Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System

22
K. Fukagata and N. Kasagi, published in J. Comput Phys. 181, 478-498 (2002) 1 Highly energy-conservative finite difference method for the cylindrical coordinate system Koji Fukagata † and Nobuhide Kasagi Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Institute for Energy Utilization, AIST 1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan E-mail: [email protected] Version: Published in J. Comput. Phys. 181, 478-498 (2002) (Received 5 November 2001; revised 3 June 2002) ABSTRACT A highly energy-conservative second-order accurate finite difference method for the cylindrical coordinate system is developed. It is rigorously proved that the energy conservation in the discretized space is satisfied when appropriate interpolation schemes are used. This argument holds not only for an unequally-spaced mesh but also for an equally-spaced mesh on the cylindrical coordinates, but not on the Cartesian coordinates. Numerical tests are undertaken for an inviscid flow with different schemes, and it turns out that the proposed scheme offers a superior energy conservation property and greater stability than the intuitive and previously proposed methods, for both equally-spaced and unequally-spaced meshes. Key Words: Finite difference method; Cylindrical coordinate system; Pipe flow; In- compressible flow; Energy conservation; Advection; Body force; Singularity. 1. INTRODUCTION With continuous development of high-performance computers, direct numerical sim- ulation (DNS) and large eddy simulation (LES) have become very popular and even in- evitable tools for turbulence research [1–4]. In general, the finite difference (FDM) and finite element (FEM) methods are used in these computations, whilst for special config- urations with directional homogeneity such as homogeneous turbulence and channel flow very accurate simulation can be performed using the spectral method [5]. One of the most important requirements in FDM-based DNS / LES of incompressible flows is the flux and energy conservation property of the discretized advection terms. With- out a sufficient degree of the flux and energy conservation in the discretized space, compu- tations may become unstable and eventually diverge. The idea of energy conservation in the discretized space had already been addressed in the earliest stage of the development of numerical schemes and it had then been applied to establishment of an energy-conservative second-order accurate FDM on an equally-spaced mesh in the Cartesian coordinates [6, 7]. However, for a long while, it had been unclear whether such energy-conservative schemes exist for higher-order finite difference, for unequally-spaced mesh or for coordinate sys- tems other than the Cartesian coordinates. Recently, Morinishi et al. [8] generalized the higher-order finite difference schemes as relevant combinations of second-order finite differences defined on different stencils, and succeeded in developing energy-conservative fourth-order accurate finite difference

Transcript of Highly Energy-Conservative Finite Difference Method for the Cylindrical Coordinate System

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 1

Highly energy-conservative finite differencemethodfor thecylindrical coordinatesystem

Koji Fukagata� † andNobuhideKasagi�� Department of Mechanical Engineering, The University of Tokyo7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

† Institute for Energy Utilization, AIST1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan

E-mail: [email protected]

Version:Publishedin J. Comput. Phys. 181, 478-498(2002)(Received5 November2001;revised3 June2002)

ABSTRACTA highly energy-conservative second-orderaccuratefinite differencemethodfor thecylindrical

coordinatesystemis developed.It is rigorouslyprovedthattheenergy conservationin thediscretizedspaceis satisfiedwhenappropriateinterpolationschemesareused.Thisargumentholdsnotonly foran unequally-spacedmeshbut alsofor an equally-spacedmeshon the cylindrical coordinates,butnot on theCartesiancoordinates.Numericaltestsareundertakenfor aninviscid flow with differentschemes,andit turnsout that the proposedschemeoffers a superiorenergy conservation propertyandgreaterstability thantheintuitive andpreviouslyproposedmethods,for bothequally-spacedandunequally-spaced meshes.

Key Words: Finite differencemethod;Cylindrical coordinatesystem;Pipeflow; In-compressibleflow; Energy conservation;Advection;Body force;Singularity.

1. INTRODUCTION

With continuousdevelopmentof high-performancecomputers,direct numericalsim-ulation (DNS) andlarge eddysimulation(LES) have becomevery popularandeven in-evitable tools for turbulenceresearch[1–4]. In general,the finite difference(FDM) andfinite element(FEM) methodsareusedin thesecomputations,whilst for specialconfig-urationswith directionalhomogeneitysuchashomogeneousturbulenceandchannelflowveryaccuratesimulationcanbeperformedusingthespectralmethod[5].

Oneof themostimportantrequirementsin FDM-basedDNS / LES of incompressibleflowsis theflux andenergy conservationpropertyof thediscretizedadvectionterms.With-outasufficientdegreeof theflux andenergy conservationin thediscretizedspace,compu-tationsmaybecomeunstableandeventuallydiverge. The ideaof energy conservation inthediscretizedspacehadalreadybeenaddressedin theearlieststageof thedevelopmentofnumericalschemesandit hadthenbeenappliedto establishmentof anenergy-conservativesecond-orderaccurateFDM onanequally-spacedmeshin theCartesiancoordinates[6,7].However, for a longwhile, it hadbeenunclearwhethersuchenergy-conservative schemesexist for higher-orderfinite difference,for unequally-spacedmeshor for coordinatesys-temsotherthantheCartesiancoordinates.

Recently, Morinishi et al. [8] generalizedthe higher-order finite differenceschemesasrelevant combinationsof second-orderfinite differencesdefinedon differentstencils,andsucceededin developing energy-conservative fourth-orderaccuratefinite difference

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 2

schemeson various(regular, staggered,collocate)meshes.On theotherhand,Kajishima[9] carefullyexaminedemploymentof unequally-spacedCartesianstaggeredmeshesandproposedenergy-conservative second-orderfinite differenceschemesfor boththegradientanddivergenceforms of nonlineartermsin Navier-Stokesequation;they areproved tobevalid even for unequally-spacedmesh.Accordingto Kajishima’s [9] analysis,energy-conservativeschemesonanunequally-spacedmeshcanbeconstructedonly whenrelevantinterpolationschemesareapplied.A similar conclusionconcerningthespatialdiscretiza-tion is obtainedin the very recentwork by Ham et al. [10], who developedan energyconservationschemealsoin timediscretization.

FDM-basedDNS / LES in thecylindrical coordinatesystemhasbeenreportedby sev-eralworkers.Differentschemeshavebeenproposedto removesingularityatthecylindricalaxis(r � 0). Eggelset al. [11] andAkselvoll andMoin [12] useda second-orderaccurateFDM with a staggeredmeshsystem. They usedthe primitive variables,i.e., ur, uθ, uz

andp, andresolved thesingularityby definingthevalueof ur at theaxisasanaverageofthoseat the two grid pointssandwichingtheaxis. VerziccoandOrlandi [13] proposedtousetheflux variablein theradialdirection,qr � � rur � , to avoid calculatingur at theaxis,anddemonstratedthe validity of their techniquesin DNS of turbulent flow in a rotatingpipe[14]. Very recently, ConstantinescuandLele [15], basedon generalseriesexpansionaroundasingularpoint,proposedaveryaccuratetreatmentat theaxis,which is suitabletohigher-orderFDMs.

In therecentstudiesof FDM in thecylindrical coordinates[13,15,16], focushasbeenput mainly on the treatmentof singularity at the cylindrical axis. Energy conservationin the discretizedspacesuchas thosemadefor the Cartesiancoordinates,however, hasnot beendiscussedin detail. Moreover, advantagesand disadvantagesof the differentschemesproposed,with respectto energy conservation,remainstill unclear. Therefore,theobjectivesof thepresentstudyareto examinesuchenergy conservationfor thewidely usedsecond-orderaccurateFDM in the cylindrical coordinatesystemand to proposehighlyenergy-conservative schemesfor theadvectionandcentrifugal/ Coriolis terms,andalsoaresolutionfor thesingularityat theaxis.

Thepaperis organizedin thefollowing manner. Thegoverningequationin thecylin-drical coordinatesis introducedin Section2. In Section3, mathematicalformulationofenergy-conservativediscretizationandinterpolationschemesareprovided;andanew treat-mentof the singularityat the axis is proposedin Section4. The proposedschemesarenumericallytestedin Section5. Finally, conclusionsarederivedin Section6.

2. GOVERNING EQUATIONS

Thegoverningequationsfor themotionof an incompressiblefluid flow aretheconti-nuity andNavier-Stokesequations.In thecylindrical coordinates,theseequationsread:

� Continuityequation:1r

∂�rur �∂r � 1

r∂uθ∂θ � ∂uz

∂z� 0 ; (1)

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 3

� Navier-Stokesequation:

∂ur

∂t� hr � br � ∂p

∂r � 1Re

1r

∂∂r

r∂ur

∂r � ur

r2 � 1r2

∂2ur

∂θ2 � ∂2ur

∂z2 � 2r2

∂uθ∂θ

,

∂uθ∂t

� hθ � bθ � 1r

∂p∂θ � 1

Re1r

∂∂r

r∂uθ∂r � uθ

r2 � 1r2

∂2uθ∂θ2 � ∂2uθ

∂z2 � 2r2

∂ur

∂θ,

∂uz

∂t� hz � dP

dz � ∂p∂z � 1

Re1r

∂∂r

r∂uz

∂r � 1r2

∂2uz

∂θ2 � ∂2uz

∂z2 .

(2)

Here,theequationsarenondimensionalizedby usingthepipediameterR, thecharacteristicvelocityU , andthekinematicviscosityof fluid ν. TheReynoldsnumberis definedby

Re � URν

. (3)

Thecharacteristicvelocity, U , shouldbedefinedaseitherthefriction velocity, uτ � τw � ρ,or the laminarcenterlinevelocity, Ulc, dependingon the flow condition,i.e., whetherthemeanpressuregradient, � dP � dz, or the massflow rateis keptconstantover the time ofintegration.

The first terms,hr, hθ and hz, on the right-hand-sideof the Navier-Stokesequationdenotetheadvectionterms,i.e.

hr � � 1r

∂∂r

�rurur � � 1

r∂∂θ�uθur � � ∂

∂z

�uzur � ,

hθ � � 1r

∂∂r

�ruruθ � � 1

r∂

∂θ�uθuθ � � ∂

∂z

�uzuθ � ,

hz � � 1r

∂∂r

�ruruz � � 1

r∂

∂θ�uθuz � � ∂

∂z

�uzuz � .

(4)

Thesecondterms,br andbθ, in theequationsof ther andθ directionsarethecentrifugalandCoriolis forcesarisingdueto thecurvatureof thecoordinatesystem,respectively, i.e.,

br � u2θr

,

bθ � � uruθr

.

(5)

3. RELEVANT SPATIAL DISCRETIZATION AND INTERPOLATION

3.1. Computational mesh

In thepresentstudy, we focusonly onthemostfrequentlyusedmethod— thesecond-orderaccuratefinite differenceschemewith a staggeredmeshsystem.As usual,velocitiesaredefinedon thecell surfacesandpressureis definedat thecell centersasshown in Fig.1. As a practicallyusefulchoice,thespacingis assumedto be equalin θ directionandzdirectionandunequalin r direction.Thedefinitionof notationsfor thepositionsandmeshspacingsin r directionis shown in Fig 2.

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 4

���� ������θ,

������ ������ ����

���

��θ

��� ������ ����

� � ���� �� ���� ����!�

θ,� � �"�# ����$��

FIG. 1 Definition point of eachvariable. Ordinarycell (left) and the first cell from thecenter(right).

% % %%�&('*) +('*& ,�-/."01'*),�-/2 0('*)% % %

1 2 Nr

CL wall

%% % %

%i i+1

i-1/2 i+1/2 i+3/2

%i

%i+1/2

%1/2

FIG. 2 Definitionof thepositions,ri andri3 12

andthelocalmeshspacings,∆ri and∆ri3 12.

3.2. Advection term

Theadvectiontermsgivenby Eq. (4) canbediscretizedsothattheflux conservationissatisfied.For instance,theadvectiontermin ther-direction,hr, canbediscretizedas:

hr4 i3 12 j k � � 1

ri3 12

�rur � i3 1 j k ur4 i3 1 j k � � rur � i j k ur4 i j k

∆ri3 12

� 1ri3 1

2

uθ 4 i3 12 j 3 1

2 k ur4 i3 12 j 3 1

2 k � uθ 4 i3 12 j 5 1

2 k ur4 i3 12 j 5 1

2 k

∆θ

� uz 4 i3 12 j k 3 1

2ur4 i3 1

2 j k 3 12� uz 4 i3 1

2 j k 5 12

ur4 i3 12 j k 5 1

2

∆z,

(6)

where∆ri3 12

is definedin Fig. 2. Theabove equationcontainsundefinedvelocitiessuchasur4 i j k and uθ 4 i3 1

2 j 3 12 k. Therefore,we needto evaluatethemby interpolationof the

definedvelocities. A commonpracticemay be to usean arithmeticaverageor a linear

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 5

interpolation.With thearithmeticaverage,for example,Eq. (6) simplybecomes

hr4 i3 12 j k � � 1

ri3 12

�rur � ii3 1 j k ur

ii3 1 j k � � rur � ii j k ur

ii j k

∆ri3 12

� 1ri3 1

2

uθii3 1

2 j 3 12 k

urji3 1

2 j 3 12 k � uθ

ii3 1

2 j 5 12 k

urji3 1

2 j 5 12 k

∆θ

� uzii3 1

2 j k 3 12

urki3 1

2 j k 3 12� uz

ii3 1

2 j k 5 12

urki3 1

2 j k 5 12

∆z,

(7)

wheretheoverbar, 687 , denotesthearithmeticaverageandthesuperscriptto theoverbar, 9 ,representsthedirectionof interpolation,e.g.,

�rur � ii j k �

�rur � i3 1

2 j k ��rur � i 5 1

2 j k

2,

urji3 1

2 j 3 12 k

� ur4 i3 12 j 3 1k � ur4 i3 1

2 j k

2.

(8)

However, accordingto therecentanalyseson FDM in theCartesiancoodinates[9,10,17], energy conservation is violated in the discretizedspacewhenan unequally-spacedmeshis employedandthearithmeticaverageor thelinearinterpolationis usedon it. Thisis dueto an inconsistency betweenthe differencingandinterpolatingoperators[17]. Inorderto overcomethis problem,Kajishima[9] treatedthe unequally-spacedrectangularmeshxm (m � 1: 2: 3) asa mappingfrom an equally-spacedmeshξm. The divergenceform of advectiontermwasapproximatedby

∂umun

∂xn� 1

J∂�JUnum �∂ξn

� 1J

δ�JUnm

umn �

δξn, (9)

whereUn � u7 ∂ξn � ∂x7 is thecontravariantvelocity andδ � δξn is thesecond-ordercentraldifferenceon ξn mesh. The Jacobianin the mappingis denotedasJ. Energy conserva-tion by this approximationwasthenverifiedon a two-dimensionalCartesianmeshby theproceduresimilar to thatconductedbelow. It is alsoworth noting thatsucha relevant in-terpolationrule makesthe divergenceform andthe gradientform of the advection termcompatiblein thediscretizedspace.Thiswasverifiedalsoby thattwo differentnumericalsimulationsof a two-dimensionalcavity flow (oneof themadoptedthe divergenceformfor the nonlinearterm; the other, thegradientform) gave the sameresults. On the otherhand,Hametal. [10] approximatedthenonlineartermas

∂umun

∂xn� δun

mumn

δxn(10)

where 6 7 is anaverageweightedby theoverlappingvolumeof thecell wherethevelocityis definedandof the cell whereit is interpolated(referredhereafteras the volume-fluxaverage),andverifiedtheenergy conservationpropertyonanunequally-spacedrectangularmesh.It canbeeasilynoticedthat thesetwo expressions,Eqs. (9) and(10), areidenticalwhenthey areexpressedin theconcreteform in theCartesiancoordinates.Thereforetherelevantinterpolationschemesfor theenergy to beconservedcanthereforebesummarizedas:

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 6

� volume-fluxaverage— for theadvecting velocity;

� arithmeticaverage— for theadvected velocity.

Here, the termsof advecting and advected are usedfor notationalconvenience. Theirmeaningsarethesameasthoseusedfor thegradientform of nonlineartermsin theNavier-Stokesequation:in Eq. (6), for example,

�rur � , uθ anduz aretheadvecting velocitiesand

ur is theadvected velocity.We apply this interpolationrule to the discretizedequationin the cylindrical coordi-

nates. As will be noticedin the verificationprocessbelow, the key technique(or trick)in the presentcaseis to arrangethe right-hand-sidein sucha form that every term hasacommondenominator, i.e., ri3 1

2∆ri3 1

2. As a result,Eq. (4) reads1:

hr4 i3 12 j k � � 1

ri3 12∆ri3 1

2

�rur � ii3 1 j k ur

ii3 1 j k � � rur � ii j k ur

ii j k

� 1ri3 1

2∆θ

uθii3 1

2 j 3 12 k

urji3 1

2 j 3 12 k � uθ

ii3 1

2 j 5 12 k

urji3 1

2 j 5 12 k

� 1∆z

uzii3 1

2 j k 3 12ur

ki3 1

2 j k 3 12� uz

ii3 1

2 j k 5 12ur

ki3 1

2 j k 5 12

(11)

where 6 i denotesthevolume-fluxaveragedefinedby

uθii3 1

2 j 3 12 k� ∆ri3 1 uθ 4 i3 1 j 3 1

2 k � ∆ri uθ 4 i j 3 12 k

2 ∆ri3 12

(12)

and

uzii3 1

2 j k 3 12� ri3 1∆ri3 1 uz 4 i3 1 j k 3 1

2 � ri∆ri uz 4 i j k3 12

2 ri3 12∆ri3 1

2χi3 1

2

. (13)

In the presentcase,the volume-fluxaveragefor�rur � is, within second-orderaccuracy,

identicalto thearithmeticaveragefor that. Thenormalizationfactor, χi3 12, in Eq. (13) is

necessarysothatthesummationof theweightingfactorsbecomesunity:

χi3 12� ri3 1∆ri3 1 � ri∆ri

2 ri3 12∆ri3 1

2

� 1 � ∆ri3 1 � ∆ri

2ri3 12

, (14)

which,of course,is unity for anequally-spacedmeshandcloseto unity for anunequally-spacedmeshif the variationsof ∆r in the vicinity of the cylindrical axis is small. Notethat theweightingfactorsdueto meshspacings,∆ri and∆ri3 1, in Eqs. (12) and(13) areoppositeto thosein the linear interpolation. Moreover, it is emphasizedthat the presentexpression,Eq. (11), andthatwith thearithmeticaverage,Eq. (7), arenot identicalevenwhenthemeshspacingis equal,i.e.,∆ri � ∆ri3 1 � const ; ; theflux weightingfactorsdueto ri andri3 1 still exist in thez-differentialterm.This situationis quitedifferentfrom thatin theCartesiancoordinatesystem[9, 10], wherethe arithmeticaverageandtherelevantinterpolationbecomeidenticalin thecaseof anequally-spacedmesh.

Thetermsin otherdirections,hθ andhz, canbediscretizedsimilarly. Underthepresentconditions,i.e., uniform meshin theθ andz directions,the final expressionof hθ andhz

1Thereis anobvioustypo in thepublishedversion(∆r shouldread∆r)

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 7

canbe obtainedusingthearithmeticaverageonly. Hereafter, we refer to the form of Eq.(11)as(Div.-C), while theform obtainedusingthearithmeticaverage,Eq. (7), is referredto as(Div.-A).

Theconservationof a squaredvalue,u2r , i.e.,a radialcomponentof thekinetic energy,

canbe verified as follows. Similarly to Eq. (11), the discretizedadvection term of thesquaredvaluecanbewrittenas:

Hr4 i3 12 j k � � 1

ri3 12∆ri3 1

2

�rur � ii3 1 j k

�u2

r � ii3 1 j k � � rur � ii j k

�u2

r � ii j k

� 1ri3 1

2∆θ

uθii3 1

2 j 3 12 k

�u2

r � ji3 12 j 3 1

2 k � uθii3 1

2 j 5 12 k

�u2

r � ji3 12 j 5 1

2 k

� 1∆z

uzii3 1

2 j k 3 12

�u2

r � ki3 12 j k 3 1

2� uz

ii3 1

2 j k 5 12

�u2

r � ki3 12 j k 5 1

2

(15)

Thesquaredvaluesat undefinedpointsareevaluatedby following PiacsekandWilliams[7], e.g., �

u2r � i 4 j 4 k � ur4 i3 1

2 j k ur4 i 5 12 j k ,�

u2r � i3 1

2 4 j 3 12 4 k � ur4 i3 1

2 j 3 1k ur4 i3 12 j k ,�

u2r � i3 1

2 4 j 4 k 3 12� ur4 i3 1

2 j k 3 1 ur4 i3 12 j k ,

(16)

andthenormalizationfactorfor the z-differentialterm,χi3 12, wasapproximatedasunity.

Thetransportequationof thesquaredvaluecanalsobeobtainedby multiplying 2ur i3 12 4 j 4 k

to Eq. (11). Theformer, i.e.,Eq. (15),exactlyrepresentsthetransportof thesquaredvalue,whilst thelatter, i.e.,2

�urhr � i3 1

2 j k, expressesthesquaredvaluetransportasa resultof ad-vection.Therefore,thesetwo expressionsmustbeidenticalin orderfor thediscretizedad-vectiontermto becomeenergy-conservative. By subtractingEq. (15) from 2

�urhr � i3 1

2 j k,oneobtains

2�urhr � i3 1

2 j k � Hr4 i3 12 j k � �

ri3 1∆ri3 1u2r4 i3 1

2 j k

2ri3 12∆ri3 1

2

�=<> 6 <u � i3 1 j k � ri∆riu2r4 i3 1

2 j k

2ri3 12∆ri3 1

2

�=<> 6 <u � i j k ,

(17)where

�=<> 6 <u � i j k expressesthedivergenceof discretizedvelocity field, i.e,

� <> 6 <u � i j k � 1ri

�rur � i3 1

2 j k � � rur � i 5 12 j k

∆ri � 1ri

uθ 4 i j 3 12 k � uθ 4 i j 5 1

2 k

∆θ �uz 4 i j k 3 1

2� uz 4 i j k 5 1

2

∆z.

(18)Therefore,the squaredvalue is perfectly conserved if the continuity is satisfiedin thediscretizedspace.Theequationsin theθ andz directionscanalsobeverifiedlikewise.

It shouldbe emphasizedagainthat the schemebasedon the arithmeticinterpolation,i.e., (Div.-A) expressedby Eq. (7), is not energy-conservingeven on the equally-spacedmesh(∆ri � ∆r) in thecylindrical coordinates.A similaranalysisasEqs.(15)-(17)for the

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 8

caseof (Div.-A) resultsin

2�urhr � i3 1

2 j k � Hr4 i3 12 j k � � ri3 1u2

r4 i3 12 j k

2ri3 12

�=<> 6 <u � i3 1 j k � riu2r4 i3 1

2 j k

2ri3 12

�?<> 6 <u � i j k

�∆r2 u2

r4 i3 12 j k

4ri3 12

δ2uz

δrδz i3 12 j k

,

(19)whereδ � δr andδ � δz denotetheusualsecond-ordercentraldifference.Equation(19)sug-geststhat theenergy-conservationpropertyin (Div.-A) on theequally-spacedmeshhasafirst-orderinconsistency nearthe axis (r @ ∆r). The similar analysisfor otherschemes,e.g. (Div.-A) on anunequally-spacedmeshor (Div.-F) appearingin thenext section,alsoreachestheconclusionthat2

�urhr � i3 1

2 j k andHr4 i3 12 j k areinconsistent,althoughtheorder

of inconsistency cannotbeexpressedin sucha simpleform asEq. (19). Therefore,onlythecombinationof discretizationandinterpolationschemesdescribedabove,i.e., (Div.-C).seemsto satisfytheconservationof squaredvalues.

3.3. Body forceterm

Thebodyforceterms,br andbθ, satisfythefollowing relationin thecontinuousspace,

urbr � uθbθ � 0 . (20)

This relationexpressesthe exchangeof energy betweenr andθ components.Thereforeinterpolationfor thesetermsshouldbedesignedsoasto satisfythis rigorousconservationrule in each1/4 of acell asshown in Fig 3. Theresultingform, referredto as(Body-C),is

br4 i3 12 j k � 1

ri3 12

∆ri3 1�u2

θ � ji3 1 j k � ∆ri�u2

θ � ji j k

2 ∆ri3 12

,

bθ 4 i j 3 12 k � � 1

riur

i ji j 3 1

2 k uθ 4 i 4 j 3 12 k .

(21)

Note,again,thattheweightingfactorsareoppositeto thosein thelinearinterpolation.It is unclearwhat kind of interpolationschemeis usedin previous simulation. An

intuitive method,however, maybeto approximatetheundefinedvelocity simply by usinganarithmeticaverage,which is referredto as(Body-A). In this case,theexpressionfor bθis thesameasEq. (21),whilst thatfor br becomes

br4 i3 12 j k � 1

ri3 12

uθi

ji3 1

2 j k

2. (22)

Clearly, thelocalenergy conservationof Eq. (20) is notsatisfiedby (Body-A),evenfor theequally-spacedmesh.

4. A NEW TREATMENT AT THE CYLINDRICAL AXIS

As mentionedin the introduction,an importantresultingissuein simulationon thecylindrical coordinatesis mathematicaltreatmentof thesingularityat r � 0. Most of the

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 9

ii+1/2

i-1/2

j

j+1/2

j-1/2

FIG. 3 Subregion of a control volumefor ur anduθ (shaded).Energy exchangeduetobodyforceis conservedin eachsubregion.

singularitiesappearingin theNavier-Stokesequation,Eq. (2), areautomaticallyremovedafter the spatialdiscretizationusing second-orderFDM with a staggeredmeshsystem.Remainingonesaretheradialvelocity, ur4 12 j k, to beusedfor:

� interpolationin theadvectionterm,hr, Eq(11);

� interpolationin thebodyforceterm,bθ, Eq (21);

andthatusedfor discretizationof thediffusionterms.For this problem,two differentapproacheshave beenproposedsofar asfollows:

1. An artificial velocity is definedas:

ur4 12 j k � 1

2

�ur4 32 j k � u

r4 32 j 3 Nθ

2 k � , (23)

whereNθ is thenumberof meshin theθ direction(referredto as(Axis-E)) [11];

2. Thesingularityis removedby multiplying theur momentumequationby r (theflux-basedformulation)[13].

With theflux-basedformulation,hr andbθ arediscretizedas:

�rhr � i3 1

2 j k � � 1∆ri3 1

2

1ri3 1

�rur � ii3 1 j k

�rur � ii3 1 j k � 1

ri

�rur � ii j k

�rur � ii j k

� 1ri3 1

2

uθii3 1

2 j 3 12 k

�rur � ji3 1

2 j 3 12 k � uθ

ii3 1

2 j 5 12 k

�rur � ji3 1

2 j 5 12 k

∆θ

� uzii3 1

2 j k 3 12

�rur � ki3 1

2 j k 3 12� uz

ii3 1

2 j k 5 12

�rur � ki3 1

2 j k 5 12

∆z,

(24)

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 10

A/BC

A/D�C

A"EFC

u r, 3/2 j+N /2 kθ

u r, 3/2 j k

u r, 1/2 j k u r, 1/2 j k

u r, 3/2 j k

u ,1 j+1/2 kθ

uy, k

ux, k

FIG. 4 Different treatmentsat cylindrical axis. Vectorsin black are thosedefinedandactuallysolved;vectorsin white areartificial onesat r � 0. (a) methodequivalentto flux-basedformulation(Axis-F); (b) treatmentby Eggelsetal. (1994)(Axis-E); (c) first stepofthepresentmethod(Axis-C).

and

bθ 4 i j 3 12 k � � 1

r2i

�rur � i j

i j 3 12 k uθ 4 i 4 j 3 1

2 k . (25)

Since�rur � 1

2 j k � 0, it doesnot requireany approximationat thepoint of r � 0. However,basedon this formulation,anenergy-conservative schemesuchasonein theprevioussec-tion cannotbeconstructed.A modifiedmethod,in which theenergy-conservative schemeis used,but with theflux-basedformulationonly at thefirst pointsfrom theaxis,canalsobeconsidered.In that case,it canbe foundfrom Eq. (11) that it is equivalentto usethefollowing artificial velocity (referredto as(Axis-F)):

ur4 12 j k � ur4 32 j k . (26)

A schematicof thedifferenttreatmentsis shown in Fig. 4.In thepresentstudy, a new methodis proposedsuchthat themathematicalconstraint

at r � 0:ur � ux cosθ � uy sinθ ,uθ � � ux sinθ � uy cosθ ,

(27)

shouldbe satisfied.Here,ux anduy arevelocity componentsexpressedin the Cartesiancoordinates.As shown in Fig. 4c, theprocedureto computeur4 12 j k is givenasfollows:

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 11

1. calculateux anduy at r � 0 from uθ 4 1 j 3 12 k

2:

ux 4 k � � 2Nθ

Nθ 5 1

∑j G 0

uθ 4 1 j 3 12 k sinθ j 3 1

2,

uy 4 k � 2Nθ

Nθ 5 1

∑j G 0

uθ 4 1 j 3 12 k cosθ j 3 1

2.

(28)

2. calculateur4 12 j k by usingEq. (27):

ur4 12 j k � ux 4 k cosθ j � uy 4 k sinθ j . (29)

Theaccuracy orderof thepresentprocedurecaneasilybeassessed.Theseriesexpan-sionof uθ 4 1 j 3 1

2 k, aroundthesingularpoint,r � 0, canbewritten [15,18] as:

uθ 4 1 j 3 12 k � A H θI01

∆r1

2 � A H θI10 � A H θI11∆r1

2

2

cosθ j 3 12 � A H θI20

∆r1

2cos2θ j 3 1

2

� B H θI01∆r1

2 � B H θI10 � B H θI11∆r1

2

2

sinθ j 3 12 � B H θI20

∆r1

2sin2θ j 3 1

2

�KJ�∆r3

1 � ,(30)

whereA H θImn andB H θImn arecoefficientsfor the correspondingmodes.It is easilyfound that

A H θI10 andB H θI10 areequivalent,respectively, to

A H θI10 � uy 4 k ,

B H θI10 � � ux 4 k .(31)

Summationof Eq. (30)multipliedby cosθ yields

Nθ 5 1

∑j G 0

uθ 4 1 j 3 12 k cosθ j 3 1

2� Nθ

2uy 4 k � A H θI11

∆r1

2

2

. (32)

Similarly,Nθ 5 1

∑j G 0

uθ 4 1 j 3 12 k sinθ j 3 1

2� Nθ

2 � ux 4 k � B H θI11∆r1

2

2

. (33)

Therefore,thepresentinterpolationprocedure,Eq. (28), hassecond-orderaccuracy withrespectto ∆r1.

Energy conservationaroundthecylindrical axisshouldalsobeinvestigated.By carry-ing outderivationsimilar to thatin theprevioussection,we find thatanextra condition,

ur4 32 j k �uθ 4 1 j 3 1

2 k � uθ 4 1 j 5 12 k

∆θ� 0 , (34)

2Therearetyposin thepublishedversion(subscriptto θ j).

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 12

shouldbesatisfiedin orderfor thesquaredvalueto beconserved. Fromtheseriesexpan-sionsimilar to Eq. (30),oneobtains

ur4 32 j k �

uθ 4 1 j 3 12 k � uθ 4 1 j 5 1

2 k

∆θ

� A H rI01 � B H rI01 ��A H rI20 � A H θI20 � cos2θ j �

�B H rI20 � B H θI20 � sin2θ j ∆r1 �LJ

�∆r2

1 : ∆θ2 � ,(35)

which revealsthatthepresentmethodhasonly first-orderaccuracy concerningtheenergyconservationaroundthecylindrical axis. However, we do not attemptto directly imposetheconditionof Eq. (34),becausesuchor anequivalentconditionunderthecontinuity,

uz 4 1 j k 3 12� uz 4 1 j k 5 1

2� 0 , (36)

prohibitsany variationof uz alongthelongitudinaldirectionandis quiteunphysical.Theeffectsof this first-ordererror aroundtheaxis areshown to be minor in the next sectionbecausethe sizeof volumeinfluencedis consideredsmall if comparedto the restof thedomain.

5. NUMERICAL TEST

In order to demonstratean energy conservation propertyof the proposedschemes,numericaltestsare conductedassumingan inviscid flow in a straightcircular pipe, i.e.,Re M ∞, with no driving force,i.e., � dP � dz � 0. Thereducedsetof governingequationsread:

� continuityequation:1r

∂�rur �∂r � 1

r∂uθ∂θ � ∂uz

∂z� 0 ; (37)

� momentumequation:

∂ur

∂t� hr � br � ∂p

∂r,

∂uθ∂t

� hθ � bθ � 1r

∂p∂θ

,

∂uz

∂t� hz � ∂p

∂z.

(38)

Testeddifferentcombinationsof schemesfor theadvectionterm,body forcetermandtreatmentat theaxisaresummarizedin thefollowing:

� advectionterm

– (Div.-C) presentscheme,Eq. (11),

– (Div.-A) arithmeticaverage,Eq. (7),

– (Div.-F) flux-basedformulation,Eq. (24),

� bodyforceterm

– (Body-C)presentscheme,Eq. (21),

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 13

NOP θ

QSR NFIG. 5 Computationaldomain.

– (Body-A) arithmeticaverage,Eq. (22),

– (Body-F)flux-basedformulation,Eq. (25),

� treatmentat thecylindrical axis

– (Axis-C) presentprocedure,Eqs.(28)-(29),

– (Axis-E) treatmentby Eggelset al. (1994),Eq. (23),

– (Axis-F) methodequivalentto flux-basedformulation,Eq. (26).

Thecomputationaldomainhasa radiusof R � 1 anda lengthof 10R asshown in Fig.5 andperiodicboundaryconditionis appliedat bothends.Equally-spacedandunequally-spacedcomputationalmeshesaretested.Thenumberandthe sizesof thecomputationalmeshusedin themain testaretabulatedin Table1. The initial velocity field, with whichthetimeadvancingintegrationis started,is generatedin thefollowing way:

1. interpolatevelocitiesfrom aninstantaneousvelocity field of fully developedturbu-lent pipeflow at Reτ � 180simulatedon a 96 T 128 T 256mesh(seeAppendixA)ontothemesh(8 timescoarserin eachdirection)usedfor thetests;

2. solve thePoissonequationin orderfor thereducedvelocity field to satisfythecon-tinuity equation;

3. normalizethevelocitiesto have zeromeanvelocity, i.e. U ur V �WU uθ V ��U uz V �0, andunit kinetic energy, i.e. U k V �WU 1

2

�uiui �FV � 1.

Theprocedureemployedhereis similar to thatusedby Morinishi et al. [8], who usedarandomstreamfunction in a two-dimensionalproblem. Insteadof usingrandomvectorpotentialasa seed,DNS datais usedto obtainan organizedthree-dimensionalvelocityfield.

TABLE 1Computationalmeshusedin thenumericaltest.Sizesarenondimensionalizedby R.

Normalizationfactor, χ, is definedin Eq. (14).

Notation Nr Nθ Nz ∆r ∆θ ∆z χequally-spaced 12 16 32 0.083 0.39 0.31 1.00

unequally-spaced 12 16 32 0.021- 0.13 0.39 0.31 0.83- 1.00

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 14

0.999

1

1.001

1.002

1.003

1.004

0 0.2 0.4 0.6 0.8 1

<k>X

t

C-C-C, ∆t=0.01 ∆t=0.001 ∆t=0.0001C-C-0 (as a reference), ∆t=0.01 ∆t=0.001 ∆t=0.0001

FIG. 6 Timetraceof thetotalkineticenergy U k V computedwith differenttimesteps.En-ergy conservative schemewith (Div.-C)-(Body-C)-(Axis-C) (key “C-C-C”) andthatwithur�0: θ : z � � 0 boundarycondition(“C-C-0”) wereusedon equally-spacedmesh.

Timeintegrationof thediscretizedequationis achievedby usingthelow storagethird-orderRunge-Kuttascheme[19]. Thesamecoefficientsasthoseusedby RaiandMoin [20]areused. For the pressurecoupling,a delta-formfractionalstepmethod,which canbefoundin [13,21], is used.ThePoissonequationis solvedusingtrigonometricexpansions.

Even if the spatialdiscretizationideally satisfiesthe energy conservation, the energymaychangedueto the imperfectnessof a time integrationscheme.Therefore,a prelim-inary testis madewith differentcomputationaltime stepsof ∆t=0.01,0.001and0.0001.Thecombinationof theproposedschemes,i.e.,(Div.-C)-(Body-C)-(Axis-C),wasused.Aswasdiscussedin theprevioussection,(Axis-C)hasanimperfect(lower-orderaccuracy) en-ergy conservationproperty. Therefore,acasewith aboundaryconditionof ur

�0: θ : z � � 0,

denotedas(Axis-0), wasalsotestedin orderto examinethecasewheretheproblemof theaxis treatmentis absent.The result is given in Fig. 6, where∆t=0.001and0.0001givetheindistinguishableresultsof thekinetic energy, U k V . Dueto thedissipative natureoftheRunge-Kuttatime integrationscheme,U k V shoulddecreasewith timeandtherateofdecreaseshouldbe higher for larger ∆t . The resultfor the referencecase,i.e., (Div.-C)-(Body-C)-(Axis-0), properlyshows sucha trend. For (Div.-C)-(Body-C)-(Axis-C), how-ever, thekineticenergy increaseddueto theimperfectconservationin thetreatmentof theaxis.Thesmallerincreaseof U k V in thecaseof ∆t � 0; 01 is consistentwith thedissipa-tive natureof thetime integrationscheme.Throughoutthefollowing test,thetime stepisfixedat∆t � 0; 001exceptfor thetestonthedifferentamplitudeof initial perturbationandgrid resolutionwheretheCourantnumberis setapproximatelythesameasthiscondition.

The test is initiated from the caseof the equally-spacedmesh. Figure 7 shows thetime traceof U k V in thecaseof theequally-spacedmesh.Thekinetic energy shouldbeunchangedastimeadvances,becausethegoverningequationdoesnothaveany sourceanddissipative terms. Accordingto Fig. 7a, the energy is keptalmostconstantregardlessof

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 15

(a)

0.998

1

1.002

1.004

1.006

1.008

1.01

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

<k>X

t

C-C-CC-C-EC-C-FF-F-*A-A-CA-A-EA-A-FC-C-0 (as a reference)A-A-0 (as a reference)

(b)

0.98

1

1.02

1.04

1.06

1.08

1.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

<k>X

t

↑C-C-0 (as a reference)

C-C-CC-C-EC-C-FF-F-*A-A-CA-A-EA-A-F

FIG. 7 Time traceof the total kinetic energy U k V computedusingdifferentmethods.(a) initial perioduntil t � 0; 5; (b) for longerperioduntil t � 5. Equally-spacedmeshand∆t=0.001areemployed.Key “C-C-E” denotesacombinationof (Div.-C)-(Body-C)-(Axis-E), andsimilar abbreviationsapplyto othercombinations.

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 16

TABLE 2Thetime whentheerrorin total kineticenergy grows to 1 %, denotedasT1%, thatto

50%, T50%, andthetime whenthecomputationdiverges,Tdiv. Equally-spacedmeshand∆t=0.001areemployed.

Advectionterm Body forceterm Treatmentataxis T1% T50% Tdiv

(Div.-C) (Body-C) (Axis-C) 2.16 16.08 65.62(Div.-C) (Body-A) (Axis-C) 0.81 4.97 15.22(Div.-C) (Body-C) (Axis-E) 1.67 3.50 5.59(Div.-C) (Body-C) (Axis-F) 1.18 1.93 2.34(Div.-F) (Body-F) � 0.46 1.25 1.36(Div.-A) (Body-A) (Axis-C) 0.45 1.02 1.12(Div.-A) (Body-C) (Axis-C) 0.44 0.82 0.86(Div.-A) (Body-A) (Axis-E) 0.43 0.71 0.75(Div.-A) (Body-A) (Axis-F) 0.41 0.55 0.56

differencesin thetreatmentat thecylindrical axiswhenthepresentschemes,(Div-.C) and(Body-C),areused.On theotherhand,theincreaseof U k V is remarkablein thecasesofarithmeticaverage,(Div.-A) and(Body-A),andof theflux-basedformulation,(Div.-F)and(Body-F).Over longertimeof integration,theincreaseof U k V is discerniblein all casesof combination,asshown in Fig. 7b. Thepresentcombination,(Div.-C)-(Body-C)-(Axis-C), exhibits the leasterror in the energy conservation propertyandthe higheststability.The gradualincreaseof U k V even for the bestscheme,again,canbe attributedto theimperfectenergy conservationaroundthecylindrical axisascanbenoticedfrom theresultof (Div.-C)-(Body-C)-(Axis-0)alsodrawn in Fig. 7b asa reference.

As convenientmeasuresof theenergy conservationandof thecomputationalstability,we introducethetime whentheerrorin total kineticenergy grows to 1 %, denotedasT1%,that to 50 %, T50%, andthat whenthe computationto diverges,Tdiv. They are tabulatedin Table2. Again, thecombinationof thepresentschemes,(Div.-C)-(Body-C)-(Axis-C),is far superiorto othercombinations.Theenergy conservationpropertyis moresensitiveto the schemeusedfor the advectionandbody force termsthan to the treatmentat theaxis. Moreover, it is noticedfrom the comparisonbetween(Div.-C)-(Body-A)-(Axis-C)and(Div.-A)-(Body-C)-(Axis-C) thattheenergy conservationof theadvectiontermis moreimportantthanthatof thebodyforceterm.

Dependency of the energy conservation propertyin an initial period,t � 0; 25 (corre-spondingto thecenterof Fig. 7a),on theamplitudeof initial perturbation,U k V init , andthegrid resolution,∆r, is depictedin Fig. 8. Theerror, ε, is definedas

ε � U k V t G 0 Y 25 � U k V initU k V init. (39)

It is reconfirmedthat theerrorof theproposedscheme,i.e., (Div.-C)-(Body-C)-(Axis-C),is muchsmallerthan that of the intuitive scheme,i.e., (Div.-A)-(Body-A)-(Axis-C), forany U k V init and∆r. Theerrordecreasesas U k V init or ∆r becomessmaller. Theenergyconservationpropertyof thepresentschemeis foundto bebetweenfirst andsecondorderin termsof ∆r which reflectstheorderof inconsistency in (Axis-C). It shouldbenotedthattheerror in thereferencecase,(Div.-C)-(Body-C)-(Axis-0), is muchsmallerandthemostof thaterror is likely causedby thetime integration(ε Z � 3 T 105 8 for U k V init � 1 and

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 17

(a)

10−7

10−6

10−5

10−4

10−3

10−2

10−2 10−1 100 101 102

ε

<k>init

C-C-CA-A-C

(b)

10−7

10−6

10−5

10−4

10−3

10−2

10−3 10−2 10−1ε

∆r

C-C-CA-A-C

FIG. 8 Dependency of theerrorin kineticenergy in aninitial period(t � 0; 25). (a)Ontheamplitudeof initial perturbation;(b) On thegrid size.

∆r Z 0; 083).Subsequently, a teston theunequally-spacedmeshis performedwith thedefaultcon-

ditions,i.e., U k V init � 1 andthemeshshown in Table1. As summarizedin Table3, theresultsaresimilar to thosefor theequally-spacedmesh.Energy conservationpropertyofthe presentschemefor advection term is quite well despitethe approximationof χ � 1madein theverificationprocess,Eqs.(15)-(17),andthesuperiorityof thecombinationofthepresentschemesis evenmoreclearer. GiventhecomparisonbetweenTables2 and3,onemaywonderwhy theerrorcomputedusingthepresentschemesgrows slower on theunequally-spacedmesh.Note that thesetwo resultscannotdirectly becomparedbecausethe smoothnessof the initial fields is different. Comparisonbetweentestswith differentmeshsizesis not straightforwardin thecaseof unequally-spacedmeshandthusomitted.However, it is apparentfrom Eqs.(7) and(11)thatdifferencebetweentheintuitivescheme

TABLE 3Thetimewhentheerror in total kinetic energy grows to 1 %, T1%, thatto 50 %, T50%, andthetime whenthecomputationdiverges,Tdiv. Unequally-spacedmeshand∆t=0.001are

employed.

Advectionterm Body forceterm Treatmentat axis T1% T50% Tdiv

(Div.-C) (Body-C) (Axis-C) 2.71 34.16 167.13(Div.-F) (Body-F) � 0.50 1.47 1.52(Div.-A) (Body-A) (Axis-C) 0.49 1.44 1.56

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 18

andthepresentschemebecomessmalleras∆r M 0.

6. CONCLUSIONS

Investigationsweremadeon the energy conservation of second-orderaccuratefinitedifferenceschemesfor cylindrical coordinatesystem. A combinationof highly energy-conservative schemesfor advectionandcentrifugal/ Coriolis terms,andthe treatmentofthesingularityat thecylindrical axiswasproposed.

Similarly to thecaseof theCartesiancoordinatesystem,theenergy-conservativeschemefor advectiontermscanbeformulatedby usingrelevant interpolationschemes.However,unlikein theCartesiancoordinatesystem[9], theresultingform of theenergy-conservativeschemediffers from that of an intuitive schemebasedon arithmeticaverage,even whenthemeshis equallyspaced.

The proposedschemesare testednumericallyvia simulationsof inviscid flow. Thehighly energy-conservative natureandthehigh stabilityof thepresentschemesover otherschemesaredemonstrated.

Thestrict energy conservationdiscussedin thepresentpapermaynot berequiredforDNS of a fully developedturbulent flow, asindicatedin AppendixA, wherea very finemeshis usedandlargephysicaldissipationtakesplace.However, theenergy conservationwill becomeimportantin many othersituationssuchasLES usingcoarsemeshandDNSof statisticallyunstationaryturbulentflow due,for example,to externalcontrolinput.

APPENDIX A: DNS OFFULLY DEVELOPEDTURBULENT PIPEFLOW

As aninitial field in testcomputations,aninstantaneousvelocity field of a fully devel-opedturbulentpipeflow wasused.In this appendix,someresultsfrom DNS of turbulentpipeflow atReτ � uτR � ν � 180arepresentedto show theaccuracy of thepresentcompu-tation.

For thediscretizationof governingequation,Eqs. (1) and(2), themethodsproposedin the presentstudy, i.e. (Div.-C), (Body-C) and(Axis-C) areused.The diffusion termsarespatiallydiscretizedusinganordinarysecond-orderaccuratefinite differenceandin-tegratedin time usingCrank-Nicolsonscheme.The lengthof the computationaldomainis 10 R. The computationalmeshis 96 T 128 T 256 and stretchedin r direction from∆r3 � 0; 46 (wall) to ∆r3 � 2; 99 (center).Thecomputationaltimestepis ∆t 3 � 0; 18.

As representative quantities,profilesof themeanvelocity andtheRMS velocity fluc-tuations,the limiting behavior of Reynoldsstressesandthe budgetof kinetic energy areshown in Fig. 9. The presentresultsagreewell with availableDNS data. All the otherquantitieswhich arenot shown herearealsoin goodagreement,with slight differencesinthevicinity of thewall, asin Fig. 9c,dueto thedifferenceof resolution.

Turbulencestatistics,Reynoldsstressbudgets,two-pointcorrelationsandone-dimensionalenergyspectracomputedby thepresentDNSareavailablein tabulatedformsat thewebsite(http://www.thtlab.t.u-tokyo.ac.jp/).

ACKNOWLEDGMENTS

This work wassupportedthroughtheProjectfor OrganizedResearchCombinationSystembytheMinistry of Education,Culture,SportsandTechnologyof Japan(MEXT).

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 19

REFERENCES

[1] M. Lesieur, andO. Metais,New trendsin large-eddysimulationsof turbulence,Ann.Rev. Fluid Mech. 28,45 (1996).

[2] U. Piomelli, Large-eddysimulations: wherewe stand,in Advances in DNS / LESeditedby Liu et al. (GreydenPress,Columbus,1997),p. 93.

[3] N. Kasagi,Progressin directnumericalsimulationof turbulenttransportandits con-trol, Int. J. Heat Fluid Flow 19,125(1998).

[4] P. Moin, andK. Mahesh,Direct numericalsimulation:a tool in turbulenceresearch,Ann. Rev. Fluid Mech. 30,539(1998).

[5] D. Gottlieb,andS.A. Orszag,Numerical Analysis of Spectral Methods: Theory andApplications, (Societyfor IndustrialandApplied Mathematics,Philadelphia,1977).

[6] F. H. Harlow, andJ. E. Welch,Numericalcalculationof time-dependentviscousin-compressibleflow of fluid with freesurface,Phys. Fluids 8, 2182(1965).

[7] S. A. Piacsek,andG. P., Williams, Conservationpropertiesof convectiondifferenceschemes,J. Comput. Phys. 6, 392(1970).

[8] Y. Morinishi,T. S.Lund,O.V. Vasilyev, andP. Moin, Fully conservativehigherorderfinite differenceschemesfor incompressibleflow, J. Comput. Phys. 143,90 (1998),doi:10.1006/jcph.1998.5962.

[9] T. Kajishima,Finite-differencemethodfor convective termsusingnon-uniformgrid,Trans. JSME / B 65 (633),103(1999)(in Japanese).

[10] F. E. Ham, F. S. Lien, andA. B. Strong,A fully conservative second-orderfinitedifferenceschemefor incompressibleflow on nonuniformgrids, J. Comput. Phys.177,117(2002),doi:10.1006/jcph.2002.7006.

[11] J. G. M. Eggels,F. Unger, M. H. Weiss,J. Westerweel,R. J. Adrian, R. Friedrich,andF. T. M. Nieuwstadt,Fully developedturbulentpipeflow: a comparisonbetweendirectnumericalsimulationandexperiment,J. Fluid Mech. 268,175(1994).

[12] K. Akselvoll, andP. Moin, Large eddysimulationof turbulent confinedcoannularjetsandturbulentflow overabackwardfacingstep,StanfordUniv. ReportNo.TF-63(1995).

[13] R. Verzicco, and P. Orlandi, A finite-differenceschemefor three-dimensionalin-compressibleflows in cylindrical coordinates,J. Comput Phys. 123, 402 (1996),doi:10.1006/jcph.1996.0033.

[14] P. Orlandi,andM. Fatica,Directsimulationsof turbulentflow in apiperotatingaboutits axis,J. Fluid Mech. 343,43(1997).

[15] G. S. Constantinescu,andS. K. Lele, A new methodfor accuratetreatmentof flowequationsin cylindrical coordinatesusingseriesexpansions,in CTR Annual ResearchBriefs 2000 editedby P. Moin et al. (Centerfor TurbulenceResearch,NASA AmesandStanfordUniversity, 2000),p.199.

[16] K. Mohseni,andT. Colonius,Numericaltreatmentof polarcoordinatesingularities,J. Comput. Phys. 157,787(2000),doi:10.1006/jcph.1999.6382.

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 20

[17] O. Vasilyev, High order finite difference schemeson non-uniform mesheswith good conservation properties, J. Comput. Phys. 157, 746 (2000),doi:10.1006/jcph.1999.6398.

[18] J.P. Boyd,Chebyshev and Fourier Spectral Methods, (Springer-Verlag,Berlin,1989),p. 475.

[19] P. R. Spalart,R. D. Moser, and M. M. Rogers,Spectralmethodsfor the Navier-Stokesequationswith oneinfinite andtwo periodicdirections,J. Comput. Phys. 96,297(1991).

[20] M. M. Rai, andP. Moin, Direct numericalsimulationsof turbulentflow usingfinitedifferenceschemes,J. Comput. Phys. 96,15(1991).

[21] J.K. Dukowicz,andA. S.Dvinsky, Approximatefactorizationasahigher-ordersplit-ting for theimplicit incompressibleflow equations,J. Comput. Phys. 102,336(1992).

[22] R. D. Moser, J. Kim, andN. N. Mansour, Direct numericalsimulationof turbulentchannelflow up to Reτ � 590.Phys. Fluids 11,943(1999).

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 21

(a)

0

5

10

15

20

25

0.1 1 10 100

u[ z+

y+

u

\ + =y+

u+ =

10.41

ln(y+ )+5.5

PresentEggels

(b)

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140 160 180

u r,r

ms

+, u

θ,rm

s+

, uz,

rms

+

y+

ur,rms+

uθ,rms+

uz,rms+

PresentEggels

FIG. 9 — Caption opposite.

K. FukagataandN. Kasagi,publishedin J. Comput Phys. 181, 478-498(2002) 22

(c)

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

y+

10 u+r,rms / (y+)2

u+θ,rms / y+

u+z,rms / y+

−400 u +z u +

r / (y +) 3

PresentEggelsMoser (channel)

(d)

-0.2

-0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90 100

Loss

←→

Gai

n

y+

Symbols, presentLines, Unger & Friedrich

ProductionTurbulent diffusionPressure diffusionViscous diffusionDissipationBalance

FIG. 9 Typical resultsfrom DNS of turbulent pipeflow at Reτ � 180. (a) Meanvelocityprofile; (b) RMS velocity fluctuations;(c) Limiting behavior of Reynolds stresses;(d)Turbulentkinetic energy budget. Presentresultsarecomparedwith DNS databy Eggelset al. (1994),Unger& Friedrich(in Eggelset al., 1994)andDNSdataof channelflow byMoseret al. (1999).