Uraian Fourier

download Uraian Fourier

of 91

Transcript of Uraian Fourier

  • 8/4/2019 Uraian Fourier

    1/91

    The Fourier Series

  • 8/4/2019 Uraian Fourier

    2/91

    Joseph Fourier 1768 - 1830

    Joseph Fourier

    Fourier wasobsessed with thephysics of heat anddeveloped theFourier series and

    transform to modelheat-flow problems.

  • 8/4/2019 Uraian Fourier

    3/91

    Anharmonic waves are sums of sinusoids.

    Consider the sum of two sine waves (i.e., harmonic waves)of different frequencies:

    The resulting wave is periodic, but not harmonic.Essentially all waves are anharmonic.

  • 8/4/2019 Uraian Fourier

    4/91

    Fourierdecomposing

    functions

    Here, we write asquare wave asa sum of sinewaves.

    sin(wt)

    sin(3wt)

    sin(5wt)

  • 8/4/2019 Uraian Fourier

    5/91

    A Fourier series is an expansion of aperiodicfunctionf(t) in terms of an infinite sum

    of cosines and sines

    Introduction

    1

    0 )sincos(2

    )(

    n

    nn tnbtnaa

    tf ww

  • 8/4/2019 Uraian Fourier

    6/91

    In other words, any periodicfunction can beresolved as a summation ofconstant value and cosine and sine functions:

    1

    0

    )sincos(2)( nnn tnbtna

    a

    tf ww

    )sincos( 11 tbta ww 2

    0a

    )2sin2cos( 22 tbta ww

    )3sin3cos( 33 tbta ww

  • 8/4/2019 Uraian Fourier

    7/91

    The computation and study of Fourierseries is known as harmonic analysisandis extremely useful as a way to break upan arbitrary periodic function into a set ofsimple terms that can be plugged in,solved individually, and then recombinedto obtain the solution to the original

    problem or an approximation to it towhatever accuracy is desired or practical.

  • 8/4/2019 Uraian Fourier

    8/91

    =

    + +

    + + +

    Periodic Function

    2

    0a

    ta wcos1

    ta w2cos2

    tb wsin1

    tb w2sin2

    f(t)

    t

  • 8/4/2019 Uraian Fourier

    9/91

    1

    0

    )sincos(2)( nnn tnbtna

    a

    tf ww

    where

    T

    dttfT

    a0

    0 )(2

    frequencylFundementa2

    T

    w

    T

    n tdtntfTa0

    cos)(2

    w

    T

    n tdtntfTb0

    sin)(2

    w

    *we can also use the integrals limit .

    T

    dttfT

    a0

    0 )(2

    2/

    2/

    T

    T

  • 8/4/2019 Uraian Fourier

    10/91

    Example 1

    Determine the Fourier series representation of thefollowing waveform.

  • 8/4/2019 Uraian Fourier

    11/91

    Solution

    First, determine the period & describe the one periodof the function:

    T= 2

    21,0

    10,1)(

    t

    ttf )()2( tftf

  • 8/4/2019 Uraian Fourier

    12/91

    Then, obtain the coefficients a0, an and bn:

    10101)(2

    2)(

    22

    1

    1

    0

    2

    00

    0 dtdtdttfdttfTa

    T

    Or, sincey =f(t) over the interval [a,b], hence

    b

    a

    dttf )( is the total area below graph

    1)11(22

    ],0[overgraphbelowArea2)(2

    0

    0

    TT

    dttfT

    a

    T

  • 8/4/2019 Uraian Fourier

    13/91

    w

    n

    n

    n

    tndttdtn

    tdtntfT

    an

    sinsin0cos1

    cos)(2

    1

    0

    2

    1

    1

    0

    2

    0

    Notice that n is integer which leads ,since

    0sin n03sin2sinsin

    Therefore, .0na

  • 8/4/2019 Uraian Fourier

    14/91

    w

    n

    n

    n

    tndttdtn

    tdtntfTbn

    cos1cos0sin1

    sin)(

    2

    1

    0

    2

    1

    1

    0

    2

    0

    15cos3coscos 16cos4cos2cos

    Notice that

    Therefore,

    even,0

    odd,/2)1(1

    n

    nn

    nb

    n

    n

    orn

    n )1(cos

  • 8/4/2019 Uraian Fourier

    15/91

    ttt

    tnn

    tnbtnaa

    tf

    n

    n

    n

    nn

    ww

    5sin5

    23sin

    3

    2sin

    2

    2

    1

    sin)1(1

    2

    1

    )sincos(2

    )(

    1

    1

    0

    Finally,

  • 8/4/2019 Uraian Fourier

    16/91

    Some helpful identities

    For n integers,n

    n )1(cos 0sin n

    02sin

    n 12cos

    n

    xx sin)sin( xx cos)cos(

  • 8/4/2019 Uraian Fourier

    17/91

    [Supplementary]

    The sum of the Fourier series terms canevolve (progress) into the original

    waveform

    From Example 1, we obtain

    ttttf

    5sin5

    2

    3sin3

    2

    sin

    2

    2

    1

    )(

    It can be demonstrated that the sum willlead to the square wave:

  • 8/4/2019 Uraian Fourier

    18/91

    tttt

    7sin7

    25sin

    5

    23sin

    3

    2sin

    2ttt

    5sin5

    23sin

    3

    2sin

    2

    tt

    3sin3

    2sin

    2t

    sin2

    (a) (b)

    (c) (d)

  • 8/4/2019 Uraian Fourier

    19/91

    ttttt

    9sin9

    27sin

    7

    25sin

    5

    23sin

    3

    2sin

    2

    ttt

    23sin23

    23sin

    3

    2sin

    2

    2

    1

    (e)

    (f)

  • 8/4/2019 Uraian Fourier

    20/91

  • 8/4/2019 Uraian Fourier

    21/91

    Example 2

    Given ,)( ttf 11 t

    )()2( tftf

    Sketch the graph off(t) such that .33 t

    Then compute the Fourier series expansion off(t).

  • 8/4/2019 Uraian Fourier

    22/91

    Solution

    The function is described by the following graph:

    T= 2

    w

    T

    2We find that

  • 8/4/2019 Uraian Fourier

    23/91

    Then we compute the coefficients:

    02

    11

    22

    2

    )(2

    1

    1

    21

    1

    1

    1

    0

    ttdt

    dttfT

    a

  • 8/4/2019 Uraian Fourier

    24/91

    0coscos

    )cos(cos0

    cos)]sin([sin

    sinsin

    coscos)(2

    22

    22

    1

    1

    22

    1

    1

    1

    1

    1

    1

    1

    1

    w

    n

    nnn

    nn

    n

    tn

    n

    nn

    dtn

    tn

    n

    tnt

    tdtnttdtntf

    T

    an

    since xx cos)cos(

  • 8/4/2019 Uraian Fourier

    25/91

    w

    nnn

    n

    n

    nn

    n

    n

    n

    tn

    n

    nn

    dtn

    tn

    n

    tnt

    tdtnttdtntfT

    b

    nn

    n

    1

    22

    1

    1

    22

    1

    1

    1

    1

    1

    1

    1

    1

    )1(2)1(2cos2

    )sin(sincos2

    sin)]cos([cos

    coscos

    sinsin)(2

  • 8/4/2019 Uraian Fourier

    26/91

    ttt

    tnn

    tnbtnaa

    tf

    n

    n

    n

    nn

    ww

    3sin

    3

    22sin

    2

    2sin

    2

    sin)1(2

    )sincos(2

    )(

    1

    1

    1

    0

    Finally,

  • 8/4/2019 Uraian Fourier

    27/91

    Example 3

    Given

    42,0

    20,2)(

    t

    tttv

    )()4( tvtv

    Sketch the graph of v (t) such that .120 t

    Then compute the Fourier series expansion of v (t).

  • 8/4/2019 Uraian Fourier

    28/91

    Solution

    The function is described by the following graph:

    T= 4

    2

    2 w

    T

    We find that

    0 2 4 6 8 10 12t

    v (t)

    2

  • 8/4/2019 Uraian Fourier

    29/91

    Then we compute the coefficients:

    1

    2

    2

    2

    1)2(

    2

    1

    0)2(42

    )(2

    2

    0

    22

    0

    4

    2

    2

    0

    4

    0

    0

    ttdtt

    dtdtt

    dttvT

    a

  • 8/4/2019 Uraian Fourier

    30/91

    222222

    2

    0

    22

    2

    0

    2

    0

    4

    2

    2

    0

    4

    0

    ])1(1[2)cos1(2

    2

    2cos1

    cos

    2

    10

    sin

    2

    1sin)2(

    2

    1

    0cos)2(21cos)(2

    w

    w

    w

    w

    w

    w

    w

    w

    ww

    nn

    n

    n

    n

    n

    tn

    dt

    n

    tn

    n

    tnt

    tdtnttdtntvT

    a

    n

    n

  • 8/4/2019 Uraian Fourier

    31/91

    ww

    w

    w

    w

    w

    w

    w

    w

    w

    w

    ww

    nnnn

    n

    n

    tn

    n

    dtn

    tn

    n

    tnt

    tdtnttdtntvTbn

    212

    2sin1

    sin

    2

    11

    cos

    2

    1cos)2(

    2

    1

    0sin)2(2

    1sin)(

    2

    22

    2

    0

    22

    2

    0

    2

    0

    4

    2

    2

    0

    4

    0

    since 0sin2sin w nn

  • 8/4/2019 Uraian Fourier

    32/91

    122

    1

    0

    2sin

    2

    2cos

    ])1(1[2

    2

    1

    )sincos(2

    )(

    n

    n

    n

    nn

    tn

    n

    tn

    n

    tnbtnaa

    tv

    ww

    Finally,

  • 8/4/2019 Uraian Fourier

    33/91

    Symmetry Considerations

    Symmetry functions:

    (i) even symmetry

    (ii) odd symmetry

  • 8/4/2019 Uraian Fourier

    34/91

    Even symmetry

    Any functionf(t) is even if its plot issymmetrical about the vertical axis, i.e.

    )()( tftf

  • 8/4/2019 Uraian Fourier

    35/91

    Even symmetry (cont.)

    The examples of even functions are:

    2)( ttf

    t t

    t

    ||)( ttf

    ttf cos)(

  • 8/4/2019 Uraian Fourier

    36/91

    Even symmetry (cont.)

    The integral of an even function from A to+A is twice the integral from 0 to +A

    t

    AA

    Adttfdttf

    0

    eveneven )(2)(A +A

    )(even tf

  • 8/4/2019 Uraian Fourier

    37/91

    Odd symmetry

    Any functionf(t) is odd if its plot isantisymmetrical about the vertical axis, i.e.

    )()( tftf

  • 8/4/2019 Uraian Fourier

    38/91

    Odd symmetry (cont.)

    The examples of odd functions are:

    3)( ttf

    t t

    t

    ttf )(

    ttf sin)(

  • 8/4/2019 Uraian Fourier

    39/91

    Odd symmetry (cont.)

    The integral of an odd function from A to+A is zero

    t 0)(odd

    A

    A

    dttfA

    +A

    )(odd tf

  • 8/4/2019 Uraian Fourier

    40/91

    Even and odd functions

    (even)(even) = (even)

    (odd)(odd) = (even)

    (even)

    (odd) = (odd) (odd)(even) = (odd)

    The product properties of even and oddfunctions are:

  • 8/4/2019 Uraian Fourier

    41/91

    Symmetry consideration

    From the properties of even and oddfunctions, we can show that:

    for even periodic function;

    2/

    0

    cos)(4

    T

    n tdtntfT

    a w 0nb

    for odd periodic function;

    2/

    0

    sin)(4

    T

    n tdtntfT

    b w00 naa

  • 8/4/2019 Uraian Fourier

    42/91

    How?? [Even function]

    2

    T

    2

    T

    2/

    0

    2/

    2/

    cos)(4

    cos)(2

    TT

    T

    n tdtntfT

    tdtntfT

    a ww

    (even) (even)

    | |

    (even)

    0sin)(2

    2/

    2/

    T

    T

    n tdtntfT

    b w

    (even) (odd)

    | |

    (odd)

    )(tf

    t

  • 8/4/2019 Uraian Fourier

    43/91

    How?? [Odd function]

    2

    T

    2

    T

    2/

    0

    2/

    2/

    sin)(4

    sin)(2

    TT

    T

    n tdtntfT

    tdtntfT

    b ww

    (odd)(odd)

    | |

    (even)

    0cos)(22/

    2/

    T

    T

    n tdtntfT

    a w

    (odd) (even)

    | |(odd)

    )(tf

    t

    0)(2

    2/

    2/

    0

    T

    T

    dttfT

    a

    (odd)

  • 8/4/2019 Uraian Fourier

    44/91

    L 0 0

    -L 0 0

    0

    0 0

    0 0

    - 0

    If f(x) is an even function

    f(x)dx ( ) ( ) ( ) ( ) ( )

    ( ) ( ) 2 ( )

    If f(x) is an odd function, then

    ( ) ( ) ( ) ( ) ( ) ( )

    L L

    L L

    L L

    L

    L L

    L L L

    f x dx f x dx f x d x f x dx

    f x dx f x dx f x dx

    f x dx f x dx f x dx f x d x f x dx

    00

    0( ) ( ) 0

    If f(x) is even and g(x) is odd, then

    h(x)=f(x)g(x) is an odd function

    h(x)=f(x)g(x)=f(-x)[-g(-x)]=-[f(-x)g(-x)]=-h(-x)

    L

    L

    Lf x dx f x dx

  • 8/4/2019 Uraian Fourier

    45/91

    Example 4

    Given

    21,1

    11,

    12,1

    )(

    t

    tt

    t

    tf

    )()4( tftf

    Sketch the graph off(t) such that .66 t

    Then compute the Fourier series expansion off(t).

  • 8/4/2019 Uraian Fourier

    46/91

    Solution

    The function is described by the following graph:

    T= 4

    2

    2 w

    T

    We find that

    046 2 4 6t

    f(t)

    2

    1

    1

  • 8/4/2019 Uraian Fourier

    47/91

    Then we compute the coefficients. Sincef(t) is

    an odd function, then

    0)(2

    2

    2

    0

    dttfT

    a

    0cos)(2

    2

    2

    tdtntf

    T

    an w

    and

  • 8/4/2019 Uraian Fourier

    48/91

    w

    w

    w

    w

    w

    ww

    w

    w

    w

    w

    w

    w

    w

    w

    w

    w

    ww

    ww

    n

    n

    n

    n

    n

    nn

    nn

    n

    tn

    n

    n

    ntndt

    ntn

    ntnt

    tdtntdtnt

    tdtntfT

    tdtntfT

    bn

    cos2sin2cos

    cos2cossincos

    coscoscos

    sin1sin4

    4

    sin)(4

    sin)(2

    22

    1

    0

    22

    2

    1

    1

    0

    1

    0

    2

    1

    1

    0

    2

    0

    2

    2

    since 0sin2sin w

    nn

  • 8/4/2019 Uraian Fourier

    49/91

    1

    1

    1

    1

    0

    2sin)1(2

    2sin

    cos2

    )sincos(

    2

    )(

    n

    n

    n

    n

    nn

    tnn

    tn

    n

    n

    tnbtnaa

    tf

    ww

    Finally,

  • 8/4/2019 Uraian Fourier

    50/91

    Example 5

    Compute the Fourier series expansion off(t).

  • 8/4/2019 Uraian Fourier

    51/91

    Solution

    The function is described by

    T= 3

    3

    22 w

    Tand

    32,1

    21,2

    10,1

    )(

    t

    t

    t

    tf

    )()3( tftf

    T= 3

  • 8/4/2019 Uraian Fourier

    52/91

    Then we compute the coefficients.

    3

    81

    2

    32)01(

    3

    421

    3

    4)(

    4)(

    22/3

    1

    1

    0

    2/3

    0

    3

    0

    0

    dtdtdttfT

    dttfT

    a

    3

    8)23()12(2)01(

    3

    2121

    3

    2)(

    2 3

    2

    2

    1

    1

    0

    3

    0

    0

    dtdtdtdttfTa

    Or, sincef(t) is an even function, then

    Or, simply

    3

    84

    3

    2

    periodain

    graphbelowareaTotal2)(

    23

    0

    0

    TdttfTa

  • 8/4/2019 Uraian Fourier

    53/91

    3

    2sin

    2

    3

    2sinsin2

    2

    sin2

    3sin2

    3

    4

    sin2

    3sin2sin

    3

    4

    sin2

    3

    4sin

    3

    4

    cos2cos13

    4

    cos)(4

    cos)(2

    2/3

    1

    1

    0

    2/3

    1

    1

    0

    2/3

    0

    3

    0

    w

    w

    w

    w

    w

    w

    w

    w

    w

    w

    w

    ww

    ww

    n

    n

    nn

    n

    nn

    n

    nn

    nn

    n

    tn

    n

    tn

    tdtntdtn

    tdtntfT

    tdtntfT

    an

    ;3

    2w

  • 8/4/2019 Uraian Fourier

    54/91

    1

    1

    1

    0

    3

    2cos

    3

    2sin

    12

    3

    4

    3

    2cos

    3

    2sin

    2

    3

    4

    )sincos(2

    )(

    n

    n

    n

    nn

    tnn

    n

    tnn

    n

    tnbtnaa

    tf

    ww

    Finally,

    and 0nb sincef(t) is an even function.

  • 8/4/2019 Uraian Fourier

    55/91

    Function defines over a finite interval

    Fourier series only support periodic functions

    In real application, many functions are non-

    periodic The non-periodic functions are often can be

    defined over finite intervals, e.g.

    y = 1 y = 1

    y = 2

  • 8/4/2019 Uraian Fourier

    56/91

    Therefore, any non-periodic function must be

    extended to a periodic function first, beforecomputing its Fourier series representation

    Normally, we prefer symmetry (even or odd)periodic extension instead of normal periodic

    extension, since symmetry function will providezero coefficient of either an or bn

    This can provide a simpler Fourier seriesexpansion

  • 8/4/2019 Uraian Fourier

    57/91

    )(ty

    t

    )(tf

    t

    )(even tf

    )(odd tf

    t

    t

    lttytf 0,)()(

    )()( tfltf lT

    0,)(

    0,)()(tlty

    lttytf

    )()2( tfltf

    lT 2

    0,)(

    0,)()(

    tlty

    lttytf

    )()2( tfltf

    lT 2

    l0

    l0 l2ll2

    l0 l2ll2

    l3l3

    l3l3

    l0 l2ll2 l3l3

    T

    T

    T

    Periodic extension

    Even periodic extension

    Odd periodic extension

    Non-periodicfunction

  • 8/4/2019 Uraian Fourier

    58/91

    Half-range Fourier series expansion

    The Fourier series of the even or oddperiodic extension of a non-periodic

    function is called as the half-range Fourierseries

    This is due to the non-periodic function is

    considered as the half-range before it isextended as an even or an odd function

  • 8/4/2019 Uraian Fourier

    59/91

    If the function is extended as an even

    function, then the coefficient bn= 0, hence

    1

    0 cos2

    )(n

    n tnaa

    tf w

    which only contains the cosine harmonics. Therefore, this approach is called as the

    half-range Fourier cosine series

  • 8/4/2019 Uraian Fourier

    60/91

    If the function is extended as an odd

    function, then the coefficient an= 0, hence

    1

    sin)(n

    n tnbtf w

    which only contains the sine harmonics. Therefore, this approach is called as the

    half-range Fourier sine series

  • 8/4/2019 Uraian Fourier

    61/91

    Example 6

    ttf 0,1)(

    Compute the half-range Fourier sine series expansionoff(t), where

  • 8/4/2019 Uraian Fourier

    62/91

    Solution

    Since we want to seek the half-range sine series,the function to is extended to be an odd function:

    T= 2

    12

    T

    w

    0 t

    f(t)

    1

    1

    220 t

    f(t)

    1

  • 8/4/2019 Uraian Fourier

    63/91

    Hence, the coefficients are

    00 naa

    w

    0

    2/

    0sin12

    4

    sin)(

    4

    ntdttdtntfTb

    T

    n

    and

    even,0

    odd,/4)cos1(

    2cos2

    0 n

    nnn

    nn

    nt

    Therefore,

    ntn

    ntnn

    tf

    nnn

    sin4

    sin)cos1(2

    )(

    odd11

  • 8/4/2019 Uraian Fourier

    64/91

    Example 7

    10,12)(

    tttf

    Determine the half-range cosine series expansionof the function

    Sketch the graphs of bothf(t) and the periodicfunction represented by the series expansion for3 < t< 3.

  • 8/4/2019 Uraian Fourier

    65/91

    Solution

    Since we want to seek the half-range cosine series,the function to is extended to be an even function:

    T= 2

    w T

    2

    t

    f(t)

    t

    f(t)

    1

    2233 1

    1

    11

    11

    2

    1

  • 8/4/2019 Uraian Fourier

    66/91

    Hence, the coefficients are

    02)12(24

    )(

    4 1

    0

    2

    1

    0

    2/

    00

    ttdttdttfTa

    T

    1

    0

    22

    1

    0

    1

    0

    1

    0

    2/

    0

    cos4sin2

    2sin

    2sin)12(

    2

    cos)12(2

    4cos)(

    4

    w

    ntn

    nn

    dtn

    tn

    n

    tnt

    tdtnttdtntfT

    a

    T

    n

    even,0

    odd,/8)1(cos422

    22

    n

    nn

    n

    n

  • 8/4/2019 Uraian Fourier

    67/91

    0nb

    Therefore,

    odd1

    22

    odd1

    22

    1

    0

    cos18

    cos8

    0

    cos)(

    nn

    nn

    n

    n

    tnn

    tnn

    tnaatf

    w

  • 8/4/2019 Uraian Fourier

    68/91

    Exponential Fourier series

    Recall that, from the Eulers identity,

    xjxejx sincos

    yields

    2cos

    jxjx eex

    2

    sin

    j

    eex

    jxjx and

  • 8/4/2019 Uraian Fourier

    69/91

    Then the Fourier series representation becomes

    11

    0

    1

    0

    1

    0

    1

    0

    1

    0

    222

    222

    222

    222

    )sincos(2

    )(

    n

    tjnnn

    n

    tjnnn

    n

    tjnnntjnnn

    n

    tjntjn

    n

    tjntjn

    n

    n

    tjntjn

    n

    tjntjn

    n

    n

    nn

    ejba

    ejbaa

    ejbaejbaa

    eejb

    eea

    a

    j

    eeb

    eea

    a

    tnbtnaa

    tf

    ww

    ww

    wwww

    wwww

    ww

  • 8/4/2019 Uraian Fourier

    70/91

    Here, let we name

    11

    0

    222)(

    n

    tjnnn

    n

    tjnnn ejba

    ejbaa

    tf ww

    2

    nnn

    jbac

    ,

    2

    nnn

    jbac

    Hence,

    n

    tjn

    n

    n

    tjn

    n

    n

    tjn

    n

    n

    tjn

    n

    n

    tjn

    n

    n

    tjn

    n

    n

    tjn

    n

    ececcec

    ececc

    ececc

    www

    ww

    ww

    1

    0

    1

    11

    0

    11

    0

    and .20

    0

    ac

    c0 cncn

  • 8/4/2019 Uraian Fourier

    71/91

    Then, the coefficient cn can be derived from

    T

    tjn

    T

    TT

    TT

    nnn

    dtetfT

    dttnjtntfT

    tdtntfjtdtntfT

    tdtntfT

    jtdtntf

    T

    jbac

    0

    0

    00

    00

    )(1

    ]sin)[cos(1

    sin)(cos)(1

    sin)(2

    2cos)(

    2

    2

    1

    2

    w

    ww

    ww

    ww

  • 8/4/2019 Uraian Fourier

    72/91

    In fact, in many cases, the complexFourier series is easier to obtain rather

    than the trigonometrical Fourier series

    In summary, the relationship between thecomplex and trigonometrical Fourier series

    are:

    2

    nnn

    jbac

    2

    nnn

    jbac

    T

    dttfT

    ac

    0

    00 )(

    1

    2

    T

    tjn

    n dtetfT

    c0

    )(1

    w

    nn cc or

  • 8/4/2019 Uraian Fourier

    73/91

    Example 8

    Obtain the complex Fourier series of the followingfunction

    2 44 2 0

    2e

    1

    )(tf

    t

  • 8/4/2019 Uraian Fourier

    74/91

    Since , . Hence

    Solution

    2

    1

    2

    1

    2

    1

    )(1

    22

    0

    2

    0

    0

    0

    ee

    dte

    dttf

    T

    c

    t

    t

    T

    1w2T

  • 8/4/2019 Uraian Fourier

    75/91

    )1(21

    )1(21

    )1(21

    12

    1

    2

    1

    2

    1

    )(1

    222)1(2

    2

    0

    )1(

    2

    0

    )1(

    2

    0

    0

    jn

    e

    jn

    ee

    jn

    e

    jn

    e

    dtedtee

    dtetf

    T

    c

    njjn

    tjn

    tjnjntt

    T

    tjn

    n

    w

    since1012sin2cos

    2 njne

    nj

  • 8/4/2019 Uraian Fourier

    76/91

    jnt

    nn

    tjn

    n ejn

    eectf

    )1(2

    1)(

    2

    w

    Therefore, the complex Fourier series off(t) is

    0

    2

    0

    2

    0 2

    1

    )1(2

    1

    c

    e

    jn

    e

    cn

    nn

    *Notes: Even though c0 can be found by substitutingcn with n = 0, sometimes it doesnt works (as shownin the next example). Therefore, it is always better to

    calculate c0 alone.

  • 8/4/2019 Uraian Fourier

    77/91

    2

    2

    121n

    ecn

    cn is a complex term, and it depends on n.Therefore, we may plot a graph of |cn| vs n.

    In other words, we have transformed the functionf(t)in the time domain (t), to the function cn in thefrequency domain (n).

  • 8/4/2019 Uraian Fourier

    78/91

    Example 9

    Obtain the complex Fourier series of the function inExample 1.

  • 8/4/2019 Uraian Fourier

    79/91

    Solution

    2

    11

    2

    1)(

    11

    00

    0 dtdttfTc

    T

    w

    )1(22

    1

    012

    1)(

    1

    1

    0

    2

    1

    1

    00

    w

    jntjn

    tjn

    T

    tjn

    n

    en

    j

    jn

    e

    dtedtetfT

    c

  • 8/4/2019 Uraian Fourier

    80/91

    )1(2

    jn

    n en

    jc

    But njn nnjne )1(cossincos

    Thus,

    even,0

    odd,/]1)1[(2 n

    nnjnj n

    Therefore,

    odd0

    2

    1)(

    nn

    n

    tjn

    n

    tjn

    n en

    jectf

    w

    *Here notice that .00

    ccn

    n

  • 8/4/2019 Uraian Fourier

    81/91

    even,0

    odd,1

    n

    nncn

    The plot of |cn| vs n is shown below

    2

    10 c

    0.5

  • 8/4/2019 Uraian Fourier

    82/91

    Exercise 1

    Obtain the complex Fourier series of thefunction bellow;

    f(x) =1, - x < 0

    0, 0 x <

    S l ti

  • 8/4/2019 Uraian Fourier

    83/91

    dxedxedxec inxinxinxn

    0

    0

    0

    )1(2

    1)0(

    2

    1)1(

    2

    1

    0

    02

    1)1(

    2

    1

    dxc

    )cos1(2

    12

    nnie

    nic

    in

    n

    Solution

    Kita tinjau untuk n = 0 dan n 0

    a. Untuk n = 0

    b. Untuk n 0

    = n

    i

    n ganjil

    0, n genap

  • 8/4/2019 Uraian Fourier

    84/91

    ...5

    1

    3

    1

    3

    1

    5

    1

    ...2

    1

    )(5335 ixixixixixix

    eeeeee

    i

    xf

    ...

    5

    5sin

    3

    3sin

    1

    sin2

    2

    1)(

    xxxxf

  • 8/4/2019 Uraian Fourier

    85/91

    Parsevals Theorem

    Parservals theorem states that the

    average power in a periodic signal is equal

    to the sum of the average power in its DCcomponent and the average powers in itsharmonics

  • 8/4/2019 Uraian Fourier

    86/91

    =

    + +

    + + +

    2

    0a

    ta wcos1

    ta w2cos2

    tb wsin1

    tb w2sin2

    f(t)

    t

    PavgPdc

    Pa1 Pb1

    Pa2 Pb2

  • 8/4/2019 Uraian Fourier

    87/91

    For sinusoidal (cosine or sine) signal,

    R

    V

    R

    V

    R

    VP

    2

    peak

    2peak

    2

    rm s

    2

    12

    For simplicity, we often assumeR= 1,

    which yields2

    peak21 VP

  • 8/4/2019 Uraian Fourier

    88/91

    For sinusoidal (cosine or sine) signal,

    2

    2

    2

    2

    2

    1

    2

    1

    2

    0

    dcavg

    2

    1

    2

    1

    2

    1

    2

    1

    2

    2211

    babaa

    PPPPPP baba

    1

    222

    0avg )(2

    1

    4

    1

    n

    nn baaP

  • 8/4/2019 Uraian Fourier

    89/91

    )()2/(2

    1)(

    1 22

    1

    20

    2

    n

    n

    n

    La

    a

    baaxfL

    inpx

    necxf

    )(

    22

    )(1

    n

    n

    La

    a

    cxfL

    Parsevals Identity

    For exponential form

    The Parsevals identity

  • 8/4/2019 Uraian Fourier

    90/91

    Example 10

    Use Parseval theorem to determine sum of number series in

    the exercise 1

    ii

  • 8/4/2019 Uraian Fourier

    91/91

    C0= )cos1(2

    12

    nn

    ie

    n

    ic

    in

    n

    22

    )(1

    n

    n

    La

    a

    cxfL

    2

    10

    2

    11

    2

    1)(

    2

    12

    0

    202

    dxdxdxxf

    Parseval identity

    2

    2

    2

    )cos1(2

    12/1

    2

    1

    nn

    cn

    n

    .. .

    7

    1

    5

    1

    3

    11

    2

    2

    12222

    2

    12

    S