Biogeographical synthesis of Andalusia (southern Spain

14
Journal of Biogeography (1997) 24, 915–928 Biogeographical synthesis of Andalusia (southern Spain) S R -M ı ´ * ,A A ², B ´ -G ², J ı ´ M and F V *Departamento de Biologı ´a Vegetal, Facultad de Farmacia, Universidad Complutense, E-28040 Madrid, ²Departamento de Biologı ´a Vegetal, Facultad de Ciencias, Universidad de Ma ´laga, Apdo. 59, E-29080 Ma ´laga, Spain and Departamento de Biologı ´a Vegetal, Universidad de Granada, E-18001 Granada, Spain Abstract. Andalusia is a large territory of almost and analysis of the endemic taxa, series and plant 90,000 km 2 in the south of Spain. The marked heterogeneity communities found in the territory. of its orographic, lithological and climatic features aords its plants and vegetation a high degree of biodiversity. A Key words. Biogeography, plant communities, endemic biogeographical classification for Andalusia is proposed, based on studies of the physical environment, bioclimatic taxa, bioclimatic data, south Spain. Resumen. La regio ´n ma ´s meridional de Espan ˜a el estudio del medio ´sico se propone una tipologı ´a (Andalucı ´a) es un territorio hetero ´ geneo y fuertemente biogeogra ´fica para esta regio ´n. contrastado donde se combinan diversos factores (geolo ´ gicos, clima ´ticos, eda ´ficos, etc.) que determinan una Palabras clave. Biogeografı ´a, comunidades vegetales, acusada variabilidad en su flora y vegetacio ´ n. Este trabajo bioclimatologı ´a, taxa ende ´micos, fitosociologı ´a, Sur de analiza la flora ende ´mica del territorio y sus comunidades vegetales. Con estos datos y la informacio ´ n aportada por Espan ˜a. Meusel, Jaeger & Weinert, 1965). The synthesis of Braun- INTRODUCTION Blanquet not only defines territories, but also includes four hierarchical biogeographical levels (district, sector, province Traditionally the plant biotic component has been used and region). These definitions remain in use today, with for the definition and recognition of biogeographical some modifications (Ge ´hu & Rivas-Martı ´nez, 1980; Rivas- units. For some systematic botanists, plant chorology (or Martı ´nez, 1982). phytogeography) stresses the phylogeny and distribution of The elemental unit of biogeographical typology is the high-level taxa—genera and families—at the expense of tesella. It can be defined as a territory of variable area, the areas of distribution and geovicariance of species and which is either continuous or discontinuous according subspecies (Axelrod & Raven, 1972; Takhtajan, 1986), taxa to the surrounding geomorphology, and is ecologically which indicate current climatic conditions, are in equilibrium homogeneous (i.e. the characteristics of its climate and soil with these conditions and compete with each other. This lead to a single potential vegetation type and a single procedure has created a discipline that Takhtajan (1986) sequence of vegetation types or replacing communities). refers to as ‘chorionomy’ (phytochorionomy): placing more The ‘district’ is characterized not only by certain taxa and emphasis on the climatic and floristic conditions of the past associations which are absent in neighbouring districts, but than on the current conditions in order to determine the also by the traditional use of the territory by man according distribution of species and plant communities (Rivas- to the fertility of the soil and climatic and edaphic Martı ´nez et al., 1993). homogeneity. The ‘sector’ is a large area with distinct However, it is evident that the study of vegetation from geographical identity, characterized by exclusive taxa and a floristic point of view (i.e. the ‘Sigma’ school of syntaxa and particular altitudinal and edaphic catenas. phytosociology) is a fundamental tool for the delimitation Particular series and permanent communities or subseries of territories (Takhtajan, 1986; Rivas-Martı ´nez, 1987), since are found. The chorological ‘province’ is of wide extension. it enables us to adjust for certain situations of discontinuity It has an original flora and endemic subelement, while which occur in the biogeographical units. containing its own geoseries and macroseries. An original In Europe, the most widely accepted biogeographical zonation of vegetation is a further characteristic of syntheses are those based on the distribution of taxa the province. The ‘region’ is a vast territory, sometimes and communities, together with certain physiognomical and ecological factors (Braun-Blanquet, 1951; Bolo ´ s, 1963; transinsular or transcontinental, with endemic flora and 1997 Blackwell Science Ltd 915

Transcript of Biogeographical synthesis of Andalusia (southern Spain

Journal of Biogeography (1997) 24, 915–928

Biogeographical synthesis of Andalusia (southern Spain)

S R-M ı∗ , A A†, B Dı-G†, J ı M‡and F V‡ ∗Departamento de Biologıa Vegetal, Facultad de Farmacia, Universidad Complutense,E-28040 Madrid, †Departamento de Biologıa Vegetal, Facultad de Ciencias, Universidad de Malaga, Apdo. 59,E-29080 Malaga, Spain and ‡Departamento de Biologıa Vegetal, Universidad de Granada, E-18001 Granada, Spain

Abstract. Andalusia is a large territory of almost and analysis of the endemic taxa, series and plant90,000 km2 in the south of Spain. The marked heterogeneity communities found in the territory.of its orographic, lithological and climatic features affordsits plants and vegetation a high degree of biodiversity. A

Key words. Biogeography, plant communities, endemicbiogeographical classification for Andalusia is proposed,based on studies of the physical environment, bioclimatic taxa, bioclimatic data, south Spain.

Resumen. La region mas meridional de Espana el estudio del medio fısico se propone una tipologıa(Andalucıa) es un territorio heterogeneo y fuertemente biogeografica para esta region.contrastado donde se combinan diversos factores(geologicos, climaticos, edaficos, etc.) que determinan una

Palabras clave. Biogeografıa, comunidades vegetales,acusada variabilidad en su flora y vegetacion. Este trabajobioclimatologıa, taxa endemicos, fitosociologıa, Sur deanaliza la flora endemica del territorio y sus comunidades

vegetales. Con estos datos y la informacion aportada por Espana.

Meusel, Jaeger & Weinert, 1965). The synthesis of Braun-INTRODUCTION

Blanquet not only defines territories, but also includes fourhierarchical biogeographical levels (district, sector, provinceTraditionally the plant biotic component has been usedand region). These definitions remain in use today, withfor the definition and recognition of biogeographicalsome modifications (Gehu & Rivas-Martınez, 1980; Rivas-units. For some systematic botanists, plant chorology (orMartınez, 1982).phytogeography) stresses the phylogeny and distribution of

The elemental unit of biogeographical typology is thehigh-level taxa—genera and families—at the expense oftesella. It can be defined as a territory of variable area,the areas of distribution and geovicariance of species andwhich is either continuous or discontinuous accordingsubspecies (Axelrod & Raven, 1972; Takhtajan, 1986), taxato the surrounding geomorphology, and is ecologicallywhich indicate current climatic conditions, are in equilibriumhomogeneous (i.e. the characteristics of its climate and soilwith these conditions and compete with each other. Thislead to a single potential vegetation type and a singleprocedure has created a discipline that Takhtajan (1986)sequence of vegetation types or replacing communities).refers to as ‘chorionomy’ (phytochorionomy): placing moreThe ‘district’ is characterized not only by certain taxa andemphasis on the climatic and floristic conditions of the pastassociations which are absent in neighbouring districts, butthan on the current conditions in order to determine thealso by the traditional use of the territory by man accordingdistribution of species and plant communities (Rivas-to the fertility of the soil and climatic and edaphicMartınez et al., 1993).homogeneity. The ‘sector’ is a large area with distinctHowever, it is evident that the study of vegetation fromgeographical identity, characterized by exclusive taxa anda floristic point of view (i.e. the ‘Sigma’ school ofsyntaxa and particular altitudinal and edaphic catenas.phytosociology) is a fundamental tool for the delimitationParticular series and permanent communities or subseriesof territories (Takhtajan, 1986; Rivas-Martınez, 1987), sinceare found. The chorological ‘province’ is of wide extension.it enables us to adjust for certain situations of discontinuityIt has an original flora and endemic subelement, whilewhich occur in the biogeographical units.containing its own geoseries and macroseries. An originalIn Europe, the most widely accepted biogeographicalzonation of vegetation is a further characteristic ofsyntheses are those based on the distribution of taxathe province. The ‘region’ is a vast territory, sometimesand communities, together with certain physiognomical

and ecological factors (Braun-Blanquet, 1951; Bolos, 1963; transinsular or transcontinental, with endemic flora and

1997 Blackwell Science Ltd 915

916 Salvador Rivas-Martınez et al.

vegetation, original vegetation belts and also particular mainly composed of metamorphic rocks (mica-schists,quartzite, amphibolite, etc.); the Alpujarride, also formedmacrobioclimates or bioclimates. The ‘kingdom’ is theof such materials as Paleozoic mica-schists and quartzite,highest rank in biogeography, grouping a set of regionsbut with overlying limestone and Triassic dolomite; and,with similar history, flora, vegetation and climate.finally, the Malaguide, which is more complex, composedAccording to a recent biogeographical review by Rivas-of not only phyllite, Palaeozoic mica-schists and TriassicMartınez (1990), the Iberian Peninsula, which falls withinrocks, but also of a series of post-Triassic materials,the Holarctic kingdom, is divided into two regions: theespecially in the Malaga area (Bourgeois, 1978).Euro–Siberian and the Mediterranean. This division is

The mountains run parallel to the coast, with two chains,mainly based on phytocoenological (particular vegetationone littoral and the other pre-littoral. Longitudinal corridorsseries) and bioclimatic (Mediterranean index) criteria,connect the two, widening out as we move eastwards, andas well as characteristic flora and vegetation. In thethere are extensive Miocene sedimentation areas. In suchEuro–Siberian region the peninsular territories arean orographically complex territory considerable altitudesdistributed into two superprovinces, the Alpine–Pyrenneanare reached, such as Mulhacen (3478 m—the highest peakand the Atlantic, while in the Mediterranean region twoin the Iberian Peninsula); Veleta (3392 m); Alcazabaother superprovinces are represented: the Ibero–Levantine(3366 m); La Sagra (2381 m); Gador (2236 m); Bazaand the Ibero–Atlantic, with eastern Andalusia (SE Spain)(2269 m); Filabres (2168 m); Magina (2167 m); Tejedaforming part of the former, and western Andalusia (SW(2065 m); Harana (1931 m); Ronda (1919 m); CazorlaSpain) the latter.(1830 m); Almijara (1824 m); Segura (1809 m); EstanciasSince the publication of the first chorological syntheses(1718 m); Loja (1671 m); Grazalema (1654 m); and Panderaproposed for the Iberian Peninsula, Balearic and Canary(1601 m).Islands (Rivas-Martınez, 1973; Rivas-Martınez et al., 1977),

The Campo de Gibraltar mountains are another of theseveral authors have defined and delimited the boundariesmost characteristic formations of the Andalusian landscape.of various peninsular and insular territories (e.g. Rivas-They belong to the so-called ‘Aljıbico unit’ and areMartınez et al., 1990; Alcaraz, Sanchez Gomez & De lacomposed of Miocene sandstone which overlies EoceneTorre, 1991; Rivas-Martınez et al., 1991; Rivas-Martınez etclays.al., 1993). The objective of this study is to propose a

The post-orogenic sedimentary basins are interiorhierarchical classification for Andalusia down to districtdepressions of the Baetic Cordilleras: physiographical unitslevel. In order to delineate the biogeographical units of thewith well-defined characteristics differentiating them fromterritory we have used geographical, bioclimatic, geologicalthe surrounding mountains. They are depressed areasand geomorphological criteria, as well as the distribution(Penibaetic Depression or Intra-Baetic Trench), alignedof mainly endemic taxa and communities.along the Sub-Baetic–Baetic boundary. The largest basinsforming this depression are those of Ronda, Antequera,Granada, Hoya de Malaga, Guadix–Baza and Campo deNıjar.STUDY AREA

Finally, on the coast of Almerıa there is a massif—theThe surface area of Andalusia is 87,268 km2, i.e. Cabo de Gata range—of volcanic origin. It is a Neogeneapproximately one-fifth of the Spanish part of the Iberian complex with various stages of magma emission, from thePeninsula. The territory is characterized by three Lower Miocene to the Messinian, where later erosion hasmorphostructural units: Sierra Morena, the northern constructed one of the most striking landscapes inboundary; the Baetic Cordillera, to the south; and, between Andalusia.these two mountain ranges, the Guadalquivir Depression, an Such orographical diversity plays a key role in favouringextensive tectonic fosse filled with Tertiary and Quaternary the biodiversity of the flora and vegetation, altering the localsediments (Fig. 1). climates and their influence on other physical environmental

Sierra Morena is the southern boundary of the Spanish parameters. The land relief creates an altitudinal bioclimatichigh plain (‘meseta’). It consists of a mountain range sequence which is particularly important in Andalusia, sincestretching from NE to SW, and is composed of metamorphic the altitude of the Baetic Cordilleras—especially in therocks (sandstone, schists, shale, batholith, etc.). The Baetic Sierra Nevada—has enabled nearly all the bioclimatic levelsCordillera is an extensive geological unit stretching from to develop, as described below. It is also responsible for theCadiz in the SW to Alicante in the NE. The geological dramatic contrast between the areas of high rainfall inidentity can be used to recognize a series of zones or western Andalusia (Grazalema, 1952 mm) and certain‘domains’ (L’Henaff, 1981). From the Guadalquivir territories in the southeast, situated leeward of the humidDepression to the south the Pre-Baetic, Sub-Baetic and winds, which are markedly arid (Almerıa, 209 mm). It alsoBaetic zones can be distinguished, as can the flyschs of the caused the biogeographical insularity which has producedCampo de Gibraltar, the interior basins and post-orogenic the presence of relic and palaeoendemic species, as describedvolcanic massifs. The Pre-Baetic and Sub-Baetic zones are below.also known as ‘external units’, while the Baetic zone is the For the bioclimatic classification of the territory we havenucleus of the ‘internal units’, where a complicated folding followed the latest tendencies of the European school, whichof strata and exotic units occurs. These can, in turn, be aim to establish the criteria for bioclimatic classification

by the phytogeographic zonation of vegetation (Emberger,grouped into three large complexes: the Nevado–Filabride,

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 917

FIG. 1. Geological schema of Andalusia (after L’Henaff, 1981). 1. Nevado-Filabride unit, 2. Alpujarride unit, 3. Malaguide unit, 4. BaeticDorsal, 5. Campo de Gibraltar flyschs, 6. Sub-Baetic zone, 7. Pre-Baetic zone, 8. Sierra Morena, 9. Guadalquivir Depression. A: Almerıa,C: Cordoba, CA: Cadiz, H: Huelva, G: Granada, J: Jaen, M: Malaga, S: Sevilla.

TABLE 1. Thermotypes of the Mediterranean macrobioclimate TABLE 2. Ombrotypes of the Mediterraneanmacrobioclimate

Thermotypes Itc Tp(1)Ombrotype Io

Infra-Mediterranean 650–451Thermo-Mediterranean 450–351 Ultraperarid <0.1

Hyperarid 0.1– 0.5Meso-Mediterranean 350–211 >1500Supra-Mediterranean 210– 81 900–1500 Arid 0.5– 0.9

Semiarid 0.9– 2.0Oro-Mediterranean 80–−39 500– 900Cryoro-Mediterranean <−40 <500 Dry 2.0– 3.0

Subhumid 3.0– 6.0Humid 5.5–12.0(1) If It or Itc <120 the thermotype is calculated using Tp values.Perhumid 1.0–24.0Ultraperhumid >24.0

1930; Ozenda, 1971; Quezel, 1979; Rivas-Martınez, 1981,1987, 1990, 1995). The relationship between climaticparameters (temperature and rainfall) and vegetationenables bioclimatic belts to be defined. By ‘belts’ we mean Mediterranean bioclimatic thermotypes and the Itc

(compensated thermicity index) limit and Tp (positivethose thermoclimatic types or spaces which are producedby an altitudinal or latitudinal zonation (Rivas-Martınez, temperature) limit values. Itc=(T+m+M)10±C, where T

is the mean annual temperature, m is the mean temperature1987). This phenomenon is universally valid, and in everyregion or group of similar regions there are special of the coldest month minima, M is the mean temperature

of the coldest month maxima, and C is the compensatedbioclimatic belts with their own particular thermic values.In a recent bioclimatic classification of the Earth, Rivas- value, designed to compensate in the extratropical territories

of the Earth for the extra winter cold of extremelyMartınez (1995) establishes five macrobioclimates: Tropical,Mediterranean, Temperate, Boreal and Polar. Each one can continental territories or the extra winter warmth of

extremely oceanic ones. Tp is the sum in tenths of a degreebe subdivided into various bioclimates and bioclimatic belts,defined according to their thermotypes and ombrotypes. of the mean temperatures of the months with a mean greater

than 0°C. With the exception of the infra-MediterraneanAccording to this classification, the macrobioclimate ofAndalusia is Mediterranean, i.e. the extratropical bioclimate type, the others are all represented in the studied area.

Regarding the ombrotypes, they are defined according towith aridity (P<2T) at least 2 months after the summersolstice. the Io (ombrothermic index). Io=Pp/Tp where Pp is the

yearly precipitation in mm of the months with averageSeven subtypes are recognized within this classifica-tion—oceanic–pluviseasonal, continental–pluviseasonal, temperature higher than 0°C and Tp is defined previously

above. The Mediterranean types (Table 2) present inoceanic–xeric, oceanic–desertic, continental–xeric,continental–desertic and hyperdesertic. The first four Andalusia are the following types: arid, semiarid, dry,

subhumid and humid.subtypes occur in Andalusia. Table 1 summarizes the

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

918 Salvador Rivas-Martınez et al.

FIG. 2. Ombrothermoclimatic diagrams (after Walter & Lieth, 1967, modified by Rivas-Martınez et al. 1993) of six representative stationsof Andalusia.

Climatic diagrams METHODS

The ombrothermoclimatic diagrams initially suggested byFloristic analysis

Gaussen—which were later popularized by Walter & Lieth(1967) and slightly modified by Rivas-Martınez (1987) and While the flora of all Mediterranean countries is very rich,

that of the Iberian Peninsula is truly outstanding. In SpainRivas-Martınez et al. (1993)—are most useful as graphicexpressions of the climate of any territory. The alone (including the Balearic Islands) the number of species

is estimated at nearly 7500 (Galiano, 1975). This floristicombrothermoclimatic diagrams of some representativestations are presented in Fig. 2. richness includes a high number of endemic species, many

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 919

of which are concentrated in the south and south east of Martınez, 1987, 1988; Alcaraz et al., 1989; Martınez Parras& Peinado, 1987, Alcaraz & Peinado, 1987; Rivas-MartınezSpain, (Gomez-Campo & Malato Beliz, 1985). According

to the data of Rivas-Martınez et al. (1991), the number of et al., 1990; Perez Raya et al., 1990; Mota et al., 1991;Alcaraz et al., 1991; Peinado et al., 1992; Mota, et al, 1993). InAndalusian endemic vascular taxa (excluding hybrids) is

429. Such a wealth of flora thus makes for some highly Appendix 2 we have selected those communities which—eitherbecause of their endemic species or because they differentiateoriginal plant communities.

The origin of the territory’s taxa is the result of climatic between territories—can be used as diagnostic elements forthe definition of biogeographical units.and geological changes which have taken place throughout

time, leading to a complex process of synthesis of florasof very diverse origin. We can thus distinguish groups of

RESULTS AND DISCUSSIONtaxa by their peculiar characteristics of known temporal orterritorial origin. For example, the Tertiary elements living

Biogeographical classification of Andalusiain the Algeciras mountains (Aljıbico sector) are taxa whichare only distantly related to others of the same genus or The biogeographical pattern of Andalusia proposed here

(down to district level) is as follows (Fig. 3).family and are limited to a very restricted area. They providea good sample of Artho–Tertiary paleoendemic species,such as Rhododendron ponticum subsp. baeticum, Laurus

The floristic classificationnobilis, Ruscus hypophyllum, Frangula alnus subsp. baetica,Psilotum nudum, Culcita macrocarpa, Diplazium caudatum Based on the list of Andalusian endemic vascular taxa

(excluding hybrids) of Rivas-Martınez et al. (1991), withand Christella dentata among others (Blanca, 1993). Othertaxa are found in the internal areas of the Baetic range, some modifications, the percentage distribution at sector

level is important for the biogeographical division of themost of which are paleoendemic species living on rocks(e.g. Sarcocapnos sp. pl., Rupicapnos africana and Seseli territory (we have excluded the Algarviense and Manchego

sectors because of their scant representation in Andalusia).vayredanum) or stony ground (e.g. Rothmaleria granatensis,Jurinea fontqueri, Viola cazorlensis and Lithodora nitida). Of the 440 endemic taxa studied, 288 are exclusive to a

given sector, with the remainder appearing in two or moreThis Tertiary element is a key factor in differentiating theflora of Andalusia from that of the rest of the Iberian sectors. Appendix 1 gives a synthesis of the endemic vascular

species exclusively present in each of the biogeographicalPeninsula, where similar examples are scarce. Other elementsof the Andalusian flora are: the Boreal–Alpine, composed sectors. Vascular plant collections are deposited in herbaria

at the University of Madrid (MAF), Malaga (MGC) andof taxa from the northern European region or high mountainranges such as the Alps and Pyrennees, currently present Granada (GDA).

Many other taxa, while typical of the Andalusianon the highest ground in Andalusia. Many of these taxa havedeveloped their own endemic species. The Euro–Siberian landscape, have a somewhat wider distribution area. Space

precludes us from citing them all, but they include Thymuselement has its origin in more humid and temperate climatesthan those currently to be found in the Mediterranean, and mastichina and Thapsia maxima, two endemic Iberian

species which are very common in Andalusia; and Periplocaare today limited to cold and humid enclaves in montaneareas of Andalusia. Another important component of the local laevigata subsp. angustifolia, Guiraoa arvensis and Anabasis

articulata, three species which, although present beyond theflora is the Ibero–African group of plants, abundant in thesouth and south east of Spain, such as Fagonia cretica, Ziziphus Andalusian political frontiers characterize the communities

of south-eastern Andalusia.lotus, Rosmarinus eriocalyx, Leysera leyseroides (Quezel,1985; Blanca, 1993). Finally, the Mediterranean element is Of the sectors identified, the Nevadense sector of the

Baetic province contains 15.5% of the endemic taxa. Suchalso highly significant in the present-day Andalusian flora.From these basic floristic elements, and based on different a high rate of endemism gives the territory a floristic and

phytocoenotic individuality in accordance with its specialcircumstances (climatic changes, variety of substrata, etc.)and typical speciation phenomena (isolation, hybridization, geological, geomorphological, bioclimatic and edaphic

characteristics. The Rondeno, Sub-Baetic and Mala-etc.), new taxa have arisen which today typify the floristiccharacter of Andalusia. We can identify elements including citano–Almijarense sectors also contain a high number

of endemic species (11.1%, 10.5% and 7.0%, respectively),the Aljıbico, Almeriense, Baetic, Iberian, Nevadense,Ibero–North-African, Rondeno, etc., according to the area corresponding to their lithological diversity (serpentine,

dolomite and hard limestone) which favours the existencethey occupy, rather than their origin.of a large number of endemic taxa which have adapted tospecific edaphic conditions. They are followed in importance

Phytosociological analysisby the Alpujarreno–Gadorense and Guadiciano–Bacensesectors (2.5% and 2.0%, respectively). The Hispalense sectorA great deal is known about the plant communities in

Andalusia as many authors have studied the territory, contains the fewest endemic taxa (1.4%), since theGuadalquivir Depression is basically composed of marl withfollowing the methods of Braun-Blanquet (e.g. Quezel, 1953;

Rivas Goday & Mayor Lopez, 1966; Rivas Goday & Rivas- sandstone outcrops, i.e. a poor medium for the mainlypsammophilous and silicicolous flora and vegetation whichMartınez, 1969, 1971; Rivas Goday & Esteve, 1972; Asensi

& Rivas-Martınez, 1977; Rivas-Martınez et al., 1980; Perez is abundant in the Luso–Extremadurense and Gadi-tano–Onubense elements.Raya, 1987; Asensi & Dıez Garretas, 1987, 1993; Rivas-

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

920 Salvador Rivas-Martınez et al.

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 921

The Gaditano–Onubense and Aljıbico sectors (3.4% which is clearly defined for the purposes of delimitingbiogeographical units. In Appendix 2 the numbers of theand 2.0%, respectively), which belong to the Gadi-

tano–Onubo–Algarviense province, maintain an un- sectors or districts where each community is found areshown in brackets. These numbers correspond to thedoubted floristic and phytocoenotic individuality with

respect to both the origin of their flora and the biotopes biogeographical classification proposed above.which they colonize.

The Marianico–Monchiquense sector (2.5%), part of the Climatophilous and edaphophilous vegetationThe climatophilous and edaphophilous communities enableLuso–Extremadurense province, is an extensive unit which

corresponds to the territories to the north of the Guadalquivir us to define and delimit biogeographical territories atprovincial, sector and district level. Many examples couldDepression, where metamorphic materials (sandstone, schists,

slate, etc.) preponderate, as mentioned above. illustrate this; thus, endemic to the Nevadense sector are theoro-Mediterranean psicroxerophilous pastures of ErigeronThe Baetic, Gaditano–Onubo–Algarviense and Luso–

Extremadurense provinces form part of the Mediter- frigidus and Festuca clementei (Erigeronto frigidi–Festucetumclementei) and the oro-Mediterranean matorral scrub plantsranean–Ibero–Atlantic superprovince.

Finally, the territories of southeastern Andalusia fall on siliceous substrata (Genisto baeticae–Juniperetum nanae),in whose domain a series of hydrophilous communitieswithin the Almeriense sector, rich in endemic taxa

(6.6%) and communities. This sector belongs to the Mur- develop around ponds and lakes of glacial origin(Nardo–Festucetum ibericae, Ranunculo–Vaccinietumciano–Almeriense province which is, in turn, part of the

Mediterranean–Ibero–Levantine superprovince. uliginosi, Ranunculo–Caricetum intricatae, Sedo melan-antheri–Saxifragetum alpigenae).

The Rondeno sector (Fig. 4) contains the original featuresPhytogeographical analysis of plant associations

of the Abies pinsapo (Paeonio broteroi–Abietetum pinsapo,Bunio macucae–Abietetum pinsapo) and Ceratonia siliquaThe plant communities selected, of which only a few

examples are given here, have been grouped into five types: (Clematidi cirrhosae–Ceratonietum siliquae) communities,also present in the Rif in North Africa. The community of(I) climatophilous and edaphophilous vegetation; (II)

‘matorral’ scrub and low calcicole ‘tomillar’ scrub; (III) Olea europaea subsp. sylvestris (Tamo communis–Oleetumsylvestris) is characteristic of the clay soils of the Hispalensefruticose silicicole vegetation; (IV) rupicolous chasmophyte

vegetation (V) other communities with a territorial character sector. In the Gaditano–Onubo–Algarviense sector the most

FIG. 3. Biogeographical classification of Andalusia ( province limit, · · · · · sector limit, - - - district limit, -x---x---x Andalusia limit).

∗Mediterranean region 7c Serrano–Mariense district+Western Mediterranean subregion 7d Serrano–Estanciense district

A Mediterranean-Ibero-Atlantic superprovince II Gaditano–Onubo–Algarviense province

8 Aljıbico sectorI Baetic province

9 Gaditano–Onubense sector1 Hispalense sector9a Gaditano littoral district1a Hispalense district9b Onubense littoral district1b Jerezano district

2 10Rondeno sector Algarviense sector2a Rondense district2b Bermejense district

III Luso–Extremadurense province2c Anticariense district11 Marianico–Monchiquense sector3 Malacitano–Almijarense sector11a Marianense district3a Malacitano–Axarquiense district11b Araceno–Pacense district3b Almijarense district

3c Alfacarino–Granatense district

4 Sub-Baetic sectorB Mediterranean–Ibero–Levantine superprovince4a Sub-Baetic–Maginense district

4b Cazorlense district IV Murciano–Almeriense Province4c Alcaracense district

12 Almeriense Sector4d Sub-Baetic–Murciano district12a Eastern Almeriense district

5 Alpujarreno–Gadorense sector 12b Western Almeriense district5a Alpujarreno district 12c Caridemo district5b Gadorense district

6 Nevadense sectorV Castellano–Maestrazgo–Manchega province6a Nevadense district

6b Filabrico district 13 Manchego sector7 Guadiciano–Bacense sector 13a Manchego–Espunense district7a Guadiciano–Baztetano district7b Serrano–Bacense district

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

922 Salvador Rivas-Martınez et al.

FIG. 4. Abies pinsapo forest (Paeonio broteroi–Abietetum pinsapo). Endemic plant community to the Rondeno sector.

striking features include the dune ecoystem (Donana albicantis–Pterocephaletum spathulati of the Cazorlenseand Alcaracense districts, Thymo granatensis–ArenarietumNational Park), the saltmarsh and estuary ecosystems

(Gaditano–Onubense sector), and communities rich in tomentosae of the Serrano–Bacense district and Fumanoparadoxae-Thymetum sabulicolae of the Sub-Baetic–MurcianoTertiary elements which find refuge in the sandstone

mountains of the Aljıbico sector (Rusco hypophylli– sector. Also worthy of mention are the thermo- and meso-Mediterranean chamaephyte communities of arid, semi-aridQuercetum canariensis, Frangulo baetici–Rhododendretum

baetici). The Luso–Extremadurense province features and dry ombroclimates (Anthyllidetalia terniflorae), whichare virtually exclusive to the Murciano–Almeriense provinceextensive areas where paleozoic siliceous rocks dominate,

giving rise to the climax communities of Quercus rotundifolia, (certain irradiation to other neighbouring territories doesoccur). In Appendix 2 we have selected those which are ofQ. suber and Q. pyrenaica (Pyro bourgaeanae–Quercetum

rotundifoliae, Sanguisorbo agrimonioidis–Quercetum suberis, high discriminatory value for the definition biogeographicalterritories.Arbuto unedonis–Quercetum pyrenaicae). Finally, the

Almeriense sector (Murciano–Almeriense province) is welldefined by the climax communities of Ziziphus lotus (Zizipho Fruticose silicicole vegetation

This type of community is found in western Andalusia. Theloti–Maytenetum europaei, Ziziphetum loti) and Periplocalaevigata subsp. angustifolia (Mayteno europaei–Periplocetum most characteristic elements include: Genisto tridentis–

Stauracanthetum boivinii in the Aljıbico sector, also found inangustifoliae), also present in the Murciano sector.the neighbouring Tingitana province of northern Morocco;Erico ciliaris-Ulicetum lusitanici, Erico scopariae–UlicetumMatorral scrub and calcicole scrub

The matorral scrub and calcicole scrub are stages in the australis, Halimio commutati–Cistetum bourgeani and Halimiohalimifolii–Stauracanthetum genistoidis are typical of thedegradation of the climax vegetation, e.g. the communities

related to the dolomitic and glareo–dolomitic soils of the Onubense district; and Thymo albicantis–Stauracanthetumgenistoidis, typical of the Gaditano district. In theBaetic province (Convolvuletalia boissieri), where Convolvulo

nitidi–Andryaletum agardhii is typical of the Malacitano– Marianico–Monchiquense sector Ulici eriocladi-Ericetumumbellate stands out.Almijarense sector (Alfacarino–Granatense district),

Hippocrepido eriocarpae–Pterocephaletum spathulati andHelianthemo visciduli–Anthyllidetum argyrophyllae of the Rupicolous vegetation

In the Baetic mountains, chasmophyte calcicole vegetationAlmijarense district, Helianthemo frigiduli–Pterocephaletumspathulati of the Sub-Baetic–Maginense district, Scorzonero is very well represented. These communities, rich in endemic

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 923

Munoz Garmendia, F., Paiva, J. & Villar, L. (1986–1993) Florataxa of the genus Saxifraga (S. biternata, S. boissieri, S.Iberica, vols. 1–4. Real Jardın Botanico. Madrid.camposii subsp. camposii, S. camposii subsp. leptophylla, S.

Emberger, L. (1930) Sur une formule applicable en geographieerioblasta, S. globulifera subsp. granatensis, S. reuteriana,botanique. Compt. Rend. Hebd. Seanc. Acad. Sci. Paris, 191,S. rigoi), characterize the biogeographical sectors and389–391.districts of the Baetic province (Mota, Gumez-Mercado

Galiano, E. F. (1975) Donnees disponibles et lacunes de la& Valle, 1991). Other species are typical of chasmophyte

connaissance floristique de l’Espagne. La flore du bassincommunities on siliceous rocks such as S. nevadensis mediteraneen. Essai de systematique synthetique, pp. 29–39.(Saxifragetum nevadensis) in the Nevadense sector, or C.N.R.S. Parıs.Saxifraga gemmulosa (Asplenio–Saxifragetum gemmulosae) Gehu, J.M. & Rivas-Martınez, S. (1980) Notions fondamentalesof the chrysolite rocks of the Bermejense district. de phytosociologie. Syntaxonomie pp. 5–33. J. Cramer, Vaduz.

Gomez-Campo, C. & Malato-Beliz, J.(1985) The Iberian Peninsula.Plant conservation in the Mediterranean area (ed. by C. Gomez-Campo), pp. 47–70. Dr W. Junk Publishers, Dordrecht.Other communities

Greuter, W., Burdet, H.M. & Long, G. (eds) (1984–1989) Med-We include in this section a group of communities belongingChecklist, vol. 1, 3, 4. Conserv. Jard. Bot. Geneve.to different phytosociological classes (therophytes, crop

L’Henaff, R. (1981) Recherches geomorphologiques sur les Cordilleresweeds, nitrophiles, etc.), which have proved useful for theBetiques Centro-Occidentales (Espagne). Unpublished Ph.D.definition of biogeographical units.thesis, University of Paris.

Martınez Parras, J.M. & Peinado, M (1987) Andalucıa oriental.La vegetacion de Espana (ed. by M. Peinado Lorca & S. Rivas-ACKNOWLEDGMENTSMartınez), pp. 231–256. Univ. Alcala de Henares.

Meusel, H. Jaeger, E. & Weinert, E. (1965) Vergleichande chorologieWe thank R. R. Brooks, Emeritus Professor of Geo-der zentraleuropaischen flora. Fischer, Jena.chemistry and J. Flentley, Professor of Geography of the

Mota, J., Gomez Mercado, F. & Valle, F. (1991) RupicolousMassey University, Palmerston North, New Zealand forvegetation of the betic ranges (South Spain). Vegetatio, 94,comments on the manuscript. The authors wish to thank101–113.

Ross Howard for translating the original manuscript into Mota, J., Valle, F. & Cabello J. (1993) Dolomitic vegetation ofEnglish. This research was supported by DGCYT project South Spain. Vegetatio, 109, 29–45.NAT-89–0087-CO3. Ozenda, P. (1971) Sur une extension de la notion de zone et d’etage

de vegetation submediterraneens. Compt. Rend. Soc. Biogeogr.415, 92–103.

REFERENCES Peinado, M., Alcaraz, F. & Martınez Parras, J.M. (1992) Vegetationof southeastern Spain. Fl. et Veget. Mundi. 10; 1–487.Alcaraz, F. & Peinado, M. (1987) El sudeste iberico semiarido. La

Perez Raya, F. (1987) Vegetacion en el sector Malacitano-Almijarensevegetacion de Espana (ed. byn M. Peinado Lorca & S. Rivas-de Sierra Nevada. Unpublished Ph.D. thesis, University ofMartınez), pp. 259–281. Univ. Alcala de Henares.Granada.Alcaraz, F., Dıaz, T.E., Rivas-Martınez, S. & Sanchez Gomez, P.

Perez Raya, F., Lopez Nieto, J., Molero Mesa, J. & Valle, F.(1989) Datos sobre la vegetacion del sudeste de Espana: provincia(1990) Vegetacion de Sierra Nevada. Ayuntamiento de Granada,biogeografica Murciano-Almeriense. Itinera Geobot. 2, 5–133.Granada.Alcaraz, F, Sanchez Gomez, P. & De la Torre, A. (1991) Biogeografıa

Quezel, P. (1953) Contribution a l’etude phytosociologique etde la provincia Murciano–Almeriense hasta el nivel de subsector.geobotanique de la Sierra Nevada. Mem. Soc. Brot. 9, 5–77.Rivagodaya, 6, 77–100.

Quezel, P. (1979) Les forets du pourtour mediterraneen. Forets etAsensi, A. & Dıez Garretas, B. (1987) Andalucıa occidental. Lamaquis mediterraneens: ecologie, conservation et amenagement,vegetacion de Espana (ed. by M. Peinado Lorca & S. Rivas-pp. 9–33. Les Presses de l’Unesco, Parıs.Martınez), pp. 199–230. Univ. Alcala de Henares.

Quezel, P. (1985) Definition of the Mediterranean region and theAsensi, A. & Dıez Garretas, B. (1993) Dry coastal ecosystems oforigin of its flora. Plant conservation in the Mediterranean areasoutheastern and eastern Spain. Dry coastal ecosystems, (ed. by(ed. by C. Gomez-Campo) pp. 9–24. Dr. W. Junk Publishers,E. Van der Maarel), pp. 363–368. Elsevier, Amsterdam.Dordrecht.Asensi, A. & Rivas-Martınez, S. (1977) Contribucion al

Rivas Goday, S. & Mayor Lopez, M. (1966) Aspectos de laconocimiento fitosociologico de los pinsapares de la Serranıa devegetacion y flora orofila del Reino de Granada. Anal. RealRonda. Anal. Inst. Bot. Cavanilles, 33, 239–247.Acad. Farm. 31, 345–400.Axelrod, D. I. & Raven, P. H. (1972) Evolutionary biogeography

Rivas Goday, S. & Rivas-Martınez, S. (1969) Matorrales y tomillaresviewed from plate tectonic theory. Challenging biologicalde la Penınsula Iberica comprendidos en la Cl. Ononido-problems: directions toward their solution (ed. by J.A. Behnke),Rosmarinetea Br.-Bl. 1947. Anal. Inst. Bot. Cavanilles 25, 5–180.pp. 218–236. New York.

Rivas Goday, S. & Rivas-Martınez, S. (1971) Vegetacion potencialBlanca, G. (1993) Origen de la Flora andaluza. Introduccion a lade la provincia de Granada. Trab. Dept. Bot. Fisiol. Veg. Madrid,flora andaluza, pp. 19–35. Junta de Andalucıa. Agencia de Medio4, 3–85.Ambiente, Sevilla.

Rivas Goday, S. & Esteve, F. (1972) Flora serpentinıcola espanola.Bolos, O. (1963) Botanica y Geografıa. Mem. Real Acad. Ci.Nota segunda. Nuevos edafismos endemicos y sus respectivasBarcelona, 34, 3–51.asociaciones del Reino de Granada. Anal. Real Acad. Farm. 38,Bourgois, J. (1978) La transversale de Ronda (Cordilleres betiques,409–461.Espagne). Ann Sci. Univ. Besancon (Geol.), 30, 1–445.

Rivas-Martınez, S. (1973) Avances sobre una sıntesis corologicaBraun-Blanquet, J. (1951) Pflanzensoziologie. Grundzuge derde la penınsula Iberica, Baleares y Canarias. Anal. Inst. Bot.Vegetationskunde. Springer-Verlag. Wien.

Castroviejo, S., Laınz, M., Lopez Gonzalez, G., Montserrat, P., Cavanilles, 30, 69–87.

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

924 Salvador Rivas-Martınez et al.

Rivas-Martınez, S. (1981) Les etages bioclimatiques de la vegetation E. (1980) Vegetacion de Donana (Huelva, Espana). Lazaroa, 2,5–189.de la peninsule Iberique. Anal. Jard. Bot. Madrid 37, 251–268.

Rivas-Martınez, S. (1982) Etages bioclimatiques, secteurs Rivas-Martınez, S., Lousa, M. Dıaz, T.E., Fernandez Gonzalez, F.& Costa, J.C. (1990) La vegetacion del sur de Portugal (Sado,chorologiques et series de vegetation de l’Espagne

mediterraneenne. Ecol. Medit. 8, 275–288. Alentejo y Algarve). Itinera Geobot. 3, 5–126.Rivas-Martınez, S., Asensi, A., Molero Mesa, J. & Valle, F. (1991)Rivas-Martınez, S. (1987) Memoria del mapa de series de vegetacion

de Espama. Ministerio de Agricultura, Pesca y Alimentacion Endemismos vasculares de Andalucıa. Rivasgodaya, 6, 5–76.Rivas-Martınez, S., Wildpret, W., Dıaz, T.E., Perez de Paz, P. L.,(ICONA), Madrid.

Rivas-Martınez, S. (1988) Bioclimatologıa, biogeografıa y series de Del Arco, M. & Rodriguez, O. (1993) Excursion guide. Outlinevegetation of Tenerife Island (Canary Islands). Itinera Geobot.vegetacion de Andalucıa Occidental. Lagascalia, 15 (extra), 91–119.

Rivas-Martınez, S. (1990) Bioclimatic belts of West Europe (Relations 7, 5–168.Takhtajan, A. (1986) Floristic regions of the world. University ofbetween bioclimate and plant ecosystems). Environment and quality

of life: climate and global change (ed. by J. C. Duplessy, A. Pons California Press, Berkeley.Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M.,& R. Fantechi), pp. 225–246. Proc. Eur. School Cim. Nat. Hazards

Course. Commission of the European Communities. Valentine, D. H., Walters, S. M. & Webb, D. A. (eds.) (1964–1980)Flora Europaea, vols. 1–5. Cambridge University Press,Rivas-Martınez, S. (1995) Clasificacion bioclimatica de la Tierra.

Folia Bot. Matritensis, 14, 1–25. Cambridge.Valdes, B., Talavera, S. & Galiano, E. F. (eds) (1987) Flora vascularRivas-Martınez, S., Arnaiz, C., Barreno, E. & Crespo, A. (1977)

Apuntes sobre las provincias corologicas de la penınsula Iberica de Andalucıa occidental, vols. 1–3. Ketres, Barcelona.Walter, H. & Lieth, H. (1960–1967) Klimadiagramm-Weltatlas.e islas Canarias. Opusc. Bot. Pharm. Complut. 1, 1–48.

Rivas-Martınez, S., Costa, M., Castroviejo, S. & Valdes Bermejo, Fischer, Jena.

APPENDIX 1. Endemic taxa of different sectors and districts. The districts in which each taxon may be found are given in brackets, inaccordance with the biogeographical classification proposed in the text. Nomenclature follows Tutin et al. (1964, 1980), Greuter et al. (1984,1989), Valdes et al. (1987), Castroviejo et al. (1986, 1993), and Rivas-Martınez et al. (1991).

1. H S Omphalodes commutata (2a, 2b, 2c)Anchusa puechii (1a) Ononis saxicola (2a)Anthemis bourgaei (1b) Orobanche haenseleri (2a)Centaurea pauneroi (1a) Platycapnos tenuiloba subsp. parallela (2b)Ononis azcaratei (1b) Reseda undata subsp. gayana (2a)Silene stockeni (1b) Saxifraga biternata (2c)Silene tomentosa (1b) Saxifraga boissieri (2a)

Saxifraga gemmulosa (2b)2. R S Saxifraga reuteriana (2c)Abies pinsapo (2a, 2b) Scrophularia viciosoi (2c)Allium rouyi (2b) Sideritis incana var. occidentalis (2a)Anthyllis vulneraria subsp. arundana (2a) Silene fernandezii (2b)Arenaria capillipes (2b) Silene inaperta subsp. serpentinicola (2b)Arenaria retusa subsp. retusa (2b) Sisymbrium arundanum (2a)Armeria carratracensis (2b) Staehelina baetica (2b)Armeria colorata (2b) Teucrium chrysotrichum (2b)Armeria malacitana (2b) Ulex baeticus subsp. baeticus (2a, 2b, 2c)Armeria villosa (2a) Vulpia hispanica subsp. montana (2a)Avenula bromoides subsp. arundana (2a)Campanula specularioides (2a) 3. M–A SCarduus rivasgodayanus (2a) Arenaria caesia (3b, 3c)Centaurea carratracensis (2b) Arenaria delaguardiae (3b)Centaurea lainzii (2b) Arenaria racemosa (3b)Cytisus moleroi (2a) Armeria filicaulis subsp. trevenqueana (3c)Erodium recoderi (2a) Brachypodium boissieri (3b, 3c)Fumana lacidulemiensis (2a) Brassica repanda subsp. latisiliqua (3b, 3c)Galium pulvinatum (2a) Centaurea boissieri subsp. funkii (3c)Galium viridiflorum (2b) Centaurea bombycina (3b, 3c)Halimium atriplicifolium subsp. serpentinicola (2b) Erodium boissieri (3c)Helictotrichon filifolium subsp. arundanum (2a) Erodium daucoides (3c)Iberis fontqueri (2b) Eryngium grossii (3b)Koeleria dasyphylla (2a) Genista nevadensis (3c)Lepidium hirtum subsp. anticarium (2c) Helianthemum estevei (3c)Linaria clementei subsp. clementei (2b) Helianthemum pannosum (3c)Linaria clementei subsp. reverchonii (2b) Helianthemum raynaudii (3c)Linaria huteri (2b) Helianthemum viscidulum subsp. viscidulum (3b, 3c)Linaria oblongifolia (2a, 2c) Hieracium texedense (3b)Linaria platycalyx (2a) Iberis grossii (3b)Linum suffruticosum subsp. carratracensis (2b) Limonium malacitanum (3a)Nepeta amethystina subsp. anticaria (2c) Limonium subglabrum (3c)

(continued )

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 925

APPENDIX 1. (continued ).

Linaria amoi (3b) Coronopus navasii (5b)Linum suffruticosum subsp. dolomiticolum (3b) Lavatera oblongifolia (5)Odontites granatensis (3c) Limonium ugijarense (5a)Rothmaleria granatensis (3b, 3c) Seseli intricatum (5b)Scabiosa pulsatilloides (3c) Teucrium cavanillesianum (5b)Silene boryi subsp. tejedensis (3b, 3c) Teucrium eriocephalum subsp. serranum (5a)Tanacetum funkii (3c) Teucrium oxylepis subsp. oxylepis (5a)Teucrium fragile (3b) Veronica fontqueri (5b)Thymelaea tartonraira subsp. angustifolia (3b, 3c)Trisetum velutinum (3b, 3c) 6. N SUlex parviflorus subsp. rivasgodayanus (3b) Agrostis canina subsp. granatensis (6a)

Alchemilla fontqueri (6a)4. S-B S Alyssum diffusum subsp. corymbosum (6a)Alyssum baeticum (4b) Alyssum purpureum (6a)Alyssum fastigiatum (4b) Anthyllis vulneraria subsp. nivalis (6a)Alyssum reverchonii (4b) Antirrhinum rupestre (6a)Anthyllis rupestris (4b) Arenaria imbricata (6a)Aquilegia pyrenaica subsp. cazorlensis (4b) Armeria splendens (6a)Arenaria alfacarensis (4a, 4b, 4c) Artemisia granatensis (6a)Carduncellus hispanicus subsp. macrocephalus (4) Astragalus sempervirens subsp. nevadensis (6a)Carlina baetica (4b, 4c) Biscutella glacialis (6a)Centaurea boissieri subsp. prostrata (4b, 4c, 4d) Campanula willkommii (6a)Centaurea jaennensis (4b) Carduus carlinoides subsp. hispanicus (6a)Cirsium rosulatum (4b, 4c) Carex camposii (6a, 6b)Crepis granatensis (4a, 4b) Centaurea pulvinata (6a)Dianthus anticarius subsp. subbeticus (4b) Centaurea sagredoi (6b)Erodium cazorlanum (4b) Cerastium alpinum subsp. aquaticum (6a)Erysimum favargeri (4b) Cerastium alpinum subsp. nevadense (6a)Erysimum fitzii (4a) Chaenorrhinum glareosum (6a)Erysimum myriophyllum subsp. cazorlense (4b) Coincya orophila subsp. nevadensis (6a, 6b)Festuca cordubensis (4a) Dactyllis juncinella (6a)Geranium cazorlense (4b) Draba dubia subsp. nevadensis (6a)Helianthemum frigidulum (4a) Draba hispanica subsp. laderoi (6a)Helianthemum viscidulum subsp. viscarioides (4a, 4b) Erigeron frigidus (6a)Hypochaeris rutea (4a) Erodium rupicola (6b)Jasione crispa subsp. segurensis (4b, 4c) Festuca clementei (6a)Jurinea fontqueri (4a) Festuca frigida (6a)Leucanthemopsis spathulifolia (4b, 4c) Festuca pseudoeskia (6a)Lithodora nitida (4a) Genista versicolor (6a)Moehringia intricata subsp. giennensis (4b, 4c, 4d) Gentiana pneumonanthe subsp. depressa (6a)Muscari cazorlanum (4b) Gentiana verna subsp. sierrae (6a)Narcissus longispathus (4a, 4b, 4c) Herniaria boissieri (6a)Ranunculus malessanus (4b, 4c) Holcus caespitosus (6a)Salvia blancoana (4b, 4c) Iberis embergeri (6a)Sarcocapnos baetica subsp. integrifolia (4a, 4b) Jasione crispa subsp. amethystina (6a)Saxifraga rigoi (4b, 4c) Laserpitium longiradium (6a)Scabiosa andryalifolia (4b, 4c) Leontodon carpetanus subsp. nevadensis (6a)Scilla paui (4b, 4c) Leontodon microcephalus (6a)Scilla reverchonii (4b) Lepidium stylatum (6a)Scorzonera albicans (4b, 4c) Leucanthemopsis pectinata (6a)Scorzonera reverchonii (4b, 4c) Linaria aeruginea subsp. nevadensis (6a)Sideritis laxespicata (4b, 4c) Linaria glacialis (6a)Sisymbriella aspera subsp. pseudoboissieri (4b) Moehringia fontqueri (6a)Solenanthus reverchonii (4b) Nepeta boissieri (6a)Succisella andreae-molinae (4b, 4c) Phleum abbreviatum (6a)Thymelaea granatensis subsp. glauca (4a) Pimpinella procumbens (6a)Thymelaea granatensis subsp. granatensis (4) Pinguicula nevadensis (6a)Vicia glauca subsp. giennensis (4a) Plantago nivalis (6a)Viola cazorlensis (4a, 4b, 4c) Poa minor subsp. nevadensis (6a)

Potentilla nevadensis subsp. condensata (6a)5. A-G S Potentilla nevadensis subsp. nevadensis (6a)Alyssum gadorense (5b) Primula elatior subsp. lofthousei (6a, 6b)Astragalus tremolsianus (5b) Ranunculus acetosellifolius (6a)Carduncellus hispanicus subsp. hispanicus (5b) Ranunculus angustifolius subsp. alismoides (6a)Centaurea gadorensis (5b) Reseda complicata (6a)

(continued )

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

926 Salvador Rivas-Martınez et al.

APPENDIX 1. (continued ).

Salix hastata subsp. sierrae-nevadae (6a) Verbascum giganteum subsp. martinezii (9a)Saxifraga nevadensis (6a) Vulpia fontquerana (9b)Senecio elodes (6a) 10. A SSenecio malacitanus subsp. frigidus (6a) (These taxa are also found in Portugal)Sideritis arborescens subsp. luteola (6a, 6b) Linaria lamarckiiThlaspi nevadense (6a) Thymus carnosusThymus serpylloides (6a, 6b) Ulex subsericeusTrisetum antoni-josephi (6a)Trisetum glaciale (6a) 11. M–M SVaccinium uliginosum subsp. nanum (6a) Armeria capitella (11a)Verbascum nevadense (6a) Armeria pauana (11a)Veronica turbicola (6a) Centaurea cordubensis (11a)Viola crassiuscula (6a) Centaurea galianoi (11b)

Centaurea monticola subsp. citricolor (11a)Centaurea taresiana (11b)7. G–B SCoincya longirostra (11a)Armeria lanceobracteata (7c)Dianthus crassipes subsp. serenaeus (11a)Brassica repanda subsp. almeriensis (7c)Erica andevalensis (11b)Helianthemum viscidulum subsp. guadicianum (7a)Gyrocarium oppositifolium (11a)Limonium majus (7a)Linaria intricata (11a, 11b)Limonium minus (7a)

Limonium quesadense (7a)12. A SSaxifraga camposii subsp. leptophylla (7c)Androcymbium europaeum (12b, 12c)Sideritis funkiana subsp. funkiana (7a)Antirrhinum charidemi (12c)Sideritis stachyoides (7c)Chaenorrhinum grandiflorum subsp. grandiflorum (12b)Coris hispanica (12b)

8. Aı S Dianthus charidemi (12c)Armeria hirta Euzomodendrum bourgaeanum (12b)Brachypodium gaditanum Helianthemum alypoides (12b)Carduus lusitanicus subsp. santacreui Herniaria fontanesii subsp. almeriana (12a, 12b, 12c)Cytisus tribracteolatus Limonium album (12a)Digitalis purpurea subsp. bocquetii Limonium estevei (12a)Holcus grandiflorus Limonium tabernense (12b)Odontites foliosa Linaria benitoi (12b)Psilotum nudum var. molesworthiae Linaria nigricans (12b)Silene gaditana Moricandia foetida (12a, 12b)

Narcissus tortifolius (12b)9. G–O S Salsola papillosa (12a, 12b, 12c)Armeria hispalensis (9b) Sideritis osteoxylla (12c)Daucus arcanus (9b) Sideritis pusilla subsp. pusilla (12b, 12c)Festuca ampla subsp. simplex (9a, 9b) Silene littorea subsp. ascendens (12b)Gaudinia hispanica (9b) Teucrium balthazaris (12a)Linaria tartessiana (9b) Teucrium charidemi (12c)Linaria tursica (9b) Teucrium compactum subsp. rixanense (12b)Lythrum baeticum (9b) Teucrium eriocephalum subsp. almeriense (12b, 12c)Micropyropsis tuberosa (9b) Teucrium intricatum (12b)Ononis baetica var. donyanensis (9b) Teucrium lanigerum (12a, 12c)Rorippa valdes-bermejoi (9b) Teucrium murcicum subsp. hieronymi (12b, 12c)Sideritis arborescens subsp. perez-larae (9a) Teucrium turredanum (12b)Taraxacum gaditanum (9a, 9b) Ulex canescens (12c)Thymus albicans subsp. donyanae (9b) Verbascum charidemi (12c)

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

Biogeographical Synthesis of Andalusia 927

APPENDIX 2. Endemic or characteristic plant communities of Andalusian sectors and districts

1. H S Moehringietum giennensis (4b, 4c)Climatophilous vegetation: Rumici–Aquilegietum cazorlensis (4b)Tamo communis–Oleetum sylvestris (1b) Sarcocapnetum integrifoliae (4a, 4b)Matorral scrub: Sileno andryalifoliae–Saxifragetum camposii (4a)Asperulo hirsutae–Ulicetum scabri (1b) Other communities:Teucrio lusitanici–Coridothymetum capitati (1a) Sileno lasiostylae–Arenarietum tenuis (4b, 4c)Other communities:Chrozophoro tinctoriae–Teucrietum spinosi (1a, 1b) 5. A–G SKickxio lanigerae–Tanacetum annui (1b) Matorral scrub:

Convolvulo lanuginosi–Lavanduletum lanatae (5b)2. R S Erico multiflorae–Thymetum longiflori (5a)Climatophilous vegetation: Lavandulo dentatae–Genistetum retamoidis (5a)Bunio macucae–Abietetum pinsapo (2b) Odontito–Thymetum baetici (5a)Paeonio broteroi–Abietetum pinsapo (2a) Rupicolous vegetation:Edaphoxerophilous vegetation: Asterisco maritimi–Rosmarinetum tomentosi (5a)Pino pinastri–Quercetum cocciferae (2b) Other communities:Matorral scrub: Achilleo odoratae–Astragaletum tremolsiani (5b)Asperulo asperrimae–Staehelinetum baeticae (2b)Coridothymo capitati–Genistetum haenseleri (2a, 2b, 2c) 6. N SGenisto lanuginosae–Cistetum populifolii (2b) Climatophilous vegetation:Halimio atriplicifolii–Digitaletum laciniatae (2b) Erigeronto frigidi–Festucetum clementei (6a)Ulici baetici–Cistetum clusii (2b) Genisto versicoloris–Juniperetum nanae (6a)Ulici baetici–Lavanduletum lanatae (2a, 2c) Silicicolous scrub:Chasmophyte vegetation: Teucrio compacti–Cistetum ladaniferi (6b)Linario anticariae–Saxifragetum biternatae (2c) Chasmophyte vegetation:Saxifragetum boissieri (2a) Saxifragetum nevadensis (6a)Other communities: Sedo brevifolii–Centranthetum nevadensis (6a)Arenario capillipes–Iberidetum fontqueri (2b) Other communities:Galio viridiflori–Schoenetum nigricantis (2b) Arenario granatensis–Festucetum indigestae (6a)Jasiono–Linarietum saturejoidis (2b) Arenario pungentis–Sideritetum glacialis (6a)Linario clementei–Andryaletum ramosissimae (2b) Armerio splendentis–Agrostietum nevadensis (6a)Violo demetriae–Jonopsidietum prolongoi (2a, 2c) Campanulo willkommii–Polystichetum lonchytidis (6a)

Crepidi oporinoidis–Rumicetum indurati (6a)3. M–A S Digitali nevadensis–Senecietum granatensis (6a)Edaphoxerophilous vegetation: Festucetum baetico–pseudoeskiae (6a)Rhamno myrtifoliae–Juniperetum phoeniceae (3b, 3c) Nardo strictae–Festucetum ibericae (6a)Matorral scrub: Omalotheco pusillae–Lepidietum stylati (6a)Centaureo bombycinae–Lavanduletum lanatae (3b, 3c) Ranunculo acetosellifolii–Vaccinietum uliginosi (6a)Cisto clusii–Ulicetum rivasgodayani (3b) Sedo melanantheri–Saxifragetum alpigenae (6a)Convolvulo nitidi–Andryaletum agardhii (3c) Senecio elodes–Aconitetum nevadensis (6a)Hippocrepido eriocarpae–Pterocephaletum spathulati (3b) Senecio granatensis–Digitaletum nevadensis (6a)Thymo gracilis–Lavanduletum lanatae (3a, 3b, 3c) Violo crassiusculae–Linarietum glacialis (6a)Chasmophyte vegetation:Helianthemo–Anthyllidetum argyrophyllae (3b) 7. G–B SHieracio texedensi–Moehringietum texedensis (3b) Matorral scrub:Teucrio rotundifolii–Kerneretum boissieri (3c) Thymo granatensis–Arenarietum tomentosae (7b)Other communities: Sideritido inacanae–Lavanduletum lanatae (7d)Arenario modestae–Linarietum angustealatae (3c) Jurineo pinnatae–Gypsophiletum struthii (7a)Brachypodio boissieri–Trisetum velutinae (3b, 3c) Rupicolous vegetation:Centaureo granatensis–Andryaletum ramosissimae (3c) Athamanto hispanicae–Sideritetum stachyoidis (7c)Crithmo maritimi–Limonietum malacitani (3a) Teucrieto rotundifolii–Kerneretum boissieri alyssetosum cadevallianiJasiono–Linarietum saturejoidis linarietosum flavae (3b) (7b)

Other communities:4. S-B S Caro–Juncetum maritimi (7a)Climatophilous vegetation: Centaureo–Dorycnietum gracilis (7a)Juniperetum phoeniceo–thuriferae pinetosum clusianae (4d)Matorral scrub: 8. Aı SFumano paradoxae–Thymetum sabulicolae (4c, 4d) Climatophilous vegetation:Helianthemo frigiduli–Pterocephaletum spathulati (4a) Rusco hypophylli–Quercetum canariensisHelianthemo nummularii–Genistetum pseudopilosae (4b, 4c) Teucrio baetici–Quercetum suberisSalvio pseudovellereae–Teucrietum leonis (4d) Edaphophilous vegetation:Saturejo intricatae–Genistetum boissieri (4b, 4c) Equiseto telmateiae–Salicetum pedicellataeScorzonero albicantis–Pterocephaletum spathulati (4b, 4c) Frangulo baetici–Rhododendretum baeticiChasmophyte vegetation: Silicicolous scrub:Jasiono minutae–Saxifragetum rigoi (4b) Genisto tridentis–Stauracanthetum boivinii

(continued )

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928

928 Salvador Rivas-Martınez et al.

APPENDIX 2. (continued ).

Phillyreo–Quercetum fruticosae Ulici eriocladi–Cistetum ladaniferi (11b)Stauracantho boivinii–Drosophylletum lusitanici Ulici eriocladi–Ericetum umbellatae (11b)Other communities: Other communities:Caricetum mauritanicae Jasiono marianae–Dianthetum lusitani (11)Clinopodio arundani–Digitaletum bocquetii Junco rugosi–Ericetum andevalensis (11b)Davallio canariensis–Sedetum baeticiLaurentio–Juncetum tingitani 12. A SLimonietum emarginati Climatophilous vegetation:

Mayteno europaei–Periplocetum angustifoliae (12a, 12c)9. G–O S Ziziphetum loti (12)Silicicolous and psammophilous scrub: Zizipho loti–Maytenetum europaei (12b)Artemisio crithmifoliae–Armerietum pungentis (9a, 9b) Matorral scrub:Erico ciliaris–Ulicetum lusitanici (9b) Anabasio hispanicae–Euzomodendretum bourgaeani (12b)Erico scopariae–Ulicetum australis (9b) Astragalo grossii–Santolinetum viscosae (12a)Halimio commutati–Cistetum bourgaeani (9b) Helianthemo alypoidis–Gypsophiletum struthii (12b)Halimio halimifolii–Stauracanthetum genistoidis (9b) Helianthemo almeriensis–Sideritetum pusillae (12b)Thymo albicantis–Stauracanthetum genistoidis (9a) Limonio insignis–Anabasietum hispanicae (12)Other communities: Salsolo papillosae–Limonietum carthaginensis (12a)Haynardio cylindricae–Lophlochoetum hispidae (9b) Santolino viscosae–Gypsophiletum struthii (12b)Inulo crithmoidis–Arthrocnemetum macrostachyi (9, 10) Saturejo canescentis–Thymetum hyemalis (12a)Linario donyanae–Loeflingietum baeticae (9b) Sideritido osteoxyllae–Teucrietum charidemi (12c)Polygono–Limoniastretum monopetali (9, 10) Teucrio belionis–Helianthemetum scopulori (12)Rhamno oleoidi–Juniperetum macrocarpae (9a, 9b) Teucrio balthazaris–Santolinetum viscosae (12a)Scirpo fluitantis–Juncetum heterophylli (9b) Teucrio lanigeri–Sideritetum ibanyezii (12a)

Thymelaeo hirsutae–Genistetum ramosissimae (12b)10. A S Rupicolous calcicole vegetation:The following communities are endemic to Portugal: Cosentinio bivalentis–Teucrietum freynii (12a)Artemisio–Armerietum pungentis armerietosum velutini Galio ephedroidis–Phagnaletum saxatilis (12b)Artemisio–Armerietum pungentis linarietosum lamarckii Lafuenteo rotundifoliae–Teucrietum intricati (12b)Astragaletum vicentini Other communities:Cistetum libanotidis Artemisio barrelieri–Launeetum arborescentis (12)Genisto–Cistetum palhinhae Carrichtero annuae–Sinapietum flexuosi (12a, 12b)Querco cocciferae–Juniperetum turbinatae Castellio tuberculatae–Geranietum rotundifolii (12b)Thymo camphorati–Stauracanthetum spectabilis Limonio insignis–Lygeetum sparti (12)Thymo lotocephali–Coridothymetum capitati Wahlenbergio–Loeflingietum pentandrae (12b)Tuberario majoris–Stauracanthetum boiviniiUlicetum erinacei 13. M S

Matorral scrub:11. M–Monchiquense Sector Lepidio subulati–Teucrietum balthazaris (13a)Silicicolous scrub: Teucrio webbiani–Helianthemetum origanifolii (13a)Ericetum australo–andevalensis (11b)

Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928