First Report of Florencite from the Singhbhum Shear Zone of the East Indian Craton.

9
Research Article First Report of Florencite from the Singhbhum Shear Zone of the East Indian Craton Maitrayee Chakraborty, 1 Sayan Biswas, 1 Nandini Sengupta, 2 and Pulak Sengupta 1 1 Department of Geological Sciences, Jadavpur University, Raja SC Mullick Road, Kolkata 700032, India 2 Department of Geology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India Correspondence should be addressed to Pulak Sengupta; [email protected] Received 29 June 2013; Accepted 6 November 2013; Published 3 February 2014 Academic Editors: M. Arima, E. Belluso, M. M. Jord´ an Vidal, and L. N. Warr Copyright © 2014 Maitrayee Chakraborty et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Metamorphic florencite is being reported from kyanite-rich rocks from the eastern part of the Palaeo- to Mesoproterozoic Singhbhum shear zone. is is the first report of florencite from the Precambrian rocks of the Indian Shield. Host rock of florencite is a kyanite-rich rock (>80 vol%) with small and variable amounts of quartz, lazulite, augelite, and rutile. Florencite forms small (<20microns) idioblastic-to-subhedral crystals that are included in large kyanite grains. Rarely, florencite replaces kyanite. e florencite has small proportion of crandallite (8.7–11.8 mol%) and goyazite (<2 mol%) components. Florencite of this study is dominated by Ce (49 mol%) with significant La (30 mol%) and Nd (21 mol%). Compared to other florencite occurrences of the world, florencite of the studied rock is impoverished in S, Sr, and Ba and rich in P. Stability of the assemblage florencite- kyanite-augelite-lazulite and the quantitative thermobarometry in the adjoining rocks suggest that florencite was formed during Palaeoproterozoic metamorphism that culminated at the - range of 490 ± 40 C and 6.3 ± 1 kbar. Integrating all the geological features it is postulated that florencite was formed due to metasomatism of some aluminous protolith by infiltration of acidic fluids charged with PO 4 −3 and LREE. 1. Introduction Florencite is a rare but important mineral in the alunite super group with the general formula of AB 3 (XO 4 ) 2 (OH) 6 , where A-site filled with Ce, La, and Nd, B-site with Al and X-site with P (Bayliss et al. [1]). e structure of florencite also accommodates variable amounts of Ca 2+ , Pb 2+ , Hg 2+ , K + , Ba 2+ , Sr 2+ , Rb + (in A-site), Fe 3+ , Cu 2+ , Zn 2+ , Sn 2+ , V 3+ , Cr 3+ , and Ga 3+ (in B-site) (Bayliss et al. [1], Dill [2]). Florencite is commonly associated in hydrothermally altered rock (Dill [2], Gaboreau et al. [3], Hikov et al. [4], and Repina [5], among others) and less commonly in metamorphic rocks (Nagy et al. [6], Izbrodin et al. [7], and Janots et al. [8]). Because of its open structure that can accommodate a large number of cations and anions including the REE, the composition of florencite provides a wealth of information about the source and composition of the metamorphic and hydrothermal fluids (Visser et al. [9], Nagy et al. [6], Dill [2], Gaboreau et al. [3], Hikov et al. [4], Izbrodin et al. [7], Repina [5], and Janots et al. [8]). Once formed florencite is very difficult to be destroyed even in the weathering profile and hence controls the mobility of LREE over a wide range of geological conditions (Gaboreau et al. [3], Izbrodin et al. [7], and Repina [5]). Florencite is associated with different types of hydrothermal or deposits including unconformity type uranium deposits and thus the presence of this mineral can be used as a pathfinder mineral in exploration of these deposits (Gaboreau et al. [3]). Singhbhum shear zone (SSZ) of the East Indian shield separates the Palaeo- to Meso- to Neo Archaean Singhb- hum craton from Palaeoproterozoic metamorphosed vol- cano sedimentary pile, known as North Singhbhum Fold Belt (NSFB, Figure 1 aſter Dunn and Dey [10] and Saha [11]). It is generally agreed upon that Palaeoproterozoic tectonism led to thrusting of the NSFB over the Archaen Singhbhum craton along the SSZ (discussed in Sarkar and Gupta [12]). Multitudes of rocks are intermingled, intensely sheared and hydrothermally altered along the SSZ. Repeated Hindawi Publishing Corporation International Journal of Mineralogy Volume 2014, Article ID 978793, 8 pages http://dx.doi.org/10.1155/2014/978793

Transcript of First Report of Florencite from the Singhbhum Shear Zone of the East Indian Craton.

Research ArticleFirst Report of Florencite from the Singhbhum Shear Zone ofthe East Indian Craton

Maitrayee Chakraborty1 Sayan Biswas1 Nandini Sengupta2 and Pulak Sengupta1

1 Department of Geological Sciences Jadavpur University Raja SC Mullick Road Kolkata 700032 India2Department of Geology University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India

Correspondence should be addressed to Pulak Sengupta pulaksggmailcom

Received 29 June 2013 Accepted 6 November 2013 Published 3 February 2014

Academic Editors M Arima E Belluso M M Jordan Vidal and L N Warr

Copyright copy 2014 Maitrayee Chakraborty et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Metamorphic florencite is being reported from kyanite-rich rocks from the eastern part of the Palaeo- to MesoproterozoicSinghbhum shear zoneThis is the first report of florencite from the Precambrian rocks of the Indian Shield Host rock of florenciteis a kyanite-rich rock (gt80 vol) with small and variable amounts of quartz lazulite augelite and rutile Florencite forms small(lt20microns) idioblastic-to-subhedral crystals that are included in large kyanite grains Rarely florencite replaces kyanite Theflorencite has small proportion of crandallite (87ndash118mol) and goyazite (lt2mol) components Florencite of this study isdominated by Ce (sim49mol) with significant La (sim30mol) and Nd (sim21mol) Compared to other florencite occurrences ofthe world florencite of the studied rock is impoverished in S Sr and Ba and rich in P Stability of the assemblage florencite-kyanite-augelite-lazulite and the quantitative thermobarometry in the adjoining rocks suggest that florencite was formed duringPalaeoproterozoic metamorphism that culminated at the 119875-119879 range of 490 plusmn 40∘C and 63 plusmn 1 kbar Integrating all the geologicalfeatures it is postulated that florencite was formed due to metasomatism of some aluminous protolith by infiltration of acidic fluidscharged with PO

4

minus3 and LREE

1 Introduction

Florencite is a rare but important mineral in the alunitesuper group with the general formula of AB

3(XO4)2(OH)6

where A-site filled with Ce La and Nd B-site with Al andX-site with P (Bayliss et al [1]) The structure of florencitealso accommodates variable amounts of Ca2+ Pb2+ Hg2+K+ Ba2+ Sr2+ Rb+ (in A-site) Fe3+ Cu2+ Zn2+ Sn2+V3+ Cr3+ and Ga3+ (in B-site) (Bayliss et al [1] Dill [2])Florencite is commonly associated in hydrothermally alteredrock (Dill [2] Gaboreau et al [3] Hikov et al [4] and Repina[5] among others) and less commonly in metamorphicrocks (Nagy et al [6] Izbrodin et al [7] and Janots et al[8]) Because of its open structure that can accommodate alarge number of cations and anions including the REE thecomposition of florencite provides a wealth of informationabout the source and composition of the metamorphic andhydrothermal fluids (Visser et al [9] Nagy et al [6] Dill[2] Gaboreau et al [3] Hikov et al [4] Izbrodin et al [7]

Repina [5] and Janots et al [8]) Once formed florencite isvery difficult to be destroyed even in the weathering profileand hence controls the mobility of LREE over a wide rangeof geological conditions (Gaboreau et al [3] Izbrodin et al[7] and Repina [5]) Florencite is associated with differenttypes of hydrothermal or deposits including unconformitytype uranium deposits and thus the presence of this mineralcan be used as a pathfinder mineral in exploration of thesedeposits (Gaboreau et al [3])

Singhbhum shear zone (SSZ) of the East Indian shieldseparates the Palaeo- to Meso- to Neo Archaean Singhb-hum craton from Palaeoproterozoic metamorphosed vol-cano sedimentary pile known as North Singhbhum FoldBelt (NSFB Figure 1 after Dunn and Dey [10] and Saha[11]) It is generally agreed upon that Palaeoproterozoictectonism led to thrusting of the NSFB over the ArchaenSinghbhum craton along the SSZ (discussed in Sarkar andGupta [12]) Multitudes of rocks are intermingled intenselysheared and hydrothermally altered along the SSZ Repeated

Hindawi Publishing CorporationInternational Journal of MineralogyVolume 2014 Article ID 978793 8 pageshttpdxdoiorg1011552014978793

2 International Journal of Mineralogy

Tatanagar

Jaduguda

Ghatshila

MG

S

Chakradharpurgranite gneiss N N

1050

(scale in km)

DelhiSSZN N

E E

EE

Mayurbhanj granite

N

SSZSSZ

SSZ

SSZ

Singhbhum graniteIOGsediments

IOGsediments

Dalma volcanics

Arkasani granophyre

Soda granite

Soda granite

KanyalukaDhanjorivolcanics

IOG metavolcanicsDhanjorisediments

Singhbhum groupof metapelites

KolhanGroup ofvolcanics

NSFB

Ongarbirametavolcanics

85∘ 45998400 86∘ 0998400 1599840086∘ 86∘

76∘

76∘

30998400 86∘ 45998400

23∘

24∘24∘

0998400

22∘

92∘

92∘ 45998400

22∘

30998400

22∘

86∘ 4599840015998400

1599840015998400

86∘ 3099840086∘ 86∘099840085∘ 45998400

22∘

22∘

30998400

22∘

459984008∘8∘

099840023∘

lowast

Figure 1 Geologic map showing the distribution of stratigraphic units in a part of eastern India After Dunn and Dey [10] and Saha [11] SSZSinghbhum shear zone NSFB North Singhbhum Fold Belt IOG Iron Ore GroupThe rectangle around Kanyaluka (marked by red asterisk)is blown up in Figure 2

hydrothermal activities developed different types of Cu-Fe-U-P deposits that are associated with tourmalinizationmuscovitization and ferruginization (discussed in Senguptaet al [13] and Sarkar and Gupta [12]) Infiltration-drivenmetamorphism in the SSZ produced a number of exotic rocksincluding per-aluminous kyanite-quartz rocks that fringe thenorthern boundary of the SSZ (Figures 1 and 2 Figure 2partly after Mukhopadhyay and Deb [14]) In the easternpart where the SSZ takes a bend towards south (Figure 1)kyanite-quartz rock is spatially associated with chloritoid-bearing schist pssammopelites mica schist and bands oftourmalinite (Figure 2) All these rocks share a commonhistory of deformation and metamorphism that culminatedat 490 plusmn 40∘C and 63 plusmn 1 kbar (Sengupta [15]) In thiscommunication we are describing themode of occurrence offlorencite in the host of kyanite-rich rock (gt80 vol kyanite)that is exposed near the village of Kanyaluka (Figure 2)Integrating all the petrological data we demonstrate thatflorencite was developed due to infiltration of acidic fluidcharged with P and LREE into the per-aluminous kyanite-rich rock at the culmination of metamorphism and deforma-tion Incidentally this is the first report of florencite from anyPrecambrian rocks of India

2 Petrography and Mineral Chemistry

In domains of minimum strain kyanite-rich rock developsrandomly oriented blades of kyanite that occupy more than80 vol of the rock (Figure 3(a) abbreviations after Kretz[16]) Grains of quartz and rutile occupy the interstitialspace of the mesh formed by the kyanite blades (Figures3(a) and 3(b)) The kyanite-rich rock develops centimeter todecimeter thick bands of intense shearing In the shear bandskyanite blades are kinked bent and fractured (Figure 3(b))and the quartz grains show undulose extinction Locallydeformed kyanite blades are extensively replaced by augeliteand lazulite (Figure 4(a)) Unlike kyanite lazulite andaugelite do not show any deformation (static growth) Inthe backscattered electron (BSE) images florencite grainsappear as numerous small bright spots in the dull backgroundcomposed of lazulite kyanite and quartz (Figure 4(b)) Smalldisseminated idioblastic subhedral to anhedral crystals (lt20microns) of florencite are included in kyanite quartz andlazulite (Figures 4(c) and 4(d)) Rarely florencite replaceskyanite (Figure 4(c)) Textural features attest to the view thatflorencite crystals are left stranded within lazulite when thelatter mineral replaced kyanite (Figure 4(d)) This featuresuggests equilibrium coexistence of florencite and lazulite

International Journal of Mineralogy 3

Kanyaluka

Bhalki

Mica schist (NSFB)Banded ferruginousquartziteKyanite quartzitekyanite mica schistChloritoid schistSoda graniteFeldspathic schistQuartz mica schistTourmalinitetourmaline schist

Sankh

Nala

h

Subarnarekha

Chlorite quartz schist(granular rock)QuartziteMetabasic rocksBanded psammopelitesBiotite muscovite schistFaultRiver

N

22∘

22∘

86∘30998400

86∘

30998400

30998400

30998400

lowast

Figure 2 Lithological map of the South Eastern sector of Singhbhum shear zone (SSZ) around Kanyaluka (Partly after Mukhopadhyay andDeb [14]) The location from where the samples have been collected is marked with red asterisk

Ky

Rt

Qtz

Ky

50120583m

(a)

Rt Qtz

Ky

50120583m

(b)

Figure 3 (a) Randomly oriented kyanite grains forming a mesh-like appearance Some corroded rutile grains and quartz are also seen in theinterstitial spaces and (b) Kyanite poor zone in the host rock showing the presence of deformed (kinked) kyanite Mineral abbreviations usedare after Kretz [16]

4 International Journal of Mineralogy

Ky

LazAug

(a)

Laz

Fl

Ky

Ky

Qtz

(b)

Ky Fl

Laz

(c)

Laz

FlQtz

(d)

Figure 4 BSE images showing (a) Kyanite blades replaced by augelite and lazulite (b) overall view of the lazulite rich zone relicts ofkyanite showing corroded boundary are sparsely distributed here The small bright spots seen here are florencite (c) florencite grain withprotruding grain boundary inside kyanite showing that florencite replaces kyanite (d) florencite grain stranded within lazulite Aug augeliteFl florencite All other mineral abbreviations are after Kretz [16]

Electron microprobe analyses and WDS spectrum of theflorencite are presented in Table 1 and Figure 5 respectivelyAlso included in Table 1 are the representative analysesof kyanite lazulite and rutile For comparison florenciteanalyses from somewell-known localities are also included inTable 1 Chemical compositions of florencite and the adjacentminerals were determined from carbon-coated thin sectionsby electron microprobe analysis (EMPA) with a CAMECASX100 electron microprobe at the Central PetrologicalLaboratory Geological Survey of India Kolkata For elementsother than Sr Ba and the REE the accelerating voltage usedwas 15 kVwith a 12 nA current Elements were analyzed usingnatural standards except for Mn and Ti for which syntheticstandards were used For the heavy metals (Ba Sr and REE)20 kV and 20 nA were usedThe following standards are usedfor REE (REE glass) Sr (celestite) and Ba (barite) The rawdata were processed using the PAP procedure (Pouchou andPichoir [17]) The composition of florencite is recalculatedon 11 oxygen basis and the nomenclature of the differentspecies is according to Bayliss et al [1] Compositionallyflorencite is essentially a solid solution of the speciesFlorencite-(Ce) (487mol) Florencite-(La) (299mol)and Florencite-(Nd) (213mol) (Table 1) Similar to othernatural florencite compositions concentrations of LREE

outweigh the concentrations of HREE The concentrationsof HREE S and As are below the detection limit of electronmicroprobe Concentrations of Sr (0002 to 0008 apfu) Ba(sim000003 apfu) Ca (0040 to 0062 apfu) and K (0001 to0012 apfu) are low Concentration of ThO

2varies between

sim05 and 12 wt (001ndash0024 apfu) The WDS spectrumsuggests that the elements that are not measured do nothave any significant concentrations Lazulite is dominated byMg (9806mol lazulite) with a small amount of scorzalite(194mol Fe-Lazulite Table 1) Kyanite rutile and quartzhave essentially the end member compositions

Entry of small amount of Th and Ca in the structure offlorencite can be explained by the substitution REE3+ harrTh + Ca (Nagy et al [6] Georgieva and Velinova [18] andGaboreau et al [3]) Compared to the florencite compositionsreported from many florencite occurrences in the worldflorencite compositions of this study are depleted in Sr CaBa and S whereas they are enriched in P

2O5(Table 1)

3 Discussion

Florencite in the kyanite rich rock of the Singhbhum shearzone records the first occurrence of this mineral from any

International Journal of Mineralogy 5Ta

ble1Re

presentativ

eanalyses

offlo

rencitelazuliteaugelitekyaniteand

rutilemineralfro

mstu

died

areaF

lorencite

mineralcompo

sitionhasb

eencomparedwith

compo

sitions

from

different

localities

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

SiO

2000

006

001

na

024ndash4

2gt075

001

023

3669

000

TiO

2007

000

004

na

na

na

003

006

002

10090

Al 2O

32847

2737

2728

2866ndash

3189

2710

ndash319

22786ndash

3067

3349

4930

6245

006

Cr2O

3000

000

000

na

na

na

000

008

004

013

FeO

000

001

000

na

017ndash14

na

000

000

003

010

MnO

000

000

000

na

na

na

043

004

002

000

CaO

042

064

054

072ndash144

042ndash0

69

023ndash0

81

001

000

000

001

MgO

001

005

010

na

002ndash0

70

na

1332

003

001

000

Na 2O

009

009

011

na

001ndash0

06

na

003

000

006

000

K 2O

000

000

001

na

na

na

000

000

002

001

P 2O

53081

3072

3084

2697ndash2893

224ndash264

2608ndash2856

4844

3709

000

000

ZrO

2000

000

000

na

na

na

mdashmdash

mdashmdash

Nb 2O

5000

000

004

na

na

na

mdashmdash

mdashmdash

La2O

3683

769

712

646

ndash866

422ndash4

25

391ndash1264

mdashmdash

mdashmdash

Ce 2O

31093

1215

1178

1091ndash1433

837ndash926

494ndash1232

mdashmdash

mdashmdash

PbO

000

000

000

na

na

na

mdashmdash

mdashmdash

ThO

2049

118

118

055ndash994

059ndash109

na

mdashmdash

mdashmdash

U2O

3004

002

002

na

007ndash0

17na

mdashmdash

mdashmdash

BaO

000

000

000

na

na

na

mdashmdash

mdashmdash

SrO

012

015

010

016ndash0

67

132ndash591

447ndash1336

mdashmdash

mdashmdash

Nd 2O

3270

261

269

165ndash500

396ndash4

80

102ndash291

mdashmdash

mdashmdash

Sm2O

3110

106

109

010ndash0

92

055ndash0

60

na

mdashmdash

mdashmdash

SO3

000

000

000

na

021ndash0

59

108ndash

471

mdashmdash

mdashmdash

Total

8208

8381

8295

8769ndash

9036

7821ndash86

35

7140ndash

7898

9576

8683

9940

1012

5ap

fu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

Si000

001

000

na

0020ndash

0379

006

0ndash0170

000

002

100

000

Ti000

000

000

na

na

na

000

000

000

100

Al

299

290

289

3203ndash3360

2880ndash

3131

2710ndash

2950

195

384

200

000

Cr000

000

000

na

na

na

001

000

000

000

Fe000

000

000

na

0012ndash0107

0020ndash

0333

002

000

000

000

Mn

000

000

000

na

na

na

000

000

000

000

Ca004

006

005

006

8ndash0105

0038ndash

0067

0020ndash

0070

000

000

000

000

Mg

000

001

001

na

0003ndash0095

na

098

000

000

000

Na

002

002

002

na

0002ndash0012

na

000

000

000

000

K000

000

000

na

na

na

000

000

000

000

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

2 International Journal of Mineralogy

Tatanagar

Jaduguda

Ghatshila

MG

S

Chakradharpurgranite gneiss N N

1050

(scale in km)

DelhiSSZN N

E E

EE

Mayurbhanj granite

N

SSZSSZ

SSZ

SSZ

Singhbhum graniteIOGsediments

IOGsediments

Dalma volcanics

Arkasani granophyre

Soda granite

Soda granite

KanyalukaDhanjorivolcanics

IOG metavolcanicsDhanjorisediments

Singhbhum groupof metapelites

KolhanGroup ofvolcanics

NSFB

Ongarbirametavolcanics

85∘ 45998400 86∘ 0998400 1599840086∘ 86∘

76∘

76∘

30998400 86∘ 45998400

23∘

24∘24∘

0998400

22∘

92∘

92∘ 45998400

22∘

30998400

22∘

86∘ 4599840015998400

1599840015998400

86∘ 3099840086∘ 86∘099840085∘ 45998400

22∘

22∘

30998400

22∘

459984008∘8∘

099840023∘

lowast

Figure 1 Geologic map showing the distribution of stratigraphic units in a part of eastern India After Dunn and Dey [10] and Saha [11] SSZSinghbhum shear zone NSFB North Singhbhum Fold Belt IOG Iron Ore GroupThe rectangle around Kanyaluka (marked by red asterisk)is blown up in Figure 2

hydrothermal activities developed different types of Cu-Fe-U-P deposits that are associated with tourmalinizationmuscovitization and ferruginization (discussed in Senguptaet al [13] and Sarkar and Gupta [12]) Infiltration-drivenmetamorphism in the SSZ produced a number of exotic rocksincluding per-aluminous kyanite-quartz rocks that fringe thenorthern boundary of the SSZ (Figures 1 and 2 Figure 2partly after Mukhopadhyay and Deb [14]) In the easternpart where the SSZ takes a bend towards south (Figure 1)kyanite-quartz rock is spatially associated with chloritoid-bearing schist pssammopelites mica schist and bands oftourmalinite (Figure 2) All these rocks share a commonhistory of deformation and metamorphism that culminatedat 490 plusmn 40∘C and 63 plusmn 1 kbar (Sengupta [15]) In thiscommunication we are describing themode of occurrence offlorencite in the host of kyanite-rich rock (gt80 vol kyanite)that is exposed near the village of Kanyaluka (Figure 2)Integrating all the petrological data we demonstrate thatflorencite was developed due to infiltration of acidic fluidcharged with P and LREE into the per-aluminous kyanite-rich rock at the culmination of metamorphism and deforma-tion Incidentally this is the first report of florencite from anyPrecambrian rocks of India

2 Petrography and Mineral Chemistry

In domains of minimum strain kyanite-rich rock developsrandomly oriented blades of kyanite that occupy more than80 vol of the rock (Figure 3(a) abbreviations after Kretz[16]) Grains of quartz and rutile occupy the interstitialspace of the mesh formed by the kyanite blades (Figures3(a) and 3(b)) The kyanite-rich rock develops centimeter todecimeter thick bands of intense shearing In the shear bandskyanite blades are kinked bent and fractured (Figure 3(b))and the quartz grains show undulose extinction Locallydeformed kyanite blades are extensively replaced by augeliteand lazulite (Figure 4(a)) Unlike kyanite lazulite andaugelite do not show any deformation (static growth) Inthe backscattered electron (BSE) images florencite grainsappear as numerous small bright spots in the dull backgroundcomposed of lazulite kyanite and quartz (Figure 4(b)) Smalldisseminated idioblastic subhedral to anhedral crystals (lt20microns) of florencite are included in kyanite quartz andlazulite (Figures 4(c) and 4(d)) Rarely florencite replaceskyanite (Figure 4(c)) Textural features attest to the view thatflorencite crystals are left stranded within lazulite when thelatter mineral replaced kyanite (Figure 4(d)) This featuresuggests equilibrium coexistence of florencite and lazulite

International Journal of Mineralogy 3

Kanyaluka

Bhalki

Mica schist (NSFB)Banded ferruginousquartziteKyanite quartzitekyanite mica schistChloritoid schistSoda graniteFeldspathic schistQuartz mica schistTourmalinitetourmaline schist

Sankh

Nala

h

Subarnarekha

Chlorite quartz schist(granular rock)QuartziteMetabasic rocksBanded psammopelitesBiotite muscovite schistFaultRiver

N

22∘

22∘

86∘30998400

86∘

30998400

30998400

30998400

lowast

Figure 2 Lithological map of the South Eastern sector of Singhbhum shear zone (SSZ) around Kanyaluka (Partly after Mukhopadhyay andDeb [14]) The location from where the samples have been collected is marked with red asterisk

Ky

Rt

Qtz

Ky

50120583m

(a)

Rt Qtz

Ky

50120583m

(b)

Figure 3 (a) Randomly oriented kyanite grains forming a mesh-like appearance Some corroded rutile grains and quartz are also seen in theinterstitial spaces and (b) Kyanite poor zone in the host rock showing the presence of deformed (kinked) kyanite Mineral abbreviations usedare after Kretz [16]

4 International Journal of Mineralogy

Ky

LazAug

(a)

Laz

Fl

Ky

Ky

Qtz

(b)

Ky Fl

Laz

(c)

Laz

FlQtz

(d)

Figure 4 BSE images showing (a) Kyanite blades replaced by augelite and lazulite (b) overall view of the lazulite rich zone relicts ofkyanite showing corroded boundary are sparsely distributed here The small bright spots seen here are florencite (c) florencite grain withprotruding grain boundary inside kyanite showing that florencite replaces kyanite (d) florencite grain stranded within lazulite Aug augeliteFl florencite All other mineral abbreviations are after Kretz [16]

Electron microprobe analyses and WDS spectrum of theflorencite are presented in Table 1 and Figure 5 respectivelyAlso included in Table 1 are the representative analysesof kyanite lazulite and rutile For comparison florenciteanalyses from somewell-known localities are also included inTable 1 Chemical compositions of florencite and the adjacentminerals were determined from carbon-coated thin sectionsby electron microprobe analysis (EMPA) with a CAMECASX100 electron microprobe at the Central PetrologicalLaboratory Geological Survey of India Kolkata For elementsother than Sr Ba and the REE the accelerating voltage usedwas 15 kVwith a 12 nA current Elements were analyzed usingnatural standards except for Mn and Ti for which syntheticstandards were used For the heavy metals (Ba Sr and REE)20 kV and 20 nA were usedThe following standards are usedfor REE (REE glass) Sr (celestite) and Ba (barite) The rawdata were processed using the PAP procedure (Pouchou andPichoir [17]) The composition of florencite is recalculatedon 11 oxygen basis and the nomenclature of the differentspecies is according to Bayliss et al [1] Compositionallyflorencite is essentially a solid solution of the speciesFlorencite-(Ce) (487mol) Florencite-(La) (299mol)and Florencite-(Nd) (213mol) (Table 1) Similar to othernatural florencite compositions concentrations of LREE

outweigh the concentrations of HREE The concentrationsof HREE S and As are below the detection limit of electronmicroprobe Concentrations of Sr (0002 to 0008 apfu) Ba(sim000003 apfu) Ca (0040 to 0062 apfu) and K (0001 to0012 apfu) are low Concentration of ThO

2varies between

sim05 and 12 wt (001ndash0024 apfu) The WDS spectrumsuggests that the elements that are not measured do nothave any significant concentrations Lazulite is dominated byMg (9806mol lazulite) with a small amount of scorzalite(194mol Fe-Lazulite Table 1) Kyanite rutile and quartzhave essentially the end member compositions

Entry of small amount of Th and Ca in the structure offlorencite can be explained by the substitution REE3+ harrTh + Ca (Nagy et al [6] Georgieva and Velinova [18] andGaboreau et al [3]) Compared to the florencite compositionsreported from many florencite occurrences in the worldflorencite compositions of this study are depleted in Sr CaBa and S whereas they are enriched in P

2O5(Table 1)

3 Discussion

Florencite in the kyanite rich rock of the Singhbhum shearzone records the first occurrence of this mineral from any

International Journal of Mineralogy 5Ta

ble1Re

presentativ

eanalyses

offlo

rencitelazuliteaugelitekyaniteand

rutilemineralfro

mstu

died

areaF

lorencite

mineralcompo

sitionhasb

eencomparedwith

compo

sitions

from

different

localities

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

SiO

2000

006

001

na

024ndash4

2gt075

001

023

3669

000

TiO

2007

000

004

na

na

na

003

006

002

10090

Al 2O

32847

2737

2728

2866ndash

3189

2710

ndash319

22786ndash

3067

3349

4930

6245

006

Cr2O

3000

000

000

na

na

na

000

008

004

013

FeO

000

001

000

na

017ndash14

na

000

000

003

010

MnO

000

000

000

na

na

na

043

004

002

000

CaO

042

064

054

072ndash144

042ndash0

69

023ndash0

81

001

000

000

001

MgO

001

005

010

na

002ndash0

70

na

1332

003

001

000

Na 2O

009

009

011

na

001ndash0

06

na

003

000

006

000

K 2O

000

000

001

na

na

na

000

000

002

001

P 2O

53081

3072

3084

2697ndash2893

224ndash264

2608ndash2856

4844

3709

000

000

ZrO

2000

000

000

na

na

na

mdashmdash

mdashmdash

Nb 2O

5000

000

004

na

na

na

mdashmdash

mdashmdash

La2O

3683

769

712

646

ndash866

422ndash4

25

391ndash1264

mdashmdash

mdashmdash

Ce 2O

31093

1215

1178

1091ndash1433

837ndash926

494ndash1232

mdashmdash

mdashmdash

PbO

000

000

000

na

na

na

mdashmdash

mdashmdash

ThO

2049

118

118

055ndash994

059ndash109

na

mdashmdash

mdashmdash

U2O

3004

002

002

na

007ndash0

17na

mdashmdash

mdashmdash

BaO

000

000

000

na

na

na

mdashmdash

mdashmdash

SrO

012

015

010

016ndash0

67

132ndash591

447ndash1336

mdashmdash

mdashmdash

Nd 2O

3270

261

269

165ndash500

396ndash4

80

102ndash291

mdashmdash

mdashmdash

Sm2O

3110

106

109

010ndash0

92

055ndash0

60

na

mdashmdash

mdashmdash

SO3

000

000

000

na

021ndash0

59

108ndash

471

mdashmdash

mdashmdash

Total

8208

8381

8295

8769ndash

9036

7821ndash86

35

7140ndash

7898

9576

8683

9940

1012

5ap

fu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

Si000

001

000

na

0020ndash

0379

006

0ndash0170

000

002

100

000

Ti000

000

000

na

na

na

000

000

000

100

Al

299

290

289

3203ndash3360

2880ndash

3131

2710ndash

2950

195

384

200

000

Cr000

000

000

na

na

na

001

000

000

000

Fe000

000

000

na

0012ndash0107

0020ndash

0333

002

000

000

000

Mn

000

000

000

na

na

na

000

000

000

000

Ca004

006

005

006

8ndash0105

0038ndash

0067

0020ndash

0070

000

000

000

000

Mg

000

001

001

na

0003ndash0095

na

098

000

000

000

Na

002

002

002

na

0002ndash0012

na

000

000

000

000

K000

000

000

na

na

na

000

000

000

000

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

International Journal of Mineralogy 3

Kanyaluka

Bhalki

Mica schist (NSFB)Banded ferruginousquartziteKyanite quartzitekyanite mica schistChloritoid schistSoda graniteFeldspathic schistQuartz mica schistTourmalinitetourmaline schist

Sankh

Nala

h

Subarnarekha

Chlorite quartz schist(granular rock)QuartziteMetabasic rocksBanded psammopelitesBiotite muscovite schistFaultRiver

N

22∘

22∘

86∘30998400

86∘

30998400

30998400

30998400

lowast

Figure 2 Lithological map of the South Eastern sector of Singhbhum shear zone (SSZ) around Kanyaluka (Partly after Mukhopadhyay andDeb [14]) The location from where the samples have been collected is marked with red asterisk

Ky

Rt

Qtz

Ky

50120583m

(a)

Rt Qtz

Ky

50120583m

(b)

Figure 3 (a) Randomly oriented kyanite grains forming a mesh-like appearance Some corroded rutile grains and quartz are also seen in theinterstitial spaces and (b) Kyanite poor zone in the host rock showing the presence of deformed (kinked) kyanite Mineral abbreviations usedare after Kretz [16]

4 International Journal of Mineralogy

Ky

LazAug

(a)

Laz

Fl

Ky

Ky

Qtz

(b)

Ky Fl

Laz

(c)

Laz

FlQtz

(d)

Figure 4 BSE images showing (a) Kyanite blades replaced by augelite and lazulite (b) overall view of the lazulite rich zone relicts ofkyanite showing corroded boundary are sparsely distributed here The small bright spots seen here are florencite (c) florencite grain withprotruding grain boundary inside kyanite showing that florencite replaces kyanite (d) florencite grain stranded within lazulite Aug augeliteFl florencite All other mineral abbreviations are after Kretz [16]

Electron microprobe analyses and WDS spectrum of theflorencite are presented in Table 1 and Figure 5 respectivelyAlso included in Table 1 are the representative analysesof kyanite lazulite and rutile For comparison florenciteanalyses from somewell-known localities are also included inTable 1 Chemical compositions of florencite and the adjacentminerals were determined from carbon-coated thin sectionsby electron microprobe analysis (EMPA) with a CAMECASX100 electron microprobe at the Central PetrologicalLaboratory Geological Survey of India Kolkata For elementsother than Sr Ba and the REE the accelerating voltage usedwas 15 kVwith a 12 nA current Elements were analyzed usingnatural standards except for Mn and Ti for which syntheticstandards were used For the heavy metals (Ba Sr and REE)20 kV and 20 nA were usedThe following standards are usedfor REE (REE glass) Sr (celestite) and Ba (barite) The rawdata were processed using the PAP procedure (Pouchou andPichoir [17]) The composition of florencite is recalculatedon 11 oxygen basis and the nomenclature of the differentspecies is according to Bayliss et al [1] Compositionallyflorencite is essentially a solid solution of the speciesFlorencite-(Ce) (487mol) Florencite-(La) (299mol)and Florencite-(Nd) (213mol) (Table 1) Similar to othernatural florencite compositions concentrations of LREE

outweigh the concentrations of HREE The concentrationsof HREE S and As are below the detection limit of electronmicroprobe Concentrations of Sr (0002 to 0008 apfu) Ba(sim000003 apfu) Ca (0040 to 0062 apfu) and K (0001 to0012 apfu) are low Concentration of ThO

2varies between

sim05 and 12 wt (001ndash0024 apfu) The WDS spectrumsuggests that the elements that are not measured do nothave any significant concentrations Lazulite is dominated byMg (9806mol lazulite) with a small amount of scorzalite(194mol Fe-Lazulite Table 1) Kyanite rutile and quartzhave essentially the end member compositions

Entry of small amount of Th and Ca in the structure offlorencite can be explained by the substitution REE3+ harrTh + Ca (Nagy et al [6] Georgieva and Velinova [18] andGaboreau et al [3]) Compared to the florencite compositionsreported from many florencite occurrences in the worldflorencite compositions of this study are depleted in Sr CaBa and S whereas they are enriched in P

2O5(Table 1)

3 Discussion

Florencite in the kyanite rich rock of the Singhbhum shearzone records the first occurrence of this mineral from any

International Journal of Mineralogy 5Ta

ble1Re

presentativ

eanalyses

offlo

rencitelazuliteaugelitekyaniteand

rutilemineralfro

mstu

died

areaF

lorencite

mineralcompo

sitionhasb

eencomparedwith

compo

sitions

from

different

localities

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

SiO

2000

006

001

na

024ndash4

2gt075

001

023

3669

000

TiO

2007

000

004

na

na

na

003

006

002

10090

Al 2O

32847

2737

2728

2866ndash

3189

2710

ndash319

22786ndash

3067

3349

4930

6245

006

Cr2O

3000

000

000

na

na

na

000

008

004

013

FeO

000

001

000

na

017ndash14

na

000

000

003

010

MnO

000

000

000

na

na

na

043

004

002

000

CaO

042

064

054

072ndash144

042ndash0

69

023ndash0

81

001

000

000

001

MgO

001

005

010

na

002ndash0

70

na

1332

003

001

000

Na 2O

009

009

011

na

001ndash0

06

na

003

000

006

000

K 2O

000

000

001

na

na

na

000

000

002

001

P 2O

53081

3072

3084

2697ndash2893

224ndash264

2608ndash2856

4844

3709

000

000

ZrO

2000

000

000

na

na

na

mdashmdash

mdashmdash

Nb 2O

5000

000

004

na

na

na

mdashmdash

mdashmdash

La2O

3683

769

712

646

ndash866

422ndash4

25

391ndash1264

mdashmdash

mdashmdash

Ce 2O

31093

1215

1178

1091ndash1433

837ndash926

494ndash1232

mdashmdash

mdashmdash

PbO

000

000

000

na

na

na

mdashmdash

mdashmdash

ThO

2049

118

118

055ndash994

059ndash109

na

mdashmdash

mdashmdash

U2O

3004

002

002

na

007ndash0

17na

mdashmdash

mdashmdash

BaO

000

000

000

na

na

na

mdashmdash

mdashmdash

SrO

012

015

010

016ndash0

67

132ndash591

447ndash1336

mdashmdash

mdashmdash

Nd 2O

3270

261

269

165ndash500

396ndash4

80

102ndash291

mdashmdash

mdashmdash

Sm2O

3110

106

109

010ndash0

92

055ndash0

60

na

mdashmdash

mdashmdash

SO3

000

000

000

na

021ndash0

59

108ndash

471

mdashmdash

mdashmdash

Total

8208

8381

8295

8769ndash

9036

7821ndash86

35

7140ndash

7898

9576

8683

9940

1012

5ap

fu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

Si000

001

000

na

0020ndash

0379

006

0ndash0170

000

002

100

000

Ti000

000

000

na

na

na

000

000

000

100

Al

299

290

289

3203ndash3360

2880ndash

3131

2710ndash

2950

195

384

200

000

Cr000

000

000

na

na

na

001

000

000

000

Fe000

000

000

na

0012ndash0107

0020ndash

0333

002

000

000

000

Mn

000

000

000

na

na

na

000

000

000

000

Ca004

006

005

006

8ndash0105

0038ndash

0067

0020ndash

0070

000

000

000

000

Mg

000

001

001

na

0003ndash0095

na

098

000

000

000

Na

002

002

002

na

0002ndash0012

na

000

000

000

000

K000

000

000

na

na

na

000

000

000

000

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

4 International Journal of Mineralogy

Ky

LazAug

(a)

Laz

Fl

Ky

Ky

Qtz

(b)

Ky Fl

Laz

(c)

Laz

FlQtz

(d)

Figure 4 BSE images showing (a) Kyanite blades replaced by augelite and lazulite (b) overall view of the lazulite rich zone relicts ofkyanite showing corroded boundary are sparsely distributed here The small bright spots seen here are florencite (c) florencite grain withprotruding grain boundary inside kyanite showing that florencite replaces kyanite (d) florencite grain stranded within lazulite Aug augeliteFl florencite All other mineral abbreviations are after Kretz [16]

Electron microprobe analyses and WDS spectrum of theflorencite are presented in Table 1 and Figure 5 respectivelyAlso included in Table 1 are the representative analysesof kyanite lazulite and rutile For comparison florenciteanalyses from somewell-known localities are also included inTable 1 Chemical compositions of florencite and the adjacentminerals were determined from carbon-coated thin sectionsby electron microprobe analysis (EMPA) with a CAMECASX100 electron microprobe at the Central PetrologicalLaboratory Geological Survey of India Kolkata For elementsother than Sr Ba and the REE the accelerating voltage usedwas 15 kVwith a 12 nA current Elements were analyzed usingnatural standards except for Mn and Ti for which syntheticstandards were used For the heavy metals (Ba Sr and REE)20 kV and 20 nA were usedThe following standards are usedfor REE (REE glass) Sr (celestite) and Ba (barite) The rawdata were processed using the PAP procedure (Pouchou andPichoir [17]) The composition of florencite is recalculatedon 11 oxygen basis and the nomenclature of the differentspecies is according to Bayliss et al [1] Compositionallyflorencite is essentially a solid solution of the speciesFlorencite-(Ce) (487mol) Florencite-(La) (299mol)and Florencite-(Nd) (213mol) (Table 1) Similar to othernatural florencite compositions concentrations of LREE

outweigh the concentrations of HREE The concentrationsof HREE S and As are below the detection limit of electronmicroprobe Concentrations of Sr (0002 to 0008 apfu) Ba(sim000003 apfu) Ca (0040 to 0062 apfu) and K (0001 to0012 apfu) are low Concentration of ThO

2varies between

sim05 and 12 wt (001ndash0024 apfu) The WDS spectrumsuggests that the elements that are not measured do nothave any significant concentrations Lazulite is dominated byMg (9806mol lazulite) with a small amount of scorzalite(194mol Fe-Lazulite Table 1) Kyanite rutile and quartzhave essentially the end member compositions

Entry of small amount of Th and Ca in the structure offlorencite can be explained by the substitution REE3+ harrTh + Ca (Nagy et al [6] Georgieva and Velinova [18] andGaboreau et al [3]) Compared to the florencite compositionsreported from many florencite occurrences in the worldflorencite compositions of this study are depleted in Sr CaBa and S whereas they are enriched in P

2O5(Table 1)

3 Discussion

Florencite in the kyanite rich rock of the Singhbhum shearzone records the first occurrence of this mineral from any

International Journal of Mineralogy 5Ta

ble1Re

presentativ

eanalyses

offlo

rencitelazuliteaugelitekyaniteand

rutilemineralfro

mstu

died

areaF

lorencite

mineralcompo

sitionhasb

eencomparedwith

compo

sitions

from

different

localities

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

SiO

2000

006

001

na

024ndash4

2gt075

001

023

3669

000

TiO

2007

000

004

na

na

na

003

006

002

10090

Al 2O

32847

2737

2728

2866ndash

3189

2710

ndash319

22786ndash

3067

3349

4930

6245

006

Cr2O

3000

000

000

na

na

na

000

008

004

013

FeO

000

001

000

na

017ndash14

na

000

000

003

010

MnO

000

000

000

na

na

na

043

004

002

000

CaO

042

064

054

072ndash144

042ndash0

69

023ndash0

81

001

000

000

001

MgO

001

005

010

na

002ndash0

70

na

1332

003

001

000

Na 2O

009

009

011

na

001ndash0

06

na

003

000

006

000

K 2O

000

000

001

na

na

na

000

000

002

001

P 2O

53081

3072

3084

2697ndash2893

224ndash264

2608ndash2856

4844

3709

000

000

ZrO

2000

000

000

na

na

na

mdashmdash

mdashmdash

Nb 2O

5000

000

004

na

na

na

mdashmdash

mdashmdash

La2O

3683

769

712

646

ndash866

422ndash4

25

391ndash1264

mdashmdash

mdashmdash

Ce 2O

31093

1215

1178

1091ndash1433

837ndash926

494ndash1232

mdashmdash

mdashmdash

PbO

000

000

000

na

na

na

mdashmdash

mdashmdash

ThO

2049

118

118

055ndash994

059ndash109

na

mdashmdash

mdashmdash

U2O

3004

002

002

na

007ndash0

17na

mdashmdash

mdashmdash

BaO

000

000

000

na

na

na

mdashmdash

mdashmdash

SrO

012

015

010

016ndash0

67

132ndash591

447ndash1336

mdashmdash

mdashmdash

Nd 2O

3270

261

269

165ndash500

396ndash4

80

102ndash291

mdashmdash

mdashmdash

Sm2O

3110

106

109

010ndash0

92

055ndash0

60

na

mdashmdash

mdashmdash

SO3

000

000

000

na

021ndash0

59

108ndash

471

mdashmdash

mdashmdash

Total

8208

8381

8295

8769ndash

9036

7821ndash86

35

7140ndash

7898

9576

8683

9940

1012

5ap

fu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

Si000

001

000

na

0020ndash

0379

006

0ndash0170

000

002

100

000

Ti000

000

000

na

na

na

000

000

000

100

Al

299

290

289

3203ndash3360

2880ndash

3131

2710ndash

2950

195

384

200

000

Cr000

000

000

na

na

na

001

000

000

000

Fe000

000

000

na

0012ndash0107

0020ndash

0333

002

000

000

000

Mn

000

000

000

na

na

na

000

000

000

000

Ca004

006

005

006

8ndash0105

0038ndash

0067

0020ndash

0070

000

000

000

000

Mg

000

001

001

na

0003ndash0095

na

098

000

000

000

Na

002

002

002

na

0002ndash0012

na

000

000

000

000

K000

000

000

na

na

na

000

000

000

000

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

International Journal of Mineralogy 5Ta

ble1Re

presentativ

eanalyses

offlo

rencitelazuliteaugelitekyaniteand

rutilemineralfro

mstu

died

areaF

lorencite

mineralcompo

sitionhasb

eencomparedwith

compo

sitions

from

different

localities

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

SiO

2000

006

001

na

024ndash4

2gt075

001

023

3669

000

TiO

2007

000

004

na

na

na

003

006

002

10090

Al 2O

32847

2737

2728

2866ndash

3189

2710

ndash319

22786ndash

3067

3349

4930

6245

006

Cr2O

3000

000

000

na

na

na

000

008

004

013

FeO

000

001

000

na

017ndash14

na

000

000

003

010

MnO

000

000

000

na

na

na

043

004

002

000

CaO

042

064

054

072ndash144

042ndash0

69

023ndash0

81

001

000

000

001

MgO

001

005

010

na

002ndash0

70

na

1332

003

001

000

Na 2O

009

009

011

na

001ndash0

06

na

003

000

006

000

K 2O

000

000

001

na

na

na

000

000

002

001

P 2O

53081

3072

3084

2697ndash2893

224ndash264

2608ndash2856

4844

3709

000

000

ZrO

2000

000

000

na

na

na

mdashmdash

mdashmdash

Nb 2O

5000

000

004

na

na

na

mdashmdash

mdashmdash

La2O

3683

769

712

646

ndash866

422ndash4

25

391ndash1264

mdashmdash

mdashmdash

Ce 2O

31093

1215

1178

1091ndash1433

837ndash926

494ndash1232

mdashmdash

mdashmdash

PbO

000

000

000

na

na

na

mdashmdash

mdashmdash

ThO

2049

118

118

055ndash994

059ndash109

na

mdashmdash

mdashmdash

U2O

3004

002

002

na

007ndash0

17na

mdashmdash

mdashmdash

BaO

000

000

000

na

na

na

mdashmdash

mdashmdash

SrO

012

015

010

016ndash0

67

132ndash591

447ndash1336

mdashmdash

mdashmdash

Nd 2O

3270

261

269

165ndash500

396ndash4

80

102ndash291

mdashmdash

mdashmdash

Sm2O

3110

106

109

010ndash0

92

055ndash0

60

na

mdashmdash

mdashmdash

SO3

000

000

000

na

021ndash0

59

108ndash

471

mdashmdash

mdashmdash

Total

8208

8381

8295

8769ndash

9036

7821ndash86

35

7140ndash

7898

9576

8683

9940

1012

5ap

fu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

apfu

Si000

001

000

na

0020ndash

0379

006

0ndash0170

000

002

100

000

Ti000

000

000

na

na

na

000

000

000

100

Al

299

290

289

3203ndash3360

2880ndash

3131

2710ndash

2950

195

384

200

000

Cr000

000

000

na

na

na

001

000

000

000

Fe000

000

000

na

0012ndash0107

0020ndash

0333

002

000

000

000

Mn

000

000

000

na

na

na

000

000

000

000

Ca004

006

005

006

8ndash0105

0038ndash

0067

0020ndash

0070

000

000

000

000

Mg

000

001

001

na

0003ndash0095

na

098

000

000

000

Na

002

002

002

na

0002ndash0012

na

000

000

000

000

K000

000

000

na

na

na

000

000

000

000

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

6 International Journal of Mineralogy

Table1Con

tinued

Elem

ents

Locatio

n

Florencite(calculated

on11oxygen

basis

Valuesinwt

)

Florencitedata

byNagyetal

2002

[6](values

inwt

)

Florencitedata

byJano

tsetal

2006

[8](values

inwt

)

Florencitedataby

Doroshk

evichetal

2009

[19](values

inwt

)

Lazulite(values

inwt

)Au

gelite(

values

inwt

)Ky

anite

(values

inwt

)Ru

tile(values

inwt

)

Sing

hbhu

mshearz

one(SSZ)

Sopron

Hills

Easte

rnAlps

Hun

gary

Sebtide

complexR

ifMorocco

Amba-D

ongar

GujaratInd

iaSing

hbhu

mshearz

one(SSZ)

P233

234

235

2041ndash2117

1710ndash1863

1770ndash2001

203

208

000

000

Zr000

000

000

na

na

na

mdashmdash

mdashmdash

Nb

000

000

000

na

na

na

mdashmdash

mdashmdash

La011

013

012

0104ndash

0106

0131ndash0140

0110ndash

0340

mdashmdash

mdashmdash

Ce

018

020

019

0204ndash

0213

0277ndash0282

0140ndash

0392

mdashmdash

mdashmdash

Pb000

000

000

na

na

na

mdashmdash

mdashmdash

Th001

002

002

na

0022ndash0011

na

mdashmdash

mdashmdash

U000

000

000

na

0001ndash000

4na

mdashmdash

mdashmdash

Ba000

000

000

na

na

na

mdashmdash

mdashmdash

Sr001

001

001

0011ndash0035

na

na

mdashmdash

mdashmdash

Nd

009

008

009

0142ndash0156

0128ndash

0143

0030ndash

0071

mdashmdash

mdashmdash

Sm003

003

003

0023ndash0027

0018ndash

0019

na

mdashmdash

mdashmdash

Sbdl

bdl

bdl

na

0069ndash

0285

0070ndash

0273

mdashmdash

mdashmdash

Totalcation

580

580

579

589

2ndash599

25763ndash

594

55637ndash

583

4498

595

300

100

sumRE

E042

045

044

0484ndash

0537

0603ndash0612

0300ndash

0603

Florencite

(mol)

8994

8669

8845

Goyazite

(mol)

136

147

103

Crandallite

(mol)

870

1184

1052

Noten

anot

availablebdlbelowdetectionlim

it

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

International Journal of Mineralogy 7

Cps

5000

4000

3000

2000

1000

020000 30000 40000 50000 60000 70000 80000 90000

S In

P Ka

P Ka

Al Ka

Ce La

Ce Lb

La La

TAPPET

Figure 5 WDS of florencite showing Al P Ce and La TAP and PET are crystals of the electron microprobe machine

Precambrian rocks of the peninsular India The only otherlocality of florencite in India is the carbonatite complex ofAmba Dongar Gujarat (Doroshkevich et al [19])

Textural features suggest that florencite was formed dur-ing and after the growth of kyanite and hence originatedduringmetamorphism that accompanied the ductile shearingof the studied rock Florencite remained stable during theformation of lazulite and augelite that replaced kyanite understatic condition (post-shearing) Experimental study in theAl-P-O-H system and the observations from natural rocksshow that the assemblage augelite + kyanite is stable at con-ditions 380∘ndash475∘C and pressure gt2 kbar (Wise and Loh [20]andVisser et al [9])The assemblage kyanite + lazulite on theother hand has a wide thermal and baric stability (gt400∘Cand gt2 kbar Schmid-Beurmann et al [21] andMorteani et al[22]) Stability of florencite at high temperature (up to 550∘C)is reported from the eastern Alps (Nagy et al [6]) and fromAfrican carbonatites (Mckie [23]) Briefly the assemblagekyanite + augelite + lazulite + florencite appears to form attemperature and pressure that exceeded 400∘C and 2 kbarThis is in a good agreement with the calculated 119875-119879 valuesof 490 plusmn 40∘C and sim6 plusmn 1 kbar from the adjoining chloritoidgarnet bearing schist (Sengupta [15])

Origin of florencite in kyanite-quartz rock requires advec-tive transport of LREE and P presumably by infiltrationof aqueous fluids Singhbhum shear zone is characterizedby repeated infiltrations of aqueous fluids that resulted inmineralization ofCu-Fe-U-P and tourmalinization (reviewedin Sengupta et al [13] and Sarkar and Gupta [12]) In thisstudy we document phosphate REE and Mg-metasomatismwhich developed end member lazulite (very low content ofscorzalite) in kyanite-rich rock Several studies have demon-strated that florencite develops in hydrothermally altered(sensu lato) rock in which themetasomatic fluids are oxidizedand have acidic pH (Visser et al [9] Nagy et al [6] Gaboreau

et al [3] Hikov et al [4] and Georgieva and Velinova [18]) Inview of this we envisage that infiltration of acidic fluid froman extraneous source to be responsible for the developmentof florencite Absence ofmuscovitization of kyanite in kyanitequartz rock of this particular studied area and extensivetourmalinization of the adjoining rocks (Sengupta et al [13])supports that acidic metasomatic fluids infiltrated the rocksof the area Studies have shown that acidic fluids can dissolvea large amount of PO

4

minus3 and LREE as these chemical speciesform the ligand (REE (PO

4)∘

aq) (Ayers and Watson [24]cf Jones et al [25]) This fluid upon interacting with per-aluminous host rock stabilized florencite (Nagy et al [6])

4 Conclusion

(1) Florencite a REE-Al phosphate has been reportedfrom a metamorphosed kyanite-rich rock from theSinghbhum shear zone of the east Indian Shield

(2) Petrology of the florencite-bearing mineral associa-tion suggests metamorphic growth of florencite in the119875-119879 range of sim6 plusmn 1 kbar and 490∘plusmn 40∘C This is thefirst report of florencite from Precambrian rocks ofIndia

(3) Florencite was formed due to interaction of acidicaqueous fluids charged with PO4minus and REE and alu-minous country rock during regional metamorphismand ductile shearing in the Singhbhum shear zone

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

8 International Journal of Mineralogy

Acknowledgments

Maitrayee Chakraborty and Sayan Biswas acknowledge theresearch grants sanctioned by the CSIR New Delhi andUGC New Delhi respectively Nandini Sengupta acknowl-edges the financial assistance from project WOS-A DST(Department of Science and Technology New Delhi) PulakSengupta acknowledges the financial assistance from theCAS Department of Geological Sciences and UPE-II Jadav-pur University They thank Mr Priyadarshi Chowdhuryand Dr A Gupta for their assistance during the fieldworkThey also thank two anonymous reviewers for their helpfulcomments that improved the clarity of the paper

References

[1] P Bayliss U Kolitsch EHNickel andA Pring ldquoAlunite super-group recommended nomenclaturerdquo Mineralogical Magazinevol 74 no 5 pp 919ndash927 2010

[2] H G Dill ldquoThe geology of Aluminium Phosphates and sulfatesof the alunite supergouprdquo Earth-Science Reviews vol 53 pp 35ndash93 2001

[3] S Gaboreau D Beaufort P Vieillard P Patrier and P Brune-ton ldquoAluminum phosphate-sulfate minerals associated withProterozoic unconformity-type uranium deposits in the EastAlligator River Uranium Field Northern Territories AustraliardquoCanadian Mineralogist vol 43 no 2 pp 813ndash827 2005

[4] AHikovC Lerouge andNVelinova ldquoGeochemistry of alunitegroupminerals in hydrothermally altered rocks from the Asarelporphyry copper deposit Central Srednogorierdquo Review of theBulgarian Geological Society vol 71 no 1ndash3 pp 133ndash148 2010

[5] S A Repina ldquoFractionation of REE in the xenotime andflorencite paragenetic association fromAu-REEmineral occur-rences of the Nether-Polar Uralsrdquo Geochemistry Internationalvol 49 no 9 pp 868ndash887 2011

[6] G Nagy E Draganits A Demeny G Panto and P ArkaildquoGenesis and transformations of monazite florencite and rhab-dophane duringmedium grademetamorphism examples fromthe Sopron Hills Eastern Alpsrdquo Chemical Geology vol 191 no1ndash3 pp 25ndash46 2002

[7] I A Izbrodin G S Ripp and A G Doroshkevich ldquoAluminiumphosphate and phosphate-sulphate minerals in kyanite schistsof the Ichetuyskoye area West Transbaikalia Russia crystalchemistry and evolutionrdquoMineralogy and Petrology vol 101 no1 pp 81ndash96 2011

[8] E Janots F Negro F Brunet B Goffe M Engi and M LBouybaouene ldquoEvolution of the REE mineralogy in HP-LTmetapelites of the Sebtide complex Rif Morocco monazitestability and geochronologyrdquo Lithos vol 87 no 3-4 pp 214ndash234 2006

[9] D Visser R O Felius andMMoree ldquoAugelite and cerian cran-dallite in dumortierite quartzites Vaca Morta quarry Veredarange Macaubas Bahia Brazilrdquo Mineralogical Magazine vol61 no 4 pp 607ndash609 1997

[10] J A Dunn and A K Dey ldquoGeology and petrology of EasternSinghbhum and surrounding areasrdquo Memoirs of the GeologicalSurvey of India vol 69 no 2 1942

[11] A K Saha ldquoCrustal evolution of Singhbhum North OrissaEastern IndiardquoGeological Society of IndiaMemoir vol 27 article341 1994

[12] S C Sarkar and A Gupta Crustal Evolution andMetallogeny inIndia vol 741 Cambridge University Press 2012

[13] N Sengupta P Sengupta and H K Sachan ldquoAluminous andalkali-deficient tourmaline from the Singhbhum Shear ZoneEast Indian shield insight for polyphase boron infiltrationduring regional metamorphismrdquo American Mineralogist vol96 no 5-6 pp 752ndash767 2011

[14] D Mukhopadhyay and G K Deb ldquoStructural and texturaldevelopment in Singhbhum shear zone eastern Indiardquo Proceed-ings of the Indian Academy of Sciences vol 104 no 3 pp 385ndash405 1995

[15] N Sengupta ldquoStability of chloritoid + biotite-bearing assem-blages in some metapelites from the Palaeoproterozoic Singhb-hum Shear Zone eastern India and their implicationsrdquo Geolog-ical Society LondonmdashSpecial Publications vol 365 pp 91ndash1162012

[16] R Kretz ldquoSymbols for rock-forming mineralsrdquo American Min-eralogist vol 68 no 1-2 pp 277ndash279 1983

[17] J L Pouchou and F Pichoir ldquoA new model for quantitativeX-ray microanalysismdashpart-I application to the analysis ofhomogeneous samplesrdquo La Recherche Aerospatiale no 3 pp167ndash192 1984

[18] S Georgieva and N Velinova ldquoFlorencite-(Ce La Nd) fromthe advanced argillic alterations in the Chelopech high-sulphidation epithermal Cu-Au deposit Bulgariardquo in Proceed-ings of the National Conference with International Participation(GEOSCIENCES rsquo12) Bulgarian Geological Society 2012

[19] A G Doroshkevich S G Viladkar G S Ripp and M V Burt-seva ldquoHydrothermal REE mineralization in the Amba Dongarcarbonatite complex Gujarat Indiardquo Canadian Mineralogistvol 47 no 5 pp 1105ndash1116 2009

[20] W S Wise and S E Loh ldquoEquilibria and origin of minerals inthe system Al

2

O-AlPO4

-H2

Ordquo American Mineralogist vol 61pp 409ndash413 1976

[21] P Schmid-Beurmann G Morteani and L Cemic ldquoExper-imental determination of the upper stability of scorzaliteFeAl2

[OHPO4

]2

and the occurrence of minerals with a com-position intermediate between scorzalite and lazulite(ss) upto the conditions of the amphibolite faciesrdquo Mineralogy andPetrology vol 61 no 1ndash4 pp 211ndash222 1998

[22] G Morteani D Ackermand and H A Horn ldquoAluminum-phosphates and borosilicates in muscovite-kyanite metaquar-tzites near Diamantina (Minas Gerais Brazil) petrogeneticimplicationsrdquo Periodico diMineralogia vol 70 pp 111ndash129 2001

[23] D Mckie ldquoGoyazite and florencite from two African carbon-atitesrdquoMineralogical Magazine vol 33 pp 281ndash297 1962

[24] J C Ayers and E B Watson ldquoSolubility of apatite mon-azite zircon and rutile in supercritical aqueous fluids withimplications for subduction zone geochemistryrdquo PhilosophicalTransactionsmdashRoyal Society of London A vol 335 no 1638 pp365ndash375 1991

[25] A P Jones F Wall and C T Williams Eds Rare EarthMinerals Chemistry Origin and Ore Deposits vol 357 of TheMineralogical Society Series 7 Chapman and Hall 1996

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ClimatologyJournal of

EcologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

EarthquakesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Applied ampEnvironmentalSoil Science

Volume 2014

Mining

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal of

Geophysics

OceanographyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of Computational Environmental SciencesHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofPetroleum Engineering

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geochemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Atmospheric SciencesInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OceanographyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MineralogyInternational Journal of

Meteorology

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Paleontology JournalHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014

Geological ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Geology Advances in