aquaknight_training_courses.pdf - ENPI CBC Med

404
D3.1 - Compilation of training courses material Confidential AQUAKNIGHT ENPI CBC Mediterranean Sea Basin Programme AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin AQUAKNIGHT Compilation of materials used in the training courses given to the participating water operators Deliverable n. D3.1 Compilation of materials used in the training courses given to the participating water operators Task 3 Capacity Building Editor(s) Alessandro Bettin, Daniela Sacchiero (SGI) Status Final Distribution Confidential (CO) Issue date 23/01/2015 Creation date 12/12/2014 ENPI CBC Mediterranean Sea Basin Programme Promotion of Environmental Sustainability at the basin level Measure 2.1

Transcript of aquaknight_training_courses.pdf - ENPI CBC Med

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

ENPI CBC Mediterranean Sea Basin Programme

AQUA KNowledge and Innovation transfer for water savinG in tHe

mediTerranean basin

AQUAKNIGHT

Compilation of materials used in the training courses given to the participating

water operators

Deliverable n. D3.1 Compilation of materials used in the trainingcourses given to the participating wateroperators

Task 3 Capacity Building Editor(s) Alessandro Bettin, Daniela Sacchiero (SGI) Status Final Distribution Confidential (CO) Issue date 23/01/2015 Creation date 12/12/2014

ENPI CBC Mediterranean Sea Basin Programme Promotion of Environmental Sustainability at the basin level Measure 2.1

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

Introduction

A major component of the Aquaknight project focuses on building the capacity of technical staff

of the water companies involved in order to promote water saving and water demand management

as well as transfer the knowledge from the EU Partners to the Mediterranean ones on best practice

and state-of-the-art techniques for efficient water management.

Nine training sessions were planned throughout the project: six sessions in the Mediterranean

partner countries – i.e. Alexandria in Egypt, Aqaba in Jordan and Tunis in Tunisia – and three

sessions in the European countries – i.e. Genova and Palermo in Italy, and Lemesos in Cyprus.

Each training session addressed specific topics related to leakage detection technologies and water

resources management practices.

The water operators in the EU – i.e. IREN and WBL Lemesos – were given three training

courses.

The first one held in Genova in September 2012 was focused on new tools such as the AMR

systems (Automatic meter reading). AMR is the technology allowing for automatically collecting

consumption data from water meters and transferring that data to a central database for billing,

troubleshooting, and DMA leakage analyzing. This technology mainly saves utility providers the

expense of periodic trips to each physical location to read a meter. Another advantage is that billing

can be based on near real-time consumption rather than on estimates based on past or predicted

consumption.

The second course held in Lemesos in July 2013 addressed the international best practice (IWA) for

water loss and DMA management, benchmarking and performance indicators for physical and

apparent losses. The session introduced the practice of pressure management which is highly

recommended by IWA to reduce leakage. By managing system pressures to the optimum levels of

service the water operator ensures sufficient and efficient supply to legitimate uses and consumers

while reducing unnecessary or excess pressures which causes the distribution system to leak.

A 2nd bis training course was conducted in Genova in November 2013. This supplementary session

was organized for the benefit of IREN’s staff that could not participate in the training course held in

Lemesos. The course was focused on advanced leakage control technologies, such as pressure

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

management, management of commercial losses, leakage calculation in a DMA using water balance

& MNF, water balance using statistic methods.

The third and final training course was carried out in Athens in November 2014. During this session

the final project results were presented along with real case applications of innovative leakage

detection technologies.

The water operators in the Mediterranean Partner countries – i.e. Alexandria Water Company,

Jordan Water Company and SONEDE - were given six training courses: three had the same

contents as the ones provided to EU water operators. The other three were aimed at reinforcing their

knowledge about best practice methodologies and technologies for improving system efficiency.

The focus was placed on innovative tools to measure non-revenue water –i.e. water balance,

leakage performance indicators, active leakage control through DMA implementation, asset

management techniques. Water audit procedures were introduced, explaining the two levels of an

audit exercise: (i) the Top-Down approach based on the desktop process of gathering existing

information and (ii) the Bottom-Up approach validating the top-down approach with actual field

measurements (DMA night flows).

The issue of the cost-effectiveness of a leak intervention was also addressed during the second

training course through the presentation of the method for calculating the economic level of leakage

(ELL). The ELL method enables water operators to estimate which is the optimal level of leakage,

the cost to achieve it and how big is the expected benefit in terms of reduced water leakage.

The training seminars included the presentation of the benchmarking process based on the

comparison of organization's practices and performance against those of others in order to improve

productivity and control efficiency.

Apparent losses and tests on meters accuracy, including laboratory bench test, were discussed

during the training course held in Aqaba in December 2012. The use of UFR (Unmeasured Flow

Reducer) for enhancing water metering was introduced. The UFR allows low-flow water to be

captured and forced i through the meter in a way that causes nearly every drop to be registered. An

overview of the impacts of private storage tanks on water metering was also provided.

A summary of the training courses carried out in the EU and Mediterranean Partner Countries is

shown in the tables below.

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

Training courses held in the EU partner countries

No. Meeting’s venue Date Topic Participants number

1 Genova, Italy 19-20 Sep 2012

Advanced Leakage Control Technologies • Water Audit – AWA methodologies and.

Autoleak • Presentation of AMR equipment • Tests for measuring administrative losses

- UFR installation - impact of private storage tanks on

water metering - customer demand pattern

18

2 Lemesos, Cyprus 17 July 2013 Advanced Leakage Control Technologies • Management of Commercial Losses

- Effect of private tanks : test 2 - Consumption profiles: test 3 - Effect of UFR : test1 • Leakage Calculation in a DMA using

Water Balance & MNF • Pressure Management • Smart water meters

24

2 bis

Genova, Italy 28 Nov 2013 Advanced Leakage Control Technologies • Best Practices for Water Loss and Pressure

Management • Management of Commercial Losses • Leakage Calculation in a DMA using

Water Balance & MNF • Water Balance Calculation using statistic

methods • ICT for water efficiency

23

3 Athens, Greece 20 Nov 2014 Final Project results and tools for Water Loss Management • Calculation of apparent losses : results

from all pilot projects • Users consumption profiles: analysis of

results • software for leakage audit and DMA

management • EasyCalc: AWC real application case • Good Practices on Leakage Reduction and

IREN Reggio Emila case study • How a GIS-coupled model can be used for

operation, planning and design

29

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

Training courses in the Mediterranean Partner Countries

No. Meeting’s venue Date Topic Participants number

1 Alexandria, Egypt 24-25 Apr 2012

Water Balance IWA international Standard Application of Water Balance Calculation Measurement and Estimate of Water

Balance components

25

2 Tunis, Tunisia 27-28 Jun 2012

Leakage Control Technologies Economic Level of Leakage - ELL Benchmarking Best practices for DMA set-up and

management

22

3 Aqaba, Jordan 10-11Dec 2012

Tests for evaluation of commercial losses & AMR

Administrative losses and tests on meters accuracy. Laboratory bench tests.

Enhancement of water metering by UFR Assessment of the impact of private storage

tanks on water metering Automatic Meter Readers - AMR

23

4 Alexandria 14 May 2013 International Best Practices Definition of a leakage management

strategy Leakage estimate with water balance Leakage measurement with Minimum

Night Flow Leakage performance indicators

24

5 Tunis 10 Dec 2013 Advanced Leakage Control Technologies Water audit: top-down vs. bottom-up

approach District Metering Area implementation International Best Practice for Pressure

Management Identifying and controlling apparent losses

21

6 Aqaba 20 May 2014 Project results in the MPC Presentation of project results in the pilot

sites of the Mediterranean Partner Countries

28

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

EU TRAINING COURSES

1. IREN, Genova – 19 and 20 September 2012

2. WBL, Lemesos – 17 July 2013

2 (bis) IREN, Genova – 28 November 2013

3. ICCS, Athens – 20 November 2014

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

TRAINING COURSE on “International Best Practice and applications”

IREN Acqua Gas, Genova 19 – 20 September 2012

1st day: Wednesday 19th September 2012

9:30 -10: 00 Welcome and Brief introduction to IREN by Nicola Bazzurro

10:00 -11:00 1st Session - Lecturer: Alessandro Bettin from SGI Topic : AWWA Methodologies

11: 00 – 11: 30: Coffee break

11:30 – 12:30:2nd Session- Lecturer: Alessandro Bettin from SGI. Topic: The AUTOLEAK Project

12:30 - 13:00: Questions and discussion about the morning sessions

13: 00 – 14:30: Lunch

14:30 – 15:30:3rd Session- Lecturer: Marios Milis from SG. Topic: General presentation of AMR

equipment

15:30- 16:00: Coffee break

16:00 – 17:00: 4th session – Lecturer: Marios Milis from SG. Topic: Real applications of AMR

17:00 – 17:30 Questions and discussion about afternoon sessions

2nd Day – Thursday, 20th September 2012

9:30 – 10:30 5th Session. Lecturers: Vincenza Notaro (UNIPA) and Marco Fantozzi (IREN)

Topic: Tests for measuring administrative losses

10:30 -11:00 Coffee break

11:00 – 13:00 Technical visit by Mediterranea delle Acque – Saster Division – Punta Vagno Plant

13:00 – 14:30 Lunch

14:30 – 16:00 Discussion about application of AQUAKNIGHT technologies in the pilots

Training SessionGenova, Iren Congress Centre, 19th– 20 Sept 2012

WATER RESOURCES AND WATER RESOURCES AND SUPPLYSUPPLY DEMAND MANAGEMENT:DEMAND MANAGEMENT:SUPPLYSUPPLY--DEMAND MANAGEMENT:DEMAND MANAGEMENT:

THE EXPERIENCE OF THE EXPERIENCE OF THE GENOA DISTRICTTHE GENOA DISTRICTTHE GENOA DISTRICTTHE GENOA DISTRICT

Francesco Perasso Member of Mediterranea delle Acque Board of Management Iren Group

1

Iren Group

1

Waterworks History (1/2)

1600Building of the waterworks “Civico Acquedotto”Main water supply source “Presa Schiena d’Asino”

18151815

2

CongressCongress ofof Vienna Vienna LackLack ofof infrastructuresinfrastructures

18501850The The newnew waterworkwaterwork NicolayNicolayThe first private The first private waterworkwaterwork in Italyin ItalyMainMain water water supplysupply source “source “Drenaggio dei Giovi” Drenaggio dei Giovi”

Genoa Waterworks History (2/2)

18801880The The newnew waterworkwaterwork De Ferrari De Ferrari -- GallieraGallieraMainMain water water supplysupply source “Laghi del source “Laghi del GorzenteGorzente””

1930 1930 -- 19351935

3

Building Building ofof the the waterworkwaterwork ““Acquedotto Acquedotto ValVal Noci”Noci”MainMain water water supplysupply sourcesource ““Lago dei Lago dei ValVal Noci” Noci”

1950 1950 -- 19611961ConstitutionConstitution ofof “Azienda Municipalizzata Gas Acqua”“Azienda Municipalizzata Gas Acqua”Building Building ofof the the waterworkwaterwork “Acquedotto “Acquedotto BrugnetoBrugneto””MainMain water water supplysupply source “source “Lago del Lago del BrugnetoBrugneto” ”

The three waterworks in Genoa

Genova Acque

Nicolay

D F i G lli

50 M m3/year

20 M m3/year

45 M 3/

Water distributed

4

De Ferrari Galliera 45 M m3/year

Water supply sources

5

The water supply system

Brugneto reservoir

1963

cap. 25,000,000 m3

Val Noci Reservoir

Scrivia river intake

1854

cap. 50,000 m3/dBusalletta reservoir

1975

cap. 4,500,000 m3

Genova Acque

De Ferrari Galliera

Nicolay

6

Bisagno intake

1955

cap. 38,000 m3/d

1932

cap. 3,300,000 m3

Trebisonda and Giusti

Wells

cap. 35,000 m3/d

Voltri and Polcevera Wells

cap. 100,000 m3/d

Leiro and Cerusa Intake

1925

cap. 50,000 m3/d

Gorzente reservoir

1880

cap. 12,000,000 m3

2006 Merger

Genova Acque

7

De Ferrari – Galliera (ADFG)

Nicolay

2006 Mediterranea delle acque

1

Where we are

8

Technical data

MediterraneaMediterranea delledelle AcqueAcque Served inhabitants: 700,000 Served inhabitants: 700,000 Water distributed: 100,000,000 Water distributed: 100,000,000 cu.mcu.m Employed staff: 480 peopleEmployed staff: 480 people Turnover: 120,000,000 EuroTurnover: 120,000,000 Euro Expected Investments for Expected Investments for 2012: 2012: 10,000,000 Euro10,000,000 Euro

9

Water supply Artificial lakes : 7 Network: 2700 km Treatment plants: 7 Pumping stations: 174 Reservoirs: 476 Hydroelectric plants: 8 Energy Production: 65GWh

Sewage system andwastewater treatment plants

Drainage network: 2300 km Pumping stations: 143 Wastewater treatment plants: 33 Imhoff tanks: 176

Action plan

Need for a globalNeed for a globalaction planaction plan

PossiblePossible solutionssolutions

10

new strategic worksnew strategic works

BetterBetter management in management in ordinaryordinary and and emergencyemergency situationssituationsActualActual water water sharingsharing duringduring criticalcritical eventsevents

interconnectionsinterconnections

Water Supply systems

11

Joint supply system

12

Strategies

Optimization of resourcesaimed at increasingexploitation of water intakes

13

exploitation of water intakesinstead of reservoirs

Homogenization ofmanagement of water resources

1

Interconnection points

14

Joint supply system

15

Actions achieved

Network pressure homogenization

Exploitation of connections of AP Nicolay and ADFG Gorzente

Network extension in the western part of the city (Voltri)

Accomplishment of a large number of connections between the ADFG Voltri and the BP Nicolay networks

16

Upgrade of the pumping station in the Polcevera river

Adaptation of the Nicolay networks with the piezometricline of Voltri

Adaptation of the Gorzente network with the piezometricline of AP Nicolay (140 m)

Accomplishment of less important connections

Data acquisition and monitoring system for 11 plants

Operational Results

During maintenance works of Gorzente lake, we manage to save 7 M cu.m. from this reservoir The network asset is now more efficient and the impact on the served inhabitants was minimizedIn the 2007 the energy saving, vs 2006, was about 5M of kWh, that means 500,000 € in economic termsIn the first period of 2008 (January-April) the energy saving, vs the same period in 2006 was about 4M of kWh that means 400 000 € in economic

17

period in 2006, was about 4M of kWh that means 400.000 € in economic terms

The Specific Energy (energy consumption/water distributed) in 2006 was 0.67 kWh/cu.m.; after the new wells in the Val Polcevera area the Specific Energy decreased at 0.48 kWh/cu.m.; In 2007, the Energy production of the Nicolay hydroelectric plant increased of 800.000 kWh with respect to the previous year.

Water distributed vs energyconsumption

18

Energy consumption 2006-2007

1 000 000

1.200.000

1.400.000

1.600.000

Raffronto consumi energia 2006-2010

19

GEN

NAI

O

FEBB

RAI

O

MAR

ZO

APRILE

MAG

GIO

GIU

GNO

LUGLIO

AGOST

O

SETT

EMBR

E

OTT

OBR

E

NOVE

MBR

E

DIC

EMBR

E

TOTALE 2011

TOTALE 2010

TOTALE 2009

TOTALE 2008

TOTALE 2007

TOTALE 2006

-

200.000

400.000

600.000

800.000

1.000.000

TOTALE 2011 TOTALE 2010 TOTALE 2009 TOTALE 2008 TOTALE 2007 TOTALE 2006

1

Annual precipitation

2000

2500

3000 Brugneto Gorzente Busalletta

20

0

500

1000

1500

media 2002 2003 2004 2005 2006 2007

Energy production

Green Green certificatescertificates encouragedencouragedmanagersmanagers toto implementimplement hyropowerhyropowerproductionproduction exploitingexploiting eveneven low low availableavailable headsheads in in thrthr frameworkframework ofofexistingexisting plantplant revampingrevamping or or newnew

21

gg pp p gp ginstallationsinstallations..

BUSALLETTAMax Invaso 443 mCapacità 4,58Mm³

BUSALLA400 KW

PRESA T.SCRIVIALiv. 355 m

Mediterranea delle Acque in The European Framework

EU companies have a basic role in the definition of EC Framework Programmes;

In this framework the EU Commission has decided to launch the Technology Platforms in order to

RESEARCH ACTIVITY AND WSSTP

22

assess the emerging research needs expressed by water utilities:

The WSSTP – Water Supply and Sanitation Technology Platform has been established toprovide input for EC R&D programme on different topics related to the management of water services

WSSTP Emerging Priorities

1 - Urban flooding; 2 - Asset management; 3 - Supply/demand balance; 4 - Sludge management; 5 – Sensors;

23

6 - Drinking water treatment

The proposals defined by the WSSTP partners are included by the Commission in forthcoming Calls for proposals. Participation in the platform can also be considered as a first step to develop potential research partnerships.

AQUANIGHTQ

Leakage Control in Water Distribution Systems 

Water Audit and Leakage TargetsWater Audit and Leakage TargetsAWWA/IWA approach

Genova 19‐20 September 2012

Alessandro Bettin

1

Why reduce leakage?Why reduce leakage? Reducing leakage we make extra

water available where it is needed

Reducing Leakage we limit the investment for new plants, new pipes, new water resources. We just use the fresh water that we are wasting

Reducing Leakage we reduce energy consumption

Water Audit and Loss Control: Specific BenefitsWater Audit and Loss Control: Specific Benefits

• Reduced apparent losses

• Reduced Real Losses

• Improved data integrity

• Better use of available water resources

• Increase knowledge of the distribution network

• Increased knowledge of the billing system

3

Pressure Management

PressureManagement

Speed and quality

of repairs

Active Leakage

E.A.R.L. = Economic or Optimal Level of Leakage

UARLUnavoidable Leaks

Active Leakage

Speed and Quality of

The 4 fundamentals Actions for leakage

reduction and control

4

© WRP (Pty) Ltd, 2001

Potentially Recoverable Real Leaks

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Pipeline and Asset

Management Maintenence Replacement

Renewal

of repairsControl

LeakageControl

Quality of Repair

CARL – Real Losses

Quick and Quality RepairsQuick and Quality Repairs

• To minimize Leakage run time

• To improve leakage detection, location and repairing processesActiveRepair

5

• To improve repair quality

• Leakage data-base

Active LeakageControl

Repair Quickness and Quality

Reduce Leakage Run TimeReduce Leakage Run Time

LEAKAGE RUN TIME

flow

(Q)

Volume loss from Leakage = R+ L+Re

V = (tR+tL+tRe) x Q

6

R L Re

Wat

er

LEAKAGE RUN TIME = Report + Location + Repair

Time (t)

Reduce time between leaks detection exerciseReduce time between leaks detection exercise

7

Understand the effect of conducting more frequent leakage surveys and repairing leaks more quickly

1

Pressure ManagementPressure Management

Pressure M t

Pressure

• The main objectives of pressure management are: Reducing losses from existing and future leaks and

bursts;

Reducing the frequency of bursts.

• There are some secondary benefits, although

8

Managementmanagement

There are some secondary benefits, although schemes are rarely implemented solely in order to achieve them: Reducing pressure to customers;

Reducing the pressure variations to customers;

Benefits of Pressure ManagementBenefits of Pressure Management

• Due to pressure control, minimum level of leakage decreases permanently

• Immediate, fast and cost effective result

Asset Management Techniques Asset Management Techniques

• Detailed GIS (interventions, leakage, consumption etc.)

• Database of interventions

• Specifications for Design and Materials

Pipe Materials Management:

Pipeline and Asset

10

Materials

• Standards for maintenance interventions

• Leaks map

gselection,

installation,maintenance,

renewal,replacement

Asset Management Maintenence Replacement

Renewal

Active Leakage Control ‐ ALCActive Leakage Control ‐ ALC

• District Metering

• Leakage estimation with Minimum Night Flow

• Leakage location with acoustic equipment

Speed and qualityActive

11

equipment

• Measure of water recovery and setting of the “Target” level

• Calculation of Economic Leakage 

Level (ELL)

qualityof repairsLeakage

Control

Traditional Approach to leakage Traditional Approach to leakage 

• Leaks detection along the entire network (“carpet” detection)

• Sector by sector each part of the distribution network is 

analyzed with acoustic equipment

• No measurements

• No districts

• No water auditing

• No analysis of priority 

Recovered volume trough traditional Recovered volume trough traditional leakage detectionleakage detection

Non Revenue Water(m3/year)

Added volume recovered throughAdded volume recovered throughactive monitoring and controlactive monitoring and control

BEFORE LEAKS DETECTION

Active Leakage Control - BenefitsActive Leakage Control - Benefits

00 TTProject duration

active monitoring and controlactive monitoring and control

AFTER LEAK REPAIR

1

AWWA (American Water Works Association)/IWA WATER AUDIT AND LOSS CONTROL PROGRAMME

Manual M36

AWWA (American Water Works Association)/IWA WATER AUDIT AND LOSS CONTROL PROGRAMME

Manual M36

14

Manual M36Manual M36

The two levels of AuditThe two levels of Audit

• Top‐Down approach Initial desktop process of gathering existing 

information

12 month period recommended to include seasonal 

variation

• Bottom‐Up approach Validating the top down approach with actual field 

measurements (DMA night flows), inspection of 

customers to evaluate apparent losses

15

Minimum Night FlowMinimum Night Flow

Leakage = MNF (measured) – Legitimate Night Consumption (estimated) - Special Users Consumption (measured)

16

Legitimate Night Use

Excess Losses

Special Users

Leakage = Background Losses + Excess Losses (recoverable)

Background Losses

Domestic DemandDomestic Demand

• Average Domestic Consumption from international 

experiences = 140 ‐ 150 l/inh./day

• Legitimate Night Consumption (LNC) = Average 

Consumption X Night FactorConsumption X Night Factor

• Domestic Night Factor = 0,15 – 0,25

• In UK, LNC estimation = 0,6 l/person/hour 

17

AWWA Water  AuditAWWA Water  Audit

• To download the AWWA Free Water Audit 

Software

http://www.awwa.org/Resources/WaterLossCont

l f ?I N b 47846& I N b 4rol.cfm?ItemNumber=47846&navItemNumber=4

8155

18

Identify System Input Boundary (1)Identify System Input Boundary (1)

• System boundaries for a water audit conducted on a 

whole sale transmission water system 

19

1

Identify System Input Boundary (2)Identify System Input Boundary (2)

• System boundaries for a treated water distribution system 

20

Identify System Input Boundary (3)Identify System Input Boundary (3)

• System boundaries for a discrete pressure zone or DMA

21

Metering Location in water Supply SystemsMetering Location in water Supply Systems

Water Source (untreated water)

Measure withdrawal or abstraction of water from rivers, lakes, wells, or other raw water sources

Treatment Plant or Works Process metering at water treatment plants; metering may exist at the influent, effluent, and/or locations intermediate in the process

Distribution System Input Volume

Water supplied at the entry point of water distribution systems; either at treatment plant, treated water reservoir, or well effluent locations

22

District Metered Areas Zonal metering into portions of the distribution system being supplied different pressure. Also includes metering at major distribution facilities such as booster pumping stations, tanks, and reservoirs.

Distribution System Pressure Zones

Discrete areas of several hundred to several thousand properties used to analyze the daily diurnal flow variation and infer leakage rates from minimum‐hour flow rates

Customers Consumption meters at the point‐of‐end useBulk Supply Miscellaneous Import/Export meters to measure bulk purchases or salesMiscellaneus Capture use of water from fire hydrants, tank trucks, or other 

intermittent use

AWWA Water Audit - Water BalanceAWWA Water Audit - Water Balance

Filled automatically from the “Reporting Worksheet”

AWWA Water Audit - Reporting WorksheetAWWA Water Audit - Reporting Worksheet

24

Step by step water auditStep by step water audit

• Measure Water Supplied to the Distribution

• Quantify billed authorized consumption

• Calculate NRW = Volume Supply –Authorized Consumption

• Quantify Unbilled Authorized Consumption

• Quantify Water Loss (real + apparent) = NRW – Unbilled A th i d C tiAuthorized Consumption 

• Quantify Apparent Losses

Customer meter inaccuracy

Unauthorized Consumption

• Quantify Real Losses (Water Loss – Apparent Losses)

• Assign Cost of Apparent and Real Losses

• Calculate Performance Indicators

25

1

Measure Water Supplied to the DistributionMeasure Water Supplied to the Distribution

• Measure water supply to the distribution volume

Check meters error with the installation of a portable 

flow meter in series (ultrasonic clamp‐on)

Check meters with pump efficiency tests

26

Quantify billed authorized consumptionQuantify billed authorized consumption

• Billed authorized consumption is the basis for revenue generation in a water utility

• Provide a water meter to all individual customers

Manual reading or AMR

• Maintain customer account data

• Compile metered consumption volume per 

category (industrial, commercial, domestic)

• Adjust for lag time in meter reading

27

Quantify Unbilled Authorized Consumption (unmetered)Quantify Unbilled Authorized Consumption (unmetered)

• Fire fighting and training

• Flushing water mains, storm inlets, culverts, and sewers

• Street cleaning

• Landscaping/irrigation in public areas, landscaped highway 

medians, and similar areas

• Decorative water facilities

• Construction sites: water for mixing concrete, dust control, 

trench setting, others

• Water consumption at public buildings not included in the 

customer billing system

28

Quantify Apparent LossesQuantify Apparent Losses

• Estimate customer meter inaccuracy

• Test residential meters

50‐100 sample on test bench or on field

• Calculate total customer consumption error• Calculate total customer consumption error

calculation of the Average Weighted Error (AWE)

• Estimate systematic data handling error

Error in manual reading, failure AMR transmission, 

broken meters not recognized

29

Quantify Apparent LossesQuantify Apparent Losses

Test Flow Rates, l/h Mean Registration, %

Low (55.0) 88.0

Medium (454.0) 95.0

High (3400.0) 94.0

Meter testing data for random sample 50 meters – County Water Company USA

30

Percent of Time Range, l/h % Volume

15 Low (113-227) 88.0

70 Medium (227-2270) 95.0

15 High (2270-3400) 94.0

Weighting factors for flow rates for 5/8‐in and ¾ in – County water Company USA

Assign Cost of Apparent and real lossesAssign Cost of Apparent and real losses

• Apparent Losses: water used but not paid Cost = Retail cost of water

Different cost per category (3‐4 cat. Maximum)

Sometimes sewer charge is included based on water 

consumption

• Real Losses Cost = Marginal Cost of water

Treatment (chemicals, power) + delivery (pumping 

power cost) + import

31

1

Calculate Performance IndicatorsCalculate Performance Indicators

PI Type PI Number Explanation

Operational Op 23 Water losses per connection (m3/connection/year) – urban 

distribution systems

Operational Op 24 Water  losses per mains length (m3/km/day) – systems with low 

service connection density 

Financial Fi 46 Non revenue water by volume (%)

32

PI Type PI Number Explanation

Operational Op 25 Apparent losses (% of the system input volume) 

Operational Op 27 Real losses per connection/day (when system is pressurised 

appropriate for urban distribution systems)

Operational Op 28 Real losses per mains length/day (when system is pressurised, 

appropriate in systems with low service connection density)

Guidelines for calculation of Policy MinimumGuidelines for calculation of Policy Minimum

• Policy minimum leakage estimates should be based on company 

specific DMA data.

• The policy minimum level of leakage should accurately reflect the 

lowest level of leakage which can be achieved in each DMA through 

intensive active leakage control using conventional active leakage 

control methods, current technology and ‘reasonable’ effort.control methods, current technology and  reasonable  effort.

• Meters should be reliably sized and calibrated in order to record minimum flows.

• Use standard procedures for calculating leakage from night flows.

• Minimum levels should be updated if verified lower leakage levels are achieved in a particular DMA or if there is a change in policy that 

would affect the policy minimum.

33

Policy Minimum based on ILI – AWWA guidelines (1)Policy Minimum based on ILI – AWWA guidelines (1)

• Calculate Real Loss (CARL)

• Calculate ILI (CARL/UARL)

• Set ILI target based on AWWA guidelines

Based on available water resources, operational and , p

financial (cost of water)considerations

• ILI target Range: 1.0‐3.0; 3.0‐5.0; 5.0‐8.0; >8.0

34

Policy Minimum based on ILI – AWWA guidelines (2)Policy Minimum based on ILI – AWWA guidelines (2)

• Estimate potential saving to reach the target 

• Calculate cost of intervention to reach the target

• Value leakage at the variable production cost of th t 3 f tthe next m3 of water

Chemicals costs + deliver costs (pumping power costs)

• If water scarcity: value leakage at the retail cost of water

35

Policy Minimum based on ILI – AWWA guidelines (3)Policy Minimum based on ILI – AWWA guidelines (3)

• Quick procedure to set an initial budget for leakage reduction

• If cost of intervention is lower than initial budget (value of water recovery) the intervention is 

worthwhile

• Interactive process ‐ Initial targets are usually revised after first leak detection program

36

Calculation of Leakage TrendCalculation of Leakage Trend

• Without any leak repairs leakage increase continuously

• Leakage Trend depends on pressure, network age, 

network operation

Natural Increase of Leakage measured with MNF

1

Impact of NRR on detection costsImpact of NRR on detection costs

38

Important to determine the right NRR for each areaContinuous and reliable Monitoring of MNF is necessary

Managing DMAManaging DMA

Marginal Cost of water Vs. ELL targetMarginal Cost of water Vs. ELL target

40

Data validationData validation

• The AWWA Water Loss Control Committee's free Water 

Audit Software, includes a data grading capability to 

weigh the validity of the water audit data. 

• it is important that water utilities assess both the output 

d t d th d f fid f th d tdata and the degree of confidence of the data. 

• The higher the level of confidence or validity of the data in 

a water audit, the greater is the level of confidence in 

devising the particular loss reduction strategies.

• Improve data quality trough bottom‐up approach

41

42

AWWA Simplified water audit ExampleAWWA Simplified water audit Example

43

1

AWWA Simplified water audit ExampleAWWA Simplified water audit Example

44

AWWA Simplified water auditAWWA Simplified water audit

45

46

www.autoleak.euwww.autoleak.eu

Autoleak - A tool to decide if, when and where leakage detection is worthwhileleakage detection is worthwhile

Eng. Alessandro BETTIN

1

Projected Water Scarcity in 2025

Permanent sectors

Closed boundary

Leakage Control System is Widely Known

Single supply pipe

Flow meter on inlet

Quantify leakage in each DMA

Locate leaks

So why is leakage so high ?

Lack of priority for leakage

Insufficient Staff

Time consuming analysisg y

Effort directed to emergencies

High Investment needed

LEAKAGE ENGINEER’S DREAM ?

FIND LEAKS AUTOMATICALLY !AUTOMATICALLY !

Every day for every DMAEvery day for every DMALeakage Analysis

Extract minimum night flow

Subtract Customer Consumption

Quantify Leakage

SolutionSolution –– Automate the processAutomate the process

Assess if leakage increasing

Decide if worthwhile to locate and repair leaks

1

AUTOLEAK 

Determines current recoverable leakage

Extrapolates rate of rise form historical datap

Quantifies value of predicted lost water

Compares with cost of intervention

Decide if worthwhile to intervene

Automatically for every DMAAutomatically for every DMA

Different characteristicsDifferent characteristics

ELEMENT ANCONA NICOSIA COMMENTS

Tipology of Area hilly flat AMR transmission

Type of customer domestic industrial demand profile

Pilot Application

Type of customer domestic industrial demand profile

Source surface water desalination scarcity of resource

Production cost low high economics of intervention

Environmental impact medium high benefits of intervention

Import Manager (Imports monitoring data)

Flow data- Flow / time- Reference data

Pressure data- Pressure / time- Reference data

Noise data- Noise Loggers data- Reference data

Reported leaks- Custoners’ claims (leak, pressure loss, etc.)- Refernce data

AUTOLEAK StructureAUTOLEAK Structure

AMR data- Consumption / time- Reference data

AREA DMA

Leak location module

Leakage Detection (Noise Loggers)

Leak repairs module

Leakage calculation

COST-BENEFIT ANALYSIS

Estimation of Water Recovered

Estimation of Intervention Cost

Geodatabase – ArcGIS

Quality control of data

Intervention (YES)

Leakage and Intervention Database

Calculation of Leakage Trend

Without any leak repairs leakage increase continuously

Leakage Trend depends on pressure, network age, network operation

Natural Increase of Leakage measured with MNF

AUTOLEAK – Operative Principle

Intervention if V > X

AUTOLEAK – Water Recovery Calculation 

Time (d) = LeakRec/Trend

T d (l/ /d)eak

Rec

(l/s)

m3

Volume Recovered = = LeakRec x Time x 0,5 /1000 x 3600 x 24

Trend (l/s/d)Le

1

Leakage Calculation – AMR

CASE 1 – AMRLeakage = AI – AMR

Where

AI = Average Inflow (l/s)

AMR= Average Users’ Consumption from AMR (l/s)

Leakage Calculation – NO AMR

CASE 2 – NO AMRLeakage = MNF – LNC

WhWhere

MNF = Minimum Night Flow (l/s)

LNC = Legitimate Night Consumption (l/s) = Average daily consumption (l/s)* x Night factor**

* From Utility Billing Database

** From literature or field measurements (0.15 - 0.20 for domestic users)

Leakage Calculation – Discontinuous Supply

CASE 3 – Discontinuous SupplyLeakage = Real Losses* *from IWA water balance

How to start – Create AREAS and ZONES

The AREA is the higher level of managed networkCity, Town, Province, wide distribution network

The ZONE is the lower level of the managed networkDMA, Distribution Area, Macroarea, Service Reservoir Area

How to start ‐ Data Necessary

For each ZONE basic data have to be input

Static Data

Operational data

Financial data

Data Insertion ‐ Bulk Flow Meters

Uploading data of all bulk meters in the AREADMA inlets, Reservoirs exit, PS outlets

1

Data Insertion ‐ Bulk Flow Meters

Location

Type, diameter

Recorded data

Data Insertion ‐ Bulk Flow Meters

Zone flow meter selection

Calculation of Cost of Intervention

Average Recovered Flow per Leak

Calculation of number of leaks to be repaired

Average Intervention Cost (leakage detection + repair)

Hi t i lHistorical Intervention

Real Data from DMA

Parametric data from similar case studies

YESYES NONO

Historical Cost of Intervention

Real Data from past interventions

Calculation of Cost and Water Recovery of past leakage intervention

Cost Estimation of future intervention based on the expected water recovery

Assessment of economic convenience

Total value of the recovery (V)

Estimated cost of intervention (X)

if V>X, the intervention will be worthwhile

Priority = (V-X)/km

Autoleak DMS – DMA flow, leakage and trend

1

Autoleak DMS – Cost Benefit Analysis Calculation Table

Automatic Import Service AUTOLEAK Control Panel

Silverlight Monitor

Daily Updated for all DMAs

AUTOLEAK Control Panel

For each DMA - Graphs of flow, consumption and leakage

Ancona Pilot Area (Multiservizi SpA ‐ Italy)

Qin

Mean Pressure: 55 mReservoir Level: 140 mMin. Ground Level: 56,9 mMax. Ground Level: 74 mWater mains length: 1,9 KmMains Material: Steel, Cast Iron, PVCNumber of consumer meters: 325Number of bulk meters: 1

1

Ancona Pilot Area ‐ AMR Ancona Pilot Area – AMR Transmitters

Ancona Pilot Area AMR – Connected Devices

Bulk MeterBulk MeterNoise LoggersNoise Loggers

Users’ MetersUsers’ MetersAMRAMR

Ancona AMR output

Hourly Users’ ConsumptionDaily Users’ Consumption

Bulk Flow MetersNoise Loggers

Noise Loggers Data Analysis – Leak Alarm

ak R

epai

rLe

Grafico Potata Distretto Posatora

1

Ancona AMR – Hourly Pattern

1,21,41,61,8

2Domestic Consumption Pattern

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Nicosia Pilot Area (WBN‐ Cyprus)

• Mean Pressure: 17.5 m• Reservoir Level: 349 m• Min. Ground Level: 320 m• Max. Ground Level: 338 m• Water mains length: 3.5

Km• Mains Material: AC• Number of consumer

meters: 86• Number of bulk meters: 4

(2 inlets and 2 outlets)

AMR customer meters assembly ‐ NICOSIA

Self Powered Concentrator

(Wind & Solar)

AMR export data for Nicosia

Date and time Pulse Value Unit Time difference Pulse differValue differ31/5/2012 14:58 225840 226478 l 6.2308 84 84

31/5/2012 8:44 225756 226394 l 6.2297 420 42031/5/2012 2:30 225336 225974 l 0.0003 0 031/5/2012 2:30 225336 225974 l 6.1531 0 0

30/5/2012 20:21 225336 225974 l 0.0003 0 030/5/2012 20:21 225336 225974 l 6.1786 14 1430/5/2012 14:10 225322 225960 l 12.3611 518 518

30/5/2012 1:49 224804 225442 l 0.0003 0 030/5/2012 1:49 224804 225442 l 6.2269 0 0

29/5/2012 19:35 224804 225442 l 6.2039 0 029/5/2012 13 23 224804 225442 l 6 2336 131 13129/5/2012 13:23 224804 225442 l 6.2336 131 131

29/5/2012 7:09 224673 225311 l 6.2281 17 1729/5/2012 0:55 224656 225294 l 0.0003 0 029/5/2012 0:55 224656 225294 l 6.1519 0 0

28/5/2012 18:46 224656 225294 l 6.1808 11 1128/5/2012 12:35 224645 225283 l 6.2081 16 16

28/5/2012 6:23 224629 225267 l 0.0003 0 028/5/2012 6:23 224629 225267 l 6.1542 8 828/5/2012 0:14 224621 225259 l 0.0003 0 028/5/2012 0:13 224621 225259 l 6.1783 0 0

27/5/2012 18:03 224621 225259 l 6.1572 1 127/5/2012 11:53 224620 225258 l 6.1853 0 0

Customization of Data Import

Automatic Import Service Advantages of Autoleak

Interfaces with all currently available technology including AMR

Data Integration

Economically based DSS which takes intoEconomically based DSS which takes into account the repair and replacement costs

Makes managing leakage almost fully automatic

Conclusions

Leakage is a problem in many parts of the world

Technology available to resolve the problem but too time-consuming

AUTOLEAK is the solution as it integrates existing technology with a DSS

AUTOLEAK allows to save investment focusing on interventions where the expected benefit is greater

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

1st training course EU countries SESSION 1 – Ad-Hoc Wireless Sensor Networks for integrated Management of Water Distribution Infrastructureintegrated Management of Water Distribution Infrastructure 19-20 September 2012, Genoa, Italy

Marios Milis

1AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Marios Milis

1

Contents

1. Wireless Sensor Networks (WSN) - Overview

2. WSN - Routing, Reliability and Power

Consumption

2AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

3. System Architecture

4. Wireless Sensor Networks in Management of

Water Distribution Infrastructure

Wireless Sensor Networks

3AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Overview

Short-range networks based on wireless mesh networking architectures have evolved to enable power efficient means for managing non-computer devices.

Self-organizing mesh network architectures have

WSN - Fundamentals

4AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

g genabled new wireless machine-to-machine applications

Wireless sensor networks can be designed in a variety of ways to address different priorities and make the appropriate technology trade-offs based on the requirements of the application

Low power consumption — To support long-term operationwith lightweight batteries such as a coin cell battery.

Ease of Use — The network protocol allows the sensor networkto initialize itself in a highly ad hoc, self-organizing manner

Scalability — The network must support the number of nodes

WSN - Fundamentals

WSN Common Requirements:

5AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Scalability The network must support the number of nodesrequired immediately and must also be able to support futuregrowth.

Range — It is more power efficient to emit low strength RFsingles to travel a short distance and be relayed a number oftimes than to transmit higher strength signals for longer range.Repeaters form a network using a protocol that supports multi-hop routing so that data packets can be relayed from onerepeater to another when the mobile RF terminal is far awayfrom the base station.

Responsiveness — Topology discover and re-discovery mustbe efficient, especially for applications where sensor nodes aremobile, such as in mobile machines or equipment or forwearable sensors

Bi-directional communication — Communication between the

WSN - Fundamentals

WSN Common Requirements:

6AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

gateway and sensor is bi-directional to enable the base stationto transmit signals to adjust certain operating parameters inaddition to receiving signals transmitting sensor data.

Reliability — While data reliability is always important, itbecomes a critical requirement for many applications, forexample in medical monitoring

A robust networking protocol is needed to support all the above requirements

Endpoints — Integrate with sensors and actuators to capturethe sensor data. Cannot forward network messages upstream ordownstream.

Routers — Extend network area coverage, route aroundobstacles, and provide backup routes in case of networkcongestion or device failure. In some cases, routers can also act

WSN – Components

7AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

g ,as endpoints.

Gateways — Aggregate the data from the network, interface tothe host, LAN, or the Internet, and act as a portal to monitorperformance and configure network parameters

System Software — provides the networking protocol to enablethe self-configuring, self-healing ad hoc network .

1

Topology refers to the configuration of the hardware componentsand how the data is transmitted through that configuration

WSN – Topologies

A. Star TopologyA star topology is a single-hop system inwhich all wireless sensor nodes are withindirect communication range to the gateway

8AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

direct communication range to the gateway.All sensor nodes are identical (endpoints)and the gateway serves to communicatedata and commands to the sensor endpointsand to transmit data to a higher-level controlor monitoring system. The endpoints do notpass data or commands to each others;

Very Low Power ConsumptionLimited Transmission Distance, no alternate communication paths

WSN – Topologies

B. Mesh TopologyMesh topologies are multi-hopping systemsin which all wireless sensor nodes areidentical (all routers) and communicate witheach other to hop data to and from thesensor nodes and the gateway. This is the

9AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

g ystandard XMesh configuration. The nodes ina mesh topology can also hop messagesamong other router nodes. allows a sensornetwork to be extended, in theory to anunlimited range

Highly fault tolerant, easy route reconfiguration

Increased latency

WSN – Topologies

B. Star-Mesh Hybrid TopologyIt takes advantage of the low power andsimplicity of the star topology, as well as theextended range and self-healing nature of amesh topology. Sensor nodes organised in astar topology around routers which, in turn,

10AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

p gy , ,organize themselves in a mesh network. Therouters serve both to extend the range of thenetwork and to provide fault tolerance. Sincewireless sensor nodes can communicatewith multiple routers, the networkreconfigures itself around the remainingrouters if one fails or if a radio linkexperiences interference

WSN – Basic Functionalities

Each Sensor Node acquires data from the surrounding environment using multiple sensors

Then all the data are transmitted to a central unit for further

11AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

processing Data transmission is performed

with multi-hop routingMain Objectives Decrease of power consumption leading to an extended range of life

and availability of each node Reliable and secure transmission of the gathered sensor data

towards a central database

WSN – Main Problems

Surrounding Environment (weatherConditions etc)

Network topology (Failed Sensor Nodes, cutpaths etc)

12AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Number of sensor nodes and powerconsumption

Volume of gathered and transmitted data Transmission means and packet loss rate. Other external factors (interference,

electromagnetic noise etc.)

The sensor nodes are easy to deploy, self-configure, and report into a database and graphical software package.

The system is flexible and open to the incorporation of new sensors with additional modalities.

A database can hold historical data of each parameter for long period, giving useful information.

WSN - Advantages

13AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

The whole monitoring process can be operated by a single person using only one PC. Graphic software can provide simultaneous analysis and charting of all these parameters.

The deployment of the System will be completely wireless. Adjustable sampling rates. Battery operation for at least one year Email or SMS alerts can be send when parameters get a value below

or above a pre-configured threshold.

1

Wireless Sensor Networks

14AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Routing - Reliability and

Power Consumption

WSN – Data Routing

B

15AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

The node A intends to discover a path towards the node B to transmit its data.

The node A sends a message towards all its neighboring nodes which also then send a message to their neighboring nodes

The node B replies back when receive the message.Minimum Power routing: Transmit a packet using the minimumcommunication power required to reach its destination.

A

Reliability in Data Transmission

A simple solution for increasing reliability:

In wireless connections, transmission errors occur very frequently. High data packet loss rate lead to decrease of the transmission level performance.

Several mechanisms exist to minimise data packet loss

When node B receive a data packet from node A sends an

16AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

A B C

When node B receive a data packet from node A, sends an Acknowledgment (Ack) package back to A. This approach has been used in several communication protocols.

If node A does not receive the Ack then it retransmits package

Power Consumption

Transmitting and receiving of data represent the majority of powerconsumption in a wireless network.

For example: The energy required to transmit 1 bit of data at adistance of 100 m = The energy required for the execution of 300commands (Pottie & Kaiser, 2000)

Main reasons for extra power consumption:

17AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Main reasons for extra power consumption: Collisions: Collisions between packets from neighboring nodes

require packets retransmissions Overhearing: Nodes receive packets which are not targeted for them. Control Packet Overhead: Many protocols require the transmission of

control packets. Idle Listening: Nodes are waiting to receive packets which however

never reach them.

Power Saving Strategy

Β

Every node keep its radiointerface in ‘Sleeping mode’ andactivate it ‘Wake up mode’ onlyin the case they participate intransmission or forwarding of apacket .

18AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Α

Wireless Sensor Networks

19AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

System Architecture

1

WSN - Architecture

Data Acquisition Network Base Station Controller

Wireless Network, (Wi-Fi, Bluetooth, Cellular

Network, GPRS, CDMA, GSM, 3G)

Sensor Nodes

Base Station

20AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Wireless Network, (Wi-Fi, Bluetooth, Cellular Network,

GPRS, CDMA, GSM, 3G)

Information Distribution Network

Mobile Phone Laptop SmartPhone

Gateway

WSN - Architecture

Data Acquisition Network Base Station Controller

Wireless Network, (Wi-Fi, Bluetooth, Cellular

Network, GPRS, CDMA, GSM, 3G)

Base Station

Water Meters Network

21AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Wireless Network, (Wi-Fi, Bluetooth, Cellular Network,

GPRS, CDMA, GSM, 3G)

Information Distribution Network

Mobile Phone Laptop SmartPhone

Gateway

Wireless Sensor Networks

22AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Main Components

WSN – Sensor Node

POWER

CPU

ELECTRO-MAGNETICINTERFACE

23AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

SENSOR

POWERSUPPLY

COMMUNICATION

NODE

WSN – Sensor Nodes

Iris Crossbow Nodes

24AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

AWAIRS I

WSN – Iris 2.4 GHz

25AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Iris Crossbow Nodes

Iris with MDA300Sensor interfacing board

1

WSN – Sensors Connections

26AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

WSN - Gateway

Application Subsystem

Data Acquisition/ Logger

SENSOR SENSOR SENSOR

Functionalities

• Acts as Wireless Sensor Node

• Able to store data in a database

Data Acquisition Platform

27AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Data Acquisition/ Logger

Power Supply

High Range Communication

Subsystem RF Transceiver

Low RangeGSM modemInter – Communication With Wireless Sensors

Base Station

• Able to connect and transmit data via a high range communication network (GSM/3G) to a remote server

WSN - Gateway

• 400MHz, PXA55 XScale processor • 64 MB SDRAM, 32 MB Flash • Iris mote, Ethernet, Serial, JTAG,

USB, PCMCIA, Compact Flash connectors

• 3.5 x 2.5 inches in size and low power

• Bluetooth (built in) WiFi(through

28AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

• Bluetooth (built in), WiFi(through PCMCIA and CFCard)

Wireless Sensor Networks in

29AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Management of WaterDistribution Infrastructure

To monitor an urban water distribution network for localizationand quantification of leaks, parameters such as water flow,pressure, soil moisture and acoustic noise should be collecteddirectly from sensors embedded in strategic places within thenetwork.

The wide area of an urban water pipe system and the cost

WATERSENSE – The problem

30AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

p p yrelated to the deployment of a wired sensor data acquisitionsystem prohibited the investigation of multi sensor systems foryears.

Wireless Sensor Networks (WSN) provide researchers withan easily deployable, scalable, flexible and relativelyinexpensive approach for real time distributed dataacquisition and monitoring.

WATERSENSE consists of tens of wireless nodes placed atvarious locations in the water distribution system, to collect andreliably transmit sensor data to a remote base-station.

WATERSENSE – Overview

31AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

1

WATERSENSE – Components

The WSN system is composed by: Mica2 433 MHz motes Waterproof packages with solar panels for outdoor

monitoring Sensors to measure:

volumetric water content, soil moisture (DecagonEcho20),

32AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

water flow (KENT V100 with magnetic flow) Pressure (Honeywell transducers)

MDA300 data Acquisition Boards TinyOS operating system used as the software platform

for data acquisition, processing and low powercommunication

Stargate Gateways equipped with GPRS link. Able toconfigure the WSN parameters: Sampling rate Sampling duration Sleep time

WATERSENSE – Remote Monitoring

33AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

WATERSENSE – Remote Monitoring

34AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

WATERSENSE – Remote Monitoring

35AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Further Information / Questions

We will be happy to answer anyquestion and further demonstrate ourtechnology

36AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

For Further Information ContactDr. Anastasis Kounoudes

Chief Executive OfficerTel: +357 25870072

Email: [email protected]

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

1st training course EU countriesSESSION 2 – AMR19-20 September 2012, Genoa, Italy19 20 September 2012, Genoa, Italy

Marios Milis

1AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

1

Contents

1. Introduction to AMR Systems, Benefits

and problems

2AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

2.Technologies of AMR Systems

3.Parts of an AMR System

4. IcyCAM based Automatic Meter Module

Introduction to AMR Systems

3AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Benefits and problems

AMR is the technology of automatically collectingconsumption, diagnostic, and status data fromwater meter devices and transferring that data to acentral database for billing, troubleshooting, andanalyzing.

AMR - Overview

4AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Saves utility providers the expense of periodictrips to each physical location to read a meter.

Billing can be based on near real-timeconsumption rather than on estimates based onpast or predicted consumption

AMR – Main Advantages

5AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

past or predicted consumption

Help both utility providers and customers bettercontrol the use of water consumption

Increased Data Security. Increased performance in the data collection

Avoid reading errors and missing meterreadings

AMR – Further Benefits

6AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

readings

Increased security of data flow between AMRand other applications

Avoids errors caused by manual entries anddata transfers

Reduced operation costs. Constant access to real-time data

Meter readings available on request

AMR – Further Benefits

7AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Efficient handling of customer complaints

Significant reductions in costs for meterreading

Reduced costs over the lifetime of the AMRsystem

1

Improved cash flow Utility Bills are based on actual consumption

Steady cash flow for the Water Board Utility

AMR – Further Benefits

8AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Billing is based on real-time data

Estimated bills no longer necessary

Improved budgeting and management

Improved customer service No need for estimated or adjusted billing

On demand reads as part of the customerservice

AMR – Further Benefits

9AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

service

Quicker reaction in abnormal situations

Better monitor demand and consumption

Loss of privacy

Greater potential for monitoring byunauthorized third parties.

R d d li bilit (i f

AMR – Disadvantages

10AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Reduced reliability (in case ofinterference)

Increased security risks from network orremote access

Meter readers losing their jobs !!!

Technologies

11AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

of AMR Systems

Touch Technology Data collection device with a wand or

probe.

automatically collects the readings from ameter by touching or placing the read

AMR – Technologies

12AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

meter by touching or placing the readprobe in close proximity to a reading coilenclosed in the touchpad

probe sends an interrogate signal to thetouch module

Alternatively use of standardized infraredport to transmit data

On-site AMR -> meter reader has to go tothe site

SENSUS Touch Read

Radio Frequency Network technologies eliminates the need for the meter reader to enter

the property or home or to locate and open anunderground meter pit

AMR – Technologies

13AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

increased speed of reading - > savemoney at utility

less chance of missing reads because ofbeing locked out from meter access

1

Radio Frequency Network technologies Can be separated in the following forms:

“Two way” or “Wake up” systems

AMR – Technologies

14AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

One-way systems

Walk by meter reading.

Drive-by meter reading

Fixed Network

Two-Way or Wake-up systems a radio transceiver sends a signal to a particular transmitter serial

number,

Transmitter wakes up from a resting state and transmit its data.

AMR – Technologies

15AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

The meter attached transceiver and the reading transceiver both sendand receive radio signals and data

One – Way or bubble-up systems Continuous broadcast type,

Transmitter broadcast readings continuously every specific intervals

Hybrid systems also exist

Walk-by meter reading a meter reader carries a handheld computer with a built-in

or attached receiver/transceiver (radio frequency or touch)to collect meter readings from an AMR capable meter.

H dh ld t l b d t ll t

AMR – Technologies

16AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Handheld computers may also be used to manually enterreadings without the use of AMR technology probe sendsan interrogate signal to the touch module

Drive-by meter reading Reading device is installed in a vehicle.

The meter reader drives the vehicle while the readingdevice automatically collects the meter readings

AMR – Technologies

17AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Often for mobile meter reading the reading equipmentincludes navigational and mapping features providedby GPS and mapping software

the reader does not normally have to read the meters inany particular route order

Components often consist of a laptop or proprietarycomputer, software, RF receiver/transceiver, and externalvehicle antennas

Fixed Network AMR A network is permanently installed to capture meter

readings.

Consist of a series of antennas, towers, collectors,repeaters or other permanently installed infrastructure

AMR – Technologies

18AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

repeaters, or other permanently installed infrastructure

Collect transmissions of meter readings from AMRcapable meters and get the data to a central computerwithout a person in the field to collect it

Several network topologies are used (Star, Mesh etc)

Hybrid mobile – Fixed network systems

Parts of an AMR System

19AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

1

1. Water Meters

2. Radio Modules

3. Repeaters

4 Concentrators / Collectors

Main parts

20AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

4. Concentrators / Collectors

5. HandHeld Devices

6. AMR Software

Water Meters a device used to measure the volume of water usage.

Different Types:

Displacement Water Meters

AMR – Main Parts

21AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Velocity Water meters

Multi-jet meters

Turbine meters

Compound meters

Electromagnetic meters

Ultrasound meters

Radio Modules Modules attached to water meters which can transmit the

water meter reading via RF.

Different types / frequencies / functionality

AMR – Main Parts

22AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Repeaters A repeater is an electronic device that receives

a signal and retransmits it at a higher level or higherpower, or onto the other side of an obstruction, so that thesignal can cover longer distances..

AMR – Main Parts

23AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

In AMR the repeaters are used:

when the collector (in a fixed network AMR system) islocated at a distance further to the range of the radio module

When Meters are located underground

Collectors A device responsible to collect Water Meter Readings

coming from the meters radio modules.

Readings are transmitted to the nearest concetrator

AMR – Main Parts

24AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Usually one collector per 50-100 water meters is used.

Concentrator Gateway to acquire and store the water meter readings

from the whole network.

Able to transmit all the data to remote server.

AMR – Main Parts

25AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Different communication capabilities (GSM/3G/WiFi etc)

Different storage space based on the case requirements

Usually one concentrator is used for up to 5000 watermeters.

1

Handheld Devices Used to program the meters modules

Pair meter ID – module ID

Initial reading

AMR – Main Parts

26AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Pulse width

Frequency of readings

Alarms

Used in case of ‘Walk-by’ and ‘Drive-by’ AMR systems tocollect the Water Meter readings and transfer them to theAMR software.

AMR Software Software for storing / monitoring /

processing the AMR readings

Visual presentation of the readings

AMR – Main Parts

27AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

p g

Export data to different formats

Interface with customer billing software

Interface with GIS and other software tools

AMR Software Reports

Consumption

Water Balance

AMR – Main Parts

28AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Water Balance

Alarms

Leakage

Blocked meters

Back Flow

Tamper

etc

IcyCAM based

29AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

AMR Module

IcyCAM AMR module - Overview

Designed and Developedby SignalGeneriX Ltd

icyCAM acts as the mainsensor of the AMR system

30AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Able to acquire the water meter register readingand convert it to digital form for easytransmission to the central aggregate node

IcyCAM AMR Module

IcyCam AMR Module includes: IcyCAM sensor,

Extra storage capabilities

GPRS d

31AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

GPRS modem

RF interface

1

IcyCAM AMR Module

IcyCam AMR Module operation:

Takes snapshot of the water meter reading

Perform OCR algorithms – recognize watermeter digits

32AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

meter digits

Transmits digits in txt format via GPRS/GSM/3Gnetwork

Transmits low resolution image of the watermeter register (e.g ones per month) for errorscorrection.

IcyCAM AMR module vs pulse counting modules

Pulse Counting ModulesSusceptible to interference Can loose pulses for high flows

33AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

Incremental errorsContinuous powering of the modules –

limited battery life

IcyCAM AMR module vs pulse counting modules

IcyCAM AMR module No interference to meter readings Ensure transmission of the register value No incremental errors (any errors can be

34AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

No incremental errors (any errors can be corrected through image transmission)

Module operated in deep-sleep mode and wakes up only in specific times to get and transmit the measurement -> very low battery consumption

Further Information / Questions

We will be happy to answer anyquestion and further demonstrate ourtechnology

35AQUAKNIGHT – 1st training course EU countries, 19 - 20

September 2012, Genoa, Italy

For Further Information ContactDr. Anastasis Kounoudes

Chief Executive OfficerTel: +357 25870072

Email: [email protected]

EC Project Aquaknight 

Tests on meters accuracyTests on meters accuracy(coordinated by UNIPA)

Genova 19‐20 Sep 2012

Vincenza Notaro (UNIPA)

15/01/2015

1

User water consumption is usually measured by turbin water meters

User consumptions evaluationin a water distribution network

Water meters provide essential data used by the utilities for:

issuing bills, obtaining the system water balance, identifying failures in the network, water theft and anomalous user behaviors

Despite their importance, water meters are characterized by intrinsic inaccuraciesthat change with the flow rate passing through the meter.

Water meter intrinsic error

ε1 ε2

ErrorPerformance curve of a new water meter 

Q1 Q2 Q3 Q4

‐20%

‐40%

‐60%

‐80%

‐100%

Flowrate[l/h]

ISO4064:2005

Q1 ≤Q < Q2 → ε ≤ ε1= 5%

Q2 ≤ Q ≤ Q4 → ε ≤ ε2= 2%

Meter performance is related to:

• the TECHNICAL FEATURES OF THE METERTECHNICAL FEATURES OF THE METER• theMETER WEARING PROCESS (METER AGE)METER WEARING PROCESS (METER AGE)• theWATER QUALITYWATER QUALITY• the TEMPORAL PATTERN OF END USER DEMANDTEMPORAL PATTERN OF END USER DEMAND

Water meter intrinsic error

• the NETWORK PRESSURENETWORK PRESSURE

The meter inaccuracy can produce under‐registration errors of the watervolumes supplied by users

These errors are responsible for a part of so‐called apparent losses for waterutility: consisting of water volumes withdrawn from the network, consumedby users but not paid for

Water meter inaccuracies are often considered to be the most significantcause of apparent losses and the hardest to quantify and reduce..

Influence of user’s consumptionGenerally, the apparent losses due to meter under‐registration are relatedto the percentage of user’s consumption occurring at low and very lowflow rates.

n

5

A class C water meter with Qn = 1,5 m3/h can have a starting flow equal to 

5‐10 l/h thus theoretically the 7%7% of consumption should be not registeredThe percentage increases with water meter aging andwearing process.

Flow rate (l/h)

% o

f use

r co

nsum

ptio

n

User’s storage tanksThis supply scheme is very common in the Mediterranean where water shortage 

often happens and the intermittent water supply is a common practice. 

Privaterooftank

Floatvalve

6

User’s storage tanks interposed between the revenue meter and the end user canaffect the share of consumption at low flow ratesWhen an old revenue meter is coupled with a private water tank, it may notregister even more than the 50% of the volume passing through it.

Network

Revenuewatermeter

Userfixturesandappliances

Effects of private storage tanks

Private tanks modify the demand profile of typical domestic users.• The float valve in the tank dampens the instantaneous water demand and

reduces the flow rate passing through the meter.

• Slow closure of the float valve induces flow rates lower than the meterstarting flow

Partner Acronym

Rizzo and Cilia (2005)

15/01/2015

1

Tests on meters accuracy

For each test site:

10 of new meters will be previously calibrated in UNIPA 

A representative sample of 25 customers will be selected in the DMA and the related old meters will be delivered to Palermo University to be tested for a range of flows. 

selection will be done  by different: 

• ages,

• size,

• registered volumes,

• manufactures, 

• typology,

UNIPA

UNIPA’s laboratory test bench

The accuracy of the selected meters will be tested by the UNIPA’s laboratory test bench

The test bench is a weight calibration device compliant with the ISO 4064:2005 standardIt consists of:

• a water supply system (mains, 1 unpressurisedtank, 2 pumps);

• a test section in which the meter is placed;

• 4 flow meters to establish the approximateflow rates at which the meter is tested;

UNIPA

flow rates at which the meter is tested;

• 2 pneumatic and automatic gate valves;• 2 pressure gauges to measure the pressure

upstream and downstream the tested meter;

• 1 vacuum gauge;• 2 calibrated tanks, each placed on a precision

electronic balance;

• 1 temperature sensor• 1 a control panel

It is connected to a computer for test automation, acquiring the measurements andcomputing the results

UNIPA’s laboratory test bench

Laboratory experiments will be carried out in UNIPA laboratory in order:

• to estimate metering error curves for different flow meters classes and ages

• to find a direct link between meter age, network pressure and the apparentlosses caused by the incapability of the meter to accurately measure thevolume passing through it at low flow rates

UNIPA

Class C; Q3 = 2.5 m3/h; DN 20 mm Class C; Q3 = 2.5 m3/h; DN 20 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

Class C; Q3 = 1.5 m3/h; DN 13 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

Tests on meters accuracy

STEP 1• Consumer audit

STEP 2• Installation of a DMA 

TEST 1: UFR test

Master Meter

STEP 3• Field test exercise• Stage 1

• Stage 2

• Stage 3

• Stage 4TEST 2: User tank effects analysis

TEST 3: User Demand Pattern determination

TEST 1 ‐ UFR Test to quantify enhancement in water metering 

(coordinated by IREN)

EC Project Aquaknight 

(coordinated by IREN)Genova 19‐20 Sep 2012

Marco Fantozzi (IREN)

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Preliminary step: the identification of a sub‐district in each pilot area.• Possibly the sub‐district should be selected in a dead end or in order to limit the

number of valves to be closed to isolate the sub‐district. To prevent errors, ifboundary valves need to be closed, these valves should ideally be replaced toensure hydraulically tightness.

• It is important that the sub‐district is free of leakages since the test is focused onIt is important that the sub district is free of leakages since the test is focused onthe quantification of apparent losses due to meter under‐registration.

TEST1 will require instantaneous and/or volumetric readings of:• A Master Sub‐district Meter installed at the inlet of the sub‐district

• the meters recording consumptions of 50‐100 users

The water balance will be calculated in each stage to verify if there are differencesbetween the Master Sub‐district Meters and the sum of the single meters due to theunder‐registration of the individual customer meters.

15/01/2015

1

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

TEST1 requires the following three steps:

• Step 1 ‐ Consumer Audit

• Step 2 – Installation of a Sub‐district Master Meter

• Step 3 – Field test exercise

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Step 1 ‐ Consumer Audit

a) Test in the field to confirm that the zone is hydraulically encapsulated andthat all the consumers are metered and no meter is blocked.

 

s.n./De40

civ.6/De40

VIA HOLM

F66 De 110

F72 De 110 VIA SENISIO

F73 De 110

civ.B/De40

civ.A/De40

G96 D

e 110

VIA SCHIFALDO

civ.B/De40

civ.A/De40

G97 D

e 110

VIA CORSETTO

sopr./De110

F67

De

110

civ.6A/De40

F75 De 110

D63 D

e 160

F59 De 160

F69 De 110

F70 De 110

F71 De 110D77 De 110

civ.17/De63

F74 De 110

civ.62/De63

s.n./De40

civ.29/De40

F78 De 110

VIA ACCAR

DO

sott./De90

civ.7/De40 civ.5/De40

civ.6/De40

F79 De 110

F77 De 110

F88 De 110

VIA VALLA

F76 De 110

D84 De 110

1

23

4

5

67

8

9

10

1114

13

12

N 2 - 5 anni

Età media dei contantori installati (traparentesi l'età massima)

N 5 - 10 anniN 10 - 13 anniN 13 - 15 anni

(19)

(12)

(17)

(23)(11)

(17)

(18)(18)

(16)(18)

(7)

(12)

(6)

(22)

Example: map and photo of a test area

 

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Step 1 ‐ Consumer Auditb) A computer database (in excel) has to be built to keep track of these

metered consumers, in parallel with existing billing data (as required bythe questionnaire about the pilot area defined in task 1 of the project).

Example: customer meters info in the pilot area

Meter Type Number Class D Class C Class B Class A 1 to 3 4 to 7 8 to 11 > 11Positive

Displacement

Inferential Flow

Positive Displacement

Inferential Flow

CUSTOMER METERS PARK INFORMATION Age (years)Type of Customer

Nr Residential meters

NnrNon-

Residential meters

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Step 1 ‐ Consumer Auditc) To improve the reliability of the field test a checklist of actions has be 

conducted in the sub‐district

Checklist for the test area. Note: (“zone” in the above table refers to sub‐district)

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Step 2 ‐ Installation of a Sub‐district Master MeterA properly sized class C zone meter has to be installed onto the inlet water supply line of the Sub‐district to measure  the inflow into the Sub‐district

INLET POINT

INLET POINT :VOLUMETRIC FLOWMETER WITH PULSE GENERATOR

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Step 3 – Field test exerciseThe Field test is executed in four stages of two weeks each, as follows:

• Stage 1: readings of the existing consumer meters and the Sub‐districtmaster meter will be taken for a two weeks period.

A comparison of the sub‐district master meter to the accumulatedconsumer meters will give the % of the existing Customer Meter Under‐registration without UFRs.

15/01/2015

1

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Step 3 – Field test exerciseThe Field test is executed in four stages of two weeks each, as follows: • Stage 2: readings of the existing consumer meters plus UFR (Unmeasured 

Flow Reducer) units in place and the Sub‐district master meter will be taken for a two weeks period

UFR will be installed on the water main (in‐Line), upstream (or eventually downstream) and adjacent to the revenue water meter

A comparison of the sub‐district master meter to the accumulatedconsumer meters will give the % of the existing Customer Meter Under‐registration with UFRs.

Example: ball valve incorporating an UFR device

Example: standard UFR device

The UFR begins to operate at very low flowrates and creates pulses of flow that thewater meter can measure. The operatingrange of the UFR is between 0 and 25 l/h.

UFR – Principle of Operation

The UFR is usually installed to accurately measure low flows, even below thestart‐up flow rate (toilette dripping, filling of WC tanks at low flow rates, leaks...)

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Due to the change in the mode of water flow to pulses, the UFR enables thewater meter to measure low flow rates.

Start up Flow Rate

When the flow rate increases over the maximum value of the operative rangeof the UFR, the UFR remains permanently open, not interfering with measures.

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Step 3 – Field test exerciseThe Field test is executed in four stages of two weeks each, as follows:• Stage 3: after meters replacement with AMR and with UFR units in place

readings of the AMR consumer meters and the Sub‐district master meterwill be taken for a two weeks period

A comparison of the sub‐district master meter to the accumulatedconsumer meters will give the % of new AMR Customer Meter Under‐registration with UFRs.

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Step 3 – Field test exerciseThe Field test is executed in four stages of two weeks each, as follows:• Stage 3: At stage 3, the first phase of TEST 2 on storage tanks will be

concurrently conducted.

• For each pilot site, 1‐5 users connections will be monitored in detail forp ,evaluating the under‐registration errors of customer water metersinstalled upstream of private storage tanks and to investigate the effect ofintroducing UFR devices to reduce unmeasured flows.

• The choice of the monitored customers will be made according to:

– the size of the related revenue water meter,

– the capacity of the related private tanks

– the average value of the pressure on the private tank

Depending on the data quality, this stage could last from 2 weeks to 1 monthfor the selected users with storage tanks that will be validated under TEST2.

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Step 3 – Field test exerciseThe Field test is executed in four stages of two weeks each, as follows:• Stage 4: readings of the AMR consumer meters and the Sub‐district

master meter will be taken for a two weeks period without UFR units

A comparison of the sub‐district master meter to the accumulatedconsumer meters will give the % of new Customer Meter Under‐registrationwithout UFRs.At stage 4, the second phase of TEST 2 on storage tanks will be concurrentlyconducted.

Note: THE FIELD TEST HAS TO START IN PERIOD JAN‐ FEB 2013 IN ORDER TOBE COMPLETED BEFORE VARIATION OF TEMPERATURE AND INCREASE OFCONSUMPTION AND BEFORE RAMADAN WHICH IN 2013 WILL GO FROM10TH JULY TILL 10TH AUGUST.

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

• Analysis of specific test area conditions in the European pilots, benefits and problems 

• Open discussion on the practical implementation of the tests in the two European test areas

15/01/2015

1

TEST 2‐ The assessment of the impact of private storage tanks on water 

metering

EC Project Aquaknight 

(coordinated by UNIPA)Genova 19‐20 Sep 2012

Vincenza Notaro (UNIPA)

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

• This test will be implemented in the pilots of AWCO, AW, WBL and out of the pilot area of SONEDE. 

• It will be not implemented in the pilot of IREN as there are no storage tanks

• For each pilot site, 1‐5 users connections will be monitored in detail forevaluating the under‐registration errors of customer water metersinstalled upstream of private storage tanks and then to investigate theeffect of introducing UFR devices to reduce unmeasured flows.

• The choice of the monitored customers will be made according to:– the size of the related revenue water meter,

– the capacity of the related private tanks

– the average value of the pressure on the private tank.

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

• The monitoring field campaign will involve 1‐5 customers at a time andwill be carried out in two different periods/phases each lasting betweentwo weeks to one month.

• In the first period (2 weeks to one month) concurrently to the stage 3 ofthe Step 3 of the TEST 1 the effect of the private storage tank on newthe Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy with UFR will be analyzed.

• In the second period (2 weeks to one month) concurrently to the stage 4of Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy without UFR will be analyzed.

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

For each pilot site the analysis will require 2‐10 new AMR meters equipped withdata loggers able to record data with a time resolution of 1 min to be installedupstream and downstream the private tanks for monitored 1 to 5 customers eachtime.

The same AMR meters (downstream the tank) will be uninstalled at the end ofthe second step of monitoring campaign (after one ‐ two months from thebeginning of the TEST2 concurrently to TEST1 stages 3 and 4) and will be againbeginning of the TEST2, concurrently to TEST1, stages 3 and 4) and will be againused to further monitor other 1 to 5 customers by installing it upstream anddownstream their tanks.

The monitoring of the last 1 to 5 customers in each sub‐district would take 1‐2months and will be conducted concurrently to TEST1, stage 5.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the first period of TEST 2 the monitoring scheme will involve the use of:

• n°2 AMR class C turbine water meters (manufactured in accordance with the MID2004/22/EC) which will be installed one downstream and one upstream the privatetank. Their installation should be done according to ISO 4064‐2:2005 and EN 14154‐2:2005+A1:2007 specifications. Each AMR will be equipped with a data logger able torecord water volume data with a time resolution of 1 min for two weeks/one month.

• n° 1 pressure gauge with a pressure range of 0‐10 bar, installed in the network not farfrom the monitored user connection, in order to measure and record network pressuredata every 15 minutes.

• The pressure gauges needed for the analysis will be the same adopted to monitorate theDMA.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the second period the monitoring scheme is the same without UFR

UNIPA

15/01/2015

1

Inlet node

Closed gate valveUser connection

CASE STUDY:CASE STUDY:a small district metering area a small district metering area of Palermoof Palermo

•• NoiseNoise loggersloggers andand nightnight flowflow analysisanalysis werewere adoptedadopted toto checkcheck realreal losseslosses inin thethe districtdistrict

32

96.0%

2.3%

1.1%0.6%

15 mm25 mm

40 mm

50 mm

‐‐ PEADPEAD pipespipes withwith ff 110110 ‐‐ 220220 mmmm‐‐ 4444 service connections‐‐ 164164 domesticdomestic usersusers withwith privateprivate tanks,tanks,

eacheach monitoredmonitored byby aa volumetricvolumetric multimulti‐‐jetjet waterwater metermeter

•• TheThe districtdistrict waswas isolatedisolated fromfrom thethe citycity networknetwork byby closingclosing thethe emergencyemergency connectionsconnections..•• ItIt waswas globallyglobally monitoredmonitored (Dec(Dec.. 20092009 –– AprApr.. 20102010)) byby installinginstalling anan electromagneticelectromagnetic waterwater

metermeter andand aa pressurepressure gaugegauge inin thethe inletinlet nodenode toto measuremeasure thethe inputinput volumevolume andand pressurepressure ofofthethe systemsystem withwith aa temporaltemporal resolutionresolution ofof 3030 minutesminutes..

•• MeasureMeasure waswas verifiedverified twotwo timestimes byby independentindependent operatorsoperators•• AA specificspecific analysisanalysis onon nightnight usersusers consumptionconsumption waswas mademade forfor detectingdetecting leakagesleakages inin thethe

privateprivate systemssystems andand inin thethe tankstanks

Field monitoring installations

10 users have been monitored (5 single users + 5 buildings)

Privatetank

Network

Revenuewatermeter

Floatvalve

Upstreammeter

Downstreammeter

Pressuregauge

Pressurecelllevelmeter

User

25%

30%

35%

renti

Initial apparent lossses: 33%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

ApparentLo

25%

30%

35%

renti

Substitution of the oldest flowmeters: 29%

InitialInitial state: 33%state: 33%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

ApparentLo

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flowmeters: 29%4 flowmeters: 29%

Initial state: 33%Initial state: 33%

UFR Installation: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

Example of field results

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

0%

5%

10%

15%

20%

Perditeappar

ApparentLosses

25%

30%

35%

renti

SubstitutionSubstitution ofof the 4 the 4 oldestoldest flowmeters: 29%flowmeters: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Example of field results

0%

5%

10%

15%

20%

Perditeappar

Substitution of other 22 more than 10 yrs 

old: 5.5%

ApparentLosses

15/01/2015

1

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flow 4 flow metersmeters: 29%: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

Substitution of the 10 flowmeters  with age > 5 yrs: 

5%

Substitution of 22 Substitution of 22 flowmeters 5.5%flowmeters 5.5%

ApparentLo

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flowmeters: 29%4 flowmeters: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Example of field results

0%

5%

10%

15%

20%

Perditeappar

UFR removal: 9.3%

Substitution of 10 Substitution of 10 flowmeters: 5%flowmeters: 5%

SubstitutionSubstitution ofof 22 22 flow flow metersmeters: 5.5%: 5.5%

BENEFIT WITH UFR AND NEW METERS = 4,3%A

pparentLosses

TEST 3‐ The determination of customerdemand patterns and legitimate night use by customers (coordinated by

Signal Generix, with support of UNIPA 

EC Project Aquaknight 

and IREN)Genova 19‐20 Sep 2012

Vincenza Notaro (UNIPA)

TEST 3 ‐ The determination of customer demand patternsand legitimate night use by customers (coordinated by

Signal Generix, with support of UNIPA and IREN)

• This study will be implemented in all the pilot projects.

• This study is important since it will assist to analyse the MNF of the Pilot areamore accurately through measuring flows of the night use rather than makingassumptions

• For this purpose, the AMR shall record water consumption every 10 minutesand the period of registration per season shall be of at least one week.and the period of registration per season shall be of at least one week.

• This will consent to quantify differences between working and weekend days.

• Measurements could be conducted in winter and summer season to quantifydifferences.

• A costumer demand pattern with an high time resolution permit a reliableestimation of apparent losses by the comparison of the demand pattern withthe error curve of the costumer meter

UNIPA

TEST 3 ‐ The determination of customer demand patternsand legitimate night use by customers (coordinated by

Signal Generix, with support of UNIPA and IREN)

Taking into consideration the limited budget available, the best solution for theapplication of AMR in the determination of customer demand patterns andlegitimate night use by customers, should be an AMR system of walk by / drive bytype having the following minimum requirements:

• Each AMR radio module to equipped with an internal data logger with programmablerecording time intervals of 10 minutes and data storage capability up to 2 days of 10

l d d h f d l d h h ll bminutes interval readings and 1 month of daily readings. The 10 AMR that will beinstalled at the consumers with storage tanks (TEST2) will need data saving every 1minute intervals. All stored readings must be accompanied by a proper timestamp

• Each AMR radio module to be able to transmit (on demand) its logged data to a HandHeld Device at least a distance of 100m (line of sight).

• AMR radio modules to be compatible for future integration in a fixed radio network.

• The Hand‐Held Device (HHD) shall communicate with the AMR Radio Module, collectand store the water meter readings and download the collected data to the AMRsoftware. The HHD shall be capable to communicate with a personal computer foruploading pre‐programmed meter reading route information. Manual entering of themeter reading shall also be possible using a built‐in keypad

UNIPA

TEST 3 ‐ The determination of customer demand patternsand legitimate night use by customers (coordinated by

Signal Generix, with support of UNIPA and IREN)

The AMR system of walk by / drive by should have the following minimumrequirements:

• Each AMR radio module to equipped with an internal data logger with programmablerecording time intervals of 10 minutes and data storage capability up to 2 days of 10minutes interval readings and 1 month of daily readings.

• The 10 AMR that will be installed at the consumers with storage tanks (TEST2) will needd i i i l ll d di b i d bdata saving every 1 minute intervals. All stored readings must be accompanied by aproper timestamp

• Each AMR radio module to be able to transmit (on demand) its logged data to a HandHeld Device at least a distance of 100m (line of sight).

• AMR radio modules to be compatible for future integration in a fixed radio network.• The Hand‐Held Device (HHD) shall communicate with the AMR Radio Module, collectand store the water meter readings and download the collected data to the AMRsoftware. The HHD shall be capable to communicate with a personal computer foruploading pre‐programmed meter reading route information. Manual entering of themeter reading shall also be possible using a built‐in keypad

UNIPA

TEST 3 ‐ The determination of customer demand patternsand legitimate night use by customers (coordinated by

Signal Generix, with support of UNIPA and IREN)

NB – If the budget is not enough:• the data acquisition of water volumes with a time interval of 1‐10 minutes can

be obtained by installing a class C turbine water meter joined with a datalogger able to record data every 10 minutes

• The determination of customer demand patterns (Test 3) can be carried outconsidering only the 1‐10 customers selected for Test 2.considering only the 1 10 customers selected for Test 2.

• In this case, for each monitored customer the related demand pattern will beobtained by elaborating the water consumption data recorded every 1 minuteduring the stage 4 of TEST 1. (Remember that in the stage 4 of Test 1, the UFRwas uninstalled)

UNIPA

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

2nd Training Course in EU

17 July 2013 Lemesos, Cyprus

Host: Water Board of Lemesos (WBL) Venue: Mediterranean Beach Hotel - Conference room: Aegean III Address: Amathus Avenue, P.O.Box 56767, 3310 Limassol, Cyprus Participants: IREN, WBL Trainers: SGI, IREN, SG

Wednesday 17 July 2013

Time Title Name , Partner

09:00-09:30 Welcome Note Solomos Charalambous, WBL

Session 1 – Management of Commercial Losses , 1st Part

09:30-10:15 Evaluation and Management of Commercial Losses in water supply systems

Alessandro Bettin, SGI

10:15-11:00 Effect of UFRs : Results from test 1 on water meters Marco Fantozzi, IREN

11:00-11:30 Coffee Break

Session 2 - Management of Commercial losses, 2nd Part

11:30 -11:50 Effect of private tanks : Results from test 2 of water meters Marco Fantozzi, IREN

11:50-12:30 Consumption profiles: Results from test 3 of water meters Marios Milis, SG

12:30-13:00 Open discussion about results so far and challenges in application of the methodology in the pilots –

Marco Fantozzi , IREN Marios Milis, SG Alessandro Bettin SGI

12:30-13:30 Lunch Break

Session 3 – Leakage Calculation

14:15 – 14:45 Leakage Calculation in a DMA using Water Balance & MNF: A Real Case Study Alessandro Bettin, SGI

Session 4 - Pressure Management

14:45 – 15:30 International Best Practice for Pressure Management Marco Fantozzi , IREN

Session 5 – Innovative Projects

15:30-16:00 Project on Smart meters Marios Milis, SG

16:00-16:30 Final Discussion

20:30 Dinner by the Water Board at a restaurant at the old town of Lemesos Meeting at the Mediterranean Beach Hotel lobby at 20:00 and transfer to the restaurant by bus.

AQUANIGHT

Identifying and controlling Apparent LLosses

Lemesos 17 July 2013

Al d B ttiAlessandro Bettin

1AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

1

Main Topics

Apparent Losses – Definitions and Causes

AMR (Automatic Meter Reading)

2AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

AMR (Automatic Meter Reading)

Controlling Apparent Losses

SGI

Apparent Losses

…..Apparent losses are the nonphysical losses that occur when water is successfully delivered to the customer but, for various reasons, is not 

measured or recorded accurately

3AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

measured or recorded accurately.…

AWWA MANUAL M36

Kinds of leaks

Physical Leakage Breaks in mains and service connections

Background losses (valves, tanks, plants, not detectable small leaks)

Apparent Losses

4AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

pp Customer metering inaccuracies

Systematic consumption data handling errors, particularly in customer billing systems

Unauthorized consumption

Factors affecting Meters Error at low rates

Private domestic storage tanks

The filling of the tank is produced through a proportional ball valve which laminates the instantaneous water demand and reduces flow rates

5AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

flow rates

leaks inside the households, usually in faucets and toilets

Meter age 

Pressure and water quality

Roof tanks

6AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

In general, meter accuracy is influenced by three principal factors: 

the physical accuracy of the meter 

the appropriate sizing of the meter to fit the

Customer Meters Inaccuracy

7AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

the appropriate sizing of the meter to fit the customer's consumption profile 

the appropriate type of meter to best record the variations in flow

2

Error Curve for a domestic Class B meter

8AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Reconstructed curve of a 1.5 m3/h, class B meterError increases during low flows

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Typical Consumption Pattern for different households 

9AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Household Type I: Apartment blocks with direct injection from the network or a pump (tested N° 389 for a week).

Household Type II: Apartment blocks fed from an elevated tank (at the top of the building). Water meter is installed upstream the tank. Tested N° 58 households for a week.

Household type III: Independent houses with garden. Tested 34 households for 4 weeks

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Calculate weighted error 

10AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Multiply the percentage of water consumed in a flow range by a user and the average error at the medium flow rate of the flow interval

Data transfer errors

Manual meter reading errors

AMR equipment failure

Procedural/data entry errors during meter h

Systematic data handling Errors

11AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

change‐outs

Data analysis errors

Use of poorly estimated volumes in lieu of meter readings

Policy and procedure shortcomings

Delays in registration, metering or billing operations

Unauthorized Consumption Components

Illegal connections;

Open bypasses;

Buried or otherwise obscured meters;

Misuse of fire hydrants and fire‐fighting systems

12AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Misuse of fire hydrants and fire fighting systems (unmetered fire lines);

bypassed consumption meters (meter tampering);

Illegally opening closed valves on customer service piping that has been shut off for non payment;

Illegal Connection Example

13AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

For expenditure analysis unauthorized consumptions  in the Water Balance can be put equal to 0.25% of Water Supply (representative value from water audit worldwide)

Illegal consumption can be higher where economic conditions are poor

3

AMR (Automatic Meter Reading)

“Fixed System”. It is the more complex system as it is fully automatic.  Short transmission intervals without any manual intervention

Data logging for the more advanced versions

Advanced statistic of customers consumption

14AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

“drive‐by system” – data are collected via a receiver passing near the transmitting units Low possibility of data logging

High transmission interval

Useful only for billing porpoises

Benefits from AMR

Readily available users’ consumption at the more convenient time step (monthly, weekly etc.)

Full integration of AMR technology with the billing system for quick invoice and reference

Reducing of manpower: no need to read manually water 

15AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

g p yconsumption and to transfer data to the billing database

Alarming system to know quickly any anomaly like non‐operating meters or under reading

Fully automatic process from reading of consumption to issue of invoice

AMR fixed infrastructure – Ancona (IT)

16AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

AMR Transmitters ‐ Ancona (IT)

17AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

AMR Integration with other devices(Ancona Italy)

Bulk MeterBulk MeterNoise LoggersNoise Loggers

18AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Users’ MetersUsers’ Meters

AMRAMRRepeaterRepeater

Leakage Calculation with AMR

Leakage = AI – AMRWhere

AI = Average Inflow (l/s)

AMR= Average Users’ Consumption from AMR (l/s)

19AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

AMR  Average Users  Consumption from AMR (l/s)

4

AMR possible problems

Sometimes necessary to install many repeaters to improve transmission reliability

AMR repeaters and concentrators mount on light pole or on the building roof, authorization needed

i d d

20AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Maintenance needed

Failure data transmission (less then 100% transmission rate), necessary to interpolate past user consumption

High cost

CONTROLLING APPARENT LOSSES

21AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

CONTROLLING APPARENT LOSSES

The Bottom‐up Validation of the Water Audit

Step 1: Analyze the workings of the customer billing system to identify deficiencies in the water consumption data handling process (Meter Reading, Billing, Payment Processing, Collection)

Step 2: Sample Customer Survey, including number of meters by meter size, customer type, and consumption ranges (check anomalies in flow size)

22AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

anomalies in flow size). 

Step 3: Perform meter accuracy testing for a variety of sample meter installations to understand the functional status of the meter population.

Step 4: Assess a sample of customer accounts or locations for unauthorized consumption potential.

Speed and quality

of repairs

Data Transfer ErrorBetween Meters and

archive; poort

ELAL - Economic Level of Apparent Losses

Unavoidable Annual Apparent Losses

Active Leakage

Unauthorised C i

The Pillars approachto the control ofApparent Losses

Customer Meterinaccuracy

23AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Potentially Recoverable Apparent Losses

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Data AnalysisError BetweenArchived Data and data Used(Billing/water 

Balance)

of repairscustomeraccountability

LeakageControlConsumption

Current Annual Apparent Losses

Cost Curve for Meter Replacement Programs

Average Cumulative Consumption  Passed Through the meter

24AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Optimum Frequency of meters replacement= point in the curve that matches the minimum optimal loss  

From AWWA Manual M 36

ELAL – Economic Level of Apparent Losses

25AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Lmin Lmin = Economic Level of Apparent Losses

From AWWA Manual M 36

5

Cost benefit Analysis

Estimation of cost to reduce each component of apparent losses

Replacing customer meters

Updating of the billing system (new software, better audit etc.)

Training personnel on reading and managing data

26AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Training personnel on reading and managing data

AMR (Automatic Meter Reading)

UFR (Unmeasured Flow Reducer)

Evaluation of benefit (reduction of apparent losses)

Choose the solution with the best cost‐benefit ratio and low pay‐back period

Problems in ELAL calculation

ELAL is difficult to calculate. 

Different curves for each component, 

Necessary to consider meter accuracy at different t li (ti i )

27AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

meter lives (time consuming)

IWA Water Loss Task Force is developing a simplified method of obtaining ELAL

Actions to reduce Apparent Losses (1)

Audit the customer meter reading and billing process

Perform annual meter accuracy test on a small sample (50 meters)

Installation of new meters to measure public water uses h h i d b d

28AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

that are authorized but un‐metered;

Verification of large consumers’ meters;

Check billing database to report broken meters (reading equal to zero)

Actions to reduce Apparent Losses (2)

Conduct customer connection survey in selected area where apparent losses are higher in order to identify illegal connections

Cross check customers of the water services with the customers of the electricity service

29AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

customers of the electricity service.

Audit of domestic and commercial customers connections and verify if they correspond to the information on the customers’ database

Evaluating Testing and Maintenance Programme

Volume: Large volumes of water = large revenues

Age: Large meters should be tested at a minimum every 5 years, with increased frequency as the size increases

Water Quality: Utilities with harsher water conditions

30AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Water Quality: Utilities with harsher water conditions should consider increasing frequency of meter maintenance

Retail Cost of Water: Maintenance and testing is influenced by the retail cost of water, and cost of testing

SGI

Evaluation of Illegal Connections (1)

Estimate Real Losses (Minimum Night Flow Analysis)

Evaluate  customer meters inaccuracy 

31AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

(sample test, average weighted error)

Compile IWA water balance and calculate Illegal Consumption for difference

6

Evaluation of Illegal Connections (2)

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

32AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

identification of Illegal Connections (3)

This test should be done if illegal connections are suspected in a specific area

Test area (DMA/Sub DMA isolation)

33AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Test area (DMA/Sub DMA isolation)

Verify that no leak exist with acoustic equipment

Close all connections

Check the inlet flow meter for any positive flow

Evaluation of Illegal Connections (4)

Reality: difficult to obtain leakage ZERO

Solution: after closing all connections check flow at the inlet.

If flow is constant during time (2‐3 hours) it’s

34AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

If flow is constant during time (2 3 hours) it s leakage

If flow is floating there is illegal use

If flow is ZERO: no leaks no illegal use

Water tariff in EU capitals

35AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus SGI

Future Scenario

Per capita water availability is globally decreasing

Climate Change, Increasing Population

36AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus SGICorriere Della Sera

Future Scenario – Sustainable Use of Water

Public Awareness on Water Saving plus adequate tariff structure bring to the reduction of water consumption.

Household consumption in Pune (India) = 190 l/inh/d

37AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Household consumption in Pune (India) 90 l/inh/d Water VERY cheap, intermittent supply, customers not  metered, high level of leakage

Household consumption in Copenhagen = 108 l/inh/d Water VERY expensive, metered customers, low level of leakage, water saving campaigns

SGI

AQUAKNIGHTAQUAKNIGHT

Activity 2.5 Effect of UFRs: Results from test 1 on waterResults from test 1 on water

meters

Marco Fantozzi IRENMarco Fantozzi, IRENGoffredo Laloggia, Un. Palermo

1AQUAKNIGHT – Exchange Visit and Training, 17 July 2013, Lemesos, Cyprus UNIPA

Tests  on  meters  accuracy  (coordinated  by  UNIPA)  

EC  Project  Aquaknight    

Aqaba  10-­‐11  Dec  2012  Goffredo  La  Loggia  (UNIPA)  

6

AQUAKNIGHT – 2nd EU training meeting, 17 July 2013, Limassol, Cyprus

Test 3: AWCO Pilot Status

Reported problems for saving data at 1 minute intervals. They have problems in connecting the new AMR meters with the

data logger; For this reason they have saved data in the AMR at 1 hour

intervals downloading the daily readings with the hand held device.

Expecting data.

AQUANIGHTAQUANIGHT

Leakage Calculation in a DMA using Water B l & MNF A R l C St dBalance & MNF: A Real Case Study

Lemessos 17 July 2013

Al d B ttiAlessandro Bettin

1AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

1

Calculation of Leakage in the Pilot DMA

Water balance

2AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Minimum Night Flow

IWA Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

3AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Minimum Night Flow 

4AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Simplified Leakage Calculation Method using historical customers consumption*

SGI

* Consumption tables taken from an Italian case  study

40

50

60

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

M_1

Minimum Night Flow 

5AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

0

10

20

30

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTA

TA (l/s)

Minimum Night UseMinimum Night Use

LEAKAGE*

* Includes background losses. They can be estimated using the burst and background estimates approach (BABE) developed in the UK

Customer Night Use Estimate

Gather and analyze historical Consumption from the utility billing system

Calculate average daily consumption for each category (domestic, commercial, industrial etc.)

6AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Calculate Minimum Nigh Use applying to the average consumption appropriate night factors

Special users should be considered separately 

(> 40 m3/d) 

1 – Gather Hystorical Consumption fromCompany Billing Data base

CODICE_TIP uso ConteggioDiCODICE_ULM COD_STAT DESCR_STAT ommaDiGENNAIommaDiFEBBRA

For each DMA extract users consumption records inside the DMA (per month orquarter depending on the accounting period)

For each user allocate a category: domestic, commercial, industrial, ecc.

FEB (m3)CUSTOMERS CATEGORY Customers N. JAN (m3)DescriptionID

7AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 29 A0101D Privato 217,96 196,84DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 1 F0103D di costruzione 4,88 6,07DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000030 PROVINCIALE 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000160 TE VARIO 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 000165 GENERICA 14,64 13,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000240 ARTIGIANALE - 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 F0103D di costruzione 3,69 3,34DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0315A e drogherie, 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0321A art.profumeria, 8,13 7,35DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0322A suti per 2,79 2,52DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0324A dettaglio di 1,8 1,63DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0344A coli 1,28 1,15DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0350A etti arte,culto e 2,14 1,93DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 I0308A connesse alle 0,26 0,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0203A diverse da 2,57 2,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0308A liquidat.indipen 1,28 1,16DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 M0104A mediazione 0 0

2

2 – Calculate Average Daily Consumption

User Date Reading1

Date Reading2

N°days

Consumptionin the period

(m3)

Average Dailyconsumption

(m3/d)

For each user calculate the Average Daily Consumption (m3/d)= (Reading1‐Reading2)/(day2‐day1)

8AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

User 1 16/07/2012 02/09/2011 318 747.00 2.35

User 2 16/07/2012 02/09/2011 318 429.00 1.35

User 3 16/07/2012 05/09/2011 315 419.00 1.33

User 4 20/07/2012 30/08/2011 325 405.00 1.25

User 5 13/07/2012 05/09/2011 312 397.00 1.27

User 6 26/09/2012 07/09/2011 385 344.00 0.89

User 7 20/07/2012 30/08/2011 325 330.00 1.02

User 8 16/07/2012 02/09/2011 318 291.00 0.92

3 – Sum consumption per categoryDescrizione n_contatori mc/giornoUSO DOMESTICO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 30 6,78USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 40 3,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0 0,00COMUNITA' NON AVENTI FINI DI LUCRO 0 0,00ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 2 1,66USO DOMESTICO RESIDENTE - UTENZA SINGOLA 237 73,14USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0 0,00USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 1 0,35USO PUBBLICO - FONTANE CON CONTATORE 8 0,13USO PUBBLICO - FONTANE SENZA CONTATORE 0 0,00USO NON DOMESTICO - IDRANTI 8 0,04USO PUBBLICO IDRANTI 5 5 39

1. For the selected period(1M, 1Q, 1Y) aggregate users consumptionrecords in the DMA byCATEGORY (domestic, commercial, etc.) 

m3/dCUSTOMERS CATEGORY Customers N.

9AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

USO PUBBLICO - IDRANTI 5 5,39IDRANTI STRADALI - SENZA CONTATORE 0 0,00USO INDUSTRIALE ACQUA ORDINARIO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 593 77,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 935 234,95USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 1 0,12COMUNITA' NON AVENTI FINI DI LUCRO 8 18,20ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 90 125,16USO DOMESTICO RESIDENTE - UTENZA SINGOLA 3206 856,37USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 9 7,61USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 166 134,60USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 36 7,45USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 33 1,95USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 2 0,00

Totale 5410 1555,41

2. Express usersconsumption in (m3/d) 

3. In principle it isimportant to divide customers by 3 categories: 

• Domestic

• Non Domestic

• Special Users

Descrizione indiceUSO DOMESTICO 0,2USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO PUBBLICO - FONTANE CON CONTATORE 1USO PUBBLICO - FONTANE SENZA CONTATORE 1USO NON DOMESTICO - IDRANTI 0USO PUBBLICO - IDRANTI 0

4 – For each category define Night Factor

Method 1 ‐ Night Factors (NF) from literature or similar experiences

Method 2 ‐Measurement of customers use profile with a high precision meter 

NFCUSTOMERS CATEGORY

10AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

USO PUBBLICO IDRANTI 0IDRANTI STRADALI - SENZA CONTATORE 0USO INDUSTRIALE ACQUA ORDINARIO 0,3USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,2USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,25USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,1USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0

g pinstalled in series with the existing one

1‐60 minutes reading interval

Useful to estimate average meters error

Customer Night Use Estimate – Domestic Pattern 

11,21,41,61,8

2Domestic Consumption Pattern

11AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

An Italian case study from a sample AMR of 323 domestic meters – Values are  refereed to average  daily consumption0.2 is equivalent to 20% of average consumption

Domestic Night Factor: 0.2

5 – Special Users

Special users (>40 m3/d) should be monitored during the night where MNF is carried out

T k di h 15 30 i t

12AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Take reading each 15‐30 minutes

Special Users can be factories, hospitals, Commercial Units etc.

Add Night Consumption from Big Users to the Minimum Night Use calculated   

5 – Calculate Minimum Night Use

MNU (l/s) = MNUdomestic + MNUcommmercial + MNUindustrial + …… + Big Users Night Consumption

(l/ )

13AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

MNUDomestic (l/s) = Domestic Average Domestic Cons. x DomNF

DomNF = Domestic Night Factor

3

Alexandria Case Study

14AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Arama Pilot Area

Arama DMA

15AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

data about district Arama:

No. of inlets 1              VALVENo Closed boundary valves 7              VALVENo of flow monitors installed 1  ULTRASONICE FLOW METERNetwork length and prevalent material 1.3       km – Asbestos No. of connections/Km 166

16AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

/No. of meters 171          MASTER METERNo of customers (domestic, commercial etc.) 1200        SUB METEREstimated population 4800        PERSONSPrivate tanks (yes/no) NOMinimum and maximum elevation 8 & 10     (m above sea level)Average pressure 25             meter

Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

433.9166667

1.1.1.2

0

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

0

1.1.2.2

0

Distribution Input Volume

(all figures in m3/day)

Billed Metered Consumption

Billed Un-metered Consumption

TILDE Simplified Water Balance using the IWA methodology (enter data in blue cells)

0

Unbilled Metered Consumption

Unbilled Un-metered Consumption

433.9166667

433.9166667433.9166667

17AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

0

1.2 1.2.1 1.2.1.1 564.75 Water Losses Apparent Losses

0

1.2.1.2

30.37416667

1.2.2 1.2.2.1 Real Losses

1.2.2.2

1.2.2.3

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Leakage and Overflows at Utility’s Storage Tanks

30.37416667

100.4591667

130.8333333

130.8333333

Leakage on Service Connections

6,00

7,00

8,00

9,00

10,00

s

Arama

ARAMA: 24hrs inlet flow monitoring2.2 Minimum Night Flow Analysis

18AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

0,00

1,00

2,00

3,00

4,00

5,00

05/05/2012 00:00

05/05/2012 02:30

05/05/2012 05:00

05/05/2012 07:30

05/05/2012 10:00

05/05/2012 12:30

05/05/2012 15:00

05/05/2012 17:30

05/05/2012 20:00

05/05/2012 22:30

FLO

W l/

s

DATE &TIME

Legitimate Night Consumption = 1.5 l/s

Leakage = 0.72 l/s

MNF Calculation

Domestic historical consumption = 5.02 l/s

Domestic Night Factor = 0.2 Legitimate night consumption = 1.00 l/s

19AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

Minimum Night flow measured = 2.22 l/s

Night Leakage = 2.22 l/s – 1.00 l/s = 1.22 l/s 

4

Compare MNF with Water Balance

Leakage MNF = 1.22 l/s

Leakage WB* = 1.16 l/s 

20AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

*Average Meters Error used in the Water Balance is 7%. This value should be evaluated with selected sample meter testing

Conclusion

All users in the DMA has to be considered

Readings have to be correct (take a pic)

Error in meters reading has to be correctly 

21AQUAKNIGHT – 2nd  Training Course in EU  17 May 2013, Lemesos ‐ Cyprus

estimated

Night factors for each category has to be carefully estimated or measured

Special Consumers with high consumption need to be monitored overnight

AQUAKNIGHTQAQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

2nd Training Course in EU countries - 17 July 2013 - Lemesos, Cyprus

Session 4 Pressure ManagementSession 4 - Pressure Management

International Best Practice for Pressure Management,International Best Practice for Pressure Management,

Marco Fantozzi, IREN

T i i t i l id d b M F t iTraining material provided by Marco Fantozzi and Allan Lambert (WLRandA)

www.studiomarcofantozzi.it www.leakssuite.com

1

AQUAKNIGHT – 2nd training course EU countries, 17 July 2013, Limassol, Cyprus

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

2nd training course EU countries SESSION 5 – Innovative AMR Systems 17 July 2013, Limassol, Cyprus

Marios Milis

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd Training Course in EU 28 November 2013

Genova, Italy Host: Iren Acqua Gas (IAG) – Genova Italy Venue: Iren Conference Centre Address: Via Serra 3r. – 16122 Genova Italy Participants: IREN, Mediterranea delle Acque Trainers: SGI, IREN, UNIPA, FAST

28 November 2013

Time Title Name , Partner

09:10-09:20 Participant registration

09:20-09:40 Welcome Note Presentation of Aquaknight project and of the activities in the pilot of Genova

Nicola Bazzurro, IAG

Session 1 – Water Loss Management & Pressure Management

09:40-10:30 International Best Practice for Water Loss Management and for Pressure Management

Marco Fantozzi, IAG consultant

10:30-11:00 Experience in water loss management in IREN Reggio Emilia Francesco Calza, IREN

11:00-11:30 Coffee Break

Session 2 - Management of Commercial losses

11:30 -12:00 Evaluation and Management of Commercial Losses in water supply systems

Carlo Caccavo, SGI

12:00-12:40 Bench meter tests: Results from test of Genoa pilot water meters

Goffredo La Loggia, Vincenza Notaro, UNIPA

12:40-13:00 Effect of UFRs: Results from test 1 on water meters Marco Fantozzi, IAG cons.

13:00-14:00 Lunch Break

Session 3 – Leakage Calculation

14:00 – 14:45 Leakage Calculation in a DMA using Water Balance & MNF: A Real Case Study

Consumption profiles: Results from test 3 of water meters Carlo Caccavo, SGI

14:45 – 15:15 A statistical approach for Water Balance calculation Antonino Fortunato, FAMGA

Session 4 - ICT for water efficiency

15:15 – 15:45 Devices and tools applied to drinking water systems Daniela Gavioli, FAST

Session 5 – Discussion

15:45 - 16:15 Open discussion about results so far and challenges in application of the methodology in the pilot

All

16:15 - 16:30 Final Discussion

AQUAKNIGHTAQUA KN l d d I ti t f f AQUA KNowledge and Innovation transfer for

water savinG in tHe mediTerranean basin

Terzo Corso di Formazione in EU Terzo Corso di Formazione in EU Genova, 28 Novembre 2013

Presentazione del progetto Aquaknight e dellePresentazione del progetto Aquaknight e delle attività svolte nel sito pilota di Genova

Nicola BazzurroIren Acqua Gas

1

Il Servizio Idrico Integrato

Dal 2003 IAG ha la concessione per la gestione del servizio idrico integratonella Provincia di Genova (ATO) checomprende: 67 comuni circa 880.000 abitanti.

Servizio idrico a Genova Abitanti serviti: 700,000 Volumi distribuiti: 100,000,000 mc. Personale: 480 dipendenti Fatturato: 120,000,000 Euro

Il Sistema di approvvigionamento idrico

Risorse disponibili– Laghi artificiali: 7

– Impianti di trattamento: 7– Produzione di Energia: 65 GWh– Impianti idroelettrici: 8– Stazioni di sollevamento: 174– Rete di ditribuzione: 2700 km

3

Il Progetto AquaknightTrasferimento della conoscenza e dell’innovazione per il risparmio idrico nel bacino del Mediterraneo

• Programma: Cross‐border Cooperation within the European and Partnership Instrument (ENPI)

19/01/2015

p p ( )• Durata: 3 anni (7 Dic 2011‐ 6 Dic 2014)• Partners: 5 RTD, 5 End‐users

Il Consorzio coinvolto

Institute of Communication and Computer Systems

19/01/2015

Alexandria Water Company

Obiettivi generali

• Il progetto intende fornire ai paesi del bacino del Mediterraneo soluzioni ottimali per la gestione delle reti idriche e la riduzione delle perdite.

• I risultati progettuali dovrebbero essere applicati in territori caratterizzati da risorse scarse, con prospettive di i t d t ll’ t d ll d ddi peggioramento dovute all’aumento della domanda (crescita demografica ed economica) e al cambiamento climatico.

Obiettivi specifici

• AQUAKNIGHT intende facilitare il dialogo tra le istituzioni e gli operatori del settore idrico di diverse regioni del bacino del Mediterraneo, 

• Il progetto intende fornire ai gruppi “target” la conoscenza e gli strumenti sulle tecniche per la definizione dei bilanci idrici e l’uso di sistemi didefinizione dei bilanci idrici e l uso di sistemi di misura avanzati.

• AQUAKNIGHT si propone di migliorare la conoscenza delle perdite commerciali, causate dall’imprecisione dei sistemi di misura in uso.

• Il progetto incoraggerà l’adozione delle migliori pratiche a livello internazionale nelle regioni del Mediterraneo, contribuendo così a stabilire standard comuni per la gestione e il benchmarkingdelle reti idriche nell’area.

2

Le soluzioni proposte (1/2)1. Progetto e Sviluppo di 5 progetti pilota

paralleli in:

– Egitto, Giordania e Tunisia

– Cipro e Italia

2. Rafforzare i collegamenti e promuoveresinergie e azioni in collaborazione per fronteggiare la siccità nelle regioni del Mediterraneo tra:

– water utilities del Mediterraneo e

– Paesi partner del Mediterraneo

Le soluzioni proposte (2/2)

3. Capacity building di operatori nel settore idrico delle regioni Mediterraneeo al fine di migliorare l’efficienza gestionale e i 

risultati economici delle aziende

4. Trasferimento della conoscenza da EUMC to MPC su best practice applicata

• Formazione– EU Operatori di Water Utilities (3 corsi)

– MPC Operatori di Water Utilities (6 corsi)

• Visite Tecniche– Analizzare I risultati conseguiti nei siti pilota

– Acquisire conoscenza e consapevolezza sui diversi aspetti del mercato idrico nei paesidell’EU (Cipro e Italia) con condizioni similari agli altri paesi del Mediterraneo (MPC)

Metodologie di risparmio idrico

1. Bilancio idrico e acqua non fatturata(NRW)

2. Controllo attivo delle perdite eDistrettualizzazione

3. Tecniche avanzate di lettura dei contatori

Il sito Pilota

Il distretto naturale La rete di distribuzione

3

Alcuni numeri

Dettaglio: Superficie servita 1,032 sq Km.

Lunghezza della rete 8,092 KmLunghezza della rete 8,092 Km

Quota minima 35 m.

Quota massima 260 m.

Clienti 6143

Abitanti 15300

Materiali rete ghisa grigia      60%

acciaio 30%

polietilene 10%

Criticità:Pressioni elevate, livello di perdite elevato, frequenze di rottura elevate

Attività svolte

Analisi perdite idriche

Year Perdite idriche riparate

% perdite riparate nella rete

perdite riparate in rete

%perdite riparate nelle

prese

perdite riparate nelle

prese

indice frequenza rotture in rete (8

km)

Indice frequenza rotture nelle prese

(910)

2002-2006 50 35 18 65 33 16,8 10,22009 28 43 12 57 16 11,6 5,02010 33 33,3 11 66,7 22 10,6 6,92011 31 38,7 12 61,3 19 11,5 6,0

PRV installata 

nel 2006 (non ottimizzata)

PRV ottimizzata nel 2012

Analisi del parco contatori 

INFORMAZIONI SUL PARCO CONTATORI Età (anni)

Attività svolte

INFORMAZIONI SUL PARCO CONTATORI Età (anni)

Tipologia clienteTipologia misuratore

numero 1 a 3 4 a 7 8 a 11 >11

NrContatori di 

clienti residenti

Contatori volumetrici

Contatori a turbina 541 107 76 60 298

NrContatori di clienti  nonresidenti

Contatori volumetrici

Contatori a turbina 101 19 19 12 51

Attività svolte

Implementazione ALC (ricerca e riparazione perdite idriche)

Sito Pilota 2: IREN Acqua Gas

Leamara: attività già svolta• Installazione di un misuratore di portata e di 

pressione presso la sezione di ingresso ed ai punti critici

• Sistema di monitoraggio in tempo reale di pressioni e portate

• Rilevamento e riparazione perdite idriche

Leamara: attività da svolgereLeamara: attività da svolgere• Calcolo del bilancio idrico 

• Valutazione della gestione della PRV sulla base della misura della pressione al punto critico

Flow

Pressure

Installazione PRV e misuratori di portata  al punto di ingresso,di pressione ai punti medi e critico

Punto di ingresso (Via Santa Maria, Costa dei Ratti) e Punto Critico CP1

DISTRETTO LEAMARA

Flow

Pressure

4

Punto Critico CP2 (Via Finocchiara)

DISTRETTO LEAMARA

Flow

Pressure

Punto Medio (Via Pinetti)

LEAMARA DISTRICT

Flow

Pressure

DISTRETTO LEAMARAPORTATA e PRESSIONE ‐ 30 Ott 2006

MNF = 15 l/sec

Pressure downstream PRV = 3,6 bar

Pressure downstream PRV = 3,2 bar

Deflusso minimo notturno rilevante e pressione a valle della PRV e al punto 

critico instabile

FLOW and PRESSURE (each 5 minutes) ‐ 30 Oct 2012

LEAMARA DISTRICT

Flow

CP2 Pressure

Pressure Upstream PRV

Pressure Downstream PRV = CP1 = 3 bar

MNF = 8 l/sec

Action list

Flowmeters installation

IN

IN

Max storage 400 mcMax level 4,9 m.High 256 m.a sl

OUT

OUT

• Selezione sito pilota per analisi perdite apparenti a micro DMA.

• Il Targets del progetto pilota comprende:

– Definizione del profilo di consumo del cliente– Soluzioni test (che comprendono AMR, sostituzione dei contatori e 

Sito Pilota 2: IREN Acqua Gas

( p ,degli UFR (Low Flow Controller)) al fine di migliorare i volumi di acqua fatturata riducendo l’acqua sotto‐registrata

– Valutazione dei volumi non registrati alle basse portate– Sviluppo di un piano ottimale di sostituzione contatori basato sulla

valutazione delle perdite e dei guadagni

– Valutazione dei benefici finanziari derivanti dall’installazione degliUFR, come parte di una strategia di sostituzione contatori.

5

Pilot Case Leamara: IREN Acqua Gas

Leamara: attività già svolte Creazione e test di una piccolo subdistretto (28 contatori)

Installation of un misuratore a inizio distretto

Contatori di utenza

Contatore di distretto

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0:00 12:00 0:00 12:00

7 – 8 dec 2012

Informazioni sui misuratori

Partner acronym

Valutazione delle perdite commerciali

Test 1 ‐ Readings of the existing consumer meters and 

the Sub‐district master meter 

Partner acronym

Meters readings

date 21/1/13 15/02/12

readings 2610,167 2857,621

Accounted volume (cubic meter) 247 4540

Main meter

Valutazione delle perdite commerciali

Partner acronym

Accounted volume (cubic meter) 247,4540

date 21/1/13 15/02/12

Accounted volume (cubic meter) 234,2269

single meters

Corresponding to a difference of -13,2271 cubic meters

Fotografare i quadranti aiuta!

Partner acronym

Attività svolta

Sostituzione dei contatori comprendendo l’UFR

6

Opere civili nell’area pilota

Razionalizzazione deicontatori d’utenza

Evaluation of commercial losses

Meters readings (completed on may, the 8th)

date 24/04/13 8/05/13

readings 698,910 851,43

Accounted volume (cubic meter) 152 52

Main meter

Accounted volume (cubic meter) 152,52

date 24/4/13 8/05/13

Accounted volume (cubic meter) 151,9418

single meters

Corresponding to a difference of -0,5782 cubic meters

UFR: Valutazione dei benefici 

Test 1Over 25 days under registration of ‐13,271 cubic meters

Over 14 days under registration of ‐7,4318 cubic meters

NO

Test 3Over 14 days under registration of ‐0,5782 cubic meters

Correspondening to a water volume recovered of  6,854 cubicmeter counted in percentage as 4,51% of the total water volume

YES

Attività svoltaImplementazione AMR (Fast Automation)

Sostituzione contatori 

Multi‐Jet Sealed Register Water Meter

STATIC PULSE EMITTER WITH INTEGRAL MICROPROCESSOR

5-WIRE TECHNOLOGY (BIDIRECTIONAL)

PULSE OPTIONS: 1-10 LITRES

Implementazione AMR (Fast Automation)

Attività svolta

Corso di formazione e primo setup

7

AKN7

AMR architecture

Contatore di

distretto

1 contatore + pressione

6 contatori

3 contatori

6 contatori4 contatori

6 contatori

AKN1

AKN3

AKN4

AKN2

AKN5

2 contatori

AKN6

L’interfaccia Utente

19/01/2015

L’interfaccia Utente

19/01/2015

L’interfaccia Utente

L’interfaccia Utente L’interfaccia Utente

8

Attività svolta

Analisi dei contatori presso UNIPA

4

‐2

0

2

4

6

Errore [%]‐6

‐4

0.001 0.01 0.1 1 10

Errore[%]

Q[m3/h]

Attività da svolgere

1,2

1,4

1,6

1,8

2

Domestic Consumption Pattern 

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14 16 18 20 22 24

NF (Domestic Night Factor): 0.2

Un approccio innovativo

Statistical sampling of water uses for leakage assessment via water budget 

• employable for drafting water balances at network district scale in order to quantify the extent of leakages

• providing only few customers with perfectly working, updated and more advanced meters (which can be read almost simultaneously), extending the results to similar users, and to assess water use of the whole district. 

Il nostro team trans‐regionale

ESPERIENZE DI GESTIONE DELLE PERDITE IDRICHE ESPERIENZE DI GESTIONE DELLE PERDITE IDRICHE DI IREN, A REGGIO EMILIA

Francesco calza

Federico Ferretti

19/01/2015

1

080P

P

P

ACQUEDOTTO DI REGGIO EMILIA

31 mt s.l.m.

DATI ZONA PIEVE:

ABITANTI SERVITI: 22.000

ESTENSIONE RETE: 61 KM

DERIVAZIONI UTENZA: 1900

PRESSIONI MEDIE: 4.7 bar

ZONA PIEVE

P

121 mt s.l.m.

ACQUEDOTTO DI REGGIO EMILIA: ZONA PIEVE

DIS PIEVE

DIS.MERIDIANA

DIS. PIEVE

DIS.PUCCINI

UNICA AREA DI GESTIONE PRESSIONISUDDIVISA IN 3 DISTRETTI

57 mt s.l.m. 57.5 mt s.l.m.

ZONA PIEVE FUNZIONAMENTO ATTUALE

CENTRALE VIAGORIZIA

102 mt s.l.m.

CENTRO STORICO

FORTE PERDITA DI CARICO

PRESSIONI NOTTURNE IN ECCESSO

42 mt s.l.m.

STORICO

LA ZONA HA DUE PUNTI DI INGRESSO: UNO DA VIA GORIZIA E UNO DALLA RETE DEL CENTRO

57 mt s.l.m.

ZONA PIEVE NUOVO ASSETTO

CENTRALE VIAGORIZIA

102 mt s.l.m.

CENTRO STORICO

VALVOLA“SCHIAVA”

LA REGOLAZIONE VARIABILECONSENTE LA STABILIZZAZIONEDELLE PRESSIONI AD UN VALOREOTTIMALE

VALVOLA RIDUZIONEMODULANTE

57.5 mt s.l.m.

42 mt s.l.m.

STORICOSCHIAVA

•VALVOLA SCHIAVA: HA UNA REGOLAZIONE INFERIORE E SI ATTIVA SOLO IN CASO DI PRELIEVO ANOMALO

ATTENUAZIONE MEDIA DI 12 m.c.a, DA 47 a 35 m.c.a.: -25.5% •VALVOLA DI RIDUZIONE PRESSIONI MODULANTE

Realizzazione del progetto

SISTEMA MODULANTE SU BASE PUNTO CRITICO A LOOP CHIUSO

Comunicazione via radio a 169 MHZ

Comunicazione tramite fibre ottiche

O ON

E

TRASFERIMENTO DATO IN TEMPO REALE

ELAB

. DM

OD

UL

PERIFERICA AL

PUNTO CRITICO

PERIF. AL PUNTO DIINGRESSO

Realizzazione del progetto

RIL

IEV

OP

RES

SIO

DA

TI E LA

ZIO

NE

EFFETTI DELLA MODULAZIONE SULLA RETE

19/01/2015

2

Studio della rete mediante Studio della rete mediante modello di simulazione modello di simulazione calibrato realizzato su sistema calibrato realizzato su sistema INFOWORKS con modalità INFOWORKS con modalità PRD (pressurePRD (pressure relatedrelated

Realizzazione del progetto

PRD (pressure PRD (pressure relatedrelateddemanddemand))

Realizzazione del progetto

REDAZIONE ESECUTIVI

COSTRUZIONE E POSA

AVVIAMENTO

PARTE ELETTRONICA:-RIORDINO DI TUTTO IL QUADRO ELETTRONICO DI VIA GORIZIA

-INSTALLAZIONE ANTENNE (potenza di trasmissione 200 milliwatt)

VALVOLA MODULANTEANDAMENTO REGOLAZIONE:

ALLE MASSIME PORTATE, MINIMO DELTA PRESSIONE

VALVOLA PRV SECONDARIA:ANDAMENTO REGOLAZIONE

La valvola secondaria interviene solo di notte, quando le pressioni in retesono leggermente al disotto della sua regolazione. In alcuni casi anche di giorno in caso di forti consumi

Risultati ottenuti:

GENNAIO 2012 NOVEMBRE 2012

Le portate medie sono passate da 45 a 36 l/s.Le minime da 21 a 10 l/sec

19/01/2015

3

MECCANISMO MODULANTE

IL SISTEMA ELETTRONICO A BORDO DEL DATALOGGER E’ IN GRADO DI ADATTARE IN OGNI MOMENTO ILSET POINT DELLA VALVOLA MEDIANTE UN ACCESSORIO DEL PILOTA (PISTONE IDRAULICO “A.R.T.”).IN OGNI MOMENTO IL SISTEMA RICORREGGE IL SET POINT MEDIANTE L’ATTIVAZIONE DELLE VALVOLE ASOLENOIDE CHE CARICANO O SCARICANO L’A.R.T.

pressione

pressione

IL GRADO DICOMPRESSIONEDELLA MOLLA DELPILOTA MODIFICAREGOLAZIONEDELLAPRESSIONE DIVALLE

AFFIDABILITA’ DEL SISTEMA

PARTE IDRAULICA

- MONITORAGGIO PERMANENTE DI PORTATE E PRESSIONI SIA NEI PUNTI DI INGRESSO DELLA PMA CHE DI OGNI DMA

- RIDONDANZA DEI PUNTI DI INGRESSO- DOPPIO CIRCUITO DI VALVOLE NELL’INGRESSO PRINCIPALE

PARTE ELETTRONICA:

- IN CASO DI ROTTUTA DEL TRASDUTTORE AL P.C. IL SISTEMA PASSA MODULANTE SU BASE PORTATA

- IN CASO DI MANCANZA COMUNICAZIONE TRA PERIFERICHE PASSA MODULANTE SU BASE PORTATA

- IN CASO DI ROTTURA DEI TRASDUTTORI E DEL MISURATORE DI PORTATA PASSA A REGOLAZIONE FISSA PREFISSATA

• IL TARGET DA RAGGIUNGERE DEVE ESSERE CALCOLATO AL PUNTOCRITICO DEL SISTEMA, COSTITUITO DI NORMA DAL PUNTO PIÙ ESTREMOE ALTO DELLA RETE, TENENDO CONTO DEL PIANO PIÙ ALTO SERVITO EDELLO STANDARD DI PROGETTAZIONE EDILIZIA INVALSO. QUANDO LEUTENZE SONO SERVITE IN DIRETTA, CIOÈ SENZA L’AUSILIO DI SERBATOIDI ACCUMULO O AUTOCLAVI IL “TARGET DI PRESSIONE MINIMA” È ILSEGUENTE BUONA

ALTA

ECCESSIVA

25

45

70

TARGET MINIMO PRESSIONE

INSUFFICIENTE

SCARSA

mt c.a.

15

20

TARGET: 26 mt c.a.

SUFFICIENTE

Accettabile occasionalmente21 mt c.a.

15 mt c.a.Standard min. ato

Risultati ottenuti:

Le rotture annue sono passate da 70 a 26: -63%

INIZIO GESTIONE PRESSIONI70

ROTTURE/ANNOROTTURE/ANNO

26ROTTURE/ANNO

Risultati ottenuti:

INIZIO GESTIONE PRESSIONI

La variazione nelle rotture è stata più evidente sulle derivazioni utenza (in blu nel grafico)

Risultati ottenuti:

68%

VALORE OTTIMALE

- 68%

19/01/2015

4

Risultati ottenuti:

- 41%

VALORE OTTIMALE

BILANCIO AMBIENTALE

- 9 l/sec sono pari a 284.000 mc /anno

3500 ABITANTI

T.e.p. = tonnellate equivalenti petrolio 30 T.E.P.

BENEFICI ECONOMICI

24.000 euro1°

44.000 euro2°

83.000 euro/anno

15.000 euro3°

42 mt s l m

57 mt s.l.m.

ZONA PIEVE POSSIBILE FUTURA EVOLUZIONE

CENTRALE VIAGORIZIA

102 mt s.l.m.

CENTRO STORICO

VALVOLA“SCHIAVA”

VALVOLA RIDUZIONEMODULANTE

57.5 mt s.l.m.

42 mt s.l.m.

i

FUTURA STAZ.POMPAGGIOA GIRI VARIABILI

•INTRODUZIONE DI UN INVERTER A REGOLAZIONEVARIABILE SU BASE PUNTO CRITICO

DATI STATISTICI DELL’ACQUEDOTTO DI REGGIOEMILIA

CONCLUSIONI 1° parte

- La gestione delle pressioni è una tecnica fondamentale nella riduzione delle dispersioni e delle rotture.

- Regolazioni anche di lieve entità possono dare risultati apprezzabili

CONCLUSIONI 2° parteI risultati di tutte le azioni svolte per l’efficientamento delle reti nella totalità della provincia di Reggio Emilia,

sono facilmente apprezzabili mediante l’andamento dei consumi elettrici

Nel medesimo periodo la popolazione servita è aumentata di 150000 persone.

AQUANIGHT

Identifying and controlling Apparent LLosses

Genova, 28 Novembre 2013

Eng. Carlo Caccavog

1AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

1

Main Topics

Apparent Losses – Definitions and Causes

AMR (Automatic Meter Reading)

2AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

AMR (Automatic Meter Reading)

Controlling Apparent Losses

SGI

Apparent Losses

…..Apparent losses are the nonphysical losses that occur when water is successfully delivered to the customer but, for various reasons, is not 

measured or recorded accurately

3AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

measured or recorded accurately.…

AWWA MANUAL M36

Kinds of leaks

Physical Leakage Breaks in mains and service connections

Background losses (valves, tanks, plants, not detectable small leaks)

Apparent Losses

4AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

pp Customer metering inaccuracies

Systematic consumption data handling errors, particularly in customer billing systems

Unauthorized consumption

Factors affecting Meters Error at low rates

Private domestic storage tanks

The filling of the tank is produced through a proportional ball valve which laminates the instantaneous water demand and reduces flow rates

5AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

flow rates

leaks inside the households, usually in faucets and toilets

Meter age 

Pressure and water quality

Roof tanks

6AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

In general, meter accuracy is influenced by three principal factors: 

the physical accuracy of the meter 

the appropriate sizing of the meter to fit the

Customer Meters Inaccuracy

7AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

the appropriate sizing of the meter to fit the customer's consumption profile 

the appropriate type of meter to best record the variations in flow

2

Error Curve for a domestic Class B meter

8AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Reconstructed curve of a 1.5 m3/h, class B meterError increases during low flows

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Typical Consumption Pattern for different households 

9AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Household Type I: Apartment blocks with direct injection from the network or a pump (tested N° 389 for a week).

Household Type II: Apartment blocks fed from an elevated tank (at the top of the building). Water meter is installed upstream the tank. Tested N° 58 households for a week.

Household type III: Independent houses with garden. Tested 34 households for 4 weeks

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Calculate weighted error 

10AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Multiply the percentage of water consumed in a flow range by a user and the average error at the medium flow rate of the flow interval

Data transfer errors

Manual meter reading errors

AMR equipment failure

Procedural/data entry errors during meter h

Systematic data handling Errors

11AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

change‐outs

Data analysis errors

Use of poorly estimated volumes in lieu of meter readings

Policy and procedure shortcomings

Delays in registration, metering or billing operations

Unauthorized Consumption Components

Illegal connections;

Open bypasses;

Buried or otherwise obscured meters;

Misuse of fire hydrants and fire‐fighting systems

12AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Misuse of fire hydrants and fire fighting systems (unmetered fire lines);

bypassed consumption meters (meter tampering);

Illegally opening closed valves on customer service piping that has been shut off for non payment;

Illegal Connection Example

13AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

For expenditure analysis unauthorized consumptions  in the Water Balance can be put equal to 0.25% of Water Supply (representative value from water audit worldwide)

Illegal consumption can be higher where economic conditions are poor

3

AMR (Automatic Meter Reading)

“Fixed System”. It is the more complex system as it is fully automatic.  Short transmission intervals without any manual intervention

Data logging for the more advanced versions

Advanced statistic of customers consumption

14AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

“drive‐by system” – data are collected via a receiver passing near the transmitting units Low possibility of data logging

High transmission interval

Useful only for billing porpoises

Benefits from AMR

Readily available users’ consumption at the more convenient time step (monthly, weekly etc.)

Full integration of AMR technology with the billing system for quick invoice and reference

Reducing of manpower: no need to read manually water 

15AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

g p yconsumption and to transfer data to the billing database

Alarming system to know quickly any anomaly like non‐operating meters or under reading

Fully automatic process from reading of consumption to issue of invoice

AMR fixed infrastructure – Ancona (IT)

16AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Ancona Pilot Area (Multiservizi SpA ‐ Italy)

17AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Qin

Mean Pressure: 55 mReservoir Level: 140 mMin. Ground Level: 56,9 mMax. Ground Level: 74 mWater mains length: 1,9 KmMains Material: Steel, Cast Iron, PVCNumber of consumer meters: 325Number of bulk meters: 1

AMR Transmitters ‐ Ancona (IT)

18AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

AMR Integration with other devices(Ancona Italy)

Bulk MeterBulk MeterNoise LoggersNoise Loggers

19AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Users’ MetersUsers’ Meters

AMRAMRRepeaterRepeater

4

Ancona AMR outputHourly Users’ ConsumptionDaily Users’ Consumption

20AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Bulk Flow MetersNoise Loggers

Noise Loggers Data Analysis – Alert Leak

k R

epai

r

21AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Lea

Flow Chart Posatora District

22AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Ancona AMR – Hourly Pattern Domestic consumptions

1,21,41,61,8

2Domestic Consumption Pattern

23AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

AMR possible problems

Sometimes necessary to install many repeaters to improve transmission reliability

AMR repeaters and concentrators mount on light pole or on the building roof, authorization needed

i d d

24AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Maintenance needed

Failure data transmission (less then 100% transmission rate), necessary to interpolate past user consumption

High cost

CONTROLLING APPARENT LOSSES

25AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

CONTROLLING APPARENT LOSSES

5

The Bottom‐up Validation of the Water Audit

Step 1: Analyze the workings of the customer billing system to identify deficiencies in the water consumption data handling process (Meter Reading, Billing, Payment Processing, Collection)

Step 2: Sample Customer Survey, including number of meters by meter size, customer type, and consumption ranges (check anomalies in flow size)

26AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

anomalies in flow size). 

Step 3: Perform meter accuracy testing for a variety of sample meter installations to understand the functional status of the meter population.

Step 4: Assess a sample of customer accounts or locations for unauthorized consumption potential.

Speed and quality

of repairs

Data Transfer ErrorBetween Meters and

archive; poort

ELAL - Economic Level of Apparent Losses

Unavoidable Annual Apparent Losses

Active Leakage

Unauthorised C i

The Pillars approachto the control ofApparent Losses

Customer Meterinaccuracy

27AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Potentially Recoverable Apparent Losses

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Data AnalysisError BetweenArchived Data and data Used(Billing/water 

Balance)

of repairscustomeraccountability

LeakageControlConsumption

Current Annual Apparent Losses

Cost Curve for Meter Replacement Programs

Average Cumulative Consumption  Passed Through the meter

28AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Optimum Frequency of meters replacement= point in the curve that matches the minimum optimal loss  

From AWWA Manual M 36

ELAL – Economic Level of Apparent Losses

29AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Lmin Lmin = Economic Level of Apparent Losses

From AWWA Manual M 36

Cost benefit Analysis

Estimation of cost to reduce each component of apparent losses

Replacing customer meters

Updating of the billing system (new software, better audit etc.)

Training personnel on reading and managing data

30AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Training personnel on reading and managing data

AMR (Automatic Meter Reading)

UFR (Unmeasured Flow Reducer)

Evaluation of benefit (reduction of apparent losses)

Choose the solution with the best cost‐benefit ratio and low pay‐back period

Problems in ELAL calculation

ELAL is difficult to calculate. 

Different curves for each component, 

Necessary to consider meter accuracy at different t li (ti i )

31AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

meter lives (time consuming)

IWA Water Loss Task Force is developing a simplified method of obtaining ELAL

6

Actions to reduce Apparent Losses (1)

Audit the customer meter reading and billing process

Perform annual meter accuracy test on a small sample (50 meters)

Installation of new meters to measure public water uses h h i d b d

32AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

that are authorized but un‐metered;

Verification of large consumers’ meters;

Check billing database to report broken meters (reading equal to zero)

Actions to reduce Apparent Losses (2)

Conduct customer connection survey in selected area where apparent losses are higher in order to identify illegal connections

Cross check customers of the water services with the customers of the electricity service

33AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

customers of the electricity service.

Audit of domestic and commercial customers connections and verify if they correspond to the information on the customers’ database

Evaluation of Illegal Connections (1)

Estimate Real Losses (Minimum Night Flow Analysis)

Evaluate  customer meters inaccuracy 

34AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

(sample test, average weighted error)

Compile IWA water balance and calculate Illegal Consumption for difference

Evaluation of Illegal Connections (2)

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

35AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

identification of Illegal Connections (3)

This test should be done if illegal connections are suspected in a specific area

Test area (DMA/Sub DMA isolation)

36AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Test area (DMA/Sub DMA isolation)

Verify that no leak exist with acoustic equipment

Close all connections

Check the inlet flow meter for any positive flow

Evaluation of Illegal Connections (4)

Reality: difficult to obtain leakage ZERO

Solution: after closing all connections check flow at the inlet.

If flow is constant during time (2‐3 hours) it’s

37AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

If flow is constant during time (2 3 hours) it s leakage

If flow is floating there is illegal use

If flow is ZERO: no leaks no illegal use

Tests on meters accuracy(coordinated by UNIPA)(coordinated by UNIPA)

Vincenza Notaro (UNIPA)

1AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

19/01/2015

1

Prove al banco contatori di UNIPA: Risultati delle prove sui contatori del sito pilota di Genova

2AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Vincenza Notaro

(UNIPA)

UNIPA

User consumptions evaluationin a water distribution network

User water consumption is usually measured by turbin water meters

3AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Water meters provide essential data used by the utilities for: issuing bills, obtaining the system water balance, identifying failures in the network, water theft and anomalous user behaviors

UNIPA

Water meter intrinsic error

Despite their importance, water meters are characterized by intrinsicinaccuracies that change with the flow rate passing through the meter.

ε1 ε2

ErrorPerformance curve of a new water meter 

4AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Q1 Q2 Q3 Q4

‐20%

‐40%

‐60%

‐80%

‐100%

Flowrate[l/h]

ISO4064:2005

Q1 ≤Q < Q2 → ε ≤ ε1= 5%

Q2 ≤ Q ≤ Q4 → ε ≤ ε2= 2%

UNIPA

Water meter intrinsic error

Meter performance is related to:

• the TECHNICAL FEATURES OF THE METERTECHNICAL FEATURES OF THE METER• theMETER WEARING PROCESS (METER AGE)METER WEARING PROCESS (METER AGE)• theWATER QUALITYWATER QUALITY• the TEMPORAL PATTERN OF END USER DEMANDTEMPORAL PATTERN OF END USER DEMAND• the NETWORK PRESSURENETWORK PRESSURE

5AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

• the NETWORK PRESSURENETWORK PRESSURE

The meter inaccuracy can produce under‐registration errors of the watervolumes supplied by users

These errors are responsible for a part of so‐called apparent losses for waterutility: consisting of water volumes withdrawn from the network, consumed byusers but not paid for

Water meter inaccuracies are often considered to be the most significantcause of apparent losses and the hardest to quantify and reduce..

UNIPA

Influence of user’s consumption

Generally, the apparent losses due to meter under‐registration are related to thepercentage of user’s consumption occurring at low and very low flow rates.

sumption

6AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

A class C water meter with Qn = 1,5 m3/h can have a starting flow equal to 5‐10 l/h

thus theoretically the 7%7% of consumption should be not registeredThe percentage increases with water meter aging and wearing process.

Flow rate (l/h)

% of u

ser con

s

UNIPA

Tests on meters accuracy

For each test site:

5 of new meters will be previously calibrated in UNIPA 

A representative sample of 20 customers were selected in the DMA and the related old meters were delivered to Palermo University to be tested for a range of flows. 

7AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

selection was done by different: 

ages,

size,

registered volumes,

manufactures, 

typology,

UNIPA

19/01/2015

2

UNIPA’s laboratory test bench

The accuracy of the selected meters was tested by the UNIPA’s laboratory test bench

The test bench is a weight calibration device compliant with the ISO 4064:2005 standard

It consists of:

• a water supply system (mains, 1 unpressurisedtank, 2 pumps);

• a test section in which the meter is placed;

• 4 flow meters to establish the approximateflow rates at which the meter is tested;

8AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

flow rates at which the meter is tested;

• 2 pneumatic and automatic gate valves;• 2 pressure gauges to measure the pressure

upstream and downstream the tested meter;

• 1 vacuum gauge;• 2 calibrated tanks, each placed on a precision

electronic balance;

• 1 temperature sensor• 1 a control panel

It is connected to a computer for test automation, acquiring the measurements andcomputing the results

UNIPA

UNIPA’s laboratory test bench

Laboratory experiments were carried out in UNIPA laboratory in order:

• to estimate metering error curves for different flow meters classes and ages

• to find a direct link between meter age, network pressure and the apparentlosses caused by the incapability of the meter to accurately measure thevolume passing through it at low flow rates

9AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

Class C; Q3 = 2.5 m3/h; DN 20 mm Class C; Q3 = 2.5 m3/h; DN 20 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

Class C; Q3 = 1.5 m3/h; DN 13 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

The method used to determine measurement errors is the so‐called“collection” method in which the quantity of water passed throughthe water meter is collected in one collecting calibrated tank andthe quantity determined by weighing. The checking of themeasurement error consists of comparing the indications given bythe meter under test against the tank.

The “collection” method (ISO 4065:2003 ‐ Part 3)

10AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy A schematic of the

test benchUNIPA

Steps of meter test:1. Place the meter under test in the test section

11AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPAA schematic of the

test bench

Steps of meter test:2. Set test flowrates throughout the fluxmeters

12AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPAA schematic of the

test bench

Steps of meter test:2. Set test flowrates throughout the fluxmeters

The intrinsic error of the meter has to be determined for at least seven flowrates(the error at each flowrate being measured three times)

1. between Q1 and 1,1 Q1

2. between 0,5 (Q1 + Q2) and 0,55 (Q1 + Q2)3. between Q2 and 1,1 Q2

4. between 0,33 (Q2 + Q3) and 0,37 (Q2 + Q3)5 b t 0 67 (Q + Q ) d 0 74 (Q + Q )

13AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

5. between 0,67 (Q2 + Q3) and 0,74 (Q2 + Q3)6. between 0,9 Q3 and Q3

7. between 0,95 Q4 and Q4

A schematic of thetest bench

19/01/2015

3

Steps of meter test:3. Run the test

14AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPAA schematic of the

test bench

A given volume passes through the meter and enters the tank at each flowrate.The metering error is determined comparing the indication of the meter and the volumecollected in the tank at each flowrate

Steps of meter test:3. Run the test

15AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

+MPEL

Meteringerror

+MPEU

Upperzone

+2%

+5%

Results of meter test: meter error curve

16AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Flowrate

‐MPEL

‐MPEU

Q2 Q3 Q4Q1

Lowerzone

‐2%

‐5%

Water meters selected in the Genoa DMA

# calibro DES_VIA_CONTATORE civ DES_CAT CODFAB MATCON PORTATAANNO_FABBRICAZIONE DATA_INSTALLAZIONE

1 15 VIA DEL MOLINETTO 1 Domestico con T.A. Maddalena 641518 15 1985 22/01/1985

2 15 VIA DEL MOLINETTO 25 Domestico con T.A. Bosco 3061835 15 1985 15/03/1985

3 15 VIA DEL MOLINETTO 14 Domestico con T.A. Maddalena 71968 15 1995 08/08/1995

4 15 VIA DEL MOLINETTO 10 Domestico con T.A. Maddalena 126395 15 1996 05/02/1996

5 15 VIA DEL MOLINETTO 19 Domestico con T.A.Schiumberger/Schol 632317 15 1999 03/08/1999

6 15 VIA DEL MOLINETTO 13 Domestico con T.A.Schiumberger/Schol 455018 15 1999 10/11/1999

7 15 VIA DEL MOLINETTO 7 Domestico con T.A.Schiumberger/Schol 320448 15 2001 28/03/2001

8 15 VIA DEL MOLINETTO 14 Domestico con T A Schiumberger/Schol 276515 15 2003 05/05/2003

17AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

8 15 VIA DEL MOLINETTO 14 Domestico con T.A.Schiumberger/Schol 276515 15 2003 05/05/2003

9 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58309 15 2007 02/04/2008

10 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58310 15 2007 02/04/2008

11 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58307 15 2007 02/04/2008

12 15 VIA DEL MOLINETTO 17 Domestico con T.A. Maddalena 149844 15 2008 12/12/2008

13 15 VIA DEL MOLINETTO 14 Domestico con T.A. Maddalena 25725 15 2009 12/01/2009

14 20 VIA DEL MOLINETTO 6 Domestico con T.A. Maddalena 7697 20 2009 12/02/2009

15 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 8568 15 2009 12/02/2009

16 20 VIA DEL MOLINETTO 2 Domestico con T.A. Maddalena 9694 20 2009 12/03/2009

17 15 VIA DEL MOLINETTO 23 Domestico con T.A. Maddalena 26714 15 2009 12/10/2009

18 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 26646 15 2009 12/11/2009

19 15 VIA DEL MOLINETTO 16 Domestico con T.A. Maddalena 1079 15 2011 13/12/2011

20 15 VIA DEL MOLINETTO 19 Cantiere Maddalena 590031 15 1973 05/11/1973

Water meters selected in the Genoa DMA

OLD METER

NEW AMR METER

18AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

Test bench results: Genoa old water meterTest pressure: 2 bar

Brand Schiumberger/Schol

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class C       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 99‐455018 1 Q1 0.016 ‐26.32 0.016 ‐24.98 0.015 ‐24.97 0.016 ‐25.42

Age 14 2 0.5(Q1+Q2) 0.019 ‐12.93 0.019 ‐12.16 0.020 ‐5.10 0.019 ‐10.06

TEST ISO 4064:2005 3 Q2 0.024 ‐10.96 0.024 ‐9.85 0.024 ‐10.97 0.024 ‐10.59

Q1 0.015 4 0.33(Q2+Q3) 0.528 3.80 0.515 3.91 0.516 3.59 0.520 3.77

Q2 0.0225 5 0.67(Q2+Q3) 1.054 3.00 1.055 2.65 1.065 3.02 1.058 2.89

Q3 1 5 6 Q3 1 474 2 44 1 449 2 57 1 436 2 44 1 453 2 48

AverageTest point TEST 1 Test 2 Test 3

‐1001020

0 001 0 01 0 1 1 10

Watermeter99‐455018‐DN15mm‐ClassC

Each meter was tested three times and finally the average error curve was evaluated

19AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

Q3 1.5 6 Q3 1.474 2.44 1.449 2.57 1.436 2.44 1.453 2.48

Q4 3 7 Q4 2.959 1.80 2.965 3.91 2.975 0.14 2.966 1.95

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐30‐200.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Average curve

19/01/2015

4

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046901 1 Q1 0.015 2.65 0.015 2.65 0.015 3.43 0.015 2.91

Age 0 2 0.5(Q1+Q2) 0.019 4.11 0.019 1.02 0.019 6.47 0.019 3.87

TEST ISO 4064:2005 3 Q2 0.024 7.51 0.024 2.59 0.024 3.18 0.024 4.43

Q1 [m3/h] 0 015625 4 0 33(Q2+Q3) 0 511 1 84 0 538 1 79 0 549 1 59 0 533 1 74

Test point TEST 1 Test 2 Test 3 Average

Test bench results: Genoa new water meterTest pressure: 2 bar

‐1001020

0.001 0.01 0.1 1 10

AMR‐Watermeter1330046901‐DN15mm

20AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 1.84 0.538 1.79 0.549 1.59 0.533 1.74

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.028 0.91 1.040 1.29 1.043 1.14 1.037 1.11

Q3  [m3/h] 2.5 6 Q3 1.377 1.20 1.447 1.01 1.439 1.61 1.421 1.27

Q4  [m3/h] 3.125 7 Q4 2.982 0.49 2.887 0.50 2.885 0.73 2.918 0.57

UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐30‐200.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Average curve

Test bench results: Genoa water meters

Test bench results were analysed classifyingthe meters in 5 age classes

CLASS 0 = new meters

21AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

CLASS 0 = new meters

CLASS 1 = meter age ranging between 1 – 5 years

CLASS 2 = meter age ranging between 5 – 10 years

CLASS 1 = meter age ranging between 10 – 15 years

CLASS 1 = meter age major than 15 years

UNIPA

Test bench results: Genoa water metersTest pressure: 2 bar

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS1‐ Age(0‐5years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS2‐Meterage[5‐10years)

‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

or[%

]

CLASS0‐ NewAMR

22AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS3‐MeterAge[10‐15years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS4‐MeterAge>15years

‐100‐90‐80‐70‐60‐50

Erro

Q[m3/h]

Test bench results: Genoa new water meterTest pressure: 5 bar

23AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy UNIPA

PRESSURE test 5 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046899 1 Q1 0.015 12.78 0.015 6.91 0.015 9.17 0.015 9.62

Age 0 2 0.5(Q1+Q2) 0.019 10.71 0.019 12.87 0.020 5.76 0.019 9.78

TEST ISO 4064:2005 3 Q2 0.023 15.40 0.024 11.55 0.024 8.34 0.024 11.76

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 3.03 0.516 3.14 0.512 2.70 0.513 2.96

TEST 1 Test 2 Test 3 AverageTest point

Test bench results: Genoa new water meterTest pressure: 5 bar

‐1001020

24AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 3.03 0.516 3.14 0.512 2.70 0.513 2.96

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.063 1.96 1.048 2.43 1.042 2.10 1.051 2.16

Q3  [m3/h] 2.5 6 Q3

Q4  [m3/h] 3.125 7 Q4

UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐100102030

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40‐30‐20100.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

Average curve

Pressure test 5 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046901 1 Q1 0.015 10.58 0.015 10.30 0.015 10.38 0.015 10.42

Age 0 2 0.5(Q1+Q2) 0.019 11.10 0.020 13.52 0.020 8.89 0.019 11.17

TEST ISO 4064:2005 3 Q2 0.024 11.77 0.023 9.36 0.023 13.49 0.023 11.54

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.514 3.05 0.508 3.33 0.504 3.12 0.508 3.17

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.096 2.03 1.093 1.84 1.088 11.78 1.092 5.22

Q3  [m3/h] 2.5 6 Q3

Q4  [m3/h] 3.125 7 Q4

AverageTest point TEST 1 Test 2 Test 3

Test bench results: Genoa new water meterTest pressure: 5 bar

‐20‐1001020

0.001 0.01 0.1 1 10

]

25AQUAKNIGHT – 3nd  Training Course in EU  28 Nov 2013, Genoa ‐ Italy

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

UNIPA

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐3020

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

Average curve

AQUAKNIGHTAQUA KNowledge and Innovation transfer

for water savinG in tHe mediTerranean basin3rd Training Course in EC countries - 28 Nov 2013 - Genova, Italy

Session – Apparent LossesActivity 2.5 : Effect of UFRsActivity 2.5 : Effect of UFRs

Results from test 1 on water meters Effetti dell’UFR

Risultati ottenuti nel Test 1 sui contatori

Marco Fantozzi, IREN

Training material provided by Marco Fantozzi

Marco Fantozzi, IREN [email protected]

1AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Training material provided by Marco Fantozzi and Allan Lambert (WLRandA)www.studiomarcofantozzi.it

www.leakssuite.com

1

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November

2013)

2AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

2013)3. Pilot activities planned for the next 6

months (November 2013 – April 2014)4. Conclusions so far

IREN

ALEXANDRIA

Test 1 Apparent lossesAlexandria Pilot sub DMA

3AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Alexandria Sub DMA INFORMATION

Test 1 Apparent lossesAlexandria Pilot sub DMA

4AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

IREN

Alexandria SubDMA - Zone inflow graph, pressure graph

Test 1 Apparent lossesAlexandria Pilot sub DMA

5AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Alexandria SubDMA – Measurements at Inlet Point

Test 1 Apparent lossesAlexandria Pilot sub DMA

Alexandria Sub DMA El Mohagrin streetCUSTOMER METERS INFORMATION

6AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

7AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

2

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

8AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

9AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

10AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

INACCURATE METERS NO STORAGE TANKS

Unreliable results in Part D Presence of leak or illegal

connections?

AQABA

11AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Aqaba Sub DMA INFORMATION

Test 1 Apparent lossesAqaba Pilot sub DMA

12AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

IREN

Aqaba SubDMA - Zone inflow graph

Measurementat Inlet Point

Test 1 Apparent lossesAqaba Pilot sub DMA

13AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Aqaba SubDMA

3

Test 1 Apparent lossesAqaba Pilot sub DMA

Before Survey

Old Meters

Old with UFR

Bulk 438 242 527

Customer 219.1  117.7  272.6 

NRW 218.9  124.3  254.4 

NRW% 50 0% 51 3% 48 3%

14AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

NRW % 50.0% 51.3% 48.3%

Note: it is not appropriate to installtwo meters in series to accurately

measure the performance withUFR

Aqaba SubDMA – Test 1 Part A: Under registration with old meters

Test 1 Apparent lossesAqaba Pilot sub DMA

Part B: Under registrationwith old meters & UFRs

15AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

OLD INACCURATE METERS

STORAGE TANKS

4% Improvementdue to UFR

Test 1 Part C: Under registration with new meters with UFRsTest 1 Part D: Under registration with new meters without UFRs

Test 1 Apparent lossesAqaba Pilot sub DMA

AWC decided to repeat Test 1 in a different DMA due to:

I t t i t ll ti i h C

16AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

- Incorrect meters installation in phase C,- Presence in the initial DMA of an illegal consumption notdetected which influence the reliability of the test.

New test data from the new DMA will be available at beginning of 2014.

TUNIS

17AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Tunis Sub DMA INFORMATION

Test 1 Apparent lossesTunis Pilot sub DMA

18AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Tunis Sub DMA - Zone inflow graphMeasurementat Inlet Point

Test 1 Apparent lossesTunis Pilot sub DMA

19AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Customermeters

4

Test 1 Apparent lossesTunis Pilot sub DMA

Tunis Sub DMA: 762CUSTOMER METERS INFORMATION

20AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

PART B inconsistent data

21AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

OLD METERS NO STORAGE TANKS

2,5 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

22AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

NEW ACCURATE METERS NO STORAGE TANKS

NO UNDER REGISTRATION

LEMESOS

23AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Lemesos Sub DMA INFORMATION

Test 1 Apparent lossesLemesos Pilot sub DMA

24AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Lemesos Sub DMA - Zone inflow graph

Test 1 Apparent lossesLemesos Pilot sub DMA

25AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Measurement at Inlet Point

Customermeters

Customermeters

with UFR

5

Test 1 Apparent lossesLemesos Pilot sub DMA

Lemesos Sub DMA: 324 AMR sub DMACUSTOMER METERS INFORMATION

26AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesLemesos Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

27AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

ACCURATE METERS STORAGE TANKS

Small Improvementdue to UFR

with OLD meters

Test 1 Part C: Under registration with newmeters with UFRs

Test 1 Apparent lossesLemesos Pilot sub DMA

Test 1 Part D: Under registrationwith new meters without UFRs

28AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

ACCURATE METERS and UFRs

STORAGE TANKS

5,5 % Inaccuracywith NEW meters

without UFRs

GENOVA

29AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Genova Sub DMA INFORMATION

Test 1 Apparent lossesGenova Pilot sub DMA

Customermeters

30AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Inlet Flow meter

Genova Sub DMA - Zone inflow graph

Test 1 Apparent lossesGenova Pilot sub DMA

31AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Measurement at Inlet Point

Customermeters

with AMR

Customermeters

with UFR

6

Test 1 Apparent lossesGenova Pilot sub DMA

Genova Sub DMA: Leamara sub DMA Via MolinettoCUSTOMER METERS INFORMATION

32AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters & UFRs

33AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

INACCURATE METERSNEW PIPES

NO STORAGE TANKS

4,4 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registrationwith new meters without UFRs

34AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

ACCURATE METERS & UFRs + NEW PIPESNO STORAGE TANKS

5,3 % Inaccuracywith NEW meters

without UFRs

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November

2013)

35AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

2013)3. Pilot activities planned for the next 6

months (November 2013 – April 2014)4. Conclusions so far

Customer Meter Under‐registration CMU

Pilot DMA

Part A Customer Old Meter Under‐registration 

CMU without UFRs

Part B Customer Old Meter Under‐registration 

CMU with UFRs

Part CCustomer New Meter Under‐registration 

CMU with UFRs

Part D Customer New Meter Under‐registration 

CMU without UFRs

UFR contribution with old meters (A‐B)

UFR contribution with new meters (D‐C)

Presence ofPrivate Storage Tanks

T t t b T t t b

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

36AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Aqaba** 50,9% 47,0%Test to berepeated

Test to berepeated 4,0 % ‐ Yes

Alexandria^ 12,94 % 12,07 % 2,5 %

Test to berepeated

16,4 %  0,8 % 14 % Yes

Tunis^^ 12,36% 9,78% ‐0,27 % ‐0,46 % 2,6 %No under 

registration No

Lemesos * 3,8 % 3,0 % 0,00 % 5,5 % 0,77% 5,5 % Yes

Genova * 9,85 % 5,42 % 0,10 % 5,33 % 4,4 % 5,3 % No

IREN

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

* In the case of Lemesos and of Genova,to take into account very small size of the pilots and good infrastructurecondition, a low reduced level of UBL (Unavoidable background leakage)has been considered as the most probable scenario.

^ In the case of Alexandria most probably the presence of an undetected

37AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

leak (around 12 mc/day is effecting the test.A test has been planed with AWCO asap to check results.

** In Aqaba most probably the presence of an illegal connection iseffecting the test. Test is to be repeated in a different DMA.In addition it is not appropriate to install two meters in series to accuratelymeasure the performance with UFR.

^^ In Tunis increase in under registration in Part B is most probably dueto error in meters reading.

7

50,90%

47,00%

40,00%

50,00%

60,00%Under Registration CMU

Test 1 Apparent losses EvaluationTest Results

Aqaba test to be repeated

38AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

12,94%12,07%

2,50%

16,40%12,36%

9,78%

0 -0,46%3,80% 3,00%

0

5,50%9,85%5,42%

0,10%5,33%

-10,00%

0,00%

10,00%

20,00%

30,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

Aqaba Alexandria Tunis Lemesos Genova

IREN

Data to beverified

Test 1 Apparent losses EvaluationTest Results

12,94%

12,07%

16,40%

12,36%12,00%

14,00%

16,00%

18,00%Alexandria Tunis Lemesos Genova

Under Registration

CMU

Data to beverified

39AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

2,50%

9,78%

0 -0,46%

3,80%3,00%

0

5,50%

9,85%

5,42%

0,10%

5,33%

-2,00%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

IREN

Even if tests in Aqaba and in Alexandria are still to be completeddue respectively to presence of a leak and of an illegalconsumption, test results show that both meters replacementand introduction of the UFRs produce an increase in revenuefor the utility proving that a meter replacement policy is worth tobe introduced.

Conclusions (so far) Test 1 Pilot sub DMA

40AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

It will be possible to suggest meter replacement frequency and toestimate specific benefits achievable in each utility with metersreplacement plan and UFR installation after completing test analysis at laboratory.

IREN

AQUANIGHTAQUANIGHT

Leakage Calculation in a DMA using Water B l & MNF A R l C St dBalance & MNF: A Real Case Study

Genova 28 Novembre 2013

Eng. Carlo Caccavog

1AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

1

Calculation of Leakage in the Pilot DMA

Water balance

2AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Minimum Night Flow

IWA Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

3AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Minimum Night Flow 

4AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Simplified Leakage Calculation Method using historical customers consumption*

SGI

* Consumption tables taken from an Italian case  study

40

50

60

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

M_1

Minimum Night Flow 

5AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

0

10

20

30

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTA

TA (l/s)

Minimum Night UseMinimum Night Use

LEAKAGE*

* Includes background losses. They can be estimated using the burst and background estimates approach (BABE) developed in the UK

Customer Night Use Estimate

Gather and analyze historical Consumption from the utility billing system

Calculate average daily consumption for each category (domestic, commercial, industrial etc.)

6AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Calculate Minimum Nigh Use applying to the average consumption appropriate night factors

Special users should be considered separately 

(> 40 m3/d) 

1 – Gather Hystorical Consumption fromCompany Billing Data base

CODICE_TIP uso ConteggioDiCODICE_ULM COD_STAT DESCR_STAT ommaDiGENNAIommaDiFEBBRA

For each DMA extract users consumption records inside the DMA (per month orquarter depending on the accounting period)

For each user allocate a category: domestic, commercial, industrial, ecc.

FEB (m3)CUSTOMERS CATEGORY Customers N. JAN (m3)DescriptionID

7AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 29 A0101D Privato 217,96 196,84DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 1 F0103D di costruzione 4,88 6,07DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000030 PROVINCIALE 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000160 TE VARIO 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 000165 GENERICA 14,64 13,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000240 ARTIGIANALE - 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 F0103D di costruzione 3,69 3,34DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0315A e drogherie, 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0321A art.profumeria, 8,13 7,35DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0322A suti per 2,79 2,52DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0324A dettaglio di 1,8 1,63DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0344A coli 1,28 1,15DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0350A etti arte,culto e 2,14 1,93DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 I0308A connesse alle 0,26 0,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0203A diverse da 2,57 2,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0308A liquidat.indipen 1,28 1,16DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 M0104A mediazione 0 0

2

2 – Calculate Average Daily Consumption

User Date Reading1

Date Reading2

N°days

Consumptionin the period

(m3)

Average Dailyconsumption

(m3/d)

For each user calculate the Average Daily Consumption (m3/d)= (Reading1‐Reading2)/(day2‐day1)

8AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

User 1 16/07/2012 02/09/2011 318 747.00 2.35

User 2 16/07/2012 02/09/2011 318 429.00 1.35

User 3 16/07/2012 05/09/2011 315 419.00 1.33

User 4 20/07/2012 30/08/2011 325 405.00 1.25

User 5 13/07/2012 05/09/2011 312 397.00 1.27

User 6 26/09/2012 07/09/2011 385 344.00 0.89

User 7 20/07/2012 30/08/2011 325 330.00 1.02

User 8 16/07/2012 02/09/2011 318 291.00 0.92

3 – Sum consumption per categoryDescrizione n_contatori mc/giornoUSO DOMESTICO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 30 6,78USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 40 3,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0 0,00COMUNITA' NON AVENTI FINI DI LUCRO 0 0,00ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 2 1,66USO DOMESTICO RESIDENTE - UTENZA SINGOLA 237 73,14USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0 0,00USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 1 0,35USO PUBBLICO - FONTANE CON CONTATORE 8 0,13USO PUBBLICO - FONTANE SENZA CONTATORE 0 0,00USO NON DOMESTICO - IDRANTI 8 0,04USO PUBBLICO IDRANTI 5 5 39

1. For the selected period(1M, 1Q, 1Y) aggregate users consumptionrecords in the DMA byCATEGORY (domestic, commercial, etc.) 

m3/dCUSTOMERS CATEGORY Customers N.

9AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

USO PUBBLICO - IDRANTI 5 5,39IDRANTI STRADALI - SENZA CONTATORE 0 0,00USO INDUSTRIALE ACQUA ORDINARIO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 593 77,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 935 234,95USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 1 0,12COMUNITA' NON AVENTI FINI DI LUCRO 8 18,20ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 90 125,16USO DOMESTICO RESIDENTE - UTENZA SINGOLA 3206 856,37USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 9 7,61USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 166 134,60USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 36 7,45USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 33 1,95USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 2 0,00

Totale 5410 1555,41

2. Express usersconsumption in (m3/d) 

3. In principle it isimportant to divide customers by 3 categories: 

• Domestic

• Non Domestic

• Special Users

Descrizione indiceUSO DOMESTICO 0,2USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO PUBBLICO - FONTANE CON CONTATORE 1USO PUBBLICO - FONTANE SENZA CONTATORE 1USO NON DOMESTICO - IDRANTI 0USO PUBBLICO - IDRANTI 0

4 – For each category define Night Factor

Method 1 ‐ Night Factors (NF) from literature or similar experiences

Method 2 ‐Measurement of customers use profile with a high precision meter 

NFCUSTOMERS CATEGORY

10AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

USO PUBBLICO IDRANTI 0IDRANTI STRADALI - SENZA CONTATORE 0USO INDUSTRIALE ACQUA ORDINARIO 0,3USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,2USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,25USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,1USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0

g pinstalled in series with the existing one

1‐60 minutes reading interval

Useful to estimate average meters error

Customer Night Use Estimate – Domestic Pattern 

11,21,41,61,8

2Domestic Consumption Pattern

11AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

An Italian case study from a sample AMR of 323 domestic meters – Values are  refereed to average  daily consumption0.2 is equivalent to 20% of average consumption

Domestic Night Factor: 0.2

5 – Special Users

Special users (>40 m3/d) should be monitored during the night where MNF is carried out

T k di h 15 30 i t

12AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Take reading each 15‐30 minutes

Special Users can be factories, hospitals, Commercial Units etc.

Add Night Consumption from Big Users to the Minimum Night Use calculated   

5 – Calculate Minimum Night Use

MNU (l/s) = MNUdomestic + MNUcommmercial + MNUindustrial + …… + Big Users Night Consumption

(l/ )

13AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

MNUDomestic (l/s) = Domestic Average Domestic Cons. x DomNF

DomNF = Domestic Night Factor

1

Alexandria Case Study

14AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Arama Pilot Area

Arama DMA

15AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

data about district Arama:

No. of inlets 1              VALVENo Closed boundary valves 7              VALVENo of flow monitors installed 1  ULTRASONICE FLOW METERNetwork length and prevalent material 1.3       km – Asbestos No. of connections/Km 166

16AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

/No. of meters 171          MASTER METERNo of customers (domestic, commercial etc.) 1200        SUB METEREstimated population 4800        PERSONSPrivate tanks (yes/no) NOMinimum and maximum elevation 8 & 10     (m above sea level)Average pressure 25             meter

Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

433.9166667

1.1.1.2

0

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

0

1.1.2.2

0

Distribution Input Volume

(all figures in m3/day)

Billed Metered Consumption

Billed Un-metered Consumption

TILDE Simplified Water Balance using the IWA methodology (enter data in blue cells)

0

Unbilled Metered Consumption

Unbilled Un-metered Consumption

433.9166667

433.9166667433.9166667

17AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

0

1.2 1.2.1 1.2.1.1 564.75 Water Losses Apparent Losses

0

1.2.1.2

30.37416667

1.2.2 1.2.2.1 Real Losses

1.2.2.2

1.2.2.3

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Leakage and Overflows at Utility’s Storage Tanks

30.37416667

100.4591667

130.8333333

130.8333333

Leakage on Service Connections

6,00

7,00

8,00

9,00

10,00

s

Arama

ARAMA: 24hrs inlet flow monitoring2.2 Minimum Night Flow Analysis

18AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

0,00

1,00

2,00

3,00

4,00

5,00

05/05/2012 00:00

05/05/2012 02:30

05/05/2012 05:00

05/05/2012 07:30

05/05/2012 10:00

05/05/2012 12:30

05/05/2012 15:00

05/05/2012 17:30

05/05/2012 20:00

05/05/2012 22:30

FLO

W l/

s

DATE &TIME

Night Consumption = 1 l/s

Leakage = 1.22 l/s)

MNF Calculation

Domestic historical consumption = 5.02 l/s

Domestic Night Factor = 0.2 Legitimate night consumption = 1.00 l/s

19AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

Minimum Night flow measured = 2.22 l/s

Night Leakage = 2.22 l/s – 1.00 l/s = 1.22 l/s 

Compare MNF with Water Balance

Leakage MNF = 1.22 l/s

Leakage WB* = 1.16 l/s 

20AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

*Average Meters Error used in the Water Balance is 7%. This value should be evaluated with selected sample meter testing

Conclusion

All users in the DMA has to be considered

Readings have to be correct (take a pic)

Error in meters reading has to be correctly 

21AQUAKNIGHT – 3rd  Training Course in EU  28 November 2013, Genova

estimated

Night factors for each category has to be carefully estimated or measured

Special Consumers with high consumption need to be monitored overnight

AQUA KNIGHT W k hAQUA KNIGHT W k hAQUA KNIGHT WorkshopAQUA KNIGHT Workshop

Campionamento statistico dei consumi idrici per la quantificazioneCampionamento statistico dei consumi idrici per la quantificazioneCampionamento statistico dei consumi idrici per la quantificazione Campionamento statistico dei consumi idrici per la quantificazione

delle perdite mediante l’esecuzione di bilanci idrici delle perdite mediante l’esecuzione di bilanci idrici

FondazioneFondazione AMGA, AMGA, GenovaGenova, Italy , Italy -- IREN GroupIREN Group

Antonino FortunatoAntonino Fortunato

,, , y, y pp

Medite aneaMedite anea delledelle Acq eAcq e S p AS p A Geno aGeno a ItalItal IREN G o pIREN G o pMediterraneaMediterranea delledelle AcqueAcque S.p.AS.p.A., ., GenovaGenova, , Italy Italy -- IREN GroupIREN Group

19/01/2015

1

Il bilancio idrico è potenzialmente uno strumento molto efficace per la quantificazione delle perdite nei distretti di rete.

Esso però richiede la lettura dei contatori di tutte le utenze, che sono spesso numericamente insufficienti, obsoleti ed poco affidabili.

Quantificazione delle perdite tramite l’esecuzione di bilanci idrici

• Inoltre, il tempo necessario per la lettura di tutti i contatori è spesso molto lungo e letture sono non sincronizzate, portando così a risultati imprecisi.

• È possibile dotare solo pochi utenti rappresentativi, opportunamente selezionati, di contatori perfettamente funzionanti, affidabili e precisi, in modo da estendere i risultati agli utenti simili e stimare il consumo complessivo delle utenze del distretto.

Campionamento dei consumi idrici

• Il campionamento statistico permette infatti di stimare una caratteristica (il consumo di acqua per esempio) di una popolazione (gli utenti di un distretto rete) attraverso un (piccolo) sottoinsieme della popolazione, ossia n unità campionarie.

• Il problema è valutare il numero di unità campionarie tale che la stima (la media dei consumi idrici, per esempio) si discosti dal valore ‘vero’, con una certa probabilità, di una certa quantità prefissata (errore di stima).

• Il campionamento casuale semplice considera la popolazione degli utenti nel suo complesso.

• Nel campionamento casuale stratificato, la popolazione è prioritariamente suddivisa in gruppi, detti strati, che non abbiano alcun elemento in comune, omogenei dal punto di vista delle caratteristiche che influenzano i consumi, e le utenze campione sono selezionate dagli strati.

Tecniche di campionamento

• La strategia dal campionamento stratificato consiste nell’individuare la più conveniente suddivisione in gruppi delle utenze, tale che gli strati siano il più omogenei possibile, per quanto riguarda i consumi idrici, consentendo significative riduzioni del numero di utenze campione rispetto al campionamento casuale semplice.

• Qualsiasi procedimento di campionamento assume che la varianza dei consumi idrici sia nota a priori, il che implica che un numero adeguato di dati preliminari dove essere disponibile per la sua valutazione.

• Nel caso di campionamento stratificato, le informazioni preliminari necessarie sono maggiori che per il campionamento casuale, in quanto è necessario trovare i criteri di stratificazione più appropriati e stimare le

Osservazioni sull’applicazione delle procedure di campionamento

è necessario trovare i criteri di stratificazione più appropriati e stimare le variazioni dei consumi idrici per ogni strato.

• Nel caso delle utenze domestiche, per esempio, criteri di stratificazione ragionevoli possono essere la tipologia e le caratteristiche degli immobili (case unifamiliari, villette bifamiliari o plurifamiliari, con o senza giardino, appartamenti, ecc.) e il numero di utenti connessione (la variabile più significativa, quando disponibile).

Consumi idrici giornalieri medi, calcolati a partire dai consumi annui del periodo 1995-2008, delle 2.074 utenze residenziali di un piccolo comune siciliano di circa 5.000 abitanti.

Un esempio di applicazione ai consumi residenziali

Anno Consumo complessivo

[m3/d]

Media dei consumi idrici

[l/conn.d]

Varianza dei consumi idrici

[l2/conn.2d2]1995 787,8 379,9 40.706,11996 778 0 375 1 38 379 21996 778,0 375,1 38.379,21997 775,5 373,9 39.499,01998 745,4 359,4 36.398,01999 769,3 370,9 38.766,02000 779,0 375,6 39.737,82001 746,9 360,1 36.732,72002 777,2 374,7 39.853,02003 777,3 374,8 39.663,42004 782,0 377,1 40.337,52005 796,1 383,9 41.556,62006 819,4 395,1 44.022,72007 837,2 403,7 45.957,22008 835,2 402,7 45.702,8

Risultati

La stratificazione è stata condotta in riferimento ai consumi giornalieri medi delle utenze nel periodo 1995-2007.

Numero di persone

per utenza

Numero di utenze per

strato

Varianza dei consumi di

strato, [l2/conn.2d2]

Media dei consumi di

strato, [l/conn.d]

1 655 1,0 155,52 544 50,5 311,8

3 359 14,1 468,4

4 395 17 0 624 94 395 17,0 624,95 107 75,8 774,5 6 14 59,9 933,1

Totale 2.074 40.240,5 377,2

Per stimare il consumo giornaliero medio per utenza nel 2008, con precisione di 1,5 l/giorno e probabilità di correttezza del 99%, occorrono 70 utenze campione (meno del 5% del numero complessivo di utenze).

Selezionando 1.000 differenti campioni dall’insieme dei consumi del 2008, il consumo giornaliero medio stimato è variato fra 400,0 e 404,5 con media esattamente uguale al valore vero di 402,7 l/conn.d.

19/01/2015

2

Conclusioni ed osservazioni

Questa applicazione del campionamento dei consumi idrici dimostra che il metodo è applicabile nella pratica tecnica, fornendo risultati molto vicini a quelli prevedibili in teoria.

Il metodo di campionamento è sempre favorevole, anche quando non ci sono contatori mancanti:• Il tempo necessario per la lettura dell’intero parco contatori è

incompatibile con una strategia di monitoraggio delle perdite a scala temporale ridottatemporale ridotta.

• Le letture non sarebbe sincronizzate, dando risultati meno precisi delle stime basate su poche misure omogenee, precise ed affidabili.

Il numero di contatori campione è fortemente dipendente dalla varianza dei consumi idrici.

Se non è possibile operare la stratificazione, il campionamento casuale semplice è una valida alternativa: è sufficiente l'elenco delle utenze, con gli indirizzi corrispondenti, suddiviso in macro-categorie (case unifamiliari, condomini, negozi, officine, fabbriche, ...).

Dati di un ipotetico distretto di rete – le medie e le varianze dei consumi di strato sono state stimate sulla base dei dati di consumo idrico reali di un abitato omogeneo di un quartiere di Palermo.

Una prima applicazione teorica

Per la stima del consumo giornaliero medio per utenza, con errore di ±25 l/ut.g e grado di fiducia del 95%, si ottiene nstrat=16 ed nrandom=303 (su 10.600 utenze).

Analisi di sensitività di nAnalisi di sensitività di n = 1%, 5% e 10% 1- = 90%, 95% e 99%CVk

’ = 0.50, 0.75, 1.00, 1.25 e 1.50·CVk

Attività svolta

• Individuazione del distretto di rete strumentato dove applicare l'approccio statistico per la redazione del bilancio idrico: distretto di Leamara.

• Raccolta delle informazioni sulle utenze:indirizzo e collocazione dei contatoricaratteristiche dei contatori: produttore, anno di installazione, calibrocaratteristiche delle utenze: tipologia (domestico, industriale, commerciale)contratto di fornitura: numero di "moduli" impegnaticontratto di fornitura: numero di moduli impegnatiserie storiche dei consumi idrici

• Suddivisione delle utenze in categorie omogenee:case unifamiliaricondomininegozibotteghe artigianefabbriche

• Stratificazione di ciascuna categorie in base al numero di "moduli".

Attività di prossimo svolgimento

• Identificazione del l'intervallo di tempo più adeguato per la redazione del bilancio idrico tramite metodologia statistica da confrontare con il bilancio redatto con metodologia standard.

• Calcolo del numero di utenze campione.

• Stima del consumo idrico totale del distretto attraverso la lettura dei contatori campione.contatori campione.

• Misura del consumo idrico totale del distretto attraverso la lettura dei contatori di tutti gli utenti (secondo l'approccio standard).

• Confronto dei due risultati.

• Redazione del bilancio e valutazione delle perdite idriche.

Grazie per l’attenzioneGrazie per l’attenzioneGrazie per l attenzione Grazie per l attenzione

GESTIONE DI RETI IDRICHE

Tecnologie all’avanguardiaTecnologie all avanguardia a supporto di gestioni innovative delle

reti di distribuzione idrica

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

1

L’attività del gestore di una rete idrica è piuttosto articolata e complicata dovendo rispondere e garantire all’utenza una qualità e una continuità del servizio impeccabile.

Molti i temi e le problematiche che deve affrontare ogni giorno:

SCARSA DISPONIBILITÀ IDRICA

Gestioni innovative delle reti di distribuzione idrica

Introduzione

RISPARMIO ENERGETICO

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

PERDITE

COLPO D’ARIETE

MANCANZA DI PRESSIONE

ROTTURE

GUASTI

• garantire la continuità di funzionamento degli impianti

Attività del Gestore

• garantire un servizio di qualità all’utente finale

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

• garantire la continuità di funzionamento degli impianti

• mantenere efficienti le diverse parti di ogni impianto

• pianificare il calendario degli interventi di manutenzione ordinaria

• gestire le squadre di manutenzione in caso di guasti o malfunzionamenti

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

GLOBAL NETWORK

Moderne tecnologie di automazione e telecontrollo trasformano le reti distributive inRETI INTELLIGENTI

ottimizzando il servizio cui sono dedicate in termini di qualità, efficienza ed affidabilità

• per controllare a distanza i diversi impianti indipendentemente dalle tecnologie utilizzate e dalla loro posizione

• per fornire informazioni relative allo stato di funzionamento degli impianti

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

• per fornire informazioni relative allo stato di funzionamento degli impianti

• per disporre tempestivamente delle informazioni provenienti da impianti distribuiti sul territorio

• per uniformare i dati provenienti da impianti di produttori differenti rendendoli di facile interpretazione

• per ottimizzare e rendere efficiente la gestione degli impianti

• per condividere in modo chiaro ed omogeneo le informazioni con le squadre di manutenzione e con il management

• per assistere il management nella gestione economica

Sala di controllo virtualecostituita da diversi tipi di interfacce e

basata su molteplici sistemi di comunicazionee distribuita ovunque sia accessibile la rete globale

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Indipendentemente dai mezzi trasmissivi utilizzati,qualsiasi informazione contribuisce a costituire

una piattaforma di conoscenza unitaria e condivisaper far sì che tutti possano fruire delle informazioni

in un ambiente efficiente ed efficace

2

Soluzioni tecnologiche a supporto dei responsabili del servizio idrico

Gestioni innovative delle reti di distribuzione idrica

Introduzione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Sistema di telecontrollo = controllo di locazioni remoterispetto al luogo ove si consumano le informazioni

Necessari tanti componenti da inserire nell’architettura esistente:alcuni in campo altri presso la sede del gestore

Gestioni innovative delle reti di distribuzione idrica

CASO AQP

FAST fornirà oltre 600 Data Logger per il monitoraggio permanente della rete idrica.

Sono stati installati per la rilevazione del valore della pressione nei diversi punti della rete.

GSM – GPRS – Radio Communication Layer

GLOBAL NETWORK

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

CENTRO DI CONTROLLO

Gestioni innovative delle reti di distribuzione idrica

CASO AQP

Alimentato da batteria interna è dedicato al monitoraggio dimisuratori di portata, di pressione, di livello e contatori.

IP 68

Indicata per il monitoraggio permanente

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

- Modem GSM/GPRS integrato (RF opzionale)- Trasmissioni Real Time con alimentatore esterno- Trasmissioni giornaliere mediante SMS con batteria

Batteria interna (5 anni)

Ambienti gravosi

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

FAST ha fornito un sistema avanzato per la regolazione della pressione.

Gestione in tempo reale sulla base della pressione al punto critico.

Punto CriticoPunto Critico

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

La migliore strategia per ottimizzare lapressione lungo la rete di un distretto è laregolazione Real Time della pressione stessasulla base del valore di pressione nel puntopiù svantaggiato della rete (Punto Critico).

GESTIONE IN TEMPO REALE SULLA BASE DEL PUNTO CRITICO(RTCP – Real Time Critical Point)

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

GESTIONE IN TEMPO REALE SULLA BASE DEL PUNTO CRITICO(RTCP – Real Time Critical Point)

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

La pressione al punto critico può quindi essere mantenuta al valore minimo (che può essereulteriormente ridotto nelle ore notturne), necessario a garantire la soddisfazione dei clientinell’intero distretto riducendo comunque al minimo lo stress sulla rete.

3

Si sono evidenziati importanti miglioramenti nella riduzionedelle perdite e una forte riduzione dello stress della retegrazie all’ottimizzazione della gestione della pressione.

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

GESTIONE IN TEMPO REALE SULLA BASE DEL PUNTO CRITICO(RTCP – Real Time Critical Point)

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Sistema di controllo che modula la pressione di ingresso sulla base della portata secondo valoristabiliti dall’operatore

Leak Reduction

Software di auto-apprendimento in grado di costruire un report statisticoche confronta la pressione al punto critico con la pressione e la portata iningresso al distretto

AFFIDABILITÀ

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Gestioni innovative delle reti di distribuzione idrica

CASO IREN Emilia

RTU dedicata al governo di impianti idrici quali:• stazioni di pompaggio, • regolazioni di pressione,

RTU avanzata di nuova generazione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

regolazioni di pressione,• regolazione livelli• coordinamenti di flussi.

- Automazione grazie a LOGIC LADDER LANGUAGE on board- Raggiungibile da remoto grazie a WEB SERVER on board- Vasta gamma di comunicazioni locali e remote- Logger virtuale ad alta velocità per la cattura di eventi di ‘colpo di ariete

Gestioni innovative delle reti di distribuzione idrica

CASO TEA Acque

FAST ha fornito il sistema per la regolazione della pressione.

Il flusso in questo caso è garantito dall’azione di pompe governate da inverter.

Il sistema agisce non più sull’apertura/chiusura della valvola ma sui

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

sull apertura/chiusura della valvola ma sui parametri di lavoro degli inverter.

Gestioni innovative delle reti di distribuzione idrica

AQUALOG Discovery

Indicata per la rilevazione dei ‘colpi d’ariete’

Strumento removibile per campagne di rilevazione

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Batteria interna

- Data Logger virtuale ad alta velocità (50 campioni al secondo)- Scarico dati su PC da Porta IR- Modem GSM/GPRS opzionale- Trasmissioni giornaliere con batteria (2 mesi)

Gestioni innovative delle reti di distribuzione idrica

AQUALOG Discovery

Report di casi applicativi

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

4

FAST ha fornito il sistema di controllo per la gestione delle pompe e dei pozzi.

Gestioni innovative delle reti di distribuzione idrica

CASO ACAOP

GLOBAL NETWORK

Nel sistema sono state integrate le RTU della FAST con RTU di produttori differenti.

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

GSM – GPRSGSM – GPRS GSM – GPRS

CENTRO DI CONTROLLO

Gestioni innovative delle reti di distribuzione idrica

CASO ACAOP

Plant View OverlandLo SCADA per la telegestione del territorio

Indipendentemente dalle RTU installate e dai mezzitrasmissivi utilizzati, i dati raccolti dal campo vanno acostituire una piattaforma di conoscenza unitaria econdivisibile dai differenti reparti aziendali.

P il t l t ll i REAL TIME d li i i ti di t ib iti

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

- Gestione allarmi centralizzata- Trend dinamici e storici- Affidabile grazie alla gestione della ridondanza con hot-backup- Interoperabilità WEB- Integrabilità con sistemi esistenti- Scalabile- Tecnologia OPC- Microsoft VBA

Per il telecontrollo in REAL-TIME degli impianti distribuiti

Gestioni innovative delle reti di distribuzione idrica

CASO ACAOP

Sono poi stati implementati altri programmi per rispondere ad esigenze specifiche del cliente:

“Assetti”: per gestire in modo efficiente e facile laconfigurazione degli assetti di marcia delle stazioni dipompaggio e degli acquedotti

“Automa”: per supervisionare le automazioni e le interazioni frai vari punti dell’intero acquedotto.

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

- Ottimizzazione del rendimento degli impianti

- Aumento dell’efficienza e della sicurezza degli impianti

- Riduzione dei costi di gestione

- Minor spreco delle risorse del territorio

- Migliore qualità nelle prestazioni e nel servizio offerto all’utenza

VANTAGGI DEL TELECONTROLLO

Gestioni innovative delle reti di distribuzione idrica

Aquaworks

Lo strumento per la riduzione delle perdite idriche eil controllo delle pressioni

Software specifico che assiste il gestore nella valutazione delle dinamiche dei distretti in modo dafornirgli le conoscenze per poter intraprendere misure efficaci individuando velocemente ed in modoselettivo le aree maggiormente ammalorate da dispersioni.

Per il monitoraggio permanente dei parametri idraulici

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

- Analisi di tipo grafico evidenziano l’andamento di flussi e pressionicon particolare riferimento ai comportamenti notturni- Possibilità di effettuare confronti fra differenti periodi sullo stessodistretto o su distretti diversi- Stima delle perdite secondo gli standard IWA- Valutazione degli effetti delle attività di riparazione e risanamento- Valutazione della convenienza di interventi migliorativi- Stima dell’efficienza e reporting- Segnalazioni di allarme in caso di superamento soglie- Evidenza di eventuali transitori di pressione

Gestioni innovative delle reti di distribuzione idrica

Aquaworks

Funzioni disponibili

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Gestioni innovative delle reti di distribuzione idrica

Aquaworks

Individuazione Colpi d’Ariete

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Al verificarsi di un ‘Colpo d’Ariete’ i dati raccolti ad alta frequenza dall’AQUALOG Discoverye trasmessi al centro sono visualizzati da AQUAWORKS.

5

Gestioni innovative delle reti di distribuzione idrica

AQUALOG Meter

Indicata per l’Automatic Meter Reading

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

Batteria interna (3 anni)

- Modem GSM/GPRS integrato (RF opzionale)- Trasmissioni Real Time con alimentatore esterno- Trasmissioni giornaliere mediante SMS con batteria

Gestioni innovative delle reti di distribuzione idrica

AQUALOG Meter

Strumento per la gestione trasparente dei consumi sulla rete ela misura precisa dei flussi al fine di rilevare eventuali perdite idriche non fatturate.

Valutazione dell’efficienza della reteConiuga le esigenze di telelettura dei consumi di utenza con la gestione del processo

grazie all’introduzione di misure esatte che consentono di verificare gli effetti delle strategie applicate.

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

- Consente di mantenere il contatore esistente

- Può raccogliere i dati di misura da più contatori

- Trasmette i dati al centro periodicamente al fine della contabilizzazione

- Misure esatte e puntuali

- Riduzione dei costi di gestione

VANTAGGI

Software innovativi basati su tecnologie WEBconsentono di monitorare la rete idrica

raccogliendo i dati da data loggers installati sul territorio e restituendoli elaborati

su un qualunque dispositivo collegato ad Internet.

Sala di controllo virtuale

Gestioni innovative delle reti di distribuzione idrica

Overland Advanced

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

su un qualunque dispositivo collegato ad Internet.

Funzioni principali

- Integrazione in sistema GIS- Gestione di tutti gli impianti della rete di distribuzione mediante suddivisione in aree- Monitoraggio dei dati fondamentali di ogni impianto, quali pressione in ingresso ed uscita, esegnalazione di tutte le situazioni anomale e degli allarmi di impianto

- Visualizzazione dei dati raccolti dalle RTU in forma tabellare oppure tramite trend giornalieri ed orari.Possibilità di scaricare sul proprio PC i dati per elaborazioni approfondite mediante fogli di calcolo.

RISPARMIO ENERGETICO

Automatic Meter Reading

Utilizzo intelligente Ricerca perdite

Riduzione costi di gestione

Ottimizzazione energetica, quindi un uso razionale dell’energia, significarisparmio sul costo dell’energia elettrica e gestione oculata delle risorse

Gestioni innovative delle reti di distribuzione idrica

Conclusioni

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

ENERGIA

Utilizzo intelligente degli accumuli

Stazioni di pompaggioefficaci ed efficienti

Ricerca perdite

Gestione ottimizzatadella pressione

Distrettualizzazione

Riduzione guastiGestione semplificata

Risparmio consumi elettrici Risparmio idrico

Gestioni innovative delle reti di distribuzione idrica

Conclusioni

FAST SpA, azienda presente sul mercato da oltre 30anni, è in grado di offrire soluzioni integrate ed innovativea supporto dell’attività del gestore di una rete idrica.

· Supervisione delle reti

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

p· Stima dell’efficienza dell’acquedotto · Ricerca perdite · Regolazione di pressioni · Smart Metering· Indagine Colpi di Ariete· Regolazione di flussi · Regolazione livelli serbatoi · Gestione stazioni di pompaggio · Coordinamento organi distribuiti sul territorio · Gestione dell’assistenza e della manutenzione

GLOBAL NETWORK

AQUALOG Master

AQUALOG De Visu

GSM – GPRS – Radio

CENTRO DI CONTROLLO

Progetto AQUAKNIGHT – Terzo Corso di FormazioneGENOVA - 28 NOVEMBRE 2013

3 ph

Inverter

Modbus

Comandi Segnali

Pompa

ValvolaContattori

FT / PT / LT(Trasmissione Flussi / Pressioni / Livelli)

Segnali

FT / PT / LT(Trasmissione Flussi / Pressioni / Livelli)

Segnali

FT / PT / LT(Trasmissione Flussi / Pressioni / Livelli)

AQUALOG Monitor AQUALOG T

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd Training Course for EU contries

20 November 2014 Athens, Greece

Thursday 20 November 2014

Time Title Name , Partner

09:00-09:20 Welcome Note ICCS

09:20 - 10:00 Calculation of apparent losses in water supply systems: methodology and results from all pilot projects

Vincenza Notaro

10:00 - 10:40 Calculation of users consumption profiles: methodology and analysis of final results in all Pilot projects Presentation of a new AMR module per water consumption

Marios Milis

10:40 – 11:10 Coffee Break

11:10 - 11:40 Overview of software for leakage audit and DMA management

Alessandro Bettin

11:40 – 12:20 Presentation of EasyCalc: a real case application from AWC Mohamed Al Shafei

12:20 - 13:00 Good Practices on Leakage Reduction and IREN Reggio Emila case study

Marco Fantozzi

13:00 - 14:30 Lunch Break

14:30 – 15:10 Mathematical modelling of water supply systems. How the model, coupled with the GIS, can be used for operation, planning and design

Alessandro Bettin

15:10 – 16:00 Questions & Answers

A PERFORMANCEA PERFORMANCE‐‐BASED TOOL BASED TOOL FOR PRIORITISINGFOR PRIORITISING

WATER METERWATER METER SUBSTITUTIONSUBSTITUTIONWATER METER WATER METER SUBSTITUTIONSUBSTITUTIONIN IN A URBAN DISTRIBUTION A URBAN DISTRIBUTION NETWORK: NETWORK: 

APPLICATION TO A CASE STUDYAPPLICATION TO A CASE STUDY

VINCENZA NOTARO, UNIVERSITY OF PALERMOUNIVERSITY OF PALERMO

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA1

19/01/2015

1

Apparent losses

…..Apparent losses are the nonphysical losses that occur when water issuccessfully delivered to the customer but, for various reasons, is notmeasured or recorded accurately.…

The main components of apparent losses are:

unauthorised consumptions

meter reading and billing errors

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA2

meter reading and billing errors

meter under‐registrations→Metering errors are caused by intrinsic inaccuracies affecting the water meter

Water meter intrinsic error

Despite their importance, water meters are characterized by intrinsicinaccuracies that change with the flow rate passing through the meter.

ε1 ε2

ErrorPerformance curve of a new water meter 

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA3

Q1 Q2 Q3 Q4

‐20%

‐40%

‐60%

‐80%

‐100%

Flowrate[l/h]

ISO4064:2005

Q1 ≤Q < Q2 → ε ≤ ε1= 5%

Q2 ≤ Q ≤ Q4 → ε ≤ ε2= 2%

Water meter intrinsic inaccuracy

Meter performance is related to:

•the TECHNICAL FEATURES OF THE METERTECHNICAL FEATURES OF THE METER•theMETER WEARING PROCESS (METER AGE)METER WEARING PROCESS (METER AGE)•theWATER QUALITYWATER QUALITY•the TEMPORAL PATTERN OF END USER DEMANDTEMPORAL PATTERN OF END USER DEMAND•the NETWORK PRESSURENETWORK PRESSURE

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA4

The meter inaccuracy can produce under‐registration errors that cause a part ofapparent losses for water utility: consisting of water volumes withdrawn fromthe network, consumed by users but not paid for

Water meter inaccuracies are often considered to be the most significantcause of apparent losses and the hardest to quantify and reduce..

APPARENT LOSSES REDUCTIONAPPARENT LOSSES REDUCTION

WATER UTILITIES NEED TO ASSESS A RELIABLE REPLACEMENT STRATEGY FOR WATER METERS

Water Water metersmeters more more efficentefficent and and reliablereliable

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA5 5

SuppliedSupplied water water volumesvolumes are are totallytotallymeasuredmeasured and and accountedaccounted forfor

However, utilities usually adopt simple rules linked to the regulationof maximum meter age or total registered volume as meterreplacement policies

OBJECTIVESOBJECTIVES

OBJECTIVE: to provide water utility with a performance‐based toolsuggesting a consistent replacement strategy of the meterinstalled in a water supply network to the reduction of apparentlosses

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA6

ableable toto analyseanalyse thethe performanceperformance ofof thethe metersmeters duringduring theirtheiroperativeoperative lifelife takingtaking intointo accountaccount thethe different factors affectingthe meters accuracy

DEFINITION OF A COMPOSITE INDICATORS “REPLACEMENT INDICATOR, RI”

Inlet node

Closed gate valveUser connection

CASE STUDY:CASE STUDY:a a DMA of DMA of PalermoPalermo

•• RealReal losseslosses inin thethe districtdistrict werewere checkedchecked byby noisenoise loggersloggers andand nightnight flowflow analysisanalysis

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA7

•• ItIt waswas globallyglobally monitoredmonitored (Dec(Dec.. 20092009 –– AprApr.. 20102010)) byby installinginstalling anan electromagneticelectromagnetic waterwatermetermeter andand aa pressurepressure gaugegauge inin thethe inletinlet nodenode toto measuremeasure thethe inputinput volumevolume andand pressurepressure ofofthethe systemsystem withwith aa temporaltemporal resolutionresolution ofof 3030 minutesminutes..

yy gggg gg ff yy•• LeakagesLeakages inin thethe privateprivate systemssystems andand inin thethe tankstanks werewere detecteddetected byby aa specificspecific analysisanalysis onon

nightnight usersusers consumptionconsumption

96.0%

2.3%

1.1%0.6%

15 mm25 mm

40 mm

50 mm

‐PEAD pipes with f 110 ‐ 220 mm‐44 service connections‐164 domestic users with private tanks,each monitored by a volumetric multi‐jet water meter (age 1‐20 years)

19/01/2015

2

STEP 1 : SELECTION OF STEP 1 : SELECTION OF INDIVIDUAL  PARAMETERSINDIVIDUAL  PARAMETERSAccording to their analytical consistency,measurability and relevance with regard to theanalysed phenomenon

MeterMeter ageage• Older meters are more inaccurate

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA8

Network pressureNetwork pressure• Low pressures usually produce bad meter performance

Flow rate Flow rate • Big users →major expected  damage

The water quality and the technical features of themeters were not included because consideredhomogeneous for the case study

STEP 2: INDIVIDUAL PARAMETER STEP 2: INDIVIDUAL PARAMETER DATA SELECTIODATA SELECTIONN

MeterMeter ageage• Reported on the meter

All data was obtained by the water utility of Palermo   (AMAP s.p.a)

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA9

Network pressureNetwork pressure• Time series with  30 min resolution

Flow rateFlow rate• Time series with  30 min resolution

STEP 3: MISSING DATA STEP 3: MISSING DATA ELABORATIONELABORATION

Missing data: Missing data: Flow rate dataFlow rate data

Tested Methods:Tested Methods:•• Imputation of min recorded value Imputation of min recorded value 

Missing data often hinder the development of robust composite indicators

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA10

p fp f

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24

Con

sum

o [l/1

0min

]

Tempo [h]

User demand pattern

Deman

d

Time

STEP 4: PARAMETER STEP 4: PARAMETER NORMALIZATIONNORMALIZATION

To compare parameters having different dimensions

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA11

ForFor eacheach parameterparameter::MeterMeter ageage, network , network pressurepressure and flow rate and flow rate 

TestedTested MethodsMethods::•• MinMin‐‐MaxMax

,, min

max min

STEP 5: EXPLICIT STEP 5: EXPLICIT WEIGHTS ASSESSINGWEIGHTS ASSESSING

Explicit weights were introduced duringaggregation to reflect the relative importanceof each component

T dT d M h dM h d

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA12

TestedTested MethodsMethods::•• Equal weightsEqual weights

STEP 6: AGGREGATIONSTEP 6: AGGREGATION

The normalized individual parameters related to each  tested meter were aggregated

A ti th d

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA13

Aggregation methods:

• Additive,

1

As results  a replacement ranking consistent with the assessed Ric values was obtained for all meters 

19/01/2015

3

UNCERTAINTY ANALYSISUNCERTAINTY ANALYSIS

• Measurement error was accounted by random applying auniform random error in a given range

Pressure data errorRange of 2% according to the instrumental accuracy of thepressure cell

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA14

Flow rate data errormetering error was related to the flow rate and the meter age:

• metering error increases when the meter is old and whenthe flow passing through it is low;

• for each age class, a minimum and maximum error can bedefined by means of the experimental campaign

120

140

160

180

g

RESULTS OF MONTE CARLO ANALYSISCASE A: Accounting all 36 RI formulations + measurement errors

• The average distance between 5° and 95° perc. is quite far (58.4)• The average distance between 25° and 75° perc. is quite small (8.5), except for 5 condo meters

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA15

0

20

40

60

80

100

Ran

king

Flow meters

The selection of RI formulation and the uncertainty related to measures may have a relevant impact on substitution ranking

Considering a flow meters annual substitution rate equal to 5% (8 meters per year) and assuming the median ranking to carry out the substitution, the error in the substitution time may be in the range of one year with the 50% confidence

80

100

120

140

160

180

anki

ng

RESULTS OF MONTE CARLO ANALYSIS

Imputation of the recorded minimum value for flow missing data 

Min‐Max normalization method Equal weights method Additive aggregation method

CASE B: Accounting a single RI formulation + measurement errors

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA16

0

20

40

60

80

Ra

Flow meters

The large part of the showed variability is due to the selection of The large part of the showed variability is due to the selection of the indicator formulationthe indicator formulation

The average distance between 25° and75° perc. is 0.73The average distance between 5° and95° perc. is 1.69

80

100

120

140

160

king

Ranking based on the estimation  of meter error curve*

RESULTS AND DISCUSSIONCOMPARISON 1:  PROCEDURE VALIDATIONThe RI ranking was then compared with the posterior estimation of apparentlosses based on the single meter error curves obtained by testing meters in lab

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA17

0

20

40

60

80

70 123 60 110 160 140 86 162

Rank

Flow meter ID

* * * **

*

*

*

For all the analysed flow meters, the ranking based on the estimation of apparent losses is always in the range between the 25th and the 75th percentile of the RI estimation thus demonstrating that the composite indicator RI adequately represent the complexity of parameters that influence apparent losses

RESULTS AND DISCUSSION

COMPARISON 2:  PROCEDURE EFFICIENCYThe comparison of the median RI ranking with a common ranking procedure based on meter age (the oldest meter is the first to be replaced)

APPARENT LOSSES REDUCTION

Replacement rate  Replacement Replacementaccording meter

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA18

The proposed indicator can better suggest the meters to be substituted in time fixing the annual substitution rate thus allowing to a faster recovery of the 

replacement costs

fixed to 5% per year according RI  according meterage

1° year 11% 6.5%

2° year 8.7% 7.2%

AQUAKNIGHT – Training course20 November 2014, Athens, Greece

Vincenza Notaro, UNIPA19

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd Training Course for EU PartnersCalculation of users consumption profiles: methodology and analysis of final results in Pilot projectsanalysis of final results in Pilot projects20 November 2014, Athens, Greece

Marios Milis, SG, Vincenza Notaro Goffredo La Loggia UNIPA

1AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Vincenza Notaro, Goffredo La Loggia, UNIPA

1

General

WHY? Very Important :

Accurate estimation of Minimum Night Factor

2AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Accurate estimation of Minimum Night Factor More accurate analysis of the Minimum Night Flow

(MNF)

General

HOW? Acquire Water Flow Measurements for a group of consumers

in the region of interest (per minute measurements)

Determine Consumption profiles for each consumer as the

3AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Determine Consumption profiles for each consumer as theaverage profile of each day.

Determine Average Consumption Profile for the whole groupof consumers

Extract Minimum Night Factor

Methodology

General Requirements: The Measurements to be carried out without UFR installed. The monitoring field campaign to involve consumers from

different categories (residential, industrial etc) so as to berepresentative of the whole region/subzone.

4AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

The monitoring field campaign to be carried out in differentperiods, each lasting two weeks to one month (minimum 2weeks). This will consent to quantify differences between workingand weekend days as well as other special periods with specificconsumption characteristics (e.g Ramadan, summer in touristicplaces etc.)

Select (if possible) adequate number of consumers for eachcategory (i.e 20 residential consumers).

Methodology

Equipment needed: Minimum 10-20 Water Meters per each category (preferable, n°2

AMR class C turbine water meters manufactured in accordancewith the standard EN 14154 based on the European DirectiveMID 2004/22/EC)

5AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Water Meters to be equipped with data loggers able to recorddata with a time resolution of 1 minute.

Methodology

Main Steps:1. Installation of Water Meters and Data Loggers2. UFR unit removal (if previously installed)3. Water consumption recording with a time resolution of

6AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

1 minute (minimum 2 weeks)4. Fill the Excel Sheet with measurement recordings.5. Repeat the steps 1-4 for other consumers.

Methodology

Analysis of Data:1. For each Consumer, estimate the Average Consumer

Profile by averaging consumptions of the Consumer foreach day (CP_day_consumer – every minute in m3/h). Inthis stage a different profile can be estimated for different

7AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

this stage a different profile can be estimated for different‘classes’ (i.e weekend days vs workweek days)

2. Estimate the Average Consumer Profile for all consumersfor each class (CP_day_av – every minute in m3/h)

3. Estimate the average consumption of the whole day foreach class by averaging the consumption measurements(CP_day_av) of the day (CP_av single value in m3/h)

2

Methodology

Analysis of Data:4. Divide each CP_day_av with the average consumption

CP_av to get the normalized consumption profile for eachclass (CP_norm – every minute no units).

5 Average CP norm values to get per hour measurements

8AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

5. Average CP_norm values to get per hour measurements(CP_norm_hour) – estimate the average every 60measurements

6. The Minimum Night Factor is considered to be theminimum value of CP_norm_hour and it is usuallyappeared between 2:00 – 5:00 in the morning.

Analysis of Results – WBL Pilot

Zone DMA 324 - AMR sub-zoneNumber of consumers in AMR sub-zone 78

C C t i i AMR b

General:

9AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other -please specify)

Domestic and commercial (offices and shops)

Available Data Loggers 10

Data Loggers used 5

Pressure in the network average pressure = 35 m

Units of the readings m3/h

Analysis of Results – WBL Pilot

Consumers Profile:Consumer Details Installation Details

Consumer 1 Office with 12 persons Volumetric class D equivalent meter, 15 mmConsumer 2 Office with 3 persons Volumetric class D equivalent meter, 15 mmConsumer 3 House with 5 persons Volumetric class D equivalent meter, 15 mmConsumer 4 House with 5 persons Volumetric class D equivalent meter 15 mm

10AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer 4 House with 5 persons Volumetric class D equivalent meter, 15 mmConsumer 5 House with 4 persons Volumetric class D equivalent meter, 15 mm

Consumer 6Flat (unknown personsnum) Volumetric class D equivalent meter, 15 mm

Consumer 7Flat (unknown personsnum) Volumetric class D equivalent meter, 15 mm

Consumer 8 Commercial - Bakery Volumetric class D equivalent meter, 15 mmConsumer 9 Commercial - Pizzeria Volumetric class D equivalent meter, 15 mm

Consumer 10Flat (unknown personsnum)

Volumetric class D equivalent meter, 15 mm

Analysis of Results – WBL Pilot

Time Schedule:

1st Phase period 10 – 25 September 2013Data collected and sent to SG and UNIPA 10 October 2013

11AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

2nd Phase Period15 – 20 October 2013

Data collected and sent to SG and UNIPA 12 November 2013Data Statistical Analysis fordetermining Customer Demand Pattern Done

050

100150200250300350400450500550600650700

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Ti [h ]

Working day pattern cosumer 1

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Number of PersonsAre there any pumps to feed water? No

Other Useful Info

Consumer and Data Logger Information

Office with 12 persons.                               

Data Analysis:

Analysis of Results – WBL Pilot

12AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Time [hours]

Min Mean Max

050

100150200250300350400450500550600650700

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Time [hours]

Week end day pattern cosumer 1

Min Mean Max

Installation DetailsWater Meter Type: Volumetric

Water Meter Class: MID Q3=2.5 R=315 (class D equivalent)

Water Meter Size: 15 mm

Water Meter model (Manufacturer/product id):  Sensus 620Data Logger model (Manufacturer/product id): Radcom Technologies ‐ Centurion

Installation Position:Installation Date: 10/09/2013

Begin of measurements Date: 10/09/2013 09:47

End of Measurement Date: 25/09/2013 11:19

CP_day_consumer

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Working day pattern cosumer2

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Number of PersonsAre there any pumps to feed water? No

ll i il

Consumer and Data Logger Information

Analysis of Results – WBL Pilot

Data Analysis:

13AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Time [hours]

Min Mean Max

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24

User c

onsumption [l/h]

Time [hours]

Week end day pattern cosumer2

Min Mean Max

Installation DetailsWater Meter Type: Volumetric

Water Meter Class: MID Q3=2.5 R=315 (class D equivalent)

Water Meter Size: 15 mm

Water Meter model (Manufacturer/product id):  Sensus 620Data Logger model (Manufacturer/product id): Radcom Technologies ‐ Centurion

Installation Position:Installation Date: 10/09/2013

Begin of measurements Date: 10/09/2013 09:47

End of Measurement Date:

CP_day_consumer

3

Analysis of Results – WBL Pilot

Data Analysis:

14AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – WBL Pilot

Data Analysis: CP_day_av for phase 1

15AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – WBL Pilot

Data Analysis: CP_day_av for phase 2

16AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – WBL Pilot

Data Analysis: CP_day_av for all

17AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – WBL Pilot

Data Analysis: CP_norm

18AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.00435 m3/hCP_av (weekend days) = 0.00597 m3/h

Analysis of Results – WBL Pilot

Data Analysis: CP_norm_hour

19AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.00435 m3/hCP_av (weekend days) = 0.00597 m3/h

4

Analysis of Results – WBL Pilot

Data Analysis: CP_norm_hourHour CP_normWW days CP_norm WE days

1 0.323542 0.2254862 0.334262 0.3281833 0.325456 0.4569734 0.225596 0.253114

5 0.160894 0.2102776 0.398868 0.3276257 0.831651 0.457391

Minimum Night Factor

20AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

8 1.399613 2.0442389 1.464857 0.96096810 0.957769 1.51561511 1.009837 2.85590512 1.007891 1.21896613 0.901299 1.0294114 1.177112 1.3136415 1.202859 1.64628816 1.144633 1.25245417 1.984962 0.75808618 1.843594 1.9956819 1.451617 1.79551920 1.524965 0.77734221 1.270336 0.68441322 1.454169 0.65755223 0.745509 0.52785624 0.858706 0.707017

Analysis of Results – SONEDE Pilot

General:Zone 752Number of consumers in AMR sub-zone 59

Consumer Categories in AMR sub- Domestic

21AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

gzone ( Domestic, Industrial, other -please specify)

Domestic

Available Data Loggers 7

Data Loggers to be used for Test 3 5

Pressure in the network average pressure = 38 m

Units of the readings m3/h

Analysis of Results – SONEDE Pilot

Consumers Profile:Consumer Details Installation Details

Consumer 1 Domestic 3 persons KENT C 15Consumer 2 Domestic 3 persons KENT C 15Consumer 3 Domestic 4 persons KENT C 15

22AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer 4 Domestic 3 persons KENT C 15Consumer 5 Domestic 4 persons KENT C 15Consumer 6 Domestic 2 persons KENT C 15Consumer 7 Domestic 3 persons KENT C 15Consumer 8 Domestic 4 persons KENT C 15Consumer 9 Domestic 4 persons KENT C 15

Consumer 10 Domestic 3 persons KENT C 15

Analysis of Results – SONEDE Pilot

Time Schedule:

1st Phase period 3 – 19 May 2013Data collected and sent to SG and UNIPA 22 May 20132013

23AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

2nd Phase Period25/10/2013 – 09/11/2013

Data collected and sent to SG and UNIPA DoneData Statistical Analysis fordetermining Customer Demand Pattern Done

Data Analysis:

Analysis of Results – SONEDE Pilot

Data Filled By Lassaad GUERMAZI

Data Checked by Abdallah BEN SLIMANE

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Other Useful Info 3 persons

Installation DetailsWater Meter Type: Kent

Consumer and Data Logger Information

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 2 4 6 8 10 12 14 16 18 20 22 24

User c

onsumption [m

3/h]

Working day pattern cosumer1

24AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Water Meter Type: Kent

Water Meter Class: C

Water Meter Size: 15

Water Meter model (Manufacturer/product id):  Technolog

Data Logger model (Manufacturer/product id): Kent

Installation Position: HorizontalInstallation Date: 02/05/2013

Begin of measurements Date: 03/05/2013

End of Measurement Date: 19/05/2013

Installation Photo(s)

0 4 6 8 0 4 6 8 0 4

Time [min]

Min Mean Max

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Time [min]

Week end day pattern cosumer1

Min Mean Max

Analysis of Results – SONEDE Pilot

Data Analysis:Data Filled By Lassaad GUERMAZI

Data Checked by Abdallah BEN SLIMANE

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Other Useful Info 3 persons

Installation DetailsWater Meter Type: KentWater Meter Class: C

Consumer and Data Logger Information

0246810121416182022

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Working day pattern cosumer 2

25AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Water Meter Size: 15Water Meter model (Manufacturer/product id):  TechnologData Logger model (Manufacturer/product id): Kent

Installation Position: HorizontalInstallation Date: 02/05/2013

Begin of measurements Date: 03/05/2013End of Measurement Date: 19/05/2013

Installation Photo(s)

Time [min]

Min Mean Max

0246810121416182022

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Time [min]

Week end day pattern cosumer 2

Min Mean Max

5

Analysis of Results – SONEDE Pilot

Data Analysis:

26AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – SONEDE Pilot

Data Analysis: CP_day_av for phase 1

27AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – SONEDE Pilot

Data Analysis: CP_day_av for phase 2

28AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – SONEDE Pilot

Data Analysis: CP_day_av for all

29AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – SONEDE Pilot

Data Analysis: CP_norm

30AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.242124 m3/hCP_av (weekend days) = 0.155843 m3/h

Analysis of Results – SONEDE Pilot

Data Analysis: CP_norm_hour

31AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.242124 m3/hCP_av (weekend days) = 0.155843 m3/h

6

Analysis of Results – SONEDE Pilot

Data Analysis: CP_norm_hourHour CP_norm WW days CP_norm WE days1 0.147164 0.2764

2 0.092458 0.13411

3 0.086564 0.081011

4 0.07391 0.123201

5 0.086958 0.0911186 0.117464 0.144216

7 1.156941 0.785889

Minimum Night Factor

32AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

8 1.950318 1.574183

9 3.636609 3.3606

10 2.445482 3.368621

11 1.438239 1.509214

12 0.629412 1.41954

13 0.678523 1.30436

14 0.909884 0.989138

15 0.82854 1.02828

16 0.50074 0.894652

17 2.503904 0.783161

18 2.398737 0.764072

19 1.695696 1.613807

20 0.676157 1.285912

21 0.664499 1.038868

22 0.489588 0.550555

23 0.456491 0.589858

24 0.335722 0.289234

Analysis of Results – IREN Pilot

General:Number of consumers in AMR sub-zone 28

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other - Domestic

33AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

(please specify)

Available Data Loggers 27

Data Loggers to be used for Test 3 27

Pressure in the network About 8.5 bars

Units of the readings m3/h

Analysis of Results – IREN Pilot

Consumers Profile:Consumer Details Installation Details

Consumer 1 Domestic – 1 person Turbine C 15mmConsumer 2 Domestic – 2 persons Turbine C 15mmConsumer 3 Domestic – 1 persons Turbine C 15mmConsumer 4 Domestic – 3 persons Turbine C 15mmConsumer 5 Domestic – 4 persons Turbine C 15mm

34AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer 6 Domestic – 1 persons Turbine C 15mmConsumer 7 Domestic – 1 persons Turbine C 15mmConsumer 8 Domestic – 5 persons Turbine C 15mmConsumer 9 Domestic – 2 persons Turbine C 15mm

Consumer 10 Domestic – Turbine C 15mmConsumer 11 Domestic – 2 persons Turbine C 15mmConsumer 12 Domestic – 1 persons Turbine C 15mmConsumer 13 Domestic – 1 persons Turbine C 15mmConsumer 14 Domestic – 4 persons Turbine C 15mmConsumer 15 Domestic – 1 persons Turbine C 15mmConsumer 16 Domestic – 1 persons Turbine C 15mmConsumer 17 Domestic – 2 persons Turbine C 15mm

Analysis of Results – IREN Pilot

Consumers Profile:Consumer Details Installation Details

Consumer 18 Domestic – 2 person Turbine C 15mmConsumer 19 Domestic – 3 persons Turbine C 15mmConsumer 20 Domestic – 4 persons Turbine C 15mm

35AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer 21 Domestic – 6 persons Turbine C 15mmConsumer 22 Domestic – Turbine C 15mmConsumer 23 Domestic – 1 persons Turbine C 15mmConsumer 24 Domestic – 2 persons Turbine C 15mmConsumer 25 Domestic Turbine C 15mmConsumer 26 Domestic – 1 persons Turbine C 15mmConsumer 27 Domestic – 4 persons Turbine C 15mm

Analysis of Results – IREN Pilot

Time Schedule:

1st Phase period 4 – 21 October 2013Data collected and sent to SG and UNIPA 25th October

36AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

2nd Phase Periodno

Data collected and sent to SG and UNIPA DoneData Statistical Analysis fordetermining Customer Demand Pattern Done

Data Analysis:

Analysis of Results – IREN Pilot

37AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

7

Analysis of Results – IREN Pilot

Data Analysis:

38AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – IREN Pilot

Data Analysis: CP_day_av

39AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Analysis of Results – IREN Pilot

Data Analysis: CP_norm

40AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.0212 m3/hCP_av (weekend days) = 0.0176 m3/h

Analysis of Results – IREN Pilot

Data Analysis: CP_norm_hour

41AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.0212 m3/hCP_av (weekend days) = 0.0176 m3/h

Analysis of Results – IREN Pilot

Data Analysis: CP_norm_hourHour CP_norm WW days CP_norm WE days1 0.409804 0.386172

2 0.223346 0.2078

3 0.19236 0.1336294 0.167007 0.136932

5 0.154934 0.138433

6 0.225224 0.225817

7 0.97709 0.420705

Minimum Night Factor

42AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

8 1.002845 0.472955

9 1.354967 1.339589

10 1.716212 1.649488

11 1.241483 1.695732

12 1.065489 1.571412

13 1.248727 1.656094

14 1.047648 1.507151

15 1.289238 1.862693

16 1.298628 1.34049

17 0.814107 1.031493

18 0.844289 1.222777

19 1.409161 1.243497

20 1.887779 1.532375

21 1.789453 1.53748

22 1.517547 1.368417

23 1.282665 0.739912

24 0.839997 0.578957

Analysis of Results – AWCO Pilot

General:Number of consumers in AMR sub-zone 1065

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other -please specify)

Domestic

43AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

please specify)

Available Data Loggers 3

Data Loggers to be used for Test 3 3

Pressure in the network 18.2

Units of the readings l/sec

8

Analysis of Results – AWCO Pilot

Consumers Profile:

Consumer Details Installation DetailsConsumer 1 Domestic – 20 persons Volumetric C 15mmConsumer 2 Domestic – 10 persons Volumetric C 15mm

44AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Consumer 3 Domestic – 8 persons Volumetric C 15mm

Analysis of Results – AWCO Pilot

Time Schedule:

1st Phase period10/01/2014 – 05/02/2014

Data collected and sent to SG and UNIPA

DONE

45AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

2nd Phase Periodno

Data collected and sent to SG and UNIPA DONEData Statistical Analysis fordetermining Customer Demand Pattern

DONE

Data Analysis:

Analysis of Results – AWCO Pilot

46AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – AWCO Pilot

Data Analysis:

47AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – AWCO Pilot

Data Analysis:

48AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_day_consumer

Analysis of Results – AWCO Pilot

Data Analysis: CP_day_av

49AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

9

Analysis of Results – AWCO Pilot

Data Analysis: CP_norm

50AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.116052 m3/hCP_av (weekend days) = 0.118737 m3/h

Analysis of Results – AWCO Pilot

Data Analysis: CP_norm_hour

51AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

CP_av (working days)= 0.116052 m3/hCP_av (weekend days) = 0.118737 m3/h

Analysis of Results – AWCO Pilot

Data Analysis: CP_norm_hourHour CP_norm WW days CP_norm WE days1 0.911637 0.627178

2 0.857946 0.567009

3 0.566937 0.468009

4 0.53068 0.3983595 0.444651 0.41794

6 0.595034 0.552776

7 0.748112 0.857736

Minimum Night Factor

52AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

8 0.666758 0.731574

9 0.793997 1.094519

10 0.595597 0.955809

11 0.694782 1.106942

12 1.110634 1.044535

13 1.558864 0.871211

14 1.325888 1.177813

15 1.369749 1.13305

16 1.377315 1.110395

17 1.598823 1.384488

18 1.554973 1.301279

19 1.198291 0.919637

20 1.06408 1.119111

21 1.11383 1.462644

22 1.177402 1.495489

23 1.062815 1.378129

24 1.081204 1.824367

Analysis of Results – ALL

PILOT MNF WorkWeek MNF WeekEndWBL 0.160894 0.210277

SONEDE 0.07391 0.091118IREN 0.154934 0.133629

53AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

IREN 0.154934 0.133629AWCO 0.444651 0.398359

AQUAKNIGHT – 3rd 3rd Training Course for EU contries

20 Nov 2014, Athens Greece

O i f ft f l k dit

20 Nov 2014, Athens Greece

Overview of software for leakage audit and DMA management

Al d B tti SGIAlessandro Bettin - SGI

1AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

1

Software for water balance and performance indicators

WB ‐ EasyCalc

CheckCalcs (LEAKS Suite ILMSS Ltd, UK Allan Lambert)

2AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

AWWA Water Audit Software

Leakage Check‐up

Econoleaks (Ronnie McKenzie and Allan Lambert)

Easycalc – Water Balance

3AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

m3/y % of Distr. Input VolumeDistribution Input Volume 12,671,728Metered Billed Consumption 6,245,218 49.3Commercial Losses 1,391,296  11.0

Physical Losses 5,032,778 39.7

Water Loss 6,424,073 50.7

Easycalc Water Losses Volume and Value

4AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

Easycalc ‐ ILI

5AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

6AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

CheckCalcs

7AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

2

CheckCalcs

8AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

CheckCalcs

9AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

CheckCalcs

10AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

AWWA Water Audit Software

11AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

AWWA Water Audit ‐Water Balance

12AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

Filled automatically from the “Reporting Worksheet”

AWWA Simplified water audit Example

13AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

13

3

AWWA Simplified water audit Example

14AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

14

AWWA Simplified water audit

15AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

15

16AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

16

Leakage Check‐up

17AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

18AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece 19

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

4

20AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

EconoleaksECONOMIC MODEL FOR LEAKAGE

MANAGEMENT FOR WATER SUPPLIERS INSOUTH AFRICA

21AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

developed throughSOUTH AFRICAN WATER RESEARCH

COMMISSIONBy

Ronnie McKenzie and Allan LambertWRC Report TT 169/02

January 2002

22AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI23

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

Software for DMA management

Netbase by Crowder Consultants

NRW manager (UK)

24AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

WaterNet (UK)

Autoleak (Italy)

Netbase – Crowder Consulting

25AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

5

NRW manager (UK)

NRW manager was first developed by Bristol Water Has been taken over by WSO based in the US. 

26AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

WaterNet (RPS Group UK)

27AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

SGI

www.autoleak.eu

28AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

Autoleak DMS – DMA flow, leakage and trend

29AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

Autoleak – Cost Benefit Analysis

30AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

Leak Repair Report

31AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd Training Course for EU PartnersCloudMeter –Intelligent Water Management Solution20 November 2014, Athens, Greece20 November 2014, Athens, Greece

Marios Milis, SG,

1AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

1

The problem

Our ApproachOur ApproachThe ProblemThe ProblemThe ProblemThe Problem Our TechnologyOur Technology PrototypePrototype PilotsPilots

• The problem of aging infrastructure and of associated water losses inurban water distribution networks has been one of the biggestinfrastructure problems facing city and municipal authorities and amajor task in their efforts to achieve efficient and sustainablemanagement of water resources.

The “unaccounted for” water is in the range of 20% to 30% even in

2AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

• The “unaccounted-for” water is in the range of 20% to 30% even indeveloped countries, whereas in developing countries this percentageis even higher (International Water Association, IWA). According tostudies found in literature for example, water losses in France’s waterdistribution network have been estimated at an average 26%, in UK at19%, in Italy 29% (MCG 2006) and in Cyprus 25-30%.

• Yet, local communities have poor prediction tools to prioritize howessential infrastructure investment is conducted and to dynamicallyaccount for the water consumption at households and in the network ingeneral

The problem and Our Solution

The ProblemThe Problem Our TechnologyOur Technology PrototypePrototype PilotsPilotsOur ApproachOur ApproachOur ApproachOur Approach

CloudMeterAdvanced Water Management

Reduce Operational Co

Optimise Maintenance

Smart Water Managem

3AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Develop a robust water leakage early

warning system

Improve Water Utility Operational

Efficiency and resource allocation

Implement real-time water consumption

metering through low cost smart metering

devices

Implement Intelligent Water Data Analytics for optimised water

management

Engage customers in household water

management through smart applications

Improve water utility resource

management and billing

Smart Water Managem

Water Leakage Alerting

Intelligent Billing

Household Water Mngt

Water Consumption Ap

The problem and Our Solution

The ProblemThe Problem Our TechnologyOur Technology PrototypePrototype PilotsPilotsOur ApproachOur ApproachOur ApproachOur Approach

The sensor nodes are easy to deploy, self-configure, and report into a central Database/Server.

The system is flexible and open to the incorporation of new sensors with additional modalities.

A database can hold historical data of each parameter for long period, giving f l i f ti

4AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

useful information. The whole monitoring process can be operated by a single person using only

one PC. Graphic software can provide simultaneous analysis and charting of all these parameters.

The deployment of the System is completely wireless. Adjustable sampling rates. Battery operation for at least one year Email or SMS alerts can be send when parameters get a value below or

above a pre-configured threshold.

The problem and Our Solution

The ProblemThe Problem PrototypePrototypeOur ApproachOur Approach Our TechnologyOur TechnologyOur TechnologyOur Technology PilotsPilots

12

1. The AMR device takes asnapshot of the water meterreading using a low-cost on-board camera

2. Executes innovative embedded

5AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

3

4

water meter digit recognition

3. Transmits the reading viaGPRS/GSM/3G network to thecloud

4. Intelligent Water Data Analyticsfor optimization of Utilityoperations and reducinghousehold water consumption

The problem and Our Solution

Our TechnologyOur TechnologyThe ProblemThe Problem PilotsPilotsOur ApproachOur Approach PrototypePrototypePrototypePrototype

Top Layer

6AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Bottom Layer

The problem and Our Solution

PrototypePrototypeOur TechnologyOur TechnologyThe ProblemThe Problem Our ApproachOur Approach PilotsPilotsPilotsPilots

7AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

2

The problem and Our Solution

PrototypePrototypeOur TechnologyOur TechnologyThe ProblemThe Problem Our ApproachOur Approach PilotsPilotsPilotsPilots

8AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Competitive Advantage

Competitive AdvantageCompetitive AdvantageCompetitive AdvantageCompetitive Advantage

Universal N

on‐Invasive Retrofit

Standalone Wireless

Auto Correction Capability

Remote 

Configuration

2‐way 

Communication

On board D

ata ‐Logging and RTC

Tampering 

Prevention

Water D

ata Analytics

Smart W

ater Consum

ption Apps

CloudMeter √ √ √ √ √ √ √ √ √

9AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

Xemtec √ √ √ × √ √ √ × ×

OAMR – Northstar Telemetrics

√ × √ × √ √ × × ×

GW 300 – Neckers Co Ltd

√ × √ × × × × √ √

Neptune E‐Coder R9000i

× × × × √ √ √ √ ×

Powercom WMPE‐1  √ √ × √ √ √ √ √ ×

Sensus I‐Perl × × × × × × √ √ √

Techem × × × × √ × × √ √

The sensor nodes are easy to deploy, self-configure, and report into a database and graphical software package.

The system is flexible and open to the incorporation of new sensors with additional modalities.

A database can hold historical data of each parameter for long period, i i f l i f ti

Further Advantages

Competitive Advantage

10AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

giving useful information. The whole monitoring process can be operated by a single person

using only one PC. Graphic software can provide simultaneous analysis and charting of all these parameters.

The deployment of the System is completely wireless. Adjustable sampling rates. Battery operation for at least one year Email or SMS alerts can be send when parameters get a value below

or above a pre-configured threshold.

Questions

We will be happy to answer any questionand further demonstrate our technology

11AQUAKNIGHT – 3rd Training Course for EU countries 20 November 2014, Athens, Greece

For Further Information ContactMarios Milis

Product ManagerTel: +357 25870072

Email: [email protected]

3rd Training Course for EU contriesg20 November 2014

Good Practices on Leakage Reduction d IREN R i E il t dand IREN Reggio Emila case study

Marco Fantozzi(IREN Acqua Gas)

1AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

1

Good Practices on Leakage Management

2AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

WFD CIS WG PoM Drafting Group

Good Practices on Leakage Management

Joint effort by EU Member States and stakeholders

An approach for all of Europe: To improve efficient use of water resources

3AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

To improve efficient use of water resources

Seeks to provide consistent guidance on leakage management to achieve WFD objectives

Policy document

3

Main points of this presentation

Project

People

ProcessP j t d li bl

4AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Project deliverables

Proposals to proceed

4

EU Water Framework Directive (WFD) 2000

A Blueprint to Safeguard Europe’s Water Resources 2012

CIS Work Programme 2013-2015

Background of the project

5AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

EC Final REE Report – October 2013

CIS Working Group Programme of Measures 2014

5

Leakage in drinking water distribution systems

Raise attention and increase knowledge

Recognise there is no ‘one size fits all’ solution

Scope and purpose

6AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Allow MS to identify whether action is needed, and if so, provide guidance in effectively doing so

6

Main points of this presentation

Project

People

ProcessP j t d li bl

7AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Project deliverables

Proposals to proceed

7

2

± 2.000 voluntary man hours Drafting Group members± € 20.000 COMM-Consultant

2 WG PoM leaders

Joerg Koelbl (Austria), Gisèle Peleman and Maarten Torbeyns (Belgium), Petia Hristova (Bulgaria), Jurica Kovač (Croatia), Bambos Ch l b (C ) Ch i ti H ld M t E li Ni d

Acknowledgements

8AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Charalambous (Cyprus), Christian Hald-Mortensen, Erling Nissen and Steen Jakobsen (Denmark), Dominique Gatel, Nicolas Rondard, Marion Clauzier, Angelica Centanaro and Jan-Jacques Marsaly (France), Thomas Prein, Thomas Borchers and Axel Borchmann (Germany), Marios Vafeiadis (Greece), Marco Fantozzi and Francesco Calza (Italy), Stephen Galea St John, Stefan Riolo, Manuel Sapiano and Michael Schembri (Malta), Dick Schipper, Adriana Hulsmann, Peter van Thienen and Ilse Pieterse-Quirijns (Netherlands), Andrew Donnelly and Joaquim Pocas Martins (Portugal), Katarína Tóthová (Slovakia), Dean Russel, Adam Kingdon, Bill Brydon and Sean McCarty (UK), Allan Lambert, Stuart Trow, Cor Merks, Guido Schmidt, Robert Schröder, Henriette Faergemann and Bertrand Vallet (international).

8

Joerg Koelbl (Austria) Gisèle Peleman and Maarten Torbeyns (Belgium) Petia Hristova (Bulgaria) Jurica Kovač (Croatia) Bambos Charalambous (Cyprus) Erling Nissen and Steen Jakobsen (Denmark) Sean McCarty and Stuart Trow (UK)

Ni l R d d M i Cl i d D i i G t l (F )

Case Study authors (co-ordination by Allan Lambert)

9AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Nicolas Rondard, Marion Clauzier and Dominique Gatel (France) Angelica Centanaro and Jan-Jacques Marsaly (France) Thomas Prein (Germany) Marco Fantozzi and Francesco Calza (Italy) Stephen Galea St John, Stefan Riolo, Manuel Sapiano and Michael

Schembri (Malta) Adriana Hulsmann, Peter van Thienen and Ilse Pieterse-Quirijns

(Netherlands) Andrew Donnelly (Portugal) Bill Brydon and Stuart Trow (Scotland)

9

Main points of this presentation

Project

People

ProcessP j t d li bl

10AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Project deliverables

Proposals to proceed

10

Feb. – Oct. 2014 : Drafting process

Sept. – Oct. 2014 : Policy recommendations

Oct – Nov 2014 : Approval process

Timescale

11AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Oct. Nov. 2014 : Approval process Advice/comments WG PoM, Oct. 14, 2014

Advice/comments SCG, Nov. 5, 2014

Adoption by the Water Directors, Nov. 24-25, 2014 Europe-wide acceptance of policy recommendations

11

Main points of this presentation

Project

People

ProcessP j t d li bl

12AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Project deliverables

Proposals to proceed

12

Good Practices on Leakage Management (main report) Dissemination plan Case Study document

Main report – Table of contents (1/2)1. Introduction

Project deliverables

13AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

1. Introduction2. Policy recommendations3. Holistic approach to leakage management4. Understanding leakage and leakage management5. Good practices on leakage management by utilities6. Methodologies for getting startedA. PESTLE ConsiderationB. Tools, techniques and methodologiesC. Author ProfilesD. List of references

13

3

Recommendations for all key stakeholder groups

Recommendations for policy makers and regulators; be aware of and take into account:

Evidence-based policy recommendations

14AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

regulators; be aware of, and take into account:

Recommendations for Water Utilities

The recommendations are not binding in any way.

14

Leakage targets Leakage expressed as a % of SIV is simple and

easy to calculate. However, it has several limitations in interpretation which have led some Member States to stop or reduce the use of % as a leakage performance indicator.

Recommendations – All stakeholders (1/4)

15AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

g Substantial underestimates of true achievements % of SIV is a ‘Zero-sum’ calculation

Take account of all PESTLE factors; include environmental externalities and willingness to pay

For small systems: simple cost-benefit studies For larger systems: set targets at a supply zone

level

15

Performance indicators Use m3/km mains/day, l/connection/day or

l/billed property/day for tracking progress in individual systems and sub-systems U ILI ( l ith f

Recommendations – All stakeholders (2/4)

16AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Use ILI (always with some measure of pressure) for making technical comparisons between systems and sub-systems

“% of SIV are not considered as a proper indicator” therefore use a volumetric parameter for tracking progress.

16

Which Leakage KPI should I use?

Evidence-based conclusions from 16 Case Studies ‘Good Practices on Leakage Management’, EC 2014

Volume per litres/ 

i m3/kmlitres/ bill d

% of System I

% of W

Infrasstructure L k I d ILI

OBJECTIVE

GOOD PRACTICE PERFORMANCE INDICATOR FOR LEAKAGE

17AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

pyear

service connection

m /km mains

billed property

Input Volume

Water Supplied

Leakage Index ILI, with Pressure

SET TARGETS AND TRACK PERFORMANCE , FOR AN INDIVIDUAL SYSTEM

YES, large systems 

YES YESYES (UK)

NO NOOnly if all pressure management has been completed

 TECHNICAL PERFORMANCE COMPARISONS OF DIFFERENT SYSTEMS

NO NO NO NO NO NO YES

DRAW GENERAL CONCLUSIONS FROM SINGLE 

OR MULTIPLE SYSTEMSNO NO NO NO NO NO YES, with other 

context factors

Source: Allan Lambert, October 22, 2014

Calculating leakage of potable water Base annual average level of leakage on

the IWA Water Balance or equivalent

Use ‘snapshot’ from night flow

Recommendations – All stakeholders (3/4)

18AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Use s aps ot o g t omeasurements to target leakage operations and check annual average levels of leakage

18

Water conservation Always consider leakage reduction in

parallel with reduction of excess of inappropriate consumption, based on

Recommendations – All stakeholders (4/4)

19AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

demand side options Water efficiency

Metering

Tariff management

Water pricing

19

4

Leakage as part of supply – demand balance Promote economic and technical water

efficiency above water resource

Recommendations – Policy makers and regulators (1/3)

20AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

ydevelopment

Consider leakage management in context for future of water resource zone in a river basin

20

Drought management Never consider intermittent (rotational)

water supply Evidence based on e.g. the Cypriot Case Study

Recommendations – Policy makers and regulators (2/3)

21AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

g y yLemesos

Stakeholder involvement Leakage should be managed taking account

of all stakeholder views

21

Country, Region and Utility specific regulation Appropriate to size of utility, number of

utilities, and objectives

Recommendations – Policy makers and regulators (3/3)

22AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

, j

Measures and targets appropriate for purpose and equitable

Regulate leakage at the river basin level (consistent with WFD)

22

Pressure management Pressures to be measured and monitored Excess pressures and pressure transients to be

managed and reduced wherever feasible Standards for pressure should be flexible

Recommendations – Water Utilities (1/4)

23AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Standards for pressure should be flexible Sequence of activities is fundamental Incorporate value (€/m3) of leakage and energy

used Reduced costs of bursts and deferred

investments

23

Leak run time Attention for leakage from service

connections

Asset renewal

Recommendations – Water Utilities (2/4)

24AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Asset renewal Asset replacement is an expensive option

for reducing leakage compared to pressure management and ALC

Include an allowance for selectively replacing mains

24

System design Sectorisation (reconfiguration) of existing

distribution systems greatly assists in identification of new leaks; prioritising ALC; identifying areas for further pressure

Recommendations – Water Utilities (3/4)

25AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

identifying areas for further pressure management

New distribution systems and extensions to distribution systems should be based on sectorised designs to operate at relatively low pressure

25

5

Long term view Leakage management is an essential long-term

and ongoing activity Consider to apply (new) tools and

methodologies

Recommendations – Water Utilities (4/4)

26AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

methodologies The Netherlands’ WION (to reduce excavation

damage) Uniform registration and analysis of pipe failures Performance-Based Contracting Benchmarking of Water Utilities – good examples

available

26

Zonal Water Balance and/or Night Flow analysis

Select zonal performance indicators

Key technical PIs for starting level

Methodologies for getting started (1/4)

27AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Key technical PIs for starting level Step 1: assess your losses

27

Step 2: identify approximate current position ILIs for Water Utilities (Allan Lambert, ongoing)

Likely priorities for action based on ILI (Roland Liemberger, 2005)

Identification most promising initial activity from ILI & PMI

Methodologies for getting started (2/4)

28AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

(Stuart Trow, 2009)

Identification leakage management policy from burst frequency & ILI (David Duccini, 2013)

Identification pressure management opportunities (Lambert et al, 2014)

28

Step 3: analyse data you have, identify data you need and fix priorities

Step 4: make a commitment, get started, and learn as you progress

Methodologies for getting started (3/4)

29AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Getting started! In Very Small and Small systems (Lambert et al,

2014)

In Medium, Large and Very Large systems (PESTLE)

29

Preparing the business case for leakage management

Set target in volumetric parameter (ML/d or Mm3/a)

Prepare leakage management programme

Leakage management is foreverNot a project ith a start and end

Methodologies for getting started (4/4)

30AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Not a project with a start and end

A long-term activity of the utility which carries on into perpetuity trough a cycle of planning, action, and review

30

Getting started (Austria) – ÖVGW W 63

31AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece31

Source: Joerg Koelbl, October 23, 2014

6

16 case study accounts

Huge variation in size and number of utilities

Huge variation in maturity of European countries with respect to leakage management

Case Study document

32AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Annual water balance increasingly used

Summary of key learnings from each case study

Summary tables for almost all case studies

Main points of this presentation

Project

People

ProcessP j t d li bl

33AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Project deliverables

Proposals to proceed Continuation of cooperation with IWA WLSG WRRs Calculation of SELL in an existing case Dissemination plan

33

Good Practices on LeakageManagement - links:

6f - Good Practices on Leakage Management (20141027) -Cover note and Main Report.pdfhttps://circabc.europa.eu/d/d/workspace/SpacesStore/854b3791-b747-4c01-acf5-43a643c602c7/6f%20-%20Good%20Practices%20on%20Leakage%20Management%20(20141027)%20-%20Cover%20note%20and%20Main%20Report.pdf

6f - Good Practices on Leakage Management (20141022) -

34AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Annex IIhttps://circabc.europa.eu/d/d/workspace/SpacesStore/6f84c844-8c17-4f83-927d-3f60a2ec8752/6f%20-%20Good%20Practices%20on%20Leakage%20Management%20(20141022)%20-

%20Annex%20II%20Case%20Study%20document

6f - Good Practices on Leakage Management (20141022) -Annex I Dissemination plan.pdfhttps://circabc.europa.eu/d/d/workspace/SpacesStore/73779c66-09a9-44d9-9c36-63416bcbad8c/6f%20-%20Good%20Practices%20on%20Leakage%20Management%20(20141022)%20-%20Annex%20I%20Dissemination%20plan.pdf

IREN Acqua Gas

Europe-wide adoption requires consensus Leakage management is part of asset management,

alongside information and human resource management

Pressure managed areas and DMAs are the foundation for success in leakage management

Key learnings

35AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

foundation for success in leakage management

Thanks to :Robert Schröder, Cor Merks, Stuart Trow and Allan LambertAll Drafting Group members and Water Utilities

IREN s.p.a. is a major Italian multi-utility active in water, gas, energy and waste disposal operating in the provinces of Turin,

Genoa, Parma, Piacenza and Reggio Emilia in the northern part of Italy.

IREN GROUP

Water systems in

36AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Water systems in Reggio Emilia province are

managed by Iren Emilia (a branch of

IREN Group)

Water Systems in Reggio Emilia province:Water Systems in Reggio Emilia province:- 44 Municipalities

- 475.000 inhabitants- 28 Water Systems

-4960 km mains-381 DMAs

The water distribution system in Reggio Emilia

37AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

DMAsDMAs in 2014in 2014

DMA creation started in 1993DMA creation started in 1993

DMA Implementation 97%97%

0

1000

2000

3000

4000

5000

km

94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

7

Our road map

Pressure Management

4/20

IWA p.i. implementation

Network Modelling

Meter replacement

DMAs’ and ALC implementation

38AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

2004‘8

0

1993

2000 20

06

2012

Network sectorization and ALC activities started in the middle of 90s. In 2004,thanks to IWA W.L.T.F. Training activities in Italy, our approach changed.Together with standard activities, we also started: IWA p.i. implementation,pressure management, and Meter replacement: so we turned to an holisticapproach.

Asset renewall (also with no dig technologies since 2001)

G.I.S. Developement and updating

Active leakage controlCHECKED NETWORK LENGHT

Leakage evaluation inaDMA is made thanks tothe STIPERZENIA (2004) software, comparingwater balance method(top-down approach) withnight-flow analisysmethod (bottom-up)

39AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Checking «rate or rise» of leakages and of any otherDMA parameter, we calculate target and thresholdminimum flow to be able to plan leakage controlactivities in an accurate way

NOMINAL LEVEL

THRESHOLD LEVEL

Leakage detection activitiesincreased in the last years. In2013 we covered 36% of thenetwork.

Pressure optimization in mains is today considered the best practice to reduce both leakages and bursts

ACTIONS:

• WATER HAMMER DETECTION ON FIELD

PressureManagement

40AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

•EVALUATION OF VARIABLESPEED PUMPS APPLICATIONS.

PUMPED SYSTEMS GRAVITY SYSTEMS

•PRV INSTALLATIONS

Pumping stations arrangement and thevariable speed pumps application offerbenefits regarding the minimization ofleakages and breakings and electricconsumption too. Reggio Emilia watersystems have been the first ones in Italyobtaining «white certificates» about water

t k t

Pressure Management in pumpedsystems

41AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

networks management.

La nuova centrale di via XXV Aprile, comune di Quattro Castella

Beacuse of that, we calculatedthe specific energy index(kwh/100m3). Thanks to whatwe did, it decreased of 16% inthe last 15 years

The study and the progressiveimplementation of pressure managementtechnologies is current now .Today 39% of mains is covered.2016 target is covering 56% of the waterdistribution network.

Pressure Management in gravitysystems

42AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Gruppo di riduzione e misura di Correggio Pensile

Today there are 103 pressuremanagement areas in Reggio Emilia.

- 60 fixed setting- 18 day/night setting- 25 variable setting (flow or critical

point based)

Asset management

Material quality continuous monitoringmade us able to find the most fragile components of the existingnetwork and to improve new extensions quality.

43AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Systematic use of no-dig technologies has allowed to widely and quickly replace obsolete pipelines, mostly having small diameters and made of polyethylene. Low-cost pipe renovation is made instead of repair.

Attrezzature di laboratorio e un campione di materiale analizzato

Tecniche NO-DIG applicate alle derivazioni d’utenza

8

In 2006 IREN started in Reggio Emilia a commercial loss initiative aimed toreduce meters under-registration due to errors and meters inaccuracy at lowflows.In 2008 beginning of replacement of oldest meters (installed before 1985).In 2010 introduction of the UFR device installation while replacing themeters.

Meter replacement campaign

% of meters per age (in years) at

44AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece Replaced meters in 2008-2009

Over 16% of meters was over 20 years old.

% of meters per age (in years) at beginning of replacement plan

CALIBRATED NETWORK MODELS

Every single technical activity regardingthe improvement of water systemsefficiency are strictly dependant fromthe cartography updating and from thenetwork functional study.That’s why since 2000 the network has

45AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

That s why, since 2000, the network hasbeen modelled. Every model has beencalibrated using data from on fieldidraulic measurements.

2700 km network already modelled

ILI DATASET

ILI Data Set – Reggio Emilia systems

akag

eIn

dex

ILI

The IWA methodology,including the water balanceand the most appropriateperformance indicators forwater losses, (ILI and liters/connection per day) hasbeen applied in ReggioE ili d d t d b th

46AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Infr

astr

uctu

reLe

The application of the performance indicators recommended by the IWA WLsG hasallowed to compare the results achieved in Reggio Emilia with those reached byother water companies all around the world. Since 2002 the operation of fieldflowmeters have been regularly checked.

Emilia and adopted by theEmilia RomagnaAuthorities. Furthermore,since 2014, the AEEGSI (theItalian Water Authority) hasasked water companies topresent the performanceindicators related to theirrespective water systems.

The holistic approach in NRWmanagement including ALC, DMAimplementation, pressure management,etc. applied in Reggio Emilia producedsignificant results in the period

2001/2013

Bursts reduced by 50%(since 2001) (Reggio Emilia city only)

Energy Consumption reduced by 26%( i 2003)

Real losses management: results achieved

urst

s

47AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

(since 2003)

Inha

bita

nts

En. C

onsu

mpt

ion

(KW

h)B

u

Whole area electricconsumption is continuouslylowering down (-26% since2003) despite the servedpopulation increased.

Bursts reduced by 39%(from 2001) (city of Reggio Emilia)

IREN NRW reduction success

Bur

sts

Leakages reduced by 56%(from 2005)

al lo

sses

s/

conn

/day

)

48AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

Input Volume per capita Reduced by 25.4% (from 2001)

En Consumption reduced by 20%(from 2003)

Inha

bita

nts

En.

Con

sum

ptio

n (K

Wh)

cub.

m./i

nhab

it/y

ear 2003

CONSUMO ELETTRICO ACQUEDOTTI (1994-2010)

300.000

320.000

340.000

360.000

380.000

400.000

420.000

440.000

460.000

480.000

500.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

popo

lazi

one

serv

ita

24000000,000

25000000,000

26000000,000

27000000,000

28000000,000

29000000,000

30000000,000

31000000,000

cons

umo

ener

gia

elet

tric

a ac

qued

otti

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

max

min

Rea

(lit

res

CONCLUSIONS

Whilst water loss management is often pictured as theimplementation of technological solutions to a hiddenproblem, this is really only part of the real solution, whichis all about managing utility people to perform

49AQUAKNIGHT – 3rd Training EU countries20h Nov 2014, Athens, Greece

is all about managing utility people to perform.It is about empowering them with the responsibility,training, practical tools and proven techniques,motivating them to perform, and inspiring them to believethat they can make a difference.

AQUAKNIGHT – 3rd 3rd Training Course for EU contriesh20 Nov 2014, Athens Greece

M h i l d lli f lMathematical modelling of water supply systems. How the model, coupled with the GIS, can be used 

for operation, planning and design

Alessandro Bettin

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

1

Modeling SoftwareModeling Software

EXTENDED PERIOD ANALYSIS

WATER QUALITY ANALYSIS

INSTANT (Steady State) ANALYSIS

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

2

SCADA – REAL TIME MODELLING

FIRE FLOW ANALYSIS

WATER HAMMER

NETWORK OPTIMIZATION

Mathematical Model ‐ Key wordsMathematical Model ‐ Key words

• MODEL IMPLEMENTATION: input all the relevant data and 

reproduction in the model of all the necessary elements which 

(nodes, pipes, pumps, reservoirs, etc.) 

• CALIBRATION OF THE MODEL: validation of the model reliability 

by means comparison between model results and field data 

b i d h h ifi i i i

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

3

obtained through specific monitoring campaign 

• AIM OF THE CALIBRATION: to assure the implemented model is 

able to reproduce correctly the current system in different 

operating conditions (peak/minimum) in order to study the 

behaviour of the system in various future configurations Performance analysis

Benefits of the model  ‐ Improved managementBenefits of the model  ‐ Improved management

• NETWORK KNOWLEDGE: enhanced knowledge of the system’s 

features and related problems

• SCENARIO SIMULATION:  fire flow analysis, network pollution, burst  

in the network, best repair strategy

• SUPPORT TO LEAKS DETECTION: DMA design 

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

4

• NETWORK EFFICIENCY: Pressure Management  Implementation, 

Improvement of Level of Service

• INVESTMENT PLANNING: optimisation of works for water 

distribution network, like connection of new areas, pipe network 

extension

• ENERGY SAVINGS ASSESSMENT: optimisation of pumping stations 

and tanks management

How we Built the Model

5

MODEL IMPLEMENTATION ‐ Key input dataMODEL IMPLEMENTATION ‐ Key input data

Data required in order to build up the model of thewater distribution network:

• Node elevation

• Pipes features: diameters, lengths, roughness

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

6

p , g , g

• Pumps, valves, tanks, reservoirs

• Metered consumption of the consumers assessed from billing records

• Typical profiles (pattern) of consumption

Mike Urban Model ‐ GIS ConnectionMike Urban Model ‐ GIS Connection

Automatic and Dynamic GIS/Model Database Connection

GIS coding and structure preserved for future update

GIS update later can automatically update the model 

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

7

mw_junctionmw_links

线点

GIS

Automatic

2

Model implementation ‐ Importing network from GISModel implementation ‐ Importing network from GIS

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

8

Building the model from the GIS ‐ DTMBuilding the model from the GIS ‐ DTM

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

9

CASE STUDY ‐ City of Ningbo (China)CASE STUDY ‐ City of Ningbo (China)

Total District Population Approx 6 MillionUrban Area approx 2.500 km2

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

10

pp

Ningbo Water Supply SystemNingbo Water Supply System

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

11

•Water Mains 2.500 km•Present Capacity of the Water SupplySystem 970.000 m3/day•Future Capacity of the Water SupplySystem 2.200.000 m3/day (8 WTPs)

The Cicheng Pilot AreaThe Cicheng Pilot Area

One Feeding Point Cicheng WTP

Chicheng Old Town  Industrial Areas Rural Areas

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

12

Newly Developed Area (Ci Hu Ren Ja)

Model Construction InputModel Construction Input

1. Node (location, elevation)2. Pipes (diameters, lengths, roughness) 3. Pumps, valves, tanks, reservoirs

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

13

4. Metered consumption from billing records

5. Monthly and Daily profile of consumption (pattern)

3

How we build a modelHow we build a model

3. TANKS GEOMETRY

1.NODE GROUND ELEVATIONS

6.3 m

4 9 m

2. PIPES DIAMETERS

4. PUMP CURVES

5. CONSUMPTION DEMAND (from billing record)

1

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

14

DN 100

2.7 m

4.3 m

4.3 m4.1 m

4.9 m

4.3 m

PUMPCURVE

2

34

5

1. Pipes1. Pipes

Pipes

• Diameter• Material• Friction Loss• Initial Node

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

15

• Final Node

GIS DataGIS Data

!!

"!º"!bº !

!

!

"!bº

"!bº!!"!bº"!bº !!

!

!

!

!"!bº "!bº!!

!

!"!bº "!bº!! !

!!

!"!bº "!bº!! !

! !

!"!bº "!bº!!

!

!"!bº "!bº!!

!

!G!.!

!

!"!bº"!bº !

!!

!

!

!"!bº "!bº!! !?

!

!

!

!!!"!bº"!bº!!"!bº

!!"!bº"!bº!!"!bº

"!bº! !"!bº"!bº!!

!!"!bº"!bº !!"!bº

"!bº!!"!bº"!bº!!

!!"!bº"!bº ! !"!bº "!bº!!"!bº"!bº !

!

!

!"!bº

"!bº !

!

!

!!

!"!bº

!

!

"!bº

"!bº!

"!bº !

!!

!"!bº "!bº !

!!

!

!"!bº

!!?!

!"!bº

"!bº !

!

! !

!"!bº "!bº!

!!

!!

!"!bº "!bº!!

!

!?G!.!

!"!bº

!

Hydrant

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

16

! "!bº!

!!

!"!bº"!bº!!

!

!"!bº!

G!.!!?!!

!!

!"!bº"!bº !

!

"!bº!

!

!

!"!bº!

"!bº!!!

!"!bº!

"!bº!!!

!"!bº!!?

!!

!G!.

!

! "!bº "!bº !! !

!!"!bº "!bº !

!!

!"!bº "!bº !

!!

!"!bº!

! !

!"!bº! !

!"!bº

!

!!

!"!bº!

!"!bº

!!?! !

!?!"!bº

"!bº !

! !?!"!bº!

!!

!

"!bº !

!

!

! "!bº !

!

"!bº !

!

!

!"!bº ! !!?!!

!

!

"!bº

!! "!bº!

!

!

!

!

!"!bº"!bº!!

!?!!

!

!"!bº"!bº !

!

!

!!

!"!bº!

!"!bº

!?

!

!"!bº"!bº !

!

!

!"!bºb

!

Valve

Meters

2 Tanks2 Tanks

• Elevation• Volume• Min Max Water Level• Initial Level• Shape

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

17

• Shape

3 Pumps3 Pumps

• Design Curves• Control Logics (Start and Stops)• Energy Consumption and Costs

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

18

Demand Geocoding and AllocationDemand Geocoding and Allocation

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

19

Billing Data

Consumption Allocation

Daily Pattern

Leakage Demand

Special Users

4

Cicheng Area Water Distribution ModelCicheng Area Water Distribution Model

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

20

•155 km pipes: 80-600 mm•13066 Users•30 Special Users > 40m3 /day•Cicheng WTP and Ci HuRenJa PS

Background from satellite image

How we run the modelHow we run the model

21

How we use a modeHow we use a mode

33.2 m

40.3 m

2 Pump On Off Status

MODEL INPUT1 Source Water Level

MODEL OUTPUT

4 Flow and Velocity in each pipe

3 Pressure in Each Node (Water Level) 34

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

22

PUMPCURVE

25.7 m

25.3 m

29.3 m27.3 m

41.3 m

3.4 l/s

2

1

Model Input1 Tank levelModel Input1 Tank level

DATA from SCADATank Levels

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

23

Model Input2 Pump StatusModel Input2 Pump Status

Pump1

0

1

0:00

:00

1:20

:00

2:30

:00

3:40

:00

4:50

:00

6:00

:00

7:10

:00

8:20

:00

9:30

:00

10:4

0:00

11:5

0:00

13:0

0:00

14:1

0:00

15:2

0:00

16:3

0:00

17:4

0:00

18:5

0:00

20:0

0:00

21:1

0:00

22:2

0:00

23:3

0:00

Pump2

1

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

24

0

0:00

:00

1:20

:00

2:30

:00

3:40

:00

4:50

:00

6:00

:00

7:10

:00

8:20

:00

9:30

:00

10:4

0:00

11:5

0:00

13:0

0:00

14:1

0:00

15:2

0:00

16:3

0:00

17:4

0:00

18:5

0:00

20:0

0:00

21:1

0:00

22:2

0:00

23:3

0:00

Pump4

0

1

0:00

:00

1:20

:00

2:30

:00

3:40

:00

4:50

:00

6:00

:00

7:10

:00

8:20

:00

9:30

:00

10:4

0:00

11:5

0:00

13:0

0:00

14:1

0:00

15:2

0:00

16:3

0:00

17:4

0:00

18:5

0:00

20:0

0:00

21:1

0:00

22:2

0:00

23:3

0:00

DATA from SCADAPumps On Off Input

Model Output  ‐ Pressure in Each NodeModel Output  ‐ Pressure in Each Node

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

25

Flow (l/s)

Pressure in Each Node Every 10 Minutes (Matching with SCADAtime step)

5

Model Output ‐ Flow in Each PipeModel Output ‐ Flow in Each Pipe

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

26

Flow (l/s)

Flow in Each Pipe Every 10 Minutes (Matching with SCADA time step)

24 HOURS

Model Use: Flow and Pressure ProfilesModel Use: Flow and Pressure Profiles

0 100 200 300 400 500 600 700 800 900

0

10

20

30

40

50

[m]

44.441.9

39.036.5

34.1

26.727.824.7

20.1 19.4 19.816.0

0 142

290

391

528

872

107

89

84

61

83

103

•Total Head (blue line)•ground levels (black line)

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

27

0 100 200 300 400 500 600 700 800 900[m]

4.2 ; 142100

7.6; 0.972.534

11.4 ; 148

8.0; 1.012.896

17.0 ; 101

8.8; 1.122.423

20.2 ; 137

7.5; 0.962.397

10.7 ; 344

8.4; 1.077.460

Slope; LengthDiameterFlow; VelocityHeadloss

Grade Elevation Pressure 0 day 0:00 hr

29.8

22.030.832.231.4

32.229.2

31.0

27.8

16.0

22.4

24.7

29.4

27.220.1

19.8

19.7

23.8

28.2

19.4

23.6

24.9

75.00 m

Legenda

45.00 m

55.00 m

25.00 m

Pressione

Model Results ‐ High Pressure ZonesModel Results ‐ High Pressure Zones

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

How we validate the modelHow we validate the model

29

Preliminary Calibration WTP Flow from SCADA 2007 April 5thPreliminary Calibration WTP Flow from SCADA 2007 April 5th

24 Hours Simulation

160.0180.0200.0220.0240.0260.0280.0

s)

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

30

The difference between the Total Calculated Volume (Model - blue line) and measured volume (SCADA - red line) is lower than 2%

0.020.040.060.080.0

100.0120.0140.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Flow

(l/s

Model SimulatedScada Measured

Preliminary Calibration WTP Pressure from SCADA 2007 April 5thPreliminary Calibration WTP Pressure from SCADA 2007 April 5th

Model Verification: Cicheng WTP SCADA Measured vs. and model Calculated Pressure (m)

15 0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pres

sure

(m) Measured

Simulated

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

31

0.0

5.0

10.0

15.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

The difference between the Calculated and measured Pressure is lower than 3 m

6

Model Applications for Water Supply ManagementModel Applications for Water Supply Management

32

Integrated Technology CircleIntegrated Technology Circle

SCADASCADAMODELMODEL

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

33

GISGIS

DST (Decision Support System)DST (Decision Support System)

The MODEL gives high level support to the operation and management of the system:

pipe burst recovery,

energy saving,

emergency handling,

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

pressure stability, 

water quality, 

planning of intervention, etc.

GIS Improving by the use of the numerical modelGIS Improving by the use of the numerical model

35

Model Based GIS TestModel Based GIS Test

Anomalous conditions hi-lighted and wrong GIS diameter were updated

Desktop Analysis: Unit Head losses calculated by the model reported in thematic map

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

36

Head loss > 50m/km

Model Based GIS TestModel Based GIS Test

ERROR WERE IDENTIFIED AND CORRECTED

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

37

7

GIS Update with the use of the ModelGIS Update with the use of the Model

PRESSURE METER A56120 0

MODEL VERIFICATION SPOT AN ANOMALYSOMETHING IS WRONG IN GIS or SCADACHECK GIS AND SCADA AREA CHECKED BY LOCAL AREA CHECKED BY LOCAL

STAFF FOR ANOMALIESSTAFF FOR ANOMALIES

Field Verification

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

38

50.055.060.065.070.075.080.085.090.095.0

100.0105.0110.0115.0120.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

PRES

SUR

E (m

)

SCADA

MODEL

SCADASCADA

MODELMODEL

GIS Update with the use of the ModelGIS Update with the use of the Model

AFTER GIS UPDATING

MODEL VERIFICATION SPOT AN ANOMALYSOMETHING IS WRONG IN GIS or SCADACHECK GIS AND SCADA

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

39

Missing DN200 in GISUNKNOWN CONNECTION

PRESSURE METER A56

50.055.060.065.070.075.080.085.090.095.0

100.0105.0110.0115.0120.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

PRES

SUR

E (m

)

SCADA

MODEL

SCADASCADA

Example of Decision Support System:Pipe burst  emergency handlingExample of Decision Support System:Pipe burst  emergency handling

40

Pipe Burst SimulationPipe Burst Simulation

Pressure

10.00

20.00

30.00

40.00

m

Flow

25.00

50.00

75.00

100.00

LPS

Pressure

10.00

20.00

30.00

40.00

m

Flow

25.00

50.00

75.00

100.00

LPS

•Standard situation all pressure above 30m

•Burst occurred at 1:00 PM on a DN600•Pressure fall below service level•Need For Intervention

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

41

Pressure

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Pres

sure

(m)

Standard

Burst

75.00 m

Legend

30.00 m

50.00 m

15.00 m

Pressure

Emergency Handling/Recovery SchemeEmergency Handling/Recovery Scheme

Pressure

10.00

20.00

30.00

40.00

m

Flow

25.00

50.00

75.00

100.00

LPS

•Burst Trunk Isolated for recovery•Valve Opening/Closing Management•Verification of Recovery Scheme•Good Service Pressure Guaranteed

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

42

Pressure

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Pres

sure

(m) Recovery

Pipe network development planningPipe network development planning

43

8

Use of Model For Design and PlanningUse of Model For Design and Planning

Model gives solution for: 

• Quick and Effective Design of New Pipes Network

Pl i f id ti l d

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

44

• Planning of new residential and industrial development 

• Optimization of existing network performance

• Energy Savings

New Development PlanningNew Development Planning

Model Approach 1• INPUT Design Demand for the New

Development • OUTPUT Residual Pressure at Each

Node

33.2 m

40.3 m

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

45

25.7 m

7 m

16.3 m27.3 m

41.3 m

NEW INDUSTRIAL DEVELOPMENT

INPUTDesign Demand Input

NEED FOR IMPROVEMENT WORK (Improve pumping capacity or Increase pipe diameter)

New Development PlanningNew Development Planning

Model Approach 2INPUT Minimum Acceptable Pressure

(e.g 30m)OUTPUT Maximum allowed additional

demand

33.2 m

40.3 m

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

46

35.7 m

30 m

30 m30.0 m

41.3 mNEW DEVOLPEMENTS

OUTPUTMaximum Additional Demand

INPUTResidual Design Pressure

11.5l/s

Network Optimization and Energy SavingNetwork Optimization and Energy Saving

Detection of pipes with main head loss (the red one) New proposed pipes (highlighted in

yellow) aimed at reducing head loss andallowing pressure increase

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

47

Leakage ManagementLeakage Management

48

Modeling Application: Leakage ManagementModeling Application: Leakage Management

• Proposal of separation of network into districts (DMA)

• Pressure distribution optimization within DMA.

• Comparison between the existing state and the proposed state of the

t k

AQUAKNIGHT – 3rd Training Course for EU Countries20  Nov 2014, Athens  ‐ Greece

49

network.• Determine necessary

number of inflows into zones

D3.1 - Compilation of training courses material Confidential AQUAKNIGHT

MEDITERRANEAN PARTNER COUNTRIES

TRAINING COURSES

1. AWCO, Alexandria – 24 & 25 April 2012

2. SONEDE, Tunis – 27 & 28 June 2012

3. AWC, Aqaba ‐10 & 11 December 2012

4. AWCO, Alexandria – 14 may 2013

5. SONEDE, Tunis – 10 December 2013

6. AWC, Aqaba – 20 May 2014

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

Alexandria – 24th -25th of April, 2012

AGENDA

Day 1 - 24th of April 09:00-10:00 The problem of leakage in water supply systems

09:30-10:30 The Water Balance as a tool to measure Non Revenue Water - IWA

international Standard Methodology

10:30-11:00 Coffee Break 11:00-12:30 Measurement and Estimation of the different components of the Water

Balance

12:30-14:00 Lunch

14:00-15:30 Application of Water Balance Calculation – Exercise on real case studies

15:30-17:00 Leakage performance indicators - Physical and Economic Indicators

Day 2 - 25th of April 09:00-10:30 Definition of a leakage management strategy – Active leakage control

through DMA implementation

10:30-11:00 Coffee Break

11:00-12:30 Equipment for leakage management – Introduction on network Monitoring and leak detection

12:30-14:00 Lunch

14:00-17:00 Field Trip to El Nozha WTP

WATER BALANCE

Th bl f l k i tThe problem of leakage in water supply systems

24-25 April 2012, Alexandria (Egypt)24 25 April 2012, Alexandria (Egypt)

Alessandro Bertoni

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

1

Training Main Topics

The problem of leakage in water supply systems The Water Balance as a tool to measure Non

Revenue Water: IWA international Standard Methodology Measurement and Estimation of the different

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

Measurement and Estimation of the different components of the Water Balance

Leakage performance indicators Definition of a leakage management strategy – Active

Leakage Control through DMA implementation Equipment for leakage management – Introduction on

network monitoring and leak detection

2

Leakage management, general aspects- The problem of leakage

T f l k d th i t

Leakage management, general aspects- The problem of leakage

T f l k d th i t- Type of leakage and their management- Type of leakage and their management

3

More than a third of the world’s drinking water supply is lost from municipal distribution systems

before it reaches the consumer

UNBILLED AUTHORISED CONSUMP.WASHING OF PIPES, ROADS,

TANKS, ETC.. 5 %

NON-REVENUE WATERDIFFERENCE BETWEEN WATER PRODUCED

AND WATER BILLED

APPARENT LOSSESTHEFT, METER ERRORS

REAL LOSSESLEAKAGE

5-20 %

25-35 %

40-60 %

RECOVERABLE WATER 20-30 %

4

Figure 7: Unaccounted for Water (%)

25

30

35

40

ties Developed Developing

International data

0

5

10

15

20

0% 10%

20%

30%

40%

50%

60%

70%

80%

Percent UfW

# of

util

it

World Bank 2004

5

Why reduce leakage?

New TPNew PS

New LEAKS

High capital Investment – Higher TariffPermanent reduction of water resources

6

Why reduce leakage? Reducing leakage we make extra

water available where it is needed

Reducing Leakage we limit the investment for new plants, new pipes, new water resources. We just use the fresh water that we are wasting

Reducing Leakage we reduce energy consumption

7

2

Effects of leakage

Consumer inconvenience: reducing pressure at taps, appliances, etc;

Damage to infrastructure, by creating voids which can lead to collapse of highways and buildings;

Excessive costs: not only from compensation payments and from repairs to damaged structures, but also production costs (if leakage is 50% of production, energy and treatment costs have been doubled);

8

Increased loading on sewers: due to infiltration, leading to the need to over-design sewer capacity;

Introduction of air into the distribution network: if the water supply is intermittent, causing damage to meters, and leading to over-measurement of the true consumption and errors in water bills;

Health risks: in low pressure systems or where the supply is intermittent, by allowing infiltration of sewage and other pollutants into the pipe network.

Type of LeakageType of Leakage

- Breaks and bursts in mains and service

- Unauthorized use (illegal connections)

• Water produced = water loss + water consumed

• Water loss = ‘Real’ losses + ‘Apparent’ losses

mains and service connections

- Background losses (valves, tanks, plants, not detectable small leaks)

connections)- Errors in meters and/or out of

order meters- Authorized unaccounted use

(school, hospitals, etc.) - Other uses (fountains, road

washing, fire-fighting, etc.)

9

Apparent lossesApparent losses

Apparent LossesApparent Losses

Unauthorized use (theft), errors in Unauthorized use (theft), errors in metersmeters

Unbilled authorized use without meters Unbilled authorized use without meters (washing of pipes, roads, fountains, (washing of pipes, roads, fountains, tanks)tanks)

10

tanks)tanks)

•ACTIONS:

• Cross-controls of users’ data, electric energy

• Replacement of meters by sample

• Control of meters

• Installation of new meters for public users without meters

•ACTIONS:

• Cross-controls of users’ data, electric energy

• Replacement of meters by sample

• Control of meters

• Installation of new meters for public users without meters

Different types of physical leakageDifferent types of physical leakage

Background leakage Unreported bursts Reported bursts

surface

Non visible leakage, low flow (joins), not

detectable by acoustic sensors

Non visible leakage, flow form leaks and bursts), detectable by acoustic

sensors

Visible leakage, source detectable

11

Pressure Management Active Leakage Control Maintenance

Factors affecting annual volume of real lossesFactors affecting annual volume of real losses

• time of day of water service availability (continuous or intermittent water supply)

• number of connections

• length of mains

• infrastructural conditions

• ground/underground typology

• average pressure

12

Real Losses – General ConceptsReal Losses – General Concepts

• Effect of Leakage in the loss volume Some leaks are very small and impossible to detect

(background losses) Leakage Volume = (Leakage Flow x Leak Time)

• Run Time The duration of a leak is determined by 3 factors related to The duration of a leak is determined by 3 factors related to

the management policy and practices: Time to report a leak Time to locate a leak Time to repair a leak

• Effect of Pressure on Leakage Pressure affect leakage depending on the level of pressure

and the material of the pipe

13

3

Pressure – Leakage relationshipPressure – Leakage relationship

The relation between Leakage (L) and Pressure (P) can be around expressed by the following relationship:

Whereas L changes according to P variations, depending on N1

1

0

1

0

1 N

P

P

L

L

14

Whereas L changes according to P variations, depending on N1exponent.

Based on experimental studies, N1 range is 0.5 – 2.5, according to leakage typology and pipe material (different type of pipe rupture).

For bottom leaks (little outflows from joints) N1 is around 1.5For bigger leaks in metallic pipes N1 is around 0.5

For rough assessment N1=1 is usually assumed

Pressure – Leakage relationshipPressure – Leakage relationship

0.80

1.00

1.20

1.40

kag

e R

ates

L1/

L o

N1 = 0.50

N1 = 1.00

N1 = 1.15

15

0.00

0.20

0.40

0.60

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Ratio of Pressures P1/Po

Rat

io o

f Lea

k N1 = 1.50

N1 = 2.50

The key to effect leakage management consists of attaining an appropriate balance between the 4 following activities

ActiveSpeed

UARL (Unavoidable Annual

Real Losses)

PressureManagement

UnavoidableReal Loss

Actions for leakage managementActions for leakage management

InfrastructureManagement

ActiveLeakageControl

Speed and Quality

of Repair

BEFORE leakage management activities

CARL CARL (Current Annual volume(Current Annual volume

of Real Losses)of Real Losses)

ELL (Economic Level

of Leakage)

Real Losses)

Potentially recoverable Potentially recoverable Real LeaksReal Leaks

AFTER leakage management activities

Current Annual Real Loss Volume

EconomicLevel

of Leakage

Real Loss

Current Annual volumeCurrent Annual volumeof Real Lossof Real Loss

16

• Updated GIS on different levels

(consumption, interventions, leakage,

new works, etc.)

• Specifications of design materials and

Standards, intervention proceduresPipe Materials Management:

Pipeline and Asset

Infrastructure ManagementInfrastructure Management

Standards, intervention procedures

• Database of maintenance

interventions, age and status of mains

gselection,

installation,maintenance,

renewal,replacement

Asset Management Maintenance Replacement

Renewal

• Optimal Criteria for pipes Replacement

17

• The main objectives:– Reducing losses from

existing and future leaks and bursts;

– Reducing the frequency of bursts.

• Derived benefits:

Pressure Management

High Pressure = Higher Leakage

Leak

age

Pressure Management

PressureManagement

Derived benefits: – Reducing insertion of

Pressure Reducing Valves (PRV);

– Reducing the pressure variations to customers;

– Protecting mains with low pressure ratings from bursts.

18

Pressure (m)

•To minimize Leakage run

time

LEAKAGE RUN TIME

low

(Q

)

Volume loss from Leakage = R+L+ReV = (tR+tL+tRe) x Q

•To improve leakage

detection, location and

i i

Repair Quickness and QualityRepair Quickness and Quality

R L ReWat

er f

l

Time (t)

LEAKAGE RUN TIME = Report + Location + Repair

Speed and Quality of Repairs

repairing processes

•To improve repair quality

•Leakage data-base

19

4

1. Passive Approach: waiting until leak

appears directly on surface or is reported

by consumerL E A K L E A K

2 Full Sounding and Correlation:

Leakage Management Strategies Leakage Management Strategies

2. Full Sounding and Correlation: systematically checking or sounding all

the fittings connected to the network:

must be applied regularly on the entire

network to be effective

3. Active Leakage Control (ALC) Active Leakage Control

20

ALC refers to monitoring the flows into zones or districts in order tomeasure leakage and prioritiseprioritise leakleak detectiondetection activitiesactivities. This is acceptedas current best practice, being the most cost-effective strategy forleakage control.

District Leakage: progressive percentage (l/s)

50%

60%

70%

80%

90%

100%

ACTIVE LEAKAGE CONTROL Methodology ACTIVE LEAKAGE CONTROL Methodology

0%

10%

20%

30%

40%

19 15 10 35 14 36 29 11 28 18 5 24 39 12 2 23 26

Districts

15%

85%

42%

58%

0%

20%

40%

60%

80%

100%

Km to be analyzed Leaks (l/s)

RemainingDistricts

Districts 7,10, 14, 15, 38

District Leakage: progressive percentage (l/s,km)

0%

20%

40%

60%

80%

100%

19 15 10 35 14 36 29 11 28 18 5 24 39 12 2 23 26

Districts

21

•Water supply system surveys

•Model construction and calibration

•Planning of District Metering Areas (DMAs)

•Leakage quantification

PH

ASE

1PH

ASE

1

Net

wor

k N

etw

ork

dia

gnos

tic

dia

gnos

tic

Optimization proposal Optimization proposal “if necessary”“if necessary”

ACTIVE LEAKAGE CONTROL Methodology ACTIVE LEAKAGE CONTROL Methodology

• Leakage location

• Leakage repair

• Quantification of recovered water

• Program for leakage management

- Leakage Control Unit

- Active and permanent monitoring system

PH

ASE

2PH

ASE

2

Leak

age

reduct

ion

Leak

age

reduct

ion

and c

ontr

ol p

rogr

aman

d c

ontr

ol p

rogr

am

22

Thank you!

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

Thank you!

WATER BALANCE

The Water Balance as a tool to N R W t IWAmeasure Non Revenue Water - IWA

international Standard Methodology

24-25 April 2012, Alexandria (Egypt)24 25 April 2012, Alexandria (Egypt)

Alessandro Bertoni

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

1

Methodologies for leakage assessmentMethodologies for leakage assessment

• Leakage estimation with Water Balance (Top-down Approach)

• Leakage measurement with Minimum Nigh Flow (Bottom up approach)Flow (Bottom-up approach)

2

Methodologies for leakage assessmentMethodologies for leakage assessment

• TOP-DOWN APPROACH The purpose of a water balance is to quantify the total

losses from the network and the losses due to leakage. It compares the amount of water entering the system with the sum of the components of water consumed. The difference is the total distribution losses, which is often expressed as a percentage of the distribution input. (Though use of percentages can be misleading in terms of tilit f )utility performance.)

• BOTTOM-UP APPROACH Evaluates night flow data in specific areas to evaluate

leakage and sums this up to establish the overall leakage figure. The “Bottom-up” approach requires a detailed understanding of the network, its components and behaviour.

3

Leakage EvaluationStandard IWA Water Balance (Top Down)Leakage EvaluationStandard IWA Water Balance (Top Down)

SystemSystem

Authorised Authorised ConsumptionConsumption

RevenueRevenueWaterWater

BilledBilledAuthorisedAuthorised

ConsumptionConsumption

Unbilled Unbilled Authorised Authorised

ConsumptionConsumption

ApparentApparent

Billed Metered ConsumptionBilled Metered Consumption

Unbilled UnUnbilled Un--metered Consumptionmetered Consumption

Unauthorised ConsumptionUnauthorised Consumption

Billed UnBilled Un--metered Consumptionmetered Consumption

Unbilled Metered ConsumptionUnbilled Metered Consumption

A D EB C

4

InputInput

VolumeVolume

NonNon

Revenue Revenue

WaterWater

ApparentApparentlosseslosses

RealReallosseslosses

Water Water LossesLosses

Customer Metering inaccuraciesCustomer Metering inaccuracies

Leakage on Transmission Leakage on Transmission and/or Distribution Mainsand/or Distribution Mains

Leakage on Service ConnectionsLeakage on Service Connections

Leakage and Overflows at Leakage and Overflows at Utility’s Storage TanksUtility’s Storage Tanks

% of input volume, litres/property/day, m3/Km/day

Water balance calculationWater balance calculation

• System input volume: annual volume input to that part of the water

supply system to which the water balance calculation relates

measured by existing production (bulk) meters if these

5

measured by existing production (bulk) meters if these are known to be accurate, or the summation of the flows from zone meters where these are in place.

Other ways of assessing the water input are from reservoir drop tests, from pump characteristics or by using temporary meters.

Water balance calculationWater balance calculation

• Authorised consumption annual volume of metered and/or unmetered water taken

by registered customers, the water supplier and others who are implicitly or explicitly authorised to do so for residential, commercial and industrial purposes. It includes water exported.

Billed unmetered consumption: If there are a significant b f t th t t bill d b l Bill d

6

number of customers that are not billed by volume, Billed unmetered consumption should be estimated by sample metering a selection of customers, chosen to be statistically representative of the population.

Unbilled authorized consumption This component may also include fire-fighting, flushing, street cleaning, public fountains, building water, etc. or some of these may be unbilled and/or metered, depending on the water utility’s policies

Water balance calculationWater balance calculation

• Water losses the difference between System input volume and

Authorised consumption. Water losses consist of real lossesand apparent losses.

• Real losses physical water losses from the pressurised system, up to

7

the point of customer metering.

Physical losses after the point of customer metering are excluded from this definition of Real losses, but these can be significant and may be worthy of separate analysis.

The annual volume of all types of leaks, bursts and overflows depends on frequencies, flow rates and average duration of individual leaks

2

Water balance calculationWater balance calculation

• Apparent losses Over-estimation of production - caused by:

Inadequate measurement facility; Inadequate calibration programme for bulk meters.

Under-estimation of consumption - caused by: Under-registration of customers’ meters; Poor quality, inaccurate meters; Stopped meters;

8

Inadequate meter maintenance/replacement policy; Inadequate meter reading policy; Under-estimation of free supplies or operational use.

Theft of water - caused by: Illegal connections;

• Non-revenue water the difference between System input volume and Billed

authorised consumption. Non-revenue water includes Real losses, Apparent losses and Unbilled authorised consumption.

Water balance calculation steps (1)Water balance calculation steps (1)

1. Define System input volume and enter in Column A.

2. Define Billed metered consumption and Billed unmetered

consumption in Column D; enter total in Billed authorised

consumption (Column C) that is the same figure of Revenue Water

(Column E).

3 C l l t th l f N t (C l E) S t

9

3. Calculate the volume of Non-revenue water (Column E) as System

input volume (Column A) minus Revenue water (Column E).

4. Define Unbilled metered consumption and Unbilled unmetered

consumption in Column D; transfer total to Unbilled authorised consumption in Column C.

5. Add volumes of Billed authorised consumption and Unbilled

authorised consumption in Column C; enter sum as Authorised

consumption (top of Column B).

Water balance calculation steps (2)Water balance calculation steps (2)

6. Calculate Water losses (Column B) as the difference between

System input volume (column A) and Authorised consumption

(Column B).

7. Assess components of Unauthorised consumption and Metering

inaccuracies (Column D) by best means available, add these and

enter sum in Apparent losses (Column C).

10

8. Calculate Real losses (Column C) as Water losses (Column B) minus

Apparent losses (Column C).

9. Assess components of Real losses (Column D) by best means available (night flow analysis, burst frequency/flowrate/duration

calculations, modelling, etc.), add these and cross-check with

volume of Real losses in Column C which was derived from Step 8.

Assessment of the value of NRW componentsAssessment of the value of NRW components

• Physical Leaks (Real losses) can be assessed according to the overall cost of produced (input) water:

• Cost of adducted volume: Euro/m3

• Energy and chemical treatments cost : Euro/m3

• Financial Costs: Euro/m3

• Other components if relevant

11

• Other components if relevant

• In the case of water scarcity, real losses can be partly evaluated at the selling price of water (tariff)

• Apparent Losses can be generally evaluated at the selling price of water (tariff)

Water Audit and Performance AnalysisWater Audit and Performance Analysis

• Acquisition of available information about water supply system Information about the utility Network operation and

management Net ork monitoring

12

Network monitoring Leakage management Economic and target levels of

leakage assessment Benchmarking and

econometric tools Network maintenance

• Water Balance

Water Audit and Performance AnalysisWater Audit and Performance Analysis

Input volume Input volume ––Sum of components of water consumed Sum of components of water consumed ==

LEAKAGE LEAKAGE

A B C D E

1.1.1.1 Billed Metered Consumption

0. m3/day

1.1.1 Billed Authorised Consumption 55000. m3/day

1.1.1.2

Billed Un-metered Consumption 55000 m3/day

Revenue Water

1.1.2.1

Unbilled Metered Consumption 0 m3/day

1.1 Authorised Consumption 70000 m3/day

1.1.2 Unbilled Authorised Consumption

1.1.2.2

• Water Balance Quantifying the total losses from the network

13

The standard IWA Water Balance

Consumption 15000 m3/day

Unbilled Un-metered Consumption 15000 m3/day

1.2.1.1 Unauthorised Consumption 0. m3/day

1.2.1 Apparent Losses 3000 m3/day 1.2.1.2

Customer Metering Inaccuracies ….. m3/day

1.2.2.1 Leakage on Transmission and/or Distribution Mains 2950 m3/day

1. Distribution Input Volume …..100000 m3/day

1.2

Water Losses 30000 m3/day 1.2.2

Real Losses 27000 m3/day

1.2.2.2 Leakage and Overflows at Utility’s Storage Tanks 50 m3/day

Non- Revenue Water (NRW)

The Questionnaire’s Water Balance

3

• Water audit for Suleimaniyah Water Utility (Iraq)A B C D E

1.1.1.1 Billed Metered Consumption

0. m3/day

1.1.1 Billed Authorised Consumption

55000. m3/day

1.1.1.2

Billed Un-metered Consumption 55000 m3/day

Revenue Water

1.1.2.1

Unbilled Metered Consumption 0 m3/day

1.1 Authorised Consumption 70000 m3/day

1.1.2 Unbilled Authorised Consumption

1.1.2.2

Unbilled Un metered1

Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)

14

15000 m3/day Unbilled Un-metered Consumption 15000 m3/day

1.2.1.1 Unauthorised Consumption 0. m3/day

1.2.1 Apparent Losses 3000 m3/day 1.2.1.2

Customer Metering Inaccuracies ….. m3/day

1.2.2.1 Leakage on Transmission and/or Distribution Mains 2950 m3/day

1. Distribution Input Volume …..100000 m3/day

1.2

Water Losses 30000 m3/day 1.2.2

Real Losses 27000 m3/day

1.2.2.2 Leakage and Overflows at Utility’s Storage Tanks 50 m3/day

Non- Revenue Water (NRW)

Volume of leakage /connections/day (when connection density [no. connection/Km main] is more than 20) ;

Calculated components of the Non Revenue Water (expressed as percentages of water produced)

Water Company% Authorised unbilled /

water produced% Apparent losses /

water produced% Real losses / water

produced% NRW / water

produced

Sulaimaniya 15% 3% 27% 45%

Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)

Water Company Leakage (m3) / Km / day

Leakage (m3) / connection /day

% NRW / water produced

Sulaimaniya 126 0.37 45%

Leakage Performance Indicators

15

Volume leakage /Km mains/day (when connection density [no. connection/Km main] is less than 20;

NRW expressed as percentage of water produced;

The elaboration of the data indicated that the percentage of NRW to water produced is around 45%.

• Zone Rankin Factor (ZRF) usually used to compare different water systems in order to draw a ranking and

a prioritization order for the following activity of leakage detection campaign

combines data on the amount of leakage and the costs of leakage interventions in order to derive the “Priority Ranking Factors” for the water utilities

higher is this performance indicator, more severe is the situation related to leakage problem in a water utility or water system

Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)Water Audit and Performance AnalysisSuleimaniyah Water Utility (Iraq)

16

Zone Ranking Factor for WUS

Priority Calculation

Water Company Name

Current level

of leakage

L

Cost of

water

CW

Cost of Leaks Loc and rep

exercise

CS

Time

since last

survey

T

Zone

Ranking

Factor

ZRF

m3/y €/m3 € €/km Years

SULAIMANYIA 10,950,000 6.5 23,743 100 1 41.0

ZRF is based on: Leakage rate L Cost of producing water

CW Cost of leakage

detection exercise CS Time since last survey T

Average Performance Indicators for Egyptian subsidiary water utilities of HCWW

Water Audit and Performance AnalysisHCWW’s subsidiaries water companies (LIFE IBISS Project)Water Audit and Performance AnalysisHCWW’s subsidiaries water companies (LIFE IBISS Project)

Water Company% Authorised unbilled /

water produced% Apparent losses /

water produced% Real losses / water

produced% NRW / water

produced

5% 13% 14% 32%

Leakage (m3) / Km / dayLeakage (m3) / connection /day

% NRW / water produced

ZRF

24 0.23 34% 17

12 Water Utilities of HCWW (Average values)

Priority Calculation

Water Company NameCurrent level of leakage

Cost of water

Cost of Leaks Loc and rep exercise

Time since last

Zone Ranking

17

Water Company Name of leakageL

waterCW

exerciseCS

last survey

T

Factor ZRF

m3/y €/m3 € €/m3 YearsALEXANDRIA 282,207,901 0.033 34,440 0.023 3 28.5ASSWAN 41,240,941 0.110 6,091 0.023 0.003 1.4BANI SEWAIF 36,735,258 0.082 5,805 0.023 0.083 5.9BEHEIRA 56,423,605 0.060 8,741 0.023 3 32.9DAKAHLEIA 89,597,274 0.034 13,556 0.023 0.003 0.7DAMMIETTA 29,932,768 0.063 4,086 0.023 3 35.3FAYOUM 85,177,611 0.032 10,035 0.023 0.25 8.1GHARBEIA 122,452,407 0.065 15,622 0.023 3 38.3KAFR EL-SHEIK 3,297,348 0.048 2,953 0.023 3 12.7MENIA 7,402,670 0.041 3,791 0.023 3 0.0QENA 47,406,475 0.056 6,998 0.023 3 31.9CAIRO 1,458,103,931 0.049 145,958 0.023 0.083 6.3

Calculation of Zone Ranking Factors for the Egyptian utilities

Leakage = Minimum Night Flow MNF (measured) – [Legitimate Night

Consumption LNC (estimated) + Special Users Consumption (measured)]

Leakage Evaluation Legitimate Night Consumption MethodLeakage Evaluation Legitimate Night Consumption Method

LNC

LeakageSpecial Users

18

Leakage Evaluation Example of schematization in District Metered AreasLeakage Evaluation Example of schematization in District Metered Areas

19

4

Pressure Data Logger

Monitoring campaign

Portable ultrasonic flow meterInsertion flow meter (Quadrina)

20

• Users’ Elaboration (for each DMA):– Subdivision of users according to typology (domestic,

commercial, industrial, etc.)– Consumptions data – gathered from users’ data base – for

each user typology are elaborated in order to calculate the average daily consumption (m3/d)

Leakage Evaluation Legitimate Night Consumption MethodLeakage Evaluation Legitimate Night Consumption Method

– Application of statistical-based coefficients of minimum night consumption for each typology LNC calculation

– Identification of large users (>40 m3/day)

• Metering of minimum night flow (02:00-04:00)

• Reading of large users’ meters during the monitoring period

21

1-Gathering of consumptions from users’ data base1-Gathering of consumptions from users’ data base

Consumptions data for each user coming from meters data reading, usually storied in data base, represent the starting stage for District consumption assessment related to specific time interval.

These data are usually storied and classified according user type (domestic, industrial, rural, etc) and identified with a code.

22

CODICE_TIP uso ConteggioDiCODICE_ULM COD_STAT DESCR_STAT ommaDiGENNAIommaDiFEBBRADDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 29 A0101D Privato 217,96 196,84DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 1 F0103D di costruzione 4,88 6,07DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000030 PROVINCIALE 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000160 TE VARIO 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 000165 GENERICA 14,64 13,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000240 ARTIGIANALE - 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 F0103D di costruzione 3,69 3,34DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0315A e drogherie, 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0321A art.profumeria, 8,13 7,35DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0322A suti per 2,79 2,52DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0324A dettaglio di 1,8 1,63DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0344A coli 1,28 1,15DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0350A etti arte,culto e 2,14 1,93DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 I0308A connesse alle 0,26 0,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0203A diverse da 2,57 2,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0308A liquidat.indipen 1,28 1,16DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 M0104A mediazione 0 0

2 – Users’ elaboration2 – Users’ elaboration

Consumptions data for each user are split for various Districts and elaborated in order to calculate the yearly consumption in

CODICE_TIP uso ConteggioDiCODICE_ULM Tot_mcDDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 29 2417,04DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 1 57,48DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 167,99DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 55,29DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 61,72DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 92,09DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 32,85DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 24,01DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 14,13DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 61,73DEXDOM USO NON DOMESTICO ARTIG COMM UFF IND 1 3 0

23

mc. Large users (>30 mc/d) are considered special users and taken into account separately

DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 3,05DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 28,5DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 14,73DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 1,98DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 11,9DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 4 59,16DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 47,72DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 39,69DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 11DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 7,63DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 21,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 4,07DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 398,71DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 122,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 89,72DPUBBL USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 2 605,2DSINGO USO DOMESTICO RESIDENTE - UTENZA SINGOLA 231 26450,7

3 – Consumption/Typology/District Assessment3 – Consumption/Typology/District Assessment

Users of each district are put together according to typology in order to calculate the average daily consumption and

Descrizione n_contatori mc/giornoUSO DOMESTICO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 30 6,78USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 40 3,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0 0,00COMUNITA' NON AVENTI FINI DI LUCRO 0 0,00ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 2 1,66USO DOMESTICO RESIDENTE - UTENZA SINGOLA 237 73,14USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0 0,00USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 1 0,35USO PUBBLICO - FONTANE CON CONTATORE 8 0,13USO PUBBLICO - FONTANE SENZA CONTATORE 0 0,00USO NON DOMESTICO - IDRANTI 8 0,04

24

consumption and the number of users for each typology

USO PUBBLICO - IDRANTI 5 5,39IDRANTI STRADALI - SENZA CONTATORE 0 0,00USO INDUSTRIALE ACQUA ORDINARIO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 593 77,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 935 234,95USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 1 0,12COMUNITA' NON AVENTI FINI DI LUCRO 8 18,20ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 90 125,16USO DOMESTICO RESIDENTE - UTENZA SINGOLA 3206 856,37USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 9 7,61USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 166 134,60USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 36 7,45USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 33 1,95USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 2 0,00

Totale 5410 1555,41

4 – Choice of the coefficient for LNC assessment4 – Choice of the coefficient for LNC assessment

Descrizione indiceUSO DOMESTICO 0,2USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO PUBBLICO - FONTANE CON CONTATORE 1USO PUBBLICO - FONTANE SENZA CONTATORE 1USO NON DOMESTICO - IDRANTI 0USO PUBBLICO - IDRANTI 0

The chosen coefficients, which indicate ratio between night minimum and daily average consumption, are calculated from actual measured daily consumptions related to user typology carried out in comparable contexts.

25

USO PUBBLICO IDRANTI 0IDRANTI STRADALI - SENZA CONTATORE 0USO INDUSTRIALE ACQUA ORDINARIO 0,3USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,2USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,25USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,1USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0

5

5 – Special users5 – Special users

Special users are classified according to typology and, if possible, they areindividually monitored with readings or records with 15-30 min time step.

Comune Distretto Ragione Sociale mc/anno mc/giorno Tipologia l/s CLN Tot_Cln/DAscoli Piceno 2 Amm. Com. (Cimitero) 2166,88 5,94 Cimitero 0,07 -Ascoli Piceno 2 USL 13 19694,91 53,96 Ospedali 0,62 0,16Ascoli Piceno 2 Ascoli Calcio 1898 3159,34 8,66 società calcistica - stadio e spogliatoi 0,10 - 0,16Ascoli Piceno 3 RFI SpA - (Ferrovie) 11052,27 30,28 Ferrovie 0,35 0,11Ascoli Piceno 3 SGL Carbon SpA 30312,00 83,05 Fonderie - impianti, macchine e prodotti 0,96 0,29Ascoli Piceno 3 Soc. Coop. Gente di Nuoto 8101,60 22,20 Piscine 0,26 - 0,39Ascoli Piceno 4 Casa di cura S.Giuseppe 16850,16 46,16 Ospedali 0,53 0,13Ascoli Piceno 4 Ente Osp. Mazzoni 37354,24 102,34 Ospedali 1,18 0,30Ascoli Piceno 4 Ente Osp. Mazzoni 54862,36 150,31 Ospedali 1,74 0,43 0,86Ascoli Piceno 5 Ist Tec Agrario 7068 52 19 37 Scuole 0 22 -et

ti di

Asc

oli P

icen

o

26

Ascoli Piceno 5 Ist. Tec. Agrario 7068,52 19,37 Scuole 0,22Ascoli Piceno 5 AMCOR ITALIA srl 2611,06 7,15produttrice di bottiglie e contenitori in plastica 0,08 -Ascoli Piceno 5 Com 235 RGM Fanteria 81593,01 223,54 Caserme militari 2,59 0,52Ascoli Piceno 5 Pharmacia Italia 57008,22 156,19 MEDICINALI E PRODOTTI FARMACEUTICI 1,81 0,36Ascoli Piceno 5 Pirelli Cavi Sist. Energia 15043,32 41,21 CORDAMI E SPAGHI 0,48 0,10 0,97

Dis

tre

Furthermore, for these kind of users, it is important the night patternconsumption and potential frequency during the year in order to assess thelegitimate night consumption with more precision.Finally, in the same way, consumptions non imputed in users’ data base are added(public use, fountains without water reuse, etc.)

6 – LNC – Final value6 – LNC – Final value

The final LNC is the result of summing total LNC of each district calculated fromusers’ elaboration and district total of night minimum measured or evaluatedfrom special users.

Distretto/Zona n° utenti km reteConsumo

annuo (mc/anno)

Consumo medio

giornaliero (l/s)

CLN (l/s)

Minimo Notturno UTS (l/s)

CLN + min. UTS

(l/s)

27

(l/s)ASCOLI PICENO - D1 - CENTRO STORICO 5.410 24,00 567648,00 18,00 3,72 3,72ASCOLI PICENO - D2 - CAMPO PARIGNANO - P.CAPPUCCINA - STADIO 4.688 18,50 596976,48 18,93 3,74 0,16 3,90ASCOLI PICENO - D3 - PORTA MAGGIORE - SAN SALVATORE 4.486 21,00 569855,52 18,07 3,86 0,39 4,25ASCOLI PICENO - D4 - MONTICELLI - BRECCIAROLO - Serbatoio Angelini 3.140 15,40 644911,20 20,45 3,89 0,57 4,46ASCOLI PICENO - D5 - LU BATTENTE - VIA NAPOLI - CASTAGNETI - Serb Pennile 2.249 18,00 487231,20 15,45 3,13 0,97 4,10FOLIGNANO - D1 - Serbatoio Folignano 921 10,00 111637,44 3,54 0,71 0,71FOLIGNANO - D2 - VILLA PIGNA 1.743 16,80 294230,88 9,33 1,92 1,92FOLIGNANO - D3 - PIANE DI MORRO 572 13,40 84516,48 2,68 0,54 0,54CASTEL DI LAMA - D1 - CENTRO STORICO 1.239 21,50 171871,20 5,45 1,07 1,07CASTEL DI LAMA - D2 - VILLA SANT'ANTONIO - Serbatoio Seghetti 2.041 13,50 251657,28 7,98 1,63 1,63SPINETOLI 1.816 22,00 283193,28 8,98 1,90 1,90

Thank you!

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

Thank you!

28

WATER BALANCE

L k P f I di tLeakage Performance Indicators -Physical and Economical Indicators

24-25 April 2012, Alexandria (Egypt)24 25 April 2012, Alexandria (Egypt)

Alessandro Bertoni

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt

1

Benchmarking: PI for water sectorBenchmarking: PI for water sector

The quality of the water service may be described by a number of parameters which are compared to other called “quality standards” and are used as a reference, i.e. the optimum level of service which the current service shall aim at

For each quality factor indicators may be defined to

2

For each quality factor, indicators may be defined to represent the level of service

Once the indicators have been identified, the current level of service, the gap between the current values and the standards and the overall customer satisfaction can be measured

IWA Performance IndicatorsIWA Performance Indicators

• Performance Indicators are grouped in a structure that makes sense for every water utility and for all types of uses of the system. The PI shall be arranged in the following groups:

W t

3

Water resources

Personnel

Physical

Operational

Quality of Service

Economic and Financial

IWA Performance IndicatorsIWA Performance IndicatorsGroup  Performance Indicators  Description  Unit

Water resources Water resources availability  annual volume of water entering the system  m3/year

Inefficiency of water resources  percentage of water that enters the system and is lost due to leakage and overflows  %

Personnel Employees per water produced  number of full time equivalent employees per unit volume of water produced  No./(m3/year)

Personnel per main functions  percentage of employees dedicated to various functions and departments of the water utility 

Physical 

Treatment plant utilisation  maximum percentage of the daily capacity of the existing treatment plant that were used 

Raw/Treated water storage capacity 

capacity of raw water /transmission and distribution service reservoir per unit volume of daily system water input 

days 

District Metering Area density  number of District Metering Areas per thousand of service connections No. DMAs/1000 service 

connections 

Metered customers  number of direct and bulk customer meters per customer  No./customerLeakage control  percentage of mains length subject to active leakage control per year  %/year

Mains, valves, pumps and service connections rehabilitation  percentage of facilities replaced or renovated per year  %/year 

Water losses  percentage of Apparent and Real losses related to water provided to the system  %

Infrastructural Leakage Index ratio between the actual real losses and an estimate of the minimum real losses

4

Operational Infrastructural Leakage Index 

(ILI) ratio between the actual real losses and an estimate of the minimum real losses 

that could be technically achieved for the system ‐

Unmetered water  percentage of the system input value that is not accounted for as metered consumption 

Water quality tests carried out  percentage of treated water test required by applicable standards or legislation that are carried out 

Quality of service 

Population coverage  percentage of population served by the water utility  % Buildings supply coverage  percentage of existing buildings that are connected to the public network  %

Average distance from waterpoints to households 

average distance between waterpoints to and the respective far‐most household served by it 

Population per public tap or standpipe  average number of persons served by public tap or standpipe  person/tap 

Pressure of supply adequacy  percentage of delivery points that receive and are likely to receive adequate pressure 

Continuity of supply  number of hours per day when the system is pressurised  hours/ day

Service complains per customer  Average number of complains of quality of service per 1000 service connections and per year 

No. Complains/customer/year

Economic and financial 

Unit total cost  running and capital costs per cubic meter of authorised consumption  $/m3 

Unit revenue  revenue per cubic meter of authorised consumption  $/m3

Total cost coverage ratio  Ratio between the total revenues and the total costs  ‐

IWA Performance IndicatorsIWA Performance Indicators

• Financial Performance Indicators for Non-Revenue Water (NRW) Non-revenue water by volume (%)

= Non-revenue water / system input volume x 100

Non-revenue water by cost (%)

5

y ( )

= Valuation of non-revenue water components / annual running costs x 100

This is the sum of separate valuations for unbilled authorised consumption, apparent losses and real losses

Economic Level of Leakage (ELL)Economic Level of Leakage (ELL)

NOT ECONOMIC (Too much control)

NTR

OL

N

TRO

L

6

ECONOMIC

NOT ECONOMIC (Little control)

COST OF LEAKAGE COST OF LEAKAGE

CO

ST O

F C

ON

CO

ST O

F C

ON

Economic Level of Leakage (ELL)Economic Level of Leakage (ELL)

• Many factors may influence the leakage target: Economic, Political, Environmental Supply Sustainability Short & long term etc…

• Various techniques and software exist in establishing the Economic Level of Leakage (ELL),following assumptions can be made:

7

following assumptions can be made: The cost of leaking water from a network is directly

proportional to the volume of water lost;

The cost of leakage control increases as the level of leakage decreases, and the rate of increase becomes gradually steeper until a level is reached below which leakage cannot be further reduced. This is known as the policy minimum or base level of leakage.

2

ELL calculation - Steady state costs vs LeakageELL calculation - Steady state costs vs Leakage

8

ELL calculation - Total ALC cost plus the cost of waterELL calculation - Total ALC cost plus the cost of water

• The ELL is the point at which the marginal cost of active leakage control equals, on average, the cost of leaking water

30

wat

er Cost of leakage control too high

9

0

5

10

15

20

25

0 100 200 300 400 500 600 700

Reported Leakage (l/prop/day)

Cos

ts (£

/pro

p/yr

)

Current PolicyMinimum

Total ALC Costs

Cost of Water

Total Cost

Current Position

Cos

t of

leak

age

cont

rol a

nd lo

st

Level of leakage

Cost of water loss too highOptimal

position

Economic Level of Leakage

IWA Performance IndicatorsIWA Performance Indicators

• Operational Performance Indicators (PI) for Water Losses and Apparent Losses

Water losses (m3/connection/year)

= Water losses / n. of service connections

10

Or

Water losses (m3/s/km)

= Water losses / length of network

Apparent losses (m3/connection/year)

= Apparent losses / n. of service connections

IWA Performance IndicatorsIWA Performance Indicators

Specify:Number of Connections (Nc)

Network Length, Km (L)

Calculate:Density of Connections

11

Density of ConnectionsDC = Nc/L

Use m3/km/day

As PI of Real LossesDC < 20

connections/kmYes

Use litres/connection/day

As PI of Real LossesNo

LEAKAGE ASSESSMENTAncona water networkLEAKAGE ASSESSMENTAncona water network

District/Area Users Number

Network Extension

(km)

Avarage Daily

Cosumption (l/s)

LNC (l/s)

Metered Minimum

Night Flow (l/s)

Leakage (l/s)

Leakage (l/s,Km)

Leakage (l/s,utente)

Leakage - Progressive Percentage

(l/s)

Leakage - Progressive Percentage

(l/s/km)19 ANCONA RETE MEDIA CENTRO CITTA' 16,186 91.9 80.92 18.06 31.03 12.97 0.141 0.001 16.5% 4.0%38 RAFFAELLO SANZIO PORTO 1,078 11.8 43.72 26.68 35.70 9.02 0.765 0.008 28.0% 25.6%15 MONTE PELAGO 3,541 21.3 24.16 6.81 15.23 8.42 0.395 0.002 38.7% 36.8%7 CASTELFERRETTI 2,051 20.1 11.31 2.45 8.33 5.88 0.292 0.003 46.2% 45.1%10 TORRE DAGO RETE DA POSATORA 2,509 22.8 18.51 4.38 9.92 5.54 0.243 0.002 53.3% 52.0%17 ANCONA RAFFAELLO SANZIO RETE PIANO 5,345 31.1 33.95 8.23 13.58 5.35 0.172 0.001 60.1% 56.8%35 TORRE DAGO TAVERNELLE-P.VARANO-ZONA 3 3,068 40.6 20.67 5.19 9.64 4.45 0.110 0.001 65.7% 59.9%8 CANDIA 939 28 7.41 2.15 6.00 3.85 0.137 0.004 70.6% 63.8%

14 MONTE BALDINO 1,400 22.6 10.09 2.21 5.98 3.77 0.167 0.003 75.4% 68.5%9 MONTAGNOLO 2,492 28.6 15.54 3.27 7.01 3.74 0.131 0.002 80.2% 72.2%36 TORRE DAGO Q1 Q2 Q3 4,106 36.6 31.19 7.23 10.93 3.70 0.101 0.001 84.9% 75.1%37 RAFFAELLO SANZIO CENTRO CITTA' BASSA 2,843 16.4 15.63 4.32 6.48 2.16 0.132 0.001 87.7% 78.8%29 FALCONARA RETE BASSA 10,157 47.5 69.20 28.52 30.42 1.90 0.040 0.000 90.1% 80.0%16 PIP 156 20.1 1.95 0.52 2.06 1.54 0.077 0.010 92.0% 82.1%11 SABBATINI 1,172 30.4 9.75 2.03 3.07 1.04 0.034 0.001 93.4% 83.1%4 CAMERANO LAURETANA 997 26.4 6.71 1.51 2.51 1.00 0.038 0.001 94.6% 84.2%28 FALCONARA RETE MEDIA 3,304 28.8 19.17 4.02 4.73 0.71 0.025 0.000 95.5% 84.9%30 COLLEMARINO 1,631 12.5 7.93 1.65 2.20 0.55 0.044 0.000 96.2% 86.1%18 AGUGLIANO RETE BASSA SANTA LUCIA 209 14 1.76 0.40 0.93 0.53 0.038 0.003 96.9% 87.2%21 VARANO RETE ALTA MONTE ZOIA 127 6.5 1.11 0.23 0.65 0.42 0.064 0.003 97.4% 89.0%5 AGUGLIANO RETE ALTA LESTI 995 7 5.47 1.15 1.54 0.39 0.056 0.000 97.9% 90.6%1 CAMERANO INTERRATO 197 5.7 1.08 0.23 0.53 0.30 0.053 0.002 98.3% 92.1%24 PATERNO RETE ALTA 33 3.5 0.16 0.03 0.31 0.28 0.079 0.008 98.7% 94.3%22 SAPPANICO 634 19.5 4.67 0.95 1.19 0.24 0.012 0.000 99.0% 94.7%39 AGUGLIANO RETE ALTA MONTEVARINO 524 5 2.69 0.57 0.79 0.22 0.044 0.000 99.3% 95.9%13 PORTONOVO 65 4 2.34 0.69 0.89 0.20 0.051 0.003 99.5% 97.3%12 MONTE CONERO BASSO 227 6.7 2.29 0.53 0.72 0.19 0.028 0.001 99.7% 98.1%27 MONTE CONERO ALTO 54 1.7 0.57 0.13 0.22 0.09 0.053 0.002 99.9% 99.6%2 CAMERANO PENSILE 1,350 14.5 6.80 1.43 1.51 0.08 0.005 0.000 100.0% 99.8%20 VARANO RETE BASSA 310 3.5 1.98 0.41 0.44 0.03 0.008 0.000 100.0% 100.0%23 PATERNO RETE BASSA 146 7.5 0.76 0.15 0.13 0.00 0.000 0.000 100.0% 100.0%25 CASINE DI PATERNO 109 1 0.62 0.13 0.02 0.00 0.000 0.000 100.0% 100.0%26 MONTESICURO 298 9.5 1.68 0.37 0.00 0.00 0.000 0.000 100.0% 100.0%

12

District Leakage: progressive percentage (l/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

19 15 10 35 14 36 29 11 28 18 5 24 39 12 2 23 26

100%

LEAKAGE ASSESSMENTAncona water networkLEAKAGE ASSESSMENTAncona water network

90% of leakage in the first 15 DMAs, whereas the remaining 10% is found in the other 15 DMAs

1 1 1 3 1 3 2 1 2 1 2 3 1 2 2

Districts

District Leakage: progressive percentage (l/s,km)

0%

20%

40%

60%

80%

100%

19 15 10 35 14 36 29 11 28 18 5 24 39 12 2 23 26

Districts

15%

85%

42%

58%

0%

20%

40%

60%

80%

Km to be analyzed Leaks (l/s)

RemainingDistricts

Districts 7,10, 14, 15, 38

13

42% of leakage is concentrated in only 15% of the total network length (5 DMAs)

3

Calculation of ILI - Infrastructure Leakage IndexCalculation of ILI - Infrastructure Leakage Index

• CARL = Current Annual Real Losses

• ILI = Infrastructure Leakage Index

• UARL = Unavoidable Annual Real Losses

14

ILI* = CARL / UARL

* There are some limitations under certain conditions of pressure (25m of average press), connections density (20 conn/km) and number of connections (5,000 conn.)

Infrastructural Leakage Index (ILI)Infrastructural Leakage Index (ILI)

Speed and quality

of repairs

Active Leakage Control

Unavoidable real losses

Active Leakage

Speed and quality of

Economic Level of Leakage

Pressure Management

15

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Network management

and maintenance

of repairsControl

Current Annual Real Loss Volume

Current Annual Real Loss Volume

gControl

quality of leaks repair

Real Losses

Infrastructure Leakage IndexInfrastructure Leakage Index

ILI = ILI = Current Annual Real Loss Current Annual Real Loss Volume/Unavoidable real lossesVolume/Unavoidable real losses

Calculation of Unavoidable Annual Real Losses (UARL)Calculation of Unavoidable Annual Real Losses (UARL)

• The UARL concept represents the lowest technicallytechnically achievable level of leakage that could be achieved at current operating pressures assuming the following: Well maintained infrastructure

Intensive state of the art active leakage control (ALC)

All detectable leaks and bursts are repaired quickly and efficiently

• IWA relationship for UARL calculation:

16

where:Lm = length of mains (in km), Nc = number of service connectionsLp = total length of service connections from the edge of the street to customer meters ( km)P = average pressure when system is pressurised (in metres)A, B and C are constants, derived as 18, 0.8 and 25 respectively from analysis of data on 27 water supply systems

UARL (litres/service connection/day) = (A x Lm/Nc + B + C x Lp/Nc) x P

Example - UARL calculationExample - UARL calculation

• Network Length = 1200 km

• Nc (Number of connections) = 60000

• Density of connections = 50/km litres/connection/day is the best PI for real losses

• Meters located 0.5 m from property boundary Lp = 0.5 x 60000/1000 = 30 km

• Average pressure = 50m

17

• Average pressure = 50m

• UARL = (18 x 1200 + 0.8 x 60000 + 25 x 30) x 50

= 1080000 + 2400000 + 37500 litres/day

= 3517500 litres/day

= 3.517 Ml/day

= 58,6 litres/connection/day

IMPORTANT: Use N°of connections, not N°of Users!

Calculation of ILI - Infrastructure Leakage IndexCalculation of ILI - Infrastructure Leakage Index

Lp = 0 m

Np*

L (km)

Case 1

Lp (km) = 0

Network

S i

18

*Np = N° of service connectionsLp (km) = 5 * Np /1000

Np*

Lp = 5 m (average)

Case 2

Property Boundary METER

Service Connection

ILI for water networks worldwideILI for water networks worldwide

ILIs for 22 English/Welsh Water Companies, 2002/03

02468

101214161820

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Infra

stru

ctur

e Le

akag

e In

dex

ILI

ILIs for 19 Australian Distribution Systems

02468

101214161820

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Infra

stru

ctur

e Le

akag

e In

dex

ILI

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ILI values for a North American Data Set

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Infra

stru

ctur

e Le

akag

e In

dex

ILI

Infrastructure Leakage Index for 26 South African Systems

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21 23 25

Infra

stru

ctur

e Le

akag

e In

dex

ILI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4

TILDE (Tool for Integrated Leakage DEtection ) Project

SINTEF

Bergen Kommune

WRc plc

• Duration of the project: 3 years• From 1 September 2003 to 31 August 2006

• Project’s cost : € 1,871,267

Ministry for the Environment And Territory

Water Council of NicosiaAcquedotto Pugliese

ABBANOA Spa

SGI SpA

IMET

Z & A Consultants

j , ,• EC funding : € 879,542

Why TILDE?Why TILDE?The following questions are frequently asked by water operators:

•What is the situation of his water utility?

•Is it cost-effective to conduct a systematic leakage control ? How much does it cost ? What are the benefit?

•If so, what is the best technology to use ? Programmed substitution of pipes

21

Programmed substitution of pipes Sounding campaign (geophones) District metering Use of models and advanced equipment (correlators, noise-

loggers, permalogs, etc.)

•TILDE supplies the instruments to answer these questions and provides the guidelines to implement the most appropriate leakage control strategy

22

TILDE Check-up ToolTILDE Check-up Tool

TILDE Check-up Tool

Tilde Check-up Tool

• Software tool to allow a rapid assessment of the leakage management needs

• Provides a rapid check of current status of leakage from water network

• Simple method using minimum data

• Uses International Water Association (IWA) leakage principles

• Is suitable for a range of network configurations

• Provides quick assessment of leakage actions needed prior using the DST tool

• Provides graphical and key performance indicator outputs

23

24 25

5

ILI (Infrastructure Leakage Index

ILI Indicator

< 2 A

2 – 4 B

Infrastructure Leakage Index – TILDE ILI IndicatorInfrastructure Leakage Index – TILDE ILI Indicator

ILI = CARL / UARL2 4 B

4 – 8 C

> 8 D

26

ILI = CARL / UARL

TILDE - Supply and Demand Factor (SDF) TILDE - Supply and Demand Factor (SDF) Stage Description Output Example

1

"Estimate the total water available to supply your area/zoneThis should be the maximum volume of water that you are able to input into the network, considering influencing factors such as the limitations of available water at source, the maximum output of treatment works, maximum amount of storage of water etc."

S (m3/d) 160500m3/d

"Estimate the maximum demand scenario. This is representative of a period of peak demand, where demand is at its highest possible level For this take the

27

2

demand is at its highest possible level. For this take the Distribution Input Volume (DIV) from Cell 1 in the Top Down spreadsheet and add an appropriate percentage of additional demand, a Peak to Average demand Factor (PAF). This allows for future increases in population, changes in industrial usage, changes in demand due to weather etc, based on known local conditions. A default value of 15% can be used where conditions are unknown.Example: DIV = 150000 PAF = 12.5%Calculation: 150000 x 1.125 = 168750 m3/d"

D (m3/d) 168750m3/d

3"Calculate the Supply and Demand Factor.Divide the figure derived in Stage 1 (S) by that from Stage 2 (D) and multiply by 100. (S / D) x 100 = SDFExample: (160500 / 168750) x 100 = "

SDF 95,11

4 Allocate SDBI figure from Supply Demand Balance Indicator (SDBI) Description table.

SDBI 2

Supply Demand Balance Indicator (SDBI) Description SDF Range SDBI

Sufficient water to meet demand requirements without addressing leakage as a priority.

> 100 1

Small deficit in water available to meet demand 90 - 100 2

TILDE - Supply Demand Balance Indicator (SDBI) TILDE - Supply Demand Balance Indicator (SDBI)

requirements, address leakage issues.

Considerable deficit in water available to meet demand requirements, leakage detection and

reduction essential

75 - 89 3

High risk of failure to meet demand requirements on a regular basis, leakage detection and

reduction essential

< 75 4

28

TILDE - SDBI Calculation examplesTILDE - SDBI Calculation examples

SDBI Calculation

Total Volume available Input Volume

Peak to Average Factor

Maximum Demand Scenario

Supply Demand Factor

Supply Demand Balance

S DIV PAF D SDF SDBI

155000 150000 12 50% 168750 91 85 2

29

155000 150000 12,50% 168750 91,85 2

151000 150000 15,00% 172500 87,54 3

285000 280000 10,00% 308000 92,53 2

10000 9820 18,50% 11636,7 85,94 3

185200 150000 5,00% 157500 117,59 1

130000 130000 35,00% 175500 74,07 4

Check-up tool GraphCheck-up tool GraphTILDE Checkup

Leakage Indicator (ILI) and Supply Demand Balance Indicator

3

4

cato

r

3

4

and

High leakageWater scarcity

Low leakageWater scarcity

0

1

2

0 1 2 3 4

ILI Indicator

SDB

Indi

c

A B C D

1

2

Supply

Dem

a

Leakage

High leakageWater surplus

Low leakageWater surplus

30

TILDE Check-up – Graphical outputTILDE Check-up – Graphical outputTILDE Checkup

Leakage Indicator (ILI) and Supply Demand Balance Indicator

3

4

cato

r

3

4Take immediate

actionLeakage okayNew resource

Implement best practice, e.g.Active leakage control

0

1

2

0 1 2 3 4

ILI Indicator

SDB

Indi

c

A B C D

1

2

Wasteful –reduce leakage

Continue tomonitor

Active leakage controlPressure managementDetermine EconomicLevel of Leakage

31

T i i b t ti i l kTraining on best practices in leakage control and practical approach to

t l twater losses management

Definition of a leakage management strategymanagement strategy

Eng. Carlo Caccavo

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 1 SPS Srl

1

• Water system surveys• Model construction and calibration• Planning of DMAs • Leakage quantification

METHODOLOGIES FOR LEAKAGE CONTROL

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 2

• Leakage location• Leakage repair• Quantification of recovered water• Program for leakage management:

- Leakage Control Unit - Active and permanent monitoring system

Key data requiredKey data required

Scheme of the whole supply and distribution network Scheme of tanks operation Specific data for every district:

last available measured consumptions of users split by typology (residential, commercial, etc.) and by street or part of water distribution network;

large users (> 30 m3/d): name and location, measured or estimated average daily and monthly consumption, pattern of daily consumption with 1 hour intervals;

number of inhabitants and fluctuating people;

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 3

number of inhabitants and fluctuating people; total length of pipes; local conditions and type of soil.

Data about measurements: available measures of flows and pressure meters; features of installed meters.

Data about facilities: age and operational status of water network trunks; location and type of historical maintenance works of pipes and fittings; Q-H relationship, operating curve and daily operating time of pumping stations.

Surveyors fill the forms related to pipes, manholes, fittings, valves, tanks

EYDAP

65ATHENS - Glyfada

Topographic SurveyTopographic Survey

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 4

The data collected during field monitoring campaignare used to implement a Data Base system

Data baseData base

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 5

GIS ExampleGIS Example

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 6

Example of GIS system display – Tirana water distribution network

• Flexibility

• “Context tailored”

• Related to objectives and available financial resources

PLAN FOR WATER NETWORK EFFICIENCY RECOVER

PLAN FOR WATER NETWORK EFFICIENCY RECOVER

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 7

Two different stages:• 1 Network diagnostic and proposal of optimization

“if necessary”

• 2 Leakage reduction and control program

2

System diagnostics is based on the idea to determine by few simple operations and with enough precision leakage related

to every area.

This aim is achieved through the method of measurement of “LEGITIMATE NIGHT CONSUMPTION”

System diagnostics is based on the idea to determine by few simple operations and with enough precision leakage related

to every area.

This aim is achieved through the method of measurement of “LEGITIMATE NIGHT CONSUMPTION”

STAGE 1: System diagnosticsSTAGE 1: System diagnostics

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 8

ACTIVITIES ACTIVITIES

Preliminary system analysisPreliminary system analysis

Assessment of apparent and physical leaks Assessment of apparent and physical leaks

Optimisation proposal “if necessary”Optimisation proposal “if necessary”

Data and information acquisition about:

resources

production

STAGE 1: System diagnosticsPreliminary system analysis

STAGE 1: System diagnosticsPreliminary system analysis

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 9

consumption

quality

infrastructural typology and condition

Users’ ElaborationSubdivision of users according to typologyApplication of coefficients of minimum night

consumption for each typology

STAGE 1: System diagnosticsLegitimate Night Flow CalculationSTAGE 1: System diagnosticsLegitimate Night Flow Calculation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 10

Identification of large users (>40 m3/day)Metering of minimum night flow (02:00-

04:00) Reading of large users’ meters during

the monitoring period

1) Domestic Legitimate Night Consumption (LNC) is constant during the year and its value is around 20-25% of the average daily consumption (2.0 l/h per household – UK data).

STAGE 1: System diagnosticsLegitimate Night Flow CalculationSTAGE 1: System diagnosticsLegitimate Night Flow Calculation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 11

2) This value is “customized” and verified through consumption analysis and, eventually, through direct measurements of selected sample of users’s meters.

3) The difference between night supplied flow and Legitimate Night Consumption gives the network leakage.

Leakage = Minimum Night Flow MNF (measured) – Legitimate Night Consumption LNC (estimated) - Special Users Consumption (measured)

STAGE 1: System diagnosticsLeakage assessment

STAGE 1: System diagnosticsLeakage assessment

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 12

LNC

LeakageSpecial Users

1. Users’ elaboration:Consumptions data – gathered from users’ data base – for each user are split for various districts and elaborated in order to calculate the yearly consumption (m3/y)

2. District assessment: Users of each district are put together according to typology in order to calculate the average daily consumption and the number of users for each typology

3 Choice of the coefficients:

STAGE 1: System diagnosticsLegitimate Night Flow CalculationSTAGE 1: System diagnosticsLegitimate Night Flow Calculation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 13

3. Choice of the coefficients: Statistic-based coefficients - which indicate ratio between night minimum and daily average consumption – are applied to each typology of users in order to calculate the estimated night consumption

4. Large users:Special users are classified according to typology and, if possible, they are individually monitored

5. Legitimate Night Flow calculation:The final LNC is the result of summing total LNC of each district calculated from users’ elaboration and district total of night minimum measured or evaluated from special users.

3

Monitoring campaignMonitoring campaign

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 14

Quadrina package

Data Logger Flowmeter

Monitoring campaignMonitoring campaign

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 15

Installation of permanent Magnetic flow meters

Installation of portable Quadrina insertion flow meter

Monitoring campaignMonitoring campaign

Portable flow and pressure meter

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 16

Permanent flow meter

Example of schematization in districtsExample of schematization in districts

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 17

LNC= Legitimate Night Consumption Consumption and billed data

Quantification

of non-revenue water =

LEAKAGE

STAGE 1: System diagnosticsSTAGE 1: System diagnosticsUFW assessmentUFW assessment

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 18

Leakage recovery action

Self-sustainability of the project for system renovation and monitoring

Generation of financial flows

LEAKAGE

End of Stage 1

Two different stages:• 1 Network diagnostic and proposal of optimization

“if necessary”

PLAN FOR WATER NETWORK EFFICIENCY RECOVER

PLAN FOR WATER NETWORK EFFICIENCY RECOVER

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 19

“if necessary”

• 2 Leakage reduction and control program

4

Physical leaks detection Leaks repair Apparent and commercial leaks control Monitoring of flow during leaks repairing campaign

Evaluation of water recovered

STAGE 2 : LEAKAGE REDUCTION AND CONTROL PROGRAMME

STAGE 2 : LEAKAGE REDUCTION AND CONTROL PROGRAMME

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 20

Evaluation of water recovered Set up of “optimal “Economic” leakage level

Definition of the interventions for system rationalization Pressure control Meters replacement Pipes replacement/reinforcement

Active monitoring of flow and pressure

Construction of the calibrated mathematic model for zonal

disaggregating

•Detailed study of system•Definition of districts

•Location of anomalies

Stabilization and rationalization •Constant pressureO ti < 3 4 t

System MonitoringSystem Monitoring

STAGE 2 : Plan for efficiency improvementPhysical leaks control

STAGE 2 : Plan for efficiency improvementPhysical leaks control

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 21

of pressure fields •Operating pressure < 3-4 atm

Leakage detection and repair

•Best methodology for the location of areas with higher probability of leakage

•Leakage location •Leakage repair

•Monitoring of night flow•Assessment of recovered water

There are 2 categories of tools and techniques:

Tools for leakage PRE-DETECTION (identification of critical areas with possible leakage)

•Sounding with listening stick

•Step Test (flow measurement in small parts of the water distribution network)

•Automatic sounding (radio transmitting acoustic sensors, noise loggers)

TOOLS FOR LEAK DETECTION TOOLS FOR LEAK DETECTION

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 22

Tools for leakage LOCATION (leak pinpointing in the critical areas)

•Ground microphone (to locate “easy” leaks)

•Classic Correlator (for any situation)

•Automatic correlation technologies (state-of-the-art technique for leak detection: couple automatic leaknosise loggers and correlation )

• A characteristic of leakage from a pressure system is the generation of noise, in pipes of any kind of material

Leakage pre-detection instrumentsLeakage pre-detection instruments

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 23

Ground microphone and listening stick

Permalog: acoustic sensors radio transmitter and data acquisition with radio receiver

(Patroller)

• Leakage detection instruments are based on pinpointing acoustic waves produced by leaks

Leakage detection instrumentsLeakage detection instruments

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 24

Operating package of the correlator

Leak location along the investigated pipe

• A correlator works by detecting thesound from the leak when it arrives attwo points on the pipe, either side of thesuspected leak position

• The sound first arrives at the closer ofthe two sensor; then there is a “timedelay” TD before the sound arrives at

Leak acoustic wave

Acoustic wave

Pipe

Leak

Leakage detection instrumentsLeakage detection instruments

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 25

delay TD before the sound arrives atthe further sensor

• The time delay, combined withknowledge of the distance D betweenthe sensors and the velocity V of thesound in the pipe, enables the correlatorto calculate the leak position N from theblue sensors

Scheme of the correlator working

Leak

D

L L N=VxTD

SensorSensorCORRELATOR

Mathematical relationships

5

Leaks repairLeaks repair

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 26

Chart of the correlation exercise activity

Leakage form

Leak Repairing joint

• Once the leakage has been detected andrepaired, a detailed leakage control exercisehas to been undertaken in order to evaluatethe volume recovered due to leaks repair

Leaks repairLeaks repair

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 27

Apparent LossesApparent Losses

Unauthorized use (theft), errors in Unauthorized use (theft), errors in metersmeters

Unbilled authorized use without meters Unbilled authorized use without meters (washing of pipes, roads, fountains, (washing of pipes, roads, fountains, tanks)tanks)

STAGE 2 : Leakage reduction and control programme

Apparent Lossess

STAGE 2 : Leakage reduction and control programme

Apparent Lossess

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 28

tanks)tanks)

• ACTIONS:

• Cross-controls of users’ data, electric energy

• Replacement of meters by sample

• Control of meters

• Installation of new meters for public users without meters

• ACTIONS:

• Cross-controls of users’ data, electric energy

• Replacement of meters by sample

• Control of meters

• Installation of new meters for public users without meters

20.00

25.00

30.00

FLO

• Due to the leakage detection campaign theUnaccounted For Water is progressively reduced

Water leakage recoveredWater leakage recoveredWater leakage recoveredWater leakage recovered

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 29

0.00

5.00

10.00

15.00

24 maggio 1993 25 maggio 1993 26 maggio 1993 27 maggio 1993 28 maggio 1993 29 maggio 1993 30 maggio 1993

T IME

OW

l/s

MISURED FLOW RECOVERED FLOW LEGITIMATE NIGHT FLOW

• For best management of water system the

• The solution is not only leakage detectionand repairing

ACTIVE MONITORING OF ACTIVE MONITORING OF FLOW AND PRESSUREFLOW AND PRESSURE

ACTIVE MONITORING OF ACTIVE MONITORING OF FLOW AND PRESSUREFLOW AND PRESSURE

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 30

• For best management of water system thefollowing tasks shall be carried out:

Implementation of an active andpermanent monitoring system

Institution of Leakage Control Unit

Leakage Control Unit (LCU) set-up. It is formed by a team of local staff dedicated to leakage management and control

Monitoring of losses within the district Processing of monitoring data

Leakage Control UnitLeakage Control Unit

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 31

Planning of works for maintaining the target district leakage levels obtained after leakage detection and control campaign

Training “on the job” dealing with use of instruments, data acquisition, equipment maintenance

6

Recovered volume trough operations ofRecovered volume trough operations oftraditional leakage detectiontraditional leakage detectionINITIAL

Unaccounted for water (m3/year)

Benefits of the implementation of an active system of leakage monitoring and control

Active monitoring of flow and pressureActive monitoring of flow and pressure

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 32

00 TTProject duration (years)

traditional leakage detectiontraditional leakage detectionINITIAL CONDITION

Added recovered volume thanks toAdded recovered volume thanks toan active monitoring and control system an active monitoring and control system

CONDITION AT COMPLETED

INTERVENTION

Many benefits can be obtained through pressure control in water distribution system: Leakage decrease; More operating years of pipes – less maintaining works; Less frequency of new leaks: network under controlled

pressure fields implies less percentage of punctual l k

PRESSURE MANAGEMENTBenefits from pressure control

PRESSURE MANAGEMENTBenefits from pressure control

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 33

leakages; Decrease of consumptions related to pressure: water

distribution systems inside the buildings (taps, warm water systems, etc.);

Delivery of more constant water supply to users; Reduces outflows from existing leaks; Enhances efficiency of leakage detection and repairing

campaign

The relation between Leakage (L) and Pressure (P) can be around expressed by the following relationship:

1

0

1

0

1 N

P

P

L

L

Pressure – Leakage relationshipPressure – Leakage relationship

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 34

Whereas L changes according to P variations, depending on N1 exponent.

Based on experimental studies, N1 range is 0.5 – 2.5, according to leakage typology and pipe material.

For bottom leaks (little outflows from joints) N1 is around 1.5For bigger leaks in metallic pipes N1 is around 0.5

For rough assessment N1=1 is usually assumed

0.80

1.00

1.20

1.40

ge R

ates

L1/L

o

N1 = 0.50

N1 = 1.00

N1 = 1 15

Pressure – Leakage relationshipPressure – Leakage relationship

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 35

0.00

0.20

0.40

0.60

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

R atio o f P ressu res P 1/P o

Rat

io o

f Lea

kag N1 = 1.15

N1 = 1.50

N1 = 2.50

At P0 (= 50 meters), leakage L0 = 10.0 m3/hour What is the estimated value of leakage at P1 = 40 m? Using equation L1 = Lo x (P1/P0)N1

Example of computationExample of computation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 36

If N1 = 0.5 L1 = 10 x (40/50)0.5 = 8.9 m3/hour

If N1 = 1.0 L1 = 10 x (40/50)1.0 = 8.0 m3/hour

If N1 = 1.5 L1 = 10 x (40/50)1.5 = 7.2 m3/hour

If N1 = 2.5 L1 = 10 x (40/50)2.5 = 5.7 m3/hour

Methodologies for pressure fields reductionMethodologies for pressure fields reduction

• Installation of Pressure Regulating Valves (PRV) for exceeding pressures management

• Pressure transient state management in direct pumping into network systems

• Splitting of the network in areas with homogeneous

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 37

• Splitting of the network in areas with homogeneous pressure

• Optimization works aimed at maintaining pressure at more constant value close to minimum required for service levels satisfaction

• Model calibrated

7

Most of water distribution system is design to tackle hourly peak consumptions during maximum demand season (summer) with adequate pressure to all users

This implies that, more then 95% of the year, the

Exceeding pressures managementExceeding pressures management

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 38

This implies that, more then 95% of the year, the system works with pressure higher then required

In many cases, lowest actually pressures are much higher then minimum required to deliver adequate service pressure levels to users

Exceeding pressures managementPressure management according to water demandExceeding pressures management

Pressure management according to water demand

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 39

Total head in peak daily conditions(head loss changes according to square water velocity)

Exceeding pressures managementPressure management according to water demandExceeding pressures management

Pressure management according to water demand

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 40

Total head in minimum night conditions

Pressure transient state managementPressure transient state management

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 41

Pressure transient peaks due to pumping station boost

ELEVATED TANK

TELESIO

HILLY PUMPING STATIONS

Pressure management – case studyPressure management – case study

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 42

WATERPOWER PLANT

REGINA MARGHERITA

HILLY PLANTS

VALSALICE

TORINO (Italy)

Pressure management – case studyPressure management – case study

ELEVATED TANK

TELESIO

HILLY PUMPING STATIONS

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 43

TORINO (Italy)

HILLY PLANTS

VALSALICE

TELESIO

WATERPOWER PLANT

REGINA MARGHERITA

8

Pressure management – case studyNew pumping station “Quintino Sella”

Pressure management – case studyNew pumping station “Quintino Sella”

289,16 (I.G.M.)

VALSALICE TANK

HILLY PUMPING STATION6

bar

TOTAL PREVIOUS NIGHT HEAD

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 44

USERS

STATION

WATERPOWER PLANT REGINA MARGHERITA

0,6

6,4

bar

LOCAL PUMPIG

STATIONON-LINE

TOTAL MODIFIED NIGHT HEAD

6 years6 years--long comparison about effects of night long comparison about effects of night pressure reduction on urban water networkpressure reduction on urban water network

1992 - 1997 1998 - 2003 Difference

23,3 % 21,7 %

Number of leaks

Unmetered volumes

1.230 670

- 1,6 %

- 560

(average values in 6 years)

(average values in 6 years)

“QUINTINO SELLA”

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 45

Production

Average pressure in the network

Use of Electricity

87,3 Million kWh

4,5 bar 4,1 bar

178,6 Million mc 177,5 Million mc

84,9 Million kWh - 2,4 Million kWh

- 0,4 bar

- 1,1 Million mc

5

6

7

8

9

prop

erti

es p

er y

ear

Pressure – Bursts relationshipRelationship between average pressure

and frequency of mains bursts

Pressure – Bursts relationshipRelationship between average pressure

and frequency of mains bursts

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 46

0

1

2

3

4

0 20 40 60 80 100

Bur

sts p

er 1

000

p

Average Pressure (metres)

Single Districts data, English Midlands - 1994

The mathematical model is the reproduction of actual hydraulicsystems by means numerical algorithms implemented by specificsoftware in order to simulate how the system itself works

MATHEMATICAL MODELMATHEMATICAL MODEL

• Water supply networks• Sewer networks • WWTP systems• River basins • Coastal areas

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 47

• MODEL IMPLEMENTATION: input all the relevant data and reproduction in the model of all the elements which make up the hydraulic system (nodes, pipes, works, population, catchments, rainfall, etc.)

• CALIBRATION OF THE MODEL: validation of the model li bilit b i b t d l lt d fi ld

Mathematical ModelKey words

Mathematical ModelKey words

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 48

reliability by means comparison between model results and field data obtained through specific monitoring campaign

• AIM OF THE CALIBRATION: to assure the implemented model is able to reproduce correctly the current system in different operating conditions (peak/minimum) in order to study the behaviour of the system in various future configurations Performance analysis

• INPUT DATA Geometrical scheme of the system and main features Main works: tanks, pumping stations, valves, etc. Users: inhabitants, industries, consumption

• ELEMENTS Transposition of collected data in the model elements: water

supply and distribution network, actual consumption and

How do models work?How do models work?

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 49

pp y , pleakage, pumping station features, valves typology and status, boundary conditions

• RESULTS flow and pressure trends in steady state and extended time

conditions in each elements of the network; levels and net flow in tanks; users’ consumption; leakage detection and control; district metering areas implementation and audit; effect assessment of new works; malfunction of the system, water quality related problems, energy saving, etc.

9

• SYSTEM FUNCTIONING Poor knowledge of flow and pressure trend that implies difficult management (extension works, energetic resources use, pressure fields, water chemical-physical parameters)

• FLEXIBILITY TO EXTREME CONDITIONS Difficult assessment of network operation in different conditions of water consumption (night/day, summer/winter) and in emergency cases (pollutions, pipe leaks fire flow analysis)

Why models?Understanding the hydraulic and

problems of the system

Why models?Understanding the hydraulic and

problems of the system

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 50

leaks, fire flow analysis)• DETECTION OF LOW PRESSURE ZONES Inefficient water

supply to consumers• DETECTION OF HIGH PRESSURE ZONES High stress of the

water works that involves leakage increase• LEAKAGE DETECTION AND CONTROL • WATER QUALITY

• NETWORK KNOWLEDGE: enhanced knowledge of the system’sfeatures and related problems

• SUPPORT TO LEAKS DETECTION (areas with the highest leakagelevel): detection and pinpointing

• CONTROL OF LEAKAGE AREAS: preservation of achieved leakagelevel over time

Benefits of the model Improved management

Benefits of the model Improved management

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 51

level over time• INVESTMENT PLANNING: optimisation of works for water

distribution network, like connection of new areas, leaving off ofminor tanks, pipe network extension

• ENERGY SAVINGS ASSESSMENT: optimisation of pumpingstations and tanks management

• ENSURE CONSTANT SUPPLY, PRESSURES AND QUALITY TOUSERS

• LOCATION AND PREVENTION OF INEFFICIENCY ANDFAILURES: targeted solutions with prior check of necessaryoperations

• PRESSURE FIELDS OPTIMIZATION: simulation and detections of

Benefits of the model Efficiency of the service

Benefits of the model Efficiency of the service

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 52

• PRESSURE FIELDS OPTIMIZATION: simulation and detections ofinterventions aimed at solving problems related to low and highpressures fields

• EMERGENCY SIMULATION: planning of immediate, effective andtested operations in case of emergency due to leaks

• POLLUTION SIMULATION: detection of pollution sources withimmediate circumscription of the areas concerned in harmfulsubstances diffusion

The The MIKURBAN MIKURBAN user interfaceuser interface

Horizontal PlanTable data

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 53

PaletteResults and data viewer

Elements Editor

Data required in order to make up the MIKEURBAN modelof the water distribution network:

• Node elevation• Main pipes and their features: diameters, lengths,

roughness (estimated from pipe material and age)

MODEL IMPLEMENTATIONKey input data

MODEL IMPLEMENTATIONKey input data

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 54

roughness (estimated from pipe material and age)• Pumps, valves, tanks, reservoirs• Metered consumption of the consumers assessed from

billing records• Typical profiles (pattern) of consumption

Model implementationImporting network from GISModel implementation

Importing network from GIS

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 55

Water distribution and supply network of Ancona municipality

implemented with Mike Net package

10

MODEL CALIBRATIONMODEL CALIBRATION

During field activities, monitoring campaign is performed in order to collect data for model calibration

The model calibration is the process whereby the model is adjusted using engineering judgement to establish a good match between the network model outputs and the measured corresponding parameters

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 56

outputs and the measured corresponding parameters. For this, simultaneous records of the following are required: pressure at selected nodes flows entering and exiting the supply zones water levels in reservoirs pressure and flow measurements at pumping station delivery

points

50.00

60.00

70.00

80.00

90.00

SimulatedMeasured

Model calibrationSteady state simulation

Model calibrationSteady state simulation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 57

0.00

10.00

20.00

30.00

40.00

Model Calibration in daily peak condition

50.00

60.00

70.00

80.00

90.00 SimulatedMeasured

Model calibrationSteady state simulation

Model calibrationSteady state simulation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 58

Model Calibration in night minimum condition

0.00

10.00

20.00

30.00

40.00

AG

KYNOYRIAS

P165B/3

P185/1

%r 66.39

62.44

66.3265.00

51.

54.58

59.42 45

51.58

54.2862.47

60.63 53.03

67.25

61.53

59.41

Pressure Point 125/14 (20/2/2001)

50

55

60

65

70

75

80

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

Field

Model

Comparison between the calculatedpressure (red line) and field measuredpressures (blue line) in a specific point ofthe water distribution network. The modelrecreate reliably the measured values

Model calibrationExtended time simulation

Model calibrationExtended time simulation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 59

AG.PAYLOY

KOMNHN

VN

AMORGO Y

BYRVNO S

PALAI

OLOGO

Y

IVNO

S DR

AGOY

MH

PAKTVLOY

SARDEVN

IMBROY

XALKHS

AIGAI

OY

BAS.OLGAS

MOYSVN

NISYROY

TRVODOY

AM ORGO Y

FILADELFEIAS

AMOXVSTOY

RO DOY

KASTELORIZOY

PYUAG ORA

P154/6

P154/10

P165B/1

P165B/2

P185/2

P215/2

"

% *

***Res185

rv 154/300B

184

63.8553.28

65.61

48.63

52.41

28.18

49.13

41.60

54.01

83.79

57.60

61.76

82.92

65.30

67.24

63.90

49.36

68.39

57.25

51.57

55.07

49.75

48.39

75.97

76.35

45.89

49.63

63.9466.03

82.91

57.85

68.44

77.44

84.25

52.72

57.07

64.74

66.88

73.36

63.8074.55

79.74

55.91

67.88

79.34

79.74

55.31

66.60

72.16

77.4259.07

51.27

64.03

64.10

51.54

55.25

53.84

54.35

57.73

48.42

46.74

67.25

Pressure meterand data logger Flow Meter

Model calibrationModel calibrationDesideredDesidered tolerancetolerance

The closeness of the predicted results with the field test measurements demonstrates the accuracy of the calibrated model.International Code of Practice (from WRc) for network analysis specifies the desired t l t hi h d l h ld b

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 60

tolerances to which models should be calibrated. The following strict tolerances are then to be considered:

85% of all predicted pressures at key nodes are within 1m of the measured pressure

95% of all predicted pressures at key nodes are 2m of the measured pressures;

MODEL RESULTSMODEL RESULTS

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 61

Mapping of hydraulic nodes with pressure < 10 m (the magenta ones) in

peak flow conditions

Pressure fields in peak flow conditions

11

Example of the modelled network withMIKE URBAN: it is possible to knowpressure and flow trends in each node ofthe network

50

[m]

44 4

107

89

84

61

83

103

Pressures representation (inmeters).The arrows show the waterdirection inside the pipe

30 831 429.2

Model resultsParameter trend along the network

Model resultsParameter trend along the network

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 62

0 100 200 300 400 500 600 700 800 900[m]

0

10

20

30

40

44.441.9

39.036.5

34.1

26.727.824.7

20.1 19.4 19.816.0

0 142

290

391

528

872

4.2 ; 142100

7.6; 0.972.534

11.4 ; 148

8.0; 1.012.896

17.0 ; 101

8.8; 1.122.423

20.2 ; 137

7.5; 0.962.397

10.7 ; 344

8.4; 1.077.460

Slope; LengthDiameterFlow; VelocityHeadloss

Grade Elevation Pressure 0 day 0:00 hr

Longitudinal profile of groundlevels (black line) grade (blueline) and pressures (red line)

29.8

22.030.832.231.4

32.229.2

31.0

27.8

16.0

22.4

24.7

29.4

27.220.1

19.8

19.7

23.8

28.2

19.4

23.6

24.9

Detection of pipes with main head loss (the red one)

MODEL RESULTSAmeliorative worksMODEL RESULTSAmeliorative works

New proposed pipes (highlighted in yellow) aimed at reducing head loss and allowing pressure increase

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 63

Model implementationDistrict metering areas set-up

Model implementationDistrict metering areas set-up

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 64

Partition of Tirana Municipality in Pressure Zones, with indication of the Administrative Units (red lines) and the water

distribution Areas (black lines)

Set-up and audit of District Metering Areas

Pilot Area fed by DN 400 and DN300 exiting the New Partitore tank (main pipes code S2 and S3)

Pilot Area fed by DN 300 of Skoze (main pipe code S1)

Model resultsFeeding sources of Districts

Model resultsFeeding sources of Districts

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 65

g(DMA) of Tirana water distribution network, thanks to the forward

and backward flow tracking capabilities

New Partitore tank (main pipes code S2 and S3) S1)

Kinostudio Area fed by DN 400 exiting the Old Kinostudio tank (main pipe code Ki2)

Kinostudio Area fed by DN 500 coming from Bovilla (main pipe code Ki3)

AG.EIRHNHS

SKIAUOY

LAMIAS

MVREVS

NAYARINOY

MESSHNHS

0.51

0.53

0.48

0.54

0.50

0.49

0.43

0.

0.54

0.51

0.48

0.45

0.45

0.55

Example of the planimetric view of the network with in red a

selection for a profile drawing

0.40

0.50

0.600.54

0.50 0.500.48

0.450.43

728

727

871

919

452

835

696

692

697

708

706

WQ model resultsWQ model results

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 66

VS 0.46 0.50

1 day 12:30 hr

Chart of chlorine decay along the profile previously selected

-200 -100 0 100 200 300 400 500 600 70

0.20

0.30

0 90

236

321

461

543

15.9 ; 90100

0.9; 0.120.033

0.6 ; 146150

-1.8; 0.100.021

48.7 ; 85100

0.2; 0.030.002

4.1 ; 140

-0.5; 0.060.013

6.5 ; 82

-0.1; 0.010.000

Slope; LengthDiameterFlow; VelocityHeadloss

Quality 1 day Chlorine sampler

Leakage detection and control methodologycontrol methodology

Techniques for leak detection and location

Eng. Carlo Caccavo

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 1 SPS - Srl

1

Introduction to leakage

Water loss = ‘real’ losses + ‘apparent’ losses

Water loss = water produced – water consumed

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 2

• Physical leakage from pipes, joints and fittings• Leakage from reservoirs• Overflows from reservoirs

• Customer metering inaccuracies• Data Handling Errors• Unauthorized Consumption

Illegal connectionMisuse of fire hydrant and fire service Vandalised meters, bypassed meters Bribery and corruption of meter readers

IWA Standard Water Balance and terminology

System

Authorized

Consumption

RevenueWater

BilledAuthorized

Consumption

UnbilledAuthorized

Consumption

Billed Metered Consumption

Unbilled Unmetered Consumption

Billed Unmetered Consumption

Unbilled Metered Consumption

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 3

System

Input

VolumeNon

Revenue

Water

p

ApparentLosses

RealLosses

Water

Losses

Unauthorized Consumption

Customer Meter Inaccuracies

Leakage on Transmission andDistribution Mains

Leakage on Service Connectionsup to point of Customer Meter

Leakage and Overflows at Storage Tanks

% of input volume, Ml/day, litres/property/day, m3/Km/day

Leakage components

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 4

Some examples of leak types

Two mechanisms are generally responsible for leaks which grow slowly: galvanic corrosion (“rust”) and erosion (wear). Erosion is caused by the action of a jet of water containing sand particles impinging on the pipe.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 5

Some examples of leak types

Erosion caused by a jet of water escaping from a leaking packing in the stopcock. Sand particles from the surroundings increased the erosive power of the jet.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 6

Erosion of a cast ironflange, as a result of aleaking gasket.

Some examples of leak types

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 7

A primary leak in a coupling on a high-density polyethylene (HDPE) pipe caused the marks on the coupling. A jet of water deflected by a stone in the backfill caused a secondary leak by erosion of the pipe.

2

Volume lost from leakages

The pressure in the network

Size of the hole

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 8

Leakage components and intervention tools

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 9

Soil movement Pipe condition. The most serious problem in this category is the

internal and external corrosion of metallic pipes. Poor quality materials, fittings and workmanship. Soil characteristics. This is an important factor, as it affects the

Factor affecting leakage

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 10

length of time a leak is allowed to continue, i.e. the type of soil and its permeability. In some soils (like clay), water from underground leaks may show on the surface fairly quickly, whereas similar leaks in chalk or sandy soil can continue indefinitely without showing.

Traffic loading. (vibration, high loading) Leakage control method: passive or active (metering) method

Leakage management methodologies

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 11

Pipe Replacement

Leakage management methodologies

PASSIVE APPROACH waiting until leakappears directly on surface or is reported byconsumer (Not labour-intensive, Least effectivemethod since it does not allow forecast of newleakage)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 12

ACTIVE LEAKAGE CONTROL can be bestdescribed as a proactive strategy to reduce waterlosses by the detection of not visible leaks usinghighly trained engineers&technicians and usingspecialized equipment followed by the promptrepair of leaks.

leakage)

Leakage detection and control methodology

Divide the distribution network into zones and District Meter Area (DMAs)

Assess the level of leakage (night flow analyses)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 13

Find and repair leaks Quantify the recovered water Set up Active Leakage Control policy

3

Assess the level of leakageLeakage (total night flow losses) = minimum night flow – legitimate night consumption

Input of a DMAl/s

expected statistically consumption

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 14

LNC = 0,24 l/s

1,05 l/s = minimum night flow

Leakage = 1,05 – 0,24 = 0, 81 l/s

Flow rate

Leak pre‐location (leak detection) “narrowing down” of leaks to a section of the pipenetwork. Leak detection activities may be carried out routinely, i.e. as a “blanket” survey ofthe network, or in precise areas of the network, guided by the analysis of DMA data:

Find leaks

Techniques for leak detection and location

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 15

the network, or in precise areas of the network, guided by the analysis of DMA data:

Leak location identification of the position of a leak prior to excavation and repair:

• step‐test;• the use of leak localizers (noise loggers);• sounding surveys.

‐ correlator‐ advanced noise loggers (correlating noise logger) 

Techniques application

1 ‐ “blanket” correlation survey

No leak pre‐location.The correlator is used over all the network pipes to locate the  leaks.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 16Chart of the correlation activity

Techniques application2 – Sounding + Correlation

Leak pre‐location  Sounding

Sounding is the systematic survey of a DMA, listening forleak noises on valves, hydrants, stop‐taps or at the groundsurface above the line of the pipe. A sounding survey is

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 17

p p g ycarried out as a blanket survey of the whole DMA.

Leak Location  Correlation

Correlation is carried out on the pipes that present noise referable to a leak

STEP 1

STEP 2STEP 6

AREA = 20.000 in.AREA = 20.000 in.

DMA = 3000DMA = 3000--7000 in.7000 in.

STEP = 1000STEP = 1000--1500 in.1500 in.

stepstep

stepstep

No Critical areaCritical area

Flow meterM

CorrelationDMA

M

M

Techniques application3 – Classic Zooming Technology

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 18

STEP 4

STEP 3

STEP 5

Leak pre‐location DMA, DMA, StepStep TestTest

Leak Location  Correlation on critical area

step

step

step

step

step

step

stepstep

M

M

M

LOCALISE Step Testing

• Systematically isolate the network by shutting valves.

• Reduction in flow measured at the meter corresponds to the leak in the step.

• Used throughout the world with much success.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 19

• Particularly effective when the knowledge of the network is poor.

• May cause water quality problems.

4

Flow meterM

INITIAL FLOW = 7.1 l/s

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 20

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 21

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 22

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 23

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 24

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 25

CLOSED VALVE

5

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 26

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 27

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 28

CLOSED VALVE

Flow meterM

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 29

CLOSED VALVE

Flow meterM

FINAL FLOW = 0 l/s

STEP TEST

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 30

CLOSED VALVE

STEP TEST

FINAL FLOW = 0 l/s

Flow meterM

STEP 6

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 31

2.5 l/s

CORRELATION

6

MSTEP TEST di DISTRETTO

20

25

ec)

STEP TEST

STEP 1 STEP 2

3STEP 3

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 32

0

5

10

15

20

0.40 1.00 1.20 1.40 2.00Ora

Porta

ta (l

itri/s

e

1

2

3

MSTEP TEST di DISTRETTO

20

25

ec)

STEP TEST

STEP 2

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 33

0

5

10

15

20

0.40 1.00 1.20 1.40 2.00Ora

Porta

ta (l

itri/s

e

2LEAKAGE

AREA 2

RECOVERED WATER

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 34

Initial MNF

After step test MNF

RECOVERED VOLUME

Plan a step test

Prepare a plan of the step‐test area to show:— road names and layout of pipes;— meter installations and valves;— boundary valves (closed to isolate the area from the DMA);— circulating valves (closed to remove loops, to create a tree and branch network);

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 35

)— step valves (operated during the step‐test);— all other valves, not used during the test, to avoid opening in error (e.g. DMA boundary valves);— positions and details of commercial customers, with an estimate of their night use (to help later analysis of step‐ test data);— valve numbers, status (closed or open), and direction of closing.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 36

AREA = 20.000 in.AREA = 20.000 in.No Critical areaCritical area

Flow meterM

Correlation

M

M

Permalog

Techniques application4 – Advanced Zooming Technology

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 37

M

M

M

M

Leak Detecion noisenoise loggersloggers

Leak Location  Correlation on critical area

7

LEAK LOCATION Tracer Gas

The pipe with the leak has a mixture of Nitrogen & Hydrogen gasintroduced to it. The gas, being light & consisting of small molecules,will exit at the leak & make its way to the surface where it is detectedby gas detector.

Hydrogen, at 5% in a balance of nitrogen, is a non flammable gas,non toxic, non corrosive. It is totally safe. It is commonly used as ablanket gas in welding so is cheaply & readily available from all the

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 38

g g p y ystandard gas suppliers.

Trunk Mains Leakage Detection

• Trunk mains (transmission mains) often have:- Large diameters- Low pressure- Inhomogeneous pipe wall material (reinforced concrete)- Few access points

Long in distance

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 39

- Long in distance

• All these make normal acoustic leakage detectiondifficult and other techniques have been developed

• These techniques are highly specialised andnormally done by contractors

A sensor head or probe is inserted into a pressurized transmission main through a 50mmdiameter tapping point. The flow of water carries the probe through the pipe and leaks arelocated by analyzing the acoustic signals that are generated by leaks in the pipe wall orjoints. Once a suspected leak has been located the probe can be stopped at the position ofthe leak. It is possible to survey 2 km per insertion.

In-pipe Acoustic Technology Sahara system

Trunk Mains Leakage Detection

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 40

Sahara system

What should I buy ?

Factors affecting decisions LLP ( Localise - Locate - Pinpoint) Pressure Noise loggers - Correlator - listening sticks Metallic - Plastic mains

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 41

Rural - Urban region City - Town DMAs or No method of targeting Asset condition-numerous leaks ? Finance available Resources available Staff experience

Equipment to buy

1st level – getting started- Listening stick- Ground microphone

2nd level – active leakage control

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 42

2nd level active leakage control- Correlator- Noise loggers

3rd level – advanced leakage control- Tri correlator, multi function correlator- Correlating Noise loggers

Equipment for leakage tmanagement

Background to Leak NoiseBackground to Leak Noise

Eng. Carlo Caccavo

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 1 SPS Srl

1

Different Noise Sources

Partial obstruction of pipe bore (foreign object) Consumption Pressure reducing valves (PRV’s) Partially closed valves (throttled or passing)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 2

Close proximity of main to sewer/culvert pipe Changes in pipe diameter Water pumping Electrical interference LEAKAGE

Leak Noise Quality

Important Factors- Clarity- Strength

Good Leak Noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 3

Good Leak Noise- Clear, light & easy to distinguish- Strong & easy to hear

Poor Leak Noise- Dull, muffled & difficult to distinguish- Weak & difficult to hear

Energy generated from the leak is transmitted within the pipe through the water

Acoustic noise transfer from a leak in a pipe

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 4

energy from the leak is also transmitted through

the pipe wall burst

Poor quality leak noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 5

Small Leak - Partial or no loss of pressure loss inthe pipe, these leaks can run for long periods oftime without being recognized

Small rupture

Pressure maintained within pipe

Pressure within pipe is lost

Poor quality leak noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 6

Large burst complete loss of pressure – theseleaks can be immediately identified through loss ofpressure but in cases difficult to locate

Complete rupture

Section of water filled pipe buried in hard backfillHigh pressure

inside pipe

Good quality leak noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 7

Hard backfill diagram

Low pressure outside pipe Rupture

Water draining away

2

High pressure inside pipe

Section of water filled pipe buried in soft backfill

Poor quality leak noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 8

RuptureWater filled cavity due to collection in

backfillOutside pressure

increasing as cavity fills with waterBack pressure

Soft backfill diagram

Different Material Types

Steel Ductile Iron Copper

Hardest material

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 9

Asbestos Cement Lead PVC Polyethylene Softest material

Factor Affecting Acoustic LeakDetection

Pipe material (Hard – Soft) Pipe diameter (80mm – 1000mm) Pressure (4m – 60m) Background noise (Obstructions PRV’s)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 10

Background noise (Obstructions – PRV’s) Usage (Domestic – Industrial) Best time to do acoustic leak detection is

when these are at a minimum and pressure isat the maximum

Leak Noise Factors

Factors producing goodquality leak noise

Factors producing poorquality leak noise

High water pressure Low water pressureHard backfill Soft backfillSmall rupture Split mains

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 11

S a uptu e Sp t a sClean pipes Encrusted pipes

Metallic pipes Soft/Lined pipesSmall diameter pipes Large diameter pipes

130 dB

120 dB

110 dB noise from a concert

100 dB

90 dB noisy factory (many people talking)

80 dB vacuum cleaner noise

70 dB

radio playing loudly

140 dB pain threshold(100 Watts/Metre 2)

2 minutes exposurecan damage hearing

8 hours or more exposurecan damage hearing

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 12

60 dB

50 dB

40 dB very quiet noise

30 dB

20 dB

10 dB

0 dB Threshold of hearing10-12 Watts/Metre2 @ 1KHz

normal speech

dB

40 dB - 100 dB - Leak found with noise loggers & usually with

conventional methods

10 dB - 40 dB - Leak found with

100

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 13

0 dB - 10 dB - No leaks

noise loggers only, correlation generally required

40

100

Leaks on plastic pipes are often found at intensities of 20-40dB

3

Noise loggersNoise loggers

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 14

Noise loggersNoise loggers

Noise loggers

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 15

Noise loggers

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 16

Leak status

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 17

No leak status

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 18

Correlator Terminology &

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 19

gyPrincipals

4

Principal of Correlation

To obtain a good correlation display, noise MUST be heard at each sensor

A B

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 20

Similar sounds Dissimilar sounds

Principal of Correlation

A BD

L1L1L2

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 21

L1L1L2

D = 2 x L1 + L2

L2 = V x Td

Correlation Formula

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 22

L = Leak position (m) (meters)

V = Velocity of sound along pipe (m/ms) (meters per

millisecond)

D = Length of pipe (m) (meters)

Td = time delay (ms) (milliseconds)

Velocity of Sound

Velocity - movement in a specified directionSpeed - movement in any direction

In practice, for most correlator users, Speed = Velocity

Speed / velocity = SOUND WAVE travelling along a pipe t k

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 23

network

For all practical purposes the speed of water is not important.

Typical water velocity = 2 m/s

Typical speed of sound through iron pipe = 1300 m/s

Factors Affecting Velocity

Material - metallic (harder materials) are faster; plastics (softer materials) are slower

Size - The larger the pipe diameter the slower the velocity of sound

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 24

Size The larger the pipe diameter, the slower the velocity of sound

Age (internal and external condition)

Repairs (using mixed materials)

Time Delay

If a leak was exactly midway between the two correlationpoints, the noise pattern would be identical.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 25

If a correlated leak is closer to one sensor than the other,then there is a “Time Delay”(of only a fraction of a second) for noise to reach the furthest sensor.

5

Leak Noise Correlator (LNC)

The Principal of Leak Noise Correlation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 26

B

D1 D2

Transmitter Transmitter

Velocity of + Time delay of leak sound = Precise locationleak sound arriving at each sensors of leak in pipe

A

Valvechamber Valve

chamber

Cordless LNC

..and the same with a ‘CORDLESS’ LNC

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 27

Transmitter Transmitter

Valvechamber

ValvechamberBA

CORDLESS Transmitters can often be positioned below ground, INSIDE valve chambers, with valve chamber closed

But more about that later

Correlation Formula

D = 100m, v = 1m/ms, Td = 80ms towards ‘A’Substitute in correlation formulaL = 100 - (1 x 80)

2 Order of calculation

Examples

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 28

= 100 - 802

= 202

= 10m (Transmitter ‘A’)

Order of calculation1. Multiply

2. Subtract3. Divide

Calculating with the wrong distance

If Velocity = 1.28, Time Delay = 28.2 & Distances change from 150, 145, 120m

L=150 - (1.28 x 28.2) L=150 - 36.09 L=113.91 Length= 56.95m

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 29

( ) g2 2 2

L=145 - (1.28 x 28.2) L=145 - 36.09 L=108.91 Length= 54.45m2 2 2

L=120 - (1.28 x 28.2) L=120 - 36.09 L=83.91 Length= 41.95m2 2 2

Calculating with the wrong velocity

If Time Delay = 28.2, Distances 150m & Velocity change from 1.28, 1, 0.4

L=150 - (1.28 x 28.2) L=150 - 36.09 L=113.91 Length= 56.95 m2 2 2

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 30

L=150 - (1 x 28.2) L=150 - 28.2 L= 121.8 Length= 60.90 m2 2 2

L=150 - (0.4 x 28.2) L=150 - 11.28 L=138.72 Length= 69.36 m2 2 2

Calculating with Time Delays

Advantages of having the leak in the central position between sensors when unsure of the velocity of the pipe.IF Time Delay = 1.4, Distances 150m & Velocity change from 1.28, 1, 0.4

L=150 - (1.28 x 1.4) L=150 - 1.792 L=148.21 Length= 74.10 m2 2 2

L=150 - (1 x 1.4) L=150 - 1.4 L=148.60 Length= 74.30 m

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 31

L 150 (1 x 1.4) L 150 1.4 L 148.60 Length 74.30 m2 2 2

L=150 - (0.4 x 1.4) L=150 - 0.56 L=149.44 Length= 74.72 m2 2 2

The leak position in these examples is closer to one sensor than the other, therefore a larger TdIF Time Delay = 31.3, Distances 150m & Velocity change from 1.28, 1, 0.4

L=150 - (1.28 x 31.3) L=150 - 40.06 L=109.94 Length= 109.90 m2 2 2

L=150 - (1 x 31.3) L=150 - 31.3 L=118.70 Length= 59.35 m2 2 2

L=150 - (0.4 x 31.3) L=150 - 12.52 L=137.48 Length= 68.74 m2 2 2

6

Correlator Development

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 32

pThrough the Years

Leak Noise Correlators - The Early Days

Correlators have been around for over 35 years

The first ones were very big, heavy and complicated,

ft filli th ti

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 33

often filling the entire storage space in a leakage

inspectors van

The Evolution of Correlators

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 34

Early correlators....to Palm PDA multi-point digital LNCs

Progression

Technology began to improve, meaning smaller, quicker,lighter, more portable and more accurate Leak NoiseCorrelators (LNCs)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 35

First came the Aquascan-500 & the early MicroCorr range

Then came newer, smaller correlators such as the

Aquascan-600 & MicroCorr-6

More modern, waterproof

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 36

Gutermann Aquascan-600

o e ode , a e p ookeyboard input.

Hydrophones became available for non-metallic

pipeline applications. Small and easily portable

Aquascan-600 Portable LNC Peak suppression to eliminate disturbing noise sources Frequency step analysis Transmitter battery life 15 hrs

Processor battery life of 6 hrs

User replaceablealkaline battery cells

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 37

y

Single, portable robust..IP66 enclosure

Multiple materials .. in one pipe section

7

Aquascan-6500 PC LNC

First PC correlator using user friendly Windows software

Easy print-out of detailed site reports and leak positions Colour display

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 38

p y Multiple correlation modes Full coherence analysis

Post correlation Supplied with lap-top PC

Aquascan-700

Simultaneous multi-correlation

Colour touch-screen operation

On screen reporting and ‘sketching’ of site and leak position & report

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 39

Hi-fi sound quality

(FFT - Fast Fourier Transforms)

Frequency Spectrum Analysis (FSA)

Improved data processing speed

Improved filters

Replace all Replace all thisthis

NEWNew cordless ‘Streetworks Act’ Friendly Sensors

With thisWith this

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 40

Competitors ‘traditional’ style transmitter with separate

accelerometer sensor

610 ‘cordless’ transmitter

NEWTraditional vs Cordless Sensors

AntennaAntenna

Carry handle

Handle

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 41

610 ‘cordless’ transmitter

Accelerometer Transmitter

CableMagnet

Integrated Transmitter, accelerometer & magnetic

base

HeadphonesConnector

ChargerConnector

Integrated charger & hydrophone connector

Using Accelerometers

Accelerometers detect the sound propagation through the pipe walland are non-intrusive into the network.

More difficult applications:

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 42

1. Plastic pipes over 50 m (MDPE is worse than PVC).2. Weaker performance at low frequencies (Below 75Hz).3. Long lengths of pipe e.g. over 600m (iron pipe).4. Large diameter pipes e.g. trunk mains (above 400mm dia).

Using Hydrophones

Hydrophones detect pressure waves travelling through the liquid and are INTRUSIVE into the pipeline.

Potential difficulties/problems:

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 43

Potential difficulties/problems:1. Ease of access to water.2. Damage on hydrant or general water leakage around the

hydrant structure.3. Hydrophones tend to work better at lower frequencies and over

longer distances.

8

Correlator Equipment

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 44

Correlator Equipment

Combined Radio Transmitter(s) and Active Sensors (accelerometers)

Portable Central LNC Processor(can also be a lap-top or ‘toughbook’ PC)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 45

Headphones or earpiece (not shown)

Integrated battery charger (not shown)

First line: Pipe parameters Screen contents from top to bottomand quality of correlation

Second line: Battery power and strength of the radio signal

Note: If the device is being charged, fl h b l i di l d t t

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 46

a flash symbol is displayed next to the battery symbol

Correlation graphPosition of leak (maximum of correlation function)Position of cursorSpectrum (FFT) of signal A – Coherence spectrum – Spectrum (FFT) of signal BSignal strength and filter settings

Press key to enter pipe parameters:

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 47

Select material and diameter and enter length of pipe. Change between the input fields with .

Select manual to enter sound velocity instead of material and diameter.

If pipe consists of different materials, select ‘Multiple’

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 48

Enter a section: Select it with / and press .

Discard changes with . Set the new parameters with .

Listening

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 49

Connect the Bluetooth headset to the AQ610. The connection can be made from the headset or from the AQ610.

Press to enter the ‘headset’ menu.

Change channel with / .

9

Main Menu

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 50

Enter the main menu by pressing .

Select item by using / .

Loading Measurements (memory)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 51

A list with stored measurements appears with the newest at the top. Select measurement and press .

Scroll through the list using / .

Saving Measurements (to memory)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 52

When saving a measurement to the internal memory, optional text can be entered to identify the measurement.

Time and date of measurements is saved automatically.

Settings

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 53

Within the ‘Settings’ screen, various functions can be changed, or switched on or off.

Scroll through the list using / .

Filters

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 54

Select to bring up the filter menu.

Within the filter menu, filters can be adjusted using ‘A.S.A.’, manually, and the ‘notch filter’ can be switched on or off.

Manual Filter Selection

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 55

Set filters manually with the cursor in the coherence spectrum graph.

Select lower limited and press .

Select upper filter limit and press .

The correlation and the result will then be updated.

10

Using the Notch Filter

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 56

Switch Notch Filter on or off. When selecting on the NotchFilter frequency can be entered.

Notch Filter is used for suppressing disturbing signals in a small frequency range e.g. nearby A/C currentsat 50/60 Hz.

Basic on Site Setup

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 57

60 m

First Measurement = 110 m

Second Measurement = 190 m

Error Would Have Been = 80 m

Ensuring correct distance measuring

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 58

110 m

40 m40 m

A B

Ensure correct distance measuring

B

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 59

Make sure that both transmitters are on the same pipe. If they not, this would result in a

CENTRAL CORRELATION!

A

An ‘Out of Bracket’ result

Move ‘B’ (Yellow) to next fitting and correlate

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 60

( ) g

A B

Field Leak Correlation

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 61

11

Field Test Work

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 62

Example of a ‘typical’ site layout

Interpreting Results

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 63

Shape of peak

Cursor manually adjusted

Interpreting results

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 64

This represents the area in the ground to investigate further

Generally:-Broad peaks = poor accuracySharp peaks = greater accuracy

Position of peak Correlation screen

Large errors

Interpreting results

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 65

Velocity is very important! Small velocity errors will lead to large leak position errors.Never dig a hole based on a correlation peak close to one end, unless you have a very accurate measurement of velocity or other evidence indicates a leak at that point.

Interpreting results

Position of peak

Correlation screen

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 66

Ideal position is the centre of the screen but beware of centre correlation.

Velocity has little effect. Note:- Not Applicable on mixed materials.In practice about +/- 10% from the centre.

Extra Features

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 67

12

Mixed Material Function40m 125 MDPE 55m 100mm DI 30m 125MDPE

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 68

This function is used where a stretch of main to be correlated contains 2 or more different materials or pipe diameters, thus changing the velocity of the pipe to be correlated.

Up to 9 different materials / sizes can be entered in a single correlation.

Sources of Error

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 69

Possible Sources of Error:

Poor measurement Incorrect pipe material entered Incorrect pipe diameter entered

P ll l i ( l i diff i )

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 70

Parallel mains (correlating on different pipes) Mixed materials T-connections Poor sensor contact (reduces signal intensity)

Overcoming Errors

Poor Measurement - Manual ErrorWrong Material - Velocity CheckWrong Pipe Diameter - Velocity Check

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 71

Wrong Pipe Diameter Velocity Check Parallel Mains - Center CorrelationMixed Materials - Velocity Check Tee Connections - Mains Records Poor Sensor Contact - Manual Error

Velocity Check

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 72

Performing a Velocity Check

Options:

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 73

Out of Bracket Velocity Measurement

In Bracket Velocity Measurement

13

Why do a Velocity Check ?

Ideal pipework

Assumed velocity for each section will be accurate. Overall result good

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 74

Assumed velocity for iron section may be inaccurate.Velocity of iron section may be difficult to measure.

Overall result may be poor.

Problem pipework

Encrusted or lined pipe

Velocity of sound

Velocity of sound through pipes decreases as the pipes age

Velocity of sound through pipes varies with pipes of the samematerial but from different manufacturers

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 75

Polyethylene pipes are particularly prone to variation ofvelocity between manufacturers, due to different materialproperties (also varying between manufacturers' batches) andwall thickness.

Time in service can have effects on velocity and as aconsequence, the accuracy of results is dependent onmeasuring velocity for a site.

Velocity Formula

V = D - 2L m/ms

Td

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 76

Td

L = Leak position (m)V = Velocity of sound along pipe (m/ms)D = Length of pipe (m) Td = time delay (ms)

Velocity Check – “Out of Bracket”

A B

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 77

Need to create an “Out of Bracket” noise source.A service draw off is best, but a hydrant can also be used.

Created leak noise

Velocity Check – “In Bracket”

Created leak noise

A B

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 78

Need to create an “In Bracket” noise source.A service draw off is best, but a hydrant can also be used.

Noise source should be near to one sensor for time delay (TD) calculations

Equipment Fault Checks

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 79

q p

14

Possible Transmitter/Sensor Problems

Symptoms 1. Broken or damaged lead (does not apply to ‘cordless’ sensors)

2. Fails ‘tickle test’.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 80

3. No reading on transmitter bar indicator.

4. Centre correlation.

5. ‘White noise’ in headphones/earpiece.

Radio Problems?

1. Poor reception

Causes metal work, bushes, shrubs, trees, hills and valleys

Symptoms 1. Correlator suggest radio signal ‘lost’2. Sounds heard at correlator different to

those heard at fitting.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 81

those heard at fitting.3. Poor correlation.4. Centre correlation.

Solutions 1. Check Transmitter is on.2. Check battery status of Transmitter3. Move correlator closer to Transmitter.4. Reposition (self) into ‘line of sight’5. Use extended antennas.

Radio Problems?

2. Centre Correlation

A ‘fault’ condition, in which a correlation is displayed exactly mid-way on the correlator’s main screen

Causes 1. One radio not working

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 82

geg.Switched off, low battery, stolen transmitter

2. Correlator too close to a transmitter.

Syptoms 1. Different sounds heard at LNC (to fitting)

Solutions 1. Check Transmitter and re-position LNC.

Objectives in Using Filters

a. To improve shape of peakb To “unmask” hidden sources of noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 83

b. To “unmask” hidden sources of noise

Lower frequencies occur on PLASTIC pipes

Higher frequencies occur on IRON (metallic) pipes

Other Equipment & Techniques

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 84

used in Localise, Locate & Pinpointing (LLP)

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 85

Contact ‘Sounding’ on exposed pipes, fittings or valves

15

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 86

Always perform surface above ground (prior to excavation)

Pinpointing with ground mic.

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 87

Noise is transferred to the surface Depending on the

backfill the noise transferral is different

The pressure within the pipe will affect the

Leak Noise Transfer to the Surface

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 88

LeakHigh pressure

inside pipe

p pquantity of water being

lost and the noise generated by the leak

The size of leak will affect the transfer of

noise

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 89

Zonescan-800Correlating radio loggers

‘Lift & Shift’ preferable

Faster sweeping of DMAs and/or Zones Removal of need for acoustic ‘experience’ at point of

logger deployment and/or collection

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 90

Automatic integration of daily data (including plotted leak positions for verification) into STW GIS (or Google Earth).

Effectively offers an automated ‘job-sheet’ for repair teams.

Collecting the deployed loggers.

Synchronization of the loggers (transferring measurement data

d i t di )

The 3 button layout resembles a normal

working day cycle

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 91

© Gutermann 2006

and preparing next recording).

Deploying the prepared loggers.

“Send” – send an email that has

been generated

16

Actual Leak Position 19m from logger #18

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 92

06/354 Linden Rd. DMA - Worcester

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 93

Zonescan-ALPHA Simple upgrade of existing loggers (at

any stage in the future) without alteration to existing investment.

“Babysitting” more critical DMA’s

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 94

Babysitting more critical DMA s Wireless, permanent monitoring of

ZS800 Web Browser for easy remote access www.alpha.gutermann.eu/STW/today.php

Zonescan-ALPHA

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 95© Gutermann Ltd 2007

Style of ALPHA module selected by Severn Trent Water

Zonescan-ALPHAInstallation Team

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 96 AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 97Zonescan-ALPHA Installation

17

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 98Zonescan-ALPHA Installed

alpha.gutermann.eu/stw/today.php

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 99

Thank You

AQUAKNIGHT – 24-25 April 2012, Alexandria, Egypt 100

Thank You

Eng Carlo CaccavoEng. Carlo Caccavo

Alexandria (Egypt) - 24-25 April 2012

SPS – SrlAQUAKNIGHT – 24‐25 April 2012, Alexandria, Egypt

1

CONTENT

Water distribution network surveys to build a GIS

GIS in modeling of water distribution networkGIS in modeling of water distribution network

GIS technology combines mappingsoftware with database managementtools to collect, organize, and sharemany types of information. Data ist d th ti l i

GIS Technology for Water, Wastewater, and Storm Water Utilities

stored as thematic layers ingeodatabases (data identified by itslocation coordinates) that can beaccessed and shared from the field,within a department, and across anentire enterprise. You decide whichlayers are relevant. Utilities typicallycombine utility layers with land base,parcel, street, land-use, andadministrative area layers.

GIS Technology for Water, Wastewater, and Storm Water Utilities

GIS allows to manage more effectively water distribution, sewer collection, andstorm water drainage networks as well as related planning and customer care.You can think of a GIS as a “location-based operating picture” that unifies thedatabases essential to your activities.

GIS is a true model of the network and can be used to • Track and report on assets in the network inventory. • Generate inputs into hydraulic modeling software. • Create a common operational picture for access to network operations information.

Use GIS to improve asset management control and to update data in the field

Enable operations crews to bring GIS into the field.

Benefits • Improve workforce operations• Increase productivity• Improve customer service• Reduce costs

Master Plan‐water network and sewer network data acquisition

AREA NUM TOWN WATER NETWORK SEWER SYSTEM1 NEW HALABJA AUTOCAD PAPER DRAWING

2 HALABJA AUTOCAD AUTOCAD

3 CWARTA PAPER DRAWING PAPER DRAWING

4 PENJWIN AUTOCAD AUTOCAD

5 SAI SADIQ AUTOCAD PAPER DRAWING

6 DARBANDIKHAN AUTOCAD PAPER DRAWING

7 HAJIAWA NOT AVAILABLE PAPER DRAWING

8 CHWARQURNA NOT AVAILABLE PAPER DRAWING8 CHWARQURNA NOT AVAILABLE PAPER DRAWING

9 RANIA NOT AVAILABLE PAPER DRAWING

10 MAKHMOOR PAPER DRAWING PAPER DRAWING

11 SULEIMANYIA CITY EXISTING GIS EXISTING GIS

12 CHAMCHAMAL AUTOCAD PAPER DRAWING

13 KALAR AUTOCAD PAPER DRAWING & AUTOCAD

14 PSHDAR AUTOCAD AUTOCAD

15 TIKRIT EXISTING GIS EXISTING GIS

16 DOKAN NOT AVAILABLE PAPER DRAWING & AUTOCAD

17 AL GHARAF EXISTING GIS PAPER DRAWING

18 KALLAT SUKKAR PAPER DRAWING PAPER DRAWING

19 RAFAI EXISTING GIS EXISTING GIS

20 AL NASIR EXISTING GIS PAPER DRAWING

21 CHUBAYISH EXISTING GIS EXISTING GIS

22 SHATTRAH EXISTING GIS EXISTING GIS

23 SUQ ASH SHUYUKH EXISTING GIS EXISTING GIS

24 KUT EXISTING GIS EXISTING GIS

25 NASSIRYA EXISTING GIS EXISTING GIS

SUD

NORD

Water network survey

2

Water network survey

Laser Distance Meter

The data collected during field monitoring campaign are used toimplement a Data Base system

Data baseData base

Example of GIS system display – Tirana water distribution network PIPE DETECTION OVERVIEWPIPE DETECTION OVERVIEWMain categories of pipe detection tools:

1. Pulsed Induction (generate a conductive current at the surface andtrying to detect eddy currents induced in a metal object underneath)

2. Magnetic Locators (measure changes in an induced magnetic fieldto detect the presence of a ferromagnetic object)p g j )

3. EM Locators (transmit and receive magnetic coils separated bydistances of up to several meters)

4. Resistivity Method5. Acoustic Techniques (An acoustic pipe tracer locates buried

plastic lines by introducing an identifiable acoustic signal into the pipe)

6. GPR Pipe Detection

ReceiverTwo methods of active locating that an operator

can use to trace a utility:

1. Conductive method (a strong transmittersignal is transmitted through the intendedtarget)

2. Inductive method (When a direct

Pulsed Induction  Active locatingPulsed Induction  Active locating

Trasmitter

connection is not available, but the operatorhas good knowledge of where one point ofthe utility may be, the operator can placethe transmitter over the utility)

Pulsed Induction  Conductive method Pulsed Induction  Conductive method This is the preferred method of tracing. If one can make electrical contact with aconductive pipe, a signal can be transmitted along it. One can then walk alongthe ground, following the pipe. Plastic pipe is now usually laid with anembedded metal tape or a tracer wire alongside it to allow tracer detection.Otherwise a plumber’s snake can be used.

3

Pulsed Induction  Inductive method Pulsed Induction  Inductive method When one point of an underground linear conductor is known, the transmitter box canbe placed over it while the user swings the receiver box around in either direction,listening for the audio signal tone. As one walks away from the transmitter box tracingfarther down the line, the transmitter signal will become faint. The transmitter box canthen be moved closer so that tracing can continue to the end of the line, or twooperators can walk together.

Make sure that the arrow ontop of the transmitter isparallel to the path of theutility)

Pulsed Induction   passive locating methodPulsed Induction   passive locating methodThis method of locating uses signalsthat are inherently associated with theutility. Two modes for passivelocating:1.power (50Hz/60Hz)2.radio (14 kHz to 30 kHz).

Power mode senses theelectromagnetic fields on energizedelectrical lines.

Radio mode senses the re-radiatedradio waves that are occasionallyassociated with utilities.

Variables affecting pulsed induction depths1. Conductive properties of the soil: Heavily mineralized soil will tend to reduce the

penetration power of your detector.2. The length of time an object is buried: Various chemicals in the soil have a

corrosive action on metal. As chemicals eat away at the metal, oxidation (rust)takes place, which is absorbed into the surrounding soil. This causes the soil tobecome more conductive, which in turn makes the metallic object appear largerthan it actually is and easier to detect.

3. The size of an object: The larger the metallic object, the easier and deeper it can be3 e s e o a object e a ge t e eta c object, t e eas e a d deepe t ca bedetected.

4. The shape of an object: Every metallic object reradiates at least part of the signaltransmitted by your metal detector. Ring or loop-shaped objects lying flat, on orunder the ground, produce the best results; flat or dish-shaped objects aresimilarly easy to detect.

5. The degree of magnetization: the degree of magnetization has a strong influence ondepth. A magnet, for example, can be detected at much greater depth than anequivalent mass of iron.

6. Adjacent utilities or T’s or elbows.7. Soil moisture (too dry or overly saturated).

Magnetic Locators Magnetic Locators Measures changes in an induced magnetic field

Ferrotec® produced by Sewerin company

EM Locators EM Locators Basically the same as magnetic locators, EM locator use more sophisticated processing.They typically have the transmit and receive magnetic coils separated by distances of up toseveral meters, whereas the magnetic locators have them co-located. The larger separationmeans that deeper objects may be detected, although at a loss of spatial resolution. The EMlocators may use pulses, for a transient time domain solution, or they may use a sinusoidalwave. This can be either a fixed frequency, or multiple variable frequencies such as GSSI’sGEM-300. These devices are capable of locating large concrete pipes.

Resistivity MethodResistivity MethodAn electrical current is supplied between two electrodes staked into the ground while voltage isconcurrently measured between one or more separate pairs of staked electrodes. The current,voltage, and electrode configuration are then used to calculate a value for soil resistivity.Anomalous “apparent” values of soil resistivity are a potential indicator of buried objects, such as adrainage pipe or the backfilled trench where it was placed.This method is generally cumbersome and time consuming, often requiring several probes drilledinto the ground.

4

Acoustic Techniques Acoustic Techniques As plastic pipes are not electrically conductive, they cannot be located with theclassic electro-magnetical method. Another principle in pipe location is used withthe acoustic method: the pipes transmit mechanical vibrations better than the itsurrounding soil. The vibrations are transmitted along the pipe and over the soil tothe surface where they can be detected by a microphone. Fibre cement or metallicpipes can also be located with this method.

The COMBIPHON® (Sewerin company)consists of the central control unit generator G5and different pulse generators.

The AQUAPHON® (Sewerincompany) ground mic

Acoustic Techniques  pulse generatorsAcoustic Techniques  pulse generators

Pulse generator The water column is set into motion by abstraction ofwater from a hydrant. The water column is restricted inintervals by a shutoff device, the stopper. The createdpressure waves transmit and can be located, even overlong distances.

Pig LocationApplication:1. used in pipeline and pipe construction for cleaning, evacuating, batch separation

and calibration of newly-laid systems or those in operation2. locating a piping route

location receiver with ferrite search coil

transmits a powerful electro-magnetic signal metal and non-metal pipes

Ground penetrating radar (GPR)Ground penetrating radar (GPR)

1) Control unit2) Antenna3) Power supply

A GPR system is made up of three main components:

GPR Method GPR Method 

• Trasmitting Antenna sends a tiny pulse ofenergy into soil.• Receiver antenna measures the reflectedelectromagnetic wave from subsurfacestructure, governed by Maxwell’s equation.• An integrated computer records theAn integrated computer records thestrength and time required for the return ofany reflected signals.• Subsurface variations will create reflectionsthat are picked up by the system and storedon digital media.• These reflections are produced by a varietyof material such as geological structuredifferences and man-made objects like pipesand wire.

The radargrams are saved electronically. They are displayed in real time on thecontrol unit and basic interpretation can be conducted on site. The radargrams are

d d l d i it ff it i i li t ft

GPR Data GPR Data

processed and analysed in-site or off-site using specialist software.

raw data after surface correction and migration

Softwareelaboration

5

Multiple frequency GPR Multiple frequency GPR 3D radar system for utility mappingand soil classification

Combination of multiple frequency (200 to600 MHz) and multi polarization antennasprovides:provides:• Greater soil penetration• Detection of shallow and thin cables• Subsoil classifi cation for trenching anddrilling operations

GPR Method GPR Method Table shows antenna frequency, approximate depth penetration and appropriate application

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

Tunis – 27th -28th of June, 2012

AGENDA

Day 1 - 27th June 2012 09:00-10:30 Leakage Control in Water Distribution Systems – Water Audit and Loss

Control Programs - An alternative procedure from AWWA

10:30-11:00

Coffee Break

11:00-12:30 Leakage Control in Water Distribution Systems – Best Practice to setup and management of District Metering Areas

12:30-14:00 Lunch

14:00-15:30 The Economic level of Leakage - Best practice principles for calculation

15:30-15:45 Coffee Break

15:45-17:00 Identifying and controlling Apparent Losses

Day 2 - 28th June 2012 09:00-12:30 On field practical training*.

How to find leakage trough manual sounding of valves and other network devices. How to use the Correlator for leaks pinpointing.

12:30-14:00 Lunch

14:00-17:00 On field practical training*. How to use the Correlator for leaks pinpointing.

* SGI will make available one of his Palmer digital correlators for the training * SONEDE will provide field assistance for: open manholes, assess network valves, hydrants and

users meters, control traffic during sounding and correlation.

AQUANIGHTQ

Leakage Control in Water Distribution Systems 

How to carry out a Water AuditHow to carry out a Water Audit An alternative procedure from AWWA

Tunis 27‐28 June 2012

Alessandro Bettin

1

Water Scarcity and water stress 2007Water Scarcity and water stress 2007

Why reduce leakage?Why reduce leakage? Reducing leakage we make extra

water available where it is needed

Reducing Leakage we limit the investment for new plants, new pipes, new water resources. We just use the fresh water that we are wasting

Reducing Leakage we reduce energy consumption

Pressure Management

PressureManagement

Speed and quality

of repairs

Active Leakage

E.A.R.L. = Economic or Optimal Level of Leakage

UARLUnavoidable Leaks

Active Leakage

Speed and Quality of

The 4 fundamentals Actions for leakage

reduction and control

5

© WRP (Pty) Ltd, 2001

Potentially Recoverable Real Leaks

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Pipeline and Asset

Management Maintenence Replacement

Renewal

of repairsControl

LeakageControl

Quality of Repair

CARL – Real Leaks

Quick and Quality RepairsQuick and Quality Repairs

• To minimize Leakage run time

• To improve leakage detection, location and repairing processesActiveRepair

6

• To improve repair quality

• Leakage data-base

Active LeakageControl

Repair Quickness and Quality

Reduce Leakage Run TimeReduce Leakage Run Time

LEAKAGE RUN TIME

flow

(Q)

Volume loss from Leakage = R+ L+Re

V = (tR+tL+tRe) x Q

7

R L Re

Wat

er

LEAKAGE RUN TIME = Report + Location + Repair

Time (t)

2

Reduce time between leaks detection exerciseReduce time between leaks detection exercise

8

Understand the effect of conducting more frequent leakage surveys and repairing leaks more quickly

Pressure ManagementPressure Management

Pressure M t

Pressure

• The main objectives of pressure management are: Reducing losses from existing and future leaks and

bursts;

Reducing the frequency of bursts.

• There are some secondary benefits, although

9

Managementmanagement

There are some secondary benefits, although schemes are rarely implemented solely in order to achieve them: Reducing pressure to customers;

Reducing the pressure variations to customers;

Reducing pressure-dependent demand.

Benefits of Pressure ManagementBenefits of Pressure Management

• Due to pressure control, minimum level of leakage decreases permanently

• Immediate, fast and cost effective result

Asset Management Techniques Asset Management Techniques

• Updated GIS on different levels (interventions, leakage, consumption etc.)

• Database of maintenance interventions and intervention procedures

Pipe Materials Management:

Pipeline and Asset

11

procedures

• Specifications of Design Materials and Standards

• Optimal Criteria for pipes Replacement

gselection,

installation,maintenance,

renewal,replacement

Asset Management Maintenence Replacement

Renewal

Active Leakage Control ‐ ALCActive Leakage Control ‐ ALC

• District Metering

• Leakage estimation with Minimum Night Flow

• Leakage location with acoustic equipment

Speed and qualityActive

12

equipment

• Measure of water recovery and setting of the “Target” level

• Calculation of Economic Leakage 

Level (ELL)

qualityof repairsLeakage

Control

Traditional Approach to leakage Traditional Approach to leakage 

• Leaks detection along the entire network (“carpet” detection)

• Sector by sector each part of the distribution network is 

analyzed with acoustic equipment

• No measurements

• No districts

• No water auditing

• No analysis of priority 

3

Recovered volume trough traditional Recovered volume trough traditional leakage detectionleakage detection

Non Revenue Water(m3/year)

Added volume recovered throughAdded volume recovered throughactive monitoring and controlactive monitoring and control

BEFORE LEAKS DETECTION

Active Leakage Control - BenefitsActive Leakage Control - Benefits

00 TTProject duration

active monitoring and controlactive monitoring and control

AFTER LEAK REPAIR

AWWA/IWA WATER AUDIT AND LOSS CONTROL PROGRAMME

Manual M36

AWWA/IWA WATER AUDIT AND LOSS CONTROL PROGRAMME

Manual M36

15

The Importance of water Audit and Loss ControlThe Importance of water Audit and Loss Control

• Benefit from water loss control:

Water resource management by limit 

unnecessary withdrawal

Financial by optimizing revenue recoveryy p g y

Operational by minimizing distribution system 

disruption, optimizing supply efficiency, 

generating reliable data

System integrity by reducing potential 

contamination

16

Water Audit and Loss Control: Specific BenefitsWater Audit and Loss Control: Specific Benefits

• Reduced apparent losses

• Reduced Real Losses

• Improved data integrity

• Better use of available water resources

• Increase knowledge of the distribution network

• Increased knowledge of the billing system

17

The two levels of AuditThe two levels of Audit

• Top‐Down approach Initial desktop process of gathering existing 

information

12 month period recommended to include seasonal 

variation

• Bottom‐Up approach Validating the top down approach with actual field 

measurements (DMA night flows), inspection of 

customers to evaluate apparent losses

18

AWWA Water  AuditAWWA Water  Audit

• To download the AWWA Free Water Audit 

Software

http://www.awwa.org/Resources/WaterLossCont

l f ?I N b 47846& I N b 4rol.cfm?ItemNumber=47846&navItemNumber=4

8155

19

4

AWWA Water Audit - Water BalanceAWWA Water Audit - Water Balance

Filled automatically from the “Reporting Worksheet”

AWWA Water Audit - Reporting WorksheetAWWA Water Audit - Reporting Worksheet

21

Identify System Input Boundary (1)Identify System Input Boundary (1)

• System boundaries for a water audit conducted on a 

whole sale transmission water system 

22

Identify System Input Boundary (2)Identify System Input Boundary (2)

• System boundaries for a treated water distribution system 

23

Identify System Input Boundary (3)Identify System Input Boundary (3)

• System boundaries for a discrete pressure zone or DMA

24

Metering Location in water Supply SystemsMetering Location in water Supply Systems

Water Source (untreated water)

Measure withdrawal or abstraction of water from rivers, lakes, wells, or other raw water sources

Treatment Plant or Works Process metering at water treatment plants; metering may exist at the influent, effluent, and/or locations intermediate in the process

Distribution System Input Volume

Water supplied at the entry point of water distribution systems; either at treatment plant, treated water reservoir, or well effluent locations

25

District Metered Areas Zonal metering into portions of the distribution system being supplied different pressure. Also includes metering at major distribution facilities such as booster pumping stations, tanks, and reservoirs.

Distribution System Pressure Zones

Discrete areas of several hundred to several thousand properties used to analyze the daily diurnal flow variation and infer leakage rates from minimum‐hour flow rates

Customers Consumption meters at the point‐of‐end useBulk Supply Miscellaneous Import/Export meters to measure bulk purchases or salesMiscellaneus Capture use of water from fire hydrants, tank trucks, or other 

intermittent use

5

Step by step water auditStep by step water audit

• Measure Water Supplied to the Distribution

• Quantify billed authorized consumption

• Calculate NRW = Volume Supply –Authorized Consumption

• Quantify Unbilled Authorized Consumption

• Quantify Water Loss (real + apparent) = NRW – Unbilled A th i d C tiAuthorized Consumption 

• Quantify Apparent Losses

Customer meter inaccuracy

Unauthorized Consumption

• Quantify Real Losses (Water Loss – Apparent Losses)

• Assign Cost of Apparent and Real Losses

• Calculate Performance Indicators

26

Measure Water Supplied to the DistributionMeasure Water Supplied to the Distribution

• Measure water supply to the distribution volume

Check meters error with the installation of a portable 

flow meter in series (ultrasonic clamp‐on)

Check meters with pump efficiency tests

27

Corrected metered volume = Uncorrected metered volume/Percent accuracy ‐– uncorrected metered volume

Quantify billed authorized consumptionQuantify billed authorized consumption

• Billed authorized consumption is the basis for revenue generation in a water utility

• Provide a water meter to all individual customers

Manual reading or AMR

• Maintain customer account data

• Compile metered consumption volume per 

category (industrial, commercial, domestic)

• Adjust for lag time in meter reading

28

Quantify Unbilled Authorized Consumption (unmetered)Quantify Unbilled Authorized Consumption (unmetered)

• Fire fighting and training

• Flushing water mains, storm inlets, culverts, and sewers

• Street cleaning

• Landscaping/irrigation in public areas, landscaped highway 

medians, and similar areas

• Decorative water facilities

• Construction sites: water for mixing concrete, dust control, 

trench setting, others

• Water consumption at public buildings not included in the 

customer billing system

29

Quantify Apparent LossesQuantify Apparent Losses

• Estimate customer meter inaccuracy

• Test residential meters

50‐100 sample on test bench or on field

• Calculate total customer consumption error• Calculate total customer consumption error

calculation of the Average Weighted Error (AWE)

• Estimate systematic data handling error

Error in manual reading, failure AMR transmission, 

broken meters not recognized

30

Quantify Apparent LossesQuantify Apparent Losses

Test Flow Rates, l/h Mean Registration, %

Low (55.0) 88.0

Medium (454.0) 95.0

High (3400.0) 94.0

Meter testing data for random sample 50 meters – County water Company USA

31

Percent of Time Range, l/h % Volume

15 Low (113-227) 88.0

70 Medium (227-2270) 95.0

15 High (2270-3400) 94.0

Weighting factors for flow rates for 5/8‐in and ¾ in – County water Company USA

6

Domestic DemandDomestic Demand

• Average Domestic Consumption from international 

experiences = 140 ‐ 150 l/inh./day

• Legitimate Night Consumption (LNC) = Average 

Consumption X Night FactorConsumption X Night Factor

• Domestic Night Factor = 0,15 – 0,25

• In UK, LNC estimation = 0,6 l/person/hour 

32

Assign Cost of Apparent and real lossesAssign Cost of Apparent and real losses

• Apparent Losses: water used but not paid Cost = Retail cost of water

Different cost per category (3‐4 cat. Maximum)

Sometimes sewer charge is included based on water 

consumption

• Real Losses Cost = Marginal Cost of water

Treatment (chemicals, power) + delivery (pumping 

power cost) + import

33

Calculate Performance IndicatorsCalculate Performance Indicators

PI Type PI Number ExplanationOperational Op 23 Water losses per connection (m3/connection/year) –

urban distribution systems

Operational Op 24 Water  losses per mains length (m3/km/day) – systems 

with low service connection density 

Financial Fi 46 Non revenue water by volume (%)

34

PI Type PI Number ExplanationOperational Op 25 Apparent losses (% of the system input volume) 

Operational Op 27 Real losses per connection/day (when system is pressurised 

appropriate for urban distribution systems)

Operational Op 28 Real losses per mains length/day (when system is 

pressurised, appropriate in systems with low service 

connection density)

Data validationData validation

• The AWWA Water Loss Control Committee's free Water 

Audit Software, includes a data grading capability to 

weigh the validity of the water audit data. 

• it is important that water utilities assess both the output 

d t d th d f fid f th d tdata and the degree of confidence of the data. 

• The higher the level of confidence or validity of the data in 

a water audit, the greater is the level of confidence in 

devising the particular loss reduction strategies.

• Improve data quality trough bottom‐up approach

35

36

AWWA Simplified water audit ExampleAWWA Simplified water audit Example

37

7

AWWA Simplified water audit ExampleAWWA Simplified water audit Example

38

AWWA Simplified water auditAWWA Simplified water audit

39

40

AQUANIGHTAQUANIGHT

Leakage Control in Water Distribution SystemsLeakage Control in Water Distribution Systems Best Practice to setup and management of 

District Metering AreasDistrict Metering AreasTraining Session ‐ Tunis 27‐28 June 2012

Alessandro Bettin

1

Background and ReferencesBackground and References

• The concept of DMA management was first introduced to 

the UK water industry in the early 1980’s in “Report 26 Leakage Control Policy &  Practice, (UK Water Authorities 

Association (1980))”. ( ))

• IWA Water Loss Task Force  edited the “District Metered Area Management – Guidance Note” version 1, February 2007 

Why use DMA?Why use DMA?

• Traditional approach time consuming

• DMA implementation allow to find priority of 

intervention

DMA i l t ti ll t t P• DMA implementation allow to create Pressure 

Zones

• Lower level of leakage maintained permanently 

with less effort

3

Pressure Management

PressureManagement

Speed and quality

of repairs

Active Leakage

E.A.R.L. = Economic or Optimal Level of Leakage

UARLUnavoidable Leaks

Active Leakage

Speed and Quality of

The 4 fundamentals Actions for leakage

reduction and control

4

© WRP (Pty) Ltd, 2001

Potentially Recoverable Real Leaks

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Pipeline and Asset

Management Maintenence Replacement

Renewal

of repairsControl

LeakageControl

Quality of Repair

CARL – Real Leaks

Active Leakage Control ‐ ALCActive Leakage Control ‐ ALC

• District Metering

• Leakage estimation with Minimum Night Flow

• Leakage location with acoustic equipment

Speed and qualityActive

5

equipment

• Measure of water recovery and setting of the “Target” level

• Calculation of Economic Leakage 

Level (ELL)

qualityof repairsLeakage

Control

DMA conceptDMA conceptFMZ = 7000FMZ = 7000--15000 15000 PropProp..

DMA = DMA = 10001000--3000 3000 PropProp..

LeakLeak prelocationprelocation byby DMA DMA implementationimplementation, , StepStep Test and Test and SoundingSounding

stepstep

step

stepstep

step

Non Critical areaCritical area

FlowmeterM

CorrelationsDMA

M

M

FMZ = Flow Monitoring Zone

6

SoundingSounding

LeakLeak locationlocation byby Correlator in Correlator in CriticalCritical AreasAreas

step

step

step

step

stepstep

M

M

M

Zonal DisaggregationZonal Disaggregation

• The technique of leakage monitoring requires the installation of network flow meters to record the flows into a discrete zone with a defined and permanent boundary. Such zones are called a District Meter Areas (DMA).

• The design of a leakage monitoring system has two aims:g g g y

To divide the distribution network into a number of zones or DMAs, each with a defined and permanent boundary, so that night flows into each district can be regularly monitored, enabling the presence of unreported bursts and leakage to be identified and located. 

To manage the pressure in each district so that the network is operated at the optimum level of pressure.

7

2

DMA exampleDMA example

8

Type of DMAType of DMA

• Depending on the characteristics of the network, 

a DMA will be:

supplied via single or multiple feeds;

a discrete area (i.e. with no flow into adjacent DMAs);

an area which cascades into an adjacent DMA

9

DMA DESIGN

10

DMA Design ‐ Step By Step ProcessDMA Design ‐ Step By Step Process

1. Network data gathering (maps, pipes, valves etc.)

2. Sector design on maps 

3. DMA design on the map

4. Mathematical Model implementation (if necessary) 

and model calibrationand model calibration

5. Testing of DMA in the model – evaluation of 

minimum pressure

6. Redesign if necessary (DMA size, N° of inlets, PMZ 

etc.)

7. Produce DMA design pack

11

DMA Design criteriaDMA Design criteria

• Several factors should be taken into account 

when designing a DMA, such as:

the required economic level of leakage;

size (geographical area and the number of properties);

variation in ground level;

water quality considerations.

12

DMA Design CriteriaThe required economic level of leakage

DMA Design CriteriaThe required economic level of leakage

• Define criteria for setting economic levels of leakage

Determine the type of ALC and staffing policy

Number of DMA and size

• Key factors in setting targets are the size of the DMA and the intervention level

• In a small DMA the operator will be able to:

identify when bursts occur more quickly, reducing “awareness time”;

identify smaller bursts (e.g. a single supply pipe burst);

find bursts more quickly, reducing “location time”;

maintain total DMA leakage at a lower level

13

3

DMA Design CriteriaDMA sizeDMA Design CriteriaDMA size

• DMA size is expressed in the number of properties.  The size of a typical DMA in urban areas varies between 500 and 3000 

properties. Some DMAs, designed around old “waste meter zones”, can bed smaller than 500 properties and others, designed around reservoir zones or in rural areas, are larger than 3000 properties. 

• The size of an individual DMA varies depending on a number of local factors and system characteristics, such as: the required economic level of leakage; the required economic level of leakage; 

geographic/demographic factors (e.g. urban or rural, industrial areas);

hydraulic conditions (e.g. limitations of closing valves in the current network, and the need to maintain standards of service).

• DMAs in dense urban areas, e.g. inner cities, may be larger than 3000 properties, because of the housing density

14

DMA Design CriteriaDMA sizeDMA Design CriteriaDMA size

• Large DMAs can be divided into two or more smaller DMAs by temporarily closing the valves so that each sub‐area is fed in turn through the DMA meter for leak detection activities. 

• DMA classificationS ll 1000 i Small: <1000 properties

Medium: 1000‐3000 properties

Large: 3000‐5000 properties.

Large Zones: >5000 properties

• Bigger DMAs (zones) are designed in large urban areas in order to minimize valves operations and to fit exiting network configuration

15

DMA Design CriteriaOther factors

DMA Design CriteriaOther factors

• Variation in ground level DMA layout will aim to limit the pressure range within the DMA. The DMA has potential to also form a pressure managed area (PMA).

• Water quality considerations Creating a DMA involves closing boundary valves. 

This creates more dead‐ends than would normally be found in a fully open system. Consequently complaints of poor water quality may occur, both during valving‐in a DMA and during later operation. 

The greater the number of valves in a DMA, the greater is the likelihood of water quality problems. Flushing programme, 

16

• The size of the DMA will influence the level of 

burst leakage that can be identified. A large DMA 

will tend to have more leakage and customer 

night use, which will mean that a burst represents 

a smaller percentage of the minimum night flow, 

thus reducing its definition.

17

Typical Minimum Night Flow into a DMATypical Minimum Night Flow into a DMA

18

DMA design criteriaDMA design criteria

• The key to good DMA design is

Minimum variation in ground level across the DMA;

Easily identified boundaries that are robust;

Size appropriate to number of burst to be identified;

Meters correctly sized and located; Meters correctly sized and located;

Involvement of all operational staff affected by network changes;

Limit the number of closed boundary valves;

Limit the number of flow meters;

Optimise pressure to maintain customer standards of service and 

to reduce leakage

19

4

DMA Design – The importance of the modelDMA Design – The importance of the model

• Network analysis is usually the most appropriate tool for planning changes on the network (such as DMA design). The process enables  faults or limitations of the present system to be identified and, if necessary, eliminated before further planning takes place;planning takes place; 

the effect on system pressure by the formation of district boundaries and new pressure regimes to be tested in advance, 

unsatisfactory districts to be modified before any costly site work or installation can take place;

the flows to DMAs to be analysed, allowing the meters to be selected and purchased.

20

DMA IMPLEMENTATION

21

Step by step implementation of DMAStep by step implementation of DMA

• Install bulk meters (portable)

• Close boundary valves and check if they are 

watertight with listening steak

• Monitor pressure inside and outside the DMA for p

at least 48 hours

Analyze data and check if pressure drop below the 

minimum level of service

• Check that DMA is closed with the Zero Pressure Test

22

Installation of Pressure MetersInstallation of Pressure Meters

• Close DMA boundary valves

• Check minimum pressure inside DMA

• If the pressure is not maintained, the outline 

l i t ill h t b t d dplanning stage will have to be repeated, and 

extra meters installed to replace the closed 

valves.

23

Installation of pressure metersInstallation of pressure meters

• Pressure meters should be placed at the locations 

that might experience problems

• They should also be deployed at the proposed 

meter locationmeter location

• They should be placed a minimum of 24 hours 

before the DMA is implemented and removed a 

similar time period afterward

24

Procedure for closing DMA boundary valvesProcedure for closing DMA boundary valves

• Identify valve on GIS, Locate valve on site, Identify any risks 

associated with traffic, Determine closing direction.

• Check with Networks and Leakage if valve can be closed and 

provide GIS plans of valve location, Arrange date for closure.

• Flush area (if required) before closing, Take pressures each side 

of valve before closing.

• Close valve.

• Take pressures each side of valve after closing. Monitor 

pressures for a few minutes to ensure there are no immediate 

problems.

25

5

DMA testDMA test

• Following the installation of all boundary meters 

(or the closing of valves where appropriate), it is 

necessary to “prove” the district to ensure that:

all meters are working correctly; 

the district boundary is “tight”, i.e. closed boundary 

valves are not passing and no boundary crossings have 

been missed (zero pressure test);

all internal valves are at the correct status.

26

Boundary valves testBoundary valves test

• Sound valve in its normal state by listening for noise 

transmitted through the valve key.

• Gradually operate the valve, sounding frequently until 

noise is heard. This indicates the valve is almost shut.

• Continue operating the valve until the noise ceases: the 

valve gate has formed a water tight seal and the valve is 

shut.

• Re‐open the valve.

27

Boundary Valve TestBoundary Valve Test

28

Boundary valves testBoundary valves test

1. If no noise is heard throughout the operation of the  

valve may be broken. 

2. If noise is heard just after the beginning of the valve 

operation, the valve is already closed. A note should be made and the valve opened.

3. If noise does not cease when the valve becomes too stiff 

to turn, it indicates that water is passing the valve gate 

and valve is not watertight.  This can be caused by deposits trapped under the gate. 

Sometimes these deposits can be cleared by repeated operation 

of the valve. If noise continues the valve is unsuitable.

29

Valves Test ‐ ActionsValves Test ‐ Actions

• Non watertight valves have to be repaired or 

replaced, 

• As an alternative a nearby valve can be selected. 

Alt ti l iti h ld b t t d• Alternative valve positions should be re‐tested on 

the model if necessary

30

Pressure Zero Test (PZT)Pressure Zero Test (PZT)

• Attach data loggers simultaneously to the DMA meters 

during a night test. Supply to the DMA is closed and the 

drop in pressure and flow are observed. 

• Inspection of the results should reveal whether one or 

l l tti b If i tmore valves are letting by. If zero pressure is not 

recorded, all boundary and divisional valves should be 

sounded. 

• If faulty valves are identified, or valves which should be 

closed are found to be open, these should be fixed and 

the zero pressure test repeated.

31

6

Zero Pressure Test ProcedureZero Pressure Test Procedure

1. Indicate boundary valves by marking valve covers (e.g. often 

by painting the valve cover red).

2. Arrange for the test to take place between 01.00 and 05.00. 

Inform customers with special needs (hospitals, dialysis 

patients etc.)

3. Ensure staff have plans indicating the DMA boundary,3. Ensure staff have plans indicating the DMA boundary, 

boundary valves, and the DMA inlet valve.

4. Set up pressure loggers or gauges at key locations throughout 

the DMA (possibly including an hydrant).

5. Close the DMA inlet to isolate the DMA for at least 30 minutes

6. Analyze the pressure data

7. Reopen the inlet

32

ZPT Example 1 – Test OKZPT Example 1 – Test OK

33

ZPT Example 2 – Test OKZPT Example 2 – Test OK

34

ZPT Example 3 – Test FailureZPT Example 3 – Test Failure

35

ZPT – On Site Analysis of ResultsZPT – On Site Analysis of Results

• After closing of DMA inlet the pressure should drop.

If it drops immediately, the DMA is zoned correctly with all boundary valves drop tight. 

If after 5‐10 minutes the pressure has not dropped, a second 

check is made by opening a fire hydrant (with the inlet valve still 

shut) to induce some flow. The pressure should drop and remain 

at zero when the hydrant is closed.at zero when the hydrant is closed.

• If the test fails (pressure creeps up), one or more 

boundary valves may be passing. 

It may be possible to find culprit valves during the test and try 

making them water tight. Carry out a second test

• If the test fails and culprit valves cannot be found, carry 

out daily inspection of valves

36

DMA AUDIT Leakage calculationg

37

7

DMA ManagementDMA Management

• Set up records and recording procedures;

• Set up a monitoring & data collection procedure;

• Inform appropriate staff of valving changes;

• Determine order of priority for leakage location 

activities;

• Monitor customer complaints, especially for 

discolouration, low pressure and no‐water.

38

Leakage/Pressure Relation Leakage/Pressure Relation 

0.80

1.00

1.20

1.40

e R

ates

L1/L

o

N1 = 0.50

N1 = 1.00

L1/Lo = (P1/P0)N1

0.00

0.20

0.40

0.60

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Ratio of Pressures P1/Po

Rat

io o

f Lea

kage N1 = 1.15

N1 = 1.50

N1 = 2.50

Effect of PressureEffect of Pressure

10101 )/( NPPLL

Where 

Po and Lo are the initial pressure and leak flow rate in the network,

40

P1 and L1 are the values at a revised pressure, 

N1 typically varies from 0.5 to 1.5, for individual DMAs, depending upon the

predominant type of leaks, and whether pipe materials are rigid or flexible.

The average N1 value for large systems with mixed pipe materials is oftenassumed (for simplicity) to be 1, implying a linear relationship between leakflow rates and pressure

Calculating daily Leakage – Night Day FactorCalculating daily Leakage – Night Day Factor

41

Daily Leakage Volume = NDF x Night Leakage per hour

NDF (hours/day)

Calculation of NDFCalculation of NDF

Pmin = Pressure at AZP (Average Zone Point) during the minimum flow

P0, P1, … P24 = Pressure from 00:00 to 01:00,.., 23:00‐24:00 at AZP

42

If N1 = 1

Estimation of N1 ‐ FAVADEstimation of N1 ‐ FAVAD

43

8

Estimation of AZNPEstimation of AZNP

1. First Method:

Place a pressure logger near the mid point of the DMA and 

record pressure to determine typical pressure at night.

2. Second Method

Obtain the ground level of all customer connections in the DMA. 

Calculate an average ground level of the connections. 

Determine the total head from pressure measured or estimated 

at the inlet to the DMA. 

Subtract average connection ground level to estimate AZNP.

44

Minimum Night FlowMinimum Night Flow

Leakage = MNF (measured) – Legitimate Night Consumption (estimated) - Special Users Consumption (measured)

45

Legitimate Night Use

Excess Losses

Special Users

Leakage = Background Losses + Excess Losses (recoverable)

Background Losses

Customer Night Use EstimateCustomer Night Use Estimate

• Gather and analyze historical Consumption from 

the utility billing system

• Calculate average daily consumption for each 

category (domestic, commercial, industrial etc.)

• Calculate Legitimate Nigh Use applying to the 

average consumption appropriate night factors

• Special users should be considered separately 

(> 40 m3/d) 

46

Customer Night Use Estimate – Night FactorsCustomer Night Use Estimate – Night Factors

• Night Factors from literature or similar 

experiences

• Measurement of customers use profile with a 

high precision meter installed in series with thehigh precision meter installed in series with the 

existing one

10‐60 minutes reading interval

Useful to estimate average meters error

47

Customer Night Use Estimate – Domestic PatternCustomer Night Use Estimate – Domestic Pattern

11,21,41,61,8

2

Domestic Consumption Pattern

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

An Italian case study from a sample AMR of 323 domestic meters

Night Use with Private StorageNight Use with Private Storage

• Standard night consumption profile is influenced 

by tanks filling

• Undertake the monitoring of a representative 

sample of customers, so that the correct demandsample of customers, so that the correct demand profile can be applied to leakage calculation

49

9

Managing DMAManaging DMA

Leakage Trend

Leak Repair

Calculation of Background LossesCalculation of Background Losses

• The UARL concept represents the lowest technically achievable level of leakage that could be achieved at current operating pressures assuming the following:

No financial or economic constraints

Well maintained infrastructure

Intensive state of the art active leakage control (ALC)

All detectable leaks and bursts are repaired quickly and efficiently

51

where:Lm = length of mains (in km), Nc = number of service connectionsLp = total length of service connections from the edge of the street to customer meters ( km)P = average pressure when system is pressurised (in metres)A, B and C are constants, derived as 18, 0.8 and 25 respectively from analysis of data on 27 water supply systems

UARL (litres/day) = (A x Lm + B x Nc + C x Lp) x P

Lp = 0 m

Np*

L (km)

Case 1

Lp (km) = 0

S i

ILI Calculation - Lp

52

*Np = N° of service connections

Lp (km) = 5 * Np /1000

Np*

Lp = 5 m (average)

Case 2

Property Boundary METER

Service Connection

Example ‐ UARL calculationExample ‐ UARL calculation

• Network Length = 500 km

• Nc (Number of connections) = 20000 

• Density of connections = 40/km

• Meters located 2 m from property boundary Lp = 2 x 20000/1000 = 40 km

• Average pressure = 40m

53

• UARL (litres/day) = (18 x 500 + 0.8 x 20000 + 25 x 40) x 40= (9000 + 16000 + 1000)x40 = 1040000 litres/day

= 52 litres/connection/day

Ranking of DMA for leakage detection priorityRanking of DMA for leakage detection priority

• Cost/benefit Analysis

• Leakage/connection/day

(M i l V l L k )/N°• (Marginal Value x Leakage)/N° customers

54

DMA Routine controlDMA Routine control

• DMA boundary valves should be clearly marked for 

identification by all staff

• The status of the closed valves should be regularly checked;

• Flows have to be monitored for consistency. The daily pattern 

of flows into each DMA should follow the daily pattern of y p

consumption within the DMA. If not, it probably indicates 

problems with boundary valves or meters.

• Compare leakage calculated with MNF and that calculated with 

Water Balance

• Update the priority of intervention

55

10

DMA with step test sectorsDMA with step test sectors

STEP 1

STEP 2STEP 6

DISTRICT MAINS

OUT OF DISTRICT MAINS

DISTRICT BOUNDARY SLUICE GATES

FLOWMETER

STEP SLUICE GATES

56

STEP 4

STEP 3

STEP 5

GATES

IMPLEMENTED STEP

STEP 6

WATER DEMANDWATER DEMAND

M

FLOWMETERFLOWMETER

B

AD

C

Step TestStep Test

57

LEAKAGE = WATER DEMAND LEAKAGE = WATER DEMAND –– LEGITIMATE CONSUMPTIONLEGITIMATE CONSUMPTION

Leakage

CLOSECLOSE“D” STEP“D” STEP

CLOSE CLOSE “C” STEP“C” STEP

CLOSE CLOSE “B” STEP“B” STEP

CLOSE CLOSE “A” STEP“A” STEP

TIMETIME

D LEGITIMATE CONSUMTION

C LEGITIMATE CONSUMPTION

B LEGITIMATE CONSUMPTION

A LEGITIMATE CONSUMPTON

EXAMPLE DMA

58

Initial MNFInitial MNF

59

Step Test – Design schemeStep Test – Design scheme

60

Step Test Analysis – Field Execution FormStep Test Analysis – Field Execution Form

61

11

Step Test ‐ Analysis of ResultsStep Test ‐ Analysis of Results

62

Leakage DetectionLeakage Detection

63

Leaks Found

Final MNF after leak detectionFinal MNF after leak detection

64

Water Recovery:  12,03 – 4,60 = 7.43 l/s

AQUANIGHTQ

The Economic level of LeakageThe Economic level of Leakage Best practice principles for 

l l ticalculation 

Tunis 27‐28 June 2012

Alessandro Bettin

1

DefinitionsDefinitions

“Econometrics is about how we can use theory 

and data from economics, business and the social 

sciences, along with tools from statistics, to 

answer “how much” type questions” yp q

(Hill, Griffiths, and Judge, Introduction to Econometrics, 2nd edition, John Wiley & Sons, Inc., 2001).

2

What do water supply managers ask?What do water supply managers ask?

How much can I spend on active leakage control 

and how big is the expected benefit in terms of 

reduced water leakage?

Is the leak intervention convenient?

3

Economic Level of Leakage (ELL)Economic Level of Leakage (ELL)

• Many factors may influence the leakage target: Economic, Political, Environmental Supply Sustainability Short & long term etc.

• Various techniques and software exist in establishing the Economic Level of Leakage (ELL), following assumptions can be made:

4

can be made:

The cost of leaking water from a network is directly proportional to the volume of water lost.

The cost of leakage control increases as the level of leakage decreases, and the rate of increase becomes gradually steeper until a level is reached below which leakage cannot be further reduced. This is known as the policy minimum or base level of leakage.

Economic Level of Leakage (ELL)Economic Level of Leakage (ELL)

5

Econometric tools ‐ OFWATEconometric tools ‐ OFWAT

• The Office of Water Services (Ofwat) is the 

economic regulator for water service providers in 

England and Wales

• Ofwat sets leakage targets for the water g g

companies, which are reported annually

• The leakage targets are based on economic 

principles

6

Econometric tools ‐ OFWATEconometric tools ‐ OFWAT

• BEST PRACTICE PRINCIPLES IN THE ECONOMIC LEVEL OF LEAKAGE CALCULATION – Tripartite Group, 2002

• The project has been jointly commissioned by a 

Tripartite Group comprising Ofwat, the 

Environment Agency and the Department for 

Environment, Food & Rural Affairs (DEFRA).

7

2

What is Benchmarking?What is Benchmarking?

“Benchmarking is a continuous and systematic process, where comparison of efficiency is performed in order to relate to others in terms of 

d i i li d k f h

8

productivity, quality and work processes for those businesses that represent the best ‐ “best practice”

How to know the quality of your performance benchmarking (competition)How to know the quality of your performance benchmarking (competition)

9

Comparison opens the possibilities for improvementsComparison opens the possibilities for improvements

Paris 1924- Johnny Weissmuller (Tarzan) 100m - 58”6

Beijing 2008 – Michael Phelps100m - 47"92

10

benchmarking can lead to reorganisation and improvement

Benchmarking ApplicationsBenchmarking Applications

• The main benchmarking applications are:

Internal improvement of productivity and efficiency

learning from best practice, the ”best in the business” alternatively from other businesses

11

For authorities/regulators to control the efficiency and quality development in different sectors alternatively 

between sectors

Benchmarking and econometric tools to set targetsBenchmarking and econometric tools to set targets

12

ELL target Setting Process MapELL target Setting Process Map

13

3

Definition of targets – Different OptionsDefinition of targets – Different Options

• Period of analysis:

Annual average leakage level

• Unit of measurement

As a volume (e g megalitres per day) As a volume (e.g. megalitres per day)

As a volume per property (e.g. litres per property per day)

As a volume per length of main (e.g cubic metres per Km 

per year)

14

Guidelines for calculation of Policy MinimumGuidelines for calculation of Policy Minimum

• Policy minimum leakage estimates should be based on company 

specific DMA data.

• The policy minimum level of leakage should accurately reflect the 

lowest level of leakage which can be achieved in each DMA through 

intensive active leakage control using conventional active leakage 

control methods, current technology and ‘reasonable’ effort.

• Meters should be reliably sized and calibrated in order to record• Meters should be reliably sized and calibrated in order to record minimum flows.

• Use standard procedures for calculating leakage from night flows.

• When determining the current policy minimum, care should be taken 

to account for seasonal variations in night use.

• Minimum levels should be updated if verified lower leakage levels are achieved in a particular DMA or if there is a change in policy that 

would affect the policy minimum.

15

Calculate Current Leakage level (1)Calculate Current Leakage level (1)

• The integrated flow approach (top down)

Leakage = distribution input – consumption

Error can be significant when leakage is a small 

component of the balance

• Minimum night flow approach (bottom up)Minimum night flow approach (bottom up)

Leakage = (minimum night flow – legitimate night use) 

X  pressure adjustment factor

Error from estimation of legitimate night consumption

• Both methods should be used to analyze current situation and set targets

16

Calculate Current Leakage level (2)Calculate Current Leakage level (2)

• Estimation of monthly/annual leakage for each DMA and for the Company (Ml/d)

• Reconcile bottom up/top down leakage estimates

Based on reliable information on leakage from trunk Based on reliable information on leakage from trunk 

mains and service reservoirs

• Evaluate Leakage Trend to calculate transitional costs (to reduce leakage increasing)

Analysis of monthly data

17

Evaluate Cost and benefit of leakage reductionEvaluate Cost and benefit of leakage reduction

• Calculate the current annual level of leakage and the leakage trend.

• Determine the minimum achievable level of leakage for the current 

leakage policy, i.e. the ‘policy minimum’ leakage level.

• Analyze current leakage control activities and costs.

• Develop a leakage cost relationship for the current leakage policy.

• Evaluate alternative leakage policies against the current policy, taking 

account of the interaction of different approaches and leakage 

targets, in order to determine the least cost leakage control policy.

• Determine the least cost way of achieving a given level of leakage 

using the least cost.

• leakage control policy.

18

Policy Minimum based on ILI – AWWA guidelines (1)Policy Minimum based on ILI – AWWA guidelines (1)

• Calculate Real Loss (CARL)

• Calculate ILI (CARL/UARL)

• Set ILI target based on AWWA guidelines

Water resources, Operational and Financial 

considerations

• ILI target Range: 1.0‐3.0; 3.0‐5.0; 5.0‐8.0

19

4

Policy Minimum based on ILI – AWWA guidelines (2)Policy Minimum based on ILI – AWWA guidelines (2)

• Estimate potential saving to reach the target 

• Calculate cost of intervention to reach the target

• Interactive process 

Initial targets are usually revised after leak detection 

programprogram

• Value leakage at the variable production cost of the next m3 of water

Chemicals costs + deliver costs (pumping power costs)

• If water scarcity: value leakage at the retail cost of water

20

Leakage Cost RelationshipLeakage Cost Relationship

• The analysis of leakage control activities and development 

of leakage cost relationships is required in order to 

predict how the on‐going costs of leakage control will change if a different level of leakage is maintained

• The cost analysis should include the operating costs (including capital maintenance) of monitoring leakage, 

detecting and locating leaks and repairing leaks.

21

Leakage Cost Relationship ‐Method ALeakage Cost Relationship ‐Method A

• Split current costs into steady state costs (the cost of maintaining leakage at a given level) and transitional costs (the cost of moving from one level of leakage to 

another)

the split should be based on the number of leakage 

repairs and leakage levels over a number of years

weather conditions, changes in infrastructure 

condition and pressure management should be 

considered

total costs are used

22

Leakage Cost Relationship ‐Method ALeakage Cost Relationship ‐Method A

• Annual ALC cost for study area

Annual costs derived directly from company finance 

and job management systems

• Current steady state ALC costs (variable costs and fixed costs)fixed costs)

Monitoring costs are fixed, 

location costs are variable and repair costs are fixed

• Fixed costs are independent of the level of leakage and therefore should not be included in the cost curves. 

23

Cost Function Example – Method ACost Function Example – Method A

24

Steady state detection cost vs Level of Leakage for Method A

Leakage Cost Relationship ‐Method BLeakage Cost Relationship ‐Method B

• Estimate the cost of reducing leakage and 

determine the natural rate of rise (NRR)

the NRR must be determined accurately for individual 

areas

unit costs are used

25

5

Calculation of Leakage TrendCalculation of Leakage Trend

• Without any leak repairs leakage increase continuously

• Leakage Trend depends on pressure, network age, 

network operation

Natural Increase of Leakage measured with MNF

Impact of NRR on detection costsImpact of NRR on detection costs

27

Important to determine the right NRR for each areaContinuous and reliable Monitoring of MNF is necessary

Calculating the ELL ‐ 2 Different approachesCalculating the ELL ‐ 2 Different approaches

• The least cost planning approach looks to minimise the total cost of managing the 

supply/demand balance over the planning period 

(typically 25 to 30 years).

• Marginal cost of water. In this approach the marginal cost of obtaining additional water from 

leakage control is compared with the marginal 

cost of obtaining water from developing the next 

representative resource scheme.

28

Least Cost PlanLeast Cost Plan

• The purpose of the analysis is to minimise the net present value (NPV) of the cost of all supply‐demand related investment (capital, system, 

operating and possibly social and environmental 

costs). 

• Leakage is considered as one of the options to 

manage the supply‐demand balance.

• Time Period: 25‐30 Years

• Discount Rate consistent with the company cost of 

capital

29

Least Cost Plan – Cost List Least Cost Plan – Cost List 

• Variable system/operating costs (power and chemicals). 

This should initially relate to the current most expensive source in 

the zone.

• Capital costs  should be included for all supply‐demand options at current 

levels. In addition to the initial capital cost it is also necessary to 

include capital maintenance or replacement costs. (i.e. meter 

replacement costs)

• Fixed operating costs.  Current fixed costs are not required if they will not vary 

throughout the planning period. 

30

Least Cost Plan – Cost List Least Cost Plan – Cost List 

• Abstraction Charges  Are fixed for current abstractions, and so would not vary with the 

level of leakage. Fixed abstraction charges has to be excluded 

from the analysis.

• Environmental and Social costs:  It is suggested that these be considered separately to the private 

company (financial) costs listed above

• Other supply‐demand balance options:  Each option has to be treated as like‐for‐like basis with leakage. 

Where the benefit to the supply demand balance is greater than 

the long‐term cost then it should be included within the least cost 

programme.

31

6

Least Cost Planning – 30 years graphLeast Cost Planning – 30 years graph

32

Calculating of ELL ‐Marginal Cost Of WaterCalculating of ELL ‐Marginal Cost Of Water

• The marginal cost of obtaining additional water from 

leakage control is compared with the marginal cost of 

obtaining water from developing the next representative 

resource scheme.

• If the marginal cost of obtaining additional water from 

leakage control is less than that for the next resource then 

it will be cost effective to reduce leakage

• The economic level of leakage is when the marginal cost 

of leakage control equals the marginal cost of water

33

Marginal Cost of water Vs. ELL targetMarginal Cost of water Vs. ELL target

34

Social Cost and environmental Costs (1)Social Cost and environmental Costs (1)

35

Examples of the private, environmental and social costs of leakage

ELL Vs different costsELL Vs different costs

36

Calculation of ELL – Practical approach based on marginal cost of water and NRR

37

7

Calculation of intervention convenienceCalculation of intervention convenience

Intervention if V > XEconomic Level of Leakage when V = X

Water Recovery Calculation Water Recovery Calculation 

Time (d) = LeakRec/Trend

T d (l/ /d)eak

Rec

(l/s

)

m3

Volume Recovered = = LeakRec x Time x 0,5 /1000 x 3600 x 24

Trend (l/s/d)LeCalculation of ELL – A practical approach (1)Calculation of ELL – A practical approach (1)

• Cs cost of a leak location exercise (£)

• Cw cost of water (£/m3)

• n number of location exercises per year

• R natural rate of rise (m3/year/year)

( / )• Lb base level of leakage (m3/year)

• La average level of leakage

• L current level of leakage

• ELL economic level of leakage

• T time since last survey (years)

40

Calculation of ELL – A practical approach (2)Calculation of ELL – A practical approach (2)

Lb 2n

R La

Lb)-2(La

R n

------------------------------------------------------(1)

------------------------------------------------------(2)

Cs nCw LaTC Total cost per year (TC) -------------(3)

41

Cs.nCw.LaTC Total cost per year (TC)

Substitute from (1) in (3)

(3)

Cs.n Lb2n

RCw. TC

Substitute from (2) in (3)

Lb)-2(La

Cs.R Cw.La TC ---------------------------------------------(5)

---------------------------------------(4)

Calculation of ELL – A practical approach (3)Calculation of ELL – A practical approach (3)

2.Cs

Cw.R n

Cost is minimum when differential of (4) wrt Lb =0

ELL when Cost of intervention = Value of leakage recovered

Cs.n 2n

Cw.R ------------------(6)

42

2.Cw

Cs.R Lb ELL

Lb 2n

R La Substitute n,  La = ELL

---------------------------------------------(7)

Calculation of ELL – A practical approach (4)Calculation of ELL – A practical approach (4)

Cs.R

2CwLb).-(L

i.e. (substituting from (7))

Lb)-(ELL

Lb)-L(

Prioritise DMA on the highest value of

---------------------------------------------(9)

---------------------------------------------(8)

43

Lb R.T L where T is time since last survey

T

Lb) -(L R

Substitute from (11) into (9) leads to prioritisation on

-----------------------(10)

---------------------------------------------(11)

Cs

Lb)-2Cw.T.(L

Prioritisation of DMAs for leak locationCs

Lb)-Cw.T.(L

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

TRAINING COURSE on “International Best Practices and Applications” 10 – 11 December 2012, Aqaba Water Company (AWC), Aqaba, Jordan

MPC Participants Institution(s) Name(s) AWC • Mohammad Alshafey

• Waheed Abu Ajamiyah • Bassam Farahat • Mustafa Al-Dardasawi • Khaled Sarairah • Ala Kurdi • Mohammad Khamayseh • Eyad Khasawneh • Tariq Bukah • Nasrat Qassas • Asma Saleh • Raja Fahmawi

AWCO • Eng. Hana Taha • Eng.Roushdy Ismail • Eng. Mohamed Abd El Hamied • Mr.Yousef Abd El-Rahman

SONEDE • Mr Riadh JELASSI • Mr Farouk BAHRI • Mr Lassaad GUERMAZI

COMETE • Khaled HANNACHI • Adnène BEJI.

Trainers Institution(s) Name(s) UNIPA • Goffredo La Loggia IREN • Marco Fantozzi SGI • Alessandro Bettin

• Daniela Sacchiero SG • Marios Milis Other Participants Institution(s) Name(s) ICCS • Angelos Amditis

• Costas Loupos • Villy Portouli

Day 1 - Monday 10 December 2012

Time Title Lecturer Name (Partner)

09:00 – 09:10 Welcome and Opening Mohammad Shafei (AWC)

Angelos Amditis, Costas Loupos (ICCS)

09:10 – 10:40 1st Session: Administrative losses and tests on meters accuracy. Laboratory test bench

Goffredo La Loggia (UNIPA),

Marco Fantozzi (IREN)

10:40 – 11:00 Coffee Break

11:00 – 12:30 2nd Session (cont.): Enhancement in water metering by UFR Goffredo La Loggia (UNIPA),

Marco Fantozzi (IREN) 12:30 – 13:00 Questions and discussion about morning sessions All

13:00 – 14:00 Lunch Break

14:00 – 15:00 3rd Session: Assessment of the impact of private storage tanks on water metering. Case study

Goffredo La Loggia (UNIPA),

Marco Fantozzi (IREN)

15:00 – 15:30 Coffee Break

15:30 – 16:30 4th session: Analysis of pilot requirements and implementation of tests

Goffredo La Loggia (UNIPA),

Marco Fantozzi (IREN)

16:30 – 17:00 Questions and discussion about morning sessions All

Day 2 - Tuesday 11 December 2012 Time Title Lecturer Name (Partner)

09:00 – 13:00

Aqaba Pilot Site Visit (all participants) o Wastewater treatment plant o Control and call center room o Customer Services Center o Presentation about working systems:

13:00 – 14:00 Lunch Break

14:00 – 15:00 5th Session: AMR technologies Marios Milis (SG)

15:00 – 15:30 Coffee Break

15:30 – 16:30 6h session: The AUTOLEAK Project. Case study of AMR application

Alessandro Bettin (SGI)

16:30 – 17:00 Questions and discussion about afternoon sessions All

EC Project Aquaknight 

Tests on meters accuracyTests on meters accuracy(coordinated by UNIPA)

Aqaba 10‐11 Dec 2012

Goffredo La Loggia (UNIPA)

20/01/2015

1

User water consumption is usually measured by turbine water meters

User consumptions evaluationin a water distribution network

Water meters provide essential data used by the utilities for:

issuing bills, obtaining the system water balance, identifying failures in the network, water theft and anomalous user behaviors

Despite their importance, water meters are characterized by intrinsic inaccuraciesthat change with the flow rate passing through the meter.

Water meter intrinsic error

ε1 ε2

ErrorPerformance curve of a new water meter 

Q1 Q2 Q3 Q4

‐20%

‐40%

‐60%

‐80%

‐100%

Flowrate[l/h]

ISO4064:2005

Q1 ≤Q < Q2 → ε ≤ ε1= 5%

Q2 ≤ Q ≤ Q4 → ε ≤ ε2= 2%

Meter performance is related to:

• the TECHNICAL FEATURES OF THE METERTECHNICAL FEATURES OF THE METER• theMETER WEARING PROCESS (METER AGE)METER WEARING PROCESS (METER AGE)• theWATER QUALITYWATER QUALITY• the TEMPORAL PATTERN OF END USER DEMANDTEMPORAL PATTERN OF END USER DEMAND

Water meter intrinsic error

• the NETWORK PRESSURENETWORK PRESSURE

Meter inaccuracy can produce under‐registration errors of water volumesdelivered to users

These errors are responsible for a part of so‐called apparent losses for waterutility: consisting of water volumes withdrawn from the network, consumedby users but not paid for

Water meter inaccuracies are often considered to be the most significantcause of apparent losses and the hardest to quantify and reduce.

Influence of user’s consumptionGenerally, the apparent losses due to meter under‐registration are relatedto the percentage of user’s consumption occurring at low and very lowflow rates.

n

5

A class C water meter with Qn = 1,5 m3/h can have a starting flow equal to 

5‐10 l/h thus theoretically 7%7% of consumption should be not registeredThe percentage increases with water meter aging andwearing process.

Flow rate (l/h)

% o

f use

r co

nsum

ptio

n

User’s storage tanksThis supply scheme is very common in the Mediterranean where water shortage 

often happens and the intermittent water supply is a common practice. 

Privaterooftank

Floatvalve

6

User’s storage tanks interposed between the revenue meter and the end user canaffect the share of consumption at low flow ratesWhen an old revenue meter is coupled with a private water tank, it may notregister even more than the 50% of the volume passing through it.

Network

Revenuewatermeter

Userfixturesandappliances

Effects of private storage tanks

Private tanks modify the demand profile of typical domestic users.• The float valve in the tank dampens the instantaneous water demand and

reduces the flow rate passing through the meter.

• Slow closure of the float valve induces flow rates lower than the meterstarting flow

Partner Acronym

Rizzo and Cilia (2005)

20/01/2015

1

Tests on meters accuracy

For each test site:

Some of the new meters will be previously calibrated in UNIPA (different types) 

A representative sample of customers will be selected in the DMA and the related old meters will be delivered to Palermo University to be tested for a range of flows. 

selection will be done  by different: 

• ages,

• size,

• registered volumes,

• manufactures, 

• typology,

UNIPA

UNIPA’s laboratory test bench

The accuracy of the selected meters will be tested by the UNIPA’s laboratory test bench

The test bench is a weight calibrationdevice compliantwith the ISO 4064:2005 standardIt consists of:

• a water supply system (mains, 1 unpressurisedtank, 2 pumps);

• a test section in which the meter is placed;

• 4 flow meters to establish the approximateflow rates at which the meter is tested;

UNIPA

flow rates at which the meter is tested;

• 2 pneumatic and automatic gate valves;• 2 pressure gauges to measure the pressure

upstream and downstream the tested meter;

• 1 vacuum gauge;• 2 calibrated tanks, each placed on a precision

electronic balance;

• 1 temperature sensor• 1 control panel

It is connected to a computer for test automation, acquiring the measurements andcomputing the results

UNIPA’s laboratory test bench

Laboratory experiments will be carried out in UNIPA laboratory in order:

• to estimate metering error curves for different flow meters classes and ages

• to find a direct link between meter age, network pressure and the apparentlosses caused by the incapability of the meter to accurately measure thevolume passing through it at low flow rates

UNIPA

Class C; Q3 = 2.5 m3/h; DN 20 mm Class C; Q3 = 2.5 m3/h; DN 20 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

Class C; Q3 = 1.5 m3/h; DN 13 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

The“collection”method(ISO4065:2003‐ Part3)The method used to determine measurementerrors is the so-called “collection” method in whichthe quantity of water passed through the watermeter is collected in one collecting calibrated tankand the quantity determined by the weight. Thechecking of the measurement error consists ofcomparing the indications given by the meterunder test against the tank.

A schematic of the testbench

Stepsofmetertest1. Place the meter under test in the test section

A schematic of the testbench

Stepsofmetertest2. Set test flowrates throughout the fluxmeters

A schematic of the testbench

Stepsofmetertest2. Set test flowrates throughout the fluxmeters

The intrinsic error of the meter has to be determined for at least seven flowrates(the error at each flowrate being measured twice)a) between Q1 and 1,1 Q1

b) between 0,5 (Q1 + Q2) and 0,55 (Q1 + Q2)c) between Q2 and 1,1 Q2

d) between 0,33 (Q2 + Q3) and 0,37 (Q2 + Q3)e) between 0,67 (Q2 + Q3) and 0,74 (Q2 + Q3)f) between 0,9 Q3 and Q3

g) between 0,95 Q4 and Q4

A schematic of the testbench

Stepsofmetertest3. Run the test: a given volume passes through the meter and enters the tank at eachflowrate. The metering error is determined comparing the indication of the meter and thevolume collected in the tank at each flowrate

A schematic of the testbench

Resultofmetertest:errorcurve

+MPEL

Flowrate

Meteringerror

+MPEU

Q2 Q3 Q4Q1

Upperzone

+2%

+5%

‐MPEL

‐MPEU

Lowerzone

‐2%

‐5%

EC Project Aquaknight 

A PERFORMANCE‐BASED TOOL FOR PRIORITISING WATER METER SUBSTITUTIONPRIORITISING WATER METER SUBSTITUTION 

IN A URBAN DISTRIBUTION NETWORK

Aqaba 10‐11 Dec 2012

Goffredo La Loggia (UNIPA)

20/01/2015

1

OBJECTIVESOBJECTIVES

OBJECTIVE: to provide water utility with a performance‐based toolsuggesting a consistent replacement strategy of the meterinstalled in a water supply network to the reduction of apparentlosses

2

ableable toto analyseanalyse thethe performanceperformance ofof thethe metersmeters duringduring theirtheiroperativeoperative lifelife takingtaking intointo accountaccount thethe different factors affectingthe meters accuracy

DEFINITION OF A COMPOSITE INDICATORS “REPLACEMENT INDICATOR, RI”

Inlet node

Closed gate valveUser connection

CASE STUDY:CASE STUDY:a small district metering area a small district metering area of Palermoof Palermo

•• RealReal losseslosses inin thethe districtdistrict werewere checkedchecked byby noisenoise loggersloggers andand nightnight flowflow analysisanalysis

3

•• ItIt waswas globallyglobally monitoredmonitored (Dec(Dec.. 20092009 –– AprApr.. 20102010)) byby installinginstalling anan electromagneticelectromagnetic waterwatermetermeter andand aa pressurepressure gaugegauge inin thethe inletinlet nodenode toto measuremeasure thethe inputinput volumevolume andand pressurepressure ofofthethe systemsystem withwith aa temporaltemporal resolutionresolution ofof 3030 minutesminutes..

yy gggg gg ff yy•• LeakagesLeakages inin thethe privateprivate systemssystems andand inin thethe tankstanks werewere detecteddetected byby aa specificspecific analysisanalysis onon

nightnight usersusers consumptionconsumption

96.0%

2.3%

1.1%0.6%

15 mm25 mm

40 mm

50 mm

‐PEAD pipes with f 110 ‐ 220 mm‐44 service connections‐164 domestic users with private tanks,each monitored by a volumetric multi‐jet water meter (age 1‐20 years)

STEP 1 : SELECTION OF STEP 1 : SELECTION OF INDIVIDUAL  PARAMETERSINDIVIDUAL  PARAMETERS

According to their analytical consistency,measurability and relevance with regard to theanalysed phenomenon

MeterMeter ageage• Older meters are more inaccurate

4

Network pressureNetwork pressure• Low pressures usually produce bad meter performance

Flow rate Flow rate • Big users →major expected  damage

Water quality and technical features of the meterswere not included because consideredhomogeneous for the case study

STEP 2: INDIVIDUAL STEP 2: INDIVIDUAL PARAMETER DATA SELECTIONPARAMETER DATA SELECTION

MeterMeter ageage• Reported on the meter

All data was obtained by the water utility of Palermo   (AMAP s.p.a)

5

Network pressureNetwork pressure• Time series with  30 min resolution

Flow rateFlow rate• Time series with  30 min resolution

STEP 3: MISSING DATA STEP 3: MISSING DATA ELABORATIONELABORATION

Missing data: Missing data: Flow rate dataFlow rate data

Tested Methods:Tested Methods:•• Imputation of min recorded value Imputation of min recorded value 

Missing data often hinder the development of robust composite indicators

6

p fp f•• Imputation of instrument sensitivityImputation of instrument sensitivity•• Linear regression of average daily Linear regression of average daily water demandwater demand

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24

Con

sum

o [l/1

0min

]

Tempo [h]

User demand pattern

Deman

d

Time

STEP 4: PARAMETER STEP 4: PARAMETER NORMALIZATIONNORMALIZATION

To compare parameters having different dimensions

ForFor eacheach parameterparameter::MeterMeter ageage, network , network pressurepressure and flow rate and flow rate 

TestedTested MethodsMethods::MiMi MM

7

•• MinMin‐‐MaxMax

•• StandardizationStandardization (z(z‐‐score)score)

•• DistanceDistance toto a a referencereference

,, min

max min

,,

,,

20/01/2015

2

STEP 5: EXPLICIT WEIGHTS STEP 5: EXPLICIT WEIGHTS ASSESSINGASSESSING

Explicit weights were introduced duringaggregation to reflect the relative importanceof each component

T t dT t d M th dM th d

8

TestedTested MethodsMethods::•• Equal weightsEqual weights•• Expert opinion weightsExpert opinion weights•• Inverse mean value weightsInverse mean value weights

1

1, 0 1,

STEP 6: AGGREGATIONSTEP 6: AGGREGATIONThe normalized individual parameters related to each  tested meter were aggregated

Aggregation methods:

• Additive,

1

9

• Multiplicative

,

1

As results  a replacement ranking consistent with the assessed Ric values was obtained for all meters 

UNCERTAINTY ANALYSISUNCERTAINTY ANALYSIS• Measurement error can been accounted by random applying a uniform random error

in a given range

Pressure data errorRange of 2% according to the instrumental accuracy of the pressure cell

Flow rate data errorrange provided by a previous study (Fontanazza et al, 2010) in which

10

g p y p y ( , )metering error was related to the flow values and to the meter age:

• metering error increases when the meter is old and when the flowpassing through it is low;

• for each age class, a minimum and maximum error can be defined bymeans of the experimental campaign

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20 22 24

Con

sum

o [l/1

0min

]

Tempo [h]

User demand pattern

Deman

d

Time

+MPEL

Flowrate

Meteringerror

‐MPEL

+MPEU

‐MPEU

Q2 Q3 Q4Q1

Upperzone

Lowerzone

+2%

‐2%

+5%

‐5%

Water meter error curve

80

100

120

140

160

180

anki

ng

RESULTS OF MONTE CARLO ANALYSIS

Imputation of the recorded minimum value for flow missing data 

Min‐Max normalization method Equal weights method Additive aggregation method

CASE B: Accounting only one single RI formulation + measurement errors

0

20

40

60

80

Ra

Flow meters

11

The large part of the showed variability is due to the selection of The large part of the showed variability is due to the selection of the indicator formulationthe indicator formulation

The average distance between 25° and75° perc. is 0.73The average distance between 5° and95° perc. is 1.69

80

100

120

140

160

king

Ranking based on the estimation  of meter error curve

*

*

RESULTS AND DISCUSSIONCOMPARISON 1:  PROCEDURE VALIDATIONThe RI ranking was then compared with the posterior estimation of apparentlosses based on the single meter error curves obtained by testing meters in lab

0

20

40

60

80

70 123 60 110 160 140 86 162

Rank

Flow meter ID

* * * **

*

*

*

12

For all the analysed flow meters, the ranking based on the estimation of apparent losses is always in the range between the 25th and the 75th percentile of the RI estimation thus demonstrating that the composite indicator RI adequately represents the complexity of parameters that influence apparent losses

RESULTS AND DISCUSSIONCOMPARISON 2:  PROCEDURE EFFICIENCYThe comparison of the median RI ranking with a common ranking procedure based on meter age (the oldest meter is the first to be replaced)

APPARENT LOSSES REDUCTION

Replacement rate  Replacement Replacementaccording meter

13

The proposed indicator can better suggest the meters to be substituted in time fixing the annual substitution rate thus allowing to a faster recovery of the 

replacement costs

fixed to 5% per year according RI  according meterage

1° year 11% 6.5%

2° year 8.7% 7.2%

EC Project Aquaknight

S 2 h f h iTEST 2‐ The assessment of the impact of private storage tanks on water p g

metering( di t d b UNIPA)(coordinated by UNIPA)

A b 10 11 D 2012Aqaba 10‐11 Dec 2012

Goffredo La Loggia (UNIPA)

20/01/2015

1

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

• This test will be implemented in the pilots of AWCO, AW, WBL and out of the pilot area of SONEDE. 

• It will be not implemented in the pilot of IREN as there are no storage tanks

• For each pilot site, 1‐5 users connections will be monitored in detail forevaluating the under‐registration errors of customer water metersinstalled upstream of private storage tanks and then to investigate theeffect of introducing UFR devices to reduce unmeasured flows.

• The choice of the monitored customers will be made according to:– the size of the related revenue water meter,

– the capacity of the related private tanks

– the average value of the pressure on the private tank.

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

• The monitoring field campaign willinvolve 1‐5 customers at a timeand will be carried out in twodifferent periods/phases eachlasting between two weeks to onemonth.

STEP 1• Consumer audit

STEP 2

TEST 1: UFR test

• In the first period (2 weeks to onemonth) concurrently to the stage 3of the Step 3 of the TEST 1 theeffect of the private storage tankon new customer meter accuracywith UFR will be analyzed.

STEP 2• Installation of a DMA Master Meter

STEP 3• Field test exercise• Stage 1

• Stage 2

• Stage 3

• Stage 4

TEST 2: User tank effects analysisTEST 3: User Demand Pattern

determination

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

• In the second period (2 weeks toone month) concurrently to thestage 4 of Step 3 of the TEST 1 theeffect of the private storage tankon new customer meter accuracywithout UFR will be analyzed.

STEP 1• Consumer audit

STEP 2

TEST 1: UFR test

STEP 2• Installation of a DMA Master Meter

STEP 3• Field test exercise• Stage 1

• Stage 2

• Stage 3

• Stage 4

TEST 2: User tank effects analysis

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

For each pilot site the analysis will require 2‐10 new AMR metersequipped with data loggers able to record data with a timeresolution of 1 min to be installed upstream and downstream theprivate tanks for monitoring 1 to 5 customers each time.

The same AMR meters (downstream the tank) will be uninstalled atthe end of the second step of monitoring campaign (after one twothe end of the second step of monitoring campaign (after one ‐ twomonths from the beginning of the TEST2, concurrently to TEST1,stages 3 and 4) and will be again used to further monitor other 1 to5 customers by installing it upstream and downstream their tanks.

Monitoring of the last 1 to 5 customers in each sub‐district wouldtake 1‐2 months and will be conducted concurrently to TEST1, stage5.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the first period of TEST 2 the monitoring scheme will involve the use of:

• n°2 AMR class C turbine water meters (manufactured in accordance with the MID2004/22/EC) which will be installed one downstream and one upstream the privatetank. Their installation should be done according to ISO 4064‐2:2005 and EN 14154‐2:2005+A1:2007 specifications. Each AMR will be equipped with a data logger able torecord water volume data with a time resolution of 1 min for two weeks/one month.

• n° 1 pressure gauge with a pressure range of 0‐10 bar, installed in the network not farfrom the monitored user connection, in order to measure and record network pressuredata every 15 minutes.

• The pressure gauges needed for the analysis will be the same adopted to monitor theDMA.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

For the second period the monitoring scheme is the same without UFR

UNIPA

20/01/2015

2

Continuous distribution

Age (years) N° Perc.

0 ‐ 5 18 35

CASE STUDY:CASE STUDY:a small district metering area a small district metering area in in PalermoPalermo

96 0%

15 mm25 mm

‐‐ PEADPEAD pipespipes withwith ff 110110 ‐‐ 220220 mmmm‐‐ 4444 service connections‐‐ 164164 domesticdomestic usersusers withwith privateprivate tanks,tanks,

eacheach monitoredmonitored byby aa volumetricvolumetric multimulti‐‐jetjetwaterwater metermeter

5 ‐ 10 10 19

10 ‐ 15 13 25

15 ‐ 20 9 17

20 ‐ 25 2 4

Total 52 100

Class N° Perc.

A 2 4

B 20 38

C 30 58

Total 52 100

96.0%

2.3%

1.1%0.6%

40 mm

50 mm

Monitoring campaign•The DMA was globally monitored by installinga DN 50 mm class‐C multi‐jet water meterwith nominal flow rate equal to 15 m3/h anda pressure gauge in the inlet node to measurethe input volume and pressure of the system.

•To measure the entire volume of waterflowing into the district, the emergencyconnections to the city network were closed.

•Real losses in the DMA were checked by noiseReal losses in the DMA were checked by noiseloggers and night flow analysis. Leakages inthe private systems and in the tanks weredetected by a specific analysis on night usersconsumption

•Real losses were practically equal to zero inthis system together with water thefts andmeter reading and billing errors

•Apparent Losses in the district were evaluatedas difference between the input watervolumes measured and the sum of the watervolumes measured at each user water meter.

Field monitoring installations

10 users have been monitored (5 single users + 5 buildings)

Privatetank

Network

Revenuewatermeter

Floatvalve

Upstreammeter

Downstreammeter

Pressuregauge

Pressurecelllevelmeter

User

25%

30%

35%

renti

Initial apparent lossses: 33%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

ApparentLo

25%

30%

35%

renti

Substitution of the oldest flowmeters: 29%

InitialInitial state: 33%state: 33%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

ApparentLo

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flowmeters: 29%4 flowmeters: 29%

Initial state: 33%Initial state: 33%

UFR Installation: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

Example of field results

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

0%

5%

10%

15%

20%

Perditeappar

ApparentLosses

20/01/2015

3

25%

30%

35%

renti

SubstitutionSubstitution ofof the 4 the 4 oldestoldest flowmeters: 29%flowmeters: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Example of field results

0%

5%

10%

15%

20%

Perditeappar

Substitution of other 22 more than 10 yrs 

old: 5.5%

ApparentLosses

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flow 4 flow metersmeters: 29%: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

osses

Example of field results

0%

5%

10%

15%

20%

Perditeappar

Substitution of the 10 flowmeters  with age > 5 yrs: 

5%

Substitution of 22 Substitution of 22 flowmeters 5.5%flowmeters 5.5%

ApparentLo

25%

30%

35%

renti

SubstitutionSubstitution ofof 4 flowmeters: 29%4 flowmeters: 29%

InitialInitial state: 33%state: 33%

UFR UFR installationinstallation: 20%: 20%

BENEFIT WITH UFR AND OLD METERS = 9%

TEST 1 ‐ UFR Test to quantify enhancement in water metering (coordinated by IREN)

Example of field results

0%

5%

10%

15%

20%

Perditeappar

UFR removal: 9.3%

Substitution of 10 Substitution of 10 flowmeters: 5%flowmeters: 5%

SubstitutionSubstitution ofof 22 22 flow flow metersmeters: 5.5%: 5.5%

BENEFIT WITH UFR AND NEW METERS = 4,3%A

pparentLosses

EC Project Aquaknight

A t f il t t tAssessment of pilot status

A b 10 11 D 2012Aqaba 10‐11 Dec 2012

20/01/2015

1

EC Project AquaknightAqaba Alex Tunis Lemesos IREN

Master meter purch./inst Installed by end of jan

Installed by mid jan

Installed by end Jan

Alreadyinstalled

Alreadyinstalled

Master meterSub district selected/tested Final checkby end year

Final checkok

Checked Ok Checked

Data logger acquisition (1‐5) 3 by end of febr

Check the numberavailable

7 by midJan

Ok ok

AMR acquisition 75 deliverdby mid Feb

40 delivered

62 delivered

100delivered by

30 deliveredby mid Feb delivered

by end Jandeliveredby end Feb

delivered by mid feb

deliveredby end Feb

Customer data collected x x x x ongoing

New meters 75 deliveredby mid Feb

40 deliveredby end Jan

62 by end Feb

100 delivered by mid feb

ok

EC Project AquaknightAqaba Alex Tunis Lemesos IREN

Master meterUFR acquisition Deliveredby mid Feb

Deliv by mid Feb

Deliv by end year

Deliv by end Feb

Available

Is there any budget problem to implement activities

no yes no No NO

Delivery of meters to Palermo 25 (20 old Ok Ok OkDelivery of meters to Palermo University?

25 (20 old5 new) Check the custom

OkCheckthe custom

OkCheck the custom

Ok

Responsible person email, etc Mohammad Shafei

Ahmed Gaber 

Abdallah Ben Daly

Solomos Bazzurro

Other??

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd training course for MED PartnersSESSION 5 – AMR Technologies10-11 December 2012, Aqaba, Jordan10 11 December 2012, Aqaba, Jordan

Marios Milis

1AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

1

Contents

1. Introduction to AMR Systems, Benefits

and problems

2AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

2.Technologies of AMR Systems

3. Parts of an AMR System

4. AMR using Wireless Sensor Networks

5. IcyCAM based Automatic Meter Module

Introduction to AMR Systems

3AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Benefits and problems

AMR is the technology of automatically collectingconsumption, diagnostic, and status data fromwater meter devices and transferring that data to acentral database for billing, troubleshooting, andanalyzing.

AMR - Overview

4AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Saves utility providers the expense of periodictrips to each physical location to read a meter.

Billing can be based on near real-timeconsumption rather than on estimates based onpast or predicted consumption

AMR – Main Advantages

5AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

past or predicted consumption

Help both utility providers and customers bettercontrol the use of water consumption

Increased Data Security. Increased performance in the data collection

Avoid reading errors and missing meterreadings

AMR – Further Benefits

6AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

readings

Increased security of data flow between AMRand other applications

Avoids errors caused by manual entries anddata transfers

Reduced operation costs. Constant access to real-time data

Meter readings available on request

AMR – Further Benefits

7AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Efficient handling of customer complaints

Significant reductions in costs for meterreading

Reduced costs over the lifetime of the AMRsystem

2

Improved cash flow Utility Bills are based on actual consumption

Steady cash flow for the Water Board Utility

AMR – Further Benefits

8AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Billing is based on real-time data

Estimated bills no longer necessary

Improved budgeting and management

Improved customer service No need for estimated or adjusted billing

On demand reads as part of the customerservice

AMR – Further Benefits

9AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

service

Quicker reaction in abnormal situations

Better monitor demand and consumption

Loss of privacy

Greater potential for monitoring byunauthorized third parties.

R d d li bilit (i f

AMR – Disadvantages

10AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Reduced reliability (in case ofinterference)

Increased security risks from network orremote access

Meter readers losing their jobs !!!

Technologies

11AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

of AMR Systems

Touch Technology Data collection device with a wand or

probe.

automatically collects the readings from ameter by touching or placing the read

AMR – Technologies

12AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

meter by touching or placing the readprobe in close proximity to a reading coilenclosed in the touchpad

probe sends an interrogate signal to thetouch module

Alternatively use of standardized infraredport to transmit data

On-site AMR -> meter reader has to go tothe site

SENSUS Touch Read

Radio Frequency Network technologies eliminates the need for the meter reader to enter

the property or home or to locate and open anunderground meter pit

AMR – Technologies

13AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

increased speed of reading - > savemoney at utility

less chance of missing reads because ofbeing locked out from meter access

3

Radio Frequency Network technologies Can be separated in the following forms:

“Two way” or “Wake up” systems

AMR – Technologies

14AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

One-way systems

Walk by meter reading.

Drive-by meter reading

Fixed Network

Two-Way or Wake-up systems a radio transceiver sends a signal to a particular transmitter serial

number,

Transmitter wakes up from a resting state and transmit its data.

AMR – Technologies

15AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

The meter attached transceiver and the reading transceiver both sendand receive radio signals and data

One – Way or bubble-up systems Continuous broadcast type,

Transmitter broadcast readings continuously every specific intervals

Hybrid systems also exist

Walk-by meter reading a meter reader carries a handheld computer with a built-in

or attached receiver/transceiver (radio frequency or touch)to collect meter readings from an AMR capable meter.

H dh ld t l b d t ll t

AMR – Technologies

16AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Handheld computers may also be used to manually enterreadings without the use of AMR technology probe sendsan interrogate signal to the touch module

Drive-by meter reading Reading device is installed in a vehicle.

The meter reader drives the vehicle while the readingdevice automatically collects the meter readings

AMR – Technologies

17AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Often for mobile meter reading the reading equipmentincludes navigational and mapping features providedby GPS and mapping software

the reader does not normally have to read the meters inany particular route order

Components often consist of a laptop or proprietarycomputer, software, RF receiver/transceiver, and externalvehicle antennas

Fixed Network AMR A network is permanently installed to capture meter

readings.

Consist of a series of antennas, towers, collectors,repeaters or other permanently installed infrastructure

AMR – Technologies

18AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

repeaters, or other permanently installed infrastructure

Collect transmissions of meter readings from AMRcapable meters and get the data to a central computerwithout a person in the field to collect it

Several network topologies are used (Star, Mesh etc)

Hybrid mobile – Fixed network systems

Parts of an AMR System

19AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

4

1. Water Meters

2. Radio Modules

3. Repeaters

4 Concentrators / Collectors

Main parts

20AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

4. Concentrators / Collectors

5. HandHeld Devices

6. AMR Software

Water Meters a device used to measure the volume of water usage.

Different Types:

Displacement Water Meters

AMR – Main Parts

21AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Velocity Water meters

Multi-jet meters

Turbine meters

Compound meters

Electromagnetic meters

Ultrasound meters

Radio Modules Modules attached to water meters which can transmit the

water meter reading via RF.

Different types / frequencies / functionality

AMR – Main Parts

22AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Repeaters A repeater is an electronic device that receives

a signal and retransmits it at a higher level or higherpower, or onto the other side of an obstruction, so that thesignal can cover longer distances..

AMR – Main Parts

23AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

In AMR the repeaters are used:

when the collector (in a fixed network AMR system) islocated at a distance further to the range of the radio module

When Meters are located underground

Collectors A device responsible to collect Water Meter Readings

coming from the meters radio modules.

Readings are transmitted to the nearest concetrator

AMR – Main Parts

24AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Usually one collector per 50-100 water meters is used.

Concentrator Gateway to acquire and store the water meter readings

from the whole network.

Able to transmit all the data to remote server.

AMR – Main Parts

25AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Different communication capabilities (GSM/3G/WiFi etc)

Different storage space based on the case requirements

Usually one concentrator is used for up to 5000 watermeters.

5

Handheld Devices Used to program the meters modules

Pair meter ID – module ID

Initial reading

AMR – Main Parts

26AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Pulse width

Frequency of readings

Alarms

Used in case of ‘Walk-by’ and ‘Drive-by’ AMR systems tocollect the Water Meter readings and transfer them to theAMR software.

AMR Software Software for storing / monitoring /

processing the AMR readings

Visual presentation of the readings

AMR – Main Parts

27AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

p g

Export data to different formats

Interface with customer billing software

Interface with GIS and other software tools

AMR Software Reports

Consumption

Water Balance

AMR – Main Parts

28AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Water Balance

Alarms

Leakage

Blocked meters

Back Flow

Tamper

etc

AMR Using

29AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Wireless Sensor Networks

WSN - Architecture

Data Acquisition Network Base Station Controller

Wireless Network, (Wi-Fi, Bluetooth, Cellular

Network, GPRS, CDMA, GSM, 3G)

Sensor Nodes

Base Station

30AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Wireless Network, (Wi-Fi, Bluetooth, Cellular Network,

GPRS, CDMA, GSM, 3G)

Information Distribution Network

Mobile Phone Laptop SmartPhone

Gateway

WSN - Architecture

Data Acquisition Network Base Station Controller

Wireless Network, (Wi-Fi, Bluetooth, Cellular

Network, GPRS, CDMA, GSM, 3G)

Base Station

Water Meters Network

31AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Wireless Network, (Wi-Fi, Bluetooth, Cellular Network,

GPRS, CDMA, GSM, 3G)

Information Distribution Network

Mobile Phone Laptop SmartPhone

Gateway

6

Wireless Sensor Networks

32AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Main Components

WSN – Sensor Node

POWER

CPU

ELECTRO-MAGNETICINTERFACE

33AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

SENSOR

POWERSUPPLY

COMMUNICATION

NODE

WSN – Sensor Nodes

Iris Crossbow Nodes

34AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

AWAIRS I

WSN – Iris 2.4 GHz

35AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Iris Crossbow Nodes

Iris with MDA300Sensor interfacing board

WSN – Sensors Connections

36AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

WSN - Gateway

Application Subsystem

Data Acquisition/ Logger

SENSOR SENSOR SENSOR

Functionalities

• Acts as Wireless Sensor Node

• Able to store data in a database

Data Acquisition Platform

37AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Data Acquisition/ Logger

Power Supply

High Range Communication

Subsystem RF Transceiver

Low RangeGSM modemInter – Communication With Wireless Sensors

Base Station

• Able to connect and transmit data via a high range communication network (GSM/3G) to a remote server

1

WSN - Gateway

• 400MHz, PXA55 XScale processor • 64 MB SDRAM, 32 MB Flash • Iris mote, Ethernet, Serial, JTAG,

USB, PCMCIA, Compact Flash connectors

• 3.5 x 2.5 inches in size and low power

• Bluetooth (built in) WiFi(through

38AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Bluetooth (built in), WiFi(through PCMCIA and CFCard)

IcyCAM based

39AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

AMR Module

IcyCAM AMR module - Overview

Designed and Developedby SignalGeneriX Ltd

icyCAM acts as the mainsensor of the AMR system

40AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Able to acquire the water meter register readingand convert it to digital form for easytransmission to the central aggregate node

IcyCAM AMR Module

IcyCam AMR Module includes: IcyCAM sensor,

Extra storage capabilities

GPRS d

41AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

GPRS modem

RF interface

IcyCAM AMR Module

IcyCam AMR Module operation:

Takes snapshot of the water meter reading

Perform OCR algorithms – recognize watermeter digits

42AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

meter digits

Transmits digits in txt format via GPRS/GSM/3Gnetwork

Transmits low resolution image of the watermeter register (e.g ones per month) for errorscorrection.

IcyCAM AMR module vs pulse counting modules

Pulse Counting ModulesSusceptible to interference Can loose pulses for high flows

43AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

Incremental errorsContinuous powering of the modules –

limited battery life

IcyCAM AMR module vs pulse counting modules

IcyCAM AMR module No interference to meter readings Ensure transmission of the register value No incremental errors (any errors can be

44AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

No incremental errors (any errors can be corrected through image transmission)

Module operated in deep-sleep mode and wakes up only in specific times to get and transmit the measurement -> very low battery consumption

Further Information / Questions

We will be happy to answer anyquestion and further demonstrate ourtechnology

45AQUAKNIGHT – 3rd training course for MED partners, 10 – 11

December 2012, Aqaba, Jordan

For Further Information ContactDr. Anastasis Kounoudes

Chief Executive OfficerTel: +357 25870072

Email: [email protected]

www.autoleak.euwww.autoleak.eu

Autoleak - A tool to decide if, when and where leakage detection is worthwhileleakage detection is worthwhile

Alessandro BETTIN

1

1

Permanent sectors

Closed boundary

Leakage Control System is Widely Known

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Single supply pipe

Flow meter on inlet

Quantify leakage in each DMA

Locate leaks

2

So why is leakage so high ?

Lack of priority for leakage

Insufficient Staff

Time consuming analysis

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

g y

Effort directed to emergencies

High Investment needed

3

LEAKAGE ENGINEER’S DREAM ?

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

FIND LEAKS AUTOMATICALLY !AUTOMATICALLY !

4

Every day for every DMALeakage Analysis

Extract minimum night flow

Subtract Customer Consumption

Quantify Leakage

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Solution – Automate the process

Assess if leakage increasing

Decide if worthwhile to locate and repair leaks

5

AUTOLEAK 

Determines current recoverable leakage

Extrapolates rate of rise form historical data

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

p

Quantifies value of predicted lost water

Compares with cost of intervention

Decide if worthwhile to intervene

Automatically for every DMA6

Different characteristicsDifferent characteristics

ELEMENT ANCONA NICOSIA COMMENTS

Tipology of Area hilly flat AMR transmission

Type of customer domestic industrial demand profile

Pilot Application

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Type of customer domestic industrial demand profile

Source surface water desalination scarcity of resource

Production cost low high economics of intervention

Environmental impact medium high benefits of intervention

7

2

Calculation of Leakage Trend

Without any leak repairs leakage increase continuously

Leakage Trend depends on pressure, network age, network operation

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Natural Increase of Leakage measured with MNF

8

AUTOLEAK – Operative Principle

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Intervention if V > X9

AUTOLEAK – Water Recovery Calculation 

Time (d) = LeakRec/Trend

T d (l/ /d)eak

Rec

(l/s)

m3

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Volume Recovered = = LeakRec x Time x 0,5 /1000 x 3600 x 24

Trend (l/s/d)Le

10

Leakage Calculation – AMR

CASE 1 – AMRLeakage = AI – AMR

Where

AI = Average Inflow (l/s)

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

AMR= Average Users’ Consumption from AMR (l/s)

11

Leakage Calculation – NO AMR

CASE 2 – NO AMRLeakage = MNF – LNC

Wh

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Where

MNF = Minimum Night Flow (l/s)

LNC = Legitimate Night Consumption (l/s) = Average daily consumption (l/s)* x Night factor**

* From Utility Billing Database

** From literature or field measurements (0.15 - 0.20 for domestic users)

12

Leakage Calculation – Discontinuous Supply

CASE 3 – Discontinuous SupplyLeakage = Real Losses*

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 13

*from IWA water balance

3

Create AREAS and ZONES

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

The AREA is the higher level of managed networkCity, Town, Province, wide distribution network

The ZONE is the lower level of the managed networkDMA, Distribution Area, Macroarea, Service Reservoir Area

14

Data Necessary

For each ZONE basic data have to be input

Static Data

Operational data

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Financial data

15

Data Insertion ‐ Bulk Flow Meters

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Uploading data of all bulk meters in the AREADMA inlets, Reservoirs exit, PS outlets

16

Data Insertion ‐ Bulk Flow Meters

Location

Type, diameter

Recorded data

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 17

Data Insertion ‐ Bulk Flow Meters

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Zone flow meter selection

18

Calculation of Cost of Intervention

Average Recovered Flow per Leak

Calculation of number of leaks to be repaired

Average Intervention Cost (leakage detection + repair)

Hi t i l

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Historical Intervention

Real Data from DMA

Parametric data from similar case studies

YESYES NONO

19

4

Historical Cost of Intervention

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Real Data from past interventions

Calculation of Cost and Water Recovery of past leakage intervention

Cost Estimation of future intervention based on the expected water recovery

20

Assessment of economic convenience

Total value of the recovery (V)

Estimated cost of intervention (X)

if V>X, the intervention will be worthwhile

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Priority = (V-X)/km

21

Autoleak DMS – DMA flow, leakage and trend

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 22

Autoleak DMS – Cost Benefit Analysis

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 23

Calculation Table

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 24

AUTOLEAK Control Panel

Daily Updated for all DMAs

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 25

5

AUTOLEAK Control Panel

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

For each DMA - Graphs of flow, consumption and leakage

26

Leak Repair Report

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 27

ANCONA PILOT PROJECTANCONA PILOT PROJECT

28AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan28

Ancona Pilot Area (Multiservizi SpA ‐ Italy)

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Qin

Mean Pressure: 55 mReservoir Level: 140 mMin. Ground Level: 56,9 mMax. Ground Level: 74 mWater mains length: 1,9 KmMains Material: Steel, Cast Iron, PVCNumber of consumer meters: 325Number of bulk meters: 1

29

PILOT AREA

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

PILOT AREA

Ancona Pilot Area ‐ AMR

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 31

6

SYSTEM ARCHITECTURE

Collector (max 50 meters)

Interface with data centre, billing system

and knowledge application

EverBlu Cyble (24 daily reading)

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Concentrator (max 255 Collectors)

Internet connection

Ancona Pilot Area – AMR Transmitters

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 33

Pilot Area – Collectors and AP

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Ancona Pilot Area AMR – Connected Devices

Bulk MeterBulk MeterNoise LoggersNoise Loggers

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Users’ MetersUsers’ MetersAMRAMR

35

Ancona AMR output

Hourly Users’ ConsumptionDaily Users’ Consumption

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Bulk Flow MetersNoise Loggers

36

Noise Loggers Data Analysis – Leak Alarm

ak R

epai

r

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Le

37

7

Grafico Potata Distretto Posatora

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 38

Ancona AMR – Hourly Pattern

1,21,41,61,8

2Domestic Consumption Pattern

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

39

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 40

NICOSIA PILOT PROJECTNICOSIA PILOT PROJECT

41AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan41

Nicosia Pilot Area (WBN‐ Cyprus)

• Mean Pressure: 17.5 m• Reservoir Level: 349 m

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

• Min. Ground Level: 320 m• Max. Ground Level: 338 m• Water mains length: 3.5

Km• Mains Material: AC• Number of consumer

meters: 86• Number of bulk meters: 4

(2 inlets and 2 outlets)

42

Nicosia AMR System components layout

AMR Central StationAMR Central Station

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 43

Customer meter assemblyCustomer meter assembly

8

AMR customer meters assembly ‐ NICOSIA

Self Powered Concentrator

(Wind & Solar)

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan 44

AMR export data for Nicosia

Date and time Pulse Value Unit Time difference Pulse differValue differ31/5/2012 14:58 225840 226478 l 6.2308 84 84

31/5/2012 8:44 225756 226394 l 6.2297 420 42031/5/2012 2:30 225336 225974 l 0.0003 0 031/5/2012 2:30 225336 225974 l 6.1531 0 0

30/5/2012 20:21 225336 225974 l 0.0003 0 030/5/2012 20:21 225336 225974 l 6.1786 14 1430/5/2012 14:10 225322 225960 l 12.3611 518 518

30/5/2012 1:49 224804 225442 l 0.0003 0 030/5/2012 1:49 224804 225442 l 6.2269 0 0

29/5/2012 19:35 224804 225442 l 6.2039 0 029/5/2012 13:23 224804 225442 l 6 2336 131 131

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

29/5/2012 13:23 224804 225442 l 6.2336 131 13129/5/2012 7:09 224673 225311 l 6.2281 17 1729/5/2012 0:55 224656 225294 l 0.0003 0 029/5/2012 0:55 224656 225294 l 6.1519 0 0

28/5/2012 18:46 224656 225294 l 6.1808 11 1128/5/2012 12:35 224645 225283 l 6.2081 16 16

28/5/2012 6:23 224629 225267 l 0.0003 0 028/5/2012 6:23 224629 225267 l 6.1542 8 828/5/2012 0:14 224621 225259 l 0.0003 0 028/5/2012 0:13 224621 225259 l 6.1783 0 0

27/5/2012 18:03 224621 225259 l 6.1572 1 127/5/2012 11:53 224620 225258 l 6.1853 0 0

Customization of Data Import

45

Advantages of Autoleak

Interfaces with all currently available technology including AMR

Leakage related data Integration

Economicall based DSS hich takes into

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

Economically based DSS which takes into account the repair and replacement costs

Makes managing leakage almost fully automatic

46

Conclusions

Leakage is a problem in many parts of the world

Technology available to resolve the problem but too time-consuming

AUTOLEAK is the solution as it integrates

AQUAKNIGHT – 3rd Training Course for MED partners, 11 December 2012, Aqaba, Jordan

existing technology with a DSS

AUTOLEAK allows to save investment focusing on interventions where the expected benefit is greater

47

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

4th Training Course in Mediterranean Partner country

14 May 2013 Alexandria, Egypt

Host: Alexandria Water Company Venue: Hilton Green Plaza Hotel (Alexandria) Address: 14th of May Bridge Road - Smouha, Alexandria, 21615, Egypt Participants: AWCO, AWC, SONEDE, COMETE Trainers: SGI, UNIPA, SG

Tuesday 14 May 2013

Time Title Name (Partner) 09:00-09:10 Welcome Note Ahmed Gaber (AWCO) Session 1

09:10-9:55 International Best Practices to manage Commercial Loss Alessandro Alessandro Bettin (SGI)

09:55-10:40 Test 3 - Consumption profiles Marios Milis (SG)

10:40-11:00 Coffee Break

Session 2 - Management of Commercial losses

11:00-11:45 Updating about progress made on Test 1 Goffredo La Loggia (UNIPA)

11:45-12:30 Update of progress on test 2 and UNIPA’s bench calibration tests

Goffredo La Loggia (UNIPA)

12:30-13:30 Lunch Break

Session 3 – Innovative Projects

13:30-14:15 The PALM project funded under the EC LIFE Environment Plus Programme

Alessandro Bettin (SGI)

14:15-15:00 Project on Smart meters Marios Milis (SG)

15:00-17:30 Field Trip to AWCO Premises

AQUANIGHT

Identifying and controlling Apparent LLosses

Alexandria 14 May 2013

Al d B ttiAlessandro Bettin

1AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

1

Main Topics

Apparent Losses – Definitions and Causes

AMR (Automatic Meter Reading)

2AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

AMR (Automatic Meter Reading)

Controlling Apparent Losses

SGI

Apparent Losses

…..Apparent losses are the nonphysical losses that occur when water is successfully delivered to the customer but, for various reasons, is not measured or recorded accurately inducing a

3AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

measured or recorded accurately inducing a degree of error in the amount of customer 

consumption…

AWWA MANUAL M36

Kinds of leaks

Physical Leakage Breaks in mains and service connections

Background losses (valves, tanks, plants, not detectable small leaks)

Apparent Losses

4AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

pp Customer metering inaccuracies

Systematic consumption data handling errors, particularly in customer billing systems

Unauthorized consumption

IWA Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

5AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Calculate Consumption Patter 

Important to measure consumption patters of different kind of users

Data logging of existing meters can produce very reliable data at low time‐steps (minutes)

Installation of high resolution meter in series + data logger

6AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Installation of high resolution meter in series + data logger

Important to measure the volume consumed in the lower range which (accuracy in the measure) as well as the total amount of water consumed in a reference period of time.

Factors affecting volume consumed at low rates

Private domestic storage tanks

The filling of the tank is produced through a proportional ball valve which laminates the instantaneous water demand and reduces flow rates

7AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

flow rates

leaks inside the households, usually in faucets and toilets

Meter age 

Pressure and water quality

2

Roof tanks

8AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Typical Hourly Domestic Pattern

1,21,41,61,8

2Domestic Consumption Pattern

9AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Average Domestic Consumption (OFF‐WAT )

Water and Sewerage Company

Domestic Average dailyConsumption(l/inh./day)

Anglian 143.4

Dwr Cymou 149.4

North West 137.4

N th b i 148 7

10AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Northumbrian 148.7

Severn Trent 142.6

South West 127.3

Southern 150.7

Thamas 164.1

Wessex 137.6

Torkshire 136.4

Media 145.5

Error Curve for a domestic Class B meter

11AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Reconstructed curve of a 1.5 m3/h, class B meterError increases during low flows

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Typical Consumption Pattern for different households 

12AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Household Type I: Apartment blocks with direct injection from the network or a pump (tested N° 389 for a week).

Household Type II: Apartment blocks fed from an elevated tank (at the top of the building). Water meter is installed upstream the tank. Tested N° 58 households for a week.

Household type III: Independent houses with garden. Tested 34 households for 4 weeks

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Calculate weighted error 

13AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Arregui, F.J.* et all. Reducing Apparent Losses Caused By Meters Inaccuracies

Multiply the percentage of water consumed in a flow range by a user and the average error of a type of meter at the medium flow rate of the flow interval

3

Data transfer errors

Manual meter reading errors

AMR equipment failure

Procedural/data entry errors during meter change outs

Systematic data handling Errors

14AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Procedural/data entry errors during meter change‐outs

Data analysis errors

Use of poorly estimated volumes in lieu of meter readings

Policy and procedure shortcomings

Delays in registration, metering or billing operations

Unauthorized consumption occurs to some extent in virtually every drinking water utility. 

The nature and extent of unauthorized consumption in a system will depend on the combination of

The economic health of the community

Unauthorized Consumption

15AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

The value the community accords to water as a resource, often as a function of the relative abundance or scarcity of water in the region

The strength and consistency of the enforcement policies and practices existing in the water utility

The political will of water utility management and public officials to enact and enforce effective policies against unauthorized consumption

Unauthorized Consumption Components

Illegal connections;

Open bypasses;

Buried or otherwise obscured meters;

Misuse of fire hydrants and fire‐fighting systems (unmetered fire lines);

16AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

fire lines);

bypassed consumption meters (meter tampering);

Illegally opening closed valves on customer service piping that has been shut off for non payment;

Illegal Connection Example

17AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

For expenditure analysis unauthorized consumptions  in the Water Balance can be put equal to 0.25% of Water Supply (representative value from water audit worldwide)

Illegal consumption can be higher where economic conditions are poor

AMR (Automatic Meter Reading)

“Fixed System”. It is the more complex system as it is fully automatic.  Short transmission intervals without any manual intervention

Data logging for the more advanced versions

Advanced statistic of customers consumption

18AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

“drive‐by system” – data are collected via a receiver passing near the transmitting units Low possibility of data logging

High transmission interval

Useful only for billing porpoises

Benefits from AMR

Readily available users’ consumption at the more convenient time step (monthly, weekly etc.)

Full integration of AMR technology with the billing system for quick invoice and reference

Reducing of manpower: no need to read manually water consumption and to transfer data to the billing database

19AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Alarming system to know quickly any anomaly like non‐operating meters or under reading

Fully automatic process from reading of consumption to issue of invoice

Integration with GIS and mathematical model

Possibility to integrate in the AMR infrastructure also other devices like bulk flow meters and noise loggers obtaining a full remote monitoring of District Metered Areas (DMA)

4

AMR fixed infrastructure – Ancona (IT)

20AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

AMR Transmitters ‐ Ancona (IT)

21AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

AMR Integration with other devices(Ancona Italy)

Bulk MeterBulk MeterNoise LoggersNoise Loggers

22AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Users’ MetersUsers’ Meters

AMRAMRRepeaterRepeater

AMR Fixed System – NICOSIA Cyprus

Self Powered Concentrator (Wind & Solar) 

23AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Leakage Calculation with AMR

Leakage = AI – AMRWhere

AI = Average Inflow (l/s)

AMR= Average Users’ Consumption from AMR (l/s)

24AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

AMR  Average Users  Consumption from AMR (l/s)

AMR possible problems

Sometimes necessary to install many repeaters to improve transmission reliability

AMR repeaters and concentrators mount on light pole or on the building roof, authorization needed

Maintenance needed

25AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Maintenance needed

Power needed at least for concentrators

Failure data transmission (less then 100% transmission rate), necessary to interpolate past user consumption

High cost

5

CONTROLLING APPARENT LOSSES

26AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

CONTROLLING APPARENT LOSSES

The Bottom‐up Validation of the Water Audit

Step 1: Analyze the workings of the customer billing system to identify deficiencies in the water consumption data handling process resulting in apparent losses.

Meter Reading, Billing, Payment Processing, Collection

Step 2: Sample Customer Survey, including number of meters by i d i ( h k

27AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

meter size, customer type, and consumption ranges (check anomalies in flow size). 

Step 3: Perform meter accuracy testing for a variety of sample meter installations to understand the functional status of the meter population.

Step 4: Assess a sample of customer accounts or locations for unauthorized consumption potential.

Speed and quality

of repairs

Data Transfer ErrorBetween Meters and

archive; poort

ELAL - Economic Level of Apparent Losses

Unavoidable Annual Apparent Losses

Active Leakage

Unauthorised C i

The Pillars approachto the control ofApparent Losses

Customer Meterinaccuracy

28AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Potentially Recoverable Apparent Losses

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Data AnalysisError BetweenArchived Data and data UsedBilling/water 

Balance

of repairscustomeraccountability

LeakageControlConsumption

Current Annual Apparent Losses

Cost Curve for Meter Replacement Programs

Average Cumulative Consumption  Passed Through the meter

29AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Optimum Frequency of meters replacement= point in the curve that matches the minimum optimal loss  

From AWWA Manual M 36

ELAL – Economic Level of Apparent Losses

30AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Lmin Lmin = Economic Level of Apparent Losses

From AWWA Manual M 36

Cost benefit Analysis

Estimation of cost to reduce each component of apparent losses

Replacing customer meters

Updating of the billing system (new software, better audit etc.)

Training personnel on reading and managing data

31AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Training personnel on reading and managing data

AMR (Automatic Meter Reading)

UFR (Unmeasured Flow Reducer)

Evaluation of benefit (reduction of apparent losses)

Choose the solution with the best cost‐benefit ratio and low pay‐back period

6

Problems in ELAL calculation

ELAL is difficult to calculate. 

Different curves for each component, 

Necessary to consider meter accuracy at different t li (ti i )

32AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

meter lives (time consuming)

IWA Water Loss Task Force is developing a simplified method of obtaining ELAL

Actions to reduce Apparent Losses (1)

Audit the customer meter reading and billing process

Perform annual meter accuracy test on a small sample (50 meters)

Installation of new meters to measure public water uses h h i d b d

33AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

that are authorized but un‐metered;

Verification of large consumers’ meters;

Check billing database to report broken meters (reading equal to zero)

Actions to reduce Apparent Losses (2)

Conduct customer connection survey in selected area where apparent losses are higher in order to identify illegal connections

Cross check customers of the water services with the customers of the electricity service

34AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

customers of the electricity service.

Audit of domestic and commercial customers connections and verify if they correspond to the information on the customers’ database

In general, meter accuracy is influenced by three principal factors: 

the physical accuracy of the meter as a flow measuring device, 

Customer Meters Inaccuracy

35AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

the appropriate sizing of the meter to fit the customer's consumption profile, and 

the appropriate type of meter to best record the variations in flow.

Large meters

Focus on the Commercial and Industrial Meters

Often, less than 5% of a utility’s meters generate more than 40% 

36AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

gof the revenue

In most water systems, the reality is that their large meters are operating at 80% to 90% accuracy

Large Meters Testing

Large Meters ‐ Defined as any meter with a line size of 38mm (1.5”) or greater.

typically ICI (industrial, commercial, institutional)

37AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

The water meter is the “cash register” for water usage.

Test meter using an insertion meter or portable testing unit (at various flow rates). Complete a weighted accuracy based on the average recorded volume.

7

Evaluating Testing and Maintenance Programme

Volume: Large volumes of water = large revenues

Age: Large meters should be tested at a minimum every 5 years, with increased frequency as the size increases

Water Quality: Utilities with harsher water conditions

38AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Water Quality: Utilities with harsher water conditions should consider increasing frequency of meter maintenance

Retail Cost of Water: Maintenance and testing is influenced by the retail cost of water, and cost of testing

SGI

Evaluation of Illegal Connections (1)

Estimate Real Losses (Minimum Night Flow Analysis)

Evaluate  customer meters inaccuracy 

39AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

(sample test, average weighted error)

Compile IWA water balance and calculate Illegal Consumption for difference

identification of Illegal Connections (2)

This test should be done if illegal connections are suspected in a specific area

Test area (DMA/Sub DMA isolation)

40AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Test area (DMA/Sub DMA isolation)

Verify that no leak exist with acoustic equipment

Close all connections

Check the inlet flow meter for any positive flow

AQUAKNIGHT

Test 3: Consumption Profiles Marios Milis (SG)

1AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

1

General

Objective: The determination of customerdemand patterns and legitimate night use bycustomers

Important study since it will assist to analyse

2AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

the Minimum Night Flow (MNF) moreaccurately.

This study will be implemented in AWCO,SONEDE and IREN pilot projects

General Requirements

For each pilot site the analysis will require 2-10 new AMR meters (n°2 AMR class C turbine water meters manufactured in accordance with the standard EN 14154 based on the European Directive MID 2004/22/EC)

The measurements to be carried out WITHOUT UFR installed, The Water Meters to be equipped with data loggers able to record

3AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

The Water Meters to be equipped with data loggers able to record data with a time resolution of 1 minute.

For the test, consumers from different categories should be selected so as to be representative of the whole subzone.

The monitoring field campaign will involve 1-5 customers at a time and will be carried out in two different periods each lasting two weeks-one month (minimum 2 weeks). This will consent to quantify differences between working and weekend days.

Test 3: Main Steps

1. Installation of Data Loggers on 1-5 consumers (preferably of different category)

2. UFR unit removal3. Water consumption recording with a time resolution of 1

minute (minimum 2 weeks)4 Send results to SG and UNIPA for preliminary analysis and

4AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

4. Send results to SG and UNIPA for preliminary analysis and assesment of the quality of the measurements

5. Installation of Data Loggers on other 1-5 consumers based on directions of SG and UNIPA after the analysis of the first measurements

6. Water consumption recordings on the new consumers with a time resolution of 1 minute ( minimum 2 weeks)

Test 3: SONEDE Pilot Schedule

Number of consumers in AMR sub-zone: 62 Available Data Loggers: 7

DurationStart And 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Tot WeeksStart And 25 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15

The determination of customer demand patterns and legitimate night use by ( d d b l h f d )

March April May June July

5AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

TEST 3 customers (coordinated by Signal Generix, with support of UNIPA and IREN) To be implemented in AWCO, Sonede and IREN 19 27 8

Step 3.1 Installation of Data Loggers on 1‐5 consumers based on the description of Test3  19 20 1Step 3.2 UFR unit removed as in 1.3.3 19 20 1Step 3.3 Water consumption recording with a time resolution of 1 minute (without UFR) 20 22 2

Step 3.4Send Results to SG and UNIPA for a preliminary analysis and assesment of the quality of 

the measurements 22 24E E

2

Step 3.5Installation of Data Loggers on other 1‐5 consumers based on directions of SG and 

UNIPA after the analysis of the first measurements 24 25 1

Step 3.6 Water consumption recordings  on the new consumers  with a  time resolution of 1 minute (without UFR)  25 27 2

** Test 3 will be applied to consumers who do not belong to the AMR sub-zone

2

Test 3: SONEDE Pilot Progress

Installation of the 5 new meters : 02/05/2013

Installation of the 5 data logger : 02/05/2013

Collect Data recorded by data logger : 16/05/2013

6AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Send data to SignalGeneriX : 21/05/2013

Test 3: AWCO Pilot Schedule

Number of consumers in AMR sub-zone: 40 Available Data Loggers: 4

start end Durationstart end 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24tot. weeks]The determination of customer demand patterns and 

legitimate night use by customers (coordinated by

GANTT TESTS 3 activities in 2013

January February March April May June

7AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

TEST 3legitimate night use by customers (coordinated by Signal Generix, with support of UNIPA and IREN) To be implemented in AWCO, Sonede and IREN 16 22 7

Step 3.1Installation of Data Loggers on 1‐5 consumers based on 

the description of Test3  16 16 1

Step 3.2 UFR unit removed as in 1.3.3 18 18 1

Step 3.3 Water consumption recording with a time resolution of 1 

minute (without UFR) 19 20 2

Step 3.4 Send Results to SG for a preliminary analysis and 

assesment of the quality of the measurements 20 20 1

Step 3.5 Installation of Data Loggers on other 1‐5 consumers based 

on directions of SG after the analysis of the first 

measurements 21 21 1

Step 3.6 Water consumption recordings on the new consumers with 

a time resolution of 1 minute (without UFR)  21 22 2

Test 3: IREN Pilot Schedule

Number of consumers in AMR sub-zone: 30 Available Data Loggers: 10 data loggers Aqualog T to be used

for AMR of max 3 meters each plus 2 data loggers Aqualog Master to be used for AMR of max 6 meters each

Utility IREN

Zone Leamara

GANTT TEST 3  activities in 2013

This worksheet was completed by

8AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Name Nicola Bazzurro start end  July DurationDate 4/2/2013 start end 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ot. weeks]

TEST 3

The determination of customer demand patterns and legitimate night use by customers (coordinated by Signal Generix, with support of UNIPA and IREN) To be implemented in AWCO, Sonede and IREN 19 26 8

Step 3.1Installation of Data Loggers on 30 consumers based on the 

description of Test3  19 19 1Step 3.2 UFR unit removed as in 1.3.3 19 19 1Step 3.3 Water consumption recording with a time resolution of 1 

minute (without UFR) (bypass open) 20 21 2

Step 3.4 Send Results to SG for a preliminary analysis and 

assesment of the quality of the measurements 22 23 2

Step 3.5 Installation of Data Loggers on other 1‐5 consumers based 

on directions of SG after the analysis of the first 

measurements 24 24 1

Step 3.6 Water consumption recordings on the new consumers with 

a time resolution of 1 minute (without UFR)  25 26 2

January February March April May June

Test 3: Data Collection DB

Directions on filling the Data Collection DB excel file for Test 3 Read carefully the ‘Directions’ sheet of the excel

file.Fill th G l I f ti i ‘G l’ h t

9AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Fill the General Information in ‘General’ sheet and send it to SG ([email protected])

Update every week Send updated excel file to SG

AQUAKNIGHT

Task 2Activity 2.5

Updating about progress made on Test 1Updating about progress made on Test 1Updating of progress on test 2 and UNIPA’s bench calibration tests

Goffredo La Loggia (UNIPA)Goffredo La Loggia (UNIPA)

1AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

1

TUNIS

2AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

SONEDE-Tunis: GANTT test activity 2.5

… … …

3AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

AQABA

4AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

AWC-Aqaba: GANTT test activity 2.5

5AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

LEMESOS

6AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

WBL-Lemesos: GANTT test activity 2.5

7AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

2

GENOA

8AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

IREN-GENOVA : GANTT test activity 2.5

9AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

ALEXANDRIA

10AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

AWCO-Alessandria: GANTT test activity 2.5

11AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt Partner acronym

OLD METERS OLD METERS

PilotCustomer Meter Under‐

registration CMU Customer Meter Under‐registration CMU with  UFR contribution  Storage

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

12AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

without UFRs UFRs with old meters Tanks

Aqaba 50,9% 47,0% 4% Yes

Alexandria 21,6% NA Yes

Tunis 4,5% NA No

Lemesos ‐1,3% NA Yes

Genova NA NA No

Partner acronym

The PALM project funded under LIFE

Pump and Leakage Management

The PALM project funded under LIFE Programme ‐ Defining the optimum level of leakage

Alessandro Bettin

1AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

1

PALM objective

Develop a DSS to define, achieve and maintaina “mimimum” or “economic” leakage target

2AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Why reduce leakage?

1. Extra water available where it is needed

2. Less investment for new plants, new pipes, new water resources

3. Reduce Energy Consumption

4. Reduce Environmental Impact

3AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Leakage Calculation

Water Balance (IWA) Minimum Night Flow

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

4AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

650

1.2 1.2.1 1.2.1.1

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

m3/year, m3/week, m3/day  litre/sec

Leakage Percentage

Leakage level is generally expressed as a percentage of input volume

But a percentage alone is not significant as a Performance Indicator

5AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Which is worst?

15% leakage in Nicosia (Cyprus)

45% Leakage in Bergen (Norway)

INTERVENTION COSTLEAKAGE =

OPERATIVE COSTLEAKAGE =

Concept

6AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

PALM = Define Optimal Level of LeakageDefine Optimal Level of Leakage

Production Curve

Total

Consumption

Out

put

Vol

ume

Approach

7AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

OPTIMAL LEAKAGE

Leakage InterventionCurve

2

Key Elements

Define production curve

Define total cost of intervention

8AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Test application in Perugia (Pilot) Network

Sorgente – ScircaMonte Ripido / S. Agnese

Nocera

Perugia Complex Network

N° 2 spring sources N° 3 wells N° 20 reservoirs N° 100 pumps

9AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Boreholes – Petrignano / Cannara

Rural Area

Urban Area

LOWER LEAKAGE

Frontone

Nocera

10AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Lavori di rimozione dei detriti sulla scaturigine

Vista della sorgente oggi

Construction of Scirca Water Network  1927 ‐1932(Max Flow 110 l/s) 

11AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Lavori di posa della condotta in ghisa da 425 mm.

Lavori di trasporto della condotta in ghisa da 425 mm.

Vista della sorgente oggi

Production Curve

Test 80 pumps + combinations

Define the production curve

V if di i f th i

12AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Verify dimensions of the reservoirs

Leakage Intervention Cost

DMA design

DMA setup + permanent monitoring

Leaks location and repair

13AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Leaks location and repair

Pipe replacement

Measurement of water recovery

0

10

20

30

40

50

60

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTATA (l/s)

UE PALM ‐ AREA URBANA BUCACCIO  ‐MONITORAGGIO  PER MODELLO 

M_1

3

Leakage Intervention Cost

14AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Current production

Customer consumption

Pump characteristics

Reservoir capacity OPTIMUM LEVEL OF OPTIMUM LEVEL OF 

Efficiency Calculator

15AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Length of network

Energy costs

Treatment costs

Cost / m3 for new sources

Personnel Cost

LEAKAGELEAKAGE

PROJECT ACTIVITIES

16AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Project Activities

TECHNICAL SPECIFICATION

GIS

HYDRAULIC MODEL

17AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

DSS

FIELD TRIALS

DISSEMINATION

ADMINISTRATION AND MANAGEMENT

LEAKAGE CONTROL

RESERVOIR CAPACITY

PUMP OPTIMISATION

GIS – Geographical Information System

18AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

GIS – Geographical Information System

19AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Collegamento Utenze al GIS Interventi riparazione perdite

PDA

4

Hydraulic Model

Hydraulic Model Building

Schematic Model for transmission system: main pipes, pumps, reservoirs, distribution demand allocation

Water Supply Distribution Detailed Model: pipes

20AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Water Supply Distribution Detailed Model: pipes, resurvoirs, demand, leakage 

Field test 

Flow and Pressure Monitoring

Leakage Analysis

Hydraulic Model

P8_1 319.8 m. s. m.

21AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

10

20

30

40

50

60

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PRESSIONE (m

)

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

P8_1P

Leakage Control

Pilot DMA setup

Flow and Pressure Monitoring 

Step‐Test

Leakage Detection

22AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Leaks Repair

Measurement of Results

Cost Analysis

Leak Intervention Cost Curve calculation

Leakage Control – DMA Setup

Urban Area BucaccioNetwork Lenght = 27 km 

23AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

10

20

30

40

50

60

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTA

TA (l/s)

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

M_1

Leakage Control – DMA Setup

Rural Area “Bosco Colombella“ Network Lenght = 28 km 

24AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

2

4

6

8

10

12

14

16

18

20

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

PORTAT

A ( l/s )

UE PALM ‐ AREA RURALE RAMAZZANO COLOMBELLA MONITORAGGIO PER MODELLO

Q totale  Q Ramazzano Q Piccione

Step test Buccaccio Basso

VIA CANALI

200 ACC VIA DEL MACELLO

SERBATOIO

STAZIONE

VIA CAMPO DI MARTE

FERROVIA

STEP 9

STEP 7

STEP 6

9

CASE BRUCIATE

STEP 8

VIA M. ANGELONI

8a

7a

8b6b

6a

7b AUTOSILO

25AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

VIA

MO

RE

TT

INI

VIA

SE

TT

EV

AL

LI

1

4 5

3

VIA DELL’ACACIA

DN 125 200 PE

160 PE

STEP 2 STEP 3

STEP 1

STEP 4

STEP 5

PONTE DELLA PIETRA

DUILIO

2b

2a

Q

AGIP

5

4. Leakage Control ‐ Step Test 

100

120

140

160

20,0

25,0

30,0

STEP test Bucaccio Basso

Q1

Q2

P1

P2

1

8

76

5432

109

26AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

20

40

60

80

0,0

5,0

10,0

15,0

00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45 03:00 03:15 03:30 03:45

Port

ata

(Litr

i/sec

)

Data e Ora

P2

P3

P4

P5

P7

P8

P9

P10

P6

Pres

sion

e(m

etri)

PRV Installation at DMA inlets

27AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

PRV Operation

28AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Leakage Control ‐ PRV Installation

4.000

5.000

6.000

60.000

70.000

80.000

90.000

100.000

Fm)

29AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

1.000

2.000

3.000

0

10.000

20.000

30.000

40.000

50.000

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

00:00:00

12:00:00

Flow (l/s)

Pressure (m

Time hr

P.rid.valle

Q riduttore

30% reduction leakage

43% reduction leakage

Leakage detection

Install noise loggers to record the intensity of leak noise at a number of locations within the network;

Assess the recorded data to determine the parts of the DMA with greatest noise, where presumably a 

30AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

leak is located;

Application of the correlator to define the precise of the underground leak;

Confirm before excavating, by using the ground microphone, the validity of the position indicated by the correlator.

SGI

Leakage Redution (PRV + Leakage det.)

60

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO  PER MODELLO 

M_1

31AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0

10

20

30

40

50

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTATA (l/s)

6

Pipes Replacement

32AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

historical intervention data represents the first stage in defining the amount of the

network to be replaced

Reservoirs Assesment

A sample of 45 reservoir were surveyed of varying capacities (from 2 m3 to 6285 m3)

Measurement of key levels

Verification of tank capacity

33AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Verification of tank capacity

Operation

Reservoir Form

Useful for mathematical model and production cost

Hystorical Data Vs Real Data

34AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Difference between original plans (above) and the reality (below) for the Bucaccio Basso reservoir

Reservoirs Survey

35AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Reservoir Capacity ‐ Analysis

36AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

REAL CAPACITY = 0.99 HISTORICAL CAPACITY

Pump Optimisation

The performance of pumps tends to deteriorate over time

Original manufacturers curves are no longer valid

37AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

valid

Effective pumps performance is governed also by the characteristics of the plant

Headloss through the pipework between the pumps and the network

7

Pump Optimisation

38AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Single Pumps Test (N°100) plus multiple pump test (N° 6 PS)

Pump Optinisation

39AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Cannara pumping station plant

Petrignano pumping station plant

Pump Test

Measure the upstream and downstream pressures of the pump to determine the head

Measure Flow

Measure head on the outlet of the station

40AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Performance of the PS

Measure Power Absorption to determine the efficiency curve

N° 4 to 5 points checked on the flow curve 

Compare current performance of the pumps with the original performance curve

SGI

170

180

190

200

m)

UE PALM - RISOLLEVAMENTO PISCILLE - NOVEMBRE 2011 -KSB MULTITEC A 125 / 8

POMPA 4 ORIGINALE

-16% compared to assumed working point

- 7% compared to manufacturer curve

41AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

100

110

120

130

140

150

160

20 30 40 50 60 70

PR

EVA

LEN

ZA D

INA

MIC

A (m

PORTATA (l/s)

‐40%

‐30%

‐20%

‐10%

0%

150

200

250

( Portata m

isurata ‐

Portataw

 (l/s)

‐ 14 %

Pump Test Results

42AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

‐100%

‐90%

‐80%

‐70%

‐60%

‐50%

0

50

100

1 2 3 4 5 6 7 8 9 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 3… 3… 3…

 produtto

re ) / Portata p

rodutto

re  %

Measured Flo

Production Cost calculation

0.080

0.090

0.100

UE PALM ‐ PETRIGNANO ‐ SOLLEVAMENTO ‐ 8 GIUGNO 2011 

C euro/m3 = f(Portata) 

Unit Cost = 0.13  euro/kWh

43AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

85 86 155 213 261 300 330 353

COSTO ENERGE

TICO

 UNITAR

IO (€

/m3)

PORTATA (l/s)

POMPA1 + 2 + 3 + 4 + 5 + 7 + 8

POMPA 1 + 2

POMPA 3

POMPA 1

POMPA 1 + 2 + 3

POMPA 1 + 2 + 3 + 4

POMPA 1 + 2 + 3 + 4 + 5

POMPA 1 + 2 + 3 + 4 + 5 + 7

8

Field Trial

Scirca

44AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt SGI

Cannara-

Pasquarella Petrignano

Nocera

Approach for Optimisation (Next Steps)

Calibrate strategic model with data from telemetry system

Simulate Leakage reduction

45AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Simulate Leakage reduction

Simulation of optimal production configuration

Efficiency Calculator Validation 

SGI

AQUAKNIGHTAQUAKNIGHT

S t M t P j tSmart Meters Project

Marios Milis (SG)

1AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

1

The problem

• The problem of aging infrastructure and of associated water losses in urbanwater distribution networks has been one of the biggest infrastructureproblems facing city and municipal authorities and a major task in their effortsto achieve efficient and sustainable management of water resources.

• Interestingly enough and as a measure of the magnitude of the problem, the“unaccounted-for” water is in the range of 20% to 30% even in developedcountries whereas in developing countries this percentage is even higher (as

2AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

countries, whereas in developing countries this percentage is even higher (asreported by the International Water Association, IWA). According to studiesfound in literature for example, water losses in France’s water distributionnetwork have been estimated at an average 26%, in UK at 19%, in Italy 29%(MCG 2006) and in Cyprus 25-30%.

• Yet, local communities have poor prediction tools to prioritize how essentialinfrastructure investment is conducted and to dynamically account for thewater consumption at households and in the network in general

Project Objectives

• Develop an ‘online’ measuring of water consumption system thatwill allow Water Boards to

• dynamically monitor the water balance in the networks,

• to detect water losses as they occur,

• implement ‘virtual water’ and water-pricing policies based on consumption,and

3AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

• enforce water saving measures devised on volumetric consumption, waterquota, and online monitoring

• Develop a scientifically-sound and financially-feasiblehardware/software solution for automatic meter reading (AMR)for urban water distribution networks

Project Objectives

• Design and develop a low cost and power consumptionhardware add-on, compatible with the existing water-supplynetwork equipment, able to provide continuous data readingsand transmission.

• The hardware add-on should support:

Th ti t fl t

4AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

• The continuous water flow measurements

• The wireless transmission of the measurements to a central remote datalogger

System Main Components

Water Meter AMR Module Data Transmission Network

Water Meters Network Gateway

5AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Remote Monitoring PlatformWireless Network

Base Station

Base Station Controller

Information Distribution Network

Mobile Phone Laptop SmartPhone

Wireless Network

Data Transmission Network

Each Sensor Node acquires data from the surrounding environment using multiple sensors

Then all the data are transmitted to a central unit for further processing

GENERAL

6AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

p g Data transmission is performed with

multi-hop routing

Main Objectives Decrease of power consumption leading to an extended range of life

and availability of each node Reliable and secure transmission of the gathered sensor data

towards a central database

Data Transmission Network

Surrounding Environment (weather Conditions etc) Network topology (Failed Sensor Nodes, cut paths

etc)

Main Problems

7AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Number of sensor nodes and power consumption Volume of gathered and transmitted data Transmission means and packet loss rate. Other external factors (interference, electromagnetic

noise etc.)

2

Data Transmission Network

The sensor nodes are easy to deploy, self-configure, and report into a database and graphical software package.

The system is flexible and open to the incorporation of new sensors with additional modalities.

A database can hold historical data of each parameter for long period, i i f l i f ti

Advantages

8AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

giving useful information. The whole monitoring process can be operated by a single person

using only one PC. Graphic software can provide simultaneous analysis and charting of all these parameters.

The deployment of the System will be completely wireless. Adjustable sampling rates. Battery operation for at least one year Email or SMS alerts can be send when parameters get a value below

or above a pre-configured threshold.

AMR Module

• Designed and Developed bySignalGeneriX Ltd

• icyCAM acts as the mainsensor of the AMR system

9AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Able to acquire the water meter register reading andconvert it to digital form for easy transmission to thecentral aggregate node

AMR Module

• IcyCam AMR Moduleincludes:• IcyCAM sensor,

• Extra storage capabilities

GPRS d

10AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

• GPRS modem

• RF interface

AMR Module

IcyCam AMR Module operation: Takes snapshot of the water meter

reading

Perform OCR algorithms – recognizewater meter digits

11AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Transmits digits in txt format viaGPRS/GSM/3G network

Transmits low resolution image of thewater meter register (e.g ones permonth) for errors correction.

AMR Module

IcyCam AMR Module usage:

Can be attached to varioustypes of existing water meters

As a part of a fixed networkAMR t

12AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

AMR system.

As an autonomous Logger

AMR Module

Magnetic pulses counting Modules:

Susceptible to interference

Can loose pulses for high flows

Incremental errors

13AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Incremental errors

Continuous powering of the modules – limitedbattery life.

3

AMR Module

IcyCAM AMR Modules:

No interference to meter readings

Ensure transmission of the register value

No incremental errors (any errors can be

14AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

No incremental errors (any errors can becorrected through image transmission)

Module operated in deep-sleep mode and wakesup only in specific times to get and transmit themeasurement -> very low battery consumption.

Remote Monitoring Platform

Wisense® Remote Sensor Monitoring Platform

15AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Remote Monitoring Platform

OVERVIEW

Designed and Developed by SignalGeneriX

Innovative Wireless Sensor Network Platform

A robust and versatile solution for efficient remote monitoring and control ofindoor and outdoor industrial, commercial and environmental applications.

16AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

The complete integrated end-to-end system includes

wireless technology, data logging, Web-based visualisation and data management.

Wisense offers a cost-effective and scalable solution that can be easilyintegrated to monitor excising systems and add value to our customers bysignificantly reducing operation costs and improving management, productionand quality control processes.

Remote Monitoring Platform

SYSTEM OVERVIEW

1. WIRELESS SENSOR NODES

Low power design for longer autonomy on standard batteries

Advanced smart antenna technology for longer

17AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Advanced smart antenna technology for longer communication range

Solar powered ruggedized option for longest battery life

Multible external analogue or digital sensors per node

Adjustable sampling rates

IP66 enclosures for harsh environments

Remote Monitoring Platform

SYSTEM OVERVIEW

2. WISENSE GATEWAY AND DATA LOGGER

Ultra compact powerful embedded system

Supports: the wireless aggregation of the sensor network data,

18AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

gg g , the storage of the data in a local database and the transmission of the data to the secure remote storage server.

The Gateway communicates with the remote server via GSM,GPRS, 3G, Ethernet or Wifi links

Highly versatile and can be easily deployed in indoor or outdoorapplications

The system’s specifications support deployments in completelyisolated remote locations under extreme environmentalconditions.

Remote Monitoring Platform

SYSTEM OVERVIEW

3. SECURE REMOTE DATA STORAGE SERVER

The Wisense gateway and data logger can beprogrammed to transmit the collected data to a secureremote data server

19AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

The Storage Server allows:

Continuous Backup of data

Real-time monitoring of data via a standard web browser.

The system support programmable storage serverdatabase update rates for minimizing operational cost andpower consumption.

4

Remote Monitoring Platform

SYSTEM OVERVIEW

4. DATAVIEW REMOTE MONITORING WEB PLATFORM

Provides a fully customisable interface to the users for controlling theirdeployments and accessing their data in real time.

Web-based application which can be accessed through any PC equippedwith a web browser thus allowing the users to monitor their systems and

20AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

with a web browser, thus allowing the users to monitor their systems andprocesses virtually from anywhere.

Fully customizable Graphical User Interface on clients needs

Fully customizable real time control panel

Historic data display and analysis

Integration with GIS systems and Google Earth

Wireless Sensor Node health and performance monitoring

Display of trend charts of multiple sensors across customized timeperiods

Remote Monitoring Platform

SYSTEM OVERVIEW

5. USER DEFINED NOTIFICATIONS AND ALERTS

The Notifications and Alerts Wisense feature provides clientswith the capability: to establish alert thresholds according to desired operation

21AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

scenarios of sensors and

to specify alert notification SMS text messages and emails.

Alerts may be sent to any email-enabled desktopcomputer or mobile phone.

The user can also set-up periodic information messagesto report on the health and performance of the sensornetwork and the values of vital parameters.

Remote Monitoring Platform

22AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Remote Monitoring Platform

23AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Remote Monitoring Platform

24AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Remote Monitoring Platform

25AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

5

Remote Monitoring Platform

26AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

SG

Remote Monitoring Platform

27AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Remote Monitoring

28AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Historical Data

Remote Monitoring Platform

29AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Color-coded Average Consumption by Location

Remote Monitoring Platform

30AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

Color-coded Average Consumption by Location

Questions

We will be happy to answer any questionand further demonstrate our technology

31AQUAKNIGHT – 4th MPC training meeting, 14 May 2013, Alexandria, Egypt

For Further Information ContactDr. Anastasis Kounoudes

Chief Executive OfficerTel: +357 25870072

Email: [email protected]

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

5th Training Course in MPC

10 December 2013 Tunis, Tunisia

Host: Société Nationale d'Exploitation et de Distribution des Eaux (SONEDE) Meeting Place: Hotel LE PALACE Address: Complex Cap Gammarth, 1057 Gammarth, Tunis, Tunisia Participants: AWC, AWCO, SONEDE, ICCS Trainers: SGI, SG, UNIPA

Tuesday 10 December 2013

Time Title Name , Partner

09:00-09:30 Welcome

Mr Abdallah CHAOUACHI , General Director of SONEDE INTERNATIONAL

Session 1 - Management of Commercial losses, 1st Part

09:30 -10:10 Effect of UFRs : Results from test 1 on water meters Goffredo La Loggia, UNIPA

10:10-10:50 Effect of private tanks : Results from test 2 of water meters

Goffredo La Loggia, UNIPA

10:50 -11:30 Consumption profiles: Results from test 3 of water meters Marios Milis, SG

11:30-11:50 Coffee Break

Session 2 – Management of Commercial Losses , 1st Part

11:50-12:30 Leakage Calculation in a DMA using Water Balance & MNF: A Real Case Study Alessandro Bettin, SGI

12:30-13:00 Open discussion about results so far and challenges in application of the methodology in the pilots

Goffredo La Loggia, UNIPA Marios Milis, SG Alessandro Bettin SGI

13:00-14:00 Lunch Break

Session 3 - Pressure Management

14:00– 14:40 International Best Practice for Pressure Management Alessandro Bettin, SGI

14:45-15:30 Final Discussion

15:30 Touristic visit to the Cathedral of Carthage

Activity 2.5 Eff t f UFR R lt fEffect of UFRs: Results from

test 1 on water meters

Marco Fantozzi IRENMarco Fantozzi, IRENGoffredo Laloggia, Un. Palermo

1AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

1

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November

2013)

2AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

2013)3. Pilot activities planned for the next 6

months (November 2013 – April 2014)4. Conclusions so far

IREN

ALEXANDRIA

Test 1 Apparent lossesAlexandria Pilot sub DMA

3AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Alexandria Sub DMA INFORMATION

Test 1 Apparent lossesAlexandria Pilot sub DMA

4AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

IREN

Alexandria SubDMA - Zone inflow graph, pressure graph

Test 1 Apparent lossesAlexandria Pilot sub DMA

5AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Alexandria SubDMA – Measurements at Inlet Point

Test 1 Apparent lossesAlexandria Pilot sub DMA

Alexandria Sub DMA El Mohagrin streetCUSTOMER METERS INFORMATION

6AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

7AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

2

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

8AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

9AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

10AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

INACCURATE METERS NO STORAGE TANKS

Unreliable results in Part D Presence of leak or illegal

connections?

AQABA

11AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Aqaba Sub DMA INFORMATION

Test 1 Apparent lossesAqaba Pilot sub DMA

12AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

IREN

Aqaba SubDMA - Zone inflow graph

Measurementat Inlet Point

Test 1 Apparent lossesAqaba Pilot sub DMA

13AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Aqaba SubDMA

3

Test 1 Apparent lossesAqaba Pilot sub DMA

Before Survey

Old Meters

Old with UFR

Bulk 438 242 527

Customer 219.1  117.7  272.6 

NRW 218.9  124.3  254.4 

NRW% 50 0% 51 3% 48 3%

14AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

NRW % 50.0% 51.3% 48.3%

Note: it is not appropriate to installtwo meters in series to accurately

measure the performance withUFR

Aqaba SubDMA – Test 1 Part A: Under registration with old meters

Test 1 Apparent lossesAqaba Pilot sub DMA

Part B: Under registrationwith old meters & UFRs

15AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

OLD INACCURATE METERS

STORAGE TANKS

4% Improvementdue to UFR

Test 1 Part C: Under registration with new meters with UFRsTest 1 Part D: Under registration with new meters without UFRs

Test 1 Apparent lossesAqaba Pilot sub DMA

AWC decided to repeat Test 1 in a different DMA due to:

I t t i t ll ti i h C

16AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

- Incorrect meters installation in phase C,- Presence in the initial DMA of an illegal consumption notdetected which influence the reliability of the test.

New test data from the new DMA will be available at beginning of 2014.

TUNIS

17AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Tunis Sub DMA INFORMATION

Test 1 Apparent lossesTunis Pilot sub DMA

18AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Tunis Sub DMA - Zone inflow graphMeasurementat Inlet Point

Test 1 Apparent lossesTunis Pilot sub DMA

19AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Customermeters

4

Test 1 Apparent lossesTunis Pilot sub DMA

Tunis Sub DMA: 762CUSTOMER METERS INFORMATION

20AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

PART B inconsistent data

21AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

OLD METERS NO STORAGE TANKS

2,5 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

22AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

NEW ACCURATE METERS NO STORAGE TANKS

NO UNDER REGISTRATION

LEMESOS

23AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Lemesos Sub DMA INFORMATION

Test 1 Apparent lossesLemesos Pilot sub DMA

24AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Lemesos Sub DMA - Zone inflow graph

Test 1 Apparent lossesLemesos Pilot sub DMA

25AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Measurement at Inlet Point

Customermeters

Customermeters

with UFR

5

Test 1 Apparent lossesLemesos Pilot sub DMA

Lemesos Sub DMA: 324 AMR sub DMACUSTOMER METERS INFORMATION

26AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesLemesos Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

27AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

ACCURATE METERS STORAGE TANKS

Small Improvementdue to UFR

with OLD meters

Test 1 Part C: Under registration with newmeters with UFRs

Test 1 Apparent lossesLemesos Pilot sub DMA

Test 1 Part D: Under registrationwith new meters without UFRs

28AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

ACCURATE METERS and UFRs

STORAGE TANKS

5,5 % Inaccuracywith NEW meters

without UFRs

GENOVA

29AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Genova Sub DMA INFORMATION

Test 1 Apparent lossesGenova Pilot sub DMA

Customermeters

30AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Inlet to the subDMA

Inlet Flow meter

Genova Sub DMA - Zone inflow graph

Test 1 Apparent lossesGenova Pilot sub DMA

31AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Measurement at Inlet Point

Customermeters

with AMR

Customermeters

with UFR

6

Test 1 Apparent lossesGenova Pilot sub DMA

Genova Sub DMA: Leamara sub DMA Via MolinettoCUSTOMER METERS INFORMATION

32AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters & UFRs

33AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

INACCURATE METERSNEW PIPES

NO STORAGE TANKS

4,4 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registrationwith new meters without UFRs

34AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

ACCURATE METERS & UFRs + NEW PIPESNO STORAGE TANKS

5,3 % Inaccuracywith NEW meters

without UFRs

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November

2013)

35AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

2013)3. Pilot activities planned for the next 6

months (November 2013 – April 2014)4. Conclusions so far

Customer Meter Under‐registration CMU

Pilot DMA

Part A Customer Old Meter Under‐registration 

CMU without UFRs

Part B Customer Old Meter Under‐registration 

CMU with UFRs

Part CCustomer New Meter Under‐registration 

CMU with UFRs

Part D Customer New Meter Under‐registration 

CMU without UFRs

UFR contribution with old meters (A‐B)

UFR contribution with new meters (D‐C)

Presence ofPrivate Storage Tanks

T t t b T t t b

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

36AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

Aqaba** 50,9% 47,0%Test to berepeated

Test to berepeated 4,0 % ‐ Yes

Alexandria^ 12,94 % 12,07 % 2,5 %

Test to berepeated

16,4 %  0,8 % 14 % Yes

Tunis^^ 12,36% 9,78% ‐0,27 % ‐0,46 % 2,6 %No under 

registration No

Lemesos * 3,8 % 3,0 % 0,00 % 5,5 % 0,77% 5,5 % Yes

Genova * 9,85 % 5,42 % 0,10 % 5,33 % 4,4 % 5,3 % No

IREN

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

* In the case of Lemesos and of Genova,to take into account very small size of the pilots and good infrastructurecondition, a low reduced level of UBL (Unavoidable background leakage)has been considered as the most probable scenario.

^ In the case of Alexandria most probably the presence of an undetected

37AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia IREN

leak (around 12 mc/day is affecting the test).A test has been planned with AWCO asap to check results.

** In Aqaba most probably the presence of an illegal connection isaffecting the test. Test is to be repeated in a different DMA.In addition it is not appropriate to install two meters in series to accuratelymeasure the performance with UFR.

^^ In Tunis increase in under registration in Part B is most probably dueto error in meters reading.

7

50,90%

47,00%

40,00%

50,00%

60,00%Under Registration CMU

Test 1 Apparent losses EvaluationTest Results

Aqaba test to be repeated

38AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

12,94%12,07%

2,50%

16,40%12,36%

9,78%

0 -0,46%3,80% 3,00%

0

5,50%9,85%5,42%

0,10%5,33%

-10,00%

0,00%

10,00%

20,00%

30,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

Aqaba Alexandria Tunis Lemesos Genova

IREN

Data to beverified

Test 1 Apparent losses EvaluationTest Results

12,94%

12,07%

16,40%

12,36%12,00%

14,00%

16,00%

18,00%Alexandria Tunis Lemesos Genova

Under Registration

CMU

Data to beverified

39AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

2,50%

9,78%

0 -0,46%

3,80%3,00%

0

5,50%

9,85%

5,42%

0,10%

5,33%

-2,00%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

IREN

Even if tests in Aqaba and in Alexandria are still to be completeddue respectively to presence of a leak and of an illegalconsumption, test results show that both meters replacementand introduction of the UFRs produce an increase in revenuefor the utility proving that a meter replacement policy is worth tobe introduced.

Conclusions (so far) Test 1 Pilot sub DMA

40AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

It will be possible to suggest meter replacement frequency and toestimate specific benefits achievable in each utility with metersreplacement plan and UFR installation after completing test analysis at laboratory.

IREN

EC Project Aquaknight 

TEST 2‐ The assessment of the impact of private storage tanks on water meteringwater metering(coordinated by UNIPA)

1AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

21/01/2015

1

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

This test will be implemented only in the pilots of AWCO

For each pilot site, 1‐5 users connections will be monitored in detail forevaluating the under‐registration errors of customer water metersinstalled upstream of private storage tanks and then to investigate the

2AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

installed upstream of private storage tanks and then to investigate theeffect of introducing UFR devices to reduce unmeasured flows.

The choice of the monitored customers will be made according to:

the size of the related revenue water meter,

the capacity of the related private tanks

the average value of the pressure on the private tank.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

The monitoring field campaign will involve 1‐5 customers at a time andwill be carried out in two different periods/phases each lasting betweentwo weeks to one month.

In the first period (2 weeks to one month) concurrently to the stage 3 of

3AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

p ( ) y gthe Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy with UFR will be analyzed.

In the second period (2 weeks to one month) concurrently to the stage 4of Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy without UFR will be analyzed.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

For each pilot site the analysis will require 2‐10 new AMR meters equipped withdata loggers able to record data with a time resolution of 1 min to be installedupstream and downstream the private tanks for monitored 1 to 5 customerseach time.

The same AMR meters (downstream the tank) will be uninstalled at the end ofthe second step of monitoring campaign (after one ‐ two months from thebeginning of the TEST2 concurrently to TEST1 stages 3 and 4) and will be again

4AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

beginning of the TEST2, concurrently to TEST1, stages 3 and 4) and will be againused to further monitor other 1 to 5 customers by installing it upstream anddownstream their tanks.

The monitoring of the last 1 to 5 customers in each sub‐district would take 1‐2months and will be conducted concurrently to TEST1, stage 5.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the first period of TEST 2 the monitoring scheme involved the use of:

• n°2 AMR class C turbine water meters (manufactured in accordance with the MID2004/22/EC) which will be installed one downstream and one upstream the private tank.Their installation should be done according to ISO 4064‐2:2005 and EN 14154‐2:2005+A1:2007 specifications. Each AMR will be equipped with a data logger able torecord water volume data with a time resolution of 1 min for two weeks/one month.

•n° 1 pressure gauge with a pressure range of 0‐10 bar, installed in the network not far

5AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

from the monitored user connection, in order to measure and record network pressuredata every 15 minutes.

•The pressure gauges needed for the analysis will be the same adopted to monitorate theDMA.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the second period the monitoring scheme was the same without UFR

6AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Elaboration of the first consumer data recorded between 28 Nov ‐7 Dec 2013

Data where recorded without UFR from 28/11/2013 to 04/12/2013 at 12:58:00

From 04/12/2013 at 12:58:00 UFR was installed

Short period for the sake of providing data. The test will be completed (2 weeks each)Network pressure is adeguate to

supply the prive tank of the consumer

7AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

1

2

3

4

5

6

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

07/1

2/20

13

… 07

/12/

2013

07/1

2/20

13

… 07

/12/

2013

Upstream Pressure Upstream Flow totalizer Upstream Flow rate downstream Flow totalizer

21/01/2015

2

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Not revenue Water = 3.8% 

2.5

3

3.5downstream Flow totalizer

Upstream Flow totalizer

DW

8AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

‐0.5

0

0.5

1

1.5

2

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

Volume inflow =  2.98 m3Volume outflow = 3.10 m3Not Revenue Volume = 0.12 m3

Without UFR With UFR

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.6

0.7

Upstream flow rate without UFR

downstream  Flow rate

The impulsive trend of the upstream flow rate with UFR

shows the presence of

9AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

background losses in the consumer plumbing system

TEST 2 ‐ Upstream flow rates recorded by the old water meter without UFR

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.7 0.3

0.4

0.5

0.6

0.7

ow ra

te [m

3/h]

The presence of gap in the upstream flow rate without UFR shows the incapacity of the oldmeter to record low flow rates

10AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140

Flow

 rate [m

3/h]

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

0

0.1

0.2

50 55 60 65 70 75 80 85 90 95 100

Flo

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

EC Project Aquaknight 

TEST 2‐ The assessment of the impact of private storage tanks on water meteringwater metering(coordinated by UNIPA)

1AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

21/01/2015

1

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

This test will be implemented only in the pilots of AWCO

For each pilot site, 1‐5 users connections will be monitored in detail forevaluating the under‐registration errors of customer water metersinstalled upstream of private storage tanks and then to investigate the

2AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

installed upstream of private storage tanks and then to investigate theeffect of introducing UFR devices to reduce unmeasured flows.

The choice of the monitored customers will be made according to:

the size of the related revenue water meter,

the capacity of the related private tanks

the average value of the pressure on the private tank.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

The monitoring field campaign will involve 1‐5 customers at a time andwill be carried out in two different periods/phases each lasting betweentwo weeks to one month.

In the first period (2 weeks to one month) concurrently to the stage 3 of

3AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

p ( ) y gthe Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy with UFR will be analyzed.

In the second period (2 weeks to one month) concurrently to the stage 4of Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy without UFR will be analyzed.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

For each pilot site the analysis will require 2‐10 new AMR meters equipped withdata loggers able to record data with a time resolution of 1 min to be installedupstream and downstream the private tanks for monitored 1 to 5 customerseach time.

The same AMR meters (downstream the tank) will be uninstalled at the end ofthe second step of monitoring campaign (after one ‐ two months from thebeginning of the TEST2 concurrently to TEST1 stages 3 and 4) and will be again

4AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

beginning of the TEST2, concurrently to TEST1, stages 3 and 4) and will be againused to further monitor other 1 to 5 customers by installing it upstream anddownstream their tanks.

The monitoring of the last 1 to 5 customers in each sub‐district would take 1‐2months and will be conducted concurrently to TEST1, stage 5.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the first period of TEST 2 the monitoring scheme involved the use of:

• n°2 AMR class C turbine water meters (manufactured in accordance with the MID2004/22/EC) which will be installed one downstream and one upstream the private tank.Their installation should be done according to ISO 4064‐2:2005 and EN 14154‐2:2005+A1:2007 specifications. Each AMR will be equipped with a data logger able torecord water volume data with a time resolution of 1 min for two weeks/one month.

•n° 1 pressure gauge with a pressure range of 0‐10 bar, installed in the network not far

5AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia

from the monitored user connection, in order to measure and record network pressuredata every 15 minutes.

•The pressure gauges needed for the analysis will be the same adopted to monitorate theDMA.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the second period the monitoring scheme was the same without UFR

6AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Elaboration of the first consumer data recorded between 28 Nov ‐7 Dec 2013

Data where recorded without UFR from 28/11/2013 to 04/12/2013 at 12:58:00

From 04/12/2013 at 12:58:00 UFR was installed

Short period for the sake of providing data. The test will be completed (2 weeks each)Network pressure is adeguate to

supply the prive tank of the consumer

7AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

1

2

3

4

5

6

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

07/1

2/20

13

… 07

/12/

2013

07/1

2/20

13

… 07

/12/

2013

Upstream Pressure Upstream Flow totalizer Upstream Flow rate downstream Flow totalizer

21/01/2015

2

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Not revenue Water = 3.8% 

2.5

3

3.5downstream Flow totalizer

Upstream Flow totalizer

DW

8AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

‐0.5

0

0.5

1

1.5

2

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

Volume inflow =  2.98 m3Volume outflow = 3.10 m3Not Revenue Volume = 0.12 m3

Without UFR With UFR

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.6

0.7

Upstream flow rate without UFR

downstream  Flow rate

The impulsive trend of the upstream flow rate with UFR

shows the presence of

9AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

background losses in the consumer plumbing system

TEST 2 ‐ Upstream flow rates recorded by the old water meter without UFR

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.7 0.3

0.4

0.5

0.6

0.7

ow ra

te [m

3/h]

The presence of gap in the upstream flow rate without UFR shows the incapacity of the oldmeter to record low flow rates

10AQUAKNIGHT – Training, 11 Dec 2013, Tunis, Tunisia UNIPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140

Flow

 rate [m

3/h]

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

0

0.1

0.2

50 55 60 65 70 75 80 85 90 95 100

Flo

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

AQUAKNIGHTTest 3: Consumption ProfilesTest 3: Consumption Profiles

Goffredo La Loggia, UNIPAVincenza Notaro, UNIPA

Marios Milis, SG

1AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

1

General

Objective: The determination of customerdemand patterns and legitimate night use bycustomers

Important study since it will assist to analyse

2AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

the Minimum Night Flow (MNF) moreaccurately.

This study is been implemented in AWCO,SONEDE, IREN and WBL pilot projects

General Requirements

For each pilot site the analysis is requiring 2-10 new AMR meters (preferable, n°2 AMR class C turbine water meters manufactured in accordance with the standard EN 14154 based on the European Directive MID 2004/22/EC)

The measurements to be carried out WITHOUT UFR installed, The Water Meters to be equipped with data loggers able to record

3AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

The Water Meters to be equipped with data loggers able to record data with a time resolution of 1 minute.

For the test, consumers from different categories should be selected so as to be representative of the whole subzone.

The monitoring field campaign to involve 1-5 customers at a time and be carried out in two different periods each lasting two weeks-one month (minimum 2 weeks). This will consent to quantify differences between working and weekend days.

Test 3: Main Steps

1. Installation of Data Loggers on 1-5 consumers (preferably of different category)

2. UFR unit removal3. Water consumption recording with a time resolution of 1

minute (minimum 2 weeks)4 Send results to SG and UNIPA for preliminary analysis and

4AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

4. Send results to SG and UNIPA for preliminary analysis and assesment of the quality of the measurements

5. Installation of Data Loggers on other 1-5 consumers based on directions of SG and UNIPA after the analysis of the first measurements

6. Water consumption recordings on the new consumers with a time resolution of 1 minute ( minimum 2 weeks)

Test 3: WBL Pilot - General

Zone DMA 324 - AMR sub-zoneNumber of consumers in AMR sub-zone 78

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other - Domestic and commercial (offices and shops)

5AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

please specify)

Available Data Loggers 10

Data Loggers to be used for Test 3 5

Pressure in the network average pressure = 35 m

Units of the readings m3/h

Test 3: WBL Pilot - Consumers profile

Consumer Details Installation Details

Consumer 1 Office with 12 persons Volumetric class D equivalent meter, 15 mm

Consumer 2 Office with 3 persons Volumetric class D equivalent meter, 15 mm

Consumer 3 House with 5 persons Volumetric class D equivalent meter, 15 mm

Consumer 4 House with 5 persons Volumetric class D equivalent meter, 15 mm

6AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Consumer 5 House with 4 persons Volumetric class D equivalent meter, 15 mm

Consumer 6Flat (unknown personsnum) Volumetric class D equivalent meter, 15 mm

Consumer 7Flat (unknown personsnum) Volumetric class D equivalent meter, 15 mm

Consumer 8 Commercial - Bakery Volumetric class D equivalent meter, 15 mmConsumer 9 Commercial - Pizzeria Volumetric class D equivalent meter, 15 mm

Consumer 10Flat (unknown personsnum)

Volumetric class D equivalent meter, 15 mm

Test 3: WBL Pilot - Progress

1st Phase period 10 – 25 September 2013Data collected and sent to SG and UNIPA 10 October 2013

7AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

2nd Phase Period15 – 23 October 2013

Data collected and sent to SG and UNIPA 12 November 2013Data Statistical Analysis fordetermining Customer Demand Pattern Pending

2

Test 3: WBL Pilot - Data Analysis

050

100150200250300350400450500550600650700

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Ti [h ]

Working day pattern cosumer 1

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Number of PersonsAre there any pumps to feed water? No

Other Useful Info

Consumer and Data Logger Information

Office with 12 persons.                               

8AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Time [hours]

Min Mean Max

050

100150200250300350400450500550600650700

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Time [hours]

Week end day pattern cosumer 1

Min Mean Max

Installation DetailsWater Meter Type: Volumetric

Water Meter Class: MID Q3=2.5 R=315 (class D equivalent)

Water Meter Size: 15 mm

Water Meter model (Manufacturer/product id):  Sensus 620Data Logger model (Manufacturer/product id): Radcom Technologies ‐ Centurion

Installation Position:Installation Date: 10/09/2013

Begin of measurements Date: 10/09/2013 09:47

End of Measurement Date: 25/09/2013 11:19

Test 3: WBL Pilot - Data Analysis

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [l/h]

Working day pattern cosumer2

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Number of PersonsAre there any pumps to feed water? No

ll i il

Consumer and Data Logger Information

9AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Time [hours]

Min Mean Max

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24

User c

onsumption [l/h]

Time [hours]

Week end day pattern cosumer2

Min Mean Max

Installation DetailsWater Meter Type: Volumetric

Water Meter Class: MID Q3=2.5 R=315 (class D equivalent)

Water Meter Size: 15 mm

Water Meter model (Manufacturer/product id):  Sensus 620Data Logger model (Manufacturer/product id): Radcom Technologies ‐ Centurion

Installation Position:Installation Date: 10/09/2013

Begin of measurements Date: 10/09/2013 09:47

End of Measurement Date:

Test 3: SONEDE Pilot - General

Zone 752Number of consumers in AMR sub-zone 59

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other - Domestic

10AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

please specify)

Available Data Loggers 7

Data Loggers to be used for Test 3 5

Pressure in the network average pressure = 38 m

Units of the readings m3/h

Test 3: SONEDE Pilot - Consumers profile

Consumer Details Installation Details

Consumer 1 Domestic 3 persons KENT C 15

Consumer 2 Domestic 3 persons KENT C 15

KENT C 15

11AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Consumer 3 Domestic 4 persons KENT C 15

Consumer 4 Domestic 3 persons KENT C 15

Consumer 5 Domestic 4 persons KENT C 15

Test 3: SONEDE Pilot - Progress

1st Phase period 3 – 19 May 2013Data collected and sent to SG and UNIPA 22 May 20132013

12AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

2nd Phase PeriodPending

Data collected and sent to SG and UNIPA PendingData Statistical Analysis fordetermining Customer Demand Pattern Pending

Test 3: SONEDE Pilot - Data Analysis

Data Filled By Lassaad GUERMAZI

Data Checked by Abdallah BEN SLIMANE

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Other Useful Info 3 persons

Installation Details

Consumer and Data Logger Information

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 2 4 6 8 10 12 14 16 18 20 22 24

User c

onsumption [m

3/h]

Working day pattern cosumer1

13AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Water Meter Type: Kent

Water Meter Class: C

Water Meter Size: 15

Water Meter model (Manufacturer/product id):  Technolog

Data Logger model (Manufacturer/product id): Kent

Installation Position: HorizontalInstallation Date: 02/05/2013

Begin of measurements Date: 03/05/2013

End of Measurement Date: 19/05/2013

Installation Photo(s)

0 4 6 8 0 4 6 8 0 4

Time [min]

Min Mean Max

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Time [min]

Week end day pattern cosumer1

Min Mean Max

3

Test 3: SONEDE Pilot - Data Analysis

Data Filled By Lassaad GUERMAZI

Data Checked by Abdallah BEN SLIMANE

Consumer DetailsCategory (Domestic, Industrial, Other) Domestic

Other Useful Info 3 persons

Installation DetailsWater Meter Type: KentWater Meter Class: C

Consumer and Data Logger Information

02468

10121416182022

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Working day pattern cosumer 2

14AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia SG

Water Meter Size: 15Water Meter model (Manufacturer/product id):  TechnologData Logger model (Manufacturer/product id): Kent

Installation Position: HorizontalInstallation Date: 02/05/2013

Begin of measurements Date: 03/05/2013End of Measurement Date: 19/05/2013

Installation Photo(s)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [min]

Min Mean Max

02468

10121416182022

0 2 4 6 8 10 12 14 16 18 20 22 24

User con

sumption [m

3/h]

Time [min]

Week end day pattern cosumer 2

Min Mean Max

Test 3: IREN Pilot - General

Number of consumers in AMR sub-zone 30

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other -please specify)

Domestic

10 data loggers Aqualog T to be used for AMR

15AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Available Data Loggers

of max 3 meters each plus 2 data loggers Aqualog Master to be used for AMR of max 6 meters each

Data Loggers to be used for Test 3 7

Pressure in the network

Units of the readings m3/h

Test 3: IREN Pilot - Consumers profile

Consumer Details Installation DetailsConsumer 1

Consumer 2

Consumer 3

16AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Consumer 4

Consumer 5

Test 3: IREN Pilot - Progress

1st Phase period 4 – 21 October 2013Data collected and sent to SG and UNIPA 25th October (incomplete data)

17AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

2nd Phase PeriodPending

Data collected and sent to SG and UNIPA PendingData Statistical Analysis fordetermining Customer Demand Pattern Pending

Test 3: IREN Pilot - Data Analysis

Data not avalilable

18AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Test 3: AWCO Pilot - General

Number of consumers in AMR sub-zone 40

Consumer Categories in AMR sub-zone ( Domestic, Industrial, other -please specify)

Domestic

19AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Available Data Loggers ??

Data Loggers to be used for Test 3 ??

Pressure in the network ??

Units of the readings ??

4

Test 3: AWCO Pilot - Progress

1st Phase periodPending

Data collected and sent to SG and UNIPA

Pending

Pending

20AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

2nd Phase PeriodPending

Data collected and sent to SG and UNIPA

Pending

Data Statistical Analysis fordetermining Customer Demand Pattern

Pending

Test 3: AWCO Pilot - Data Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

User con

sumption [m

3/h]

Working day pattern cosumer111 days of recorded dataFrom 28 Nov to 7 Dec

21AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia SG

0 2 4 6 8 10 12

Time [min]

Min Mean Max

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

User con

sumption [m

3/h]

Time [min]

Week end day pattern cosumer1

Min Mean Max

Flow rate  data recorded by the AMR installed downstream the private tank

Test 3: Data Collection DB

Directions on filling the Data Collection DB excel file for Test 3 Read carefully the ‘Directions’ sheet of the excel

file.Fill th G l I f ti i ‘G l’ h t

22AQUAKNIGHT – 5th Training Course in MPC, 10 Dec 2013, Tunis, Tunisia

Fill the General Information in ‘General’ sheet and send it to SG ([email protected])

Update every week Send updated excel file to SG

AQUAKNIGHT 5th Training Course in MPCAQUAKNIGHT ‐ 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

L k C l l ti i DMA i W tLeakage Calculation in a DMA using Water Balance & MNF: A Real Case Study

Al d B tti SGIAlessandro Bettin - SGI

1AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

1

Calculation of Leakage in the Pilot DMA

Water balance

2AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Minimum Night Flow

IWA Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

12687

1.1.1.2

100000

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

1000

1.1.2.2

650

1.2 1.2.1 1.2.1.1

112687

1650

Unbilled Metered Consumption

Unbilled Un-metered Consumption

114337

112687

Distribution Input Volume Billed Metered Consumption

Billed Un-metered Consumption

3AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

150000 Water Losses Apparent Losses

300

1.2.1.2

680

1.2.2 1.2.2.1 Real Losses

33983

1.2.2.2

200

1.2.2.3

500

Leakage and Overflows at Utility’s Storage Tanks

980

34683

35663

37313

Leakage on Service Connections

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Minimum Night Flow 

4AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Simplified Leakage Calculation Method using historical customers consumption*

SGI

* Consumption tables taken from an Italian case  study

40

50

60

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

M_1

Minimum Night Flow 

5AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

0

10

20

30

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTA

TA (l/s)

Minimum Night UseMinimum Night Use

LEAKAGE*

* Includes background losses. They can be estimated using the burst and background estimates approach (BABE) developed in the UK

Customer Night Use Estimate

Gather and analyze historical Consumption from the utility billing system

Calculate average daily consumption for each category (domestic, commercial, industrial etc.)

6AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Calculate Minimum Nigh Use applying to the average consumption appropriate night factors

Special users should be considered separately 

(> 40 m3/d) 

1 – Gather Hystorical Consumption fromCompany Billing Data base

CODICE_TIP uso ConteggioDiCODICE_ULM COD_STAT DESCR_STAT ommaDiGENNAIommaDiFEBBRA

For each DMA extract users consumption records inside the DMA (per month orquarter depending on the accounting period)

For each user allocate a category: domestic, commercial, industrial, ecc.

FEB (m3)CUSTOMERS CATEGORY Customers N. JAN (m3)DescriptionID

7AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 29 A0101D Privato 217,96 196,84DDOMNR USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 1 F0103D di costruzione 4,88 6,07DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000030 PROVINCIALE 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000160 TE VARIO 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 000165 GENERICA 14,64 13,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 000240 ARTIGIANALE - 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 3 F0103D di costruzione 3,69 3,34DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0315A e drogherie, 0 0DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0321A art.profumeria, 8,13 7,35DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0322A suti per 2,79 2,52DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0324A dettaglio di 1,8 1,63DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0344A coli 1,28 1,15DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 G0350A etti arte,culto e 2,14 1,93DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 I0308A connesse alle 0,26 0,23DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0203A diverse da 2,57 2,32DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 2 L0308A liquidat.indipen 1,28 1,16DEXDOM USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 1 M0104A mediazione 0 0

2

2 – Calculate Average Daily Consumption

User Date Reading1

Date Reading2

N°days

Consumptionin the period

(m3)

Average Dailyconsumption

(m3/d)

For each user calculate the Average Daily Consumption (m3/d)= (Reading1‐Reading2)/(day2‐day1)

8AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

User 1 16/07/2012 02/09/2011 318 747.00 2.35

User 2 16/07/2012 02/09/2011 318 429.00 1.35

User 3 16/07/2012 05/09/2011 315 419.00 1.33

User 4 20/07/2012 30/08/2011 325 405.00 1.25

User 5 13/07/2012 05/09/2011 312 397.00 1.27

User 6 26/09/2012 07/09/2011 385 344.00 0.89

User 7 20/07/2012 30/08/2011 325 330.00 1.02

User 8 16/07/2012 02/09/2011 318 291.00 0.92

3 – Sum consumption per categoryDescrizione n_contatori mc/giornoUSO DOMESTICO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 30 6,78USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 40 3,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0 0,00COMUNITA' NON AVENTI FINI DI LUCRO 0 0,00ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 2 1,66USO DOMESTICO RESIDENTE - UTENZA SINGOLA 237 73,14USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0 0,00USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 1 0,35USO PUBBLICO - FONTANE CON CONTATORE 8 0,13USO PUBBLICO - FONTANE SENZA CONTATORE 0 0,00USO NON DOMESTICO - IDRANTI 8 0,04USO PUBBLICO IDRANTI 5 5 39

1. For the selected period(1M, 1Q, 1Y) aggregate users consumptionrecords in the DMA byCATEGORY (domestic, commercial, etc.) 

m3/dCUSTOMERS CATEGORY Customers N.

9AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

USO PUBBLICO - IDRANTI 5 5,39IDRANTI STRADALI - SENZA CONTATORE 0 0,00USO INDUSTRIALE ACQUA ORDINARIO 0 0,00USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0 0,00USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 593 77,76USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 935 234,95USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 1 0,12COMUNITA' NON AVENTI FINI DI LUCRO 8 18,20ACQUA NON POTABILE 0 0,00USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 90 125,16USO DOMESTICO RESIDENTE - UTENZA SINGOLA 3206 856,37USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 9 7,61USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 166 134,60USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 36 7,45USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0 0,00USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 33 1,95USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 2 0,00

Totale 5410 1555,41

2. Express usersconsumption in (m3/d) 

3. In principle it isimportant to divide customers by 3 categories: 

• Domestic

• Non Domestic

• Special Users

Descrizione indiceUSO DOMESTICO 0,2USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO PUBBLICO - FONTANE CON CONTATORE 1USO PUBBLICO - FONTANE SENZA CONTATORE 1USO NON DOMESTICO - IDRANTI 0USO PUBBLICO - IDRANTI 0

4 – For each category define Night Factor

Method 1 ‐ Night Factors (NF) from literature or similar experiences

Method 2 ‐Measurement of customers use profile with a high precision meter 

NFCUSTOMERS CATEGORY

10AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

USO PUBBLICO IDRANTI 0IDRANTI STRADALI - SENZA CONTATORE 0USO INDUSTRIALE ACQUA ORDINARIO 0,3USO AGRICOLO - AZIENDE AGRICOLE - ALLEVATORI 0,2USO DOMESTICO NON RESIDENTE - UTENZA SINGOLA 0,2USO NON DOMESTICO - ARTIG. COMM. UFF. IND. ECC. 0,3USO NON DOMESTICO - ARTIG. COMM. UFF. IND. - PIU' UNITA' 0,3COMUNITA' NON AVENTI FINI DI LUCRO 0,25ACQUA NON POTABILE 0USO PUBBLICO - STATO REGIONE EE. LL. U.S.L. 0,1USO DOMESTICO RESIDENTE - UTENZA SINGOLA 0,2USO DOMESTICO NON RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO RESIDENTE - PIU' UNITA' IMMOBILIARI 0,2USO DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,2USO NON DOMESTICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,25USO PUBBLICO ACQUA ORDINARIO - UTENZA CONDOMINIALE DI CONTROLLO 0,1USO DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0USO NON DOMESTICO - PRESA PROVVISORIA CON CONTATORE ACQUA TEMPORANEO 0

g pinstalled in series with the existing one

1‐60 minutes reading interval

Useful to estimate average meters error

Customer Night Use Estimate – Domestic Pattern 

11,21,41,61,8

2Domestic Consumption Pattern

11AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

An Italian case study from a sample AMR of 323 domestic meters – Values are  refereed to average  daily consumption0.2 is equivalent to 20% of average consumption

Domestic Night Factor: 0.2

5 – Special Users

Special users (>40 m3/d) should be monitored during the night where MNF is carried out

T k di h 15 30 i t

12AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Take reading each 15‐30 minutes

Special Users can be factories, hospitals, Commercial Units etc.

Add Night Consumption from Big Users to the Minimum Night Use calculated   

5 – Calculate Minimum Night Use

MNU (l/s) = MNUdom + MNUcom + MNUind+ SUNC

MNUDom (l/s) = DomAvCons. x DomNF

13AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

DomNF = Domestic Night Factor

DomAvCons = daily average consumption from billing system elaboration (l/s)

SUNC (l/s) = Special Users Night Consumption. To be recorded during the MNF analysis 

3

Alexandria Case Study

14AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Arama Pilot Area

Arama DMA

15AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

data about district Arama:

No. of inlets 1              VALVENo Closed boundary valves 7              VALVENo of flow monitors installed 1  ULTRASONICE FLOW METERNetwork length and prevalent material 1.3       km – Asbestos No. of connections/Km 166

16AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

/No. of meters 171          MASTER METERNo of customers (domestic, commercial etc.) 1200        SUB METEREstimated population 4800        PERSONSPrivate tanks (yes/no) NOMinimum and maximum elevation 8 ‐ 10     (m above sea level)Average pressure 25             meter

Water balance

1 1.1 1.1.1 1.1.1.1 A.Authorised Consumption Billed Authorised Consumption Revenue Water

433.9166667

1.1.1.2

0

1.1.2 1.1.2.1 B.Unbilled Authorised Non- Revenue Water (NRW)Consumption

0

1.1.2.2

0

Distribution Input Volume

(all figures in m3/day)

Billed Metered Consumption

Billed Un-metered Consumption

TILDE Simplified Water Balance using the IWA methodology (enter data in blue cells)

0

Unbilled Metered Consumption

Unbilled Un-metered Consumption

433.9166667

433.9166667433.9166667

17AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

0

1.2 1.2.1 1.2.1.1 564.75 Water Losses Apparent Losses

0

1.2.1.2

30.37416667

1.2.2 1.2.2.1 Real Losses

1.2.2.2

1.2.2.3

Unauthorised Consumption

Customer Metering Inaccuracies

Leakage on Transmission and/or Distribution Mains

Leakage and Overflows at Utility’s Storage Tanks

30.37416667

100.4591667

130.8333333

130.8333333

Leakage on Service Connections

6,00

7,00

8,00

9,00

10,00

s

Arama

ARAMA: 24hrs inlet flow monitoring2.2 Minimum Night Flow Analysis

18AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

0,00

1,00

2,00

3,00

4,00

5,00

05/05/2012 00:00

05/05/2012 02:30

05/05/2012 05:00

05/05/2012 07:30

05/05/2012 10:00

05/05/2012 12:30

05/05/2012 15:00

05/05/2012 17:30

05/05/2012 20:00

05/05/2012 22:30

FLO

W l/

s

DATE &TIME

Night Consumption = 1 l/s

Leakage = 1.22 l/s)

MNF Calculation

Domestic historical consumption = 5.02 l/s

Domestic Night Factor = 0.2 Legitimate night consumption = 1.00 l/s

19AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

Minimum Night flow measured = 2.22 l/s

Night Leakage = 2.22 l/s – 1.00 l/s = 1.22 l/s 

4

Compare MNF with Water Balance

Leakage MNF = 1.22 l/s

Leakage WB* = 1.16 l/s 

20AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

*Average Meters Error used in the Water Balance is 7%. This value should be evaluated with selected sample meter testing

Conclusion

All users in the DMA has to be considered

Readings have to be correct (take a pic)

Error in meters reading has to be correctly 

21AQUAKNIGHT – 5th Training Course in MPC10 Dec 2013, Tunis ‐ Tunisia

estimated

Night factors for each category has to be carefully estimated or measured

Special Consumers with high consumption need to be monitored overnight

AQUAKNIGHTQAQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

3rd Training Course in MED countries - 11 Dec 2013 - Tunis, Tunisia

Session Pressure ManagementSession - Pressure Management

International Best Practice for Pressure ManagementInternational Best Practice for Pressure Management

Marco Fantozzi IREN - Alessandro Bettin SGIMarco Fantozzi, IREN Alessandro Bettin, SGI

Training material provided by Marco Fantozzi ( )and Allan Lambert (WLRandA)

www.studiomarcofantozzi.it www.leakssuite.com

21/01/2015

1

International Pressure Management2001: IWA International Report: Water Loss Management & Techniques

– only 10 of 22 countries used Pressure Management to manage leakage– only 1 mentioned influence of high pressure on ‘damages’

2003: IWA Water Loss Task Force creates Pressure Management Group– practitioners, consultants, researchers from 10 countries– starts to publish articles, case studies, research into concepts….

W 21 i l O 2003 D 2006 A il 2011– Water 21 articles: Oct 2003, Dec 2006, April 2011– Papers at IWA Water Loss Conferences 2005, 2007, 2009, 2010, 2011

2012: IWA ‘Water Loss’ Conference, Manila– 525 delegates from 50 countries, 121 presentations– many papers and case studies of pressure management– all saying how pressure management reduces leak flow rates, burst

frequencies, and other benefits

IWA WATER LOSS SPECIALIST GROUP CONFERENCE STATISTICS

Pressure Management: IWA Water Loss Task Force Definition

The practice of managing system pressures to the optimum levels of service ensuring sufficient and efficient supply to legitimate uses and consumers, while:– reducing unnecessary or excess pressures– eliminating transients and faulty level controls

all of which cause the distribution system to leak unnecessarily

Basic, Intermediate and Advanced Pressure Management

• Basic: – identify and reduce transients and surges– achieve continuous supply (24/7 policy), even if at low pressure– strategic sectorisation of system

• separate transmission system from distribution system• monitor pressures, flows, bursts/leaks/repairs, complaints

control of service reservoir levels to avoid overflows– control of service reservoir levels to avoid overflows

• Intermediate:– create sub-sectors (Pressure Managed Areas or Zones)– reduce pressure using fixed outlet PRVs

• Advanced:– introduce time or flow modulation for valves and pumps

Pressure management benefits1. Reduction of leak flow rates

2. Reduction of numbers of new burst and leaks – reduces repair costs

3. Reduction of rate of rise of unreported leaks– reduces costs of active leakage control

4 Deferment of infrastructure renewal costs This rest of this

To make a financial case for pressure

management,we need practical methods to predict

these benefits

4. Deferment of infrastructure renewal costs– extends infrastructure asset life

5. Reduction of some components of consumption

6. Reduced and more efficient use of energy

7. Improved customer service– fewer interruptions, less damage to plumbing

This rest of this presentation will be anoverview of concepts and prediction methods • what we have used• methods that are being improved

• important topics thatneed more research

Australian WSAA PPS-3 Asset Management Project 2008-11Framework for targeting Leakage and Pressure Management

• Demand management (conservation benefits)• Water Utility: Asset Management, Cost reduction• Customer benefits

PRESSURE MANAGEMENT: REDUCTION OF EXCESS AVERAGE AND MAXIMUM PRESSURES

3 phases over 3 years, 3 reports, 10 Guidelines,3 customised national software programs

REDUCED EXCESS OR UNWANTED

CONSUMPTION

REDUCED REPAIR AND

REINSTATEMENT COSTS, MAINS

& SERVICES

REDUCED LIABILITY

COSTS AND REDUCED BAD

PUBLICITY

DEFERRED RENEWALS

AND EXTENDED

ASSET LIFE

REDUCED COST OF ACTIVE

LEAKAGE CONTROL

FEWER CUSTOMER

COMPLAINTS

FEWER PROBLEMS ON

CUSTOMER PLUMBING & APPLIANCES

REDUCED FREQUENCY OF BURSTS AND LEAKSREDUCED FLOW RATES

CONSERVATION BENEFITS CUSTOMER BENEFITS

REDUCED FLOW RATES

OF LEAKS AND BURSTS

REDUCED AND MORE EFFICIENT

USE OF ENERGY

WATER UTILITY BENEFITS

21/01/2015

2

Pressure Management

Pressure

Management

UnavoidableAnnual Real

Losses

Current Annual Real LossesActive LeakageControl

Speed and Quality of Repairs

Speed and quality

of repairs

Active Leakage Control

Pipe Materials Management:

selection,installation,

maintenance,renewal,

replacement

Pipeline and Assets

Management: Selection,

Installation, Maintenance,

Renewal, Replacement

Pressure: Leak Flow relationships

Use Fixed and Variable Area Discharges (J.May, 1994)• Leak flow rate L varies with average pressure PN1

• N1 = 0.5 for Fixed Area leaks • N1 = 1.5 for Variable Area leaks (area varies with pressure)• Assume average N1 = 1.0 for large systems, mixed pipe materials

– 10% reduction in average pressure gives 10% reduction in leak flow rate

Key prediction parameters areRATIO f

Relationships between Pressure (P) and Leak Flow Rate (L):L /L (P /P ) N1 • RATIO of average pressures

• predicted N1 value

• Leaks on rigid pipes are usually Fixed Area (N1= 0.5)10% reduction in pressure gives5% reduction in leak flow rates

• Undetectable backgroundleaks and splits on flexible pipes are Variable Area (N1=1.5)10% reduction in pressure gives15% reduction in leak flow rates

L1/Lo = (P1/Po) N1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

Ratio of Pressures P1/Po

Rat

io o

f Lea

k Fl

ow R

ates

L1/L

o

N1 = 0.50

N1 = 1.00

N1 = 1.50

N1 varies with pipe material and type of leak

Variable area leaks: N1 = 1.5

Undetectable small background leaks at joints

and fittings

Splits in flexible pipe

Fixed area leaks: N1 = 0.5

Ring cracks

Longitudinal splits in

rigid pipes.

Acknowledgement: Ken Brothers, Canada

Acknowledgement: Tardelhi Filho - SABESP

Holes drilled in pipes

(irrespective of material)

Corrosion holes

Acknowledgement: van Zyl, South Africa

Measuring and Predicting N1

• N1 is not fixed, for small zones– it varies with the mix of leaks that are present at any

particular time• N1 in a Zone can be assessed from a night test when

pressure is reduced in steps and changes in night flow are measured– but these tests are not easy to carry out

• N1 can also be predicted, using information on:– pipe materials (rigid or flexible)– Predominant types of failure– Leakage (as indicated by ILI or Snapshot ILI)

2. Predicting changes in numbers of bursts, leaks and repairs

• 1995: UK data suggests relationship between pressure and mains bursts

• 2003: influence of pressure on bursts not generally recognised– UK analysis of grouped bursts vs pressure shows no clear relationships– only a few individual case studies: Australia, Italy, New Zealand, UK

• 2004: Gold Coast (Australia) Case Studies– effective graphical presentation of monthly data, before and afterg p p y ,– WLTF members (Australia, Brazil, Italy, UK) collect 50 data sets

• 2005 Water Loss Conference : Paper by Pearson, Fantozzi, Soares, Waldron on the 50 data sets

– simple FAVAD equation (bursts vary with PN2) does not explain data– but paper suggests ideas for a conceptual approach to problem

• 2006: Water 21 Article (Thornton & Lambert): 110 examples, 10 countries – average % reduction in bursts = 1.4 x % reduction in pressure– conceptual approach to explain how pressure and other factors affect bursts

UK evidence of pressure: bursts relationships (1994-95)

810

100

0 er

year

UK: 16 District Metered AreasMains burst frequencies/1000 conns/year

30

40

Y/1

00 K

m/ Y

EA

R

UK : 10 large regions in Welsh WaterMains burst frequencies per 100 km per year

0246

0 20 40 60 80 100Average Pressure (metres)

Bur

sts

per

prop

ertie

sp

0

10

20

0 20 40 60 80 100AVERAGE PRESSURE (METRES)

MA

INS

BU

RS

T FR

EQ

UE

NC

Y

Source: John May (1994) Source: Morrison & Lambert (1995)

Mains burst frequency

varies with P3?

21/01/2015

3

2. Predicting changes in numbers of bursts, leaks and repairs

• 1995: UK data suggests relationship between pressure and mains bursts

• 2003: influence of pressure on bursts still not generally recognised– UK analysis of grouped bursts vs pressure showed no clear relationships– only a few individual case studies: Australia, Italy, New Zealand, UK

• 2004: Gold Coast (Australia) Case Studies– effective graphical presentation of monthly data, before and afterg p p y ,– WLTF members (Australia, Brazil, Italy, UK) collect 50 data sets

• 2005 Water Loss Conference : Paper by Pearson, Fantozzi, Soares, Waldron on the 50 data sets

– simple FAVAD equation (bursts vary with PN2) does not explain data– but paper suggests ideas for a conceptual approach to problem

• 2006: Water 21 Article (Thornton & Lambert): 110 examples, 10 countries – average % reduction in bursts = 1.4 x % reduction in pressure– conceptual approach to explain how pressure and other factors affect bursts

2. Predicting changes in numbers of bursts, leaks and repairs

• 1995: UK data suggests relationship between pressure and mains bursts

• 2003: influence of pressure on bursts not generally recognised– UK analysis of grouped bursts vs pressure showed no clear relationships– only a few individual case studies: Australia, Italy, New Zealand, UK

• 2004: Gold Coast (Australia) Case Studies– effective graphical presentation of monthly data, before and afterg p p y ,

• 2005 Water Loss Conference : Paper by Pearson, Fantozzi, Soares, Waldron on the 50 data sets

– simple FAVAD equation (bursts vary with PN2) does not explain data– but paper suggests ideas for a conceptual approach to problem

• 2006: Water 21 Article (Thornton & Lambert): 110 examples, 10 countries – average % reduction in bursts = 1.4 x % reduction in pressure– conceptual approach to explain how pressure and other factors affect bursts

2004: Gold Coast, Burleigh Heads Pilot Scheme: Gravity System, 3300 services, Inlet pressure reduced

by 30% (72 metres to 50 metres)Burleigh Waters - W DM Pilot Area

Daily Minimum Night Flows

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Dai

ly M

inim

um

Flo

w (

l/s trendline

Repairs Complete

Fixed OutletPressur e Co ntrol

Com missio ned 16 /09/ 03

F lo w M od ula tio nP ressure Con tro l

C omm iss io n ed 01/1 2/0 3

Flow M o dulation a djus tm ent 08/0 1/0 4N ig ht time pr essure out let red uce d

to 32 m d urin g m im um night flo ws

F low M od u lat io nse con d a djus tm e nt to

co ntro ller 2 8/0 1/0 4

Average MNF 6.20 l/sec

Average MNF 4.13 l/sec

Average MNF 3.77 l/sec

Average MNF 3.44 l/sec

AverageMNF 3.25l/sec

Be st a chieve d M N F

2.2 0 l itre s/sec

Night flow reducedfrom 6 litres/sec

to 3 litres/sec

Mains repairs reduced by 71%

Service pipe repairsreduced by 75%

0.00

26/0

8/2

003

31/0

8/2

003

5/0

9/2

003

10/0

9/2

003

15/0

9/20

03

20/0

9/2

003

25/0

9/2

003

30/0

9/2

003

5/1

0/2

003

10/1

0/20

03

15/1

0/2

003

20/1

0/2

003

25/1

0/2

003

30/1

0/2

003

4/1

1/2

003

9/1

1/2

003

14/1

1/2

003

19/1

1/20

03

24/1

1/2

003

29/1

1/2

003

4/1

2/2

003

9/1

2/2

003

14/1

2/20

03

19/1

2/2

003

24/1

2/2

003

29/1

2/2

003

3/0

1/2

004

8/0

1/2

004

13/0

1/2

004

18/0

1/2

004

23/0

1/2

004

28/0

1/2

004

2/0

2/2

004

7/0

2/2

004

12/0

2/2

004

17/0

2/2

004

Days

B u r le ig h D M A /P M A M a in t o M e t e r C o r r e c t iv e M a in t e n a n c e

0

1 0

2 0

3 0

4 0

5 0

6 0

Mar

-99

Jun-

99

Sep-

99

Dec

-99

Mar

-00

Jun-

00

Sep-

00

Dec

-00

Mar

-01

Jun-

01

Sep-

01

Dec

-01

Mar

-02

Jun-

02

Sep-

02

Dec

-02

Mar

-03

Jun-

03

Sep-

03

Dec

-03

Mar

-04

Jun-

04

Sep-

04

Dec

-04

Mar

-05

M o n t h

No.

Bre

aks

S e r v ic e B r e a k s

M a in s B r e a k s R e d u c t io n in S e r v ic e B r e a k s 7 5 %R e d u c t io n in M a in s B r e a k s 7 1 %

2004: Gold Coast, Burleigh Heads Pilot Scheme: the savings have continued since 2003

Source: Wide Bay Water/ Gold Coast Water

2. Predicting changes in numbers of bursts, leaks and repairs

• 1995: UK data suggests relationship between pressure and mains bursts

• 2003: influence of pressure on bursts not generally recognised– UK analysis of grouped bursts vs pressure showed no clear relationships– only a few individual case studies: Australia, Italy, New Zealand, UK

• 2004: Gold Coast (Australia) Case Studies– effective graphical presentation of monthly data, before and afterg p p y ,– WLTF members (Australia, Brazil, Italy, UK) collect 50 data sets

• 2005 Water Loss Conference : Paper by Pearson, Fantozzi, Soares, Waldron on the 50 data sets

– simple FAVAD equation (bursts vary with PN2) does not fully explain data– but paper suggests ideas for a conceptual approach to problem

• 2006: Water 21 Article (Thornton & Lambert): 110 examples, 10 countries – average % reduction in bursts = 1.4 x % reduction in pressure– conceptual approach to explain how pressure and other factors affect bursts

Reduction of Excess Pressure: UK examples

21/01/2015

4

WLTF – 1st 50 data sets, 2005Mains Bursts

0.6

0.8

1.0

1.2

1.4

1.6

Freq

uenc

y (n

o/km

/yr)

0.0

0.2

0.4

0 10 20 30 40 50 60 70 80 90 100Pressure (m)

Bur

st F

In 2005, unable to propose an approach to explain this data

By 2012, had found an equation for analysis and prediction

Water 21 articles

Water 21, 2006 pressure: breaks data analysis

Country Water Utility or System

Number of Pressure Managed Sectors in

study

Assessed initial

maximum pressure (metres)

Average % reduction

in maximum pressure

Average %

reduction in new breaks

Mains (M) or Services (S)

Brisbane 1 100 35% 28% M,S60% M70% S

Yarra Valley 4 100 30% 28% MBahamas New Providence 7 39 34% 40% M,S

59% M72% S58% M24% S

Sabesp ROP 1 40 30% 38% M80% M29% S64% M64% S50% M50% S30% M

58

33%

20%

70Caesb

30%23

65%

Australia Gold Coast 10 50%60-90

Bosnia Herzegovin Gracanica 3 50

Brazil Sabesp MS 1

Sabesp MO

SANASA 1

1

2

50 70%

10 countries, 112 systems

30% M70% S23% M23% S50% M50% S

Palmira 5 80 75% 94% M,SBogotá 2 55 30% 31% S

45% M40% S25% M45% S72% M75% S

Torino 1 69 10% 45% M,SUmbra 1 130 39% 71% M,S

USA American Water 1 199 36% 50% M112

Maximum 199 75% 94% All dataMinimum 23 10% 23% All data

Median 57 33.0% 50.0% All dataAverage 71 38.0% 52.5% M&S togetherAverage 36.5% 48.8% Mains onlyAverage 37.1% 49.5% Services only

39%

Halifax

32%

30%45

21 62

47.6

Canada

Armenia 10025

1 56

Lemesos 52.5

Sanepar 7

32%

Total number of systems

Colombia

EnglandUnited Utilities 10

7Cyprus

Italy

Bristol Water

33%

18% On average, 38% reduction in Pmax

produced 53% reduction in bursts

Source: Thornton & LambertWater 21, Dec 2006

Example: Burst Repair Frequencies,Wide Bay Water Pressure Management

Annual frequency of service connection repairs(per 1000 service conns/year)

05

10152025303540

2000

/2001

/2002

/2003

/2004

/2005

/2006Fr

eque

ncy/

100

0 co

nns/

year

ActualUARL figure

Annual frequency of mains repairs(per 100 km of mains/year)

02468

1012141618

9200

0

0/2001

/2002

2/2003

3/200

4

4/200

5

5/2006

Freq

uenc

y/10

0 km

/yea

r

ActualUARL figure

1999-2

0

2000/20

2001/20

2002/20

2003/20

2004/20

2005/20

• For mains in good condition, at 50m pressure, UARL formula assumes 13 breaks per 100 km mains/year

• Wide Bay Water data has been at or below this figure most years, and no significant or clear reduction in mains break frequency can be identified

• For service connections in good condition, at 50m pressure, UARL formula assumes 3 breaks per 1000 connections/year

• WBW frequency started at 11 times this figure, and has steadily reduced to 3 times (9 per 1000 conns/year) in 2005/06

1999

-2

2000

/2

2001/2

2002/2

2003/2

2004/2

2005

/2

21/01/2015

5

3. How pressure management influences the BABE components of Real Losses Influence of pressure on BABE components

of Real Losses• Background leakage at joints and fittings

– sensitive to changes in pressure– use FAVAD concept with N1 = 1.5

• Reported leaks and bursts– flow rates diminish FAVAD N1 depends on pipe material andflow rates diminish, FAVAD N1 depends on pipe material and

type of failure 0.5 < N1 < 1.5– reported burst frequency on mains and/or services may also

reduce

• Rate of Rise of unreported leakage– is theoretically reduced by the % reduction in pressure – this influences active leakage control costs (economic

intervention frequency) and volume of unreported real losses

4. Predicted change in deferment of mains and services renewals, and extension of asset life

• If a Utility has a policy ‘replace pipes if more than X repairs in Y years’, typical benefits can be assessed as schemes are implemented, bursts reduce and number of such renewals reduces

• average life of AC pipesincreases as maximum pressure reduces

Average life of AC pipes increases as maximum pressure reduces

80

90

100

year

s)

300DN Class C

Deferment of renewals and extension of infrastructure life will have the largest financial benefits; practical prediction methods are being developed

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Maximum pressure (metres)

Estim

ated

life

( 250DN Class C200DN Class C150DN Class C100DN Class CD

Source: John Black

• This data is from New Zealand

• does similar information exist for other pipe materials?

5. Predicting changes in Consumption

Use FAVAD concept, Consumption varies with Pressure PN3

• Usually only applied to residential property• Influenced by presence and location of storage tanks

‘Outside’ consumption usually more sensitive to pressure• Outside consumption usually more sensitive to pressure• Estimate the percentage of consumption ‘outside’ OC%• Suggested ‘Outside’ consumption exponent N3 is 0.5 • Suggested ‘In-house’ consumption exponent N3 is

– 0.00 for houses with private storage tanks– 0.05 - 0.1 for direct pressure systems

Rigid Orifice Devices, N3o = 0.5 Non-Rigid Orifice Devices, N3o = 0.75

• Pop-up Sprinklers • Soaker Hose

5. Predicting changes in ‘outside’ Consumption:results of field tests in Australia

• Spray Riser Network

• Oscillating Sprinkler

• Tri-arm sled

• Weeper Hose

5. Predicting changes in ‘In-house’ consumption:some examples of recent tests in Australia

• Comparisons of metered consumption in Zones ‘before’ and ‘after’ pressure management: – data adjusted for changes in consumption in control Zones

• Bench testing of toilet cisterns with leaking valvesleaking outlet valve N3 = 0; leaking inlet valve N3 = 0 5– leaking outlet valve, N3 = 0; leaking inlet valve, N3 = 0.5

21/01/2015

1

6. Improved Customer Service

• Fewer bursts> fewercomplaints

Pressure Management Area 6075Impact on customer contacts

0

10

20

30

40

50

60

70

80

2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9

Pres

sure

(mH

)

0

1

2

3

4

5

6

7

8

Cus

tom

er q

ueri

es

Pressure Control Valveinstallation - 40% reduction in pressure

65% reduction in customer cals related to leaks.

Source: B i t l W t UK 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9

Area inlet pressure Customer leak queries

Bristol Water, UK

• Less damage to customers’ plumbing– Australian plumbing standards now require

maximum 50 metres pressure to avoid reducing the life of customers’ appliances (taps and fittings) and excessive noise.

Where to measure pressure?

How to select the most appropriate type of pressure management?

Critical Point

Inlet Point

Average Zone Point

Where to measure pressure? • At the Inlet Point of the system, where flow entering the system is measured but there are other 2 points we should measure pressure:• At the Critical Point of the system to determine the fixed outlet of the PRV• At the Average Zone Point of the system to determine the pressure/flow characteristic and the relationship between maximum pressure and bursts frequency

P

Minimum Level of Service

Excess PressureHead Loss

Fixed Modulation PRV Time Modulation PRV Flow Modulated Pressure

Conclusion

• Pressure management is the foundation for efficient water loss management

• All of the benefits described can contribute to the financial justification of pressure management

• The pressure management option to be applied into a Zone or small distribution system should be based on the analysis of a 24-hour test in which inflows to the Zone are measured, together with pressures at the Inlet Point, Average Zone Point and Critical Point.

1

AQUAKNIGHT AQUA KNowledge and Innovation transfer for water savinG in tHe mediTerranean basin

6th Training Course in MPC

20 May 2014 Aqaba Water Company - Aqaba, Jordan

Tuesday 20 May 2014

Time Title Name , Partner

09:00-09:30 Welcome Note

09:30 - 10:00 Effect of UFRs in the reduction of apparent losses: Final Results and comparison with other case studies

Goffredo La Loggia

10:00 - 10:30 Effect of private tanks on apparent losses: Final Results and comparison with other case studies

Goffredo La Loggia

10:30 – 11:00 Coffee Break

11:00 - 11:30 Calculation of users consumption profiles: methodology and analysis of results in Pilot project

Marios Milis,

11:30 – 12:00 Errors in private meters: final results from pilot projects application

Goffredo La Loggia, Marios Milis

12:00 - 12:30 Best Practice for reducing commercial losses in MPC Goffredo La Loggia

12:30 - 14:00 Lunch Break

14:00 – 14:30 Presentation of final results on Leakage Control in MPC

Alessandro Bettin

14:40 – 16:00 Final resuming on Aquakninght Training Courses for MPC

Open discussion on next steps to achieve a permanent Active Leakage Control System (including physical and commercial losses) in MPC

Alessandro Bettin, All

Eff t f UFR i th d tiEffect of UFRs in the reduction of apparent losses: pp

Final Results and comparison with other case studieswith other case studies

Marco Fantozzi IRENMarco Fantozzi, IRENVincenza Notaro, Un. Palermo

1AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

1

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November 2013)3 Conclusions so far

2AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

3. Conclusions so far

IREN

ALEXANDRIA

Test 1 Apparent lossesAlexandria Pilot sub DMA

3AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Alexandria Sub DMA INFORMATION

Test 1 Apparent lossesAlexandria Pilot sub DMA

4AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Inlet to the subDMA

IREN

Alexandria SubDMA - Zone inflow graph, pressure graph

Test 1 Apparent lossesAlexandria Pilot sub DMA

5AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Alexandria SubDMA – Measurements at Inlet Point

Test 1 Apparent lossesAlexandria Pilot sub DMA

Alexandria Sub DMA El Mohagrin streetCUSTOMER METERS INFORMATION

6AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

7AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

2

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

8AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Part A: Under registrationwith old meters

Test 1 Apparent lossesAlexandria Pilot sub DMA

Test 1 Part B: Under registrationwith old meters & UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

9AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

INACCURATE METERS NO STORAGE TANKS

Presence of leak or illegalconnections?

Test 1 Apparent lossesAlexandria Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

PROBABLE PRESENCE OF LEAKAGE = 12 mc/day

10AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

INACCURATE METERS NO STORAGE TANKS

Unreliable results in Part D Presence of leak or illegal

connections?

Test 1 Apparent lossesAqaba Pilot sub DMA

AQABA

11AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Aqaba Sub DMA INFORMATION

Test 1 Apparent lossesAqaba Pilot sub DMA

12AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Inlet to the subDMA

IREN

Aqaba SubDMA - Zone inflow graph

Measurementat Inlet Point

Test 1 Apparent lossesAqaba Pilot sub DMA

13AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Aqaba SubDMA

3

Test 1 Apparent lossesAqaba Pilot sub DMA

Before Survey

Old Meters

Old with UFR

Bulk 438 242 527

Customer 219.1  117.7  272.6 

NRW 218.9  124.3  254.4 

NRW% 50 0% 51 3% 48 3%

14AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

NRW % 50.0% 51.3% 48.3%

Note: it is not appropriate to installtwo meters in series to accuratelymeasure the performance with UFR

Aqaba SubDMA – Test 1 Part A: Under registration with old meters

Test 1 Apparent lossesAqaba Pilot sub DMA

Part B: Under registrationwith old meters & UFRs

15AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

OLD INACCURATE METERS

STORAGE TANKS

4% Improvementdue to UFR

Test 1 Part C: Under registration with new meters with UFRsTest 1 Part D: Under registration with new meters without UFRs

Test 1 Apparent lossesAqaba Pilot sub DMA

AWC decided to repeat Test 1 in a different DMA due to:

16AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

- Incorrect meters installation in phase C,- Presence in the initial DMA of an illegal consumption not

detected which influence the reliability of the test.

New test data from the new DMA should be available inthe next months.

Test 1 Apparent lossesTunis Pilot sub DMA

TUNIS

17AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Tunis Sub DMA INFORMATION

Test 1 Apparent lossesTunis Pilot sub DMA

18AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Inlet to the subDMA

Tunis Sub DMA - Zone inflow graphMeasurementat Inlet Point

Test 1 Apparent lossesTunis Pilot sub DMA

19AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Customermeters

4

Test 1 Apparent lossesTunis Pilot sub DMA

Tunis Sub DMA: 762CUSTOMER METERS INFORMATION

20AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

PART B inconsistent data

21AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

OLD METERS NO STORAGE TANKS

2,5 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesTunis Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registration

with new meters without UFRs

22AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

NEW ACCURATE METERS NO STORAGE TANKS NO UNDER

REGISTRATION

Test 1 Apparent lossesLemesos Pilot sub DMA

LEMESOS

23AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Lemesos Sub DMA INFORMATION

Test 1 Apparent lossesLemesos Pilot sub DMA

24AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Inlet to the subDMA

Lemesos Sub DMA - Zone inflow graph

Test 1 Apparent lossesLemesos Pilot sub DMA

25AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Measurement at Inlet Point

Customermeters

Customermeters

with UFR

5

Test 1 Apparent lossesLemesos Pilot sub DMA

Lemesos Sub DMA: 324 AMR sub DMACUSTOMER METERS INFORMATION

26AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Test 1 Apparent lossesLemesos Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters with UFRs

27AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

ACCURATE METERS STORAGE TANKS

Small Improvementdue to UFR

with OLD meters

Test 1 Part C: Under registration with newmeters with UFRs

Test 1 Apparent lossesLemesos Pilot sub DMA

Test 1 Part D: Under registrationwith new meters without UFRs

28AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

ACCURATE METERS and UFRs

STORAGE TANKS

5,5 % Inaccuracywith NEW meters

without UFRs

Test 1 Apparent lossesGenova Pilot sub DMA

GENOVA

29AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Genova Sub DMA INFORMATION

Test 1 Apparent lossesGenova Pilot sub DMA

Customermeters

30AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Inlet to the subDMA

Inlet Flow meter

Genova Sub DMA - Zone inflow graph

Test 1 Apparent lossesGenova Pilot sub DMA

31AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Measurement at Inlet Point

Customermeters

with AMR

Customermeters

with UFR

6

Test 1 Apparent lossesGenova Pilot sub DMA

Genova Sub DMA: Leamara sub DMA Via MolinettoCUSTOMER METERS INFORMATION

32AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part A: Under registration

with old metersTest 1 Part B: Under registration

with old meters & UFRs

33AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

INACCURATE METERSNEW PIPES

NO STORAGE TANKS

4,4 % Improvementdue to UFR

with OLD meters

Test 1 Apparent lossesGenova Pilot sub DMATest 1 Part C: Under registration

with new meters & UFRsTest 1 Part D: Under registrationwith new meters without UFRs

34AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

ACCURATE METERS & UFRs + NEW PIPESNO STORAGE TANKS

5,3 % Inaccuracywith NEW meters

without UFRs

Contents of the Presentation

1. Introduction to Pilot sub-DMAs2. Pilot Activities to date (up to November

2013)

35AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

2013)3. Conclusions so far

Customer Meter Under‐registration CMU

Pilot DMA

Part A Customer Old Meter Under‐

registration CMU without UFRs

Part B Customer Old Meter Under‐

registration CMU with UFRs

Part CCustomer New Meter Under‐

registration CMU with UFRs

Part D Customer New Meter Under‐registration 

CMU without UFRs

UFR contribution with old meters (A‐B)

UFR contribution with new meters (D‐C)

Presenceof Private Storage Tanks

T t t b T t t b

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

36AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Aqaba** 50,9% 47,0%Test to berepeated

Test to berepeated 4,0 % ‐ Yes

Alexandria^ 12,94 % 12,07 % 2,5 %

Test to berepeated

16,4 %  0,8 % 14 % Yes

Tunis^^ 12,36% 9,78% ‐0,27 % ‐0,46 % 2,6 %No under 

registration No

Lemesos * 3,8 % 3,0 % 0,00 % 5,5 % 0,77% 5,5 % Yes

Genova * 9,85 % 5,42 % 0,10 % 5,33 % 4,4 % 5,3 % No

IREN

Test 1 Apparent losses EvaluationSummary (so far) Test 1 Pilot sub DMA

* In the case of Lemesos and of Genova,to take into account very small size of the pilots and good infrastructurecondition, a low reduced level of UBL (Unavoidable background leakage)has been considered as the most probable scenario.

^ In the case of Alexandria most probably the presence of an undetected

37AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

leak (around 12 mc/day) is effecting the test.A test has been planed with AWCO asap to check results.

** In Aqaba most probably the presence of an illegal connection iseffecting the test. Test is to be repeated in a different DMA.In addition it is not appropriate to install two meters in series to accuratelymeasure the performance with UFR.

^^ In Tunis increase in under registration in Part B is most probably dueto error in meters reading.

7

50,90%

47,00%

40,00%

50,00%

60,00%Under Registration CMU

Test 1 Apparent losses EvaluationTest Results

Aqaba test to be repeated

38AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

12,94%12,07%

2,50%

16,40%12,36%

9,78%

0 -0,46%3,80% 3,00%

0

5,50%9,85%5,42%

0,10%5,33%

-10,00%

0,00%

10,00%

20,00%

30,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

Aqaba Alexandria Tunis Lemesos Genova

IREN

Data to beverified

Test 1 Apparent losses EvaluationTest Results

12,94%

12,07%

16,40%

12,36%12,00%

14,00%

16,00%

18,00%Alexandria Tunis Lemesos Genova

Under Registration

CMU

Data to beverified

39AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

2,50%

9,78%

0 -0,46%

3,80%3,00%

0

5,50%

9,85%

5,42%

0,10%

5,33%

-2,00%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

Old Meter CMU without UFRs

Old Meter CMU with UFRs

New Meter CMU with UFRs

New Meter CMU without UFRs

IREN

Even if tests in Aqaba and in Alexandria are still to be completeddue respectively to presence of a leak and of an illegalconsumption, test results show that both meters replacementand introduction of the UFRs produce an increase in revenuefor the utility proving that a meter replacement policy is worth tobe introduced.

Conclusions (so far) Test 1 Pilot sub DMA

40AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

It will be possible to suggest meter replacement frequency and toestimate specific benefits achievable in each utility with metersreplacement plan and UFR installation after completing testanalysis at laboratory.

IREN

EC Project Aquaknight

Effect of private tanks on apparent losses:Final Results and comparison withFinal Results and comparison with other case studies

Vincenza Notaro(UNIPA)Vincenza Notaro(UNIPA)

1AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

21/01/2015

1

Influence of user’s consumption

Generally, the apparent losses due to meter under-registration are related to thepercentage of user’s consumption occurring at low and very low flow rates.

ion

2AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

A class C water meter with Qn = 1,5 m3/h can have a starting flow equal to 5-10l/h thus theoretically 77%% of consumption should be not registered. The percentageincreases with water meter aging and wearing process.

Flow rate (l/h)

% o

f use

r co

nsum

pt

UNIPA

User’s storage tanks

The causes affecting the share of consumption at low flowrates are the low network pressure and/or user’s storage tanksinterposed between the meter and the end user

This supply scheme is very common in the Mediterranean where water shortage often happens and the intermittent water supply is a common practice.

Float valve

3AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Privaterooftank

Network

Revenuewatermeter

Floatvalve

Userfixturesandappliances

UNIPA

Population reaction to water service intermittency

EMPLOYING LOCAL STORAGETANK

Collecting water Collecting water during service periods during service periods for using it when for using it when supply is not available supply is not available

4AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

4

term)

PRO Users reduce the impact of supply intermittency (short

term)CONS: SYSTEM OPERATING CONDITIONS ARE FAR FROM DESIGN ONES

The network pressure is often unable to provide a sufficient level of serviceFlow distribution is inequitable and not homogenous in space and timeNode demand depends on node water head and not on actual user consumptionUsers often over-design their tanks to consider possible higher water consumption

Effects of private storage tanks

Private tanks modify the demand profile of typicaldomestic users.

• The float valve in the tank dampens the instantaneous water demand and reducesthe flow rate passing through the meter.

• Slow closure of the float valve induces flow rates lower than the meter starting flow

5AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Rizzo and Cilia (2005)

When an old revenue meter iscoupled with a private watertank, it may not register evenmore than the 50% of thevolume passing through it

Unmeasured Flow Reducer ‐ UFR

The UFR is usually installed to accurately measure low flows, even below the start-up flow rate (toilette dripping, filling of WC tanks at low flow rates, leaks...)

The UFR begins to operate at very low flow rates and creates pulses of flow thatthe water meter can measure. The operating range of the UFR is [0, 25 l/h].

When the flow rate increases over themaximum value of the operative range of the

6AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

p gUFR, the UFR remains permanently open, notinterfering with measures.

Due to the change in the mode of water flow to pulses, the UFR enables the watermeter to measure low flow rates

Start up Flow Rate

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

This test was implemented only in the pilots of AWCO

According to the test 2 planning, 1‐5 user connection had to be monitoredin detail for evaluating the under‐registration errors of customer watermeters installed upstream of private storage tanks and then to investigate

7AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

meters installed upstream of private storage tanks and then to investigatethe effect of introducing UFR devices to reduce unmeasured flows.

The choice of the monitored customers has to be made according to:

the size of the related revenue water meter,

the capacity of the related private tanks

the average value of the pressure on the private tank.

UNIPA

21/01/2015

2

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

The monitoring field campaign have to involve 1‐5 customers at a timeand be carried out in two different periods/phases each lasting betweentwo weeks to one month.

In the first period (2 weeks to one month) concurrently to the stage 3 of

8AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

p ( ) y gthe Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy with UFR have to be analyzed.

In the second period (2 weeks to one month) concurrently to the stage 4of Step 3 of the TEST 1 the effect of the private storage tank on newcustomer meter accuracy without UFR have to be analyzed.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

The analysis required 2‐10 new AMR meters equipped with data loggers ableto record data with a time resolution of 1 min to be installed upstream anddownstream the private tanks for monitored 1 to 5 customers each time.

The same AMR meters (downstream the tank) were uninstalled at the end ofthe second step of monitoring campaign (after one ‐ two months from thebeginning of the TEST2 conc rrentl to TEST1 stages 3 and 4) and ere sed

9AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

beginning of the TEST2, concurrently to TEST1, stages 3 and 4) and were usedagain to further monitor other 1 to 5 customers by installing it upstream anddownstream their tanks.

The monitoring of the last 1 to 5 customers in each sub‐district would take 1‐2months and will be conducted concurrently to TEST1, stage 5.

UNIPA

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in Aqaba Pilot

In the first period of TEST 2 the monitoring scheme involved the use of:

• n°2 AMR class C turbine water meters (manufactured in accordance with the MID2004/22/EC) installed according to ISO 4064-2:2005 and EN 14154-2:2005+A1:2007specifications one downstream and one upstream the private tank.

• Each AMR was equipped with a data logger able to record water volume data with a timeresolution of 1 min for two weeks/one month.

• n° 1 pressure gauge (with a range of 0-10 bar ) installed in the network not far from theit d ti t d d t 15 i

10AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

monitored user connection to record pressure data every 15 min.

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering (coordinated by UNIPA)

In the second period the monitoring scheme was the same with UFR

Ballvalve

11AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

D

h,V

Privatetank

UFR+Flowmeter

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Elaboration of the first consumer data recorded between 28 Nov ‐7 Dec 2013

Data where recorded without UFR from 28/11/2013 to 04/12/2013 at 12:58:00

From 04/12/2013 at 12:58:00 UFR was installed

Short period for the sake of providing data. The test will be completed (2 weeks each)Network pressure is adeguate to

supply the prive tank of theconsumer

12AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

0

1

2

3

4

5

6

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 28

/11/

2013

28/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

29/1

1/20

13

… 29

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 30

/11/

2013

30/1

1/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

01/1

2/20

13

… 01

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

02/1

2/20

13

… 02

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 03

/12/

2013

03/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

04/1

2/20

13

… 04

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 05

/12/

2013

05/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

06/1

2/20

13

… 06

/12/

2013

07/1

2/20

13

… 07

/12/

2013

07/1

2/20

13

… 07

/12/

2013

Upstream Pressure Upstream Flow totalizer Upstream Flow rate downstream Flow totalizer

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Not revenue Water = 3.8% 

2.5

3

3.5downstream Flow totalizer

Upstream Flow totalizer

DW

13AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐0.5

0

0.5

1

1.5

2

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

Volume inflow =  2.98 m3Volume outflow = 3.10 m3Not Revenue Volume = 0.12 m3

Without UFR With UFR

21/01/2015

3

TEST 2 ‐ The assessment of the impact of private storage tanks on water metering in AWCO pilot

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.6

0.7

Upstream flow rate without UFR

downstream  Flow rate

The impulsive trend of theupstream flow rate withUFR shows the presence ofbackground losses in the

14AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

Flow

 rate [m

3/h]

Time [hours]

background losses in theconsumer plumbing system

TEST 2 ‐ Upstream flow rates recorded by the old water meter without UFR

Upstream and Downstream flow rates recorded with old water meter in two periods without and with UFR

0.7 0.4

0.5

0.6

0.7

te [m

3/h]

The presence of gap in theupstream flow rate without UFRshows the incapacity of the oldmeter to record low flow rates

15AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140

Flow

 rate [m

3/h]

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

0

0.1

0.2

0.3

50 55 60 65 70 75 80 85 90 95 100

Flow

 rat

Time [hours]

Upstream flow rate without UFR downstream  Flow rate

Apparent Losses and Roof Tanks

Comparison with other case studies

16AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Apparent Losses and Roof Tanks

Average roof tank size: 1m3

KitchenBathrooms

W h

Flow of water

10% of consumption directly to kitchen 90% of

consumption from tank to rest of house

Data LoggerPulse Count5min interval

Meter A Meter B

Meter C

Average roof tank size: 1m3

KitchenBathrooms

W h

Flow of water

10% of consumption directly to kitchen 90% of

consumption from tank to rest of house

Data LoggerPulse Count5min interval

Average roof tank size: 1m3

KitchenBathrooms

W h

Flow of water

10% of consumption directly to kitchen 90% of

consumption from tank to rest of house

Data LoggerPulse Count5min interval

Meter A Meter B

Meter C

Research in Malta has conclusively shown that even with new Class D (Qn=1.0m3/h) meters, between 5 to

10% of water consumed is not registered by the meters.

17AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Washroom

Garden

Washroom

Garden

Washroom

Garden

Upstream

Downstream

UpstreamUpstream

DownstreamDownstream

Upstream Downstream

After replacing the ballvalvewith a solenoid valve

Apparent Losses and Roof Tanks

Malta findings D Class meter under registration – roof tanks• New class D meters installed before and after roof tank

• 6%-9% less volume recorded on the inlet meter due to low flows from ball valves

• Changed control to solenoid system Cl DCl DCl DCl D

18AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Changed control to solenoid system

• Inlet meter registered 5%-9% more

• Potential for E1.5 million savings 3.75Lt/Hr 7.5Lt/Hr 1m3/Hr 2m3/Hr

Class D (Qn=1.0m3/Hr) Meter

Accuracy

Flow

5% under-recording

5% over-recording

2% over-recording

2% under-recording

3.75Lt/Hr 7.5Lt/Hr 1m3/Hr 2m3/Hr

Class D (Qn=1.0m3/Hr) Meter

Accuracy

Flow

5% under-recording

5% over-recording

2% over-recording

2% under-recording

3.75Lt/Hr 7.5Lt/Hr 1m3/Hr 2m3/Hr

Class D (Qn=1.0m3/Hr) Meter

Accuracy

Flow

5% under-recording

5% over-recording

2% over-recording

2% under-recording

3.75Lt/Hr 7.5Lt/Hr 1m3/Hr 2m3/Hr

Class D (Qn=1.0m3/Hr) Meter

Accuracy

Flow

5% under-recording

5% over-recording

2% over-recording

2% under-recording

Ball or Float Valve

Flow recorded by meter, at a flow above starting flow

Flow not recorded by meter, at a flow below starting flow

Water being consumed within household

Flow (Lt/Hour)

Time (Minutes)10 20 30 400

10

20

30

Flow recorded by meter, at a flow above starting flow

Flow not recorded by meter, at a flow below starting flow

Water being consumed within household

Flow (Lt/Hour)

Time (Minutes)10 20 30 400

10

20

30

Ball or Float Valve

Ball or Float Valve

Flow recorded by meter, at a flow above starting flow

Flow not recorded by meter, at a flow below starting flow

Water being consumed within household

Flow (Lt/Hour)

Time (Minutes)10 20 30 400

10

20

30

Flow recorded by meter, at a flow above starting flow

Flow not recorded by meter, at a flow below starting flow

Water being consumed within household

Flow (Lt/Hour)

Time (Minutes)10 20 30 400

10

20

30

Apparent loss reduction

Althought the installation of pulsing valves shows significanteffects on the apparent loss of meters between 10 to 15 yearsold;

however, some experimental study revealed that UFR providedlimited benefits when metering errors were very high, especiallyat low flow rates

19AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

at low flow rates.

Therefore, the identification of a reliable water meter replacingstrategy could be useful

21/01/2015

4

METER REPLACEMENT STRATEGY

WATER UTILITIES NEED TO ASSESS HOW FREQUENTLY METERS ARE WATER UTILITIES NEED TO ASSESS HOW FREQUENTLY METERS ARE BEING REPLACEDBEING REPLACED

20AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

SUPPLIED WATER VOLUMES ARE TOTALLY MEASURED AND ACCOUNTED FOR

WATER METERS MORE EFFICENT AND RELIABLE WATER METERS MORE EFFICENT AND RELIABLE

METER REPLACEMENT STRATEGY

The solution is generally obtained by minimising the average annual costs ofthe meter including both the meters cost and the unaccounted-for water:

• an early meter replacement will result in a higher average cost due to theinfluence of the initial fixed costs.

• if the meter is replaced too late, a significant loss of revenue caused bymetering inaccuracies will also increase the average cost

21AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Generally, utilities adopt as meter replacement policies simple rules linkedto the regulation of maximum meter age or total registered volume

But these policies ignore significant factors such as:

the actual working conditions of the meters,

the characteristics of household appliances

the habits of final consumers

REPLACEMENT INDICATORREPLACEMENT INDICATOR

In the paperC. M. Fontanazza, G. Freni, G.La Loggia, V. Notaro & V.Puleo “A compositeindicator for water metre replacement in an urban distribution network”, UrbanWater Journal, (2012) DOI:10.1080/1573062X.2012.690434"the authors propose a performance-based tool suggesting a consistentreplacement strategy of the meter installed in a water supply network to thereduction of apparent losses

22AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan 22

able to analyse the performance of the meters duringtheir operative life taking into account the differentfactors affecting the meters accuracy

DEFINITION OF A COMPOSITE INDICATORS “REPLACEMENT INDICATOR, RI= f(flow,pressure,meter age)

Errors in private meters: finalErrors in private meters: final results from pilot projects application

Vincenza Nota, University of Palermo

1AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

21/01/2015

1

User consumptions evaluationin a water distribution network

User water consumption is usually measured by turbin water meters

2AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Water meters provide essential data used by the utilities for: issuing bills, obtaining the system water balance, identifying failures in the network, water theft and anomalous user behaviors

UNIPA

Water meter intrinsic error

Despite their importance, water meters are characterized by intrinsicinaccuracies that change with the flow rate passing through the meter.

ε1 ε2

ErrorPerformance curve of a new water meter 

3AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Q1 Q2 Q3 Q4

‐20%

‐40%

‐60%

‐80%

‐100%

Flowrate[l/h]

ISO4064:2005

Q1 ≤Q < Q2 → ε ≤ ε1= 5%

Q2 ≤ Q ≤ Q4 → ε ≤ ε2= 2%

UNIPA

Water meter intrinsic error

Meter performance is related to:

• the TECHNICAL FEATURES OF THE METERTECHNICAL FEATURES OF THE METER• theMETER WEARING PROCESS (METER AGE)METER WEARING PROCESS (METER AGE)• theWATER QUALITYWATER QUALITY• the TEMPORAL PATTERN OF END USER DEMANDTEMPORAL PATTERN OF END USER DEMAND• the NETWORK PRESSURENETWORK PRESSURE

4AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

• the NETWORK PRESSURENETWORK PRESSURE

The meter inaccuracy can produce under‐registration errors of the watervolumes supplied by users

These errors are responsible for a part of so‐called apparent losses for waterutility: consisting of water volumes withdrawn from the network, consumed byusers but not paid for

Water meter inaccuracies are often considered to be the most significantcause of apparent losses and the hardest to quantify and reduce..

UNIPA

Influence of user’s consumption

Generally, the apparent losses due to meter under‐registration are related to thepercentage of user’s consumption occurring at low and very low flow rates.

sumption

5AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

A class C water meter with Qn = 1,5 m3/h can have a starting flow equal to 5‐10 l/h

thus theoretically the 7%7% of consumption should be not registeredThe percentage increases with water meter aging and wearing process.

Flow rate (l/h)

% of u

ser con

s

UNIPA

Tests on meters accuracy

For each test site:

5 of new meters will be previously calibrated in UNIPA 

A representative sample of 20 customers were selected in the DMA and the related old meters were delivered to Palermo University to be tested for a range of flows. 

6AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

selection was done by different: 

ages,

size,

registered volumes,

manufactures, 

typology,

UNIPA

UNIPA’s laboratory test bench

The accuracy of the selected meters was tested by the UNIPA’s laboratory test bench

The test bench is a weight calibration device compliant with the ISO 4064:2005 standard

It consists of:

• a water supply system (mains, 1 unpressurisedtank, 2 pumps);

• a test section in which the meter is placed;

• 4 flow meters to establish the approximateflow rates at which the meter is tested;

7AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

flow rates at which the meter is tested;

• 2 pneumatic and automatic gate valves;• 2 pressure gauges to measure the pressure

upstream and downstream the tested meter;

• 1 vacuum gauge;• 2 calibrated tanks, each placed on a precision

electronic balance;

• 1 temperature sensor• 1 a control panel

It is connected to a computer for test automation, acquiring the measurements andcomputing the results

UNIPA

21/01/2015

2

UNIPA’s laboratory test bench

Laboratory experiments were carried out in UNIPA laboratory in order:

• to estimate metering error curves for different flow meters classes and ages

• to find a direct link between meter age, network pressure and the apparentlosses caused by the incapability of the meter to accurately measure thevolume passing through it at low flow rates

8AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Class C; Q3 = 2.5 m3/h; DN 20 mm Class C; Q3 = 2.5 m3/h; DN 20 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

Class C; Q3 = 1.5 m3/h; DN 13 mm

‐6

‐4

‐2

0

2

4

6

0.001 0.01 0.1 1 10

Errore[%

]

The method used to determine measurement errors is the so‐called“collection” method in which the quantity of water passed throughthe water meter is collected in one collecting calibrated tank andthe quantity determined by weighing. The checking of themeasurement error consists of comparing the indications given bythe meter under test against the tank.

The “collection” method (ISO 4065:2003 ‐ Part 3)

9AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan A schematic of the

test benchUNIPA

Steps of meter test:1. Place the meter under test in the test section

10AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPAA schematic of the

test bench

Steps of meter test:2. Set test flowrates throughout the fluxmeters

11AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPAA schematic of the

test bench

Steps of meter test:2. Set test flowrates throughout the fluxmeters

The intrinsic error of the meter has to be determined for at least seven flowrates(the error at each flowrate being measured three times)

1. between Q1 and 1,1 Q1

2. between 0,5 (Q1 + Q2) and 0,55 (Q1 + Q2)3. between Q2 and 1,1 Q2

4. between 0,33 (Q2 + Q3) and 0,37 (Q2 + Q3)5 b t 0 67 (Q + Q ) d 0 74 (Q + Q )

12AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

5. between 0,67 (Q2 + Q3) and 0,74 (Q2 + Q3)6. between 0,9 Q3 and Q3

7. between 0,95 Q4 and Q4

A schematic of thetest bench

Steps of meter test:3. Run the test

13AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPAA schematic of the

test bench

A given volume passes through the meter and enters the tank at each flowrate.The metering error is determined comparing the indication of the meter and the volumecollected in the tank at each flowrate

21/01/2015

3

Steps of meter test:3. Run the test

14AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

+MPEL

Meteringerror

+MPEU

Upperzone

+2%

+5%

Results of meter test: meter error curve

15AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Flowrate

‐MPEL

‐MPEU

Q2 Q3 Q4Q1

Lowerzone

‐2%

‐5%

GENOVA

16AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Old water meters selected in the Genoa DMA

# calibro DES_VIA_CONTATORE civ DES_CAT CODFAB MATCON PORTATAANNO_FABBRICAZIONE DATA_INSTALLAZIONE

1 15 VIA DEL MOLINETTO 1 Domestico con T.A. Maddalena 641518 15 1985 22/01/1985

2 15 VIA DEL MOLINETTO 25 Domestico con T.A. Bosco 3061835 15 1985 15/03/1985

3 15 VIA DEL MOLINETTO 14 Domestico con T.A. Maddalena 71968 15 1995 08/08/1995

4 15 VIA DEL MOLINETTO 10 Domestico con T.A. Maddalena 126395 15 1996 05/02/1996

5 15 VIA DEL MOLINETTO 19 Domestico con T.A.Schiumberger/Schol 632317 15 1999 03/08/1999

6 15 VIA DEL MOLINETTO 13 Domestico con T.A.Schiumberger/Schol 455018 15 1999 10/11/1999

7 15 VIA DEL MOLINETTO 7 Domestico con T.A.Schiumberger/Schol 320448 15 2001 28/03/2001

8 15 VIA DEL MOLINETTO 14 Domestico con T A Schiumberger/Schol 276515 15 2003 05/05/2003

17AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

8 15 VIA DEL MOLINETTO 14 Domestico con T.A.Schiumberger/Schol 276515 15 2003 05/05/2003

9 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58309 15 2007 02/04/2008

10 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58310 15 2007 02/04/2008

11 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 58307 15 2007 02/04/2008

12 15 VIA DEL MOLINETTO 17 Domestico con T.A. Maddalena 149844 15 2008 12/12/2008

13 15 VIA DEL MOLINETTO 14 Domestico con T.A. Maddalena 25725 15 2009 12/01/2009

14 20 VIA DEL MOLINETTO 6 Domestico con T.A. Maddalena 7697 20 2009 12/02/2009

15 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 8568 15 2009 12/02/2009

16 20 VIA DEL MOLINETTO 2 Domestico con T.A. Maddalena 9694 20 2009 12/03/2009

17 15 VIA DEL MOLINETTO 23 Domestico con T.A. Maddalena 26714 15 2009 12/10/2009

18 15 VIA DEL MOLINETTO 19 Domestico con T.A. Maddalena 26646 15 2009 12/11/2009

19 15 VIA DEL MOLINETTO 16 Domestico con T.A. Maddalena 1079 15 2011 13/12/2011

20 15 VIA DEL MOLINETTO 19 Cantiere Maddalena 590031 15 1973 05/11/1973

Water meters selected in the Genoa DMA

OLD METERs ‐Multijet ‐ Class B and C

NEW AMR METER – Multijet – R160

18AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Test bench results: Genoa old water meterTest pressure: 2 bar

Brand Schiumberger/Schol

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class C       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 99‐455018 1 Q1 0.016 ‐26.32 0.016 ‐24.98 0.015 ‐24.97 0.016 ‐25.42

Age 14 2 0.5(Q1+Q2) 0.019 ‐12.93 0.019 ‐12.16 0.020 ‐5.10 0.019 ‐10.06

TEST ISO 4064:2005 3 Q2 0.024 ‐10.96 0.024 ‐9.85 0.024 ‐10.97 0.024 ‐10.59

Q1 0.015 4 0.33(Q2+Q3) 0.528 3.80 0.515 3.91 0.516 3.59 0.520 3.77

Q2 0.0225 5 0.67(Q2+Q3) 1.054 3.00 1.055 2.65 1.065 3.02 1.058 2.89

Q3 1 5 6 Q3 1 474 2 44 1 449 2 57 1 436 2 44 1 453 2 48

AverageTest point TEST 1 Test 2 Test 3

‐1001020

0 001 0 01 0 1 1 10

Watermeter99‐455018‐DN15mm‐ClassC

Each meter was tested three times and finally the average error curve was evaluated

19AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

Q3 1.5 6 Q3 1.474 2.44 1.449 2.57 1.436 2.44 1.453 2.48

Q4 3 7 Q4 2.959 1.80 2.965 3.91 2.975 0.14 2.966 1.95

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter99‐455018‐DN15mm‐ClassC

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐30‐200.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Average curve

21/01/2015

4

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046901 1 Q1 0.015 2.65 0.015 2.65 0.015 3.43 0.015 2.91

Age 0 2 0.5(Q1+Q2) 0.019 4.11 0.019 1.02 0.019 6.47 0.019 3.87

TEST ISO 4064:2005 3 Q2 0.024 7.51 0.024 2.59 0.024 3.18 0.024 4.43

Q1 [m3/h] 0 015625 4 0 33(Q2+Q3) 0 511 1 84 0 538 1 79 0 549 1 59 0 533 1 74

Test point TEST 1 Test 2 Test 3 Average

Test bench results: Genoa new AMRTest pressure: 2 bar

‐1001020

0.001 0.01 0.1 1 10

AMR‐Watermeter1330046901‐DN15mm

20AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 1.84 0.538 1.79 0.549 1.59 0.533 1.74

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.028 0.91 1.040 1.29 1.043 1.14 1.037 1.11

Q3  [m3/h] 2.5 6 Q3 1.377 1.20 1.447 1.01 1.439 1.61 1.421 1.27

Q4  [m3/h] 3.125 7 Q4 2.982 0.49 2.887 0.50 2.885 0.73 2.918 0.57

UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐30‐200.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Average curve

Test bench results: Genoa water meters

Test bench results were analysed classifyingthe meters in 5 age classes

CLASS 0 = new meters

21AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

CLASS 0 = new meters

CLASS 1 = meter age ranging between 1 – 5 years

CLASS 2 = meter age ranging between 5 – 10 years

CLASS 3 = meter age ranging between 10 – 15 years

CLASS 4 = meter age major than 15 years

UNIPA

Test bench results: Genoa water metersTest pressure: 2 bar

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS1‐ Age(0‐5years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS2‐Meterage[5‐10years)

‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

or[%

]

CLASS0‐ NewAMR

22AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS3‐MeterAge[10‐15years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

CLASS4‐MeterAge>15years

‐100‐90‐80‐70‐60‐50

Erro

Q[m3/h]

Test bench results: Genoa new water meterTest pressure: 5 bar

23AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

PRESSURE test 5 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046899 1 Q1 0.015 12.78 0.015 6.91 0.015 9.17 0.015 9.62

Age 0 2 0.5(Q1+Q2) 0.019 10.71 0.019 12.87 0.020 5.76 0.019 9.78

TEST ISO 4064:2005 3 Q2 0.023 15.40 0.024 11.55 0.024 8.34 0.024 11.76

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 3.03 0.516 3.14 0.512 2.70 0.513 2.96

TEST 1 Test 2 Test 3 AverageTest point

Test bench results: Genoa new AMRTest pressure: 5 bar

‐1001020

24AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.511 3.03 0.516 3.14 0.512 2.70 0.513 2.96

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.063 1.96 1.048 2.43 1.042 2.10 1.051 2.16

Q3  [m3/h] 2.5 6 Q3

Q4  [m3/h] 3.125 7 Q4

UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐100102030

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40‐30‐20100.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046899‐DN15mm

Average curve

Pressure test 5 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R160       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 1330046901 1 Q1 0.015 10.58 0.015 10.30 0.015 10.38 0.015 10.42

Age 0 2 0.5(Q1+Q2) 0.019 11.10 0.020 13.52 0.020 8.89 0.019 11.17

TEST ISO 4064:2005 3 Q2 0.024 11.77 0.023 9.36 0.023 13.49 0.023 11.54

Q1 [m3/h] 0.015625 4 0.33(Q2+Q3) 0.514 3.05 0.508 3.33 0.504 3.12 0.508 3.17

Q2  [m3/h] 0.025 5 0.67(Q2+Q3) 1.096 2.03 1.093 1.84 1.088 11.78 1.092 5.22

Q3  [m3/h] 2.5 6 Q3

Q4  [m3/h] 3.125 7 Q4

AverageTest point TEST 1 Test 2 Test 3

Test bench results: Genoa new AMRTest pressure: 5 bar

‐20‐1001020

0.001 0.01 0.1 1 10

]

25AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

UNIPA

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40‐3020

Error[%

]

Q[m3/h]

AMR‐Watermeter1330046901‐DN15mm

Average curve

21/01/2015

5

LEMESOS

26AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan IREN

Water meters selected in the Lemesos DMA

OLD METERs – Volumetric meters –CLASS DNEW AMR METERs– Volumetric R315 

27AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Old water meters selected in the Lemesos DMA

Address Meter No.DN   

(mm)Meter Brand and 

ModelType Class

Qn         (m3)

Year of manufacture

Register reading (m3)

Start of contract

Usage 2010      (m3)

Usage 2011     (m3)

Usage typology

WBL‐17 Filathlon & Amillas 7a (common) 38855 15 METRO Multijet B 3.0 1986 5130 n/a 313 296 Domestic

WBL‐64 Agias Philaxeos 227 44929 15 KENT PSM Volumetric D 1.0 2006 1138 2008 248 271 Domestic

WBL‐31 Amillas 4a 58820 15 METRO Multijet B 3.0 1987 3327 n/a 262 174 Domestic

WBL‐78 Agias Philaxeos 241 65846 15 KENT PSM Volumetric C 1.5 1996 5244 1997 330 368 Domestic

WBL‐42 Andrea Patsalide 4 76725 15 KENT PSM Volumetric C 1.5 1990 6403 n/a 241 262 Domestic

WBL‐57 Agias Philaxeos ‐ Karallis House 102173 15 KENT PSM Volumetric C 1.5 1995 6622 1995 315 334 Shop / offices

WBL‐2 Filias 1b 130100 15 KENT PSM Volumetric D 1.0 2002 2190 2003 285 283 Domestic

WBL‐12 Anthropinon Dikaiomaton 144568 15 KENT PSM Volumetric C 1.5 1996 26218 1997 1780 1384 Gym

28AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

WBL 12 Anthropinon Dikaiomaton 144568 15 KENT PSM Volumetric C 1.5 1996 26218 1997 1780 1384 Gym

WBL‐61 Agias Philaxeos ‐ Karallis House 151446 15 Actaris TD8 Volumetric D 1.0 2004 242 2005 36 62 Shop / offices

WBL‐4 Filias 3 156484 15 Actaris TD8 Volumetric D 1.0 2004 577 2006 28 20 Shop

WBL‐77 Agias Philaxeos 231 174510 15 Maddalena Multijet B 1.5 ? 9888 n/a 192 181 Domestic

WBL‐27 Amillas 6b 400847 15 Actaris TD8 Volumetric D 1.0 2003 1687 2004 231 270 Domestic

WBL‐55 Agias Philaxeos ‐ Karallis House 418262 15 SCHLUMBERGER P40 Volumetric C 1.5 1994 3933 1995 239 221 Shop / offices

WBL‐81 Agias Philaxeos ‐ Parodos 426539 15 Actaris Aquadis + Volumetric D 1.6 2009 19 2010 15 3 Domestic

WBL‐79 Agias Philaxeos ‐ Parodos 426541 15 Actaris Aquadis + Volumetric D 1.6 2009 181 2009 30 68 Domestic

WBL‐43 Andrea Patsalide 4a 509059 15 KENT PSM Volumetric C 1.5 1991 3908 1992 69 103 Domestic

WBL‐44 Andrea Patsalide 6 722401 15 KENT PSM Volumetric C 1.5 1992 1086 1993 171 211 Domestic

WBL‐33 Amillas 3a 3214893 15 SOCAM 501L Volumetric D 1.5 2000 1452 2002 87 86 Domestic

WBL‐16 Filathlon & Anthropinon Dikaiomaton 3215911 15 SOCAM 501L Volumetric D 1.5 2000 588 2002 56 44 Office

WBL‐25 Amillas 7 5302691 15 TAGUS MSV Volumetric D 1.0 2009 425 2010 0 236 Domestic

Only 22 meters were tested because three  meters arrived broken to UNIPA 

Test bench results: Lemesos water meters

Test bench results were analysed classifyingthe meters in 5 age classes

CLASS 0 = new meters

29AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan

CLASS 0 = new meters

CLASS 1 = meter age ranging between 1 – 5 years

CLASS 2 = meter age ranging between 5 – 10 years

CLASS 3 = meter age ranging between 10 – 20 years

CLASS 4 = meter age major than 20 years

UNIPA

Test bench results: Lemesos old water meterTest pressure: 2 bar

20 Water meter 400847 DN15mm Class D 20 Water meter 400847‐DN15mm‐Class D 20 Water meter 400847‐DN15mm‐Class D

Brand Actaris TD8

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class D       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 400847 1 Q1 0.011 ‐3.42 0.011 ‐1.42 0.011 ‐1.43 0.011 ‐2.09

Age 9 2 0.5(Q1+Q2) 0.014 ‐0.42 0.015 ‐0.42 0.015 0.93 0.014 0.03

TEST ISO 4064:2005 3 Q2 0.018 0.12 0.018 ‐0.42 0.018 ‐0.42 0.018 ‐0.24

Q1 [m3/h] 0.0075 4 0.33(Q2+Q3) 0.506 ‐1.13 0.513 0.04 0.515 ‐0.43 0.511 ‐0.51

Q2  [m3/h] 0.0115 5 0.67(Q2+Q3) 1.039 0.57 1.034 ‐0.30 1.032 0.57 1.035 0.28

Q3  [m3/h] 1 6 Q3 1.437 0.19 1.433 0.13 1.429 0.24 1.433 0.19

Q4  [m3/h] 2 7 Q4 2.900 ‐0.19 2.970 ‐0.50 2.963 ‐0.26 2.944 ‐0.32

Test point TEST 1 Test 2 Test 3 Average

‐30‐20‐1001020

0.001 0.01 0.1 1 10

[%]

Watermeter400847‐DN15mm‐ClassD

30AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter400847‐DN15mm‐ClassD

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter400847 DN15mm ClassD

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter400847 DN15mm ClassD

Test 1 Test 2 Test 3‐100‐90‐80‐70‐60‐50‐40

Error

Q[m3/h]Average

Test bench results: Lemesos new AMRTest pressure: 2 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R315       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 10485602 1 Q1 0.011 ‐3.42 0.012 ‐2.32 0.012 ‐2.33 0.011 ‐2.69

Age 0 2 0.5(Q1+Q2) 0.014 ‐3.13 0.014 ‐1.76 0.014 ‐1.77 0.014 ‐2.22

TEST ISO 4064:2005 3 Q2 0.018 1.84 0.018 0.19 0.018 ‐0.36 0.018 0.56

Q1 [m3/h] 0.007936508 4 0.33(Q2+Q3) 0.530 1.34 0.505 1.66 0.505 0.94 0.513 1.31

Q2  [m3/h] 0.012698413 5 0.67(Q2+Q3) 1.049 0.91 1.033 0.75 1.027 0.46 1.036 0.71

Q3  [m3/h] 2.5 6 Q3 1.408 0.43 1.437 0.52 1.437 0.30 1.427 0.42

Q4  [m3/h] 3.125 7 Q4 2.911 ‐0.03 2.853 0.33 2.978 0.13 2.914 0.14

Test point TEST 1 Test 2 Test 3 Average

‐1001020

0 001 0 01 0 1 1 10

AMR‐Watermeter10485602‐DN15mm

31AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90

‐80‐70‐60‐50‐40‐30

‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter10485602‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter10485602‐DN15mm

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter10485602‐DN15mm

Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40‐30‐200.001 0.01 0.1 1 10

Error[%]

Q[m3/h]Average

21/01/2015

6

Test bench results: Lemesos water metersTest pressure: 2 bar

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100 1000 10000

Error[%

]

Q [m3/h]

CLASS1‐ Age(1‐5years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100 1000 10000

Error[%

]

Q [m3/h]

CLASS2‐Meterage(6‐10years)

‐30‐20‐1001020

0.001 0.01 0.1 1 10 100 1000 10000

%]

CLASS0‐ NewAMR

32AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Q[m3/h] Q[m3/h]

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100 1000 10000

Error[%

]

Q[m3/h]

CLASS3‐MeterAge(11‐20years)

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100 1000 10000

Error[%

]

Q[m3/h]

CLASS4‐MeterAge>20years

Class B water meter‐100‐90‐80‐70‐60‐50‐4030

Error[

Q[m3/h]

R=315 (Class D) AMR

TUNIS

33AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Water meters selected in the Tunis DMA

OLD METERs‐ Volumetric – Multijet – Class CNEW AMR METERs– Multijet‐ R200

34AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Old water meters selected in the Tunis DMA

Number

Meter 

Identification 

code (ID)

Date from Date to

Consumption in 

the period of 

reference (m3)

Date from Date to

Consumption in 

the period of 

reference (m3)

Date of start of 

contract

Note on usage 

typology

DN meter 

(mm)Type Class

Age of the 

meter

29 1052735 25757 13/05/2010 11/02/2011 72 10/05/2011 20/02/2011 671 08/12/1997 domestique 15 Volumétrique C 1

61 10004880 93945 13/05/2010 11/02/2011 239 10/05/2011 20/02/2011 409 18/06/2010 domestique 15 Volumétrique C 2

45 90048458 30646 13/05/2010 11/02/2011 436 10/05/2011 20/02/2011 693 26/01/2001 domestique 15 Volumétrique C 2

6 71004702 11395 13/05/2010 11/02/2011 1242 10/05/2011 20/02/2011 1255 avant 98 domestique 15 Volumétrique C 3

46 113595 30838 13/05/2010 11/02/2011 674 10/05/2011 20/02/2011 593 30/03/2001 domestique 15 Volumétrique C 3

22 7577383 17419 13/05/2010 11/02/2011 740 10/05/2011 20/02/2011 603 29/05/2008 domestique 15 Volumétrique C 4

27 1496945102 25295 13/05/2010 11/02/2011 267 10/05/2011 20/02/2011 305 23/05/2008 domestique 15 Volumétrique C 4

35AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

39 74163 27168 13/05/2010 11/02/2011 145 10/05/2011 20/02/2011 150 avant 98 domestique 15 Volumétrique C 4

2 140694 11115 13/05/2010 11/02/2011 154 10/05/2011 20/02/2011 107 24/03/2008 domestique 15 Volumétrique C 4

56 6025823 73640 13/05/2010 11/02/2011 109 10/05/2011 20/02/2011 255 avant 98 domestique 15 Volumétrique C 6

25 3104139 22799 13/05/2010 11/02/2011 450 10/05/2011 20/02/2011 426 13/01/2004 domestique 15 Volumétrique C 8

34 317422 26383 13/05/2010 11/02/2011 789 10/05/2011 20/02/2011 669 avant 98 domestique 15 Volumétrique C 8

44 4047508 29349 13/05/2010 11/02/2011 513 10/05/2011 20/02/2011 275 03/04/2000 domestique 15 Volumétrique C 8

33 44732603 26206 13/05/2010 11/02/2011 574 10/05/2011 20/02/2011 760 19/06/2003 domestique 15 Volumétrique C 9

59 16491 81792 13/05/2010 11/02/2011 115 10/05/2011 20/02/2011 103 04/04/2002 domestique 15 Volumétrique C 10

50 127965 61247 13/05/2010 11/02/2011 226 10/05/2011 20/02/2011 284 21/07/2000 domestique 15 Volumétrique C 12

37 21162 26718 13/05/2010 11/02/2011 67 10/05/2011 20/02/2011 58 02/11/1999 domestique 15 Volumétrique C 13

5 9357725 11247 13/05/2010 11/02/2011 185 10/05/2011 20/02/2011 184 avant 98 domestique 15 Volumétrique C 14

12 102324 12603 13/05/2010 11/02/2011 273 10/05/2011 20/02/2011 579 avant 98 domestique 20 Volumétrique C 14

55 52950 71877 13/05/2010 11/02/2011 177 10/05/2011 20/02/2011 242 avant 98 domestique 15 Volumétrique C 14

Test bench results: Tunis old water meterTest pressure: 2 bar

Brand Actaris TD8

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class D       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 21162_26718 1 Q1 0.015 ‐17.21 0.015 ‐16.28 0.015 ‐44.72 0.015 ‐26.07

Age 13 2 0.5(Q1+Q2) 0.019 ‐9.17 0.019 ‐10.04 0.019 ‐13.23 0.019 ‐10.81

TEST ISO 4064:2005 3 Q2 0.023 ‐7.54 0.023 ‐8.23 0.023 ‐6.93 0.023 ‐7.57

Q1 0.015 4 0.33(Q2+Q3) 0.560 ‐2.10 0.558 ‐1.75 0.558 ‐1.82 0.559 ‐1.89

Q2 0.0225 5 0.67(Q2+Q3) 1.057 ‐2.53 1.063 ‐2.62 1.055 ‐2.84 1.058 ‐2.66

Q3 1.5 6 Q3 1.389 ‐3.32 1.395 ‐3.08 1.395 ‐3.03 1.393 ‐3.14

Q4 3 7 Q4 2 969 4 27 2 993 4 32 2 900 4 22 2 954 4 27

AverageTest point TEST 1 Test 2 Test 3

‐30‐20‐1001020

0.001 0.01 0.1 1 10

[%]

Watermeter151446‐DN15mm‐ClassD

36AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter151446‐DN15mm‐ClassD

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter151446‐DN15mm‐ClassD

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

20

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Watermeter151446‐DN15mm‐ClassD

Q4 3 7 Q4 2.969 ‐4.27 2.993 ‐4.32 2.900 ‐4.22 2.954 ‐4.27

Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40

Error

Q[m3/h]Average

Test bench results: Tunis new AMRTest pressure: 2 bar

1020 AMR‐Watermeter3268059‐DN15mm

90100110 AMR‐Watermeter3268059‐DN15mm

10

20 AMR‐Watermeter3268059‐DN15mm

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R200       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 3268059 1 Q1 0.015 1.09 0.015 ‐1.25 0.015 ‐3.61 0.015 ‐1.26

Age 0 2 0.5(Q1+Q2) 0.019 ‐0.46 0.019 ‐1.23 0.019 ‐0.46 0.019 ‐0.72

TEST ISO 4064:2005 3 Q2 0.025 ‐60.55 0.024 99.99 0.024 0.16 0.024 13.20

Q1 [m3/h] 0.0125 4 0.33(Q2+Q3) 0.519 6.70 0.518 2.85 0.518 0.92 0.518 3.49

Q2  [m3/h] 0.02 5 0.67(Q2+Q3) 1.052 0.40 1.044 0.56 1.045 0.35 1.047 0.44

Q3  [m3/h] 2.5 6 Q3 1.400 0.09 1.405 0.42 1.411 0.09 1.405 0.20

Q4  [m3/h] 3.125 7 Q4 2.902 ‐0.59 2.901 ‐0.67 2.903 ‐0.62 2.902 ‐0.63

AverageTest point TEST 1 Test 2 Test 3

20

37AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60

‐50‐40‐30‐20‐10010

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h] ‐100‐90‐80‐70‐60‐50‐40‐30‐20‐100102030405060708090

0.001 0.01 0.1 1 10Error[%

]

Q[m3/h]‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

AMR‐Watermeter3268059‐DN15mm

Average

21/01/2015

7

Test bench results: Tunis new AMRTest pressure: 2 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R200       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 3268059 1 Q1 0.015 1.09 0.015 ‐1.25 0.015 ‐3.61 0.015 ‐1.26

Age 0 2 0.5(Q1+Q2) 0.019 ‐0.46 0.019 ‐1.23 0.019 ‐0.46 0.019 ‐0.72

TEST ISO 4064:2005 3 Q2 0.025 ‐60.55 0.024 99.99 0.024 0.16 0.024 13.20

Q1 [m3/h] 0.0125 4 0.33(Q2+Q3) 0.519 6.70 0.518 2.85 0.518 0.92 0.518 3.49

Q2  [m3/h] 0.02 5 0.67(Q2+Q3) 1.052 0.40 1.044 0.56 1.045 0.35 1.047 0.44

Q3  [m3/h] 2.5 6 Q3 1.400 0.09 1.405 0.42 1.411 0.09 1.405 0.20

Q4  [m3/h] 3.125 7 Q4 2.902 ‐0.59 2.901 ‐0.67 2.903 ‐0.62 2.902 ‐0.63

AverageTest point TEST 1 Test 2 Test 3

1020 AMR‐Watermeter3268043‐DN15mm

10

20 AMR‐Watermeter3268043‐DN15mm10

20 AMR‐Watermeter3268043‐DN15mm

1020 AMR‐Watermeter3268043‐DN15mm

38AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐10010

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h] ‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

10

0.001 0.01 0.1 1 1

Error[%

]

Q[m3/h]Test 1 Test 2 Test 3

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐10010

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]Average

Test bench results: Tunis water metersTest pressure: 2 bar

‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100

Error[%

]

CLASS1‐Meterage(1‐5years)

‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10 100

Error[%

]

CLASS3‐ Age(10‐15years)

39AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100Q[m3/h]

‐100Q[m3/h]

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐10010203040

0.001 0.01 0.1 1 10 100

Error[%

]

Q[m3/h]

CLASS0‐ NewAMR

ALEXANDRIA

40AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Old water meters slected in Alexandria DMA

addessSheet n° on 

mapRegion block meter class type Acount No

Dia. Meter inch

rconsumption

2010

rconsumption

2011

Type of users

1 Elmohagreen street 104 603 112 990 c multi jet 6194 1/2 1277 1757 domestic2 Elmohagreen street 396 603 111 202 c multi jet 6504 1/2 1313 668 domestic7 Elmohagreen street 267 603 111 607 c multi jet 6895 3/4 2000 1800 domestic8 Elmohagreen street 248 603 111 617 c multi jet 6942 3/4 1000 890 domestic10 Elmohagreen street 308 603 112 319 c multi jet 6943 3/4 1884 1986 domestic12 Elmohagreen street 239 603 112 614 c multi jet 6994 3/4 2024 2845 domestic

41AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

12 Elmohagreen street 239 603 112 614 c multi jet 6994 3/4 2024 2845 domestic14 Elmohagreen street 201 603 112 216 c multi jet 8644 1/2 2128 1662 domestic15 Elmohagreen street 154 603 112 739 c multi jet 13823 1/2 40 135 domestic16 Elmohagreen street 145 603 111 760 c multi jet 14861 3/4 2760 2756 domestic17 Elmohagreen street 316 603 111 804 c multi jet 17499 3/4 1115 976 domestic19 Elmohagreen street 230 603 111 886 c multi jet 25831 3/4 1110 888 domestic20 Elmohagreen street 372 603 112 984 c multi jet 28848 1/2 812 1153 domestic21 Elmohagreen street 127 603 112 979 c multi jet 40995 1/2 226 5034 domestic23 Elmohagreen street 170 603 111 927 c multi jet 48734 3/4 302 198 domestic24 Elmohagreen street 253 603 112 176 c multi jet 52081 3/4 513 3693 domestic26 Elmohagreen street 334 603 111 930 c multi jet 56930 1/2 3257 3582 domestic29 Elmohagreen street 407 603 112 279 c multi jet 81859 3/4 627 434 domestic31 Elmohagreen street 278 603 112 85 c multi jet 203149 3/4 1478 1283 domestic32 Elmohagreen street 174 603 111 689 c multi jet 205795 1/2 2519 2795 domestic33 Elmohagreen street 362 603 111 929 c multi jet 218274 1/2 3397 3044 domestic

Water meters selected in the Alexandria DMA

OLD METER – Multijet – Class CNEW AMR METERs– Multijet – R200

42AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Test bench results: Alexandria old water metersTest pressure: 2 bar

AWCO did not furnish Unipa with age data of old water meters, therefore  the water meter classification linked to their age was not possible

0102030 Oldwatermeters‐DN20mm‐ClassC

43AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐100.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

21/01/2015

8

Test bench results: Alexandria old water metersTest pressure: 2 bar

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%]

Q[m3/h]‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

44AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q[m3/h]

Test bench results: Alexandria new AMR Test pressure: 2 bar

‐30‐20‐1001020

0.001 0.01 0.1 1 10

%]

CLASS0‐ NewAMR

45AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100‐90‐80‐70‐60‐50‐4030

Error[%

Q[m3/h]

Test on meter accuracy forAqaba Pilot sub DMA

AQABACurrently neither old and new meters from Aqaba pilot area

arrived at the University of Palermo for bench testing

46AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Old water meters slected in Alexandria DMA

Connection point

(building)

Meter point

Tank Size (m3)

Water Depth in Tank (m)

Tank Elevation

(m)

Subscription Date

Meter SerialInstallation

DateMeter Age

Total Metered Consumption (m3)

Hours since

installation

2 1 2 1 1.5 3 18-JAN-1988 337926 27-AUG-2008 5 676 14623 1 3 1 1.5 3 1-APR-199 341170 15-AUG-2004 10 714 29356 3 1 1 1 3 4-MAY-198 21042756 14-MAY-1988 26 2779 88729 5 1 2 1 3.5 15-SEP-1998 50481 30-MAR-2010 4 1248 882

14 7 4 1 1 3.5 02-FEB-2009 25239696 07-FEB-2009 5 72 129815 7 1 2 1 3.5 4-MAR-199 340771 04-MAR-1993 21 1312 711717 9 4 1 1 3 02-FEB-201 52753 04-FEB-2011 3 60 57122 11 3 1 1 3 30-SEP-1996 1362 22-MAR-2012 2 30 158

47AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

33 13 2 1 1 3.5 19-JAN-1992 599947 19-JAN-1992 22 1831 752736 15 3 1 1 3 27-JUL-2006 601851 28-JUL-2006 8 315 222337 15 4 1 1 3 27-JUL-2006 603518 28-JUL-2006 8 165 222348 47 6 1 1 3.5 11-JUN-2002 21057817 11-JUN-2002 12 522 373149 48 4 2 1 2.5 9-NOV-199 265 23-FEB-2012 2 29 18650 48 3 2 1 2.5 9-NOV-199 279119 13-FEB-2012 2 3 19656 50 1 1 1 3 25-SEP-2000 757255 25-SEP-2000 14 1758 435558 51 2 1 1 3 1-APR-199 523905 15-AUG-2004 10 1282 293559 51 4 1 1 3.5 26-JUL-2000 756002 26-JUL-2000 14 160 441660 51 5 1 1 3.5 26-JUL-2000 756346 26-JUL-2000 14 640 441664 52 1 1 1 2.5 12-JUL-1993 256834 12-JUL-1993 21 1178 698765 53 3 ? ? 01-APR-199 6 14-FEB-2012 2 2 195

Test bench results: Aqaba old water metersTest pressure: 2 bar

Brand JMC

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class B       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number 601851 1 Q1 0.033 ‐19.93 0.033 ‐19.05 0.033 ‐20.89 0.033 ‐19.96

Age 7 2 0.5(Q1+Q2) 0.080 ‐0.83 0.080 ‐1.21 0.081 ‐0.47 0.080 ‐0.84

TEST ISO 4064:2005 3 Q2 0.130 1.57 0.132 1.54 0.131 2.28 0.131 1.80

Q1 [m3/h] 0.03 4 0.33(Q2+Q3) 0.539 2.11 0.542 1.87 0.542 1.87 0.541 1.95

Q2  [m3/h] 0.12 5 0.67(Q2+Q3) 1.099 2.08 1.123 2.62 1.120 1.77 1.114 2.16

Q3  [m3/h] 1.5 6 Q3 1.385 2.25 1.426 2.26 1.416 2.32 1.409 2.28

Q4  [m3/h] 3 7 Q4 2.918 2.59 2.871 2.30 2.858 2.76 2.882 2.55

Test point TEST 1 Test 2 Test 3 Average

48AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Test 1 Test 2 Test 3

Average

Test bench results: Aqaba old water metersTest pressure: 2 bar

‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

CLASS0‐ NewAMR

‐100‐90‐80‐70‐60‐50‐40‐30‐20‐1001020

0.001 0.01 0.1 1 10

Error[%

]

Q [ 3/h]

CLASS1‐ Age(1‐4years)

49AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

‐100Q[m3/h]

Q[m3/h]

21/01/2015

9

Test bench results: Aqaba new AMR water meters ‐ Test pressure: 2 bar

Diameter DN15 (1/2'') Nr. Point Flowrate Error Flowrate Error Flowrate Error Flowrate Error

Class R100       [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]  [m3/h]  [%]Serial number AW000004 1 Q1 0.027 ‐1.74 0.027 2.65 0.026 2.74 0.027 1.22

Age 0 2 0.5(Q1+Q2) 0.034 0.90 0.034 4.36 0.034 2.66 0.034 2.64

TEST ISO 4064:2005 3 Q2 0.044 0.17 0.044 1.09 0.044 0.63 0.044 0.63

Q1 [m3/h] 0.025 4 0.33(Q2+Q3) 0.936 ‐0.54 0.906 ‐1.47 0.907 ‐1.47 0.917 ‐1.16

Q2  [m3/h] 0.04 5 0.67(Q2+Q3) 1.703 ‐1.85 1.716 ‐1.29 1.719 ‐1.11 1.713 ‐1.42

Q3  [m3/h] 2.5 6 Q3 2.403 1.54 2.388 ‐0.67 2.376 ‐0.34 2.389 0.18

Q4  [m3/h] 3.125 7 Q4 2.887 ‐0.71 2.896 ‐0.96 2.895 0.05 2.893 ‐0.54

Test point TEST 1 Test 2 Test 3 Average

50AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Test 1 Test 2 Test 3

Average

UNIPA activities performed in the period: 7 June 2013 ‐ 6 December 2013

Task Action Description of Activities Performed1 1.4 Aiding SGI into organisational matters for pilot cases2 2.1 Aiding SGI into supporting Water Utilities on about the essential requirements of equipment for

active leakage control and for AMR of users water consumption in the pilot areas2 2.3 Preparation of documentation materials useful for the definition of a best practice manual to

provide to utilities, aimed at the reduction of NRW2 2.5 Calibration in UNIPA laboratory test bench of 5 new AMR before their installation in the pilot sites

and of 20 the old meters replaced in the case study areas (Tunis, Genoa, Alexandria, Lemesos)

Analysis of the test bench results

51AQUAKNIGHT – 6th Training Course in MPC, 20 May 2014, Aqaba, Jordan UNIPA

Aiding Signal Generics in the determination of customer demand patterns and legitimate night useby customers

3 3.1 Preparation of documentation materials useful for training courses on water meter accuracy and onpractical management of NRW. Lecturing in training course organised in Lemesos (17 July 2013)

Preparation of documentation materials useful for training courses on practical management of NRWand on presentation of bench testing results. Lecturing in training course organised in Genoa (28November 2013).

Preparation of documentation materials useful for training courses on practical management of NRWand on presentation of bench testing results. Lecturing in training course organised in Tunis (10‐11December 2013).

3 3.2 Support for the analysis and explanation of the results related to the pilots5 5.2 Contribution to project management

AQUAKNIGHT 6th Training Course in MPCAQUAKNIGHT ‐ 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

P t ti f fi l lt L kPresentation of final results on Leakage Control in MPC

Al d B tti SGIAlessandro Bettin - SGI

1AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

1

Activities in all pilot areas

2.1 Procurement of Equipment, Infrastructure and subcontracts

2.2 Active Leakage Control2.3 Calculation of NRW components2 4 E l ti f R l L

2AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

2.4 Evaluation of Real Losses2.5 Evaluation of Apparent Losses

D4

Overpressure towardstouristic zone

Pilot Area ‐ TUNIS

3AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

D1 R2500

R500

D3D2

TUNISIA Pilot Area: Zero Pressure Test

Pressure test for isolation of the network

R2500

R500

Network of the pilot area

P1

4AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Network of adjacent area

P1

P2

AWCO ‐ Pilot area Arama

5AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

6AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan 7

AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

2

AWC Bulk Meter Installation

8AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Activity 2.2. ALC

Activity 2.2 – Active Leakage Control activities to beconducted within the period (1 of 2)

Sonede AWCO AWC WBL IREN

  Installation of flow monitor at DMA inlet Y Y Y Y Y

  Installation of Pressure Reduction Valves (PRVs) Y NA NA Y Y

  Installation of pressure sensors in the district Y Y Y Y Y

9AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

  Zero Pressure Test to verify district isolation Y Y Y Y Y

  Analysis of flow / pressure profiles Y Y Y Y Y

  Average trading / commercial use (from billing records)

Y NA Y Y Y

  Quantification of domestic customer use Y Y Y Y Y

  Minimum Night Flow Analysis Y Y Y Y Y

TUNISIA Pilot : 2.3. Water Loss Calculation(Estimated Water Balance)

1 Di t ib ti

1.1 AuthorisedConsumption1740 m3/day

1.1.1 BilledAuthorisedConsumption1700 m3/day

1.1.1.1 Billed MeteredConsumption 1700 m3/day 1700 m3/day

RevenueWater1.1.1.2 Billed Un-metered

Consumption 0 m3/day1.1.2 UnbilledAuthorisedConsumption40 3/d

1.1.2.1 Unbilled MeteredConsumption 0 m3/day

1.1.2.2 Unbilled Un-meteredConsumption 40 m3/day

10AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

1. DistributionInput Volume2100 m3/day

40 m3/day

400 m3/dayNon- RevenueWater(NRW)

Consumption 40 m3/day

1.2 Water Losses360 m3/day

1.2.1 ApparentLosses80 m3/day

1.2.1.1 Unauthorised Consumption 0 m3/day

1.2.1.2 Customer MeteringInaccuracies 80 m3/day

1.2.2 RealLosses280 m3/day

1.2.2.1 Leakage onTransmission and/orDistribution Mains280 m3/day1.2.2.2 Leakage and Overflowsat Utility’s Storage Tanks0 m3/day

Sonede AWCO AWC WBL IREN

  Leak detection (noise loggers, correlators, step test, etc.)

Y Y Y Y Y

  Leak repairs Y NA Y Y Y

Activity 2.4 . Evaluation of Real Losses

11AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

  Quantify water recovered Y NA Y Y Y

40

50

60

UE PALM ‐ AREA URBANA BUCACCIO  ‐ MONITORAGGIO PER MODELLO 

M_1

Minimum Night Flow 

12AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

0

10

20

30

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

PORTA

TA (l/s)

Minimum Night UseMinimum Night Use

LEAKAGE*

* Includes background losses. They can be estimated using the burst and background estimates approach (BABE) developed in the UK

5 – Special Users

Special users (>40 m3/d) should be monitored during the night where MNF is carried out

T k di h 15 30 i t

13AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Take reading each 15‐30 minutes

Special Users can be factories, hospitals, Commercial Units etc.

Add Night Consumption from Big Users to the Minimum Night Use calculated   

3

5 – Calculate Minimum Night Use

MNU (l/s) = MNUdom + MNUcom + MNUind+ SUNC

MNUDom (l/s) = DomAvCons. x DomNF

14AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

DomNF = Domestic Night Factor

DomAvCons = daily average consumption from billing system elaboration (l/s)

SUNC (l/s) = Special Users Night Consumption. To be recorded during the MNF analysis 

6,00

7,00

8,00

9,00

10,00

s

Arama

2.2 Minimum Night Flow Analysis – ARAMA AWCO

15AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

0,00

1,00

2,00

3,00

4,00

5,00

05/05/2012 00:00

05/05/2012 02:30

05/05/2012 05:00

05/05/2012 07:30

05/05/2012 10:00

05/05/2012 12:30

05/05/2012 15:00

05/05/2012 17:30

05/05/2012 20:00

05/05/2012 22:30

FLO

W l/

s

DATE &TIME

Night Consumption = 1 l/s

Leakage = 1.22 l/s

MNF Calculation

Domestic historical consumption = 5.02 l/s

Domestic Night Factor = 0.2 Legitimate night consumption = 1.00 l/s

16AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Minimum Night flow measured = 2.22 l/s

Night Leakage = 2.22 l/s – 1.00 l/s = 1.22 l/s 

MNF Calculation with new Night Factor0.4

Domestic historical consumption = 5.02 l/s

Domestic Night Factor = 0.4 Legitimate night consumption = 2.00 l/s

17AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Minimum Night flow measured = 2.22 l/s

Night Leakage = 2.22 l/s – 2.00 l/s = 0.22 l/s 

Head reservoir Monitoring Flow

Have Special Customers Consumption been considered at night?

SONEDE – La Marsa MNF

18AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

5 l/s = 18 m3/h1.9 l/s = 6.8 m3/h

been considered at night?

AWC ‐ Leak Detection

Number of customers: ~2260

Number of connections: ~680

Length of pipe: 24.7 km

Leakages found and repaired: 23 (3.4% of connections, ~1/km)

Estimated water recovery: 12.5 m3/h at least (~20% of input)

Illegal connections found: 11 (0.5% of customers)

19AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

g ( )

Not all illegal connections could be detected.

Number of tilted meters: 327 (14.5% of meters)

Most of them repaired

Meter error: estimated 23% (37 Old meters tested against volumetric meters in series)

4

AWC ‐ Leak Detection

20AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

AW

AWC– Test 1 Evaluation of illegal use

New subzone Has been found to have only 0.04 m3/h flowrate after closing almost all meters.

Within the subzone 37

21AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Within the subzone, 37 meters were tested in series with new volumetric meters. A difference of 23% was found. 

AW

Background leaks,  hard to discover because of: 

Presence of factors producing poor quality leaknoise: low pressure, soft backfill, encrustedpipes etc

AWCO ‐ Leak Detection in Arama Pilot Area

22AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

pipes, etc..

Material of pipes: Asbestos cement, Teeconnections mixed materials

Lack of accessible points for correlations

Leak detection with correlator

AWCO ‐ Leak Detection in Arama Pilot Area

23AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

AWCO ‐ Commercial Losses

21 obscured and not working meters werereplaced in ARAMA

23 broken meters were replaced in ARAMA district + 31 old working meters were replaced

24AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

with new AMR in El Mohagrin subdistrict

Total meters replaced: 75 of 177

Losses percentage decreased to 22% from 35% 7% reduction commercial losses

Performance Indicators

25AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

5

Next Steps

11,21,41,61,8

2Domestic Consumption Pattern

26AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

00,20,40,60,8

1

0 2 4 6 8 10 12 14 16 18 20 22 24

An Italian case study from a sample AMR of 323 domestic meters – Values are  refereed to average  daily consumption0.2 is equivalent to 20% of average consumption

Domestic Night Factor: 0.2

How to discover the right figures in Water Balance

Error in meters reading has to be correctly estimated 

laboratory test of sample meters

A i ht d i

27AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Average weighted error using average customers profile

Recalculate Water Balance with correct meters error

How to discover the right figures in  Minimum Night Flow

Night factors for each category has to be carefully estimated or measured (suitable sample of customers)

S i l C ith hi h ti

28AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

Special Consumers with high consumption need to be monitored overnight

FINAL RESUMING ON AQUAKNIGHT

AQUAKNIGHT ‐ 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

29AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

FINAL RESUMING ON AQUAKNIGHT TRAINING FOR MPCOPEN DISCUSSION

Alessandro BettiN, All

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

Water Balance•IWA international

30AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

1 AWCO, Alexandria

24-25 Apr 2012•IWA international Standard

•Application of Water Balance Calculation

•Measurement and Estimate of Water Balance components

25

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

Leakage Control

31AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

2 SONEDE, Tunis 27-28 Jun 2012Technologies •Economic Level of Leakage - ELL

•Benchmarking•Best practices for DMA set-up and management

22

6

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

Tests for evaluation of commercial losses & AMR

32AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

3 AWC, Aqaba 10-11 Dec 2012

AMR •Administrative losses and tests on meters accuracy. Laboratory bench tests.

•Enhancement of water metering by UFR

•Assessment of the impact of private storage tanks on water metering

•Automatic Meter Readers - AMR

23

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

International Best Practices •Definition of a leakage

33AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

4 AWCO, Alexandria

14 May 2013

Definition of a leakage management strategy

•Leakage estimate with water balance

•Leakage measurement with Minimum Night Flow

•Leakage performance indicators

24

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

Advanced Leakage Control Technologies •Water audit: top-down

34AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

5 SONEDE, Tunis 10 Dec 2013

Water audit: top down vs. bottom-up approach

•District Metering Area implementation

•International Best Practice for Pressure Management

•Identifying and controlling apparent losses

21

Task 3 – Capacity Building

Training Courses for MPC partners

No Venue Date Topic No. participants

Project results in the

35AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

6 AWC, Aqaba 20 May 2014MPC Presentation of project results in the pilot sites of the Mediterranean Partner Countries

Task 3 – Capacity Building

Training Courses for EU partners

No Venue Date Topic No. participants

Advanced Leakage Control Technologies•Water Audit – AWA

36AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

1 IREN, Genova 19-20 Sep 2012

Water Audit AWA methodologies and. Autoleak

•Presentation of AMR equipment

•Tests for measuring administrative losses

•UFR installation•impact of private storage tanks on water metering

•customer demand pattern

18

Task 3 – Capacity Building

Training Courses for EU partners

No Venue Date Topic No. participants

Advanced Leakage Control Technologies •Management ofC i l L

37AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

2 WBL, Lemesos 17 July 2013Commercial LossesEffect of private tanks :

test 2 Consumption profiles:

test 3 Effect of UFR : test1

•Leakage Calculation in a DMA using Water Balance & MNF

•Pressure Management•Smart water meters

17

7

Task 3 – Capacity Building

Training Courses for EU partners

No Venue Date Topic No. participants

Advanced Leakage Control Technologies• Best Practices for Water

L d P

38AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI

3 IREN, Genova 28 Nov 2013Loss and Pressure Management

• Management of Commercial Losses

• Leakage Calculation in a DMA using Water Balance & MNF

• Water Balance Calculation using statistic methods

• ICT for water efficiency

17

Task 3 – Capacity Building

2nd Training Course for EC partners: Lemesos, 17 July 2013

39AQUAKNIGHT – 6th Training Course in MPC20 May 2014, Aqaba ‐ Jordan

SGI