AOSC 652: Week 6, Day 2

79
Copyright © 2014 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014 Numerical Integration Week 6, Day 2 8 Oct 2014 Analysis Methods in Atmospheric and Oceanic Science AOSC 652 1

Transcript of AOSC 652: Week 6, Day 2

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Numerical Integration

Week 6, Day 2

8 Oct 2014

Analysis Methods in Atmospheric and Oceanic Science

AOSC 652

1

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Also known as “quadrature”

In numerical analysis, a quadrature rule is a method for evaluatinga definite integral of a function, usually stated as a weighted sum of the

function values evaluated a specified points within the domain of integration.

Many of the classic algorithms assume thatthe value of the function is known at equally spaced points.

If a climate model is devised using altitude as the vertical coordinate,Then integrals wrt height could possibly be evaluated using a classic algorithms

(i.e., Simpson’s Rule).

If a climate model is devised using pressure as the vertical coordinate,then integrals wrt height can be must be evaluated using a technique

designed for unequally spaced points (Trapezoidal Rule, Gaussian Integration)

2

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

3

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

Why bother with the more complicated Simpson’s rule ?

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

4

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

1

1

44 3 2 1

1, 5, 9

where = ( ) /

14 ( ) + 64 ( ) 24 ( ) 64 ( ) + 14 ( ) ( )

45

−+ + + +

=

+ +≈ Σ∫

N

N

Nxi i i i i

xi

h x x N

f x f x f x f x f xf x dx h

Bode’s Rule: N must be evenly divisible by 5; based on 4th order Polynomials;Error order 6th derivative of f

[ ]

1

1

3

3 2 11, 4, 6

where = ( ) /

3( ) ( ) 3 ( ) 3 ( ) + ( ) 8

+ + +=

≈ + +Σ∫N

NNx

i i i ix i

h x x N

hf x dx f x f x f x f x

Simpson’s Rule: N must be odd (or need work around); based on 3d order polynomialsError order 4th derivative of f

Simpson’s 3/8 Rule: N must be evenly divisible by 4; also based on 3d order polynomialsError order 4th derivative of f

5

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

All of these routines require even grid spacing !

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

1

1

44 3 2 1

1, 5, 9

where = ( ) /

14 ( ) + 64 ( ) 24 ( ) 64 ( ) + 14 ( ) ( )

45

−+ + + +

=

+ +≈ Σ∫

N

N

Nxi i i i i

xi

h x x N

f x f x f x f x f xf x dx h

Bode’s Rule: N must be evenly divisible by 5; based on 4th order Polynomials;Error order 6th derivative of f

[ ]

1

1

3

3 2 11, 4, 6

where = ( ) /

3( ) ( ) 3 ( ) 3 ( ) + ( ) 8

+ + +=

≈ + +Σ∫N

NNx

i i i ix i

h x x N

hf x dx f x f x f x f x

Simpson’s Rule: N must be odd (or need work around); based on 3d order polynomialsError order 4th derivative of f

Simpson’s 3/8 Rule: N must be evenly divisible by 4; also based on 3d order polynomialsError order 4th derivative of f

6

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

y1, y2, … yn nodes are not uniformly spacedc1, c2, … cn Gauss coefficients are determined once n is specified

Nice descriptions of theory at http://en.wikipedia.org/wiki/Gaussian_quadratureand http://www.efunda.com/math/num_integration/num_int_gauss.cfm

( )n1

1i=1

1 ( ) = ( ( )) ( ( )) 2

b

i ia

dxf x dx f g y dy b a c f g ydy−

≈ − ∑∫ ∫

Note:

produces exact result for polynomials of degree 3 or less

1

1

3 3( ) 3 3−

−≈ +

∫ f y dy f f

7

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

8

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

However, we’ve written a version of Simpson’s Rulethat will work for either even or odd N

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

9

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

We’re now going to examine the Trapezoidal Rule & Simpson’s Rule using“data files” of Y vs X, based on the evaluation of several analytic functions”

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

10

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Simpson’s Rule:

Trapezoidal Rule:

Will work for evenly OR unevenly spaced grid and any N

Classic method will work only for evenly spaced grid and odd N

[ ]

1

1

2

2 11, 3, 5

where = ( ) /

( ) ( ) + 4 ( ) ( )3

+ +=

≈ +Σ∫N

NNx

i i ix i

h x x N

hf x dx f x f x f x

We’re now going to examine the Trapezoidal Rule & Simpson’s Rule using“data files” of Y vs X, based on the evaluation of several analytic functions”

Why do you think we are going to use “analytic functions”?

[ ]1

1

11

1( )( ) ( ) + ( )

2

+=

+ −≈ Σ∫

NNx

i ix i

iix xf x dx f x f x

11

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Please copy files:

~rjs/aosc652/week_06/data_generate.f and~rjs/aosc652/week_06/data_integrate.f

to your work area.

Numerical Integration

12

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

We’re going to use four “analytic functions” to generate “data files” of Y vs X,which we will then integrate:

1 1 2

0 0 1 = 1 ( ) 3 =∫ ∫Integral Function x dx x dx

1 1 4

0 0 2 = 2 ( ) 5 =∫ ∫Integral Function x dx x dx

1 1 8

0 0 3 = 3 ( ) 9 =∫ ∫Integral Function x dx x dx

1 1 12

0 0 4 = 4 ( ) 13 =∫ ∫Integral Function x dx x dx

13

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

What do these functions look like?

Compile code data_generate.f, run using “100” for number of intervals,and plot resulting functions using:

Black for Function 1; Blue for Function 2;Green for Function 3; Red for Function 4

We’re going to use four “analytic functions” to generate “data files” of Y vs X,which we will then integrate:

1 1 2

0 0 1 = 1 ( ) 3 =∫ ∫Integral Function x dx x dx

1 1 4

0 0 2 = 2 ( ) 5 =∫ ∫Integral Function x dx x dx

1 1 8

0 0 3 = 3 ( ) 9 =∫ ∫Integral Function x dx x dx

1 1 12

0 0 4 = 4 ( ) 13 =∫ ∫Integral Function x dx x dx

14

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC1 2

0Black : 3 ∫ x dx

1 4

0Blue : 5 ∫ x dx

1 8

0Green : 9 ∫ x dx

1 12

0Red : 13 ∫ x dx

NPTS = 101

15

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Why did I write NPTS = 101 ?

1 2

0Black : 3 ∫ x dx

1 4

0Blue : 5 ∫ x dx

1 8

0Green : 9 ∫ x dx

1 12

0Red : 13 ∫ x dx

NPTS = 101

16

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Why did I write NPTS = 101 ?What is the numerical value of these “definite integrals”?

1 2

0Black : 3 ∫ x dx

1 4

0Blue : 5 ∫ x dx

1 8

0Green : 9 ∫ x dx

1 12

0Red : 13 ∫ x dx

NPTS = 101

17

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration: Let’s fill in the following tables:

a) Run program data_generate.e to generate “fn_for_integration*.dat”files, for 25, 10, and 6 intervals (in addition to the file for 100 intervalsyou should have already generated)

b) Compile code data_integrate.f

c) Run program data_integrate.e to complete table

18

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

19

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration: Let’s fill in the following tables:

a) Run program data_generate.e to generate “fn_for_integration*.dat”files, for 25, 10, and 6 intervals (in addition to the file for 100 intervalsyou should have already generated)

b) Compile code data_integrate.f

c) Run program data_integrate.e to complete table

20

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

21

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005

5 x4

9 x8

13 x12

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

22

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005

5 x4 1.00017

9 x8

13 x12

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

23

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005

5 x4 1.00017

9 x8 1.00060

13 x12

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

24

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005

5 x4 1.00017

9 x8 1.00060

13 x12 1.00130

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

25

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080

5 x4 1.00017

9 x8 1.00060

13 x12 1.00130

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

26

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080

5 x4 1.00017 1.00267

9 x8 1.00060

13 x12 1.00130

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

27

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080

5 x4 1.00017 1.00267

9 x8 1.00060 1.00959

13 x12 1.00130

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

28

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080

5 x4 1.00017 1.00267

9 x8 1.00060 1.00959

13 x12 1.00130 1.02074

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

29

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500

5 x4 1.00017 1.00267

9 x8 1.00060 1.00959

13 x12 1.00130 1.02074

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

30

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500

5 x4 1.00017 1.00267 1.01665

9 x8 1.00060 1.00959

13 x12 1.00130 1.02074

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

31

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500

5 x4 1.00017 1.00267 1.01665

9 x8 1.00060 1.00959 1.05958

13 x12 1.00130 1.02074

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

32

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500

5 x4 1.00017 1.00267 1.01665

9 x8 1.00060 1.00959 1.05958

13 x12 1.00130 1.02074 1.12766

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

33

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665

9 x8 1.00060 1.00959 1.05958

13 x12 1.00130 1.02074 1.12766

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

34

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958

13 x12 1.00130 1.02074 1.12766

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

35

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

36

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

37

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2

5 x4

9 x8

13 x12

38

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.

5 x4

9 x8

13 x12

39

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.

5 x4 1.

9 x8

13 x12

40

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.

5 x4 1.

9 x8 1.

13 x12

41

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.

5 x4 1.

9 x8 1.

13 x12 1.

42

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003

5 x4 1.

9 x8 1.

13 x12 1.

43

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003

5 x4 1. 1.

9 x8 1.

13 x12 1.

44

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003

5 x4 1. 1.

9 x8 1. 1.00004

13 x12 1.

45

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003

5 x4 1. 1.

9 x8 1. 1.00004

13 x12 1. 1.00024

46

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1.

5 x4 1. 1.

9 x8 1. 1.00004

13 x12 1. 1.00024

47

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1.

5 x4 1. 1. 1.

9 x8 1. 1.00004

13 x12 1. 1.00024

48

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1.

5 x4 1. 1. 1.

9 x8 1. 1.00004 1.00164

13 x12 1. 1.00024

49

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1.

5 x4 1. 1. 1.

9 x8 1. 1.00004 1.00164

13 x12 1. 1.00024 1.00875

50

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1. 1.

5 x4 1. 1. 1.

9 x8 1. 1.00004 1.00164

13 x12 1. 1.00024 1.00875

51

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1. 1.

5 x4 1. 1. 1. 1.00051

9 x8 1. 1.00004 1.00164

13 x12 1. 1.00024 1.00875

52

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1. 1.

5 x4 1. 1. 1. 1.00051

9 x8 1. 1.00004 1.00164 1.01212

13 x12 1. 1.00024 1.00875

53

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1. 1.

5 x4 1. 1. 1. 1.00051

9 x8 1. 1.00004 1.00164 1.01212

13 x12 1. 1.00024 1.00875 1.05807

54

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1.00005 1.00080 1.00500 1.01389

5 x4 1.00017 1.00267 1.01665 1.04617

9 x8 1.00060 1.00959 1.05958 1.16347

13 x12 1.00130 1.02074 1.12766 1.34357

Numerical Integration: Let’s fill in the following tables:Trapezoidal Rule:

Simpson’s Rule:

Function 100 intervals

25 intervals

10 intervals

6 intervals

3 x2 1. 1.00003 1. 1.

5 x4 1. 1. 1. 1.00051

9 x8 1. 1.00004 1.00164 1.01212

13 x12 1. 1.00024 1.00875 1.05807

55

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Trapezoidal Rule:

Simpson’s Rule:

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

Let’s conduct a graphical analysisto investigate behavior of integrationby Trapezoidal rule and Simpson’s rule:

a) focus first on the 6 interval calculationof function = 13x12

b) what should we plot ?!?

56

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Trapezoidal Rule:

Simpson’s Rule:

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

Let’s conduct a graphical analysisto investigate behavior of integrationby Trapezoidal rule and Simpson’s rule:

a) focus first on the 6 interval calculationof function = 13x12

b) what should we plot ?!?

57

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Trapezoidal Rule:

Simpson’s Rule:

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

Let’s conduct a graphical analysisto investigate behavior of integrationby Trapezoidal rule and Simpson’s rule:

a) focus first on the 6 interval calculationof function = 13x12

b) what should we plot ?!?

58

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Trapezoidal Rule:

Simpson’s Rule:

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

Let’s conduct a graphical analysisto investigate behavior of integrationby Trapezoidal rule and Simpson’s rule:

a) focus first on the 6 interval calculationof function = 13x12

b) what should we plot ?!?

59

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Trapezoidal Rule:

Simpson’s Rule:

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.163471.059581.009591.000609 x8

1.12766

1.01665

1.00500

10 intervals

1.343571.020741.0013013 x12

1.046171.002671.000175 x4

1.013891.000801.000053 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

1.012121.001641.000041.9 x8

1.00875

1.

1.

10 intervals

1.058071.000241.13 x12

1.000511.1.5 x4

1.1.000031.3 x2

6 intervals

25 intervals

100 intervals

Function

Let’s conduct a graphical analysisto investigate behavior of integrationby Trapezoidal rule and Simpson’s rule:

a) focus first on the 6 interval calculationof function = 13x12

b) what should we plot ?!?

60

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Air Quality Model Satellite Data

For which model NO2 profile did Tim check the details of his integration scheme ?

61

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

Air Quality Model Satellite Data

“If the function you propose to integrate is sharply concentrated in one or more peaks, or if the shape is not readily characterized by a single length-scale, then” you should be concerned about the accuracy of your integration scheme.

62

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) ( )i if y dy c f y−

≈ ∑∫

Nice description of theory at http://en.wikipedia.org/wiki/Gaussian_quadrature

63

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) ( )i if y dy c f y−

≈ ∑∫

Theory based on limits always being from −1 to 1

Nice description of theory at http://en.wikipedia.org/wiki/Gaussian_quadrature

64

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) ( )i if y dy c f y−

≈ ∑∫

Theory based on limits always being from −1 to 1

Problem of course is limits we care about are usually not −1 to 1 !

Nice description of theory at http://en.wikipedia.org/wiki/Gaussian_quadrature

65

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) ( )i if y dy c f y−

≈ ∑∫

Theory based on limits always being from −1 to 1

Problem of course is limits we care about are usually not −1 to 1 !

Who we gonna call ?

Nice description of theory at http://en.wikipedia.org/wiki/Gaussian_quadrature

66

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) ( )i if y dy c f y−

≈ ∑∫

Nice description of theory at http://en.wikipedia.org/wiki/Gaussian_quadrature

Theory based on limits always being from −1 to 1

Problem of course is limits we care about are usually not −1 to 1 !

Who we gonna call ?

67

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) = ( ( )) ( ( )) b

i ia

dx dxf x dx f g y dy c f g ydy dy−

∑∫ ∫

To use Gaussian Quadrature for the evaluation of integrals with arbitrary limits,

must execute a Variable Transformation

( ) is a linear function: i.e., g(y)=Intercept + Slope y, that relates to 1 and to 1= = − = =

g yx a y x b y

68

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

n1

1i=1

( ) = ( ( )) ( ( )) b

i ia

dx dxf x dx f g y dy c f g ydy dy−

∑∫ ∫

To use Gaussian Quadrature for the evaluation of integrals with arbitrary limits,

must execute a Variable Transformation

( )

( )

Can show:1 Slope = 2

1 Intercept = 2

b a

b a

+

( ) is a linear function: i.e., g(y)=Intercept + Slope y, that relates to 1 and to 1= = − = =

g yx a y x b y

69

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

( ) ( )1 1 where ( ) = + y 2 2

g y b a b a+ −

( )n1

1i=1

1 ( ) = ( ( )) ( ( )) 2

b

i ia

dxf x dx f g y dy b a c f g ydy−

≈ − ∑∫ ∫

See http://en.wikipedia.org/wiki/Gaussian_quadrature

70

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

y1, y2, … yn nodes are not uniformly spacedc1, c2, … cn Gauss coefficients are determined once n is specified

( )n1

1i=1

1 ( ) = ( ( )) ( ( )) 2

b

i ia

dxf x dx f g y dy b a c f g ydy−

≈ − ∑∫ ∫

See http://en.wikipedia.org/wiki/Gaussian_quadrature

Location of nodes yi (places where the function is evaluated)and weights ci both vary as a function of n

71

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature:

http://www.efunda.com/math/num_integration/findgausslaguerre.cfmprovides Gaussian nodes and weights as a function of n

72

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

73

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCGaussian Quadrature:

1

1

3 3( ) 3 3−

−≈ +

∫ f y dy f f

1 2 1 23 3Where do weights of 1 ; 1 and nodes of ; come from ?

3 3

c c y y −

= = = =

74

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCGaussian Quadrature:

1 2 1 21

1 1 2 21

12 3 2 3

1 0 1 1 2 1 3 1 2 0 1 2 2 2 3 21

0

Four unknowns: , , ,

Assume: ( ) c ( ) ( ) is exact for polynomials up to order 3

Then: ( ) = ( ) + ( )

Or:

c c y y

f y dy f y c f y

f y dy c a a y a y a y c a a y a y a y

a dy

≈ +

+ + + + + +

1 1

0 1 2 0 1 1 1 2 2 11 1

1 12 2 2 3 3 3

2 2 1 1 2 2 2 3 1 1 2 2 31 1

2 ( ) 0 ( )

2 ( ) 0 ( ) 3

a c c a a y dy c y c y a

a y dy a c y c y a a y dy c y c y a

− −

= = + = = +

= = + = = +

∫ ∫

∫ ∫

75

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCGaussian Quadrature:

1 2 1 21

1 1 2 21

12 3 2 3

1 0 1 1 2 1 3 1 2 0 1 2 2 2 3 21

0

Four unknowns: , , ,

Assume: ( ) c ( ) ( ) is exact for polynomials up to order 3

Then: ( ) = ( ) + ( )

Or:

c c y y

f y dy f y c f y

f y dy c a a y a y a y c a a y a y a y

a dy

≈ +

+ + + + + +

1 1

1 2 1 1 1 2 21 1

1 12 2 2 3 3 3

2 1 1 2 2 3 1 1 2 21 1

0 0 1

2 2 3

2 ( ) 0 ( )

2 ( ) 0 ( ) 3

c c a y dy c y c y

a y dy c y c y a y dy c y

a a a

a a c y a

− −

= = + = = +

= = + = = +

∫ ∫

∫ ∫

1 2 1 2Four equations, four unknowns: , , , c c y y

76

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCGaussian Quadrature:

1 2 1 21

1 1 2 21

12 3 2 3

1 0 1 1 2 1 3 1 2 0 1 2 2 2 3 21

0

Four unknowns: , , ,

Assume: ( ) c ( ) ( ) is exact for polynomials up to order 3

Then: ( ) = ( ) + ( )

Or:

c c y y

f y dy f y c f y

f y dy c a a y a y a y c a a y a y a y

a dy

≈ +

+ + + + + +

1 1

1 2 1 1 1 2 21 1

1 12 2 2 3 3 3

2 1 1 2 2 3 1 1 2 21 1

0 0 1

2 2 3

2 ( ) 0 ( )

2 ( ) 0 ( ) 3

c c a y dy c y c y

a y dy c y c y a y dy c y

a a a

a a c y a

− −

= = + = = +

= = + = = +

∫ ∫

∫ ∫

1 2 1 23 3

3 3Solution: =1 =1 =, , , c c y y− =

77

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSCNumerical Integration

Gaussian Quadrature: we would like to fill in the following table:Function 2 nodes 10 nodes Error,

10 nodes3 x2

5 x4

9 x8

13 x12

a) Assignment #6, part 1: Start with ~rjs/aosc/week_06/gauss_integrate.f

b) A few lines in subroutines fn1, fn2, fn3, and fn4 need to be completed

These lines relate variables x and y, as well as dx/dy, where x is thedependent variable used for our functions so far today (limits of 0 to 1) &y is the dependent variable for Gaussian integration (limits of −1 to 1)

Once these lines are filled in, the cells in the table can be populated

78

Copyright © 2014 University of Maryland.This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. 8 Oct 2014

AOSC 652: Analysis Methods in AOSC

Calculation of multi-dimensional integrals adds additional level of complexity

IDL and Matlab have various tools for the evaluation of integrals of data:• good for you, the user, to understand how these tools work !• pay attention to:

− grid spacing: are grid pts evenly spaced?should they be evenly spaced?should they be “linear”?how does integrand vary relative to grid points?

− number of points:some methods place strict limits on “mod N”may need to modify IDL or MATLAB integration toolcode to properly handle end points

79