Evolutionary history of the butterfly subfamily Satyrinae ...

146
Evolutionary history of the butterfly subfamily Satyrinae (Lepidoptera: Nymphalidae) Carlos Antonio Peña Bieberach Department of Zoology Stockholm University 2009

Transcript of Evolutionary history of the butterfly subfamily Satyrinae ...

Evolutionary history of the butterfly subfamily Satyrinae(Lepidoptera: Nymphalidae)

Carlos Antonio Peña Bieberach

Department of ZoologyStockholm University

2009

Evolutionary history of the butterfly subfamily Satyrinae (Lepidoptera: Nymphalidae)Doctoral dissertation 2009

Carlos Peña Department of Zoology Stockholm University S-106 91 Stockholm Sweden

© Carlos Peña, Stockholm 2009

Cover illustration:Lethe corbieri Nel, 1993

ISBN: 978-91-7155-810-7

2

Abstract

I present an overview of the evolutionary history of Satyrinae butterflies (Lepidoptera:Nymphalidae). By using Bayesian and cladistic methods, I develop a phylogenetic hypothesisas a basis for studying the evolutionary history of the group. After estimating ages of originand diversification for clades of interest, I show evidence for a radiation of a highly species-rich group of grass feeders in Satyrinae —the tribe Satyrini— which explains in part the highdiversity of this group. The timing of diversification for Satyrini butterflies coincided withthe spread of grasses throughout the globe, which was followed by spread of the butterfliesand colonization of new emerging habitats made available by the change in global climateduring the Oligocene that facilitated the spread of grasses. Such a dispersal of Satyrinaewas the result of a habitat shift from closed, forested environments into open, grasslandsand savannas, which became increasinly common since the Oligocene. Such dispersal ofSatyrinae was facilitated by the appearance of geographic bridges that permitted ancestralmigrations from the Palaearctic into North America and from North to South America, suchas the continuous forest belt of Beringia (at 31 Mya and 14–10 Mya) and the temporaryGAARlandia landspan (during 35–33 Mya). Thus, I show that the Satyrinae butterflies aresuch a highly diverse and distributed worldwide group of organisms thanks to many factorsthat were of crucial importance in their evolution. Intrisic factors such as evolution of adaptivetraits and phylogenetic constrains, as well as exogenous contingencies such as climate changeand geological events. Thus, in this thesis I show strong evidence that Satyrinae is so species-rich because they were able to feed on grasses, escape from living in dicotyledonous forestsand start inhabiting grasslands and savannas.

Key words: hostplant use, habitat shift, diversity, grasses, biogeography, phylogeny.

3

ContentsAbstract 3

List of papers 5

1 Introduction 6

2 Status of Satyrinae 10

3 The radiation of Satyrini and phylogenetic methods 14

4 Evolution of hostplant use 15

5 Conclusions 17

6 Acknowledgments 18

7 Bibliography 19

4

PAPERS I-IVThis thesis is based on the following papers, which will be refered to by their roman numbers(I-IV):

I. Pena, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas,A.V.L. and Brower, A.V.Z. 2006. Higher level phylogeny of Satyrinae butterflies (Lepi-doptera: Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evo-lution 40: 29–39.

II. Pena, C. and Wahlberg, N. 2008. Prehistorical climate change increased diversificationof a group of butterflies. Biology Letters 4: 274–278.

III. Pena, C., Nylin, S. and Wahlberg, N. 2009. The radiation of Satyrini butterflies(Nymphalidae: Satyrinae): a challenge for phylogenetic methods. Manuscript.

IV. Pena, C., Nylin, S., Freitas, A.V.L. and Wahlberg, N. 2009. Biogeographic history ofthe subtribe Euptychiina (Lepidoptera: Nymphalidae: Satyrinae). Manuscript.

Papers I and II are reprinted with permission from the publishers, which own the copyrights:

I: c© Elsevier B.V.

II: c© The Royal Society

5

Evolutionary history of the butterfly subfamily Satyrinae

1 Introduction

Butterflies are probably one of the mostcharismatic group of invertebrates for lay peo-ple. Even though early interest in butterfliesstarted as a mere “stamp collecting” hobby ac-tivity, the massive collections gathered duringthe late XIXth and beginning of XXth cen-turies by wealthy individuals, with the help ofpaid collectors scattered throughout the world,eventually ended up forming the most impor-tant scientific collections of butterflies in theworld (e.g. the famous Walter Rothschild’scollection at the Natural History Museum,London). Although interest in butterflies wasconsidered as a pastime at the time, there wasa strong scientific motivation to describe taxo-nomically as many species as possible. As anexample, one of the most prolific describersof butterfly taxa, Hans Fruhstorfer, producedan estimate of more than 5000 butterfly names(Lamas, 2005). In time, due to the vast amountof knowledge gathered on this group, butter-flies came to be regarded as model organismsfor studies on evolutionary biology (Boggset al., 2003). However, important events inbutterfly evolution, like the temporal and spa-tial origin of major lineages, are just being re-cently explored (Braby et al., 2005; Wahlberg,2006; Wahlberg & Freitas, 2007).

A troublesome issue is the age of originof all butterflies. The oldest butterfly fossil—from a meagre fossil record— is just 48My old (Kristensen & Skalski, 1999), whichseems a relatively recent origin of butterflieswhen compared with that of their hostplants,the angiosperms, that appeared between 180–140 Mya (Bell et al., 2005). The advent ofmolecular methods, and especially progress indeveloping cheap and quick DNA sequencingtechniques, has permitted the use of models of

molecular evolution to estimate relative ratesof mutation, and in conjunction with the useof fossils as calibration points, it is possiblenow to estimate ages of origin and diversifica-tion for virtually all living organisms. Somestudies, however, have drawn criticism for us-ing molecular clock techniques without takinginto account uncertainty of the ages of fossilsthat are used for calibration (Graur & Mar-tin, 2004). Graur & Martin (2004) issued astrong reminder of how the results are badlyaffected when not including uncertainty in theanalyses —measured as standard deviation—especially for secondary and tertiary calibra-tion points.

Placing butterfly lineages in a temporalframework is vital for understanding majorevolutionary events undergone by this groupof organisms, such as vicariant events, dis-persal into new landmasses, and colonizationand shifts of hostplants. Until recently, a greatnumber of biogeographic studies on butterflieshave focused on using geological events to in-fer ages of origin for butterfly groups (Vilo-ria, 2003; Braby et al., 2005). The advent ofmolecular methods have opened the possiblyof using a new source of information in bio-geography.

One way to understand nature is by study-ing the processes and factors that shaped theplanet’s current biodiversity. By using but-terflies as model organisms, several hypothe-ses have been proposed in order to explainthe diversity of several groups. Butterfliesare very dependent on their hostplants andsince there is an intimate ecological relation-ship where butterflies and plants have to ad-just to their mutual adaptations and counter-adaptations, it has been hypothesized that co-evolution may explain their diversity (Ehrlich& Raven, 1964). By comparing estimated

6

Evolutionary history of the butterfly subfamily Satyrinae

ages for butterflies and hostplants, it is pos-sible to rule out a coevolutionary scenarioif there is no evidence for contemporane-ous speciation events (Lopez-Vaamonde et al.,2006). Janz et al. (2006) show that interac-tions between butterflies and their hostplantsproduce diversification by expansions and spe-cializations of the hostplant repertoire. In themegadiverse Neotropical region, there is evi-dence for altitudinal speciation across a verti-cal gradient of elevation in the Andes. It ap-pears that taxa originate in montane habitatswhile their older relatives remain in the Ama-zonian lowlands (Hall, 2005; Whinnett et al.,2005). These attempts to explain diversity areheavily dependent on having a good degree ofknowledge of the evolutionary history of thegroups under study.

In order to study the evolutionary history ofany group of organisms, it is necessary to havea good understanding of their evolutionary re-lationships, which can only be accomplishedby constructing strong phylogenetic hypothe-ses for our study groups. There are two pre-viously hostile major camps in phylogeneticpractice, the traditional cladistic school andthe model-based school.

The cladistic method uses a criterion ofmaximum parsimony (MP) for preferring thehypothesis that minimizes the amount of evo-lutionary change (evolutionary steps) requiredto explain a group’s evolution based on a givendataset (Farris, 1970; Swofford et al., 1996).MP uses a minimum of a priori assumptionson the set of characters —it assumes thatany inheritable trait is a potential homology(Grandcolas et al., 2001). Thus, all charactersare treated equally (used under same weights)due to either inability or unwillingness to iden-tify a priori homoplasies (Hennig, 1968).

Model-based methods, such as Maximum

Likelihood (ML) and Bayesian Inference (BI),are approaches where more a priori knowledgeon the set of characters is used by employ-ing models of character evolution. ML esti-mates the probability of how well the data willbe explained by a phylogenetic tree (Felsen-stein, 2004), while BI estimates the probabil-ity of how well a phylogenetic tree will be ex-plained by the data (Huelsenbeck et al., 2001;Brooks et al., 2007). ML needs to calculateeach possible tree that can be derived fromthe data, according to the selected model ofcharacter evolution, in addition to calculationsof branch lengths for each different topology(Huelsenbeck & Rannala, 1997). BI is oftenpreferred over ML due to the use of “short-cuts” by employing the Markov Chain MonteCarlo algorithm (MCMC) that permits search-ing over a smaller number of trees accord-ing to their posterior probability (Huelsenbecket al., 2001). This allows BI to be less com-puter intensive and quicker than ML. Whilethese three methods are widely used, they arenot exempt of criticism. MP is affected bylong branch attraction artifacts (Felsenstein,1978), producing spurious relationships whenhomoplasy overwhelms homologous charac-ters (Bergsten, 2005). ML is affected by repul-sion of sister taxa when they are long branches(Siddall, 1998). Moreover, ML and BI areinaccurate when rates of DNA evolution arenot homogeneous over time (Kolaczkowski& Thornton, 2004). Advocates of these ap-proaches have been very vocal about defend-ing their methods and pointing out the short-comings of others (Swofford et al., 1996; Sid-dall, 1998; Farris, 1999). Some even havestated that approaches other than maximumparsimony “might be considered futile, if notentirely worthless” (Ebach et al., 2008).

Since all three methods are widely used in

7

Evolutionary history of the butterfly subfamily Satyrinae

phylogenetic practice, I used them in orderto identify well-supported clades and stablenodes in order to study the major patterns ofphylogenetic relationships of the Satyrini but-terflies (paper III). Although these methodsproduced incongruent phylogenies and wereaffected by artifacts and problematic taxa, Idecided to use as my preferred hypothesisthe phylogeny recovered by the model-basedmethods (ML and BI gave congruent topolo-gies). The reasons why I preferred model-based over cladistic methods are the follow-ing: (i) since we will never know the “truephylogeny”, we should prefer the most likelyhypothesis based on as much available knowl-edge as possible; (ii) by taking into accountthe knowledge of how the DNA evolves, andincluding it as models of molecular evolutionin software algorithms, the model-based ap-proaches will produce the “best guess” phy-logeny that can be achieved with our currentknowledge; and (iii) cladistics is not beingparsimonious by leaving assumptions of howcharacters evolve out of the analyses. Af-ter all Willi Hennig demanded the use of alldata available when constructing phylogenies(Hennig, 1968).

Butterflies known as “browns” and“ringlets” belong to the subfamily Satyrinae(Nymphalidae) and comprise an enormousgroup of highly diverse and worldwidedistributed butterflies. Some Satyrinaespecies are being used as model organismsfor studies in developmental biology andecology. The satyrine Bicyclus anynana is amodel organism for research on phenotypicvariation of wing eyespots (Beldade et al.,2005). While the speckled wood butterfly,Pararge aegeria, has been used for studiesin ecology and biogeography (Nylin et al.,1989; Weingartner et al., 2006). However, the

subfamily has not been subject of higher levelphylogenetic studies that could shed light onthe relationships at the global scale. There areimportant, but few, studies that try to uncoverrelationships among genera of the subtribeEuptychiina (Murray & Prowell, 2005) anda possible relationship between southernSouth American Pronophilina and Australiansatyrines (Viloria, 2003).

It is estimated that the long neglectedSatyrinae consists of around 2400 species(Ackery et al., 1999), currently classifiedin a scheme derived mainly from Miller’s(1968) work with some minor changes (Har-vey, 1991; Lamas, 2004; Viloria, 2007). Ibelieve that Miller’s (1968) monograph onSatyrinae should be considered a landmarkfor the systematics of the group. AlthoughMiller (1968) did not present explicit data oremploy explicit phylogenetic methods to backup his many subdivisions of Satyrinae, andsome of his tribes and subtribes are para- andpolyphyletic groups (paper I), many of hisgroupings are confirmed as monophyletic en-tities by phylogenetic analyses of moleculardata (paper I). This is why a new classifica-tion of Satyrinae is necessary, based on currentmethodological principles. In order to achievethis, in paper I we present the results of acomprehensive phylogenetic study of Satyri-nae that allowed us to propose a new prelimi-nary classification for the subfamily (paper I),although it is not to be considered as a nomen-clatural act.

Satyrinae butterflies are mainly grass feed-ers (Poaceae), although a few species havemanaged to use lower plants from the Ly-copodiophyta (Singer et al., 1971; Igarashi &Fukuda, 2000) and Bryophyta (Singer & Mal-let, 1986) as hostplants, being the only butter-flies showing such a peculiar trait. Although

8

Evolutionary history of the butterfly subfamily Satyrinae

an evolutionary scenario between Satyrinaebutterflies and grasses has been suggested(Viloria, 2003), this remains so far untested(but see II).

The aim of this thesis is to explain whySatyrinae butterflies are such a succesful anddiverse species-rich group of worldwide dis-tribution. Thus, I attempt to study the evolu-tionary history of the group in order to identifythe causes of such a big success. In this the-sis, I investigate patterns of phylogenetic re-lationships, biogeographic patterns, hostplantand habitat use, and explore the implicationsof such patterns.

I start almost from the beginning by per-forming the first comprehensive and explicitphylogenetic study of the Satyrinae (I). Thisstudy evidenced the urgent need for a revi-sion of the current classification of Satyrinaeand related groups. Thanks to this study, itwas possible for the first time to identify thecomponent lineages of Satyrinae as well asthe phylogenetic relationships of such majorclades. Then, I proceed to use the results ofpaper I to identify all major lineages in Satyri-nae, make a selection of representatives fromeach lineage in order to estimate ages of ori-gin and diversification for the species-rich lin-eages in Satyrinae employing relaxed molec-ular clock methodologies (Pena & Wahlberg,2008, paper II). The estimated ages are con-trasted against ages of diversification for host-plants taken from the literature in order to testwhether the hostplants had any influence onthe evolution of Satyrinae butterflies (paperII). These two studies revealed that the bulkof Satyrinae species (around 2200 species) be-long to a natural lineage currently classified asthe tribe Satyrini. In paper III, I attempt to re-construct the biogeographic history of the tribeSatyrini in order to find out when and where

the subtribes in Satyrini originated and diver-sified. This study showed that the Satyrinidiversified in a spectacular manner, radiat-ing rapidly in a short span of time (within 6Mya). In paper IV, I study the radiation of agroup of Satyrini that has invaded unforestedopen habitats such as grasslands and bamboopatches.

These four studies reveal that the history ofSatyrinae butterflies has been a complex one.We obtained the first phylogenetic hypothe-sis of relationship for major Satyrinae groups,making it possible to uncover interesting nat-ural groups and relationships that became thefoundations for the remainding studies of thisthesis (paper I).

We found that one major factor potentiallycausing such high diversity of Satyrinae wasthe ancestral capability to feed on the equallydiverse and worldwide distributed hostplants,the grasses (paper II). Early satyrines bene-fited from the global climate change duringthe Oligocene that permitted the diversifica-tion and radiation of grasses, which laid thegrounds for dramatic dispersal events of theearly satyrines. These dispersal events re-sulted in the Satyrinae invading new habi-tats in both continental and island terranes.Grasses are remarkable vagile, to the extentthat many species are pioneer species (Chep-lick, 2005). Thus, coupled with the fact thatSatyrinae species are able to feed on severalgrass hostplants, it appears that the dispersalof the Satyrinae was greatly facilitated by thedispersal of the grasses, and that the Satyri-nae employed a sort of “coat-tail riding” evo-lutionary strategy. This explanation is basedon the often-rejected assumption that earlySatyrinae butterflies are vagile and able to mi-grate overcoming relatively difficult barrierssuch as marine environments. Some Satyri-

9

Evolutionary history of the butterfly subfamily Satyrinae

nae species are very vagile. For example,the species Melanitis leda, which occurs insoutheastern Asia, Indonesia and Australia,has been able to colonize even distant Pacificislands (Braby, 2000), while the neotropicalManataria maculata presents migratory be-havior (Stevenson & Haber, 2000).

We found that Satyrini butterflies are indeedrelatively vagile especially when a large tem-poral scale is considered (paper III). It ap-pears that the Satyrini originated in the EasternPalaearctic, Oriental and/or Indo-Australianregions and managed to disperse to all othercontinents by migrating even over marinehabitats. This is most evident in the case of thesatyrine subtribe Euptychiina, where there isevidence of back and forth dispersal betweenNorth- and South America and Eastern Asia(paper IV). We also found that the most di-verse group in Satyrinae, the tribe Satyrini, un-derwent a quick phase of diversification wheremost of its component subtribes originated be-tween 32 and 26 Mya. In paper III, we showthat ancestors of the diverse Satyrini under-went a habitat shift from closed forests ofdicotyledonous plants into open, non-foresthabitats dominated by grasses (such as grass-lands and savannas). This habitat shift wascrucial in the evolution of the group since thisfactor permitted the dispersal and radiation ofthe satyrines throughout the world.

Thus, we conclude that the Satyrinae aresuch a succesful butterfly group due to a com-bination of factors: (i) ability to feed ongrasses; (ii) the inherent vagile nature of thesebutterflies in combination with (iii) a majorclimatic event that triggered the radiation oftheir hostplants, aided by the fact that host-plant distribution does not limit range expan-sions and (iv) that the Satyrini shifted habi-tats into open, non-forest environments; and,

(v) geographic bridges that permitted disper-sals from the Palaearctic into North Americaand from North to South America.

2 Status of SatyrinaeAs evidenced by the only two comprehensivephylogenetic studies on Satyrinae butterflies(papers I, II), the subfamily as it stands nowis a polyphyletic assemblage. In our phylo-genetic trees, the current subfamily Morphi-nae appears included within Satyrinae (Fig.1). Thus, each of the current Morphinae tribesshould be transferred to Satyrinae (Morphini,Brassolini and Amathusiini).

The current classification of Satyrinae isbased mainly on Miller’s (1968) scheme de-rived from morphological studies that didnot use explicit phylogenetic methods. Asa result, some of Miller’s groups are com-posed of species belonging to separate lin-eages. This situation has persisted almostunchanged mainly because of the lack ofsuitable synapomorphies to delimit differentSatyrinae subgroups. Even though Miller’s(1968) classification went through a series ofminor modifications (Harvey, 1991; Viloria,2003; Lamas, 2004; Vane-Wright & Boppre,2005; Viloria, 2007), the classification has re-mained virtually static with very little im-provement. In a phylogenetic study of the en-tirely Neotropical Pronophilina and the NewZealand endemic Argyrophenga antipodumDoubleday 1845, Viloria (2003, 2007) statesthat his dataset supports a close relationshipbetween southern pronophilines and Argy-rophenga. Viloria proposed that subtribes inthe Satyrini originated in Gondwana and af-ter the break-up (ca. 33 Mya) the Euptychiinaand Hypocystina remained in South America.

10

Evolutionary history of the butterfly subfamily Satyrinae

Figure 1 – Strict consensus of three equally parsimonious trees from the combined dataset of all six genes and morphology.

Later on, the Pronophilina diverged from theHypocystina and colonized Mesoamerica andthe Caribbean islands by 10-3 Mya. Unfortu-nately, Viloria (2003, 2007) based his biogeo-graphical conclusions on erroneus interpreta-tions of his phylogenetic trees. In the captionof his figure 1, Viloria (2003) writes:

“New Zealand Argyrophenga an-tipodum is included as the outgroup,and its closest species is the Chileanendemic Argyrophorus argenteus”

However, in the context of Viloria’s (2003)study, this is not correct. Although an in-group taxon can be closest related to the singleoutgroup (Argyrophenga in this case), Vilo-ria (2003) needed to include extra outgroupsin order to test whether Argyrophenga is clos-est related to any ingroup taxon. Any ingrouptaxon is not closest related to the outgroup, it isclosest related to its sister taxon because theyshare a common ancestor. Moreover, it is notcorrect to state that the outgroup at the root

11

Evolutionary history of the butterfly subfamily Satyrinae

is most closely related to any ingroup taxonsince the outgroup can be arbitrarily replacedwith any other taxon. Although this criticismdoes not make my alternative hypothesis of theevolution of the Pronophilina more plausible,I think it is necessary to point out that Vilo-ria’s hypothesis is not well supported. Other-wise there is the risk that fellow lepidopteristsmay overlook this issue and build further ontop of hypotheses that need reconsideration.Therefore, Viloria’s (2007) taxonomic transferof Neotropical Satyrinae species to the Indo-Australian Hypocystina is not entirely sup-ported by his data (Viloria, 2003) and needsto be reviewed. Thus I will use throughoutthis document the taxon Pronophilina as it wasdefined in the literature before the publica-tion of the Checklist of Neotropical butter-flies by Lamas (2004) —without taking intoaccount the transfer of the genera Argyropho-rus, Auca, Chillanella, Cosmosatyrus, Elina,Etcheverrius, Faunula, Haywardella, Ho-moeonympha, Nelia, Neomaenas, Neosatyrus,Palmaris, Pampasatyrus, Pamperis, Punar-gentus, Quilaphoetosus, Spinantenna andTetraphlebia into Hypocystina (Viloria, 2007).These pronophilines from southern SouthAmerica belong to a major clade of the sub-tribe Pronophilina (paper III, Fig. 2). Thehypocystines belong to a very distinct lin-eage that is more related to Palaeotropical andAsian satyrines (paper III, Fig. 2).

Our results from papers I and III alsoconflict with Viloria’s (2003, 2007) transferof some genera of northern South Americanpronophilines to the thus far Holarctic subtribeErebiina. According to our data, the Erebiinais a distinct lineage while the Pronophilina ap-pears to be a monophyletic group with somedegree of support (paper III, Figs. 2–4).

In papers I and II, I provide evidence

for subsuming Morphinae and its subgroupsinto a bigger Satyrinae, meaning that Mor-phini, Brassolini, and Amathusiini must formpart of the subfamily Satyrinae. These threetribes are recovered as well supported clades,with Amathusiini not being closely relatedto the other two (Fig. 1; and Fig. 4 inpaper I). Other well supported clades thatshould be classified at the tribal level are:(i) Zetherini, including Ethope, Zethera, Ne-orina, the “uncertain” Penthema, and Xan-thotaenia that is placed currently in Amath-usiini even though it exhibits morphologicalsimilarities with some Satyrinae (Carla Penz,pers. com.); (ii) Melanitini, formed by thePalaeotropical Melanitini and the NeotropicalManataria; and (iii) Dirini, which includesthe current “Dirina”, Paralethe and Aeropetesfrom Miller’s Parargina (his Lethini is a juniorsynonym).

In paper I, I provide evidence in conflictwith Lamas’ (2004) transfer of NeotropicalSatyrinae from the subtribe Pronophilina intothe Erebiina and Hypocystina (based on Vilo-ria, 2003; see Viloria, 2007). It is true thatmany of Miller’s higher level taxonomic sub-divisions of Satyrinae correspond with reallineages, however it is evident that some ofMiller’s (1968) tribes and subgroups are inneed of reassessment. In particular, Miller’s“series” of his Lethini deserve recognitionas separate subtribes (Parargina and Lethina),while others belong to far-related lineages (pa-per I). Other necessary taxonomic changesinclude: (i) the inclusion of Coenonympha,Orsotriaena and the Neotropical Oressinomain the former Hypocystina, which shouldbe renamed as Coenonymphina since it isa senior available name; (ii) the OrientalPalaeonympha falls within the Euptychiina;(iii) the odd Neotropical genus Manataria is

12

Evolutionary history of the butterfly subfamily Satyrinae

closely related to the African Melanitis andshould be placed in Melanitini, in contrastwith its recent placement in Parargina (Lamas,2004).

The relationships uncovered in (paper I)have interesting biogeographic implications.The close relationship, and disjunct distribu-tion of the Neotropical Manataria and theAfrican Melanitis suggests a possible Gond-wanan origin followed by a vicariant eventisolating these lineages. Interestingly enough,Manataria seems to be a relict monotypicgenus, very dissimilar to other Satyrinae in theNeotropics (Miller, 1968). A Gondwanan ori-gin of Manataria has been suggested before(Miller & Miller, 1997), however this is un-likely since Manataria originated ca. 50 Mya(paper II) while South America and Africahad split by 95 Mya (Sanmartın & Ronquist,2004).

Although Viloria’s (2003) hypothesis ofNeotropical Hypocystina does not hold, theodd Neotropical Oressinoma appears to be-long to this Indo-Australian group, which Iam calling Coenonymphina (paper I). Basedon paper II, Oressinoma branched off fromother Coenonymphina around 23 Mya, soonafter South America separated completelyfrom Antarctica by 30 Mya (Sanmartın &Ronquist, 2004). However, our time esti-mates in paper III, indicate that Oressinomabranched off at 30 ± 5 Mya. Thus, an Indo-Australian connection for the odd Neotropicalgenus Oressinoma is not refuted by our stud-ies and might need to be analyzed in furtherdetail. It is possible that comparative studiesof morphological characters of the two Oressi-noma species and Coenonymphina might shedlight on whether these taxa share a com-mon Gondwanan ancestor. Oressinoma ex-hibit odd morphological and behavioral traits,

very dissimilar to other species in the Satyri-nae. Adult Oressinoma fly even during rainyweather when no other Satyrinae does, andMiller (1968) considered Oressinoma of aber-rant morphology. Although any study on themorphology of Oressinoma immature stageshas yet to be published, which could be used ina comparative study of Coenonymphina, thereis a manuscript in preparation describing allimmature stages of this peculiar genus evi-dencing important morphological differencesbetween Oressinoma and the coenonymphines(Marıa Eugenia Losada, pers. com.).

A difficult relationship to explain is theconnection between Palaeonympha opalina,which occurs in Southeastern Asia, includingTaiwan, and the subtribe Euptychiina, so faronly known to occur in the Americas. Basedon morphology, Miller (1968) hinted at this re-lationship, however due to such disjunct distri-butions Miller placed Palaeonympha as “un-certain position”.

I deal with this issue in paper IV. In thisstudy, we performed a phylogenetic study ofan extensive sampling of Euptychiina taxain order to obtain a robust phylogenetic hy-pothesis to use in a biogeographic analysisof the group. Although we could not pin-point unambiguously the origin of the sub-tribe Euptychiina, it possibly originated inSouth America. It is clear from our time es-timates and reconstructions of ancestral areasof the diversification of Euptychiina that thecurrent disjunct distribution of the OrientalPalaeonympha opalina is the result of a lin-eage that dispersed northwards from South-into North America. We propose that an-cestors dispersed through the temporary con-nection between the Greater Antilles andnorthwestern South America during Eocene-Oligocene times, known as the Greater An-

13

Evolutionary history of the butterfly subfamily Satyrinae

tilles and Aves Ridge landspan (GAARlandia)35–33 Mya (Iturralde & MacPhee, 1999).

We inferred that the ancestor ofPalaeonympha opalina and its sister taxon,the Nearctic Megisto, inhabited the continu-ous forest belt across North Asia and NorthAmerica which was connected by Beringia ataround 13 Mya. The subsequent closure ofthis connection resulted in the classic “easternAsia and eastern North America” disjunctdistribution (Carreno & Lankester, 1994;Nordlander et al., 1996; Wang et al., 2003;Nie et al., 2006) of Palaeonympha in Asia andMegisto in North America. To our knowledge,this is the first time that this pattern is reportedfor a group of butterflies, evidencing theutility of the Euptychiina butterflies as modelorganisms for biogeographic studies. Hence,our results corroborate Miller’s (1968) sug-gestion to include Palaeonympha opalina inEuptychiina, although it will be necessary toidentify the synapomorphies for this group inorder to formally support this nomenclaturalact.

Paper IV also shows that the Euptychiinais plagued by unnatural genera and this sub-tribe is in need of a heavy taxonomic revi-sion. Although several publications tackle thisproblem (Freitas, 2003, 2004; Pena & Lamas,2005; Freitas & Pena, 2006; Freitas, 2007;Pulido & Andrade, 2008), the current classi-fication is basically unchanged since the sem-inal work of Forster (1964).

3 The radiation of Satyriniand phylogenetic methods

In paper III, both maximum parsimony andmodel-based methods were greatly affected by

artifacts in our datasets. It appears that sev-eral taxa are long branches that tend to be at-tracted towards the root. It was possible toovercome this problem by including severalextra outgroups as recommended by Bergsten(2005). We could identify several taxa thatshowed unstable positions in the cladograms,sometimes grouping together or with unre-lated taxa. The methods produced incongru-ent phylogenetic hypotheses with weak Bre-mer and bootstrap support mainly for basalnodes. Our time estimates for the diversifica-tion of Satyrini show that most of the subtribesappeared between 32 and 26 Mya. It is possi-ble that due to a quick succession of cladogen-esis, the genes that we have used in our analy-ses did not achieve complete lineage-sorting,and additional gene sequences might not beable to resolve unambiguously these relation-ships (Rokas et al., 2005; Hallstrom & Janke,2008; but see Wahlberg & Wheat, 2008).

Thus, the nature of our data would explainin part why it is that the methods were notable to find enough phylogenetic signal in or-der to produce robust and unambiguous phy-logenies. Nevertheless, the methods were use-ful to evidence strong patterns of relationshipsand, used in combination with fossil dates forcalibration, provided time estimates for the ra-diation of the Satyrini. In paper III, we arguethat there is not “one method that fits all phy-logenetic problems”. We believe that due toshortcomings of the methods, it is more ben-eficial to use certain methods depending onthe nature of the datasets —i.e. whether long-branch taxa are sampled; use of moleculesversus morphology. Although these methodsdid not perform satisfactorily with the Satyrinidataset, we showed that they are not com-pletely “worthless” either (as stated by Ebachet al., 2008).

14

Evolutionary history of the butterfly subfamily Satyrinae

Age estimates are prone to errors derivedfrom phylogenetic estimation and node cal-ibration by use of fossils. Since phyloge-netic inference can be problematic when us-ing a single set of data (i.e. a single locus)(Arbogast et al., 2002), we gathered a com-bined dataset composed of six genes and mor-phological characters (paper II) that is morelikely to provide a stronger phylogenetic sig-nal (Wahlberg et al., 2005). Absolute date es-timates depend on accuracy of calibration bythe use fossil data. Even though the use ofmultiple fossils is preferred in order to con-strain different branches of a phylogeny foravoiding wild error margins, we only usedLethe corbieri (Nel et al., 1993) as calibrationpoint because it is the only Satyrinae fossil thatcan be placed in a phylogeny with a higher de-gree of confidence. Since Lethe corbieri be-longs to a subclade descended from the ances-tor of Lethe and Neope, it is possible to con-strain a minimum age for this node (Sander-son, 1997). The four other known Satyrinaefossils present uncertain taxonomic positions(Viloria, 2003). In our taxon sampling (pa-per II), we included only representatives ofthe major lineages of Satyrinae, so Neope ap-pears as the sister taxon of Lethe (paper II,Fig. 1). However, the genera Enodia andSatyrodes form a clade sister to Lethe (pa-per III, Figs. 2–5), and indeed have some-times been included in Lethe. The inclusionof any of these Parargina taxa in the datasetfrom (in papers II and III) did not affect sig-nificantly the estimated ages for diversifica-tion of Satyrini. Lethe and Neope are rela-tively close related (paper I, Figs. 4, 7) and amore recent diversification of Satyrini wouldnot change our hypothesis that Satyrini butter-flies radiated only after the rise and spread ofgrasses (paper II). It should be noted that all

these time estimates are based on the assump-tion that the fossil Lethe corbieri is correctlyassigned to the Oligocene times (25 Mya), inaddition that the age of the fossil should beconsidered as a minimum age calibration.

4 Evolution of hostplant useSatyrinae butterflies feed mostly on the highlydiverse grasses (fam. Poaceae). This facthas been taken as an explanation for the highdiversity of the subfamily Satyrinae (Viloria,2003), however it still remains untested. Al-though some basal lineages use grasses ashostplants (Amathusiini, Melanitini, etc), theyare very poor in species, and pale in compari-son with the extremely diverse, mainly grass-feeding clade Satyrini (paper II, Fig. 1). In pa-per II, we found that the branch leading to theSatyrini is a long one, that underwent a burstof diversification at 36.6 ± 5.1 Mya. Thiscould be interpreted as an adaptive radiationthat ocurred when certain conditions were metfor a rapid diversification of Satyrini. Our phy-logenetic study of an extensive sampling oftaxa in the Satyrini (paper III) shows that mostof the deep internal nodes leading to the sub-tribes are very short branches and supportedby very low bootstrap values in ML and BI.Timing estimates based on relaxed molecularclock techniques (paper III) show that mostof the Satyrini subtribes appeared between 32and 26 Mya (paper III, Fig. 5). This patternis indeed compatible with a “rapid radiation”scenario (Whitfield & Lockhart, 2007). Onefactor that can be hypothesized to be involvedin a possible adaptive radiation is that feedingon grasses is not easy. Due to high silica con-tent, grass blades are highly abrasive and it hasbeen shown that grass feeders have developed

15

Evolutionary history of the butterfly subfamily Satyrinae

adaptations to be able to chew and digest theblades of grass —such as the hypsodont andhigh-crowned teeth adaptations of some verte-brates (MacFadden, 2005; Prasad et al., 2005).A prediction of an adaptive radiation scenariofor Satyrini butterflies is that their ability tofeed on grasses is a “key innovation”.

In order to test this prediction and whetherthe impressive radiation of Satyrini butterfliesis related to the evolution of the hostplants(Poaceae grasses), I used a phylogeny derivedfrom analyses using molecular (papers II andIII) and morphological (paper II) charactersfrom a number of representatives in Satyrinias my “working hypothesis” of relationshipswithin Satyrinae. I decided to use morphologyin the analyses despite claims that morpholog-ical characters should not be used in phylo-genetic inference (Scotland et al., 2003), be-cause it has been shown that morphology com-plements the phylogenetic signal from DNAsequences (Wahlberg et al., 2005). I havehad many difficulties in analyzing datasets ofthe Satyrini when using molecular charactersalone (paper III; see also previous section).

I gathered published hostplant records forSatyrinae species from the literature (Singeret al., 1971; Singer & Mallet, 1986; Ackery,1988; Ackery et al., 1999; Penz et al., 1999;Kawahara, 2003) and optimized this informa-tion as characters on my “working hypothesis”of the Satyrinae phylogeny. From the results,I conclude that use of dicotyledonous plantswas the ancestral state and younger lineagescolonized monocotyledons early in the evolu-tion of Satyrinae. If indeed Satyrini underwentan adaptive radiation thanks to the “feedingon grasses” key innovation, we could expectthat this trait evolved in the common ances-tor of Satyrini. However, grasses were colo-nized by ancestors of Satyrinae sensu lato (in-

cluding Morphinae), although there were col-onizations of other monocotyledons especiallyby Amathusiini (paper II, Fig. 3).

With the aid of our estimated ages of originand diversification for Satyrinae lineages (pa-per II, Fig. 2), it is possible to rule out a strictcoevolutionary pattern between butterflies andplants (sensu Ehrlich & Raven, 1964) sincebutterflies appeared much later than plants(an average delay of 100–70 My). Althoughgrasses probably originated in the Late Cre-taceous (80 Mya; Prasad et al., 2005), theywere relatively uncommon and restricted toforest edges, but eventually radiated and com-pleted global expansion by 25 Mya (Willis& McElwain, 2002), which was only possi-ble after drastic climatic changes that wipedout vast areas of forests and permitted a re-placement with grasslands and savannas. I hy-pothesize that the expansion and diversifica-tion of grasses was a major factor in the evo-lution of Satyrini butterflies. The diversifica-tion of Satyrini was almost simultaneous withthe radiation of grasses (ca. 36 Mya), and thelong delay of Satyrini’s diversification can beexplained as the time that was necessary fortheir hosts to spread and diversify through-out the globe permitting the expansion andcolonization of new habitats by the Satyrini,which likely promoted diversification by geo-graphic isolation (Janz et al., 2006) and vicari-ant events. Even though the ability to feed ongrasses probably appeared early in the evolu-tion of Satyrinae (paper II, Fig. 2), these fea-tures proved crucial for exploitation of grassesonce they became widespread and abundant.This innovation was likely related to the abil-ity of dealing with the high silica content inblades of grasses (Massey et al., 2006). It isknown that ingestion of silica affects fitnessnegatively (Van Soest & Jones, 1968; Smith

16

Evolutionary history of the butterfly subfamily Satyrinae

et al., 1971; Massey et al., 2006) impairing ni-trogen absorption and wearing out caterpillar’smandibles (Drave & Lauge, 1978). WhetherSatyrini butterflies developed a mechanistic orphysiological adaptation to cope with silica re-mains to be investigated.

Feeding on vagile and adaptable plants suchas grasses can be very advantageous. It islikely that Satyrinae butterflies dispersed anddiversified easily due to the ubiquitousness ofgrasses. Just very recently, I could recorda guild of Euptychiina butterflies feeding onan introduced species of African bamboo inAmazonian rainforests in Peru (unpublisheddata), which may suggest that Poaceae plantsare not too dissimilar as hosts and/or thatSatyrinae butterflies may not be too selectivewhen choosing hostplants. I speculate thatSatyrini butterflies were able to disperse andcolonize new emerging habitats thanks to thepresence of grasses, radiating in places suchas the Andes and especially Amazonian tropi-cal forests, eventually dominating the butterflycommunities (Pyrcz & Wojtusiak, 2002).

In paper III, we found that another impor-tant factor in the evolutionary history of theSatyrini butterflies is the early habitat shiftfrom closed, forest habitats into open areassuch as grasslands and savannas, which re-placed the dominant dicotyledonous forestsduring the Oligocene. An optimization ofhabitat use onto the Satyrini cladogram (pa-per III, Fig. 8) shows that the hypothetical an-cestor of the species-rich Satyrini shifted intoopen habitats. Although the use of habitatby the Satyrini seems to be very conservative,there have been several instances of back colo-nization into forested environments. Since theSatyrini inherited the ability to feed on grassesfrom early common ancestors of Satyrinae s.s.+ Morphini + Brassolini (paper II), it appeares

that the combination of two factors were ofcritical importance for the remarkable diver-sification of this group of butterflies: (i) theinherited ability to use grasses as hostplants,coupled with (ii) an early habitat shift fromforested environments to open, non-forestedhabitats (paper III).

5 ConclusionsThe use of phylogenetic inference (paper I)has evidenced the need for improvement of theclassification of Satyrinae in order to achievehaving higher level taxa as natural groups.Only by having strong phylogenetic hypothe-ses of the relationships within the Satyrinae,will it be possible to study the evolution ofadaptive traits such as the evolution of host-plant use (paper II), habitat use (paper III),etc.

The Satyrinae and related taxa diversifiedafter their hostplants diversified, ruling out apossible coevolutionary scenario at a higherlevel. There is evidence for a contemporane-ous rapid diversification of Satyrini and thespread of grasses throughout the world (pa-per II), implying that the diversification ofSatyrini butterflies was greatly facilitated bythe spread of grasses, that paved the wayfor geographic expansions and colonization ofnew hosts by Satyrini butterflies (paper II).Thus, it appears that the trait “feeding ongrasses” is an important evolutionary inno-vation in the radiation of Satyrini butterflies.This character appeared early in the ances-tors of Satyrinae and related subfamilies (pa-per II).

The most diverse group in Satyrinae, thetribe Satyrini, underwent a quick diversifica-tion phase. The ancestral Satyrini shifted habi-

17

Evolutionary history of the butterfly subfamily Satyrinae

tats from closed, forests habitats into open en-vironments such as savannas and grasslandsat the time when the latter were becomingmore common throughout the world (paperIII). This was possible because the Satyrinihad inherited the ability to use the commonand widespread grasses as hostplants and tofollow them as they radiated into almost everynon-marine habitat.

Butterflies in the Satyrinae were able toradiate from their most likely center of ori-gin in the eastern Palaearctic, Oriental orIndo-Australian regions by using temporarybridges, like the continuous forest belt inBeringia (paper IV), or short-lived “step-ping stone” bridges, such as the GAARlan-dia landspan (paper IV). It is possible thatthis vagility was facilitated by the fact thatSatyrinae butterflies are not too restricted bythe hostplant range, and grasses are certainlyubiquitous with a great number of adaptationsto settle in new inhospitable habitat and greatmeans of dispersal.

As a result of this thesis, I show that theSatyrinae butterflies are such a diverse andsuccesful group of organisms thanks to manyfactors that were of crucial importance in theirevolution. Some factors where the result ofadaptive evolution and phylogenetic constrain,while others were exogenous contingenciessuch as climate change and geological events.

Thus, this thesis has brought some light tothe reasons behind the high diversity of Satyri-nae butterflies. In this work, I present hypothe-ses for reconstructing the evolutionary historyof the group and identify important intrinsicand extrinsic factors that facilitated the radi-ation of Satyrinae. Before this contribution,the diversity of Satyrinae was a mystery be-cause of the lack of explicit hypotheses forthe phylogenetic history of the subfamily. It

was not known when and where these butter-flies originated and diversified. There was ahint that the grasses, as hostplants, had a rolein the high diversity of Satyrinae, but an ex-planation was yet to be proposed. Based onwork of this thesis, we now have strong evi-dence that Satyrinae is so diverse because theywere able to feed on grasses, escape from liv-ing in dicotyledonous forests and start inhab-iting grasslands and savannas.

6 AcknowledgmentsThis thesis has been possible in part byfunding from Wihlhelm Leches Stipendium,Stiftelsen Yngve Sjostedts, Stiftelsen Hierta-Retzius, a Forskningsstipendium from Kungl.Vetenskapakademien, a grant from the Ama-zon Conservation Association and a Synthesysgrant for Taxonomic Access Facilities.

I want to thank my advisors NiklasWahlberg and Soren Nylin for fundingthroughout my PhD studies, interesting dis-cussions of ideas about butterflies and other is-sues and being willing to help me at any time.I really appreciate the freedom they gave meto pursue my interests on research while atthe same time keeping me from wandering offtrack. Niklas managed to teach me all the lab-oratory work methodologies in which he re-quired great doses of patience. Thanks for tak-ing me as student and teaching me how to doscience.

Thanks to Ullasa and Lisa for lots of helpwhile working in the DNA lab. I am grate-ful to my roommates: Marianne and Marinafor blankets, chocolate and fake plants, andAleksandra for decorating the office a num-ber of times over the years, that made work-ing at my desk much nicer. Thanks to Ulf for

18

Evolutionary history of the butterfly subfamily Satyrinae

help in starting on Linux, this thesis would nothave been possible without the penguin. ToAnette, Berit and Siw for help with my an-nual requirement of documents. And thanksto Niklas, Soren, Bertil and Christer for cor-rections, comments and tunning down of mystatements in these manuscripts.

Gerardo Lamas and Bob Robbins are theones responsible for my interest on butterflies.Your advice many years ago helped me choosea path in science. Thanks to Gerardo andCarol Castillo for many great butterfly huntingtrips and unforgettable evenings with “custommade” Cuba Libres accompanied with the bestcriolla music I could wish for.

To Luz Miryam, Mario Alejandro, AndresLopez and Sandra Uribe for great companyin paisa territory and valuable collaboration.I want to thank the many people that haveprovided me with specimens for this work:African Butterfly Research Institute (NairobiKenya), Alex Grkovich, Andre Freitas, An-drew Brower, Andrew Warren, AngelicoAsenjo, Anton Chichvarkhin, Carol Castillo,Chris Muller, Christian Schulze, Danilo B.Ribeiro, Dan Janzen, Darrell Kemp, DaveA. Edge, D. Lohman, D. McCorkle, ElisabetWeingartner, Fabrice Caulson, F. Molleman,George Gibbs, Gerardo Lamas, Ismael Al-das, John Tennent, Jose Bottger, Juan Grados,Keith R. Willmott, Keith S. Brown Jr., KjellArne Johanson, K. Matsumoto, Lucas Kamin-ski, Mario Alejandro Marın, Marta Vila,Michael Braby, Michel Tarrier, Minna Miet-tinen, M. Whiting, M.-W. Tan, Naomi Pierce,Nick Haddad, P.-O. Wickman, Roger Grund,Roger Vila, Sandra Uribe, Stephanie Gal-lusser, Tim Davenport, T. Jongeling, TomaszPyrcz, Tony Nagypal, Torben B. Larsen, W.Eckweiler, Williams Paredes and Y.-H. Lee.

7 Bibliography

Ackery P.R. 1988. Hostplants and classifica-tion: a review of nymphalid butterflies. Bi-ological Journal of the Linnean Society, 33,95–203.

Ackery P.R., de Jong R. & Vane-WrightR.I. 1999. The butterflies: Hedyloidea,Hesperioidea and Papilionoidea, Walter deGruyter, Berlin, vol. 4 of Handbook of Zo-ology, pp. 263–300.

Arbogast B.S., Edwards S.V., Wakeley J.,Beerli P. & Slowinski J.B. 2002. Es-timating divergence times from moleculardata on phylogenetic and population genetictimescales. Annual Review of Ecology andSystematic, 33, 707–740.

Beldade P., Brakefield P.M. & Long A.D.2005. Generating phenotypic variation:prospects from ‘evo-devo’ research on Bi-cyclus anynana wing patterns. Evolution &Development, 7, 101–107.

Bell C.D., Soltis D.E. & Soltis P.S. 2005. Theage of angiosperms: a molecular timescalewithout a clock. Evolution, 59, 1245–1258.

Bergsten J. 2005. A review of long-branchattraction. Cladistics, 21, 163–193.

Boggs C., Watt W. & Ehrlich P. 2003.Butterflies: Evolution and Ecology Tak-ing Flight. University of Chicago Press,Chicago, USA.

Braby M.F. 2000. Butterflies of Australia:Their Identification, Biology and Distribu-tion. CSIRO, Australia.

19

Evolutionary history of the butterfly subfamily Satyrinae

Braby M.F., Trueman J.W.H. & EastwoodR. 2005. When and where did troidine but-terflies (Lepidoptera: Papilionidae) evolve?Phylogenetic and biogeographic evidencesuggests and origin in remnant Gondwanain the Late Cretaceous. Invertebrate Sys-tematics, 19, 113–143.

Brooks D.R., Bilewitch J., Condy C., EvansD.C., Folinsbee K.E., Frobisch J., Ha-las D., Hill S., McLennan D.A., MatternM., Tsuji L.A., Ward J.L., Wahlberg N.,Zamparo D. & Zanatta D. 2007. Quanti-tative phylogenetic analysis in the 21st cen-tury. Revista Mexicana de Biodiversidad,78, 225–252.

Carreno R.A. & Lankester M.W. 1994. Are-evaluation of the phylogeny of Pare-laphostrongylus Boev & Schulz, 1950 (Ne-matoda: Protostrongylidae). SystematicParasitology, 28, 145–151.

Cheplick G.P. 2005. Patterns in the distri-bution of American beachgrass (Ammophilabreviligulata) and the density and reproduc-tion of annual plants on a coastal beach.Plant Ecology, 180, 57–67.

Drave E.H. & Lauge G. 1978. Etudede l’action de la silice sur l’usure desmandibules de la Pyrale du riz: Chilosuppressalis (F. Walker) (Lep. PyralidaeCambrinae). Bulletin de la Societe ento-mologique de France, 83, 159–162.

Ebach M.C., Williams D.M. & Gill A.C.2008. O Cladistics, Where Art Thou?Cladistics, 24, 851–852.

Ehrlich P.R. & Raven P.H. 1964. Butterfliesand plants: a study in coevolution. Evolu-tion, 18, 586–608.

Farris J.S. 1970. Methods for computingWagner trees. Systematic Zoology, 19, 83–92.

Farris J.S. 1999. Likelihood and inconsis-tency. Cladistics, 15, 199–204.

Felsenstein J. 1978. Cases in which par-simony and compatibility methods will bepositively misleading. Systematic Zoology,27, 401–410.

Felsenstein J. 2004. Inferring phylogenies.Sinauer Associates, Inc., Sunderland.

Forster W. 1964. Beitrage zur Kenntnis derInsektenfauna Boliviens XIX. LepidopteraIII. Satyridae. Veroffentlichungen der zool-ogischen Staatssammlung Munchen, 8, 51–188.

Freitas A.V.L. 2003. Description of anew genus for “Euptychia” peculiaris(Nymphalidae: Satyrinae): immature stagesand systematic position. Journal of the Lep-idopterists’ Society, 57, 100–106.

Freitas A.V.L. 2004. A new species of Yph-thimoides (Nymphalidae, Satyrinae) fromsoutheastern Brazil. Journal of the Lepi-dopterists’ Society, 58, 7–12.

Freitas A.V.L. 2007. A new species of Mone-uptychia Forster (Lepidoptera: Satyrinae,Euptychiina) from the highlands of south-eastern brazil. Neotropical Entomology, 36,919–925.

Freitas A.V.L. & Pena C. 2006. De-scription of genus Guaianaza for “Eupty-chia” pronophila (Lepidoptera: Nymphali-dae: Satyrinae) with a description of the im-mature stages. Zootaxa, 1163, 49–59.

20

Evolutionary history of the butterfly subfamily Satyrinae

Grandcolas P., Deleporte P., Desutter-Grandcolas L. & Daugeron C. 2001. Phy-logenetics and ecology: as many charactersas possible should be included in the cladis-tic analysis. Cladistics, 17, 104–110.

Graur D. & Martin W. 2004. Reading theentrails of chickens: molecular timescalesof evolution and the illusion of precision.Trends in Genetics, 20, 80–86.

Hall J.P.W. 2005. Montane speciation pat-terns in ithomiola butterflies (Lepidoptera:Riodinidae): are they consistently movingup in the world? Proceedings of the RoyalSociety of London B, 272, 2457–2466.

Hallstrom B.M. & Janke A. 2008. Reso-lution among major placental mammal in-terordinal relationships with genome dataimply that speciation influenced their earli-est radiations. BMC Evolutionary Biology,8, 162.

Harvey D.J. 1991. Higher classification ofthe Nymphalidae, Appendix B, SmithsonianInstitution Press, Washington DC, pp. 255–273.

Hennig W. 1968. Elementos de una sis-tematica filogenetica. Editorial Universi-taria De Buenos Aires, Buenos Aires.

Huelsenbeck J.P. & Rannala B. 1997. Phy-logenetic methods come of age: testing hy-potheses in an evolutionary context. Sci-ence, 276, 227–232.

Huelsenbeck J.P., Ronquist F., Nielsen R. &Bollback J.P. 2001. Bayesian inference ofphylogeny and its impact on evolutionarybiology. Science, 294, 2310–2314.

Igarashi S. & Fukuda H. 2000. The life his-tories of Asian butterflies, vol. 2. Tokai Uni-versity Press, Tokyo.

Iturralde M.A. & MacPhee R.D.E. 1999.Paleogeography of the Caribbean region:implications for Cenozoic biogeography.Bulletin of the American museum of naturalhistory, 238, 95 pp.

Janz N., Nylin S. & Wahlberg N. 2006. Di-versity begets diversity: host expansionsand the diversification of plant-feeding in-sects. BMC Evolutionary Biology, 6, 4.

Kawahara A.Y. 2003. Rediscovery ofLibythea collenettei Poulton & Riley(Nymphalidae: Libytheinae) in the Mar-quesas, and a description of the male.Journal of the Lepidopterists’ Society, 57,81–85.

Kolaczkowski B. & Thornton J.W. 2004.Performance of maximum parsimony andlikelihood phylogenetics when evolution isheterogeneous. Nature, 431, 980–984.

Kristensen N.P. & Skalski A.W. 1999.Phylogeny and Palaeontology, Walter deGruyter, Berlin, vol. 4 of Handbook of Zo-ology, pp. 7–25.

Lamas G. 2004. Checklist: Part 4A. Hesperi-oidea – Papilionoidea, vol. 5A. Associationfor Tropical Lepidoptera/Scientific Publish-ers, Gainesville.

Lamas G. 2005. A bibliography of the zo-ological publications of Hans Fruhstorfer(1866?–1922†). Zeitschrift fur Entomolo-gie, 26, 57–100.

Lopez-Vaamonde C., Wikstrom N., La-bandeira C., Godfray H.C.J., Goodman

21

Evolutionary history of the butterfly subfamily Satyrinae

S.J. & Cook J.M. 2006. Fossil-calibratedmolecular phylogenies reveal that leaf-mining moths radiated millions of years af-ter their host plants. Journal of Evolution-ary Biology, 19, 1314–1326.

MacFadden B.J. 2005. Fossil horses–evidence for evolution. Science, 307, 1728–1730.

Massey F.P., Ennos A.R. & Hartley S.E.2006. Silica in grasses as a defence againstinsect herbivores: contrasting effects on fo-livores and a phloem feeder. Journal of An-imal Ecology, 75, 595–603.

Miller L.D. 1968. The higher classification,phylogeny and zoogeography of the Satyri-dae (Lepidoptera). Memoirs of the Ameri-can Entomological Society, 24, [6] + iii +174.

Miller L.D. & Miller J.Y. 1997. Gondwananbutterflies: the Africa-South America con-nection. Metamorphosis, 3(Suppl.), 42–51.

Murray D. & Prowell D.P. 2005. Molecu-lar phylogenetics and evolutionary historyof the neotropical satyrine subtribe Eupty-chiina (Nymphalidae: Satyrinae). Molecu-lar Phylogenetics and Evolution, 34, 67–80.

Nel A., Nel J. & Balme C. 1993. Unnouveau Lepidoptere Satyrinae fossile del’Oligocene du Sud-Est de la France (In-secta, Lepidoptera, Nymphalidae). Lin-neana Belgica, 14, 20–36.

Nie Z.L., Sun H., Li H. & Wen J. 2006.Intercontinental biogeography of subfam-ily Orontioideae (Symplocarpus, Lysichi-ton, and Orontium) of Araceae in eastern

Asia and North America. Molecular Phy-logenetics and Evolution, 40, 155–165.

Nordlander G., Liu Z. & Ronquist F. 1996.Phylogeny and historical biogeography ofthe cynipoid wasp family Ibaliidae (Hy-menoptera). Systematic Entomology, 21,151–166.

Nylin S., Wickman P.O. & Wiklund C.1989. Seasonal plasticity in growth anddevelopment of the speckled wood butter-fly, Pararge aegeria (Satyrinae). Biologi-cal Journal of the Linnean Society, 38, 155–171.

Pena C. & Lamas G. 2005. Revisionof the butterfly genus Forsterinaria Gray,1973 (Lepidoptera: Nymphalidae, Satyri-nae). Revista peruana de Biologıa, 12, 5–48.

Pena C. & Wahlberg N. 2008. Prehistoricalclimate change increased diversification ofa group of butterflies. Biological Letters, 4,274–278.

Penz C.M., Aiello A. & Srygley R.B.1999. Early stages of Caligo illioneus andC. idomeneus (Nymphalidae, Brassolinae)from Panama, with remarks on larval foodplants for the subfamily. Journal of the Lep-idopterists’ Society, 53, 142–152.

Prasad V., Stromberg C.A.E., Alimoham-madian H. & Sahni A. 2005. Dinosaur co-prolites and the early evolution of grassesand gazers. Science, 310, 1177–1180.

Pulido H.W. & Andrade M.G. 2008. A newspecies of Forsterinaria Gray, 1973 (Lepi-doptera: Nymphalidae: Satyrinae) from the

22

Evolutionary history of the butterfly subfamily Satyrinae

Serranıa del Perija, Cesar, Colombia. Cal-dasia, 30, 189–195.

Pyrcz T. & Wojtusiak J. 2002. The verti-cal distribution of pronophiline butterflies(Nymphalidae, Satyrinae) along an eleva-tional transect in Monte Zerpa (Cordillerade Merida, Venezuela) with remarks ontheir diversity and parapatric distribution.Global Ecology & Biogeography, 11, 211–221.

Rokas A., Kruger D. & Carroll S.B. 2005.Animal evolution and the molecular signa-ture of radiations compressed in time. Sci-ence, 310, 1933–1938.

Sanderson M.J. 1997. A nonparametric ap-proach to estimating divergence times in theabsence of rate constancy. Molecular Biol-ogy and Evolution, 14, 1218–1231.

Sanmartın I. & Ronquist F. 2004. South-ern hemisphere biogeography inferred byevent-based models: Plant versus animalpatterns. Systematic Biology, 53, 216–243.

Scotland R.W., Olmstead R.G. & BennettJ.R. 2003. Phylogeny reconstruction: therole of morphology. Systematic Biology, 52,539–548.

Siddall M.E. 1998. Success of parsimony inthe four taxon case: long-branch repulsionby likelihood in the Farris zone: Cladistics.Cladistics, 14, 209–220.

Singer M.C., Ehrlich P.R. & Gilbert L.E.1971. Butterfly feeding on Lycopsid. Sci-ence, 172, 1341–1342.

Singer M.C. & Mallet J. 1986. Moss-feedingby a satyrine butterfly. Journal of Researchon the Lepidoptera, 24, 392.

Smith G.S., Nelson A.B. & Boggino E.J.A.1971. Digestibility of forages in-vitro as af-fected by content of silica. Journal of Ani-mal Science, 33, 466–471.

Stevenson R.D. & Haber W.A. 2000. Man-ataria maculata (Nymphalidae: Satyrinae),Oxford University, New York, pp. 119–120.

Swofford D.L., Olsen G.J., Waddell P.J.& Hillis D.M. 1996. Phylogenetic infer-ence, Sinauer, Sunderland, MA, pp. 407–514. 2nd edn.

Van Soest P.J. & Jones L.H.P. 1968. Effect ofsilica in forages upon digestibility. Journalof Dairy Science, 51, 1644–1648.

Vane-Wright R.I. & Boppre M. 2005. Adultmorphology and the higher classification ofBia Hubner (Lepidoptera: Nymphalidae).Bonner zoologische Beitrage, 53, 235–254.

Viloria A.L. 2003. Historical biogeographyand the origins of the satyrine butterflies ofthe tropical Andes (Lepidoptera: Rhopalo-cera), Universidad Autonoma de Mexico,Mexico, pp. 247–261.

Viloria A.L. 2007. Some Gondwanan andLaurasian elements in the Satyrinae faunaof South America. Tropical Lepidoptera,15, 53–58.

Wahlberg N. 2006. The awkward age for but-terflies: insights from the age of the butter-fly subfamily Nymphalinae (Lepidoptera:Nymphalidae). Systematic Biology, 55,703–714.

Wahlberg N., Braby M.F., Brower A.V.Z.,de Jong R., Lee M.M., Nylin S., PierceN.E., Sperling F.A.H., Vila R., Warren

23

Evolutionary history of the butterfly subfamily Satyrinae

A.D. & Zakharov E. 2005. Synergis-tic effects of combining morphological andmolecular data in resolving the phylogenyof butterflies and skippers. Proceedings ofthe Royal Society of London B, 272, 1577–1586.

Wahlberg N. & Freitas A.V.L. 2007. Col-onization of and radiation in South Amer-ica by butterflies in the subtribe Phyciod-ina (Lepidoptera: Nymphalidae). Molecu-lar Phylogenetics and Evolution, 44, 1257–1272.

Wang W.P., Hwang C.Y., Lin T.P. &Hwang S.Y. 2003. Historical biogeog-raphy and phylogenetic relationships ofthe genus Chamaecyparis (Cupressaceae)inferred from chloroplast DNA polymor-phism. Plant Systematics and Evolution,241, 13–28.

Weingartner E., Wahlberg N. & Nylin S.2006. Speciation in Pararge (Satyrinae:Nymphalidae) butterflies — North Africa isthe source of ancestral populations of allPararge species. Systematic Entomology,31, 621–632.

Whinnett A., Willmott K.R., BrowerA.V.Z., Simpson F., Zimmermann M.,Lamas G. & Mallet J. 2005. MitochondrialDNA provides an insight into the mecha-nisms driving diversification in the ithomi-ine butterfly hyposcada anchiala (Lepi-doptera: Nymphalidae: Ithomiinae). Euro-pean Journal of Entomology, 102, 633–639.

Whitfield J.B. & Lockhart P.J. 2007. Deci-phering ancient rapid radiations. TRENDSin Ecology and Evolution, 22, 258–265.

Willis K. & McElwain J. 2002. The evolutionof plants. p. 378.

24

Paper I

Molecular Phylogenetics and Evolution 40 (2006) 29–49www.elsevier.com/locate/ympev

1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved.doi:10.1016/j.ympev.2006.02.007

Higher level phylogeny of Satyrinae butterXies (Lepidoptera: Nymphalidae) based on DNA sequence data

Carlos Peña a,¤, Niklas Wahlberg a, Elisabet Weingartner a, Ullasa Kodandaramaiah a, Sören Nylin a, André V.L. Freitas b, Andrew V.Z. Brower c

a Department of Zoology, Stockholm University, S-106 91 Stockholm, Swedenb Departamento de Zoologia and Museu de História Natural, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109,

Campinas, SP 13083-970, Brazilc Department of Zoology, Oregon State University, Corvallis, OR, USA

Received 26 September 2005; revised 8 January 2006; accepted 9 February 2006Available online 24 March 2006

Abstract

We have inferred the Wrst empirically supported hypothesis of relationships for the cosmopolitan butterXy subfamily Satyrinae. Weused 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1� and wingless for 165 Satyrinae taxa repre-senting 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relation-ships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recoveredSatyrinae as polyphyletic, and revealed that the current classiWcation of suprageneric taxa within the subfamily is comprised almost com-pletely of unnatural assemblages. The most noteworthy Wndings are that Manataria is closely related to Melanitini; Palaeonymphabelongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller’s (1968). Parargina is polyphy-letic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyri-nae. The three gene regions used in a combined analysis prove to be very eVective in resolving relationships of Satyrinae at the subtribaland tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribesand subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographi-cal and evolutionary studies.© 2006 Elsevier Inc. All rights reserved.

Keywords: Nymphalidae; Satyrinae; Molecular phylogeny; Partitioned Bremer support; ButterXies

1. Introduction

The butterXies are one of the most studied and bestknown groups of organisms. The vast amount of informa-tion gathered on this group spans a variety of topics inecology, evolutionary biology and conservation biology(e.g. Boggs et al., 2003). However, the higher phylogeneticrelationships of major groups of butterXies remain poorlyknown. This lack of knowledge is critical, since several dis-

ciplines in comparative biology (namely evolution of hostplant preferences, mimicry, behavior, etc) depend on robustphylogenetic hypotheses to provide a framework for inter-preting the evolution of putatively adaptive character sys-tems.

Despite several recent important eVorts to elucidate thehigher level relationships of butterXies (Brower, 2000; Cate-rino et al., 2001; de Jong et al., 1996; Freitas and Brown,2004; Wahlberg et al., 2003b, 2005), there is still only frag-mentary knowledge about patterns of relationships amonglineages within the six rhopaloceran families. This is partic-ularly true in the nymphalid subfamily Satyrinae, one of themost diverse groups of butterXies.

* Corresponding author. Fax: +46 8 167 715.E-mail address: [email protected] (C. Peña).

30 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

The cosmopolitan Satyrinae includes about 2400 spe-cies and occur on all continents except Antarctica (Ackeryet al., 1999). Although the other major clades of Nymp-halidae are comparatively well known, the subfamilySatyrinae remains poorly understood, with many unde-scribed genera and species, a higher classiWcation rife withunnatural assemblages, and without any available com-prehensive and empirically supported phylogeny (Freitas,2003, 2004a; Lamas, 2004; Martin et al., 2000; Miller,1968; Murray and Prowell, 2005; Peña and Lamas, 2005;Viloria and Pyrcz, 1994; Viloria and Camacho, 1999). Thediversity of Satyrinae is not reXected by the number ofstudies on the systematics of the group. In fact, the mostrecent eVort to encompass the whole group is Miller’s(1968) important but now outdated work, whichemployed an orthogenetic criterion to develop a hypothe-sis of Satyrinae phylogeny.

The rank and position of Satyrinae among other nym-phalid taxa has been a matter of confusion. The taxo-nomic rank, and even the taxa falling within thecircumscription of Satyrinae has changed often in recentdecades (Table 1). One of the Wrst modern attempts toclassify the butterXies is the work by Ehrlich (1958), whoconsidered Satyrinae as a subfamily of Nymphalidae,being related to Morphinae and Calinaginae. Later, Ehr-lich and Ehrlich (1967) used a quantitative pheneticapproach to propose a scheme of classiWcation retainingthe same taxonomic status for Satyrinae. Following Clark(1947), Miller (1968) considered the group as having thefamily rank “Satyridae”. Miller proposed additional newsubfamily level groupings to classify the entire group,considering Biinae (including Bia, Antirrhea, Caerois andMelanitis therein) as members of his Satyridae. DeVrieset al. (1985) used a cladistic analysis based on charactersof mainly immature stages to show that Miller’s Antir-rhini (sic) should be moved into Morphinae, stated thatBiini of Miller (Bia) is of uncertain position, and that Mel-anitini should remain in Satyrinae. Harvey’s (1991) classi-Wcation scheme, based on Miller’s with the addition offeatures from immature stages, treated Satyrinae as a sub-family of Nymphalidae again, moved Brassolinae out ofMiller’s Satyridae to be a subfamily on its own, movedMiller’s Antirrhini into Morphinae (as claimed by DeV-ries et al., 1985), and left Bia in Satyrinae. The status ofBia as a brassoline is no longer in any doubt: it washypothesized based on morphological features of adultsby DeVries et al. (1985), immatures by Freitas et al.(2002), and molecular data by Brower (2000), and is con-gruent with the successive weighting analysis tree ofmorphological data of Freitas and Brown (2004). Vane-Wright and Boppré’s (2005) detailed description of wingpatterns and androconial organs of Bia shows clearaYnity with the brassolines. Hence, Bia is currently placedin Brassolini (Lamas, 2004; Vane-Wright and Boppré,2005). For his classiWcation of satyrine tribes and sub-tribes, Harvey (1991) largely followed Miller’s scheme,but down-ranking his subfamilies and tribes to tribes and

subtribes, respectively. The most recent global classiWca-tion of butterXies is by Ackery et al. (1999), with minorchanges to Harvey’s (1991) classiWcation but followingentirely his conception of Satyrinae.

After these rearrangements, some level of consensus inplacing the satyrine butterXies as a nymphalid subfamilywas achieved. Studies by Brower (2000), Wahlberg and col-leagues (2003b, 2005), and Freitas and Brown (2004) haveshown that satyrine butterXies form a clade within the fam-ily Nymphalidae with the Morphinae, Charaxinae andCalinaginae being the closest relatives. These studies sam-pled only a few satyrine species and are not informativeabout relationships within Satyrinae. The resolution ofthese major lineages was the next logical step. The impor-tant study by Viloria (1998, 2003) was among the WrsteVorts to address this subject. Viloria’s (2003) cladistic andbiogeographic study of satyrine butterXies from SouthAmerica and New Zealand proposed that many of the gen-era considered to be in Pronophilina are instead moreclosely related to Erebiina and Hypocystina. Viloria’schanges were adopted in the Checklist of Neotropical But-terXies edited by Lamas (2004). Recently, Murray and Pro-well’s (2005) molecular phylogenetic study of the subtribeEuptychiina found many of its genera to be para- or poly-phyletic, recovering a non-monophyletic Euptychiina, withOressinoma and Euptychia itself nested among the satyrineoutgroups.

The remainder of recent works examining the relation-ships of satyrine butterXies are studies on species (Monteiroand Pierce, 2001; Nice and Shapiro, 2001) and genus levelrelationships (Martin et al., 2000; Torres et al., 2001).Martin et al. (2000) examined the phylogeny of some Euro-pean satyrine genera, concluding that Aphantopus hyperan-tus should be transferred from Coenonymphina intoManiolina.

Except for Miller’s (1968) foundation and the study ofViloria (2003), we have almost no knowledge about thephylogenetic relationships of the major lineages of Satyri-nae. Since a robust phylogenetic hypothesis is crucial forintegrating natural groups in our classiWcation schemes,identifying the major lineages and resolving the relation-ships of the satyrine butterXies is a critical matter toaccomplish. At the present time, the classiWcation of Saty-rinae remains based almost entirely on the work of Miller(1968).

For these reasons, the aims of this study are to test themonophyly of Satyrinae, to provide evidence that eluci-dates patterns of relationships among the major groups(tribes and subtribes) by using a cladistic analysis basedon molecular data. The resulting phylogenetic hypothesiswill be a Wrst step towards understanding the diversiWca-tion of this globally successful subfamily. In this study, wefollow Ackery et al.’s (1999) classiWcation for families andsubfamilies, Miller’s (1968) classiWcation for the groupswithin Satyrinae as modiWed by Harvey (1991) andLamas’s (2004) checklist for nomenclature of Neotropicaltaxa (see Table 1).

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 31

Table 1Representative higher level classiWcations of satyrines

Miller (1968) Harvey (1991) Lamas (2004) This paper

Satyridae Satyrinae Satyrinae SatyrinaeHaeterinae Haeterini Haeterini ElymniiniHaeterini Cithaerias Cithaerias Elymnias

Cithaerias Haetera Haetera ZetheriniHaetera Pierella Pierella NeorinaPierella Pseudohaetera Pseudohaetera PenthemaPseudohaetera Biini Elymniini Ethope

Biinae Melanititi Parargina ZetheraMelanitini Gnophodes Manataria Melanitini

Gnophodes Melanitis Elymniina AeropetesMelanitis Manataria tribe uncertain Enodia Paralethe

Manataria tribe uncertain Elymniini Satyrini ManatariaElymniinae Elymniiti Hypocystina GnophodesElymniini Elymnias Argyrophorus Melanitis

Elymnias Elymniopsis Quilaphoetosus HaeteriniElymniopsis Lethiti Auca Cithaerias

Lethini Aeropetes Chillanella HaeteraAeropetes Paralethe Cosmosatyrus PierellaParalethe Enodia Elina PseudohaeteraEnodia Lethe Etcheverrius SatyriniLethe Neope Nelia PararginaNeope Satyrodes Pampasatyrus KiriniaSatyrodes Kirinia Euptychiina LopingaKirinia Lasiommata Caeruleuptychia LasiommataLasiommata Lopinga Cepheuptychia ParargeLopinga Pararge Chloreuptychia LethinaPararge Ethope Cissia LetheEthope Neorina Cyllopsis EnodiaNeorina Mycalesiti Magneuptychia Satyrodes

Mycalesini Bicyclus Euptychia NeopeBicyclus Hallelesis Euptychoides MycalesinaHallelesis Henotesia Forsterinaria BicyclusHenotesia Mycalesis Godartiana HallelesisMycalesis Orsotriaena Harjesia HenotesiaOrsotriaena Zetheriti Hermeuptychia Mycalesis

Zetherini Zethera Magneuptychia CoenonymphinaZethera Satyrini Moneuptychia Oreixenica

Satyrinae Hypocystiti Neonympha TisiphoneHypocystini Argyronympha Pindis Nesoxenica

Argyronympha Dodonidia Paramacera HypocystaDodonidia Erebiola Parataygetis LamprolenisErebiola Geitoneura Pareuptychia DodonidiaGeitoneura Heteronympha Paryphthimoides ArgyrophengaHeteronympha Hypocysta Pharneuptychia ErebiolaHypocysta Lamprolenis Pindis PercnodaimonLamprolenis Nesoxenica Posttaygetis HeteronymphaNesoxenica Oreixenica Rareuptychia GeitoneuraOreixenica Percnodaimon Splendeuptychia OressinomaPercnodaimon Tisiphone Taygetis CoenonymphaTisiphone Zipaetis Yphthimoides OrsotriaenaZipaetis Ypthimiti Coenonymphina Zipaetis

Ypthimini Neocoenyra Coenonympha ArgyronymphaNeocoenyra Ypthima Cercyonis EuptychiinaYpthima Ypthimomorpha Erebiina EuptychiaYpthimomorpha Palaeonympha tribe uncertain Erebia Cyllopsis

Palaeonympha tribe uncertain Euptychiiti Ianussiusa ParamaceraEuptychiini Caeruleuptychia Tamania Palaeonympha

Caeruleuptychia Cepheuptychia Idioneurula PharneuptychiaCepheuptychia Chloreuptychia Manerebia EuptychoidesChloreuptychia Cissia Pronophilina YphthimoidesCissia Cyllopsis Apexacuta MoneuptychiaCyllopsis Erichthodes Corades ParyphthimoidesErichthodes Euptychia Daedalma Amphidecta

(continued on next page)

32 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 1 (continued)

Miller (1968) Harvey (1991) Lamas (2004) This paper

Euptychia Euptychoides Eteona RareuptychiaEuptychoides Forsterinaria Foetterleia GodartianaForsterinaria Godartiana Junea HermeuptychiaGodartiana Harjesia Lasiophila SplendeuptychiaHarjesia Hermeuptychia Lymanopoda PindisHermeuptychia Moneuptychia Oxeoschistus CepheuptychiaMagneuptychia Neonympha Panyapedaliodes CissiaMoneuptychia Oressinoma Parapedaliodes CaeruleuptychiaNenoympha Paramacera Pedaliodes MagneuptychiaOressinoma Parataygetis Praepedaliodes ChloreuptychiaParamacera Pareuptychia Proboscis NeonymphaParataygetis Paryphthimoides Pronophila ErichthodesPareuptychia Pharneuptychia Pseudomaniola PareuptychiaParyphthimoides Pindis Punapedaliodes TaygetisPharneuptychia Posttaygetis Steremnia HarjesiaPindis Oressinoma Steroma ParataygetisPosttaygetis Rareuptychia Satyrina PosttaygetisRareuptychia Splendeuptychia Neominois ForsterinariaSplendeuptychia Taygetis Amphidecta subtribe uncertain Cercyonis subtribe uncertainTaygetis Yphthimoides Hyponephele subtribe uncertainYphthimoides Coenonymphiti Neocoenyra subtribe uncertain

Coenonymphini Coenonympha YpthiminaCoenonympha Aphantopus ParalasaAphantopus Manioliti Ypthima

Maniolini Cercyonis YpthimomorphaCercyonis Hyponephele MelanargiinaHyponephele Maniola MelanargiaManiola Pyronia ManiolinaPyronia Erebiiti Pyronia

Erebiini Erebia ManiolaErebia Pronophiliti Aphantopus

Pronophilini Amphidecta PronophilinaAmphidecta Corades NeliaCorades Daedalma SteremniaDaedalma Eteona SteromaEteona Junea ManerebiaJunea Lasiophila IdioneurulaLasiophila Lymanopoda TamaniaLymanopoda Oxeoschistus IanussiusaOxeoschistus Panyapedaliodes LymanopodaPanyapedaliodes Parapedaliodes ArgyrophorusParapedaliodes Pedaliodes EtcheverriusPedaliodes Praepedaliodes PampasatyrusPraepedaliodes Proboscis ElinaProboscis Pronophila QuilaphoetosusPronophila Pseudomaniola CosmosatyrusPseudomaniola Punapedaliodes ChillanellaPunapedaliodes Steremnia AucaSteremnia Steroma PanyapedaliodesSteroma Idioneurula PedaliodesIdioneurula Manerebia PunapedaliodesManerebia Argyrophorus PraepedaliodesArgyrophorus Quilaphoetosus CoradesQuilaphoetosus Auca JuneaAuca Chillanella PronophilaChillanella Cosmosatyrus EteonaCosmosatyrus Elina FoetterleiaElina Etcheverrius DaedalmaEtcheverrius Nelia OxeoschistusNelia Pampasatyrus ProboscisPampasatyrus Melanargiiti Lasiophila

Melanargiini Melanargia ApexacutaMelanargia Satyriti Pseudomaniola

Satyrini Arethusana ErebiinaArethusana Berberia Erebia

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 33

2. Material and methods

We obtained DNA sequences for three gene regionsfrom 165 exemplar Satyrinae species representing 15 sub-tribes included in 4 tribes recognized by Harvey (1991), aswell as some taxa of uncertain position (Manataria, Amphi-decta and Palaeonympha). We have not yet obtained repre-sentatives from the remaining putative major satyrinelineages (tribes Eritini, Ragadiini and subtribe Dirina).Table 2 shows the sampled species in their current taxo-nomic classiWcation and the GenBank accession numbers.

We extracted DNA from two butterXy legs, dried orfreshly conserved in 96% alcohol, using QIAgen’s DNEasyextraction kit. For each species, we sequenced 1450 bp ofthe cytochrome oxidase subunit I gene (COI) from themitochondrial genome, 1240 bp of the Elongation Factor-1�gene (EF-1�), and 400 bp of the wingless gene, from thenuclear genome. Some sequences were drawn from matricespublished by Wahlberg et al. (2003b, 2005) and Murray andProwell (2005). The primers for COI were taken fromWahlberg and Zimmermann (2000), for EF-1� (primersef51.9 and efrcM4) from Monteiro and Pierce (2001) andfor wingless from Brower and DeSalle (1998). Additionalprimers from Cho et al. (1995) were used for EF-1�sequences, Starsky (sense: 5�-CAC ATY AAC ATT GTCGTS ATY GG-3�) and Luke (antisense: 5�-CAT RTT GTCKCC GTG CCA KCC-3�), another primer from Reed andSperling (1999), Cho (sense: 5�-GTC ACC ATC ATY GACGC-3�) and Verdi (courtesy of F. Sperling’s lab) (antisense:5�-GAT ACC AGT CTC AAC TCT TCC-3�). Voucherspecimens will be deposited at the Department of Entomol-ogy, Museo de Historia Natural, Universidad NacionalMayor de San Marcos, Peru; the Department of Zoology,Stockholm University, Sweden; the African ButterXyResearch Institute, Kenya; and the American Museum ofNatural History, New York (Brower’s material).

The PCR reactions were performed in a 20 �l volume.The reaction cycle proWle for COI was 95 °C for 5 min, 34cycles of 94 °C for 30 s, 47 °C for 30 s, 72 °C for 1 min 30 s,and a Wnal extension period of 72 °C for 10 min. The reac-tion cycle proWle for primers Starksy-Luke and Cho-Verdi

was 95 °C for 7 min, 34 cycles of 95 °C for 30 s, 55 °C for30 s, 72 °C for 2 min, an extension period of 72 °C for 10min and a Wnal one of 20 °C for 10 s. The reaction cycle pro-Wle for primers ef51.9-efrcM4 and the wingless gene was95 °C for 5 min, 39 cycles of 95 °C for 1 min, 51 °C for 1 min,70 °C for 1 min 30 s and a Wnal extension period of 72 °C for7 min. The PCR primers were also used for sequencing ofEF-1� and wingless, while in COI an internal primerdesigned by N. Wahlberg (Patty 5�-ACW GTW GGWGGA TTA ACW GG-3�) was used in addition to the PCRprimers. Sequencing of the PCR products was done with aBeckman–Coulter CEQ8000 capillary sequencer. Theresulting chromatograms were checked using the programBioEdit (Hall, 1999) and the sequences were aligned by eye.Some sequences were generated and processed according tothe protocols described in Brower et al. (in press).

The complete data set consisted of 191 taxa (including26 outgroups) and 3090 nucleotides. All characters weretreated as unordered and equally weighted. The resultingdata matrix was analyzed according to a cladistic frame-work by performing a heuristic search using the New Tech-nology Search algorithms in the program TNT (GoloboVet al., 2003) with level of search 10, followed by branch-swapping of the resulting trees with up to 10000 trees heldduring each step. This same procedure was applied for eachgene separately and for all three genes combined. Sometaxa with missing data were not included in the separateanalysis of each gene, since we have been unable to obtainsequences for them to date (as indicated in Table 2).

We evaluated clade robustness by using the bootstrap(Felsenstein, 1985) and Bremer support (Bremer, 1988,1994) in TNT (GoloboV et al., 2003). We assessed thecontribution of each gene data set to total Bremer sup-port in the combined analyses by using PartitionedBremer Support (PBS) (Baker and DeSalle, 1997; Gatesyet al., 1999) using the scripting feature of the programTNT (GoloboV et al., 2003). In the results and discussionsection, we will refer to weak Bremer support for valuesof 1–2 (bootstrap values 50–63%), moderate support forvalues between 3 and 5 (bootstrap values 64–75%), goodsupport for values between 6 and 10 (bootstrap values

Table 1 (continued)

Last column shows the implied classiWcation derived from our phylogenetic results. This classiWcation is not to be considered as taxonomic act underICZN article 8.3 (International Commission on Zoological Nomenclature, 1999).

Miller (1968) Harvey (1991) Lamas (2004) This paper

Berberia Brintesia SatyrinaBrintesia Chazara BerberiaChazara Hipparchia HipparchiaHipparchia Karanasa ChazaraKaranasa Neominois PseudochazaraNeominois Oeneis SatyrusOeneis Paralasa ArethusanaParalasa Pseudochazara BrintesiaPseudochazara Satyrus KaranasaSatyrus Penthema tribe uncertain Neominois

Penthema not mentioned Oeneis

34 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 2Information of specimens used for molecular studies

Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1� Wingless

Libytheinae Libythea celtis NW71-1 Spain: Barcelona AY090198 AY090164 AY090131Heliconiinae Heliconiini Heliconius hecale NW70-6 UK, Stratford ButterXy

FarmAY090202 AY090168 AY090135

Danainae Danaini Danaina Danaus plexippus NW108-21 Portugal: Madeira, Monte

DQ018954 DQ018921 DQ018891

Calinaginae Calinaga buddha NW64-3 UK, Stratford ButterXy Farm

AY090208 AY090174 AY090141

Charaxinae Charaxini Charaxes castor NW78-3 UK, Stratford ButterXy Farm

AY090219 AY090185 AY090152

Charaxinae Anaeini Anaea troglodyta NW92-2 UK, Stratford ButterXy Farm

DQ338573 DQ338881 DQ338599

Charaxinae Anaeini Hypna clytemnestra NW127-11 Brazil: São Paulo DQ338574 DQ338882 DQ338600Charaxinae Anaeini Memphis appias NW127-6 Brazil: São Paulo DQ338575 DQ338883 DQ338601Charaxinae Preponini Archaeoprepona demophon NW81-9 UK, Stratford ButterXy

FarmAY090220 AY090186 AY090153

Charaxinae Pallini Palla decius NW124-7 Ghana DQ338576 DQ338884 —Morphinae Morphini Antirrheina Antirrhea philoctetes NW109-12 Costa Rica DQ338577 DQ338885 DQ338602Morphinae Morphini Morphina Morpho helenor NW66-5 UK, Stratford ButterXy

FarmAY090210 AY090176 AY090143

Morphinae Amathusiini Amathusia phidippus NW114-17 Indonesia: Bali DQ018956 DQ018923 DQ018894Morphinae Amathusiini Aemona lena DL-02-P687 Thailand: Chiang Mai DQ338578 DQ338886 DQ338603Morphinae Amathusiini Discophora necho NW101-6 Indonesia: Palawan DQ338747 DQ338887 DQ338604Morphinae Amathusiini Faunis menado NW118-19 Indonesia: Central

SulawesiDQ338748 DQ338888 DQ338605

Morphinae Amathusiini Stichophthalma howqua NW97-7 Taiwan: Taoyuan County

AY218250 AY218270 AY218288

Morphinae Amathusiini Taenaris cyclops NW102-4 Indonesia: Sorong Island

DQ338749 DQ338889 DQ338606

Morphinae Amathusiini Thaumantis klugius SA-3-2 Malaysia: Sabah, Luasong

DQ338750 DQ338890 DQ338607

Morphinae Amathusiini Thauria aliris DL-02-B253 Thailand: Ranong DQ338751 DQ338891 DQ338608Morphinae Amathusiini Zeuxidia dohrni NW101-2 Indonesia: Java DQ338752 DQ338892 DQ338609Morphinae Brassolini Biina Bia actorion EW11-3 Peru: Loreto DQ338753 — DQ338610Morphinae Brassolini Biina Bia actorion 99-004 Brazil: Rondonia — DQ338893 —Morphinae Brassolini Brassolina Caligo telamonius NW70-10 UK, Stratford ButterXy

FarmAY090209 AY090175 AY090142

Morphinae Brassolini Brassolina Catoblepia orgetorix NW109-15 Costa Rica DQ338754 DQ338894 DQ338611Morphinae Brassolini Brassolina Opsiphanes quiteria NW109-10 Costa Rica DQ018957 DQ018924 DQ018895Morphinae Brassolini Naropina Narope sp. NW127-27 Brazil: São Paulo DQ338755 DQ338895 DQ338612Satyrinae Haeterini Cithaerias pireta NW93-1 Peru: Loreto DQ338756 DQ338896 DQ338613Satyrinae Haeterini Haetera piera CP01-84 Peru: Madre de Dios DQ018959 DQ018926 DQ018897Satyrinae Haeterini Pierella lamia NW93-2 Peru: Loreto DQ338757 DQ338897 DQ338614Satyrinae Haeterini Pseudohaetera hypaesia CP03-99 Peru: Junín DQ338758 DQ338898 DQ338625Satyrinae Melanitini Gnophodes chelys NW102-13 Uganda: Kibale

National ParkDQ338759 DQ338899 DQ338626

Satyrinae Melanitini Melanitis leda NW66-6 Australia: Queensland, Cairns

AY090207 AY090173 AY090140

Satyrinae Elymniini Elymniina Elymnias casiphone NW121-20 Indonesia: Bali DQ338760 DQ338900 DQ338627Satyrinae Elymniini Elymniina Elymnias hypermnestra DL-02-P680 Thailand: Chiang Mai DQ338761 DQ338901 DQ338628Satyrinae Elymniini Elymniina Elymnias bammakoo NW117-20 Ghana DQ338762 DQ338902 DQ338629Satyrinae Elymniini Mycalesina Bicyclus anynana EW10-5 Zimbabwe: Harare AY218238 AY218258 AY218276Satyrinae Elymniini Mycalesina Hallelesis halyma CP10-05 Ghana DQ338763 DQ338903 DQ338630Satyrinae Elymniini Mycalesina Henotesia simonsii EW10-6 Zimbabwe: Harare DQ338764 DQ338904 DQ338631Satyrinae Elymniini Mycalesina Mycalesis sp. EW18-8 Australia: Queensland,

CairnsDQ338765 DQ338905 DQ338632

Satyrinae Elymniini Mycalesina Orsotriaena medus EW25-17 Bangladesh: Sylhet Div. Lowacherra Forest

DQ338766 DQ338906 DQ338633

Satyrinae Elymniini Parargina Aeropetes tulbaghia CP13-01 S. Africa DQ338579 DQ338907 DQ338634Satyrinae Elymniini Parargina Enodia portlandia DNA96-018 USA: Louisiana AY508536 AY509062 —Satyrinae Elymniini Parargina Kirinia roxelana CP10-09 Iran: Lorestan DQ338767 DQ338908 DQ338615Satyrinae Elymniini Parargina Lasiommata megera EW5-7 Sweden: Stockholm AY090213 AY090179 AY090146Satyrinae Elymniini Parargina Lethe minerva NW121-17 Indonesia: Bali DQ338768 DQ338909 DQ338616Satyrinae Elymniini Parargina Lopinga achine EW3-6 Sweden DQ338769 DQ338910 DQ338617Satyrinae Elymniini Parargina Manataria hercyna EW11-1 Costa Rica AY218244 AY218264 AY218282

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 35

Table 2 (continued)

Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1� Wingless

Satyrinae Elymniini Parargina Neope bremeri EW25-23 Taiwan: Pingtung County

DQ338770 DQ338911 DQ338618

Satyrinae Elymniini Parargina Paralethe dendrophilus CP13-03 S. Africa DQ338771 DQ338912 DQ338619Satyrinae Elymniini Parargina Pararge aegeria EW1-1 France: Carcassonne DQ176379 DQ338913 DQ338620Satyrinae Elymniini Parargina Satyrodes eurydice NEB-1-3 USA: Nebraska DQ338772 DQ338914 DQ338621Satyrinae Elymniini Parargina Ethope noirei NW121-7 Vietnam DQ338773 DQ338915 DQ338622Satyrinae Elymniini Parargina Neorina sp. NW118-14 Indonesia: West Java DQ338774 DQ338916 DQ338623Satyrinae Elymniini Zetherina Penthema darlisa CP-B02 Vietnam DQ338775 DQ338917 DQ338624Satyrinae Elymniini Zetherina Zethera incerta NW106-10 Indonesia: Sulawesi DQ338776 DQ338918 DQ338635Satyrinae Satyrini Coenonymphina Coenonympha hero CP-AC23-26 Russia: Spassk DQ338580 DQ338919 DQ338636Satyrinae Satyrini Coenonymphina Coenonympha pamphilus EW7-3 Sweden: Öland DQ338777 DQ338920 DQ338637Satyrinae Satyrini Erebiina Erebia epiphron EW24-3 France: Languedoc DQ338778 DQ338921 DQ338638Satyrinae Satyrini Erebiina Erebia ligea EW5-19 Sweden: Vallentuna DQ338779 DQ338922 DQ338639Satyrinae Satyrini Erebiina Erebia oeme EW24-7 France: Languedoc DQ338780 DQ338923 DQ338640Satyrinae Satyrini Erebiina Erebia palarica EW9-4 Spain: Galicia, Lugo AY090212 AY090178 AY090145Satyrinae Satyrini Erebiina Erebia sthennyo EW24-1 France: Languedoc DQ338781 DQ338924 DQ338641Satyrinae Satyrini Erebiina Erebia triaria EW9-1 Spain: Galicia, Lugo DQ338782 DQ338925 DQ338642Satyrinae Satyrini Erebiina Ianussiusa maso V35 Venezuela: Táchira DQ338783 DQ338926 DQ338643Satyrinae Satyrini Erebiina Idioneurula sp. V37 Venezuela: Táchira DQ338784 DQ338927 DQ338644Satyrinae Satyrini Erebiina Manerebia cyclopina CP03-63 Peru: Junín DQ338785 DQ338928 —Satyrinae Satyrini Erebiina Manerebia cyclopina CP04-80 Peru: Junín — — DQ338645Satyrinae Satyrini Erebiina Manerebia inderena E-39-09 Ecuador: Sucumbios DQ338786 DQ338929 DQ338646Satyrinae Satyrini Erebiina Tamania jacquelinae V29 Venezuela: Táchira DQ338787 — DQ338647Satyrinae Satyrini Euptychiina Caeruleuptychia lobelia CP01-67 Peru: Madre de Dios DQ338788 DQ338930 DQ338648Satyrinae Satyrini Euptychiina Cepheuptychia sp. n. CP01-31 Peru: Madre de Dios DQ338789 DQ338931 DQ338649Satyrinae Satyrini Euptychiina Chloreuptychia sp. CP01-72 Peru: Madre de Dios DQ338790 DQ338932 DQ338650Satyrinae Satyrini Euptychiina Cissia sp. NW108-6 Brazil DQ338581 DQ338933 DQ338651Satyrinae Satyrini Euptychiina Cyllopsis pertepida AZ-1-6 USA: Arizona DQ338791 DQ338934 DQ338652Satyrinae Satyrini Euptychiina Erichthodes antonina CP02-24 Peru: Madre de Dios DQ338792 DQ338935 DQ338653Satyrinae Satyrini Euptychiina Euptychia ernestina NW136-14 Brazil: São Paulo DQ338793 DQ338936 —Satyrinae Satyrini Euptychiina Euptychia sp. DNA99-078 Ecuador: Pichincha AY508541 AY509067 —Satyrinae Satyrini Euptychiina Euptychia sp. n. 2 CP01-33 Peru: Madre de Dios DQ338794 DQ338937 DQ338654Satyrinae Satyrini Euptychiina Euptychia sp. n. 5 CP01-53 Peru: Madre de Dios DQ338795 DQ338938 DQ338655Satyrinae Satyrini Euptychiina Euptychia sp. n. 6 CP04-55 Peru: Junín DQ338796 DQ338939 DQ338656Satyrinae Satyrini Euptychiina Euptychia sp. n. 7 CP02-58 Peru: Junín — DQ338940 DQ338657Satyrinae Satyrini Euptychiina Euptychia pronophila NW127-20 Brazil: Minas Gerais DQ338797 DQ338941 DQ338658Satyrinae Satyrini Euptychiina Euptychoides castrensis NW126-9 Brazil: São Paulo DQ338798 DQ338942 DQ338659Satyrinae Satyrini Euptychiina Forsterinaria boliviana CP04-88 Peru: Junín DQ338799 DQ338943 DQ338660Satyrinae Satyrini Euptychiina Godartiana muscosa NW127-8 Brazil: São Paulo DQ338582 DQ338944 DQ338661Satyrinae Satyrini Euptychiina Harjesia blanda CP01-13 Peru: Madre de Dios DQ338800 DQ338945 DQ338662Satyrinae Satyrini Euptychiina Hermeuptychia hermes NW127-16 Brazil: Minas Gerais DQ338583 DQ338946 DQ338663Satyrinae Satyrini Euptychiina Magneuptychia sp. n. 4 CP01-91 Peru: Madre de Dios DQ338584 DQ338947 DQ338664Satyrinae Satyrini Euptychiina Moneuptychia paeon B-17-41 Brazil: São Paulo DQ338801 DQ338948 DQ338665Satyrinae Satyrini Euptychiina Neonympha areolata DNA96-019 USA: Louisiana AY508564 AY509090 —Satyrinae Satyrini Euptychiina Oressinoma sorata DNA99-065 Ecuador: Pichincha AY508561 AY509087 —Satyrinae Satyrini Euptychiina Oressinoma sorata PE-6-1 Peru: Cuzco — — AF246602Satyrinae Satyrini Euptychiina Oressinoma typhla CP07-71 Peru: Junín DQ338802 DQ338949 DQ338666Satyrinae Satyrini Euptychiina Paramacera allyni MEX-1-1 Mexico: D. F.,

Magdalena ContrerasDQ338803 — DQ338667

Satyrinae Satyrini Euptychiina Parataygetis albinotata CP04-53 Peru: Junín DQ338804 DQ338950 DQ338668Satyrinae Satyrini Euptychiina Pareuptychia hesionides CP01-66 Peru: Madre de Dios DQ338805 DQ338951 DQ338669Satyrinae Satyrini Euptychiina Paryphthimoides grimon CP10-01 Brazil DQ338806 DQ338952 DQ338670Satyrinae Satyrini Euptychiina Paryphthimoides sp. NW126-7 Brazil DQ338807 DQ338953 DQ338671Satyrinae Satyrini Euptychiina Pharneuptychia innocentia CP12-06 Brazil: Minas Gerais DQ338808 DQ338954 DQ338672Satyrinae Satyrini Euptychiina Pharneuptychia sp. NW127-18 Brazil: Minas Gerais DQ338809 DQ338955 —Satyrinae Satyrini Euptychiina Pindis squamistriga MEX-3-1 Mexico: Guanajuato AY508570 AY509096 —Satyrinae Satyrini Euptychiina Posttaygetis penelea DNA97-009 Ecuador: Napo AY508571 AY509097 —Satyrinae Satyrini Euptychiina Posttaygetis penelea NW127-28 Brazil: São Paulo — — DQ338673Satyrinae Satyrini Euptychiina Rareuptychia clio CP01-23 Peru: Madre de Dios DQ338810 DQ338956 —Satyrinae Satyrini Euptychiina Rareuptychia clio NW126-23 Brazil: Acre — — DQ338674Satyrinae Satyrini Euptychiina Splendeuptychia itonis CP02-44 Peru: Madre de Dios DQ338811 DQ338957 DQ338684Satyrinae Satyrini Euptychiina Taygetis laches NW108-3 Brazil: São Paulo DQ338812 DQ338958 DQ338683Satyrinae Satyrini Euptychiina Taygetis rectifascia NW126-13 Brazil: São Paulo DQ338813 DQ338959 DQ338682Satyrinae Satyrini Euptychiina Yphthimoides borasta CP10-03 Brazil: São Paulo DQ338585 DQ338960 DQ338680

(continued on next page)

36 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Table 2 (continued)

Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1� Wingless

Satyrinae Satyrini Euptychiina Yphthimoides cepoensis CP10-02 Brazil: Minas Gerais DQ338814 DQ338961 DQ338681

Satyrinae Satyrini Euptychiina Yphthimoides sp. CP12-04 Brazil: Minas Gerais DQ338815 DQ338962 DQ338675Satyrinae Satyrini Hypocystina Argyronympha gracilipes NW136-1 Solomon Islands:

GuadalcanalDQ338816 — DQ338676

Satyrinae Satyrini Hypocystina Argyronympha pulchra NW136-6 Solomon Islands: Choiseul

DQ338817 DQ338963 DQ338677

Satyrinae Satyrini Hypocystina Argyronympha rubianensis NW136-3 Solomon Islands: Kolombangara

DQ338818 DQ338964 —

Satyrinae Satyrini Hypocystina Argyronympha sp. NW136-7 Solomon Islands: Malaita

DQ338586 DQ338965 DQ338678

Satyrinae Satyrini Hypocystina Argyronympha ugiensis NW136-2 Solomon Islands: San Cristobal

DQ338819 DQ338966 DQ338679

Satyrinae Satyrini Hypocystina Argyronympha ulava NW136-5 Solomon Islands: Ulawa

DQ338820 DQ338967 DQ338685

Satyrinae Satyrini Hypocystina Argyrophenga antipodium NW123-18 New Zealand DQ338821 DQ338968 DQ338686Satyrinae Satyrini Hypocystina Dodonidia helmsi NW123-15 New Zealand DQ338822 DQ338970 DQ338688Satyrinae Satyrini Hypocystina Erebiola butleri NW123-16 New Zealand DQ338823 DQ338971 DQ338689Satyrinae Satyrini Hypocystina Geitoneura acantha NW124-22 Australia: Newcastle DQ338824 DQ338972 DQ338690Satyrinae Satyrini Hypocystina Geitoneura klugii NW123-10 Australia: Adelaide

HillsDQ338825 DQ338973 DQ338691

Satyrinae Satyrini Hypocystina Heteronympha merope EW10-4 Australia: Canberra AY218243 AY218263 AY218281Satyrinae Satyrini Hypocystina Hypocysta pseudirius NW123-5 Australia: Newcastle DQ338826 DQ338974 —Satyrinae Satyrini Hypocystina Lamprolenis nitida PNG-1-10 Papua New Guinea DQ338827 DQ338975 —Satyrinae Satyrini Hypocystina Nesoxenica leprea NW123-7 Australia: Collinsvale DQ338587 DQ338976 DQ338692Satyrinae Satyrini Hypocystina Oreixenica lathoniella NW124-23 Australia: Boreang

CampgroundDQ338828 DQ338977 DQ338693

Satyrinae Satyrini Hypocystina Percnodaimon merula NW123-17 New Zealand DQ338829 DQ338978 DQ338694Satyrinae Satyrini Hypocystina Tisiphone abeona NW124-21 Australia: Kulnura DQ338830 DQ338980 DQ338695Satyrinae Satyrini Hypocystina Zipaetis saitis D30 India DQ338831 DQ338981 DQ338696Satyrinae Satyrini Hypocystina Argyrophorus argenteus CP13-07 Chile DQ338588 DQ338969 DQ338687Satyrinae Satyrini Hypocystina Auca barrosi RV-03-V39 Chile: Céspedes DQ338832 DQ338982 DQ338697Satyrinae Satyrini Hypocystina Auca coctei RV-03-V13 Chile: Céspedes DQ338833 DQ338983 DQ338698Satyrinae Satyrini Hypocystina Chillanella stelligera CH-24A-1 Chile: Termas de

ChillánDQ338589 DQ338984 DQ338699

Satyrinae Satyrini Hypocystina Cosmosatyrus leptoneuroides CH-15-5 Chile: Cordillera Nahuelbuta

DQ338834 DQ338985 —

Satyrinae Satyrini Hypocystina Elina montrolii CH-25-1 Chile: Ñuble, Cueva Pincheira

DQ338835 DQ338986 —

Satyrinae Satyrini Hypocystina Etcheverrius chiliensis CH-30-4 Chile: Los Andes, Portillo

DQ338836 DQ338987 DQ338700

Satyrinae Satyrini Hypocystina Nelia nemyroides CH-8A-2 Chile: Los Lagos AY508562 AY509088 —Satyrinae Satyrini Hypocystina Pampasatyrus gyrtone NW126-12 Brazil: São Paulo DQ338837 DQ338988 DQ338701Satyrinae Satyrini Hypocystina Quilaphoetosus monachus CH-12-1 Chile: Valdivia DQ338838 DQ338979 —Satyrinae Satyrini Maniolina Aphantopus hyperanthus EW2-1 Sweden: Stockholm AY090211 AY090177 AY090144Satyrinae Satyrini Maniolina Cercyonis pegala EW8-2 USA: Oregon AY218239 AY218259 AY218277Satyrinae Satyrini Maniolina Hyponephele cadusia CP10-07 Iran: Hamadan DQ338839 DQ338989 DQ338702Satyrinae Satyrini Maniolina Hyponephele sp. CP10-13 Iran: Bakhtiari DQ338840 DQ338990 DQ338703Satyrinae Satyrini Maniolina Maniola jurtina EW4-5 Spain: Sant Ciment AY090214 AY090180 AY090147Satyrinae Satyrini Maniolina Pyronia bathseba RV-03-H546 Spain DQ338841 DQ338991 DQ338704Satyrinae Satyrini Maniolina Pyronia cecilia EW4-2 Spain: Sant Climent DQ338842 DQ338992 DQ338705Satyrinae Satyrini Melanargiina Melanargia galathea EW24-17 Francia: Languedoc DQ338843 DQ338993 DQ338706Satyrinae Satyrini Melanargiina Melanargia hylata CP10-10 Iran: Ardabil DQ338844 DQ338994 DQ338707Satyrinae Satyrini Melanargiina Melanargia russiae CP-AC23-83 Russia: Tuva DQ338845 DQ338995 DQ338708Satyrinae Satyrini Pronophilina Apexacuta astoreth CP09-78 Peru: Apurímac DQ338846 DQ338996 DQ338709Satyrinae Satyrini Pronophilina Corades cistene CP09-84 Peru: Apurímac DQ338847 DQ338997 DQ338710Satyrinae Satyrini Pronophilina Daedalma sp. CP13-05 Ecuador: Tungurahua DQ338848 DQ338998 —Satyrinae Satyrini Pronophilina Eteona tisiphone NW127-21 Brazil: Minas Gerais DQ338849 DQ338999 DQ338711Satyrinae Satyrini Pronophilina Foetterleia schreineri NW127-19 Brazil: Minas Gerais DQ338590 DQ339000 DQ338712Satyrinae Satyrini Pronophilina Junea dorinda CP06-94 Peru: Pasco DQ338850 DQ339001 DQ338713Satyrinae Satyrini Pronophilina Lasiophila cirta CP04-36 Peru: Junín DQ338851 DQ339002 DQ338714Satyrinae Satyrini Pronophilina Lasiophila piscina PE-5-5 Peru: Cuzco DQ338852 DQ339003 —Satyrinae Satyrini Pronophilina Lymanopoda rana CP03-33 Peru: Junín DQ338853 DQ339004 DQ338715Satyrinae Satyrini Pronophilina Oxeoschistus leucospilos CP04-67 Peru: Junín DQ338854 DQ339005 DQ338716Satyrinae Satyrini Pronophilina Panyapedaliodes drymaea CP09-53 Peru: Apurímac DQ338855 DQ339006 DQ338717Satyrinae Satyrini Pronophilina Parapedaliodes parepa CP07-51 Peru: Lima DQ338591 DQ339007 DQ338718

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 37

76–88%), and strong support for values >10 (bootstrapvalues 89–100%). We have also assessed clade stability byanalyzing a subset of the data with Bayesian inferenceusing the program MrBayes 3.1 (Ronquist and Huelsen-beck, 2003). We chose only taxa for which all three geneswere successfully sequenced for a total of 124 taxa. Theevolution of the sequences was modeled under theGTR + G + I model. The Bayesian analysis was per-formed on the combined data set with parameter valuesestimated separately for each gene region (Table 3). Theanalysis was run twice for 1 million generations, with

every 100th tree sampled and the Wrst 1000 sampled gen-erations discarded as burn-in (based on a visual inspec-tion of when log likelihood values reached stationarity).The purpose of this analysis was to investigate the eVectson the results under a diVerent tree-building method.Such sensitivity analyses may help identify potentialinstances of long branch attraction (Giribet, 2003), andcan provide a valuable heuristic tool to guide subsequentsampling strategies for reWnement of the current hypoth-esis. We will refer to clades that are recovered under par-simony and Bayesian analyses as stable.

Table 2 (continued)

For images of voucher specimens, see http://www.zoologi.su.se/research/wahlberg.

Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1� Wingless

Satyrinae Satyrini Pronophilina Pedaliodes sp. n. 117 CP09-66 Peru: Apurímac DQ338856 DQ339008 DQ338719Satyrinae Satyrini Pronophilina Praepedaliodes phanias CP10-04 Brazil: São Paulo DQ338592 DQ339009 DQ338720Satyrinae Satyrini Pronophilina Praepedaliodes sp. CP12-01 Brazil: São Paulo DQ338857 DQ339010 DQ338721Satyrinae Satyrini Pronophilina Proboscis propylea CP07-15 Peru: Pasco DQ338858 DQ339011 DQ338722Satyrinae Satyrini Pronophilina Pronophila thelebe CP03-70 Peru: Junín DQ338859 DQ339012 DQ338723Satyrinae Satyrini Pronophilina Pseudomaniola loxo CP13-13 Colombia: Antioquia DQ338860 DQ339013 —Satyrinae Satyrini Pronophilina Pseudomaniola phaselis CP04-01 Peru: Junín DQ338593 DQ339014 DQ338724Satyrinae Satyrini Pronophilina Punapedaliodes Xavopunctata CP07-87 Peru: Pasco DQ338861 DQ339015 DQ338725Satyrinae Satyrini Pronophilina Steremnia umbracina CP07-89 Peru: Huánuco DQ338862 DQ339016 DQ338726Satyrinae Satyrini Pronophilina Steroma modesta CP03-71 Peru: Junín DQ338594 DQ339017 DQ338727Satyrinae Satyrini Satyrina Arethusana arethusa CP11-06 Spain: Navarra DQ338863 DQ339018 DQ338728Satyrinae Satyrini Satyrina Berberia lambessanus EW26-29 Morocco: Moyen Atlas

centralDQ338864 DQ339019 —

Satyrinae Satyrini Satyrina Brintesia circe CP-B01 France: Languedoc DQ338865 DQ339020 DQ338729Satyrinae Satyrini Satyrina Chazara briseis EW26-19 Morocco: Rif oriental DQ338866 DQ339021 DQ338730Satyrinae Satyrini Satyrina Hipparchia Wdia RV-03-H920 Spain: San Masteu-

AlbocinerDQ338595 — DQ338731

Satyrinae Satyrini Satyrina Hipparchia parisatis CP10-06 Iran: Isfahan DQ338867 DQ339022 —Satyrinae Satyrini Satyrina Hipparchia semele EW24-25 Sweden: Stockholm DQ338868 DQ339023 DQ338732Satyrinae Satyrini Satyrina Hipparchia statilinus EW25-24 Greece: Peloponnesos DQ338596 DQ339024 DQ338733Satyrinae Satyrini Satyrina Karanasa pamira CP-AC23-32 Russia: Vanch DQ338869 DQ339025 DQ338734Satyrinae Satyrini Satyrina Neominois ridingsii CD-1-1 USA: Colorado DQ338870 DQ339026 DQ338735Satyrinae Satyrini Satyrina Oeneis jutta EW4-1 Sweden DQ018958 DQ018925 DQ018896Satyrinae Satyrini Satyrina Paralasa jordana CP-AC23-35 Russia: Karasu DQ338597 DQ339027 DQ338736Satyrinae Satyrini Satyrina Pseudochazara mamurra CP10-11 Iran: Isfahan DQ338598 DQ339028 DQ338737Satyrinae Satyrini Satyrina Satyrus actaea EW20-12 France: Carcassonne DQ338871 DQ339029 DQ338738Satyrinae Satyrini Satyrina Satyrus ferula EW26-21 Morocco: Haut Atlas

septentrionalDQ338872 DQ339030 DQ338739

Satyrinae Satyrini Satyrina Satyrus iranicus CP10-12 Iran: Hamadan DQ338873 DQ339031 DQ338740Satyrinae Satyrini Ypthimina Neocoenyra petersi NW91-5 Tanzania DQ338874 DQ339032 DQ338741Satyrinae Satyrini Ypthimina Ypthima baldus NW98-5 Indonesia: Central

SulawesiDQ338875 DQ339033 DQ338742

Satyrinae Satyrini Ypthimina Ypthima confusa DL-01-N109 Thailand: Chiang Mai DQ338876 DQ339034 DQ338743Satyrinae Satyrini Ypthimina Ypthima fasciata NP-95-Y065 Malaysia DQ338877 DQ339035 —Satyrinae Satyrini Ypthimina Ypthimomorpha itonia NW117-23 Zambia: Ikelenge DQ338878 DQ339036 DQ338744Satyrinae Satyrini incertae sedis Amphidecta calliomma NW126-21 Brazil: Mato Grosso DQ338879 DQ339037 DQ338745Satyrinae Satyrini incertae sedis Palaeonympha opalina EW25-21 Taiwan: Pingtung

CountyDQ338880 DQ339038 DQ338746

Table 3Parameter values estimated using Bayesian phylogenetic methods

Values estimated separately for each gene region.

Gene TL (all) r(A M C) r(A M G) r(A M T) r(C M G) r(C M T) r(G M T) pi(A) pi(C) pi(G) pi(T) alpha pinvar m

COI 19.77 0.034 0.357 0.019 0.069 0.483 0.038 0.422 0.092 0.025 0.461 0.357 0.358 1.735EF-1� 0.055 0.282 0.1 0.054 0.455 0.054 0.297 0.217 0.209 0.276 0.825 0.468 0.312wgl 0.083 0.304 0.099 0.039 0.388 0.086 0.178 0.324 0.325 0.173 0.761 0.308 0.468

38 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

We rooted the resulting networks with Libythea because ofthe widely held belief that this taxon is the sister group to therest of Nymphalidae (e.g. Ackery et al., 1999; Brower, 2000;Ehrlich, 1958; Freitas and Brown, 2004; Scott, 1985;Wahlberg et al., 2003b). Additional outgroups, including taxafrom the “satyroid” subfamilies (sensu Freitas and Brown,2004), were included to test the monophyly of Satyrinae.

3. Results and discussion

3.1. General properties of sequences

The full data set consisted of 3090 aligned nucleotide siteswith no indels. We were not able to amplify the COI gene forone taxon, the EF-1� for four taxa, and the wingless gene for20 taxa (Table 2). Of the 1450 bp sequenced for COI, 848sites were variable and of these 680 were parsimony informa-tive. The respective numbers for EF-1� are 1240 bp, 657variable and 468 parsimony informative, and for wingless,400 bp, 264 variable and 198 parsimony informative sites.

3.2. Phylogenetic analyses

In the separate analyses of each gene region, the parti-tions produced partially resolved strict consensus trees(Figs. 1–3), recovering only Melanitini as monophyleticgroup. Each of the three partitions implies relationshipsthat are broadly incongruent with traditionally recognizedgroupings (i.e., COI recovered Antirrhea sister to Pierella)(Fig. 1); EF-1� recovered many outgroups in spuriousderived positions (e.g. Morphinae) (Fig. 2), and winglessshows some derived taxa at basal positions (e.g. Orsotriaenaas sister to Libythea) (Fig. 3).

Analysis of the combined data set produced 16 equallyparsimonious cladograms. The strict consensus (Figs. 4–6)shows relationships among the major clades of Satyrinaeas well as relationships of Satyrinae relative to the out-groups. Our data imply that the Morphinae (sensu Ackeryet al., 1999) and Satyrinae are both polyphyletic, groupingtogether in a clade with strong Bremer and good boot-strap support, appearing as sister to Charaxinae. Thesesubfamilies together with the more basal Calinaginaeform part of the “satyroid” (sensu Freitas and Brown,2004) butterXy subfamilies. Individual clades are dis-cussed in detail below.

Bayesian analysis produced a tree which is broadlycongruent with the most parsimonious trees from thecombined analysis (Fig. 7). Parameter values for the mod-els used in the analysis are given in Table 3. The majordiVerence is in the position of Zipaetis + Orsotriaena,which in the parsimony trees is within the subtribeHypocystina, but in the Bayesian tree is sister to the“advanced satyrines” (as deWned below). Polyphyly ofMorphinae and Satyrinae is implied by both analyticalmethods, as is the non-monophyly of many other groupspreviously hypothesized to be natural (see below fordiscussion of these).

3.3. Support

Examination of the contributions to the support of vari-ous clades by the three gene regions employed in the simulta-neous analysis reveals that the major source of conXict is theCOI partition. In the combined analysis, the COI data setconXicts in 68 of the 182 nodes of the strict consensus tree,while the conXicting nodes are 32 and 52 for EF-1� and wing-less, respectively (Figs. 4–6). The COI partition conXicts inboth deep and shallow nodes. The EF-1� partition providesthe majority of support at almost all the deeper nodes in thecombined analysis, conXicting in only four nodes (Figs. 4–6).Apparently, the partition values for EF-1� and wingless arehigh enough to overcome the conXicting signal of the COI.

The COI gene has been very useful for uncovering rela-tionships at the generic and speciWc level (Caterino andSperling, 1999; Wahlberg et al., 2003a) due to its hypothe-sized rapid evolutionary rate. In this study, the COI genecarries much of the phylogenetic signal, although the mainsource of support in the combined analysis comes from theEF-1� and wingless data sets. EF-1� has traditionally beenconsidered to be more informative for resolving deeperdivergences and more inclusive categories (Mitchell et al.,1997). Here, the EF-1� gene is responsible for recoveringsome subtribal relationships (Fig. 2), and in the combinedanalysis it contributes positively to shallow relationships.Thus, the EF-1� data set contains some degree of phyloge-netic information, contributing positively to several nodesin both deeper and shallow relationships when used in com-bination with the two other genes. The good resolution andsupport in our combined tree, despite a high degree ofhomoplasy within the data partitions, agrees with theKällersjö et al. (1998) statement of the possibility to recoverphylogenetic information from such genes, provided thatextensive taxonomic sampling is undertaken.

3.4. Implied relationships of Satyrinae

3.4.1. Is Satyrinae monophyletic?In our combined analyses (Figs. 4–7), the traditional “saty-

rid” groups (Satyrinae, Morphini, Amathusiini, Brassolini)form a well-supported clade with respect to their sister taxon,Charaxinae, and the other outgroups. Satyrinae, as circum-scribed in recent classiWcations (Ackery et al., 1999; Harvey,1991), appears as a polyphyletic assemblage, with some repre-sentatives, traditionally considered to be “primitive” satyrines(Miller, 1968), grouping with tribes of the Morphinae.

In the “amathusiine” clade, the traditional Amathusiini isgrouped with representatives of Zetherina and Parargina(Neorina and Ethope in this study). Neorina and Ethope forma clade with Zetherina having strong Bremer and bootstrapsupport values (>30 steps; 100%), but Zetherina itself (Pent-hema and Zethera in this study) is recovered as polyphyleticsince Penthema and Zethera group with Neorina and Ethope,respectively. It is likely that sampling additional taxa will notchange this grouping since it is strongly supported. Amathusi-ini is sister to the Zetherina+Neorina +Ethope clade, though

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 39

Fig. 1. Strict consensus of 5 equally parsimonious trees from the cladistic analysis of the COI gene data set (length 14376, CI 0.10, and RI 0.33). Numbersgiven above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number.

Libythea

HeliconiusDanaus

Calinaga

Charaxes

Anaea

Hypna

Memphis

Archaeoprepona

Palla

Morpho

Amathusia

Aemona

Discophora

Faunis

Stichophthalma

Taenaris

Thaumantis

Thauria

Zeuxidia

Caligo

Catoblepia

Opsiphanes

Narope

CithaeriasHaetera

Pseudohaetera

GnophodesMelanitis

Elymnias casiphoneElymnias hypermnestra

Elymnias bammakoo

BicyclusHallelesis

HenotesiaMycalesis

Enodia

Kirinia

Lasiommata

LetheLopinga

Neope

Pararge

Satyrodes

Ethope

NeorinaPenthema

ZetheraCyllopsis

Neonympha

Paramacera

Pareuptychia

Pharneuptychia innocentia

Pindis squamis

Rareuptychia

Argyronympha gracilipesArgyronympha pulchra

Argyronympha rubianensis

Argyronympha sp.

Argyronympha ugiensis

Argyronympha ulava

Zipaetis

Ypthima baldus

Ypthima confusaYpthima fasciata

Ypthimomorpha

5

7 12

23

3

5

63

7

1

5

6

6

5

1613

3

111

6

Godartiana

Harjesia

HermeuptychiaParataygetis

53

56

3

4

34

3

2

66

4

6

58

5

6

19

7

7

3

23

48

1

64

4

1

3

4

34

2

7

4

7

3

5

18

43

3

2

3

3

53

81

99

100

52

86

61

7789

9398

Caeruleuptychia

Cepheuptychia

Chloreuptychia

Cissia

Erichthodes

Euptychia pronophila

Euptychoides

Forsterinaria

Magneuptychia

Moneuptychia

Oressinoma sorataOressinoma typhla

Paryphthimoides grimon

Paryphthimoides sp.

Pharneuptychia sp.

Posttaygetis

Splendeuptychia

Taygetis lachesis

Taygetis rectifascia

Yphthimoides borastaYphthimoides cipoensis

Yphthimoides sp.

Amphidecta

Palaeonympha

812

4

6

4

152

3

5

48

3

2

5

63

4

9

163

2

6

2

65

93

100

100

67

9496

8599

95

90

98

67

55

100

Antirrhea

Bia

Pierella

Orsotriaena

AeropetesManataria

Paralethe

Coenonympha heroCoenonympha pamphilus

Erebia epiphron

Erebia ligea

Erebia oeme

Erebia palarica

Erebia sthennyoErebia triaria

Ianussiusa

Idioneurula

Manerebia cyclopinaManerebia indirena

Tamania

Euptychia ernestina

Euptychia sp.Euptychia sp. n. 2

Euptychia sp. n. 5Euptychia sp. n. 6

Argyrophenga

Argyrophorus

Dodonidia

Erebiola

Geitoneura acanthaGeitoneura klugii

Heteronympha

HypocystaLamprolenis

Nesoxenica

Oreixenica

Percnodaimon

Quilaphoetosus

Tisiphone

Auca barrosiAuca coctei

ChillanellaCosmosatyrus

Elina

Etcheverrius

Nelia

Pampasatyrus

Aphantopus

CercyonisHyponephele cadusiaHyponephele sp.

Maniola

Pyronia bathseba

Pyronia cecilia

Melanargia galatheaMelanargia hylata

Melanargia russiae

Apexacuta

Corades

Daedalma

EteonaFoetterleia

Junea

Lasiophila cirtaLasiophila piscina

Lymanopoda

Oxeoschistus

Panyapedaliodes

Parapedaliodes

Pedaliodes

Praepedaliodes phaniasPraepedaliodes sp.

Proboscis

Pronophila

Pseudomaniola loxoPseudomaniola phaselis

Punapedaliodes

SteremniaSteroma

Arethusana

Berberia

Brintesia

Chazara

Hipparchia fidiaHipparchia parisatis

Hipparchia semeleHipparchia statilinus

KaranasaNeominoisOeneis

Paralasa

Pseudochazara

Satyrus actaeaSatyrus ferula

Satyrus iranicus

Neocoenyra46

12

5

36

62

5

3

8

55

43

5

5

52

4

3

8

4

2

3 4

2

13

63

3

4

2

2

6

418

17

2

2

6

64

512

12

21

74

4

6

6

106

7

12

8

9

5

837

6

21

3

8

4

6

3

135

10

3

123

616

98

8

3

16

88

2

3

45

5

4

3

3

4

92

100

90

86

52

99

68

8892

5792

100100

8062

6753

7097

9955

66

69

10050

100

98

100

8175

63

65

92

70

40 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Fig. 2. Strict consensus of 10 equally parsimonious trees from the cladistic analysis of the EF-1� gene data set (length 7231, CI 0.15, and RI 0.50). Numbersgiven above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number.

Calinaga

Charaxes

Anaea

Hypna

Memphis

Archaeoprepona

Palla

AntirrheaMorpho

Amathusia

Aemona

Discophora

FaunisStichophthalma

Taenaris

Thaumantis

Thauria

Zeuxidia

Bia

CaligoCatoblepiaOpsiphanes

Narope

CithaeriasHaetera

PierellaPseudohaetera

GnophodesMelanitis

Elymnias casiphoneElymnias bammakoo

AeropetesManataria

Paralethe

Ethope

NeorinaPenthema

Zethera

Caeruleuptychia

Cepheuptychia

Chloreuptychia

Cissia

Cyllopsis

Erichthodes

Euptychia ernestina

Euptychia pronophila

Euptychoides

Forsterinaria

Godartiana

Harjesia

Hermeuptychia

Magneuptychia

Moneuptychia

Neonympha

Parataygetis

Pareuptychia

Paryphthimoides grimon

Paryphthimoides sp.

Pharneuptychia innocentia

Pharneuptychia sp.

Pindis

Posttaygetis

Rareuptychia

Splendeuptychia

Taygetis laches

Taygetis rectifascia

Yphthimoides borastaYphthimoides cipoensis

Yphthimoides sp.

Argyrophorus

Quilaphoetosus

Auca barrosiAuca coctei

ChillanellaCosmosatyrus

Elina

Etcheverrius

NeliaPampasatyrus

Melanargia galatheaMelanargia hylata

Melanargia russiae

Arethusana

Berberia

Brintesia

Chazara

Hipparchia parisatis

Hipparchia semele

Hipparchia statilinus

Karanasa

NeominoisOeneis

Pseudochazara

Satyrus actaeaSatyrus ferula

Satyrus iranicus

AmphidectaPalaeonympha

3

3

4

7

7

1

15

1

4

36

31

2

2

1

36

4

3

4

41

11

12

2

1

52

2

4

16

1

3

1

2

33

3

5

8

4

9

1213

3

11

91

92

16

2

212

3

1

5

11

5

1

1

1

2

3

3

97

97

100

70

9872

70100

5499

73

100

99100

90

6262

54

95

7166

9256

98

71

90

100

99

57

9462

87

9698

93

6797

87

5999

92

83

55

100

81

69

9362

5787

7195

87

61

55

LibytheaHeliconiusDanaus

Elymnias hypermnestra

Bicyclus

HallelesisHenotesia

Mycalesis

Orsotriaena

Enodia

Kirinia

Lasiommata

Lethe

Lopinga

Neope

Pararge

Satyrodes

Coenonympha heroCoenonympha pamphilus

Erebia epiphron

Erebia ligeaErebia oeme

Erebia palarica

Erebia sthennyo

Erebia triaria

IanussiusaIdioneurula

Manerebia cyclopinaManerebia indirena

Euptychia sp.Euptychia sp. n. 2

Euptychia sp. n. 5Euptychia sp. n. 6

Euptychia sp. n. 7

Oressinoma sorataOressinoma typhla

Argyronympha pulchra

Argyronympha rubianensisArgyronympha sp.Argyronympha ugiensis

Argyronympha ulava

Argyrophenga

Dodonidia

Erebiola

Geitoneura acanthaGeitoneura klugii

Heteronympha

Hypocysta

LamprolenisNesoxenica

Oreixenica

PercnodaimonTisiphone

Zipaetis

Aphantopus

CercyonisHyponephele cadusiaHyponephele sp.

ManiolaPyronia bathseba

Pyronia cecilia

Apexacuta

Corades

Daedalma

EteonaFoetterleiaJunea

Lasiophila cirtaLasiophila piscina

Lymanopoda

Oxeoschistus

Panyapedaliodes

ParapedaliodesPedaliodes

Praepedaliodes phaniasPraepedaliodes sp.

Proboscis

Pronophila

Pseudomaniola loxoPseudomaniola phaselis

Punapedaliodes

SteremniaSteroma

ParalasaNeocoenyra petersi

Ypthima baldus

Ypthima confusa

Ypthima fasciataYpthimomorpha

1

7

1

91

23

11

52

2

14

1

6

2

1

42

6

79

3

4

25

4

8

2

2

4

7

3

9

26

1

5

54

6

7

73

15

16

152

1

4

72

99

100

100

97

100

97

98

97

6387

9992

99

68

97

7473

89

6677

99

100

10085

63

99

65

99

74

98

7898

99

67

88

91

65

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 41

Fig. 3. Strict consensus of 1512 equally parsimonious trees from the cladistic analysis of the wingless gene data set (length 2982, CI 0.16, and RI 0.51).Numbers given above branches are Bremer support values and numbers below the branch are bootstrap values for the node to the right of the number.

HeliconiusDanaus

CalinagaCharaxes

AnaeaHypna

Memphis

Archaeoprepona

AntirrheaMorpho

Amathusia

Aemona

Discophora

Faunis

StichophthalmaTaenaris

Thaumantis

Thauria

Zeuxidia

BiaCaligo

CatoblepiaOpsiphanes

Narope

CithaeriasHaetera

Pierella

Pseudohaetera

GnophodesMelanitis

Elymnias casiphoneElymnias hypermnes

Elymnias bammakoo

BicyclusHallelesis

Henotesia

Mycalesis

Aeropetes

KiriniaLasiommata

Lethe

Lopinga

Manataria

Paralethe

Pararge

Satyrodes

Ethope

NeorinaPenthema

Zethera

Erebia epiphronErebia ligea

Erebia oemeErebiap alarica

Erebias thennyoErebiat riaria

Cyllopsis

Splendeuptychia

Aphantopus

CercyonisHyponephele cadusiaHyponephele sp.

Maniolaj urtina

Pyronia bathseba

Pyronia cecilia

Melanargia galatheaMelanargia hylata

Melanargia russiae

Apexacuta

Corades

EteonaFoetterleia

Junea

Lasiophila cirta

Oxeoschistus

Panyapedaliodes

Parapedaliodes

PedaliodesPraepedaliodes phaniasPraepedaliodes sp.

Proboscis propylea

Pronophila thelebe

Pseudomaniola phaselis

Punapedaliodes

SteremniaSteroma

Neocoenyra petersi

99

99

92

55

95

71

82

9899

53

96

7891

5158

99

9798

86

6590

6854

66

82

9572

54

78

79

25

11

1

12

3

1

2

1

1

11

1

1

2

11

2

1

41

1

1

1

21

63

2

2

5

3

1

5

78

1

83

2

3

22

2

41

1

5

1

1

710

1

1

1

14

6

1

11

3

73

1

1

1

1

11

1

11

2

3

1

Neope

Coenonympha heroCoenonympha pamphilus

Ianussiusa

Idioneurula

Manerebia cyclopinaManerebiai ndirena

Tamania

Caeruleuptychia

Cepheuptychia

Chloreuptychia

Cissia

Erichthodes

Euptychia sp. n. 2Euptychia sp. n. 5

Euptychia sp. n. 6

Euptychia sp. n. 7

Euptychia pronophila

Euptychoides

Forsterinaria

Godartiana

Harjesia

Hermeuptychia

Magneuptychia

Moneuptychia

Oressinoma sorataOressinoma typhla

Paramacera

Parataygetis

Pareuptychia

Paryphthimoides grimon

Paryphthimoides sp.

Pharneuptychiai nnocentia

Posttaygetis

Rareuptychia

Taygetis lachesTaygetis rectifascia

Yphthimoides borasta

Yphthimoides cipoensis

Yphthimoides sp.

Argyronympha gracilipesArgyronympha pulchra

Argyronympha sp.Argyronympha ugiensis

Argyronympha ulava

Argyrophenga

Argyrophorus

DodonidiaErebiola

Geitoneura acantha

Geitoneura klugii

Heteronympha

Nesoxenica

Oreixenica

Percnodaimon

Tisiphone

Zipaetis

Auca barrosiAuca cocteiChillanella

EtcheverriusPampasatyrus

Lymanopoda

ArethusanaBrintesia

Chazara

Hipparchia fidiaHipparchia semele

Hipparchias tatilinus

Karanasa

NeominoisOeneis

Paralasa

Pseudochazara

Satyrus actaeaSatyrus ferula

Satyrus iranicus

Ypthima baldus

Ypthima confusa

Ypthimomorpha itonia

Amphidecta

Palaeonympha

98

96

99

90

99

79

99

8059

74

85

100

74

55

82

72

96100

56

8682

7

6

LibytheaOrsotriaena

2

2

3

3

2

142

1

1

1

1

1

41

3

82

1

22

1

1

1

51

2

1

310

1

2

34

4

2

2

4

12

2

1

2

1

2

1

2

42

2

1

1

1

42 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Fig. 4. Strict consensus of 16 equally parsimonious trees from the combined data set of all three genes (length 25006 CI 0.12, and RI 0.40), pruned to showbasal clades. For the rest of the cladogram, see Figs. 5 and 6. The numbers given above branches are Bremer support and bootstrap values, respectively, forthe node to the right of the number. The numbers below the branches are the contribution of the COI, EF-1�, and wingless data sets, respectively, to theBremer support value of the combined analysis (results of the Partitioned Bremer Support analysis).

Coenonympha pamphilus25, 100

6.5, 11.4,7.1

Coenonympha hero

Oressinoma typhlaOressinoma sorata

ArgyrophengaErebiola

Geitoneura acanthaGeitoneura klugii

Heteronympha

HypocystaLamprolenis

Nesoxenica

Oreixenica

Percnodaimon

HallelesisMycalesis

Orsotriaena

Argyronympha gracilipesArgyronympha pulchra

Argyronympha rubianensis

Argyronympha sp.Argyronympha ugiensis

Argyronympha ulava

DodonidiaTisiphone

Zipaetis5, -

-1.5, -2,6.6

2, --0.3, 2.6,

-0.2

2, --1.3, 3.2,

0.1

18, 997.3, 12.2,

-1.5

BicyclusHenotesia

2, -8.9, -1.7,

-5.1

Aeropetes

Enodia

Lasiommata

Lethe

Lopinga

Neope

Paralethe

Pararge

Satyrodes

LibytheaHeliconius

DanausCalinaga

Charaxes

Anaea

Hypna

Memphis

Archaeoprepona

Palla

Amathusia

Aemona

Discophora

Faunis

Stichophthalma

Taenaris

ThaumantisThauria

Zeuxidia

Elymnias casiphoneElymnias hypermnestra

Elymnias bammakoo

Ethope

NeorinaPenthema

Zethera

10,636, 1,

3

15, 937, 6.5,

1.5

16, 774.5, 5.8,

5.8

35, 10018.3, 16.2,

0.5

5, 743, 0.5,

1.5

4, 59-1, 5,

0

8, 803.7, 4.8,

-0.5

16, 996.3, 3.3,

6.4

41,100-6, 11.5,

35.5

18, 995.5, 9.5,

3

15, 813.2, 6.5,

5.3

23,1006.3, 10.2,

6.5

16, 994.2, 6.1,

5.7

14, 994, 3.5,

6.5

31, 100-0.9, 17.7,

14.2

7, 905, 0.5,

1.5

5, 550.5, 4.5,

0 32, 10016, 14.5,

1.5

10, 96-1, 4.5,

6.5

3, --3, 5,

1

3, -0.1, -2.6,

5.4

3, -8.3, 0.8,

-6.1

AntirrheaMorpho

Bia

CaligoCatoblepiaOpsiphanes

Narope

27, 968.7, 19.9,

-1,6

2, 64-2, 0,

4

1,-4, 0.3,-3.3

8, 925, 0,

3

14, 97-1, 9,

6

7, 705, 3,-1

CithaeriasHaetera

PierellaPseudohaetera

3, 56-1, 4,

0

25, 1009.4, 15,

0.6

20, 996.9, 10.3,

2.8

GnophodesMelanitis

58, 10027.4, 12.2,

18.4Kirinia

Manataria8, 580.5, 3,

4.5

27, 10012, 8.5,

6.56, 507, 4.6,-5.6

8, 543.5, 2.9,

1.6

7, 79-11.7, 15.4,

3.3

1, --7.7, 4.8,

3.9

10, 975.1, -1.6,

6.5

12, 982, 9,

1

11, 992.7, 9.4,

-1.23, 550.1, -2.6,

5.4

1, -5.3, -0.7,

-3.6

5, 760.1, 1.6,

3.3

9, 996.4, 0.6,

1.93, 881, 0,

2

4, 922, 2,

0

32, 10023.8, 6.1,

2

1, --0.9, 0.8,

1.1

1, -3.1, 0,-2.1

1, 567, -3,

-3

12, 9815.2, 0.8,

-4

1, --3.3, 2.7,

1.6

3, 64-9.5, 16,

-3.5

5, -5.1, 1.3,

-1.3

6, --7.6, 12.9

0.7

21, 10012.5, 10.5,

-268,10022, 16,

305, 52

10.3, -4.8,-0.5

1, -0.5, 1.5,

-11, --0.7, 0.5,

1.2

1, -5.9, -2.2,

-2.8

1, --0.2, 1.3,

0

1, --16.5, 12,

5.5

1, --16.9, 11.2,

6.7

10, 59-11, 8,

13

Parargina ( -series)Pararge

Charaxinae

Zetherina + -seriesNeorina

Elymniina

Morphinae

Morphini

Brassolini

Haeterini

Mycalesina

Parargina ( -series)Aeropetes

Parargina ( -series)Lethe

Melanitini

HypocystinaMillersensu

Amathusiini

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 43

Fig. 5. Continuation of cladogram in Fig. 4. Relationships within Euptychiina appear in Fig. 6. The genera transferred by Viloria (1998, 2003; see Lamas,2004) from Pronophilina into Erebiina and Hypocystina are underlined and in bold fonts, respectively.

Erebia epiphron

Erebia ligea

Erebia oeme

Erebia palarica

Erebia sthennyo

Erebia triaria

Ianussiusa

Idioneurula

Manerebia cyclopinaManerebia indirena

Tamania

Argyrophorus

Quilaphoetosus

Auca barrosiAuca coctei

ChillanellaCosmosatyrus

Elina

Etcheverrius

Nelia

Pampasatyrus

Aphantopus

CercyonisHyponephele cadusiaHyponephele sp.

Maniola

Pyronia bathseba

Pyronia cecilia

Melanargia galatheaMelanargia hylata

Melanargia russiae

Apexacuta

Corades

Daedalma

EteonaFoetterleia

Junea

Lasiophila cirtaLasiophila piscina

Lymanopoda

Oxeoschistus

Panyapedaliodes

Parapedaliodes

Pedaliodes

Praepedaliodes phaniasPraepedaliodes sp.

Proboscis

Pronophila

Pseudomaniola loxoPseudomaniola phaselis

Punapedaliodes

SteremniaSteroma

Arethusana

Berberia

Brintesia

Chazara

Hipparchia fidiaHipparchia parisatis

Hipparchia semele

Hipparchia statilinus

KaranasaNeominoisOeneis

Pseudochazara

Satyrus actaeaSatyrus ferula

Satyrus iranicus

Neocoenyra

2, --4.5, 0,

6.5

Paralasa

Ypthima baldus

Ypthima confusaYpthima fasciata

Ypthimomorpha9, 86

4.8, 2.1,2.1

21, 10025.2, 2.9,

-7.1

8, 77-23, 19,

12

2, --8.2, 3.7,

6.5

8, 94-7.9, 7.4,

8.5

1, 619.7, -2.1,

-6.618, 992.7, 13.3,

2

16, 1008, 0.5,

7.5

54,10010, 18,

26

5, 69-19, 4.3,

20.82, -

-8.2, 3.7,6.5

1, -8.3, -2.5,

-4.8

16, 10027.2, -5.6,

-5.6

1, -6.2, 0.4,

-5.6

1, -6.2, 0.4,

-5.6

1, -7.9, -2.2,

-4.8

16, 10010.5, 5,

0.5

5, 640.6, 2.5,

1.9

14, 994.2, 7.7,

2

2, --2.9, 3.3,

1.6

11, 983.6, 6.3,

1.1

11, 995, 3.5,

2.5

3, 70-16.4, 13.2,

6.2

7, 81-2.1, 5.1,

41, 760.3, 1,-0.2

10, 994, 3,

3

8, 7916.6, -3.5,

-5.118, 1001.5, 7.5,

9

6, 764, 2,

0

4, --2.1, 3.8,

2.4

21, 99-32.6, 33.6,

20

1, -8.7, -2.6,

-5.1

15, 996.8, 8.2,

0

15, 997.5, 8,-0.5

15, 992.8, 13.5,

-0.2

2, --2.5, 1.7,

2.8

20, 99-2.1, 22.7,

-0.7 34, 10019.5, 5,

9.53, 74

-5.8, 6,2.8

4, 78-7.5, 6,

5.5

2, 55-2.5, 1.7,

2.8

1, -3.5, -1,

-1.4

10, 996, 1.5,

2.55, 82

0.7, 3.4,0.8

8, 95-0.7, 3.8,

4.8

37, 10032, 4.8,

0.34, 884, 0,

0

16, 10011.2, 9.1,

-4.3

2, 870, 1.5,

0.5

7, 937.5, 0.5,

-1.0

2, --4.0, 1.1,

4.9

6, 8910.1, 0.6,

-4.7

24, 1009, 11.5,

3.5

2, 55-1.3, 1.6,

1.6

5, 81-2.5, 3.6,

3.9

16, 992, 11.5,

2.5

3, 69-2.6, 4.8,

0.9

3, 55-4.7, 5.5,

2.21, --3.6, 2.8,

1.8

4, 67-0.5, 3.9,

0.6 23, 1007.5, 13.5,

2

9, 945.5, 2.5,

1

13, 99-0.6, 11.8,

1.9

2, 54-4.9, 4.6,

2.3

1, 55-2.5, 2.2,

1.3

2, --5.3, 4.9,

2.4

1, 54-3.6, 2.8,

1.9

14, 985, 8.5,

0.5

6, 904, 5.5,-3.5

1, -7.8, -2.3,

-4.4

1, --1.5, 2.3,

0.2

1, -8.3, -2.4,

-4.9

EUPTYCHIINA

Ypthimina

Maniolina

Satyrina

Erebiina

Pronophilina+

+Neotropical Erebiina

Neotropical Hypocystina

Maniolina

44 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

this is not well supported and not stable to method of analy-sis. All of these taxa are Indo-Australian. The next clade tobranch oV is the Neotropical “morphine” clade, formed byMorphinae tribes Morphini and Brassolini. Bia appears basalin the Brassolini clade with strong Bremer and bootstrap sup-port. The “morphine” clade (Amathusiini excluded) is recov-ered as sister to the “satyrine” Haeterini+Melanitini+Manataria+Parargina in part (Aeropetes and Paralethe).

Together, these three basal clades strongly support thehypothesis that the Satyrinae and Morphinae of currentclassiWcations are both polyphyletic, since Zetherina groupswith the Amathusiini, and Haeterini + Melanitini+ Manataria with the Neotropical Morphinae. The poly-phyly of Satyrinae and Morphinae is also recovered in theBayesian analysis. In order to circumscribe monophyletictribes and subfamilies, it will be necessary to adjust the cur-rent status of these major lineages.

3.4.2. Relationships of the “primitive” SatyrinaeElymniina is found to branch oV Wrst, appearing as sister

to the remaining Satyrinae + Morphinae that appear form-ing a clade. The position of Elymniina is not stable, and inthe Bayesian analysis, it is placed as sister to the Haeteriniwith low posterior probability. Interestingly, Elymniinamembers feed on palms (Arecaceae) as larvae, as do some

species of Amathusiini and Neorina (Ackery, 1988). Fewsatyrine butterXies feed on Arecaceae, e.g., some Haeterini(Dulcedo; DeVries, 1987). The “palmXies” range from WestAfrica to the Indo-Australian region, and many of the spe-cies are markedly sexually dimorphic being involved inmimicry complexes with various danaine or amathusiinemodels, features that are quite uncommon among othersatyrines. It is interesting to note that the eyespots ofElymniina, when present, are rather simple, not composedof the multiple concentric rings of diVerently colored scalestypical of Morphinae and the rest of Satyrinae.

The Neotropical Manataria has been reported usingGuadua angustifolia, Bambusa vulgaris and Lasiacis sp.(Poaceae) as host plants (DeVries, 1987; Figueroa, 1953;Murillo and Nishida, 2004). Manataria is sister to Melani-tini with good Bremer and weak bootstrap support.Sampled Melanitini are monophyletic which is not surpris-ing since some species of Gnophodes have been includedwithin the genus Melanitis (Larsen, 1991). The hypothesisof a close relationship between Manataria and Melanitini isnew and well supported by our data. Gnophodes and Mela-nitis have crepuscular habits Xying at dusk and at dawn(Braby, 2000; Larsen, 1991), while similar crepuscularactivity has been recorded for Manataria (DeVries, 1987;Stevenson and Haber, 1996; Rydell et al., 2003). Moreover,

Fig. 6. Continuation of cladogram in Figs. 4 and 5. Relationships within Euptychiina.

Pareuptychia

37, 10020, 16,

1Taygetis rectifascia

1, 502.2, -2,

0.8

1, -8.3, -2.9,

-4.46, 850.1, -1.7,

7.6

Caeruleuptychia

Cepheuptychia

Chloreuptychia

Cissia

Erichthodes

Euptychia pronophilaForsterinaria

Godartiana

Harjesia

Hermeuptychia

Magneuptychia

Neonympha

Parataygetis

Paryphthimoides grimon

Pharneuptychiai nnocentiaPindis

Posttaygetis

Rareuptychia

Splendeuptychia

Taygetis laches

Amphidecta

13, 946, 9.5,-2.5

CyllopsisEuptychia ernestina

Euptychia sp.Euptychia sp. n. 2

Euptychia sp. n. 5Euptychia sp. n. 6

Euptychia sp. n. 7

Euptychoides

Moneuptychia

Paramacera

Paryphthimoides sp.

Pharneuptychia sp.

Yphthimoides borastaYphthimoides cipoensis

Yphthimoides sp.

Palaeonympha

28, 100-7.9, 29.2,

6.7

25, 1008.6, 16.3,

0.21, -8.7, -2.6,

-5.1

17, 99-10.3,11.7,

15.7

6, 55-3.3, 7.2,

2.1

5, 876.2, -2.6,

1.3

15, 10016.1, 3.8,

-4.9

4, 712, 2,

0

11,9 85, 4.5,

1.58, 93-8, 9.5,

6.5

10, 95-4.1, 9.1,

5

10, 88-0.1, 4.4,

5.7

1, --7.8, 6.7,

2.1

2, --18.7, 10.8,

9.8

2, 50-8.3, 5.7,

4.7 2, 60-1.7, 8.7,

-5

1, -8.7, -2.3,

-5.3

2, --0.8, 5.5,

-2.7

1, --16.9, 11.2,

6.7

5, 947, -3,

1

1, -8.9, -2.9,

-5

1, 655.3, -6.2,

1.8

2, 84-1.1, 5.1,

-2

3, 735.5, -7.5,

5

9, 987, -0.5,

2.5

2, 515.3, -7.7,

4.3

1, -8.4, -3.7,

-3.7

12, 10013.4, 0.1,

-1.5

1, -2.6, -3.3,

1.7

2, 66-0.2, 4.5,

-2.3

1, --10.8, 8.2,

3.6

2, --5.2, 3.2,

4

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 45

Fig. 7. Phylogenetic hypothesis based on Bayesian analysis of three genes, each modeled with a GTR + G + I model. Average log likelihood of tree¡81294.34 based on two independent runs. Parameter values for models given in Table 3.

0.1

Libythea HeliconiusDanaus

CalinagaCharaxes Anaea

Archaeoprepona0.89

1.00

StichophthalmaAemona

FaunisTaenaris

1.001.00

0.88

DiscophoraThauria

ThaumantisZeuxidiaAmathusia

1.000.57

1.00

1.00

EthopeZethera

1.00

NeorinaPenthema

1.001.00

Elymnias casiphoneCithaerias

Pseudohaetera1.00

0.83

GnophodesMelanitis

1.00

ManatariaParalethe

0.630.99

0.85

0.67

0.94

AntirrheaMorpho

1.00

BiaCaligo

CatoblepiaOpsiphanes

1.001.00

1.001.00

OrsotriaenaZipaetis

1.00

Coenonympha pamphilusOressinoma typhla

Oressinoma sorata1.00

1.00

NesoxenicaHeteronympha

Geitoneura acanthaGeitoneura klugii

1.000.93

ArgyrophengaErebiola

Percnodaimon0.75

1.00

1.00

1.00

KiriniaLopinga

LasiommataPararge0.93

1.00

1.00

NeopeLethe

Satyrodes1.00

0.73

BicyclusHenotesia

0.86

HallelesisMycalesis0.99

1.001.00

0.93

0.76

Euptychia sp. n. 2Euptychia sp. n. 6

1.00

CyllopsisPalaeonympha

MoneuptychiaYphthimoides

1.001.00

PharneuptychiaGodartiana

AmphidectaRareuptychia1.00

CepheuptychiaYphthimoides

CissiaMagneuptychia0.56

1.00

1.00

ErichthodesPareuptychia

1.00

PosttaygetisParataygetis

TaygetisEuptychia pronophila

Forsterinaria1.000.64

1.000.99

1.00

0.98

0.59

1.00

0.55

0.99

ParalasaCercyonis

Hyponephele cadusiaHyponephele sp.

1.001.00

Erebia oemeErebia triaria

Erebia ligeaErebia palarica1.00

0.66

1.00

AphantopusManiola

Pyronia cecilia0.83

1.00

NeocoenyraYpthima baldus

Ypthimomorpha1.00

1.00

0.51Melanargia galathea

Melanargia russiae1.00

Hipparchia statilinusBrintesia

ChazaraPseudochazara

1.00

NeominoisOeneis

1.000.54

1.001.00

0.61

ArgyrophorusEtcheverrius

1.00

PampasatyrusAuca coctei

Auca barrosi1.00

0.93

1.00

SteremniaIanussiusa

Lymanopoda1.00

Manerebia cyclopinaManerebia indirena

1.000.990.59

1.00

PanyapedaliodesPedaliodes

0.99

ParapedaliodesPunapedaliodes

0.68

Praepedaliodes sp.Praepedaliodes phanias

1.001.00

1.00

CoradesEteona

FoetterleiaPronophila

0.85

ApexacutaPseudomaniola

1.00

OxeoschistusLasiophila

Proboscis0.880.73

1.000.51

1.00

1.00

0.62

1.00

0.72

1.00

0.86

1.00

1.00

1.00

0.96

46 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

Manataria has been observed roosting in tree holes orshaded areas along forest trails in Mexico and Costa Rica,in groups up to 80 individuals (Barrera and Díaz-Batres,1977; Murillo and Nishida, 2004; Stevenson and Haber,1996). Interestingly, Larsen (1991) reports that Gnophodesspecies also form small congregations in forest trails. Theclose relationship between Manataria and Melanitini(Fig. 4) suggests that these striking behaviors may be due toa common origin. Whether these similarities are synapo-morphies or convergence needs further investigation, sincesome other “satyroid” taxa are also crepuscular (e.g. mostBrassolini and some Taygetis species in Satyrinae). Millerand Miller (1997) suggested a close aYnity among Mana-taria, Aeropetes and Paralethe of the Parargina. While thisrelationship was supported weakly by morphologicalevidence, it is corroborated here by molecular data. TheAfrican genera Aeropetes and Paralethe are sister taxaappearing as sister to the clade Manataria + Melanitini. Theclade containing Melanitini + Manataria + Paralethe is sta-ble to method of analysis.

3.4.3. Relationships of the “advanced” SatyrinaeThe remainder of Figs. 4–7 represent the “satyrine”

clade, which is recovered with strong Bremer support andposterior probability, but weak bootstrap support, andincludes groups traditionally considered as “advanced”Satyrinae, i.e. all the satyrine representatives in this studybut Elymniina, Zetherina, Melanitini, Haeterini, Manatariaand part of the Parargina (Neorina, Ethope, Aeropetes andParalethe as stated above). The “satyrine” clade is partiallyresolved, recovering as monophyletic entities only a few ofits tribes and subtribes (sensu Harvey, 1991) with poor sup-port for relationships among subtribes.

Basal within the “advanced” satyrine butterXies is arobust monophyletic group formed by some of the Parar-gina—Pararge, Lopinga, Lasiommata and Kirinia—whichcorrespond to one of Miller’s (1968) subdivisions of his“Lethini”, his Pararge-series. Part of Miller’s Lethe-series(represented by Lethe, Neope, Enodia and Satyrodes in thisstudy) appears as sister to a clade containing the Mycale-sina and Neope, although in the Bayesian analysis Neopecomes out as sister to the Lethe-series.

Members of Miller’s Pararge-series (Pararge, Kirinia,Lasiommata and Lopinga) form a cohesive clade. Miller’sother subdivisions of “Lethini” form independent cladescongruent with each of Miller’s series. Obviously each ofMiller’s sections represents very diVerent lineages, Neorina-series group with Zetherina, Lethe-series group withMycalesina, Aeropetes-series group with Manataria andMelanitini, and Pararge-series is on its own. These resultssuggest that Parargina (sensu Miller) should no longer beused.

Traditional Mycalesina is not monophyletic, and themonophyly of Mycalesina as a cohesive clade (18 Bremerand 99% bootstrap support, 100% posterior probability)without Orsotriaena is quite surprising. Orsotriaena is gener-ally recognized as being closely related to Mycalesis (Braby,

2000; Parsons, 1999), mainly due to adult morphology. How-ever, larval and pupal morphology of Mycalesis andOrsotriaena are strikingly diVerent. If Orsotriaena is notrelated to the other Mycalesina as implied by our results andmorphological diVerences of immature stages, the adult mor-phological similarities are not homologous. Moreover, onlythe forewing vein Sc of Orsotriaena is basally inXated, whileall veins, except the forewing radial vein, are basally inXatedin Mycalesis (Parsons, 1999). Orsotriaena appears inHypocystina as sister to the genus Zipaetis, a sister relation-ship which is strongly supported and stable.

The genera forming the Hypocystina clade correspondwith Miller’s (1968) taxa, but not with Viloria’s (2003) tem-perate South American taxa. The Hypocystina, includingthe “non-hypocystine” genera Orsotriaena, Coenonymphaand Oressinoma, appear in a clade with weak Bremer andno bootstrap support. The Neotropical euptychiine genusOressinoma appears as sister to Coenonympha. The positionof Oressinoma, far from Euptychiina is perhaps not so sur-prising: Oressinoma has a much diVerentiated adult mor-phology, some authors being inclined to considerOressinoma as an aberrant genus (Miller, 1968). This mayexplain why Oressinoma did not group with Euptychiina inMurray and Prowell’s (2005) study. The disjunct distribu-tion of Oressinoma and its hypocystine relatives implieseither an ancient Gondwanan common origin or morerecent dispersal across wide oceanic barriers.

The Euptychiina appears as sister to a partially resolvedclade, formed by representatives of Ypthimina, Maniolina,Pronophilina, Melanargiina, Erebiina and Satyrina. Theodd Neotropical Amphidecta is clearly within Euptychiina,though it has traditionally been associated with Pronophi-lina and is currently classiWed incertae sedis (Lamas, 2004).Characters from immature stages of Amphidecta reynoldsiwere not conclusive in resolving its aYnities (Freitas,2004b). Euptychiina without Oressinoma, but includingAmphidecta, is monophyletic. Another surprising result isthe inclusion of the Oriental genus Palaeonympha (thus farof uncertain position) within Euptychiina, which is a groupthought to be entirely restricted to the Americas. This asso-ciation is robust and is likely to remain stable to the addi-tion of more data. If this hypothesis is corroboratedthrough a comparative morphological study of Palaeonym-pha and the Euptychiina, the former would be the onlyeuptychiine taxon distributed outside the Americas. Moreinteresting is the fact that, in our data set, Palaeonymphaappears related to species from the Southeastern Atlanticforests of Brazil. Miller (1968) commented on the similarityof the genus to euptychiines, but was not willing to placePalaeonympha in Euptychiina because of the disjunct distri-bution of this taxon. This relationship presents great poten-tial for biogeographic studies.

Ypthimina without Neocoenyra is recovered as mono-phyletic, grouping with Paralasa and being sister toMelanargiina + Maniolina. The Bayesian analysis recoversYpthimina with Neocoenyra as monophyletic, and placesMelanargiina as sister to Satyrina.

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 47

Maniolina appears to be polyphyletic. The core Manio-lina, including Aphantopus but excluding Cercyonis andHyponephele, is stable with strong Bremer and bootstrapsupport (18 steps; 99%). Cercyonis and Hyponephele comeout as sister groups with strong support, but their positionwith regard to the other clades is unresolved in both analy-ses. This study corroborates the transfer of Aphantopusfrom the Coenonymphina into Maniolina (Martin et al.,2000). Because Cercyonis and Hyponephele appear in anunresolved position, more sampling of Maniolina taxa isneeded to resolve its aYnities.

Satyrina without Paralasa is monophyletic with strongBremer and bootstrap support (21 steps; 99%) and sister toErebiina (only Erebia species), a result which is not stableto method of analysis.

The speciose Pronophilina sensu Miller (1968) appearsin two clades within a polytomy, with Maniolina (Cercyonisand Hyponephele) with weak support. One clade includesViloria’s (1998, 2003; see Lamas, 2004) Neotropical“Hypocystina” and “Erebiina”, in addition to Steremnia,Steroma and Lymanopoda, while the other clade includesthe remaining Pronophilina. This analysis shows that thegenera that Viloria (1998, 2003) transferred from Pronophi-lina into Erebiina and Hypocystina are actually moreclosely related to the genera currently retained in Pronophi-lina (Lamas, 2004), and are, distantly related to the Austra-lian Hypocystina and Palaeartic Erebiina. Our results thusrefute Viloria’s hypothesis (in Lamas, 2004) that a greatpart of the Pronophilina belong to Hypocystina and Erebi-ina. Viloria’s Neotropical Hypocystina and Erebiina arenot supported, and his hypothesis of a Gondwanan originfor his Hypocystina should be discarded.

4. Concluding remarks

This study represents the most extensive cladistic analy-sis to date of the long-neglected satyrine butterXies.Although we were not able to sample some taxa that mightrepresent major lineages in the subfamily, our results areboth robust and challenging, suggesting new relationships,refuting recent hypotheses and classiWcations, and stronglyimplying the need of major revision for some of the tradi-tionally recognized subfamilies in the Nymphalidae. Moreimportantly, our results highlight the satyrines’ strongpotential as a model for research in biogeography and evo-lutionary biology.

The results of the combined analysis of the three genesshow that, of the named suprageneric taxa in the currentclassiWcation of Satyrinae, only Haeterini is a natural group,while the other tribes and subtribes are either para- or poly-phyletic assemblages. This study also suggests new interestingrelationships of taxa long considered of uncertain aYnities(e.g. Manataria, Amphidecta and Palaeonympha). We oVer atentative new higher classiWcation of Satyrinae in Table 1based on our current results, but anticipate further changes,especially regarding the status and circumscription of thesubfamilies Satyrinae and Morphinae.

The traditionally recognized tribe Haeterini and subtribeSatyrina without Paralasa are recovered as cohesive enti-ties, and additional data, we believe, are not likely to mod-ify their monophyletic status. Similarly, “non-primitive”satyrine butterXies as a clade (which includes the Mycale-sina, Satyrini and some members of Parargina, Pararge andLethe series) has good support and will probably remainrobust with addition of data. Euptychiina and Mycalesinaalso appear to be well supported monophyletic groups.However, some genera traditionally associated with thesesubtribes are clearly not related to them: e.g. Orsotriaenadoes not group with Mycalesina and Oressinoma is not partof Euptychiina.

Comparison of the parsimony and Bayesian analyses(Figs. 4–7) suggest that several relationships will requiremore scrutiny in the form of increased taxon sampling and/or increased character sampling (i.e. more genes sequenced).Branch lengths of many of the uncertain relationships arevery short in the Bayesian analysis (Fig. 7) suggesting rapiddiversiWcation of several clades, including the clade consist-ing of Morphini, Brassolini, Amathusiini, the “primitive”satyrines and the “advanced” satyrines, as well as in theclade containing Satyrina, Erebiina, Pronophilina, Manio-lina and Ypthimina. Taxa which require close scrutiny areElymnias and the clade Zipaetis + Orsotriaena. Relation-ships of these taxa in the two analyses imply very diVerentevolutionary scenarios and resolving these conXicts willrequire increased character sampling.

Our results imply some intriguing biogeographical pat-terns. We identify taxa with disjunct distributions that mayhave dispersed over oceanic barriers or their disjunct distri-butions resulted from vicariance due to the break up ofancient land masses. This is the case of the Neotropical gen-era Manataria and Oressinoma that are related to theMelanitini (African and Indo-Australian) and Hypocystina(Indo-Australian), respectively. Palaeonympha also showsan intriguing wide disjunction with its closest relatives inthe Americas. All of these patterns will require closer scru-tiny with more taxa sampled from the respective clades, inorder to Wnd the most likely sister groups of the disjuncttaxa in question.

The “primitive” Satyrinae feed mostly on palms (fam.Arecaceae), while the species-rich “advanced” Satyrinaeclade feed mostly on grasses from the family Poaceae.Strong support for the two main groups in Satyrinae, the“advanced” and “primitive” satyrines is corroborated bytheir diVerent host plant preferences, and suggests that theshift from feeding on palms to grasses was a dramatic stepin the evolution of the subfamily, driving the diversiWcationof the bulk of Satyrinae, the speciose, mainly Neotropicalsubtribes Pronophilina and Euptychiina. Ehrlich andRaven (1964) stated that phytophagous insects diversifytogether with their hosts by mutual interaction along his-tory. However, there is evidence that the crown PoaceaediversiWed in the Late Cretaceous (80 Mya ago; Prasadet al., 2005) while the origin of butterXies may have takenplace around 70 Mya ago (Vane-Wright, 2004), and

48 C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49

certainly, the Satyrinae is a younger lineage of butterXies.Further studies will investigate the age of the satyrines andthe evolution of host plant use in the most diverse subfam-ily of butterXies (Peña et al., in prep.).

Acknowledgments

This work has been supported in part by the SwedishResearch Council (to SN and NW), by US NationalScience Foundation (DEB 0089886 to A.V.Z.B., and DEB0316505 to A.V.L.F.), and by Brazilian FAPESP (grants 00/01484-1, 04/05269-9 and BIOTA-FAPESP program—grant98/05101-8 to A.V.L.F.). We are very grateful to the AfricanButterXy Research Institute (Nairobi, Kenya), I. Aldas, A.Asenjo, J. Boettger, M. Braby, K. S. Brown Jr., A. Chich-varkhin, W. Eckweiler, D. A. Edge, S. Gallusser, G. Gibbs,J. Grados, R. Grund, D. Janzen, T. Jongeling, L. Kaminski,T. B. Larsen, Y.-H. Lee, D. Lohman, K. Matsumoto, D.McCorkle, F. Molleman, D. Murray, N. Pierce, T. Pyrcz, C.Schulze, M.-W. Tan, J. Tennent, R. Vila, A. Viloria, A. War-ren, M. Whiting and K. Willmott for providing specimensused in this study. A.V.Z.B. thanks M.-M. Lee and D. Mur-ray for assistance in the laboratory. C.P. thanks PabloGoloboV for help with the scripting feature of TNT.Thanks to Gerardo Lamas for help in identifying vouchermaterial. We acknowledge Jim Miller, Gerardo Lamas andDick Vane-Wright for criticism and comments on the man-uscript. IDEA WILD (Colorado, USA) provided funds forlaboratory materials to C.P.

References

Ackery, P.R., 1988. Hostplants and classiWcation: a review of nymphalidbutterXies. Biological Journal of the Linnean Society 33, 95–203.

Ackery, P.R., de Jong, R., Vane-Wright, R.I., 1999. The butterXies: Hedy-loidea, Hesperoidea and Papilionoidea. In: Kristensen, N.P. (Ed.),Lepidoptera: Moths and ButterXies. 1. Evolution, Systematics and Bio-geography. Handbook of Zoology, vol. IV. Walter de Gruyter, Berlin.Part 35.

Baker, R.H., DeSalle, R., 1997. Multiple sources of character informationand the phylogeny of Hawaiian Drosophila. Systematic Biology 46,654–673.

Barrera, A., Díaz-Batres, M.E., 1977. Distribución de algunos lepidópterosde la Sierra de Nanchititla, México, con especial referencia a Tisiphonemaculata HpV. (Ins.: Lepid.). Revista de la Sociedad mexicana de Lep-idopterología 3, 17–28.

Boggs, C.L., Watt, W.B., Ehrlich, P.R. (Eds.), 2003. ButterXies: Evolutionand Ecology Taking Flight. Rocky Mountain Biological Lab Sympo-sium Series. University of Chicago Press.

Braby, M.F., 2000. ButterXies of Australia: Their IdentiWcation, Biologyand Distribution. CSIRO, Australia.

Bremer, K., 1988. The limits of amino acid sequence data in angiospermphylogenetic reconstruction. Evolution 42, 795–803.

Bremer, K., 1994. Branch support and tree stability. Cladistics 10, 295–304.Brower, A.V.Z., 2000. Phylogenetic relationships among the Nymphal-

idae (Lepidoptera) inferred from partial sequences of the winglessgene. Proceedings of the Royal Society of London B 267,1201–1211.

Brower, A.V.Z., DeSalle, R., 1998. Patterns of mitochondrial versusnuclear DNA sequence divergence among nymphalid butterXies: theutility of wingless as a source of characters for phylogenetic inference.Insect Molecular Biology 7, 73–82.

Brower, A.V.Z., Freitas, A.V.L., Lee, M.-M., Silva Brandão, K.L., Whin-nett, A., Willmott, K.R., in press. Phylogenetic relationships among theIthomiini (Lepidoptera: Nymphalidae) inferred from one mitochon-drial and two nuclear gene regions. Systematic Entomology (in press).

Caterino, M.S., Sperling, F.A.H., 1999. Papilio phylogeny based on mito-chondrial cytochrome oxidase I and II genes. Molecular Phylogeneticsand Evolution 11, 122–137.

Caterino, M.S., Reed, R.D., Kuo, M.M., Sperling, F.A.H., 2001. A parti-tioned likelihood analysis of swallowtail butterXy phylogeny (Lepidop-tera: Papilionidae). Systematic Biology 50, 106–127.

Cho, S., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander,T.P., Zhao, S., 1995. A highly conserved nuclear gene for low-level phy-logenetics: Elongation Factor-� recovers morphology-based tree forHeliothine moths. Molecular Biology and Evolution 12, 650–656.

Clark, A.H., 1947. The interrelationships of the several groups within thebutterXy superfamily Nymphaloidea. Proceedings of the Entomologi-cal Society of Washington 49, 148–149. 192 (erratum).

de Jong, R., Vane-Wright, R.I., Ackery, P.R., 1996. The higher classiWca-tion of butterXies (Lepidoptera): problems and prospects. Entomolog-ica Scandinavica 27, 65–101.

DeVries, P.J., 1987. The ButterXies of Costa Rica and Their Natural His-tory. Volume I: Papilionidae, Pieridae, Nymphalidae. Princeton Uni-versity Press, Princeton.

DeVries, P.J., Kitching, I.J., Vane-Wright, R.I., 1985. The systematicposition of Antirrhea and Caerois, with comments on the classiWca-tion of the Nymphalidae (Lepidoptera). Systematic Entomology10, 11–32.

Ehrlich, P.R., 1958. The comparative morphology, phylogeny and higherclassiWcation of the butterXies (Lepidoptera: Papilionoidea). The Uni-versity of Kansas Science Bulletin 39, 305–370.

Ehrlich, P.R., Ehrlich, A.H., 1967. The phenetic relationships of the butter-Xies I. Adult taxonomy and the nonspeciWcity hypothesis. SystematicZoology 16, 301–317.

Ehrlich, P.R., Raven, P.H., 1964. ButterXies and plants: a study in coevolu-tion. Evolution 18, 586–608.

Felsenstein, J., 1985. ConWdence limits on phylogenies: an approach usingthe bootstrap. Evolution 39, 783–791.

Figueroa, A., 1953. Catálogo de los artrópodos de las clases Arachnida eInsecta encontrados en el hombre, los animales y las plantas de la Rep-ública de Colombia—III. Según lo anotado en la colección entomológ-ica de la Facultad de Agronomía del Valle y con datos adicionales de laEstación Agrícola Experimental de Palmira. Acta agronomica (Pal-mira) 3, 1–7.

Freitas, A.V.L., 2003. Description of a new genus for “Euptychia” peculi-aris (Nymphalidae: Satyrinae): Immature stages and systematic posi-tion. Journal of the Lepidopterists’ Society 57, 100–106.

Freitas, A.V.L., 2004a. A new species of Yphthimoides (Nymphalidae, Saty-rinae) from Southeastern Brazil. Journal of the Lepidopterists’ Society58, 7–12.

Freitas, A.V.L., 2004b. Immature stages of Amphidecta reynoldsi(Nymphalidae: Satyrinae). Journal of the Lepidopterists’ Society58, 53–55.

Freitas, A.V.L., Murray, D., Brown Jr., K.S, 2002. Immatures, natural his-tory and the systematic position of Bia actorion (Nymphalidae). Jour-nal of the Lepidopterists’ Society 56, 117–122.

Freitas, A.V.L., Brown Jr., K.S, 2004. Phylogeny of the Nymphalidae (Lep-idoptera). Systematic Biology 53, 363–383.

Gatesy, J., O’Grady, P., Baker, R.H., 1999. Corroboration among data setsin simultaneous analysis: hidden support for phylogenetic relationshipsamong higher level artiodactyl taxa. Cladistics 15, 271–313.

Giribet, G., 2003. Stability in phylogenetic formulations and its relation tonodal support. Systematic Biology 52, 554–564.

GoloboV, P., Farris, J., Nixon, K., 2003. T.N.T.: Tree Analysis Using NewTechnology. Program and documentation, available from the authors,and at <www.zmuc.dk/public/phylogeny>.

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignmenteditor and analysis program for Windows 95/98/NT. Nucleic AcidsSymposium Series 41, 95–98.

C. Peña et al. / Molecular Phylogenetics and Evolution 40 (2006) 29–49 49

Harvey, D.J., 1991. Higher classiWcation of the Nymphalidae, Appendix B.In: Nijhout, H.F. (Ed.), The Development and Evolution of ButterXyWing Patterns. Smithsonian Institution Press, Washington, DC.

International Commission on Zoological Nomenclature, 1999. Interna-tional Code of Zoological Nomenclature. International Trust for Zoo-logical Nomenclature, London.

Källersjö, M., Farris, J.S., Chase, M.W., Bremer, B., Fay, M.F., Humphries,C.J., Petersen, G., Seberg, O., Bremer, K., 1998. Simultaneous parsi-mony jackknife analysis of 2538 rbcL DNA sequences reveals supportfor major clades of green plants, land plants, seed plants and Xoweringplants. Plant Systematics and Evolution 213, 259–287.

Lamas, G. (Ed.), 2004. Checklist: Part 4A. Hesperioidea-Papilionoidea.Atlas of Neotropical Lepidoptera. Association for Tropical Lepidop-tera/ScientiWc Publishers.

Larsen, T.B., 1991. The ButterXies of Kenya and their Natural History.Oxford University Press, UK, Oxford.

Martin, J.-F., Gilles, A., Descimon, H., 2000. Molecular phylogeny andevolutionary patterns of the European satyrids (Lepidoptera: Satyri-dae) as revealed by mitochondrial gene sequences. Molecular Phyloge-netics and Evolution 15, 70–82.

Miller, L.D., 1968. The higher classiWcation, phylogeny and zoogeographyof the Satyridae (Lepidoptera). Memoirs of the American Entomologi-cal Society 24 [6] + iii + 174.

Miller, L.D., Miller, J.Y., 1997. Gondwanan butterXies: the Africa–SouthAmerica connection. Metamorphosis 3 (Suppl.), 42–51.

Mitchell, A., Cho, S., Regier, J.C., Mitter, C., Poole, R.W., Matthews, M.,1997. Phylogenetic utility of Elongation Factor-1� in Noctuoidea(Insecta: Lepidoptera): the limits of synonymous substitutions. Molec-ular Biology and Evolution 14, 381–390.

Monteiro, A., Pierce, N.E., 2001. Phylogeny of Bicyclus (Lepidoptera:Nymphalidae) inferred from COI, COII and EF-� gene sequences.Molecular Phylogenetics and Evolution 18, 264–281.

Murillo, L.R., Nishida, K., 2004. Life history of Manataria maculata (Lepi-doptera : Satyrinae) from Costa Rica. Revista de Biología Tropical 51,463–470.

Murray, D., Prowell, D.P., 2005. Molecular phylogenetics and evolu-tionary history of the neotropical Satyrine Subtribe Euptychiina(Nymphalidae: Satyrinae). Molecular Phylogenetics and Evolution34, 67–80.

Nice, C., Shapiro, A.M., 2001. Patterns of morphological, biochemical andmolecular evolution in the Oeneis chryxus complex (Lepidoptera: Saty-ridae): a test of historical biogeographical hypotheses. Molecular Phy-logenetics and Evolution 20, 111–123.

Parsons, M., 1999. The ButterXies of Papua New Guinea: Their Systemat-ics and Biology. Academic Press, London.

Peña, C., Lamas, G., 2005. Revision of the butterXy genus ForsterinariaGray, 1973 (Lepidoptera: Nymphalidae, Satyrinae). Revista peruanade Biología 12, 5–48.

Prasad, V., Strömberg, C.A.E., Alimohammadian, H., Sahni, A., 2005.Dinosour cropolites and the early evolution of grasses and grazers. Sci-ence 310, 1177–1180.

Reed, R.D., Sperling, F.A.H., 1999. Interaction of process partitions inphylogenetic analysis: an example from the swallowtail butterXy genusPapilio. Molecular Biology and Evolution 16, 286–297.

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogeneticinference under mixed models. Bioinformatics 19, 1572–1574.

Rydell, J., Kaerma, S., Hedelin, H., Skals, N., 2003. Evasive response toultrasound by the crepuscular butterXy Manataria maculata. Naturwis-senschaften 90, 80–83.

Scott, J.A., 1985. The phylogeny of the butterXies (Papilionoidea and Hes-peroidea). Journal of Research on the Lepidoptera 23, 241–281.

Stevenson, R.D., Haber, W.A., 1996. Time budgets and the crepuscularmigration activity of a tropical butterXy, Manataria maculata (Satyri-nae). Bulletin of the Ecological Society of America 77, 424.

Torres, E., Lees, D.C., Vane-Wright, R.I., Kremen, C., Leonard, J.A.,Wayne, R.K., 2001. Examining monophyly in a large radiation of Mad-agascan butterXies (Lepidoptera: Satyrinae: Mycalesina) based onmitochondrial DNA data. Molecular Phylogenetics and Evolution 20,460–473.

Vane-Wright, R.I., 2004. ButterXies at that awkward age. Nature 428, 477–480.Vane-Wright, R.I., Boppré, M., 2005. Adult morphology and the higher

classiWcation of Bia Hübner (Lepidoptera: Nymphalidae). Bonner zoo-logische Beiträge 53, 235–254.

Viloria, A.L., 1998. Studies on the systematics and biogeography of somemontane satyrid butterXies (Lepidoptera). Ph.D. Thesis. King’s CollegeLondon and The Natural History Museum, London.

Viloria, A.L., 2003. Historical biogeography and the origins of the satyrinebutterXies of the tropical Andes (Lepidoptera: Rhopalocera). In: Mor-rone, J.J., Llorente, J. (Eds.), Una perspectiva latinoamericana de labiogeografía. Universidad Autónoma de México, México.

Viloria, A.L., Pyrcz, T., 1994. A new genus, Protopedaliodes and a new spe-cies, Protopedaliodes kukenani from the Pantepui, Venezuela (Lepidop-tera, Nymphalidae, Satyrinae). Lambillionea 94, 345–352.

Viloria, A.L., Camacho, J., 1999. Three new pronophiline butterXies fromthe Serrania del Turimiquire, eastern Venezuela, and type designationfor Corades enyo enyo (Lepidoptera: Nymphalidae). Fragmenta ento-mologica 31, 173–188.

Wahlberg, N., Zimmermann, M., 2000. Pattern of phylogenetic relation-ships among members of the tribe Melitaeini (Lepidoptera: Nymphali-dae) inferred from mtDNA sequences. Cladistics 16, 347–363.

Wahlberg, N., Oliveira, R., Scott, J.A., 2003a. Phylogenetic relationships ofPhyciodes butterXy species (Lepidoptera: Nymphalidae): complexmtDNA variation and species delimitations. Systematic Entomology28, 257–273.

Wahlberg, N., Weingartner, E., Nylin, S., 2003b. Towards a better under-standing of the higher systematics of Nymphalidae (Lepidoptera: Papi-lionoidea). Molecular Phylogenetics and Evolution 28, 473–487.

Wahlberg, N., Braby, M.F., Brower, A.V.Z., de Jong, R., Lee, M.-M., Nylin,S., Pierce, N.E., Sperling, F.A.H., Vila, R., Warren, A.D., Zakharov, E.,2005. Synergistic eVects of combining morphological and moleculardata in resolving the phylogeny of butterXies and skippers. Proceedingsof the Royal Society of London B 272, 1577–1586.

Paper II

Biol. Lett. (2008) 4, 274–278

doi:10.1098/rsbl.2008.0062

Published online 25 March 2008

Evolutionary biology

Prehistorical climatechange increaseddiversification of a groupof butterfliesCarlos Pena1,* and Niklas Wahlberg1,2

1Department of Zoology, Stockholm University, 106 91 Stockholm,Sweden2Laboratory of Genetics, Department of Biology, University of Turku,20014 Turku, Finland*Author for correspondence ([email protected]).

Satyrinae butterflies (Lepidoptera: Nymphali-dae) and grasses (Poaceae) are very diverse anddistributed worldwide. Most Satyrinae usegrasses as host plants, but the temporal scale ofthis tight association is not known. Here, wepresent a phylogenetic study of Satyrinae butter-flies and related groups, based on 5.1 kilobasesfrom six gene regions and 238 morphologicalcharacters for all major lineages in the ‘satyrineclade’. Estimates of divergence times calibratedusing a fossil from the Late Oligocene indicatethat the species-rich tribe Satyrini diversified toits current 2200 species simultaneously with theexpansion and radiation of grasses during thedramatic cooling and drying up of the Earth inthe Oligocene. We suggest that the adaptiveradiation of grass feeders in Satyrini has beenfacilitated by the ubiquitousness of grasses since25 Myr ago, which was triggered by a change inglobal climate.

Keywords: climate change; host plants; butterfly;evolutionary history

1. INTRODUCTIONThe highly diverse butterfly subfamily Satyrinae(Nymphalidae) comprises approximately 2500 speciesthat are distributed worldwide and dominate butterflycommunities in several habitats (Pyrcz & Wojtusiak2002). The evolutionary history of Satyrinae is closelytied to the evolutionary history of grasses (Poaceae)on which the majority of species are specialized.Grasses are globally distributed with more than10 000 species and are important components ofecosystems providing livelihood for a variety of organ-isms including humans (e.g. cereals and sugarcane;Osborne & Beerling 2006). However, the investi-gation of the origin and times of diversification ofbutterflies, such as Satyrinae, is hindered by the lackof higher level phylogenies and scarce fossil record(Braby et al. 2006). These issues have prevented thestudy of key chronological events in the evolutionaryhistory and biogeography of the group (Wheat et al.2007). Recent studies suggest that the origin ofbutterflies dates back to beyond the Cretaceous–Tertiary boundary (Braby et al. 2006; Wahlberg 2006;

Wheat et al. 2007), but the broader implications ofthis to the evolutionary history of butterflies are justbeginning to be explored (Wheat et al. 2007).

Butterflies in Satyrinae feed on monocotyledonousplants (Ackery 1988) and the bulk of species (tribeSatyrini, approx. 2200 species) almost exclusively usegrasses (Pena et al. 2006). Grasses are known to havebeen involved in coevolutionary relationships withgrazing vertebrates (MacFadden 2005; Prasad et al.2005) that have developed adaptations for copingwith the high levels of silica in grass leaves, whichincreases their abrasiveness. However, the interactionsbetween grasses and the megadiverse insects arenot well studied. Although some groups of insectsthat feed on grasses are diverse, these are mainlysap sucking (Dietrich et al. 1997), and there are veryfew cases of insects grazing on grasses. It is knownthat silica content wears out the mandibles of lepi-dopteran larvae (Drave & Lauge 1978) and silicaingestion impairs absorption of nitrogen, affectinggrowth and fitness (Van Soest & Jones 1968; Smithet al. 1971; Massey et al. 2006). Larvae of satyrinebutterflies are all external grazers of their host plants,and most species feed exclusively on grasses. Any linkbetween satyrine butterflies and grasses can only beunderstood by placing a robust phylogenetichypothesis of the butterfly subfamily in a temporalframework and comparing this with the time frame ofthe diversification of grasses. Dating butterfly lineageshas been recently attempted for some groups with theaid of molecular techniques (Braby et al. 2006;Wahlberg 2006; Wheat et al. 2007), but nothing isknown about ages of diversification in Satyrinae.Here, we present insights into the diversification ofSatyrinae butterflies by employing an estimate ofdivergence times of Satyrinae butterflies based on arobust phylogeny calibrated using a fossil from theLate Oligocene.

2. MATERIAL AND METHODSIn order to obtain a phylogenetic hypothesis for Satyrinae butterfliesand related subfamilies, estimate the dates of diversification andexplore the role of grasses in its patterns of evolution, we analyseddata from 238 morphological characters and 5143 base pairs ofDNA sequences from five nuclear genes and one mitochondrialgene, for 79 Satyrinae taxa and out-groups representing all threeextant subfamilies and all 15 extant tribes of the ‘satyrine clade’(Wahlberg et al. 2003; Pena et al. 2006; Wahlberg & Wheatin press; see electronic supplementary material). Within the mostdiverse tribe Satyrini, all 13 subtribes are represented. Weperformed a maximum-parsimony analysis of the complete datasetusing unordered and equally weighted characters. We also analysedthe combined dataset using Bayesian inference (see electronicsupplementary material). We used the resulting phylogenetichypotheses to estimate divergence times using the rate smoothingmethod of penalized likelihood (PL; Sanderson 2002), with a fossilfrom the Late Oligocene (Nel et al. 1993) as a fixed calibrationpoint of 25 Myr ago (figure 1).

3. RESULTSPhylogenetic analyses using diverse methods (seeelectronic supplementary material) resulted in a well-resolved phylogeny, in which the three subfamiliesare strongly supported as independent lineages, withCalinaginae being sister to CharaxinaeCSatyrinae(figure 1). Within Satyrinae, our current results largelycorroborate those of a previous study based on threegene sequences (Pena et al. 2006), i.e. the traditionalconcept of Satyrinae is polyphyletic without the

Electronic supplementary material is available at http://dx.doi.org/10.1098/rsbl.2008.0062 or via http://journals.royalsociety.org.

Received 1 February 2008Accepted 4 March 2008

274 This journal is q 2008 The Royal Society

Cal

inag

aA

gata

saP

roth

oeP

olyu

raC

hara

xes

Eux

anth

eA

rcha

eopr

epon

aA

gria

sP

repo

naA

naeo

mor

pha

Pal

laH

ypna

Side

rone

Zar

etis

Coe

noph

lebi

aA

naea

Pol

ygra

pha

Con

sul

Mem

phis

Ant

irrh

eaC

aero

isM

orph

oB

iaN

arop

eO

popt

era

Cal

igo

Das

yoph

thal

ma

Dyn

asto

rB

rass

olis

Cat

oble

pia

Ops

ipha

nes

Hya

ntis

Mel

anit

isM

anat

aria

Aer

opet

esD

ira

Xan

thot

aeni

aE

thop

eZ

ethe

raN

eori

naP

enth

ema

Ely

mni

asD

isco

phor

aF

auni

sT

aena

ris

Stic

hoph

thal

ma

Tha

uria

Am

athu

sia

Am

athu

xidi

aZ

euxi

dia

Hae

tera

Rag

adia

Par

arge

Myc

ales

isL

ethe

Neo

peZ

ipae

tis

Eri

tes

Ors

otri

aena

Het

eron

ymph

aC

oeno

nym

pha

Hyp

ocys

taO

ress

inom

aM

elan

argi

aP

aral

asa

Tay

geti

sE

upty

chia

Ypt

him

aM

aner

ebia

Pam

pasa

tyru

sP

edal

iode

sP

rono

phil

aB

rint

esia

Saty

rus

Ere

bia

Hyp

onep

hele

Man

iola

Plio

cene

Mio

cene

Olig

ocen

eE

occe

nePa

leoc

ene

K/T

boun

dary

Let

he c

orbi

eri (

calib

ratio

n po

int 2

5 M

ya)

Cha

raxi

nae

(350

)

Mor

phin

i (42

)M

orph

ini (

42)

Bra

ssol

ini

(94)

Mel

aniti

ni+

Dir

ini (

48)

Zet

heri

ni (

22)

Ely

mni

ini (

46)

Am

athu

siin

i(1

10)

Hae

teri

ni (

21)

Saty

rini

(ca.

220

0)

Saty

rini

: 36.

6 5

.1 M

yaA

mat

husi

ini:

48.6

5

Mya

Mel

aniti

ni: 5

2.6

4.6

Mya

Mor

phin

i: 56

.1

6.3

Mya

Cha

raxi

nae:

51.

7 5

.7 M

yaSa

tyri

ne c

lade

: 80.

5

4.9

Mya

4020

060

100

80

Myr

ago

5

4 3

2

1

1 2 3 4 5 6

6

Fig

ure

1.

(Caption

opposite.

)

Diversification of Satyrinae butterflies C. Pena & N. Wahlberg 275

Biol. Lett. (2008)

inclusion of the tribes Morphini, Brassolini andAmathusiini. The clade that comprises the species-richtribe Satyrini diversified after a relatively long branch(figure 1).

Our results provide evidence for an age of originof butterflies older than the 70 Myr ago frontier(Vane-Wright 2004), in agreement with an impliedage obtained from molecular dating of butterflies inthe subfamily Nymphalinae (Wahlberg 2006) and inthe family Pieridae (Wheat et al. 2007). Extantlineages in the satyrine clade diversified only afterthe big impact on the composition and organizationof plant–insect associations caused by the K/T extinc-tions (Labandeira et al. 2002). The similar agesof origin and diversification of the major lineagesin the satyrine clade indicate a near simultaneousorigin and radiation of lineages that took separateevolutionary paths by colonizing different groupsof angiosperms.

By mapping host plant use by the satyrine cladefrom the literature (table S3, electronic supple-mentary material) onto our phylogenetic hypothesis(figure 2), and taking into account the dates ofdiversification as estimated by molecular clock tech-niques, we found that the satyrine clade originated inthe Late Cretaceous (ca 80 Myr ago), significantlyafter the estimated origin of angiosperms (Mesozoic,between 180 and 140 Myr ago; Bell et al. 2005). Thefour main clades diversified almost simultaneously,between 50 and 56 Myr ago. Strikingly enough,extant Satyrini went through a notable delay before

diversification, taking place as recently as 36 Myr ago,

after the appearance of grasses, which took placebetween the Late Cretaceous and the Early Tertiary

(65 and 55 Myr ago). We also identified five majorplant colonization events by the major lineages

of butterflies in the satyrine clade, which took

place considerably after the main diversification andradiation of angiosperms (ca 100 Myr ago), an aver-

age delay of 48G11 Myr ago. Charaxinae diversifiedin the Tertiary, feeding on the ancestral dicotyledo-

nous plants. Monocotyledonous plants were colonizedearly on by the ancestor of Satyrinae, which shifted to

Arecaceae and/or Poaceae (figure 2).

4. DISCUSSIONAt the time of this early stage of Satyrinae evolution

(ca 60–50 Myr ago), dicotyledonous plants were

dominant in the vast forests that covered the planet(Willis & McElwain 2002) and the only readily

available monocots were forest-dwelling earlylineages such as Arecales, Liliales, Zingiberales and

basal Poales (Bromeliaceae). Early diverging Satyr-inae lineages (Morphini, Brassolini and Amathusiini)

expanded their host ranges to include young

lineages of Poales and other monocotyledonousplants from forested habitats (i.e. Bromeliaceae and

Zingiberales families, respectively). Extant Satyrinaein the early diverging lineages continue to be mainly

forest dwellers.

Libythea

Danaus

Calinagini

Charaxinae

Brassolini

Morphini

Melanitini

Dirini

Zetherinii

Amathusiini

Elymniini

Haeterini

Satyrini

12 2,4,5,76

151116

6

16

4

13,14 185,715

larval host plantsdicot feedersPoaceae feedersArecaceae feedersPoales (12,15,16)Arecaceae (1)Zingiberales (2,4,5,6,7)other monocots (3,8,9,10,11,13,14,17)Lycopodiopsida and mosses (18)loss of host plants

3,8,9,10,11,17

Figure 2. Optimization of larval host plant clades mapped onto ‘satyrine’ tribal level phylogeny reduced from the Bayesiantree. Host plant characters: 1, Arecaceae; 2, Cannaceae; 3, Smilacaceae; 4, Heliconiaceae; 5, Marantaceae; 6, Musaceae;7, Zingiberaceae; 8, Agavaceae; 9, Liliaceae; 10, Orchidaceae; 11, Pandanaceae; 12, Bromeliaceae; 13, Restionaceae;14, Xyridaceae; 15, Cyperaceae; 16, Poaceae; 17, Flagellariaceae; 18, lower plants (Lycopodiopsida and mosses).

Figure 1. (Opposite.) Estimated times of divergence by PL using the topology of the Bayesian tree. Relative ages werecalibrated using the age of Lethe corbieri (25 Myr ago as minimum age) as the split between Lethe and Neope. Numbers inparentheses indicate the number of extant species for the higher level taxa.

276 C. Pena & N. Wahlberg Diversification of Satyrinae butterflies

Biol. Lett. (2008)

At the same time, graminoid Poales (Poaceae)

were poor in species and restricted to marshy and

nutrient-poor habitats (Linder & Rudall 2005),

making them ineffectual host plants for driving

diversification (Janz et al. 2006). During the Tertiary,

dramatic global climate changes, such as lower levels

of CO2, decreased temperature and increased aridity,

transformed ecosystems. During the Oligocene

(33–26 Myr ago), these changes paved the way for

the expansion and radiation of grasses (Willis &

McElwain 2002), which replaced the former forested

land with grasslands by developing innovations for

coping with these harsh conditions (i.e. appearance of

the C4 photosynthetic pathway several times). Grasses

expanded globally and by 25 Myr ago were ubiqui-

tous, forming extensive grasslands and savannahs

(Willis & McElwain 2002).

According to our age estimates, even though the

tribe Satyrini was already present before grasses

spread, the main lineages diversified during ca36–23 Myr ago (figure 1) simultaneously with the

spread of grasses, radiating spectacularly into approxi-

mately 2200 species (one-third of all species in the

family Nymphalidae), forming the bulk of the sub-

family Satyrinae and spreading all over the world.

Even though other Satyrinae lineages feed also on

grasses (figure 2), these inhabit forested areas that are

not optimal habitats for sun-demanding grasses.

Hence, a crucial adaptation for the spread of early

lineages of Satyrini throughout the globe was being

able to inhabit open areas dominated by grasses

such as the extensive grasslands of the Oligocene. In

this way, the conditions were set for local speciation

by ecological and biogeographic events that resulted

in the current species-rich clades and genera in

the Satyrini.

We infer that the rise and expansion of grasses

was a determinant factor in the evolutionary history

of Satyrini, which allowed different evolutionary

processes to drive the explosive diversification of this

group. According to our host plant optimizations

(figure 2), it is probable that adaptations to cope

with silica appeared early in the evolution of

Satyrinae and proved invaluable for Satyrini when

grasses became an abundant and probably under-

exploited resource. Mechanistic studies on the

dynamics of butterflies and grasses associations will

be needed for testing a coevolutionary scenario that

may have increased speciation of these organisms

(Wheat et al. 2007). However, it is plausible that

the dispersal of grasses permitted geographical

expansions of Satyrini species, which probably pro-

moted diversification by geographical isolation (Janz

et al. 2006) and vicariant events. A more detailed

study of Satyrini will be needed to elucidate which

factors were important in the spectacular diversifica-

tion of these butterflies.

We thank the African Butterfly Research Institute, Nairobi,Kenya (ABRI) and Torben Larsen for providing specimensfor this study. This study was possible by the funding toC.P. from Amazon Conservation Association and thematerials from IDEA WILD (USA).

Ackery, P. R. 1988 Hostplants and classification: a review of

nymphalid butterflies. Biol. J. Linn. Soc. 33, 95–203.

(doi:10.1111/j.1095-8312.1988.tb00446.x)

Bell, C. D., Soltis, D. E. & Soltis, P. S. 2005 The age of

angiosperms: a molecular timescale without a clock.

Evolution 59, 1245–1258. (doi:10.1111/j.0014-3820.

2005.tb01775.x)

Braby, M. F., Vila, R. & Pierce, N. E. 2006 Molecular

phylogeny and systematics of the Pieridae (Lepidoptera:

Papilionoidea): higher classification and biogeography.

Zool. J. Linn. Soc. 147, 239–275. (doi:10.1111/j.1096-

3642.2006.00218.x)

Dietrich, C. H., Whitcomb, R. F. & Black IV, W. C. 1997

Phylogeny of the grassland leafhopper genus Flexamia(Homoptera: Cicadellidae) based on mitochondrial

DNA sequences. Mol. Phylogenet. Evol. 8, 139–149.

(doi:10.1006/mpev.1997.0415)

Drave, E.-H. & Lauge, G. 1978 Etude de l’action de la

silice sur l’usure des mandibules de la Pyrale du riz:

Chilo suppressalis (F. Walker) (Lep. Pyralidae Cambrinae).

Bull. Soc. Entomol. Fr. 83, 159–162.

Janz, N., Nylin, S. & Wahlberg, N. 2006 Diversity begets

diversity: host expansions and the diversification of

plant-feeding insects. BMC Evol. Biol. 6, 4. (doi:10.

1186/1471-2148-6-4)

Labandeira, C. C., Johnson, K. R. & Wilf, P. 2002 Impact

of the terminal Cretaceous event on plant–insect associ-

ations. Proc. Natl Acad. Sci. USA 99, 2061–2066.

(doi:10.1073/pnas.042492999)

Linder, H. P. & Rudall, P. J. 2005 Evolutionary history of

Poales. Annu. Rev. Ecol. Evol. Syst. 36, 107–124.

(doi:10.1146/annurev.ecolsys.36.102403.135635)

MacFadden, B. J. 2005 Fossil horses—evidence for

evolution. Science 307, 1728–1730. (doi:10.1126/science.

1105458)

Massey, F. P., Ennos, A. R. & Hartley, S. E. 2006 Silica in

grasses as a defence against insect herbivores: contrasting

effects on folivores and a phloem feeder. J. Anim. Ecol.

75, 595–603. (doi:10.1111/j.1365-2656.2006.01082.x)

Nel, A., Nel, J. & Balme, C. 1993 Un nouveau Lepidoptere

Satyrinae fossile de l’Oligocene du Sud-Est de la France

(Insecta, Lepidoptera, Nymphalidae). Linn. Belg. 14,

20–36.

Osborne, C. P. & Beerling, D. J. 2006 Nature’s green

revolution: the remarkable evolutionary rise of C4 plants.

Phil. Trans. R. Soc. B 361, 173–194. (doi:10.1098/rstb.

2005.1737)

Pena, C., Wahlberg, N., Weingartner, E., Kodandaramaiah,

U., Nylin, S., Freitas, A. V. L. & Brower, A. V. Z. 2006

Higher level phylogeny of Satyrinae butterflies (Lepidop-

tera: Nymphalidae) based on DNA sequence data.

Mol. Phylogenet. Evol. 40, 29–49. (doi:10.1016/j.ympev.

2006.02.007)

Prasad, V., Stromberg, C. A. E., Alimohammadian, H. &

Sahni, A. 2005 Dinosaur coprolites and the early

evolution of grasses and gazers. Science 310, 1177–1180.

(doi:10.1126/science.1118806)

Pyrcz, T. & Wojtusiak, J. 2002 The vertical distribution of

pronophiline butterflies (Nymphalidae, Satyrinae) along

an elevational transect in Monte Zerpa (Cordillera de

Merida, Venezuela) with remarks on their diversity and

parapatric distribution. Glob. Ecol. Biogeogr. 11, 211–221.

(doi:10.1046/j.1466-822X.2002.00285.x)

Sanderson, M. J. 2002 Estimating absolute rates of molecu-

lar evolution and divergence times: a penalized likelihood

approach. Mol. Biol. Evol. 19, 101–109.

Smith, G. S., Nelson, A. B. & Boggino, E. J. A. 1971

Digestibility of forages invitro as affected by content of

silica. J. Anim. Sci. 33, 466–471.

Diversification of Satyrinae butterflies C. Pena & N. Wahlberg 277

Biol. Lett. (2008)

Van Soest, P. J. & Jones, L. H. P. 1968 Effect of silica inforages upon digestibility. J. Dairy Sci. 51, 1644–1648.

Vane-Wright, R. 2004 Butterflies at that awkward age.Nature 428, 477–480. (doi:10.1038/428477a)

Wahlberg, N. 2006 The awkward age for butterflies:insights from the age of the butterfly subfamily Nympha-linae (Lepidoptera: Nymphalidae). Syst. Biol. 55,703–714. (doi:10.1080/10635150600913235)

Wahlberg, N. & Wheat, C. W. In press. Genomic outpostsserve the phylogenomic pioneers: designing novelnuclear markers for genomic DNA extractions of Lepi-doptera. Syst. Biol.

Wahlberg, N., Weingartner, E. & Nylin, S. 2003 Towardsa better understanding of the higher systematics ofNymphalidae (Lepidoptera: Papilionoidea). Mol. Phylo-genet. Evol. 28, 473–484. (doi:10.1016/S1055-7903(03)00052-6)

Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F.,Underwood, D. & Mitchell-Olds, T. 2007 The geneticbasis of a plant–insect coevolutionary key innovation.Proc. Natl Acad. Sci. USA 104, 20 427–20 431. (doi:10.1073/pnas.0706229104)

Willis, K. J. & McElwain, J. C. 2002 The evolution of plants.Oxford, U.K: Oxford University Press.

278 C. Pena & N. Wahlberg Diversification of Satyrinae butterflies

Biol. Lett. (2008)

ELECTRONIC SUPPLEMENTARY MATERIAL

Prehistorical Climate Change Increased Diversification of a Group of Butterflies

Carlos Peña, Niklas Wahlberg

2. SUPPLEMENTARY METHODS

1. Taxon Sampling.We included 77 representative genera from the � satyrine clade� (sensu Wahlberg et al., 2003) as represented in Ackery et al.� s (1999) classification for Charaxinae and Amathusiini, Lamas (2004)� s for Morphini and Brassolini, including all major lineages in Satyrinae found in our previous paper (Peña et al., 2006), and two outgroup genera (Libythea and Danaus). All sequences have been deposited in GenBank. Appendix S1 shows the sampled species in their current taxonomic classification and GenBank accession numbers.

2. DNA isolation.We extracted DNA from two butterfly legs, dried or freshly conserved in 96% alcohol and kept at -80C until DNA extraction. Total DNA was isolated using QIAGEN� s DNeasy extraction kit (Hilden, Germany) following the manufacturer� s instructions.

3. PCR amplification.For each species, we amplified five nuclear genes and one mitochondrial gene by PCR using published primers (Table S1). Amplification was performed in 20 µL volume PCR reactions: 12.5 µL distilled water, 2.0 µL 10x buffer, 2.0 µL MgCl, 1.0 µL of each primer, 0.4 µL dNTP, 0.1 µL of AmpliTaq Gold polymerase and 1.0 µL of DNA extract. The reaction cycle profile consisted in a denaturation phase at 95C for 5 min, followed by 35 cycles of denaturation at 94C for 30s, annealing at 47� 55C (depending on primers) for 30s, 72C for 1 min 30s, and a final extension period of 72C for 10 min.

4. Sequencing.Sequencing was done using a Beckman-Coulter CEQ8000 eight-capillary sequencer using Dye CEQ Terminator Cycle Sequencing (DTCS) following instructions by the DTCS Quick Start Kit (California, USA). The PCR primers were also used for sequencing, and additional internal primers were used for this purpose (Table S1). All sequencing reactions were performed in a 20 µL volume: 13.5 µL distilled water, 2.0 µL DTCS Quick Start Master Mix, 1.5 µL CEQ Sequencing reaction buffer, 2.0 µL sequencing primer and 1.0 µL PCR product. Cycle sequencing reaction profile consisted in 30 cycles of a denaturation phase at 96°C for 20s, annealing phase at 50°C for 20s followed by 4 min at 60°C and a final extension period at 4°C.

5. Sequence Alignment.All sequences are very conserved within genes, thus alignments were checked by eye using the program BioEdit (Hall, 1999). In total, we obtained 1450 bp of the cytochrome oxidase subunit I gene (COI) from the mitochondrial genome, 1240 bp of the Elongation Factor-1α gene (EF-1α), 400 bp of the wingless gene, 691 bp of the GAPDH gene, 733 bp of the MDH gene and 617 bp of the RPS5 gene from the nuclear genome. Primers and PCR protocols for GAPDH, MDH and RPS5 from Wahlberg and Weat (in press).

6. Morphological charactersWe used Freitas and Brown Jr. (2004)� s published morphological dataset and coded the same characters for our taxa from adult vouchers (Appendix S2). We also added four new characters to

the matrix and coded them for our taxa (Appendix S3). In some cases, we coded characters from the literature (van Son, 1955; Vane-Wright and Smiles, 1975; Casagrande, 1979, 2002; Casagrande and Mielke, 1985; García-Barros, 1986; Igarashi and Fukuda, 1997, 2000) (see Appendix S4). It was not always possible to code the same species that were used for molecular characters. In such cases, a closely related species was coded instead (Appendix S4).

7. Phylogenetic analysesThe complete dataset consisted of 79 taxa and 5381 characters. We performed a maximum parsimony analysis treating all characters as unordered and equally weighted, doing a heuristic search using the program TNT 1.1 (Goloboff et al., 2003) with level of search 10, followed by branch-swapping of the resulting trees with up to 10000 trees held during each step. We evaluated clade robustness by using the Bremer support (Bremer, 1988) and the Partitioned Congruence Index (PCI) (Brower, 2006). The PCI was drawn from Partitioned Bremer Support (PBS) values (Gatesy et al., 1999) obtained by using the scripting feature of TNT (script � pbsup.run� taken from http://www.zmuc.dk/public/phylogeny/TNT/scripts/).

We also assessed clade stability by analyzing the complete dataset (morphology and molecules) with Bayesian inference using the program MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). The evolution of sequences was modeled under the GTR + I + Γ model. The Bayesian analysis was performed on the combined dataset with parameter values estimated separately for each gene region (Table S2). The analysis was run twice for 38 million generations, with every 200th tree sampled and the first 89300 sampled generations discarded as burn-in (based on a visual inspection of when log likelihood values reached stationarity). We will refer to clades that are recovered under parsimony and Bayesian analyses as stable.

We rooted the resulting networks with Libythea because of the consensus in regarding this taxon as sister to the rest of Nymphalidae (Ackery et al., 1999; Brower, 2000; Ehrlich, 1958; Freitas and Brown Jr., 2004; Scott, 1985; Wahlberg et al., 2003).

8. Timing of divergencesDivergence times were estimated using the rate-smoothing method of penalized likelihood (PL; Sanderson, 2002) as implemented in the program r8s 1.71 (Sanderson, 2003, http://ginger.ucdavis.edu/r8s/). PL is a semiparametric method that uses a penalty function against fast-rate DNA substitutions between a certain node and its descendant lineages by applying a smoothing parameter that controls the tradeoff between smoothness and goodness of fit of the data to the model of molecular evolution. We used the phylogenetic hypothesis obtained from the total evidence analysis in MrBayes (see above) retaining branch lengths as input data for the program r8s. We estimated the value of the smoothing parameter by a cross-validation procedure restarting each search 5 times. We obtained confidence intervals by doing 100 bootstrap replications of our combined molecular dataset in the package PHYLIP 3.66 (Felsenstein, 1989), which were used for estimating branch lengths in PAUP 4.0 beta (Swofford, 2002) using maximum likelihood and the GTR + I + Γ model for each replicate and then used as input for r8s, with the help of Perl scripts made available by T. Eriksson (Eriksson, 2006). We used an absolute calibration point from the fossil record to convert the estimates of relative ages from r8s into absolute dates. Nel et al. (1993) described a satyrine fossil from Late Oligocene ( 25 Mya) deposits in France, based on a well conserved fossil compression, which the authors placed in the extant genus Lethe. Therefore, ages of divergence were estimated for the bootstrap

replications by fixing the age of the split between Lethe and its sister taxon, in this dataset, Neope at 25 Mya.

9. Patterns of butterfly/hostplant associationWe used information from the literature on butterfly hostplants (Ackery, 1988; Ackery et al., 1999; DeVries, 1987; Igarashi and Fukuda, 1997, 2000) to code the use of plant families by each butterfly tribe (except for Charaxinae that was coded as a whole subfamily) as independent characters, except by Eudicot families and the lower plants, Selaginella (Lycopodiophyta) and the epiphytic moss Neckeropsis undulata, which were treated as two characters, � Dicots� and � Lycopodiophyta and mosses� respectively. We optimized the hostplant matrix using a reduced phylogeny at the tribal level derived from the Bayesian tree. We took into account all hostplant records for all species in each butterfly lineage. Thus, we studied the evolution of hostplant use not only for the species in our dataset, but for the � satyrine clade� as a whole.

Character listMost of the characters were taken directly from Freitas and Brown’s (Freitas and Brown Jr.,2004) matrix, although some characters were added and others suffered minor changesand/or corrections:

1–2. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

3. Egg ratio length/diameter: more than 1.0 (0), between 0.99 and 0.61 (round egg) (1),equal or less than 0.6 (hemispheric egg) (2). This character was recoded for all thespecies and Freitas and Brown’s matrix was fixed to the right character states.

4. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

5. Egg longitudinal ridges: present (0), absent (1). Corrected this character state forDynastor from absent to present.

6–12. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

13. Oviposition pattern: isolated eggs (0), grouped eggs (1). Caligo beltrao oviposits eggsin groups (see ref Casagrande (1979)). Changed from 0 to 1.

14–133. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

134. Pupal alar caps: not projecting (0), projecting laterally (1). Caligo beltrao pupaprojects its alar caps (see ref Casagrande (1979)). Changed from 0 to 1.

135–136. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

137. Recoded as: Inflated subcostal vein: absent (0), present (1).

138–234. From Freitas and Brown’s (ref (Freitas and Brown Jr., 2004)).

235. New character. Forewing: Inflated costal vein: absent (0), present (1).

236. New character. Forewing: Inflated Cu vein: absent (0), present (1).

237. New character. Forewing: Inflated vein 2A: absent (0), present (1).

238. New character. Genitalia: Male aedeagus with a scythe-like and very long ramifi-cation: absent (0), present (1).

Morphological matrix

1 1 2 2 3 3 4 4 5 5 6

5 0 5 0 5 0 5 0 5 0 5 0

Libythea 000000000000000001000000000010100?000100000100???00??????000

Danaus 000000000000010000001100111100000?000011?1100010000??????000

Calinaga 00200000000000?1?1?00001010010000?001110000100???00??????001

Aeropetes 20101????1?00?0111??00???????1?00???1??000?100???00??????001

Agatasa 00101????1?10000????0000?10?10100?0011?1?01100???00??????000

Agrias 00?01????1?1?001????00?????????????????0?0?0?0???00??????001

Amathusia 00101????1?01?1?????????????????????01?0000100???00??????011

Amathuxidia ????????????????????????????????????????????????????????????

Anaea ????????????????????????????????????????????????????????????

Anaeomorpha ????????????????????????????????????????????????????????????

Antirrhea 00201????1?00111111000101101100110101110000100???00??????011

Archaeoprepona 00101????1?1000100000000011100100?001110001110???00??????001

Bia 0010001000000311111000001101000010101110000000???00??????001

Brassolis 0010000000001010011000011100000010100110100000???00??????001

Brintesia ????????????????????????????????????????????????????????????

Caerois 00201????1?00111111000101101100110101110000100???00??????011

Caligo 0010001000001011111000011100100011101110001000???00??????101

Catoblepia ????????????????????????????????????????????????????????????

Charaxes 20100000?1?1000111000000010100010?001110000100???00??????001

Coenonympha ????????????????????????????????????????????????????????????

Coenophlebia ????????????????????????????????????????????????????????????

Consul 10101????1?1000000000000010100100?000011?00000???00??????000

Dasyophthalma 0010001000000011111000011100100011101110100000???00??????001

Dira ????????????????????????????????????????????????????????????

Discophora 20101????1?0101????????????????????????010?100???00??????011

Dynastor 00100????1?00011111000011100100011101110000000???00??????001

Elymnias 201000000000000111000001110110010?00?110100000???00??????001

Erebia ????????????????????????????????????????????????????????????

Erites 00101????1?0100??????????????????????1?000?100???00??????001

Ethope ????????????????????????????????????????????????????????????

Euptychia ????????????????????????????????????????????????????????????

Euxanthe ????????????????????????????????????????????????????????????

Faunis ????????????1????????????????????????0?010?000???00??????01?

Haetera 00101????1?0000111100001010100010?101110001100???00??????001

Heteronympha ????????????????????????????????????????????????????????????

Hyantis ????????????????????????????????????????????????????????????

Hypna 10101????1?1000?00000000010100100?001111?01101???00??????000

Hypocysta 00101????1?0000?????????????????????11?0100100???00??????001

Hyponephele ????????????????????????????????????????????????????????????

Lethe 00101????1?0000?????????????????????01?010?100???00??????001

Manataria 00101????1?0100100100010110000000?0011?0100100???00??????001

Manerebia ????????????????????????????????????????????????????????????

Maniola ????????????????????????????????????????????????????????????

Melanargia 00100001?1?01?0?????????????????????01?010?100???00??????011

Melanitis 00101????1?0000111100000110000010?101110000100???00??????001

Memphis 10101????1?1000000000000010100100?001111?00000???00??????000

Morpho 00201????1?00111111000101101100110100110000100???00??????011

Mycalesis 10101????1?0??0?????????????????????00?0?01000???00??????001

Narope 0?1000????00??11????00???????0001????????0???0???00???????01

Neope 10101????1?010???????????????????????0?010?100???00??????001

Neorina 00101????1?0000?????????????????????0??0101000???00??????001

Opoptera ????????????????????????????????????????????????????????????

Opsiphanes 0010001000000011111000011100100011100110100000???00??????001

Oressinoma ????????????????????????????????????????????????????????????

Orsotriaena 00101????1?0??0?????????????????????01?010?100???00??????001

Palla ????????????????????????????????????????????????????????????

Pampasatyrus ????????????????????????????????????????????????????????????

Paralasa ????????????????????????????????????????????????????????????

Pararge ?0101????1?0??0011000010010010000?1111???00100???00??????001

Pedaliodes ????????????????????????????????????????????????????????????

Penthema 00101????1?0000111?00001??0?10000?1?1110000100???00??????001

Polygrapha ????????????????????????????????????????????????????????????

Polyura 20101????1?1010?????????????????????11?0000000???00??????001

Prepona 00101????1?1000100000000011100100?001110001110???00??????001

Pronophila ????????????????????????????????????????????????????????????

Prothoe 00101????1?10000????0000?????0100??000?1?01020???00??????000

Ragadia 00101????1?0000011??0000?10??1?00??111?0000100???00??????001

Satyrus ????????????????????????????????????????????????????????????

Siderone 10101????1?1000000000000010100100?001111?01120???00??????001

Stichophthalma 10101????1?0101?????????????????????11?0100100???00??????011

Taenaris 00101????1?010?1111000111101?00010100110000100???00??????011

Taygetis 00101????1?0000111100001110010010?111110?00100???00??????001

Thauria 00101????1?0001??????????????????????0?0?0?000???00??????01?

Xanthotaenia 00101????1?000?????????????????????????1?0?000???00??????001

Ypthima 0??????????????011??0011?????0000???11?0100100???00??????001

Zaretis 10101????1?1000000000000010100100?001111?01120???00??????001

Zethera 00101????1?00??111??000??????0100??????000?100???00??????001

Zeuxidia 20101????1?0001111??0011????10001??0?0?000?100???00??????011

Zipaetis ????????????????????????????????????????????????????????????

1 1 1 1 1 1 1 1

6 7 7 8 8 9 9 0 0 1 1 2 2 3 3

5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

??0????????????????????????????000001?000????????00000010?000000010000?0000

??0????????????????????????????0010001000????????000010110010010000000?0101

000?????????????????????????????????000020000000011000010?2?0000010000?0100

100?????????????????????????????????00000???????00000?010?1?00000?10?0?1100

??0?????????????????????????????????010020010000000?00110?2?0010001000?0100

??????????????????????????????????????01?0?0000000000011??0?00000??0?0?0100

100?????????????????????????????????1?102?011000000000000?0?00001?0000?0100

??????????????????????????????????????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

200????????????????????????????00010011010000010000000010?210000000010?0100

100????????????????????????????00000010120000000000100110?010000100000?0101

100????????????????????????????000100100310100010000000110000100000000?0110

000????????????????????????????0001000000????????00010010?200000000000?0100

???????????????????????????????????????????????????????0??2?00000?1000?0100

200????????????????????????????00010011010000010000000010?210000000010?0100

100????????????????????????????00010000020000001000000000?200000001000?0110

??????????????????????????????????????????????????????????????????????????0

000????????????????????????????000001?0021010001000000?10?010000000000?0100

??????????????????????????????????????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

??0????????????????????????????00000010010000001110000110?010001000000?0100

100????????????????????????????00010010020000001000000010?200000000000?0100

??????????????????????????????????????????????????????????????????????????0

000?????????????????????????????????01100??????000000?000?0?0000100000?0100

100????????????????????????????00010000020100001000000010?200000000000?0100

100????????????????????????????01010010010011001000000000?0?0000111000?0100

??????????????????????????????????????????????????????????????????????????0

100?????????????????????????????????01002?00000000000?000?2?0000011000?0100

??????????????????????????????????????????????????????????????????????????0

????????????????????????????????1?????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

??0?????????????????????????????????01101?11100000000?000?0?00001?1000?0100

000????????????????????????????0101?010010010001000000010?200000000000?0101

??????????????????????????????????????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

??0????????????????????????????000001?0120010101000000110?010001000000?0100

000?????????????????????????????????01001?00000000000?000?2?0001011000?0100

??????????????????????????????????????????????????????????????????????????0

110?????????????????????????????????1?002?00000000000?000?0?00001?1000?0100

100?????????????????????????????????1?0010111000000000010?0?0000010000?1100

??????????????????????????????????????????????????????????????????????????0

??????????????????????????????????????????????????????????????????????????0

100?????????????????????????????????00000????????0000?000?2?0000011000?0100

100????????????????????????????00011000020000000000000010?000000000000?0100

??0????????????????????????????00000010010000001110000110?010001000000?0100

000????????????????????????????00010011010000010000000010?010000000000?0100

000?????????????????????????????????00001?00000000000?000?0?00000?0000?0100

100???????????????????????????????????0021?0000?00000?00????00000?10?0?0100

100?????????????????????????????????01001?00000000000?000?2?00000?1000?0100

210?????????????????????????????????00012?00000000100?000?2?0000100000?0100

??????????????????????????????????????????????????????????????????????????0

100????????????????????????????000100100200000010000000110000000000000?0100

??????????????????????????????????????????????????????????????????????????0

100?????????????????????????????????01002100000000000?000?2?00002?1000?0100

??????????????????????????????????????????????????????????????????????????0

???????????????????????????????????????????????????????????????????????????

??????????????????????????????????????????????????????????????????????????0

100????????????????????????????01?01??000???????00000?000???00000?1000?0100

??????????????????????????????????????????????????????????????????????????0

110?????????????????????????????????010120000000000000000?000000100000?0100

??????????????????????????????????????????????????????????????????????????0

100?????????????????????????????????1?002?11001100000?010?0?00000?0000?0100

100????????????????????????????00000010120000000000100110?010000100000?0101

??????????????????????????????????????????????????????????????????????????0

??0?????????????????????????????????010020010001000010110?2?0010010100?0100

000?????????????????????????????????010010100000000000000?2?0000011000?0100

??????????????????????????????????????????????????????????????????????????0

000????????????????????????????00000000120000000000000110?010001000000?0100

100?????????????????????????????????1?100??????000000?000?0?0010011000?0100

000????????????????????????????00010001010011000000000000?010000001000?0100

000????????????????????????????01011010020000000000000010?000000000000?0100

??0?????????????????????????????????01101?0?000000000?000?0?0000101000?0100

000?????????????????????????????????01002?00000000100?000?2?0000001000?0100

000???????????????????????????????????001??0000000000?000?0?01210?1000?0100

000????????????????????????????00000000120000000000000110?010001000000?0100

110?????????????????????????????????01012000000000100?000?2?0000101000?0100

100?????????????????????????????????1?101011100000000?000?2?00001?0000?0100

???????????????????????????????????????????????????????????????????????????

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

4 4 5 5 6 6 7 7 8 8 9 9 0 0 1

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

001?0?000?00?1?000000???0000200000000000000000000000???????0011000000000000

0001000100?0?0001?0010000010210100000111011101111000???????0010011000000011

0000000011?0?000011010?10010011010000011000000110000???????0000000000001001

100?000011?0?0?001??????00????????????010???01??0???????????020000000011011

100?000011?0?1?001??????00?????????????10???00?10???????????020000000001111

100?000011?0?1?000??????00??????????0??00???00?00???????????020000001000111

100?000011?0?1?001??????????????????10?10???00?11???????????1200001?1000011

110?010011?0?0?001??????00?????????????10???00??0???????????020000111001010

000?000011?0?1?0000?????00????????????000???01?10???????????020000000000011

100?000011?0?1?001??????00????????????000???10?00???????????020000000000011

000000101010?000000010?10010011010001001000001110000???????0111000000001011

000000001000?0001?0010?11011011010100001000000100000???????0000001000000110

110001001010?000000010001010110010001001000000110000???????0000010000001011

000000001010?0010100100000100110??001010000000110000???????0010000000000011

110?000011?0?0?000??????00??????????00?10???00?10???????????020000000000011

000000101010?000010010100010011010001000000010100000???????0100000100001011

100000001010?001010011000010011010001011000000100000???????0000000000001011

100?000011?0?0?001??????11????????????110???10110???????????021010001001011

1000000011?0?100000010?10011011010100000000000110000???????0020001000011011

010??10011?0?0?000??????00??????????00010???00?10???????????020000000000011

100?00011??0?0?000??????00????????????001???10?10???????????020000000001011

000000011010?1?01?001???0011011010100000000000100000???????0011000000001000

000001001010?001010010001010011010001011000000110000???????0000000000000011

000?000011?0?0?001??????00????????????010???01??0???????????021000000001011

100?000011?0?1?001??????00??????????10?10???01?10???????????02000010000101?

000000001010?0010100100000100110??001010000000110000???????0000000000000011

010?010011?0?0?100??????10??????????00?10????0?10???????????020000000001011

010??00011?0?0?000??????00??????????0?010??????10???????????020000000000011

110?000011?0?0??????????00??????????00?10??????1???????????????????????????

100?000011?0?0?001??????00??????????????????10?10???????????120000001000011

110?000011?0?0?0010?????00??????????00000?010011000?????????020010000000011

000?000011?0?1?000??????00????????????????01???1?00????????????????????????

100?0?00?1???1??????????00???????????0?10??????1???????????????????????????

010000000010?000000010?10010110010000012000000110000???????0011000010011011

010??00011?0?0?001??????00????????????010???00?00???????????020000000001111

100?000011?0?0?101??????00?????????????10???00?10???????????020000000000011

100000001010?1?000001???0011011010100000000000100000???????0000000000002000

100???00???0????????????00??????????00?10??????????????????????????????????

110?000011?0?0?00???????00????????????010???00?10???????????020000000001001

110?000011?0?0?000??????10??????????00?10???00?10???????????020000001001011

110?000011?0?0?001??????00????????1?11????01????000????????0021000000001011

010?000011?0?0?0000?????00??????????00010??????10???????????021000000001011

110?010011?0?0?00???????00??????????0?0?????00?10???????????120000000000111

010?000001?0?0?000??????00??????????00?10??????10???????????010000000000011

000000001010?000000010000010110010000000000000100000???????0020000000001011

100000001010?1?000001???0011011010100000000000100000???????0000000000001000

000000001010?1?001001???0010011010000012000000110000???????0100000001000010

110?000011?0?0?000??????01??????????00?10???10?10???????????121000000011111

100?000011?0?0?001??????00????????????000?1110100?0????????0020000001000011

110?000011?0?0?000??????00??????????00?10??????1???????????????????????????

0?0?000011?0???001??????00??????????00?10??????1???????????????????????????

100?000011?0?0?001??????00?????????????10?011011?00????????0021010001000011

100000001010?001010010000110011010001011000000100000???????0000000000010011

110?000011?0?0?000??????00????????0?00010?01???1000????????0020000000001011

110?000011?0?0?001??????00??????????00?10??????1?00????????0???????????????

100?000011?0?1?000??????00?????????????01???10??0???????????020000000001110

???????????????????????????????????????????????????????????????????????????

010?010011?0?0?001??????00????????????000???10?10???????????020000000000011

010?000011?0?0?000??????00??????????00?10???00?10???????????021000000000011

110?000001?0?0?000??????00????????0?00010?010010000????????0012000000000011

000000001110?000010010?10010110010000001000000110000???????0020000001000011

100?000011?0?0?0010?????00????????????000???10?00???????????020000001001001

100?000011?0?1?000??????00??????????00?00?01???0?00????????0???????????????

000000001000?0001?0010?11011011010100001000000100000???????0000001000000110

010?010010?0?0?0000?????00????????0?00010?010011000????????0020000001000001

100?000011?0?1?001??????00????????1?00?10??????1???????????????????????????

110???00?1?0?1??????????00????????0?00?10??????1???????????????????????????

110?000011?0?0?000??????00????????????010???10?10???????????020000000000011

100000001010?1?000001???0011011010100000100000100000???????0000000000001010

100?000011?0?1?001??????00??????????00?10?01???0?00????????0???????????????

0000010011?0?1?001001???0110011010000011000000110000???????0020000000001011

010000001010?000000010000010110010000001000000110000???????0010000000011011

100?000011?0?1?001??????00???????????0?10??????1?00????????0???????????????

10??0?00???0?0??????????00??????????00?20??????1???????????????????????????

010?0?00???0?0??????????00??????????00?01??????1???????????????????????????

100000011010?1?000001???0011011010100000100000100000???????0000000000001010

000?010011?0?0?001??????00??????????00?10??????1???????????????000001001011

110?010011?0?0?001??????11??????????10?10??????10???????????020000001001010

???????????????????????????????????????????????????????????????????????????

2 2 2 2 2

1 2 2 3 3

5 0 5 0 5

000000000000000000?00110????

1100001????0000000?00000????

0010011?????????????????0000

100000000011011?????????0001

101001001???????????????0000

100000011???????????????0000

1000001?????????????????0000

200100011???????????????0000

10101001001?????????????0000

100010011???????????????0000

100000010001101????010000000

100000010001001????000010000

100000010000000000?000000110

1000001????0001????100000000

100001011???????????????0000

100000010001101????010000000

100000010000100000?000000000

000010011???????????????0000

100000000000000000?000010000

100000011??????????????????0

100000001???????????????0000

000000000001000000?000000000

100000010000101????000000000

11000000001????????????????0

100120001???????????????0000

100000010000001????000000000

200000011???????????????0000

100000011???????????????0000

????????????????????????000?

100000011???????????????0000

1000101????1000000?101??0000

???????????0010000?10000000?

????????????????????????000?

2000001????0101????000000110

100000011???????????????0110

100000011???????????????0000

000000000000000011?000000000

????????????????????????011?

100000011???????????????0100

100000011???????????????0100

1000001????0000000?100010110

100011011???????????????0000

110000011???????????????0100

100001011???????????????0000

1000001????0000001?000000000

000000000001100000?010000000

200001010000000000?010010000

100000011???????????????0110

100010011??????????000??0000

????????????????????????000?

????????????????????????000?

100010011??1001????000010000

200000010000100000?000000000

1001001????10000001100010110

???????????1000000110001000?

201000011???????????????0000

????????????????????????????

100101011???????????????0000

100100011???????????????0100

100010011??00000001001??0000

100000011??1000000?000000000

00001001000?????????????0000

???????????1010000110001000?

100000010001001????000010000

100010011??10000001001??0000

????????????????????????000?

????????????????????????000?

100000011???????????????0000

100000000001000000?000000000

???????????0000000?10001000?

100021011??0000000?000000000

200000010010100000?000010100

????????????000000?01001000?

????????????????????????000?

????????????????????????010?

100000000001000000?000000000

100000011???????????????0000

210000011???????????????0000

????????????????????????????

3.

SU

PP

LE

ME

NT

AR

YT

AB

LE

S

Supple

menta

ryT

ab

le1.

Pri

mer

sequen

ces

for

PC

Ran

dse

quen

cing

ofge

nes

use

din

this

study.

Pri

mer

Loca

tion

Pri

mer

Nam

eP

rim

erU

tility

Seq

uen

ceC

itati

on

mtD

NA

CO

ILC

OP

CR

/Seq

uen

cing

5’G

GT

CA

AC

AA

AT

CATA

AA

GATAT

TG

G3’

(Wahlb

erg

and

Zim

mer

mann,2000)

HC

OP

CR

5’TA

AA

CT

TC

AG

GG

TG

AC

CA

AA

AA

AT

CA

3’

(Wahlb

erg

and

Zim

mer

mann,2000)

Jer

ryP

CR

/Seq

uen

cing

5’C

AA

CAY

TTAT

TT

TG

AT

TT

TT

TG

G3’

(Wahlb

erg

and

Zim

mer

mann,2000)

Pat

PC

R5’AT

CC

AT

TA

CATATA

AT

CT

GC

CATA

3’

(Wahlb

erg

and

Zim

mer

mann,2000)

Patt

yP

CR

5’A

CW

GT

WG

GW

GG

AT

TA

AC

WG

G3’

(Pen

aet

al.,2006)

nD

NA

EF1-α

Sta

rsky

PC

R/Seq

uen

cing

5’C

AC

AT

YA

AC

AT

TG

TC

GT

SAT

YG

G3’

(Pen

aet

al.,2006)

Luke

PC

R5’C

AT

RT

TG

TC

KC

CG

TG

CC

AK

CC

3’

(Pen

aet

al.,2006)

Cho

PC

R/Seq

uen

cing

5’G

TC

AC

CAT

CAT

YG

AC

GC

3’

(Pen

aet

al.,2006)

Ver

di

PC

R5’G

ATA

CC

AG

TC

TC

AA

CT

CT

TC

C3’

(Pen

aet

al.,2006)

EF51.9

PC

R/Seq

uen

cing

5C

AR

GA

CG

TATA

CA

AA

AT

CG

G3’

(Cho

etal.,1995)

EFrc

M4

PR

C5

AC

AG

CVA

CK

GT

YT

GY

CT

CAT

RT

C3’

(Cho

etal.,1995)

nD

NA

win

gles

sLep

WG

1P

CR

/Seq

uen

cing

5G

ART

GYA

ART

GY

CAY

GG

YAT

GT

CT

GG

3’

(Bro

wer

and

DeS

alle,

1998)

Lep

WG

2P

CR

5A

CT

ICG

CA

RC

AC

CA

RT

GG

AAT

GT

RC

A3’

(Bro

wer

and

DeS

alle,

1998)

nD

NA

GA

PD

HFri

gga

PC

R/Seq

uen

cing

5A

AR

GC

TG

GR

GC

TG

AATAT

GT

3’

(Wahlb

erg

and

Whea

t,2008)

Burr

eP

CR

5G

WT

TG

AAT

GTA

CT

TG

AT

RA

GRT

C3’

(Wahlb

erg

and

Whea

t,2008)

nD

NA

RpS5

RpS5f

PC

R/Seq

uen

cing

5AT

GG

CN

GA

RG

AR

AAY

TG

GA

AY

GA

3’

(Wahlb

erg

and

Whea

t,2008)

RpS5r

PC

R5

CG

GT

TR

GAY

TT

RG

CA

AC

AC

G3’

(Wahlb

erg

and

Whea

t,2008)

nD

NA

MD

HM

DH

fP

CR

/Seq

uen

cing

5G

AYAT

NG

CN

CC

NAT

GAT

GG

GN

GT

3’

(Wahlb

erg

and

Whea

t,2008)

MD

Hr

PC

R5

AG

NC

CY

TC

NA

CD

AT

YT

TC

CAY

TT

3’

(Wahlb

erg

and

Whea

t,2008)

Supple

men

tary

Tab

le2.

Par

amet

erva

lues

esti

mat

edus

ing

Bay

esia

nph

ylog

enet

icm

etho

dsG

ene

TL

(all)

r(A↔

C)

r(A↔

G)

r(A↔

T)

r(C↔

G)

r(C↔

T)

r(G↔

T)

pi(A

)pi

(C)

pi(G

)pi

(T)

alph

api

nvar

CO

I8.

460.

058

0.09

80.

052

0.02

00.

765

0.00

60.

415

0.08

40.

074

0.42

70.

457

0.62

8EF-1α

0.05

50.

379

0.09

70.

047

0.39

40.

039

0.28

40.

244

0.19

90.

273

0.80

00.

482

GA

PD

H0.

088

0.24

40.

155

0.04

30.

427

0.04

30.

250

0.24

40.

196

0.31

01.

128

0.51

0M

DH

0.08

80.

323

0.12

40.

061

0.36

90.

035

0.30

10.

172

0.19

60.

331

1.11

60.

440

RpS

50.

075

0.30

00.

093

0.03

80.

439

0.05

60.

287

0.20

50.

201

0.30

71.

039

0.48

6wgl

0.08

40.

315

0.07

70.

047

0.40

70.

070

0.20

70.

296

0.30

70.

190

0.83

50.

363

Val

ues

esti

mat

edse

para

tely

for

each

gene

regi

on.

Supplementary Table 3. Larval food plants for the taxonomic groups used in thisstudy.Butterfly taxon Plant group Family ReferenceLibytheinae Dicotyledonous Ulmaceae (1, 2)Danainae Dicotyledonous Asclepiadaceae (1)Calinaginae Dicotyledonous Rosaceae (3)Charaxinae Dicotyledonous Fabaceae, Piperaceae, etc. (3)Morphini Dicotyledonous Fabaceae (3)

Monocotyledonous Musaceae, Poaceae, Arecaceae (3)Brassolini Dicotyledonous Rubiaceae [dubious record] (3, 4)

Monocotyledonous Arecaceae, Cannaceae, Heliconiaceae (3)Marantaceae, Musaceae, Zingiberaceae (3)

Melanitini Monocotyledonous Cyperaceae, Poaceae (3)Dirini Monocotyledonous Poaceae (3)Zetherini Monocotyledonous Arecaceae, Poaceae (3)Amathusiini Monocotyledonous Arecaceae, Smilaneaceae, Musaceae (3)

Agavaceae, Liliaceae, Orchidaceae (3)Pandanaceae, Poaceae, Flagellariaceae (3)

Elymniini Monocotyledonous Arecaceae (3)Haeterini Monocotyledonous Arecaceae, Heliconiaceae, Marantaceae (3)

Zingiberaceae, Cyperaceae, Poaceae (3)Satyrini Monocotyledonous Arecaceae, Marantaceae, Zingiberaceae (3)

Restionaceae, Xyridaceae, Cyperaceae (3)Poaceae (3)

Lycopodiopsida Selaginellaceae (5)Bryopsida Neckeraceae (6)

(1) = Ackery et al. (1999); (2) = Kawahara (2003); (3) = Ackery (1988); (4) = Penz etal. (1999); (5) = Singer et al. (1971); (6) = Singer & Mallet (1986).

Subfamily Tribe Subtribe Species Specimen ID Source of specimen COI EF-1α Wingless GAPDH MDH RPS5Libytheinae Libythea celtis NW71-1 Spain: Barcelona AY090198 AY090164 AY090131 EU141517 EU141641 EU141418Danainae Danaini Danaina Danaus plexippus NW108-21

Portugal: Madeira, MonteDQ018954 DQ018921 DQ018891 EU141486 EU141605 EU141382

Calinaginae Calinaga buddha NW64-3 AY090208 AY090174 AY090141 EU141506 --- EU141406

Charaxinae Charaxini Charaxes castor NW78-3 AY090219 AY090185 AY090152 --- --- EU141422

Charaxinae Charaxini Polyura maeri NW121-24 Indonesia: Bali EU528325 EU528302 EU528282 --- EU528368 EU528459Charaxinae Euxanthini Euxanthe eurinome NW131-10 Ghana EU141357 EU136664 EU141238 --- --- EU141390Charaxinae Pallini Palla decius NW124-7 Ghana DQ338576 DQ338884 --- --- --- EU141389Charaxinae Prothoini Agatasa calydonia NW111-8 Malaysia EU528310 EU528288 EU528266 --- EU528334 EU528420Charaxinae Prothoini Prothoe frank NW103-5 EU528327 EU528304 EU528284 --- EU528370 EU528462Charaxinae Preponini Agrias hewitsonius CP-M264 Peru: Poli EU528311 EU528289 EU528267 --- --- EU528421Charaxinae Haeterini Prepona sp. CP-CI142 EU528326 EU528303 EU528283 --- --- EU528460

Charaxinae Preponini Archaeoprepona demophon NW81-9 AY090220 AY090186 AY090153 --- --- EU141424

Charaxinae Preponini Anaeomorpha splendida CP05-41 Peru: Loreto EU528313 --- EU528269 --- --- EU528423Charaxinae Anaeini Coenophlebia archidona CP-M269 Peru: Poli EU528316 EU528293 EU528272 --- EU528341 EU528429Charaxinae Anaeini Zaretis sp. CP05-05 Peru: Amazonas EU528332 EU528309 --- --- EU528378 EU528470Charaxinae Anaeini Siderone marthesia NW124-6 Costa Rica EU528329 EU528306 EU528285 --- EU528372 EU528464Charaxinae Anaeini Hypna clytemnestra NW127-11 Brazil: São Paulo DQ338574 DQ338882 DQ338600 --- EU528352 EU528439Charaxinae Anaeini Anaea troglodyta NW92-2 DQ338573 DQ338881 DQ338599 --- --- EU141428

Charaxinae Anaeini Polygrapha tyrianthina CP06-88 Peru: Oxapampa EU528324 EU528301 EU528281 --- EU528367 EU528458Charaxinae Anaeini Consul fabius NW109-16 Costa Rica EU528317 EU528294 EU528273 --- EU528342 EU528430Charaxinae Anaeini Memphis appias NW127-6 Brazil: São Paulo DQ338575 DQ338883 DQ338601 --- EU528355 EU528445Morphinae Morphini Antirrheina Caerois sp. CP09-56 EU528315 EU528292 EU528271 EU528384 EU528338 EU528426

Morphinae Morphini Antirrheina Antirrhea philoctetes NW109-12 Costa Rica DQ338577 DQ338885 DQ338602 EU528383 EU528336 EU528424Morphinae Morphini Morphina Morpho helenor NW66-5 AY090210 AY090176 AY090143 EU141507 EU528356 EU141407

Morphinae Brassolini Biina Bia actorion 99-004 Brazil: Rondonia --- DQ338893 --- --- --- ---Morphinae Brassolini Biina Bia actorion EW11-3 Peru: Loreto DQ338753 --- DQ338610 --- --- ---Morphinae Brassolini Biina Bia actorion CP01-78 Peru: Madre de Dios --- --- --- EU532175 EU532180 EU532179Morphinae Brassolini Brassolina Brassolis sophorae NW122-21 Brazil: São Paulo EU528314 EU528291 EU528270 --- EU528337 EU528425Morphinae Brassolini Brassolina Caligo telamonius NW70-10 AY090209 AY090175 AY090142 --- EU141637 EU141414

Morphinae Brassolini Brassolina Catoblepia orgetorix NW109-15 Costa Rica DQ338754 DQ338894 DQ338611 --- EU528339 EU528427Morphinae Brassolini Brassolina Dasyophthalma creusa NW126-4 Brazil: São Paulo EU528318 EU528295 EU528274 EU528387 EU528343 EU528431Morphinae Brassolini Brassolina Dynastor darius NW109-11 Costa Rica EU528320 EU528297 EU528276 EU528389 EU528346 EU528434Morphinae Brassolini Brassolina Opoptera syme NW126-3 Brazil: São Paulo EU528323 EU528300 EU528280 EU528403 EU528361 EU528450Morphinae Brassolini Naropina Opsiphanes quiteria NW109-10 Costa Rica DQ018957 DQ018924 DQ018895 --- EU528362 EU528451Satyrinae Brassolini Naropina Narope sp. NW127-27 Brazil: Extrema, MG. DQ338755 DQ338895 DQ338612 EU528401 EU528358 EU528447Morphinae Amathusiini Amathusia phidippus NW114-17 Indonesia: Bali DQ018956 DQ018923 DQ018894 EU141488 EU141607 EU141384Morphinae Amathusiini Amathuxidia amythaon NW111-14 Malaysia EU528312 EU528290 EU528268 EU528382 EU528335 EU528422

Supplementary Table 4. List of specimens and GenBank accession numbers for each gene used in the molecular studies.

UK: Stratford Butterfly farmUK: Stratford Butterfly farm

Peru: Madre de Dios, CICRAUK: Stratford Butterfly farm

UK: Stratford Butterfly farm

Peru: Madre de Dios, CICRA

UK: Stratford Butterfly farm

UK: Stratford Butterfly farm

Morphinae Amathusiini Discophora necho NW101-6 Indonesia: Palawan DQ338747 DQ338887 DQ338604 --- EU528345 EU528433Morphinae Amathusiini Faunis menado NW118-19 DQ338748 DQ338888 DQ338605 EU528393 EU528350 EU528438

Morphinae Amathusiini Hyantis hodeva NW102-5 EU528322 EU528299 EU528278 EU528394 EU528351 ---Morphinae Amathusiini Stichophthalma howqua NW97-7

Taiwan: Taoyuan CountyAY218250 AY218270 AY218288 EU528413 EU528373 EU528465

Morphinae Amathusiini Taenaris cyclops NW102-4Indonesia: Sorong Island

DQ338749 DQ338889 DQ338606 EU528414 EU528374 EU528466

Morphinae Amathusiini Thauria aliris NW111-15 Malaysia EU528330 EU528307 EU528286 --- EU528375 EU528467Morphinae Amathusiini Zeuxidia dohrni NW101-2 Indonesia: Java DQ338752 DQ338892 DQ338609 EU528417 EU528379 EU528471Morphinae Amathusiini Xanthotaenia busiris NW142-8 Indonesia: Kalimantan EU528331 EU528308 EU528287 EU528415 EU528376 EU528468Satyrinae Haeterini Haetera piera CP01-84 Peru: Madre de Dios DQ018959 DQ018926 DQ018897 EU141475 EU141593 EU141371Satyrinae Melanitini Melanitis leda NW66-6 AY090207 AY090173 AY090140 EU141508 EU141631 EU141408

Satyrinae Elymniini Elymniina Elymnias casiphone NW121-20 Indonesia: Bali DQ338760 DQ338900 DQ338627 --- --- EU141388Satyrinae Elymniini Mycalesina Mycalesis sp. EW18-8 DQ338765 DQ338905 DQ338632 EU528400 EU528357 EU528446

Satyrinae Elymniini Mycalesina Orsotriaena medus EW25-17 DQ338766 DQ338906 DQ338633 EU528405 EU528363 EU528453

Satyrinae Elymniini Parargina Aeropetes tulbaghia CP13-01 South Africa DQ338579 DQ338907 DQ338634 EU528381 EU528333 EU528419Satyrinae Elymniini Parargina Lethe minerva NW121-17 Indonesia: Bali DQ338768 DQ338909 DQ338616 EU141492 EU141611 EU141387Satyrinae Elymniini Parargina Manataria hercyna EW11-1 Costa Rica AY218244 AY218264 AY218282 EU528396 EU528353 EU528442Satyrinae Elymniini Parargina Neope bremeri EW25-23

Taiwan: Pingtung CountyDQ338770 DQ338911 DQ338618 EU528402 EU528359 EU528448

Satyrinae Elymniini Parargina Pararge aegeria EW1-1 France: Carcassonne DQ176379 DQ338913 DQ338620 EU141476 EU141594 EU141372Satyrinae Elymniini Parargina Ethope noirei NW121-7 Vietnam DQ338773 DQ338915 DQ338622 EU528391 EU528348 EU528436Satyrinae Elymniini Parargina Neorina sp. NW118-14 Indonesia: West Java DQ338774 DQ338916 DQ338623 --- EU528360 EU528449Satyrinae Elymniini Zetherina Penthema darlisa CP-B02 Vietnam DQ338775 DQ338917 DQ338624 EU528408 EU528366 EU528457Satyrinae Elymniini Zetherina Zethera incerta NW106-10 Indonesia: Sulawesi DQ338776 DQ338918 DQ338635 EU141483 EU141602 EU141379Satyrinae Satyrini Coenonymphina Coenonympha pamphilus EW7-3 Sweden: Öland DQ338777 DQ338920 DQ338637 EU528385 EU528340 EU528428Satyrinae Satyrini Erebiina Erebia oeme EW24-7 France: Languedoc DQ338780 DQ338923 DQ338640 EU141479 EU141597 EU141375Satyrinae Satyrini Erebiina Manerebia cyclopina CP04-80 Peru: Junín --- --- DQ338645 --- --- ---Satyrinae Satyrini Erebiina Manerebia cyclopina CP03-63 Peru: Junín DQ338785 DQ338928 --- EU528397 EU528354 EU528443Satyrinae Satyrini Pronophilina Pedaliodes sp. n. 117 CP09-66 Peru: Apurímac DQ338856 DQ339008 DQ338719 EU528407 EU528365 EU528456Satyrinae Satyrini Pronophilina Pronophila thelebe CP03-70 Peru: Junín DQ338859 DQ339012 DQ338723 EU528410 EU528369 EU528461Satyrinae Satyrini Euptychiina Taygetis laches NW108-3 Brazil: São Paulo DQ338812 DQ338958 DQ338683 EU141487 --- EU141383Satyrinae Satyrini Euptychiina Euptychia sp. n. 2 CP01-33 Peru: Madre de Dios DQ338794 DQ338937 DQ338654 EU528392 EU528349 EU528437Satyrinae Satyrini Euptychiina Oressinoma typhla CP07-71 Peru: Junín DQ338802 DQ338949 DQ338666 --- --- EU528452Satyrinae Satyrini Hypocystina Heteronympha merope EW10-4 Australia: Canberra AY218243 AY218063 AY218281 EU141477 EU141595 EU141373Satyrinae Satyrini Hypocystina Hypocysta pseudirius NW123-5 Australia: Newcastle DQ338826 DQ338974 --- --- --- EU528440Satyrinae Satyrini Hypocystina Zipaetis saitis D30 India DQ338831 DQ338981 DQ338696 EU528418 EU528380 EU528472Satyrinae Satyrini Hypocystina Pampasatyrus gyrtone NW126-12 Brazil: São Paulo DQ338837 DQ338988 DQ338701 EU528406 EU528364 EU528454Satyrinae Satyrini Maniolina Hyponephele cadusia CP10-07 Iran: Hamadan DQ338839 DQ338989 DQ338702 EU528395 --- EU528441Satyrinae Satyrini Maniolina Maniola jurtina EW4-5 Spain: Sant Ciment AY090214 AY090180 AY090147 EU141481 --- EU141376Satyrinae Satyrini Melanargiina Melanargia galathea EW24-17 France: Languedoc DQ338843 DQ338993 DQ338706 EU528398 --- EU528444Satyrinae Satyrini Satyrina Brintesia circe CP-B01 France: Languedoc DQ338865 DQ339020 DQ338729 EU141474 EU141592 EU141370Satyrinae Satyrini Satyrina Paralasa jordana CP-AC23-35 Russia: Karasu DQ338597 DQ339027 DQ338736 EU532176 --- EU528455Satyrinae Satyrini Satyrina Satyrus actaea EW20-12 France: Carcassonne DQ338871 DQ339029 DQ338738 EU528412 EU528371 EU528463

Indonesia: Central Sulawesi

Australia: Queensland Carins

Australia: Queensland CarinsBangladesh: Sylhet Div. Lowacherra Forest

Satyrinae Satyrini Ypthimina Ypthima baldus NW98-5 DQ338875 DQ339033 DQ338742 EU528416 EU528377 EU528469

Satyrinae Ragadiini Ragadia makuta CP16-10 Indonesia: Kalimantan EU528328 EU528305 --- --- --- ---Satyrinae Ragadiini Ragadia makuta CP16-09 Indonesia: Kalimantan --- --- --- EU532177 --- EU532178Satyrinae Eritini Erites argentina CP16-13 Indonesia: Kalimantan EU528321 EU528298 EU528277 EU528390 EU528347 EU528435Satyrinae Dirini Dira clytus CP15-04 South Africa EU528319 EU528296 EU528275 EU528388 EU528344 EU528432

Indonesia: Central Sulawesi

Higher taxon Species Adult stage sources Immature stages sources

Calinagini Calinaga buddha M: SU NW64-4 (1)Anaeini Consul fabius (4) (4)Anaeini Hypna clytemnestra (4) (4)Anaeini Memphis ryphea (4) (4)Anaeini Coenophlebia archidona M: SU CP-M269, genitalia CP-10, legs CP-4Anaeini Siderone marthesia (4) (4)Charaxini Polyura maeri M: SU NW121-24, genitalia CP-33, legs CP-24Charaxini Polyura delphis (2)Charaxini Charaxes bupalus - (1)Euxanthini Euxanthe eurinome F: SU NW131-10, genitalia CP-36, legs CP-27Pallini Palla decius M: SU NW124-7, genitalia CP-31, legs CP-22Preponini Agrias claudina M: SU CP-M278, genitalia CP-9, legs CP-1 (3)Preponini Archaeoprepona chalciope (4) (4)Prothoini Agatasa calydonia M: SU NW111-8, genitalia CP-34, legs CP-28 (2)Prothoini Prothoe frank (2) (2)Antirrheina (4) (4)Antirrheina Antirrhea archaea (4) (4)Morphina Morpho achilles (4) (4)Biina Bia actorion (4) (4)Brassolina Brassolis sophorae (4) (4)Brassolina Caligo beltrao (4) (4,7)Brassolina Dasyophthalma creusa (4) (4)Brassolina Dynastor darius (4) (4)Brassolina Opsiphanes invirae (4) (4)Naropina (8) (8)Amathusiini Amathusia phidippus M: SU NW114-17, genitalia CP-5, legs CP-17 (2)Amathusiini Amathuxidia amythaon M: SU NW111-14, genitalia CP-4, legs CP-15Amathusiini Discophora necho M: SU NW101-6, genitalia CP-8, legs CP-10Amathusiini Discophora timora (2)Amathusiini Faunis menado (1) (1)Amathusiini Stichophthalma howqua F: SU NW97-7, genitalia CP-21, legs CP-14 (1)Amathusiini Taenaris cyclops M: SU NW102-4, genitalia CP-16, legs CP-3Amathusiini Taenaris onolaus (4)Amathusiini Thauria aliris F: SU NW111-15, genitalia CP-7 (2)Amathusiini Zeuxidia dohrni M: SU NW101-2, genitalia CP-6Amathusiini Zeuxidia aurelius (2)Amathusiini Xanthotaenia busiris (1) (1)Haeterini Haetera diaphana (1) (1)Melanitini Melanitis leda M: SU NW66-6, genitalia CP-18, legs CP-11 (4)Elymniina Elymnias casiphone M: SU NW112-9, genitalia CP-14, legs CP-7Elymniina Elymnias hypermnestra (2)Mycalesina Orsotriaena medus F: SU EW25-17, genitalia CP-26 (2)Mycalesina M: SU EW18-8, genitalia CP-32, legs CP-26Mycalesina Mycalesis perseus (2)Parargina Aeropetes tulbaghia M: SU CP13-01, genitalia CP-12, legs CP-9 (5)Parargina Ethope noirei M: SU NW121-7, genitalia CP-35, legs CP-23Parargina Lethe minerva M: SU NW121-17, genitalia CP-30, legs CP-25Parargina Lethe verma (2)Parargina Manataria hercyna

Parargina Neope bremeri (1)Parargina (2) (2)Parargina Pararge aegeria M: SU EW1-3, legs CP-18Parargina Pararge aegeria M: SU EW1-1, genitalia CP-23Zetherina Penthema darlisa M: SU CP-B02, genitalia CP-15, legs CP-8

Supplementary Table 5. Information sources for species used for the morphological matrix

Caerois chorineaus

Narope cyllene

Mycalesis terminus

F: SU EW11-1, genitalia CP-20, legs CP-13; M: MUSM, genitalia CP-84

Neorina sp.

Zetherina Penthema formosanum (2)Zetherina Zethera pimplea (2) (2,9)Coenonymphina Coenonympha pamphilus M: SU EW24-16, genitalia CP-13, legs CP-5Erebiina Erebia oeme M: SU EW24-9, genitalia CP-24Euptychiina Oressinoma typhla F: SU, genitalia CP-29, legs CP-21Euptychiina Taygetis laches (4) (4)Hypocystina Heteronympha merope M: SU EW10-4, genitalia CP-28, legs CP-20Hypocystina Hypocysta aroa (1) (1)Maniolina Maniola jurtina M: SU EW4-5, genitalia CP-27, legs CP-19Maniolina Hyponephele lupina M: SU EW20-10, genitalia CP-39, legs CP-31Melanargiina Melanargia galathea M: SU EW24-17, genitalia CP-25Melanargiina Melanargia montana (1)Satyrina Paralasa hades M: SU NW139-13, genitalia CP-38, legs CP-30Satyrina Brintesia circe M: SU CP-B01, genitalia CP-11, legs CP-6 (6)Satyrina Satyrus actaea M: SU EW20-12, genitalia CP-37, legs CP-29Ypthimina Ypthima sempera (1) (1)Ragadiini Ragadia luzonia (2) (2)Eritini Erites angularis (1) (1)Dirini Dira clytus M: SU NW144-8, genitalia CP-17, legs CP-16M = male; F = female; SU = Department of Zoology, Stockholm University, Stockholm; MUSM = Museo de Historia Natural, Universidad Nacional

Mayor de San Marcos, Lima, Peru. (1) = Igarashi and Fukuda (2000); (2) = Igarashi and Fukuda (1997); (3) = Casagrande and Mielke (1985);

(4) = Freitas and Brown (2004); (5) = van Son (1955); (6) = García (1986); (7) = Casagrande (1979a); (8) = Casagrande (2002);

(9) = Vane-Wright and Smiles (1975).

4 SUPPLEMENTARY DISCUSSION

1. Cladistic approachAnalysis of the combined dataset in the cladistic approach produced 3 equally parsimonious cladograms. The strict consensus (Fig. S1) shows 6 well supported clades: Charaxinae, Zetherina (including Ethope, Neorina and Xanthotaenia), Morphini, Amathusiini (including Elymnias), Melanitini (including Aeropetes, Dira and Manataria) and Satyrini (including Mycalesina, Parargina, Ragadiini and Eritini). These clades were consistently recovered in previous analyses with different amounts of data (not shown). The PCI values show strong conflicting signals from the different partitions (PBS values) for the Amathusiini clade and some basal nodes (Fig. S1) that were recovered in different relationships in the Bayesian approach (see below).

2. Bayesian approachThe Bayesian analysis produced a tree that is congruent with the strict consensus from the cladistic analysis (Fig. S2). Parameter values for the models used in the analysis are given in Table S2. The major differences were (1) the position of Hyantis appearing in the Melanitini clade, that appears as sister to Zetherina + Amathusiini, and (2) the relationships of the major clades indentified by the cladistic analysis (see above): Melanitini is not sister to Haetera + Satyrini, Zetherina is sister to Amathusiini, while Morphini branched off after the Charaxinae (Fig. S2). These differences in topology are reflected by the low Bremer support values and PCI obtained in the cladistic analysis.

3. Hostplant use in the � satyrine clade�After mapping the use of hostplants by the � satyrine clade� onto the phylogenetic hypothesis inferred by the Bayesian approach, we identified 5 major colonization events (Fig. 2). The Charaxinae feeds entirely on several dicotyledonous families. The Morphini shifted onto monocotyledons (mainly family Arecaceae) with the exception of the genus Morpho that feeds on dicots. The Melanitini innovated by feeding on grasses (family Poaceae) while the putative sister Amathusiini feeds on Poaceae and Arecaceae. The Haeterini retained the monocot-feeding trait but do not use the Poaceae, while its sister Satyrini feeds mainly on Poaceae (Fig. 2).

4. Ages estimates for the � satyrine clade� butterflies and their hostplantsThe estimated ages of origin for butterflies inferred by the program r8s are shown in Fig. 1. Our analyses place the time of divergence of the � satyrine clade� in the Late Cretaceous (80.5 Mya), significantly after the estimated origin for angiosperms (Early Cretaceous, around 140 Mya). We believe that the use of Penalized likelihood provides reliable time estimates as compared to other methods, such as Bayesian relaxed clock method. Wheat et al. 2007 found a correspondence among the estimated obtained by both PL as implemented in the program r8s and the Bayesian relaxed clock method. The 5 major plant colonization events by the major lineages of butterflies in the � satyrine clade� took place considerably after the main diversification and radiation of angiosperms (around 100 Mya), an average delay of 48 ± 11 My. Several lineages of this group of butterflies diversified almost simultaneously between 56 and 48 Mya (Melanitini, Amathusiini, Satyrini + Haeterini, Morphini and Charaxinae). However, the lineages Zetherina and Satyrini are somewhat younger (35� 36 My old). The Charaxinae feed entirely on dicotyledonous plants while its sister group colonized several families of monocot plants. Within the monocot feeders, the

more species-rich groups feed extensively on Poaceae (grasses, bamboos and sedges), some Amathusiini feed on Poaceae but have retained the ancestral character of feeding on Arecaceae, Musaceae, Heliconiaceae, etc. It seems that Poaceae was colonized early in the evolution of Satyrinae, however the Amathusiini + Zetherina + Melanitini clades expanded their hosts ranges to basal monocots and early Poales, while the Satyrini is more restricted to graminid Poales.

5. Phylogenetic relationships within the � satyrine clade�Taking into account both the cladistic and Bayesian analyses, we found evidence for three major lineages: Calinaginae, Charaxinae and Satyrinae sensu lato. We also identified 6 major lineages in the Satyrinae s.l. that received good support by both phylogenetic approaches (see results). However, both analyses recovered different relationships among these clades, and the position of Hyantis is ambiguous. These clades we identified reflect the need for a reassessment of the current taxonomic classification of Nymphalidae butterflies, since the Satyrinae subfamily is a polyphyletic group as found by Peña et al. (2006). In order to have a natural classification, it is necessary to broaden the scope of Satyrinae, to include all the groups but the Charaxinae. Thus, the other lineages should belong to Satyrinae, having the status of tribes: Morphini, Melanitini, Amathusiini, Zetherini, Haeterini and Satyrini.

6. Pattern of evolution of hostplant useAt the level of subfamilies, Satyrinae Charaxinae and Calinaginae appeared and radiated much later than their plant counterparts. With our evidence, we can rule out a possible phenomenon of cospeciation as hypothesized by Ehrlich and Raven (1964). Our results provide strong evidence for a sequential colonization and diversification of butterflies on their much older and already diversified hostplants. Our age estimates for butterflies are consistent with a recent study on the Nymphalinae butterflies (Wahlberg, 2006), where this subfamily diversified soon after the K/T event (around 65 Mya), putting back the origin of butterflies potentially older than the currently acknowledged 70 My old (Vane-Wright, 2004). This pattern of delayed colonization seems to be the most common pattern of insect/plant relationships (Lopez-Vaamonde et al., 2006). However, the simultaneous spread of grasses and diversification of Satyrini members evidences that the latter underwent an adaptive radiation once the hosts became abundant and widespread.

The similar ages of diversification for these lineages of butterflies (Fig. 2), as reflected by the short branches in the Bayesian tree, imply rapid speciation, probably following colonization events on different groups of hosts (dicots, monocots � grass-like groups and rest). The relatively long delay for diversification of Satyrini, may be due to the necessity for the right enviromental conditions that permitted the spread of grasses. It is likely that ancestral Satyrini developed adaptations to inhabit open, dry grasslands which preadapted them for colonization of new habitats made available by the advance of grasses.

5. SUPPLEMENTARY NOTES Ackery, P. R. 1988. Hostplants and classification: a review of nymphalid butterflies.

Biological Journal of the Linnean Society 33:95� 203.

Ackery, P. R., R. de Jong, and R. I. Vane-Wright. 1999. The butterflies: Hedyloidea, Hesperioidea and Papilionoidea vol. 4 of Handbook of Zoology Pages 263� 300. Walter de Gruyter, Berlin.

Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795� 803.

Brower, A. V. Z. 2000. Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. Proceedings of the Royal Society of London B 267:1201� 1211.

Brower, A. V. Z. 2006. The how and why of branch support and partitioned branch support, with a new index to assess partition incongruence. Cladistics 22:378� 386.

Casagrande, M. M. 1979. Sobre Caligo beltrao (Illiger). I: Taxonomia, biologia, morfologia das fases imaturas e distribuições espacial e temporal (Lepidoptera, Satyridae, Brassolinae). Revista Brasileira de Biologia 39:173� 193.

Casagrande, M. M. 2002. Naropini Stichel, taxonomia e imaturos (Lepidoptera, Nymphalidae, Brassolinae). Revista Brasileira de Zoologia 19:467� 569.

Casagrande, M. M. and O. H. H. Mielke. 1985. Estágios imaturos de Agrias claudina claudianus Staudinger (Lepidoptera, Nymphalidae, Charaxinae). Revista Brasileira de Entomologia 29:139� 142.

DeVries, P. J. 1987. The Butterflies of Costa Rica and Their Natural History. Papilionidae, Pieridae, Nymphalidae. Princeton University Press, Princeton.

Ehrlich, P. R. 1958. The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). The University of Kansas Science Bulletin 39:305� 370.

Ehrlich, P. R. and P. H. Raven. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586� 608.

Eriksson, T. 2006. Bergianska Trädgården Software. URL <http://www.bergianska.se/index_forskning_soft.html> [Accessed on 20 Sep 2006].

Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164� 166.

Freitas, A. V. L. and K. S. Brown Jr. 2004. Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology 53:363� 383.

García-Barros, E. 1986. Morfología externa de las pupas de Hipparchia Fabricius y Brintesia Früstorfer [sic] (Lep., Satyridae Satyrinae). Boletín de la Asociación española de Entomología 10:339� 353.

Gatesy, J., P. O� Grady, and R. H. Baker. 1999. Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics 15:271� 313.

Goloboff, P., J. Farris, and K. Nixon. 2003. T.N.T.: Tree Analysis Using New Technology, vers. 1.1. Program and documentation, available from the authors and at <http://www.zmuc.dk/public/phylogeny/TNT/>.

Hall, T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95� 98.

Igarashi, S. and H. Fukuda. 1997. The life histories of Asian butterflies vol. 1. Tokai University Press, Tokyo.

Igarashi, S. and H. Fukuda. 2000. The life histories of Asian butterflies vol. 2. Tokai University Press, Tokyo.

Lamas, G. 2004. Checklist: Part 4A. Hesperioidea � Papilionoidea vol. 5A. Association for Tropical Lepidoptera/Scientific Publishers, Gainesville.

Lopez-Vaamonde, C., N. Wikström, C. Labandeira, H. C. J. Godfray, S. J. Goodman, and J. M. Cook. 2006. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology 19:1314� 1326.

Nel, A., J. Nel, and C. Balme. 1993. Un nouveau Lépidoptère Satyrinae fossile de l� Oligocène du Sud-Est de la France (Insecta, Lepidoptera, Nymphalidae). Linneana Belgica 14:20� 36.

Peña, C., N. Wahlberg, E. Weingartner, U. Kodandaramaiah, S. Nylin, A. V. L. Freitas, and A. V. Z. Brower. 2006. Higher level phylogeny of Satyrinae butterflies (Lepidoptera:

Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution 40:29� 49.

Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572� 1574.

Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19:101� 109.

Sanderson, M. J. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301� 302.

Scott, J. A. 1985. The phylogeny of butterflies (Papilionoidea and Hesperioidea). Journal of Research on the Lepidoptera 23:241� 281.

Swofford, D. L. 2002. PAUP. Phylogenetic Analysis Using Parsimony ( and other methods). Version 4. Sinauer Associates, Sunderland, MA.

van Son, G. 1955. The butterflies of Southern Africa. Part 2. Nymphalidae: Danainae and Satyrinae. Transvaal Museum Memoir Pages 1� 166.

Vane-Wright, R. 2004. Butterflies at that awkward age. Nature 428:477� 480.

Vane-Wright, R. I. and R. L. Smiles. 1975. The species of the genus Zethera Felder (Lepidoptera: Nymphalidae, Satyrinae). Journal of Entomology. Series B 44:81� 100.

Wahlberg, N. 2006. That awkward age for butterflies: insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Systematic Biology 55:703� 714.

Wahlberg, N., E. Weingartner, and S. Nylin. 2003. Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea). Molecular Phylogenetics and Evolution 28:473� 487.

Wahlberg, N., and C. W. Wheat. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology in press.

Wheat, C. W., Vogel, H., Wittstock, U., Braby, M. F., Underwood, D. & Mitchell-Olds, T. 2007. The genetic basis of a plant-insect coevolutionary key innovation. Proc. Natl. Acad. Sci. USA 104, 20427-20431. (DOI 10.1073/pnas.0706229104)

Paper III

The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a

challenge for phylogenetic methods

Carlos Pena1, Soren Nylin1 & Niklas Wahlberg1,2

1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden2Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland

Abstract

We have inferred the first comprehensive phylogenetic hypothesis of butterflies in the tribeSatyrini. We used 4447 base pairs of DNA sequences from the mitochondrial gene COI andthe nuclear genes EF-1α, GAPDH, RpS5 and wingless for 171 Satyrini taxa representing 129genera and eight outgroups, in order to obtain a hypothesis of relationships within Satyriniunder maximum parsimony, and model-based methods (Maximum Likelihood and Bayesianinference). We estimated dates of origin and diversification for major Satyrini clades and per-formed a biogeographic analysis using a dispersal-vicariance framework in order to reconstructthe biogeographical history of the group. We found that some Satyrini are long-branch taxathat affect the accuracy of all three phylogenetic methods. Moreover, the different methodsproduced incongruent phylogenetic hypotheses for Satyrini. We found that Satyrini appearedaround 35 Mya somewhere in the Eastern Palaearctic, Oriental and/or Indo-Australian regions,and underwent a quick radiation between 32 and 26 Mya, during which time most of its com-ponent subtribes originated. The most diverse groups in Satyrini, subtribes Euptychiina andPronophilina, are the product of ancestral dispersals from the Palaearctic into the New World.Several factors were important for the diversification of Satyrini butterflies: ability to feedon grasses; an early habitat shift into open, non-forest habitats; and, geographic bridges thatpermitted dispersals from the Palaearctic into North America (the forest belt across Beringia)and from North to South America (the GAARlandia landspan).

Keywords: bayesian – biogeography – diversity – grasses – habitat shift – hostplants – likelihood – parsimony

“To a man with a hammer, everything looks like a nail”. Mark Twain

1 Introduction

There are three widely used approachesfor phylogenetic inference —maximum parsi-mony (MP), Maximum Likelihood (ML) andBayesian inference (BI). Phylogeneticists base

their preference of a particular method onphilosophical and pragmatic grounds. MP usesa minimum of a priori assumptions on the setof characters —it assumes that any inherita-ble trait is a potential homology (Grandcolaset al., 2001). Thus, all characters are treated

1

The radiation of Satyrini butterflies

equally (used under same weights) due to ei-ther inability or unwillingness to identify a pri-ori homoplasies (Hennig, 1968). In MP, thepreferred hypothesis of relationships impliesthe minimum amount of evolutionary change(evolutionary steps) required to explain a givendataset (Farris, 1970; Swofford et al., 1996).ML and BI are model-based approaches wheremore a priori knowledge on the set of char-acters is used by employing models of char-acter evolution. ML estimates the probabilityof how well the data will be explained by aphylogenetic tree (Felsenstein, 2004), while BIestimates the probability of how well a phy-logenetic tree will be explained by the data(Huelsenbeck et al., 2001; Brooks et al., 2007).ML needs to calculate each possible tree thatcan be derived from the data, according to theselected model of character evolution, in addi-tion to calculations of branch lengths for eachdifferent topology (Huelsenbeck & Rannala,1997). BI is often preferred over ML due tothe use of “shortcuts” employing the MarkovChain Monte Carlo algorithm (MCMC) thatpermits searching over a smaller number oftrees according to their posterior probability(Huelsenbeck et al., 2001). This allows BI tobe less computer intensive and quicker thanML.

While these three methods are widely used,they are not exempt of criticism. MP isaffected by long branch attraction artifacts(Felsenstein, 1978), producing spurious rela-tionships when homoplasy overwhelms homol-ogous characters (Bergsten, 2005). ML is af-fected by repulsion of sister taxa when theyare long branches (Siddall, 1998). Moreover,ML and BI are inaccurate when rates of DNAevolution are not homogeneous over time andamong lineages (Kolaczkowski & Thornton,2004). Advocates of these various approacheshave been very vocal on defending their meth-ods and pointing out the shortcomings of oth-ers (Swofford et al., 1996; Siddall, 1998; Farris,

1999; Ebach et al., 2008). Although it is wellknown that these methods do not perform wellunder all circumstances, this also reflects thelack of consensus of the scientific communityon phylogenetic methodology.

In this state of affairs, the novice mightbe puzzled when confronted with the task ofchoosing a method to analyze her or his data.Thus, some prefer to use a conciliatory ap-proach by employing both MP and model-based methods. If topologies from differentmethods are congruent, the resulting phyloge-netic hypothesis is considered robust (Martinet al., 2002), otherwise caution is shown forincongruent nodes (Pol & Siddall, 2001; Ko-laczkowski & Thornton, 2004). Fortunately,there are strategies to avoid some artifacts ofthe methods —e.g. long branch extractionsin MP (Siddall & Whiting, 1999); the use ofcomplex mixed models in ML (Kolaczkowski &Thornton, 2004). Although incongruence hasbeen blamed on shortcomings of the methods,less often incongruence has been attributedto problematic data, probably because mostof these studies are based on, sometimes bi-ologically implausible (see Steel, 2005), simu-lated data (i.e. Felsenstein, 1978; Siddall, 1998;Kolaczkowski & Thornton, 2004). While ithas been repeatedly stated that increasing thenumber of taxa and characters in the datasetswould help resolving ambiguous relationshipsand weakly supported nodes (Wiens, 1998;Zwickl & Hillis, 2002), this has only just re-cently begun to be explored and supported byanalyses of empirical data (Hallstrom & Janke,2008; Wahlberg & Wheat, 2008).

In this study, we compare the results fromthree phylogenetic methods, MP, ML and BI,during an effort to obtain a phylogenetic hy-pothesis for a group of Nymphalidae butterfliesin the diverse tribe Satyrini. We use exten-sive taxon sampling of Satyrini subtribes, andrelated taxa as outgroups, to generate a phy-logenetic hypothesis for the subtribes in the

2

The radiation of Satyrini butterflies

Satyrini. We discuss incongruent topologies re-trieved by the methods and choose a preferredhypothesis of relationships. We use the pre-ferred tree to study the evolution of habitatuse, estimate dates of origin and divergence formajor Satyrini clades and perform a biogeo-graphical analysis using a dispersal-vicarianceanalysis (DIVA) in order to reconstruct thebiogeographical history of the group.

1.1 The model organisms: Satyrinibutterflies

The evolutionary history of butterflies (Hespe-rioidea and Papilionoidea) has been largely amystery. The lack of phylogenies in a tem-poral framework (Vane-Wright, 2004) has pre-vented the study of aspects of the evolutionof butterflies such as biogeographical eventsand evolution of adaptive traits. It is onlyrecently that studies using molecular meth-ods have provided time estimates for the ori-gin and diversification of butterflies in theNymphalidae (Wahlberg, 2006; Kodandarama-iah & Wahlberg, 2007; Wahlberg & Freitas,2007; Pena & Wahlberg, 2008), Papilionidae(Braby et al., 2005; Nazari et al., 2007) andPieridae (Braby et al., 2006; Wheat et al.,2007). Butterflies in the subfamily Satyrinaeinclude some 2500 species of worldwide distri-bution (Ackery et al., 1999). Despite the highnumber of species, this group has been largelyneglected, in particular there have been veryfew phylogenetic studies. The only phyloge-netic hypothesis available for the group as awhole (Pena et al., 2006) reveals that Satyrinaeas traditionally construed is a polyphyletic en-tity in need of taxonomic revision. Pena et al.(2006) and Pena & Wahlberg (2008) show thatthe bulk of Satyrinae species is included in oneclade, the tribe Satyrini, which encompassesapproximately 2200 species.

The species of Satyrini are distributed world-wide and began to diversify about 36 million

years ago (Mya), in the Late Eocene, almostsimultaneously with the rise and spread ofgrasses (Pena & Wahlberg, 2008). In a pre-vious study (Pena & Wahlberg, 2008), we pro-posed that ancestral Satyrinae inhabited theubiquitous dicotyledonous dominated forestsof the Paleocene and Eocene feeding on earlymonocots and basal Poales. We speculatedthat the mostly grass-feeding tribe Satyriniwas able to diversify and spread throughoutthe world after shifting habitats from dicotyle-donous forests to grasslands and savannahs(Pena & Wahlberg, 2008) that replaced vastareas of forest since the Oligocene (33–26 Mya)(Willis & McElwain, 2002). Pena & Wahlberg(2008) did not draw major conclusions on theevolution of the lineages in the Satyrini becauseof limited taxon sampling —we only included33 Satyrini species out of 2200. In order to in-vestigate the diversification of this diverse andinteresting group of butterflies, a denser taxonsampling is necessary to discover which factorsare important in the spectacular radiation ofSatyrini.

1.2 Distribution patterns

Although Satyrini butterflies are distributedworldwide, the majority of species are foundin the Neotropical region. These butterflies in-habit temperate and tropical habitats, livingin high altitude Andean grasslands (paramos)(Viloria, 2003), cloud forests of Andean moun-tains from 1400 m up to the border of theparamos at 3200–3400 m elevation (Pyrcz &Wojtusiak, 2002), the Amazonian lowlands, aswell as in subarctic and boreal ecosystems ofthe world.

The subtribe Euptychiina was thought tobe entirely restricted to the Americas. How-ever, there is mounting evidence that the Ori-ental Palaeonympha opalina Butler, 1871 be-longs to this subtribe, as suggested by morpho-logical characters (Miller, 1968) and molecular

3

The radiation of Satyrini butterflies

data (Pena et al., 2006). Most of Euptychi-ina inhabit the Amazonian lowlands being par-ticularly common in bamboo patches locallyknown as pacales. However, some taxa colo-nized montane forested habitats along the An-des (Pena & Lamas, 2005; Pulido & Andrade,2008) while a few taxa range into North Amer-ica. The odd genus Oressinoma appears tobe of Australian origin and not an euptychiine(Pena et al., 2006).

The subtribe Pronophilina is the most di-verse butterfly group in high montane habi-tats in the Andes. Most species are dis-tributed in remarkably narrow elevation ranges(Pyrcz & Wojtusiak, 2002). The pronophilinesrange from Central America into South Amer-ica along the Andes from Venezuela to Bolivia,also occurring in the mountain ranges of South-eastern Brazil, Paraguay and northeastern Ar-gentina known as Mata Atlantica or the At-lantic Forest.

The Coenonymphina (formerlyHypocystina) are mainly of Australiandistribution, but includes the NeotropicalOressinoma and the Palaearctic Coenonympha(Pena et al., 2006). The subtribes Parargina,Melanargiina and Maniolina are found inEurope, North Africa and temperate Asia.The Mycalesina are distributed in Africa,Indo-Australia and some taxa extend intotemperate Asia. Erebiina and Satyrina arefound in Europe, Asia, North America andsome Satyrina in North Africa. Membersof the “Lethina” (sensu Pena et al., 2006)are found in Europe, Africa, Asia, Indonesiaand some taxa in North America, while theYpthimina occur in Asia, New Caledonia,Africa and Indonesia.

1.3 Historical biogeography

Miller (1968), in his taxonomic revision of theentire Satyrinae, proposed an evolutionary treefor the relationships of his higher taxa in the

Satyrinae. Miller hypothesized numerous pos-sible routes for colonization of the world byearly satyrines. Unfortunately, Miller’s phylo-genies and biogeographical hypotheses are notbacked up by any explicit matrix of charactersor explicit methodology.

In a phylogenetic study of Pronophilinaand the New Zealand endemic Argyrophengaantipodum Doubleday 1845, Viloria (2003,2007b) stated that his dataset supports aclose relationship between south-temperatepronophilines and Argyrophenga. Viloria pro-posed that subtribes in the Satyrini origi-nated in Gondwana and that after the break-up (ca. 60 Mya) some members of Euptychiinaand Hypocystina remained in South America.Later on, the Pronophilina diverged from theHypocystina and colonized Mesoamerica andthe Caribbean islands by 10–3 Mya. Unfortu-nately, Viloria (2003, 2007b) based his biogeo-graphical conclusions on erroneous interpreta-tions of his phylogenetic trees. In the cap-tion of his figure 1, Viloria (2003: 248) writes:“New Zealand Argyrophenga antipodum is in-cluded as the outgroup, and its closest speciesis the Chilean endemic Argyrophorus argen-teus”. However, this is not correct. No ingrouptaxon is more closely-related to the outgroupthan to its sister taxon. Moreover, it is notcorrect to state that the outgroup at the rootis most closely related to any ingroup taxonsince the outgroup can be arbitrarily replacedwith any other taxon.

The study of Pena & Wahlberg (2008) hy-pothesized a post-Gondwanan origin at 36 Myafor the Satyrini. Thus, the ancestor that even-tually gave rise to the worldwide distributedSatyrini inhabited an unknown drifting frag-ment of either Gondwana or Laurasia. Al-though it is not known where Satyrini origi-nated, its inferred age suggests that its currentintercontinental distribution is best explainedin part by dispersal events. Moreover, evi-dence is accumulating that dispersal has been a

4

The radiation of Satyrini butterflies

prominent factor in the historical biogeographyof butterflies (Wahlberg, 2006; Kodandarama-iah & Wahlberg, 2007).

2 Methods

2.1 Taxon sampling

Our dataset consists of 179 terminal taxa,including 171 Satyrini species encompassing129 representative genera from all subtribes inthe Satyrini, and eight Satyrinae taxa as out-groups which represent major lineages in the“satyrine” clade (sensu Wahlberg et al., 2003;Pena et al., 2006). All sequences have been de-posited in GenBank. Table 1 shows the currentclassification of sampled species and GenBankaccession numbers.

2.2 Molecular characters

We extracted DNA from two butterfly legs,dried or freshly conserved in 96% alcohol, us-ing QIAGEN’s DNeasy extraction kit. Forall species, we sequenced 1487 bp of theCytochrome Oxidase subunit I gene (COI)from the mitochondrial genome, 1240 bpof the Elongation Factor-1α gene (EF-1α),412 bp of the wingless gene, 691 bp ofthe Glyceraldehyde-3-phosphate Dehydroge-nase (GAPDH) and 614 bp of the Ribosomalprotein S5 (RpS5) from the nuclear genome.We used the hybrid primers for PCR amplifica-tion and sequencing from Wahlberg & Wheat(2008). Sequencing and sequence alignmentwas performed following protocols in Pena &Wahlberg (2008).

2.3 Phylogenetic analyses

The complete dataset consisted of 179 taxaand 4447 characters. We performed a max-imum parsimony analysis treating all charac-ters as unordered and equally weighted. We

performed heuristic searches using the softwareTNT 1.1 (Goloboff et al., 2003) using a levelof search 10, followed by branch-swapping ofresulting trees with up to 10000 trees heldduring each step. The searches were per-formed using the New Technology Search algo-rithms of TNT. We initially rooted the max-imum parsimony analyses with Haetera piera(Haeterini) because it appears to be sister ofSatyrini in our recent study of Satyrinae (Pena& Wahlberg, 2008). However, we found long-branch attraction (LBA) artifacts between Eu-ptychia and this outgroup (see results). Wedecided to add several taxa to our outgroupselection in order to break the attraction ofingroup taxa to the outgroup species (Berg-sten, 2005). Additionally, we performed long-branch extractions (sensu Siddall & Whiting,1999) in order to identify other taxa also suffer-ing of LBA. Thus, we included related speciesin the Brassolini and Morphini and rootedthe resulting networks from our analyses withMorpho helenor. We performed tests on thetopology by rooting the networks with differ-ent outgroups. We evaluated clade robustnessby using the Bremer support (Bremer, 1988)and the Partitioned Congruence Index (PCI)(Brower, 2006). The PCI was drawn fromPartitioned Bremer Support (PBS) values(Gatesy et al., 1999) obtained using the script-ing feature of TNT (script pbsup.run takenfrom http://www.zmuc.dk/public/phylogeny/TNT/scripts/).

For the ML analyses, we used the soft-ware RAxML v7.0.3 [Randomized axeleratedmaximum likelihood for high performancecomputing] (Stamatakis et al., 2005, 2008)on the BlackBox cluster of the Vital-ITUnit of the Swiss Institute of Bioinformatics(http://phylobench.vital-it.ch/raxml-bb/).

We used the software MrBayes 3.1.2 (Ron-quist & Huelsenbeck, 2003) for Bayesian infer-ence. We modeled the evolution of sequencesaccording to the GTR + Γ model. Parameter

5

The radiation of Satyrini butterflies

values were estimated separately for each generegion (Table 2). The analysis was run twicefor 20 million generations, with every 1000thtree sampled and the first 80000 sampled gen-erations discarded as burn-in (based on visualinspection of the log likelihood reaching sta-tionarity). We run the analyses on an AMD 64dualcore twin processor workstation using theLAM/MPI technology for parallel computing(http://www.lam-mpi.org/).

2.4 Times of divergence

We used the Bayesian analysis softwareBEAST ver. 1.4.7 (Drummond & Rambaut,2007) under a log-normal relaxed molecularclock and a Yule birth model of speciation tomodel the rate of molecular evolution alongthe Satyrini phylogenetic trees. The DNA se-quences were divided in five datasets (one foreach gene), with parameter values estimatedindependently. The dataset was analyzed un-der the GTR + Γ model with a relaxed clockallowing branch lengths to vary following anuncorrelated Lognormal distribution (Drum-mond et al., 2006). The analysis was run twicefor 19 million generations (with pre-run burn-in of 800000 generations) with sampled treesevery 2000 generations and the results com-piled using both runs. The tree priors were setto a Yule speciation process and all other priorswere left to the default values in BEAST.

In order to obtain absolute times of diver-gence, we used four calibration points. Wefixed the root (= subfamily Satyrinae) at 60.99Mya with a standard deviation of 6.1 Myaas inferred from our previous study (Pena &Wahlberg, 2008). We used an age of 36.6Mya (± 5.1 Mya) for Satyrini (from Pena &Wahlberg, 2008). We used the age of 25 Mya(± 1 Mya) for the satyrine fossil Lethe cor-bieri from Late Oligocene (Nel et al., 1993),and fixed the clade (Satyrodes, Lethe, En-odia) with the minimum age of 25 Mya (± 1

Mya), and 4.3 Mya (± 0.5 Mya) for the splitof Coenonympha pamphilus and Coenonymphathyrsis based on results by Kodandaramaiah &Wahlberg (2009). Convergence was analyzedwith Tracer v1.3 and trees were summarizedwith TreeAnnotator v1.4.7 software, which aredistributed along with the BEAST package.

Figure 1 – The eight different biogeographical re-gions used in this study for the DIVA analysis.A. Western Palaearctic; B. Eastern Palaearctic;C. Southeastern Asia; D. Africa; E. Neotropics;F. Nearctic; G. Central America; H. Australia.

2.5 Biogeographical analysis

We investigated the biogeographical history ofSatyrini butterflies by analyzing our preferredphylogenetic hypothesis (see discussion) undera DIspersal-Vicariance Analysis (DIVA; Ron-quist, 1997). We divided the world into eightbiogeographical regions largely reflecting thoseof Sclater (1858, Fig. 1). When replacing ourterminal taxa with their distributions, we in-cluded the distributions of all member speciesof our sampled genera, so that our dispersal-vicariance analysis would not be affected bytaxon sampling (since, in some cases, we sam-pled only one species per genus for our datamatrix). DIVA was not able to cope withall our terminals, so we collapsed part of theCoenonymphina and the Pronophilina. Thisdid not have any effect on the inference ofancestral areas of distribution because all thepruned taxa are distributed in the same broad

6

The radiation of Satyrini butterflies

biogeographical region as demarcated in Fig.1 (Australia for some Coenonymphina and theNeotropics for the Pronophilina). For the out-groups, we used the topology from Pena &Wahlberg (2008) in order to avoid interferenceon the ancestral distributions of the ingroup.Ancestral distributions were inferred using de-fault costs in the software DIVA (Ronquist,1996) —vicariance events cost zero, dispersaland extinction events cost 1 per unit area.

We analyzed the data by constraining themaximum ancestral areas to two (“maxareas= 3”) in order to improve the resolution of theanalysis when estimating the most likely ances-tral distribution of the nodes (Ronquist, 1997).

2.6 Patterns of butterfly/habitat as-sociations

We examined the evolution of habitat use inSatyrini by the optimization of data gatheredfrom the literature on butterfly habitats, fromvan Son (1955); Scott (1986); DeVries (1987);Luis & Llorente (1993); Sourakov (1996); Tol-man & Lewington (1997); Tuzov (1997); Par-sons (1999); Braby (2000); Igarashi & Fukuda(2000); Viloria (2000); Freitas (2002); Nguyenet al. (2002); Viloria et al. (2003); Freitas(2004a,b); Pyrcz (2004a,b); Tangah et al.(2004); Habel et al. (2005); Larsen (2005);Concha & Parra (2006); Pijpe (2007); Viloria(2007a) and CP (unpub. data), and coded thehabitat use by the sampled Satyrini speciesas a single binary character with the states“forest habitat” and “non-forest habitat”. Wecoded 0 for forest and 1 for non-forest habi-tats. Character coding for each species is givenin Table 1. Character states were optimizedunder maximum parsimony using ACCTRANin WinClada ver. 1.00.0.8 (Nixon, 2002) ontothe phylogenetic tree used for showing the esti-mated times of divergence for Satyrini lineages.

3 Results

3.1 Maximum parsimony analysis

When using only Haetera piera as outgroup,the genus Euptychia (represented by E. enyo,E. sp. n. 2, E. sp. n. 5, E. sp. n. 6and E. sp. n. 7) was pulled toward theroot, appearing sister to all other Satyrini.Bergsten (2005) suggested that the LBA be-tween the outgroup and long terminal ingroupbranches can be broken by having a good sam-pling of outgroups. Therefore, when we in-cluded members of the Morphini and Bras-solini as outgroups and rooted the trees withMorpho helenor, we found that Euptychia ap-pears no longer attracted to the root. How-ever its position within the ingroup is un-stable, often appearing attracted to Ragadia,and taxa in the Pronophilina and Ypthim-ina (Calisto, Eretris, Callerebia, Proterebia,Ypthima and Ypthimomorpha), grouping alltogether in a clade. Since MP can to grouplong branches whether they are related or not(Bergsten, 2005), we analyzed different subsetsof our data excluding each of the taxa group-ing with Euptychia (long-branch extraction).During this exercise (not shown), we foundthat all these taxa continued to be attractedto each other except when Euptychia was ab-sent in the analysis. In the latter case, Calistoand Eretris appear as sister, Ragadia groupswith Coelites, Acrophtalmia, and Loxerebia,while Ypthima and Ypthimomorpha groupwith the other Ypthimina (Stygionympha, Cas-sionympha, Neocoenyra, Callerebia, Paralasaand Pseudonympha, and surprisingly with Pro-terebia). When we analyzed our dataset with-out all other LBA taxa, MP recovers Euptychiaas sister to all other Euptychiina (Fig. 2).

Consistent with Pena et al. (2006) and Pena& Wahlberg (2008), Satyrini is a strongly sup-ported monophyletic tribe (BS: 21). There isvery low BS for several deep nodes that define

7

The radiation of Satyrini butterflies

some subtribes. The only subtribes with goodto moderate support are Satyrina (BS: 38),Maniolina (BS: 33), Eritina (BS: 13) and My-calesina (BS: 31) —although the relationshipsamong Mycalesina, Lethina and Parargina areunclear in this dataset (Figs. 2, 7). Thesestrongly supported nodes are very robust asshown by the high PCI values (Fig. 2).

Not surprisingly there is a Bremer Supportvalue of 1 for an Euptychiina including Eu-ptychia. This is caused by Euptychia beinga long branch that tends to jump to differ-ent positions in the cladogram. This was alsofound by Murray & Prowell (2005), where theexclusion of Euptychia from Euptychiina wasstrongly supported based on two gene regions(COI and EF-1α). Coenonymphina (includ-ing the Australian “hypocystines”) is stronglysupported (BS: 9) and our results suggest thatthe genus Argyronympha is sister to the rest ofthe genera in this subtribe. Pronophilina hastwo clearly defined clades, one of them beingmainly southern pronophilines, although alsoincluding some northern genera —Steremnia,Manerebia and Lymanopoda. The pronophi-lines Calisto and Eretris appear as sister taxaand do not group with other Pronophilina.This is caused in part by the long-branch arti-facts and the weak support of basal nodes. Itappears that our five genes do not carry enoughphylogenetic signal to resolve unambiguouslythe relationships among subtribes. Ypthim-ina is monophyletic if Proterebia is included,although the support is weak (BS: 1). Cur-rently, the genus Proterebia is classified underErebiina.

3.2 Maximum Likelihood

For the full dataset (including all other out-groups in addition to Haetera), the analy-sis in RAxML was also disturbed by long-branch taxa. As in the parsimony analysis,the pronophiline Calisto appears attracted to

Euptychia, although this relationship is notstrongly supported (bootstrap value 20). Thepronophiline Eretris, although weakly sup-ported, appears as sister to all other Euptychi-ina (which has strong support, bootstrap value89).

In the analyses without long-branches, it ispossible to identify a strongly supported cladecontaining Euptychiina, Ypthimina, (Paralasa,(Melanargiina + Satyrina)), Pronophilina,Erebiina, Maniolina and (Hyponephele + Cer-cyonis) (Fig. 3). This clade was also stronglysupported in the Bayesian analysis (see below).The genera Coelites, Loxerebia and Acroph-talmia form a clade and appear as sister toall other Satyrini taxa (Fig. 3). As well asin the maximum parsimony analysis, Zipaetis,Erites and Orsotriaena group together form-ing a cohesive Eritina, which appears sister tothe Coenonymphina. Melanargiina is sister tothe Satyrina with strong support. There ismoderate support for Ypthimina without Par-alasa —the latter taxon appears sister to Mela-nargiina + Satyrina. Hyponephele and Cer-cyonis are recovered as a strongly supportedclade (bootstrap 100) in agreement with Penaet al. (2006). As in the parsimony analysis,Pronophilina are recovered in two strongly sup-ported clades. However, there is weak supportfor these two clades being sister groups (boot-strap 19). This was also found in the par-simony analysis where Pronophilina is proneto appear as polyphyletic. Although severalnodes are weakly supported by bootstrap val-ues (Fig. 3), some clades are recovered as ro-bust: i.e. (Parargina, (Mycalesina + Lethina))and ((Hyponephele + Cercyonis) Maniolina).A pruned cladogram of the relationships of theSatyrini subtribes is shown in Fig. 7.

3.3 Bayesian inference

The majority rule cladogram is completely re-solved (Fig. 4) and entirely congruent with the

8

The radiation of Satyrini butterflies

majority rule cladogram obtained in the MLanalysis, as is not surprising, given that thetwo analyses employed the same model. TheBayesian analysis recovered two major cladeswith good support: a clade comprising (Eritina+ Coenonymphina) sister to the same cladefrom ML (Parargina, (Mycalesina + Lethina));and all other subtribes included in a robustclade (posterior probability = 0.98). Posteriorprobability values are similar to the bootstrapvalues obtained in the ML analysis.

3.4 Times of divergence

The phylogram obtained by the BEAST anal-ysis (Fig. 5) is not completely congruent withthe MP and the other model-based methods(ML and BI). Our BEAST analysis showedfairly wide intervals of confidence for most ofthe estimated times of divergence despite us-ing four calibration points (Fig. 5). How-ever, it is possible to identify some patternsin the origin and diversification of Satyrini lin-eages. Our results indicate that Satyrini origi-nated around 35 Mya (± 4.5 Mya), during theLate Eocene. It seems that the Satyrini un-derwent a quick diversification phase in a rela-tively short span of time —virtually all of thesubtribes in the Satyrini appeared during theOligocene, between 32 and 26 Mya (Fig. 5).The clade formed by Eritina, Coenonymphina,Parargina, Lethina and Mycalesina originatedearlier in the evolution of Satyrini (32.9 Mya).The Coenonymphina and Eritina are recoveredas the oldest subtribes, diverging at 32 Mya.Melanargiina appears to be the youngest sub-tribe in Satyrini, diversifying at 17 Mya (± 4Mya).

3.5 Dispersal-vicariance analysis

According to our DIVA analysis, the esti-mated area of origin for Satyrini is ambigu-ous. The analysis showed that Satyrini ap-

peared in any combination of the following bio-geographical regions: Eastern Palaearctic, Ori-ental, Indo-Australia and Neotropical (areas B,C, E and H in Fig. 6). The clade formed byEritina, Coenonymphina, Parargina, Lethinaand Mycalesina appeared either in the EasternPalaearctic + Oriental region (BC) or East-ern Palaearctic and Indo-Australian regions(BCH) —DIVA shows a third possibility be-ing the Eastern Palaearctic + Australian re-gion (BH). Since this clade appeared first inthe evolution of Satyrini (see above), we pro-pose that the most likely origin of the tribeSatyrini is somewhere in the Eastern Palaearc-tic, Oriental and/or Indo-Australian regions.

The position of the clade Coelites + Acroph-talmia + Loxerebia is ambiguous —it is eithersister to all Satyrini (as found by the analysesin ML and BI, Figs. 3–4) or groups in a cladewith Eritina (MP analysis, Fig. 2). We didnot include these genera in the DIVA analy-sis in order to avoid ambiguity. Thus, we wereunable to estimate its ancestral area of originand test whether it has any influence on ourbiogeographical analysis. In any case Satyriniappears to have originated in the Old Worldand/or Indo-Australia.

While Coenonymphina and Ragadiinaevolved in Southeastern Asia and Indo-Australia, the Parargina, Mycalesina andLethina clade originated the Eastern Palaearc-tic and dispersals into Africa and NorthAmerica originated some taxa in the subtribesMycalesina and Lethina respectively.

DIVA resolved the ancestral distributionof the other major clade of Satyrini (in-cluding subtribes Euptychiina, Pronophilina,Ypthimina, Melanargiina, Satyrina, Erebiinaand Maniolina) to be the Neotropical region(area E, Fig. 6). As mentioned above, sinceSatyrini might have originated in the OldWorld, we propose that the younger clades thatinclude the bulk of Satyrini species, the mainlyNeotropical Euptychiina and Pronophilina, are

9

The radiation of Satyrini butterflies

the product of the dispersal of their ancestorsfrom the Palaearctic into the New World.

Thus, we propose that the most likely ori-gin of the tribe Satyrini was somewhere inthe Eastern Palaearctic, Oriental and/or Indo-Australian regions.

3.6 Evolution of habitat use

We obtained data on habitat use for 162species. We could not confirm records forChonala miyatai, Tatinga thibetana, Rhaph-icera dumicola and Sinonympha amoena, whileHypocysta pseudirius and Amphidecta cal-liomma were recorded using both habitats.The evolution of habitat use is shown in Fig.8. Our results show that the habitat shift fromforests into open habitats occurred with theorigin of the tribe Satyrini. Although openhabitats are exploited by most species, therehave been several shifts back to the ancestralforest habitats. Some clades in the Euptychi-ina and Pronophilina are almost entirely com-posed by species inhabiting non-forests.

4 Discussion

4.1 Competing phylogenetic meth-ods

Since MP and ML methods were deeply af-fected by long-branch taxa, it was necessary totemporarily remove the problematic taxa fromthe analysis in order to discuss the congruenceamong the methods. There is complete con-gruence between ML and BI due to the useof the same a priori model of molecular evo-lution for the dataset, which means that thecharacter state transformations were analyzedunder different weights while the MP methodtreated all character state transformations un-der the same weight. However, some cladeswere consistently recovered by all three meth-ods. These clades were backed by high Bremer

support values in the MP and appeared re-solved in the ML analysis (majority-rule tree)while they were recovered with high posteriorprobability in Bayesian inference.

It is notable that deep internal nodes leadingto the subtribes are mostly very short branchesand supported by very low bootstrap valuesin ML and Bayesian inference (Fig. 2). Ourtiming estimates show that most of the sub-tribes in Satyrini appeared between 32 and26 Mya (Fig. 5). This pattern is compati-ble with a “rapid radiation” scenario (Whit-field & Lockhart, 2007), and to a surprisingextend with the narrative scheme described byMiller (1968). If indeed, this group underwenta quick succession of cladogenesis events, it ispossible that complete lineage-sorting was notachieved by the five genes in our dataset, andadditional gene sequences might not be ableto resolve unambiguously these relationships(Rokas et al., 2005; Hallstrom & Janke, 2008;but see Wahlberg & Wheat, 2008).

The model-based methods (BI and ML)and MP are incongruent in resolving the po-sitions of several Satyrini clades, most re-markably regarding the “Coelites clade” —(Coelites, (Acrophtalmia, Loxerebia)). In BIand ML, this clade appears as sister to allother Satyrini species (Figs. 3–4), while itgroups with the Ragadiina in the MP analysis(Fig. 2). In our model-based trees, the genusParalasa is sister to Melanargiina + Satyrinawhile MP recovers Paralasa as a member ofthe subtribe Ypthimina. More interesting isthe fact that while MP was not able to re-solve unambiguously the relationships of Man-iolina, Erebiina, (Melanargiina, Satyrina) andPronophilina, these relationships correspondto very short branches in ML and BI, whichare supported by very low bootstrap values.It is tempting to infer that this reflects theincapability of the methods to find sufficientphylogenetic signal from our matrix of charac-ters to uncover the phylogenetic relationships.

10

The radiation of Satyrini butterflies

MP reflects this ambiguity by producing a setof different most parsimonious trees, while BIand ML do it by showing very low levels ofbootstrap values. Even by using DNA se-quences from 5 genes, the methods could notdeal with the probable rapid radiation of themost speciose clade of the Satyrini and failedto produce a uniformly robust hypothesis of re-lationships. Although the methods may haveshortcomings and be affected by artifacts ofthe data, it is fair to acknowledge that part ofthe problem is due to the nature of the studygroup.

We conjecture that there must be some genesin the Satyrini butterflies’ genome that un-derwent complete lineage sorting and retainenough phylogenetic signal to reveal the phy-logenetic patterns. If this is true, a phyloge-nomic approach could resolve unambiguouslythe phylogeny of the Satyrini (Wahlberg &Wheat, 2008). However, in this study, themethods could not resolve the phylogeny ofSatyrini by using our chosen 5 genes. It may betoo naive to assume that our current tools aresophisticated enough to uncover the evolution-ary history of such a diverse group of butterflies—that might have been even more diverse inthe past— that started evolving 36 Mya some-where in the Old World and managed to spreadall over the world while radiating in a shortspan of time and, possibly, suffering many in-stances of extinctions. In a way, it is gratify-ing that not all patterns are laid bare in a siglestroke, and that work remains to be done toclarify relationships among the basal clades ofthe tribe.

Thus, it appears that the methods are in-congruent when dealing with the nodes of theSatyrini rapid radiation. This does not meanthat we claim that the methods are completelyworthless either (Ebach et al., 2008). Analy-ses of “easy and clean” datasets are likely tobe resolved identically by all three methods(Brooks et al., 2007). At least for Satyrini but-

terflies these methods are unable to provide anunambiguously supported hypothesis of phylo-genetic relationships. Nevertheless, the meth-ods were able to uncover interesting patternsof relationships. These relationships were con-sistently recovered by all three methods andstrongly supported by bootstrap and Bremervalues.

We argue that all phylogenetic methods aremere tools that are not panacea because theyperform satisfactorily only when certain cri-teria are met (i.e. long branches are not in-cluded) and should be used depending on thequestion the researcher needs to answer.

4.2 Historical biogeography ofSatyrini

Since Satyrini species are distributed all overthe world and most of the subtribes are re-stricted to particular biogeographical regions,it has been suggested that the ancestor ofSatyrini was distributed in Gondwana and thecurrent geographical distribution of the groupis explained as the result of speciation byvicariance due to the Gondwanan break-up(Viloria, 2003, 2007b). This hypothesis wouldgain support if Satyrini fossils older than 65Mya were found in current continents that usedto be part of Gondwana. However, the scantfossil record of butterflies is not of much help,since only four fossil species are assigned to theSatyrinae and the oldest specimen is thoughtto be around 25 Mya in age (Grimaldi & En-gel, 2005). One way to test the Gondwananhypothesis is by estimating divergence times ofthe Satyrini lineages by using inferred molec-ular rates of character state change of extanttaxa.

We needed to choose one topology in or-der to develop a biogeographical scenario forthe Satyrini. Thus, we decided to follow thetopology from the BEAST analysis for the bio-geographic analysis because this software also

11

The radiation of Satyrini butterflies

estimates the times of origin and diversifica-tion for the nodes of interest in the evolu-tion of Satyrini. As we want to test whethermajor events in the evolutionary history ofSatyrini are correlated with geological events,we cannot calibrate our phylogram with geo-logic events (Braby et al., 2005). Thus, thehypothesis of a Gondwanan origin for Satyriniwas independently tested in a previous study(Pena & Wahlberg, 2008) by our calibrationwith the fossil Lethe corbieri (25 ± 1.0 Mya).In this study, although we also included sec-ondary calibration points in our analysis suchas the split of Coenonympha pamphilus and C.thyrsis at 4.3 Mya (± 0.5) (Kodandaramaiah& Wahlberg, 2009), the age of Satyrini at 36.6Mya (± 5.1) and Satyrinae at 60.99 Mya (±6.1) (Pena & Wahlberg, 2008), we took into ac-count standard deviation values in the BEASTanalysis (Graur & Martin, 2004).

The hypothesis of a Gondwanan origin ofSatyrini or any of its subtribes is not tenable,because the tribe diversified around 36 Mya(Pena & Wahlberg, 2008), after the break-upof Gondwana. Thus, the current global dis-tribution of Satyrini must have arisen via atleast some intercontinental dispersal events.Our results corroborate Miller’s (1968) sug-gestion that Satyrini originated in the East-ern Palaearctic, Oriental or Indo-Australian re-gions, refining the date estimate to around 33Mya. It was in these regions where the an-cestor of the Parargina, Mycalesina, Lethina,Eritina and Coenonymphina originated. TheMycalesina appeared between 30 and 24 Myawhen its ancestor dispersed from the Palaearc-tic into Africa. A subclade of the Lethinaoriginated as a result of ancestral incursionfrom the Palaearctic into North America (ataround 25 Mya). The evolution of the Er-itina and Coenonymphina started around 32Mya in Southeastern Asia and Indo-Australia(areas CH; Fig. 6). It seems that the earlyevolution of Coenonymphina took place in the

Australian region and one lineage dispersedinto the Palaearctic giving rise to the generaCoenonympha and Sinonympha at around 28.5Mya.

Dispersals either from Europe or Asia, intothe Americas permitted the origin of the sub-tribes containing the bulk of Satyrini species,the Euptychiina and Pronophilina. Our re-sults indicate that this migration happened ataround 31 Mya. It is known that around thistime there was a continuous belt of forest thatextended from Asia through North Americaacross Beringia (Sanmartın et al., 2001) thatfacilitated the exchange of flora and fauna be-tween these continents. We suggest that thisroute was used by the ancestors of Euptychiinaand related subtribes to invade the New World.It appears that the ancestor(s) of the Eup-tychiina and Pronophilina migrated into theNew World almost simultaneously, around 29Mya (Fig. 5). Although the dispersals throughBeringia might sound far-fetched because vir-tually all euptychiines and pronophilines aredistributed in South America, it is interest-ing to note that some “basal” Euptychiinaare distributed in North and Central America(Paramacera, Cyllopsis and Megisto), whichsuggests that these genera were “left behind”during the dispersal process. The positionof the Oriental Palaeonympha opalina mightshed some light into this scenario. Moreover,the “long-branch” pronophiline genus Calisto,which is endemic to the Caribbean islands,might be a relict genus that evolved during theSouth-bound colonization route of the ances-tors of Pronophilina from North America intoSouth America. Since Central America didnot connect North and South America at 29Mya, we argue that the temporal land connec-tion between the Greater Antilles and north-western South America during the Eocene andOligocene (35–33 Mya), known as the GAAR-landia land span (Iturralde & MacPhee, 1999),permitted the migration of early lineages in

12

The radiation of Satyrini butterflies

Pronophilina toward South America. It hasbeen hypothesized that this land bridge wasalso important in the evolution of Phyciodinabutterflies (Nymphalidae) (Wahlberg & Fre-itas, 2007).

Due to the short branches and low supportfor the nodes leading to the subtribes Ypthim-ina, Erebiina, Maniolina, Melanargiina, Saty-rina and Pronophilina (see results), our esti-mation of ancestral areas of distribution mightneed to be revised once the pattern of rela-tionships in this clade becomes clear. Accord-ing to our results, a split of a Satyrini lineage(at around 31 Mya) originated the early Eu-ptychiina that colonized South America (seeabove), while the other lineage remained inthe Palaearctic giving rise to Ypthimina (withsome dispersals into Africa 29 Mya), anotherlineage colonized North America (probablythrough Beringia) and evolved into severalsubtribes: Erebiina, Maniolina, Melanargiina,Satyrina and Pronophilina. However, while thePronophilina dispersed southward, the otherlineages remained in the Holarctic region.

Although the expansion and radiation ofgrasses during the Oligocene (Willis & McEl-wain, 2002) permitted the spread and diver-sification of Satyrini throughout the world(Pena & Wahlberg, 2008), the trait “feedingon grasses” was not a key factor that triggeredthe radiation within Satyrini per se. It is an in-herited character from the common ancestor ofSatyrinae s.s. + Morphini + Brassolini (Pena& Wahlberg, 2008). However, our analysis ofthe evolution of habitat use reveals that thecombination of two factors were of critical im-portance for the remarkable diversification ofSatyrini: (1) the inherited ability to use grassesas hostplants, coupled with (2) an early habi-tat shift from forested environments to open,non-forest habitats where grasses are diverse,ecologically dominant and therefore abundantas a larval food resource.

5 Conclusions

Our dataset is difficult to analyze. Our re-sults imply that there are long-branch taxaand basal nodes that are very short and weaklysupported, perhaps reflecting the rapid radia-tion undergone by the Satyrini butterflies (seediscussion). Thus, it is not surprising thatthe phylogenetic methods (model-based andmaximum parsimony) produced incongruentresults.

We argue that any one particular methodshould not be relied on to solve every phylo-genetic problem. Rather, we believe that be-cause of the shortcomings of the methods, itcould be more sensible to use each method tak-ing into account the nature of the data —i.e.whether “problematic” taxa are sampled; theuse of molecular versus morphological charac-ters; using few versus several molecular mark-ers, etc.

While none of the three methods performedsatisfactorily with our Satyrini data, they werenot completely worthless either (Ebach et al.,2008). We argue that these methods should beconsidered as mere tools, useful to tackle differ-ent sets of phylogenetic problems. We believethat phylogeneticists preferring only one “su-perior” method over the others are in danger ofsuffering the “man with a hammer” syndrome,when every dataset of every taxonomic groupare treated equally, just as another nail.

Our results evidence the effect of past dis-persal events on the current distribution ofSatyrini butterflies. Most remarkably, the bulkof Satyrinae species, subtribes Euptychiina andPronophilina, are the result of dispersal eventsfrom the Old World, probably via North Amer-ica. The remarkable rarity of euptychiinesand pronophilines in North America could beattributed to extinction, and some CentralAmerican pronophilines such as the genus Cal-isto could be relict taxa of past colonizationevents.

13

The radiation of Satyrini butterflies

We show that a series of factors were im-portant in the diversification of Satyrini but-terflies: ability to feed on grasses (Pena &Wahlberg, 2008); an early habitat shift intoopen, non-forest habitats; and, geographicbridges that permitted dispersals from thePalaearctic into North America and fromNorth to South America (the forest belt acrossBeringia and the GAARlandia landspan re-spectively).

6 Acknowledgements

This work has been supported in part by aSynthesys grant to visit the Hungarian Mu-seum of Natural History, funding from AmazonConservation Association and IDEA WILD toCP, from the Swedish Research Council to SNand NW, as well as from the Academy ofFinland to NW (grant number 118369). Weare grateful to Alex Grkovich, Andre Freitas,Andrew Brower, Andrew Warren, AngelicoAsenjo, Carol Castillo, Chris Muller, Chris-tian Schulze, Darrell Kemp, Dave Edge, Elis-abet Weingartner, Fabrice Caulson, GeorgeGibbs, Gerardo Lamas, John Tennent, JoseBottger, Juan Grados, Kjell Arne Johanson,Marta Vila, Michael Braby, Michel Tarrier,Minna Miettinen, Roger Grund, Tim Dav-enport, Tomasz Pyrcz, Tony Nagypal, Tor-ben Larsen and Williams Paredes for provid-ing specimens and DNA sequences used in thisstudy.

References

Ackery P.R., de Jong R. & Vane-WrightR.I. 1999. The butterflies: Hedyloidea,Hesperioidea and Papilionoidea, Walter deGruyter, Berlin, vol. 4 of Handbook of Zool-ogy, pp. 263–300.

Bergsten J. 2005. A review of long-branchattraction. Cladistics, 21, 163–193.

Braby M.F. 2000. Butterflies of Australia:Their Identification, Biology and Distribu-tion. CSIRO, Australia.

Braby M.F., Trueman J.W.H. & East-wood R. 2005. When and where did troi-dine butterflies (Lepidoptera: Papilionidae)evolve? Phylogenetic and biogeographic evi-dence suggests and origin in remnant Gond-wana in the Late Cretaceous. InvertebrateSystematics, 19, 113–143.

Braby M.F., Vila R. & Pierce N.E.2006. Molecular phylogeny and system-atics of the Pieridae (Lepidoptera: Papil-ionoidea): higher classification and biogeog-raphy. Zoological Journal of the Linnean So-ciety, 147, 239–275.

Bremer K. 1988. The limits of amino acid se-quence data in angiosperm phylogenetic re-construction. Evolution, 42, 795–803.

Brooks D.R., Bilewitch J., Condy C.,Evans D.C., Folinsbee K.E., FrobischJ., Halas D., Hill S., McLennan D.A.,Mattern M., Tsuji L.A., Ward J.L.,Wahlberg N., Zamparo D. & ZanattaD. 2007. Quantitative phylogenetic analy-sis in the 21st century. Revista Mexicana deBiodiversidad, 78, 225–252.

Brower A.V.Z. 2006. The how and why ofbranch support and partitioned branch sup-port, with a new index to assess partitionincongruence. Cladistics, 22, 378–386.

Concha I. & Parra L.E. 2006. Analisiscualitativo y cuantitativo de la diversidadde mariposas de la estacion biologica SendaDarwin, Chiloe, X Region, Chile. Guyana,70, 186–194.

14

The radiation of Satyrini butterflies

DeVries P.J. 1987. The Butterflies of CostaRica and Their Natural History. Papilion-idae, Pieridae, Nymphalidae. Princeton Uni-versity Press, Princeton.

Drummond A.J., Ho S.Y.W., PhillipsM.J. & Rambaut A. 2006. Relaxed phy-logenetics and dating with confidence. PLoSBiology, 4, e88.

Drummond A.J. & Rambaut A. 2007.BEAST: Bayesian evolutionary analysis bysampling trees. BMC Evolutionary Biology,7, 214.

Ebach M.C., Williams D.M. & Gill A.C.2008. O Cladistics, Where Art Thou?Cladistics, 24, 851–852.

Farris J.S. 1970. Methods for computingWagner trees. Systematic Zoology, 19, 83–92.

Farris J.S. 1999. Likelihood and inconsis-tency. Cladistics, 15, 199–204.

Felsenstein J. 1978. Cases in which par-simony and compatibility methods will bepositively misleading. Systematic Zoology,27, 401–410.

Felsenstein J. 2004. Inferring phylogenies.Sinauer Associates, Inc., Sunderland.

Freitas A.V.L. 2002. Immature stages ofEteona tisiphone (Nymphalidae: Satyrinae).Journal of the Lepidopterists’ Society, 56,286–288.

Freitas A.V.L. 2004a. Immature stagesof Amphidecta reynoldsi (Nymphalidae:Satyrinae). Journal of the Lepidopterists’Society, 58, 53–55.

Freitas A.V.L. 2004b. A new species of Yph-thimoides (Nymphalidae, Satyrinae) fromsoutheastern Brazil. Journal of the Lepi-dopterists’ Society, 58, 7–12.

Gatesy J., O’Grady P. & Baker R.H.1999. Corroboration among data setsin simultaneous analysis: hidden supportfor phylogenetic relationships among higherlevel artiodactyl taxa. Cladistics, 15, 271–313.

Goloboff P., Farris J. & Nixon K.2003. T.N.T.: Tree Analysis UsingNew Technology, vers. 1.1. Programand documentation, available from the au-thors and at <http://www.zmuc.dk/public/phylogeny/TNT/>.

Grandcolas P., Deleporte P., Desutter-Grandcolas L. & Daugeron C. 2001.Phylogenetics and Ecology: as many char-acters as possible should be included in thecladistic analysis. Cladistics, 17, 104–110.

Graur D. & Martin W. 2004. Readingthe entrails of chickens: molecular timescalesof evolution and the illusion of precision.Trends in Genetics, 20, 80–86.

Grimaldi D. & Engel D. 2005. Evolutionof the insects. Cambridge University Press,New York.

Habel J.C., Schmitt T. & Muller P.2005. The fourth paradigm pattern of post-glacial range expansion of European ter-restrial species: the phylogeography of theMarbled White butterfly (Satyrinae, Lep-idoptera). Journal of Biogeography, 32,1489–1497.

Hallstrom B.M. & Janke A. 2008. Reso-lution among major placental mammal in-terordinal relationships with genome dataimply that speciation influenced their ear-liest radiations. BMC Evolutionary Biology,8, 162.

Hennig W. 1968. Elementos de una sis-tematica filogenetica. Editorial UniversitariaDe Buenos Aires, Buenos Aires.

15

The radiation of Satyrini butterflies

Huelsenbeck J.P. & Rannala B. 1997.Phylogenetic methods come of age: testinghypotheses in an evolutionary context. Sci-ence, 276, 227–232.

Huelsenbeck J.P., Ronquist F., NielsenR. & Bollback J.P. 2001. Bayesian infer-ence of phylogeny and its impact on evolu-tionary biology. Science, 294, 2310–2314.

Igarashi S. & Fukuda H. 2000. The lifehistories of Asian butterflies, vol. 2. TokaiUniversity Press, Tokyo.

Iturralde M.A. & MacPhee R.D.E. 1999.Paleogeography of the Caribbean region:implications for Cenozoic biogeography. Bul-letin of the American museum of natural his-tory, 238, 95 pp.

Kodandaramaiah U. & Wahlberg N.2007. Out-of-Africa origin and dispersal-mediated diversification of the butterflygenus Junonia (Nymphalidae: Nymphali-nae). Journal of Evolutionary Biology, 20,2181–2191.

Kodandaramaiah U. & Wahlberg N.2009. Phylogeny and biogeographyof Coenonympha butterflies (Nymphalidae:Satyrinae) —patterns of colonization inthe Holarctic. Systematic Entomology, [inpress].

Kolaczkowski B. & Thornton J.W. 2004.Performance of maximum parsimony andlikelihood phylogenetics when evolution isheterogeneous. Nature, 431, 980–984.

Larsen T.B. 2005. Butterflies of WestAfrica. Apollo Books, Denmark.

Luis A. & Llorente J. 1993. Mari-posas, CONABIO-UNAM Ediciones TecnicoCientıficas, Mexico, p. 588pp. Historia Nat-ural del Parque Ecologico Estatal Omiltemi,Chilpancingo, Guerrero, Mexico.

Martin J.F., Gilles A., Lortscher M. &Descimon H. 2002. Phylogenetics and dif-ferentiation among western taxa of the Ere-bia tyndarus group (Lepidoptera: Nymphal-idae). Biological Journal of the Linnean So-ciety, 75, 319–332.

Miller L.D. 1968. The higher classification,phylogeny and zoogeography of the Satyri-dae (Lepidoptera). Memoirs of the Amer-ican Entomological Society, 24, [6] + iii +174.

Murray D. & Prowell D.P. 2005. Molec-ular phylogenetics and evolutionary historyof the neotropical satyrine subtribe Eupty-chiina (Nymphalidae: Satyrinae). MolecularPhylogenetics and Evolution, 34, 67–80.

Nazari V., Zakharov E.V. & SperlingF.A.H. 2007. Phylogeny, historical bio-geography, and taxonomic ranking of Par-nassiinae (Lepidoptera, Papilionidae) basedon morphology and seven genes. MolecularPhylogenetics and Evolution, 42, 131–156.

Nel A., Nel J. & Balme C. 1993. Unnouveau Lepidoptere Satyrinae fossile del’Oligocene du Sud-Est de la France (Insecta,Lepidoptera, Nymphalidae). Linneana Bel-gica, 14, 20–36.

Nguyen D.T., Kuznetsov A.N.,Monastyrskii A.L., Nguyen T.S.& Eames J.C. 2002. 48 Hours: Arapid biodiversity assessment of the BanLam and Khau Tinh areas, Tuyen Quangprovince. PARC Project VIE/95/G31&031,Government of Viet Nam (FPD). /UN-OPS/UNDP/Scott Wilson Asia-PacificLtd., Ha Noi.

Nixon K.C. 2002. Winclada. Published byauthor, Ithaca, NY.

16

The radiation of Satyrini butterflies

Parsons M. 1999. The Butterflies of PapuaNew Guinea: Their Systematics and Biol-ogy. Academic Press, London.

Pena C. & Wahlberg N. 2008. Prehistor-ical climate change increased diversificationof a group of butterflies. Biology Letters, 4,274–278.

Pena C. & Lamas G. 2005. Revision ofthe butterfly genus Forsterinaria Gray, 1973(Lepidoptera: Nymphalidae, Satyrinae). Re-vista peruana de Biologıa, 12, 5–48.

Pena C., Wahlberg N., Weingartner E.,Kodandaramaiah U., Nylin S., FreitasA.V.L. & Brower A.V.Z. 2006. Higherlevel phylogeny of Satyrinae butterflies (Lep-idoptera: Nymphalidae) based on DNA se-quence data. Molecular Phylogenetics andEvolution, 40, 29–49.

Pijpe J. 2007. The evolution of lifespan inthe butterfly Bicyclus anynana. PhD thesis,Leiden University, The Netherlands.

Pol D. & Siddall M.E. 2001. Biases in Max-imum Likelihood and Parsimony: A simula-tion approach to a 10-taxon case. Cladistics,17, 266–281.

Pulido H.W. & Andrade M.G. 2008. Anew species of Forsterinaria Gray, 1973(Lepidoptera: Nymphalidae: Satyrinae)from the Serranıa del Perija, Cesar, Colom-bia. Caldasia, 30, 189–195.

Pyrcz T. & Wojtusiak J. 2002. The ver-tical distribution of pronophiline butterflies(Nymphalidae, Satyrinae) along an eleva-tional transect in Monte Zerpa (Cordillerade Merida, Venezuela) with remarks on theirdiversity and parapatric distribution. GlobalEcology & Biogeography, 11, 211–221.

Pyrcz T.W. 2004a. New oreal pedalio-dine butterflies from Ecuador and Colombia

(Nymphalidae: Satyrinae: Pronophilini).Boletın Cientıfico del Centro de Museos dela Universidad de Caldas, 8, 287–301.

Pyrcz T.W. 2004b. Pronophiline butterfliesof the highlands of Chachapoyas in north-ern Peru: faunal survey, diversity and distri-bution patterns (Lepidoptera, Nymphalidae,Satyrinae). Genus, 15, 455–622.

Rokas A., Kruger D. & Carroll S.B.2005. Animal evolution and the molecularsignature of radiations compressed in time.Science, 310, 1933–1938.

Ronquist F. 1996. DIVA version 1.2.computer program and manual availableat http://www.ebc.uu.se/systzoo/research/diva/diva.html. Uppsala University, Upp-sala, Sweden.

Ronquist F. 1997. Dispersal-vicariance anal-ysis: a new approach to the quantification ofhistorical biogeography. Systematic Biology,46, 195–203.

Ronquist F. & Huelsenbeck J.P. 2003.MrBayes 3: Bayesian phylogenetic inferenceunder mixed models. Bioinformatics, 19,1572–1574.

Sanmartın I., Enghoff H. & Ronquist F.2001. Patterns of animal dispersal, vicari-ance and diversification in the Holarctic. Bi-ological Journal of the Linnean Society, 73,345–390.

Sclater P.L. 1858. On the general geographicdistribution of the members of the class aves.Zoological Journal of the Linnean Society, 2,130–145.

Scott J.A. 1986. The Butterflies of NorthAmerica, a natural history and field guide.Stanford University Press, California.

17

The radiation of Satyrini butterflies

Siddall M.E. 1998. Success of parsimony inthe four taxon case: long-branch repulsionby likelihood in the Farris zone: Cladistics.Cladistics, 14, 209–220.

Siddall M.E. & Whiting M.F. 1999. Long-branch abstractions. Cladistics, 15, 9–24.

Sourakov A. 1996. Notes on the genusCalisto, with descriptions of the immaturestages (Part 1) (Lepidoptera: Nymphalidae:Satyrinae). Tropical Lepidoptera, 7, 91–112.

Stamatakis A., Hoover P. & RougemontJ. 2008. A rapid bootstrap algorithm forthe RAxML web-servers. Systematic Biol-ogy, 75, 758–771.

Stamatakis A., Ludwig T. & Meier H.2005. RAxML-III: a fast program for maxi-mum likelihood-based inference of large phy-logenetic trees. Bioinformatics, 21, 456–463.

Steel M. 2005. Should phylogenetic modelsbe trying to ‘fit an elephant’? Trends inGenetics, 21, 307–309.

Swofford D.L., Olsen G.J., Waddell P.J.& Hillis D.M. 1996. Phylogenetic infer-ence, Sinauer, Sunderland, MA, pp. 407–514. 2nd edn.

Tangah J., Hill J.K., Hamer K.C. & Da-wood M.M. 2004. Vertical distributionof fruit-feeding butterflies in Sabah, Borneo.Sepilok Bulletin, 1, 17–27.

Tolman T. & Lewington R. 1997. Butter-flies of Britain and Europe. HarperCollinsPublishers, London.

Tuzov V.K. 1997. Guide to the Butterfliesof Russia and Adjacent Territories: Hes-periidae, Papilionidae, Pieridae, Satyridae.Pensoft Pub, Sofia-Moscow.

van Son G. 1955. The butterflies of SouthernAfrica. Part 2. Nymphalidae: Danainae andSatyrinae. Transvaal Museum Memoir, pp.1–166.

Vane-Wright R. 2004. Butterflies at thatawkward age. Nature, 428, 477–480.

Viloria A.L. 2000. Estado actual delconocimiento taxonomico de las mariposas(Lepidoptera: Rhopalocera) de Venezuela.Monografıas Tercer Milenio, 1, 261–274.

Viloria A.L. 2003. Historical biogeographyand the origins of the satyrine butterflies ofthe tropical Andes (Lepidoptera: Rhopalo-cera), Universidad Autonoma de Mexico,Mexico, pp. 247–261.

Viloria A.L. 2007a. The Brazilian genus,Foetterleia, and its systematics (Lepi-doptera: Nymphalidae: Satyrinae). TropicalLepidoptera, 15, 56–58.

Viloria A.L. 2007b. Some Gondwanan andLaurasian elements in the Satyrinae faunaof South America. Tropical Lepidoptera, 15,53–58.

Viloria A.L., Pyrcz T.W., WojtusiakJ., Ferrer-Paris J.R., Beccaloni G.W.,Sattler K. & Lees D.C. 2003. Abrachypterous butterfly? Proceedings of theRoyal Society B: Biological Sciences, 270,S21–S24.

Wahlberg N. 2006. The awkward age forbutterflies: insights from the age of the but-terfly subfamily Nymphalinae (Lepidoptera:Nymphalidae). Systematic Biology, 55, 703–714.

Wahlberg N. & Freitas A.V.L. 2007. Col-onization of and radiation in South Amer-ica by butterflies in the subtribe Phyciod-ina (Lepidoptera: Nymphalidae). MolecularPhylogenetics and Evolution, 44, 1257–1272.

18

The radiation of Satyrini butterflies

Wahlberg N., Weingartner E. & NylinS. 2003. Towards a better understanding ofthe higher systematics of Nymphalidae (Lep-idoptera: Papilionoidea). Molecular Phylo-genetics and Evolution, 28, 473–484.

Wahlberg N. & Wheat C.W. 2008. Ge-nomic outposts serve the phylogenomic pio-neers: designing novel nuclear markers forgenomic DNA extractions of Lepidoptera.Systematic Biology, 57, 231–242.

Wheat C.W., Vogel H., WittstockU., Braby M.B., Underwood D. &Mitchell-Olds T. 2007. The genetic ba-sis of a plant-insect coevolutionary key in-novation. Proc. Natl. Acad. Sci. USA, 104,20427–20431.

Whitfield J.B. & Lockhart P.J. 2007. De-ciphering ancient rapid radiations. TRENDSin Ecology and Evolution, 22, 258–265.

Wiens J.J. 1998. Does adding characterswith missing data increase or decrease phy-logenetic accuracy. Systematic Biology, 47,625–640.

Willis K. & McElwain J. 2002. The evo-lution of plants. p. 378.

Zwickl D.J. & Hillis D.M. 2002. Increasedtaxon sampling greatly reduces phylogeneticerror. Systematic Biology, 51, 588–598.

19

Neope bremeri

Hermeuptychia hermes

Pyronia cecilia

Pampasatyrus glaucope

Mycalesis terminus

Tatinga thibetana

Zipaetis saitis

Thiemeia phoronea

Sinonympha amoena

Melanargia galathea

Neocoenyra petersi

Erycinidia gracilis

Morpho helenor

Eteona tisiphone

Redonda empetrus

Erichthodes antonina

Ninguta schrenkii

Nelia nemyroides

Tisiphone abeona

Platypthima homochroa

Brintesia circe

Karanasa pamira

Zethera incerta

Foetterleia schreineri

Bicyclus anynana

Quilaphoetosus monachus

Apexacuta astoreth

Junea dorinda

Acrophtalmia leuce

Erebia epiphron

Aphantopus hyperantus

Yphthimoides cipoensis

Argyrophenga antipodium

Loxerebia saxicola

Euptychia sp. n. 2

Nesoxenica leprea

Posttaygetis penelea

Arethusana arethusa

Oreixenica latialis

Splendeuptychia itonis

Oreixenica lathoniella

Coenonympha phryne

Erebia oeme

Erebiola butleri

Faunula leucoglene

Coenonympha myops

Haywardella edmondsii

Dodonidia helmsi

Erycinidia virgo

Dira clytus

Hypocysta pseudirius

Coenonympha thyrsis

Daedalma sp.

Pseudonympha magus

Hyponephele cadusia

Oressinoma sorata

Cosmosatyrus leptoneuroides

Corades enyoCheimas opalinus

Elina montrolii

Haetera pieraMelanitis leda

Argynnina cyrila

Pronophila thelebe

Karanasa bolorica

Hyponephele shirazica

Stygionympha vigilans

Orsotriaena medus

Cepheuptychia sp. n.

Chillanella stelligera

Paralasa hades

Punargentus sp.

Paralasa styx

Cercyonis meadii

Steremnia umbracina

Argyrophorus sp.

Coenonympha saadi

Paralasa jordana

Steromapedaliodes albonotata

Taygetis virgilia

Pampasatyrus gyrtone

Paramacera xicaque

Melanargia lachesis

Geitoneura minyas

Coenonympha pamphilus

Maniola telmesia

Hypocysta adiante

Punapedaliodes flavopunctata

Amphidecta calliomma

Oeneis jutta

Pareuptychia hesionides

Pseudomaniola loxo

Caeruleuptychia lobelia

Altiapa klossi

Lasiophila cirta

Lethe minerva

Diaphanos curvianathos

Panyapedaliodes drymaea

Amathusia phidippus

Euptychia enyo

Brassolis sophorae

Satyrus actaea

Percnodaimon merula

Erebia ligea

Pedaliodes phrasiclea

Etcheverrius chiliensis

Satyrodes eurydice

Geitoneura klugii

Punargentus sp.

Satyrus iranicus

Argyronympha ugiensis

Lasiommata megera

Altopedaliodes sp.

Pseudomaniola phaselis

Erites argentina

Pampasatyrus reticulata

Euptychia sp. n. 5

Lymanopoda caudalis

Megisto cymela

Manerebia lisa

Harsiesis hygea

Pedaliodes sp. n. 117

Euptychia sp. n. 6

Cercyonis pegala

Maniola jurtina

Cyllopsis pertepida

Lymanopoda rana

Hallelesis halyma

Cissia myncea.

Aphysoneura pigmentaria

Platypthima ornata

Harjesia blanda

Pararge aegeria

Magneuptychia sp. n. 4

Auca barrosi

Hipparchia statilinus

Chloreuptychia herseis

Pseudochazara mamurra

Forsterinaria boliviana

Erebia triaria

Altiapa decolor

Chazara briseis

Kirinia climene

Oxeoschistus pronax

Coelites euptychioides

Mygona irmina

Pedaliodes sp. n. 26

Euptychia sp. n. 7

Argyronympha gracilipes

Oressinoma typhla

Elymnias casiphone

Erebia palarica

Kirinia roxelana

Aphantopus arvensis

Auca coctei

Lopinga achine

Berberia lambessanus

Parapedaliodes parepa

Enodia anthedon

Paratisiphone lyrnessa

Pindis squamistriga

Neominois ridingsii

Cassionympha cassius

Punargentus sp.

Proboscis propylea

Euptychoides castrensis

Rhaphicera dumicola

Parataygetis albinotata

Chonala miyatai

Melanargia hylata

Oxeoschistus leucospilos

112

71

29

1118

38

23

3

31

313

41

1022

10

1

21

3

9

87

7

1

386

3

6

1

1

636

1

347

4

41

582

33

43 1

23

20

2740

3

21

85

38

11

292

54

106

5

12

19

10

99

47

13

3

3

6

12

59

3919

13

2

352

219

3

349

20

1

1881

737

161

191

82

13

8

14

10

1

16

3

1010

145

304

83

312

8

3

3

3

4

1011

26

30

4

1

4240

641

613

519

4

2215

82

42

891

38

2637

278

17

1

433

17

11

73

8636

1

1

1

3

3

-9.011.8

3.3-7.0

9.9

-9.0

28.9

11.1-1.2

6.74.0

17.8

-1.5

-1.5

-1.5

-12.131

-1.5

21.910.0

-10.93.6

87.0

22.014.9

6.8

41.9

-0.4

20.9

7.2

2.9

86.01.7

-21.0

-21.0

-21.0 86.0

73.136.0

-15.8-21.0

16.433.0

0.6

-21.0

15.1

78.0-12.0

26.037.0

37.7

-17.0

-11.0

19.23.4

12.44.0

40.042.0

-2.264.0

-2.029.8

0.8

26.0

9.99.4

3.0

-1.5

0.3

-1.5

9.49.4

13.53.8

30.02.2

7.70.1

0.111.5

6.5

3.26.3

34.0

5.035.8

-6.4

41.0

58.01.6

32.9

43.0 -10.8

22.9

2.0

19.8

26.840.0

21.0

85.010.0

38.0

19.0

12.0

4.4

5.7

0.4

9.7

29.0

10.3

-3.3

-4.5

4.6

0.6

8.27.7

47.0-1.9

-1.6

13.0

19.0

12.0

6.0

1.3

-15.61.0

1.2

3.052.0

21.09.0

15.5-8.2

18.6-8.2

6.8-1.2

-4.8

-5.1

-7.6-1.0

-5.4

7.9

-5.4

13.8

7.2

37.06.4

81.017.8

0.149.0

-3.3

20.0

14.1

1.3

8.43.8

39.0

54.0

1.3

89.0

PRONOPHILINA

MANIOLINA

EREBIINA

SATYRINA

MELANARGIINA

YPTHIMINA

EUPTYCHIINA

COENONYMPHINA

ERITINA

MYCALESINA

LETHINA

PARARGINA

The radiation of Satyrini butterflies

Figure 2 – Strict consensus of 12 equally parsimonious trees (29647 steps; CI=0.13; RI=0.44) from the maximum parsimony analysis (MP). Numbers given above branches are Bremer support values and numbers below the branch are PCI values for the node to the right of the number.

The radiation of Satyrini butterflies

Figure 3 – “Bipartitions tree” obtained from the Maximum Likelihood (ML) analysis in RaxML. Numbers at the branches are bootstrap values for the node to the right of the number.

0.08

Hypocysta pseudirius

Pyronia cecilia

Erebia ligea

Amphidecta callioma

Cissia myncea

Euptychoides castrensis

Punargentus sp.

Megisto cymela

Lymanopoda rana

Neocoenyra petersi

Paralasa hades

Hypocysta adiante

Panyapedaliodes drymaea

Morpho helenor

Cyllopsis pertepida

Haetera piera

Cheimas opalinus

Platypthima ornata

Erebia oeme

Brassolis sophorae

Paratisiphone lyrnessa

Altiapa decolor

Erebiola butleri

Caeruleuptychia lobelia

Arethusana arethusa

Zipaetis saitis

Rhaphicera dumicola

Aphantopus hyperantus

Satyrodes eurydice

Thiemeia phoronea

Pseudochazara mamurra

Pampasatyrus gyrtone

Paralasa jordana

Oxeoschistus pronax

Yphtphimoides cipoensis

Chazara briseis

Redonda empetrus

Pedaliodes phrasiclea

Chloreuptychia herseis

Percnodaimon merula

Erebia triaria

Coenympha thyrsis

Satyrus iranicus

Elina montrolii

Coenonympha phryne

Geitoneura minyas

Coelites euptychioides

Coenonympha saadi

Corades enyo

Tisiphone abeona

Geitoneura klugii

Melanargia lachesis

Paramacera xicaque

Cosmosatyrus leptoneuroides

Lopinga achine

Amathusia phidippus

Brintesia circe

Pindis squamistriga

Hyponephele cadusiaHyponephele shirazica

Argyronympha ugiensis

Neominois ridingsii

Punargentus sp.

Erycinidia virgo

Argynnina cyrila

Punargentus sp.

Kirinia roxelana

Manerebia lisa

Erites argentina

Oreixenica latialis

Erichthodes antonina

Zethera incerta

Berberia lambessanus

Nelia nemyroides

Oressinoma sorata

Oreixenica lathoniella

Daedalma sp.

Stygionympha vigilans

Dira clytus _

Altiapa klossi

Pampasatyrus reticulata

Pronophila thelebe

Coenonympha pamphilus

Orsotriaena medus

Paralasa styx

Hipparchia statilinus

Chonala miyatai

Loxerebia saxicola

Aphantopus arvensis

Tatinga thibetana

Cepheuptychia sp. n.

Sinonympha amoena

Faunula leucoglene

Lymanopoda caudalis

Foetterleia schreineri

Oressinoma typhla

Erycinidia gracilis

Melanargia galathea

Pampasatyrus glaucope

Oxeoschistus leucospilos

Dodonidia helmsi

Argyrophenga antipodium

Forsterinaria boliviana

Steremnia umbracina

Lasiommata megera

Parataygetis albinotata

Aphysoneura pigmentaria

Diaphanos curvianathos

Melanargia hylata

Satyrus actaea

Hallelesis halyma

Pareuptychia hesionides

Acrophtalmia leuce

Pedaliodes sp. n. 26

Cercyonis pegala

Bicyclus anynana

Splendeuptychia itonis

Mycalesis terminus

Karanasa pamira

Auca coctei

Posttaygetis penelea

Quilaphoetosus monachus

Auca barrosi

Lasiophila cirta

Hermeuptychia hermes

Altopedaliodes sp.

Harsiesis hygea

Pedaliodes sp. n. 117

Taygetis virgilia

Cassionympha cassius

Magneuptychia sp. n. 4

Argyrophorus sp.

Steromapedaliodes albonotata

Pararge aegeria

Melanitis leda

Proboscis propylea

Erebia epiphron

Junea dorinda

Kirinia climene

Chillanella stelligera

Pseudomaniola loxoPseudomaniola phaselis

Karanasa bolorica

Coenonympha myops

Platypthima homochroa

Elymnias casiphone

Maniola jurtina

Lethe minervaEnodia anthedon

Eteona tisiphone

Punapedaliodes flavopunctata

Harjesia blanda

Pseudonympha magus

Apexacuta astoreth

Ninguta schrenkii

Argyronympha gracilipes

Cercyonis meadii

Maniola telmesia

Parapedaliodes parepa

Nesoxenica leprea

Haywardella edmondsii

Etcheverrius chiliensis

Oeneis jutta

Mygona irmina

Neope bremeri

Erebia palarica

96

4310

17

80100

100

84

66

9775

99

94

27

82100

75 53

100100

758163

20

100

40

85100

75100

10086

10099

9255

10099

94

100

100100

61

77

100100

37

6626

11

100

100100

84100

100

24

10057

100

9581

92

100 74

94 30

55 84

74

24

100

95

100

7347

10091

100

39

100

10095

77

84

100

24

24

90100

98 100

100100

10091

9797

100

9399

94

100100

7552

100

100100

100

10077

10082

47

13

10097

9983

44100

93

91

100 99

99 100100

8

19

98

100100

99

9999

95

89

10058

100

49

100

89100100

67

100

35

96

96

100

100

51

59

91

67 91

7799

PRONOPHILINA

EUPTYCHIINA

YPTHIMINA

SATYRINA

MELANARGIINA

EREBIINA

MANIOLINA

COENONYMPHINA

ERITINA

MYCALESINA

LETHINA

PARARGINA

The radiation of Satyrini butterflies

Figure 4 – Majority rule cladogram based on Bayesian inference (BI), modeled with a GTR + Γ model. Numbers at the branches are bootstrap values for the node to the right of the number.

Thiemeia phoronea

Altopedaliodes sp.

Apexacuta astoreth

Cheimas opalinusCorades enyo

Daedalma sp.

Eteona tisiphoneFoetterleia schreineri

Junea dorinda

Lasiophila cirta

Mygona irminaOxeoschistus leucospilos

Oxeoschistus pronax

Panyapedaliodes drymaea

Parapedaliodes parepa

Pedaliodes phrasicleaPedaliodes sp. n. 117

Pedaliodes sp. n. 26

Proboscis propylea

Pronophila thelebe

Pseudomaniola loxoPseudomaniola phaselis

Punapedaliodes flavopunctata

Punargentus sp.

Punargentus sp.Punargentus sp.

Redonda emperatusSteromapedaliodes albonotata

Argyrophorus sp.

Auca barrosiAuca coctei

Chillanella stelligeraCosmosatyrus leptoneuroides

Diaphanos curvianathos

Elina montrolii

Etcheverrius chiliensis

Haywardella edmondsii

Lymanopoda caudalisLymanopoda rana

Manerebia lisa

Nelia nemyroides

Pampasatyrus glaucopePampasatyrus gyrtone

Pampasatyrus reticulata

Quilaphoetosus monachus

Steremnia umbracina

Maniola jurtinaPyronia cecilia

Aphantopus hyperantusAphantopus arvensis

Erebia triariaErebia palarica

Erebia epiphronHyponephele cadusia

Hyponephele shirazicaCercyonis meadii

Cercyonis pegala

Melanargia galathea

Arethusana arethusa

Berberia lambessanus

Brintesia circe

Chazara briseis

Hipparchia statilinus

Karanasa boloricaKaranasa pamira

Neominois ridingsiiOeneis jutta

Pseudochazara mamurraSatyrus actaea

Satyrus iranicusErebia oeme

Erebia ligea

Ypthima baldusYpthimomorpha itonia

Melanargia hylataMelanargia lachesis

Callerebia polyphemus

Cassionympha cassiusNeocoenyra petersi

Paralasa jordana

Paralasa styxParalasa hades

Pseudonympha magus

Stygionympha vigilans

Proterebia afra

Caeruleuptychia lobelia

Cepheuptychia sp. n.Chloreuptychia herseis

Cissia myncea

Erichthodes antonina

Harjesia blanda

Magneuptychia sp. n. 4

Pareuptychia hesionides

Dira clytus

Haetera pieraMorpho helenor

Melanitis leda

Elymnias casiphone

Zethera incertaAmathusia phidippus

Brassolis sophorae

Acrophthalmia leuce

Argynnina cyrila

Argyronympha gracilipesArgyronympha ugiensis

Argyrophenga antipodium

Coenonympha pamphilusCoenonympha saadi

Coenonympha thyrsis

Dodonidia helmsiErebiola butleri

Erites argentina

Erycinidia gracilisErycinidia virgo

Coenonympha myops

Nesoxenica leprea

Oreixenica latialis

Oressinoma sorataOressinoma typhla

Orsotriaena medus

Pararge aegeria

Paratisiphone lyrnessa

Percnodaimon merula

Ragadia makuta

Sinonympha amoena

Tisiphone abeona

Coenonympha phryne

Zipaetis saitis

Lasiommata megera

Lopinga achine

Kirinia climeneKirinia roxelana

Chonala miyatai

Rhaphicera dumicola

Tatinga thibetana

Bicyclus anynanaHallelesis halyma

Mycalesis terminus

Lethe minerva

Enodia anthedon

Neope bremeriNinguta schrenkii

Satyrodes eurydice

Loxerebia saxicolaCoelites euptychioides

Altiapa decolorAltiapa klossi

Geitoneura klugiiGeitoneura minyas

Harsiesis hygeaHypocysta adiante

Hypocysta pseudirius

Platypthima homochroaPlatypthima ornata

Cyllopsis pertepida

Euptychoides castrensisMegisto cymela

Paramacera xicaque

Amphidecta callioma

Forsterinaria boliviana

Hermeuptychia hermesHermeuptychia hermes

Parataygetis albinotata

Pindis squamistriga

Posttaygetis penelea

Splendeuptychia itonisTaygetis virgilia

Yphthimoides cipoensis

0.1

EUPTYCHIINA

YPTHIMINA

SATYRINA

MELANARGIINA

PRONOPHILINA

EREBIINA

MANIOLINA

COENONYMPHINA

ERITINA

MYCALESINA

LETHINA

PARARGINA

The radiation of Satyrini butterflies

Figure 5 – Chronogram derived from the BEAST analysis with associated posterior credibility intervals. Numbers at the branches are bootstrap values for the node to the left of the number.

5.0

Platypthima homochroa

Lymanopoda rana

Taygetis virgilia

Foetterleia schreineri

Pseudochazara mamurra

Geitoneura minyas

Melanargia lachesis

Amphidecta calliomma

Magneuptychia sp. n. 4

Lasiommata megera

Neope bremeri

Oxeoschistus pronax

Cheimas opalinus

Erebia triaria

Haywardella edmondsii

Pedaliodes sp. n. 26

Chazara briseis

Zethera incerta

Kirinia climene

Chonala miyatai

Coenonympha phryne

Cosmosatyrus leptoneuroides

Pedaliodes sp. n. 117

Lasiophila cirta

Melanitis leda

Pararge aegeria

Lethe minerva

Altopedaliodes sp.

Pindis squamistriga

Splendeuptychia itonis

Amathusia phidippus

Harjesia blanda

Tisiphone abeona

Harsiesis hygea

Daedalma sp.

Enodia anthedon

Karanasa pamira

Haetera piera

Pampasatyrus glaucope

Percnodaimon merula

Steremnia umbracina

Paralasa styx

Pyronia cecilia

Cyllopsis pertepida

Hyponephele shirazica

Paralasa jordana

Punargentus sp.

Hypocysta pseudirius

Dira clytus

Aphantopus hyperantus

Erycinidia gracilis

Platypthima ornata

Lymanopoda caudalis

Etcheverrius chiliensis

Yphthimoides cipoensis

Erebia ligea

Hermeuptychia hermes

Lopinga achine

Cassionympha cassiusStygionympha vigilans

Nesoxenica leprea

Apexacuta astoreth

Coenonympha myops

Melanargia galathea

Pedaliodes phrasiclea

Argyronympha ugiensis

Dodonidia helmsi

Forsterinaria boliviana

Hallelesis halyma

Satyrus actaea

Diaphanos curvianathos

Hermeuptychia hermes

Arethusana arethusa

Pseudomaniola loxo

Zipaetis saitis

Oxeoschistus leucospilos

Posttaygetis penelea

Erebia oeme

Tatinga thibetana

Rhaphicera dumicola

Chloreuptychia herseis

Redonda empetrus

Auca coctei

Ragadia makuta

Callerebia polyphemus

Punapedaliodes flavopunctata

Erebia epiphron

Pareuptychia hesionides

Oressinoma sorata

Nelia nemyroides

Ypthima baldus

Neocoenyra petersi

Manerebia lisa

Auca barrosi

Bicyclus anynana

Altiapa decolor

Geitoneura klugii

Quilaphoetosus monachus

Eteona tisiphone

Thiemeia phoronea

Pampasatyrus reticulata

Euptychoides castrensis

Hipparchia statilinusNeominois ridingsii

Argyrophorus sp.

Orsotriaena medus

Ypthimomorpha itonia

Punargentus sp.

Argyrophenga antipodium

Paramacera xicaque

Steromapedaliodes albonotata

Mygona irmina

Megisto cymela

Argyronympha gracilipes

Proboscis propylea

Melanargia hylata

Elymnias casiphone

Pampasatyrus gyrtone

Caeruleuptychia lobelia

Panyapedaliodes drymaea

Erites argentina

Satyrus iranicus

Cercyonis meadii

Karanasa bolorica

Mycalesis terminus

Cepheuptychia sp. n.

Oreixenica latialis

Pseudonympha magus

Hyponephele cadusia

Morpho helenor

Erebia palarica

Parataygetis albinotata

Erycinidia virgo

Coenonympha thyrsis

Erebiola butleri

Argynnina cyrila

Cercyonis pegala

Loxerebia saxicola

Aphantopus arvensis

Ninguta schrenkii

Chillanella stelligera

Corades enyo

Berberia lambessanus

Hypocysta adiante

Sinonympha amoena

Paralasa hades

Coenonympha saadi

Cissia myncea

Elina montrolii

Altiapa klossi

Brintesia circe

Punargentus sp.

Brassolis sophorae

Pronophila thelebeJunea dorinda

Maniola jurtina

Oeneis jutta

Parapedaliodes parepa

Pseudomaniola phaselis

Paratisiphone lyrnessa

Erichthodes antonina

Satyrodes eurydice

Oressinoma typhla

Proterebia afra

Kirinia roxelana

Coenonympha pamphilus

PlioceneMioceneOligoceneEocenePleistocene

510152025303540 045

1

0.78

1

0.69

1

1

1

1

1

1

1

0.99

1

1

0.96

1

1

1

1

1

1

1

1

1

0.68

1

1

1

1

0.45

0.89

1

1

1

1

1

1

1

1

1

0.98

0.99

1

1

1

0.62

0.78

1

1

1

0.58

1

1

0.72

1

1

1

0.32

1

1

1

1

1

1

0.75

0.89

1

1

0.81

1

1

1

1

1

1

0.36

0.97

1

1

1

1

1

1

1

1

1

1

0.96

0.55

1

1

1

1

1

1

1

1

0.67

0.91

0.83

1

1

1

1

1

1

1

1

1

0.5

0.44

0.97

1

0.99

0.89

1

0.47

1

0.8

0.96

0.99

0.98

1

0.86

1

0.95

1

1

0.9

1

1

1

1

0.78

0.99

0.6

1

1

1

1

1

0.98

0.98

1

1

1

0.5

0.61

1

1

1

1

1

1

1

1

1

0.79

1

1

1

0.55

0.98

1

1

PRONOPHILINA

MANIOLINA

EREBIINA

SATYRINA

MELANARGIINA

YPTHIMINA

EUPTYCHIINA

COENONYMPHINA

ERITINA

MYCALESINA

LETHINA

PARARGINA

The radiation of Satyrini butterflies

Figure 6 – Results of a dispersal-vicariance analysis, using 3 as the maximum number of ancestral areas in DIVA. The topology of relationships for the outgroups are taken from Peña & Wahlberg (2008). Many terminals that belong to the same subtribe and are distributed in the same biogeographical area of Fig. 1 are into one leaf: other Hypocystina, Pronophilina clade 1 and Pronophilina clade 2.

Argyronympha ugiensis H

Pararge aegeria AB

Paralasa styx B

Erebia ligea ABF

Ypthimomorpha itonia D

Coenonympha saadi ABF

Paralasa hades B

Harjesia blanda E

Lopinga achine AB

Oressinoma typhla E

Erebia oeme ABF

Cissia myncea E

Stygionympha vigilans D

Megisto cymela FG

Oeneis jutta ABF

Hipparchia statilinus AB

Melanargia galathea AB

Brintesia circe A

Zethera incerta H

Arethusana arethusa AB

Splendeuptychia itonis E

Melanargia lachesis AB

Cercyonis pegala FG

Kirinia roxelana AB

Proterebia afra AB

Melanargia hylata AB

Cassionympha cassius D

Taygetis virgilia E

Hyponephele shirazica ABC

Paramacera xicaque G

Pareuptychia hesionides E

Chazara briseis AB

Aphantopus hyperantus AB

Melanitis leda BCDH

Erycinidia virgo H

Erebia palarica ABF

Karanasa pamira AB

Coenonympha myops ABCoenonympha phryne B

Zipaetis saitis C

Callerebia polyphemus BC

Coenonympha thyrsis ABF

Erebia triaria ABF

Satyrus iranicus AB

Erichthodes antonina E

Bicyclus anynana D

Amphidecta calliomma EPindis squamistriga G

Maniola jurtina A

Brassolis sophorae E

Satyrodes eurydice F

Paralasa jordana B

Berberia lambessanus A

Oressinoma sorata EErycinidia gracilis H

Kirinia climene AB

Loxerebia saxicola B

Haetera piera E

Parataygetis albinotata E

Dira clytus D

Pseudonympha magus D

Coenonympha pamphilus ABF

Karanasa bolorica AB

Morpho helenor E

other Hypocystina H

Cyllopsis pertepida FG

Hallelesis halyma D

Argyronympha gracilipes H

Amathusia phidippus CH

Erites argentina C

Ypthima baldus BCDH

Tatinga thibetana B

Forsterinaria boliviana E

Pronophilina clade 1 E

Euptychoides castrensis E

Caeruleuptychia lobelia E

Ninguta schrenkii B

Hermeuptychia hermes E

Yphthimoides cipoensis E

Mycalesis terminus CH

Posttaygetis penelea E

Ragadia makuta C

Pyronia cecilia AB

Lethe minerva BC

Neocoenyra petersi D

Chonala miyatai B

Neope bremeri BC

Hermeuptychia hermes E

Cepheuptychia sp. n. E

Hyponephele cadusia ABC

Pronophilina clade 2 E

Chloreuptychia herseis E

Pseudochazara mamurra AB

Erebia epiphron ABF

Lasiommata megera ABD

Rhaphicera dumicola B

Aphantopus arvensis AB

Cercyonis meadii FG

Satyrus actaea AB

Orsotriaena medus CH

Elymnias casiphone CDH

Neominois ridingsii FG

Enodia anthedon F

Sinonympha amoena B

Magneuptychia sp. n. 4 E

Oreixenica latialis H

E

DDH

HH

B

B

BB

B

B

DCD CDHDH

B

B

FBF BCF

B

CC

C

H

HH

E

BB

BB

B

BE

BH EHBEH

H

H

CH

BC BH BCH

G

EEF EG EFG

EE

E

E

EE

E

EE

EE

EG

E

E

E

E

E

E

BB

D

D

DD

D

BB

BD

B

E

A

AA

A

F G

AAF AG

AA

A

A

AA

A

F AF ABF AG

AA AF

A

A

A

A

A

A

A

A

A

AE

BE ABE

E

BECEBCEEHBEHCEH

E

DEH

DEH

B

BD

SATYRINA

MELANARGIINA

MANIOLINA

EREBIINA

YPTHIMINA

EUPTYCHIINA

COENONYMPHINA

ERITINA

LETHINA

MYCALESINA

PARARGINA

Eritina

Paralasa

outgroups

Melanargiina

Mycalesina

Lethina

Pronophilina

Parargina

Cercyonis

Euptychiina

Hyponephele

Ypthimina

Erebiina

Maniolina

Satyrina

Coenonymphina Eritina

Paralasa

outgroups

Melanargiina

Mycalesina

Lethina

Pronophilina

Parargina

Cercyonis

Euptychiina

Hyponephele

Ypthimina

Erebiina

Maniolina

Satyrina

Coenonymphina

a b

Figure 7 – Reduced cladograms from (a) maximum parsimony and (b) model-based methods (BI and ML) showing the incongruent hypotheses of relationships for the subtribes in the Satyrini.

The radiation of Satyrini butterflies

Figure 8 – Optimization of habitat use (forest and non-forest) onto the phylogenetic tree from the BEAST analysis.

Punargentus sp. CP08-75

Hypocysta pseudirius NW123-5

Steromapedaliodes albonotata CP17-01

Cosmosatyrus leptoneuroides CH-15-5

Auca barrosi RV-03-V39

Lasiophila cirta CP04-36

Tatinga thibetana CP16-05

Splendeuptychia itonis CP02-44

Pareuptychia hesionides CP01-66

Pseudomaniola phaselis CP04-01

Aphantopus arvensis NW148-16Aphantopus hyperantus EW2-1

Cercyonis pegala EW8-1

Hermeuptychia hermes CP01-07

Kirinia roxelana CP10-09

Argyronympha ugiensis NW136-2

Oxeoschistus pronax CP07-73

Thiemeia phoronea CP13-08

Platypthima ornata NW161-4

Neope bremeri EW25-23

Melanitis leda NW66-6

Parapedaliodes parepa CP07-51

Ragadia makuta CP16-09

Cheimas opalinus CP17-06

Erebia palarica EW9-4

Cassionympha cassius NW144-2

Platypthima homochroa NW136-10

Amathusia phidippus NW114-17

Enodia anthedon NW166-9

Forsterinaria boliviana CP04-88

Magneuptychia sp. n. 4 CP01-91

Neominois ridingsii CD-1-1

Harjesia blanda CP01-13

Erebia ligea EW5-19

Chazara briseis EW26-19

Pindis squamistriga NW165-5

Hypocysta adiante KB339

Erebia epiphron EW24-3

Hyponephele cadusia CP10-07

Argyrophenga antipodium NW123-18

Oxeoschistus leucospilos CP04-67

Geitoneura klugii RA64

Orsotriaena medus EW25-17

Lopinga achine EW3-6

Nelia nemyroides CH-8A-2

Manerebia lisa CP04-23

Erichthodes antonina CP02-24

Dira clytus CP15-04

Pararge aegeria EW1-1

Hyponephele shirazica CP10-13

Megisto cymela CP21-04

Loxerebia saxicola CP16-06Callerebia polyphemus CP16-19

Erebia triaria EW9-1

Hallelesis halyma CP10-05

Cissia sp. NW108-6

Satyrodes eurydice CP11-01

Taygetis virgilia NW108-3

Coenonympha pamphilus EW7-3

Stygionympha vigilans NW144-5

Satyrus actaea EW20-12

Junea dorinda CP06-94

Maniola jurtina EW4-5

Pampasatyrus gyrtone NW126-12

Oressinoma sorata CP06-89

Parataygetis albinotata CP04-53

Steremnia umbracina CP07-89

Erycinidia gracilis NW161-2

Amphidecta calliomma NW126-21

Ypthima baldus NW98-5

Corades enyo CP04-06

Brassolis sophorae NW122-21

Melanargia lachesis NW149-3

Brintesia circe CP-B01

Altiapa klossi NW161-1

Pyronia cecilia EW4-2

Haywardella edmondsii CP14-04

Yphthimoides cipoensis CP10-02

Panyapedaliodes drymaea CP09-53Redonda empetrus CP17-02

Pedaliodes sp. n. 26 CP09-90

Caeruleuptychia lobelia CP01-67

Lymanopoda rana CP03-33

Pseudonympha magus NW144-1

Foetterleia schreineri NW127-19

Coenonympha thyrsis UK4-2

Altiapa decolor NW136-13

Punargentus sp. CP08-51

Etcheverrius chiliensis CH-30-4

Haetera piera CP01-84

Eteona tisiphone NW127-21

Erycinidia virgo NW161-3

Geitoneura minyas UK1-2

Apexacuta astoreth CP09-78

Coenonympha saadi NW150-14

Neocoenyra petersi NW91-5

Oreixenica latialis UK1-20

Punargentus sp. CP09-39

Elymnias casiphone NW121-20

Cercyonis meadii CP15-09

Lethe minerva NW121-17

Sinonympha amoena NW161-17

Pedaliodes phrasiclea CP03-35

Arethusana arethusa CP11-06

Erites argentina CP16-13

Erebiola butleri NW123-16

Chillanella stelligera CH-24A-1

Satyrus iranicus CP10-12

Melanargia galathea EW24-17

Posttaygetis penelea NW126-13

Paralasa hades NW139-13

Punapedaliodes flavopunctata CP07-87

Pseudochazara mamurra CP10-11

Elina montrolii CH-25-1

Daedalma sp. CP13-05

Bicyclus anynana EW10-5

Paramacera xicaque CP15-08

Berberia lambessanus EW26-29

Nesoxenica leprea NW123-7

Proboscis propylea CP07-15

Argyronympha gracilipes NW136-1

Kirinia climene CP10-08

Oressinoma typhla CP07-71

Cepheuptychia sp. n. CP01 31

Diaphanos curvianathos CP17-03

Ninguta schrenkii NW140-8

Melanargia hylata CP10-10

Pampasatyrus reticulata CP17-09

Argyrophorus sp. CP-C04

Argynnina cyrila NW124-24

Paralasa styx CP11-05

Chloreuptychia herseis CP01-72

Zipaetis saitis D30

Karanasa bolorica NW166-10

Paralasa jordana CP-AC23-35

Pampasatyrus glaucope NW149-7

Morpho helenor NW66-5

Altopedaliodes sp. CP07-86

Tisiphone abeona NW124-21

Auca coctei RV-03-V13

Triphysa_phryne_CP16_21

Pronophila thelebe CP03-70

Chonala miyafagi NW142-16

Proterebia afra NW143-7

Paratisiphone lyrnessa NW162-1

Hipparchia statilinus EW25-24

Mycalesis terminus EW18-8

Ypthimomorpha itonia NW117-23

Rhaphicera dumicola NW142-23

Pseudomaniola loxo CP13-13

Percnodaimon merula NW123-17

Lasiommata megera EW24-23

Harsiesis hygea NW136-11

Cyllopsis pertepida NW165-3

Karanasa pamira CP-AC23-32

Mygona irmina CP17-04

Dodonidia helmsi NW123-15

Pedaliodes sp. n. 117 CP09-66

Zethera incerta NW106-10

Hermeuptychia hermes NW127-16

Lyela myops CP16-22

Euptychoides castrensis NW126-9

Lymanopoda caudalis CP04-22

Erebia oeme EW24-7

Quilaphoetosus monachus CH-12-1

Oeneis jutta EW4-1

forestsnon-forestsambiguous

Species habitat:

Outgroups

Table 1Information of specimens used for molecular studiesSubfamily Tribe Subtribe Species Specimen Code Source of Specimen COI EF-1α GAPDH RpS5 Wingless

Hostplant use/ character state

source

Morphinae Morphini Morpho helenor NW66-5 UK: London Pupae Supplies AY090210 AY090176 EU141507 EU141407 AY090143 0

Morphinae Amathusiini Amathusia phidippus NW114-17 INDONESIA: Bali DQ018956 DQ018923 EU141488 EU141384 DQ018894 0

Morphinae Brassolini Brassolis sophorae NW122-21 BRAZIL: São Paulo, Campinas EU528314 EU528291 --- EU528425 EU528270 0

Satyrinae Dirini Dirina Dira clytus CP15-04 S. AFRICA: W Cape Paradise Coast EU528319 EU528296 EU528388 EU528432 EU528275 1 1

Satyrinae Elymniini Elymniina Elymnias casiphone NW121-20 INDONESIA: Bali DQ338760 DQ338900 --- EU141388 DQ338627 0 2

Satyrinae Haeterini Haetera piera CP01-84 PERU: Madre de Dios DQ018959 DQ018926 EU141475 EU141371 DQ018897 0

Satyrinae Melanitini Melanitis leda NW66-6 AUSTRALIA: Cairns, Queensland AY090207 AY090173 EU141508 EU141408 AY090140 0 2

Satyrinae Zetherini Zetherina Zethera incerta NW106-10 INDONESIA: Sulawesi DQ338776 DQ338918 EU141483 EU141379 DQ338635 0

Satyrinae Satyrini Parargina Chonala miyatai NW142-16 CHINA: N Sichuan, Songpan env. --- --- --- --- --- ?

Satyrinae Satyrini Parargina Kirinia climene CP10-08 IRAN: Lorestan --- --- --- --- --- 1 3

Satyrinae Satyrini Parargina Kirinia roxelana CP10-09 IRAN: Lorestan DQ338767 DQ338908 --- --- DQ338615 1 3

Satyrinae Satyrini Parargina Lasiommata megera EW24-23 FRANCE: Languedoc DQ176351 --- --- --- DQ176326 1 3

Satyrinae Satyrini Parargina Lopinga achine EW3-6 SWEDEN DQ338769 DQ338910 --- --- DQ338617 1 3

Satyrinae Satyrini Parargina Pararge aegeria EW1-1 FRANCE: Carcassonne DQ176379 DQ338913 EU141476 EU141372 DQ338620 0 3

Satyrinae Satyrini Parargina Rhaphicera dumicola NW142-23 CHINA: N Sichuan, Songpan env. --- --- --- --- --- ?

Satyrinae Satyrini Parargina Tatinga thibetana CP16-05 CHINA: N Sichuan, Songpan env. --- --- --- --- --- ?

Satyrinae Satyrini Mycalesina Bicyclus anynana EW10-5 ZIMBABWE: Harare AY218238 AY218258 EU141478 EU141374 AY218276 1 4

Satyrinae Satyrini Mycalesina Hallelesis halyma CP10-05 GHANA DQ338763 DQ338903 --- --- DQ338630 1 5

Satyrinae Satyrini Mycalesina Mycalesis terminus EW18-8 AUSTRALIA: Cairns DQ338765 DQ338905 EU528400 EU528446 DQ338632 1 6

Satyrinae Satyrini Lethina Aphysoneura pigmentaria NW117-22 TANZANIA: Lulando --- --- --- --- --- 1

Satyrinae Satyrini Lethina Enodia anthedon NW166-9 USA: VA, Chantilly --- --- --- --- --- 1

Satyrinae Satyrini Lethina Lethe minerva NW121-17 INDONESIA: Bali DQ338768 DQ338909 EU141492 EU141387 DQ338616 1

Satyrinae Satyrini Lethina Neope bremeri EW25-23 TAIWAN: Hsiaokuehu DQ338770 DQ338911 EU528402 EU528448 DQ338618 0 7

Satyrinae Satyrini Lethina Ninguta schrenkii NW140-8 RUSSIA: Vladivostok distr. --- --- --- --- --- 1 8

Satyrinae Satyrini Lethina Satyrodes eurydice CP11-01 USA --- --- --- --- --- 1

Satyrinae Satyrini Coenonymphina Coenonympha myops CP16-22 IRAN: Golestan --- --- --- --- --- 1

Satyrinae Satyrini Coenonymphina Coenonympha pamphilus EW7-3 SWEDEN: Öland DQ338777 DQ338920 EU528385 EU528428 DQ338637 1 6

Satyrinae Satyrini Coenonymphina Coenonympha phryne CP16-21 RUSSIA: SW Siberia --- --- --- --- --- 1 8

Satyrinae Satyrini Coenonymphina Coenonympha saadi NW150-14 ARMENIA: Armavir marz, Vanand --- --- --- --- --- 1 8

Satyrinae Satyrini Coenonymphina Coenonympha thyrsis UK4-2 GREECE: Psyloritis Moutains --- --- --- --- --- 1 3

Satyrinae Satyrini Coenonymphina Sinonympha amoena NW161-17 CHINA: Sichuan --- --- --- --- --- ?

Satyrinae Satyrini Coenonymphina Altiapa decolor NW136-13 PAPUA NEW GUINEA: Simbu Prov. --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Altiapa klossi NW161-1 PAPUA NEW GUINEA: Kandep, Enga Prov--- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Argynnina cyrila NW124-24 AUSTRALIA --- --- --- --- --- 1 6

Satyrinae Satyrini Coenonymphina Argyronympha gracilipes NW136-1 SOLOMON ISLANDS: Guadalcanal DQ338816 --- --- --- DQ338676 0 2

Satyrinae Satyrini Coenonymphina Argyronympha ugiensis NW136-2 SOLOMON ISLANDS: San Cristobal DQ338819 DQ338966 --- --- DQ338679 0 2

Satyrinae Satyrini Coenonymphina Argyrophenga antipodium NW123-18 NEW ZEALAND DQ338821 DQ338968 --- --- DQ338686 1

Satyrinae Satyrini Coenonymphina Dodonidia helmsi NW123-15 NEW ZEALAND DQ338822 DQ338970 --- --- DQ338688 1

Satyrinae Satyrini Coenonymphina Erebiola butleri NW123-16 NEW ZEALAND DQ338823 DQ338971 --- --- DQ338689 1

Satyrinae Satyrini Coenonymphina Erycinidia gracilis NW161-2 PAPUA NEW GUINEA: Mt. Hagen --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Erycinidia virgo NW161-3 PAPUA NEW GUINEA: Kandep --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Geitoneura klugii RA64 AUSTRALIA: Tasmania --- --- --- --- --- 1 6

Satyrinae Satyrini Coenonymphina Geitoneura minyas UK1-2 AUSTRALIA: WA, Perth 1 6

Satyrinae Satyrini Coenonymphina Harsiesis hygea NW136-11 PAPUA NEW GUINEA: Morobe Prov. --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Hypocysta adiante KB339 AUSTRALIA: WA, Kimberley --- --- --- --- --- 1 6

Satyrinae Satyrini Coenonymphina Hypocysta pseudirius NW123-5 AUSTRALIA: Newcastle DQ338826 DQ338974 --- EU528440 --- 0,1 6

Satyrinae Satyrini Coenonymphina Nesoxenica leprea RA61 AUSTRALIA: Tasmania --- --- --- --- --- 0 6

Satyrinae Satyrini Coenonymphina Oreixenica latialis UK1-20 AUSTRALIA: NSW, Tinderry mountians 1 6

Satyrinae Satyrini Coenonymphina Oreixenica lathoniella UK1-6 AUSTRALIA: ACT, Mt. Gingeria --- --- --- --- --- 1 6

Satyrinae Satyrini Coenonymphina Paratisiphone lyrnessa NW162-1 NEW CALEDONIA: Monis des Khogis --- --- --- --- --- 1

Satyrinae Satyrini Coenonymphina Percnodaimon merula NW123-17 NEW ZEALAND DQ338829 DQ338978 --- --- DQ338694 1

Satyrinae Satyrini Coenonymphina Platypthima homochroa NW136-10 PAPUA NEW GUINEA: Morobe Prov. --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Platypthima ornata NW161-4 PAPUA NEW GUINEA: Mt. Hagen --- --- --- --- --- 1 2

Satyrinae Satyrini Coenonymphina Tisiphone abeona NW124-21 AUSTRALIA: Kulnura DQ338830 DQ338980 --- --- DQ338695 1 6

Satyrinae Satyrini Erebiina Erebia epiphron EW24-3 FRANCE: Languedoc DQ338778 DQ338921 --- --- DQ338638 1 6

Satyrinae Satyrini Erebiina Erebia ligea EW5-19 SWEDEN: Brottby, Vallentuna DQ338779 DQ338922 --- --- DQ338639 1 6

Satyrinae Satyrini Erebiina Erebia oeme EW24-7 FRANCE: Languedoc DQ338780 DQ338923 EU141479 EU141375 DQ338640 1 6

Satyrinae Satyrini Erebiina Erebia palarica EW9-4 SPAIN: Serra do Couvel AY090212 AY090178 --- --- AY090145 1 6

Satyrinae Satyrini Erebiina Erebia triaria EW9-1 SPAIN: Serra de Ancares DQ338782 DQ338925 --- --- DQ338642 1 6

Satyrinae Satyrini Euptychiina Amphidecta calliomma NW126-21 BRAZIL: Mato Grosso DQ338879 DQ339037 --- --- DQ338745 0,1 9

Satyrinae Satyrini Euptychiina Caeruleuptychia lobelia CP01-67 PERU: Madre de Dios DQ338788 DQ338930 --- --- DQ338648 1

Satyrinae Satyrini Euptychiina Cepheuptychia sp.n. CP01-31 PERU: Madre de Dios DQ338789 DQ338931 --- --- DQ338649 0

Satyrinae Satyrini Euptychiina Chloreuptychia herseis CP01-72 PERU: Madre de Dios DQ338790 DQ338932 --- --- DQ338650 0

Satyrinae Satyrini Euptychiina Cissia myncea NW108-6 BRAZIL: São Paulo DQ338581 DQ338933 --- --- DQ338651 1

Satyrinae Satyrini Euptychiina Cyllopsis pertepida NW165-3 MEXICO: Guanajuato --- --- --- --- --- 1

Satyrinae Satyrini Euptychiina Erichthodes antonina CP02-24 PERU: Madre de Dios DQ338792 DQ338935 --- --- DQ338653 0

Satyrinae Satyrini Euptychiina Euptychia enyo CP06-73 PERU: Cordillera del Cóndor --- --- --- --- --- 0

Satyrinae Satyrini Euptychiina Euptychia sp.n. 2 CP01-33 PERU: Madre de Dios DQ338794 DQ338937 EU528392 EU528437 DQ338654 0

Satyrinae Satyrini Euptychiina Euptychia sp.n. 5 CP01-53 PERU: Madre de Dios DQ338795 DQ338938 --- --- DQ338655 0

Satyrinae Satyrini Euptychiina Euptychia sp.n. 6 CP04-55 PERU: Mina Pichita DQ338796 DQ338939 --- --- DQ338656 0

Satyrinae Satyrini Euptychiina Euptychia sp.n. 7 CP02-58 PERU: Quebrada Siete Jeringas --- DQ338940 --- --- DQ338657 0

Satyrinae Satyrini Euptychiina Euptychoides castrensis NW126-9 BRAZIL: Ribeirão das Pedras DQ338798 DQ338942 --- --- DQ338659 1

Satyrinae Satyrini Euptychiina Forsterinaria boliviana CP04-88 PERU: Quebrada Siete Jeringas DQ338799 DQ338943 --- --- DQ338660 0 10

Satyrinae Satyrini Euptychiina Harjesia blanda CP01-13 PERU: Madre de Dios DQ338800 DQ338945 --- --- DQ338662 0

Satyrinae Satyrini Euptychiina Hermeuptychia hermes NW127-16 BRAZIL: Extrema, MG DQ338583 DQ338946 --- --- DQ338663 1 11

Satyrinae Satyrini Euptychiina Hermeuptychia hermes CP01-07 PERU: Madre de Dios --- --- --- --- --- 1 11

Satyrinae Satyrini Euptychiina Magneuptychia sp.n.4 CP01-91 PERU: Madre de Dios DQ338584 DQ338947 --- --- DQ338664 0

Satyrinae Satyrini Euptychiina Megisto cymela CP21-04 USA: Valley Falls --- --- --- --- --- 1 11

Satyrinae Satyrini Euptychiina Oressinoma sorata CP06-89 PERU: Oxapampa --- --- --- --- --- 0

Satyrinae Satyrini Euptychiina Oressinoma typhla CP07-71 PERU: Junín DQ338802 DQ338949 --- EU528452 DQ338666 0 12

Satyrinae Satyrini Euptychiina Paramacera xicaque CP15-08 MEXICO: Distrito Federal --- --- --- --- --- 1 11

Satyrinae Satyrini Euptychiina Parataygetis albinotata CP04-53 PERU: Mina Pichita DQ338804 DQ338950 --- --- DQ338668 0

Satyrinae Satyrini Euptychiina Pareuptychia hesionides CP01-66 PERU: Madre de Dios DQ338805 DQ338951 --- --- DQ338669 0

Satyrinae Satyrini Euptychiina Pindis squamistriga NW165-5 MEXICO: GTO: Mpio. Penjamo --- --- --- --- --- 0 13

Satyrinae Satyrini Euptychiina Posttaygetis penelea NW126-13 BRAZIL DQ338813 DQ338959 --- --- DQ338682 1

Satyrinae Satyrini Euptychiina Splendeuptychia itonis CP02-44 PERU: Madre de Dios DQ338811 DQ338957 --- --- DQ338684 1

Satyrinae Satyrini Euptychiina Taygetis virgilia NW108-3 BRAZIL: São Paulo DQ338812 DQ338958 EU141487 EU141383 DQ338683 0 12

Satyrinae Satyrini Euptychiina Yphthimoides cipoensis CP10-02 BRAZIL: Serra Do Cipó DQ338814 DQ338961 --- --- DQ338681 1 14

Satyrinae Satyrini Ypthimina Callerebia polyphemus CP16-19 CHINA: N Sichuan, Songpan env. --- --- --- --- --- 1

Satyrinae Satyrini Ypthimina Cassionympha cassius NW144-2 SOUTH AFRICA: W. Cape --- --- --- --- --- 1 1

Satyrinae Satyrini Ypthimina Loxerebia saxicola CP16-06 CHINA: Shanxi, Tshingling Mts. --- --- --- --- --- 1

Satyrinae Satyrini Ypthimina Neocoenyra petersi NW91-5 TANZANIA DQ338874 DQ339032 --- --- DQ338741 1 1

Satyrinae Satyrini Ypthimina Paralasa hades NW139-13 TADZHIKISTAN: Turkestan Mt. Rng. --- --- --- --- --- 1 8

Satyrinae Satyrini Ypthimina Paralasa jordana CP-AC23-35 RUSSIA: Karasu DQ338597 DQ339027 EU532176 EU528455 DQ338736 1 8

Satyrinae Satyrini Ypthimina Paralasa styx CP11-05 UZBEKISTAN: W Tian-Shan --- --- --- --- --- 1 8

Satyrinae Satyrini Ypthimina Pseudonympha magus NW144-1 SOUTH AFRICA: E. Cape --- --- --- --- --- 1 1

Satyrinae Satyrini Ypthimina Stygionympha vigilans NW144-5 SOUTH AFRICA: E. Cape --- --- --- --- --- 1

Satyrinae Satyrini Ypthimina Ypthima baldus NW98-5 INDONESIA: Central Sulawesi DQ338875 DQ339033 EU528416 EU528469 DQ338742 1

Satyrinae Satyrini Ypthimina Ypthimomorpha itonia NW117-23 ZAMBIA: NW, Ikelenge DQ338878 DQ339036 --- --- DQ338744 1 5

Satyrinae Satyrini Maniolina Aphantopus arvensis NW148-16 CHINA: N Sichuan --- --- --- --- --- 1

Satyrinae Satyrini Maniolina Aphantopus hyperantus EW2-1 SWEDEN: Stockholm AY090211 AY090177 --- --- AY090144 1 3

Satyrinae Satyrini Maniolina Maniola jurtina EW4-5 SPAIN: Sant Climent, N Spain AY090214 AY090180 EU141481 EU141376 AY090147 1 3

Satyrinae Satyrini Maniolina Maniola telmesia CP10-14 --- --- --- --- --- 1 3

Satyrinae Satyrini Maniolina Proterebia afra NW143-7 GREECE: Askion Mt --- --- --- --- --- 1 3

Satyrinae Satyrini Maniolina Pyronia cecilia EW4-2 SPAIN: Sant Climent, N Spain DQ338842 DQ338992 --- --- DQ338705 1 3

Satyrinae Satyrini Melanargiina Melanargia galathea EW24-17 FRANCE: Languedoc DQ338843 DQ338993 EU528398 EU528444 DQ338706 1 3

Satyrinae Satyrini Melanargiina Melanargia hylata CP10-10 IRAN: Ardabil DQ338844 DQ338994 --- --- DQ338707 1

Satyrinae Satyrini Melanargiina Melanargia lachesis NW149-3 FRANCE: Languedoc --- --- --- --- --- 1 15

Satyrinae Satyrini Pronophilina Altopedaliodes sp. CP07-86 PERU: Cerro de Pasco --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Apexacuta astoreth CP09-78 PERU: S.N. Ampay DQ338846 DQ338996 --- --- DQ338709 1

Satyrinae Satyrini Pronophilina Argyrophorus sp. CP-C04 PERU --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Auca barrosi RV-03-V39 CHILE: Céspedes DQ338832 DQ338982 --- --- DQ338697 0 16

Satyrinae Satyrini Pronophilina Auca coctei RV-03-V13 CHILE: Céspedes DQ338833 DQ338983 --- --- DQ338698 0 16

Satyrinae Satyrini Pronophilina Calisto pulchella DR003 DOMINICAN REPUBLIC: Puerto Plata --- --- --- --- --- 1 17

Satyrinae Satyrini Pronophilina Cheimas opalinus CP17-06 --- --- --- --- --- 0 18

Satyrinae Satyrini Pronophilina Chillanella stelligera CH-24A-1 CHILE: Termas de Chillán DQ338589 DQ338984 --- --- DQ338699 1

Satyrinae Satyrini Pronophilina Corades enyo CP04-06 PERU: Quebrada Siete Jeringas --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Cosmosatyrus leptoneuroides CH-15-5 CHILE: Cordillera Nahuelbuta DQ338834 DQ338985 --- --- --- 1

Satyrinae Satyrini Pronophilina Daedalma sp. CP13-05 ECUADOR: Prov. Tungurahua DQ338848 DQ338998 --- --- --- 0 19

Satyrinae Satyrini Pronophilina Diaphanos curvianathos CP17-03 --- --- --- --- --- 1 20

Satyrinae Satyrini Pronophilina Elina montrolii CH-25-1 CHILE: Ñuble, Cueva Pincheira DQ338835 DQ338986 --- --- --- 1

Satyrinae Satyrini Pronophilina Eretris sp.n. 8 CP08-04 PERU: La Solitaria --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Etcheverrius chiliensis CH-30-4 CHILE: Los Andes, Portillo DQ338836 DQ338987 --- --- DQ338700 1

Satyrinae Satyrini Pronophilina Eteona tisiphone NW127-21 BRAZIL: Extrema, MG DQ338849 DQ338999 --- --- DQ338711 0 21

Satyrinae Satyrini Pronophilina Faunula leucoglene CH-30-5 CHILE --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Foetterleia schreineri NW127-19 BRAZIL: Extrema, MG DQ338590 DQ339000 --- --- DQ338712 0 22

Satyrinae Satyrini Pronophilina Haywardella edmondsii CP14-04 --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Junea dorinda CP06-94 PERU: La Antena DQ338850 DQ339001 --- --- DQ338713 0

Satyrinae Satyrini Pronophilina Lasiophila cirta CP04-36 PERU: Quebrada Malambo DQ338851 DQ339002 --- --- DQ338714 0

Satyrinae Satyrini Pronophilina Lymanopoda caudalis CP04-22 PERU: Pampa Hermosa --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Lymanopoda rana CP03-33 PERU: Pampa Hermosa DQ338853 DQ339004 --- --- DQ338715 0

Satyrinae Satyrini Pronophilina Manerebia lisa CP04-23 PERU: Quebrada Malambo --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Mygona irmina CP17-04 --- --- --- --- --- 0 23

Satyrinae Satyrini Pronophilina Nelia nemyroides CH-8A-2 CHILE: Los Lagos AY508562 AY509088 --- --- --- 0 16

Satyrinae Satyrini Pronophilina Oxeoschistus leucospilos CP04-67 PERU: Quebrada Siete Jeringas DQ338854 DQ339005 --- --- DQ338716 0

Satyrinae Satyrini Pronophilina Oxeoschistus pronax CP07-73 PERU: La Solitaria --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Pampasatyrus glaucope NW149-7 BRAZIL: São Paulo --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Pampasatyrus gyrtone NW126-12 BRAZIL: Campos do Jordão, SP DQ338837 DQ338988 EU528406 EU528454 DQ338701 1

Satyrinae Satyrini Pronophilina Pampasatyrus reticulata CP17-09 BRAZIL: Campos do Jordão, SP --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Panyapedaliodes drymaea CP09-53 PERU: S.N. de Ampay DQ338855 DQ339006 --- --- DQ338717 1

Satyrinae Satyrini Pronophilina Parapedaliodes parepa CP07-51 PERU: Lima DQ338591 DQ339007 --- --- DQ338718 1

Satyrinae Satyrini Pronophilina Pedaliodes phrasiclea CP03-35 PERU: Quebrada Siete Jeringas --- --- --- --- --- 0

Satyrinae Satyrini Pronophilina Pedaliodes sp.n. 26 CP09-90 PERU: Ampay --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Pedaliodes sp.n. 117 CP09-66 PERU: S.N. de Ampay DQ338856 DQ339008 EU528407 EU528456 DQ338719 1

Satyrinae Satyrini Pronophilina Proboscis propylea CP07-15 PERU: La Antena DQ338858 DQ339011 --- --- DQ338722 0

Satyrinae Satyrini Pronophilina Pronophila thelebe CP03-70 PERU: Quebrada Siete Jeringas DQ338859 DQ339012 EU528410 EU528461 DQ338723 0

Satyrinae Satyrini Pronophilina Pseudomaniola loxo CP13-13 COLOMBIA: Prov. Antioquia DQ338860 DQ339013 --- --- --- 0 23

Satyrinae Satyrini Pronophilina Pseudomaniola phaselis CP04-01 PERU: Quebrada Siete Jeringas DQ338593 DQ339014 --- --- DQ338724 0

Satyrinae Satyrini Pronophilina Punapedaliodes flavopunctata CP07-87 PERU: Cerro de Pasco DQ338861 DQ339015 --- --- DQ338725 1

Satyrinae Satyrini Pronophilina Punargentus sp. CP08-51 PERU: Junín-Pachacayo --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Punargentus sp. CP08-75 PERU: Junín-Pachacayo --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Punargentus sp. CP09-39 PERU: Junín-Pachacayo --- --- --- --- --- 1

Satyrinae Satyrini Pronophilina Quilaphoetosus monachus CH-12-1 CHILE: Valdivia DQ338838 DQ338979 --- --- --- 1

Satyrinae Satyrini Pronophilina Redonda empetrus CP17-02 --- --- --- --- --- 1 24

Satyrinae Satyrini Pronophilina Steremnia umbracina CP07-89 PERU: La Unión DQ338862 DQ339016 --- --- DQ338726 1

Satyrinae Satyrini Pronophilina Steromapedaliodes albonotata CP17-01 --- --- --- --- --- 1 20

Satyrinae Satyrini Pronophilina Thiemeia phoronea CP13-08 VENEZUELA: P.N. Avila Gavilan --- --- --- --- --- 0 19

Satyrinae Satyrini Satyrina Arethusana arethusa CP11-06 SPAIN: La Aldea (Navarra) DQ338863 DQ339018 --- --- DQ338728 1 3

Satyrinae Satyrini Satyrina Berberia lambessanus EW26-29 MOROCCO: Moyen Atlas central DQ338864 DQ339019 --- --- --- 1 3

Satyrinae Satyrini Satyrina Brintesia circe CP-B01 FRANCE: Aude, Villegly DQ338865 DQ339020 EU141474 EU141370 DQ338729 1

Satyrinae Satyrini Satyrina Chazara briseis EW26-19 MOROCCO: Rif oriental DQ338866 DQ339021 --- --- DQ338730 1 3

Satyrinae Satyrini Satyrina Hipparchia statilinus EW25-24 GREECE: Peloponessos near Patras DQ338596 DQ339024 --- --- DQ338733 1 3

Satyrinae Satyrini Satyrina Karanasa bolorica NW166-10 RUSSIA: E Pamir, Karateke distr --- --- --- --- --- 1 8

Satyrinae Satyrini Satyrina Karanasa pamira CP-AC23-32 RUSSIA: Vanch DQ338869 DQ339025 --- --- DQ338734 1 8

Satyrinae Satyrini Satyrina Neominois ridingsii CD-1-1 USA: Colorado DQ338870 DQ339026 --- --- DQ338735 1 11

Satyrinae Satyrini Satyrina Oeneis jutta EW4-1 SWEDEN --- --- --- --- --- 1 3

Satyrinae Satyrini Satyrina Pseudochazara mamurra CP10-11 IRAN: Isfahan DQ338598 DQ339028 --- --- DQ338737 1 3

Satyrinae Satyrini Satyrina Satyrus actaea EW20-12 FRANCE: Carcassonne DQ338871 DQ339029 EU528412 EU528463 DQ338738 1 3

Satyrinae Satyrini Satyrina Satyrus iranicus CP10-12 IRAN DQ338873 DQ339031 --- --- DQ338740 1

Satyrinae Satyrini Eritina Coelites euptychioides CP16-14 INDONESIA: Kalimantan --- --- --- --- --- 0 25

Satyrinae Satyrini Eritina Erites argentina CP16-13 INDONESIA: Kalimantan EU528321 EU528298 EU528390 EU528435 EU528277 0

Satyrinae Satyrini Eritina Orsotriaena medus EW25-17 BANGLADESH: Sylhet Div. DQ338766 DQ338906 EU528405 EU528453 DQ338633 1 6

Satyrinae Satyrini Eritina Zipaetis saitis D30 INDIA DQ338831 DQ338981 EU528418 EU528472 DQ338696 0 26

Satyrinae Satyrini Ragadiina Acrophtalmia leuce CP16-16 INDONESIA: Central Sulawesi --- --- --- --- --- 0 7

Satyrinae Satyrini Ragadiina Ragadia makuta CP16-09 INDONESIA: Kalimantan --- --- EU532177 EU532178 --- 0

Satyrinae Satyrini uncertain Cercyonis meadii CP15-09 USA: Colorado, Douglas Co. --- --- --- --- --- 1 11

Satyrinae Satyrini uncertain Cercyonis pegala EW8-1 USA: OR, Benton Co. AY218239 AY218259 --- --- AY218277 1 11

Satyrinae Satyrini uncertain Hyponephele cadusia CP10-07 IRAN: Hamadan DQ338839 DQ338989 EU528395 EU528441 DQ338702 1

Satyrinae Satyrini uncertain Hyponephele shirazica CP10-13 IRAN: Bakhtiari DQ338840 DQ338990 --- --- DQ338703 1

1van Son, 1955; 2Parsons, 1999; 3Tolman & Lewington, 1997; 4Pijpe, 2007; 5Larsen, 2005; 6Braby, 2000; 7Igarashi & Fukuda, 2000; 8Tuzov, 1997; 9Freitas, 2004a; 10Peña & Lamas, 2005; 11Scott, 1986; 12DeVries, 1987; 13Luis &

Llorente, 1993; 14Freitas, 2004b; 15Habel et al., 2005; 16Concha & Parra, 2006; 17Sourakov, 1996; 18Viloria, 2000; 19Pyrcz, 2004b; 20Pyrcz, 2004a; 21Freitas, 2002; 22Viloria, 2007; 23Henao, 2005; 24Viloria et al., 2003; 25Tangah et al.,

2004; 26Nguyen et al., 2002

Table 2Parameter values estimated using Bayesian phylogenetic methodsGene TL (all) r(A↔C) r(A↔G) r(A↔T) r(C↔G) r(C↔T) r(G↔T) pi(A) pi(C) pi(G) pi(T) alpha pinvarCOI 20.81 0.05 0.32 0.03 0.07 0.50 0.04 0.41 0.09 0.03 0.47 0.40 0.54EF1-α 0.05 0.29 0.09 0.06 0.46 0.06 0.31 0.23 0.21 0.26 0.58 0.38wingless 0.07 0.28 0.12 0.03 0.42 0.08 0.16 0.37 0.34 0.13 0.59 0.30RpS5 0.09 0.29 0.12 0.05 0.40 0.05 0.23 0.22 0.25 0.31 0.65 0.48GAPDH 0.08 0.30 0.12 0.05 0.38 0.07 0.28 0.24 0.15 0.33 0.65 0.46

Paper IV

Biogeographic history of the subtribe Euptychiina (Nymphalidae:

Satyrinae)

Carlos Pena1, Soren Nylin1, Andre V. L. Freitas2 & Niklas Wahlberg1,3

1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden2Departamento de Zoologia and Museu de Historia Natural, Instituto de Biologia, Universidade Estadual de

Campinas, CP 61093Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland

Abstract

Butterflies in the subtribe Euptychiina (Nymphalidae: Satyrinae) are one of the biggestgroups in the highly diverse subfamily Satyrinae. It includes around 400 known species dis-tributed mainly in the Neotropical region. Thus far the Euptychiina are thought to be re-stricted entirely to the Americas, however there is mounting evidence for a disjunct distributionof this subtribe and Palaeonympha opalina from the Oriental region. Although the pattern ofdisjunct distributions in both eastern Asia and eastern North America is known for a varietyof animal and plant taxa, this has never been reported for any butterfly taxon. In this study,we perform a phylogenetic study of an extensive sampling of Euptychiina taxa. We used 4447base pairs of DNA sequences from the mitochondrial gene COI and the nuclear genes EF-1α,GAPDH, RpS5 and wingless for 108 Euptychiina taxa and 18 outgroups in order to obtaina robust phylogenetic hypothesis under maximum parsimony, and model-based methods. Weestimated dates of origin and diversification for major Euptychiina clades and performed abiogeographic analysis using a dispersal-vicariance framework in order to reconstruct the bio-geographical history of the group. We found that Euptychiina originated approximately 31Mya in South America. Early Euptychiina dispersed from North- to South America via thetemporal connection between the Greater Antilles and northwestern South America duringEocene–Oligocene times, known as the GAARlandia landspan. We also found that the cur-rent disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbounddispersal of a lineage from South- into North America. It appears that the common ancestor ofPalaeonympha and its sister taxon Megisto inhabited the continuous forest belt across NorthAsia and North America which was connected by Beringia. The closure of this connectioncaused the split between Palaeonympha and Megisto at around 13 Mya, which resulted in theclassic “eastern Asia and eastern North America” disjunct distribution. Therefore, this studyshows the utility of the Euptychiina (and Satyrinae) as model organisms for biogeographicstudies.

1 Introduction

A general pattern of disjunct distributions inboth eastern Asia and eastern North Amer-

ica has been reported for a variety of animaland plant taxa (Carreno & Lankester, 1994;Nordlander et al., 1996; Wang et al., 2003;Nie et al., 2006), and this is probably one of

1

Biogeographic history of the Euptychiina

the most interesting patterns of global distri-butions of organisms. This pattern is knownfrom plants since before Linnaean times (Xianget al., 1998; Wen, 1999), and was also reportedin wasps (Nordlander et al., 1996) and fishes(Hardman, 2005). It has been proposed thatthis pattern is the result of the severance ofthe continuous belt of tropical and subtropicalforests that extended throughout North Amer-ica, Europe and Asia during the Tertiary, andthat currently occur in eastern North Americaand eastern Asia (Guo, 1999; Sanmartın et al.,2001).

Surprisingly, even though butterflies are rel-atively well-known to an extent that they areconsidered model organisms for evolutionarystudies (Boggs et al., 2003), this pattern of dis-junct distributions has not yet been reportedfor any butterfly taxon. Although butter-flies are not as diverse as some other insects(e.g. beetles and leafhoppers), studies on somegroups of the circa 14000 butterfly species inthe world (Ackery et al., 1999) has permit-ted the discovery of interesting biogeographicpatterns (Kodandaramaiah & Wahlberg, 2007,2009; Wahlberg & Freitas, 2007; Leneveu et al.,2009). Since the Neotropical region harbors40% of all known butterflies (Lamas, 2004),one could expect a great number of biogeo-graphic studies focussed on the region. How-ever, most of our ideas on the biogeographicpast of Neotropical butterflies is based on spec-ulative hypotheses with limited use of bothphylogenetic information and dated phyloge-nies (Miller & Miller, 1997; Viloria, 2003,2007). Molecular dating of phylogenies is cru-cial to place the evolutionary history of thestudy groups in a temporal framework, so thatit allows identifying the geological events re-sponsible for current biogeographic distribu-tions (Sanmartın et al., 2001).

It is only recently that a strong empha-sis on phylogenetic analyses coupled with es-timation of origin and diversification times

for major lineages (employing relaxed molec-ular clock techniques) are being used to eluci-date the biogeographic history of Central andSouth American butterfly groups (Willmottet al., 2001; Mallarino et al., 2005; Wahlberg& Freitas, 2007). In a previous study, wefound that the highly diverse butterfly subfam-ily Satyrinae include taxa with interesting dis-junct distributions (Pena et al., 2006). Ourmolecular dataset of Satyrinae taxa and re-lated groups showed evidence that the Orien-tal butterfly Palaeonympha opalina might besister to some members of the subtribe Eup-tychiina, which is so far entirely restricted tothe Americas. This was, however, suggestedearlier by Miller (1968), who found morpho-logical similarities between Palaeonympha andmembers of the Euptychiina. These findingstempted him to formally classify the easternAsian genus as a member of the Euptychiina, asubtribe that include a few species distributedin North America. However, because of suchdisjunct distributions, Miller (1968) decided togive Palaeonympha opalina the incertae sedisstatus.

The Euptychiina is one of the biggest groupsin the highly diverse subfamily Satyrinae. Itincludes around 400 known species (Lamas,2004) distributed in the Nearctic and Neotrop-ical regions, although the bulk of species occurin Central and, specially, South America. Aslarvae, most Euptychiina feed mainly on mono-cot plants such as grasses and bamboo (De-Vries, 1987; Ackery, 1988), with the exceptionof some species in the genus Euptychia thatfeed on mosses and lycopsids (Singer et al.,1971; Singer & Mallet, 1986). Adults of mosteuptychiine species are brown colored butter-flies without the striking colors of other mem-bers of the Nymphalidae, such as the Morphoor Heliconius butterflies. This may account forthe lack of basic evolutionary studies on thegroup. Their taxonomy is in urgent need of re-vision, plagued by unnatural genera and many

2

Biogeographic history of the Euptychiina

undescribed species (Lamas, 2004; Murray &Prowell, 2005; Pena & Lamas, 2005; Freitas &Pena, 2006; Freitas, 2007; Pulido & Andrade,2008).

Forster (1964) created many of the generathat currently form Euptychiina on the ba-sis of morphological characters of the malegenitalia of species from Bolivia, but failedto provide clear diagnoses for his new gen-era. It was Miller (1968) who created thesubtribe Euptychiina (as Euptychiini) and in-cluded many of Forster’s genera. The firstphylogenetic study to tackle the Euptychiina(Murray & Prowell, 2005) found it to be poly-phyletic because of the association of Oressi-noma with the Ypthimina and Lethina, whileEuptychia tended to be related with outgrouptaxa. This was explained afterward when Penaet al. (2009) found that Euptychia suffers oflong branch attraction artifacts and tends tobe attracted toward the root or other unrelatedSatyrinae taxa. In addition, while Oressinomais not an euptychiine, it is actually part of theCoenonymphina distributed in the Palaearc-tic and Indo-Australian regions (Pena et al.,2006).

The phylogenetic study by Pena et al.(2006), for the first time showed the bigpicture of the relationships within Satyrinae.Pena et al. (2006) found that the OrientalPalaeonympha belongs to Euptychiina, as sug-gested by Miller (1968), and appears to bemore closely related to some Brazilian eup-tychiines endemic to the Atlantic forests ofSouth Eastern Brazil. However, taxon sam-pling in Pena et al. (2006) was very incomplete,not including many euptychiines from Northand Central America that could be closely re-lated to Palaeonympha opalina, fitting the clas-sic eastern Asia–North America biogeographicpattern. Pena et al. (2006) did not elaboratefurther on the relationships of Palaeonymphaand were unable to propose a satisfactory ex-planation for such a disjunct pattern.

In this study we perform a phylogeneticstudy of an extensive sampling of Euptychiinataxa in order to obtain a robust phylogenetichypothesis to use in a biogeographic analysis ofthe group. We reconstruct the biogeographichistory of Euptychiina proposing an explana-tion for the disjunct distribution of this sub-tribe and the Oriental Palaeonympha. We ar-gue that Euptychiina butterflies are a suitablemodel for biogeographic studies since they alsoshow the classic pattern of disjunct distribu-tions in the eastern Oriental region and easternNorth America.

2 Methods

2.1 Taxon sampling and molecularmethods

We aimed to sample several species of as manygenera as possible in the Euptychiina for a totalof 108 Euptychiina species, including Oressi-noma and Palaeonympha. However, we couldnot obtain samples of the genera Caenoptychia,Praefaunula, Pseudeuptychia and Taygetina.We also included in the analyses 18 out-groups from our previous studies (Pena &Wahlberg, 2008; Pena et al., 2009). Sequencesfor Satyrotaygetis satyrina and Pareuptychiaocirrhoe were taken from Murray & Prowell(2005). Taxonomic nomenclature for generaand species follows Lamas (2004), with addi-tions from Freitas (2004b, 2007) and Freitas& Pena (2006). All sequences have been de-posited in GenBank. Table 1 shows the currentclassification of sampled species and GenBankaccession numbers.

We extracted DNA from two butterflylegs, dried or freshly conserved in 96% al-cohol, using QIAGEN’s DNeasy extractionkit. For all species, we sequenced 1487 bpof the Cytochrome Oxidase subunit I gene(COI) from the mitochondrial genome, 1240bp of the Elongation Factor-1α gene (EF-

3

Biogeographic history of the Euptychiina

1α), 412 bp of the wingless gene, 691 bpof the Glyceraldehyde-3-phosphate Dehydroge-nase (GAPDH) and 614 bp of the Ribosomalprotein S5 (RpS5) from the nuclear genome.We used the hybrid primers for PCR amplifica-tion and sequencing from Wahlberg & Wheat(2008). Sequencing and sequence alignmentwas performed following protocols in Pena &Wahlberg (2008).

2.2 Phylogenetic analyses

The complete dataset consisted of 126 taxaand 4447 characters. We performed a max-imum parsimony analysis treating all charac-ters as unordered and equally weighted. Weperformed heuristic searches using the softwareTNT 1.1 (Goloboff et al., 2003) using a level ofsearch 10, followed by branch-swapping of re-sulting trees with up to 10000 trees held duringeach step. The searches were performed usingthe New Technology Search algorithms of TNT—successive Sectorial searches, Ratchet, TreeDrift and Tree Fusing. All trees were rootedwith Aeropetes.

We evaluated clade robustness by usingthe Bremer support (Bremer, 1988) and thePartitioned Congruence Index (PCI) (Brower,2006). The PCI was drawn from Parti-tioned Bremer Support (PBS) values (Gatesyet al., 1999) obtained using the scriptingfeature of TNT (script pbsup.run taken fromhttp://www.zmuc.dk/public/phylogeny/TNT/scripts/).

We use a model-based phylogenetic methodto analyze our dataset in order to test whetherthe resulting tree is congruent with the max-imum parsimony method. We used the soft-ware MrBayes 3.1.2 (Ronquist & Huelsenbeck,2003). We modeled the evolution of sequencesaccording to the GTR + Γ model. Parametervalues were estimated separately for each generegion (Table 2). The analysis was run twicefor 20 million generations, with every 1000th

tree sampled and the first 10000 sampled gen-erations discarded as burn-in (based on visualinspection of the log likelihood reaching sta-tionarity). We run the analyses on an AMD 64dualcore twin processor workstation using theLAM/MPI technology for parallel computing(http://www.lam-mpi.org/). We will considerthe clades that are recovered under parsimonyand Bayesian analyses as likely to be robustto the addition of additional data (charactersand/or taxa).

2.3 Dating of divergences

We used the Bayesian analysis softwareBEAST ver. 1.4.7 (Drummond & Rambaut,2007) under a log-normal relaxed molecular.The DNA sequences were divided in severaldatasets (one dataset per gene), with parame-ter values estimated independently. The com-bined dataset was analyzed under the GTR +Γ model with a relaxed clock allowing branchlengths to vary following an uncorrelated Log-normal distribution (Drummond et al., 2006).The analysis was run twice for 15 million gen-erations (with pre-run burn-in of 200000 gen-erations) with sampled trees every 2000 gen-erations and the results compiled using bothruns. The tree priors were set to a Yule speci-ation process and all other priors were left tothe default values in BEAST.

In order to obtain absolute times of diver-gence, we used one calibration point. We fixedthe crown age of Satyrini at 36.6 Mya witha standard deviation of 5.1 Mya according toour previous results (Pena & Wahlberg, 2008).Convergence was analyzed with Tracer v1.3and trees were summarized with TreeAnnota-tor v1.4.7 software, which are distributed alongwith the BEAST package.

4

Biogeographic history of the Euptychiina

2.4 Biogeographic analysis

We investigated the biogeographic historyof Euptychiina butterflies by analyzing ourpreferred phylogenetic hypothesis under aDIspersal-Vicariance Analysis (DIVA; Ron-quist, 1997). The distributions were dividedinto five biogeographic regions (Fig. 1). Forthe outgroups, we used the topology from Penaet al. (2009) in order to avoid interference onthe ancestral distributions of the ingroup. Re-construction of ancestral distributions were in-ferred using default costs in the software DIVA(Ronquist, 1996) —vicariance events cost zero,dispersal and extinction events cost 1 per unitarea.

Figure 1 – The five different biogeographical re-gions used in this study for the DIVA analysis.A. Northern South America; B. SoutheasternSouth America; C. Central America; D. North

America; E. Southeastern Asia.

3 Results

3.1 Euptychiina phylogeny

The combined dataset produced 9 equally par-simonious cladograms of length 20678 steps(CI 0.17; RI 042). The strict consensus is notcompletely resolved (Fig. 2). The Bayesian

analysis produced a tree which is broadly con-gruent with the most parsimonious trees (Fig.3). Parameter values for the models used inthe analysis are given in Table 2. The ma-jor difference is in the position of Chloreup-tychia arnaca, Taydebis peculiaris and Saty-rotaygetis satyrina. In the parsimony analy-sis, C. arnaca appears sister to a clade con-taining Cepheuptychia cephus, Chloreuptychiachlorimene, Chloreuptychia herseis, Chlore-uptychia marica and Archeuptychia cluena,while in the Bayesian tree it appears sisterto a clade which includes mainly species inthe genera Caeruleuptychia and Magneupty-chia. In the parsimony analysis, Taydebis pe-culiaris appears as sister to a clade contain-ing Splendeuptychia doxes and S. furina, Saty-rotaygetis, Erichthodes antonina and E. julia,Neonympha, Megeuptychia and Pareuptychia,while in the Bayesian analysis Taydebis pecu-liaris appears sister to Splendeuptychia doxesand S. furina. The monotypic Satyrotaygetisappears sister to Erichthodes antonina and E.julia in the parsimonious trees, while in theBayesian analysis it is sister to a clade in-cluding Erichthodes, Neonympha, Megeupty-chia and Pareuptychia.

All remaining relationships are however re-covered in both analyses, implying a strongphylogenetic signal independent to methodof analysis. The subtribe Euptychiina isa monophyletic entity (not including Oressi-noma which belongs to the Coenonymphina)with Euptychia sensu stricto as sister to allother euptychiines. Of the sampled generaand species, we found that Paramacera, Yph-thimoides, Zischkaia, Hermeuptychia, Tayge-tomorpha, Erichthodes, Megeuptychia, Pareup-tychia and Caeruleuptychia are monophyletic.However, it should be taken into account thatwe did not sample all species for some of thesegenera and it is possible that including the re-maining species of big genera, such as Yph-thimoides and Caeruleuptychia, in the analy-

5

Biogeographic history of the Euptychiina

sis might render them non-monophyletic. Wecould not test the monophyly of Cyllopsis,Megisto, Amphidecta, Pharneuptychia, Godar-tiana, Cepheuptychia and Neonympha becauseour dataset included only a single sampledspecies.

The North and Central American euptychi-ines do not group together and are related todifferent ingroup taxa: Paramacera and Cyl-lopsis are sister genera and closely related toEuptychia ernestina; Megisto cymela is sisterto the oriental Palaeonympha opalina; Pindissquamistriga appears sister to Chloreuptychiaarnaca; and Neonympha is sister to the genusMegeuptychia or Erichthodes.

It is possible to identify five major cladesin the Euptychiina (Fig. 3). Of these, prob-ably the “Palaeonympha clade” is the mostinteresting because it includes Megisto andPalaeonympha as sister to a clade of speciesmainly endemic to southeastern Brazil. Wefound this pattern in a previous study (Penaet al., 2006), although Megisto was not in-cluded in that dataset. The “Hermeuptychiaclade” includes the monophyletic Hermeupty-chia and several odd taxa such as Amphidectacalliomma and the monotypic genera Rareup-tychia and Cercyeuptychia. Our third cladecorresponds with the “Taygetis clade” foundby Murray & Prowell (2005), while our fifthclade is basically the “Cissia clade” in Mur-ray & Prowell (2005) with the inclusion of theBrazilian endemic Capronnieria galesus. Ourfourth clade consists in a disparate collection oftaxa, which among others, includes the “Pare-uptychia clade” of Murray & Prowell (2005),Megeuptychia, and the monotypic Archeupty-chia and Satyrotaygetis.

3.2 Times of divergence

Our time estimates by the relaxed molecu-lar clock technique produced wide confidenceintervals for most nodes (Fig. 4). This is

the result of taking into account the stan-dard error for the estimated age of Satyrinias 36.6 ± 5.1 Mya (from Pena & Wahlberg,2008). It is expected to obtain wider intervalswhen employing secondary calibration points(Graur & Martin, 2004). Our estimated timesindicate that the Euptychiina appeared dur-ing the Oligocene at around 31 Mya. Thegenus Euptychia is and old lineage that di-versified at around 23 Mya. The 5 majorclades in Euptychiina diverged in the earlyMiocene, while most of the diversification atthe genus and species level occurred during themid and late Miocene (16–7 Mya) (Fig. 4). Inthe “Palaeonympha clade”, the split betweenPalaeonympha and Megisto is estimated to beas early as 13 Mya, while the split betweentheir ancestor and the Brazilian endemics oc-curred at ∼21 Mya. It is interesting to notethat some of north and Central American eup-tychiines are relatively old lineages: Cyllopsissplit from Paramacera almost 20 Mya; Pindisbranched off at around 21 Mya. This contrastswith the relatively young age for Neonymphaand Satyrotaygetis, dated at around 11 Mya.

3.3 Biogeographic history

Our biogeographic analysis in DIVA suggeststhat dispersal events have been important inthe biogeographic history of the Euptychiina.DIVA suggests that 67 dispersal events areneeded to explain the current distributions ofour sampled euptychiines (Fig. 4). Restrictingthe number of maximum ancestral areas onlyaffects the ancestral distributions of five nodes,however the major biogeographic patterns andimplications are not affected.

The area of origin of Euptychiina is not clear.Our DIVA reconstructions indicate that theancestor of Euptychiina originated somewherein South America (A+B). Alternatively, DIVAestimates an implausible disjunct area of originin South and North America (A+D) (Fig. 4).

6

Biogeographic history of the Euptychiina

Early on the evolution of Euptychiina, atleast two dispersal events into southeasternBrazil and Central or North America origi-nated (Paramacera + Cyllopsis) and Eupty-chia ernestina (Fig. 4). The lineage that re-mained in central South America underwentsimilar dispersal events producing at least twolineages, a dispersal into southeastern Braziland subsequent diversification originated mostof the euptychiines endemic to the BrazilianAtlantic forests (taxa in the “Palaeonymphaclade”). The other lineage corresponds to theNearctic Megisto + Oriental Palaeonympha,which is inferred to be the result of dispersalinto North America and the Oriental region(Fig. 4). Our DIVA analysis evidences thatthe diversification of all other euptychiines oc-curred in South America, and that incursionsto southeastern Brazil, Central America andNorth America were not rare (Fig. 4).

4 Discussion

4.1 Euptychiina phylogeny

Our robust phylogenetic hypotheses in thisstudy show that Euptychiina, as delimitedby Lamas (2004), is a polyphyletic group.We present a revised checklist of a mono-phyletic Euptychiina which includes taxa longconsidered incertae sedis: the NeotropicalAmphidecta and the Oriental Palaeonymphaopalina (Table 3). Previous studies have shownthat the genus Oressinoma is not an eupty-chiine (Murray & Prowell, 2005; Pena et al.,2006), and it is currently classified under theCoenonymphina (Pena et al., 2006). Pre-vious studies using morphological charactersfrom adult and immature stages of Amphidecta(Miller, 1968; Viloria, 2003; Freitas, 2004a)were inconclusive and failed to define the posi-tion of this genus.

The study of Murray & Prowell (2005) con-cludes that the genus Euptychia does not share

a common ancestor with the other euptychi-ines. It is possible that the results of Murray& Prowell (2005) are affected by long branchattraction artifacts (Bergsten, 2005). Our pre-vious study of the Satyrini (Pena et al., 2009)found that Euptychia is a long branch thatsuffers of attraction to several other satyrines.When other long branches are included in aphylogeny, Euptychia is prone to be attractedto Calisto, some taxa in the Ypthimina andeven to some Brassolinae and Morphinae (Penaet al., 2009). This could be the result of Eup-tychia being the descendant of a relatively oldlineage that diversified early in the history ofEuptychiina, around 22 Mya (Fig. 4), and un-derwent rapid changes in the DNA.

Even though our sampling of euptychiines isstill incomplete, it is evident that the Eupty-chiina is plagued by polyphyletic genera andneeds a great deal of taxonomic work. Al-though recent studies tackle this problem (Fre-itas, 2003, 2004b; Pena & Lamas, 2005; Fre-itas & Pena, 2006; Freitas, 2007; Pulido &Andrade, 2008), the current classification ofgenera in Euptychiina remains basically un-changed since the work of Forster (1964).

Our results support Murray & Prowell’s(2005) division of Euptychiina in severalclades. While we recovered basically thesame Taygetis and Cissia clades, their “Pare-uptychia clade” should be considered to in-clude Megeuptychia, Archeuptychia and Saty-rotaygetis. We found two additional ma-jor clades in Euptychiina (Fig. 3), our“Palaeonympha clade” that includes the Ori-ental Palaeonympha opalina which is sister toa clade that includes Megisto and some en-demic euptychiines to southeastern Brazil (Fig.3), and our “Hermeuptychia clade” which in-cludes Cercyeuptychia, Zischkaia, Amphidecta,Pindis, Rareuptychia and some members ofSplendeuptychia, Pharneuptychia and Godar-tiana (Fig. 3).

The genus Splendeuptychia is found to be

7

Biogeographic history of the Euptychiina

polyphyletic since the type species of thegenus, S. ashna (Hewitson, 1869), appearsin a clade equivalent of Murray & Prowell’s(2005) “Cissia clade” while other members ofthis genus appear in other clades. However,detailed morphological studies combined withDNA sequencing of the remaining species willbe needed to reassess the status of Splendeup-tychia.

Cissia is also found to be polyphyletic. Thetype species Cissia penelope (Fabricius, 1775)appears in our “Palaeonympha clade” as sisterto C. proba (Weymer, 1911). This implies thatC. myncea (Cramer, 1780) needs to be trans-ferred to another genus, probably Magneupty-chia.

The relationships in the “Taygetis clade”are not clear. Our preferred hypothesis showsa polytomy formed by Forsterinaria, Harje-sia blanda, Parataygetis albinotata and Post-taygetis penelea (Fig. 3). Guaianaza appearsto be within Forsterinaria and thus could besubsumed within the latter. This hypothe-sis could be tested with a better sampling ofthe genus, including most of the remaining 20Forsterinaria species.

4.2 The biogeographic history of Eu-ptychiina

We have used as a secondary calibration pointthe age of Satyrini (36.6 ± 5.1 Mya) as foundby the study of Pena & Wahlberg (2008) thatused the age of the fossil Lethe corbieri (25Mya) to estimate dates for major lineagesin the Satyrinae. A previous study foundthat both Euptychiina and Pronophilina arethe product of Palaearctic ancestors that dis-persed into the Americas via the Beringianbridge during the Eocene–Oligocene (Penaet al., 2009). This event corresponds to the“Beringian Bridge I” phase of Sanmartın et al.(2001). According to our times of divergenceand inferred ancestral distributions for Eup-

tychiina, it appears that Euptychiina origi-nated approximately 31 Mya either in SouthAmerica or alternatively in both North andSouth America. We speculate that the an-cestors of Euptychiina dispersed from North-to South America via the temporal connectionbetween the Greater Antilles and northwest-ern South America during Eocene–Oligocenetimes, known as the GAARlandia landspan 35–33 Mya (Iturralde & MacPhee, 1999). It hasbeen found that this land connection may havealso been important for the evolution of Phy-ciodina butterflies (Nymphalidae) (Wahlberg& Freitas, 2007). Our hypothesis implies thatearly colonizers of North America went extinctleaving no current Euptychiina representativesin North and Central America. However, itis important to note that the maximum par-simony analysis does not support the positionof the genus Euptychia as sister to all othereuptychiines (Euptychia is collapsed in a poly-tomy with remaining euptychiines). There isalso weak support (Bremer value: 3) for a sis-ter relationships between the clade (Cyllopsis+ Paramacera) and the clade containing theremaining euptychiines. If indeed this cladebranched off before Euptychia, it would be nec-essary to entertain an alternative hypothesis,which will imply that Cyllopsis and Paramac-era are the descendants of the early Eupty-chiina dispersal route from North- to SouthAmerica. This would explain the seeming dis-junct origin of Euptychiina in North and SouthAmerica (A+D) as estimated by DIVA (Fig.4).

We found that dispersal events have beenvery important in the evolution of the Eup-tychiina, which has resulted in a rather com-plex biogeographic history. We have previ-ously shown that dispersal in this taxon, and insatyrines in general (Pena & Wahlberg, 2008),is likely to have been aided by the fact thathost plant occurrence does not set strong rangelimits, since larvae of most species feed on a

8

Biogeographic history of the Euptychiina

range of grasses with extensive combined dis-tributions.

Our data indicate that during the earlyOligocene (at around 28 Mya) there was anearly dispersal event into North America thatproduced the taxa Cyllopsis and Paramacera.The Eocene–Oligocene transition was a timeof retreat of seas and land uplift due to de-crease of global temperatures that lasted un-til the Late Oligocene (27–25 Mya) (Iturralde& MacPhee, 1999). Therefore, it is possi-ble that the Cyllopsis + Paramacera lineageused the very same GAARlandia connectionbetween North and South America to disperse,this time however, in a northward direction.

An almost simultaneous split at 24 Myaresulted in two lineages, originating the an-cestor of the “Palaeonympha clade” and allremaining euptychiines. The “Palaeonymphaclade” split in two lineages, one of them dis-persed into the Brazilian shield and gave originto several extant euptychiines endemic to theAtlantic forests in southeastern Brazil. Theother lineage migrated northward and, afterbranching off the Brazilian lineage at around21 Mya, became the ancestor of Megisto +Palaeonympha. During this period, the sealevel was on the rise, after its lowest at 35Mya (Miller et al., 1996), and the GAAR-landia landspan underwent marine transgres-sions. During the Late Oligocene (27–25 Mya),it consisted in a series of terranes separatedby deep marine gaps (Iturralde & MacPhee,1999). Our data suggest that the ancestor ofMegisto + Palaeonympha was able to overcomethe marine barriers by “stone-stepping” on ter-ranes along the axis of former GAARlandiaand disperse into North America.

Palaeonympha and Megisto split around 13Mya (Fig. 4). The DIVA analysis foundthat their ancestor was distributed in bothNorth America and Asia (areas D+E; Fig.4). It is possible that the ancestor inhab-ited the continuous forest belt across North

Asia and North America which was connectedby Beringia from the Middle–Late Miocene(14–10 Mya) to the Late Pliocene (3.5 Mya),the “Beringian Bridge II” of Sanmartın et al.(2001). Therefore the disjunct distribution ofthese two taxa was caused by vicariance dueto the closure of the Beringian bridge.

The major diversification of Euptychiina co-incides with the last uplift of the Andes moun-tain chains (Late Miocene–Early Pliocene)(Gregory-Wodzicki, 2000). For some butter-fly groups, it has been reported that the An-dean foothills act as a “species pump,” push-ing new species that originate in the Andes intothe Amazon basin (Hall, 2005; Whinnett et al.,2005). It appears that the “species pump” hy-pothesis did not have a major influence on thebiogeographic history of the group since themajority of extant euptychiines are dwellers ofthe lowland forests in the Amazonia (area A).It is remarkable that very few Euptychiina gen-era have species inhabiting montane habitatsof the Andes (Pena & Lamas, 2005; Pulido &Andrade, 2008).

Although there are several hypotheses try-ing to explain the megadiversity of terrestrialorganisms in the Amazonia, the reasons whythis region harbors more species than other ar-eas still remains unclear. It is entirely pos-sible that the high diversity of Euptychiinabutterflies in the Amazonia has been the re-sult of the troubled history of the region —marine incursions during the Miocene (Wes-selingh et al., 2002), dynamic riverine barriers(Hall & Harvey, 2002), and climatic coolingand droughts of the controversial Pleistocenerefugia (Solomon et al., 2008)— that disturbedcommunities and populations driving diversifi-cation.

9

Biogeographic history of the Euptychiina

5 Conclusions

Although the origin of Euptychiina is notclear, it possibly originated in South Amer-ica. There was plenty of diversification in theAmazon basin (area A) with recurrent disper-sal into the Brazilian shield and Central andNorth America. It is clear from our time es-timates of the diversification of Euptychiina,and reconstructions of ancestral areas, that thecurrent disjunct distribution of the OrientalPalaeonympha opalina is the result of a north-bound dispersal of a lineage from South- intoNorth America.

We found that the ancestor of Megisto andits sister taxon Palaeonympha probably inhab-ited the continuous forest belt across NorthAsia and North America which was connectedby Beringia. The subsequent closure of thisconnection resulted in the classic “eastern Asiaand eastern North America” disjunct distribu-tion of Palaeonympha and Megisto. To ourknowledge, this is the first time that this pat-tern is reported for a group of butterflies, ev-idencing the utility of this group as model or-ganisms for biogeographic studies.

6 Acknowledgements

This work has been supported in part by fund-ing from Amazon Conservation Associationand IDEA WILD to CP, from the SwedishResearch Council to SN and NW, as well asfrom the Academy of Finland to NW (grantnumber 118369). We are grateful to AlexGrkovich, Andrew Warren, Angelico Asenjo,Chris Muller, Danilo B. Ribeiro, Darrell Kemp,Dave A. Edge, Jose Bottger, Juan Grados,Keith R. Willmott, Mario Alejandro Marın,Minna Miettinen, Nick Haddad, P.-O. Wick-man, Roger Grund, Sandra Uribe and TorbenB. Larsen for providing specimens used in thisstudy.

References

Ackery P.R. 1988. Hostplants and classifica-tion: a review of nymphalid butterflies. Bi-ological Journal of the Linnean Society, 33,95–203.

Ackery P.R., de Jong R. & Vane-WrightR.I. 1999. The butterflies: Hedyloidea,Hesperioidea and Papilionoidea, Walter deGruyter, Berlin, vol. 4 of Handbook of Zool-ogy, pp. 263–300.

Bergsten J. 2005. A review of long-branchattraction. Cladistics, 21, 163–193.

Boggs C., Watt W. & Ehrlich P. 2003.Butterflies: Evolution and Ecology TakingFlight. University of Chicago Press, Chicago,USA.

Bremer K. 1988. The limits of amino acid se-quence data in angiosperm phylogenetic re-construction. Evolution, 42, 795–803.

Brower A.V.Z. 2006. The how and why ofbranch support and partitioned branch sup-port, with a new index to assess partitionincongruence. Cladistics, 22, 378–386.

Carreno R.A. & Lankester M.W. 1994.A re-evaluation of the phylogeny of Pare-laphostrongylus Boev & Schulz, 1950 (Nema-toda: Protostrongylidae). Systematic Para-sitology, 28, 145–151.

DeVries P.J. 1987. The Butterflies of CostaRica and Their Natural History. Papilion-idae, Pieridae, Nymphalidae. Princeton Uni-versity Press, Princeton.

Drummond A.J., Ho S.Y.W., PhillipsM.J. & Rambaut A. 2006. Relaxed phy-logenetics and dating with confidence. PLoSBiology, 4, e88.

10

Biogeographic history of the Euptychiina

Drummond A.J. & Rambaut A. 2007.BEAST: Bayesian Evolutionary Analysis bySampling Trees. BMC Evolutionary Biology,7, 214.

Forster W. 1964. Beitrage zur Kenntnis derInsektenfauna Boliviens XIX. LepidopteraIII. Satyridae. Veroffentlichungen der zool-ogischen Staatssammlung Munchen, 8, 51–188.

Freitas A.V.L. 2003. Description of a newgenus for “Euptychia” peculiaris (Nymphal-idae: Satyrinae): immature stages and sys-tematic position. Journal of the Lepidopter-ists’ Society, 57, 100–106.

Freitas A.V.L. 2004a. Immature stagesof Amphidecta reynoldsi (Nymphalidae:Satyrinae). Journal of the Lepidopterists’Society, 58, 53–55.

Freitas A.V.L. 2004b. A new species of Yph-thimoides (Nymphalidae, Satyrinae) fromsoutheastern Brazil. Journal of the Lepi-dopterists’ Society, 58, 7–12.

Freitas A.V.L. 2007. A new species of Mone-uptychia Forster (Lepidoptera: Satyrinae,Euptychiina) from the highlands of South-eastern Brazil. Neotropical Entomology, 36,919–925.

Freitas A.V.L. & Pena C. 2006. De-scription of genus Guaianaza for “Eupty-chia” pronophila (Lepidoptera: Nymphali-dae: Satyrinae) with a description of the im-mature stages. Zootaxa, 1163, 49–59.

Gatesy J., O’Grady P. & Baker R.H.1999. Corroboration among data setsin simultaneous analysis: hidden supportfor phylogenetic relationships among higherlevel artiodactyl taxa. Cladistics, 15, 271–313.

Goloboff P., Farris J. & Nixon K.2003. T.N.T.: Tree Analysis Using NewTechnology, vers. 1.1. Program and docu-mentation, available from the authors and at<http://www.zmuc.dk/public/phylogeny/TNT/>.

Graur D. & Martin W. 2004. Readingthe entrails of chickens: molecular timescalesof evolution and the illusion of precision.Trends in Genetics, 20, 80–86.

Gregory-Wodzicki K.M. 2000. Uplift his-tory of the Central and Northern Andes: areview. Geological Society of America Bul-letin, 112, 1091–1105.

Guo Q. 1999. Ecological comparisons be-tween eastern Asia and North America: his-torical and geographical perspectives. Jour-nal of Biogeography, 26, 199–206.

Hall J.P.W. 2005. Montane speciation pat-terns in Ithomiola butterflies (Lepidoptera:Riodinidae): are they consistently movingup in the world? Proceedings of the RoyalSociety of London B, 272, 2457–2466.

Hall J.P.W. & Harvey D.J. 2002. Thephylogeography of Amazonia revisited: newevidence from riodinid butterflies. Evolution,56, 1489–1497.

Hardman M. 2005. The phylogenetic re-lationships among non-diplomystid catfishesas inferred from mitochondrial cytochrome bsequences; the search for the ictalurid sistertaxon (Otophysi: Siluriformes). MolecularPhylogenetics and Evolution, 37, 700–720.

Iturralde M.A. & MacPhee R.D.E. 1999.Paleogeography of the Caribbean region:implications for Cenozoic biogeography. Bul-letin of the American museum of natural his-tory, 238, 95 pp.

11

Biogeographic history of the Euptychiina

Kodandaramaiah U. & Wahlberg N.2007. Out-of-Africa origin and dispersal-mediated diversification of the butterflygenus Junonia (Nymphalidae: Nymphali-nae). Journal of Evolutionary Biology, 20,2181–2191.

Kodandaramaiah U. & Wahlberg N.2009. Phylogeny and biogeographyof Coenonympha butterflies (Nymphalidae:Satyrinae) —patterns of colonization in theHolarctic. Systematic Entomology, [Inpress].

Lamas G. 2004. Checklist: Part 4A.Hesperioidea-Papilionoidea, vol. 5A. Asso-ciation for Tropical Lepidoptera/ScientificPublishers, Gainesville.

Leneveu J., Chichvarkhin A. &Wahlberg N. 2009. Varying rates ofdiversification in the genus Melitaea (Lep-idoptera: Nymphalidae) during the past20 million years. Biological Journal of theLinnean Society, [In press].

Mallarino R., Bermingham E., WillmottK.R., Whinnett A. & Jiggins C.D.2005. Molecular systematics of the butterflygenus Ithomia (Lepidoptera: Ithomiinae): acomposite phylogenetic hypothesis based onseven genes. Molecular Phylogenetics andEvolution, 34, 625–644.

Miller K.G., Mountain G.S., the Leg150 Shipboard Party & Members ofthe New Jersey Coastal Plain DrillingProject. 1996. Drilling and dating NewJersey Oligocene-Miocene sequences: Icevolume, global sea level, and Exxon records.Science, 271, 1092–1095.

Miller L.D. 1968. The higher classification,phylogeny and zoogeography of the Satyri-dae (Lepidoptera). Memoirs of the Amer-

ican Entomological Society, 24, [6] + iii +174.

Miller L.D. & Miller J.Y. 1997. Gond-wanan butterflies: the Africa-South Amer-ica connection. Metamorphosis, 3(Suppl.),42–51.

Murray D. & Prowell D.P. 2005. Molec-ular phylogenetics and evolutionary historyof the neotropical satyrine subtribe Eupty-chiina (Nymphalidae: Satyrinae). MolecularPhylogenetics and Evolution, 34, 67–80.

Nie Z.L., Sun H., Li H. & Wen J.2006. Intercontinental biogeography of sub-family Orontioideae (Symplocarpus, Lysichi-ton, and Orontium) of Araceae in easternAsia and North America. Molecular Phylo-genetics and Evolution, 40, 155–165.

Nordlander G., Liu Z. & Ronquist F.1996. Phylogeny and historical biogeogra-phy of the cynipoid wasp family Ibaliidae(Hymenoptera). Systematic Entomology, 21,151–166.

Pena C., Nylin S. & Wahlberg N.2009. The radiation of Satyrini butterflies(Nymphalidae: Satyrinae): a challenge forphylogenetic methods. MS.

Pena C. & Wahlberg N. 2008. Prehistor-ical climate change increased diversificationof a group of butterflies. Biology Letters, 4,274–278.

Pena C. & Lamas G. 2005. Revision ofthe butterfly genus Forsterinaria Gray, 1973(Lepidoptera: Nymphalidae, Satyrinae). Re-vista peruana de Biologıa, 12, 5–48.

Pena C., Wahlberg N., Weingartner E.,Kodandaramaiah U., Nylin S., FreitasA.V.L. & Brower A.V.Z. 2006. Higher

12

Biogeographic history of the Euptychiina

level phylogeny of Satyrinae butterflies (Lep-idoptera: Nymphalidae) based on DNA se-quence data. Molecular Phylogenetics andEvolution, 40, 29–49.

Pulido H.W. & Andrade M.G. 2008. Anew species of Forsterinaria Gray, 1973(Lepidoptera: Nymphalidae: Satyrinae)from the Serranıa del Perija, Cesar, Colom-bia. Caldasia, 30, 189–195.

Ronquist F. 1996. DIVA version 1.2.computer program and manual availableat http://www.ebc.uu.se/systzoo/research/diva/diva.html. Uppsala University, Upp-sala, Sweden.

Ronquist F. 1997. Dispersal-vicariance anal-ysis: a new approach to the quantification ofhistorical biogeography. Systematic Biology,46, 195–203.

Ronquist F. & Huelsenbeck J.P. 2003.MrBayes 3: Bayesian phylogenetic inferenceunder mixed models. Bioinformatics, 19,1572–1574.

Sanmartın I., Enghoff H. & Ronquist F.2001. Patterns of animal dispersal, vicari-ance and diversification in the Holarctic. Bi-ological Journal of the Linnean Society, 73,345–390.

Singer M.C., Ehrlich P.R. & Gilbert L.E.1971. Butterfly feeding on Lycopsid. Sci-ence, 172, 1341–1342.

Singer M.C. & Mallet J. 1986. Moss-feeding by a satyrine butterfly. Journal ofResearch on the Lepidoptera, 24, 392.

Solomon S.E., Bacci Jr M., Martins JrJ., Vinha G.G. & Mueller U.G. 2008.Paleodistributions and comparative molecu-lar phylogeography of leafcutter ants (Attaspp.) provide new insight into the origins ofamazonian diversity. PLoS ONE, 3, e2738.

Viloria A.L. 2003. Historical biogeographyand the origins of the satyrine butterflies ofthe tropical Andes (Lepidoptera: Rhopalo-cera), Universidad Autonoma de Mexico,Mexico, pp. 247–261.

Viloria A.L. 2007. Some Gondwanan andLaurasian elements in the Satyrinae faunaof South America. Tropical Lepidoptera, 15,53–58.

Wahlberg N. & Freitas A.V.L. 2007. Col-onization of and radiation in South Amer-ica by butterflies in the subtribe Phyciod-ina (Lepidoptera: Nymphalidae). MolecularPhylogenetics and Evolution, 44, 1257–1272.

Wahlberg N. & Wheat C.W. 2008. Ge-nomic outposts serve the phylogenomic pio-neers: designing novel nuclear markers forgenomic DNA extractions of Lepidoptera.Systematic Biology, 57, 231–242.

Wang W.P., Hwang C.Y., Lin T.P.& Hwang S.Y. 2003. Historical bio-geography and phylogenetic relationships ofthe genus Chamaecyparis (Cupressaceae) in-ferred from chloroplast DNA polymorphism.Plant Systematics and Evolution, 241, 13–28.

Wen J. 1999. Evolution of eastern Asian andeastern North American disjunct distribu-tions in flowering plants. Annual Review ofEcology and Systematics, 30, 421–455.

Wesselingh F.P., Rasanen M.E., IrionG., Vonhof H.B., Kaandorp R., Ren-ema W., Romero Pittman L. & Gin-gras M. 2002. Lake Pebas: a palaeoecolog-ical reconstruction of a Miocene, long-livedlake complex in western Amazonia. Caino-zoic Research, 1, 35–81.

Whinnett A., Willmott K.R., BrowerA.V.Z., Simpson F., Zimmermann M.,

13

Biogeographic history of the Euptychiina

Lamas G. & Mallet J. 2005. Mi-tochondrial DNA provides an insight intothe mechanisms driving diversification inthe ithomiine butterfly Hyposcada anchiala(Lepidoptera: Nymphalidae: Ithomiinae).European Journal of Entomology, 102, 633–639.

Willmott K.R., Hall J.P.W. & LamasG. 2001. Systematics of Hypanartia (Lepi-doptera: Nymphalidae: Nymphalinae), witha test for geographical speciation mechanismin the Andes. Systematic Entomology, 26,369–399.

Xiang Q.Y., Soltis D.E. & Soltis P.S.1998. The eastern Asian and eastern andwestern North American floristic disjunc-tion: congruent phylogenetic patterns inseven diverse genera. Molecular Phylogenet-ics and Evolution, 10, 178–190.

14

Biogeographic history of Euptychiina

Figure 2 – Strict consensus of three equally parsimonious trees (20799 steps; CI=0.17; RI=0.42) from the maximum parsimony analysis. Numbers given above branches are Bremer support values and numbers below the branch are PCI values for the node to the right of the number.

Taygetomorpha celia CP22-02

Neonympha areolatus CP22-03

Zischkaia pacarus CP14-02

Megisto cymela CP21-04

Pharneuptychia innocentia CP12-06

Melanitis leda NW66-6

Chloreuptychia arnaca CP06-76

Pararge aegeria EW1-1

Hermeuptychia sp. n. 5 CP02-17

Caeruleuptychia ziza CP02-43

Pharneuptychia sp. NW127-18

Magneuptychia fugitiva CP01-18

Caeruleuptychia umbrosa CP01-09

Euptychia ernestina NW136-14

Magneuptychia sp. n. 2 CP02-12

Forsterinaria quantius CP14-07

Magneuptychia harpyia CP02-27

Yphthimoides angularis CP12-08

Pareuptychia metaleuca CP06-67

Cissia penelope CP07-58

Hyponephele cadusia CP10-07

Cyllopsis pertepida NW165-3

Paryphthimoides poltys CP02-19

Splendeuptychia ashna CP01-19

Erichthodes julia CP04-65

Caeruleuptychia scopulata CP01-95

Pedaliodes sp. n. 117 CP09-66

Hermeuptychia pimpla CP04-10

Zipaetis saitis D30

Taydebis peculiaris NW149-11

Euptychoides castrensis NW126-9

Pseudodebis valentina CP-CI64

Pindis squamistriga NW165-5

Splendeuptychia doxes NW126-8

Maniola jurtina EW4-5

Moneuptychia itapeva CP12-04

Caeruleuptychia lobelia CP01-67

Cissia myncea CP01-58

Erichthodes antonina CP02-24

Pareuptychia hesionides CP01-66

Coenonympha pamphilus EW7-3

Godartiana muscosa NW127-8

Splendeuptychia purusana CP-CI3

Cepheuptychia cephus CP-CI100

Magneuptychia ocypete CP01-32

Taygetis mermeria CP-CI95

Taygetis rectifascia NW127-28

Euptychia ordinata CP01-14

Parataygetis albinotata CP04-53

Aeropetes tulbaghia CP13-01

Chloreuptychia catharina CP01-68

Paryphthimoides phronius NW126-7

Amphidecta calliomma NW126-21

Cercyeuptychia luederwaldti CP16-02

Oressinoma sorata CP06-89

Yphthimoides borasta CP10-03

Haetera piera CP01-84

Posttaygetis penelea NW126-13

Pseudodebis marpesa CP01-42

Cissia myncea NW108-6

Caeruleuptychia helios CP01-11

Magneuptychia sp. n. 4 CP01-91

Yphthimoides cipoensis CP10-02

Forsterinaria proxima CP08-09

Moneuptychia griseldis NW127-17

Pareuptychia ocirrhoe NW126-6

Euptychia sp. n. 5 CP01-53

Hypocysta pseudirius NW123-5

Guaianaza pronophila NW127-20

Magneuptychia pallema CP02-41

Taygetomorpha puritana CP22-04

Taygetis rufomarginata NW129-27

Hermeuptychia fallax CP04-37

Pareuptychia binocula CP02-42

Pampasatyrus gyrtone NW126-12

Taygetis yphthima NW149-8

Chloreuptychia herseis CP01-72

Euptychia sp. n. 7 CP02-58

Oressinoma typhla CP07-71

Manerebia cyclopina CP03-63

Melanargia galathea EW24-17

Lethe minerva NW121-17

Satyrotaygetis satyrina DNA97-006

Paramacera allyni CP15-10

Yphthimoides leguialimai CP08-8

Paramacera xicaque CP15-08

Cissia proba CP01-30

Forsterinaria boliviana CP04-88

Chloreuptychia chlorimene CP06-72

Taygetis virgilia NW108-3

Hermeuptychia hermes NW127-16

Splendeuptychia itonis CP02-44

Harjesia blanda CP01-13

Harjesia oreba CP-CI107

Splendeuptychia boliviensis CP02-48

Coelites euptychioides CP16-14

Palaeonympha opalina EW25-21

Archeuptychia cluena NW149-9

Moneuptychia paeon NW126-11

Paryphthimoides grimon CP10-01

Mycalesis terminus EW18-8

Moneuptychia soter CP18-01

Cepheuptychia sp. n. CP01-31

Hermeuptychia harmonia CP06-93

Magneuptychia moderata CP01-36

Megeuptychia antonoe CP05-01

Paralasa jordana CP-AC23-35

Erebia oeme EW24-7

Lasiophila cirta CP04-36

Satyrus actaea NW162-21

Forsterinaria necys NW126-10

Splendeuptychia furina CP02-39

Megeuptychia monopunctata CP06-70

Euptychia sp. n. 6 CP04-55

Euptychia sp. n. 2 CP01-33

Orsotriaena medus EW25-17

Chloreuptychia marica CP02-50

Moneuptychia sp. CP12-07

Hermeuptychia cuculina CP04-11

Euptychoides hotchkissi CP04-51

Erites argentina CP16-13

Pareuptychia ocirrhoe DNA99-064

Taygetis rufomarginata CP-CI125

Capronnieria galesus NW167-5

Rareuptychia clio CP01-23

Euptychia enyo CP06-73

8

21

5

1

4

4

35

5

236

1

55

16

1

17

21

13

4

2

10

6

2 312

38

373

3

77

171

99

2

5738

1

1

1

15

13

11

92

35

49

365

102

102

2

10

207

28

2221

50

11

1619

33

43

26

28

7 17

5 196

6

1946

8

37

238

2817

365

5

2723

2

112

236

5

6

26

239

1310

19

6

941

14

2

2

210

329

3

4.1

20.8

-1.7

1.95.9

-1.9-1.9

-14.7

17

99-34.4

-34.4

-14.7

56.7

38-14.7

38.9

-2.3 -34.4

-6.614.3

-10

12.8

-6.6-6.6

12.9

-1.0

9.691.9

35

18.8

35

2.4

-4.6

-1.78

-58.6

35.8

48.9

2.3

7.7

3.1

5.3

232.7

5.86.8

20

-19

54.9

49.3

20.7

21.5

7.41.7

-12.2

-34.4

2

-0.8

0.6

119

16

1125.9

5

27.6

2.7

16.3

3.8

18.75.5

1946

6.916.4

-4.1-13

-130.7 23

22.8

3.413.2

-3.9

36.8

-3.9

-4

-4.69

2.7

238

28

16.1

35.92.6

5.1

4.3

1

-3

-1.9

32

4.4

9

3.523

1.5

2723

1

36.8

38-4.7

-3.111.7

Biogeographic history of Euptychiina

Figure 3 – Majority rule cladogram based on Bayesian inference, modeled with a GTR + Γ model. Numbers at the branches are bootstrap values for the node to the right of the number.

"Pareuptychia clade"

0.02

Mycalesis_terminus_EW18_8

Euptychoides_castrensis_NW126_9

Chloreuptychia_chlorimene_CP06_72

Taygetomorpha_puritana_CP22_04

Paramacera_xicaque_CP15_08

Moneuptychia_soter_CP18_01

Pareuptychia_hesionides_CP01_66

Pareuptychia_ocirrhoe_DNA99_064

Godartiana_muscosa_NW127_8Cercyeuptychia_luederwaldti_CP16_02

Magneuptychia_ocypete_CP01_32

Pharneuptychia_innocentia_CP12_06

Caeruleuptychia_umbrosa_CP01_09

Erites_argentina_CP16_13

Chloreuptychia_herseis_CP01_72

Neonympha_areolatus_CP22_03

Paryphthimoides_phronius_NW126_7

Magneuptychia_moderata_CP01_36

Lethe_minerva_NW121_17

Forsterinaria_necys_NW126_10

Cissia_myncea_NW108_6

Capronnieria_galesus_NW167_5

Magneuptychia_spn2_CP02_12

Melanargia_galathea_EW24_17

Euptychia_spn5_CP01_53

Forsterinaria_boliviana_CP04_88

Splendeuptychia_boliviensis_CP02_48

Cissia_proba_CP01_30

Moneuptychia_sp_CP12_07

Oressinoma_sorata_CP06_89

Guaianaza_pronophila_NW127_20

Parataygetis_albinotata_CP04_53

Hermeuptychia_harmonia_CP06_93

Posttaygetis_penelea_NW126_13

Pindis_squamistriga_NW165_5

Cissia_penelope_CP07_58

Lasiophila_cirta_CP04_36

Pararge_aegeria_EW1_1

Hermeuptychia_pimpla_CP04_10

Paralasa_jordana_CP_AC23_35

Euptychia_ordinata_CP01_14

Rareuptychia_clio_CP01_23

Magneuptychia_harpyia_CP02_27

Erebia_oeme_EW24_7

Pareuptychia_binocula_CP02_42

Splendeuptychia_doxes_NW126_8

Megisto_cymela_CP21_04

Harjesia_blanda_CP01_13

Hypocysta_pseudirius_NW123_5

Paramacera_allyni_CP15_10

Chloreuptychia_marica_CP02_50

Taygetis_virgilia_NW108_3

Pareuptychia_metaleuca_CP06_67

Hermeuptychia_cuculina_CP04_11

Taygetis_rectifascia_NW127_28

Amphidecta_calliomma_NW126_21

Megeuptychia_antonoe_CP05_01

Paryphthimoides_grimon_CP10_01

Coenonympha_pamphilus_EW7_3

Euptychia_spn2_CP01_33

Orsotriaena_medus_EW25_17

Taygetis_rufomarginata_CP_CI125

Erichthodes_antonina_CP02_24

Zischkaia_pacarus_CP14_02

Forsterinaria_proxima_CP08_09

Splendeuptychia_furina_CP02_39

Aeropetes_tulbaghia_CP13_01

Euptychoides_hotchkissi_CP04_51

Pampasatyrus_gyrtone_NW126_12

Coelites_euptychioides_CP16_14

Euptychia_spn7_CP02_58

Satyrotaygetis_satyrina_DNA97_006

Caeruleuptychia_lobelia_CP01_67

Magneuptychia_pallema_CP02_41

Yphthimoides_leguialimai_CP08_88

Pareuptychia_ocirrhoe_NW126_6

Moneuptychia_paeon_NW126_11

Caeruleuptychia_helios_CP01_11

Moneuptychia_itapeva_CP12_04

Melanitis_leda_NW66_6

Taydebis_peculiaris_NW149_11

Magneuptychia_spn4_CP01_91

Euptychia_spn6_CP04_55

Forsterinaria_quantius_CP14_07

Yphthimoides_borasta_CP10_03

Megeuptychia_monopunctata_CP06_70

Manerebia_cyclopina_CP03_63

Magneuptychia_fugitiva_CP01_18

Zipaetis_saitis_D30

Oressinoma_typhla_CP07_71

Maniola_jurtina_EW4_5

Palaeonympha_opalina_EW25_21

Cissia_myncea_CP01_58

Pseudodebis_marpesa_CP01_42Taygetomorpha_celia_CP22_02

Cepheuptychia_cephus_CP_CI100

Archeuptychia_cluena_NW149_9

Pseudodebis_valentina_CP_CI64

Haetera_piera_CP01_84

Yphthimoides_cipoensis_CP10_02

Splendeuptychia_itonis_CP02_44

Hermeuptychia_hermes_NW127_16

Caeruleuptychia_ziza_CP02_43

Hyponephele_cadusia_CP10_07

Taygetis_rufomarginata_NW129_27

Taygetis_mermeria_CP_CI95

Splendeuptychia_purusana_CP_CI39

Paryphthimoides_poltys_CP02_19

Moneuptychia_griseldis_NW127_17

Cyllopsis_pertepida_NW165_3

Hermeuptychia_spn5_CP02_17

Cepheuptychia_spn_CP01_31

Pedaliodes_spn117_CP09_66

Chloreuptychia_catarina_CP01_68

Euptychia_ernestina_NW136_14

Pharneuptychia_sp._NW127_18

Euptychia_enyo_CP06_73

Satyrus_actaea_NW162_21

Erichthodes_julia_CP04_65

Harjesia_oreba_CP_CI107

Yphthimoides_angularis_CP12_08

Caeruleuptychia_scopulata_CP01_95

Taygetis_yphthima_NW149_8

Splendeuptychia_ashna_CP01_19

Chloreuptychia_arnaca_CP06_76

Hermeuptychia_fallax_CP04_37

1

0.94

1

1

0.96

1

1

0.86

0.961

0.96

1

0.78

0.85

0.98

0.57

1

1

1

1

0.6

1

1

1

0.83

0.6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.59

1

0.86

1

1

0.86

0.96

1

1

0.89

1

1

1

1

1

1

1

0.99

1

1

0.86

1

1

0.96

0.86

1

1

1

1

0.87

1

1

0.96

1

1

0.98

1

1

1

1

1

1

11

1

1

1

1

1

0.73

1

0.77

0.51

1

1

1

1

1

1

0.93

1

1

1

0.86

1

1

0.81

1

1

1

1

0.730.87

1

1

0.91

1

0.61

0.66

"Cissia clade"

"Taygetis clade"

"Hermeuptychia clade"

"Palaeonympha clade"

Biogeographic history of Euptychiina

Figure 4 – Estimated times of divergence derived from the BEAST analysis. Results of a dispersal-vicariance analysis, with unrestricted ancestral areas shown for each node. Error margins for estimated times are shown as horizontal bars at the nodes.

4.0

Caeruleuptychia helios A

Moneuptychia sp. B

Maniola jurtina

Pseudodebis marpesa A

Erebia oeme

Cissia myncea AB

Caeruleuptychia scopulata A

Magneuptychia moderata A

Zipaetis saitis

Melanargia galathea

Godartiana muscosa B

Yphthimoides cipoensis B

Erichthodes antonina AB

Zischkaia pacarus B

Harjesia oreba AC

Amphidecta calliomma AB

Magneuptychia pallema A

Cepheuptychia cephus A

Satyrotaygetis satyrina CD

Cissia penelope AB

Oressinoma sorata

Taygetis mermeria ABCD

Lethe minerva

Hermeuptychia fallax AB

Taygetis virgilia ABCD

Yphthimoides leguialimai A

Hermeuptychia harmonia AC

Euptychia sp. n. 6 A

Manerebia cyclopina

Paryphthimoides poltys AB

Euptychia ordinata A

Pareuptychia binocula A

Capronnieria galesus B

Cissia proba A

Splendeuptychia furina A

Cercyeuptychia luederwaldti B

Euptychia sp. n. 5 A

Paramacera xicaque CD

Satyrus actaea

Yphthimoides angularis B

Hypocysta pseudirius

Megisto cymela D

Rareuptychia clio A

Palaeonympha opalina E

Pharneuptychia sp. B

Yphthimoides borasta B

Pharneuptychia innocentia AB

Megeuptychia monopunctata A

Magneuptychia sp. n. 2 A

Forsterinaria boliviana A

Paramacera allyni CD

Pareuptychia ocirrhoe ABCD

Neonympha areolatus D

Chloreuptychia arnaca ABC

Pindis squamistriga CD

Aeropetes tulbaghiaPararge aegeria

Taygetomorpha puritana A

Pareuptychia metaleuca ABCD

Moneuptychia itapeva B

Splendeuptychia purusana A

Pareuptychia hesionides AB

Pampasatyrus gyrtone

Hyponephele cadusia

Haetera piera

Chloreuptychia catharina A

Pedaliodes sp. n. 117

Taygetis rufomarginata ABC

Cissia myncea AB

Harjesia blanda A

Archeuptychia cluena B

Hermeuptychia sp.n.5 A

Parataygetis albinotata A

Paryphthimoides grimon B

Magneuptychia harpyia A

Euptychoides castrensis B

Forsterinaria quantius B

Taydebis peculiaris B

Caeruleuptychia ziza A

Euptychoides hotchkissi A

Pseudodebis valentina A

Posttaygetis penelea ABC

Moneuptychia griseldis B

Hermeuptychia cuculina A

Splendeuptychia boliviensis A

Paralasa jordana

Cyllopsis pertepida CD

Erites argentinaOrsotriaena medus

Paryphthimoides phronius B

Erichthodes julia AB

Taygetis rectifascia B

Euptychia ernestina B

Moneuptychia soter B

Euptychia enyo A

Coelites euptychioides

Caeruleuptychia umbrosa A

Mycalesis terminus

Forsterinaria necys B

Cepheuptychia sp. n. A

Euptychia sp. n. 2 A

Chloreuptychia marica A

Caeruleuptychia lobelia A

Splendeuptychia itonis A

Guaianaza pronophila B

Chloreuptychia herseis AB

Hermeuptychia pimpla A

Taygetis yphthima B

Taygetomorpha celia ABC

Lasiophila cirta

Forsterinaria proxima A

Chloreuptychia chlorimene A

Splendeuptychia doxes B

Hermeuptychia hermes ABCD

Megeuptychia antonoe ACD

Oressinoma typhla

Euptychia sp. n. 7 A

Moneuptychia paeon B

Taygetis rufomarginata ACD

Magneuptychia sp. n. 4 A

Magneuptychia ocypete A

Pareuptychia ocirrhoe ABCD

Splendeuptychia ashna A

Magneuptychia fugitiva A

Melanitis leda

Coenonympha pamphilus

PlioceneMioceneOligoceneEocenePleistocene

5 01015202530354045

EuptychiinaABAD

BD

A

AA

A

BCBD

CD

CD

BB

BB

BAB

B

B

B

AB B

BB

DEBDBEBDE

BD

B

BCBDBCD

A

AA

AA

ABA

A

AA

AA

A

ABABCADABDACDABCD

BAB

ABBAB

B

A

A

A

A

ABA

A

A

AA

AA

A

AA

A

ACADACD

ABADABD

AA

AA

AA

A

AAAB

ABB

ABA

AA

A

A

AB

AB

AA

AA

A

A

AAA

A

A

A

A

A

A

A

A

Table 1Information of specimens used for molecular studiesSubfamily Tribe Subtribe species Specimen code Source of specimen COI EF-1α GAPDH RpS5 WinglessSatyrinae Dirini Aeropetes tulbaghia CP13-01 S. AFRICA: Mpumalanga Verloren Valei DQ338579 DQ338907 EU528381 EU528419 DQ338634

Satyrinae Haeterini Haetera piera CP01-84 PERU: Madre de Dios DQ018959 DQ018926 EU141475 EU141371 DQ018897

Satyrinae Melanitini Melanitis leda NW66-6 AUSTRALIA: Cairns, Queensland AY090207 AY090173 EU141508 EU141408 AY090140

Satyrinae Satyrini Coenonymphina Hypocysta pseudirius NW123-5 AUSTRALIA: Newcastle DQ338826 DQ338974 --- EU528440 ---

Satyrinae Satyrini Erebiina Erebia oeme EW24-7 FRANCE: Languedoc DQ338780 DQ338923 EU141479 EU141375 DQ338640

Satyrinae Satyrini Eritina Coelites euptychioides CP16-14 INDONESIA: Kalimantan --- --- --- --- ---

Satyrinae Satyrini Eritina Erites argentina CP16-13 INDONESIA: Kalimantan EU528321 EU528298 EU528390 EU528435 EU528277

Satyrinae Satyrini Eritina Zipaetis saitis D30 INDIA DQ338831 DQ338981 EU528418 EU528472 DQ338696

Satyrinae Satyrini Lethina Lethe minerva NW121-17 INDONESIA: Bali DQ338768 DQ338909 EU141492 EU141387 DQ338616

Satyrinae Satyrini Maniolina Maniola jurtina EW4-5 SPAIN: Sant Climent, N Spain AY090214 AY090180 EU141481 EU141376 AY090147

Satyrinae Satyrini Melanargiina Melanargia galathea EW24-17 FRANCE: Languedoc DQ338843 DQ338993 EU528398 EU528444 DQ338706

Satyrinae Satyrini Mycalesina Mycalesis terminus EW18-8 AUSTRALIA: Cairns DQ338765 DQ338905 EU528400 EU528446 DQ338632

Satyrinae Satyrini Mycalesina Orsotriaena medus EW25-17 BANGLADESH: Sylhet Div. DQ338766 DQ338906 EU528405 EU528453 DQ338633

Satyrinae Satyrini Parargina Pararge aegeria EW1-1 FRANCE: Carcassonne DQ176379 DQ338913 EU141476 EU141372 DQ338620

Satyrinae Satyrini Satyrina Satyrus actaea NW162-21 FRANCE: Aude, Villegly --- --- --- --- ---

Satyrinae Satyrini Ypthimina Paralasa jordana CP-AC23-35 RUSSIA: Karasu DQ338597 DQ339027 EU532176 EU528455 DQ338736

Satyrinae Satyrini incertae sedis Hyponephele cadusia CP10-07 IRAN: Hamadan DQ338839 DQ338989 EU528395 EU528441 DQ338702

Satyrinae Satyrini Coenonymphina Coenonympha pamphilus EW7-3 SWEDEN: Öland DQ338777 DQ338920 EU528385 EU528428 DQ338637

Satyrinae Satyrini Pronophilina Lasiophila cirta CP04-36 PERU: JU, Quebrada Malambo DQ338851 DQ339002 --- --- DQ338714

Satyrinae Satyrini Pronophilina Manerebia cyclopina CP03-63 PERU: Quebrada Siete Jeringas DQ338785 DQ338928 EU528397 EU528443 ---

Satyrinae Satyrini Pronophilina Pampasatyrus gyrtone NW126-12 BRAZIL: Campos do Jordão DQ338837 DQ338988 EU528406 EU528454 DQ338701

Satyrinae Satyrini Pronophilina Pedaliodes spn117 CP09-66 PERU: S.N. de Ampay DQ338856 DQ339008 EU528407 EU528456 DQ338719

Satyrinae Satyrini Euptychiina Amphidecta calliomma NW126-21 BRAZIL: Mato Grosso DQ338879 DQ339037 --- --- DQ338745

Satyrinae Satyrini Euptychiina Archeuptychia cluena NW149-9 BRAZIL: São Paulo --- --- --- --- ---

Satyrinae Satyrini Euptychiina Caeruleuptychia helios CP01-11 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Caeruleuptychia lobelia CP01-67 PERU: Madre de Dios DQ338788 DQ338930 --- --- DQ338648

Satyrinae Satyrini Euptychiina Caeruleuptychia scopulata CP01-95 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Caeruleuptychia umbrosa CP01-09 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Caeruleuptychia ziza CP02-43 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Capronnieria galesus NW167-5 BRAZIL: Santa Catarina --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cepheuptychia cephus CP-CI100 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cepheuptychia spn CP01-31 PERU: Madre de Dios DQ338789 DQ338931 --- --- DQ338649

Satyrinae Satyrini Euptychiina Cercyeuptychia luederwaldti CP16-02 BRAZIL: Brasilia, DF --- --- --- --- ---

Satyrinae Satyrini Euptychiina Chloreuptychia arnaca CP06-76 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Chloreuptychia catharina CP01-68 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Chloreuptychia chlorimene CP06-72 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Chloreuptychia herseis CP01-72 PERU: Madre de Dios DQ338790 DQ338932 --- --- DQ338650

Satyrinae Satyrini Euptychiina Chloreuptychia marica CP02-50 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cissia myncea CP01-58 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cissia penelope CP07-58 PERU: La Solitaria --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cissia proba CP01-30 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Cissia myncea NW108-6 BRAZIL: São Paulo DQ338581 DQ338933 --- --- DQ338651

Satyrinae Satyrini Euptychiina Cyllopsis pertepida NW165-3 MEXICO: Guanajuato --- --- --- --- ---

Satyrinae Satyrini Euptychiina Erichthodes antonina CP02-24 PERU: Madre de Dios DQ338792 DQ338935 --- --- DQ338653

Satyrinae Satyrini Euptychiina Erichthodes julia CP04-65 PERU: Quebrada Siete Jeringas --- --- --- --- ---

Satyrinae Satyrini Euptychiina Euptychia enyo CP06-73 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Euptychia ernestina NW136-14 BRAZIL: São Paulo DQ338793 DQ338936 --- --- ---

Satyrinae Satyrini Euptychiina Euptychia ordinata CP01-14 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Euptychia spn2 CP01-33 PERU: Madre de Dios DQ338794 DQ338937 EU528392 EU528437 DQ338654

Satyrinae Satyrini Euptychiina Euptychia spn5 CP01-53 PERU: Madre de Dios DQ338795 DQ338938 --- --- DQ338655

Satyrinae Satyrini Euptychiina Euptychia spn6 CP04-55 PERU: JU. 1km S Mina Pichita DQ338796 DQ338939 --- --- DQ338656

Satyrinae Satyrini Euptychiina Euptychia spn7 CP02-58 PERU: Quebrada Siete Jeringas --- DQ338940 --- --- DQ338657

Satyrinae Satyrini Euptychiina Euptychoides castrensis NW126-9 BRAZIL: Ribeirão das Pedras DQ338798 DQ338942 --- --- DQ338659

Satyrinae Satyrini Euptychiina Euptychoides hotchkissi CP04-51 PERU: JU. 1km S Mina Pichita --- --- --- --- ---

Satyrinae Satyrini Euptychiina Forsterinaria boliviana CP04-88 PERU: Quebrada Siete Jeringas DQ338799 DQ338943 --- --- DQ338660

Satyrinae Satyrini Euptychiina Forsterinaria necys NW126-10 BRAZIL: Ribeirão das Pedras --- --- --- --- ---

Satyrinae Satyrini Euptychiina Forsterinaria proxima CP08-09 PERU: La Solitaria --- --- --- --- ---

Satyrinae Satyrini Euptychiina Forsterinaria quantius CP14-07 BRAZIL: Sao Luiz do Paraitingo, SP --- --- --- --- ---

Satyrinae Satyrini Euptychiina Godartiana muscosa NW127-8 BRAZIL: Serra do Japi, SP DQ338582 DQ338944 --- --- DQ338661

Satyrinae Satyrini Euptychiina Guaianaza pronophila NW127-20 BRAZIL: Extrema, MG DQ338797 DQ338941 --- --- DQ338658

Satyrinae Satyrini Euptychiina Harjesia blanda CP01-13 PERU: Madre de Dios DQ338800 DQ338945 --- --- DQ338662

Satyrinae Satyrini Euptychiina Harjesia oreba CP-CI107 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Hermeuptychia cuculina CP04-11 PERU: Quebrada Siete Jeringas --- --- --- --- ---

Satyrinae Satyrini Euptychiina Hermeuptychia fallax CP04-37 PERU: Río Colorado, Quebrada Perla --- --- --- --- ---

Satyrinae Satyrini Euptychiina Hermeuptychia harmonia CP06-93 PERU: Oxapampa --- --- --- --- ---

Satyrinae Satyrini Euptychiina Hermeuptychia hermes NW127-16 BRAZIL: Extrema, MG DQ338583 DQ338946 --- --- DQ338663

Satyrinae Satyrini Euptychiina Hermeuptychia pimpla CP04-10 PERU: Quebrada Siete Jeringas --- --- --- --- ---

Satyrinae Satyrini Euptychiina Hermeuptychia spn5 CP02-17 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia fugitiva CP01-18 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia harpyia CP02-27 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia moderata CP01-36 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia ocypete CP01-32 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia pallema CP02-41 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Magneuptychia spn4 CP01-91 PERU: Madre de Dios DQ338584 DQ338947 --- --- DQ338664

Satyrinae Satyrini Euptychiina Magneuptychia spn2 CP02-12 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Megeuptychia antonoe CP05-01 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Megeuptychia monopunctata CP06-70 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Megisto cymela CP21-04 USA: Valley Falls, R.I --- --- --- --- ---

Satyrinae Satyrini Euptychiina Moneuptychia griseldis NW127-17 BRAZIL: Extrema, MG --- --- --- --- ---

Satyrinae Satyrini Euptychiina Moneuptychia sp CP12-07 --- --- --- --- ---

Satyrinae Satyrini Euptychiina Moneuptychia paeon NW126-11 BRAZIL: Ribeirão das Pedras --- --- --- --- ---

Satyrinae Satyrini Euptychiina Moneuptychia soter CP18-01 BRAZIL: São Paulo --- --- --- --- ---

Satyrinae Satyrini Euptychiina Neonympha areolatus CP22-03 USA: --- --- --- --- ---

Satyrinae Satyrini Euptychiina Oressinoma sorata CP06-89 PERU: Oxapampa --- --- --- --- ---

Satyrinae Satyrini Euptychiina Oressinoma typhla CP07-71 PERU: La Solitaria DQ338802 DQ338949 --- EU528452 DQ338666

Satyrinae Satyrini Euptychiina Palaeonympha opalina EW25-21 TAIWAN: Hsiaokuehu DQ338880 DQ339038 --- --- DQ338746

Satyrinae Satyrini Euptychiina Paramacera allyni CP15-10 USA: Arizona --- --- --- --- ---

Satyrinae Satyrini Euptychiina Paramacera xicaque CP15-08 MEXICO: Distrito Federal --- --- --- --- ---

Satyrinae Satyrini Euptychiina Parataygetis albinotata CP04-53 PERU: JU, 1 km S Mina Pichita DQ338804 DQ338950 --- --- DQ338668

Satyrinae Satyrini Euptychiina Pareuptychia binocula CP02-42 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Pareuptychia hesionides CP01-66 PERU: Madre de Dios DQ338805 DQ338951 --- --- DQ338669

Satyrinae Satyrini Euptychiina Pareuptychia ocirrhoe NW126-6 BRAZIL: Atibaia, SP --- --- --- --- ---

Satyrinae Satyrini Euptychiina Pareuptychia metaleuca CP06-67 PERU: Cordillera del Cóndor --- --- --- --- ---

Satyrinae Satyrini Euptychiina Pareuptychia ocirrhoe DNA99-064 ECUADOR: Napo Province AY508568 AY509094 --- --- ---

Satyrinae Satyrini Euptychiina Paryphthimoides grimon CP10-01 BRAZIL: Saibadela DQ338806 DQ338952 --- --- DQ338670

Satyrinae Satyrini Euptychiina Paryphthimoides poltys CP02-19 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Paryphthimoides phronius NW126-7 BRAZIL: Atibaia, SP DQ338807 DQ338953 --- --- DQ338671

Satyrinae Satyrini Euptychiina Pharneuptychia innocentia CP12-06 BRAZIL: Serra do Cipó DQ338808 DQ338954 --- --- DQ338672

Satyrinae Satyrini Euptychiina Pharneuptychia sp. NW127-18 BRAZIL: Extrema, MG DQ338809 DQ338955 --- --- ---

Satyrinae Satyrini Euptychiina Pindis squamistriga NW165-5 MEXICO: Guanajuato --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetis rectifascia NW127-28 BRAZIL: Intervales, C. Bonito, SP --- --- --- --- DQ338673

Satyrinae Satyrini Euptychiina Posttaygetis penelea NW126-13 DQ338813 DQ338959 --- --- DQ338682

Satyrinae Satyrini Euptychiina Pseudodebis marpesa CP01-42 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Pseudodebis valentina CP-CI64 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Rareuptychia clio CP01-23 PERU: Madre de Dios DQ338810 DQ338956 --- --- ---

Satyrinae Satyrini Euptychiina Satyrotaygetis satyrina DNA97-006 COSTA RICA: Puntarenas Province AY508575 AY509101 --- --- ---

Satyrinae Satyrini Euptychiina Splendeuptychia ashna CP01-19 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Splendeuptychia boliviensis CP02-48 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Splendeuptychia doxes NW126-8 BRAZIL: Atibaia, SP --- --- --- --- ---

Satyrinae Satyrini Euptychiina Splendeuptychia furina CP02-39 PERU: Madre de Dios --- --- --- --- ---

Satyrinae Satyrini Euptychiina Splendeuptychia itonis CP02-44 PERU: Madre de Dios DQ338811 DQ338957 --- --- DQ338684

Satyrinae Satyrini Euptychiina Splendeuptychia purusana CP-CI39 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taydebis peculiaris NW149-11 BRAZIL: São Paulo --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetis virgilia NW108-3 BRAZIL: São Paulo DQ338812 DQ338958 EU141487 EU141383 DQ338683

Satyrinae Satyrini Euptychiina Taygetis mermeria CP-CI95 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetis rufomarginata NW129-27 BRAZIL: Saibadela --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetis rufomarginata CP-CI125 PERU: CICRA --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetis yphthima NW149-8 BRAZIL: São Paulo --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetomorpha celia CP22-02 COLOMBIA: Antioquía --- --- --- --- ---

Satyrinae Satyrini Euptychiina Taygetomorpha puritana CP22-04 ECUADOR: Morona-Santiago --- --- --- --- ---

Satyrinae Satyrini Euptychiina Yphthimoides angularis CP12-08 --- --- --- --- ---

Satyrinae Satyrini Euptychiina Yphthimoides borasta CP10-03 BRAZIL: São Paulo DQ338585 DQ338960 --- --- DQ338680

Satyrinae Satyrini Euptychiina Yphthimoides cipoensis CP10-02 BRAZIL: Serra do Cipó DQ338814 DQ338961 --- --- DQ338681

Satyrinae Satyrini Euptychiina Yphthimoides leguialimai CP08-88 PERU: Ampay --- --- --- --- ---

Satyrinae Satyrini Euptychiina Moneuptychia itapeva CP12-04 BRAZIL: Serra do Cipó DQ338815 DQ338962 --- --- DQ338675

Satyrinae Satyrini Euptychiina Zischkaia pacarus CP14-02 --- --- --- --- ---

Table 2Parameter values estimated using Bayesian phylogenetics methodsGene TL(all) r(A<->C) r(A<->G) r(A<->T) r(C<->G) r(C<->T) r(G<->T) pi(A) pi(C) pi(G) pi(T) alphaCOI 25.340 0.074 0.035 0.032 0.010 0.845 0.004 0.396 0.069 0.131 0.404 0.263Ef1-a 0.065 0.256 0.084 0.047 0.501 0.048 0.279 0.214 0.225 0.282 0.238wingless 0.074 0.284 0.117 0.029 0.426 0.070 0.167 0.323 0.357 0.154 0.380GAPDH 0.075 0.281 0.100 0.050 0.442 0.052 0.266 0.205 0.228 0.301 0.314RpS5 0.107 0.235 0.144 0.039 0.444 0.031 0.260 0.197 0.216 0.327 0.274Values estimated separately for each gene region

Table 3. Revised checklist of genera in the subtribe EuptychiinaAmphidecta Butler, 1867Archeuptychia Forster, 1964Caenoptychia Le, Cerf 1919Caeruleuptychia Forster, 1964Capronnieria Forster, 1964Cepheuptychia Forster, 1964Cercyeuptychia Miller & Emmel, 1971Chloreuptychia Forster, 1964Cissia Doubleday, 1848Coeruleotaygetis Forster, 1964Cyllopsis Felder, 1869Erichthodes Forster, 1964Euptychia Hübner, 1818Euptychoides Forster, 1964Forsterinaria Gray, 1973Godartiana Forster, 1964Guaianaza Freitas & Peña, 2006Harjesia Forster, 1964Hermeuptychia Forster, 1964Magneuptychia Forster, 1964Megeuptychia Forster, 1964Megisto Hübner, [1819]Moneuptychia Forster, 1964Neonympha Hübner, 1818Palaeonympha Butler, 1871Paramacera Butler, 1868Parataygetis Forster, 1964Pareuptychia Forster, 1964Paryphthimoides Forster, 1964Pharneuptychia Forster, 1964Pindis Felder, 1869Posttaygetis Forster, 1964Praefaunula Forster, 1964Pseudeuptychia Forster, 1964Pseudodebis Forster, 1964Rareuptychia Forster, 1964Satyrotaygetis Forster, 1964Splendeuptychia Forster, 1964Taydebis Freitas, 2003Taygetina Forster, 1964Taygetis Hübner, [1819]Taygetomorpha Miller, 2004Yphthimoides Forster, 1964Zischkaia Forster, 1964

Doktorsavhandlingar

vid Zoologiska institutionen 1906 - 2009

1906. Nils Holmgren: Studien über südamerikanische Termiten.

1907. Lännart Ribbing: Die distale Armmuskulatur der Amphibien, Reptilien und Säugetiere.

1908. Augusta Ärnbäck-Christie-Linde: Der Bau der Soriciden und ihre Beziehungen zu anderen Säugetieren.

1909. Adolf Pira: Studien zur Geschichte der Schweinerassen insbesonders derjenigen Schwedens.

1910. Walter Kaudern: Studien über die männlichen Geschlechtsorgane von Insectivoren und Lemuriden.

1912. Nils Odhner: Morphologische und phylogenetische Untersuchungen über die Nephridien der Lamellibranchier.

1913. Henrik Strindberg: Embryologische Studien an Insecten.

1914. John Runnström: Etudes sur la morphologie et la physiologie cellulaire du développement de l'oursin.

1918. Olof Hammarsten: Beitrag zur Embryonalentwicklung des Malacobdella grossa.

1920. Bertil Hanström: Zur Kenntnis des centralen Nervensystems der Arachnoiden und Pantopoden.

1921. Axel Palmgren: Embryological and morphological studies on the mid-brain and cerebellum of vertebrates.

1922. Torsten Pehrson: Some points in the cranial development of teleostomian fishes.

Gertie Söderberg: Contributions to the fore-brain morphology in Amphibians.

1924. Kåre Bäckström: Contributions to the fore-brain morphology in Selachians.

Gert Bonnier: Contributions to the knowledge of intra- and inter-specific relationships in Drosophila.

Hialmar Rendahl: Embryologische und morphologische Studien über das Zwischenhirn beim Huhn.

1928. Sven Hörstadius: Über die Determination des Keimes bei Echinodermen.

1932. Harry Bergqvist: Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren.

Gösta Johansson-Kvenne: Beiträge zur Kenntnis der Morphologie und Entwicklung des Gehirns von Limulus polyphemus.

Mois Koffmann: Die Mikrofauna des Bodens, ihr Verhältnis zu anderen Mikroorganismen und ihre Rolle bei den mikrobiologischen Vorgänge im Boden.

1936. Eric Lindahl: Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim.

1937. Figge Hammarberg: Zur Kenntnis der ontogenetischen Entwicklung des Schädels von Lepisosteus osseus.

Märtha Kindahl: Zur Entwicklung der Exkretionsorgane von Dipnoern und Amphibien.

1942. Egron Vallén: Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers.

1945. Birger Rudebeck: Contribution to fore-brain morphology in Dipnoi.

1948. Gösta Notini: Biologiska undersökningar över grävling.

Alf G. Johnels: On the development and morphology of the skeleton of the head of Petromyzon.

1949. Thorolf Lindström: On the cranial nerves of the cyclostomes with special reference to N. trigeminus.

Bertil Lekander: The sensory line system and the external bones in the head of some Ostariophysi.

1958. Ragnar Olsson: The subcommisural organ.

1959. Gunnar Bertmar: On the ontogeny of the chondral skull in Characidae, with a discussion on the chondrocranial base and the visceral chondrocranium in fishes.

1961. Armin Lindquist: Über die Morphologie und Biologie von Limnocalanus im Ostseebecken.

1963. Gunnar Fridberg: Morphological studies on the caudal neurosecretory system in teleosts and elasmobranchs.

Kjell Engström: Studies on teleostean visual cells.

1964. Valdek Jürisoo: Agro-ecological studies on leafhoppers (Auchenorrhynca, Homoptera) and bugs (Heteroptera) at Ekensgård farm in the province of Hälsingland, Sweden.

1965. Hubertus Eidmann: Ökologische und physiologische Studien über die Lärchen-miniermot (Coleophora laricella HBN).

1968. Bengt-Owe Jansson: Studies on the ecology of the interstitial fauna of marine sandy beaches.

1970. Göran Malmberg: The excretory systems and the marginal hooks as a basis for the systematics of Gyrodactylus (Monogenoa, Trematoda).

Perarvid Skoog: The food of the Swedish badger (Meles meles L.)

Yngve Espmark: Mother-young relations and development of behaviour in roe-deer (Capreolus capreolus L.).

Bo Ingemar Hjort: Reproductive behaviour in Tetraonidae with special reference to males.

Jan Karl Englund: Population dynamics of the Swedish red fox, Vulpes vulpes (L.).

1971. Björn Ganning: Studies on Baltic rockpool ecosystems.

Lars Westin: Studies on the biology and ecology of fourhorn sculpin, Myoxocephalus quadricornis (L.).

Hans Ackefors: Studies on the ecology of the zooplankton fauna in the Baltic proper.

Lars Wilsson: Observations and experiments on the ethology of the European beaver (Castor fiber L.). A study in the development of phylogenetically adapted behaviour in a highly specialized mammal.

1972. Bo Fernholm: Pituitary and ovary of the Atlantic hagfish. An endocrinological investigation.

Anders Bjärvall: Nest-exodus behaviour and nest-site selection of the mallard.

Kaj Holmberg: The retina and responses to light in hagfish.

1973. Björn Sohlenius: Growth, reproduction and population dynamics in some bacterial feeding soil nematodes.

1974. Lars-Olof Hagelin: Studies on the development of the membranous labyrinth in lampreys, Lampetra fluviatilis Linné, Lampetra planeri Bloch and Petromyzon marinus Linné.

Birgitta Weman: The adenohypophysis of the mink, Mustela vison.

AnnMari Jansson: Community structure, modelling and simulation of the Cladophora ecosystem in the Baltic Sea.

Arnold Stenmark: Studies on the pea moth (Laspeyresia nigricana Steph) in central Sweden.

1975. Erik Neuman: The dynamics of the coastal fish fauna in the Baltic with special reference to temperature.

Tommy Radesäter: Ethological studies on the triumph ceremony of the Canada goose (Branta canadensis L.) - with special reference to ontogeny and causation.

Christer Wiklund: Ecological and evolutionary aspects on the host plant biology of Papilio machaon L.

Christer Solbreck: Flight habits and environment of a seed bug, Lygaeus equestris (L.) (Heteroptera, Lygaeidae).

Finn Sandegren: Social behaviour in the Steller sea lion (Eumetopias jubatus) and northern elephant seal (Miroungas angustirostris).

Bo Ekengren: Structural aspects of the Hypothalamo-Hypophysial complex of the roach, Leuciscus rutilus.

Inga-Britt Ahlbert: Organization of the cone cells in the retinae of some teleosts in relation to their feeding habits.

1976. Per Haage: Studies on the Baltic Fucus macrofauna.

Laila Winbladh: Endocrine pancreas in cyclostomes.

Ragnar Elmgren: Baltic benthos communities and the role of the meiofauna.

1977. Eva Norman: Studies on the ecology of the marine woodboring molluscs on the Swedish west coast with special reference to the degradation of wood.

Sven Ankar: The soft bottom ecosystem of the northern Baltic proper with special reference to the macrofauna.

Olle Lindén: Effects of oils and dispersants on the early development of Baltic herring and some invertebrates from the Baltic Sea.

Thorsten Klint: Factors contributing to mate selection in female mallards (Anas platyrhynchos L.) - with particular emphasis on the role of the male nuptial plumage.

Otto Kugelberg: Food relations of a seed feeding insect, Lygaeus equestris (L.) (Heteroptera, Lygaeidae).

Sverre Sjölander: Reproductive behaviour of the divers (Gaviidae).

Peter Öhman: Structure and function of the river lamprey (Lampetra fluviatilis) retina.

Mats Olsson: Mercury, DDT and PCB in aquatic test organisms. Baseline and monitoring studies, field studies on biomagnification substances harmful to the Swedish environment.

Lars Hernroth: Studies on the population dynamics of zooplankton in the Baltic.

1978. Gunnel Skoog: Aspects on the biology and ecology of Theodoxus fluviatilis (L.) and Lymnea peregra (O. F. Müller) (Gastropoda) in the northern Baltic.

Fredrik Wulff: Ecological studies on Baltic rock pools.

Greta Ågren: Sociosexual behaviour in the Mongolian gerbil Meriones unguiculatus. Interactions between gonadal hormones and social relationships.

1979. Gunnar Aneer: On the ecology of the Baltic herring with special reference to the Askö-Landsort area.

Hans Cederwall: Energy flow and fluctuations of deeper soft bottom macrofauna communities in the Baltic Sea.

1980. Hans Lundberg: Ecology of bumblebees (Hymenoptera Apidae) in a subalpine/alpine area with special reference to food plant and habitat utilization.

Stig Sjöberg: Modelling, simulation, and analysis of pelagic ecosystems with special reference to the Baltic Sea.

Hans Ahnlund: Aspects of the population dynamics of the badger (Meles meles L.).

Annikki Lappalainen: On the ecology of shallow sandy bottoms in the Baltic Sea with special reference to mud snails (Hydrobiidae).

Stellan Hedgren: Ecological aspects of the breeding biology of the guillemot Uria aalge in the Baltic Sea.

Bengt Lindlöf: Some aspects of ecology in hares.

Jan Landin: Habitats, life histories, migration and dispersal by flight in water beetles (Hydrophilidae and Hydraenidae).

Åke Pehrson: Intake and utilization of winter food in the mountain hare (Lepus timidus L.).

1981. Nils Kautsky: On the role of the blue mussel, Mytilus edulis L. , in the Baltic ecosystems.

Göran Cederlund: Some aspects of roe deer (Capreolus capreolus L.) winter ecology in Sweden.

1982. Erik Lindström: Population ecology of the red fox (Vulpes vulpes L.) in relation to food supply.

Olavi Grönwall: Aspects of the food ecology of the red squirrel (Sqiurus vulgaris L.).

Tjelvar Odsjö: Eggshell thickness and levels of DDT, PCB and mercury in eggs of osprey (Pandion haliaetus (L.)) and marsh harrier (Circus aeruginosus (L.)) in relation to their breeding success and population status in Sweden.

Göran Nordlander: Systematics and phylogeny of an interrelated group of genera within the family Eucoilidae (Insecta: Hymenoptera, Cynipoidea).

Birgitta Sillén-Tullberg: Behavioural ecology and population dynamics of an aposematic seed bug, Lygaeus equestris L. (Heteroptera, Lygaeidae).

1983. Björn Helander: Reproduction of the white-tailed sea eagle Haliaetus albicilla (L ) in Sweden, in relation to food and residue levels of organochlorine and mercury compounds in the eggs.

Sven O. Kullander: Taxonomic studies on the percoid freshwater fish family Cichlidae in South America.

1984. Per-Olov Larsson: Some characteristics of the Baltic salmon, Salmo salar L., population.

Torbjörn Järvi: On the evolution of inter- and intraspecific communication through natural and sexual selection.

Magnus Enquist: Game theory studies on aggressive behaviour.

Nils-Ove Hilldén: Behavioural ecology of the labrid fishes (Teleostei: Labridae) at Tjärnö on the

Swedish west coast.

Helena Obermüller-Wilén: Neuroendocrine studies in the brain of the lancelet, Branchiostoma lanceolatum (Cephalochordata).

Paula Kankaala: On the ecology and productivity of zooplankton in the northern Baltic.

Lars-Åke Janzon: Taxonomical and biological studies of Tephritis species (Diptera) and their parasitoids (Hymenoptera).

1986. Kenneth Lindahl: Endocrinological studies on the young salmon, Salmo salar L., with special reference to smoltification.

Anders Angerbjörn: Population dynamics of mountain hares (Lepus timidus L.) on islands.

Ulf Larsson: The pelagic microheterotrophic food web in the Baltic Sea: Bacteria and their dependence on phytoplankton.

Anders Fernö: Aggressive behaviour between territorial cichlid fish and its regulation.

Staffan Tamm: Behavioural energetics: Acquisition and use of energy by hummingbirds.

1987. Per-Olof Wickman: Mate searching behaviour of Satyrine butterflies.

Erkki Schwanck: Reproductive behaviour of a monogamous cichlid fish Tilapia mariae.

Vidar Øresland: Life cycle feeding of the chaetognaths Sagitta setosa and S. elegans in European shelf waters.

Odd Lindahl: Plankton community dynamics in relation to water exchange in the Gullmar fjord, Sweden.

Sven Jakobsson: Male behaviour in conflicts over mates and territories.

1988. Hans Temrin: Polyterritorial behaviour and polygyny in the wood warbler (Phylloscopus sibilatrix Bechst).

Bertil Widbom: The benthic meiofauna of three coastal areas: Structure, seasonal dynamics and response to environmental perturbations.

Johan Forsberg: Reproductive biology of some pierid butterflies.

Hans Kautsky: Factors structuring phytobenthic communities in the Baltic Sea.

Sven Boström: Morphological and systematic studies of the family Cephalobidae (Nematoda, Rhabditida).

Lars G. Rudstam: Patterns of zooplanktivory in a coastal area of the northern Baltic proper.

Sture Nellbring: Quantitative and qualitative studies of fish in shallow water, northern Baltic proper.

Olof Leimar: Evolutionary analysis of animal fighting.

Lena Svärd: Mating strategies of male butterflies in relation to female fecundity and polyandry.

Gunnar Fredriksson: Thyroid-like systems in endostyles: A study on morphology, function and evolution in "primitive" chordates.

1989. Magnus Rydevik: Smoltification and early sexual maturation in the Baltic salmon, Salmo salar L.

Bengt Karlsson: Fecundity in butterflies: Adaptations and constraints.

Rolf Gydemo: Studies on reproduction and growth in the noble crayfish, Astacus astacus L.

Sture Hansson: Biotic interactions in fish and mysid communities, studies in two Baltic coastal areas.

Brita Sundelin: Ecological effect assessment of pollutants using Baltic benthic organisms.

Fredrik Pleijel: Taxonomy of the Phyllodocidae (Polychaeta).

1990. Lennart Edsman: Territoriality and competition in wall lizards.

Dag Broman: Transport and fate of hydrophobic organic compounds in the Baltic aquatic environment - Polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans.

Michael Tedengren: Ecophysiology and pollution sensitivity of Baltic Sea invertebrates.

1991. Sören Nylin: Butterfly life-history adaptations in seasonal environments.

Mats Amundin: Sound production in Odontocetes with emphasis on the harbour porpoise, Phocoena phocoena.

Kerstin Holmberg: Mallard ducks, mate choice and breeding success.

Erland Dannelid: Dental morphology in eurasian shrews of the genus Sorex - aspects on taxonomy, evolution and ecology.

Catherine Hill: Mechanisms influencing the growth, reproduction and mortality of two co-occurring amphipod species in the Baltic sea.

1992. Sif Johansson: Regulating factors for coastal zooplankton community structure in the northern Baltic proper.

Carl André: Settlement of bivalve larvae: the role of larval behaviour predation and hydrodynamics.

Tomas Bollner: Regeneration and development of the nervous system in the ascidian Ciona intestinalis (L.).

Eva Andersson: Neuroendocrine control of reproduction in the three-spined stickleback, Gasterosteus aculeatus (L.).

Thorleifur Eiriksson: Female response and male singing strategies in two orthopteran species.

1993. Nina Wedell: Evolution of nuptial gifts in bushcrickets.

Björn Forkman: The gathering and use of information in foraging.

C. Tomas Lundquist: Localization and chemical properties of peptides related to galanin and tachykinins in the blowfly nervous system.

1994. Tom Arnbom: Maternal investment in male and female offspring in the southern elephant seal.

Anders Brodin: Time aspects on food hoarding in the willow tit - an evolutionary perspective.

Gisela Holm: The tree-spined stickleback, Gasterosteus aculeatus L. in ecotoxicological test systems.

Cecilia Lindblad: Perturbation of functions in shallow benthic ecosystems.

1995. Ulrik Kautsky: Ecosystem processes in coastal areas of the Baltic Sea.

Kjell Wahlström: Natal dispersal in roe deer - an evolutionary perspective.

Per Berggren: Stocks, status and survival of harbour porpoises in swedish waters.

Anders Modig: Social behaviour and reproductive success in southern elephant seal (Mirounga leonina).

1996. Michael Gilek: Bioaccumulation and cycling of hydrophobic organic contaminants by Baltic Sea blue mussels.

Elin Sigvaldadottir: Systrematics of Spionidae and Prionospio (Polychaeta).

Anders Silfvergrip: A systematic revision of the neotropical catfish genus Rhamdia (Teleostei, Pimelodidae).

Agneta Johansson: Territorial dynamics and marking behaviour in male roe deer.

Eric Muren: Tachykinin-related neuropeptides in the Madeira cockroach: structures distributions and actions.

1997. Niklas S. Mattson: Fish production and ecology in african small water bodies with emphasis on Tilapia.

Thord Fransson: Time and energy in long distance bird migration.

Birgitta Johansson: Oxygen deficiency and the ecology of Baltic macrobenthos.

Johan Axelman: Biological, physico-chemical and biogeochemical dynamics of hydrophobic organic compounds.

Marie Arnér: Organisms and food webs in rock pools: Responses to environmental stress and trophic manipulation.

Pete Hurd: Game theoretical perspectives on conflict and biological communication.

Erik Wilsson: Maternal effects on behaviour of juvenile and adult dogs.

Magnus Tannerfeldt: Population fluctuations and life history consequences in the arctic fox.

Kristjan Lilliendahl: Fattening strategies in wintering passerines.

Björn Birgersson: Maternal investment in male and female offspring in the fallow deer.

Bohdan Sklepkovych: Kinship and conflict: resource competition in a proto-cooperative species: The Siberian Jay.

1998. Simon G.M. Ndaro: Ecological aspects of soft bottom meiofauna in Eastern Africa.

Efthimia Antonopoulou: Feedback control of reproduction in Atlantic salmon, Salmo salar, male parr.

Petra Wallberg: Distribution and fate of polychlorinated biphenyls within the pelagic microbial food web.

Carl Rolff: Stable isotope studies of contaminant and material transport in Baltic pelagic food-webs.

Marcus Öhman: Aspects of habitat and disturbance effects on tropical reef-fish communities.

Cecilia Kullberg: Behaviour under predation risk in birds.

Thomas Lyrholm: Sperm whales: Social organization and global genetic structure.

Min-Yung Kim: Neuropeptides related to tachykinins and leucokinins in the developing nervous system of insects.

Salim M. Mohammed: Nutrient dynamics and exchanges between a mangrove forest and a coastal embayment: Chwaka Bay, Zanzibar.

Gunilla Ejdung: Predatory processes in Baltic benthos.

Virpi Sjöberg-Lindfors: Butterfly life history and mating systems.

1999. Karl Gotthard: Life history analysis of growth strategies in temperate butterflies.

Niklas Janz: Ecology and evolution of butterfly host plant range.

Staffan Jakobsson: Target organs for androgens in two teleost fishes, Atlantic salmon, Salmo salar, and three-spined stickleback, Gasterosteus aculeatus.

Anna Thessing: Genetic and environmental factors influencing growth and survival in willow tits Parus montanus.

Kenneth Ekvall: Alloparental care and social dynamics in the fallow deer (Dama dama).

Gunilla Ericson: 32P-postlabelling analysis of DNA adducts in fish as a biomarker of genotoxic exposure.

Karin Maria Björkman: Nutrient dynamics in the North Pacific subtropical gyre: Phosphorus fluxes in the upper oligotrophic ocean.

2000. Olle Israelsson: Xenoturbella.

Carl-Adam Wachtmeister: The evolution of courtship rituals.

Cecilia Bornestaf: Mechanisms in the photoperiodic control of reproduction in the three-spined stickleback, Gasterosteus aculeatus.

Olle Brick: Risk assessement and contest behaviour in the Cichlid fish, Nannacara anomala.

Gabriella Gamberale-Stille: On the evolution and function of aposematic coloration.

Helene Modig: Responses of Baltic soft-bottom invertebrates to settled organic material.

2001. Tomislav Vladic: Gonad and ejaculate allocation in alternative reproductive tactics of Salmon and Trout with reference to sperm competition.

Susanne Stenius: Cooperation and conflict during reproduction in polyterritorial wood warblers (Phylloscopus sibilatrix).

Ruben Tastàs-Duque: Studies of Cecidomyiidae (Diptera).

Sven Burreau: On the uptake and biomagnification of PCBs and PBDEs in fish and aquatic food chains.

Åsa Winther: Distribution and actions of insect tachykinin-related peptides.

Fang Fang Kullander: Phylogeny and species diversity of the South and Southeast Asian cyprinid genus Danio Hamilton (Teleostei, Cyprinidae).

Magnus G. S. Persson: Distribution and modulatory action of neuropeptides in the insect ventral nerve cord.

Minna Miettinen: Egg carrying in the golden egg bug.

Stefano Gihrlanda: Towards a theory of stimulus control.

Annkristin H. Axén: Behaviour of Lycaenid butterfly larvae in their mutualistic interactions with ants.

2002. Patrik Lindenfors: Phylogenetic analyses of sexual size dimorphism.

Patrik Börjesson: Geographical variation and resource use in harbour porpoises.

Michael Norén: Phylogeny and classification of prolecithophoran flatworms.

Johan Liljeblad: Phylogeny and evolution of gall wasps (Hymenoptera: Cynipidae)

Ulf S. Johansson: Clades in the "higher land bird assemblage"

2003. Ulf Norberg: Evolution of dispersal and habitat exploration in butterflies.

Johan Lind: Adaptive body regulation in the life history of birds.

Olle Karlsson: Population structure, movements and site fidelity of grey seals in the Baltic Sea.

Helena A D Johard: Neuropeptide signaling in insects: peptide binding sites, tachykinin receptors and SNAP-25

Bodil Elmhagen: Interference competition between arctic and red foxes.

Henrik Lange: Social dominance and agonistic communication in the great tit.

Anna Hellqvist: The brain-pituitary-gonadal axis and gonadotropic hormones in the three-spined stickleback, Gasterosteus acculeatus.

Anders Bignert: Biological aspects and statistical methods to improve assessments in environmental monitoring.

Julia Carlström: Bycatch, conservation and echolocation of harbour porpoises.

Kenth Svartberg: Personality in dogs.

Susanna Hall: Moult strategies in relation to migration in long-distance migrants

Miklós Páll: Role of 11-ketotestosterone and prolaction in the control of reproductive behaviour in the male three-spined stickleback, Gasterosteus aculeatus.

Bo Delling: Species diversity and phylogeny of Salmo with emphasis on southern trouts (Teleostei, Salmonidae).

Karolina Westlund: On post-confilict affiliation in humans and other primates - methodological considerations.

Malin Ah-King: Phylogenetic analyses of parental care evolution.

2004. Jonas Bergström: The evolution of mating rates in Pieris napi

Jörgen Ullberg: Dispersal in free-living, marine, benthic nematodes: passive or active processes?

Eva Stensland: Behavioural ecology of Indo-Pacific bottlenose and humpback dolphins.

Helena Strömberg: Benthic cryptofauna and internal bioeroders on coral reefs.

Liselotte Jansson: Evolution of signal form.

Martin Irestedt: Molecular systematics of the antbird-ovenbird comples. (Aves: Furnariida)

Jesper Nyström: Predator - prey interactions of raptors in an arctic community.

Ola Svensson: Sexual selection in Pomatoschistus - nests, sperm competition, and paternal care.

2005 VT. Anders Bergström: Oviposition strategies in butterflies and consequences for conservation.

Helena Elofsson: Speerm motility in Gasterosteiform fishes. The role of salinity and ovarian fluid.

Fredrik Stjernholm: Allocation of body resources to reproduction in butterflies.

Fredrik Dalerum: Sociality in a solitary carnivore, the wolverine.

2005 HT. Ana Beramendi: Morphological and functional studies on the Drosophila neuromuscular system during postembryonic stages.

Georg H. Nygren: Latitudinal patterns in butterfly life history and host plant choice.

Love Dalén: Distribution and abundance of genetic variation in the arctic fox.

Ulrika Kaby: Attacking predators and fleeing prey: detection, escape and targeting behaviour in birds.

2006 VT. Yasutaka Hamasaka: Multiple neurotransmitter inputs modulate circadian clock neurons in Drosophila.

Rasmus Hovmöller: Molecular phylogenetics and taxonomic issues in dragonfly systematics (Insecta: Odonata)

Adrian Vallin: On the protective value of conspicuous eyespots in Lepidoptera.

Ryan Tyge Birse: Tachykinin-related peptide signaling and its role in metabolic stress in Drosophila.

2006 HT. Lissåker Maria: Paternal care, filial cannibalism and sexual conflict in the sand goby, Pomatoschistus minutus.

2007 VT. Ulrika Alm Bergvall: Food choice in fallow deer - experimental studies of selectivity.

Petra Souter: Causes and consequences of spatial genetic variation in two species of scleractinian coral in East Africa.

Hanne Løvlie: Pre- and post-copulatory sexual selection in the fowl, Gallus gallus.

Kajsa Garpe: Effects of habitat structure on tropical fish assemblages.

2007 HT. Erica Sjölin: Tubificids with trifid chaetae: morphology and phylogeny of Heterodrilus (Clitellata, Annelida)

2008 VT. Enfjäll Karin: Mobility and emigration in butterflies.

Berger David: Body size evolution in butterflies.

Dehghani Reihaneh: Aspects of carnivoran evolution in Africa.

Ohlson I. Jan: Molecular phylogeny of tyrant flycatchers, cotingas, manakins and their allies (Aves: Tyrannida)

2008 HT. Weingartner Elisabet: Phylogenetic perspective on host plant use, colonization and speciation in butterflies.

Mehnert Kerstin: Circadian plasticity in the neuromuscular junction of Drosophila melanogaster.

Larsson Lena: disentangling small genetic differences in large Atlantic herring populations: comparing genetic markers and statistical poweer.