Chapter 22. Genetic diseases reveal DNA nucleotide excision ...

16
1 Genetic diseases reveal DNA nucleotide excision repair 201005ak Drugs Against Cancer: Stories of Discovery and the Quest for a Cure Kurt W. Kohn, MD, PhD Scientist Emeritus Laboratory of Molecular Pharmacology Developmental Therapeutics Branch National Cancer Institute Bethesda, Maryland [email protected] CHAPTER 22 Genetic diseases reveal DNA nucleotide excision repair. Rare inherited diseases reveal DNA repair genes and how cells cope. By 1977, seven genetically inherited conditions were known or suspected to have DNA repair defects and to make the unfortunate child prone to developing cancer (Setlow, 1978) (Table 22.1): • Xeroderma pigmentosum (nucleotide excision repair (NER)) (Chapters 22 and 23); • Cockayne’s syndrome (transcription-coupled NER) (Chapter 23); • Fanconi’s anemia (DNA crosslink repair defect) (Chapter …); • Ataxia telangiectasia (Chapter …); • Li-Fraumeni syndrome (Chapter …) • Bloom’s premature aging (progeria) syndrome (unstable genome) (Chapter …). • Werner’s syndrome (adult progeria) (Chapter …) It is remarkable how studies of certain rare diseases helped unravel the complexities of DNA damage repair, the factors that predispose to cancer, and the molecular targets for drug treatments tailored for the molecular defects in individual cancers. Table 22.1 lists 7 genetic diseases that led to the discovery of genes for the repair of certain types of DNA damage or that helped cells in other ways to survive the damage. The current chapter relates the stories of the first two on the list (xeroderma pigmentosum and Cockayne syndrome); the others will be the subject of later chapters.

Transcript of Chapter 22. Genetic diseases reveal DNA nucleotide excision ...

1

GeneticdiseasesrevealDNAnucleotideexcisionrepair201005akDrugsAgainstCancer:StoriesofDiscoveryandtheQuestforaCureKurtW.Kohn,MD,PhDScientistEmeritusLaboratoryofMolecularPharmacologyDevelopmentalTherapeuticsBranchNationalCancerInstituteBethesda,Marylandkohnk@nih.govCHAPTER22GeneticdiseasesrevealDNAnucleotideexcisionrepair.RareinheriteddiseasesrevealDNArepairgenesandhowcellscope.By1977,sevengeneticallyinheritedconditionswereknownorsuspectedtohaveDNArepairdefectsandtomaketheunfortunatechildpronetodevelopingcancer(Setlow,1978)(Table22.1):•Xerodermapigmentosum(nucleotideexcisionrepair(NER))(Chapters22and23);•Cockayne’ssyndrome(transcription-coupledNER)(Chapter23);•Fanconi’sanemia(DNAcrosslinkrepairdefect)(Chapter…);•Ataxiatelangiectasia(Chapter…);•Li-Fraumenisyndrome(Chapter…)•Bloom’sprematureaging(progeria)syndrome(unstablegenome)(Chapter…).•Werner’ssyndrome(adultprogeria)(Chapter…)ItisremarkablehowstudiesofcertainrarediseaseshelpedunravelthecomplexitiesofDNAdamagerepair,thefactorsthatpredisposetocancer,andthemoleculartargetsfordrugtreatmentstailoredforthemoleculardefectsinindividualcancers.Table22.1lists7geneticdiseasesthatledtothediscoveryofgenesfortherepairofcertaintypesofDNAdamageorthathelpedcellsinotherwaystosurvivethedamage.Thecurrentchapterrelatesthestoriesofthefirsttwoonthelist(xerodermapigmentosumandCockaynesyndrome);theotherswillbethesubjectoflaterchapters.

2

Table22.1.Geneticdisease Defectiveprocess DefectivegenesXerodermapigmentosum(XP) Nucleotideexcisionrepair XPA-XPG;XPVCockaynesyndrome Transcription-coupledrepair CSA,CSBFanconi’sanemia Inter-strandcrosslinkrepair FANCgenesAtaxiatelangiectasia Cellcyclecheckpointactivation ATM,ATRLi-Fraumenisyndrome “Guardianofthegenome” TP53Bloom’ssyndrome Prematureaginginchildhood BLMWerner’ssyndrome Prematureaginginadult WRNTheXerodermapigmentosum(XP)story:acurseandaclue.Theesotericname,xerodermapigmentosum(orsimplyXP),becamecommonparlanceamongresearchersandcliniciansdealingwithskindiseasesandcancer.Likewise,thenamewillappearsomanytimesinthechapterthatthereadermayfinditenterhis/herfamiliarvocabulary.Literally,xerodermapigmentosummeans“pigmenteddryskin,”butthatbenign-soundingnamedoesnotmatchtheseverityofthedisease.Childrencursedwiththisterrible,butfortunatelyveryrareinheriteddisease,cametobecalledchildrenofthedarkandevenvampirechildren,becauseforthemdaylightwasdeadly.Iftheyfailedtoadherestrictlytoadisciplineofthedark,theyhadlittlechanceofsurvivingbeyondtheageof20.Theirquandaryofhowtomeldtheirextremelightsensitivitywiththeirsociallivesbecamethesubjectofseveralfilms(“ChildrenoftheDark”–TVmovie1994.Itmaynothaveconsoledtheseunfortunateyoungpeopleverymuchtoknowthattheirsufferingwouldleadtonewknowledgethatwouldhelpothers,includingmanycursedwithcancer.Childrenwithxerodermapigmentosum(XP)tendtogetfreckle-likepigmentationinsun-exposedskin,severeburnsafterminimalsunexposure,anddamagetosun-exposedpartsoftheeyeswithlossofvisionandocularcancer.Theirgreatestriskofsunexposure,however,ispotentiallydeadlyskincancers.Atleast8subtypesofthediseasewerediscoveredthathavedifferentdiseaseseverities.Themedicalliteratureoftenshowspatientswithadvancedstagesofthedisease.Sinceitaffectsdaylight-exposedskin,itsterribleeffectsareexposedtoview.Theworstofit,however,ishidden:someoftheskinnodulesbecomemalignantcancersthatspreadtoorganswithinthebody.Xerodermapigmentosumisoneoftheworstcancer-proneconditions,anditbecamethemostextensivelystudieddiseaseinallofcancerresearch.Thediseasewassorare,thateveryavailablepatientafflictedwithitwasstudied.Theadvancedcasescommonlyshowninthemedicalliteraturelooksobad,thatIhaveselectedanearlyandrelativelymildcasetoshowinFigure23.1(Anderson,1889).ThediseasewasfirstdescribedbyHebraandMorrisKaposiin1874,whocoinedthename“xerodermapigmentosum”in1882.ThecaseinFigures22.1and22.2datesbackto1889,whenitsinheritednaturewasknown,butitscausewasstillcloudedinmystery(Anderson,

3

1889).Uptothattime,only44casesofthediseasewereknown.ThiscasewasreportedbyT.McCallAndersonoftheUniversityofGlasgowintheBritishMedicalJournal.Itwasofa9-yearoldboy,who,despitehisskinlesionsandthelossofhislefteye--whichwasremovedbecauseithadatumorgrowingonit--stilllookedtobeotherwiseingenerallygoodhealth.YoucanseefromFigure22.1thathisskinlesionsweremainlyontheface,neck,uppershoulders,andlowerarms:thepartsofhisbodythatwouldhavebeenmostexposedtothesun.Microscopicexaminationofhistumorswasnotedtobetypicalofepithelioma(epithelialcancer)(Figure22.2).Hisparentswerebothingoodhealth,buthisonlysisterwassimilarlyaffectedandhaddiedattheageof9.Thiswasconsistentwiththeknownrecessiveinheritanceofthedisease.Theexactgeneticshoweverwereconfusing;wenowknowthereasonfortheconfusion:itwasbecausethedisease,withclinicalvariation,canbecausedbymutationofanyoneofseveralgenes,locatedondifferentchromosomes(Table22.1).

Figure22.1.Woodcutofa9-yearoldboywithxerodermapigmentosum(Anderson,1889).Thechildhasmultiplecancersonhisfaceandhislefteyewasremovedbecausetherewasacancerinit.Unlessprotectedagainstsunlightorevenagainstdaylight,hisconditioncouldbecomemuchworse.Atthetimethispicturewasmade(circa1889),littlewasknownaboutthedisease.Pigmentation(darkening)isalsoshowninthesun-exposedareasaroundhisneckandthelowerpartsofhisarms.

4

Figure22.2.Amicrograph(x250)ofaskintumorfromthepatientinFigure22.1(Anderson,1889).Thecentralportion(labeledAinthemicrograph)wastypicalforasquamouscarcinomawherethecancerretainsabizarrememoryofthearrangementofthemultilayeredcellsoftheouterskin.Thecancercellsshowedtheusuallargeirregularnuclei,comparedwiththefibroblastsinthestroma(labeledB)withinwhichthetumorsaregrowing.Abloodvesselisseenontheleft.Acaseofxerodermapigmentosumina10-yearold,alsopublishedin1889intheBritishMedicalJournal,notedtheroleofsunexposurebytheunusualinvolvementofthischild’sfeetandlowerlegs(Hunter,1889):

Itmayberemarkedherethatthesechildrenwenttoschoolduringthesummermonthswithoutshoesorstockingsandthetrousersoftenrolledup.Thelatterisdonesoasnottointerferewithrunningorjumping,andinwetweathertokeepthem(thetrousers)clean.Thisisacommonhabitinthecountrydistricts,andthus,inthesecases, the feetand legswhichareaffectedwerealsoexposed (Hunter,1889).

Thesetworeports(Anderson,1889;Hunter,1889),bothpublishedintheBritishMedicalJournalin1889andavailableontheinternet,giveadetaileddescriptionoftheskinlesionsandthecourseofthediseasein4patients.Theseearlyreports,whilelittlewasasyetknownaboutthedisease,showwhatphysiciansof~130yearsagosawandexperienced.Next,wemoveaheadabout78years.Severaldifferentgeneswerebythenknownthatcausedifferentclinicalmanifestationofthedisease,althoughallofthementailedskinlesioncausedbysunlight.Thecellsfrompatientshavingmutationsinaparticulargenewerereferredtoasa“complementationgroup”becausethenormalversionofthe

5

respectivegenecouldcurethedefectinthecorrespondingmutantcells.Thedefectmeasuredwas“unscheduledDNAsynthesis”whichwillbeexplainedinamoment.Acomplementationgroup,incommonparlance,becamenearlythesameasreferringtoaparticularmutantgene(Table22.2).Itwas1967Ithink,inasmallconferenceintheNIHClinicalCenter;wehadaguestspeaker.ItwasJamesE.CleaverfromtheUniversityofCalifornia.HeclaimedtohavedetectedadefectinunscheduledDNAsynthesisincellsfrompatientswithxerodermapigmentosum.Someofuswereskeptical,becausewehadexpectedthatphenomenon,butnoonehadyetbeenabletodemonstrateit.Moreover,hisdataseemedtobebarelyabovethenoiselevel.Withinayearorso,however,hepublishedmoreconvincingdata(Cleaver,1968)andtheskepticsweresoononthebandwagonastheirinvestigationscorroboratedandextendedCleaver’sclaims(KraemerandDiGiovanna,2015).Sonow,whatis“unscheduledDNAsynthesis”andhowisitrelatedtoDNArepair?Well,ourconceptwasthatcellswhoseDNAwasdamagedbyultravioletlightwouldbeundergoingasmallamountofDNAsynthesisforrepairafterthedamagewascutout.Thiswouldbeoccurringevenincellsthatwereresting,i.e.,notcyclingincelldivisionandhencenotundergoingthenormalDNAsynthesisphase.Normally,thosecellswouldnotbesynthesizingDNA.ButtorepairDNAdamage,eventhosecellswouldbeundergoingasmallamountofunscheduledDNAsynthesis:itis“unscheduled”becauseitwouldbeoccurringevenifthecellsarenotinthecelldivisioncycle.WehadreasontobelievethatcellsfromxerodermapigmentosumcellsweredefectiveintheirabilitytorepairDNAdamagecausedbyultravioletlight–orbysunshine.Therefore,theymightnotexhibitunscheduledDNAsynthesis,asCleaverhasshowntobethecase.Toputitinanotherway:exposingnormalskintoultravioletlightinducesDNAdamage,whichispromptlyrepairedbyaprocessthatinvolvesasmallamountofDNAsynthesistoreplacethedamagedDNAregionsthatwerecutout.ThisDNAsynthesiswouldbeoccurringevenincellsthatwerenotindivisioncycleandhencewouldnotordinarilyundergoanyDNAsynthesis.SincethatDNArepairsynthesiswouldbeoccurringinquiescent(i.e.non-dividing,non-cycling)cells,itwastermed“unscheduled.”XerodermapigmentosumpatientswerepresumedtobedefectiveinsuchDNA“excision”repairandthereforewouldbeunabletocarryoutunscheduledDNAsynthesis.TheinabilityofskincellsfromxerodermapigmentosumpatientstoexhibitunscheduledDNAsynthesisinresponsetoultravioletlightwaslaterconfirmeddirectlyinpatients(Figure22.4)(Epsteinetal.,1970).Asmallregionofthepatient’sskinwasirradiatedwithultravioletlight;then,tritium-labeledthymidinewasinjectedundertheirradiatedportionofskin,whichwasthenbiopsiedandradiographedtoshowthecellsthathadincorporatedtheradioactivethymidineintoDNA(Figure22.4).Idonotknowwhetherthepatientshadgiveninformedconsentforthisprocedureofinjectingradioactivematerialintotheskin–itmightnotyethavebeenroutinelyrequiredtobedocumented.

6

Figure22.3.JamesEdwardCleaver(1938-),discovererofthemolecularprocessthatisdefectiveinthegeneticdisease,xerodermapigmentosum.ThiswastheseminaldiscoveryofahumanDNArepairdeficientdisease.

7

Figure22.4.SkinfromaxerodermapigmentosumpatientisunabletorepairDNAdamagecausedbyultravioletlight.TherepairrequiresasmallamountofDNAsynthesistoreplacethedamagedDNAregions.ThesestudiesdemonstrateddefectiveDNArepairsynthesis(“unscheduledDNAsynthesis”)inskinofxerodermapigmentosumpatients.Left,normalskin:noradioactivitygrains.Middle,irradiatednormalskin:manycellsshowradioactivitygrains,indicativeofunscheduledDNAsynthesis.Right,irradiatedxerodermaskin:nounscheduledDNAsynthesis(aheavilylabelledcellisundergoingreplicativeDNAsynthesis)(Epsteinetal.,1970).AnunusualvariantofXPisdiscovered.Asoftenhappensinscience,anewdiscovery,whenfurtherinvestigated,becomeschallengedbyfindingsthatdon’tfittheoriginalconcept.AndsoitwasthatthefourthNIHXPpatienthadthehighlightsensitivityoftheskin,butshowednodefectinunscheduledDNAsynthesis.Aboutthesametime,JimCleaverattheUniversityofCaliforniainSanFranciscoreported3moreXPpatientswhosecellshadnormalunscheduledDNAsynthesisafterbeingexposedtoultravioletlight(Cleaver,1972).ThosepatientsdefinedavariantofXPthathadnormalnucleotideexcisionrepair(NER);thisvariantofXPbecameknownasXPV.ThedefectinXPVturnedouttobeamutationinaspecialDNApolymerase,knownasPol-etaorPolH,whichisneededtocompletethesmallamountofDNAsynthesisacrossthedefectleftbehindafterNERremovedtheoffendingthyminedimer(or,moregenerally,pyrimidinedimer)(DiGiovannaandKraemer,2012).Cleaverlaterremarkedthat,ifhisfirstpatienthadbeenoftheXPVtype,hemighthaveerroneouslyconcludedthatXPhadnormalDNArepair(KraemerandDiGiovanna,2015).Subtypesofxerodermapigmentosum:complementationgroupsEvenamongXPpatientswhosecellsweredefectiveinunscheduledDNAsynthesis,therewasconsiderablevariabilityinhowseverethediseasewas,howsensitivethecellswereto

8

bekilledbyultravioletlight,andtheclinicalpictureingeneral.Particularlypuzzlingwasthatthediseaseofsomepatientshadneurologicalsymptoms,sometimesquitesevere.Anextremecaseofthelatterwasasyndromethatdeserveditsownname:DeSanctis–Cacchionesyndrome.Itisoneoftherarest,mostsevereformsofxerodermapigmentosum(XP).Inadditionbeinghighlysensitivetodaylight,theseXPpatientsareofshortstatureanddevelopprogressiveneurologicdegeneration.ThesyndromewasfirstrecognizedbydeSanctisandCacchionein1932,whodescribedthreebrotherswithXPwhohadmicrocephaly,mentaldeficiency,dwarfism,gonadalhypoplasia,progressiveneurologicdeterioration,deafness,andataxiabeginningattheageof2years.Thisnewsyndrome,thattheseunfortunatechildrenhad,wasdescribedin1932inanobscureItalianjournal:deSanctisC.,CacchioneA.L’idioziaxerodermica.RivSperFreniatrMedLegAlienMent.1932;56:269–292.WhatcausedthesedifferenttypesofXPcouldonlybeinvestigatedafternewmethodsandconceptsweredeveloped,whichtookseveraldecades.Thestorybegantounfoldin1971whenåDirkBootsma(Figure22.5),aProfessorofGeneticsatErasmusUniversityinRotterdam,thoughtthatthelargedifferencesintheclinicalpictureofXPpatientsmightbeduetodifferentgenes,eachofwhich,whenmutated,wouldcauseaparticularclinicalformofthedisease.Hereasonedthat,iftwoofthosedefectivegenes,eachonadifferentchromosome,wereputintothesamecell,theymightcomplementeachotherandrestorenormalunscheduledDNAsynthesis.HewantedtotestthatideausingcellsfromtwoverydifferentformsofXP:theclassicvarietyandtheDeSanctis–Cacchionetype.Buthowcouldoneputthepresumeddifferentdefectivegenesintothesamecell?Bootsmaandhiscolleaguesdevelopedamethodthatusedtheabilityofcertainviruses(inactivatedSendaivirus)tofusecellstogethertoproducecellsthatsometimeshadtwonuclei.However,althoughsomeofthebinucleatecellshadanucleusfromeachoftheXPtypes,oftentimestheyhadnucleifromthesametype.Inordertodistinguishwhosedifferentcases,theyusedaclevertrick:theycombinedcellsfromamalepatientwhohadoneXPtypewithcellsfromafemalepatientwhohadtheotherXPtypeofthedisease.TheythenexposedthecellstoUVtoproduceDNAdamage.Bycarefullyexaminingthechromatinineachnucleusofabinucleatecell,theycouldtheycouldtellwhetheritcamefromamaleorfemalecell.Theyindeedfoundthatthoseandonlythosebinucleatecellsthathadbothamaleandafemalenucleus–onenucleusfromeachXPtype--complementedeachothertorestoreunscheduledDNAsynthesis(Figure22.6)(DeWeerd-Kasteleinetal.,1972).Otherinvestigators,particularlyKenKraemeratNIH(Figure22.7),thenjumpedinand,usingamodifiedmethod,foundthattherewereinfactseveraldifferentcomplementationgroupsamongtheXPpatients,theircells,andtheirmutatedgenes(Table22.2).Thegenethatwasmutatedineachcomplementationgroupwasclonedanditsfunctionsdetermined.Quiteremarkably,theproteinsproducedbyalloftheseXPgenewerefoundtoworktogethertorepairDNAdamagebyaveryimportantmechanism:DNAnucleotideexcisionrepair(NER).Howthismechanismworksisthesubjectofthenextchapter.

9

Figure22.5.DirkBootsma(1936-),aProfessorofGeneticsatErasmusUniversityRotterdam,Netherlands,developedacell-fusionmethodbywhichhediscoveredxerodermapigmentosumcomplementationgroups.(FromNedTijdschrGeneeskd200212oktober;146(41).)

Figure22.6.HowBootsmaandhiscolleaguesshowedthatageneresponsibleforwhatwasthencalledtheclassictypeofXPandageneresponsiblefortheDeSanctis–CacchionetypeofXPcomplementedeachothertorestoretheunscheduledDNAsynthesisprocessofDNArepair(DeWeerd-Kasteleinetal.,1972).TheyfusedcellsfromamalechildwhohadonetypeofXPwithcellsfromafemalechildwhohadtheothertypeofXP.Eachpanelshowsacellwithtwonuclei.ThecellshadbeenexposedtoUVtoproduceDNAdamageandthenincubatedwithradioactivethymidine.ThecellontherightshowsradioactivespotsscatteredinbothnucleiwhereunscheduledDNAsynthesiswasoccurring.ThecellontheleftshowsnounscheduledDNAsynthesis.Thenucleiinthecellontheleftbothcamefrommaledonors.Thesamewastrueifbothnucleicamefromfemales.Onlycellsthathadonemaleandonfemalenucleus–therefore,amixtureoftheXPtypes–showedunscheduledDNAsynthesis:thecellhadagoodcopyofbothgenes,onefromeachnucleus.

10

Figure22.7.KennethKraemer(left)andVilhelmBohr(right)in2005,commemoratingfourdecadesofresearchonDNArepairatNIH.KraemerreceivedanMDdegreeatTuftsMedicalSchoolandbecameboardcertifiedinDermatologyandInternalMedicine.HecametoNIHin1971asaclinicalassociateintheDermatologyBranchandhasbeenleadingground-breakingresearchonxerodermapigmentosumandrelateddiseases.In1980,heestablishedandhassinceledanNIHSpecialInterestGrouponDNARepairinwhichhepioneeredinternetconferencingtobringtogetherresearchersfromseveralinstitutionsindifferentcities.Bohr,adescendentofNielsBohr,receivedanMDdegreein1978,followedbyPhDandD.Sc.degreesin1987fromtheUniversityofCopenhageninDenmark.TogetherwithPhilipHanawaltatStanfordUniversity,hepioneeredinvestigationsoftranscription-coupledDNArepair,whichhecontinuedinmyLaboratory.In1992,hebecameChiefoftheLaboratoryofMolecularGeneticsintheNationalInstituteofAgingwherehehadbeenleadingstudiesofDNArepairandcancer.Table22.2.Xerodermapigmentosumgenes(complementationgroups)Gene Synonyms ChromosomeXPA XP1 9q22.33XPB ERCC3(excisionrepair3,helicasesubunit) 2q14.3XPC RAD4 3p15.1XPD ERCC2(excisionrepair2,helicasesubunit) 19q13.32XPE DDB2(damage-specificDNAbinding2) 11p11.2XPF FANCQ,RAD1,ERCC4(excisionrepair4,endonuclease) 16p13.12XPG ERCC5(excisionrepair5,endonuclease) 13q33.1XPV XPvariant,DNApolymeraseeta 6q21.1(Informationfromthehumangenenomenclaturecommittee(HGNC)website.)

11

TheCockaynesyndromestoryButtheXPstoryhadyetanothertwistinadifferent,butcloselyrelated,geneticdisease.In1936,EdwardAlfredCockayne,apediatricianattheGreatOrmondStreetHospitalforSickChildren(whichstillstands(Figure22.8))inBloomsbury,London,describedtwochildrenwithapreviouslyunkownsyndromethatwastobearhisname(Figure22.9)(Cockayne,1936).Hecharacterizedthesyndromeas“dwarfismwithretinalatrophyanddeafness.”AlthoughCockayne’ssyndromebecamecloselylinkedwithxerodermapigmentosum,thesechildrendidnothavesunsensitivityandtheirskinwasclear(Figure22.9).That85-yearoldpaperwasnoteasytofindandmaybecomeincreasinglydifficulttofindastimegoesby;therefore,IamreproducinghereCockayne’soriginaldescriptionofthesyndrome,aswellasimagesheincludedinhispaper(Figures22.10-22.12):Thetwochildrenwiththisdystrophy,agirlagedsevenyearsandelevenmonthsandaboyagedsixyearsandthreemonthswereadmittedtotheHospitalforSickChildren,GreatOrmondStreetinJune,1935.Theparents,whoarenativesofnorthHampshire,areofEnglishrace,normalandnotblood-relations,andtheyhavebeenunabletotracetheoccurrenceoftheconditionintheirascendantsorcollaterals.....The dwarfs are so much alike in facial appearance, build and disposition, that the same generaldescriptionwillsuffice.Bothhavesmallheads,thatofthegirlbeingthesmaller,but,althoughthevaultoftheskullisflattenedandthecircumferencesmall,thegeneralshapeisnormal,andneitherchildhasthe receding forehead characteristic of microcephaly. Their faces are small with sunken eyes andprominentsuperiormaxillae.Theyareslightlybuiltwithshort,slendertrunksandundulylonglegs,andtheirfeetandhandsaretoolargeinproportion.Thethirdandfourthfingersoftheirhandsaredeviatedalittletowardsthemesialline.Bothareactiveandtheirmovementsarequickandbird-like.Theyarefriendly and playful, invariably good tempered, and laugh with obvious enjoyment at the slightestprovocation.Althoughtheyareimitative,theyhaveacertainamountofinitiativeandinplayingwithtoysarenomoredestructivethanmostchildrenoftheirageandclass.Theyfrequentlymakenoiseswhichatfirstsoundlikespeech,butactualwordscanseldomberecognized,althoughthegirlhasbeenheardtosay'mother'and'doitagain'andtheboyhassaid'doctor'severaltimes.Theydonotanswertotheirnamesorobeyspokenwords,nordotheytakeanynoticeofasoundmadebehindtheirheads,buttheyarequicktoobeysigns.Mr.JamesCrooks,F.R.C.S.,whosawthem,saysthatalthoughnottotallydeaf,theirhearingisgreatlyimpaired.Itisdifficulttotellhowmuchoftheirbackwardnessisduetodeafnessandhowmuchtomentaldeficiency.Theirbehaviourisnottheusualbehaviourofdeafchildren.Theyappeartobealittlebelowtheaverageinintelligenceandarefarmoreexcitableandlaughmuchmorereadilythanchildrenofnormalmentalitywhetherdeafornot.ChildrenwithCockayne’ssyndromerarelysurvivedtoadulthood.

12

Figure22.8.TheGreatOrmondStreetHospitalforSickChildreninBloomsbury,London,whereEdwardAlfredCockaynesawtwochildrenin1935whohadanewsyndrome,whichcametobearhisname(Cockayne,1936).(CreativeCommons,Wikipedia)

Figure22.9.A7-yearoldgirlwiththesyndromedescribedbyCockaynein1936(right)standingnexttoanormalgirlofthesameage(left)(Cockayne,1936).Theaffectedgirl,althoughmuchshorterthannormal,hadrelativelylonglegsandlargehands.Herhead,however,wasrelativelysmall.Herskinwasclearandhadnosignofthesun-induceddamagethatischaracteristicinxerodermapigmentosum.

13

Figure22.10.Cockaynesaidtheaffectedchildhadanabnormallysmallheadwithsunkeneyesandprominentfrontupperjaw(Cockayne,1936).

Figure22.11.Cockaynedescribedherskullasbeingsmallofsmallcircumferencewiththickenedbonesandprominentupperjaw(Cockayne,1936).

14

Figure22.12.TheretinalatrophyCockaynenotedintheaffectedchildren(Cockayne,1936).Henotedmarkedlynarrowedretinalarteriesandatrophicchanges,particularlyinthecentralregionoftheretina.

Figure22.13.FibroblastcellsfromtheskinofCockayne’ssyndrome(CS)childrenwereunusuallysensitivetobeingkilledbyultravioletlight(UV)(left)buthadnormalsensitivitytox-rays(right)(Schmickeletal.,1977).Xerodermapigmentosumcellshadgiventhesamepattern:highsensitivitytoUVbutnottox-rays.ItwasfourdecadesafterCockayne’sdescriptionbeforethefirstcluetothecauseofthesyndromearrived.ItcamefromthelaboratoryofSchmickelandcoworkersattheUniversityofMichigan.Theyshowedthatfibroblastcellsderivedfromtheskinofaffectedchildrenwereunusuallysensitivetoultravioletlight(UV),whereastheirsensitivitytox-rayswasnormal(Schmickeletal.,1977)(Figure22.13).ThiscuriousdifferenceofbeinghighlysensitivetoDNAdamagecausedbyUVbutnottoDNAdamagecausedbyx-raywasexactlythesameasinxerodermapigmentosum(XP).However,despitethecellsofmostCockayne’ssyndrome(CS)childrenbeinghighlysensitivetoUV,thechildrenwerenot

Normal cells

CS cells

Normal and CS cells

15

highlysensitivetosunlightandtheircellsremovedthyminedimersfromtheirDNAatanearnormalrate,contrarytotheinabilityofxerodermapigmentosumcellstoremovethosedimers(Schmickeletal.,1977).IttookalmostanotherdecadetoresolvethepuzzleofwhyCScellsresembledXPcellsinbeingunusuallysensitivetoUV,eventhoughthey(theCScells)removedthyminedimersfromtheirDNAnormally,asopposedtotheinabilityofXPcellstodoso.TheconfusingfindingsabouttherelationshipbetweenCockayne’ssyndromeandxerodermapigmentosumwereatlastclarifiedbyVilhelmBohr(Figure22.7),workingatStanfordwithPhilipHanawaltandlateratNCIinmyLaboratory,pinneddownaspecialnucleotideexcisionrepair(NER)mechanismdesignedspecificallyandexclusivelytorepairDNAdamageinregionsofthegenomethatwerebeingactivelybeingtranscribedatthetimethatthedamagewaspresent.Itwasadistincttypeofrepairandwasnamed“transcription-couplednucleotideexcisionrepair”(TCNER)(Bohretal.,1985).ResearchersinTheNetherlandsandtheUKthenshowedthatthegeneticdefectinCockayne’ssyndromewasinfactduetoadefectinTCNER(Venemaetal.,1990)(Chapter23).ButwhydidadefectinTCNERmakecellssensitivetobeingkilledbyUV(Figure22.13)?Thereasonwasthattranscription(RNAsynthesis),asitprogressedalongtheDNA,occasionallycollidedwithUV-inducedthyminedimer(orotherpyrimidinedimer).ThecollisionproducedapeculiarDNAdamageconfigurationthatwasapttoleadtodeathofthecell.ThisdisasterwasavoidedbyaspecialNERmachinery(TCNER)thatwasattachedtotranscriptionmachinery.WhentranscriptionencounteredaUV-induceddimer,itwaspromptlyexcisedbyTCNER,allowingthetranscriptionmachinerytocontinuemerelyonitsway.TheTCNERmachineryinCockaynesyndrome(CS)cellshoweverwasdefective,whichputthecellsatriskwhenevertranscriptioncollidedwithaUV-induceddimer.Thus,whilemostofthedimersscatteredinthegenomewereefficientlyremovedbyNER,thesmallfractionofdimersinvolvedintranscription-collisionneededthespecialTCNERtoberemoved.Consequently,CScellswerekilledbyUVeventhoughthelargemajorityofdimerswereremovedfromtheirDNA.However,itremainedpuzzlingwhydifferentcasesofCockayne’ssyndromesometimeshaddifferentpatternsandseveritiesofthesymptoms,andtherewerecasesthathadbothCockaynesyndromeandxerodermapigmentosumsymptoms(NanceandBerry,1992).Assooftenhappensinresearch,therealworld,asopposedtosimplerworldsoftheory,hidescomplicationsthatchallengeresearchers,asinatreasurehunt.Findingsinthathuntarethesubjectofthenextchapter.ReferencesAnderson, T.M. (1889). Note of a Rare Form of Skin Disease: Xeroderma Pigmentosum. British

medical journal 1, 1284-1285.

16

Bohr, V.A., Smith, C.A., Okumoto, D.S., and Hanawalt, P.C. (1985). DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40, 359-369.

Cleaver, J.E. (1968). Defective repair replication of DNA in xeroderma pigmentosum. Nature 218, 652-656.

Cleaver, J.E. (1972). Xeroderma pigmentosum: variants with normal DNA repair and normal sensitivity to ultraviolet light. J Invest Dermatol 58, 124-128.

Cockayne, E.A. (1936). Dwarfism with retinal atrophy and deafness. Arch Dis Child 11, 1-8. De Weerd-Kastelein, E.A., Keijzer, W., and Bootsma, D. (1972). Genetic heterogeneity of

xeroderma pigmentosum demonstrated by somatic cell hybridization. Nature: New biology 238, 80-83.

DiGiovanna, J.J., and Kraemer, K.H. (2012). Shining a light on xeroderma pigmentosum. J Invest Dermatol 132, 785-796.

Epstein, J.H., Fukuyama, K., Reed, W.B., and Epstein, W.L. (1970). Defect in DNA synthesis in skin of patients with xeroderma pigmentosum demonstrated in vivo. Science 168, 1477-1478.

Hunter, W.B. (1889). Notes of Three Cases of Xeroderma Pigmentosum, or Dermatosis Kaposi. British medical journal 2, 69-71.

Kraemer, K.H., and DiGiovanna, J.J. (2015). Forty years of research on xeroderma pigmentosum at the US National Institutes of Health. Photochem Photobiol 91, 452-459.

Nance, M.A., and Berry, S.A. (1992). Cockayne syndrome: review of 140 cases. Am J Med Genet 42, 68-84.

Schmickel, R.D., Chu, E.H., Trosko, J.E., and Chang, C.C. (1977). Cockayne syndrome: a cellular sensitivity to ultraviolet light. Pediatrics 60, 135-139.

Setlow, R.B. (1978). Repair deficient human disorders and cancer. Nature 271, 713-717. Venema, J., Mullenders, L.H., Natarajan, A.T., van Zeeland, A.A., and Mayne, L.V. (1990). The

genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proceedings of the National Academy of Sciences of the United States of America 87, 4707-4711.

AHMED