A New Iterative Method for Equilibrium Problems and Fixed Point Problems

10
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 178053, 9 pages http://dx.doi.org/10.1155/2013/178053 Research Article A New Iterative Method for Equilibrium Problems and Fixed Point Problems Abdul Latif 1 and Mohammad Eslamian 2 1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 2 Department of Mathematics, Mazandaran University of Science and Technology, Behshahr, Iran Correspondence should be addressed to Abdul Latif; [email protected] Received 31 October 2013; Accepted 15 December 2013 Academic Editor: Ljubomir B. ´ Ciri´ c Copyright © 2013 A. Latif and M. Eslamian. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introducing a new iterative method, we study the existence of a common element of the set of solutions of equilibrium problems for a family of monotone, Lipschitz-type continuous mappings and the sets of fixed points of two nonexpansive semigroups in a real Hilbert space. We establish strong convergence theorems of the new iterative method for the solution of the variational inequality problem which is the optimality condition for the minimization problem. Our results improve and generalize the corresponding recent results of Anh (2012), Cianciaruso et al. (2010), and many others. “Dedicated to Professor Miodrag Mateljevi’c on the occasion of his 65th birthday” 1. Introduction Let be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and norm ‖⋅‖. Let be a nonempty closed convex subset of , and let Proj be a nearest point projection of into ; that is, for , Proj is the unique point in with the property ‖ − Proj ‖ := inf {‖ − ‖ : ∈ }. It is well known that = Proj iff ⟨ − , − ⟩ ≥ 0 for all . Let be a bifunction from × into R, such that (, ) = 0 for all . Consider the Fan inequality [1]: find a point such that ( , ) ≥ 0, ∀ ∈ , (1) where (, ⋅) is convex and subdifferentiable on for every . e set of solutions of this problem is denoted by Sol(, ). In fact, the Fan inequality can be formulated as an equilibrium problem. Such problems arise frequently in mathematics, physics, engineering, game theory, transporta- tion, economics, and network. Due to importance of the solutions of such problems, many researchers are working in this area and studying the existence of the solutions of such problems; for example, see, [24]. Further, if (, ) = ⟨, − ⟩ for every , ∈ , where is a mapping from into , then the Fan inequality problem (equilibrium prob- lem) becomes the classical variational inequality problem which is formulated as finding a point such that ,− ⟩≥ ∀ ∈ . (2) Variational inequalities were introduced and studied by Stampacchia [5]. It is well known that this area covers many branches of mathematics, such as partial differential equations, optimal control, optimization, mathematical pro- gramming, mechanics, and finance; see [611]. Here we recall some useful notions. A mapping :→ is said to be -Lipschitz on if there exists a constant ≥0 such that for each , ∈ , . (3) In particular, if ∈ [0, 1[, then is called a contraction on ; if =1, then is called a nonexpansive mapping on . e set of fixed points of is denoted by (). A family T := {() : 0 ≤ < ∞} of mappings on a closed convex subset of a Hilbert space is called a nonexpansive semigroup if it satisfies the following: (i) (0) = for all ; (ii) ( + ) = ()() for all , ≥ 0; (iii) for all ,

Transcript of A New Iterative Method for Equilibrium Problems and Fixed Point Problems

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013 Article ID 178053 9 pageshttpdxdoiorg1011552013178053

Research ArticleA New Iterative Method for Equilibrium Problemsand Fixed Point Problems

Abdul Latif1 and Mohammad Eslamian2

1 Department of Mathematics King Abdulaziz University PO Box 80203 Jeddah 21589 Saudi Arabia2Department of Mathematics Mazandaran University of Science and Technology Behshahr Iran

Correspondence should be addressed to Abdul Latif alatifkauedusa

Received 31 October 2013 Accepted 15 December 2013

Academic Editor Ljubomir B Ciric

Copyright copy 2013 A Latif and M Eslamian This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Introducing a new iterative method we study the existence of a common element of the set of solutions of equilibrium problems fora family of monotone Lipschitz-type continuous mappings and the sets of fixed points of two nonexpansive semigroups in a realHilbert space We establish strong convergence theorems of the new iterative method for the solution of the variational inequalityproblem which is the optimality condition for the minimization problem Our results improve and generalize the correspondingrecent results of Anh (2012) Cianciaruso et al (2010) and many others

ldquoDedicated to Professor Miodrag Mateljevirsquoc on the occasion of his 65th birthdayrdquo

1 Introduction

Let 119867 be a real Hilbert space with inner product ⟨sdot sdot⟩ andnorm sdot Let 119862 be a nonempty closed convex subset of 119867and let Proj

119862be a nearest point projection of119867 into119862 that is

for 119909 isin 119867 Proj119862119909 is the unique point in 119862 with the property

119909 minus Proj119862119909 = inf119909 minus 119910 119910 isin 119862 It is well known that

119910 = Proj119862119909 iff ⟨119909 minus 119910 119910 minus 119911⟩ ge 0 for all 119911 isin 119862

Let 119891 be a bifunction from 119862 times 119862 into R such that119891(119909 119909) = 0 for all 119909 isin 119862 Consider the Fan inequality [1]find a point 119909⋆ isin 119862 such that

119891 (119909⋆ 119910) ge 0 forall119910 isin 119862 (1)

where 119891(119909 sdot) is convex and subdifferentiable on 119862 for every119909 isin 119862 The set of solutions of this problem is denoted bySol(119891 119862) In fact the Fan inequality can be formulated asan equilibrium problem Such problems arise frequently inmathematics physics engineering game theory transporta-tion economics and network Due to importance of thesolutions of such problems many researchers are workingin this area and studying the existence of the solutions ofsuch problems for example see [2ndash4] Further if 119891(119909 119910) =⟨119865119909 119910 minus 119909⟩ for every 119909 119910 isin 119862 where 119865 is a mapping from 119862

into 119867 then the Fan inequality problem (equilibrium prob-lem) becomes the classical variational inequality problemwhich is formulated as finding a point 119909⋆ isin 119862 such that

⟨119865119909⋆ 119910 minus 119909

⋆⟩ ge forall119910 isin 119862 (2)

Variational inequalities were introduced and studied byStampacchia [5] It is well known that this area coversmany branches of mathematics such as partial differentialequations optimal control optimization mathematical pro-gramming mechanics and finance see [6ndash11]

Here we recall some useful notionsA mapping 119879 119862 rarr 119867 is said to be 119871-Lipschitz on 119862 if

there exists a constant 119871 ge 0 such that for each 119909 119910 isin 1198621003817100381710038171003817119879119909 minus 119879119910

1003817100381710038171003817 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817 (3)

In particular if 119871 isin [0 1[ then 119879 is called a contraction on 119862if 119871 = 1 then 119879 is called a nonexpansive mapping on 119862 Theset of fixed points of 119879 is denoted by 119865(119879)

A familyT = 119879(119904) 0 le 119904 lt infinofmappings on a closedconvex subset119862 of a Hilbert space119867 is called a nonexpansivesemigroup if it satisfies the following (i) 119879(0)119909 = 119909 for all119909 isin 119862 (ii)119879(119904+119905) = 119879(119904)119879(119905) for all 119904 119905 ge 0 (iii) for all 119909 isin 119862

2 Abstract and Applied Analysis

119904 rarr 119879(119904)119909 is continuous (iv) 119879(119904)119909 minus 119879(119904)119910 le 119909 minus 119910 forall 119909 119910 isin 119862 and 119904 ge 0

We use 119865(T) to denote the common fixed point set of thesemigroup T that is 119865(T) = 119909 isin 119862 119879(119904)119909 = 119909 forall119904 ge

0 It is well known that 119865(T) is closed and convex [12]A nonexpansive semigroup T on 119862 is said to be uniformlyasymptotically regular (in short uar) on 119862 if for all ℎ ge 0

and any bounded subset 119861 of 119862

lim119905rarrinfin

sup119909isin119861

119879 (ℎ) (119879 (119905) 119909) minus 119879 (119905) 119909 = 0 (4)

For each ℎ ge 0 define 120590119905(119909) = (1119905) int

119905

0119879(119904)119909119889119904 Then

lim119905rarrinfin

sup119909isin119861

1003817100381710038171003817119879 (ℎ) (120590119905 (119909)) minus 120590119905 (119909)1003817100381710038171003817 = 0 (5)

Provided that 119861 is closed bounded convex subset of 119862 It isknown that the set 120590

119905(119909) 119905 gt 0 is a uar nonexpansive

semigroup see [13] The other examples of uar operatorsemigroup can be found in [14]

A bifunction 119891 119862 times 119862 rarr R is said to be (i) stronglymonotone on 119862 with 120572 gt 0 if 119891(119909 119910) + 119891(119910 119909) le minus120572119909 minus 119910

2forall119909 119910 isin 119862 (ii)monotone on119862 if119891(119909 119910)+119891(119910 119909) le 0 forall119909 119910 isin

119862 (iii) pseudomonotone on 119862 if 119891(119909 119910) ge 0 rArr 119891(119910 119909) le 0forall119909 119910 isin 119862 (iv) Lipschitz-type continuous on 119862 with constants1198881 gt 0 and 1198882 gt 0 if 119891(119909 119910) + 119891(119910 119911) ge 119891(119909 119911) minus 1198881119909 minus 119910

2minus

1198882119910 minus 119911

2 forall119909 119910 119911 isin 119862Note that if 119879 is 119871-Lipschitz on 119862 then for each 119909 119910 isin

119862 the function 119891(119909 119910) = ⟨119865119909 119910 minus 119909⟩ is a Lipschitz-typecontinuous with constants 119888

1= 1198882= 1198712

An operator 119860 on119867 is called strongly positive if there is aconstant 120574 gt 0 such that

⟨119860119909 119909⟩ ge 1205741199092 forall119909 isin 119867 (6)

Recently iterative methods for nonexpansive mappingshave been applied to solve convex minimization problemsIn [15] Xu defined an iterative sequence 119909

119899 in 119862 which

converges strongly to the unique solution of theminimizationproblem under some suitable conditions A well-knowntypical problem is to minimize a quadratic function over theset of fixed points of a nonexpansive mapping 119879 on a realHilbert space119867

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus ⟨119909 119887⟩ (7)

where 119887 is a given point in 119867 and 119860 is strongly positiveoperator

For solving the variational inequality problem MarinoandXu [16] introduced the following general iterative processfor nonexpansive mapping 119879 based on the viscosity approxi-mation method (see [17])

119909119899+1

= 119886119899120574ℎ (119909119899) + (119868 minus 119886

119899119860)119879119909

119899 forall119899 ge 0 (8)

where 119860 is strongly positive bounded linear operator on 119867ℎ is contraction on 119867 and 119886

119899 sub ]0 1[ They proved that

under some appropriate conditions on the parameters the

sequence 119909119899 generated by (8) converges strongly to the

unique solution 119909⋆ isin 119865(119879) of the variational inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin 119865 (119879) (9)

which is the optimality condition for the minimizationproblem

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus 119892 (119909) (10)

where 119892 is a potential function for 120574ℎ (ie 1198921015840(119909) = 120574ℎ(119909)forall119909 isin 119867)

Iterative process for approximating common fixed pointsof a nonexpansive semigrouphas been investigated by variousauthors (see [13 14 18ndash21]) Recently Li et al [19] introducedthe following iterative procedure for the approximation ofcommon fixed points of a nonexpansive semigroup T =

119879(119904) 0 le 119904 lt infin on a closed convex subset 119862 of a Hilbertspace119867

119909119899 = 120572119899120574ℎ (119909119899) + (119868 minus 120572119899119860)1

119904119899

int

119904119899

0

119879 (119904) 119909119899119889119904 119899 ge 1 (11)

where 119860 is a strongly positive bounded linear operator on119867 and ℎ is a contraction on 119862 Imposing some appropriateconditions on the parameters they proved that the iterativesequence 119909

119899 generated by (11) converges strongly to the

unique solution 119909⋆

isin 119865(T) of the variational inequality⟨(120574ℎ minus 119860)119909

⋆ 119911 minus 119909

⋆⟩ le 0 forall119911 isin 119865(T)

For obtaining a common element of Sol(119891 119862) and the setof fixed points of a nonexpansive mapping 119879 S Takahashiand W Takahashi [9] first introduced an iterative scheme bythe viscosity approximation methodThey proved that undercertain conditions the iterative sequences converge stronglyto 119911 = Proj

119865(119879)capSol(119891119862)(ℎ(119911))During last few years iterative algorithms for finding a

common element of the set of solutions of Fan inequality andthe set of fixed points of nonexpansive mappings in a realHilbert space have been studied by many authors (see eg[2 4 22ndash28]) Recently Anh [22] studied the existence of acommon element of the set of fixed points of a nonexpansivemapping and the set of solutions of Fan inequality formonotone and Lipschitz-type continuous bifunctions Heintroduced the following new iterative process

119908119899 = argmin 120582119899119891 (119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119911119899= argmin 120582

119899119891 (119908119899 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

119909119899+1

= 120572119899ℎ (119909119899) + 120573119899119909119899+ 120574119899(120583119878 (119909

119899) + (1 minus 120583) 119911

119899)

forall119899 ge 0

(12)

where 120583 isin]0 1[119862 is nonempty closed convex subset of a realHilbert space 119867 119891 is monotone continuous and Lipschitz-type continuous bifunction ℎ is self-contraction on 119862 withconstant 119896 isin]0 1[ and 119878 is self nonexpansive mapping on119862 He proved that under some appropriate conditions over

Abstract and Applied Analysis 3

positive sequences 120572119899 120573119899 120574119899 and 120582

119899 the sequences

119909119899 119908119899 and 119911

119899 converge strongly to 119902 isin 119865(119878) cap Sol(119891 119862)

which is a solution of the variational inequality ⟨(119868 minus ℎ)119902 119909 minus119902⟩ ge 0 forall119909 isin 119865(119878) cap Sol(119891 119862)

In this paper we introduce a new iterative scheme basedon the viscosity method and study the existence of a commonelement of the set of solutions of equilibrium problems fora family of monotone Lipschitz-type continuous mappingsand the sets of fixed points of two nonexpansive semigroupsin a real Hilbert space We establish strong convergencetheorems of the new iterative scheme for the solution ofthe variational inequality problem which is the optimalitycondition for theminimization problemOur results improveand generalize the corresponding recent results of Anh [22]Cianciaruso et al [18] and many others

2 Preliminaries

In this section we collect some lemmas which are crucial forthe proofs of our results

Let 119909119899 be a sequence in 119867 and 119909 isin 119867 In the sequel119909119899 119909 denotes that 119909119899weakly converges to 119909 and 119909119899 rarr 119909

denotes that 119909119899 weakly converges to 119909

Lemma 1 Let 119867 be a real Hilbert space Then the followinginequality holds

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2le 119909

2+ 2 ⟨119910 119909 + 119910⟩ forall119909 119910 isin 119867 (13)

Lemma 2 (see [15]) Assume that 119886119899 is a sequence of

nonnegative real numbers such that

119886119899+1

le (1 minus 120578119899) 119886119899 + 120578119899120575119899 119899 ge 0 (14)

where 120578119899 is a sequence in ]0 1[ and 120575

119899is a sequence inR such

that

(i) suminfin119899=1

120578119899= infin

(ii) lim sup119899rarrinfin

120575119899le 0 or suminfin

119899=1|120578119899120575119899| lt infin

Then lim119899rarrinfin119886119899 = 0

Lemma 3 (see [16]) Let 119860 be a strongly positive linearbounded self-adjoint operator on119867 with coefficient 120574 gt 0 and0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588 120574

Lemma 4 (see [29]) Let 119867 be a Hilbert space and 119909119894isin 119867

(1 le 119894 le 119898) Then for any given 120582119894119898

119894=1sub ]0 1[ with sum119898

119894=1120582119894=

1 and for any positive integer 119896 119895 with 1 le 119896 lt 119895 le 119898

1003817100381710038171003817100381710038171003817100381710038171003817

119898

sum

119894=1

120582119894119909119894

1003817100381710038171003817100381710038171003817100381710038171003817

2

le

119898

sum

119894=1

120582119894

10038171003817100381710038171199091198941003817100381710038171003817

2minus 120582119896120582119895

10038171003817100381710038171003817119909119896minus 119909119895

10038171003817100381710038171003817

2

(15)

Lemma 5 (see [30]) Let 119905119899 be a sequence of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119905

119899119894

lt

119905119899119894+1

for all 119894 isin N Then there exists a nondecreasing sequence120591(119899) sub N such that 120591(119899) rarr infin and the following propertiesare satisfied by all (sufficiently large) numbers 119899 isin N

119905120591(119899)

le 119905120591(119899)+1

119905119899le 119905120591(119899)+1

(16)

In fact

120591 (119899) = max 119896 le 119899 119905119896lt 119905119896+1 (17)

Lemma 6 (see [2]) Let 119862 be a nonempty closed convex subsetof a real Hilbert space 119867 and let 119891 119862 times 119862 rarr R bea pseudomonotone and Lipschitz-type continuous bifunctionwith constants 119888

1 1198882ge 0 For each 119909 isin 119862 let 119891(119909 sdot) be convex

and subdifferentiable on 119862 Let 1199090isin 119862 and let 119909

119899 119911119899 and

119908119899 be sequences generated by

119908119899= argmin 120582

119899119891 (119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119911119899= argmin 120582

119899119891 (119908119899 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

(18)

Then for each 119909⋆ isin Sol(119891 119862)

1003817100381710038171003817119911119899 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198881)1003817100381710038171003817119909119899 minus 119908119899

1003817100381710038171003817

2

minus (1 minus 2120582119899 1198882)1003817100381710038171003817119908119899 minus 119911119899

1003817100381710038171003817

2 forall119899 ge 0

(19)

3 Main Results

In this section we prove the main strong convergence resultwhich solves the problem of finding a common elementof three sets 119865(T) 119865(S) and Sol(119891

119894 119862) for finite family

of monotone continuous and Lipschitz-type continuousbifunctions 119891

119894in a real Hilbert space119867

Theorem7 Let119862 be a nonempty closed convex subset of a realHilbert space 119867 and let 119891

119894 119862 times 119862 rarr R (119894 = 1 2 119898)

be a finite family of monotone continuous and Lipschitz-type continuous bifunctions with constants 1198881119894 and 1198882119894 LetT = 119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a

119896-contraction self-mapping of 119862 and 119860 is a strongly positivebounded linear self-adjoint operator on119867 with coefficient 120574 lt1 and 0 lt 120574 lt 120574119896 Let 1199090 isin 119862 and let 119909119899 119908119899119894 and 119911119899119894be sequences generated by

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119894 isin 1 2 119898

119911119899119894= argmin 120582

119899119894119891119894(119908119899119894 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(20)

4 Abstract and Applied Analysis

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 119905

119899 120572119899 120573119899119894 120574119899

120578119899 120582119899119894 and 120579

119899 satisfy the following conditions

(i) lim119899rarrinfin

119905119899= infin

(ii) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub]0 1119871[ where 119871 =max2119888

1119894 21198882119894 1 le

119894 le 119898(iv) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (21)

Proof Since 119865(T) 119865(S) and Sol(119891119894 119862) are closed andconvex Proj

Ωis well-definedWe claim that Proj

Ω(119868minus119860+120574ℎ)

is a contraction from 119862 into itself Indeed for each 119909 119910 isin 119862we have

1003817100381710038171003817ProjΩ (119868 minus 119860 + 120574ℎ) (119909) minus ProjΩ(119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860 + 120574ℎ) (119909) minus (119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860) 119909 minus (119868 minus 119860) 119910

1003817100381710038171003817 + 1205741003817100381710038171003817ℎ119909 minus ℎ119910

1003817100381710038171003817

le (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + 1205741198961003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le (1 minus (120574 minus 120574119896))1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(22)

Therefore by the Banach contraction principle thereexists a unique element 119909⋆ isin 119862 such that 119909⋆ = Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ We show that 119909119899 is bounded Since lim119899rarrinfin120579119899 = 0

we can assume with no loss of generality that 120579119899 isin (0 119860

minus1)

for all 119899 ge 0 By Lemma 6 for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 (23)

This implies that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

1205731198991198941003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

(24)

It follows from Lemma 3 that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 +

1003817100381710038171003817119868 minus 1205791198991198601003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 + (1 minus 120579119899120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le 1205791198991205741003817100381710038171003817ℎ (119909119899) minus ℎ (119909

⋆)1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

= (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

+ 120579119899(120574 minus 120574119896)

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

120574 minus 120574119896

le max1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817120574ℎ119909⋆minusA119909⋆1003817100381710038171003817

120574 minus 120574119896

(25)

This implies that 119909119899 is bounded and so are 119911119899119894 ℎ(119909119899)119879(119905119899)119909119899 and 119878(119905

119899)119909119899 Next we show that lim

119899rarrinfin119909119899minus

119879(119905119899)119909119899 = lim

119899rarrinfin119909119899minus 119878(119905119899)119909119899 = 0 Indeed by Lemma 6

for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198941198881119894)1003817100381710038171003817119909119899 minus 119908119899119894

1003817100381710038171003817

2

minus (1 minus 21205821198991198941198882119894)1003817100381710038171003817119908119899119894 minus 119911119899119894

1003817100381710038171003817

2

(26)

Applying Lemma 4 and inequality (26) for 119896 isin 1 2 119898

we have that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

2

=

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

2

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2+ 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

Abstract and Applied Analysis 5

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus 120573119899119896 (1 minus 21205821198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus 120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 1205721198991205781198991003817100381710038171003817119909119899 minus 119878 (119905119899) 119909119899

1003817100381710038171003817

2

(27)

We now compute1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

2

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119910119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

minus (1 minus 120579119899120574)2120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

(28)

Therefore

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899(1 minus 120579

119899120574)

times1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579

2

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2

(29)

In order to prove that 119909119899rarr 119909⋆ as 119899 rarr infin we consider the

following two cases

Case 1 Assume that 119909119899minus 119909⋆ is a monotone sequence

In other words for large enough 1198990 119909119899minus 119909⋆119899ge1198990

iseither nondecreasing or nonincreasing Since 119909119899 minus 119909

⋆ is

bounded it is convergent Since lim119899rarrinfin

120579119899= 0 and ℎ(119909

119899)

and 119909119899 are bounded from (29) we have

lim119899rarrinfin

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2= 0 (30)

and by assumption we get

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817 = 0 1 le 119896 le 119898 (31)

By similar argument we can obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199081198991198961003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

= lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817 = 0

(32)

Further for all ℎ ge 0 and 119899 ge 0 we see that1003817100381710038171003817119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817 +1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 119909119899

1003817100381710038171003817

+1003817100381710038171003817119879 (ℎ) 119879 (119905119899) 119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817

+ sup119909isin119909119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 1199091198991003817100381710038171003817

(33)

Since 119879(119905) is uar nonexpansive semigroup andlim119899rarrinfin

119905119899= infin we have

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (ℎ) 1199091198991003817100381710038171003817 = 0 (34)

Similarly for all ℎ ge 0 and 119899 ge 0 we obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (ℎ) 1199091198991003817100381710038171003817 = 0 (35)

Next we show that

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩ le 0 (36)

To show this inequality we choose a subsequence 119909119899119894

of 119909119899

such that

lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

(37)

Since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of119909119899119894

which converges weakly to 119909 Without loss of generalitywe can assume that 119909119899

119895

119909 Consider

100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119879 (119905) 119909119899

119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817

le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119909119899119895

minus 119909100381710038171003817100381710038171003817

(38)

Thus we have

lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 119879 (119905) 11990910038171003817100381710038171003817le lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 11990910038171003817100381710038171003817 (39)

By the Opial property of the Hilbert space 119867 we obtain119879(119905)119909 = 119909 for all 119905 ge 0 Similarly we have that 119878(119905)119909 = 119909

for all 119905 ge 0 This implies that 119909 isin 119865(T)⋂119865(S) Now weshow that 119909 isin Sol(119891119894 119862) For each 1 le 119894 le 119898 since 119891119894(119909 sdot) isconvex on 119862 for each 119909 isin 119862 we see that

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (40)

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Abstract and Applied Analysis

119904 rarr 119879(119904)119909 is continuous (iv) 119879(119904)119909 minus 119879(119904)119910 le 119909 minus 119910 forall 119909 119910 isin 119862 and 119904 ge 0

We use 119865(T) to denote the common fixed point set of thesemigroup T that is 119865(T) = 119909 isin 119862 119879(119904)119909 = 119909 forall119904 ge

0 It is well known that 119865(T) is closed and convex [12]A nonexpansive semigroup T on 119862 is said to be uniformlyasymptotically regular (in short uar) on 119862 if for all ℎ ge 0

and any bounded subset 119861 of 119862

lim119905rarrinfin

sup119909isin119861

119879 (ℎ) (119879 (119905) 119909) minus 119879 (119905) 119909 = 0 (4)

For each ℎ ge 0 define 120590119905(119909) = (1119905) int

119905

0119879(119904)119909119889119904 Then

lim119905rarrinfin

sup119909isin119861

1003817100381710038171003817119879 (ℎ) (120590119905 (119909)) minus 120590119905 (119909)1003817100381710038171003817 = 0 (5)

Provided that 119861 is closed bounded convex subset of 119862 It isknown that the set 120590

119905(119909) 119905 gt 0 is a uar nonexpansive

semigroup see [13] The other examples of uar operatorsemigroup can be found in [14]

A bifunction 119891 119862 times 119862 rarr R is said to be (i) stronglymonotone on 119862 with 120572 gt 0 if 119891(119909 119910) + 119891(119910 119909) le minus120572119909 minus 119910

2forall119909 119910 isin 119862 (ii)monotone on119862 if119891(119909 119910)+119891(119910 119909) le 0 forall119909 119910 isin

119862 (iii) pseudomonotone on 119862 if 119891(119909 119910) ge 0 rArr 119891(119910 119909) le 0forall119909 119910 isin 119862 (iv) Lipschitz-type continuous on 119862 with constants1198881 gt 0 and 1198882 gt 0 if 119891(119909 119910) + 119891(119910 119911) ge 119891(119909 119911) minus 1198881119909 minus 119910

2minus

1198882119910 minus 119911

2 forall119909 119910 119911 isin 119862Note that if 119879 is 119871-Lipschitz on 119862 then for each 119909 119910 isin

119862 the function 119891(119909 119910) = ⟨119865119909 119910 minus 119909⟩ is a Lipschitz-typecontinuous with constants 119888

1= 1198882= 1198712

An operator 119860 on119867 is called strongly positive if there is aconstant 120574 gt 0 such that

⟨119860119909 119909⟩ ge 1205741199092 forall119909 isin 119867 (6)

Recently iterative methods for nonexpansive mappingshave been applied to solve convex minimization problemsIn [15] Xu defined an iterative sequence 119909

119899 in 119862 which

converges strongly to the unique solution of theminimizationproblem under some suitable conditions A well-knowntypical problem is to minimize a quadratic function over theset of fixed points of a nonexpansive mapping 119879 on a realHilbert space119867

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus ⟨119909 119887⟩ (7)

where 119887 is a given point in 119867 and 119860 is strongly positiveoperator

For solving the variational inequality problem MarinoandXu [16] introduced the following general iterative processfor nonexpansive mapping 119879 based on the viscosity approxi-mation method (see [17])

119909119899+1

= 119886119899120574ℎ (119909119899) + (119868 minus 119886

119899119860)119879119909

119899 forall119899 ge 0 (8)

where 119860 is strongly positive bounded linear operator on 119867ℎ is contraction on 119867 and 119886

119899 sub ]0 1[ They proved that

under some appropriate conditions on the parameters the

sequence 119909119899 generated by (8) converges strongly to the

unique solution 119909⋆ isin 119865(119879) of the variational inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin 119865 (119879) (9)

which is the optimality condition for the minimizationproblem

min119909isin119865(119879)

1

2⟨119860119909 119909⟩ minus 119892 (119909) (10)

where 119892 is a potential function for 120574ℎ (ie 1198921015840(119909) = 120574ℎ(119909)forall119909 isin 119867)

Iterative process for approximating common fixed pointsof a nonexpansive semigrouphas been investigated by variousauthors (see [13 14 18ndash21]) Recently Li et al [19] introducedthe following iterative procedure for the approximation ofcommon fixed points of a nonexpansive semigroup T =

119879(119904) 0 le 119904 lt infin on a closed convex subset 119862 of a Hilbertspace119867

119909119899 = 120572119899120574ℎ (119909119899) + (119868 minus 120572119899119860)1

119904119899

int

119904119899

0

119879 (119904) 119909119899119889119904 119899 ge 1 (11)

where 119860 is a strongly positive bounded linear operator on119867 and ℎ is a contraction on 119862 Imposing some appropriateconditions on the parameters they proved that the iterativesequence 119909

119899 generated by (11) converges strongly to the

unique solution 119909⋆

isin 119865(T) of the variational inequality⟨(120574ℎ minus 119860)119909

⋆ 119911 minus 119909

⋆⟩ le 0 forall119911 isin 119865(T)

For obtaining a common element of Sol(119891 119862) and the setof fixed points of a nonexpansive mapping 119879 S Takahashiand W Takahashi [9] first introduced an iterative scheme bythe viscosity approximation methodThey proved that undercertain conditions the iterative sequences converge stronglyto 119911 = Proj

119865(119879)capSol(119891119862)(ℎ(119911))During last few years iterative algorithms for finding a

common element of the set of solutions of Fan inequality andthe set of fixed points of nonexpansive mappings in a realHilbert space have been studied by many authors (see eg[2 4 22ndash28]) Recently Anh [22] studied the existence of acommon element of the set of fixed points of a nonexpansivemapping and the set of solutions of Fan inequality formonotone and Lipschitz-type continuous bifunctions Heintroduced the following new iterative process

119908119899 = argmin 120582119899119891 (119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119911119899= argmin 120582

119899119891 (119908119899 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

119909119899+1

= 120572119899ℎ (119909119899) + 120573119899119909119899+ 120574119899(120583119878 (119909

119899) + (1 minus 120583) 119911

119899)

forall119899 ge 0

(12)

where 120583 isin]0 1[119862 is nonempty closed convex subset of a realHilbert space 119867 119891 is monotone continuous and Lipschitz-type continuous bifunction ℎ is self-contraction on 119862 withconstant 119896 isin]0 1[ and 119878 is self nonexpansive mapping on119862 He proved that under some appropriate conditions over

Abstract and Applied Analysis 3

positive sequences 120572119899 120573119899 120574119899 and 120582

119899 the sequences

119909119899 119908119899 and 119911

119899 converge strongly to 119902 isin 119865(119878) cap Sol(119891 119862)

which is a solution of the variational inequality ⟨(119868 minus ℎ)119902 119909 minus119902⟩ ge 0 forall119909 isin 119865(119878) cap Sol(119891 119862)

In this paper we introduce a new iterative scheme basedon the viscosity method and study the existence of a commonelement of the set of solutions of equilibrium problems fora family of monotone Lipschitz-type continuous mappingsand the sets of fixed points of two nonexpansive semigroupsin a real Hilbert space We establish strong convergencetheorems of the new iterative scheme for the solution ofthe variational inequality problem which is the optimalitycondition for theminimization problemOur results improveand generalize the corresponding recent results of Anh [22]Cianciaruso et al [18] and many others

2 Preliminaries

In this section we collect some lemmas which are crucial forthe proofs of our results

Let 119909119899 be a sequence in 119867 and 119909 isin 119867 In the sequel119909119899 119909 denotes that 119909119899weakly converges to 119909 and 119909119899 rarr 119909

denotes that 119909119899 weakly converges to 119909

Lemma 1 Let 119867 be a real Hilbert space Then the followinginequality holds

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2le 119909

2+ 2 ⟨119910 119909 + 119910⟩ forall119909 119910 isin 119867 (13)

Lemma 2 (see [15]) Assume that 119886119899 is a sequence of

nonnegative real numbers such that

119886119899+1

le (1 minus 120578119899) 119886119899 + 120578119899120575119899 119899 ge 0 (14)

where 120578119899 is a sequence in ]0 1[ and 120575

119899is a sequence inR such

that

(i) suminfin119899=1

120578119899= infin

(ii) lim sup119899rarrinfin

120575119899le 0 or suminfin

119899=1|120578119899120575119899| lt infin

Then lim119899rarrinfin119886119899 = 0

Lemma 3 (see [16]) Let 119860 be a strongly positive linearbounded self-adjoint operator on119867 with coefficient 120574 gt 0 and0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588 120574

Lemma 4 (see [29]) Let 119867 be a Hilbert space and 119909119894isin 119867

(1 le 119894 le 119898) Then for any given 120582119894119898

119894=1sub ]0 1[ with sum119898

119894=1120582119894=

1 and for any positive integer 119896 119895 with 1 le 119896 lt 119895 le 119898

1003817100381710038171003817100381710038171003817100381710038171003817

119898

sum

119894=1

120582119894119909119894

1003817100381710038171003817100381710038171003817100381710038171003817

2

le

119898

sum

119894=1

120582119894

10038171003817100381710038171199091198941003817100381710038171003817

2minus 120582119896120582119895

10038171003817100381710038171003817119909119896minus 119909119895

10038171003817100381710038171003817

2

(15)

Lemma 5 (see [30]) Let 119905119899 be a sequence of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119905

119899119894

lt

119905119899119894+1

for all 119894 isin N Then there exists a nondecreasing sequence120591(119899) sub N such that 120591(119899) rarr infin and the following propertiesare satisfied by all (sufficiently large) numbers 119899 isin N

119905120591(119899)

le 119905120591(119899)+1

119905119899le 119905120591(119899)+1

(16)

In fact

120591 (119899) = max 119896 le 119899 119905119896lt 119905119896+1 (17)

Lemma 6 (see [2]) Let 119862 be a nonempty closed convex subsetof a real Hilbert space 119867 and let 119891 119862 times 119862 rarr R bea pseudomonotone and Lipschitz-type continuous bifunctionwith constants 119888

1 1198882ge 0 For each 119909 isin 119862 let 119891(119909 sdot) be convex

and subdifferentiable on 119862 Let 1199090isin 119862 and let 119909

119899 119911119899 and

119908119899 be sequences generated by

119908119899= argmin 120582

119899119891 (119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119911119899= argmin 120582

119899119891 (119908119899 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

(18)

Then for each 119909⋆ isin Sol(119891 119862)

1003817100381710038171003817119911119899 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198881)1003817100381710038171003817119909119899 minus 119908119899

1003817100381710038171003817

2

minus (1 minus 2120582119899 1198882)1003817100381710038171003817119908119899 minus 119911119899

1003817100381710038171003817

2 forall119899 ge 0

(19)

3 Main Results

In this section we prove the main strong convergence resultwhich solves the problem of finding a common elementof three sets 119865(T) 119865(S) and Sol(119891

119894 119862) for finite family

of monotone continuous and Lipschitz-type continuousbifunctions 119891

119894in a real Hilbert space119867

Theorem7 Let119862 be a nonempty closed convex subset of a realHilbert space 119867 and let 119891

119894 119862 times 119862 rarr R (119894 = 1 2 119898)

be a finite family of monotone continuous and Lipschitz-type continuous bifunctions with constants 1198881119894 and 1198882119894 LetT = 119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a

119896-contraction self-mapping of 119862 and 119860 is a strongly positivebounded linear self-adjoint operator on119867 with coefficient 120574 lt1 and 0 lt 120574 lt 120574119896 Let 1199090 isin 119862 and let 119909119899 119908119899119894 and 119911119899119894be sequences generated by

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119894 isin 1 2 119898

119911119899119894= argmin 120582

119899119894119891119894(119908119899119894 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(20)

4 Abstract and Applied Analysis

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 119905

119899 120572119899 120573119899119894 120574119899

120578119899 120582119899119894 and 120579

119899 satisfy the following conditions

(i) lim119899rarrinfin

119905119899= infin

(ii) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub]0 1119871[ where 119871 =max2119888

1119894 21198882119894 1 le

119894 le 119898(iv) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (21)

Proof Since 119865(T) 119865(S) and Sol(119891119894 119862) are closed andconvex Proj

Ωis well-definedWe claim that Proj

Ω(119868minus119860+120574ℎ)

is a contraction from 119862 into itself Indeed for each 119909 119910 isin 119862we have

1003817100381710038171003817ProjΩ (119868 minus 119860 + 120574ℎ) (119909) minus ProjΩ(119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860 + 120574ℎ) (119909) minus (119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860) 119909 minus (119868 minus 119860) 119910

1003817100381710038171003817 + 1205741003817100381710038171003817ℎ119909 minus ℎ119910

1003817100381710038171003817

le (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + 1205741198961003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le (1 minus (120574 minus 120574119896))1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(22)

Therefore by the Banach contraction principle thereexists a unique element 119909⋆ isin 119862 such that 119909⋆ = Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ We show that 119909119899 is bounded Since lim119899rarrinfin120579119899 = 0

we can assume with no loss of generality that 120579119899 isin (0 119860

minus1)

for all 119899 ge 0 By Lemma 6 for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 (23)

This implies that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

1205731198991198941003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

(24)

It follows from Lemma 3 that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 +

1003817100381710038171003817119868 minus 1205791198991198601003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 + (1 minus 120579119899120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le 1205791198991205741003817100381710038171003817ℎ (119909119899) minus ℎ (119909

⋆)1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

= (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

+ 120579119899(120574 minus 120574119896)

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

120574 minus 120574119896

le max1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817120574ℎ119909⋆minusA119909⋆1003817100381710038171003817

120574 minus 120574119896

(25)

This implies that 119909119899 is bounded and so are 119911119899119894 ℎ(119909119899)119879(119905119899)119909119899 and 119878(119905

119899)119909119899 Next we show that lim

119899rarrinfin119909119899minus

119879(119905119899)119909119899 = lim

119899rarrinfin119909119899minus 119878(119905119899)119909119899 = 0 Indeed by Lemma 6

for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198941198881119894)1003817100381710038171003817119909119899 minus 119908119899119894

1003817100381710038171003817

2

minus (1 minus 21205821198991198941198882119894)1003817100381710038171003817119908119899119894 minus 119911119899119894

1003817100381710038171003817

2

(26)

Applying Lemma 4 and inequality (26) for 119896 isin 1 2 119898

we have that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

2

=

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

2

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2+ 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

Abstract and Applied Analysis 5

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus 120573119899119896 (1 minus 21205821198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus 120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 1205721198991205781198991003817100381710038171003817119909119899 minus 119878 (119905119899) 119909119899

1003817100381710038171003817

2

(27)

We now compute1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

2

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119910119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

minus (1 minus 120579119899120574)2120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

(28)

Therefore

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899(1 minus 120579

119899120574)

times1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579

2

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2

(29)

In order to prove that 119909119899rarr 119909⋆ as 119899 rarr infin we consider the

following two cases

Case 1 Assume that 119909119899minus 119909⋆ is a monotone sequence

In other words for large enough 1198990 119909119899minus 119909⋆119899ge1198990

iseither nondecreasing or nonincreasing Since 119909119899 minus 119909

⋆ is

bounded it is convergent Since lim119899rarrinfin

120579119899= 0 and ℎ(119909

119899)

and 119909119899 are bounded from (29) we have

lim119899rarrinfin

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2= 0 (30)

and by assumption we get

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817 = 0 1 le 119896 le 119898 (31)

By similar argument we can obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199081198991198961003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

= lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817 = 0

(32)

Further for all ℎ ge 0 and 119899 ge 0 we see that1003817100381710038171003817119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817 +1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 119909119899

1003817100381710038171003817

+1003817100381710038171003817119879 (ℎ) 119879 (119905119899) 119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817

+ sup119909isin119909119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 1199091198991003817100381710038171003817

(33)

Since 119879(119905) is uar nonexpansive semigroup andlim119899rarrinfin

119905119899= infin we have

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (ℎ) 1199091198991003817100381710038171003817 = 0 (34)

Similarly for all ℎ ge 0 and 119899 ge 0 we obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (ℎ) 1199091198991003817100381710038171003817 = 0 (35)

Next we show that

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩ le 0 (36)

To show this inequality we choose a subsequence 119909119899119894

of 119909119899

such that

lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

(37)

Since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of119909119899119894

which converges weakly to 119909 Without loss of generalitywe can assume that 119909119899

119895

119909 Consider

100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119879 (119905) 119909119899

119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817

le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119909119899119895

minus 119909100381710038171003817100381710038171003817

(38)

Thus we have

lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 119879 (119905) 11990910038171003817100381710038171003817le lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 11990910038171003817100381710038171003817 (39)

By the Opial property of the Hilbert space 119867 we obtain119879(119905)119909 = 119909 for all 119905 ge 0 Similarly we have that 119878(119905)119909 = 119909

for all 119905 ge 0 This implies that 119909 isin 119865(T)⋂119865(S) Now weshow that 119909 isin Sol(119891119894 119862) For each 1 le 119894 le 119898 since 119891119894(119909 sdot) isconvex on 119862 for each 119909 isin 119862 we see that

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (40)

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 3

positive sequences 120572119899 120573119899 120574119899 and 120582

119899 the sequences

119909119899 119908119899 and 119911

119899 converge strongly to 119902 isin 119865(119878) cap Sol(119891 119862)

which is a solution of the variational inequality ⟨(119868 minus ℎ)119902 119909 minus119902⟩ ge 0 forall119909 isin 119865(119878) cap Sol(119891 119862)

In this paper we introduce a new iterative scheme basedon the viscosity method and study the existence of a commonelement of the set of solutions of equilibrium problems fora family of monotone Lipschitz-type continuous mappingsand the sets of fixed points of two nonexpansive semigroupsin a real Hilbert space We establish strong convergencetheorems of the new iterative scheme for the solution ofthe variational inequality problem which is the optimalitycondition for theminimization problemOur results improveand generalize the corresponding recent results of Anh [22]Cianciaruso et al [18] and many others

2 Preliminaries

In this section we collect some lemmas which are crucial forthe proofs of our results

Let 119909119899 be a sequence in 119867 and 119909 isin 119867 In the sequel119909119899 119909 denotes that 119909119899weakly converges to 119909 and 119909119899 rarr 119909

denotes that 119909119899 weakly converges to 119909

Lemma 1 Let 119867 be a real Hilbert space Then the followinginequality holds

1003817100381710038171003817119909 + 1199101003817100381710038171003817

2le 119909

2+ 2 ⟨119910 119909 + 119910⟩ forall119909 119910 isin 119867 (13)

Lemma 2 (see [15]) Assume that 119886119899 is a sequence of

nonnegative real numbers such that

119886119899+1

le (1 minus 120578119899) 119886119899 + 120578119899120575119899 119899 ge 0 (14)

where 120578119899 is a sequence in ]0 1[ and 120575

119899is a sequence inR such

that

(i) suminfin119899=1

120578119899= infin

(ii) lim sup119899rarrinfin

120575119899le 0 or suminfin

119899=1|120578119899120575119899| lt infin

Then lim119899rarrinfin119886119899 = 0

Lemma 3 (see [16]) Let 119860 be a strongly positive linearbounded self-adjoint operator on119867 with coefficient 120574 gt 0 and0 lt 120588 le 119860

minus1 Then 119868 minus 120588119860 le 1 minus 120588 120574

Lemma 4 (see [29]) Let 119867 be a Hilbert space and 119909119894isin 119867

(1 le 119894 le 119898) Then for any given 120582119894119898

119894=1sub ]0 1[ with sum119898

119894=1120582119894=

1 and for any positive integer 119896 119895 with 1 le 119896 lt 119895 le 119898

1003817100381710038171003817100381710038171003817100381710038171003817

119898

sum

119894=1

120582119894119909119894

1003817100381710038171003817100381710038171003817100381710038171003817

2

le

119898

sum

119894=1

120582119894

10038171003817100381710038171199091198941003817100381710038171003817

2minus 120582119896120582119895

10038171003817100381710038171003817119909119896minus 119909119895

10038171003817100381710038171003817

2

(15)

Lemma 5 (see [30]) Let 119905119899 be a sequence of real numbers

such that there exists a subsequence 119899119894 of 119899 such that 119905

119899119894

lt

119905119899119894+1

for all 119894 isin N Then there exists a nondecreasing sequence120591(119899) sub N such that 120591(119899) rarr infin and the following propertiesare satisfied by all (sufficiently large) numbers 119899 isin N

119905120591(119899)

le 119905120591(119899)+1

119905119899le 119905120591(119899)+1

(16)

In fact

120591 (119899) = max 119896 le 119899 119905119896lt 119905119896+1 (17)

Lemma 6 (see [2]) Let 119862 be a nonempty closed convex subsetof a real Hilbert space 119867 and let 119891 119862 times 119862 rarr R bea pseudomonotone and Lipschitz-type continuous bifunctionwith constants 119888

1 1198882ge 0 For each 119909 isin 119862 let 119891(119909 sdot) be convex

and subdifferentiable on 119862 Let 1199090isin 119862 and let 119909

119899 119911119899 and

119908119899 be sequences generated by

119908119899= argmin 120582

119899119891 (119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119911119899= argmin 120582

119899119891 (119908119899 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

(18)

Then for each 119909⋆ isin Sol(119891 119862)

1003817100381710038171003817119911119899 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198881)1003817100381710038171003817119909119899 minus 119908119899

1003817100381710038171003817

2

minus (1 minus 2120582119899 1198882)1003817100381710038171003817119908119899 minus 119911119899

1003817100381710038171003817

2 forall119899 ge 0

(19)

3 Main Results

In this section we prove the main strong convergence resultwhich solves the problem of finding a common elementof three sets 119865(T) 119865(S) and Sol(119891

119894 119862) for finite family

of monotone continuous and Lipschitz-type continuousbifunctions 119891

119894in a real Hilbert space119867

Theorem7 Let119862 be a nonempty closed convex subset of a realHilbert space 119867 and let 119891

119894 119862 times 119862 rarr R (119894 = 1 2 119898)

be a finite family of monotone continuous and Lipschitz-type continuous bifunctions with constants 1198881119894 and 1198882119894 LetT = 119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a

119896-contraction self-mapping of 119862 and 119860 is a strongly positivebounded linear self-adjoint operator on119867 with coefficient 120574 lt1 and 0 lt 120574 lt 120574119896 Let 1199090 isin 119862 and let 119909119899 119908119899119894 and 119911119899119894be sequences generated by

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119908) +

1

2

1003817100381710038171003817119908 minus 119909119899

1003817100381710038171003817

2 119908 isin 119862

119894 isin 1 2 119898

119911119899119894= argmin 120582

119899119894119891119894(119908119899119894 119911) +

1

2

1003817100381710038171003817119911 minus 1199091198991003817100381710038171003817

2 119911 isin 119862

119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(20)

4 Abstract and Applied Analysis

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 119905

119899 120572119899 120573119899119894 120574119899

120578119899 120582119899119894 and 120579

119899 satisfy the following conditions

(i) lim119899rarrinfin

119905119899= infin

(ii) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub]0 1119871[ where 119871 =max2119888

1119894 21198882119894 1 le

119894 le 119898(iv) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (21)

Proof Since 119865(T) 119865(S) and Sol(119891119894 119862) are closed andconvex Proj

Ωis well-definedWe claim that Proj

Ω(119868minus119860+120574ℎ)

is a contraction from 119862 into itself Indeed for each 119909 119910 isin 119862we have

1003817100381710038171003817ProjΩ (119868 minus 119860 + 120574ℎ) (119909) minus ProjΩ(119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860 + 120574ℎ) (119909) minus (119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860) 119909 minus (119868 minus 119860) 119910

1003817100381710038171003817 + 1205741003817100381710038171003817ℎ119909 minus ℎ119910

1003817100381710038171003817

le (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + 1205741198961003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le (1 minus (120574 minus 120574119896))1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(22)

Therefore by the Banach contraction principle thereexists a unique element 119909⋆ isin 119862 such that 119909⋆ = Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ We show that 119909119899 is bounded Since lim119899rarrinfin120579119899 = 0

we can assume with no loss of generality that 120579119899 isin (0 119860

minus1)

for all 119899 ge 0 By Lemma 6 for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 (23)

This implies that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

1205731198991198941003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

(24)

It follows from Lemma 3 that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 +

1003817100381710038171003817119868 minus 1205791198991198601003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 + (1 minus 120579119899120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le 1205791198991205741003817100381710038171003817ℎ (119909119899) minus ℎ (119909

⋆)1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

= (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

+ 120579119899(120574 minus 120574119896)

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

120574 minus 120574119896

le max1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817120574ℎ119909⋆minusA119909⋆1003817100381710038171003817

120574 minus 120574119896

(25)

This implies that 119909119899 is bounded and so are 119911119899119894 ℎ(119909119899)119879(119905119899)119909119899 and 119878(119905

119899)119909119899 Next we show that lim

119899rarrinfin119909119899minus

119879(119905119899)119909119899 = lim

119899rarrinfin119909119899minus 119878(119905119899)119909119899 = 0 Indeed by Lemma 6

for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198941198881119894)1003817100381710038171003817119909119899 minus 119908119899119894

1003817100381710038171003817

2

minus (1 minus 21205821198991198941198882119894)1003817100381710038171003817119908119899119894 minus 119911119899119894

1003817100381710038171003817

2

(26)

Applying Lemma 4 and inequality (26) for 119896 isin 1 2 119898

we have that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

2

=

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

2

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2+ 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

Abstract and Applied Analysis 5

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus 120573119899119896 (1 minus 21205821198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus 120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 1205721198991205781198991003817100381710038171003817119909119899 minus 119878 (119905119899) 119909119899

1003817100381710038171003817

2

(27)

We now compute1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

2

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119910119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

minus (1 minus 120579119899120574)2120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

(28)

Therefore

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899(1 minus 120579

119899120574)

times1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579

2

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2

(29)

In order to prove that 119909119899rarr 119909⋆ as 119899 rarr infin we consider the

following two cases

Case 1 Assume that 119909119899minus 119909⋆ is a monotone sequence

In other words for large enough 1198990 119909119899minus 119909⋆119899ge1198990

iseither nondecreasing or nonincreasing Since 119909119899 minus 119909

⋆ is

bounded it is convergent Since lim119899rarrinfin

120579119899= 0 and ℎ(119909

119899)

and 119909119899 are bounded from (29) we have

lim119899rarrinfin

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2= 0 (30)

and by assumption we get

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817 = 0 1 le 119896 le 119898 (31)

By similar argument we can obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199081198991198961003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

= lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817 = 0

(32)

Further for all ℎ ge 0 and 119899 ge 0 we see that1003817100381710038171003817119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817 +1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 119909119899

1003817100381710038171003817

+1003817100381710038171003817119879 (ℎ) 119879 (119905119899) 119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817

+ sup119909isin119909119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 1199091198991003817100381710038171003817

(33)

Since 119879(119905) is uar nonexpansive semigroup andlim119899rarrinfin

119905119899= infin we have

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (ℎ) 1199091198991003817100381710038171003817 = 0 (34)

Similarly for all ℎ ge 0 and 119899 ge 0 we obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (ℎ) 1199091198991003817100381710038171003817 = 0 (35)

Next we show that

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩ le 0 (36)

To show this inequality we choose a subsequence 119909119899119894

of 119909119899

such that

lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

(37)

Since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of119909119899119894

which converges weakly to 119909 Without loss of generalitywe can assume that 119909119899

119895

119909 Consider

100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119879 (119905) 119909119899

119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817

le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119909119899119895

minus 119909100381710038171003817100381710038171003817

(38)

Thus we have

lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 119879 (119905) 11990910038171003817100381710038171003817le lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 11990910038171003817100381710038171003817 (39)

By the Opial property of the Hilbert space 119867 we obtain119879(119905)119909 = 119909 for all 119905 ge 0 Similarly we have that 119878(119905)119909 = 119909

for all 119905 ge 0 This implies that 119909 isin 119865(T)⋂119865(S) Now weshow that 119909 isin Sol(119891119894 119862) For each 1 le 119894 le 119898 since 119891119894(119909 sdot) isconvex on 119862 for each 119909 isin 119862 we see that

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (40)

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Abstract and Applied Analysis

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 119905

119899 120572119899 120573119899119894 120574119899

120578119899 120582119899119894 and 120579

119899 satisfy the following conditions

(i) lim119899rarrinfin

119905119899= infin

(ii) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub]0 1119871[ where 119871 =max2119888

1119894 21198882119894 1 le

119894 le 119898(iv) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119878119900119897(119891119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (21)

Proof Since 119865(T) 119865(S) and Sol(119891119894 119862) are closed andconvex Proj

Ωis well-definedWe claim that Proj

Ω(119868minus119860+120574ℎ)

is a contraction from 119862 into itself Indeed for each 119909 119910 isin 119862we have

1003817100381710038171003817ProjΩ (119868 minus 119860 + 120574ℎ) (119909) minus ProjΩ(119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860 + 120574ℎ) (119909) minus (119868 minus 119860 + 120574ℎ) (119910)

1003817100381710038171003817

le1003817100381710038171003817(119868 minus 119860) 119909 minus (119868 minus 119860) 119910

1003817100381710038171003817 + 1205741003817100381710038171003817ℎ119909 minus ℎ119910

1003817100381710038171003817

le (1 minus 120574)1003817100381710038171003817119909 minus 119910

1003817100381710038171003817 + 1205741198961003817100381710038171003817119909 minus 119910

1003817100381710038171003817

le (1 minus (120574 minus 120574119896))1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

(22)

Therefore by the Banach contraction principle thereexists a unique element 119909⋆ isin 119862 such that 119909⋆ = Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ We show that 119909119899 is bounded Since lim119899rarrinfin120579119899 = 0

we can assume with no loss of generality that 120579119899 isin (0 119860

minus1)

for all 119899 ge 0 By Lemma 6 for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817 le

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 (23)

This implies that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 +

119898

sum

119894=1

1205731198991198941003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

(24)

It follows from Lemma 3 that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 +

1003817100381710038171003817119868 minus 1205791198991198601003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 120579119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817 + (1 minus 120579119899120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le 1205791198991205741003817100381710038171003817ℎ (119909119899) minus ℎ (119909

⋆)1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

+ (1 minus 120579119899120574)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

le (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579119899

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

= (1 minus 120579119899(120574 minus 120574119896))

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

+ 120579119899(120574 minus 120574119896)

1003817100381710038171003817120574ℎ (119909⋆) minus 119860119909

⋆1003817100381710038171003817

120574 minus 120574119896

le max1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817120574ℎ119909⋆minusA119909⋆1003817100381710038171003817

120574 minus 120574119896

(25)

This implies that 119909119899 is bounded and so are 119911119899119894 ℎ(119909119899)119879(119905119899)119909119899 and 119878(119905

119899)119909119899 Next we show that lim

119899rarrinfin119909119899minus

119879(119905119899)119909119899 = lim

119899rarrinfin119909119899minus 119878(119905119899)119909119899 = 0 Indeed by Lemma 6

for each 1 le 119894 le 119898 we have

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus (1 minus 2120582

1198991198941198881119894)1003817100381710038171003817119909119899 minus 119908119899119894

1003817100381710038171003817

2

minus (1 minus 21205821198991198941198882119894)1003817100381710038171003817119908119899119894 minus 119911119899119894

1003817100381710038171003817

2

(26)

Applying Lemma 4 and inequality (26) for 119896 isin 1 2 119898

we have that

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

2

=

1003817100381710038171003817100381710038171003817100381710038171003817

120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879 (119905119899) 119909119899 + 120578119899119878 (119905119899) 119909119899 minus 119909⋆

1003817100381710038171003817100381710038171003817100381710038171003817

2

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119911119899119894 minus 119909⋆1003817100381710038171003817

2

+ 120574119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2+ 120578119899

1003817100381710038171003817119878 (119905119899) 119909119899 minus 119909⋆1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

Abstract and Applied Analysis 5

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus 120573119899119896 (1 minus 21205821198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus 120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 1205721198991205781198991003817100381710038171003817119909119899 minus 119878 (119905119899) 119909119899

1003817100381710038171003817

2

(27)

We now compute1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

2

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119910119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

minus (1 minus 120579119899120574)2120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

(28)

Therefore

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899(1 minus 120579

119899120574)

times1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579

2

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2

(29)

In order to prove that 119909119899rarr 119909⋆ as 119899 rarr infin we consider the

following two cases

Case 1 Assume that 119909119899minus 119909⋆ is a monotone sequence

In other words for large enough 1198990 119909119899minus 119909⋆119899ge1198990

iseither nondecreasing or nonincreasing Since 119909119899 minus 119909

⋆ is

bounded it is convergent Since lim119899rarrinfin

120579119899= 0 and ℎ(119909

119899)

and 119909119899 are bounded from (29) we have

lim119899rarrinfin

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2= 0 (30)

and by assumption we get

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817 = 0 1 le 119896 le 119898 (31)

By similar argument we can obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199081198991198961003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

= lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817 = 0

(32)

Further for all ℎ ge 0 and 119899 ge 0 we see that1003817100381710038171003817119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817 +1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 119909119899

1003817100381710038171003817

+1003817100381710038171003817119879 (ℎ) 119879 (119905119899) 119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817

+ sup119909isin119909119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 1199091198991003817100381710038171003817

(33)

Since 119879(119905) is uar nonexpansive semigroup andlim119899rarrinfin

119905119899= infin we have

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (ℎ) 1199091198991003817100381710038171003817 = 0 (34)

Similarly for all ℎ ge 0 and 119899 ge 0 we obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (ℎ) 1199091198991003817100381710038171003817 = 0 (35)

Next we show that

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩ le 0 (36)

To show this inequality we choose a subsequence 119909119899119894

of 119909119899

such that

lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

(37)

Since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of119909119899119894

which converges weakly to 119909 Without loss of generalitywe can assume that 119909119899

119895

119909 Consider

100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119879 (119905) 119909119899

119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817

le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119909119899119895

minus 119909100381710038171003817100381710038171003817

(38)

Thus we have

lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 119879 (119905) 11990910038171003817100381710038171003817le lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 11990910038171003817100381710038171003817 (39)

By the Opial property of the Hilbert space 119867 we obtain119879(119905)119909 = 119909 for all 119905 ge 0 Similarly we have that 119878(119905)119909 = 119909

for all 119905 ge 0 This implies that 119909 isin 119865(T)⋂119865(S) Now weshow that 119909 isin Sol(119891119894 119862) For each 1 le 119894 le 119898 since 119891119894(119909 sdot) isconvex on 119862 for each 119909 isin 119862 we see that

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (40)

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 5

le 120572119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+

119898

sum

119894=1

120573119899119894

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2+ 120574119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 120578119899

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus 120573119899119896 (1 minus 21205821198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2minus 120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

=1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus 120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus 120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2minus 120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus 1205721198991205781198991003817100381710038171003817119909119899 minus 119878 (119905119899) 119909119899

1003817100381710038171003817

2

(27)

We now compute1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2

=1003817100381710038171003817120579119899 (120574ℎ (119909119899) minus 119860119909

⋆) + (119868 minus 120579

119899119860) (119910119899minus 119909⋆)1003817100381710038171003817

2

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119910119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119910119899 minus 119909⋆1003817100381710038171003817

le 1205792

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2+ (1 minus 120579

119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899(1 minus 120579

119899120574)1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

minus (1 minus 120579119899120574)2120573119899119896(1 minus 2120582

1198991198961198881119896)1003817100381710038171003817119909119899 minus 119908119899119896

1003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120574119899

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

2

minus (1 minus 120579119899120574)2120572119899120578119899

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817

2

(28)

Therefore

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2

le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2minus1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899(1 minus 120579

119899120574)

times1003817100381710038171003817120574ℎ (119909119899) minus 119860119909

⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817 + 120579

2

119899

1003817100381710038171003817120574ℎ (119909119899) minus 119860119909⋆1003817100381710038171003817

2

(29)

In order to prove that 119909119899rarr 119909⋆ as 119899 rarr infin we consider the

following two cases

Case 1 Assume that 119909119899minus 119909⋆ is a monotone sequence

In other words for large enough 1198990 119909119899minus 119909⋆119899ge1198990

iseither nondecreasing or nonincreasing Since 119909119899 minus 119909

⋆ is

bounded it is convergent Since lim119899rarrinfin

120579119899= 0 and ℎ(119909

119899)

and 119909119899 are bounded from (29) we have

lim119899rarrinfin

(1 minus 120579119899120574)2120572119899120573119899119896

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817

2= 0 (30)

and by assumption we get

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199111198991198961003817100381710038171003817 = 0 1 le 119896 le 119898 (31)

By similar argument we can obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 1199081198991198961003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (119905119899) 1199091198991003817100381710038171003817

= lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (119905119899) 1199091198991003817100381710038171003817 = 0

(32)

Further for all ℎ ge 0 and 119899 ge 0 we see that1003817100381710038171003817119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le1003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817 +1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 119909119899

1003817100381710038171003817

+1003817100381710038171003817119879 (ℎ) 119879 (119905119899) 119909119899 minus 119879 (ℎ) 119909119899

1003817100381710038171003817

le 21003817100381710038171003817119909119899 minus 119879 (119905119899) 119909119899

1003817100381710038171003817

+ sup119909isin119909119899

1003817100381710038171003817119879 (119905119899) 119909119899 minus 119879 (ℎ) 119879 (119905119899) 1199091198991003817100381710038171003817

(33)

Since 119879(119905) is uar nonexpansive semigroup andlim119899rarrinfin

119905119899= infin we have

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119879 (ℎ) 1199091198991003817100381710038171003817 = 0 (34)

Similarly for all ℎ ge 0 and 119899 ge 0 we obtain that

lim119899rarrinfin

1003817100381710038171003817119909119899 minus 119878 (ℎ) 1199091198991003817100381710038171003817 = 0 (35)

Next we show that

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩ le 0 (36)

To show this inequality we choose a subsequence 119909119899119894

of 119909119899

such that

lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

(37)

Since 119909119899119894

is bounded there exists a subsequence 119909119899119894119895

of119909119899119894

which converges weakly to 119909 Without loss of generalitywe can assume that 119909119899

119895

119909 Consider

100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119879 (119905) 119909119899

119895

minus 119879 (119905) 119909100381710038171003817100381710038171003817

le100381710038171003817100381710038171003817119909119899119895

minus 119879 (119905) 119909119899119895

100381710038171003817100381710038171003817+100381710038171003817100381710038171003817119909119899119895

minus 119909100381710038171003817100381710038171003817

(38)

Thus we have

lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 119879 (119905) 11990910038171003817100381710038171003817le lim sup119899rarrinfin

10038171003817100381710038171003817119909119899119894

minus 11990910038171003817100381710038171003817 (39)

By the Opial property of the Hilbert space 119867 we obtain119879(119905)119909 = 119909 for all 119905 ge 0 Similarly we have that 119878(119905)119909 = 119909

for all 119905 ge 0 This implies that 119909 isin 119865(T)⋂119865(S) Now weshow that 119909 isin Sol(119891119894 119862) For each 1 le 119894 le 119898 since 119891119894(119909 sdot) isconvex on 119862 for each 119909 isin 119862 we see that

119908119899119894= argmin 120582

119899119894119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (40)

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Abstract and Applied Analysis

if and only if

0 isin 1205972(119891119894(119909119899 119910) +

1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2) (119908119899119894) + 119873119862(119908119899119894) (41)

where119873119862(119909) is the (outward) normal cone of119862 at 119909 isin 119862This

follows that

0 = 120582119899119894V + 119908119899119894minus 119909119899+ 119906119899 (42)

where V isin 1205972119891119894(119909119899 119908119899119894) and 119906119899 isin 119873119862(119908119899119894) By the definition

of the normal cone119873119862 we have

⟨119908119899119894minus 119909119899 119910 minus 119908

119899119894⟩ ge 120582119899119894⟨V 119908119899119894minus 119910⟩ forall119910 isin 119862 (43)

Since 119891119894(119909119899 sdot) is subdifferentiable on 119862 by the well-known

Moreau-Rockafellar theorem [31] (also see [6]) for V isin

1205972119891119894(119909119899 119908119899119894) we have

119891119894(119909119899 119910) minus 119891

119894(119909119899 119908119899119894) ge ⟨V 119910 minus 119908

119899119894⟩ forall119910 isin 119862 (44)

Combining this with (43) we have

120582119899119894 (119891119894 (119909119899 119910) minus 119891119894 (119909119899 119908119899119894)) ge ⟨119908119899119894 minus 119909119899 119908119899119894 minus 119910⟩

forall119910 isin 119862

(45)

In particular we have

120582119899119895119894(119891119894(119909119899119895

119910) minus 119891119894(119909119899119895

119908119899119894)) ge ⟨119908

119899119895119894minus 119909119899119895

119908119899119895119894minus 119910⟩

forall119910 isin 119862

(46)

Since 119909119899119895

119909 it follows from (32) that 119908119899119895119894 119909 And thus

we have

119891119894(119909 119910) ge 0 forall119910 isin 119862 (47)

This implies that 119909 isin Sol(119891119894 119862) and hence 119909 isin Ω Since 119909⋆ =

ProjΩ(119868 minus 119860 + 120574ℎ)119909

⋆ and 119909 isin Ω we have

lim sup119899rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899⟩

= lim119894rarrinfin

⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909119899119894

= ⟨(119860 minus 120574ℎ) 119909⋆ 119909⋆minus 119909⟩ le 0

(48)

From Lemma 1 it follows that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1003817100381710038171003817(119868 minus 120579119899119860) (119910119899 minus 119909

⋆)1003817100381710038171003817

2

+ 2120579119899⟨120574ℎ (119909

119899) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 2120579119899120574 ⟨ℎ (119909

119899) minus ℎ (119909

⋆) 119909119899+1

minus 119909⋆⟩

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899119896120574

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus 120579119899120574)21003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2

+ 120579119899119896120574 (1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+1003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2)

+ 2120579119899⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le ((1 minus 120579119899120574)2+ 120579119899119896120574)

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+ 1205791198991205741198961003817100381710038171003817119909119899+1 minus 119909

⋆1003817100381710038171003817

2+ 2120579119899 ⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1 minus 119909

⋆⟩

(49)

This implies that

1003817100381710038171003817119909119899+1 minus 119909⋆1003817100381710038171003817

2

le1 minus 2120579119899120574 + (120579119899120574)

2+ 120579119899120574119896

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896

⟨120574ℎ (119909⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

= (1 minus2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+

(120579119899120574)2

1 minus 120579119899120574119896

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2

+2120579119899

1 minus 120579119899120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩

le (1 minus2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+2 (120574 minus 120574119896) 120579119899

1 minus 120579119899120574119896

times (

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ (119909

⋆) minus 119860119909

⋆ 119909119899+1

minus 119909⋆⟩)

= (1 minus 120578119899)1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817

2+ 120578119899120575119899

(50)

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 7

where

119872 = sup 1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

2 119899 ge 0 120578

119899=2 (120574 minus 120574119896) 120579

119899

1 minus 120579119899120574119896

120575119899=

(1205791198991205742)119872

2 (120574 minus 120574119896)+

1

120574 minus 120574119896⟨120574ℎ119909⋆minus 119860119909⋆ 119909119899+1

minus 119909⋆⟩

(51)

It is easy to see that 120578119899 rarr 0 suminfin119899=1

120578119899 = infin andlim sup

119899rarrinfin120575119899le 0 Hence by Lemma 2 the sequence 119909

119899

converges strongly to 119909⋆ From (32) we have that 119908119899119894 and

119911119899119894 converge strongly to 119909⋆

Case 2 Assume that 119909119899minus119909⋆ is not a monotone sequence

Then we can define an integer sequence 120591(119899) for all 119899 ge 1198990

(for some large enough 1198990) by

120591 (119899) = max 119896 isin N 119896 le 119899 1003817100381710038171003817119909119896 minus 119909

⋆1003817100381710038171003817 lt1003817100381710038171003817119909119896+1 minus 119909

⋆1003817100381710038171003817

(52)

Clearly 120591 is a nondecreasing sequence such that 120591(119899) rarr infin

as 119899 rarr infin and for all 119899 ge 1198990

1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817 lt

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817 (53)

From (33) we obtain that

lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119911120591(119899)1198941003817100381710038171003817 = lim119899rarrinfin

1003817100381710038171003817119909120591(119899) minus 119908120591(119899)1198941003817100381710038171003817

= lim119899rarrinfin

10038171003817100381710038171003817119909120591(119899) minus 119879 (119905120591

119899

) 119909120591(119899)

10038171003817100381710038171003817= 0

(54)

Following an argument similar to that in Case 1 we have

1003817100381710038171003817119909120591(119899)+1 minus 119909⋆1003817100381710038171003817

2le (1 minus 120578

120591(119899))1003817100381710038171003817119909120591(119899) minus 119909

⋆1003817100381710038171003817

2+ 120578120591(119899)

120575120591(119899)

(55)

where 120578120591(119899)

rarr 0 suminfin119899=1

120578120591(119899)

= infin and lim sup119899rarrinfin

120575120591(119899)

le 0Hence by Lemma 2 we obtain lim

119899rarrinfin119909120591(119899)

minus 119909⋆ = 0 and

lim119899rarrinfin

119909120591(119899)+1

minus 119909⋆ = 0 Now Lemma 5 implies that

0 le1003817100381710038171003817119909119899 minus 119909

⋆1003817100381710038171003817 le max 1003817100381710038171003817119909120591(119899) minus 119909⋆1003817100381710038171003817

1003817100381710038171003817119909119899 minus 119909⋆1003817100381710038171003817

le1003817100381710038171003817119909120591(119899)+1 minus 119909

⋆1003817100381710038171003817

(56)

Therefore 119909119899 converges strongly to 119909

⋆= Proj

Ω(119868 minus 119860 +

120574ℎ)119909⋆ This completes the proof

4 Application

In this section we consider a particular Fan inequalitycorresponding to the function 119891 defined by the following forevery 119909 119910 isin 119862

119891 (119909 119910) = ⟨119865 (119909) 119910 minus 119909⟩ (57)

where 119865 119862 rarr 119867 Then we obtain the classical variationalinequality as follows

Find 119911 isin 119862 such that ⟨119865 (119911) 119910 minus 119911⟩ ge 0 forall119910 isin 119862 (58)

The set of solutions of this problem is denoted by 119881119868(119865 119862)In that particular case the solution 119910

119899of the minimization

problem

argmin 120582119899 119891 (119909119899 119910) +1

2

1003817100381710038171003817119910 minus 1199091198991003817100381710038171003817

2 119910 isin 119862 (59)

can be expressed as

119910119899= 119875119862 (119909119899 minus 120582119899119865 (119909119899)) (60)

Let 119865 be 119871-Lipschitz continuous on 119862 Then

119891 (119909 119910) + 119891 (119910 119911) minus 119891 (119909 119911) = ⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

119909 119910 119911 isin 119862

(61)

Therefore1003816100381610038161003816⟨119865 (119909) minus 119865 (119910) 119910 minus 119911⟩

1003816100381610038161003816 le 1198711003817100381710038171003817119909 minus 119910

1003817100381710038171003817

1003817100381710038171003817119910 minus 1199111003817100381710038171003817

le119871

2(1003817100381710038171003817119909 minus 119910

1003817100381710038171003817

2+1003817100381710038171003817119910 minus 119911

1003817100381710038171003817

2)

(62)

hence 119891 satisfies Lipschitz-type continuous condition with1198881 = 1198882 = 1198712

Using Theorem 7 we obtain the following convergencetheorem

Theorem 8 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le 119898119865119894is monotone and 119871-Lipschitz continuous on 119862 Let T =

119879(119906) 119906 ge 0 and S = 119878(119906) 119906 ge 0 be twouar nonexpansive self-mapping semigroups on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909

0isin 119862 and let 119909

119899 119908119899119894 and 119911

119899119894 be

sequences generated by

119908119899119894 = 119875119862 (119909119899 minus 120582119899119894119865119894 (119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899= 120572119899119909119899+

119898

sum

119894=1

120573119899119894119911119899119894+ 120574119899119879 (119905119899) 119909119899+ 120578119899119878 (119905119899) 119909119899

119909119899+1 = 120579119899120574ℎ (119909119899) + (119868 minus 120579119899119860)119910119899 forall119899 ge 0

(63)

where 120572119899 + sum

119898

119894=1120573119899119894 + 120574119899 + 120578119899 = 1 and 120572119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579119899 satisfy the following conditions(i) lim

119899rarrinfin119905119899= infin

(ii) 120579119899 sub ]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(iii) 120582119899119894 sub [119886 119887] sub ]0 1119871[

(iv) 120572119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf119899120572119899120574119899 gt 0 lim inf119899120572119899120578119899 gt 0 andlim inf119899120573119899119894(1 minus 21205821198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (64)

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

8 Abstract and Applied Analysis

In [32] Baillon proved a strong mean convergence the-orem for nonexpansive mappings and it was generalizedin [33] It follows from the above proof that Theorems 7 isvalid for nonexpansivemappingsThuswe have the followingmean ergodic theorems for nonexpansive mappings in aHilbert space

Theorem 9 Let 119862 be a nonempty closed convex subset ofa real Hilbert space 119867 and let 119865119894 119862 rarr 119867 (119894 =

1 2 119898) be functions such that for each 1 le 119894 le

119898 119865119894 is monotone and 119871-Lipschitz continuous on 119862 Let119879 and 119878 be two nonexpansive mappings on 119862 such thatΩ = ⋂

119898

119894=1119881119868(119865119894 119862)⋂119865(119879)⋂119865(119878) = 0 Assume that ℎ is a 119896-

contraction of 119862 into itself and119860 is a strongly positive boundedlinear self-adjoint operator on 119867 with coefficient 120574 lt 1 and0 lt 120574 lt 120574119896 Let 119909119899 119908119899119894 and 119911119899119894 be sequences generatedby 1199090isin 119862 and by

119908119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119909119899)) 119894 isin 1 2 119898

119911119899119894= 119875119862(119909119899minus 120582119899119894119865119894(119908119899119894)) 119894 isin 1 2 119898

119910119899 = 120572119899119909119899 +

119898

sum

119894=1

120573119899119894119911119899119894 + 120574119899119879119899119909119899 + 120578119899119878

119899119909119899

119909119899+1

= 120579119899120574ℎ (119909119899) + (119868 minus 120579

119899119860)119910119899 forall119899 ge 0

(65)

where 120572119899+ sum119898

119894=1120573119899119894+ 120574119899+ 120578119899= 1 and 120572

119899 120573119899119894 120574119899 120578119899

120582119899119894 and 120579

119899 satisfy the following conditions

(i) 120579119899 sub]0 1[ lim

119899rarrinfin120579119899= 0 and suminfin

119899=1120579119899= infin

(ii) 120582119899119894 sub [119886 119887] sub ]0 1119871[ where 119871 = max21198881119894 21198882119894

1 le 119894 le 119898(iii) 120572

119899 120573119899119894 120574119899 120578119899 sub ]0 1[ lim inf

119899120572119899120573119899119894

gt 0lim inf

119899120572119899120574119899

gt 0 lim inf119899120572119899120578119899

gt 0 andlim inf

119899120573119899119894(1 minus 2120582

1198991198941198881119894) gt 0 for each 1 le 119894 le 119898

Then the sequence 119909119899 converges strongly to 119909

⋆isin

⋂119898

119894=1119881119868(119865119894 119862)⋂119865(T)⋂119865(S) which solves the variational

inequality

⟨(119860 minus 120574ℎ) 119909⋆ 119909 minus 119909

⋆⟩ ge 0 forall119909 isin Ω (66)

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

This paper was funded by the Deanship of Scientific Research(DSR) King Abdulaziz University Jeddah Therefore theauthors acknowledge with thanks DSR for technical andfinancial support

References

[1] K Fan ldquoA minimax inequality and applicationsrdquo in InequalityIII pp 103ndash113 Academic Press New York NY USA 1972

[2] P N Anh ldquoA hybrid extragradient method extended to fixedpoint problems and equilibrium problemsrdquo Optimization vol62 no 2 pp 271ndash283 2013

[3] E Blum and W Oettli ldquoFrom optimization and variationalinequalities to equilibriumproblemsrdquoTheMathematics Studentvol 63 no 1ndash4 pp 123ndash145 1994

[4] L-C Ceng N Hadjisavvas and N-C Wong ldquoStrong conver-gence theorem by a hybrid extragradient-like approximationmethod for variational inequalities and fixed point problemsrdquoJournal of Global Optimization vol 46 no 4 pp 635ndash646 2010

[5] G Stampacchia ldquoFormes bilineaires coercitives sur les ensem-bles convexesrdquo Comptes rendus de lrsquoAcademie des Sciences vol258 pp 4413ndash4416 1964

[6] P Daniele F Giannessi and A Maugeri Equilibrium Problemsand Variational Models vol 68 Kluwer Academic NorwellMass USA 2003

[7] J-W Peng and J-C Yao ldquoSome new extragradient-likemethodsfor generalized equilibrium problems fixed point problemsand variational inequality problemsrdquo Optimization Methods ampSoftware vol 25 no 4ndash6 pp 677ndash698 2010

[8] D R Sahu N-C Wong and J-C Yao ldquoStrong convergencetheorems for semigroups of asymptotically nonexpansive map-pings inBanach spacesrdquoAbstract andAppliedAnalysis vol 2013Article ID 202095 8 pages 2013

[9] S Takahashi andWTakahashi ldquoViscosity approximationmeth-ods for equilibrium problems and fixed point problems inHilbert spacesrdquo Journal of Mathematical Analysis and Applica-tions vol 331 no 1 pp 506ndash515 2007

[10] S Wang and B Guo ldquoNew iterative scheme with nonexpansivemappings for equilibrium problems and variational inequalityproblems in Hilbert spacesrdquo Journal of Computational andApplied Mathematics vol 233 no 10 pp 2620ndash2630 2010

[11] Y Yao Y-C Liou and Y-J Wu ldquoAn extragradient method formixed equilibrium problems and fixed point problemsrdquo FixedPoint Theory and Applications vol 2009 Article ID 632819 15pages 2009

[12] F E Browder ldquoNonexpansive nonlinear operators in a Banachspacerdquo Proceedings of the National Academy of Sciences of theUnited States of America vol 54 pp 1041ndash1044 1965

[13] R Chen and Y Song ldquoConvergence to common fixed pointof nonexpansive semigroupsrdquo Journal of Computational andApplied Mathematics vol 200 no 2 pp 566ndash575 2007

[14] A Aleyner and Y Censor ldquoBest approximation to commonfixed points of a semigroup of nonexpansive operatorsrdquo Journalof Nonlinear and Convex Analysis vol 6 no 1 pp 137ndash151 2005

[15] H K Xu ldquoAn iterative approach to quadratic optimizationrdquoJournal of Optimization Theory and Applications vol 116 no 3pp 659ndash678 2003

[16] G Marino and H-K Xu ldquoA general iterative method for non-expansive mappings in Hilbert spacesrdquo Journal of MathematicalAnalysis and Applications vol 318 no 1 pp 43ndash52 2006

[17] AMoudafi ldquoViscosity approximationmethods for fixed-pointsproblemsrdquo Journal of Mathematical Analysis and Applicationsvol 241 no 1 pp 46ndash55 2000

[18] F Cianciaruso G Marino and L Muglia ldquoIterative methodsfor equilibrium and fixed point problems for nonexpansivesemigroups in Hilbert spacesrdquo Journal of Optimization Theoryand Applications vol 146 no 2 pp 491ndash509 2010

[19] S Li L Li and Y Su ldquoGeneral iterative methods for a one-parameter nonexpansive semigroup in Hilbert spacerdquo Nonlin-ear Analysis Theory Methods amp Applications vol 70 no 9 pp3065ndash3071 2009

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Abstract and Applied Analysis 9

[20] D R Sahu N C Wong and J C Yao ldquoA unified hybriditerative method for solving variational inequalities involvinggeneralized pseudocontractive mappingsrdquo SIAM Journal onControl and Optimization vol 50 no 4 pp 2335ndash2354 2012

[21] N Shioji and W Takahashi ldquoStrong convergence theoremsfor asymptotically nonexpansive semigroups in Hilbert spacesrdquoNonlinear Analysis Theory Methods amp Applications vol 34 no1 pp 87ndash99 1998

[22] P N Anh ldquoStrong convergence theorems for nonexpansivemappings and Ky Fan inequalitiesrdquo Journal of OptimizationTheory and Applications vol 154 no 1 pp 303ndash320 2012

[23] L-C Ceng Q H Ansari and J-C Yao ldquoHybrid proximal-type and hybrid shrinking projection algorithms for equilib-rium problems maximal monotone operators and relativelynonexpansive mappingsrdquo Numerical Functional Analysis andOptimization vol 31 no 7-9 pp 763ndash797 2010

[24] L-C Ceng Q H Ansari and J-C Yao ldquoViscosity approxima-tion methods for generalized equilibrium problems and fixedpoint problemsrdquo Journal of Global Optimization vol 43 no 4pp 487ndash502 2009

[25] L-C Ceng Q H Ansari and J-C Yao ldquoRelaxed extragradientiterative methods for variational inequalitiesrdquo Applied Mathe-matics and Computation vol 218 no 3 pp 1112ndash1123 2011

[26] L-C Ceng S-M Guu and J-C Yao ldquoHybrid iterative methodfor finding common solutions of generalizedmixed equilibriumand fixed point problemsrdquo Fixed PointTheory and Applicationsvol 2012 article 92 2012

[27] M Eslamian ldquoConvergence theorems for nonspreading map-pings andnonexpansivemultivaluedmappings and equilibriumproblemsrdquo Optimization Letters vol 7 no 3 pp 547ndash557 2013

[28] M Eslamian ldquoHybrid method for equilibrium problems andfixed point problems of finite families of nonexpansive semi-groupsrdquo RACSAM vol 107 pp 299ndash307 2013

[29] M Eslamian and A Abkar ldquoOne-step iterative process fora finite family of multivalued mappingsrdquo Mathematical andComputer Modelling vol 54 no 1-2 pp 105ndash111 2011

[30] P-E Mainge ldquoStrong convergence of projected subgradientmethods for nonsmooth and nonstrictly convexminimizationrdquoSet-Valued Analysis vol 16 no 7-8 pp 899ndash912 2008

[31] R T Rockafellar ldquoMonotone operators and the proximal pointalgorithmrdquo SIAM Journal on Control and Optimization vol 14no 5 pp 877ndash898 1976

[32] J-B Baillon ldquoUn theoreme de type ergodique pour les contrac-tions non lineaires dans un espace de Hilbertrdquo Comptes Rendusde lrsquoAcademie des Sciences vol 280 no 22 pp A1511ndashA15141975

[33] W Kaczor T Kuczumow and S Reich ldquoA mean ergodictheorem for nonlinear semigroups which are asymptoticallynonexpansive in the intermediate senserdquo Journal of Mathemat-ical Analysis and Applications vol 246 no 1 pp 1ndash27 2000

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of