#$( 0DB%( &( B&R'2A( STU4( :%"( #D5"@'B&-(

02D.'"0(Q'--(&00D5"([HE&#.(?@"ZD"#BA4(P#(2%"(B&-BD-&2',#0(

2,(?,--,Q*(Q"(&00D5"(&(O)*(ED#B%(B%&@$"*(Q%'B%('0(B-,0"(

2,(2%"(<)7(E"&5(3&@&5"2"@4(

7'!.3)/$68'*0!,"6$2*'

G#"( ,?( 2%"( 5&X,@( B,#B"@#0( '#( &( B&R'2A( STU( '0( 2%"(

B,#2&5'#&2',#( ,?( 2%"( :UIO( \5,#,3,-"]( 5,."4( :%,D$%(

@"0,#&#2(&2(&(5DB%(-,Q"@(?@"ZD"#BA*(2%"(2&'-(&53-'2D."(,?(

2%"( :UIO( 03"B2@D5( &2( 2%"( :UOO( ?@"ZD"#BA( B&#( E"( 5&#A(

,@."@0( ,?( 5&$#'2D."( %'$%"@( 2%&#( 2%"( :UOO( 5,."( Q%"#(

"YB'2".( EA( &( E"&5( Q'2%( &( 05&--( ,??0"24( S"B&D0"( ,?( 2%"(

.'02'#$D'0%&E-"( 5,."( 3&22"@#0( ,?( 2%"( :UIO( &#.( :UOO(

5,."0*('2('0(3,00'E-"(2,(."0'$#(2%"(B,D3-'#$(Q&R"$D'."(2,(

B,D3-"( 0"-"B2'R"-A( 2,( 2%"( :UOO( 5,."( ED2( #,2( 2%"( :UIO(

5,."( ^L_4( 6( 0B%"5&2'B( ,?( 0DB%( &( B,D3-'#$( 0B%"5"( '0(

0%,Q#( '#( M'$4O*( Q%"@"( 2%"( Q&R"$D'."( '0( B,D3-".( 2,( 2%"(

B&R'2A( :UOO( 5,."( 5&$#"2'B&--A( 2%@,D$%( 2%"( @&.'&-(

5&$#"2'B( ?'"-.4( :%"( Q&R"$D'."( 5,."( .,"0( #,2( %&R"(

&V'5D2%&-(5&$#"2'B(?'"-.0('#(2%"(B,D3-'#$(0-,2*(%"#B"(2%"@"(

'0(#,(B,D3-'#$(2,(2%"(B&R'2A(:UIO(5,."4(M,D@(Q&R"$D'."0(

\?-&$0]*( Q'2%( 2Q,( '#( 2%"( R"@2'B&-( 3-&#"( 2%&2( 3'B;D3( 2%"( +H

.'03-&B"5"#2(&#.( 2Q,( '#( 2%"(%,@'V,#2&-(3-&#"( 2%&2(3'B;D3(

2%"( ,H.'03-&B"5"#2( &@"( #"".".( 2,( ;""3( 2%"( STU(

0A55"2@'B( 2,( "-'5'#&2"( +-,( B,D3-'#$( &#.( 2%"( B,55,#(

5,."( -"&;&$"4( P2( '0( '53,@2&#2( ?,@( 2%"( Q&R"$D'."0( #,2( 2,(

BD2( 2%@,D$%( 2%"( E"&5( 3'3"( '#( ,@."@( 2,( 3@,R'."( B-"&#(

0'$#&-0(&2(2%"(3,@204((

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

:%"(U6MP6(0'5D-&2',#(,?(2%"(STU(Q'2%(2%"(E"&5(,??0"2(

'#( 2%"( +H3-&#"( '0( 0%,Q#( '#( M'$4( `4( :%"( ,H3,@2( 03"B2@D5(

M'$D@"( `( :%"( ,H3,@2( 0'$#&-( 03"B2@D5( ?,@( &( E"&5

,??0"2('#(2%"(+H3-&#"4(:%"(B,D3-"@(,#-A(B,D3-"0(2,(2%"

:UOO 5,."*(@"X"B20(2%"(5,#,3,-"(5,."4(

6 8 10 12 14 16 1 8 2 00

10

20

30

40

Y-portspectrum

6 8 10 12 14 16 18 20F (GHz)

0

1500

3000

4500

6000

Beamimpedance

M'$D@"(O(7&R'2A(STU(Q'2%(.'3,-"(5,."(0"-"B2'R"

B,D3-"@4

c,(3,@2

H,(3,@2

Y(3,@2

韓国PALグループ製作 6426±1MHzX-Y方向の分離

< -40dB超扁平ビームで重要

読み出し原理:磁場のみを取り出す

磁場電場

x方向にずれた電子ビーム 

QBPM エレクトロニクス

• Downmix ~6426 MHz to 26 MHz• 2ch/box• Single LO input. Level 3dbm• Forward and reverse calibration inputs.

Level from 0 to 20dbm• DC input 5.8 W at 8V• Analog outputs monitor LO power,

Calibration power and board temperature.

• Output to 14-bit 100 MHz SIS digitizers

SLACグループ

分解能 (100nm )は、エレクトロニクスのノイズで決定される。

Starting point of the design work

• Challenges

• ultimate y-direction resolution

• 1 nm signal > thermal/amplifier noise

• under angle jitter condition

• 100 urad angle signal < 1 nm position signal

• under large x jitter

• Basic idea

• thin gap to be insensitive to the beam angle

• small aperture to keep the sensitivity

• Additional idea

• separation of x and y signal

• higher coupling to have stronger signal

IP-BPM (2nm) R&D

position/angle =f L2

4 : 1

Y.Honda, 1st ATF2 project meeting

IPBPMの構造

reflection of the adapter

al=5.8mmap=9.2mm

4: Y-port

Y port Y port

X port

X port

6.0mm

12.0mm

R3.0mm

8.0mm

2.0mm

2.0mm

a: 61.45mm

b: 48.58mm

R=4.0mm

slot position(spy=17.5mm)

slot position(spx=16.0mm)

slot1.5x13.0x1.5

R=4.0mm

cl: cavity length = 6.0mm

5:

4

single cell

double cell

6mm depth, along the beam line

直方体の空洞6mmの深さ

120mm

200mm

520mm

200mm

90mm450mm

QF1 SD0 QD0SF1

305mm305mm

90mm 450mm

2400mm

540mm 540mm 540mm 540mm

最終収束電磁石システムの安定化

電子ビーム

QD0の位置変動はほぼそのまま焦点に伝わる

目標:5nm以下に安定化させること。

R&D schedule• Nov. 2006

• installation

• check basic characteristics (pulse shape, position sensitivity, angle sensitivity)

• Dec. 2006

• comissioning with new electronics

• phase detection with a reference cavity

• 3-BPM system check (only for Y), electronics noise limit

• Jan.~Mar. 2007

• install the alignment mover

• attach the optical interferometer sensor to stabilize the system

• Apr.~Jun. 2007

• install bunch length monitor

• resolution test with the total system

• Oct.~Dec. 2007

• continue resolution test after improvements

• test new BPMs

• low-Q design BPM (KNU)

• IP-BPM dedicated for Shintake monitor

• ODR location might be a candidate to test these

焦点と最終収束電磁石QD0の相対位置変動のモニター

(1) IPBPMの新竹モニターへの固定

焦点

新竹モニター

電子ビーム入射位置をナノメーター精度でモニター

(2) レーザー干渉計によるモニター

MONALISA オックスフォード大学

Cost Breakup, 26 Jan.07

mag

nets

powe

r sup

plies

magnet su

pports

including

movers

alignmentvacuum

controlfeedbackQ-BPMs

laserwire

Shintake

monitor

CF :Infrastructure

CF:floor,shield etc.

Total 5.7 Oku-yen

commissioning tools

Monalisa

Asia(host)N.America

Europe

Asia(host)

N.America

Europe

(1) mini-ILC modelequal sharing on the components, while the host country prepares the conventional facility.

(2) present statusa la Japanese costing rule

(1)

(2)

26 Jan. 2007

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

2004 2005 2006 2007Japanese Fiscal Year

Yen

Asia

N.America

Europe

in-kind

26 Jan. 2007

0

0.5

1.0

1.5

2.0

Oku

-Yen

2.5

3.0

CF/I

nfra

stru

ctur

e

FFTB movers

CLIC table

-

New schedule for construction

• Construction of the extended shield area for final focus system can be done during the ATF beam operation.

• Partial construction beside the current EXT line in shutdown week will release the work load for reconfiguration of the EXT line in summer of 2008.

• ATF2 beam will come in October, 2008.

まとめ現在 ATF2 運転開始

1. 国際チームによる建設と運転 : ミニILCモデル ー 豊富な国際交流2. ナノメータビームにより最先端加速器技術の開発研究3. 2008年10月からATF2運転開始、さらに将来計画の夢4. 新しい人の参加を歓迎

Very Recent Status of ATF(Mar.2007)

1.Injection Strategic study by RF Gun experts

→2×1010/bunch in single bunch operation down to EXT

Gun laser sometimes unstable. Need #10 Mod repair for multi-bunch operation

2. DR Routine tuning(η and coupling correction)

→emity≈1e-11m(zero-current limit)

3. EXT Still observed emittance growth

→Issue for study(So long no study since 2000)

ε measurement usually suffers from limited strength

of skew Q for η correction. No coupling correction.

Many R&Ds are on-going well. e.g. LW, Cav.BPM, New DR BPM, FONT4, …..

S.Kuroda(KEK)

0

1 10-11

2 10-11

3 10-11

4 10-11

5 10-11

6 10-11

0 5 109

1 1010

1.5 1010

2 1010

2.5 1010

BeamSize.vs.I.Mar2007

emity(XSR)[m]emity(WS)[m]

emity[m]

N

XSR meas. βx=1.69m 13Mar2007WS meas. Δp/p=9e-4 15Mar2007

Preliminary

期待1. 取り出しラインでのエミッタンス増大の原因究明

2. コミッショニンググループへの参加   光学、ビームチューニング

3. ATF2ビームラインの建設   電磁石、電源システム、真空システム   ビームサイズモニター、BPM フィードバックシステム4. DR low emittance tuning, RF stability laser stability at e-source5. EPICS and SAD interface : BPM, magnets

1. 取り出しラインでのエミッタンス増大の原因究明

国際ワーキンググループの結成;今年3月提案世話人:黒田茂、F.Zimmermann、A.Seryi (tentative)

KEK : 黒田、奥木、久保SLAC : A.Seryi, M.Woodley, F.ZhouLAL : P.Bambade, M.A.Pons, Y.Renier, A.Faus-GolfeCERN : F.Zimmermann, R.Thomas, D.SchulteDaresbury : D.A.Kalinin, J.Jones, R.Appleby, A.ScarfeIHEP : J.Gao, S.Bai, X.ZhouPhD所得予定の大学院生

2. コミッショニンググループへの参加

ATF現有グループ:黒田、奥木、久保