wm.7 - NEDO-GET- 9 5 4 0 A/& DO - OSTI.GOV

406
5 w-m.7 NEDO-GET- 9 5 4 0 A/& DO -' GET- - 9-5^0 smrnmm of tm document is unlimited % 8 $ 3 ^ |if jl ^ ;l/ 4^ -

Transcript of wm.7 - NEDO-GET- 9 5 4 0 A/& DO - OSTI.GOV

5w-m.7NEDO-GET- 9 5 4 0

A/& DO -' GET- - 9-5^0

smrnmm of tm document is unlimited

% 8 $ 3 ^

|if jl ^ ;l/ 4^ -

(fWM) «8^3 n (-5-^E) 398

Lfct>CDT'&3

NEDO-GET- 9 5 4 07

nmmmmm&mm

$ «« w &9u OC

8 ¥ 3 n

I

mmU 8 £ 8 ^zk

v2i^0|S10^ * "%^2/$2f%#0##*

‘M-.n #j« ? 2 §ai<5 m&mmom-o'gm&mymMMm

va^i? • M^iS2.a a 4 2

°-ia MM%mikmRmw§wmmm vi

=s ^ % a ##2! ? ^#30# vS3sjfi(3

MS* Sr 4- M 2) H H 3ijfi oSSSPEMWSW \ir&f.g2l9mm%a c.2 v#^ajJH

tf$9W' G a v2^ $ °2?i|W?:>''ii

a##2)%*#'%## xaw§ia$|y^iJa^^^3jfii2)M@

(%####S4^2!°9:?a.^ik±MW? ^ 9ri^^

v^?ll-ilog|0i V£12) <# 2/ 9:®^^.S©EroSW

o?®.i0^W?|C!?$Ii0 rs*^^^jsn@j 9. G@0*

a ii^tii l 2^*5? oxih)Y#@# "%aa@g9«y (oaro mum^-msiEs •

[# ^ ¥ £1

[g m

m wi i

[$ Hi1.

(1) • Fida Mohammad........................... 19

(2) • • Flora Ng............................................ 35

(3) RITE#1^^# y X f - • Hans-Holger Rogner................... 51

(4) #|53^C#@#n|3 • Jean-Pierre Gattuso ...................... 69

2. #####&######(1) llSSil7*-7^®ffl ........................................................................... 83

: ME^SX^S -M M 3S -

(2) ^- ?" Pf W^##lliniW^## y y ^ y ^ A............................ 99

: RITEA#^?^@#05mmi -si m m m

(3) munno^um yy^yy 109

: RITE'M * V 7? *-7°a ^ h•& m x-si

(4) #2iini'fl:# 6 a y y ^ y 7 A ......................................................... 117

### : RITExsm&m *t s 01 i

(5) -9-y3,S©ES®^fcM1'S7-^ y 3 -y ••••123

### = RiTE#gsAm@p#^msmx # • & □ w •&

(6) d-y/ T-f %-y 3 y?-? y 3 y................................133

### : RITE COzM'Mt’o ^sn|•& * g *

(7) h -^i/xn-^y yxfcKl^SISEv - ? y 3 yZf^O^M ........................ 145

= mM7km±#7km#sg m#g•5 ill 31 IE

H

151

RITEEE^SSt°d $?* 9 h:lW iB

3. mftwummftm.m.

(2)XEE^S

(3)(4) RITE liSi^fA|3Sl

XffiE3£*(5) mm#m^##x#@p sets®

• S [SI % —• ........... ...............163

• /j\ # fn ^ ........... ...............191

• ¥- # m ...............209

• # * 6% o] ........... ...............231

• # # —. ........... ...............249

4.

(1) JECAT’95RtfS 1 UliS^

mSEBBim vt£.m& -w n m -

m # ^

mmt¥W%M XEE05#• m # £ hs

^lEXEME^E^• M MB^EBESESEl. • ± ffl

mm -# # # m(2) s 5 ii b mmrn ^ ©Eit...............................

E^A -A # #(3) tr50 BEE^SAWSlOBBMAJ&AB^oEil

-m * @(4) ^ JU ¥ 'S 9 - ? 5/ 3 y 7°s. CfIEA#^%# # X

■287

•303

•309

•327

• lU ffl

w

(5) 3 -Kx7° V y 343

### : RITE^M *'j7^-^nj?*nftsu^i in '* # # &

(6) .................................................... .....................

### : RITEsms - iii □ #

-s e -?s %

• j?0 1$ A(?) #1013APEcmmm####wG/\omm .................

### : RITE

• ii Jt£ &(8) GLOBE’QG^CDiEE ................................................................

### : RITE«Si5S -E E

-m m m mm) ...................

### : RITE#%#?&@mSmeses. •« s i -

351

361

369

393

v

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document

X.

Summary

Exchange with overseas researchers and research institutes carries great meaning towards creating a new field of research for dealing with global environmental problems, and in promoting research and development needed to build new technological systems.

This is why, with the cooperation of affiliated researchers and academic circles, RITE is inviting and sending specialists to international conferences and symposiums that address the technical aspects of the global environment, and is promoting exchange projects with major research institutes and universities around the world. RITE has now set up a system for dispatching and inviting researchers for mid-to long-term programs that should step up the short-term projects implemented to date and form a major part of future exchange activities.

From this, not only have we been able to promote exchange activities both at home and abroad, but we have helped various fields of basic research into environmentally friendly technology progress. Because of the close relationship this has with research and development of industrial technology conducive of environmental conservation, RITE sees the importance of working from the experience of this past year and building a more effective system of research exchange activity. Hereinafter, a general report is given on projects implements this year.

[Invitation]

To have local researchers work on global environmental problems with their counterparts from overseas, we set up a joint research project with 4 researchers from around the world. We also invited researchers from abroad to the International Forum on Environmental Catalysts, The 11th Research Conference and Symposium of the Euglena Research Society, and the Symposium on "Molecular Control of Cell Propagation", etc.

— 1--

1. Invitational programs for overseas researchers

(1)Program dates • September 1, 1995 to March 20, 1996 Researcher(s) : Fida MohammadHost organization : National Institute of Materials and Chemical Research Subject of research : High resolution spectroscopy of reaction intermediates of fluorine compounds

(2)Program dates : September 5 to December 9, 1995 Researcher(s) : Flora NgHost organization : Faculty of Engineering, Tohoku UniversitySubject of research : Decomposition of waste, recovery of chemical materialsand catalytic conversion of products in supercritical water

(3)Program dates : September 15 to December 3, 1995 Researcher (s) • Hans-Holger RognerHost organization : RITE System Analysis for Global Environment Laboratory Subject of research : Penetration into the market for hydrogen energy utilization technology

(4)Program dates : October 8 to November 20, 1995 Researcher(s) : Jean-Pierre GattusoHost organization : Faculty of Science, Shizuoka UniversitySubject of research : Survey and research concerning the biofixation ofcarbon dioxide occurring in coral reefs

2. Invitational programs for overseas researchers to international Symposiums

(1) Researchers invited to the International Forum on Environmental Catalysts (IFEC ’95)

— 2 —

Program dates * October 24 to October 28, 1995 Researcher(s) ‘ Ralph Albert Dalla Betta and two others Host organization : Faculty of Science and Technology, Waseda University Subject of research : Researchers from Japan and abroad studying environmental catalysts gathered together to exchange information and discuss the possibilities of international joint research activities, with the aim of contributing to the resolution of environmental problems

(2) Researchers invited to the 11th Research Conference and Symposium of the Euglena Research Society, etc.

Program dates : November 22 to November 28, 1995 Researcher(s) : Christine H. Foyer Host organization : RITESubject of research • Lectures and information exchange concerning the active - oxygen removal mechanism that occurs in higher plants, under the theme of new developments in in-vivo antioxidation mechanisms

(3) Researchers invited to a symposium on "The Molecular Control of Cell Propagation"

Program dates : November 25 to December 2, 1995 Researcher(s) : Richard R. Hardy Host organization : RITESubject of research : One of the important developmental issues of the

"Development of a High - Performance Bioreactor for the Production of Biochemicals" is the development of "Control Technology for the Propagation of Animal Cells" ", this symposium featured top-level researchers from various fields who presented the latest research trends and information on propagation control and evaluation technology dealing mainly with immunity cells, which have been explicated especially in animal cells

(4) Researchers invited to the 21st Chemistry and Biology . Symposium

Program dates : March 27 to March 30, 1996

— 3 —

Researcher(s) : Anne Lee Tonkovich and two others Host organization : RITESubject of research : Presentations and discussion on the field of environmental preservation research, with which agricultural chemistry is currently grappling with must continue to grapple

(5) Researchers invited to the International Workshop on Carbon Cycling and Coral Reef Metabolism

Program dates : October 16 to October 25, 1995 Researcher(s) : Robert W. Buddemeier and five others Host organization : RITESubject of research : Discussion on research methods for evaluating whether coral reefs are sink or source of CO 2 and how to analyze the data derived from that research

(6) Researchers invited to the Japan - Germany Workshop on Bioremediation

Program dates : December 3 to December 7, 1995Researcher(s) : Rolf Schmid and 11 others (only overseas researchers)Host organization : RITESubject of research : Research presentations and discussion by leading Industrial Management researchers from Japan and Germany concerning the fields of microorganisms, monitoring, and engineering related to bioremediation ; also on-site observation of leading companies and sites

(7) Researchers invited to an International Workshop on Total Ecobalance

Program dates : January 31 to February 6, 1996 Researcher (s) : G. Huppes and three others Host organization : RITESubject of research : Research presentations and discussion by leading researchers from Japan, the U.S., and Europe, concerning research developments on the method of analyzing total ecobalance (LCA method)

— 4— '

(8) Researchers invited to an International Symposium on Environmental Impacts of Advanced Alternatives to CFCs

Program dates : February 6 to February 10, 1996 Researcher(s) : W. J. Rhodes and seven others Host organization : RITESubject of research : The impact on the global environment of substitute coolants and other materials was elucidated through research presentations and discussion led by reknown researchers from Japan and abroad ; evaluation technology was also discussed

[Dispatch]

RITE sent 5 researchers to universities and research institutes in the U.S, UK., Norway, Austria, and Germany, in order to effectively promote research in Japan and get a picture of research and development trends overseas. Sixteen other researchers were sent to attend international conferences and symposiums on the global environment and industrial technology.

3. Overseas programs for Japanese researchers

(1)Program dates : May 15 to August 21, 1995 (temporary return home : Jul. 28- Aug. 3)Researcher(s) : Yuichi Fujioka, Nagasaki Research and Development Center, Mitsubishi Heavy Industries, Ltd.Host organization : Energy Research Center, Massachusetts Institute of TechnologySubject of research : Research on isolation technology for CO 2 in the ocean

(2)Program dates : June 12 to August 13, 1995Researcher(s) : Kazuhide Koike, National Institute for Resources and Environment

-5 —

Host organization : University of NottinghamSubject of research : Research on the reduction reaction of carbon dioxide

(3)Program dates : June 30 to September 15, 1995Researcher(s) : Shigehiro Hirano, Faculty of Agriculture, Tottori University Host organization : University of TrondheimSubject of research : The fixation of CO 2 and its transformation into new materials occurring in the hydrosphere, based on chitin circulation

(4)Program dates : August 27, 1995 to January 17, 1996 Researcher(s) : Seiji Matsumoto, RITE (System Analysis for Global Environment Laboratory)Host organization : International Institute for Applied Systems Analysis Subject of research : Evaluation of CO 2 emissions by introduction of efficient CO 2 utilization systems

(5)Program dates : August 28 to December 25, 1995Researcher(s) : Koichi Terasaka, Faculty of Science and Technology, Keio UniversityHost organization : Technical University of BraunschweigSubject of research : Basic research on the development of a pressurizedtubular bioreactor for the fixation of carbon dioxide

4. Overseas programs for Japanese researchers to international Symposiums

(1) Researchers sent to JECAT ’95 and the 1st World Congress Environmental Catalysis Conference

a.Program dates : April 25 to May 10, 1995Researcher(s) : Yuji Yoshimura, National Institute of Materials and Chemical Research

— 6 —

Host organization : National Institute of Materials and Chemical Research Subject of research : Research presentations and information exchange on the preparation and structure of hydrogenation catalysts

b.Program dates : April 25 to May 10, 1995Researcher(s) : Ikuo Saito, National Institute for Resources and Environment Host organization: National Institute for Resources and. Environment Subject of research : Research presentations and information exchange on desulfurization of high sulfur-content coal

c.Program dates : April 25 to May 10, 1995Researcher(s) • Hiroaki Sakurai, Osaka Industrial Technology Research Institute Host organization : Osaka Industrial Technology Research Institute Subject of research • Research presentations and information exchange on methanol synthesis from CO 2, over (gold) catalysts

d.Program dates : April 25 to May 10, 1995Researcher(s) : Atsushi Ueda, Osaka Industrial Technology Research Institute Host organization : Osaka Industrial Technology Research Institute Subject of research : Research presentations and information exchange on the low - temperature combustion of methanol over (gold) catalysts and on the reduction of NOx

e.Program dates : April 25 to July 10, 1995Researcher(s) • Katsuhiko Wakabayashi, Faculty of Engineering, Kyushu UniversityHost organization : Faculty of Engineering, Kyushu UniversitySubject of research : Research presentations and information exchange on metalcatalysts for CO 2 hydrogenation reactions and the complete combustion ofpropane

— 7 —

(2) Researchers sent to the 5th Korea -Japan Symposium on Catalysis

Program dates : May 24 to May 29, 1995Researcher(s) : Jin-bae Kim, Department of Engineering , Graduate School, Kyoto UniversityHost organization : Department of Engineering, Graduate School, Kyoto UniversitySubject of research : Research presentations and information exchange on recent progress in catalyst - related research, with the aim of improving catalyst technology relating to the generation of resources and environmental conservation

(3) Researchers sent to the Satellite Meeting on "Cellular Environmental Regulation of PEP carboxylase" and the 10th International Photosynthesis Congress

Program dates : August 17 to August 24, 1995Researcher (s) : Katsura Izui, Department of Agriculture, Kyoto University Host organization : Department of Agriculture, Kyoto University Subject of research : Research presentations and opinion exchange on recent findings concerning the basics and applications of photosynthesis

(4) Researchers sent to the Bergen Workshop (Tentative agenda for workshop in Bergen 18 August 1995, Dissolution of CO 2 in the Ocean - Practical Steps) and the IEA Greenhouse Gas Conference (Greenhouse gases :Mitigation Options Conference)

Program dates : August 16 to August 26, 1995Researcher(s) : Koichi Yamada, Faculty of Engineering, University of Tokyo Host organization : Faculty of Engineering, University of Tokyo Subject of research : A survey of technical trends related to the disposal of CO 2 both in the ocean and ground

(5) Researchers sent to the Cold Spring Harbor Meeting (The 1995 Meeting on Programmed Cell Death )

-8-

Program dates : September 17 to September 27, 1995 Researcher(s) • Takeshi Nakamura, RITE, Bioreactor Project Host organization : Bioreactor ProjectSubject of research : Participation in a international conference comprehensively including all fields of biology related to programmed cell death and the collection of information beneficial to the advancement of research for the Bioreactor Project

(6) Researchers sent to the ’95 Shanghai International Conference Environmental Technology

Program dates : November 23 to November 28, 1995 Researcher(s) : Tsutomu Yamaguchi, RITE, Executive Director Hirofumi Takeda, RITE, Supervisory Section, General Affairs Department Weishng Zhou, RITE, System Analysis for Global Environmental Laboratory Host organization : RITESubject of research : Searching for possibilities for cooperative activities on environmental technology between Japan and China through discussion concerning the environmental conservation technology of both countries

(7) Researchers sent to the 10th APEC Industrial Science and Technology Conference WG

Program dates : January 16 to January 21, 1996Researcher(s) : Hiroshi Watanabe, Research and Planning Division, RITE Host organization : RITESubject of research : Participation in the Industrial Technology WG, an organization operating under APEC, and the collecting of information on all projects underway.

(8) Researchers sent to the GLOBE '96

Program dates : March 24 to March 30, 1996Researcher(s) : Osamu Noda, General Affairs Department, RITEJunji Ogata , Research Planning Department, RITE

-9-

Host organization : RITESubject of research : Participation in an international trade fair and conference for business and the exchange of information (and knowledge) on the latest technology

(9) Researchers sent to the Molecular to Global Photosynthesis Program dates : March 26 to March 31, 1996Researcher (s) : Koichi Uemura, Plant Molecular Physiology Laboratory, RITE Host organization : RITESubject of research : Attendance at a conference on the molecular to Global Photosynthesis and discussion and information exchange concerning RuBisCO

—10 —

]

is-tmz tmh tzw

t&±T\ m\-<DW3l% • E§&M<k0^toSE&M£!>^Tv;5o

z.otziRITE*,j;mm^omxotj-x

h^sheMx eeyy$?va•

x^mto^m%'rr?tt$>K' dtLtir-Os mmom#, ^0

mfiamsm tee tmw&&&z>tmx?>tiz> ^mom^momm. • mm y x

x ■£> <&5®3t Ltzo

C*i60##x £ d

RiTE^#mLT^ammm#^A^#f tigivp*?

v6c<b^bx t, 4-#x j; D ^ x % A -^ < ^

^*rv< c ti)mmtmx<bti%0 boa xmmmmltcmm^mm^m-ts0

[jg inKML ^ WBS^fr -dTVS #fW0%# i B F*3 © $F3£f i o flE

^m^K^o/c^x #§*> 3#0s#% 4 &m# % 16 %, *c, he

mmmM?^rm^mimm^M^yy ^ y ? a N

«j '> y $ y v mum^mm l tzQ

1 m^m^mmmmm

a) b~«;s 3 j^ob

###^5# • Fida Mohammad

B A # B@ :@ # m #: 7 -y mit&M&m'pmfconttMmftft

(2) }SliS9P^:¥^7^9^5H~«7^12^9H

mmm$m ■ Flora Ng

§A1S: Mikk&xm®

—11—

m # ft §:

(3) @ ^ = ¥^7¥9^150-¥^7¥12^ 3 0

fglfiFBfS^S- : Hans-Holger Rogner

§AH: RITEWM rAi^l

@ # m # : 7ks^*>^'-OTKS©Tlf^cDEjl^-5 VT

(4) HE : ¥)&7¥10^ 8 07¥11J3200

• Jean-Pierre Gattuso

^ A # Ml: #|58A#@#Sg

2

(1) iiliil7^-7A^ofSi

@#88 BE : ¥j&7¥1OJE240~¥$7¥1OJE280

@#W0S# : Ralph Albert Dalla Betta fife 2 :&

SAll:

@#m# = iteg©sgi• beme^©

wigttSfcovT©it«^iiLr, mmmom&K-nwi-tz

(2) e^#siihie%s^'> y$ &

ffi # 88 BE : ¥m 7 ¥11JE 22 0 ~¥J& 7 ¥11JE 28 0

@#W0S# : Christine H. Foyer

^ A# M : RITE

fg # F*3 S : tUMI^x-'*’^ i%##%¥ # # 6@##

(3) r«iil0^®J®J yytf v>'?A^©®#

@#% BE = ¥fi£7¥11J3250~¥J&7¥12JE 2 0

@##5S# • Richard R. Hardy

—12 —

A @ M : RITE

%%###: * V T? ?-7°n y* ? hj

E© l or###g&©##$#K#J ©^#T$ a*y y

s? 9 ak&^Tn MWo^T^fctoBo^v&gSKci3^

WfiE$£®©iElfr©¥F%Kj|6] •

b v 7° 3§B^'^fr3

(4) S21IHHfc^ £ y y 4-” j? 7 a^©®H

^ :%8^3^27B-«8^3^30B

@%$9F05# ’ Anne Lee Tonkovich fife 2 ^

gAli: RITE

mmf*3g:##{(##%t)ffl^oo&D, $6K^r&mdmtrA#©^6m#

L x #m^ s

(5) -9- y dlicDfeltSSWMihs 7 - ^ y 3 y y^©@#

%## ^ : «7^10^16B~«7#10^258

@^$W0S# • Robert W. Buddemeier fife 5 ^

gAIS: RITE

ffl in ft g: f- y ^m^co % t & ©mg#&& #

% b ti tz r-? ©g?#f^^^Ko i' xmm't %

(6) tb^f-fi-y’a y 7 - ^ y 3 y 7°^©%#

ffl m SB RS : W 7 #12^ 3 B~« 7 #12^ 7 B

JSHWSe# : Rolf Schmid fifelliS

§A8S: RITE

% # ^ y&B#f &%A#k ^-7 V yf\ xvy

-tv yWfcot'Ts J:DBF^

(7) - ? i/3 y 7°^©@#

@#%^:«8#1 £31B~«8^2£ 6 B

@##05# = G.Huppes fife 3 #

f All: RITE

@ # # # : h-^>x3y?7 yx^-^)£ (LCA#&) ©#05lfl^^liL,

B^©ft#%%#05#K «k D ^ ESfcllS&tk !t!8£fir 9

(8) a am ^ ^ ^

@ # $ m : M8^2^ 6B~«8^2^10B

@##05# : W.J.Rhodes fife 7 £

SASI: RITE

@ # m # : Bm^O##%#05#(cj;a#05m#6#m(cj;Dx RWnmm<D

wm^on '■"-*? h&mu ##TgF@R#«c-pi\T &##

m it]BM#05#©#05©%#%%##^EID-3-0^ #^(c^^a#05§##o#|ql&@@f a

5&©#%#£Ty VAn b V 7^ M y©A^ •

#05#M(cmm-#-& 6 6 Wc, «Sliieii:itSIE^i- yy^^9A#(U6

^O#05#^#mLA:o

3 mm#05##mm#m(1) Eitffl FhI : «7^5^15B~¥E7^8^21B (7Z28~8Z3te-BtSE)

IIW5S# : HlSlift^Mi#^5p7f MM *£-

SAli:vtfi-b77l^ i*;u**-#05#

Eitl^S: CO 2 ©SMlEIM Mih 5 #05

(2) #mm^:%7#6^12B-%7#8^13B

mm#05#: *m##R#m##05# /j\# %m

— 14 —

mm rtf: -wttt.mmm7hRm<DW9z

(3) m mm ^ :M7#6^30B-M7^9^158

mmm^M ■ w mm3 AM: hoy/^AA#

ilftg: + f y ### (c #) 6 -o < *0 K ^ ^ a co 2 o a^k i ^r##^ k

(4) mmmim :%7#8jg27B~%8#ljgi7B

mm#^# = RITE#### y % T A #gsm mwi

3 A mm- BEMfW^yxTAiBEm

# m m # : C02WW'>xfAiAtJ;5C02i[iSi^i

(5) EmmrHr.¥E7^8^2sa-«7#12^25a

«l^:|lil^il?as S-

3 A M M : Technical University of Braunschweig

m m m # = o % & 0^ -mmmtzg##95

4 am#^##m##^mm

(1) JECAT’95RCFS 1 @#^###^0^0##

a|Il PbI :¥gg7^4^25B~M7^5^10B

mm#^#:m# *%

mmm#: Ammmomm.

bm m S3 ?3 : %T#4J325B-M7#5^10B

mmw%m ■ ini«gigM^

imii:

?i«swEE©m(cM-rse^Sx

— 15 —

cE M m = M7^4^25H~M7^5^10E

m m m m: ±wxMmsw$i mEmm#: &ME±TcDC02^e>©y ? / ##35

dEmm ^ : «7^4J325B~«7^5£10B mmm^ ■-xwiMWMm^ ±ea m Em#M =Emm#: A##±Toy ^ y -

eEil M : W 7*M J325B-M; 7^5 £10B

Em#0s#: ## mmE m mEmm#: CO207kS'ffcS:fEU 7° O ^ y f:6 oA###KMf 6

##35#

(2) H 5 @B^IM£8 A^oEii

Ell m : «7^5J324B~«7^5£29B

EiSW^# : A m#

Eiii:

Emm#: mmME§E fc Urt 3 Sm © ilM o v vr E^fiSl & J; %f##35#^ff

9

(3) tT70HEW^SARtfSlOUHEftAJ&AE^oEm

Emi HE : «7^8^17B-«7^8^24Bmmm%m ■ m# @

E m # R =

— 16 —

(4) y 7 - 7 y 3 .y : mm# 7°y3 y £is^©Em

Em$ FeI :#)M#8J316B~«7#8£26B

wt •• liiea s§-

E m # ^

Emm#:co2©##m#\

E it m # : ftlBr/S © $®§ <b JS# (c mt 5 $$T <D£niE ® USER Z>*M35gl

(5) 3 — ;1/ F x 7° V y 7'/\ —/<- 5 -f-f y/^OEil

Ell PbI :%%7ff 9jgi7B~%%7fpgJ927BEm#05# : RITE^# ^'jT^-7DJ?xn *# #6

Emm#: 7°n {f y

mim l . * <j t 7 7 - 7° n y * 7 h

£ff5

(6) '95±mm##mBB&m~©EmEmi m : #/&7££11J323B~#)&7#11^28B Em#05#: RITE#### ii|P m

kb

liii'V^rASi%M M I*±

E m# M : RITE

Emm#: B$&c#gomsmaK#©#R,Bm<"5

(7) mio@APEcmm##m##mwG^©Em

EH H: «8#1J316B~«8#1.B21B

Ernm^s#: RiTE#05AB@; tmEilli: RITE

Emm#: apec©tmi$t& am#m#wGK#mL, Miya y *

— 17 —

9 bKMtzmmmzft?

(8) GLOBE '96^0Eit

EiSS8 ^ :«8^3^24E~«8^3^30B

■ riteem mm m " #g%A@@g JIB Em

E itS M : RITE

E it m S : LT®l$f • BE^EfcBSnL^ LT

(9) ^^o^?##(cM-#-6#«^oEit

Eli® : «8^3£26B~«8^3J331B

EitE^S : RITEW^^SE^S ## JE-

EitSM : RITE

Emm#: &J;EmuBisCOKMt5##-\

—18 —

* Is

1. MMill

(1) : Fida Mohammad

ffl %

eeee^m

* 3c s ^

A ^

mm • w

2. swmfm

% 7 # 9 ^ 1 B-%8# 3^208

3. mMfi

4. SWOB to

^ 7 y & 6 # 3^(cf & y:

&mm$L*'no0 m#=to(c(±, y ttz^ *&&

L^© 7 7* ;i/n y7° t/ y 7 xft y- Lx A&

/SL/cy 7;t7>©x*;i/fg&jkfet %>£ klz£. <9#W©l0M

b fa Iz.'f' %> o

E)S™#:©^SLLTx %#x #^y-tf-&mi^#m^##Lx

Lto 7 •7*>©^6tj7j:^©y-c^©7,V *-•9—

£ LTx ^D y®N 7 yS^T-fe h y|x 7 y M* ;l/d?->te

fir^y-co

^*T©^^:^«k&^#@@©#05©y:6x CF, I © 266nm#^./^ ;v ^ y--T-

(c J;O y-Co ^#(C<k -D LfcCFs 7'7* ^oSWWy-

1f-^*ff 7 Liia?)x S CFs 7

eoEfD^^^rS'JSLyco

7 -f 7* t/^"7 K (Fida Mohammad)

7 y@^y ^

— 21 —

5. w$m-

5.1 w$&m

CPs 9 if *

CFsI©^7felx-if'- (266nm) D3©;fcJ&x

<b 3CP3 7 '7 * ;v©^S#: 1/ - J: § Bt^ *7^7 Wi/©il££x

#©###% k ct aa#%mg©mij^o

5.2 m^m©m#

^ '7 -t- 9 — Fida MohammadlSdttiS^i-^^©^^^:^ VB^JST*-f ± $ 7 7

©E^S-fi^TST&Dx Efaft£'©E^

■eftikiiTvSo

-^x #METKRITE6©#imE^K^l'Tx SM

aE^^c-c#y:o ^©%omm@T(±7 ^

# ;f <k ###? © E JS ;MK# ? & 6 # x ^©EE^j^t § I) -o <h X7°y v

^x-e^scFsOsO^fcbtcti^/cMLrv^Vo ec?x CPs 7 if/;

&©$llfJ;:iSt>tLTWCo LO^StC&ZcDx RITEWE^fgW¥SHS©^afcS

(^iix fi)to

5-. 3 EgS^#

8rS?£® ©T/MllT-Mf"£7 if*;f©?%$>-?£ 7 5?* /u*e

&&CFs 7'f*^©I4aiLTx Mx Fx

ifl/co 7if*;t/3yyi%79^&6K(±m#mif^ v

!^#^&S^x ^-©^)6K(±#^6f(c 1##0 7 C

©Btoicmsttini^^Vo ^fcx D

K(±©C 6^3x 6^#©&6 C 6

##&Dx 7 Sf/?;i/©#$%%#^©/:&6©7°V *--^-6 LTx ^n y||s 7 vS-fbT

-fe h yEx 7 >yS<b* tc*K $Egsm^*(c(±@

ti'fx>y h ©P§£x #&K

±15 7 if *>©^ST^|f L/c7° V *--9--©7"^x CFs#^K%)-3 6 kjgLTl'3

— 22

± ^ ciihU §rE&Sft£"©

Afit* *e ©S^tE fc <k 5 ©tf >ES (c%% t St> *i 5 o

CFsI©ft#jS?ttNd : YAGi/--r-©4fg^(266nm)^ffl^TffofCo ^°>x|I10nsN

l/-f-jt©gm^#10-20mJ//'f;i/XT®fX C©i/-if-(cJ:D lO12^ cm™3 © CF3 5 ^

* set c %o fg£LfcCF3 7 > (±METSfE L tzBft'=£

S&i/-1f-:Mtf£fflVTSiJ/ELAo ^g©##(±^##©EI 1 (c^LT&So C©

u <b(r j: Mffi* ©t&*J&5±©$EliilEx^^ h;u£x^? h

0.001cm" l&±, 1 vs-CMfe-t&Zt&?!&’£&Zo ^^©U 2 KMfe L

Ax^? h;u©-$I£^LA;&A SSk IHE£#i!tLTt±iS#jM$iJ;£^Wtg& A & s

CPs?^*;i/©mm#&x LT#j^w#T$ao sa, ^wtmla

cf37ji'immmmLT^ztz#)' sam^^ms^somaTmmBiEm©^^

<^kLTU3C6^%>ao CF:?

© CF %16 5 C 6 (c «t 0 & c C©#?&#^©

M/HEIlAo'-'TSIJ^LAt>©£^tSCfg'g-©!!3 {C^-To CO^SElbckDN -e©@#

#%©#& (±1-2 Xl0"ucni/molecule S Z kfrftfritz0 £ As AM©±Eb£5)-

*es 5 £tE#X EfniSS I) $|JS L tz fr^ 4-5 X lO^cm3/molecule tfrtl V) ^

di^pjLfco efua, oFs 6co3©mm%^ai^)6©##®m(c j; a & ©

tl5o

mmmmmz^LtzcFz y cai^TAmij

jSWAfroAAsA OTWM&TVSo

5.4 4-m@##^#m(±A±i©m(c##6%a$:m

#ssm, :M©2^<Dftmm?'\tmwLxmmLtzt)K &&&

El l t^ A £ L <A SAtoA5nliLfrtzfritza zotzti^ ##|W|

LTE%£iS&TV < ±T?F4Ifi#£ V%Zth%>itZo SiXfiS©^ y ^ (± %) 6 ck D x

##(c##%fr^At)-Wr©^#%C 6&#(gLy=o

#S©yxTA-c(±###^$5T^3##^fG#L%(±iU±%G,%i\o cii(±N SfL

w»<gr#Af ay:^©jtE%m%^©#^#©@#(c(±^i\Tua6m^±i6^x se

m<D&mm$zzm&£•?£«£§. mmmmmom^frm<%cA#A%

A# u a D, c © & £ i> #a l r v atz \tnimm&ALT

— 23 —

BAE^ML&vfcsA -Ag|5-efS^*^*< o&^nrtg-e&su ttz^

ft (±#§x Ttf ##■?§*<«'*££) tek><Dttl-oT^&o T^tlifx v>f 7 n y 7 h 7-

K tz t'mm ^ I, %f ET § 3 y 7 heDEffl^WRTLTVfc/c^ZcVo

5.5 4-#of-f26A

%##T(±x "4"ini# &, 6 Kx M's® 5^ a. -y h cfaTCFs^^^feS "tir^ Oz#

t<DKB<Dm3Z%M#>T\<'%tz\<'0

5.6 filfS

^B^&k FidaS±*sKScDSP^*e^ <0 x ^ C 6 «9 2' 7 % 5

^OEL/-c*k ^o#x #±m#o^±%)&Dx ^Tx

CF37 £ LTl'So

A#^&m&6 6C@^Dx E^EWE#-Ric@^©OT^ V*:*: Wc0 c c(c##* L±{f fcl'o

#m*c^xr 7 #mRiTE#^#05#m##m^m &##;%,& z£im<wtlf¥l±if£'f0

— 24 —

Quenching kinetics and IR spectroscopy of the vibrationally excited states of CFa radical

( Report submitted to Research Institute for Innovative Technology for the Earth )

Fida Mohammad

National Center of Excellence for Physical Chemistry, University of Peshawer, Pakistan.

— 25 —

INTRODUCTION

Kinetics and spectroscopy of the reaction intermediates of fluorocarbonshave been of great interest to atmospheric scientists since the adverse impactof chlorofluorocarbons on the stratospheric ozone layer was recognized in the /seventies. CFa radical is one of the most important reaction intermediates arising from the degradation of CFa-bearing alternative fluorocarbons in the atmosphere. As a matter of fact the chemistry of this radical in the destruction of stratospheric ozone has been the subject of controversy over the last three years. The controversy started when it was suggested that CFa released into the atmosphere in the degradation process of CFa- bearing HCFC’s might be involved in a catalytic cycle in destroying ozone via the following sequence of reactions ( 1 ) :

It starts with, for example, the degradation of HCFC-123 ( CFaCClzH ) as follows,

CF3CC12H + OH ---> CF3CCI2 + H2O

CF3CC12 + O2 CF3CCI2O2

CF3CC1202 + NO ---> CFaCClzO + NO 2

CF3CC120 ---> CFaCOCl + Cl

CFaCOCl produced as a result of the above reactions does not react with OH and its photolysis in the atmosphere competes with its removal by water droplets (2). On photolysis it gives CFa radical as one of the products,

CFaCOCl + hv ----> CFa + CO + Cl

CFa further reacts with O2 as in reaction 1 which is then followed by reaction2 in which CFaO is produced. The catalytic cycle, then, consists of reaction3 and 4,

CFa + O2 + M ---> CF3O2 + M 1

CFaOa + NO CFaO + NO2 2

— 26 —

3CFaO + 0a CF3O2 + O2

CF3O2 + 0a CFaO + 202

Results of recent studies have, however, shown that CFaO is efficiently removed from this cycle by reaction 5(3),

CFaO + NO -----y CF2O + FNO 5

thus rendering the cycle ineffective in destroying ozone. Although CFa turns out to be harmless in this case, the story tells us how important it is to understand the chemistry of these radicals. If the above catalytic cycle were as effective as originally proposed the consequences for the industry and international agreements in phasing out CFG’s would be far reaching.

CFa radicals are usually produced for kinetic studies using different techniques such as pyrolysis, microwave discharge, UV-photodissociation, or IRMP dissociation of certain compounds which contain CFa group. In most cases CFa radical so produced carries substantial amount of vibrational energy and the radical has to be quenched before its kinetics are studied to avoid the influence of internal excitation on its kinetics. In the past only inert gases have been used to quench these radicals before reactions. Our results which are reported below show that the efficiency of inert gases to quench vibrationally excited CFa radicals is very poor. We report below the results of our study to measure the efficiencies of CFaI and CO2 to quench these radicals.

IR spectrosopy of CFa radicals have been used in the past to determine molecular constants for this radical ( 4 ). These studies have, however, dealt with the ground vibrational state only. We have extended these studies to include vibrationally excited states of CFa radical in this study. CFa has four IR absorption bands at 1090cm-1 ( sym. str. ), 701cm-1 ( sym. defor. ), 1260cm-1 (deg. str. ), and 510cm-1 ( deg. defor. ). We have used the degenerate stretching mode at 1260cm-1 of this radical with 0.01cm-1

resolution in this study. Using 266nm photolysis of CFaI to produce vibrationally excited CFa radicals was suggested by the following facts.Results of previous studies on the photolysis of CFaI at 266nm have shown that the dissociation channel which leads to the production of electronically excited iodine atom accounts for 90% of the dissociation and that which gives ground state iodine atoms for the other 20% ( 5 ). Although for lack of

— 27 —

resolution these studies could not resolve the vibrational excitation in CFs radicals 39% of the available energy was estimated from modelling TOP spectra to be going into internally exciting CFs. A photon at 266nm carries 450kJ/mol of energy and the energy required for the dissociation of CFs - I is 223kJ/mol. so that 136kJ/mol is available to the photofragments in the channel which leads to the production of excited iodine atom and 227kJ/mol in the channel which gives ground state iodine atom. For these reasons we were expecting highly vibrationally excited CFs radicals to be produced in our system for studiying its quenching kinetics and spectroscopy of the vibrationally excited states.

Experimental

In this study IR-Diode Laser Kinetic Spectrometer was used to study quenching kinetics and spectroscopy of vibrationally excited CFs radical. Photolysis of CFsI with the 4th harmonic of Nd:YAG laser at 266nm was used to produce vibrationally excited CFs radicals. Fig. 1 shows schematics of the apparatus. The reaction cell consists of a pyrex tube which is one meter long and 6. 5 cm in internal diameter. A set of three infrared mirrors in white type configuration is installed inside this tube so that a multiple pass cell is obtained. The photolysis laser enters the reaction cell through a quartz window as shown and is dumped on the opposite side of the cell after passing through the photolysis gas. A mixture of CFsI and Ar gas is made to flow through the cell at constant pressure ( 30 - GOmtorr CFsI and 1. 5 - 3. 5 torr Ar) with a vacuum pump. Pressure of CO2 gas which was used for these experiments ranged from 50 - lOOOmtorr . Based on the absorption cross- section of CFsI at 266nm of 5. 5 x 10-20cm2/molecule typically 1 - 2 x 1012 radicals/cm3 were produced for a laser energy of 15mj‘/pulse and for CFsI

pressure of 40mtorr.

An infrared Diode laser beam is first passed through a 50cm monochromator for mode selection and then split into three beams for simultaneous detection by three HgCdTe detectors which sense the output from reference cell, etalon, and reaction cell respectively. The infrared beam enters the reaction cell as shown and can traverse this cell upto a maximum of 24 round trips in a plane. The beam then exits from the reaction cell and is focused on the HgCdTe detector. In our experiments we used 9-11 round trips of the IR beam through the reaction cell. The photolysis laser and the infrared diode laser beams were made to cross each other in the center

— 28- '

of the reaction cell at an angle of 20 - 30 milliradian for maximum overlap.Data acquisition consisited of a mode-locked amplifier and a digital oscilosope.

Results

Wavelength resolved spectra were collected for different time delays in five different regions at 1246, 1250, 1258, 1261, and 1265cm \ One set

of such spectra is-shown in Fig. 2. Absorption lines due to CFa radical in different rovibrational states as well as in the ground state can be distinguished in Fig. 2 from each other because the growth and decay of their intensities show different kinetics under similar conditions. We are processing these data to calculate molecular constants for the vibrationally excited states of CFa radicals.

For a detailed study of the time dependence of the intensities of these lines and the effect of pressure on them the spectrometer was parked on a single line and the intensity of that line was recorded as function of time. These results are shown in Fig. 3a-d which show time decay profiles of three different excited states ( b, c. d ) and the ground state of CFa ( a. ) Growth profiles of two ground state rotational lines at 1265.5986cm-1 and 1265. 8059cm-1 were also studied as function of the concentration of CFaI as well as of CO2 to determine quenching efficiencies of CFal and COa for the excited states of CFa. These experiments led to quenching coefficient of l~2x 10"11 for CFal and of 4~5x 10-12cm3/molecule for CO2.

Acknowledgements:

I am greatly indebted to Dr. Taisuke Nakanaga for his efforts to arrange my visit to the National Institute of Materials and Chemical Research, Tsukuba and for his contineous interest and sincere guidance during the execution of this project. It was a rewarding experience to work with him and to learn to use Infrared Diode Laser Kinetic Spectrometer in his laboratory. My special thanks goes to the people at RITE who so generously financed my visit and stay in Japan during this project. I want also to place on record my sincerest thanks to: Dr. Harutoshi Takeo for providing me the opportunity to attend weekly seminars in cluster sience group; Dr. Ko-ichi Sugawara for being available and ready to answer my questions about the working of the Spectrometer; and Mr. Fumiyuki Ito for helpng me daily in

— 29

many ways.

References

1. P. Biggs et al Paper presented at STEP-HALOCIDE / AREAS Workshop, University College, Dublin, Ireland, 23-25 March 1993.

2. T. J. Wallington et al, Environ. Sci. Technol. 28 ( 1994 ) 320A3. A. R. Ravishankara et al, Science 263 ( 1994 ) 71.4 . C. Yamada and E. Hirota, J. Chem. Phys. 78 ( 1983 ) 1703.5. G. N. A Van Veen ; T. Bailer; and A. E. De Vries, Chem. Phys. 93

( 1985 ) 2771.

— 30 —

Kinetic spectroscopy system

Nd:YAG laser 4-th harmonic

266nm

etalon

OHgCdTe detector

GPIBinterface

Digitaloscilloscope

Temperaturecontrol

currentcontrol

Computer

1260.8000 wavenumbers/crrr 1261.5000

Fig. 2: Spectra of CF3 at various time rdelaystop tobottom: 15,30, 45, 60,75, 90, 105, 120, 135, and 150 us

Pressure of CF3I is 5 lmtorr and of Ar is 2torr.On the top of the page N20 reference lines and Etalon fringes (0.00993cm-l ) are shown

— 32 —

Inte

nsity

/a.u

.

(a) 1265.5986cnr1

(b)1262.0931cm

(c)1265.9346cm-1

Time/jxs

Fig, 3; Time profile a shows growth of population in the ground vibration state. Pressure of CF3I is Srnton and that of Ar Is lion. Time profiles b,c, and d show dmy of vihrationally excited CF3radicals at CF3I pressures of 18, 35, and lOmtorr respectively and 2torr of Ar.

-33 —

1. #########

(2) = Flora Ng

g A#N =

— 35 —

m % %

m # m &

R ^ 7D-7 9 V 91 % y (Flora Tak Tak Ng)

BlM • M t> * - 9 - #g

2.

5 B~¥^7^12^ 9 B

3.

4.

EBI^7K*T©JEg®J;S^ T v S 0 tli

^T(ix at^MBo-^TTE^fi^ r § fcrik £ D iSSiRM imut S

't2>‘&W'hi%>2>o 7K?§?&t£'e©M^KJ5fcoi'T&> Ng##^cTKg%#©MB

@cESKM Lr^lf LT^b* D ^ SE'e{iEBI^ffiS©^ST©MJ®<SrS^-Ti>So

^uT\ 4-in©NgMt ®$mw%x~ti, o t % tm#

£jtraM£;b-tK zQmM&’g.B.mzmm lizsufcmmmm&w&irz zt*Bmt-tSo LT, MS#6Ttc & tf S EEI^ W ? n y ^-T©t

v/c^^-E'fbs EBa^7K*T#@#^m#©m#6 & &

{£> L/c0

— 37 —

5.

5.1 w$mm

E^7k*T©MBEJS& ck tf&MBEJES (c mt 3 Ill^o

(1) EB^7k*T©y y y©ME<b

(2) EBs^7k*TOp-4- y i/ yoE'fb •

5.2

Ng#g(±x *-7i/-9-y K©&ilBE&!Efcr3VTx ##Zo-kX^##LT#^)x SS&x

EJSSfrSEEI^S£ Tj£ tf£ fiZ T v S 0 Hr#E§ES©xy y 7 ^1992^ (c

Waterloo;*#*#^ LtBK t /cNgffcg^l994«^$ tltz t % fcx ES:S©E%^S

&M#x Itfli&fr-^cEt-x E3£©77 e'x w cDi®$(j:^i§^{t/co —5". #f##

tiEBaf^k^S<k ih 5 El®fc-o v T& D x EEM^jE4R-t£©R±©f=6x MSWffl C T V o C©#K^^()s RITE#^#gS#@####

58©2tfSS<k LTS#?&*ix ##8#6Ng#g&©f 7i>-7°©|gE#Sl=l#gS#x f - h L

tza

4ili$7“Di?x^ h ©##%:&&Dx ##©^#^35# Lx EB#^7k*T©EJSfcMtZ5 l)©<hWe§S0

5.3 W^MM.

(1) EB^^-tK*!:© y ^ y ©gg^-Eib

EBg#7k^Ef6##6 Its y f y^E^fbS-iiS cii-eituy * y

iR$^#67°o-kX(D^#^g%6 Lx ^(Dfzib©SEiBE£frfc0 ###T©y ? y

©SS-E'fbEJSfc-ovrtt, EB##7k^m (0.0~0.48g/cnQ &<kU^S (400, 435°C)

©B#^#MLx i#^x ilMHi'il^y y y -;w&^ 65 c 6<&mmL

fc0 EtS^®400oCx ffi#35MPa£ik££x y ?y-;i/#K 1 mol%x

llmol%$?|n!±f & C tex MB<b LTCr203x V205x MoO,^#^

LTN EjE6(c#^a^#K-oUT#M-^lr^y:o ^©^x Cr2

03{-o^T©a-M»^«H$tl/c0 ###©#A6jt#LTx y f y#{b#(j:a6A,

<®fbt&^ fcriZ y ^ y -7i/iR#(±0.89mol%^ 61.69mol%(c|q]± uy=o

38 —

(2) *TOp-*yyy©E'fk

+ 1^7 iliLtiin^

^K ##7y#yg)#A%x Efi5m£&l!l <b LrSS^tl (Ilhryt-^A)

lMffiiM^IfflLTUSo EJS^frtt, ^$(±160~230°C\ ESE*15~25

atm^< ffll'btlSo L^L> C(±^ 0< OMlJ&BBWA&BSf & C t6

tl%>o Z®WMt Lrtix Efr7°a-b x£>EJtS^#T(i\ *^A##T&ap- h;u-f ;p

EfW&#&E

^fflTcDES<h^D. Ti/77;pmo##^iq]±f %

<fe <B o

^uT% ^s«h LTE^TK/ME^-SS^ffl V, ilittiin^H'^ EM

p - * '7 y y ©E'fkHE^rfi' -5 y-c o x

i/7^y-t? y^ h;pxyS*s£B5Lfc0 ^y-e'y^

h;nyfli, p-+v/yy0MSia!3 4ilt^\ -r y 7

P-*y y

C5^ M2SKWS vi§-&ti\ ^y-^'yN h ;px y £ ti 5 ^

■ot Dp-* ^ isy(DMftM&fflffi]£ti&c ti^wi^titco

BLtolSSvfcSx EBs#*4]Tg)p-* y y yc#{k##&ff-?

fc0 ^-©ISSx C'< *y7 7>E<h,@btL§6vMt^oM#?<lrEE

Lfc0

5.4 ^MlWFSE^SAMEfcSS£ K 3SJI

»$5WiiU'0

Cti[3\ c 6x *mWEv *: & X

88m3-r § ft &X- %> 5 o

@#Ly=Ng#S(±s *f 5

^ 7 v 7 <h ©EB^^=bfcG

4-IH©Ai^iS(i:x EB8#**TO##EJ&0##6#^T&-?####(^#

&@6C6^ &irL§>M.&t Itm x.'&'t'fiK D ^ $

W&4-#o#|W|#0E(c#@%T$5 c 6&EET#%oW\ A#%iR#T&So

— 39 —

j&oac;tt>. rnmn^ml/cmh

36^*5nrtitt3&*^$tifco 4-@©^rHWTttx n

-^wcrsmiEe, *1

§c:i&mmlt&V)„ #^a%%^mm^#g,fia%)06m#LT^6o

$AOA@@##@0#T^# 6l'3A&&tK W^EOMs. Ouchi(C@Xr OgT C'

"gg^JlSVfco 3fcRoom Matei Ltf^ft< 31 §^#"0® WcMs. KonnoKkk E@

^?)TlPLilffcl'o

<mi*L±if£?0

Oxidation of Hydrocarbons in Supercritical Water through. Catalytic and Noncatalytic Pathways

Project for Catalytic Waste Conversion in Supercritical Water Research Institute of Innovative Technology for the Earth

Flora T. T. Ng and K. Aral

Tohoku UniversityDepartment of Biochemistry and Chemical Engineering

Sendai 980-77 Japan

January 6,1996

— 41 —

I. Introduction

a. Properties of Supercritical Waterb. Catalystsc. Objective

II. Materials and Methods

a. Batch Experimental Apparatusb. Procedure b. Analyses

IE. Oxidation of Methane in Supercritical Water

a. Definitionsb. Noncatalytic Conversions and Yieldsc. Catalytic Conversions and Yields

IV. Oxidation of p-Xylene in Supercritical Water

a. Screening Tests

V. Conclusions

— 42— '

1 Introduction

Properties of Supercritical Water

Above the critical point of water (Tc=374 C, 22.1 MPa), physical properties, such as the density, dielectric constant, ion product, viscosity, etc. undergo sharp changes with small changes in temperature or pressure. Some of these changes are shown in Figure 1. In the critical region, oxidation reactions have been shown to occur exceeding fast and have formed the basis for several new processes, such as biomass conversion (Adschiri et al., 1992), or organic waste destruction (MODAR process).

Catalysts

Catalytic processes in supercritical water have received relatively little attention. Catalysts that are applicable to the vapor or liquid phase, may be expected to behave quite differently in a supercritical phase. This is due mainly to the physical properties of supercritical water, which might make certain pathways accessible through the lowering of the free energy of transition state intermediates. In the vapor phase, reactions in high temperature water are known to occur via free radical intermediates whereas in the liquid state, reactions occur via ionic mechanisms. For supercritical water, most reaction mechanisms are completely unknown.

Objective

The objective of this work was study catalytic and noncatalytic reactions in supercritical water. The following studies were performed:

(i) . Partial oxidation of methane. Methane was chosen because it is of interest to resourceconversion as well as energy systems. The data is thought to also provide fundamental information on reaction processes in supercritical water.

(ii) . Screening tests of p-xylene oxidation and compatibility tests of catalysts with supercriticalwater. Industrially, much p-xylene results in sludge, isomers and unwanted by-products caused by the unselective oxidation of p-xylene. Some exploratory tests were made to study oxidation characteristics of p-xylene in supercritical water as well as catalyst stability.

Section HI deals with the partial oxidation of methane to methanol. Section TV covers some initial screening and compatibility tests for the oxidation of p-xylene.

EL Materials and Methods

Batch Experimental Apparatus

Experiments were performed in a batch apparatus. The experimental setup is shown in Figure 2. The reactor was constructed from 316 stainless steel and had an nominal internal

— 43 —

volume of 6 cm3. The same reactor could be used for one to four times. Temperature of the reactor was measured with a K-type thermocouple to a resolution of 1 ° C. A valve was connected to the reactor so that filling with gases was possible.

ProcedureInitially, the reactor was loaded with 0-0.5 g of water. Then, air was purged from the cell

with Argon gas. Methane and oxygen were added in 10:1 or 5:1 mole ratios, by measuring their partial pressure with the pressure gauge. Typical pressures were around 2 MPa.

Once the reactor was loaded, the reactor was immersed in a molten salt bath that was maintained at 380 - 430° C. Approximately 1 minute was required for heat-up to the desired temperature as noted by reading the thermocouple. Reaction times varied between 3 to 60 minutes. At the completion of the reaction period, the entire reactor was removed from the bath and rapidly cooled in a water bath at room temperature. Then the contents of the reactor were analyzed.

Analyses

Analysis of the reactor contents was by gas chromatography. Gas was released through the valve into a gas bag and then replicate samples were taken to determine the gas composition by a GC equipped with a TCD detector. Analyses were made with argon carrier gas so that hydrogen could be detected. For liquid analysis, samples were injected into a GC equipped with FID. Accuracy of the analyses is approximately 3%.

US. Oxidation of Methane in Supercritical Water

Definitions

For the purposes of analyzing the reactions, the following definitions are used:

Conversion = ( Moles Reactant - Moles Reacted) / Moles Reactant x 100%

Yield = Moles Product / Moles Reactant x 100 %

Selectivity = Moles Product / (Moles Reactant Reacted) x 100%

Yield = Conversion x Selectivity

For the above definitions, Reactant is defined as methane, Product is defined as methanol. Noncatalvtic Conversions and Yields

To study the fundamental behavior of a reaction in supercritical water, we chose a simple reaction that is of interest to resource conversion as well as energy systems. The oxidation of methane to methanol has been studied by many methods but high conversion has yet to be achieved.

— 44 —

Figure 3 shows the results for noncatalytic partial oxidation of methane to methanol in supercritical water. At 400°C and a density of 0.17 g/cc, methane conversion increases rapidly and plateaus at around 7.5%. Methanol yield showed a maximum at about 0.3%. When the system density was increased" to 0.48 g/cc, we noticed a marked increase in the methane conversion and the methanol yield with the conversion and yield being 11% and 1%, respectively. These results led us to believe that higher methanol conversions could be achieve by further increasing the density. However, with the current reaction apparatus, this was not possible due to the material limits (about 40 MPa). However, from the above results, we could determine benchmark results for comparison with the catalytic systems: 11% conversion of methane is possible at 0.48 g/cc density, 10:1 methane:oxygen, at 400°C.

Catalytic Conversions and Yields

Catalysts were chosen according to their compatibility with the methane system and probable compatibility with supercritical water. Results are shown in Table 1. The catalysts Mo03 and V205 were found to be noncatalytic in supercritical water. This may have been due to the low oxygen concentrations or adsorption of the reactants into the catalysts or other factors, such as deactivation caused by supercritical water. However, one catalysts examined, Cr203, was found to be active as shown by the results in the Table. With Cr203 catalyst, the methanol yield could be approximately doubled to 1.69%.

IV. Oxidation of p-Xylene

Screening Tests

Oxidation of p-xylene to terephthalic acid currently uses Co(m) acetate as catalyst. NH4Br is used as a cocatalyst to generate the Br radical which then abstracts a hydrogen atom from the methyl group to generate a radical which then undergoes reaction with oxygen to produce terephthalic acid. In the absence of ammonium bromide, oxidation occurs via a free radical chain mechanism and hence, it may be possible to select PVT conditions of supercritical water such that a nonionic character can be achieved. The current industrial process generates a large amount of BACA (by-product carboxylic acid) which is mainly isomers and unwanted oxidation products. Part of the reason for this is that the intermediate oxidation product, toluic acid, has low solubility at the industrial reaction conditions. By operating in the supercritical state, it may be possible to increase the yield of terephthalic acid. In addition to the catalyst, the presence of acetic acid or trifluoroacetic add will also enhance the reaction. Acetic acid alone, is stable in supercritical water.

The following reaction conditions were initially tried: Water: 0.4 g/ccAcetic acid: 0.694 Mp-xylene: 0.15 MCo(acetate)2 0.028 MNH4Br 0.051 MOxygen: 2 MPa, resulting in 4.9 MReaction time 15 minutes

— 45 —

At the end of the reaction, there was a black precipitate adhering to the oil phase. The aqueous phase had a brownish color indicating the presence of aromatic species or cobalt compounds. The solid probably contained some forms of cobalt oxide. Cobalt acetate was also tried with methane. The results were a greenish brown precipitate with the liquid having a pinkish color indicating the presence of Co(II) acetate. These results are important because they indicate that cobalt acetate has some stability in supercritical water and that there is potential for generating Co(m) in

' supercritical water. The generation of Co(HT) is necessary for the reaction to be successful.

Higher concentrations of acetic acid and cobalt acetate were tried. Reaction times were 2 hours at 400 C. Details of the concentrations and a summary of the results are presented in Table 2. Although aromatic content is apparent from Exp#2 and #3, no terephthalic acid could be detected. However, in Exp#4, some white solids were noted which appeared to be terephthalic acid. However, the quality and quantity could not be ascertained.

V. Conclusions

Catalytic and noncatalytic oxidation reactions in supercritical water related to resource recovery were performed. For methane, it was found that conversions of up to 11% and yields up to 1% methanol could be obtained at 400 C and 35 MPa. The yield was highly density dependent. Catalysis with Ci203 resulted in a much higher methanol yield of about 1.7%. From the screening experiments, it seems that it is possible to produce terephthalic acid directly in supercritical water. However, the exact conditions, such as most suitable catalyst, co-catalyst concentration, temperature, and density are still unknown. Catalytic reactions in supercritical water appear to have a promising future for research.

— 46 —

Dielectric constant

Diagram 2

Criticalpoint

-2 200'

Density, grams per cc

Log of ion product

Criticalpoint

Diagram 3.A 200g, 400\ 600

% 800o 1000

Density, grams per cc

Figure 1 Property of Supercritical Water

Tube Bomb Reactor (6cm3,made of SUS316)

distilled water (0 - 0.48g/cm3)

Loading

molten salt bath reaction time 3-60min

Experimental apparatus

Figure 2 Experimental setup

— 47 —

5 10Reaction Time [min]

Figures Effect-of Water Density on Noncatalytic Partial Oxidation of Methane in Supercritical Water

Water Density 0.48 g/cm3 : # Methane Conv. A Methanol Yield Water Density 0.17 g/cm3 : o Methane Conv. A Methanol Yield

I Table 1 Effect of Catalyst on Partial Oxidation of Methane in Super critical Water| Temp. (Water Density Catalyst Methanol Yield | Methane Conv.| PC] | [g/cm3] | (20mg) [%] | [%]

400 \ 0.48 | none 0.89 | 7.81 |400 1 0.30 | none 0.27 | unknown

435 | 0.30 j none 0.47 j 9.30400 | 0.48 | Cr^Os 1.69 | 5.28435 | 030 | C^ 6.68 | 930400 1 0.48 Mo03 0.00 | trace

400 ; 0.48 I VgOg 6.00 j trace| O2/CH4=0.1 , Reaction Time = 5 min

— 48 —

Table 2 Screening Tests of p-xylene Oxidation in Supercritical WaterRun NO. solvent reactants catalyst Reaction Time Result

[mol/cm3] [mol/cm3] fmol/cm3] [min]no.l H20:0.021

CH3OOH:0.0007p-xylene:0.00017oxygen:0.00057

Co(CH3COO)2:0.00016NH4Br:0.00025 120

Liquid : pinkish with some precipitate ,unknown peaks. No Benzene or TolueneTHF wash : light green .some black solid

no.2 H2O:0.012CH3OOH:0.0035

p-xylene:0.00017oxygen:0.00057

Co(CH3COO)2:0.00016 NH4Br:0.00025 120

Liquid: reddish brown with some black precipitate.Benzene .Toluene detected. No Terephthalic acid. Unknown peaks. THF wash : greenish with blackish and light brownish precipitate

no.3 H20:0.0023CH3OOH:0.0063

p-xylene:0.00017oxygen:0.00057

Co(OH3COO)2:0.00016NH4Br:0.00025 120

Liquid : dark reddish brown and some black precipitate.Benzene .Toluene detected. No Terephthalic acid. Unknown peaks. THF wash : dark green with black precipitate

no.4 H20:0.021CH3OOH:none

p-xylene:0.00017oxygen:0.00057

Co(CH3COO)2:Q.000067GH3COC2Hs:0.00033 15

Liquid : pinkish with some white particles .No Benzene or Toluene, unknown peaks.

THF wash : dark brown .some black solidReactor Volume : 6cm^ , All experiments runs at 400UC

i.(3) @##05# • Hans-Holger Rogner

#05t-v : *#^4;

m A#m: RiTEmmm#

— 51 —

m r m m

& ^ o —#±

Dr. Hans - Holger Rogner

mm • m v vInstitute for Integrated Energy Systems

University of Victoria

P.O.Box 1700,Victoria, B.C. CANADA, V8W 2Y2

Phone : + 1 -604-721-8932 Fax : + 1 -604-721-6323

E-mail : [email protected]

2. %mmm

7 ¥ 9 J! 15H~¥E 7 *E12j3 3 H

3. MOB to MU

t Lx WI-^oSAfc#5VTx K#to • E'^toE

Oo

4.

4.i

5 ft#x * ju% - i/ x t a kn-r s w^x #lE-fkgtsK#

fcB L ft l' 7km x * JU 4? ■- © f Ijffl & fc K-r S WSS Zff ■= ft o

— 53 —

4.2 E953s^©

a —ft±&IIASA©y a 5? ^ ^ b Vx tf j t b

v t fciPGGx 4; v - k*-V-

©06 9 T t> <b 9 x ^#^#©E&±K%3:'o#f L i^x 4;;i/^- s/x-r AcDE^fclWatM:

®50 ^©#6iW##-^fAE951I(c^oi^T^#©*#x^^4"-

irntzm^ ■&&TS£rWi<Dmm\m-tz>m$L*'tt^tzo $f=#©^aE**ciPcc©#%

& i/ - b ©#^##T#&#aMt $>%>-otz(D-e^teHIf-5##<Srgg6T# A0

4.3 E9£©J$#

ESfc©^# 6 bTK# L/c#‘nS:iu & & a «k 9 f£” Hydrogen Technologies and the

Technology Learning Curve” 6 t' 9IkX6 L TE9£©$t##^ 6 #> S> tl~C V* a 0 •€" ©

E95G%#©#M&J2TF a 0

7kS^*vi/4r'-^liLT*l)3EM^ tt © Hii 4 b x D^ib^^aA##

P»E#x »li^i^a0 7kS©EjEx a LT#K&A§M9E§l9i&£Ox ^

iT,#r##?^^A^3iT,a <k yx H/-->3 aAtf-Tteft <

tx a tl £ "i* T fcS A L A x - -tf' -1;:*^- a IBS #1FFM T' & a o M&£>ratWi

3 x b ©ffi# £>#Aa 6 # AtH-Sx.^;!/^"— 61' •? ©(i-3- —if—{c 6 -jtl'fl ^WW’TT

fiftl'# £>tf® a0 a o learning

curvex 6 C 6(cj;9x

a^M#& So C © # a T (iMSIl # © 7kSWfll M © S A t -o T^MA#W%^*©

77 bfcovr :ltiE©@£:£fflVT!&Bj3LTv;5o

v Lx 4-#+#^ au«,a£ -5 tamiic&&

b&v-e&a ?o L#L%#6##M^^N'#'aMa@(i%6#'e&ao ^-©A&6x 7k#x

*;i/f-#A©O 6 o©MBt LTt£7kS&«kOBA£ivT##^#-^©#.#<&#/]\K

6^&a6#9A&#(fac6^T#ao L#LA#6i-©7k%x^7i/f-&#? nx b

KMLr&v < o#©E95#® Dx 6aE9£ A&t'TME:TO£?iJJi§^'a x^;i/4^- *s

X-fA(D3 X b tcit^TMlHILH$*e<ba 6 V •?VT va #)©%)®a6|B|B#(Cx

f&ATkSx *71/4='-©3 X b W##(!:#^6W9$§#^#t^Tl\aEg5%)&ao %#©E

95###c ©«k -5 AA# < AA-o(c^#tLTt>a£tillB<h LTx *#x^;i/^-K#6

— 54 —

l'3 fc©j&sj|5c&LN ^fc £ v 9 vbif’ESS MmzufetS ft bW\ 7kSx*7i/f'-©37Fa'H0*;i/f-@

3 x He a(SEEf-6g'ST-66^ 11' 9UtE^S^ii§o ctifottlt> 7kS^$;i/f-

M<bV9 56^9btitiHlf:#AK&7kS**;t/f-(eb <hl'9 5o

P^fttttifcfft bft^iEftF^litex t'htztf©^.$ttKS^ *7i/4^-K®£ v 9 I>©^^#LTl\ < 6l'9AT6So i:©EFn^®< /ctii^*S5:T(iM©"^EN IPSE

#©#&^6^ Wl^©SAx J&iMSS-llTx ^EfegS^T©?^ 7f-^ 7 7K ^<kU=

R#©@"m0m©^/:-3©#±&#cT^f^ Wmm^

ILTOIIt^^Co

^©H^n TkS^ * ^4^- ©IFIHfcMEft 3 * b i LTMAlf® V )V(Dt~y-(0

3X h^ST'®5 7 il^SIrafcSlJiSLfCo C©3X

7-(e L T AEE’?6^LTl)-etie>©^-X3.-.y b©3x ^

ftfcBi'T^© J; 9ft^*7u4^-'yx-r a^M-^sS-o-©^ y7 5x b 5 7 5^-©^

#©#%?&&0 —y 7 9X b 7 7 f -f - ©M#f KC Tl\ 5o

yf 1' ft 1\##10%#gT&5o c©c6^b#x.Tx 7kS^*ju#- y x ^ a©j&S© ft

!6ic|5fMDSii»4'i^^ e ©%m©nmk;e j; a 7V -

LTS&t)ft ti- *1 t;f ft £ ft V 3 x b <tl'9 t©(j:#Aft 6©C:ft&T&5 9o 7k^^*7U

4'- y x f A ^ 0gi0ii^' FxW t*y7"7 *-x <h L T $ % o 7kS^*

;i/f- yx-r A^©g%|c«k^T@!l#?# &$t^3x h SSEE'fbK<k -o T l> ft £ S

nz>m§mt£VT^±te < %\ Mmmtewmmo&mfc & -^xmoei-s ci^i^o

ft<h;U;f, g##ft^(e $> A# ft^#^#x.&o U 7 j-7i/-T#^©#

#X##&fr7 tttitf, 20204p^-CK^90# K JUfr 6260# F7^©^#g#m^g(imf

&ct^Rr#g?6So Ly= j;9c:R#©mM©ft6(e^#ft3x b

&##©^mmm^bSEu ztitmufttz**?-yxfAoi^A'i

Li'K#KAi%#t) -3 ft Bt te 5 Ti-SR AE’^ © ax b ©Jt-g^EET® 3 0

— 55 —

5. #%5:E

1 ) Anderson, D. and R.H. Williams(1993). The Cost-Effectiveness of GEF

Projects. Working Paper 6, Global Environment Facility, Washington, DC.

2 ) Appleby, A.J. and F.R. Foulkes(1989). Fuel Cell Handbook. Van Nostrand

Reinhold, New York.

3 ) Ayres, R.U.(1987). The Industry-Technology Life Cycle : An Integrating

Meta-Model? RR-87-3, International Institute for Applied Systems Analysis

(IIASA), Laxenburg, Austria.

4) Barra, L. and Coiante, D.C1993), "Energy Cost Analysis for Hydrogen - Phot

ovoltaic Stand-Alone Power Stations”. Int. J. Hydrogen Energy 18(8) : 685-69

7.

5 ) Berry, G.D., Smith, J.R. and R.N. Schock(1995). "A Smooth Transition to

Hydrogen Transportation Fuel”. Lawrence Livermore National Laboratory.

Paper prepared for the DOE Hydrogen Program Review, Coral Gables,

Florida, April 19-21, 1995.

6) Grubb, M., Walker, J., Buxton, R., Glenny, T., Herring, H., Hill, B., Holman,

C., Patterson, W.C., Procter, J., and K. Rouse(1992). Emerging Technloogies

: Impacts and Policy Implications. The Royal Institute of International

Affairs, Dartmouth Publishing Company Limited, Gower House, Aldershot,

United Kingdom.

7 ) Gruber, A.(1990). The Rise and Fall of Infrastructures, Dynamics of Evoluti

on and Technological Change in Transport. Physica-Verlag, Heidelberg,

Germany.. .

8 ) Hassmann, K. and Kuhne, H-M.(1993). "Primary Energy Sources for Hydro

gen Production”. Int. J. Hydrogen Energy 18(8) : 635-640.

9 ) Intergovernmental Panel on Climate Change(lPCC)(1996). Second Assessmen

t Report, Geneva, Switzerland(forthcoming).

10) Jong, K.P. and van Wechem H.M.H.(1995). "Carbon : Hydrogen Carrier or

Disappearing Skeleton?” Int. J. Hydrogen Energy 20(6) : 471-484.

— 56 —

Hydrogen Technologies and the Technology Learning CurveHans-Holger Rogner ■

Institute for Integrated Energy Systems . University of Victoria, P.O. Box 3055

Victoria, British Columbia, V8W 3P6, Canada Tel: (604) 721-8931, Fax: (604) 721 6323

email: [email protected]

AbstractOn their bumpy road to commercialization, hydrogen production, delivery and conversion tech­nologies not only require dedicated research, development and demonstration efforts but also pro­tected niche markets and early adopters. While niche markets utilize the unique technological prop­erties of hydrogen, adopters exhibit a willingness to pay a premium for hydrogen fueled energy services. The concept of the technology learning curve is applied to estimate the capital require­ments associated with the commercialization process of several hydrogen technologies.

IntroductionThe Second Assessment Report of the Intergovernmental Panel on Climate Change (CPCC, 1996) holds that the global mean surface temperature change of 0.3 to 0.6 K, observed over the last cen­tury or so, is unlikely solely due to natural causes. It appears the anthropogenic increases in at­mospheric concentrations of greenhouse gases (GHG) are showing first signs of radiative forcing. Further increases in GHG concentrations, therefore, are now even more likely to cause serious cli­mate destabilizing effects.

While any deeper consequences of climate change may not be felt for several decades, poor local air quality in many densely populated metropolitan areas around the world is taking its toll already. Local environment protection has generated a significant market pull for cleaner fuels and more efficient energy conversion technologies. The predominant response to this growing demand for clean energy technologies has been incremental efficiency improvements, leak-plugging practices, energy management, etc. The most effective response to long-term emission and pollution control, however, is fundamental process and technology change. Hydrogen produced from renewable sources and converted electrochemically or catalytically to energy services constitute such a funda­mental change. Indeed, hydrogen, together with electricity, can provide all energy services de­manded by modem societies with least environmental intrusion. Although several hydrogen tech­nologies are already technically available today, the delivery costs of hydrogen and the capital costs of these hydrogen utilizing technologies often exceed the costs of carbon-based energy services by orders of magnitude. The crucial question, then, concerns the future economic viability of hydrogen fueled energy services compared to services based on relatively low-cost fossil fuels.

Hydrogen production and energy services provided by hydrogen have been addressed by numerous studies, including Lodhi (1995), Ogden et al. (1994), Ogden and Nitsch, (1993), Rogner et ah, (1992), and Lund (1991). Several of these studies conclude that the full cradle-to-grave life-cycle costs for hydrogen fueled energy services would be comparable to present fossil fuel based energy service costs. Other studies using similar technical performance data for hydrogen technologies, e.g., efficiencies or technology availability, arrive at the opposite conclusion: Hydrogen energy services would be significantly more expensive than present ones (Barra and Comate, 1993; Jong and van Wechem, 1995; Hassmann and Kuhne, 1993).

A fundamental difference in the underlying technology cost assumptions expiates these opposed findings. Studies presenting a favourable economic performance profile calculate hydrogen fueled energy service costs assuming a quasi steady-state technology environment, i.e., hydrogen tech­

— 57 —

nologies are mature and hydrogen production and delivery infrastructures "are fully developed1. In contrast, studies arriving at much higher hydrogen energy service costs start out with present tech­nology costs while accounting for a certain rate of future technology improvement Current hydro­gen delivery economics (since no hydrogen delivery infrastructure is in place, this is often based on the cost of merchant hydrogen) and costs for immature end-use technologies combine to result in energy service costs which indeed exceed the costs of conventionally fueled technologies by orders of magnitude. Moreover, present cost experiences tend to influence future expectations and, corre­spondingly, result in conservative technology improvement projections.

The key question, therefore, is how rapidly can hydrogen technologies achieve the cost improve­ments necessary to penetrate markets at a scale that justifies their mass production (which, in turn, is a prerequisite for drastic cost reductions)? Unsurprisingly, there is no straightforward answer to this question. The presently existing economic and technological performance gap is too wide to be narrowed significantly by accelerated RD&D efforts alone, although expending RD&D resources is a necessary prerequisite for the demonstration of technical feasibility. Economic viability on the other hand is usually a function of cumulative production, i.e., sales. As regards hydrogen tech­nologies, market adoption at a financial scale several orders of magnitude larger than the RD&D expenditures is likely to be required before commercial maturity can be achieved: A first order as­sessment of the magnitude of this market adoption requirement as well as the associated financial implications will be presented in the following sections.

The Technology Life CycleOne conception of technological development is the technology life cycle. By analogy to biological systems, technologies can be considered to experience life cycles, i.e., successive stages of devel­opment. The stages of conception, birth, infancy, childhood, adolescence, maturity, senescence and death all have been identified in the evolution of products, technologies, industries and infrastruc­tures (Ayres, 1987; Grubler, 1990). Each of these stages is characterized by specific production, management, scale, diversity, price elasticity and investment conditions.

Viewing technology development in terms of a life cycle emphasizes the fact that it is necessary to pass through each stage in succession. A technology can no more skip over a stage of development than can a living organism. For hydrogen technologies, this fact highlights the necessity of finding successively larger markets which will take them from infancy, through childhood and adolescence, on to maturity. It also means that hydrogen infrastructures need to be established. Infrastructures tend to follow the technology life cycle stages with life times considerably longer than those of in­dividual technologies.

Costs and performance tend to improve as technologies pass through different life cycle stages. Initially, costs are high due to small batch production modes based on manual operation, which re­quire highly skilled labour, highly diversified yet not dedicated machinery, and low volume pur­chases of goods and services. As a technology approaches maturity, labour intensity is low and “deskilled”, the operation essentially standardized, mechanized, and automated resulting in lower production costs (Ayres, 1987). This often-observed pattern of diminishing costs as technologies progress to the next stage in their life cycle has been coined the “technology learning-curve”.

The Technology Learning-Curve

1 Put differently, the economic data underlying these studies should be viewed as cost targets which, if met in future, would allow hydrogen energy services to compete successfully in the market place. Also, if a comprehensive set of fundamentally new technologies is also contingent on a novel fuel supply infrastruc­ture, one faces a situation best characterized by the chicken-or-egg metaphor—potential hydrogen equip­ment manufacturers hesitate to invest into the advancement of these technologies because of the lack of a fuel supply infrastructure and thus limited market prospects, while potential hydrogen producers see no immediate market.

— 58 —

Technologies which are amenable to standardization and to the exploitation of economies of scale tend to follow a leaming-by-doing pattern: increased productivity, and thus lower specific produc­tion costs, result as a function of cumulative production or life cycle stage. Their performance, and in particular their production cost, can be said to follow a learning curve. For example, Figure 1 shows the historical cost dynamics as a function of cumulative installed capacity (MW) for solar photovoltaic (PV) modules and gas turbines.

Gas turbinesRD&D and technical *5demonstration phase - - qqo "5100-

19631980

Commercialization— 100

*- Photovoltaic cells

--------- 1--------- 1--------- 1--------- 1--------- M010 100 1 000 10 000100 000

Cumulative MW ExperienceFigure 1: Technology learning curve: Cost reductions with cumulative production ex­perience. Source: Rogner and Wells (1995).

As others have observed (see, e.g., Tsuchiya's work in Anderson and Williams, 1993), the shape of these curves suggests that the cost reductions due to learning effects can be modeled to a zero order as:

C = aFb

where C is the unit production cost, P is the cumulative production2 and a and b are constants.

The effect of b on the rate of cost reduction can be seen by observing that

a value for b of:

0.100.200.300.400.50

...leads to a cost reduction for each dou­bling of cumulative production of:

7%13%19%24%29%

(1)

The data in Figure 1 imply values for b of about 0.30 for PV solar cells and early gas turbines, and a little below 0.10 for mature gas turbines. Note that the gas turbine example shows two different sections of the learning curve: first, the early cost decline as a result of RD&D experience and ini­tial economies of scale effects, and second, later post-commercialization cost improvements3.

2 Similar relations have been used in which annual, rather than cumulative production, is the independent variable. See, for example, Penner et al. (1995, p.458).3 It must be said that real-world technological development is more likely to progress in a series of steps than along a smooth exponential curve. Especially during the very early RD&D stage even minor techno-

— 59 —

The KD&D phase is a necessary prerequisite to drive down costs as well- as to improve perform­ance and reliability. RD&D alone, however, is usually not sufficient to achieve commercialization; this requires some kind of demand or market pull. Protected niche market applications, government policy or early adopters may all generate a market pull that supplements the RD&D driven technol­ogy push. In a protected niche the new technology gains entry by virtue of being the only techni­cally feasible alternative. In this case costs and other techno-economic criteria are secondary to the service provided (as long as the associated economic benefits exceed costs, of course). Government policy, especially environmental policy, is another important, and in the case of hydrogen tech­nologies probably the most important, force. In fact, environmental regulation is likely a force si­multaneously acting as an incentive for accelerated RD&D activity and as a pull on the market lever.

Early adopters represent a different market entry. Here, the characteristics of the new technology are highly valued despite high costs or lack of certain performance aspects, “in return for some new positive attributes it offers” (Sperling, 1990).

Overall, the experience accumulated in these early markets not only leads to technology improve­ments but also to higher product visibility and diffusion into other market segments and thus to commercialization. Thereafter, economies of scale as well as incremental process innovation fur­ther enhance the learning-curve, effect albeit at a much slower rate. Learning curve improvements eventually cease as the technology approaches the end of its life cycle.

Note that while this model of technology development is referred to as a learning curve, there are more than just learning processes at work. Life cycle issues of related technologies or infrastruc­tures also contribute, e.g., while it may be known how to manufacture a particular product at low cost, the necessary infrastructure may not be justified until a certain market size is reached. This market growth will be limited, in turn, by varying requirements for demonstrated cost and perform­ance.To develop cost-reduction learning curves for hydrogen technologies, i.e., to estimate a, requires at least one data point, i.e., one pair of present unit production cost and cumulative production quan­tities to date* 4. Unfortunately, the pre-commercial state of many hydrogen technologies as well as their proprietary nature means that current “production cost” and cumulative production data are often not readily available. Lacking empirical data one has to withdraw to cost models, analogies, literature surveys and sensitivity analyses and to estimate the unit cost and cumulative production cost pair, as well as the learning factor b. Parameter a is then calculated using this data..

For the present analysis, three hydrogen technologies advanced as the future pillars of a quasi zero- emission transportation system were analyzed 5. These include:

• Photovoltaic (PV) electricity generation• Hydrogen production via electrolysis -• Proton exchange membrane fuel cells (PEMFCs)

Hypothetical learning curves were estimated for each of these technologies. This required the tech­nology-specific quantification of current base unit costs (in terms of $/kW investment costs), base cumulative production (in MW), and values for the learning curve exponent b. Since the learning curve cost trends set by these parameters are quite sensitive to their initial conditions, ranges rather

logical advances may translate into quantum performance leaps, i.e., large cost reductions without an in­crease in cumulative production. Yet as Figure 1 shows, the overall effect of such a series of steps can fit such a curve remarkably well.4 Ideally, one would use a set of such pairs of past unit cost-to-production relations to estimate the critical parameters a and b of the learning curve by means of some regression analysis.5 The full study (Rogner, 1996) also includes learning curves for hydrogen production via steam methane reforming (SMR), hydrogen production via biomass conversion, hydrogen liquefaction, liquid hydrogen refueling infrastructure, compressed hydrogen refueling infrastructure, hydrogen pipeline transmission and distribution, liquid hydrogen transport and distribution.

— 60 —

than point estimates were applied. In addition, for each technology a threshold level of future unit costs was introduced. These thresholds represent the expected future steady-state unit costs for mature and competitive hydrogen technologies. The cumulative production necessary to meet the threshold cost target as well as the implied cumulative “adoption costs” were then calculated. Adoption costs are the cumulative difference between the declining unit and steady-state costs, and reflect the required extra willingness to pay for a technology to mature.

Fuel Cells

Proton exchange membrane fuel cells are still in the infancy stage of their development life cycle. Their production is characterized by few economies of scale, even less standardization, high skilled labour intensity, and makeshift multi-purpose production equipment. However, fuel cells are par­ticularly suited to benefit from learning curve effects, having the potential for both economies of scale and cumulative production experience. In particular, while reflecting on tire PV data in Figure 1, one can visualize generic similarities in the production aspects of PV modules and fuel cell stack modules.For the penetration of fuel cells into transportation there will certainly be multiple learning curves at work, representing fuel cell stacks, systems, vehicle integration, etc. Nonetheless, one can get one, back-of-the-envelope view of the meaning of “commercialization” by considering what cumu­lative production levels would be required to make fuel cells more nearly competitive on strictly cost terms with existing transportation engines. In this context, the notion of commercialization must account not only for the technology unit cost but .also account for the inherently superior effi­ciency of fuel cells as well as higher hydrogen costs, at least during the transition phase to a fully developed hydrogen supply infrastructure6.

For the purposes of identifying order-of-magnitude learning-curve effects, a unit cost value for a fuel cell power system, based on compressed hydrogen-fueled PEMFC technology, of $4,500/kW was derived from a recent cost model developed by Ronne (1995). However, Ross (1995) cites a cost of “in excess of $10,000 per kilowatt” for an “average PEMFC power system”. On the other hand, the step from current RD&D-type fuel cell assembly to even small scale manufacturing is expected to drastically reduce unit costs for entire PEMFC power systems. Therefore, $10,000/kW and $2,500ZkW are plausible upper and lower bounds on current unit costs.

Cumulative production values for PEMFCs are more difficult to estimate. However, the value is certainly greater than 1 MW (which only represents forty 25 kW stacks), but likely less than 5 MW, and so these.two values were taken as admittedly wide bounds7.

6 Several such comparisons have been performed on a life cycle basis for steady-state source-to-service systems involving fuel cells and hydrogen delivery technologies to provide transportation services (Rogner et al., 1992; Ogden et al., 1994; Berry et ah, 1995). Also, comparisons of fuel cell transportation systems with average existing or near term internal combustion technology is flawed. The performance of the in­ternal combustion engine has still considerable room for further improvement Consequently, one should compare a frontier technology such as the fuel cell with frontier internal combustion technology, e.g., di­rect injection diesel or hybrid arrangements.7 According to their 1994 annual report, Ballard Power Systems Inc. had delivered 60 fuel cell stacks by end of 1994. Assuming an average stack size of around 10 kW gives a total of 600 kW, suggesting that the logarithmic midpoint of 2 MW for our capacity range is reasonable.

— 61 —

Unit Cost ($/kW)

$10,000/kW, b = 0.1010,000-

$4,500/kW, b = 0.301,000-

"targets

100-

$2;5po/kw; b.= 0:40;;;

----- 1--------- 1--------- 1--------- 1--------- HO10 100 1,000 10,000 100,000

Cumulative PEMFC Production (MW)Figure 2: Hypothetical learning curves envelopes for polymer electrolyte membrane fuel cells (PEMFCs). Curves follow C = aFb (equation 1), where b is 0.10, 0.20, 0.30 or 0.40, and a is calculated using a base cost of $10,000, $4,500, or $2,500 per kilowatt, and a base cumulative production of 2 MW.

Appleby and Foulkes (1989) cite a study commissioned by the U.S. Electric Power Research Insti­tute (EPRI) on fuel cell commercialization, which concluded that a value for b of approximately 0.20 was appropriate for the phosphoric acid fuel cell (PAFC) technology. Given the values im­plicit in the curves in Figure 1, values between 0.10 and 0.40 appear as plausible boundaries for b with regard to the future production of transportation-oriented fuel cells.

Figure 2 shows the envelopes on the learning curve cost trends set by these parameter choices. The key conclusions to be drawn from these learning curve constructs are that even for the most favour­able choices of parameter values, i.e., combinations of low cost, low base production, and large learning curve effects b:

• from tens to a few hundred cumulative MW of production are required to bring unit costs below the $1000/kW level;

• from one hundred to a few thousands of MW of production are required to bring costs to the $450/kW level, for potential entry into the heavy-duty vehicle (HDV) market (Rogner and Wells, 1995);

• from ten thousand to a few hundreds of thousands of MW of production are required to bring costs below $150/kW, the likely cost threshold for PEMFCs’ entry into the light-duty vehicle (LDV) market (Rogner and Wells, 1995).

While transportation applications need not bear the full burden of these cost reductions, the non- transport applications for transportation fuel cell technologies may be limited8. Using steady state unit costs targets for PEMFC onboard power systems of $450/kW for buses and other HDVs, and $150/kW for LDVs, the hypothetical cumulative investment volume required to move unit costs from the base production cost to the steady state level were calculated (see Table 1).

8 Non-transport applications, especially utility generation, may be better filled by fuel cell technologies operating at higher temperatures than the low-temperature PEMFC technology which is considered the most likely candidate for transportation applications.

-62-

Table 1: Hypothetical opportunity costs associated with the commercialization of PEMFCs. The cell entries show the cumulative investment cost difference between the learning curve determined costs and the assumed steady-state cost level of450$/kW for HDVs and $150/kW for LDVs9.

Cumulative Investments in billion US$

Base cost $/kW b = 0.20 b = 0.30 b = 0.40

2,500 70 1.1 0.18

4,500 - 7.9 0.80

10,000 - 112 5.2

Note that the cumulative investment data represent the total required willingness to pay over and above the long run steady-state investment requirements. For example, the combination of the $2,500/kW base costs and b of 0.30 involves a total investment of $3.5 billion before the steady- state LDV cost target of $150/kW is realized. Of this amount, $2.4 billion are the equivalent con­ventional vehicle power costs while $1.1 billion shown in Table 1 are the added technology learning cost.One can immediately conclude that fuel cells will fail to penetrate markets unless low base costs (parameter a) pair up with values for b of at least 0.30 or higher. Any other parameter combina­tion requires cumulative production volumes and sales at costs per kW well in excess of what niche markets and early adopters can possibly acceptOn the other hand, low initial base costs ($2,500ZkW) and high learning curve effects, e.g., b values of 0.40, though desirable, are unlikely to occur if based on learning curve effects alone. Values for b as high as 0.40 have rarely been observed over extended periods of time. Then again, base unit costs of $2,500/kW may well prove too high a starting value, especially if the initial step from manual assembly to manufacturing results in lower base unit costs than assumed here.

Under this study’s most favourable circumstances, the corresponding cumulative production vol­umes to cross the $450/kW and $150/kW cost levels are 150 MW and 2,000 MW, respectively. The overall entry market size and the willingness to pay would be modest and early market appli­cations should not pose an insurmountable barrier. Depending on the learning curve parameter combination selected, the adoption costs of Table 1 would add a surcharge between $1,700 and $4,300 per LDV.

Electrolysis

Hydrogen production via electrolysis of water is already a relatively mature industrial process, while fuel cells and PV have yet to demonstrate general commercial maturity. Still, electrolysis has considerable room for further improvement. Its future utilization for the manufacture of a transpor­tation fuel involves significantly larger production capacities and different operating characteristics than its traditional applications. In particular, unipolar alkaline electrolysis would benefit from larger production volumes and a shift from batch to automated manufacturing. Present unit pro­duction costs are in the order of $550/kW (+$100 as upper and lower bounds) while cumulative past capacity production has been estimated at approximately 4 GW with an uncertainty range of 2 GW. Installed electrolysis capacity can easily be varied due to its inherently modular nature, which potentially permits the realization of high levels of standardization and automation. Steady state unit costs have been assessed at $300 per kW. Although there are considerable generic technical

9 The combination of b = 0.20 and base unit costs of $10,000 and $4,500, as well as any combination that included a b value of 0.10, led to adoption costs beyond reason and thus were not further considered.

— 63 —

Technology diffusion within the energy system is an inherently slow process, especially when new technologies also require major infrastructure adaptations. At present the immediate economic benefits of solar hydrogen or fuel cells are insufficient to lure the common consumer away from the familiar internal combustion engine and inexpensive hydrocarbon fuels. Even if fuel cell economics were competitive in today’ s' transportation markets, there would still be the hydrogen delivery in­frastructure barrier. If history is of any guide, major infrastructure transitions occur over a period of fifty years and more, with expansion rates rarely above 10% per year (Grubb et al., 1992). The need to find a global solution to halt the continuing growth in atmospheric greenhouse gas concen­tration requires at least a partial transition to a hydrogen economy. If essential pillars of a hydro­gen economy are not brought closer to commercialization in the near-term future, this transition will be delayed and may cause enormous environmental damage costs to future generations.

Technology diffusion and market acceptance are complex processes, affected by a wide range of institutional, social and economic factors. Environment policy is certainly one of the major driving forces affecting the rate of diffusion of clean energy technologies in two distinct ways: Environment regulation aids the market pull, while publicly funded KD&D supports the technology push. Moreover, such KD&D activities may generate collateral benefits many times the original expendi­tures. A recent study calculated a potential reduction in Canada’s national health care costs of $9 to 26 billion by 2020, if California vehicle emission and fuel standards were implemented in Can­ada before the turn of the century (Ministry of Environment, Lands and Parks, 1995). The envi­ronmental externalities associated with current energy production and use are no longer ignored. The potential economic savings associated with market prices may well outweigh the learning costs for environmentally benign fuels and technologies. Environmental pressures combined with the general trend that higher income societies demand cleaner energy services are likely to create a much larger “adopter population” than pure economic considerations (relative costs, scale of in­vestment, profitability) suggest. However, determined environmental policy and energy prices that reflect the real cost of energy services are required in order to mobilize this adopter potential.

Acknowledgment

This research was conducted during a three month visit to the Research Institute of Innovative Technology for the Earth (RITE), Kyoto, Japan.

ReferencesAnderson, D. and R.H. Williams (1993). The Cost-Effectiveness of GEF Projects. Working Pa­per 6, Global Environment Facility, Washington, DC.

Appleby, AJ. and F.R. Foulkes (1989). Fuel Cell Handbook. Van Nostrand Reinhold, New York.

Ayres, R.U. (1987). The Industry-Technology Life Cycle: An Integrating Meta-Model? RR-87-3, International Institute for Applied Systems Analysis (RASA), Laxenburg, Austria,

Barra, L. and Coiante, D. (1993). “Energy Cost Analysis for Hydrogen-Photovoltaic Stand-Alone Power Stations”. Int. J. Hydrogen Energy 18(8):685-693.

Berry, G.D., Smith, J.R. and R.N. Schock.(1995). “A Smooth Transition to Hydrogen Transporta­tion Fuel”. Lawrence Livermore National Laboratory. Paper prepared for the DOE Hydrogen Pro­gram Review, Coral Gables, Florida, April 19-21,1995.

Grubb, M., Walker, J., Buxton, R., Glenny, T., Herring, H., Hill, B., Holman, C., Patterson, W.C., Procter, J., and K. Rouse (1992). Emerging Technologies: Impacts and Policy Implications. The Royal Institute of International Affairs, Dartmouth Publishing Company Limited, Gower House, Aldershot, United Kingdom.

Grubler, A. (1990). The Rise and Fall of Infrastructures, Dynamics of Evolution and Techno­logical Change in Transport. Physica-Verlag, Heidelberg, Germany.

— 66 —

Hassmann, K. and Ktihne, H-M. (1993). “Primary Energy Sources for Hydrogen Production”. Int. J. Hydrogen Energy 18(8):635-640.

Intergovernmental Panel on Climate Change (IPCC) (1996). Second Assessment Report, Geneva, Switzerland (forthcoming). .

Jong, K.P. and van Wechem H.M.H. (1995). “Carbon: Hydrogen Carrier or Disappearing Skele­ton?” Int. J. Hydrogen Energy 20(6):493-499.

Lodhi, M.A.K. (1995). “A Hybrid System of Solar Photovoltaic Thermal and Hydrogen: A Future Trend” Int. J. Hydrogen Energy 20(6):471-484.

Lund, P. (1991). “Optimization of Stand-Alone Photovoltaic Systems with Hydrogen Storage for Total Energy Self-Sufficiency”. Int. J. Hydrogen Energy 16(ll):735-740.

Ministry of the Environment, Lands and Parks (1995). News Release of October 16, 1995. No. 330-20:ELP95/96-173. Victoria, B.C., Canada.

Ogden, J.M., Larson, E.D., andM.A. DeLucchi (1994). A Technical and Economic Assessment of Renewable Transportation Fuels and Technologies. Report for the Office of Technology Assess­ment, US Congress (USOTA).

Ogden, J.M. and J. Nitsch (1993). “Solar Hydrogen”. In T. B. Johansson et al., eds., Renewable Energy: Sources for Fuels and Electricity, Chapter 22, pp. 925-1010. Island Press, Washington, DC.

Ogden, J.M. and R.H. Williams (1989). Solar Hydrogen: Moving Beyond Fossil Fuels. World Resources Institute, Washington, DC.

Penner, S.S. et al. (1995). Commercialization of Fuel Cells [Special Issue]. Energy 20(5):331- 470. A Report of the U.S. Department of Energy (USDOE) Advanced Fuel-cell Commercialization Working Group.

Rogner, H-H. (1996). “Hydrogen Energy Systems and the Technology Learning Curve”. Institute for Integrated Energy Systems (IESVic), University of Victoria, Victoria, B.C., Canada (forthcoming).

Rogner, H-H. and J. D. Wells (1995). “Fuel Cells for Transportation: A Methodological Market Approach”. In: Proceedings of the 7th Canadian Hydrogen Workshop, held June 4-6, 1995, Quebec City, pp. 143-152.

Rogner, H-H., Nakicenovic, N. and A. Grubler (1992). “Second- and Third Generation Energy Technologies”. In Long-Term Strategies for Mitigating Global Warming [Special Issue]. Energy, 18(5):461-484.

Ronne, J. (1995). An Integrated Cost Performance Model of a Transportation Fuel Cell System. Report for the project Next Generation Fuelcells for Transportation Applications, University of Victoria, Victoria, BC.

Ross, R. C. (1995). “Commercialization of Advanced PEM Fuel Cell Power Systems”. Presented at SAE TOPTEC Fuel Cells for Transportation, 27-29 March 1995, Santa Fe, New Mexico.

Sperling, D. (1988). New Transportation Fuels: A Strategic Approach to Technological Change. University of California Press, Berkeley, California.

— 67 —

i. ###05#@##m

(4) @##05# : Jean-Pierre Guttuso

#05 t-v : -9-y =f# (c ^ & ZIMINS ©

^ A # N

— 69 —

im®m%

J5, ^ iy ^ y t°x — ;u ify'yv (Jean-Pierre Guttuso)

bj? m 33-a v-9-yv-/-

2. @#mim

5F)& 7 #10^ 8 0 7 #11^ 20 H

3.

y ^mRiTEmm^r^ &

4.

*W©-E«S©WcMM>£Mt Ltf y tiri^o u-y =>"E

LT, (=##"#-%y= &(c(±, -9-y=f® ;$*£'©< 5»v"E

%6i'9Hi?'-7-tlo<a0 RITEM

AW#05Br©@R(cj;() 1993#^ £ S"£-S^SM (;: & V T -9- y =ffll©^JR5:^<k^—

E<k^S©EiR@^k©%tt^o vroE^ES^ff rv §0 iSI^0iiT\ R

ITE© ?" ju-y (iSTk * © 'BWMM'MM & J; CX 7 > * V $ (^6 a) ©Fffi

^bx •9-y=fE^rE«s©E«^ Lx^m^o^^nt^mhtco zo&mm ^(D-*)-yzr#(±%E'fk^©%A#T&&6-#-%%tm©$##&#^.y:o

05# ^x L fcDr. Jean-Pierre Guttuso "Er® 5 0 # 3 (ix 7 7 y %#© 7 kf

&3vt;£*-x F7'J70tyilWii51Sx #K%EikR#»E©H^fk&5x ^

na^tts-E'fb^sss©±#Dx f-y

6M#LTl\%o z: © & -p—3©#%(±'V' y

£x.x P<£.misftfc£ LT&x tC*LTLti\ ###6 LTCEYk##^#^

— 71 —

^•uT\ ctLb©msavahee#*i£z.\z.%>aa

|ql—<k C^##x f — ^ —%#%-Dr. Jean-Pierre Guttuso i: :ft|S] ~Cff 0

Zt&BKlt L/c0 Cfti^Dx f- y LTx if©J:-5{-JES^a©

C aQ

5. mgsm#

5.1

¥F^©£teftStiS]£BT©#klDjtl$ij5!§&x #^±#T©##©^-#x f*-?-(D^M

##x g-a-m?©mi#workshop©*i5im#(cistv=f ® ese©H5E,& ©ieutsa0

5.2 #t|q|##©l^#

y =f'E k & y- a zLmtmm ommt '>^a ©m;#&Mc 6(cg^fif=o ##=KMc1) f-y ^#-e©####x pH,T;i/^7 V $x W

#^x ^#mx %m^^Ex * ^9 A#©mE&em# (g^rm) omiA (A D

□ #J£M- 3 x ttinilj^M-1) TfT9o fcJEBCT|$^<Srdonble-eMLx 1!—©)&#

^^•ti^'iL©5"i$T-$iJS Lx -f - ^ 5&&###'ao 2 ) ##

ti04ii»4i$a^(i»£'©j; 9 icx £'©< a©^e%#K^a

/c©^ K - A ^ y©##^lr 9 o J;^###*© i) ©zgg# jzcf/'ff f-

v %saw±m&ao#m6a<ME@f a,, c^3&mLTx mm#-e©mm@m^ck ffM^^rAWLx ziM^oM^i tT©wiitt^^a0 zornm®

iodizemm*TxmTkvum&mt3etr^^x-sWx t/cr.®?«si©»j©/ca6

(C(±x ilEm '>X 7" A Vfex £ Btcei-no^viz-y^W-ra-E'fkESx ##

iixpHxMo-fevt-Wi^Cx 7n-y^m©#J^#s{-J:aM&AWOfTo/Co

5.3 E^gR#

5. 3.1 Field^& <£ aa-###©^

RITE©E^^vu-7°tiDr.Guttuso©*HE^OT^^S (C F-A^#S § U ti—M

72 —

V - 7±-e^o tCo C C T~lt$.k LTs Dr. Guttusoi ©

t )6 So Guttuso £> © 7"A''-T°tiM- 3 ©HEtiL^U^io VT\ ^F-WisiE©—

vr, icm ©mb*- s>i9B t Tcm^mm©#*t©#E&

£>*—MES©Flux£ES LtCo !§$©—§B"e&610J3 18B * & 19B &* tgl*H

2 K^Ltzo LTVS0 StK*©

^^©SEfcit^riSvffl^^LrL'^o

Lttm • Mffl$0rm{t&Z&0&Wi&t>lbfrV±Bfcfrtt§s.KBi-C^Z&5teM.z.Zo

c©#mit-ffltmmimx.frltvs0 e©isnimcm

& fc is l' TE3£ L /:#**©##m##E© B mtfr b rf-S 3 ft S-x W»£SWB*

@si4±5K{l: teJt^TkiKSlLTv

So ^©fcKb—EftgtS(iW* <k LTmLTVS^|g't££#;i;fai§mt

So $ IHCBtfcx RITE7" >-7°<k DSUx 'J-7^&7^-y|f=.|«

<Dfti£%3:mkm7kfc#^tes ??-

yfcibn'Tkfc^ffit V 9ifSS£ t>x &'FL t> — iLt^tel'o Dr. Guttuso£ © 1/# — h

S7k©»^t> 5§lt Ltmw&wz£So tct£^ eft&©##*6x

•9- y =f ® *riHkES © MET- £ s&sv set £fiPMcfta6 S © &BE

JiBif*si.'tt^fc<kDs i^e#@r?$)m%s#m(c%se t<&#LTstmm

#<&##**©7°7 y^ h y©ftiiiit«©4Wi»i:

n-rsni^T'ttii3 Kojin's«k5fcx r&fcm&omtotmmfkvffltkvmK.

K###(cMi'@B@*6Se t*x e©0#*6x f-yd"#^

iSL'Xt£M$ ft*###(DfrtlV) K<kD ?iS® S m ###£ ftT t-- S

et^t)^^y=o $3(Cx ig@T^#m#E^#(ci@;<x ###^m@T^LT^s

e t^EEL/Co ^ /£1-^T©^«7 L T V S ft tf T ft V *\ %^RITE©#gSf

^-7“«?lii-iM0MI^5 i l' bf UID Tii4' < ^ ft

LSs iI©iS©^t\ &Sl'K-fy =f#A###©@

E<b^SSS^<kDx M & S V (±#( *#£ £ S c £*5tE$ ft S M *1# £ ft ft o Dr.

Jean-Pierre Guttuso £ © ial ft & -3 ft > ##^^%^S#©isSl\©3EgS©^-3*D A

t©«k?ft^f|:*-9-y=fB£-E«%©WlCSSWiMiEtihS©

* S igSMj&s & S e £ ££:K L ft o

-73-

5.3.2 Workshop "7: ©^clH

Workshops ©J§fe^©£ftj&fci 1 ) 4-@©#|oI^#^ Z tfworkshopSl^Tii

r-9-v3"®©-E^fkEs©® & sv£^?

LTifco c©EE&t/cSMm^TTV/j: v>fc\ ##%AU: City=ni©£'©

=k 9 % ##/,#«£ ^ 6 ©^, &3Wtifcii}E£lh5©;M

stvbti, -ramM6v&ra£ v •?tl/c0 2) ?

yrf$i^-E<b^S©®«-eS§ 6 jc«*!>*< £ &#m©%%%##%

6 ^-##© ^ # T & a o. £/c^ v -7^ 7^-'a #a< ^ #-e#T&&o ^©fc»©$®fl«il£S

itTlkmgK©U-y^®l*^t-t^S*T?*5t Lfco 3) RITE©-flF§£ii5^SSr?&

aern#(±, ihy=f S£ l t © t v 5 £ W £ ii/c o

t /c. RlTE©W^^";u-7°©W^x- * -©%$ 6 vMinjfco I'T 3*u

^o4-E©E%<£rK#S tlfCo 4) t f 3 ©Dr. Guttuso£ © C © «k ? ^g@#%m©

*Rffl£43«ktf Workshop £©*g&W\ ZtlVtHD&WiT-9-ZlEm^MUt £±*7? |>

^ftcii'ifwsnfco 5) 4-m©#B%(c^i\Tx wmyaoffxmlxm^tzzt

it it y 3"S^z2E4bES © %iRm £ L T if © <fc 5 fc S © & 5—o ©*g ft ®

T'® Z> Z. £ ^5Sgf.$ tLfCo Dr. Guttuso £ $ workshop© £ D ^ £ %b#©##^"#|3|^C#

t^fffr-S:^3 Kfr t /"c0

5.4 4'#©'#'^')63"

t/d\ #%g#©^«tLT^. t/c7-^-©Sll,+

4-ES6,ic, mm©##r##(&#T&ao 4'#£%,,

3Wt£S,&££/pLTV< /c&i;:, §ISiE§^M^TV< c£&mmL/Co

— 74 —

400

Time

200

to8O

=ax233

0 o

to

-200

Figure 2- C02 partial pressure and air-sea C02 fluxes during a 24 hours experiment carried out at M3 (18-19 Oct 1995).

3=ioEEs

§Io

Carbon dioxide flux mmol nr2 h

Figure 3- Relationship between the O, and C02 fluxes during day time incubations of the sedimentThe slope of the cunfe is the photosynthetic quotient r2is 0.76.

— 75 —

Carbon and carbonate fluxes in coral reefs: Field study, workshop and experiments at Miyako Jima and Shizuoka, Japan

* Yoshimi Suzuki and **Jean-Pierre Gattuso

^Institute of Geosciences, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka, Shizuoka 422, Japan

**European Oceanologic Laboratory, Centre Sdentifique de Monaco,Avenue Saint-Martin, MC-98000 Monaco, Principality of Monaco

76 —

1- Field and laboratory experiments for the features of coralreef metabolism and C02 cycling at Miyako Jima and Shizuoka

Drs Suzuki and Guttuso have evaluated the work accomplished during the field experiments in Miyako Jima. The main purpose of our collaboration was to check whether the features of reef metabolism and C02 cycling at Bora Bay were different than the one of the reefs previously studied by the Eurqpean group. It was also of particular interest to compare our methods (lagrangian versus eulerian) at the same time and on the same site in order to ascertain that they provide similar results. Additionally, the contribution of various physiographic zones to reef metabolism could be estimated using the dome experiments.

Preliminary processing was carried out on the data collected during the 24 hours experiments at M3 and in the domes. A very simple and preliminary model incorporating oxygen and current data was designed by Gattuso, Kraines and Suzuki. It seems at this stage that these data might be used to estimate gross primary production, respiration and calcification of the reef flat, despite the problems resulting from the unpredictability of the surface currents .This model will be refined during the next months.

It has been decided that our field collaboration must continue during the data processing. The data and information remain the property of their respective owners but will be exchanged between both parties without any restriction, provided that no result should be published without the written consent of the other group.There are good hopes that the data collected under the leadership of the European team will enable to submit at least three papers, co-authored by Japanese scientists, to international journals in 1996.

1.1- Community metabolism in coral reef

The background information which was supplied during preparation of the field trip indicated that the current pattern was .very predictable at Bora Bay with a constant flow of oceanic water entering the reef system, mainly at M3, and an exit located at Ml. Accordingly, we planned to estimate community gross production, respiration and calcification using a lagrangian technique similar to the one that our group has used during the past 3 years. Twelve transect experiments were planned around M3 both during the day and at night. We found, however, that the current pattern during our stay at Bora Bay was very different to what we expected. The direction of current on the reef flat was not consistent and reversal of flows were observed several times a day, with little correlation according to the tide. We observed an outgoing flow during periods which would have been appropriate for the transect experiments. This unexpected current pattern was driven by rather strong and persistent northely winds. The wind speed and direction recorded by our weather station are shown in figure 1. Experiments carried out by S. Kraines showed that there was no stratification of the water mass with an outgoing flow near the surface and a flow directed to the shore underneath. The whole water mass was going out.

— 77 —

O'

Figure 1- Wind speed (m s'1) and direction measured by an Anderaa weather station located at M3. Data shown were collected during the period 12-20 October 1995

We attempted to run the transects backwards (ie from the back reef to the reef front) but that was not practicable due to the unpredictable nature of the current direction. Indeed, one of the requirements of the lagrangian technique is that the water mass must follow approximately the same track during all transects. Project 2.1 could not therefore be accomplished.

2.2- Air-sea C02 fluxes

Tvv o 24 hours experiments were carried out at M3. We initially planned to measure only air- sea C02 fluxes but the following additional parameters were also investigated: pH, pC02, temperature, total alkalinity and dissolved oxygen.Figures 2 shows the C02 partial pressure and the air-sea C02 fluxes measured during the

second diel experiment (13-19 October 1995).It is worth noting that there is an excellent correlation between pC02 and air-sea C02 fluxes:

the direction of the flux changes when the seawater pC02 is around 360 patm, which corresponds to the atmospheric and oceanic values at Bora Bay during our experiments. It can also be seen that the C02 evasion at night is higher than C02 uptake during the day and that the balance on a 24 hour basis is a source of C02. It must be pointed out, however, that no conclusion concerning the role of the reef as a source or a sink of C02 can be drawn at this stage due to the irregular current pattern (see 2.1). We are awaiting the current meter data to further analyze these results.

-78- '

ff 450

S 400

S 350

Air-sea C0o flux

12:0006:0000:0012:00Time

400

COso

200 nPssgg33

0 °

<0

-200

Figure 2- C02 partial pressure and air-sea C02 fluxes during a 24 hours experiment carried out at M3 (18-19 Oct 1995).

2.3- Plankton metabolism

We performed four in situ experiments to study the carbon flux through the microplanktonic food chain (carbon transfer from bacteria and autotrophic picoplankton to the higher trophic levels). We investigated: (1) the growth rates of bacteria, cyanobacteria, ciliates, autotrophic and heterotrophic pico- and nanoflagellates, and (2) the grazing rates of these organisms by their higher trophic levels. For each experiment, natural planktonic populations were size-fractionnated in six size classes: 0.8 pm (containing mostly bacteria), 2 pm (bacteria and cyanobacteria), 5 pm (bacteria, cyanobacteria, small flagellates), 10 pm (previous cells and large flagellates), 50 pm (previous cells and ciliates) and non-ffactionnated sea water samples (entire population). Each size fractions was incubated in 3 perspex chambers (triplicates) and closed at each end with two dialysis membranes. These membranes allowed exchanges of dissolved inorganic and organic nutrients between external seawater and the incubated medium, but prevented particulate matter to pass through. This method enables real measurements of picoplanktonic growth rates because cells are always in contact with the environment. Incubations were carried out at two different sites in the lagoon:1- Near the beach, above a sedimentary area. This site was quite remote from the reef and little reef influence is expected.2- Near M3, over the coral reef flat, to test the effect of the benthic community on the growth rates of planktonic organisms.Incubation times varied from 8 to 24 hours. At the beginning and at the end of the incubation, samples were taken for enumeration of the pico- and nanoplankton: ciliates and microphytoplankton were fixed using a2% (vokvol, final concentration) of a Lugol solution. They will be counted in the laboratory in Monaco with an inverted microscope according to the Utermohl method. Bacteria, cyanobacteria, auto- and heterotrophic flagellates were preserved with borax buffered formaldehyde (0.3 %, final concentration), and stained with DAPI. They will be counted using an epifluorescence microscope.

— 79 —

2.4- Contribution of sediments to the carbon and carbonate budgets

The objective of this project was to estimate .the metabolism of organic and inorganic carbon during the diel cycleat the water-sediment interface in order to derive the contribution of sediment production to the production of the total reef system. Oxygen demand, C02 release and total alkalinity shifts were estimated from changes in oxygen, pH and total alkalinity, measured during incubations carried out at the water-sediment interface. All experiments took place at the same site which depth (3 m) is close to the average depth of the lagoon. Photosynthetic production and community metabolism were obtained by measuring oxygen fluxes in 60 1 peipex hemispheres fastened on a 0.2 m2 PVC base. The enclosed seawater was slowly stirred by an adjustable submersible pump connected to a waterproof battery. Oxygen concentration was measured using a polarographic probe connected to an oxygen meter (YSI 58) located in a waterproof container. A quantum sensor was deployed inside one of the hemispheres to record the photosynthetic photon flux density (irradiance) available for the microphytes. Data from the four sensors (3 oxygen sensors and 1 quantum sensor) were stored on a data-logger (LICOR, Ll-1000). At the end of each incubation, seawater was sampled in the enclosures by SCUBA divers using 100 ml syringes for subsequent determination of pH and total alkalinity (TA), no later than 30 min after sampling.

Table 1 Time schedule of the experiments

Date Openingdomes

NoIncubation

s

Time Parameters measured

10/12/95 no 3 14:20-18:02 i, o210/13/95 no 3 11:32-18:02 i,o210/14/95 yes 8 9:39-21:18 I, 02, pH, AT10/16/95 yes 6 9:16 - 19:24 I> 02, pH, AT10/17/95 yes 4 13:24- 18:01 1,02,PH,AT10/18/95 yes 8 9:57 - 20:33 I, 02, pH, AT

Experiments were carried out, according the the schedule shown in table 2, to investigate:1- the relationship between oxygen fluxes and irradiance;2- the relationship between gross oxygen production and gross carbon dioxide consumption in order to (i) derive the photosynthetic quotient (figure 3), (ii) estimate the evolution of carbon dioxide fluxes aa function of light and (iii) derive the Pg/R ratio;3- thefluxes of dissolved organic carbon, inorganic carbon, alkalinity and calcium at the water-sediment interface (collaboration with Y Suzuki).

— 80 —

3e

oEE§

§Io

Carbon dioxide flux mmol nr2 h*1

Figure 3- Relationship between the Cb and C02 fluxes during day time incubations of the sediment.The slope of the curve is the photosynthetic quotient r2is 0.76.

2.5- Additional data available

In addition to the above-mentionned data, the following data are also available for the period 12-20 October 1995:- photosynthetic photon flux density- solar rrradiance- barometric pressure- humidity- air temperature

2- Workshop

Immediately after the field experiments, the European group attended the International Workshop organized y RITE and NEDO (22-24 October 1995).

The following oral presentations were given from Guttuso Group.Boucher G. & Clavier!. Carbon fluxes at the sediment-water interface of tropical

lagoons.Frankignoulle M., Pichon M. & Gattuso J.-P. Coral reef metabolism and dynamics of

inorganic carbon.Gattuso J.-P., Pichon M. & Frankignoulle M. Effect of photosynthetic and calcifying

organisms and ecosystems on air-sea C02 fluxes.Fenier-Pages C. Protozoan influence on extracellular enzyme activity: a new aspect of

nutrient recycling in oligotrophia waters.

The past research on ‘Carbon cycling and reef metabolism’ and prospects of future projects were evaluated during the workshop held at Miyako Jima. The proceedings of the workshop are

— 81 —

being edited with Suzuki, Buddemeier, Gattuso and Miyoshi serving as co-editors. Drs Gattuso and Suzuki would like to emphasize here some key points of the workshop conclusions:

The studies accomplished at Bora Bay should enable to investigate the ecosystem function of a reef under rather intense human pressure and it is of prime importance that the Bora Bay project continues in 1996, mainly for the analysis of samples, data processing and publication.- The working group also recommended that future work, carried out preferably in the framework of an international collaborative programme, should focus on the organic and inorganic carbon budgets on different time scales in a site displaying an appropriate current pattern.

3- Future researchAccording to the workshop recommendations, Drs Gattuso and Suzuki have discussed the

possibility of future collaboration. They agreed on the fact that it was necessary to expand the current knowledge (based on snapshots informations) to a larger temporal scale. There is a need to carry out continous, or semi-continuous, measurements of reef metabolism, dynamics of organic and inorganic carbon as welLas air-sea.C02 fluxes for a period of at least one year. Several potentially interesting study sites have been identified. All have advantages and drawbacks. It has been agreed to exchange information on their characteristics in the near future in order to make a site selection as soon as possible.

Our collaboration should be extended to other international leading groups and it was agreed to further investigate this possibility.

— 82 —

(1) Blliil7^“7AA0g]g

: Ralph Albert Dalla Betta fife 2 £

g A m P :

2.

—83 —

e

n?s?

# % % —

1.

%%& m#m#7d.-7AS^(|e3iJyy^^!>A

International Forum on Environmental Catalysis (IFEC ’95)

2.

ilttl7^-5A (KSF) at#®**

S#)©"e^So ##

mikvavmnwb® a ^ © &£ * si' &b s &#§ & mm-t s

SUITES^ MmOT©ELvWfb¥7°n-textcoVT!>lRD±tfSo

t±nwt^tB-AMc^ ©fi®1*S*§ Srik ^OMM

K^i'Tx -rTffcMiSSx Ms Ba

i^fcLtifco 7DyM*(ti7ay^

%m#, *mv 7 /um?° $s wamrn

M©sfLvMSKS7°D4rx/j:^\ ^^ ^

X. S o

mu © ^ e it, hr & e,

& w*### t mmirnm, # *. & c *t*> s © & d s c. t tt* s 0

MMS©Sffi®(^^VTH*(i:^jlMSfc^5*k MBKlSSEik ®W

d *? v t§c&N

%£.& l TBM*©i^±if3 c t im^rmm^ § u £ u*. s 0

3.

B$:

TlOl 1 - 5

—85 —

4. #II1HH

1995££10J325H(7JO~27H(£X3 BFsl)

5. ^m±fo<D7>/r?3.-)V

SCIENTIFIC PROGRAM OF THE IFEC’95

Time OcL25 Wednesday OcL 26 Thursday OcL27 Friday

9-10 Opening CeremonyPlenary Lecture 3

Oral: 0-18 - 0-2310-11

Plenary Lecture 1

Plenary Lecture 2Oral: 0-07-0-10

11-12 Oral: 0-01 - 0-02

12-13 Lunch Break Lunch Break Lunch Break

13-14 Poster

Session IIOral: 0-03- 0-06 Oral: 0-11-0-1414-15

15-16 Coffee Break Coffee Break Coffee Break

Poster

Session I

Oral: 0-15-0-17Oral: 0-24-0-25

16-17 Concluding Remarks

17-18

18-19 Conference

Banquet19-20

e.

faZ'a^tzo

— 86 —

1 ) Y. Ono (Tokyo Institute of Technology, Japan)

"Dimethyl Carbonate for Environmentally Benign Reactions”

2 ) K. I. Zamaraev, (Boreskov Institute of Catalysis, Russia)

"Catalytic Science and Technology for Environmental Issues”

3 ) R. Burch, (University of Reading, UK),

"Low NOx Options in Catalytic Combustion and Emission Control”

7.

(1) Professor Jong Shik Chung

Department of Chemical Engineering, Pohang Institute of Science & Technol­

ogy

P.O.Box 125, Pohang, Kyungbuk, 790-600 KOREA

"Removal of HaS and/or SO a by Catalytic Conversion Technologies”

(2) Dr. Ralph Albert Dalla Betta

Catalytica Inc., 430 Ferguson Dr., Mountain View, CA 94720, U.S.A.

"Catalytic Combustion Gas Turbine Systems : The Preferred Technology

for Low Emissions Electric Power Production and Co-Generation”

(3) Professor Umit S. Ozkan

Department of Chemical Engineering, The Ohio State University

140 W, 19th Avenue, Columbus, Ohio 43210-USA

"Fundamental Studies on Selective Catalytic Reduction of NO”

s.

8.i amoms

Oral Presentations ft28fr

Plenary Lectures 3

Invited Lectures 10f(=

Ordinary Presentations 15f#

— 87 —

Poster Presentations #49#=

8.2

8.3

(1) Second Circular

(1) Progrm and Abstracts

9.

10. mmmomtcbtz'&M

— 88 —

Removal of H2S and/or S02 by Catalytic Conversion Technologies

Jong Shik Chung

Department of Chemical Engineering, Pohang University of Science and Technology

(POSTECH), San 31, Hyoja-dong, Pohang 790-784, Korea

At the present, the conversion of S02 to elemental sulfur by catalytic reduction with

hydrogen or CO dose not seem to be feasible because of its high reaction temperature

(higher 500°C) and low yields. Meanwhile, there exist many commercial processes to

remove a small concentration of H2S. Among them, recently developed Superclaus seems

to be most attractive since it converts H2S continuously to elemental sulfur by selective

oxidation using a proprietary catalyst (Fe/Si02) with a high yield of 90%.

Here, we report a new process for removing H2S and/or S02 by catalytic

conversion technologies. The process, named as SPOR, is based on a repetitive

combination of the partial oxidation and reduction of H2S and S02 to sulfur, respectively.

It can treat H2S and/or S02 (even a mixture of H2S and S02) in a wide range of

concentration (0.1 to 20%). If S02 is a major pollutant in the feed gas, for example, the

reduction unit is first applied to convert the S02. This is followed by the oxidation unit to

convert ET2S left from the first unit into sulfur, Therefore, the repeation of the oxidation

and reduction unit (refer to Table 1 for the recovery yield of each reaction) can be adjusted

with a great flexibility depending on limitation on the installation cost and recovery need.

The repetition becomes possible since a stoichiometric amount of oxygen or hydrogen is

used in our process, whereas Superclaus has to use about 10 times of the stoichiometric

amount of oxygen.

Table 1. Partial oxidation and reduction of H2S and S02 to sulfur over proprietary

catalysts using stoichiometric amounts of oxygen and hydrogen, respectively.

(H2S or S02 concentration = 1 - 5%, GHSV = 100,000h_1 and 3,000b"1 for

oxidation and reduction, respectively)

—89 —

Reaction Conv. & Temp. (°C)Selec. (%) 225 250 275 300

Conv. (%) 99.0 95.5 93.3 90.2Oxidation

99.4 98.8 97.8 95.8Selec. (%)Conv. (%) 42.3 56.5 66.0 67.4

Reduction98.5 97.6 95.6 97.0Selec. (%)

— 90 —

Fundamental Studies on Selective Catalytic Reduction of NO

Uniit S. Ozkan and Mahesh W. Kumthekar

Department of Chemical Engineering, The Ohio State University,

Columbus, Ohio43210-USA

While Selective Catalytic Reduction (SCR) of nitric oxide with ammonia continues

to be the established technology, there is an increasing number of studies focusing on the

use of hydrocarbons in general, and methane in particular, as a reducing agent In our

previous work over vanadia and vanadia/dtania catalysts in the N0/NH3/02 reaction, we

have shown the transient isotopic labeling under steady-state conditions to be a valuable

tool in determining the surface coverage and surface life span of the adsorbed species as

well as the catalytic steps involved in this reaction [1-3]. Our more recent work has

focused on the use of similar techniques in the NO/CH4/O2 reaction over titania-supported

Pd catalysts, which appear to have promising properties for NO reduction. The present

studies include pre- and post-reaction characterization of the Pd/Ti02 and Pd/V205/Ti02

catalysts using XPS and LRS techniques, Temperature Programmed Desorption (TPD)

experiments performed using NO, CH4, 02, N2 and CO as adsorbates, steady-state reaction

experiments performed in the absence as well as in the presence of oxygen, and transient

isotopic labeling experiments conducted under steady-state conditions using N-l5 and C-13

and 0-18 labeled species. Temperature Programmed Reduction and Temperature

Programmed Reaction experiments are also performed. Preliminary conclusions are drawn

about the nature of the active form of the Pd species, and the catalytic steps involved in the

reaction network for reducing nitric oxide selectively with methane in the presence of

oxygen.

1. U. S. Ozkan, Y Caiand M. W. Kumthekar, J. Catal., 149 (1994) 375.

2. U. S. Ozkan, Y Caiand M W. Kumthekar, J. Phys. Chem., 99(8) (1995) 2363.

3. U. S. Ozkan, Y Caiand M W. Kumthekar, J. Catal., 149 (1994) 390.

— 91 —

Catalytic Combustion Gas Turbine-Sys tems: The Preferred Technology for Low Emissions

Electric Power Production and Co-generation

Ralph A Dalla Betta

Catalytica, Inc, 430 Ferguson Drive, Mountain view, California 94043 USA

Combustion processes are generally accompanied by the production of NOx and these

species play an important part in the atmospheric reactions that produce ozone and other

undesirable compounds in the atmosphere. NOx is also the most difficult pollutant to

control, especially in gas turbine exhaust, because a reductant such as ammonia must be

added and the NOx reacted with the ammonia over a selective catalyst. This process adds

significant cost An alternative approach to reduce NOx emissions from gas turbine is to

substantially reduce the temperature in the combustion region thus preventing the formation

of NOx in the first place. Such PRIMARY pollution prevention approaches are preferred.

Catalytic combustion is one of these primary pollution prevention technologies. The fuel

and air are well mixed and then fuel reacted with the oxygen over a catalyst to produces the

very high temperatures necessary for the gas turbine. The process can react all of the fuel

over the catalyst and produce the required high temperature directly. However, most

modem gas turbines with turbine inlet temperatures of 1200 to 1400*C, this approach will

subject the catalyst to very high temperatures and lead to catalyst materials problems.

An alternative approach is to limit the catalyst temperature and react a portion of the fuel

after the catalyst. This process has substantial advantages. This later system will be

described and the important catalyst performance characteristics discussed. Test results

demonstrate NOx levels below 2 ppm even at combustor outlet temperatures as high as

1500°C. The activity and thermal stability of several different catalyst materials will be

presented. The impact of the system on the performance of the gas turbine will also be

reviewed.

— 92 —

Catalytic Science and Technology for Environmental Issues

Kirill I. Zamaraev

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences,

Prospekt Academica Lavrentieva 5, 630090 Novosibirsk (Russia)

In the past three decades we have witnessed in the scientific study of catalysis a

progressive shift from phenomenological approaches to structural and mechanistic

investigations at the molecular level [1]. Engineering of catalytic reactors has also become

more based on a deeper understanding of reaction mechanisms, mass- and heat-transfer

phenomena in catalyst pores, pellets and beds, and mathematical modeling of catalytic

processes.

New catalysts, made by molecular design, already play an important role in the

development of progressive industrial technologies [1, 2].

In the first part of this paper it will be shown, how knowledge that comes from

studies of catalysis at the molecular level helps to design new, very efficient catalysts and

catalytic processes. In the second part the importance of catalytic technologies for solving

environmental issues and providing sustainable development will be discussed. It will be

demonstrated how catalysis helps to protect the ozone layer, to combat the greenhouse

effect, to create environmentally safer transport, to solve environmental problems of energy

production, to prevent pollution by H2S in gas and oil mining and by CH4 in coal mining,

to purify exhausts of chemical and various other industries, to provide the highest energy

efficiency and minimize consumption of raw materials in the chemical, petroleum and other

industries, to process renewable raw materials, such as biomass, into valuable chemicals

[3].

1. Perspective in Catalysis: A "Chemistry for the 21st Century", monograph.

Eds. J. M. Thomas andK. I. Zamaraev. Blachwell/International Union of Pure and

— 93 —

Applied Chemistry, Oxford, 1992, p.492.

2. G. W. Parshall and S. D. Ittel, Homogeneous Catalysis, John Wiley & Sons, New

York, 1992, p.342. "

3. K. I. Zamaraev, Chemistry for Sustainable Development, 1 (1993) 133-145.

— 94 —

Dimethyl Carbonate for Environmentally Benign Reactions

Yoshio Qno

Department Chemical Engineering, Tokyo Institute of Technology,

Ookayama, Meguro-ku, Tokyo, 152 Japan

Dimethyl arbonate (DMC) is a molecule with versatile chemicalreactivities. It

undergoes trans-esterifications with various alcohols. It is also useful as a

methoxycarbonylation and methylation agent This review will des cribe several reactions of

DMC as an envionmentally benign building block.

(A) Trans-esterification of DMC with Phenol

Polycarbonate (PC) has been produced by tire reaction between bis phenol-A salt and

phosgene. The disadvantage of this process are the very high toxicity and corrosiveness of

phosgene and the use of toxic methyl chloride as a solvent The most practical non­

phosgene process for manufacturing PC is the melt trans-esterification of diphenyl

carbonate (DPC) with bis-phenol-A It is reported that Mo03 supported silica is an

effective catalyst for the reaction of DMC with phenol to methyl pheyl carbonate.

Mo03/Si02 is also an active catalyst for the disproportionation of methyl phenyl carbonate

into DPC and DPC.

(B) Methoxycarbonylation of Aniline with DMC

Methyl N-phenyl carbamate (MPC) is widely used as intermediates in the synthesis

of pepticides or plastics. It can be also transformed into isocyanates by thermal cracking.

The most common method for preparing MPC is reaction of methanol with phenyl

isocyanate, which is produced from aniline and phosgene. The drawback of this method

are the use of phosgene and the stoichiometric formation of HC1. It is reported that MPC

was obtained in a 92% yield from aniline and DMC by using Pb(OAc)2Pb(OH)2 as the

— 95 —

catalyst.

(C) Vapor-phase Methylations with DMC over Zeolites

The most common methylating agents in organic synthesis are methyl halides and

dimethyl sulfate, which are toxic and corrosive. The reactions are usually carried out in

liquid phase with use of stoichiometric amount of a base. DMC is much less toxic

methylating agent Here, zeolites are used as selective catalysts for vapor-phase

methylation of phenylacetonitiile, phenol, and aniline with DMC.

(D) Synthesis of Si(OCH3)4 from Si02 and DMC

Silica gel, on which KOH is supported, reacts completely with DMC at 550K. This

method offers a simple and clean route for Si(OCH3)4.

— 96 —

Low NOx Options in Catalytic Combustion and Emission Control

R. Burch

Catalysis Research Group, Chemistry Department,

The University of Reading, Whiteknights, Reading, RG6 6AD, U. K.

Nitrogen oxides (NOx) are serious pollutants and legislation requires that the

emission of NOx is strictly limited. Most combustion processes results in the formation of

NOx, which may arise either from fuel-bound nitrogen (organonitrogen compounds in

hydrocarbon fuels, for example) or by nitrogen fixation in high temperature flames (thermal

NOx). It is difficult to prevent the conversion of fuel-bound nitrogen into NOx in

combustion processes so that "end-of-pipe" methods must be utilized to eliminate the

pollution. However, for "clean" fuels, such as natural gas, it is at least possible in principle

to avoid the formation of thermal NOx. To some extent this can be achieved by redesign of

the burner system but for exceptionally low levels of NOx emission catalytic combustion

could provide an acceptable technology. This lecture will describe some recent work on

catalytic combustion of natural gas, with particular emphasis on low temperature

combustion, where the reaction is almost entirely a surface-catalyzed process. Since it is

sometimes not possible to prevent the formation of some NOx attention will also be given to

recent attempts to develop selective NOx reduction catalysts, with the focus being on the

pos sible use of hydrocarbon reductants in the presence of excess oxygen.

The preferred catalyst for combustion of methane at low temperatures is Pd, but

although there has been a great deal of discussion concerning the nature of the active

catalyst, there is still some debate about the relative importance of structural and

morphological effects, the role of the support, the reactivity of different forms of oxygen,

and the influence of the reaction products (C02 and H20) on reactivity. The lecture will

present some recent information concerning the nature of the active form of Pd, in

comparison with Pt, possible effects of the support, and the relative activities of

— 97 —

chemisorbed oxygen versus oxide ion in the catalyst surface. Comparison will be drawn

with C-H bond activation on other types of catalyst. The effect of C02 and H20 will be

assessed and the results will be interpreted in terms of a simple model for the surface of the

active form of the catalyst.

The selective reduction of NOx by hydrocarbons has received a great deal of

attention recently so the lecture will present a short overview of the systems which have

been proposed both for zeolite-based and for non-zeolite-based systems. Some common

features of the activation of C-H bonds in saturated hydrocarbons under conventional

catalytic combustion conditions, and under selective NOx reduction conditions will be

presented and discussed. In particular, the possible role of inorganic oxides (S02 and

N02) on the activation of C-H bonds will considered and the possible relevance of this to

combustion and selective reduction reactions will be discussed.

: Christine H. Foyer

S ASM : R I TE

2.

(2) ^

— 99 —

Bf%E» n

MwmmMmm&mwzimn

£SESE*

m m m m

1.

a-/ufm3L&miiwm3LM& y y # ^ ? a

2. £S©t4t&<!:BRj

ti!985*Fdiu £5 ©MiEHS (AE#A^##g) i?E

scstifco e^euswj^a y±&mgs##6 LAEgsmm©#^

|#3fia C < A M^Ea & a b b° y ? X & £' illOA A X active#*

ofrank&E^JS^i L^ l£^ 1 §fc«, 3 lHB©E^Si?

©y yJj? s?9 A&&1 At. L < tt 2 A@#L, /MIESES

^tl)it)bf\ D AitT§ tz0

3. #m©mmm

^W*BJ3327-204

4. emmmBi#

1995^11^250 (±) 9 : 00-17 : 20 #0)

5.

9 : 40-11 : 40^T-E## (8#@) *mt>htz0 f# (13 : 00-17 : 20) (i FA^m

©R#{k##©#T#MJ iiLt> 5 A© y y 4-° y'x b <!: Dr. C. H. Foyer©|f

6 A(-J;i9 'Vyt:'))&&ftt>titc0 E^###T#(± A#m(c%###^ ft A o

—101—

6.

f ix ± E^s. m#@gx #cm#ggx mmm

#©##x &m©E%m'<h^m^bfz-ox\^o mimm^M^

140^©#Sn^^-3*o yA(c(±x

tvse^s- (btf^iei-) zmwitco

'> 'S* ^h: #±JES (*l«* • E#SBX (#S± • m#^)x

mmxB osi*rm* • s#s)x ostn* • A#)

7.

S11H1E3ES#© £/ y ^2? 9 a © -r - -r (A#!^©*:#^##©##^) K-&t»-Wrx

##%% (C # # & o W05Tm I#% (C ^ % Dr. C. H.Foyer (Inst.

Grassland & Environmental Res. UlO^fglPS Ltc0

s. #mm#

8.1 #m©#B&

|110W^(i9 : 40-11 : 40tTO—13 : 00-17 : 20£T*<D'yy$W

•^T-s^siLy-co

8.2 #tt©rSS

^Fiu*©-^ssiti/d-t iTm^tzffl3zmm*smnt>titco ¥

m<D'yy$W A(i r£&fi©$LEMS©MMJ <hELTx 6Ef§Sg£tiyc0 SN$m

##©#l##a#©@ D T© S o

Sti/Co 4$Kx AT(±x &##©R#fk##(=:'Ol'%\ Mx @%x

v r © tii£ t ^ y d-° ^ x h t ttiSS©^"e^t)§ ttfco

— 102 —

10. jsmw&tosfc ufc&sfl

####?##.% M^'yy#^^0f-vi^W5o S

lmm^m^ t> Mffia; 'yy^^ACT-vt^t, new & & y- & @#mmm

I) W£&C.H.'Foyer#±£4 *' V X J; D @# L fc0 C.H. Foyer#

dr(i "The molecular, biochemical and physiological functions of glutathione- and

its action in higher plants” it' 9 US’?' 1 A® 5 A® S/ y

s?x h (c y aREik##(c c t'T®w&<kTS'®MWM.<ot[Mfr £>^ 3

(-s (bf^ $ ycx ex mmmm (sod^ t x ^ > tf vw^** yy-

-fc\ /;i/^f ^y+ y /- 4X ^ ^ v-4##) it'?3:#

ftbrnWi^'n^fro £©£•?{-•* ^tt^fticDyyy x h©HOTS\t^m^t>fz^ r v

Slicest)©(i*Ilt«lS®lfil^oItt^Dlit"

& -3 tz o C.H. Foyer#±©##(± CO^-p^^yy^y^A©

f i#(c, 4WMli©^0iSl^§ < lit51)o il^n^o

11. *>>/K2>e7AltEAS

11^250 (±)M^s^ro^ tt & 4o t' ■x =>- - r y t $

tl fc o "fp##' £> © y y d? y V A Tf\ C. H. Foyer#d:^ "The Molecular, Biochemical

and Physiological Functions of Glutathione and its Action in Higher Plants” i

mu-nmawc mi 1,2 )0

FoyeriSdttid" f V XGrassland and Environmental#^# (T^'J X -f X) ©

IffiTs Sew&tf- 5ESftS ipfrBrJ&lFPeim©simss*£'^. #^%K#

%<£-S*6>tlTt'So ttc^ ^oTHalliwen#±Ofe i T#^ frlTt'fc £ ijfc&N @

6ES'/jl£^©#%fc■o t'■X k> 7 x a )V \£ yg£ - ff )V ? =f- * y if4 $ jv£tfj^ (c#0- < ©

sew lrt's&&x\ #

&#t'&© s ia&ft&o

iS^N *M*©iEC02B^J:3«©^E'fk"K SOx. NOxfc<kS^^N ^ 6K

(iEM©0>E^bfti'S^ti'-OggSJfty n - y >y 7° $ ftT § T t' S 0 cii£>©

##©^kK#*m&@#Emaic<k &m##x h ux^^D^iijecsnsci^e,

^lc%&(c%t'^ SftlliJlcHL ihK&lX zwmommm

i «k % i % c T # rt' 3 o

— 103 —

HUlfc-x x-/'?-# 4 -VFf^ 'suft $ - 4£Stzr?#*'SA£ iK

s*7 3- C tmM>&Kt£^,T\<'Z>o c©<k7%^£&RmM$©EJESfl£#x.TV < 5 x.TEE^E^E©-^tiFoyerie± 5> i=: J: -o

T&&t>tlT%tc04-@©iS±OBSI(ix ^-©—^ (*l>Up to dateftk©) %$. t&tz & <D~^^> -o tzQ #

*B§@ti5fc© ^* y y ;?"**- -tf (gr), g-^^;wnf^v

yy-fe*--tr (g-ECS) fc J; tb' ?';i/ * ?- * y y y -t? * - -tf (GS) mi5?^*##%©

Populus tremula <b Populus albaK##&# L ^ ^tl t> &2£ifE L 7 3 “ b

%2'©m#x b y X «ih 5 ####K^6 f ;i/^ f 3b y © AS^k

y-(;!/?##6So t), ^T©ct9{-M

SSS^i/to

^BEBtiSfcQGRitE? (gor) tGSiife? (gshll) W\ ZtiZ'ti^

■&%tcz6tx y K9© U 7"a-x ex V yfi? + 7 5 - ty 1^ t —fe'® x e -

;u-th Zfx.— y b (rbcS) © b 5 y Vs 7 b ^7°7 KWJ75 7 ^ 7 -f >X©35S

'J —«* *-fcaifg3*lfco £ftS WSiSE?©iWH

sir, GR©;ma&##s#©

y^yi/T^-S <hs b 7 yx $?*-y ^##©^©##@#(±3 y b a-ji/jcJfc^jfolOOOfS

±#Ltl'fc0 Cftfc&fLTx #B^T©^#^"C(i##@#©±#(± 2 —10#K±$ -?

tz0 SB#T©GR'/gtt©±#limRNAy^;v, 9 y/^f

c £^it$ftfco gshll©3£

#(±#9&#T©0-M&6 3 ft f: o WETGR& =fcttoSSrHSI£-tir

0 * % & ^ % © K# L Tx m#*T©GR©^#(±m^;i/^f-^

fiasiix y©i±,£J; Difi< Ltz0 c©«k 7

GRA###:m;c#^uy= b 7 yx$?*-„?nm±,

PSS « L TBtt £ES L T v fc 0 $ eic, /^7 3- bKcka^#©jt#&1r^y:6c6,

3 y h a - ;i/Tii0.5~2.0 /zM©-''° 7 =1 - b :M J&SSg t> ^ 7 X n ;u e y?t^ <f)u

9^* yI^iiJ>Lfco C ft (c# L TGR^jg## L f: b^yX'^-y^g

t/T(ix c© =b 7 7 3 - bMST^ fc0 Cft3©0^i

(ix Aono 3 «k D ##& ftTl^ & ^EBGR^fs?© f /< 3 ^E#=MT^# $ -Wr^: b 7 y

X v?^^.y tMyvcDMmz b yxiSfffliSi- gfcLTWc0 m±©C 6^>3^ i###

-104-

##*<

%) F

oyer

-§ F

oyer

fSdr

k&M!$Jfc®M/ikK]z h c £;$*§£<

j^±x y0£w«©pn^^^5|i6tis

tmm t ^ tc0 c. h. Foyerie±©4-iHi©szi(±x mo%& q ©sssk £ -a

T@J6TtS4’ctl 6f\ ^#=1^ ©R#ik##©%@(c^:# <%#-#-

S &©£St)ti^0

— 107 —

(3) ^<omm

ffiHi\1%M : Richard R Hardy

^A81: R I TE

2.

X.

— 109 —

5.1 H I 1995^11^ 28 B AM 11 : 45~PM 1 : 30

5.2 (###) Dr. Richard Randy Hardy

Institute for Cancer Research, Fox Chase Cancer Center

Philadelphia,- Pennsylvania 19111

cm a m m

mtktm

5.3 * y # s? * * £ r *M§m y y $ 77

5.4 mmm#

5.4.1 tit; a6fc

• mm ©#m y ^ ^ s #A, #(cA#=©mmm©#m&#f^s©T(±% < mms@*cd#^ (sti) mmp#N cmma?. i^lt^

z.kifi&< ©#A^ lltftSo

fcmm©fFfflss^*7 n - u->r h y h v - ipfiso

• *!#S!Tt;U 7 a —ih^f h y h >J ^jccf^mm©—& 5B V v-'"0

m©^k, 6o

5.4.2 7 D-1M h y h y -M©^

• 7a— MM h y h y — i ti^

—112 —

#?x MMMmt LT&' mm©iMX\ £fc

^?##6LT(±, $E9SEW©E6g #?&####),

DNAa#om##or#T&5o

• M^y X>£ bmm#M£mSiK

eactEZiK mm*>g.%#^ tisma^3B###^xaey y o-±;i/%#: (^^A#?7^;i/) T##Lx

ZCfrbomftKJ; o§ fe0t'®5o

£fcs Mfcx ^oltti^IfllU!)'MS-tK M<bU ±E@ ?%#####&

Sfc#^*©^^^sL, m#*c j; b em^pr#6 % s. cn#i)• 7 6 e y y a - x s c 6 (c j; (3 ^ —7 ©mm

c £^-e§x c#;cj;Dmm©#m^m c-r

f) #Rr#6%&o

• #&x Becton Dickinsontiix Coulterfcfc^tfc'il'fcx C © iHiMbHiE^ 7 n — -9- >f h y —

$ ~~ b. LTjESriS foT V S o

($65 : Ar, HeNe, UV#) #g

SrT^Tx 7 -o

rvs0^fCx t&tij/MfcMLT&x #%&#©#

#x @EA

1 mms/c d

mm©^m gm) issciisiLT&x

a /±?« 1 $wc fj 10,000mm

E®$*iTVS ^3,000-4,ooomm/# ^

mmo##v^;i/6v^.So t®ffl0®ttltllrii, 20-30@^'

EfflSilT&Dx ^4'felt^ FITC

(Fluorescein Isothiocyanate : ##2#& (mmi^.vol.11 No.12.fcD)

—113 —

• 7a--9->f #@#x £ iiT §tzibK Y

y A## yy")> vj y^>f * (##y? >n y©#ig)x

# (^^^vTy-T^y/)

*sfrt)iL^tiTVSo

5.4.3 -7 7x#ESEIS*cdbv y^S©S-<k

(7°DBBSS, 7° i/BBB©* * 7 y * V -if- y 3 y)

• 7°“t/f b y b V -©lEWSt LTx BBSS©^k@@K$)^6#^©7T -

• BBBoMMtg© 1 -7 J: DBSBU^MLx

(ty 7 a - ±;i/%#:) 14^?i:i(:t§o c 5fS#©^

Stt (###) (±x iBS#BB*»5>JimBBB^MfcihSii@T#E& v r x &S7"

D 7’ V y (Ig)

• Ig#E?(ix HE (heavy chain)x LE (light chain) t bfilBitS tLx •?■ © hTISM

#&3- rf amE?(±#4x H#mE?^v,D,jx beset^y, j <b wti s se

?7 7 7" 7 y b j; DS^StLTl^o

■?■ Ltx %##©#-##(±c ©#7 7 7V y b ©^#%rn&A&-&K:<&%&*'#&ft

a^x c©iiE? ©#Sl&&BBB©:MITOfcW; LrEffJEL<frbiiSo

• #^{k#:l@K$6B#mBSS©#^(ix HEx LEi

mpg&7°aBBB&x HE£iiilLTV3riCLE£I§®LTv:Kvg:l$g£7°t/BBBx ME

t i)^LigM^^Lrv5^x igD^mmLTw%^mi#&x *bbbs&x igMx

igD£ t^pggiLTVSM^BBBS&^/V-evSo

^h(*7°nBBSS-^7°yBBSS->*BBBBS-^fi£BBBSS^jltr^x #@-7-7; -©#t\

K <k 0MfcB*'< :$Hk©@:Pg&^f S c i^|§0

• B220x S7 (CD43)x HSAx BP- 1

4 iJ 5 -©7 o -iM by - 7-K<k^T-77 7##*©BBB##K#:©#$B^E<&fT-?

7co (HI 2 )

: 488nm, : 530nm)x PE (Phycoerythrin : : 488nm, #)^##575nm)

—114 —

Total BMT" —

B220 ,S7 +, - CD2populationB220+,S7+ (=7° MB:3~4%)

02 777

5.4.4 x m

1 ) Hardy R.R.,et.al. Resolution and characterization of Pro-B and pre-Pro-B

cell stages in normal mouse bone marrow. J.Exp.Med.173 : 1213-1225,1991

2 ) Hardy R.R.,et.al. The regulated expression of B lineage associated genes

during B cell differentiation in bone marrow and fetal liver. I.Exp.Med.178

: 95-960,1993

3) Hardy R.R.,et.al. Functional immunogloblin transgenes guide oydered B - cell

differentiation in Rag -1 - deficient mice. Genes Dev.8 : 1030 -1042,1994

4 ) Hardy R.R.,et.al. The differential expression of the blk and ret tyrosine

kinases during B lineage development is dependent upon immunoglobulin

rearrangement. J.Immunol. 155 : 644-651,1995

— 115

(4) #21BHt#t&mVVa-S©Jgfpl

• Anne Lee Tonkovich # 2 ^

f All: RITE

2.

—117 —

asssan

mwm&m

m a m m

1. ecfil^E

B*ss-fk^^3ES •

4k#rm# : *<DU&t

2. £fi<Dl£*g£Bft

(1) t;&#&> ^y-tznmomde

a.®###*, AK$)^

T(i> CDjzffe&ZSgt ^ M£4 k#J&*mD*&*oo£?)§&R:^

mmD»£'g©& J:£>-$&©:£* |C@^ Lx

e>EBLTH§/-c<x £@l*:o $yy#s??6

#©*m (bs5MmE&mMv-m -emmztiz0

(2) ±## : B*##/fk#=&3E@

(iss 5 m^e±»s©-^)

3. g-mommm

bMt^vt- j -*-;u

^WSEm^@LUEBj31 t ^ v x w - 9 pg

4. -mwmmsB#

%8#3^29B (A)

5. ^I^CX^rvi-il/

(10 : 10-12 : 30) 3#@^x ^F

— 119 —

# (13 : 30-17 : 05) 5S»tifc0 #A##©#X

^#g©m#©#&#^T!7 : 30»TL;fCo

e. n#

##%n#Tx SW)£©BMs&^;fc (El#E)o

##gx

7. Kll^f

S21E lfc#<h£t/v'vd?v^ a©x-v "## -f ©#A t##0%@r K&t)#,

@%©!@#f6#©^@#©#^-%%##T& 5 x Dr. David W. Lawlor (Individual

Merit Principal Scientist, Biochemistry and Physiology Department, IACR -

Rothamsted.Rothamsted Experimental Station^ UK)X

©HISSIjSI—A#Professor Lawrence Bogorad (Department of Molecular and Cel­

lular and Developmental Biology, Harvard University USA) & <k U-

-5 Dr. Anne Lee Tonkovich (U. S. Department

of Energy, Pacific Northwest Laboratories Senior Research Engineer, USA)X J£t

±3££@HSLfc0

s. #m©a#

(1) ##©#^

^©#x ##(c^|###x 4r#* (10:10-12:30) 1 -k >y S'3 yx 4F# (13 :

30-17 : 05) 2-fey S'a y^<kC^#A##m©#x R!£©$|;icJ; D MlSti fc0

(2) ##©A#

<Dzr--?<D$>tsmm*K *?mt "mm

DMfroMW' &ck©x-v©&£^;ft

2 EEX 3 ft to

9.

6>-r\ & g, timme © & © ©#s#

—120 —

tlte <07 7 7 7 uu ic#*) o Tl' <

(D&K-o^TmWaiSfofrZ. $yyzM^t7 A(±^ tzAjti^f^.Otzl60^mo^

£@x., IWcSfin Lfc-]&r!?Bfr S t>$§§t$:SI!.3£Wt£ $ tL>

io.LawlorHyttiU MSfi1 VT^^fcSt?

:®:$r©£DJI£ilS6O@#Of6#(c-oi,^TO##

<&fr-3fco BogoradifcS^S<£C£ Tonkovich#±f±^ Hftilfr Loo^&il§ijtII/fbKflh'/N'

©ffiWJfflOfc&O^'l' 7 7 d y-tco vr^^(rSti,SE©%nE.<h#^©SEfc-o

VTE^-L/Co

3 ©tPm&Atf '7 y^'^7 A#AQ#&3gx. fctfrtft

xh^fzo tfcx #^©m#^A©#^

^ B*©3gW%©SME^I4tL5 u t (ts ±

%t£]&M%W-3fco

—121—.

(5) f- y 5 9 - ^ ^ 3 v

: Robert W. Buddemeier ftfe 5 ^

f All: R I TE

2.

-123-

2bn

tti □ W til

1.

f- v a vt*

International Workshop on Carbon Cycling and Coral Reef Metabolism

2.

gi&s %SM©C02®^C:^tj- 5 -9- y d"S©SSJ{-o -9-y^$i^C02©®JRS

W 61^9&o ccdF^EMLTx fW0$F

l&fabT'f o-f Ltl'5^ ^ -;i/ & SSBTtiyk

'7 a y 7°{i:> d © <£ 7 1h y =fSE%S*s—L>

3.

^PWSrliilrSSifrjS-* T7V

4.

1995^10^160 0!) —250 (7k)

5. $>%-;(/

e. g-mommtmng

mm- 2

—125 —

7. mm$zmD. Barnes (Australian Institute of Marine Science, Australia)

G. Boucher (National Center for Scientific Research, French)

R. Buddemeier (University of Kansas, USA)

M. Frankignoulle (University of Liege, Belgian)

R. Richmond (University of Guam, USA)

R. Zimmerman (UCLA, USA)

mu

Mon. 16, Oct.Fly to Miyako-Jima, Okinawa.Opening party at Daiichi Hotel

Tue. 17, Oct.Look at coral reefs and field experiment of RITE groupand European Group[session 1] Impressions of and questions about the

field experimentWed. 18, Oct.

[session 2] What are the main questions forunderstanding the carbon cycle and coral reef metabolisms?

Thu. 19 - Fri. 20, Oct.[session 3] How do we resolve the questions?

Sat. 21, Oct.Draft the preliminary conclusions andpreparation for presentation

Sun. 22, Oct.Opening remarks

Dr. MiyachiMr. Miyoshi

8:30-8:50

General background. 8:50-9:40Chairperson Dr. MiyachiPresenters: Dr. Suzuki 8:50-9:10

Dr: Buddemeier 9:10-9:40Topic 1 The whole system 10:00-18:00

Chairperson Dr. GattusoPresenters: Dr. Barnes 10:00-10:40

Dr. Gattuso 10:40-11:20Dr. Frankignoulle 11:20-12:00

Lunch 12:00-13:00Dr. Kayane 13:00-13:40Dr. Nozaki 13:40-14:20

Coffee Break 14:20-14:40

— 127 —

Mon. 23, Oct.

Tue. 24, Oct.

Wed. 25, Oct.

Mr. Krains 14:40-15:20Dr. Omori 15:20-16:00Dr. Suzuki 16:00-16:40

Coffee Break 16:40-17:00Dr. Buddemeier 17:00-17:40

Comments 17:40-18:00Reception at Miyako Daiichi hotel 19:00-21:00

Topic 2 Component of the system 9:00-17:00Chairperson Dr. Buddemeier

Presenters: Dr. Richmond 9:00-9:40Dr. Pages 9:40-10:20

Coffee Break 10:20-10:40Dr. Clavier 10:40-11:20Dr, Boucher 11:20-12:00

Lunch 12:00-13:00Dr. Casareto 13:00-13:40Dr. Zimmerman 13:40-14:20

Coffee Break 14:20-14:40Discussions 14:40-17:00

Proceeding summary and general discussions9:00-12:00

Chairperson Dr. Suzuki(Coffee Break 10:30-11:00)Lunch 12:00-13:30

Discussions for conclusion 13:30-15:00Chairperson Dr. Suzuki

Coffee Break 15:00-15:30Make a report 15:30-17:00

Chairperson Dr. Suzuki

Closing remarksDr. SuzukiDr. MiyachiMr. Miyoshi

9:00-10:00

—128 — •

mm 2h

Dr. David Barnes Australian Institute of Marine ScienceDr. Guy Boucher National Center for Scientific ResearchDr. Robert Buddemeier University of KansasMs. Corinne Bussi European Oceanologic ObservatoryDr. Beatriz Casareto Laboratory of Aquatic Science Consultant Co., LtdDr. Jacques Clavier ORSTOMMr. Tetsuya Deguchi RITEMr. Noriaki Demizu CameramanDr. Michel Frankignoulle University of LiegeDr. Hidehiko Fujii RITEMr. Yoshiya Fujioka Science JournalistDr. Jean-PierreGattuso European Oceanologic ObservatoryDr. Kouji Hata Marine Biotechnology Institute Co., LtdMs. Haruko Higashi RITEDr. Yutaka Ikeda Hazama CorporationMr. Yoshio Ishikawa Shizuoka UniversityMr. Steven Kraines The University of TokyoMs. Satsuki Kanahara The University of the RyukyusDr. Hajime Kayane The University of TokyoMs. Chihiro Shouji MC&PDr. Shigetoh Miyachi Marine Biotechnology Institute Co., LtdMr. Yasukatsu Miyoshi RITEDr. Norimasa Nonaka Okinawa Memorial ParkDr. Ken Nozaki AISTDr. Tamotsu Omori The University of the RyukyusMs. Yuka Onishi Shizuoka UniversityDr. Christine Pages European Oceanologic ObservatoryDr. Robert Richmond University of GuamDr. Kiminori Shitashima Central Research Institute of Electric Power IndustryDr. Yoshimi Suzuki Shizuoka UniversityDr. Koichi Yamada The University of TokyoMr. Katsumi Yoshida Laboraory of Aquatic Science Consultant Co., LtdDr. Richard Zimmerman UCLA

— 129 —

1016 H —250 :

cm n]

*9-7 ^a y^siix y =HI©E8lfli3gteiS Lti'o <k 9 ttSP«a%IS^-r^§

fo&fgiL&t>tifco P9- y3li(i*E*©C02©®M;&©/K lEWiM^ft©^ i

61'9g>, rfir^vzfsi^coaOKiRs^si'

8#CtW6*&©&J £l'9®F41#SSS&5 i©jgg.#tii§*ifco & 6Kx COKF4TSS. <b * ^ § BtFal x 7" - > <h SHE x 7* - >^EIb £tifc0 B#RB x 7" - ^ £: Ltl^ #%#

#&g*M^##<&t#S& D x SS$3j&<b LS&x SB ©Elfc£PSfcltE LS*E l tifflta d %) am* a a $ s t

cDSH^titiSiifco ^/-Cx SHEx7--;/£ LSttx A#*—@© x 7" -^ 6^

S#*.&*lS#x -9- y n'ilO^SJR^^SS^" -B (i D - * ;n& -fr y rJ'E (lkmgSO ^

HtflSto Dx -9- y 3'#a: 3 y%T &%36o#±eT;i/ (01) ^

BuddemeierlSdr^ b$!Sli$ tlfc0

01 ^S-d'§N -9-ynUri*^*ogo2oEM<b & 3 & 0^^BIb£ ti * 0 -9-y

=?m&coz<bm.W$,t-tztzubfcw\ ms*s"9- y 3'#©#**©####^ bitingb#

IMHSU £ *15v&Eri5x PSH©7 * -Xa©pj^0 & Lx -9- y =f$i

|9g (LOCAL SEDIMENT x 01) ^©j&ES&ftif'x ^©W^W * £ TEE £ ft £

&*S&i9x ^#©#W (DEEP OCEAN SEDIMENT-* 01) "\©##S&ft(fx 71#-

•9" y 3"EFb1©^S7 7 >y 7 XSBSg£ ft3 te^SiB So Vffti:: LS=bx #d?y 7 X^©

WS7 7 v 7 x£$ijm*S £ £©*it;&${i}£ft*o

22B(C-f * f 7 / n $;-#0S^rg«kt)*9-7 ^3 >y 7°^©EJTM^iE^^

ftx RITE5##gSAiming j; B x #M^©##©#6RITE©@#KM*S^^&^

tc. o General backgrounds (±x D x *9-7 '> a ■y7a©i^|5j:

tf21Btt©^l©II»^/;o £fcx * y-9-X^Buddemeier1S±j: B x ih y

3'##g©m##x (g|Rd#Mg&#& &SCOR#mA©mg#& -3 *0 Topic IS fix

fydii/xt^MtSMSiLSx 7R^iSKlh©H^x *MM©C02

—130 —

-9- y 23B©Topic2 T-fcU -fes?* y

b O^S7 7 7 7 x CDE^-9- y

t)tL7to

24 Bfcti-9- y fc Mib £

tco tfcs ^S?ST<DRlTE©li$?^IE1-SEim^:n:t)iLN 9-7^37 6

RITE©4-^0liSfcELrV < $ft/Co D

•9* y =n§gs$c>*t!B£^SEttfc-o I'tl £ $tfifco

WORKING DRAFT CONCEPTUAL MODEL OF REEF SYSTEM CARBON BUDGET

NET CARBON FLUX: NEW ORGANIC - 0.6 NEW INORGANIC FLUXES MAY BE POSITIVE OR NEGATIVE

CRITICAL FLUX FOR SINK BEHAVIOR

SURFACE OCEANREEFSYSTEM

DEEP OCEAN WATER DEEP OCEAN SEDIMENTLOCAL SEDIMENT

LAND

ATMOSPHERIC C02

@1. Ity rfSyX 5=-AtDESSl

(Buddemeier#±«k UtSS)

131 —

(6) B&K-M i/y rN x-'y 3 y7-?'>3 7 y^o@#

@##05# : Rolf Schmid #11#

f All: R I TE

2.

-133 —

cf #

co 2 wMitm-f □ 'j * $

#a * B a

1.

BW<y( t U? t * ^ b y v - ? v s v~f

Japan-Germany Workshop on Bioremediation

2. gmow&tm&}

simmtmmLtzmmMWivfflti&m*n

rv^o *T^ / D y-£SJi L/C^SES® fN x-y3 yj bn

i»I©SfiLt^ ^oW*^d:$iiT*>D , §it'

5 tu M'fkoS-eoiiM^Ed^iTV %0

6 ££!!£ £ r'Mtfi/y TV *-y3 yj ^T-7K0ECD9-

y y-^miB, *

7V/T^“f^^ll^50 ^/cx iiMMfc&vr&x

y 3 yKSoEM^iiS^WS^ 65Dffi/VTV a0

####, P<-f Hr yy X -f X- y 3 yj £ re-* v yfj

r^sMyy-r^f x-y 3 yj teSSKRjfclRD

*a/L?i'& K-f yix re-* v y/j ti^^'j - k LTvs^iB-bT* - * y 3 y

y^fr9 c 6&<DT& D^ ttc^ iBo^SatcttW^itfiK

3. g-mvmmM

6i@ 66##^

mrn#l3#E%6@ 3-5-8

—135 —

4. gmmmBm

1995# (TO 7 #) 12J3 4 H 03 ) ~ 5 0 Ok)

5.

giJE- 1

e. mmm&mR. D. Schmid (University of Stuttgart, Germany)

P. Werner (University of Dresden, Germany)

U. Stottmeister (Environmental Research - Centre, Germany)

R. Muller (University of Humburg, Germany)

F. Spener (Institute for Bio and Chemosensors, Germany)

B. Hock (University of Munchen, Germany)

H. H. Stab el (Bodenseewasserversorgung, Germany)

S. Neumann (Merck AG, Germany)

W. D. Deckwer (GBF Braunschweig, Germany)

M. Reu jS (University of Stuttgart, Germany)

J. Klein (DECHEMA Working Party Environmental Sanitation, Germany)

S. Berendt (Umweltschutz Nord GmbH, Germany)

## 023= (83##)

mi

mm jee (*k*#)

mm M$: (#wm###^#)

($3c*#)

-m (Em^:#)

ee iem (5;nm@#m%##)

T# m$:

—136 —

Kill (W/^M $?-ffi£Br)

7. #mm#

(1)

4-^K 'M ^-f y / a 5?-©5iFs(£tti&©it>fci£< g&nstu

Ti'So B*©SS%(4n c©#IP©E%MI§fc&e

0^I©lRlIi^ffLt§TI<'5o D ?-<D-?-sry h &x ££ LT

s5EiiE^fcovr(±A #& 8,ooo#mm#t , 2iisfiKt±^ rnmowm.

% LT'M *T ? / a s?~©iH^'t,^anX^fi&^^©f6fflfc«kt)N 3^Rr{]#^

&© igftf# StlTl'So Mck n $? —©3|g$§^©

j®Ui MtirSEi?^ D o ######&#&'#' % %

i%ommicoivr&&%#&y-sftrvso

fc&l'Ttts u © EE &350B K >£UhT £ S <k fiS £ tiT & D ^ C©gg(±1992#©

2#ic&/,?u&o ^ #^©m%6c5

?x c ©ro ZtctfxD&®£ ftr v 5 0

y-w\ mtf, o%m{ke#©#^(c =k a&#

(Cck&co2g%ik, LroMffl£v?UfrK-o v

&dfc©y">-tir^ §0 St’d^^ h tiNEDO&c^

RITEiC =k D SgS ftTfc D X 16%©±#A#^j;a%A^=k-a'CmiT^^T

i'5«, -WMmm&m®]nim&t&y=%©#$,n±m%t*kwt&

&j^&*?smtz>£t’e&z> o co2 ©a#K (±m#^^ s, mmt&

&#{k#%#&^tia^6?®5o 53x f©S/%T

A (d a c tmm LTu a o co*^

5> Wffl ft WMSES M©9f% fc o i' t tef## 61j $tit^50

utUi#^©ftMSFn1E^S^5^l) Ltitiv^EeEti7°D '^xn^5o

sm iEm af)

— 137 —

5 $- £Fff-B ©M^to £ iir v a 0 cotfHT?ttN iWzlS-IHLES 5 Btt&D\z.ti%>0 ztizommMiztt, co2frzw

lt, lii^^nnifi/mh^n

o C© b U * a axf 1/y^f

|«7^naxfi/y K 7 -f ? V - - v <h £ ftTV a o

c6#T#%i'WEx ntu-.r, e&jR^w»E^^i"

® figE&B* S tiT*? D , c ©R#© r## %) -?- y y b

ttz^ i^poaa^wt

^Mbb-r^y oi?-|i, LT@a6Tg#

(2) k -< y (c 4s «• a m#&#: mm, mm

y a y V b # > b ±##g a ;u 7 D y ZL $ y b

K-f yeti\ 3§^30^{ct>fcoT^ MM©§fl%<hOT^SE^mm"e^ D,

DE^SiiT^fcrik *##^^#^##@(4:, 4"6%45, E

iltofc&BEMfcck DS&iiTvao

F-f 7(ii^< -o|)©AI^$©iEvB^ffl^^Tvao ^ LT, FMyi^oll

©&£/,£'£ a-n y^°ffl#:©m^l:£§i£iLTVao %cT, B#<[email protected]&^a

^mmmomrn, £EM/n©yrM, fm yic^^am#^

mu, y-BKtt't^ir, a-oy/fA^K&^a^^m^Eai-ao

^ct\ Yjy\tmwmmL%<DTm^tMm\mtz>&<<Dmmfttz*''j b?-?

b (cM^LTVao

tfci990^©ms bw y#^K«kb, fw y&##%%##*#(; ac:6^y=o

■fr-oto® K-r y &, -^r©« • a=k ^ ku^

EU3MSWMlh &tz&K, ±MWS.7 v ? y&&t *) & Z.tZfrtltz0

-138-

&< ©PIUSES ft rv£0

F-f 7T(d;> IIMlilffit^-^i|i;ftHIL/;o cob^x^-ex

K-f 7 OTf^±@£©IK3I#{£&H'T;^M??j£&&s6Tl,'5 £ %1'X.x a

i)*@©<k 9%#rLl##K#ALTx Slctix

%©##^M#L^ < Tltte

x.

-139-

Japan — Germany Works, ho

on Bio remediation

Date: December 4(Mon)-5(Tue), 1995 Venue: Kikai Shinko Kaikan

(8-5, 3-chome Sibakouen, Minato-kuj Tokyo, Japan)Sponsored by:

Bundesmi n ister i um fur Bi I dung, Wissenschaft, Forschung und Techno I ogie New Energy and Industrial Technology Development Organization Research Institute of Innovative Technology for the Earth

Organization:Advisory CommitteeIsao Ka rube Tokyo University

Noboru YumotoMinistry of International Trade and Industry

Tamotsu MukaiNew Energy and Industrial Technology Development Org.

Tsutomu YamaguchiResearch Institute of Innovative Technology for the Earth

Program CommitteeTomoho Yamada

Ministry of International Trade and Industry

Yoshikuni Urushigawa National Institute for Resources and Environment »

Ryuichiro KuraneNational Institute of Bioscience and Human-Technology

Ki ichiro YamagishiNew Energy and Industrial Technology Development Org.

Yasukatsu MiyoshiResearch Institute of Innovative Technology for the Earth

Masahiko HachiyaProject Center for C02 Fixation and UtiIization, RITE

SecretariatProject Center for C02 Fixation and Utilization,Research Institute Innovative Technology for the Earth(RITE)7 Toyokaiji-Bldg. 8F.8-11 Nshishinbashi2-chome, Minato-ku, Tokyo, 105 JAPANTel +81-3-3503-5666Fax +81-3-3503-4533

—140 —

Japan-Germany Work Shop on BioremediationP R O <3 R A M

DEC. 4 (MON)

Registration 9:00— 9:30

Opening Greetings 9:00— 9:45

Lecture9:45—10:15 “Environmental Preservation Using Biotechnology"

- Isao Karube(Japan, University of Tokyo)10:15—10:45 “Environmental Technology in Germany: Pol icy, Achievements, Perspectives"

- Rolf D. Schmid (Germany, University of Stuttgart)Coffee break 10:45-11:00

Session 1 : “ Microbiological Aspects of Blozemedlatlon’ Chairpersons : Peter Werner and Yoshikuni Urushigawa

11:00-11:25 “Bacteria with Different Degradation Kinetics Predominate Depending on theSubstrate Concentration in Biological Purification System."- Yoshikuni Urushigawa(Japan, National Institute for Resources and Environment)

11:25-11:50 “Development of Genetically Engineered Microorganisms for BiologicalTreatment of Chlorinated Ethylenes" '■- Kan j i Nakamura (Japan, Kurita Water Industries Ltd.)

11:50-12:15 “Comparative Studies on TCE Degradation by Phenol.Degrading Bacteria "- Masanori Fujita (Japan, Osaka University)

Lunch break 12:15-13:15

'

Session 1(Continued)13:15—13:40 “Dehalogenating Bacteria, their Dehalogenating Enzymes and the Comparison

13:40—14:05

of their activities in Liquid Culture and in Soil— Rudolf Muller (Germany, Technical University of Humburg-Harburg)

“Protein Engineering on a Polychlorinated Biphenyl Degradation Enzyme"- Masao Fukuda (Japan, Nagaoka University of Technology)

— 141 —

14:05—14:30 "The Application of Nitrate as an Alternative Electronacceptor for theRemediation of Contaminants"- Peter Werner (Germany, University of Dresden)

14:30—14:55 " 'Soft' - Remediation Strategies: Examples for the Activation of

Coffee break 14:55—15:15

Microbiological Self Cleaning Potencies in Contaminated Water,Sediment and Soil"- Ulrich Stottmeister

(Germany, Environmental Research Centre Leipzig)

Session 2 " Environmental Monitoring"Chairpersons : Siegfried Neumann and Masanori Fujita

15:15-15:40 "Biosensor Technology Applied to the Environment”- Friedrich Spener(Germany, Institute for Chemo-and Biosensors, Munster)

15:40—16:05 "Recent Approaches to Immunochemical Analysis of EnvironmentalPo11utants”- Berthold Hock(Germany, Technical University of Munchen)

16:05-16:30 "Construction of Highly-Sensitive Biosensors-For the Application ofEnviromentaI Monitor!ng”- Fumio Mizutani(Japan, National Institute of Bioscience and Human Technology)

16:30-16:55 "Screenig Assays for High-Priority Pollutants in Soil and Water"- Siegfried Neumann(Germany, Merck AG)

16:55-17:20 “Biosensors for Biomonitoring"- Kazunori Ikebukuro (Japan, University of Tokyo)

17:20-17:45 "Methods to Chase Microorganisms in The Environment"- Hiroshi Oyaizu(Japan, University of Tokyo)

Hove to Reception Room 17:45-18:30

Reception 18:30-20:00

— 142 —

DEC. 5 (TUE)

Session 2(Continued)9:00— 9:25 "Detection and Enumeration of Methylotrophic

Bacteria in Groundwater Samples by Molecular Probing"- Tatsuo Shimomura (Japan, Ebara Reserch Co., Ltd.)

9:25— 9:50 "Biomonitoring Systems in Drinking Water Plants-Permanent Control of Quality Parameters”- Hans-Henning Stabe I (Germany, Bodenseewasserversorgung, SiissenmuhIe )

9:50—10:15 “Highly Sensitive and Selective Analysis for Pesticides in the Environment" - Yoshiyuki Takimoto (Japan, Sumitomo Chemical Co.,Ltd.)

10:15—10:40 “Atmospheric Monitoring using an Eye Safe Lidar System”- Masao Kamata (Japan, Ishikawaj ima-Harima Heavy Industries Co., Ltd.)

Coffee break 10:40-11:00

Session 3 “ Engineering Aspects of Bioxemediation"Chairpersons : Shigeaki Harayama and Schulz-Berendt

11:00-11:25 “Industrial Aspects of Bioremediation in Germany"- Schulz-Berendt (Gremany, Umweltschutz Word GmbH)

11:25-11:50 “Simulation of.Biodegradation of Crude Oil on Beaches”- Masami ishihara (Japan, Marine Biotechnology Institute Co.,Ltd.)

11:50-12:15 “Bioremediation of OiI-Contaminated Soil in Kuwait"- Hiroyuki Chino (Japan, Obayashi Corp.)

Lunch break 12:15-13:15

Session 3(Continued)13:15—13:40 “Application of Bioreactors for Bioremediation"

- Jurgen Klein(Germany, DMT Institute)13:40-14:05 “Reaction Engineering Aspects of the Degradation of Xenobiotics by

Microbial Specialists"— Wolf-Dieter Deckwer(Germany, GBF, Braunschweig)

14:05-14:30 “Model-Based Analysis of Coexistence in Mixed-Culture Degradation Xenobiotics"- Matthias ReuB (Germany, University of Stuttgart)

— 143 —

Coffee break 14:30-14:50

Session 4 Panel Discussion Including.Closing Summery"Perspective of Bioremediation and Environmental Monitoring"

14:50-16:50Chairpersons :

- Ryuichiro Kurane(Japan, National Institute, of Bioscience and Human Technology)- Wolf-Dieter Deckwer(Germany, GBF, Braunschweig)

Panelers :- Yoshikuni Urushigawa

(Japan, National Institute for Resources and Environment)- Peter Werner(Germany, University of Dresden)- Masanori Fujita (Japan, Osaka University)- Siegfried Neumann(Germany, Merck AG)- Shigeaki Harayama(Japan, Marine Biotechnology Institute Co.,Ltd.)- Schulz-Berendt (Gremany, Umweltschutz Nord GmbH)

Closing Greetings 16:50-17:00

144-

2.

(7) b vzKffl'tZ

BE 7 - 7 '> 3 v 7’^©ffiJH

@##05# : G. Huppes fife 3 £

m % m# 2kn

mmm

5 JH E E

1.

h-^i/13^7 yx(cM^*SBE7-^ i/a v -f

International workshop on Total Ecobalance

2. gmomuiB®

A©##K|6]^T^ 7-9-^f ^;U<£-^-oEnn©Eltx §Sf£

ft£©$::£o#&N ip% h3^7 (LCA#^) ©#0S§a#^&#

fc$iJ6 btLTt'^o -€-©£fjT\ to#0S^#^#^ cTl'S-f^yh y

y/<? h^fcoi'Tttx ©##^&D, EE

tofu3 y 4z y ih x ©S £ it 5 ^ ti ;£ < ©E% £<h 1*5t^Elr& 50 —

y/^7 h§E^©#lF©E%ti:gbfciuJ£^;ktItu@;foT vfc

RiTE^^<hm*L»LfcWW^ (r^IISfnt^i^

x3A'5yx©^^fcit§lSJ) ©Kt^SiftlS^BSHt^ t>

^E# g ©^i$SSWx 5if^ TaiE LTV^o

4®. ##^*;5K, d (Dftm-eftfti-6m©seet ©E^it m •

c6fcj;Dx lltol^ y-h y-y-x©^^^S^Sf#iS©SS^® ttTES •

W^©5SSj&*S0^Sti5 M©SWffi ©SB©f f'y 7 y K^h^ito

3. smommm

(E^Etf;i/33F) 19H©^

SSSWEEB^IH 3-2-5

—147 —

4. SIliBil

19965 (5^ 8 5) 2 M 1 0 (*) 10 : 30-17 : 30

5.

3iJE- 1

e. ismmzzm

G. Huppes (Leiden University, the Netherlands)

C. P. Wolf (New York State University, U.S.A)

B. P. Weidema (Technical University of Denmark, Denmark)

E. Lindeijer (University of Amsterdam, the Netherlands)

#-& (##m*#)

m# (^#*#)

5/u (m^g*#)ififfl mm (m^*#)/j\& mm (69m#B*#)HE (MB*#)

(m$B*#)

ee (#^*#)

s# & (am*#)

—148 —

Contents

Summary/## 2-3p

Introduction/(i 2-3p

The field of Impact Assessment 26pC. P. Wolf

Social Impact Assessment Center, New York, U.S.A.

LCA yesterday, today and tomorrow 21pGjalt Huppes

CML-S&P, Leiden University, Leiden, the Netherlands

Standardisation of product life cycle assessment 15pBo Weidema

Institute for Product Development, DTU, Lyngby, Denmark

The relationship between product life cycle assessment methodology 9pand its appplication area

Bo WeidemaInstitute for Product Development, DTU, Lyngby, Denmark

Valuation in LCA 17pErwin Lindeijer

IVAM, University of Amsterdam, Amsterdam, the Netherlands

Developing an Impact Assessment Methodology Using Panel Data 19pKatsuya Nagata

Waseda University, Tokyo, Japan Yoshifumi Fujii

Bunkyo university, Chigasaki, Kanagawa, Japan Masanobu Ishikawa

Tokyo University of Fisheries, Tokyo, Japan Ryuichiro Yokota, Michiya Ureshino

Waseda University, Tokyo, Japan

LCA Reserch in Japan 1 IpKatsuya Nagata

Waseda University, Tokyo, Japan Yoshifumi Fujii

Bunkyo university, Chigasaki, Kanagawa, Japan Masanobu Ishikawa

Tokyo University of Fisheries, Tokyo, Japan

Appendix A Life Cycle Assessment Questionnaires (detailed version) 4pAppendix B Life Cycle Assessment Questionnaires (simple version) lipAppendix C Life Cycle Assessment Checklist for The Practitioner lip

—149 —

2.

(8) K aEE ^ A^ogi

: W. J. Rhodes fife 7 £

SAli: R I TE

— 151 —

m % fixa

MifommMmM&mmRm

= it

1.

CFCEEft#t/g©MS^#^E1" ^ *’ 9 a

International Symposium on Environmental Impacts

of Advanced Alternatives to CFCs

2.

CFC-t HJ 7 n nx7 y^&x <k !9i£H5 '/>

#&5@#3-5(DTx £ ti £> ©±Sltl995^^(c^:SS ii/c0 TkSE? 5H

CFC^HFC^'x CFC#<k D D M < *'/ ygM^SME'fko^E^

&V©T'x CFC#©ft##& L*>U HCFCttt'/^HM

# (ODP) ^fLTU5(5t'x 1996^%#.k D 6 frCl' 6o

iWiilSW^II (RITE) bST(tx •

(nedo) ©se^su-x t

gw^Bffio^in-ex cFcft#a©mm^^s#^i99o^mz D rra^t-

b ^ yZM#E^E©#^M#J %'rt^T%tCo C©#SS^#(C#L\Tx ptSx 7 y#x

3@K}/'fk^6tt'l£!E£llKT§fco

®{dl994^J; ?9 ^OiS^4^Lx RITE(iSrE^ES7°n s?* 7 b tK 31

#m#NEDo©#E^(tx ^m©&% b

C ktte-^tCo

[tm& (gwp>x s«jrx

^7 l^Oltiiix 0H6©KfG&max *8t*T©:ftPy * - XAx & ©

3&x HCFC^HFCfcMtTfex ODPi^GWP©EA^6##^©##<&M^3 C k §>

-153-

!!OaP©Blg5/ Vtfv?? A(is T y V * ^ 3-0

«k sj; o,

#^T#@&#(C'O^T%)##Lck 9 t'tZ&W&Z o

3.

o<i£ ##R#lr E^'^-fey*-BEASiS

4.

1996^ 2 J3 7 H (7k) ~ 9 B (A)

6. ##A#©%/r$>%-;!/

IS- 1

7.

W. B. DeMore (Jet Propulsion Lab., U.S.A) ~

J. Franklin (Solvay Central Lab., Belgium)

D. Gillotay (Institut D’ Aeronomie Spatiale de Belgique, Belgium)

M. Ko (Atmospheric Environmental Research,Inc., U.S.A)

P. Mirabel (Universite Louis Pasteur, France)

A. R. Ravishankara (National Oceanic and Atmospheric Administration,

Aeronomy Lab., U.S.A)

N. D. Sze (Atmospheric Environmental Research,Inc., U.S.A)

C. Zetzsch (Fraunhofer Institut, Germany)

t&m -m («m*#)

/Nil mm (M%*m%k7t m

m# y ^ - )

## m (wa^E^m

—154 —

isms (smx • nraiRJBU'** v^to

HKfsmmmmx cgwp)

<D4-o<Dizy y 3 B*cD^-ti: b"f 7 7 y%x F-f7N ry vLiiR®fc0 Kiiflilfmix (l)WM'fk

6mwm, (2)E@ffl^-'/y, cfcsn &cxcFcft## :c^ omm, (3)7 ?mt

4%R#a©##^##x (4)RiTE©SritftM7=a y 3,7 KD®Ex (5)yy V *A%B

(caCFCft##M#^x Col'tSi^tlfco -b v '7 3 yn-eiix CFCft##6

0Hg6©Rf6#KRLx ^T-^fcS-7'< W'lra^t'tlfCo -fey 7a VlTtts CFG

#©^#x §|@*©7°a-fexi;:-o^Tx ffFffi •

tCo -b y 7 3 ylVTiix CFCft#%5.C^#T#'ft##©^#^##KB# Lx ^Wiffi©

fg^fcot'Titffra&tifco £ ft b ©ESEFgS&<k S4Wj:lf 6b©£§^x

iNfU&liSKiM-afco

• CFCs^ck^HCFCsKftt) SSf^-fk^O^SSMIS^M^ ft 3 o

• ^ES®s^S(cA^ifj(-x zti&omMRwmwommttit&j 7^7 b&iwt

6C6^g#T®5o

• RITET'IS^S Lx AFEAS (Alternative Fluorocarbon Envi­

ronmental Acceptability Study • 7 oy^-A- c fcMS^u n y y — y 7

a) &«t&5

• c. © cfc 9 ft: fc & IVr tt fflims* & 5 o

• <%0© 7 y Jj? 7 ? a (iEEtox 6 Dft

liiT'^ -3^0

—155 —

mm iRITE International Conference on Global Environment

Technology

International Symposium on Environmental Impacts of Advanced Alternatives to CFOs

PROGRAM

FEB. 7 (WED)

Opening Greetings9:00 ~ 9:05 Welcome Speech

— Mr. Takeshi Ueda(Japan, Ministry of international Trade and Industry)

9:05 ~ 9:20 NEDO Activities— Mr. Kiichiro Yamagishi(Japan, New Energy and Industrial

Technology Development Organization)

Session I "Plenary Lectures"Chairman: Prof. Toshihiro Ogawa(Japan, University of Tokyo)

9:20 ~ 10:00 Global Warming and Climate Change: A Review of Recent Studies — Prof. Taroh Matsuno (Japan, Hokkaido University)

10:00 ~ 10:40 Stratospheric Ozone, CFCs, and CFC-Substitutes: an Update— Dr. A. R. Ravishankara(U.S.A., National Oceanic and Atmospheric

Administration, Aeronomy Lab.)

Coffee break 10:40 ~ 10:55

Session I (Continued)10:55 ~ 11:35 The Alternative Fluorocabons Environmental Acceptability Study

— Dr. James Franklin(Be!gium, Solvay Central Lab.)11:35 ~ 12:05 Summary of the RITE Project on "Development of an Advanced

Refrigerant for Compression Heat Pumps"— Dr. Susumu Misaki(Japan, Research Institute of Innovative Technology for the Earth)

— 156 —

Lunch break 12:05 ~ 13:15

Greetings 13:15 ~ 13:25

— Dr. Shuitiro Ono(Japan, National Institute of Materials and Chemical Research)

Session I (Continued)13:25 ~ 13:55 State of Development of Alternatives for CFCs in the USA

- Mr. William J. Rhodes(U.SA., AEERL, EPA)

Session H "IR and UV Absorption Spectra and OH Rate Constants"Chairman: Dr. William B; DeMore (U.S.A., Jet Propulsion Lab.)

13:55 ~ 14:25 Measurement of OH Rate Constants for Advanced Refrigerants as well as HCFCs and HFCs

— Dr. Kazuaki Tokuhashi(Japan, National Institute of Materials and Chemical Research)

14:25 ~ 15:05 The Reaction Rate Constants of CFC Alternatives with OH Radical — Prof. Cornelius Zetzsch(Germany, Fraunhofer institut)

Coffee break 15:05 ~ 15:20

Session n (Continued)15:20 ~ 16:00 Experimental and Estimated Rate Constants for the Reactions of

Hydroxyl Radicals with Several Halocarbons — Dr. William B. DeMore(U.S.A., Jet Propulsion Lab.)

16:00 ~ 17:00 The Reaction Rate of CFC Alternatives with OH RadicalPart 1. Calculation Based on the Transition State Theory and

ab initio MO Method — Dr. Masaaki Sugie(Japan, National Institute of Materials and Chemical Research)

Part 2. Estimation from HOMO Energy Level — Dr. Tadafumi Uchimaru(Japan, National Institute of Materials and Chemical Research)

-157-

Reception 17:15 ~ 19:00

Welcome Speech : Mr. Yasukatsu Miyoshi (Japan, Research institute of Innovative Technology for the Earth)

Greetings : Dr. Takeshi Usami(Japan, National Institute for Resources and Environment)

Greetings : Dr. Masato Tanaka(Japan, National Institute of Materials and Chemical Reseach)

—158 —

FEB. 8 (THU)Session H (Continued)

9:00 ~ 9:30 The Estimation of the Infrared Absorption Intensities of Advanced Refrigerants as well as HCFCs and MFCs — Dr. Taisuke Nakanaga(Japan, National institute of Materials and Chemical Research)

9:30 — 10:10 The UV Absorption Spectra of Alternatives to CFCs such as HCFCs and MFCs— Dr. Didier Giliotay(Belgium, Institut D’ Aeronomie Spatiale de Belgique)

Session H "Atmospheric Degradation Mechanisms and Removal Processes" Chairman: Prof. Cornelius Zetzsch(Germany, Fraunhofer Institut)

10:10 ~ 10:40 Uptake Coefficients of the Degradation Compounds of MFCs and HCFCs into Water

— Mr. Mitsuhiro Toma(Japan, Research institute of Innovative Technology for the Earth)

Coffee break 10:40 ~ 10:55

Session H (Continued)10:55 ~ 11:35 Mass Transfer at the air/water Interface: Removal Processes of

Halocarbonyl Compounds— Prof. Philippe Mirabel(France, Universite Louis Pasteur)

•11:35 ~ 12:05 Heterogeneous Reactions of Fluorinated Ethers on Aliophane or Titanium dioxide — Dr. Shuzo Kutsuna(Japan, National Institute for Resources and Environment)

Lunch break 12:00 ~ 13:10

Session IQ (Continued)13:10 ~ 13:40 Cl Initiated Decomposition of Fluorinated Ethers

— Mr. Mitsuhiro Toma(Japan, Research Institute of Innovative Technology for the Earth)

-159 —

Session H (Continued)13:40 ~ 14:20 Potential Accumulation of HFC/HCFC Degradation Products in

Seasonal Wetlands — Dr. Nien Dak Sze(U.SA., Atmospheric Environmental Research, Inc.)

Session IV "Global Warming Potential (GWP)"Chairman: Dr. Nien Dak Sze

(U.S.A., Atmospheric Environmental Research, Inc.)14:20 ~ 15:00 Model Calculation of Atmospheric Lifetimes and Global Warming

Potentials of CFC Alternatives — Dr. Malcolm Ko

(U.S.A., Atmospheric Environmental Research, Inc.)

15:00 ~ 15:30 Model Calculation of GWPs of Alternatives to CFCs and Advanced Refrigerants — Dr. Ryoichi Imasu(Japan, National Institute for Resources and Environment)

Coffee break 15:30 ~ 15:45

Wrap-up SessionChairman: Dr. Takashi Ibusuki

(Japan, National Institute for Resources and Environment) 15:45 ~ 16:30 Short Presentations by Discussion Leaders/Further Discussion

16:30 ~ 16:50 Summary/Conclusion

Closing Greetings 16:50 ~ 17:00 Dr. Akira Sekiya

(Japan, National Institute of Materials and Chemical Research)

FEB. 9 (FBI)

Laboratory Tour of Tsukuba: Visit to RITE, NIMC and NIRE

—160 —

Schedule of Laboratory Tour[ Feb. 9 (Fri.))

8:45 — 9:00 Hotel to NIMC by Bus National Insutitute of Materials and Chemical Reseach (NIMC)9:00 — 9:20 "General Guidance of Research Activities"

by Dr. Akira Sekiya9:20 — 9:35 Dept, of Physical Chemistry ,Spectroscopic Chemistry Lab.

"Degradation Process" by Dr. Taisuke Nakanaga 9:35 — 9:50 Dept of Physical Chemistry ,Spectroscopic Chemistry Lab.

&Theoritica! Chemistry Lab."Calculation of Reaction Rate Constant with OH Radical" by Dr. Masaaki Sugie and by Dr. Tadafumi Uchimaru

9:50 — 10:05 Dept of Physical Chemistry , Reaction Chemistry Lab."Measurement of Reaction Rate Constant with OH Radical"by Dr. Sigeo Kondo and Dr. Kazuaki Tokuhashi

10:05 — 10:30 Dept of Chemistry , Fluorine Chemistry Lab.Dept, of Chemical Systemsry ,System Analysis Lab. Research Institute of Innovative Technology for the Earth "Research of CFCs Alternatives" by Dr. Akira Sekiya, Dr.Takeshi Sako, Dr. Susumu Misaki (RITE) and Mr. Minoru" Akiyama(RITE)

10:30 — 11:00 NIMC to NIRE by Taxi National Insutitute for Resources and Environment (NIRE)11:00 —11:20 "General Guidance of Research Activities"

by Mr. Keiji Handa (International Cooperation Office)11:20 —11:40 Environmental Assessment Dept,

Inter-Spheric Environment Div.,Research Institute of Innovative Technology for the Earth "Modeling and Monitoring of Atmospheric Environment" by Dr. Ryoichi Imasu

11:40 — 12:00 Global Warming Control Dept,Photo Energy Application Div.,

Research Institute of Innovative Technology for the Earth "Heterogeneous Removal Process of Alternatives to CFCs in the Environment"

by Mr. Mituhiro Toma (RITE) and Mr. Shuzo Kutsuna

12:00 —12:15 NIRE to Hotel by Taxi

—161 —

: co 2 (d mwmmm K.mtz>w%

LESXS^^ti:

mm$zm it^wztw.

H PI

1. SAii^iSAifff

V> X. 7 r - V y T%f - BffS

-7-ff a. --k y y%#A# m#.;i/4^-EgSBr

Prof. Jefferson W. Tester, director

Energy Laboratory, Massachusetts Institute of Technology

Building E40, Cambridge, MA 02139-4307, U.S.A.

2. mmmm

M7^5J315B~M7^8j321B (7J328B&& 8J3 3 B ti-BtSB)

3.

(MIT)

• ^MIT^MW^Mi LT^SLfCo C02###@^j&t

&&D mf a2)j;0^3)

7°5d‘ ^ia^^^10Siii MML

tzo f 8 £18B y > ? ^ © -oy y TM#§ tL/c, W

a b^ y ;i/9 xrico2 Wl7-y ^a >y

Ltz0

4.

4.1 #g%m#S^AE©co2®(fctijl$S^\ SP©C02Milg<kD AM*©C02cd

— 165

cojollgf Ul; < 5 o

CO«iL^ ^1o mWttmmhtzCOt®^

@T(±x C tifi-vg 5 '>xf t

^ ^ e ©CO 2#@R#(C Z % x. a T & 5 9 o y/f ^ h

$;«k^© yx TLT© h-?;i/©W%#

5 o

TVSo € it 56 A &6 (c ^ 5>©C02©5)-g| 111iR^Ti^

C02©lrc!5"i£x C02©##^©#^i&#^-^6Ayx xatifftlii-pV'T

4.2 #^m©m#

4.2.1 MIT (c # # & CO 2 © ##

yxn^- **

E%ftS&<kE£#^tc^VT|&BJ3£§tf Ao DOE Ofcfflx 4wu#-:g) *>£>©$EE

9S6 Ltvtfa-kv V%#A# • x^;U^-W^©BffSProf. Tester^CO,#^#

@©#####@W=%&%# LT!' 5 o ■€• ©Sf^O^SK^ t ^ £ 26 &>. Herzog#

(MITx * T&%o MITto*(iHerzogftM©E^ 5 -f-T-f V

L/c0 Herzog# >, Adams# (MIT©Civil Engineerig#M) i)*W^Oy^rlS]

David# (MITx * Janifer# (MIT©Civil

EngineerigSdrW@^^) ItS^rffi.^ L A0 9T% 5 -y —-r -f V y""£r(i>. B#$lfSAI

C (Science Applications International Corporation) ©W^SM^-P^. DOE, EPRI^

07^yf“'>3 yN !> V

4.2.2 y ;i/9 ^-©^;i/yyco29-y y 3 y 7°

# ^A^##g©^#-eco2###@9-y y 3 77°^y *-©^oi/y'ytr^li

AEW^Rflgti:^5fflK, C02iiA^

— 166 —

ztitco mug its&frziu w oih a#mm# # NEDomms#

mm iS^ #|R (MHI X S (iHerzog MIT E%ft. Adams MIT ft® (S

^±*)> Kildow MIT / ;!/? = -&6 yt > j-v-& vM

(nerso Haugan nersc sSx v - ^by

y vyy y 7by *-IWl^ir (nutec) §rs> *^° y f ieazES

n '7 x y h gRg^'BflD L/Co

7 - y 7 a y7°©glftti\ &@ © CO 2 ©SE^t^E ©E^b <b e ii ic §T<h £ S

m^#?$6o lilEifcg^ B*©#cE<H84-L/c0 S

i^(±co2#y#m@©3% mssms^is^l/co iia5co2n^My7>ryias

GOaMSckD &/&>/£ ^)i«< X oT(iH&{c

mw*$>tctitz0&#cfi,a tii$ tifc#ico2 wiii©fiiont £ co2##m@^m#

e»©#^©m^& ^ /c0

iea^g)(±ctt3&>3iEA#m#f &co%##mm7-y ya vtzQ y ;uy i-:&»b(iy ^7 *-©7 ^ 37b f©—LfcC02i#ii©iil7 ^ -

7b F^il©rhH«^SiL/co 22#F9©?#TSTADOIL (y ;uy * — ©HU©

S###) $?£400~600m©g»ctf7xy'yy^&Spffit5

COz&#$&L^ CO2©S#i£tfc&tk &SI ^ 5 <!: V 9 It®T £ £ o £ ©Hi

NERSC (f y-k ^JcCXNUTEC (y 7b7 x -^SSW^Bf?)

^^{cyx-aTSiiLx Sfj@C02©?@#7,-yjR^*ff yff-Hioc tTf^So

i>6B$> *H?cy >y i-©co2S#M©7 >f -7b F#$#(c%^L%l^£©i^lf»'

b*x *@6.$)##?©7 / -7b F#mw\ m#T-y ^

J^,z?ttttl'3fc£©5tM#tB&*ifco BH©y 7by * -©C02###@©7 ^ -7b FS$H^

©#Ang#(c*LTK^ It^fig£ MIT y* 7b - t8 t* £ t> L%fr^iz0 y 7b7x-

KS#©#EA#©^&%iRA#©—C02#A^E#©#EKB#L9

§ <fc 9 7T43 D . COaiMC^ftilWt-

©■?fco

4"#%, C©7-y y a y 7°<£rBELTV§/c

W £ ©^ 7 - y y a y L /Co

— 167 —

4.3 m$Lim

4.3.1 co

COzOJS^^O&A^jSteHL'rtiTablel K^i-£oKtz< 6 AO##Md^ & 6dA

STKchTtDCOz©SSOtirS-1' CO2dco f 0#TCO2&##

fc&A^ fcli§dc-aT&A#OC02O##&*:@u(c?-#jW#T^ dp-o^#d^##%^&6

LT^ Table 1 fcacf- 5 -oO^r-X Clol'T^ft Ldc0

Table 1 ©ati\ / 7U9 * -©Haugan£>d^StOt^S Ldc ’iST'® D C02 £EH LTiB

ff0^xi LT^MT°7-Y JtEl&gl$©£ll '200~300m@$© S 4^ CO 2

^SAt5M”e$5o ^©t^-ettco2^^^L/t^7R©±T^

isiomAam-f itzcoz^mm^m^m-ta

< CO2£S#\mmt%W^Bt^ (IfcWgSchS^tlS) #mi'o Haugan6

(±C02d##Ld:#A©Jt#d^©jg@©C02d##LTWd):l#A©jtg=k D &Edc <

%5C U #B&%m L TCO 2 d## L d:#A$ it d:#^r j; D %) j; D # ^

6 C5Ntm#T##&it&#)&&##Ld:o C®^&T(±C02©^d)6MB#7k^®

CO2##mSdi#vdc&t^ 5u£(cCO2&##$ it £ f;: &C0 2©#K###d^gT6

^ *i 6 SE £%® L dc <b L T t> W£©CO 2 £S7kfcjgB£ it. It

MT-«$it5d:&fc&> CO2###A0CO2#ma#< C02###

7k^J:ZmiM&Wli'y bft tdj:§0 C02©##^©l#m%^d^m^C ^iSck^COz ©3g

####(::##M#^oB#d^A# % c t d> 6x

d^l' <h#x. bti50

Table 1 Ol(i@JRLdcC02^ML^°-f XT#mL,

6%o yt»^wt50 i ©^m

yd5CDT'ifc£±}^d5@^£ ftT V 5 0 Haugan&ifXT Atl53j&tt ±E©<t

9 dj^SAdSEillS *ldc©T\ #&(±%#=C02T500'-1000m©gg£ ^A^TT^ %#=C0:

LTl\$o C©#±&Fig.l o yd^bScdlS

*1dcE#:CO2 (tS7k*£r±# Lx ±#^d^@©#A^m^ LTl\ 6 o tik&COz tZ<D}%

m<DCO2i>mMLtzWfc%'f ^©7°7U-Ad^±#'»e>T^lS|^iiJil (h°-

V yf) U MfflS7k^M1-s t V 9 ^rjuzmm Ldec

—^ HauganO#^'#' & CO 2 L dcBk £ Mffi ©Bk © SMd* £ S:

-168-

&:*:§< MIT©Adamsg,

©coc %o ###@^ &#cm©co2 £ -? -c#g#

Kj;D@mK^i#L%^g,#mstiac^©m±^Fig.2 (c^-r0

Adams £> {iN C ©y^'Sc^a Confined Released Haugan 6> ©$lS§"f* 5Fig. 1 ©5"

an Unconfined Release 6 0#/, "CEE(I L"CV S o

/{^@"C(±#(C%#:C02^/'f^ T°7d" y$lij§l L"CV The Sheep Mountain

C02 pipeline "C>, EORffl K Colorado © W alsenburg^1 b Texas © Seminole l£ "C © EEfti ti

#6S0km^ B@ti60cnu K2mi20~90We<b So 'M 7°5 -f y ©ii^f-s 300km(c 1 A

©SJ£-"eco2#Ktf yy^EvrvSo ^^7^ y (c j; aco2©##W#±"C±

mm-cu< ^ao

y©y d* yft yxK##^&&^6(±-WrV€V600m@g"C&5o ^tlJ: DSlva; C

-f y-rd" yx^ckO'nx h ©R9@^6&o

Table 1 © 2 #%#CO2&%S#3700 30 Sl®3700m

"Cte> %#C02#<kCf%#C02#WEL;t#*©&S©M###7k©.lt#«k!9 < ft

&o %-©&#(::%#=CO2©±SB$ti%o LfcW-ag&CO^b^Tk^

©^MWWIStlS©"^ a(c^^y:C"C^#:CO2(c#g& tl^ WC02©

Mews v©-c\ mm^vmm&Wh'hz < Ks^mstiSo ^©^n^Fig.3

Katfo MiT©^^3^ #^3@a^mb u/:co2#mm©^d'y©##^@-c(±^v

W©!%IW$-?%o 5/'fd"7°6#x."C##L"C&x ^:#§g©#

ittcrawv c t *mmLtzo

Table 1 © 3 &E*E& <k 3 CO 2 ? y * - "CCO 2 L ^ C02^

yt7-^b#T^^y^L-cSimooo-i500m©#^(cMf e©#±

&Fig. 4 o 1 ©5iSM{±lW@SStlTV5*k C ©#&"C ao

C02Mffl©-'-'M 7°W$ted:L£|ifl};K ^c^3C02^#[HS^&o I^C02S^t7"

(c j; ^U 8 # ;i/^ y^lc <k (9 6#^S ti^ M^DEilSti80 t°E

@<&0.263m6 L"C^ #6 / y h ( 3m/s) "CA(9^ C02&100kg/#"C%&^-8 6 x %44

##(c(±3200f§(c##R& tl 8 o ^©#f##^Fig. 5 o C ©2T<£;&^ffi’C&tli^

CO2©####*,ck###%#&3#X.T, COMmm<Dl5!&t LTMtlTVSi.

MIT#J (Herzog,Adams) «k D ^ / y b ^HV/Co

Table 1 © 4 ttC02£@$:© F y >f T-f X £ Lfz'^ ^ y*-"C#^L^ #±W Fy

-169-

A r-f xS-iSSL-T-t &4--XT&&0 MIT©B6TL^6C02##B@#@

©#%#05T^c© Fyj T4 Zlcj:^

/jN$i^<h$tLrv5o-

Tablel ©5 &#±fcOTEC (miMEEWr) OTECffl & £-_h If fcMM

tm-cooTEcimt®??? h 7*-

A±K^g^#^^ OTECTT^LT^S^'Njl^

dtitfco f@m±&Fig.6 (c^fo

4.3.2 jt#^r-X©##

%#^^#m^T©#mBrllOOMW (554MWX 2S) F-X^r-7i LT. CO2

OT^S^jt^L/Co Table 2 ©4--7£^iho Table 2 © lffB©##0 ©%|#

C02il$LT^ti:i<'I^“XT^5o C©##(±EPRIlx^- h [Fluor Daniel, INC.,

EPRI, IE-7365 (1993)] iiTV30 ##2 — 5 ItT 5 «k DCOz^BI

iRLfc^-XTabSo ## 2 — 5 ©COzMm^l&KTable 1 <h|H] CTab So Table 2 (C(±^

LT^mm©##^ cozigiR. co2m, #ns

©3XFv -7y^9-©3X 6)6^0

CO2© h y^/c^o^x h ti\ B|iRLT##%@L^C02^^D©l#@@3x b (Captu

red) t' C02@JRKEL/cx*7V4i:'-^ljSLfcSlgC02Eg|3 x h (Avoided) £E

Lfc0 y X -f A ©j±,0%^ (c (i Avoided C02lTlt#'#' ^7^^1E#7r&&o Avoided

co2©#^^^&&mnim*Fig. 7 l^0

4.3.3 m@#A^T©IB#200km© n x hibijR

Fig.8 tco2Mi3x b^t/co ^77^yia§co2»^ co2%@lf

@ (C02i/>r 7X * y*-C02MttC02 (Avoided) %$90—lOOT&So #

mgg#^200kmT(i. y^£ffiT&vG CO2& K 7 4 7 ^ X

%(cOTECe#JMf ^ y

CO2M. coz^JSif®. ^ y*-co2%#©mt%%o

Fig. 9 K^-x^r-x©###@^100 Oka^^^^T) t L tcMik<D Zti^'tKD CO 2

L%#A©;###@&^L7:o *l)$ffi^^°d,7°7d‘ yco2$tlfcM;T-l>^ #

2.3fgiftS0 C02^Mt^ ^ y*-C02&k#^5^(±2.5^6%6o K7^7^xKf

—170 —

#3.5f^ 0TEC#W^"e(±2.8i§ 6 % 5 o

K 5-f T-4 X3?5Si**ifi< teS©(±\ F T-f xoEjEicxtwv^-^rEt'Sfc^'eaB

So ©Sgi£2rfc£Fig.l0te^*o F7-f T^f X(iEifc;U/cG02<£-EBE5i$

-ti:TEjiLTV5o f ®iKi4t5C02*'X^C02S^l^Il®fflt§* 1^ fife©

& (cjt# L T2.5fg ©it © CO 2 if * £ g >&E Lfd^Tllx^^f-

< te 6 o Cut'iis ifto^^T^o^yF'jy^c

tctiim&mMiz&'gtzms*\ * y- y #^AE6 % & ©^ ?&##-#-&

tIl:3X h (i®< i£Z>k.^7LbMo

C02&/'?^y7^y?#m'fs#A6x ^y*--e#mfs#A(±-e©m^©mm. E

t\$k.miWZ% o y#^#©##&9 #&©T\ ^g^50~60°C £ * -5 T

CO2^SvffcL te i 'E* £fi|] x. T & < &W&£ 6o Lfc^-sT. y©@fi!E2Jti:

Su^ Lfc*B©SE*e& £120ata<i: Lfc0

* vjj-T'MMm&tes ##C02©m&x EA(±E^7#^©E#^ck C6o ^ y

-50C, 6.83bar, ®B£1155.7kg/nf Lfc0 AQ%W#te#^©^

J¥£50mm<bihS<b> y 9 ©itt&{*$l30mi:teSo £©* y* fctStfg* y*-

Lfc#o*£\ y^-M-e^cOzM^©^—

8PM*So Fig.iit^-ene'ft ©see?0n-bx

-f yflii§!E> c©#Tx ^y*-ffl^co2©S!Jix^^--tt^

-f y°7-f yffl©^C02®3tx^^-«kD t>*§teffi£te30 mmgEl##200km-e#?

y*-(±C02#mx*;i/f-^/|\^ < %So LfrLV-ffrb Ltl^ ^A^v4 y#m

j; D i>3a h3&*iSi'o

4.3.4 ffiItn^F0li

C02©#^mi#&300, 500km £ L *:**£©. g-SCOs&gifrS;© => X F&jtgtLteo

4-?y4 y < te S i =3 x h j&s**ifcJfc0IJLTi8f< ftSo #(cjza^^(±!B#©

7°5'f v&b±%<o <te&ttFig.^ic#-#-^97°

y^S^^ y*-ra«k D fcax HtfitetK hj&Sjggt* So

—171 —

4.3.5 7*9 v MM Xi nx h

Fig.l3(c^#7°9 y h 7“5'/ < iltl

7° 7 -r ym@&^c § < f* a tffti-TJ; * y ij - tt

a *:&-? & a o -'MT’y-f y©B@ri> £>SxTx 4000MW^±{-

45i> I) 7— y&f#&^g^&6o 4000MWK±T(i> ggillCU; 5>

it9 y# — 4 —

4.3.6 M$inxb©|S

Fig.l4(±^##$^|6i± L ^#A©#A 3 7 h^rit®Lfc^©T'®§o MM©|S]±

(±&4(cLT7°9 y h nx h&±#^#5o *rf*S(i:^ C02M8SE©=3X b (*E4k-tir"fn

EHt°7 y h/ctj-n.x b^±#f a C02#@#L©^--X"eW\

LT20%|q]± g,SOFC^©&#(c#^) LTl). 7°9yb=iXb^2

gfcfiStx b &Mlnl±SuJ:DE< 450 L^Ln C02#l@WD ©^-x &x

MELhfc.k&T^ y b ax b#2£teftofc£ LTl). $hm&6.5%ft±ttU$mtl a

x b (tco2S@Wt) ©z'5- x^# £ IH t; £ a 0 ctitex ##7°9 y b 6co2#@7°9 y

F03X hJt^MteSfcfetf^So COzSSWD ©^r-XT(ix ^I^?©±#^Ia

4.3.7 titib

V5 V6 % CO 2 K -71'TH—t- 9 ^'- X T##:%^:7°o-kX#M'&fflX

^©3X b £l$SLfco ^-©0#^©ck7%^]M^#6^y=o

1) C02##m@©C02m@3 % b tt$50~100/tonC02£i$g3*l;feo co2##m@&

mmi- Sii*nxH42 -2.5#±#f a o

2) C02& 9 'Si3 - *£T'$li:itlllh a -x ^ ^u^'— (ix ~f y -i y'Eriiiillih a <k D x ^ xi/f —

«/jN$i.'o co2&^ y*-T#mf aK##ap###-e&ao mm#

200km’C‘tix ^©J^iPx^^/^-o^Jbtex b - y * -®u:e!© & 7 *

71/f — a o

3) #&3m##m#m#x m#Br^6m@mA^T©i@g#(c##L'cwao mm ^300

kmOTTtix '^7° 9^ y tc <k a CO a o

4) MM© IrI±&C0 2M#ffl £'M4>S -ti: a o 7° 9 y h 2 &BTF& b iifx #X

— 172 —

C02#@3% hj^ t>£<

5) CO 2IHK <bft£PMS ftx*)\s¥-*m'P & -£ 3 C <h riA C02|||laxh^^

<9l#T(f5C6K##f 6o

6) ?SJS^'f7B7>f J; ?9 W\ Fy-fT

'fz&mo&S&'bSV^WffiSny-Co M*>SSTLMM LT%*CO2%

#E$^em(c±# <T#5o 7° iM y £ITOHS© =f

XKs CO23gj^W F 7 7 ^ X M$ ft 2; >£ ti-&Zt £ o

4.4 4-m#0S#© « © I# (c## <k ft 5

4-|Sfi02^t©®M*^ y^-^ y F©y-f yH&ffll.'Tff-yfco MITtt^cMa y tf*“

BgEWS?&%o Sg^&AHa yt\- ©g#© 7 7-7°a^

srf-s> mmtsHs ify 7 h*fflt'TsaiJ:^i$inrii^So

Zt&T'%tc<DX\ y 7° h y 7°3 yi^i©M3 y fc?*-*£j#&L<k? i Lft^k ^fi(c#2mK#Lfto 5»Ah;

7°3 y b°a-^©OS^B*EyxTAT^D> €©±?m3#aMIT©@#y 7 F <b —

SLftl'K A <kMIT©##v 7 F 6##^#l^©"ezbft 6,#t>

tl&o IS^OS^E'yx-r Ai L, ^EVBLTx >f y 7 - * y F^^WT# 6

<k?f;:ftofto 4 y*-*y Kj&*ftIffl’e§S<k9fcftS£x B^t©^ i «9

A-Xift^K f - ^ ©A#i>IN# &0^«t < «k 3 (c% -3 ftc MIT#A6©A©7 y F y y F &%%5©k:&gSLfto MiTo^fSKW:#-* xy -f

%6T©A^SfF&6A^©(±y%";i/©^^W#A-T®so

&mrmrrf<m^rit, •* y*-*y F wjmLft^6#AT^6o -y y*-* y F 6©##©/\- K t y 7 F©##<&A#LT^#ft^6m-ofto

4.5 m m

4.5.1

MITSS43{£ 7 y y h yDC, Omni Shoreham HotelsT1995^ 6 % 27-29B

7 y h % h MS^$£7°y y h ©

— 173 —

$ tl/cEPA© f Symposium on Greenhouse Gas Emissions and Mitigation ResearchJ

fcitiSLfco

mm&ttibizo

(i) ##©m#

EPACH4#^©##tz®ffi±VTV^o S

iiiiEPA0l!ltl«'§7"n/7A§i^TN 4f(=^

COz^Mfa^)©^ 5 %)©x 2

t>©x Z VFfr^MW.frMt & t)©> 2 2

&©"e&-3%o

h 7 ^ h^&6©&?x H^gOA-o /c7°n iz-T 4 V If 7 tiftl'c

EPA^th^- h LTL^SSMMM®©^Siifi:*©E%® S vhU •?-tifcHiiS L

L/c 7 5 WHi/v# W

SEM*e(iEPA©Am^gS±®©Director^ 5.^ iftScSIM^^OCOj <h

CH.OilftlJcJ; 5s L-3*>t) L/:?g!l(±T#%l^x

#&T&57#6x cttg,a L^^^m#

K###x.6 C 6(c%#LTl\^ 6©^#^®c/:o t/cN *@x >f y KOC02gp{±}fl:

©iiflnS-E^LTiVco M\z.t^xr^rfcff £ *e <6 3 7 t'v5*

x^ + y^©A#%#^r6©m#6. 6T^5 7C02#mm&^9##'#'3^(c

-oi\T##6^#©#S^6©##^&^fCo

ESEPA^*5rAtLTVS©(*CH4©AM^©SEgM^L^M -? /c0

CH4KB8LTM\ m&CH4^^©j:9/i:#B)T^3^<^LTW6^6^3m&6^ ®

iix ##x #m©##R)TT©CH4©Am^© VC L/c#

Si^©2o^bti:^t<-'So CH4©^^#©M^/)##M#'fk©B&±t|nlB#^x ch4

<D^mmm<Dft±K&<om&ft£.tti%t\<'?ct%:m.mLT\<'50 v^vd/mss

©igi^iLTIi£'f £'ti< ^^©fiJ^'#t>tL/Cx 6&l4±#3tt&T&6 7

L/:EPA6^-5m#^x €©mi'©gS

©#m^&6 <bV7© Bflfi £LV<hSL/c0 LT#)&S@

LTMSLTVS0 E’^ttt^ 17 fc°-;uLt£^ J; 9

T'©So

—174 —

(2) coimwmm

CO(e P L T te MIT ©Herward Herzog£> b o tza CO2©M

^Eflfr©iSMWt;N * d V —^/'"c DC02B^l©^til^*>4i'—D

Ai#«m, co2##m#(±^©%©#

W5H0lM-pfco *B05^iIifS^ **y h°JlU D I)m#JLT

toLTs LtcfriX^ C02'M

tii'-pTijSjswiEtmmmmm^iSbtirvs0

<bst)tL^0

^e»la1^LT< SCitaDs C02 =k V k ©SH.& l> ^ T V 3 0

4-@#inL/-cA^'Bi,co2S#s@x & a wacozmm&f act Kc i\% (±, mm

t&&? ieESEK i f 9 &x Pi.' £3# •? T u a: i' J: 9 tr ® -a fc o 1s-if y^ci®^ *

^>^-®cE©S/J^fTSl±iLTMs BHE£S<h < teERSoSftTx *yi/4^-Pi£

mm^o$ t> *&*#&£ s©*^ ss^E^s-tirs <k 9 ^co2s#s@^sFh1^s l

Xm&ZZtlt&1onte'‘'t%x.ibftT\.'%o DOE(±CO20##m@K##<&#^T

li'Sck^^N SBtejiJS-eiSiM b V C <h DOE^A##^W^&#B c

&C6 (ttiVJ;9 (eg

D/Co BA£^*Inj'£:jl26 3 £ ittMt U' C. it® £ k

tzQ *Bft©D0E^EPA©A:fo5 ^©v&SttS-IS&T V £ J; 9 ;Ok ££fc&©B*3>

^LiM(e(±*»3i®< x ^ftSf^l>o|K<l'tItn50 t 9?%%?%) MIT© A

fc’&fiCOj&a&^CTfr&W&ffl^l.'So

(3)

h 7? V '>*{£££ i, n- y^yu hiSSrx w y f-^y

iiit*3O$/ton0l|f^^ y V y K^7°y^6f y ^©##^#£*^(±60

$Zton(bSS§tL/Co CiT,(±#mie«kD±m^ BM. & 61.2f&

2fgfIg»LTl'£o 7~10$i«^Ci^b. #fP

##?©ft###6 LTW^T^ d 9 k ©i£Sri$& -? fro HWT*e©^Z *‘MM<D 3 x

b ^r40$Zton<, D ©^##^r3500kcal6^^'#' 5 k 1000kcal<b tz D ©-fit Si:

^0.011 $ k ft- £ o #&©5#©#m#17 $ ZBBL 1000kcal& izX) <D

*.*0.01$ ttsiz0 *ro© = x b £40 $ Zton&+#§!#;©tb^sm

ta^ 3 - y^vk b##T#^i@©f;#© j; 9 K#*

— 175 —

(±1.5- 2 6 j:9T$So

LTl±. @#OdM vklfx?- tfy&5VM

MMtSioli^^0 y-co ^##^0E#x{kLt#x *-fcf y##6

to##^^#o«k9T66o ^-fo» h t°5 y h ©ifH

&m/,-ei'&0 lMWem#®#E##m996^g^6m#?^TFMg^m&6 6fLT^

Z> k<D%^.ftcb-itz0 ^STtiT-i' * ^WTCD^STtix ^"7XOiR#^

15.2ton/haZyearT© § <h cdMS^'^ o fc«, C^TMZmO-?^ *

%70MWO^ Of# (c % a o Ztuz LTlj^BtFa^fc D 5^745

tonZhT/'Z 1 g|]|%#f &<D%636]5 h y (It'll

ki-% k' 600mX600mXiE$ 2m@$©)

B&teMBLtzigi&te' iiti'0gg©An^i^.5^^It§o —A^fc«9¥

i6) 2 WcDim&mm-tZ k Lt\ 70000A^®m*^It-5 Ctl?(±B$A

±^zt»iiiitk sooo^A^-om#

&vcD*t\ A#(±a^^6#AK^6o

^T!4J6§ui«IL^iIi;f-:o

m^m±m(±^z*^x##;c#ait#^A§vG mmm±m®

< BI(-<koT7fUi5^9^mt LTOTdn

361 ©-tiK ^<b7kSo^^g$±> S»^©iiAtrC02 ©

#4=#&m 3 e s t ommff o

k Vt)tLTV 5 K - yKklESM^M i7X07^3-;i/

iiiU^ SEffitiy'Z <h ©

Lfc0

(4) CH4©^*©W

EPA^#^^#< kl^±of:)6(c#&^&AfLTi\a0^y f 70Mi±t®^o

y 3 y ris?feis <Dk'z~£k'ti < f yE^^-E^^/czd

©*#t-e©&#^%#(C'oi\T©^&T&&o y * yoMMWM' ^7^y|^I

^Sodbo^o#fP##TO 3 % MSSt

— 176 —

D fcBf 7c 46©'t° V7"^£ © V - 7 x ftlEUiSfr-e© 'J -7 t

siffl^fciiaE<h^EoycE^-o^ /Co 5^#%%)/^

7 7 y©:AM^©^ifc'«lL$tl3 £x Ztll$C02icj^SL T16 7 #h

SS^rt?gS^^fc*o 3fc^MMx MBS:

T’CDiix^S-ijEjiLTVSo

(5) H2©S3#fb

t>CH4© V 7 * - 5 y 71c j; D#c 7:^^%

ffiT’fe & i ©£3ft;6$& -? 7c0 6#-? 7cH2 <&E# L T ##!*#% V

t<D£Mb&-?tzo H2#

y 7 * - $

#T$5o ?fcffl©M©:i:ivv#-:2X h©?#j&^(cEfo

1990#©5#<L^##%©3% Mix 17 $ /BBL61,700 $ /MCFT& -o 7= <, 1990#

#©?E?(ix 2010#©5# t^77%©#@:^50$ /BBL65,000 $ /MCFT& 6 6

0?E?& -5 7c 0 h ©±#ti;A§ < <D=fmi)^^\ 2010

#05#3 % h (±20$/BBL, ^#77% xx h #3,000 $/MCF6 CDMm LT&&o *

STti^S^XicULTtix 77% 7 y 7 ©±(c#6 LTl'& «k 9 % & OTi&fk©###

%<x ^°i7°7-f y^##LTi'acDT#m3^ M>^< x

Mg0<t9T|5o CCD<k9%#cET(if5@#M#%©#%&Mtl%o

V 7 * - 5 y7^#i5Afc^Sx Rk5'SFHit7fx 80# < 5> Hi+#tcE;i 5

(^mmo##x (if T&0x 4'^630##m^7:#ft

*>e>ES^^E-e§75VJ: a (Cx 4"^&30##©H2x^3 % hMLT

fA50lit y-ky^T&Dx #k#^OH2x^;i/#-cDEl^&^(c#^.S^#T&

&o K#0##=%%@&#A0^(C#^0H2x*;i/#-#^^zb & ©T& 0 x jlEffl

%imKU.MZJi£&fr&mW£&&ol i0#m©5o {k5R#o^i'H2&E;L%

u%6(ix 7c#o$#(im%!)fx L 7c Tgng©E§E7/s#BlkL 75 v <k v ? c £ -c &

5?0 H2#mm#&x #*© 7c 46 ©ES £ &B7>' tf f S 7«e £, til S*##(c4r@toT-x

x^l/f-i3^ HD^l/<v 7 71 Ag- 5 —-?A<hf a#AT##f ^#T&Dx J&

©ao#@g#^"e#Tl\7El^cDT(i%l\^6at)iiao

(6)

X */!/#-#E©:E$#75H§Pi§ 7 - f >y 1 % £'0 <£ 9 (cE § (iSHE#* l^i^Lt

— 177

v § L t A , TO Aff ® ft ALm tt 5 c t (SIS L V F^ © «fc 9 T ® S o

#&©#^##(±##A©##:ft ^ ^ 4;;i/f' - 3 % h-eiitso^ filffteioTfc

A#K t c T & CO % <S-M 3 3 c t (S*#StTte v £ v ofgltAAS «k 9T^§o KS^^^Mcii^^-^iC-oVT^TcDl^A^Sit'LTL^^ffl

©sms, LTv%vmm%#(c, & c t (st

y-feyxil'9t^Oi?t®5o DOE©OT3S# t> z. © «k 9 ftW:£A £> 2##(cA

# < gij bftT V5 J; 5 T& So »S(SDOEASI&i: T ft T V S<h©lgt>|IfiVAo

€© ck-ptc^T, EPA©AA###A©^ 7 xt w TgA&#S#tB<&#^L Ao

fcf s? * x ©2tfST (S A < , f E tiMA (S if x ©Effl#

a, «ii^tffi^oti) ja^nsrrtuf. #xft©m%

£ LT#xft£ — ftfKt S £ V 9 SJgT $ 5 o fflT & LTV

S © (S##A^#T& D x ##FgM$)B#£l=IL j; 9 A%D#i^AA^-^tiTVS j; 9

ft^Lfco

4.5.2

MITOx^-s?-?#? h V -ME**>*'-©Wffl, E£43J:tfIti#SF©^**,

ii'>xfA, ##^£%m, mm##, m?A, ft@^^;i/^-#©wgs&^cAo

TVSo MIT©M b ') - © W0SM 6 A#l^#& A 6 6 SlT V S o

m$zit i 5ifb1(c i $a 2 mm < y^T, #saAT##L, m&x

v<o sA#m#^A##AmmT, em##^tiAc£m±©^m

4&&(fTVAo fAa (nytfzL-^A6##L, m^A^A^tsa

t^t'(D■xm^mmmxir<;'A^mt<Dct0) c£i>£sa, A#^#^©#6$(c

tSS4>LA0

A -3 T#^A (S L (S' L (Sib < #&A& o A A, 3 rfm Lfifr«;£-<h 3 © (SABA&%

©MT&oAo IA©miCo< DI§-rfl£A&D, Co < DIS£M< 6 WE a

f^%AA^V. A#, A^tIii«fib«Lt§f:AI.^ SA, VoAA/^AftAm, A#K%)^D#0Sm6LT@@LTVSA%)0Vo %^© g#©^SA#E©y5i$llT, SrL v^E©Fn1Em^ED ffi t> 9 £ LTVSo fiJA(S5

#mmj& k'-nxt LTV AAA', liijosf; §i$iT-i«'ftPIIfc® D E/VTV

AD, #mc##LTVAAA5#©mm©m%, SM©^M£W §SLAD LTVSg a

178 —

tfTttB U «x

2f|Si *SB x. r u ft l ' ©t & ft v' £ S 5 0

MITT fe *B £#£> t'f %>7i?7 ©4"# to VT2ES TWc0 J&5# 5 75?t yxri*®a^£L'? A###©#6T&ao g%#©^^E

ao^6^?!gR3<&LT&T$)x ^A/ftMl&tiftMfc-^VT&x *^^^©=k9

(eft o Tfr 5>#;ii&a&tiwr J: i' i i' -5 SCT& a o WWFnlE^ES'fk^'tK^iiiH&

£?gy^;u£T(ffttftii;?ftbft < ftagffiTx 0LttS©«ft$W£K a © (tx #&©.

M±iT^ais^na0 mmm±m

ft##&B*(ifflSLr^< ^ST^a0 *©«k o4'gli

Lt^ ^o«k9ftlSSiaofctU^ )R@©^£ft^ft^ck9(e

S9o

#K#OgB%KMLTx h a - ^ X (eS* LTK&SrjSiE LT V

a cbttm%i£&^ *S©

c 6#&a%ai=lS#;M3aT,#x t <’• (cSSSMiS-lKDmtfr *> Lftft I'rik *0$

$ tcozBgicm-am### T#fti ^m#T mb ©hk-b^ e»#xr,

DOEfr & ^ ese®^-? ^ i§$ £' a *§ ft ft t ^ 9 m $> & ft l ft 0

’fiMMfa t JHd^mTE^S©!* DA^&^g,ft tftitfft 6fti'< 6 vE^WE e»

tlTSTVS©^!) LhtiVo E%#t>IEA^B*ftll#lha tZ%i)K Ll^5 < (ift§

V©T(iftV>fc£ V?SC£gti-fto

DOE©A &m#s^MmK#T%PFBc^##mm@% £'©#«# ft l ft

©ftx K®£SltiHkLft©(i3-a 7B$T® a C i bt^i^l© d©

^F?g% $ ft ii ?S^ a ^ ft ft i' 11' -a ft—a. t y x t ® -a ft 0 *. % ;y¥ - i>## ftA# t $

tiagMitts m%Mft^m^±#ft^< cij&STg-fx s^stb & a s l s &m

£>£*ix 0#©B$©A#^^©J; 9ftE^ft%D#/,T^a c £ft^LT6!>L#^ft<k

9T"®a0 MiT©^SJP^^^’yT©7-^ y a jUfixyFiyj y

-* -%#©%(±mm#©a-% bfMIT^DOE#©^##^ 6 x EM • #MMft

^•B©KHI3£§ti-aS£ftS£tift o c#i&EE*^tx #^©EM#ft^i'T(±x

X y 5^-T V y ?<0%Wp b*STS M £ SI -? T V £ 0

— 179 —

4.5.3 mm< %>WmLT\,'tztc\<'fcTllTE(Dj3*

V) &*[,* L±if t'-To ^fcMIT©xt $?-7 4? 7 h V - ©Tester#^ EM©

HerzogKKtt^SitUC^feiftgfcfttJt Lfco MITx* S?-7 # 7 h V -^fg^LT

v/c/cg. J; CXMITM*ic LtfL«'B!jS<£:11EiVc L£ Lfc^Ri—

— 180 —

Table 1 CO2 Disposal Options

X. Disposal Seawater Dilution C02 Lake

Liquid C02 Dry ice OTEC + Liquid C02 Liquid C02

Trans- X. portation x.

Less than 300 m

1000— 1500 m

0—3000 m

1000- 1500 m

More than 3700 m

Gas CO2

Pipeline aLiquid C02

Pipeline 1Liquid C02

Tanker 3 5 2DryiceTanker 4

Table 2 Energy and cost estimations of C02 disposal options

Case 200km 0 1 2 3 4 570% capacity Base C02 DisposaC02 separation Amine Amine Amine Amine AmineC02 transportation Pipeline Tanker Tanker Tanker OTECC02 disposal Dispersing C02 Lake Dispersing Dry ice Dispersing

1 Gross of power MW 1107.8 1107.8 1107.8 1107.8 1107.8 1107.82 Amine scurruber MW - 255.3 255.3 255.3 255.3 255.33 C02 liq. & cooling MW 0.0 101.6 87.4 87.4 218.5 87.44 Auxiliaty MW 81.2 81.2 81.2 81.2 81.2 81.25 Transport MW ■- Included 3 2.0 3.7 2.3 2.06 OTEC MW -48.07 Loss of power MW 81.2 438.0 425.9 427.6 557.3 377.98 Net of power MW 1026.6 669.8 681.9 680.2 550.5 729.9

9 Power plant M$ 716 716 716 716 716 71610 Amine scurruber M$ - 288 288 288 288 28811 C02 liq. & cooling M$ - 100 487 487 926 48712 OTEC M$ - - - - - 52013 General facilities M$ 330 399 399 399 399 39914 Start up M$ 33 63 63 63 75 4715 Transport device M$ - 300 80 80 90 8016 Dissolution device M$ - 10 50 60 - Included 1217 Port M$ - - 20 20 40 2018 Plant investment M$ 1,078 1,566 1,954 1,954 2,404 2,45819 Transport investment M$ 310 150 160 130 100

20 Total fixed cost M$/y 162 281 316 317 380 38421 Plant 0 & M M$/y 95 138 151 151 166 16822 Fuel M$/y 78 78 78 78 78 7823 Transport 0 & M M$/y' 6 8 9 7 31

24 Sum of annual M$/y ■ 335 503 553 555 632 66125 Electricity $/kWh 0.053 0.122 0.132 0.133 0.187 0.14826 Increase of disposal M$/y 168 218 220 297 32727 Captured C02 Mton/y 5.21 5.21 5.21 5.21 5.2128 Avoided C02 Mton/y 3.20 3.27 3.26 2.53 3.5429 Lost of electricity M$/y 116 112 113 155 9730 Annual C02 Disposal M$/y 285 330 333 452 42331 C02 Disposal Cost $/ton-C02 captured 55 63 64 87 8132 C02 Disposal Cost $/ton-C02 avoided 89 101 102 179 120

— 182 —

Thermal power plant

Depth ~500 mC02 dissolved seawater \

Fig.1 C02 pipeline dispersion (an unconfined release)

Fig.2 C02 pipeline dispersion ( a confined release)

183 —

Thermal power plant

Fig.3 CO2 lake at deep sea

Thermal power plant

Loading

TransportationCO2 Carrier

CO2 Shift

CO2 Disperser

Dispersion tour

Pipe for dispersion

Fig.4 CO2 tanker dispersion

— 184 —

flow rate %

pipe length of dispersionpart

Ld

Seawater / C02 = Ld cos 8 b(x) v /Q =3200

width of wake b(x)

outer diameter of pipeD X

>

width of wake b (x)

b(x): width of wake= 3.16 (3 (xCdD) 0.5 =4.8X0 = 1.26 m

Ld: Length of a dispersion pipe #100 m

8 : Grade of the pipe (Vertical: 0 degree)=34.4

v : Velocity of a ship =z 0.6 m/s (3 knot)

Q : Feed C02 =0.1 m3 / sec

x : Distance from the pipe =100X0 = 26.3 m

CD: Drag coefficient = 0.7

D : Diameter of the pipe =0.263

Fig.5 Dispersion of tugging pipe

CO2 Separator CO2 StorageCO2 Liquefier C09 Tanker

OTECH0 Tanker

Dissolution of C02 into deep seawater

1000 times Dilution

Fig.6 OTEC + CO2 Dilution

—185 —

Dis

posa

l Cos

t [ $

/C02

avo

ided

]CO2: X ton/h

CO2: Y ton/h

CO2Separation

Power plant

Power plant

CO2: Z ton/hCO2 captured = Z

CO2 avoided = X - Y

Fig. 7 Definition of CO2 Avoided

200

150

100

50

0Base Pipe Lake Dispersion Dry ice OTEC

Fig.8 C02 Disposal Cost (including capture )

—186 —

400

w0 a

1i_0 0)0)

1CDcc

350

300

250

200

150

100

50

0Base Pipe Lake Dispersion Dry ice OTEC

Fig.9 Electricity cost, 1100 MW, 200 km

C02 gasfrom Separator

r250Cooler 1 st

Cooler 2nd

C02 LiquidDehumidifierCompressor 1 st

Compressor 2ndAdiabaticExpansion

Dry iceRecycled

Dl PressFig.10 Dry ice Production Process

-187-

CO 2 Liquefier for TankerM-

C02 gas —^ v

X

Compressor Dehumidifier 1st 2nd

KHXHXICooler

1 st. 2nd 3rd

CO 2 Liquefier for PipelineL, . c . CoolingHeat Exchanger Water

C02

£ 150

—O— Pipeline —D- - C02 Lake# Tanker Dispersion —B- - Dry ice —A—OTEC

1100 MW

0 100 200 300 400 500 600Distance [ km ]

Fig.12 Distance vs C02 disposal cost (including capture)

188 —

Rel

ativ

e el

ectri

city

cos

t [ % ]

Dis

posa

l Cos

t [ $/C

02 a

void

ed ] -o-Ripe, 1100 MW

—•—Tanker, 1100 MW

-a-Pipe, 3850 MW —■—Tanker, 3850 MW

C02 dispersion

0 100 200 300 400 500 600Distance [ km ]

Fig.13 Plant size vs C02 disposal cost (including capture)

350

300 t

250

200 |L

150

100 t

50

030 35 40 45 50 55 60

Plant efficiency

Fig.14 Electricity cost vs Plant efficiency

—•—No disposal, base case —♦— 2 x Power plant cost —■— 3 x Power plant cost —6— C02" disposal’ "base" case

2 x Power plant cost3 x Power plant cost

1100 MW 200 km Pipeline

— 189 —

3. mnw&mftfflsmm

(2) mm.: IliiSf 'bM fog

S A S M : y y ^ y#^A#

-191-

#######

iSMitmnim&m® ^ee^w

/J\ jtfe ?P 3£

1. SAflmilSgg £SAXE^

jc. A X J. 9 —i

/yfy^A^c# <k##

Hffl

Prof. James J. Turner, FES

Department of Chemistry, University of Nottingham

University Park, Nottingham, NG 7 2 ED

England, U.K.

2. mmm

^ 6 12H~« 7 ££ 8 130

3.

^-E'fk^SjiTcS®vr, M®«0

|SI±n RJEB&^®©S£A*SISW^*ifi26Tfe»)N #iS©W&^f LTl's^n a a? g, ^ 6-c ^ % i \ ^

t±N ^ 0Wti:CO#lMiJK^v Klc, KEB&f a f: )6, S«

#(-s vtufx im

^ ©##:^©##©jt#^M# t % % o ^5/ yf

ik##

#K«kS ##: © Ed^E©E<k £ B^E# © M#& 5 0

B • mM©35#&m^ $#%©mm<&EiSo

-193-

4. m$zm

4.1

u — V V )fclS§i.Mi©MB£E L ft v & t Aj £'it—©—Elk

i%M(E>ytM7bM.M t LT-x Lehn 6 K <k 6 [Re1 (bpy) (C0)3C1] (bpy=2,2'-bipyridine)

%r<(DW3U>Vrft>tiT%tc\ Lrf»U *©K(&BMgfco^TB\ ftm&m

=k 3 1 S?il5c&©£)imiB£ ilT V 3 21> © ©. >

2 #?B ©igyc - a 6 A, ^ ©i#@^^% © 3 $ a &

tlTl'So

*E^ST(iN V ylC?£i^fcf2fe?£3#o®*cDSt#:£-£i£L\ Z<Dtp-£b ifac-

Re1 (bpy) (COMP (OEt)3}]+^®l'S?C. t LTl' Z 40 ttc, E

H© [/ac-Re1 (bpy) (COMP (OEt)3}2]+^©:$Tt!i§EH$©-nt&i'>

KM-f a#05^fr-?T#fto £ Sfcx dtib© b y t°t)

i£#£# © £ #S L ft * > - >#BSSi © x ^ 7

6 (c j; D x SEt£S, 1 S©®?E4mT& 3 3 SEMLCT (Metal to

Ligand Charge Transfer) :KS © Jz£ • '/izBililE;£‘9§ 5> ft1 {£ L T § ft5 0 L ft1 L ^

3MLCTtfiS©M(;: -? V T ti\ y-7 t* t°»; ^©####(i

§t:£ft&©T&ftt'£ £j&»6n -? ftQ

*e^t a, t n?®§ 1 erne tf e v s? K#A l ft##=e^m i,

sjstKik 1 m?i§7c^#. 3MLCT#^^m^ ^ ^ a##, #{c®EycS©*>*-->

#«»©^x^7 b;i/©g!ime^ix ® & ft emm#^ © #*©#

h Mil 5>tlfto 4,4',5,5' - tetraperflnoromethyl - 2,2' - bipyridine £ EE t£ L ftSa#:

©3MLCT®s#:s-e(t, ft m a A # ft #mm y 7 h ;£>$«£ ti ft 0

Cotton-KreishanzeI©Ai£6£fflVft*©SB©lfSft‘b fe ^ CO#BM?©*©SB©

E^ftiSA^ SMcft /Co 3 MLCTBEyeS ft & V T t>. XEytffi <b III C Mini ©

mmtm©m?#3:aA @#*©#AftA a######©

^&{k©%mff^T%< x h-k° v ^;i/m&?©mmm?±©m?#a©^'fk©##^A#

— 194 —

4.2 E§E»©F*3S

fc & t.' t\ v-$ a (i) e t° y s?;u b y fs ;u*"-

f y # A A# ? - f K ^o i' (TRIR) h >$i]SS@£

flii'N o*;i/d?-xtf h fr%M%Ltz0 M»Yiwoffl

^>e.^i6ycS^^S:?;KS©x*;i/4i'-<b, TRiR££fc;fc®gi&3fcx-«*

& #:tfdS& tf 5 *;v*-->#,«$/cdE4kicovr, #

"£ tc.*> ^17lsIS^^:{k#s#(^Lb^ Lx "Photochemical Ligand Substitution

Reaction of [Re1 (bpy) (CO)3{P (OEt)3}]+” tz0 ttc^

%wrnift% KMtz tc & v xmm^M t mb • tza

4.3

(i) urn## ifac-Re (bpy) (CO)3{P (OEt)3}]+PF6“ (bpy=2,2' -bipyridine) (Fi+PFS~X

E/ac-Re (4,4' - dimethyl-2,2' -bipyridine) (CO)3{P (OEt)3}]+PF6" (FiMe^PFs'X

[fac - Re (4,4'-diperfluoromethyl-2,2'-bipyridine) (CO)3{P (OEt)3}]+PF6_

(Fi (CF3)2+PFs~X [Re (4,4',5,5' -tetraperfluoromethyl-2,2' -bipyridine)

(co)3{p (OEt)3}]+PF6- (Fi (cf3)2+pf6-)

X'nJ&Ltc7 o $ 6K\ 7*X7=- h##^P (OEt)3 <t £ t> fcT-h h -

h y JI/TkXf 7'f-D^ h y & C6KZD ^7^X7^- HI#: [Re (bpy)

(CO)2{P (OEt)3}2]+PFs" (P,+PFs-)x [Re (4,4' - dimethyl-2,2' - bipyridine) (C0)2

{P (OEt)3}2]+PF6~ (PiMe2+PF6-)x [Re (4,4' - diperfluoromethyl-2,2' - bipyridine)

(CO)2{P (OEt)3}2]+PF6" (Pi (CF3)2+PF6-)^Sfc0

T -h h — h y 5? 9 d a ^ j? y (£>, Aldrich Chemical Company x ftDfcSii

S> O®IESHPLC grade^rCaH2±TS® LTffl V/Co ##

is®mo-4M£u Tvi/zfygmcjiomm&m#,

-195-

(2) (TRIR) h>E5£EB

TRIRX^7 HHi, g£$8©Ijl ©g*{-£ i?M^Lfc8o ©igftzl {;:& Quanta'-

Ray GCR-12S NdYAG I/-if-©S 3 ### (355nm ,~100mJ/pulse, FWHM 10ns)

Mutek MDS11001/ - if - * - K©fc(j£:M Itffl

VTl'So #&#(±Mutek HgCdTet&ttigsfc <£ D V, LeGroy Digital

Storage Osciroscope {£ <£ DIBIS, /'f V 3 Mflr&ff-o tza A#:©#^^"#

Sg(±50ns*-b 100ms, 7 S !✓-if-* - F©###

5KJ: DESS it, 1560-2100m-'6%cTt'&o mm#, 2*7^

L, )ft&51.5m© 7 a--&>£!)•£ VTSfcES£’M'7r$iJS£fT^

tz0

Mutek MDS 1100 diode laser

Monochrometor

IR detector beam trap

E"*

•Optical'chopper

sample flow cell d = 1.5 mm

IBM-PC computer

photodiode 1 trigger

Quanta-Ray GCR-12S

Nd YAG laser

1 Schematic diagram of Transient infrared absorption (TRIR) spectroscopy

(3) • mk h ;i/#m

h >©E5£iUi, HS310^)feSlf-, SMMJSfcti:,

JEOL JIR - GSOOR.CXBio - Lad FTS-7 spectrometer/ir^i \^tz0 ^7 h 0

SPSOGOib^MStf KJzId E5£ L fz o

-196-

im&mTbfcoftmmz.ii0-m*7Aii m2) ^^vrji^Lyc

IR cell ■■► (UC-IR cell, GL Science Inc.)

>

<=

Reference electrode (Ag/AgNOg)

Pt lead toworkingelectrode

Pt wire / /counter 'electrode porous glass tube

containing Pt working electrode

All the electrode potential were controlled/measured by using a BAS100B electrochemical analyzer

sample solution from the Flow pump (JASCO PU980)

IH2 Schematic diagram of column flow electrolysis cell

4.3.2

(1) ## 1/-9 A h V #

[Re1 (CO)3 (L-L){P (OEtMrRtf [Re1 (CO), (L-L)

{P (OEt)3}3]+ (L-L=substituted 2,2' - bipyridine) * #^#4%

ffe© — h »J jj — -MiffctlTOfcx if k° V < 3

n n*WMt' & tf t: % CMLCT)

S^3mlct#:St® a c i t> fr-vtb a 0LLMi LTFi+PF6~Ef$©T-fe b - b V vi/^%©%iR • h ;!/&

E 3

— 197 —

[Re(bpy)(CO) 3{P(EtO)

Absorption1MLCT

Emission3mlct

Wavenumber / 10d cmEl3 UV/Vis absorption and emission spectra of F]+PF6“ complex in CHsCN

ctiz©x mw<Dnm • 1 t*t°v

^(/ 5LwS)©SAi^J: DMLCTM©x*;u+'-^iiSn

SOIt^Lx Fi+,Pi+Vf:tLO^|)E;?®:5l'&B^S (7>*ny ©SAfc

«k C (Sl)o c CD(i/ac- [4,4'-x2-

5,5' -Yz -2,2' - bipyridine] Re.(C0)3Etpy+ (Etpy=4-ethylpyridine)

1 Photophysical properties of Fi+ and Pi+ related complexesFiM^ Fl+ P2Me2+ Pl+ Pl(CF3)2+

vmax^s / cm-1

30300 29850 27550 27400 26880 24570

v Emmax/ cm-1

19420 19200 17825 17640 17450 16130

(2) TRIRlCd; 5s h ;i/CD$l]S

(2)-1 Fi+PF6_OTRIRX-?7 F ^

7>n"yg^Lf-cT-b h - h V Fi+PF6~©TRIR* ^

-198 —

tco 5 /zsE©x^ b 3 (A), (B)(c, ®Elu©S.

U?T-ir b - h v ;!/##: ([Re (bpy) (CO)2{P (OEt)3 }CH3GN)]+PF6")©FTIRX ^

f b>^(C), (D)ldsto SE^Soyi^fcckSM©^

n t m&tfim imm znzmtc % ##/< y k *w=o

0.04 - (A)

immidiately after flasfFi+ PF6- in CH3CN~- photo-product

5.0 gs after laser

Fi+ PF6- in CH3CN -

[Re(bpy)(CO}2{P(OEt)3}(CH3CN)]+ PF6"in CH3CN

Wavenumber / cm "1

EI4 Transient IR absorption spectra of Ft+PF6~ in CHsCN immediately after laser excitation (A) and 5 gs after irradiation and FTIR spectra of Fi+PFe" (C) and photoproduct (D). In (A) and (B), the dots are experimental data by point-to-point TRIR measurement and the solid lines are the best fit result of Lorenzian line shape fitting.

— 199 —

FTIR©£§^ (C)©£ffi A"C^ F (c-o VTLorenzien band shaped

7-f yf-f b Jl'T?&5o point-to-

point}S*e$iJS L a:TRIR©M#&=k < WMt &T? § fco $ fcx £/& L fcif fcft

KttN ^ & C 6 #& b#@#^#"e $ 6 3MLC

TJKS!0!RJRi#JS$tlfco

F/&#%-©###©#&(;:#. 3fe@jgK:<kt)Effi;FgSlRJ®*siljEStiSo c©

co©m@@6#ma-?©m&6#x.3#T^a^ ytmm®5 /^©trirx^? b>

(B)Titx 3mlct#cS©ES©EtI)x SK#cS©EJR(j;^K (aiM-tif\ <k D

ffiii&E fcSr £ ft 2 :$: © y K©£fifcj&sSa&&:JiSo CO^gM©##^ y F^2$

6&(f^B%#©NMR%^^ b ^*##:©^E#:?S#KlS©Ak

Fi+© 3-o©*>dC->© 5 S© 1 [Re(bpy)

(CO), {P (OEt)3} (ch3cn)]+pf6-£:!§JR$ ft/Co

H 5 {C(ix 114 © (A), (B) {cSDX-Tx ftSKjftBMRti’-? (1959.3cm"1 (ground

state), 2011.8cm"1 (3MLCT state), 1870.8cm"1 (photoproduct)^ST'ISSl L ftBRlR

(C(±x f »"P^Kg@#i#©#^63MLCT##©a^C ^ C to ^ 3Kx Z.U

b#&gLTff < fco^ix T-fe b - b V 5 C 6ififrfr Z0 Z fob ®M

iisir-fe b - b v >ii^©Mj®si±x E&?

smM^'3MLCT^S^E6 Lr V zct a o

(2)-2 Fi+&tfPi+©E§W©TRIRX'<;? b>

Fi+, FiMe2+, Fi (CF3)2+, Fi (CF3)4+, PiMe2+, Pi(CF3)2+©®lM^©TRIR

x^^7 b;i/&H6x 7 iz^to

Fi+6f ©m##?(ax SE#cS<h3MLCT^S©M-eGs^W© 3i@©COEtir?

3 ^:©CO####©#lR/< y F (2 a', a") tlfto —3jx Pi+<h

^©###:%= (a £'h° v 5?> tdfcsp.®K&a 2"O©C0Kj;6 2 $©B&4%/< X F (a,, bi)

^'ES'JS tl/co

H 6 7 T’tax liBJ S tl ft point - to - point © X ^ :7 b Lorenzian

band shape^riS^ L ft 7 ^ «;f-f y ?"&ff ft y F © b°— ^ /c0

200 —

8C<0

JQO<0n<<

<DOcCOa

8n<<

0.04 - (A)

0.02 -

photo-product0.0 my

cni -0.5oV

x -1.0Sro-1.5€o« -2.0<< -2.5

-3.0 - t4 6time / ns

HI 5 TRIR spectra of Fi+PF6 in CHsCN and typical decay profiles under Ar atmosphere.

—201 —

##TLorenzian band©#0t#%x o ^fcs rhS© 8nfc-»

fixed parameter6 LfcFTIR^ 'S K #T#

s §

Wavenumber/cm *'

2000

Wavenumber/ cm

0 6 TRIR spectra of FiMez"1", Fi (CF,),+ in CHaCN mad F,(CFa)x +CHzCI immediately after laser excitation (dots). Lorenzian band fitting results are plotted in broken lines(each component) and solid linesCthe sum of 6 components). The values of fixd wavenumber parameters for ground state species are underlined.

Wavenumber/ cm

1934.7 cm 2015.1 cm 1934.7 cm 2015.1 cm0.02 - - 0.02 -

-0.02 -

18952 cm 18952 cm•0.04 - -0.04 —

Wavenumber/ cm Wavenumber / cm

HH7 TRIR spectra of P,Me2+PF6~ (A)and P, (CFsVPFe- in CH3CN Ar atmosphere, immediately after laser excitation (355nm, 10ns).

(3) Fi+B.cfp/<Dco##mmttsust v k° v &>©

i/ —£ a* >— ©CO©|g-S-X* JU4^ - (i N A ©d,#?^ 3

CO© 7T *#m^©back - donation CO##@#© ### It U-

— 202 —

et°y L^##=*=-3i'T. mimm,

1 M^MytVtM, 3MLCmmytMe>CO''° y F'MM&fflfeltco

3 iz^to

2 CO streching band frequency of F/ type complexes

Ground state Reduced species ^ MLCT state

v^a1) v2(a") v3(a') Vj(a') ' v2(a") v3(a!) Vjfa') v2(a") v3(a!)

F1(CF3V" 2054.4 1976.6 1942.8 2038.0 1950.0 1914.5 2124.3 2043.5 1997.9

Fl(CF3)2+ 2052.9 1970.9 1935.2 2029.7 1937.2 1906.3 2105.5 2030.7 1984.3

Fj+ 2047.1 1962.2 1927.5 2022.0 1927.5 1895.7 2070.9 2016.6 1968.7

FjMe2+ 2045.2 1958.4 1925.6 2021.1 1925.6 1895.7 2064.7 2011.7 1962.4

*) frequencies are in cm 1 unit

3 CO streching band frequency of P i+ type complexes

Ground state Reduced species ^MLCT stateVjfap v2(bj) vl<al) v2(t>i) vl<al) v2(t>i)

pl(CF3)2+ 1963.2 1890.9 1936.2 1859.1 2015.1 1934.7

Pj+ 1955.9 1881.3 1928.5 1848.5 2012.0 1927.0

PjMe2+ 1953.6 1879.3 1928.5 1849.4 2006.4 1919.4

*) frequencies are in cm"1 unit

CO stretching band shift-

-e-pi<CF3ifinCH3CN

Reduced Species Ground State

Molecular StatesMLCT state

CO stretching band shift

-C-Fi(CF3)4*inCH2a2 _S-F1(CF3)2*inCH3CN

—F|* mCH gCN -*F,Mo2* inCHgCN

Reduced Species Ground State

Molecular StatesMLCT state

El 8 CO streching band frequency of Fi+ type (A) and Pi+ type (B) complexes

b i; # (Pi+)6 &(Cx

§CF3S©SA(z:ek§El:^KEE'>7 co#|6|E, $16Mi*:ET&

< 1 #?]§5c#K 3MLCTt£SE&VT 1,11 tiT'S ^ tCo

l*»u 1 3mlct^o#^

T CDMU D A § £ T£ S © M L T^ b V * > *" - ;i/£§#©i§ A E E ^

3MLCT^cET#EES1ftBBISMriWJ£ ft A (H8 (A))0 £©*§lilE,

TSA L/cGFbS, GH3S(j;dfcq|^^^jtycf:E$S^S©a.^j#o c 6 6 t,

'7* >d?-;uH^T(i3MLCT®/EyeST©SS^e/^tEE^^S^$

iSftiLTt'SOEStf LlA b V 6^-^:

tLTUSo

(4) COffM@©*©/Eifc

A#* ;i/df — ;i/##:TE^ * KE < 6^<TSL

< i###kT&SA6E^ #©##t- pto* y y v yy%MULtzftMte£io?§.gjKA § & (Energy Factored Force Field)14,15-160 $$7F%© 5? * ^1/ tK — A/

##: (Pi+) 0#Ax 2$Ot°— 9WM. (v (aO, v (a3)) ^ b>» Bi-lEkco (principle

force constant for GO streching vibration) S.<Ib'kco,co (interaction constant between

two CD’s) & o

—2k Cs tm® b V 4?->£§&©COE^ bpyE&? t % & 0 6

!6^l5]cD2ffl^Sffi1-S (H9)fc*A #&%A©^%E4@6%b^ f©$^TE3$

®t°“^l(2i;(a'), v(a"))i^|g?i-St^i:t(i?lfel'o L2»U D

T b V 7Jl'CO£7*i'7Jl'COm (keq,ax) ti^Tb'J T >CO|lI±©SZfEffl5£B

(keq.eq) L6##%, 5 Cotton-Kraihanzel©9^& (ki=keq,ax=k=q.Eq)

E=k (9^ E$|J§ fttzMMB.<D7*- %Wi (keq, kM, fc) 5 C

§6o 2^1 {b £ ft A7toZHS;Ex

k",+ki+K(a')V2^, jL+W)

0 0

00 = 0

ktg~ki-K(a")

El9 Interaction force constants of F,+

— 204 —

c COOilli OcoX ESlJ $ tl S co# MSi©5&E

C yco) >6*t>>* Kco= nco 1 • A —4.0393x 10 4 v co 2 <b IE $ 'ft 5 o

b±i6t:2]<D%8c&m3* 4 tmiOfct

#3 Energy Factored Force Field (EFFF) calculation result for Pi+ type complexes complexes_____________________________________________________________________

Ground state Reduced species ^MLCT statekeq kax ki keq kax ki keq kax kj

Fi(CF3)4+ 1626.1 1555.4 48.0 1589.3 1515.6 53.3 1739.4 1643.1 52.6

?!((%+ 1619.5 1545.1 50.5 1570.8 1506.1 55.0 1714.4 1618.0 48.7

Fl + 1607.0 1534.6 51.8 1556.4 1493.9 55.7 1678.8 1583.0 36.1

FjMe2+ 1601.8 1533.0 52.6 1553.9 1491.4 56.2 1670.0 1572.2 35.3

*) Force constants are in Nm~* unit

#4 Energy Factored Force Field (EFFF) calculation result for Pcomplexes

t+ type complex

Ground state Reduced species ^MLCT state

kCO ki kCO ki kCO ki

1500.5 56.28 1455.2 59.1 1576.1 64.1

Pl + 1487.4 57.81 1441.2 61.0 1567.5 67.6

plMe2+ 1484.1 57.52 1441.9 60.35 1557.1 69.0

*) Force constants are in Nm"* unit

(A) andPj+ complexes (B)(B) Pi+ complexes(A) Fi* complexes

Ground State MLCT State Reduced Species MLCT State tc-o

Groutd Statek^1930 -

fledjeedState k,

k. (Rod.)

Reduced

k. (MLCT)

(CFJrbpy (CFJfbpy bpy (CHjz-bpy

bpy Ligand bpy Ligand

010 Force constants for CO streching vibration in modified bipyridine Ff + (A) and Pi+ complexes (B)

-205-

COWWiWiW)(Djj(D(principle force constants) KoUTn Fi+,Pi +t'lf'tt©

#-o #?#^l#^©#AKck 3MLCTt£SI>il‘26"£\

bPyiBfe?±©ii?®:?ittS{ceb u N £ *a %

©SSSn CO© ^ COS§£©Mri53l Siifc u

bififrfrZo Fi+©^{c(iN keq, kaxt&fc-, 3MLCT^#T#K##^##g

tztiK CfT,W\ Pi +T (± 3MLCT%^#T © Re*) 6 bpy ^ © @###^ & (g

mm^mtmi® ©*1 attzz®

Fi+©3MLCT^#T(±@###^AT(j:% < x bpy±©#?#g|#gK j; 5

o ta # < nxt s ttj&iji $ n s 0CO%©#Sf#M^# (interaction force constants) tco VT(i-» Fi + ©3MLCTJf^

B©#A-2#l'T##%##&6aT,%&c /:o Fi + ©3MLCTt^Si^^Vr^

#g&#A L LTt^a ck 9 Cotton - Kr eishanzel

A*A ^©SMffitiHETzb517>180 £ ttA-ol'TtA 1=1#:#:^

4.3.3 ##

[Re (bpy) (CO)s{P (OEt)3}]A [Re (bpy) (CO)* {P (OEt)3 }* ]+ fco l'T\ bpylfi

&?© 4 j; [f 5 &lc#?#g|#m&#A L A#A(c (±, SEttlk 1 Ed^A^S©

jStfj A&VTx CO#ES®E©iiA^EE$ tltCo ReA#^ 6bpyE@:?^©

E###©##^#AL AA&6^ Re±©d,E?#®^#^L^ Re*)g)CO©S#A#

?r *m«^©i£te©E^£ C A £ LTgfcUlSftfco

BtFa^W^MiS (TRIR) C g, ©##=©#@m#B^#T& 6 3 MLCT

tmocoH/Sli^A (b d 5, EWSWigtRffiA & v T t>, SE^E<hHCElS]©E

ms^m^BESftAo coding,. bpyE&?^©m?#gi#emm©#AE#

##^#©^/fbKj;6*E#m6©mS^m©#Ack D t)x Ktid§A£ilLARe±©

s s&m#a § £ *§ii s *i a«,

bpyE&fA. 4o©CF3S£SALA [Re{4,4%5,5-(CF3)*-bpy} (CO)3{P(OEt)3}]+

trii, #mmm©co##mm^y 2124cm-1 taim©—sMb^ss (2143cm-1) as

^R##AS/7 h LtU^ *;5A#Re^ 3bpy^©E###)6## A{%#$ 5

Z.t&tiRbfriz.lz-ot: o

— 206 —

h ij xf;i/7^7 h (P(OEt)s) + 2 o ©Pi+H#£Ji;

bpyiKfia5COii^0lIlM(is Fi+T

(i3MLCTt^S& vtp i+dE,£> to t^IIE$iifc0

&MRej&»£>bpy^©TO^f&©Jiffifc^J&*WS & ® £ L Tl£BJ3 £ tl 5 o :0:i^ E

Re±©E#&%A(c##&#y: 1 , ^0COig»£Fi+,Pi +

©WSfcoVTTRIR&£ffl VTBE^5 C. £ J: 59 ^ E##$*1 §0

4.4

L0

4.5 If 1

@ 0 #####: © MMES £ * © IS$ K o l\T©##&ff ofc&tzt)' &T&C

y-Co #K, &JS* ;i/tf-;i/E0®«?^0MT£ § ?-±-Hmz> z. t(cj;D, C £^T#y:£ £

&K\ % 0 B # £ ^ 5 m4k#: 0 0 ^ ^9 6 ^ (c f - a C £^§fco

ty-Cs HE& VrESfcBflnLy-cc £{^J: D ^ #^%y^E^T-^ K

< vx mmm#©m#Mx • m#m • iw^*iia5^©

#-?o#%£#MiJi%x 0< 0%E&#3 c £^

T§y-Co c © c £ W\

5. ##a:m

(1) Ziessel, R.; Hawecker, J.; Lehn, J.-M. Helv. Chim. Acta 1986, 69, 1065.

(2) George, M. W. ; Johnson, F. P. A. ; Westwell, J. R. ; Michael, H. P. ; Turner,

J. J. J. Ghem. Soc. Dalton Trans. 1993, 2977.

(3) Pac, C. ; Ishii, K. ; Yanagida, S. Ghem. Lett. 1989, 765.

(4) Hori, H. ; Ishitani, O. ; Koike, K. ; Johnson, F. P. A. ; Ibusuki, T. Energy-

Conversion and Management 1995, 36, 621.

(5) shitani, O. ; George, M. W. ; Ibusuki, T. ! Johnson, F. P. A. ; Koike, K. ;

Nozaki, C. ; Pac, C. ; Turner, J. J. ; Westwell, J. R. Inorg. Ghem. 1994, 33,

— 207 —

4712.

(6) Cotton, F. A. ; Kraihanel, C. S. J. Am. Chem. Soc. 1962, 84, 4432.

(7) Caspar, J. V. ; Meyer, T. J. J. Phys. Chem. 1983, 87, 952.

(8) Dixon, A. J. I Healy, M. A. Hodges, P. M. '> Moore, B. D. ; Poliakoff, M. ;

Simpson, M. B. ! Turner, J. J. ; West, M. A. J. Chem. Soc., Faraday Trans.

2 1986, 82, 2083.

(9) Oyama, M. : Nozaki, K. ; Okazaki, S. Anal. Chem. 1991, 63, 1387.

(10) Giordano, P. J. ; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 2888.

(11) Juris, A. ; Campagna, S. ; Bidd, I. ; Lehn, J.-M. ; Ziessel, R. Inorg. Chem.

1988, 27, 4007.

(12) Turner, J. J. ; George, M. W. ; Johnson, F. P. A. ; Westwell, J. R. Coord.

Chem. Rev. 1993, 125, 101.

(13) Cotton, F. A. ; Musco, A. ; Yagupsky, G. Inorg. Chem. 1967, 6, 1357.

(14) Cotton, F. A. Inorg. Chem. 1968, 7, 1683.

(15) Burdett, J. K. ; Poliakoff, M. ; Timney, J. A. ; Turner, J. J. Inorg. Chem.

1978, 17, 948.

(16) Jones, L. H. Inorg. Chem. 1968, 7, 1681.

(17) Jones, L. H. ; McDowell, R. S. I Gouldblatt, M. Inorg. Chem. 1969, 8, 2349.

-208-

(3) mmiftm ■ mm

§ASi: h d

3.

X.

-209-

% #

¥ m m it

i.

Professor Dr. Olav Smidsrod

Norwegian Biopolymer Laboratory, Division of Biotechnology

Norwegian Institute of Technology

University of Trondheim, N-7034, Trondheim, Norway

2. ffffifflEL

% 7^ 6 ^308-% 7# 9 ^158

a.JrT-yltN-T-te^Jl'- jS-D-^aiM d->4) D N +

b f- y yg)N-ET-kf Mb L^@#7 5

*-x x b\ ztiZ&ynizJ: dMb

£Sg£iiT\ f+ b f-fV y>-Aft EoWkftMW-WiJ: D £

vi4 b^y©£#&j&££®j#Jg C+f-y^#

3S) ^LTl\6o t> £>tl3 £ 9 fc7kffl(^UT V S

C0a*CaC03£ <fcJS*>*lSo C ;£ X.*

ESEti> yfiiic& ioXt>Ifcco2(D&mmmw&mmmmt

MG^EORITEEOTSMi^DSbftftl&ll©—3-D.7^fy|

%^cDSllHlfflE^EiuT^Sf-§^Bto^ LZ-Co

+ + M)- y 6 & T ;i/4? (cm&6 T u a Smids

rod#g%*66 Ltc b a y/\^ a^(;: T60 8LT^ Tkffifc&USC02

©g#<hft54 bf-y 6Ty#©#LL^ -fe 5 f-i^Ph.D.#

— 211 —

y 71/?x-^5SWsS©—

Lfc0 ^©#x y >!> i - cd h n a y tH© h a a v^Ti/yyflj

cdyyA^©gf^$'titztKSS®-fe y 7 - & v r > h if y©-?gJl

6©B#(c-31\T##K#T# /:o 7 ^ y 5 y K©^7kyy#A####g^ 7 y^

yiU©7 y^y^c^S-tX+f1 y t+ h ify ©%Mfc£ Lr v SNovasso^tir^Btix 4=-^

y<b* M?-y©SlfflB^T^< ©1f|g]RS^TS/co S bfcx »M^«6^g©R

ITEE^*S{::TS5>ti/c*-^^EEL/c7KE^^^5G02@^'fb©E%6K$^s 7 5

yxcDT'yx MftcTQ J311B~13H©HlallMStifca-oy^+f y#^#©# 1 0

4. mm#

4.i #gsm#

# ^ y(c#07 5 y h -9-y(ijlg|7 s y S^I)0*e^E*e

&3 ®l)o 7vi/#y## jg - D--?y —a. o y#6-^©C- 5 &©&#LA a -L- 7"7i/o

yi0^7D^|T©5 (! 2 )0 *-^lc##&^C0,&CaC03 6 LT©A#MB^

IkWLT^ 7k@3CO2@S4fc©Srffi#:<b LTfijfflih 3 A *A ###©# h If

y t##©7 7i/# y#<gr^#&a L

m&Ltc0

4.2 #^#©m#

h □ y/\>f

h a y^ a a^-m * # 7 y a ^ v -ms

EE6A©##, Uolftm 10A©W3SM. 14A©Ph.D.#A^ HA©E0S##Mx

1 A©##M^^%-3Tl''^o <h i) t7tA>. E%©'□HEfc Prof. Smidsrod, Prof.

Grasdalen, Prof. Elgsaeter, Prof. Valla, Prof. Espevik ^o<k CX Dr.Christensen,

Dr.Skjae - Break, Dr.Vaerum, Dr.Draget, Dr.StokkeN $£>{£>. 5 A©E=fS##MZ&.Cf

9£ic©E5Ph.D.^£ (2 Alt K-f y^S>©®#£) ©@7(cg#KEE#B#^x E

^SfiSoA^e.-fk HS^Si^-oVTlSL-^V^Tis l'5l'5%y 71/9

mST-7##g##;U £#E%M

-212-'

7*4 7%Ati&c Do B*£-^tf

fo&<D*M • 'mm%.Mmm^> t&d> #0S% (±#50%*##^ 6#so%^m

WO&S^&tTN ^*&H)&»&#*tj&nLT1i'£«fci5'r^ofco bfri^ ±#(CT#9X

§sS«® V iM ? ;i/W^iLT^ D s W§£gfcTffl^«©*®»'ck 9 (c##(c 9 $

< SMS *IT V tf: 0(iBl19&&&&■?fco Sfcs Ph.D.#A^^#Kr200,000 (#300

35 F9) 0^#^g#b##%&@, %^lc(±#Aim±0im#&@^mb/b?^/:o $#0S ffiK&VZ

$#?0B$#&i)B$#B#0g#A:NK#4>#&^;R:o 6 D 8

^22B O^Hfl^SU-te 5 5—## "Chemical Modification of Chitin and Chitosan in

Biotechnology” fcT-h55felt!ift§5c0

BI1 bn5f-StfAftMOlav Smidsrod<i:!SEf5«ilS-

InAV^

b a A vA#KT^ ^ “Bio­

technology Annual Review” 0&###Prof. El-Gewaryfc&^V* bT^^^iSH^ tl

T V 5 $: “ Chitin Biotechnology Applications ” b 0 l£ fc>

"Applications of chitin and chitosan in biomedical fields” <hH bT-fe 5 i—

tz o 8511 & ft fc Institute of Marin Biotechnology 0##|^§|3g)B^#0^ -? b

-213 —

MM® cytochromes ©M 9f

ilT V § Andere Goksoeyr1Sdr^rl5tL>. Sffi©t6oW%^$^r,Hl 7 £ £ !>{£>. $r^

□R£ LTSfrS§& iL/cTKSS®^ y $ — (Marin Biotechnology Center) ©fi§f*l£ L TH

t'£o S.H©S5SS%©iS^i^SS§ L/c0 “Polluted water treatment with chitosan

for fishculture” £?5 LT-k 5 i— ^ff^tz0

^ >^\l/±#£Novasso#%

7 ^ y 5 y K©^;i/y B$£^-;ky y^±#^©#A£#^S#

© ©#=K^cu TSH35^ t fc o ^ ^ y+^ Tjfc }c 2 Bt Pal ia £' © eg# ;c &

§ 7 y ^ y rff^K/tu 7 y ^ £Novasso^ti:^T-x Olli Kivekasft £ #£(£ 4- •?■ y £

4 M)-y©f6M@©7 -f y 7 y nc^^6(c-ot\T#M3c#L f: o

' zfis*. b icj&lf 11slEEa —n

^ B tr#ti3s^ © mm# (7^ %/ u*.

^©m^6©mm#^#t?) ©*>£. dues*£ ^ * ?-ig645ft^7*yx hm^ss

110—130 (3 H Pal) KistitZo “Chemical mineraHzation

of CO 2 ions on the surface of a chitosan - CuClz chelate membrane” £ H L TD

m^mhtz

— 215 —

CHEMICAL MINERALIZATION OF CO,2 IONS ON THE SURFACE OF A CHIT0SAN-CuC12 CHELATE MEMBRANE

Shigehiro HIRANO, Ko-ichi YAMAMOTO, Masashi YAMADA, Hiroshi INUI, and Ming JI

Department of Agricultural Biochemistry and Biotechnology, Tottori University, Tottori 680, Japan

Abstract

Some composite materials of chitin and chitosan with metals (e.g. chitin-CaCOg, chitosan-CaCl2 and- chltosan-CuCl2) were prepared as a mimic compound of crab shells. In an aqueous KgCOg solution at room temperature, COg2- ions were mineralized as CuCOg on chitosan-CuCl2 chelate membranes, and as CaCOg in porous beads of chitosan-CaCl2 composites.

Keywords: Chitin-CaCOg composites, chitosan-CaCl2 composites, chitosan-CuCl2 chelates, chitosan-copper carbonate hydroxide, the hydrosphere, mineralization of COg2" ions.

Crab and shrimp shells are a composite material of CaCOg, chitin and proteins. COg2"" and HCOg" ions are mineralized as CaCOg into the shells by these animals in the hydrosphere, resulting .in an prevention of the green house effect on the earth.

The present paper reports the preparation of novel composites of chitin-CaCOg, chitosan-CaCl2 and chitosan-CuClg in a form of membranes or beads, and a novel chemical method for the mineralization of COg2"" ions on these composites in an aqueous K2C0g solution at room temperature as a model

"experiment in the hydrosphere.

Materials and methods

A commercial sample of chitosan (Kyowa Technos, Chiba) was purified, and used in the present study. The C/N ratio was 6.01 as calculated from the elemental analyses. \> max (KBr): 1600 (—NH2) cm . FT-IR spectra were recorded on a Jasco FT/IR-5300 spectrometer. Elemental analyses were performed at the Microanalytical Center, Kyoto University, Kyoto.

— 216 —

ExperimentalChitin-CaCOg composites

N-Acetylchitosan gel was prepared from 0.8 g of crab shell chitosan, dialyzed against running water for 2 days, and homogenized in distilled water. The homogenate was filtered, washed with aqueous 0.5% NaOH solution, and pressed on a filter funnel to afford ca. 18 g of a gelatinous mass. The mass was suspended in 46% NaOH (15.5 ml), and stirred at room temperature for 2 h to afford a swollen product. To the product, pieces of crushed ice were added, and the total volume was adjusted to 50 ml to give a 2% alkaline chitin solution in 4% NaOH. Into the. alkaline chitin solution, powdered CaCOg was suspended at 0.1, 0.3, 0.5, 1.0 mol equiv. per GlcNAc, and each of the mixture suspensions was poured dropwise into EtOH to afford a precipitate of chitin-CaCOg composites. The precipitate was suspended in distilled water, and centrifuged at 1000 x g for 10 min, and the washing was repeated several times until neutral. Several white amorphous chitin-CaCOg composites were obtained in an average 61% yield, p max (KBr): 1655 and 1559 (C=0 and NH of NAc), 1431, 878 and 712 (COg2^) cm-1.

Chitosan-CuClo chelate membranes

A thin chitosan membrane was prepared by air-drying a layer of chitosan solution in aqueous 2% AcOH on a glass plate. The membrane was dipped into an aqueous 0.1 M NaOH solution, washed thoroughly with distilled water, and air- dried. The membrane was cut into sheets of 1.0 x 3.0 cm.

A sheet of the transparent colorless chitosan membrane was dipped into an aqueous 0.5 M CuCl2 solution (200 ml) at room temperature for 12 h to afford a bright blue chitosan- CuClo chelate on the membrane. 0 max (KBr): 1625 (NH2) cm""1. Anal. Calcd. for [CgHi-iO^CuClgJo 53 0.61 H20]n: C, 29.60; H, 5.02; N, 5.75; Cl, 15.47; Cu, 13.84." Found: C, 29.80; H, 5.30; N, 5.85; Cl, 15,41; Cu, 13.35.

Chemical mineralization of CO3— on chitosan-CuClo chelate membranes —

A sheet of the chitosan-CuCl2 chelate membrane obtained above was dipped into an aqueous 0.5 mol K2C0g solution (200 ml) at room temperature for 12 h to afford a dark blue colored chitosan-CuC0o«Cu(0H)2 chelate. About 0.14 mol COg2- ions per GlcN were mineralized on the membrane as calculated by the

— 217 —

2-elemental analysis data. Vmax (KBr): 1625 (NH2), 1410 (COg*) cm-1. Anal. Calcd for {CgHi^N^CuC^Jo 02’^CuC03^0 14* [Cu(0H)2]0 37]>n: C, 33.90; H, 5.62; N, 6.44; Cl, 0.65; Cu, 15.49. Found: C, 33.91; *H, 5.63; N, 6.47; Cl, 0.86; Cu, 15.25.

Chitosan-CaClo composite beads

A viscous solution of 1% chitosan in aqueous 2% AcOH was added dropwise into 1 N NaOH solution to afford swollen chitosan beads. The swollen beads were soaked in a CaCl2

solution in EtOH overnight to afford hygroscopic chitosan- CaCl2 composite beads, which were stored over CaCl2 in a desiccator.

Chemical mineralization of COg— on chitosan-CaClo composite beads. “ ~

The chitosan-CaCl2 composite beads obtained above were dipped into an aqueous 1.0 M K2C0% solution at room temperature for 12 h. The beads were collected, washed with water, and dried to afford chitosan-CaCOg beads. ^ max (KBr): 1420, 870, 710 (C0g2~ ) cm-1.

Detection and analysis of CO3— ionsThe mineralization of COg2- ions on these composites in

water was analyzed at specific absorptions at 1431, 878 and 712 cm-1 in the FT-IR spectra (KBr), and the quantitative analysis was performed by the C/N ratio of the elemental analysis data.

Results and discussionA bright green precipitate of an copper carbonate

hydroxide, CuC02*Cu(0H)2, was produced by mixing the equi­molar portion of CuCl2 and KoCOg solutions. The precipitate showed a strong absorption of COg2- ions at 1410 cm-1 in the FT-IR spectrum. The specific absorption band was also detected at 1371-1479 cm-1 in the FT-IR spectra of CaCOg, MgCOg, Na2C0g, K2C0g and crab shells. The absorption band is usable for the qualitative detection of COg ■ ions, and its 0.1 mol COg2- (3.7% by weight) per GlcNAc is detectable in the FT-IR spectra (Fig. 1).

A sheet of the chitosan membranes was dipped into an aqueous 0.5 M CuCl2 solution. The membrane color changed from colorless to bright blue by forming a chitosan-CuClg chelate, and the FT-IR absorption band of -NH2 was also shifted from

218 —

Chitin

400.81080.81500.1lllauenumber (cm-1)

Fig. 1. Detection of specific absorption bands of C032- ions. The top, CaC03; the middle, chitin-CaC03 composite (0.1 mol C03 per GlcNAc); the bottom, chitin.1600 to 1625 cm-1, indicating that the chelation occurs on the amino group of chitosan and about one mole CuCl2 is chelated on two GlcN residues. However, the detail structure is unknown.

A sheet of the chitin-CuCl2 chelate membranes was dipped into an aqueous 0.5 M K2C03 solution. The membrane color turned to dark blue color by forming a copper(II) carbonate hydroxide chelate, chitosan-(CuCl2)0 02*(CuC03)0 •[Cu(0H)2Jq 37 (Fig. 2), but the color differs from that of copper carbonate hydroxide itself. The mineralization of

— 219 —

— 220 —

i:*1

Chitosan film Chitosan film+CuC^ Chitosan film+CuQj+k2co3

Fig. 2. Changes in the chitosan membrane color from colorless (chitosan), to bright blue (a chitosan-CuC12 chelate), and then to dark blue (a chitosan-copper carbonate hydroxide chelate).

11 ij- 400.01500.02000.0

Fig. 3. FT-IR spectrum of a chitosan-CaCOg composite produced by soaking a chitosan-CaClg composite in aqueous 1 M K2C0g solution.

X.

— 221 —

COo2- ions on chitosan-CuCl2 chelate membranes in water was evidenced by changes in color from bright blue to dark blue, by a specific FT-IR absorption at 1390 cm-1, and by the C/N ratio 6.14 of the elemental analysis data, indicating that about 0.14 mol COo2- ions per GlcNAc were mineralized on chitosan molecule under the present conditions. However, the detail structure of the chitosan-copper carbonate hydroxide is unknown.

When the beads of hygroscopic chitosan-CaCln composite beads are dipped in an aqueous 1.0 M KgCOg solution, water- insoluble CaCOo is formed in the beads as well as on the surface of the beads, but part of CaCl2 is leaking out of the beads. The chitosan-CaCOg composite beads exhibited FT-IR absorptions specific for COg2- at 1420, 870, 710 cm_J- (Fig. 3).

Conclusion

Several novel composite materials of chitin and chitosan with minerals were prepared, and a novel chemical method for the mineralization of COg2- was developed by means of chitosan-CuCl2 chelate membranes and chitosan-CaCl2 composite beads.

References1 Hirano, Hondo, S. and Ohe, Y. Polymer 1975, 16, 622.2 .Hirano, S., Inui, H.,. Mikami, T., Ishigami," Y. and Hisamori,

H. Agric. Biol. Chem. 1991, 55, 2627.3 Hirano, S. Agric. Biol. Chem. 1978, 42, 1939.

AcknowledgmentsThe present work was sponsored by the New Energy and Industrial Technology Development Organization (NEDO) and the Research Institute of Innovative Technology for the Earth (RITE), Kyoto, Japan.

—223 —

4.3

CH„OH

OH HOH H

CH3

Chiiin Chiiosan

M 2 ((1 ->4) -N-acetyl-P-D-glucosamnan) t((1-»4) - p -D-glucosaminan) Uii

G G M MGMMMMGMGGGGGMGMGGGGGGGGMMGMGMGGM

M—block G-block G—block MG—block

msM-7'd y ^ G- 7*n V V ^ MG- 7' n y ^ G : a - L-guluronate ^S)Q

(M : yS - D - mannuronate

— 224 —

4.3.1 # m

* -^4- Mhy d.s. 0.1 for NAc) (Protanal LF10160

SLP 466 from L. hyperborea, [77] 7.22 dl/ g, Fg 0.69, Mol. Wt. 36 X105. see b

in'H NMR, 134) Ltz0

4.3.2 # m

TJ\>¥'sMCa-* 7h-trvS-e-jis

+ hfy (0.16 g, O.Olmol) <&0.2%B# (3 ml) (17ml) (CT#

El/c (PH6.5) o 7;i/^y#Na# (0.20 g, O.Olmol) &7k (10ml) IffeM IKo

7 > f y#m%* Mf K r»-r

m%5-?Ltc0 1) U ^ 0.1M CaCl2%§#*lC-C--#mf

Mtix7~h -9-yt8-£y>£#x.*:o 2) co

E-n yi'- yfc-SJa£ tr®l^tsir^yl-^ b»y#A#<&^^L7:o 3)

d tl£>|jC'D^y£H'oM<&MeOHl£ll§aLTlS7j<.lfeil? (20mol/GlcN) L "t\ —

t#EMk:iSg#7 ^ /S^N-r-fe^MfcS^ifco

4 Mfy (0.16 g) £ 2 %AcOH (10ml) CtU-MeOH (30ml) £

(1.0ml) ^60LT, 4^y (N-7

71/4 Mfy) #NaOH^ m@7KKT%#L^

IILfco Cft£NaOH (5 g) &7j< (10ml) L *:*§?& fcilMLfc0 C©«t§

7jc^ 1 B5I8&#Eif. S b \z-Mfr < ^iVctK^^Sd LT30ml#m(c#EL 1

@^#Eif a 6@%%14%NaOH#^KoT#7;i/* ') 44 y#% (Nam) tmZtltCo

3 7 71/^7 ym#K* (5 ml) d L fc 7 71/ 4 yENaS (0.25 g )

&EA"#"3 6#6^98% 7 7i/4 y^Na#67;i/* V 44 y ©E-S-E^S Sftfco c j%<Sr

EtOHt^^a^a 6 771/f y#Na#-4^ y#A-#^#^B8AE#t LTSbftfco

— 225 —

MA vNI/^'yENaiaCD'H-NMRX^ 1 6H- 5 is<?i-JUfrt>

a) L. hyperborean 6##L/cG- ~f n y $ b) L. hyperborean 3##L^bk^ ®G- ~f'ay9 c) Pseudomonas aeruginosa^ L fz.G- ~f d y

^ d) Ascophyllum nodosum g>#§# L feMG- ~f v y 9 MiKe) Ascophyllum nodosumfo 3## L tcM- "f'&yfy @3^0

— 226 —

— LZZ—

z^VXtilAIN SVIAI/d3-3ElG9 zt-fH 4=?zt^* Si

os 06 ooi on 02i on on osi osi on obi oei02 or o> OS 09itttltMinm1mtiitMlit»tiMtili»titmiltiMHHi1tmttni1imtnntnttnttiltninmlintntnlmnnt.lntnnt»ttitntmltmmn>tnnimlnntim1nntitn!illiHinliHlHHllilH

oi oz or or os 09 01 oe os 001 on 021 on ort osi- 091 on oei osimilnmtMif »n muitnimmlitMnttilHitiiiiititumnlmnMitltinn mini mtutmmtnln m niititnumlimi until tiniiiliiiliitiiliiniHiilnnmiilimililil/lllllinlllll

NVS011M31A133V-H

4.3.3 ##

h y&Ay^A/*'yi-4f v<o§i£.fomft=FW.-tk'$<D

EEftJ&SjLfto A58II ft V ft 7 > A' y E & x 'h-nmrx^^ h 9 ft

G- yn .y ? Lft (I4C^l^Mb)o ZtUtC&^J * y £G-:/n v

V &WM L Tegg - box£M L T y Mb LSVft&T&So A§^#ftTM Lft* -1£

4fyi4l'tyii, 13C-CP/MAS NMRX^y b /u^ 6^5 «k 9 ftN-7-fef- ^S©

g&K1.0£0.1£tefflLft (!5)0 7;i/f yE6* h-fLTife®3&s^JSt‘ § i^fAbtlTl'fttfA pH^IHtp LT4- Mfy©7 5 / gc/M A y-fb

&#]#-#"% t#%%7;i/4:yE-4r Mb ySS^x.£tift0 C©#%&CaCl2^%T&L@

tSix Ca2M4-yiT Vl/f yifl-?©G-. ya y ? 3&*KJ® L Tegg-box^-BE LX ¥ ^ 4bLft0 cDx u © y > © l¥S ft SB <h tj 6 ti x N-T-fef-^4-

Mb y 7 ;i/# y ECai£4f ;u t Jfctfc L ft & £> x B/ftlSj ©^ ft "Cm&mfr*

T"©50 L^Lx 7^y®-+ Mbyji®©* Y^y^^-o^-r)v^c\t¥

^xft^-ofto 4-#x c©7;i/f y- + Mby#j;cf7;i/A y#-A^ y©#fAA#^-f

L ft ft ^ ^ % CO % © A#<b#0S © & ft & f° x ####tA##ft@L

vftnnDsSx EfflMx %#m#ft a^©^maa „

4.4 4-#mm#©^A©^^##6ft5#m#©##(±ftl^x #< iC6fc«ktUdTx #©««BM»ft <SI»®«9«^fcJ6iF

b a a ft £ ^ r & 6 s 9 ^ © is t> ii l ft ees =h js •? =,

4.5 if I

#(9 ft&A#ft#^ BAAft»JE5cft k^tift W jn/tf *-©■ari.'MlfeW&iKtSC'fbo

cti£>£Lvfrt) £ S tfli vftA^ft&if 6S W3£tS:Wx A< %/ v*4bLrvftv0

©^4 t-il«4iiBf4g§*ftT§ft c, ittfMS Aft

tot^tfttffiT^ofco ELl^ft6(ffx §^WDM:£SLt?SWBtt©*

ft^ygASy 1-Ao BAA6 y ;v* *-A©#ft %At#ft##A&>#.-o^% C i #T#fto ctit>£g|gftLtx 4-#x WH©E%<hEW©B-^ftekDSrLvA®J©iiJ$9

ft^Alft^o

-228-

5. SS33R

1) S. Hirano, K. Yamamoto, M. Yamada, H. Inui, and Ming Ji: Chemical

mineralization of CO32- ions on the surface of a chitosan-CuClz chelate

membrane

The 1 st International Conference of the European Chitin Society, Brest,

September 11-13, 1995.

— 229 —

3. hf

(4) \mmmM ■■ RiTE#mm#i&m

W3Ex-v : CO2%mm * x :r a S A £ 5 CO 2SP£±5*FFE

§A1|:

— 231 —

a E3

to * e io

1. SAM^SASES

*#4^+ t+fx;t'7f #± ^D'^n'J-^-

^ - X h V 7&?OH

Dr. Nebojsa Nakicenovic

Project Leader, Environmenttally Compatible Energy Strategies (ECS)

International Institute for Applied Systems Analysis (IIASA)

Schlossplatz 1, A-2361, Laxenburg, AUSTRIA

%7#8J9 27B~« 8 ^ 1 n 16 B

3. imam®turn

SESRiTEfc&VT, 6. 5

1 o t LT, SStiti$*15C02£#!1 L.

tk^^rjsbs^ ###& L-cmmf

(LCA)

co2^#AK, st-coaSime^m^stz

#?#?;+#?&IK %ggK##A(c =k5 b -

LCA#)£<£-*ALC02pmim^'XXxA©M^tT9 11 3-

O IcOl'TO WJES^ff 9 O

— 233 —

4. ###:

4.1 ESEfiS

NEDO©$E=k DRITETHSL T V S-fb^StJCO2 7° a s?* ^ h (HiSS!@ : ¥

SWiL^ C02©M^SL«^©^

#£T©7°a -fex icoVTx x*<ktfCOiSfctfiBlJMSoBiufc£C02 MM

MW^II L r § /Co * ©## (a)

m 15 t!£ # I) o £ & A § v tz & . H^wH Ijffl L T£g L ZctKS

C02©#AK%S C 6x (b)SiU/^-^SffiLTgi$^

sss-ti-s^^-ovrcoaMM^^igb^tcL/co

co254ESS£S A t" S <k > ^ ©StiEiiN SnXN SiiilA? y hBIS©&£>*$> 3SET

$)%-3"CC02^#Hj^ j%5o ck D##(CC02#M%^^

r£T"<D7° n -fex ©BE*1 S h - 9 7U©C02fPffi^ t)#H L

ao LCA#m&#A lg,co2#

^#^#^"#-5 C £fc:«k?K {b##C02@^7°O 4zX OA#y% x A (C-o WT^A-9%

SA&iC 7°n-fex 9 o

4.2 msamom#

mm^OIIASA/ECS £ «x 1993#lljg *> h 12J3 (c^A%E#T& S±*^*7 7Vv

A#±&@#lx RiTEmmm#y^x^E^m£o^i^wssiuskovt^is^oa0

S 1S®£ LTs CO 2 MM%ffl$M ©M t> V TB.& £!!§ < Lit£-SL/co ^©HMStLTs @a#^#©A^K^##3c#&@ LT#|S|E05©

$ 6KE^©##(c£ & %v^#(cf6LTx $ » y-y3 y#K

ItALTV < c £ £ L/co

IIASA/ECS&IPCC *WEC (it^x ^

©#%x ^71/f -##;&?##%&*66 LT%#5 LT VS##%*c#^%E05^T& So

C©7'"yi/-7°Tti. x - MS® Mf* S x MASSAGED A #* (G

HG) mWMW&M^W-^irZ> C £©T'£ § y 7 h?x7©C02DB (C02 Data Bank) LTVSo

C02DBlcKSi • mgr • W& * 3?®# • ^###&^^©#©T-? t-%.m*Al3%

— 234 —

tiSo b©iMx\ ### - -EAm##^mm#©

ESir- * k Uttlt (##) ©BE (£g) • M • W • S

##0 3^ b-e<feD> lif-^iLt^ g^W©SE«h*^A*$ti5o ^©#©-f-

^ t Lxmm®m mm • • ts^ • mm • m#e&# 1 %. so%) #T&&o #s

%ES©»6^#®Lr, £5Kffi (Xyy h^i'iiil)

SEStiA C02^(±U66 L/:GHG#Aa^<kO:%^#^#f#Ljt$gT#& %)©T&So

x ;i/f 7° n -fe x t ## &<ktfBSnni ©§#? (cj;6 #xgFdjUt^o l' T

vfflfttmMZtifco ?-?k < , X4;

1FI vi£@5lEM x b*©t- * D n b -^T'lOOOBLhOx-

3 y-cECS/f < SSES (mda) • (tap)

v? (luo #©#©xo s?** v k-o^x

nfz0

4.3 #0smm

4.3.1 &fM'^xtaII

2i#e%m(cmE$tt&B$mm©B#ai^tt§, mm^m^^ioo^m©5rnA

§§m©EfcMl£CO2©60%£#iilHliKL, MLT

TKSSSiES®©^? s — Ji'&'afiR'f'<£o •□ ji6$ iifc y 9 s —

a&©6 LT##^7o

VXfA0ig7“n-feX'&iltito (1)C02Mn (2)C02^L (3)C02Irj§u (4)y *

/ (5)y * y (6)7kSEiiS, (7Mco2&J;t;y * y (8Mlb

C02RZ>’y ? y ->SET$^dtl5o ^©yo-kXfC'OlyT^ #^%@E©^"^

*%mirzzk&x%z>i)K 4;;i/#-©^#

S fotzWFvm&K-o S o (1)^-7 VT(iMEA(c J; § 4b#:iftM& <h ###&

©jt#o (6)K"3i\TKB$sm^#j©mm(±%i't#x.6ti,sy=6^ *##m©@m6

LXBft07kjj¥£m kAIDE^ES^Ji L/=#A^tb#f %o 7jcbiiSM*MSt* s

$)©6 ^MlK-71'tlii-x b7>J &©£ESLfc0

— 235 —

4.3.2

-fy V hE±ISrhBt(u >J x h t y 7°$ *i;fc£g3|SS&®jiSMfi£5cfcN SWJcd^M

e£3<2d*:£§$£0 2 o D7kSSjHl"a3:@(cM$nsSM©e

S C Hil0S|

Felton =£;I)#SL ft £ ft V 3^ %^7i/f-^K=E (c CT(±7k#EE^OT) "tS&E^&So 7jdjHE<hitgE LT&j 3 ^©^M^ETab D N #

s^©^#^#mf sc t(cft^y=%,©tmt)^So 'j>j; ^ Sil:#EJR& t jt#B! L T. ^©# t ^

lzEiM-t&<&WQ&ZMft%$7°a-kZ(Djj&g-< ®MM&&%’$'&!&E©® S e

£ tl> S o

0 3 =z y 7 V - h ©Mlk;^& ^ t ^

T^am%)#ma#0-< c©2®T*ro-&£&Tv;B0 ±#^#©#A(c7kmEEA

&tco2©iWijii§^t5o (0 4 • 5) ^E##©#mm%ami®6#%

T®So S C 6 6 Lfto #a@9KL6

s, vim?7iy)i^osj^^TSs^i6, &mtmvpm®m&*mmre%>z>t&fe

Ltz0 C02#&#K-ol'T(±##6 LTtin y? V - -3 £ < {$£§ £ :ftTL'S icgEttiE^ti^/hS lVc%)> A###MBOC02#&#^# < ft-cTl^o

A#g)i4i"E'&,7K#EEAA<D#&E#'(&^^c#i'" (5 ? y a / ^7H5.370kg —COz/kg)

ft#±##^#©*^#&ic£ & ft 3COz#Aa###R::*;# < SmtvSo

3-0 y/'f(D#&E#&(D#6 LT&X %"%%)#-&&# 2 • 3 #1

©#A£jt#LT-9i)#&E##:©#^%)©^i^^ Mii^>«'t[iB$0xrvy

xcoffickD/kS < ftoTl'So ##(C-31 \(±#mm£ im@g £ K L T##&

C©f-^T(±f© 2^£ft-3T$$D4'#©##&#'#'S$)©£#^)tlSo

4.3.3 y? yj;acoz#mm

Mi:iit5^7 y Hc®^T(±#!Bm©#^AET^S£#^g,^. ^©EicS

itisftSC02»tc-oVT^rhhSo «©#"&K6 L%=!:###

£Sf setsft&6,7K*#m^£s7K#%m©#a(i«T£Sihs&©£

L (mrnmmsoookm, rn±#aioookm) ±m^mm©#A(±B$j;D#^s$)©£LT

— 236 —

6500krn#m#mt K L9o II®C02iWfiibT(^yft» (0.02

5kg—C02/t/km) > lOton Y y y $ (0.15kg—CO2/t/km) btz0 •€" ©SnS^rEI

6 o C C T 7 y h ©#^(C 11 % 9 CO2#### t c t

=bA§ vG

L^iEmcabrj;? £ a co2^e t imt a a 1 sjj2Tft& actLfc0

4.3.4 y? y hm#Kj:aco2#mmoK

t> 9 io0co2iiliiffil»i lt, y5 y h olgfi^^lfnUiOTof

o^^co2#mm#&^m^act&#^.ao %#(ct%,%

CO2#mm#&^B $©#AK1.16kg/=FPk m^O#^^4.70kg-CO2/=PM, m&M

Afr-o^r (±2.32kg-GOzZffltESL rBSih a 0

H 8 (^ESBAlJ: DSSL7cC02gNiie^1-o *E)£M£™iha7kSS9ilic t

actt #x. 6 ^

aQ /fk#wi&tjt#yat. m^-ihs© = x htm<. im2 D

& C©H©g^*{iAi < ft^rva0

S9 »y5 y h mmi#K t & % 3 co2#mm<&i##m ^DmmL^&o-e&ao y

-7i/^£©l£fifct t>ftoTgfft&tLac02©fiJ£y*ifft'o EUOteESBAtct kte

9 CO 2 * 11* K1ft 9 CO 2 pg£*£im L tz & ©-e & a o X* & X> lilll A ©*^tAi#^mm&jteya t±m^m©#^##T$a c tmmu

fc0 Hlltiyo-fexgiJ©c02Stti©W-5#T$Lfc!>©-e&ao

4.3.5 mmBt©x* ic t $> %9C02#mm©m^

to©SFtitiMWttS4 ©t^JDT^a t^SLT^If^rS-o/Co C02©^g@MUc-3

11 c, #4*c^^a#S#^g,AT##ya %,©t^Lf:o VT©SFttiESti[(i5:S7 %Siu

0.0224kg-CO2/mt L, AH5£i§fl©*i-n &0.0503kg-C02/fflht Ltz0 ##

t LTX-f X&J;££3-n y/^g)2pi6;cD#&B#&©@&#5 x x &7k*^E

©£26afJ£ysA§l'tz&/h&3-n y^°10*S©TO 1, B*©fflJ:

D &iS< %cTl'ao

—237 —

<k ? fcffl^ § CO2 tiT0 a -fe x ck S§ V 0 Lft> L

fl‘8i^<ktF?£<bR: <k5C02SPtflS36s*S I'd bififthfr’G&Zo * 9 J -A/^bKt'o -fex

5^i6x*Jn/4r-?gS*S5i>/j:<CO,SPttiSWS < ft^TVSo

4.3.6

suit«k aco2#m s *i5^ lnzmomm&&Mimffimmizj:zco2tb]m&fttz&g#&&o nu ai

illiilMJPii Lrrh±S4i5o EffiESP#(i^fU. • #@ • S@@<h

<h t>i;:EMEtt<h LTS^StiiStLSo C ti£>©#ffl£E^#£ LT^ BE#©14%"G=

$^ LT^co2#mm&#mL^o (sptBMfe2.32kg-co2/=f-m eis&e

K«k %C02#m#t E^%«k 0 %, ©T^ S o m

«k(9#A6fL&

E14&E5£#jlZCOtm&iA&lt&ltc&0T$&c $%&&£>o&llJMlt*

Mfegfr£MMLfcte<Dm096T?&&o ES#L #> 5EMSP©SJ&fc3\ %30%T&Dx

Emm&zm&teis&%&&&tt> <DmW^.%RMtLtz & ©?&a o

4.3.7 £t&

'fk^WCOaS^'fk^* O S? * ? b0#/atX?:N SW^Sn BE =3 X h £ x £ >4r -‘/I

S«kDx C02gp{±iS^$SLTWffi^Sofco l.*[®

TkmmmAAWjm^^acozBmm^meKmADf a. 2.

-fv'-y balfliBtcDCOzS^M^Sx COz&ltiJfcft©^##:*:^ W ^S-r-9 ©fSKiSj

±ttb^ i«©i^h-i?jts• fffe©co2#iti&• ##Bg#©m©co2m@*m

4.4 4-«;®E^S-©§A©E{;:##£& 5y®

IIASAtt. &M (17* B) &*;5 6 -f am+*g©#^#^#%& a l^#aimKM

T#&L<&^i^36, ©SAfrfciBHtTCS'x^A*SE3:L

T&t9^ ^fl^A-Xt®5o 6 LT#^#©^A%

^A#0S#©Am(±a6/,^%^o SAm^&goemSfc^v

— 238 —

@e&Wn

EfiN ^8feN M¥Wc^t\<^tz'Mkfct)tz%fcmM(DZ ilcoi'^

LT< tL6/c&s ##%%/'^T/C ti^S^BS&Si^oVroglEli^^

si^«ELr^#s^, $©#*: #•*?«* <N

Tl'&o C(D«k9^y%TAM4 tcTt>5i2:LTVtztz\ftii£'§ A#J®E3ES1 ttl-otz

M&lUtcbiQfrtz^o

4.s Bf m

HA8AOW^#0/< y^/y^yKtLT (±m#& & V l±8m#T& < x *

|it5'>xfA0€f'Jy t L T$BE£« LTV5 #A^

FVo ^ L T B * £ & VTffismraLTV5E^#©^-<

ttfyV'sYt LT. S«M^iil:S^tSf^LT'5l»l'0 &6V(±a-

d y/fo###g%(±s #oM^5Hg^-§fca6o—LTHELT§ tzM$.^W

o0t^LT @#^0%)0&EH##6 LT#^f &B$o#A60)#o«k9%%,(D%)

mvztitzo %tz

3 - n .y/^CDiI-^M?S • *$ • dbT7 V* • D 7°5-f

D^ VT%)#gT$&%*x R@x^;i/^-gg^icov

t0^ittl:ol't®l D@#$ttTl^V<k 9 KStitlfco 4-tB$oAXtt^#f i

^ 7 y 7° Ltii®gLfc 9 ^T#S#(D#A{SmK-3VT@#&#6 C £ 0^##

ML/Co

6. ##3:#

1) S.Messner, M.Strubegger, User’s Guide to CO2DB : The IIASA GO2 Technology

Data Bank Ver. 1.0 IIASA WP-91-31a (Oct.’91)

2) A.Schaefer et al., Inventory of Greenhouse - Gas Mitigation Measures Examples

from the IIASA Technology Data Bank, IIASA WP-92-85 (Nov.’92)

3) R.Frischknecht et al. ed., Environmental Life-Cycle Inventories of Energy

Systems (July,’94)

4) $«i]et ai., rrMitmmftmmmm&fficDmmi <k#%###27Bi##A##

-239-

p.135 (1994)

5) al., rft MFSS AJ; 5 CO 2 M BM E tc -o V T J x*;i/4^- • M

- 260 (1995)

6) SS #et al., r*E^M'>X-r AOx^yu^'-fFffiJ ft^X^lrojtS '

vol.l9,No.l5,809-817 (1993)

7) RITEft^lftC02e5£ft7oa i? * ? h-Mv'XfAOM- FSE

C02#&m®#mJ ### (1994)

8) RiTEm#;##

4-0 £ © £ 9 7f ^ tz z. t fcii t ^ D SS v'

tzbt-to -£tC' fA^EMStfAftfcV/ctf:^ Lfc. Peter de Janosifilf g te D & B

lfbi'>xfAilTM (IIASA)

— 240 —

s

MeOH;

7>Q—>#&#

MeOH

@1

1.SOEtOB

1.00E+06

5.00ErO5

0. OOEtOO

HB2 production

■Load & unloading

BC02 4 KeOH transfer

■MeOH storage

□ KeOH production

KEA/Hydro Keabr/Hydro

m2 T’nfe

Keabr/PV

1500000

1200000

900000 ■

600000

300000 -

□ ny)'H tiSS)□ •efflf&SS ■Xf>bX

£$•** K*PV

2000000000

1000000000

©R-Tfcfr &*7fc& K*pv

eh mmmmucogmmemm

— 242 —

: 1 a *(Da*#4=m\ Borneo(MUl : kg- C02/kg)

jt m 11 5£ *1. 0830 0. 0500 1.1330

me# 0.2350 0. 0350 0.2700SUS304 6.3370 0. 0630 6.40007H~n mnw) 8.4950 0. 6000 9. 0950# (mm) 3.1690 0. 6340 3. 8030t°ij7°Db0 VJ 1.1640 0.1160 1. 2800PVC 1.5210 0.1520 1. 6730^v-l (##) 0.1364 0. 0040 0.1404-fey > h 0. 9010 0. 0029 0. 9039

:2 a-ny/rn#m#AmA\Bom@co2#mm#@:

(#& : kg- C02/kg)-f n-fex & ef0.1444 1. 6348 0.7184 2.4976

me# 0. 0079 0. 0051 0.3541 0.3672£ 0.1721 2.2225 2.0492 4.4439

0.1876 1.3751 3.9285 5.49130.1406 1. 5309 0. 9985 2.67010.1183 1.3100 0.7716 2.2000

3-nv, B ommeo ^jancm#

(#{& : kg-C02/kg)-? n-fex 05EBLM %: fk

7JImWh 0.490523 1.479290 10.20340 12.173213ioo%v#^ 0.024877 0. 033152 1.173480 1-231509

m 0. 070731 0. 393685 4. 619020 5. 083436r'J7°nt°ky 0. 061839 0.162879 1.731000 1. 955718PVC 0.047593 0.101837 1. 924480 2. 073910

0. 006582 0. 075985 0. 074941 0.157508mw 0. 000081 0. 000143 0.005891 0. 006115-fey > h 0. 016357 0.515030 0.405321 0. 936708

X.

-243

(ZOO

-ID)

3000000

aB2 production ■ Load & unloading BC02 & KcOH transfer ■Me03 storage G KeOE-production □C02 storage ■002 liquefaction ■C02 separation

2000000

1000000

300000

BB2 production ■Load & unloading 80)2 & UeOH transfer ■XcOH storage OKeOH production 0002 storage ■002 liquefaction QC02 separation

100000

XBA/Bydro Keabr/Bydro Meabr/PV

3000000

2500000

2000000

8 1500000

1000000

500000

0

■Material Transfer BMaterial Production

MBA/Hydro Kenbr/Eydro Mecbr/PV

— 244 —

(ton-

C02

)

BB2 production ■Load & unloading * BC02 & HeOH transfer ■HeOa storage □KeOH production □C02 storage ■ C02 liquefaction BC02 separation

1500000

1000000

500000

KEA/Bydro Keobr/Bydro Xeobr/PV

ms bssflti#J:yjgs1000000

200000

QB2 production Load & unloading

BC02 & MeOH transfer KeOB storage

DlfeOH production □0)2 storage ■C02 liquefaction BCQ2 separation

KEA/Bydro Heabr/Hydro Kenbr/PV

@9 hxSE^ck ySSLfcco2Sto*

2500000

KEA/Bydro Henbr/Hydro Hesbr/PV

245-

3500000

3000000

2500000

Q 2000000si

1500000

1000000

500000

0

BH2 production ■load & unloading . BC02 & MeOH transfer ■KeOH storage BKeOH production □C02 storage ■C02 liquefaction ■C02 separation

KEA/Hydro Hcabr/Bydro Kenbr/PV

EI11 hEElC<b:6)^:o7°n-fex3iJ0CO2SPdjMjt®4000000

3000000

BH2 production ■ Load & unloading□ C02 & MeOH transfer□ MeOH production ■C02 liquefaction ■C02 separation

KEA/Hydro Hecbr/Bydro Heobr/PV

MV ESSffl ic <!: t> & 5 CO

4000000

KEA/Hydro • Hecbr/Hydro Xeabr/PV

1113 <i:EIS*^6OC02#dafi(Dit^

— 246 —

4

: kg-C02/kWh)mnm& M/ntx mm ^ ft-tm mm mu MO H5E

apw# 0. 51829.20% 0.098 0. 003 0.690 0.006 0. 033 0. 002 0. 832

LNG iktl 21. 20% 0.109 0.007 0.504 0.006 0.033 0. 002 0. 661SMik* 9.50% 0. 046 0.004 0. 970 0.007 0. 033 0. 002 1. 062m?* . . . 26.60% ”0. 026 . . . 0. 010 0. 001" . 0. 017 "0.033 0. 002 ' 0.1897k* 13. 50% 0.000 0. 020 0.001 0. 023 0. 033 0. 002 0. 079

am : (NEDO-ITE-9101)

3-Q v

(HMft : kg-C02/kffh)Tn-teX & itx-t x 0.00031 0. 00173 0.01339 0. 015433 — P y s| 0. 00460 0. 00469 0.47226 0.48155Cl 2*@^)

(ton-

C02

/y)

(ton-

C02

)

2500000

2000000

1500000

1000000

500000

0

0 Material Production

fl Equipment

MEA/Hydro Membr/Hydro Membr/PV

@14 rae«kStt£s<Dco,si5toftit8

500000

400000

300000

200000

100000

0MEA/Hydro Membr/Hydro Membr/PV

@15 mmme, oco

-248- ■

3.

(5) mmmum:

: MW-tf(DSnE^iiE

f AiS: Technical University of Braunschweig

— 249 —

m&mm

m m % -

1.

7 K ') 7 y • i/ S. y^ifcg

7?t>yy*.'<A 7 xn^mt^xmm^m-

K^r y

Prof. Dr. Adrian Schnmpe

Institut fur Technische Chemie,

Technische Universitat Braunschweig,

Hans - Sommer - Str. 10, 38106 Braunschweig,

GERMANY

% 7^ 8^288-% 7^12^258

3.

fclHLTtia-n vx%t LT ©fe'ifMt^StlX\.'Z>0

ijffl lt, mee©^

^ =k 5 $ tLT V 5 o MEE©7fc-&J&£f*Jffl

u itis • n

ay:26©7 ^ *:/o-izxt£^ VTO^SoE^y^M^ril^ELfco $ b>i^

MEE£M©MM1>7 * I'/'W# V 77 7-mM"©^6©S#%^nM6%a^##

— 251 —

4. m%.m

4.1 ESEftS

j; a A#5 Z 9 cTV So ##

SM^fboHESi LTx A^*(c#%-#-s###xi:y ^ y A"xft £'tel* (f £ ii

rvsG c ft s ££W£tfAMtoogimwe>is&£t§s^^m#m#

'fbft E&® © 4=- - >f y h t<B S 0 ^ ©%*%#^##©## >tfEKSfcoVT

6%i'o

y-fe y-y-x£SSv&H;fc'<bSo

0< ©#^##^E©E^#I,^LTVS«ko(c, Ii#x©^(Dtii^|iJit

S6V9Pg#(±. x^M'-P4iiiMt^5o (±C61

f S{b5##©#m • ##KZ 19„ A*. £ Lr "Hs&fb"

LT® ^ fcESS-AxC^fcytEAx t LT^tii U S!£ !>*&M Li^y-TVSo %cT

c©maw^-s t lt © x - m©mm^A#T &

5 o

#^##LTi^SA*^#^©##*)&£ LT(i^ IH^K 7k*x #*$, «kC^AI@#

###* £'^# (f & ft S o L & L * ^ ft €' ft © y x x A ic o V Til * * P*?jE £ IS l/T

vsQ m?*mmxo*aic =&%ma• ft^#A©^A#^mm%ms©

P^lE^Ai vG 7k*^###%(;:#L^ U - y*^#£ vftftTVS^A#*#B£M;il

£ v ? iiM&frft&mx'tb s o a*x mm^<t^m**£'©#m(mE%*m*#mm£

LtMt® < s A##© x 4; ;i/f - W##T # * Vo

±mmmitm&m& m $ ft s ? v -yx*7v#-M£#x.£fts;5/k x^vu^-sg

#A#A©& s z < #/j#©mm@#TAm©@*&#m

T#sc££, S/m&oA&tctiu #m• msg#m«K#©m#^A#T&a„

v-fft(cLTl)#%©A*##^ATM%^T#©##^#Ke##ft

act(±E#T&59o t*:EM^ISI^**;$BE*£'^bUEtitiSftSg##x©

ssi)PniET-sSo ^-cTx ^ v-y*x^;i/4:-m©m#6#^LT^ A#m#m#x

^ ^ ^ s & ### & s o&&&,Ax^-ilgiS|kt57’n^x !>19fl£ftSo

— 252 —

te *f &M & fc £ & v o LfrLtifrb-,

EU ISgiM hSfcx :5:B6>k |l^:fe4;tW&^^fc®^/c24gg£fr9 c 6^##

bt&Z o

A#^®^©iSSmeS-e©^E#xiltfili&6 v£>E

m*E#x£*§T, ItSIiffflliKckDSii5M##X&M'J>Z#5->xrAfc-^VT. #^©#05#

'SHAPES L/co £ fc> SE© s *— □ <y

cDMcbx i < l^«i«5 K>f VT©^

551 lzo l vr £> H E £ ft -a tz o

4.2 W%E'2E©ftSi§E AtEISi ©Braunschweigl^-A^T (i> ©Dr. SchumpeStiS^lr (i D 2£> <k

& 9 - ^ y //;!/-y 6 6 6 o *&/,#:o ttz^ |W|E

B%#©Dr. LuweffcM<D#F^";u-7° (MBKJ&I^) =» v t°a. - *iHJi®-^

BraunschweigAA##^##^ £•1' tziz l-' tz0

lUb < Braunschweig {£jBtg& tlTO<5'NM ^"r^/ o $?—ffiSfcEfr (GBP : Gesellschaft

fiir Biotechnologische Forschung mbH Braunschweig) T (iProf. Dr. DeckwerS^S

MbTx '*4*5-9 / a ^-EBoMMoSfiEK^PFDTLriVc/fv/co

KolnA^©Dr. Melkonian#g^ 6 &BE£fOT ltz7* b'*4*V7?9 - ©Hffi

SSKf^iyJ'ay^il.'Lfco TiibingenA#©Dr.

Beckerffegfr b fe 7 * h * U T * * - izfflt Z&gt&^tztz ^tz0

JiilichK fa y ? — • S 3 -'''M i f ^ / o y 9 — ©Dr.

MohnR£teb&£^&BiIftlfflK«f^'';u-7°i -tw

(D^tk^tztz^tz o

£ b {£-> Erlangen - NiirnbergA# © Dr. Emig#g©#0S^'bl/ —7°(C

Hlfc Wffigg fifcft ^ISLT@^^=k tf f* H © g# £ l.' fc rt? *.' fc «>

HannoverA#©Dr. Comtek L TSURCXgi®

MS^vy-c/fv/co

— 253 —

4.3

4.3.1 a-a y/'?te:&0-3x*^4r-F4|jg£'<>f

EC©—gi$©H (fw-^ 7 7 x-f^ / ;u7 *-x 7^5V 5 v

ASilT&i^ ®v#*x Ifeoii I) ?> tltlif ifcl < T'0 5 7 t f'SiJ&tlTl'

§o

3-a y/<Tkmm#x©Am*~©Aammma<k Lt©ft5ii4«*»

F«gjg £ L T&B $ *i 5 JKt(f «fc !K L 3 * * -M?- Igli i L Tl£ < iS£ ■ j&*frfc> ftT

ii'5o H£~P'!^J;&t£C26£-<^x^4r~$K'v'©iiKi3|^r'<f~i^'26§—y'?^f

tvx©i|M-gi LT©##&A#l'o

MSS©t££-Efc<£5EE#%IM-fk6 Lti&^ V -^ - t 7*;utex * <bEE^x ©@Slk©il2j ©^S

^•MLTVSo

6^ ±#xjwi/f-©M3%(±y<^:f-7:%&6#6fiTl'&o #M#±B

T(i^j43%^y^ * vx fcft# U ^©?§iiJM{-ct D t> /cSihgm

-2k ^E©&ilBI)D ©#©/<-< ;i/#-#6 LTEcT&^ t A&*x 7 * -x y

*e(ilO%^ y y U *T-4%x *-x b 5 V TTtd: 3 %££#>TV;£o

(European Union : EU) ©MSM^T&v-X h H b^#TS%0±lf

5>tl7-cS®EE^@E^rl) <k fcx #4%7 l/-A9-y 7°o 7" 5

C©ftH©fca6fc-x EUttl994^&1998^£*??© 5 110® 760035ECU £ IE# U

^©7^#gSs H/-'7 3 votztiK^ 94®320035ECU;6$fi*±£

*U $ 6&m###8^##lc#LT10#8000:5ECU^ ###x ;pf - #05 (c 10#200^

ECU^ Lt»SIEf- 15®72 0035ECU^MS&ftTVSo

Cf&###B##25 7° a 7" 7 A © 4>

##x4;;i/4^-7°a 7"5 Atrtix V - n. - r 7';i/x*A/4^-#!?<b

D±tf\ EU^©A##%a:^;i/f-##m6LT©%m^&(Col\T#05&^9o #%

IT, It©fl/PM

— 254— '

—#x 'fy&Orp-eitmM • ## • ifcMI^IFTE D ±(f £> it TV

&o ::■?«> m,

*§Wi LfcIffW«J:^#iftft04I$#iTl'5o CtLkU CAP (Common

Agricultural Policy) (£ <k -o T 3 — a >y /n° g)#0% &MM ^fejil <b LT

t>ffilt-^U-§;ft,TV5o /<^^##±A7°o-k%®%ys;-7V

StlTVSo

3-D :tvx£ y - a-T^x^;i/#-'||i LTftdlotf\ S

EUT(±4"@E^^ T K x 3-D 7K0i|;^-||09 %ffi 5 ~10KIt'*J

2000^tW^35~40y #h

&4i-e§5 tv? lw5!)0

ITOicx d©itHtt3 — d y^TUflii11£-?x\'Z>&Pc<d:MM£M(d-‘'ooM'RMt L

T#x.3tix uiL

6^4; ;i/4r-f^#6 9 y x © t fitc^Mtz tiTte < x U iM ? >

©M^’b’Oi&^oTVSo

^ ^ t' -5 & t t^i<ft#Lt

v5o * vx x * ju¥-\z.WrhrS:i«Ili'o

3-D Miias, $»k m%t

m. mmmvim

%> 0

tfcx jMx TA,A;A,x «k########&##

©ilPW^Cx CAPT(±^#©#%x ##x -x 7 -f vlJktfi V - 7^-f friz if

<Dft.m%nmt2>tci6tx %^©D-^ 3

Ttiti: < x SS^S^/OM kfi'btiS ck ? Ktl -5 /Co

:0k9l^’^vxx^ )V ¥ - @cSfE (iiSSJSS^^ x mm%#iRAom#x ±Sf!Jffl

•S&tktFx* ;i/#-li4’ if t TV5o e©SSlfcft VT&W&Klte

znztzib(^e«Ft LTfiJffl ts #

t i'o

ito^a *#, Ltc^

-y*vxke©itii(±m^Ta®pgjitt<nt>tiT&io. i/ciihummmx

h-7>?.illI'y^TA|t'ii$tlt^§l) o

4.3.2 k -* y fc & # s x * ju4? ■- fgm t

(1) K-f y©x*;i/^'-M3>

K-f y l.^/cH*<h|llSKKE©S.LVB'e^ D-x IM#6 x *;b4^-©ASB^(i#A

tioti'So KA y &±&© x 4; ;b^' —/iKBtr® f©l%x*;bf-

©&j2/3&ilALTi'£o 5?6©SM(i^^:v*k A##x (±BF%#E©#l/3<gr$

< m#% % * ;b#-m t LrE®stirva0

*BS<&IBS K-f y *e (±§ A © x 4wv 4^ - zHt <fe ^ a ^©EoES fclraAT^IilEfr

IvS#xS iiT V A A $A ^WASTM^ISEi: LAo 5^

1*1950^K>f y oifex*;u^-EE©73%^^-DTV^^1990^^(±19%$

-em'PLtZo 5&t>$Affi&±#^fife©x4wb*'-^©lligf;:J;^ 1950*f© 5 %fr 6

1973#©55%& t°- * (cl990^K (±41%$ Lfc„

m#©a6X,2##Al::!egcTl'&o 6 l&£M: (±5000:5 b y/^iiii?)liTl'

&o A^#X©8B*(±&}5000finf£jl,m 6>±lTV;So 1990^©S tM ‘X© 1

& x 4wb 4^* - yi E(cjotf S # x © SJ£-(±17.5%T:&-?tz0 $±cN 9 5 y(±4>Mli}

irvstik 7 y (± AMK K#A LTi' 3 o

(2) K4'y0x^;u4-Si

K A y %# ©%©«t 9%x*;i/4f-%% (c#A & ±> l' T l' £ 0

(Dx^;i/f-#mKck6m#^m©@m : rAm^#E&±J SSSS^S^ x*;b4?-

%A©^©^##x©#A©@#^*f 5#37&fT9 cio

• ####&##L,

y:6©r###^m#o

®fx * 7b 4^- * 7b4^-E%©«o

®5#6m?A##K-3L\TBg©A^^#&^<&fT9 C6o

256-

i99i#m.

as m yT&2i<DW,:?-t]%%mffi&&&mt]mm(DZ8%%:£frt£^x\<'z>0 u^Lx Et < (c!986#©A^;i// 7^ UE#©#%K4;D.

BK©^< (i3ES^x E?A6B@Kte£/glyc^^'nri^T-e^s^oSffi^^ttti'ist>. e?#*

t ir^Zo

aSF4 7©^SlF&EL V$i^S?p^jiyc L T V £ C £\m#> Stl, t

fcifcMIlJiSTO. tiEHS^<k D £ $ titcit F >f 7 ©##© *^ iiT

l'50K-f 7gg—ms fw 7#m&m^as f>t

&„ as Fx 7©elvm^E&tiiam f4 —s©igro&gi

(3) F-r

1986#. mnmm- £*:i974#fc&. m#ms

y|r|4Lti^0 g-M=bZti^'tiM^£15:2:Ltz0 4*© F^7iMi

&. &KAL. 9

M&TSAo FW 7®S®cW©S^»®^m^. a © tiOToHEMilTS 5 0

®TO©MIiJ : E^E^fcJ:SSf7Da h &.

ct9«M-ra0

©E@#mffl©EHij: <. 3mmyk& 6 wmmm&e-otmAa *# u%##©m#*e&:m 9 o

®Wtf3®Ell: m#m©#%&g&cTK. B. E##. r}?S^S^S--d'§®* L

X'rfWii' & o

(4) F-r

#^©%#B©MK#W. F -f 7 ©A^ I).

^^6gm$tL^WSt/ET'^SiLTVSo 6 <

#A©#64%^#&. ^Sl'Iilg^tS^SlttA^ t>-f^36

%©&^#m 9 s o

AMfmamt LT. mew^esf

6#m < v±

— 257 —

n^sti/co c^,6Kj;D. ^mmmmomitmnmamitim^^im^tx'o

r^ms%m'pLtz0 ■

tfc. ^S^SoES®-^ «b o rv szLE^mi

■^x *y"yflESoESi:Sx.5>tLTV5 7 a ytr^LT-x I'M yeteftn#](Z7oy

0^A (i!995#$ Ttc^A#±x %m«##mm(±2005#^T(c25%(c@mf 5 ck 7

4.3.3 IM 7(c##&%#EE(c <k 5 ## # x ok

(1) immzt3if%'$kMnM®*LmM!km

mee © i5ktfiiiitT0M^7x xM£.m ommimmz'&m

hm 7TS®(cSSdti/-c4)o co7°o y^ 7 h © B %E A##A# Agg0

tzidKChlorella^m^^t^O t>0T&-Mco L^L^^g,x 196O~7O^ftT'0EE

E9£T°n>M7 h DM L&&-Mc0 E

E##*K#0EEx ###7°? yy h y^ 7 V T-^S&ftjffc.kS n y7 5*-y 3 yi*4Cs #0S#y^;i/0W<&#a c«k^T#%^^y=o

€0#. t$E^WT*e©EE@E^#?S^v6 vd^BTE^Sii, t < f-igg

^HTM'fksnfco %mm#©EEAmE^

©£E7°9 y h E6/L^E^#7^7 6 7y V *

(2) EEK<kS7* h^M * yx-r AcDlfl^ytE

HM 7 tcrio VT&S^ftX * MM W- y X -r A1/ ^^TffbftTV S5) o

Mx.K\ Kiel^#mA##W^#TO#0STEx H1 Ltz yx X A£§Pi LfCo C

tui, fcsmiK«k&m%6^m#x(cmA&©*:&©

^x^t^^o^fiji liJaf:I^yxfA^iogll7 * MM# V 7? ?-T&&o

#m#TLf=0t. )SS^WLfcE#:^®5l^y7T-^o < D LiltS

##&, I) -stl'So

:0yxrA|i7fx^r-;i/ (10^g.50^) 6 A### (100—3000 ^ ) Tim&il

tzo 9/ - 7- (X7y-y3 yN flPJx pHx Mx pOzx pCOzfti') tin

y hM-M^J^TWSiiTVSo CO#^#g)B%tix EE^#£TO LtzffiL

-f 3k#a©^x %K#^ck6o

— 258 —

Tzr X

C02%sight glass-

Light control-0

3—Aeration

—Harvesting

C02

internal illumination

j? Temperature

Heating or cooling water circuit

Drain stirrer ^

m 1 Kiel

(3)

Koln^©Melkonian b <DW$Zt"^ ~ =? 5 #%#©##%

l<fca**r-a&§egl/c6)0

HT&S6 LTi'So *^xlt%£M£tiic<D*,‘MM£ iri

fflsiis m%.ltcmMtfxtin # m>fk* x ^ a n: y im ? > s ft 5 0 cftt^D-x c

0'>xfAl\#A-*©90%©###%d##T#S6?#jLTV

Melkoniantis ESu<k i) x*SSE'M * t

?#LTv^o &6K, m&^^K#%^@^LTv&^

vN w»s*^toii}L/dito^j:dm?6 om scte#

Ej-LTV^o

3:tz' %#%Aft£ft£tc£>©##%%&##LTl'So

3:f\ S o A#©6(c@f"&#Ax

Tspe,tessissw&Ettez>z.timvt>tit£\,'0 tmm^mm

mm&mmwtzim-mm-ts0 zotz&m*Kt±©#6©^(ct,\ft& c 6#T#%Vo ^0U, S^Tte^©!^^®©

<b < £^< N ^-©fcfecfc^

f «y x f a 0ii«-e® ^ t ltv£0

— 259 —

& o—o©ss&N EE-y-^^y'^3

y &###% ©5T® ao &#,&#]##-57= 6(Z:W\ #AJ^TK##x^.

#m#%^m©ft^D(cm^a^m^ w##%# ^rva0

LfrLtefrb' K>f yM@W&5 Wi&flirWfcWtii L

tk #±%#©##x (c#^f a c i ttHHfcreftl'<t¥ij®r LTl'ao

; n - A# % & a u ^

-^^SEfn^SAtfcTtt, t- tmmmmtL-t a $ ti^iii*i#iTi'a0

K>f (KFA) rtfc<ba^*f^o5?-m (IBT3)

T-ti^ #a###(cj;a^##x@^k^%TA(cMf a?^- v-r

&mmL7:o ##©R#-e(±#^0%^mmEE##@^E^ -c ^ x.. mm®^ ^^#R)T©##% *©^##% A"C/f 4" ^ -7 % (^E#f a (C (ii# 3 X Mf’&tK SW %###@#%)^T&a 6e$#LTi'ao <tD#^E*^$%##EE^^-< ^i-vxa

ms# ©Ei§£fr? ^ a 0

Melkoniantel996^© 7 J! £5fr&jfc&300MW©$§«Bfro y h 7° 5 y h £!£

e bscmme &*r 9 ^x & a 0 m&mm tc & *> mw * be t & m e> ^ & ■*- a

c £#8if#$*iao

4.3.4 ffi^©msE7* h /<^r ^ v % ^ ^ - (cgaf a@%5©#R

mBE&ffiv7c^>f *vx£S©E§Eti:, ft#A#

(#8#) ©ai'liffli LT®MM®nm*m$lt Ltz0 1970^R(i. 5#A##©?

mtismicaoBijoa:*fr*f-m*Mrov&ztd, be^ewc^e*

* vi/^'-©W$W8 '>x-r a te^jK/Tzb D x V -^ - T y>7j:x^ Jis^-Mt LTMfe

3*ifco C©^%6*(c, mmfe£S7km^©£&5ll>MSiLT-Co

c ii S©ASS®&l' TlUEttz^tc®lt' m^iggfcckan y7

s * - y a y j:iSvAE=ix vxh^tzo zzx\ s^(*EE^#©W%©S^ti®ffiffl

EE^^-x ft##^<k# ###&^#©&BK5&6 LT©fOTt^ff Lrva0

fbtl^ «Mfb©E@<b LT^M*©^E7fxzSS©iiSa^(f e>na«k7fc

ft D x BE©^&J&£TO Lmm*©###%&/<4" *vxicE^LS^kf-a d £££

SWi Lt#BSI)frt»^a J:7(c%cT#7:o

— 260 —

Migtfx£iiE:7£'n/j£7° LTMfett\i~&Mik^ ^<D^4 d"?xoffijg • rp#^S i)Ag?& & o *7° d -fe x i) 2:-^ (;:

(is 6 o #&s CMorgZZa%aiiB$^(i

e&6&f LTm^^ii-c^a^s a^eommma/ha <s

^ y: a 0##f#m • m&Mfo&vz>Mnt Lrmt-^RTiBtt^ML

Tfe^lfStLTV^o

i7X0ffli®-o i Its Xtt^WWrOMUt LT©Wffl^<o5o a-

L%^e,B$oj;9 (ca:m%(ceimo±# 7* h *4 *

Mi LTOfiJffltes LtzMWlfz&mm-cd: D JftTOSmi;: W

MM#* t LT^,##i(cM-#'c 6(cy%ao CiLT(i^@*0###x&@^'fl:Li:C 6(c

LA>L%^6s HI 2 tea* LtzX 3 fcsMi Lfc'-M i7X^5M0ft^ (9 ic 'J1M 7 MOT Ls *

C6^T#tUfs TG^B^k$ iLTl' &#5##0##&##iTTS%#3^#

6tis ct^T#a

//Flue gas (CO2) FueT

Stack

-P- Power plant boiler

Coagulant

Raceway cultivator

BiomassfuelRecirculation

Drying system

i!2 7* h/vf * y r7 «k y^M^titz/^ 3"7x$f40 u im

Lr«EE©^E^cfcS'7^TA^iFffi-r5S^s m.W£&t

LTs h - 3&&###-'ttet>t>s

SB^-d-J&t0D -feX AST'M£ ii 6 x *;u**-zi <b LTs ^##^^60#^#^^

— 261 —

SS&fcfcU *vx£M-<h

fftt&ftl'o *©fciiK ^n-fexASi^tSi^^-iLtttN ±l###^#i©#A

WW^^i^U'o

$ e»i^> **i£TO£ & C & <b ih a*EMBB© M # xMfcfWi ih 5 Eax #

m#x*K#^^a #14*. bl8%©S®©gtE#x&J; «I1II

&80x^«tCfNOxlc^f &A#T & a o ^CT\

M*tEiSTtiStaWiioIi^SIIt^So

$ 6,{CN a#±K^WL. +OT*©^E:*f x * VX fcESliha /c & t;: M

7cte§:)EliS© V 77 7 -S.z»©gfcS^i&E<b a D ©/<

t vxiW^llfSgf

t VMEE7 * SSE&EM

6 Lf=R##% V 77 7-M#©##%,%#^i%ao C0#Ax EE©B£S(i:^E*'x#fc

tus^ ^&AnE C 6ic«t D

#a ^xrA®MI)#^^5o & bi^ EE©7* I'/'Wd- V77 7-##Nct?^-c^

-ft^X^K^tlM, o VvT © $£ft & i&H £ ft -3 X § T V' a o

(1) 7^ h^M^>/^fA|ufltaEIiifi41tl

7* h vxM * '7X X A {cfijffl & iLTv aMEE©^ < teSSEx #E%£"r&D^

ChlorellaJPSpirulina&&- <fflV£> tlX^ a o Cl *1 b (i@S^ <ifT %> 41t #

a#*%,#&L^ #m##Kf6cy:m#©x7 v - ^y/###-?&a„

B%Akm#6 LT©#0S(±x ^©%mmm©5o%@m#^#T^amm^##6 lt

OTi*a t)©N &a wines^ SHS^tttitiLTOT-ra!>©x &av&ES> 7kS&

£tfi®E4bkS©M8) 9\ * y ■* ? * 5 >f h\ t> nfy-f h\ tiS^ t*7

5 #@SS^ lDDnM*7r^ y>r ^A/0,t9 4^©4i?ai LT©g$*#tt

$tiT^a4)10)o

Ifc^fflSIiaESi LTtiN 7 X 7 A (£ &X > filamentous

cyanobacterium Spirulina> S’SESS^^ECMoreZZaR.CX^^ESceTietfesmus^ffl V

£> ^L>. fef©4StitT(k Dunaliella^Spirulina& &. £Fl£ tlTV a <k ■? 7r & a o

(2) 7 * h /<%" »J 7 7 * -ES;

#&^TK%###af:&6©/<4" * V 77 ^-tLti«ti:iS0 7xfA

— 262 —

fiZ&MZtlfco LT£S A5 B69©fl£^x JBtK

MS£3WS^I?tf*@5£4b£iglft£Lfc3I£Tx E#©^#^#%cT< &=K $

AK)fcteffinx bs i#w, «ktfitSfPttti:SftSo

#&@3% b <bSxe»tL5©(i, a#x

L^u%^e>x

0##6%5^&5l4±@a^#Lf:() LTx J£EtoEm©lM ^;i/T###%(z#

&6#^6^1&0 ecTx ISiftic£gl£tiycEE^-,'?-f *VXSI41 LTfMLx it

MFHsEffi %mi L ttfrX t) 3W*iT<b 5 o AzmfcjgSLfcS

^^rlllJR L tlnnp 115 7° a -fe * fco I'T^iftA £ 0

(2)-l IM7^ b^^'jT^^-

^m^/^IIAi^S^g^s £1-113 tcAL/dl)P9®miMx (2)i%-%9^

d m#<t#(3)#8#© 31K»I5U) 4)o

PADDLEWHEEL PUMP

AGITATOR

SLOPE

m 3 ftS6<J&lMZ¥BE7 * bvH^UT^^-(1)R«®|t (2a) Is-XZx'fM. (2b) (3)#$#

x-flT% BE(i^St-SBT$ET&

5o ±#&®miimk'y- b %m-?tctztf(D&cDt)&zi)i2n3)0 bat(±1977#k

GOOOnfOgg^'-MmSASiuBEStiTVSo

ftffi©W%T(tNegoro £> 7)RCX^A £>14) (- «k -o T x I/ — % 9 a. 4" §9###©#!%

^ff AtlT V 6 o Nannochloropsis sp. NANNP- 2 Tk.X$-Phaeodactylum sp. PHAEO

- 2£jiVx mm#xA©#m#^©@^k#m^ff^Ti^o &

C02^12%x NOx^ck^SOxra70~90ppm^ttlT^So NOxRCFSOx^BS L A

ifx^mktzm'to^^x^M&m^kcMLx^t/v^mt\tfi^^tz0 $e>

ic «k D AkeKf & m^ma u T i' % o

— 263 —

$ £> fc x Akin 615) ©E§£ 7" 1993# fc Mil if X fr <b © Ml? X O l&£ 7° a

-kxW35fg'g-£7 -f -S?fcT'J X'f X7x^f ###^#&LTW5o

(2)-2 * b>Z *V777~

7c©7°a -fex{;tV-f'il&#@ESST\ S#±IK &##M@^ ^

a dft£>©#< (±#^©@i\##T

lA^^±m^WLf:y%TAT$6o «&£§<,

&/>£ VQ l>iimol~0.06% (w/v) i/jN$V16)o $bi-s

ST&Sfc&n y? 5 * - y 3 y©BIW£ l> TV 50

^ £ T\ 3;f: ydfxZ-St/,£'T&57 * b :* V 7 7 7 - ©

gg^W0E%)#6 6i%T^D, 6 < (c=i x7 5 yffiitotziitX't-

x©ra<kDM (£*:&«) ©#gm##&B $fiTv6o

(D ##7 *b'Z * V 7 7 7 -

j&v%#*^y= d ©#^@#^m^L, %##%%#&#& y= ^ *c,

WS©7* b^Z V 77 7-^#S$tLTV^§0 C©#A, #@(i#cmK(TT®^x

%# a Eff L fcB L'»T-»T § a SSoWWTEIt StLSo

fS7* b/^3l V 77 7-(cMf 5#^(±#a#/LK##$fiTva^^o

^ fcTGrimab17518)19)20)215 225&, 7K¥5F@±i-A®2.6cm. #$80.8rn©m%#^6

([email protected], ##50 f) i, i$3m©x 7 'j7 b K«k%%#g#@B

^-&#a-At»#y=##7 ^ b^Z* V 77 7- (0 4 SM) ^EtfL^Co l#tLt

Phaeodactylum tricornutum UTEX640® § V hilsochrysis galgana ALII - 4 <£*#

l'', 4: ^"'7X^3#a## (Eicosapen-

taenoic acid : EPA) £S!£,<h LTffiffi It V £0 ####^^VT, ^StRST

©#±^<^7%#g(±15.42 g/ jg T^ itz1)K #tigV^m%#4 xlO-2Zh^S

b^l/c©^7.12gZi ©^-o-T^^fCo

— 264 —

Air Filters'pH probe

Riser •4 -Downcqi

T*"sensor D02 probeHarvest

Tank

SeawaterAir-Lift ^Injectiop

Injection?eptor

* b'UJr'JTZ#- (GrimaB)

H 5 K—#t LX^ Gudin Spirulina<D^%t 2>tz*bfcBE$a >y

h7°y

CtiBoWMU T? -o^cdFnlE,^*5^& ftT V & 0

El5PMMAEx #S13cntx SftSiffl* 1 nf^fcyiOOjeOi^SE

— 265 —

^T&6o s 3 K & -) —oo^mt±^Ag%(cj; Dmm Ly=m^©#m^©#@;T& &„

^(c j; D 9%##©i5&&l#0&f s d tfg^$tiTl'5o

■atc^ fl'jT^^-tiiMi^^^<t. m#«kD##mT(±10^315"C

-€-oy=6^mmw#T$%o

pirt & » « 7 * h ^ * y t 9 9 - (Digmmmmmti& * t y 7 h # y 7\

4*° V 7\ a - ^ V - *° VA y^ft £K <fc t) #*.**\ CWoreZZa©Jfcfifcgi&£

&jt#Ly:6C5. 4i»tf L?cii£©:5^\ fife® -t° 'y 7° <k D ^ § tiffin*!

htitzo ctU±Hft3&*l?»fJ®*K<I:*3 -5>£gtf;fc;fca&£f8£LTl'5o

y^6? h Lftv,&TJ; D

S^SFWT^So /jN&ftftfl’r#?j?fi:gl.'ff&ffll.'Sffig,J T* j'-Tiin y*

u-^3 y%g&±f %/:6®11'?srM&

^®S5t5tz&MBBfE(iJ£mSST-<b 50 & 3Kx

*©$#£§)§¥§■& 5 fc&©SEi LTl£<8H«'S>*lT:&tK 'ft

J;x4-->y y 7°inE LTWftl*e<b 5 <b S;i 5> fri S 0 £ < ^fjE0i^T'[i3fe©®

L^ < %*X

te&ft*>Zi:&mm'V&Zt%?LS>tlX\,'Zo $ g#% ft T ft

< 7 r >f ^- £Eti L tt'&tz £' I)g|^£ tlo-7 ^ i9 ^

*TX£gfc|Sjy-Ts 7f f-#zS&WM'e<b5o

<D 7* h/'Wzi-VTff-

##:<-©$)©©%^«ki)^

i'## t ##: t ©M©SS& ft £"©A& & ^ f>#%T

®lo

4. 3.5 7 * h ^t'j7^ -##^4;CX#fP##:©##

7 * V T* *-£Si!fI-f 5fci&fciftMft7r ^-0^iftl)0iLt^

#x35#^ ###^&^<k ao t < ##*&

— 266 —

(1) M©SiR

tmt LTD , * vx

«$4<b ltm^> lt

^ ft: #titits; Z> ft i' om^¥@S7* V T7 af:36. EES

m(±#&##T^6o ^eo^Etfx£@5£4b!hS/c*(il^M

£ fc £k 3Z^fri-S^ ft ft vWt(±BBW##T& 5 0

^ fcx WSl7 * h * >J 7 7 7 -Tte«fc D5 fc&sjz®!! V 7

7 7- (cjf<ft(f <k D /Jn$ v$M@^cDEB^wiE-e^ 520 ® 0

^7* h*vt77-(om&frimm-eb%>tabm.m±m^mmir^m^

^CTN :HffiT'&II6 fcasL;fc«fc,5ft3fe7 r-f ^-fcj;

Solar Light Collector

System Oonon Lamp)

Output Cay AnalyierOptical MultichannelFiber-optic Cable#

Ca« Supply Tanxs) System tpK.Temp..etc,

Photoautotropole

^Microprocessors

E16 ±HiiS^*^EE^Sxfc^77-f/'<-icek55fc^5t7* MW?f'J777-

— 267 —

ms

mim

mcckaam

xm

A'eoggsoR

#•

: 2.3X10

8 cells/m

£, O : 7.9X

107

cellsZm

fi

Light Intensity (pE/m2/sec) "x

% m S* #lit a it 1*(6t # (Bt04 m mm a

IE i®8 #d n %

0 94- srt- 0 r*» CO <4 &/ n y a& $n & sSifi r 9? ffln rt-

9r 0>r o< &d n p?tfl y

i»<r- ffl nmPB

BE#

ati*

(it E 04E# ft1

sip » »4 lit n04 M- 5%n ow SBOr ys. 0s 4 H0 04 >

9« r-k

y iEH d

o §? 8tED-%

04%y

M/4

*LH ’ i

il -k lit lit o<1 Faf It1 M P 4

lit 33 ro e~ n §s# 3 4 G (X 9?cy- S 04 S¥ 4 94-* r n Q aw IW✓X y fV

v5"'8

&■ » 8ty ~T n 1 33 088 1 9t 9?

y-4 ffl SB

14#

X c d or sj rF iff A- s

0

rdf

3- 04 »H n> o

m- ■4 a d rt< %<r- * n <r- n y#o -k & H d s

i m O o / Or£v $

Xt

>H# 8lit Mm

4x

d nhr 0 y 9r

41

4 0404 0 4 •4Ci * 7j d(V lit XV y s% rati A-d 14 38ow ot qtijt t# m04 i* r % lit0 y n 8t #Kt 41 c o«ft- m n y ft-y 9-S" -o * »# 8 # y

Mm -s # Hcf- 0 XV A- #Mm H 0 > rvyx " •> £ H lity o ill

I

Iii

i

# d g m 8t m ii>to et- 9$ # eX $8 3 94\T» (V eX y m sH 4- tr“ cp- 77 it77 A Or 3 M (X TV % 41 O/ sX to­ $F 6 # a # E i-iDi o ts- # ME @ * IM­ 4- ®m d S % S cy 0 S' eX vy-VI ay 77 $ HF & # 0 Tt- s4 c # #F m 0 » TV Hy c* nr d # St 0 1% CDVS* HiF A * at- 77 c t@

-X %* s 77 0< m y 4 VI ■ m4 ae y o« SE l V 4 /. -fi-

^E O IM­ bF lit T Pd * @8 S' y 8& Vy» 4 rU

y| gMVr * 0 eX h- EE -X N J9j?

yj j5^*Vr % 77 HF ME VS- c* 4 Si|S f\™

1 DJ> aft w iW rt m hf© m 94 77 lit a O d ' E# tv S' TV S it Vr O ^D> 3 l Vf ME »77 p m 77 e y 1 BB HiR CO m 4 © 3 E Ory d <x me & 0% et- it lit in 4K ► #

~tit 5ra9$ m eX # 77 m # Em

$L m.77 SB % 77 m $ bf ^ cvMm tv m w> C a str* cf 3$ m & d o 111IS m >4 3 77 &• Eo> d 0 0 ¥ H

77 9+ s m i7? 77 3 *

go % 0 i <h -H:voj. m s SE ys. I<X E m 4- K7Eg X % dSt- % 04

Hj+* 4 *S # g 4 (it04

o lit y tX iffl

07.00 09.00

11.00 13.00

15.00 17.00

19.00 21.00

Biomass concentration (g litre"') (*)

0t0*b>0000t0£»0)00

10"'7x/ (quanta s"' cm"2) (©) or 10‘2xDo, (%) (A)

% ~r Egm V.y» I4 -X s- Pr bf4- 4 p

p> to y

04 \y* #O d cP- d #

l Vr Me «r- fvbf Vr 04 ME/ 1 a TVn 0 % 0 F0© # 9r 77# D> %eS y

# * m77 (P" D|m M- # 0W 13 (it %<4 mS #lit lit

» <r @o« © d n|rr 3 ry 04 ex y

HF <- s MEE y o& a» -Ft co %% 9- 77 HFa \T' a% -FT <r eX4- it neX 77 Fr rr

o« (P*# "4 77 *lit d -w ft

HF a ©□IF E m ar & VI MFd E 4 d

04 g # d IS 31 15 S % d5? g Qt 55ft t"1 lit 55ft ZH ffl HfP wm % 04 $ ro % d PS v ct 04

nip M Or * O 1# et 3 4 04 G >4Hi bh m r y 4 at # 04 0 a ° d 94-\C a d * Q 04 yx o X y4 0 <- 9r O'- 04 y Hi 0 l »N* B jg 0< % S o- 9* s& t* atVr n> <it o 94- r< Ft H g bh 2"

1 © (V 4S dS fr- m Vr % a3 » Ft yx tf Hi c # Vr rT0 n> 4- n ti; 0 y % I 94- # %T <r- 0 y N* ^h & 0 y m Kh4 (it hh ps # IS ** &a a [ftp 5@ FT 0 4* □> * X at% hr © lit tfr & 04 n i# % #l 0t 0 XT' % 9t 94- • g d yn k- * * # A lit" y & rnt 9*0 y FT * 4- 8 9- 0 # % an Ft#r- m 9r 9r 04 # % IS St# -h nir\ # c % FT S yx m hr m 33 > hh hh R g C lit 3 «■ %y © @ y -m ; SB #gfc i* 8( a m © % 0 # © c-(Th% s sa PS a ~h ft X; Ftm.Ox at 3 hr o Ni V. yl »VVftr <it lit 0 y m 1 0 @pill 9r >h S? # $ % m i% % bh#1%

C ow t=r n> l at Hi m n as yx 4 lit # S' % Zt Or ©

$? l A" 04 UN 04 H 4- %% rT C ft yx & at 04 n>n 4- y » 4- # o< <“ %R 94-s 04 m 7T 04 m FT 1 Ft m 9U4- r< R n % g d 9-t Or04 fr © y Or 9? m

% hr m % * at y >4 w 0 (X'm d % Kr » &r S'~~L, y& m b*<it mt © m % rTo gg A %

EI10fc^L^<k 9 fcx MBS^-giEE

Porphyridium sp.>> P. aerugineum7k.X$Rhodella reticulatatSl <£: <D <fc 9

Polysaccharide££g> 3 331 % 2"r(±m^gO#An6*K#%&(±±#Lx

Rhodella reticulata^^kK & Z>Polysaccharides^^<DM’□34) (i> %%% (i ATclSO

cPiujSL/co ^ 3Kx «k y* n

Lx < #-^ - b %%K<D±##x

(5) m em)

%7 z-Y/<-K<t D^y=#^x

t L *5 /c &6#m* %mm

AK(±x MESVME7*

GessnerS^fctkiltiix CMoreZZaT(±200mETlT308B#^##Lf=O^mmm^ 3 #

^iiSoLfcifg^LT^So L*»L%^6x ###sF%@E^76EEog&#&g%

mm^mmLx #m###m##kLa^# < k&«>«>«0 $

a#/ha < e& imjs* &/> s < s^Mi^rostiSo

finExVMM< EfflStiTjo V)N r -f

(c«kD#^T#tt^x nmmmmtfx%£m&£'(D-±LM$kft<D®mm< 7* b^M* y

777-# aao s&MKra&s^MLfcB#:©*7 v--

y/x ;taE©:fc&<DSBBIx='x b oi#An6^^E##§###o 3 % b*e<fe50 L^L

%^g,x ^ 5^^ * vx=kz>*£^imn© si>©—3ri$t LT#W"f^§T

(6) pH • mm&fta»Il04fl:iLtli^t:£gx pHio J; 3 fix tfcZ

fi g, «

Lee, ##0pH^6.5^g,7.5(c^x^#

^©E^^ofco pH=7.50B#x ^vx4iM(±

ISJEL/Co

— 271 —

Sanchez5>47) (i:7 * h ■'^4 }) 7 7 7 ~ Skeketonema costatum<Dy 7"1§

mfc&frS'ao 283—308K(c^if§itj&EMtMK

293^ ^298K<D^"e h°- 7 £ t>-oitj&EiiS^S £ *l;fco C 0##

^IS^SArrheniusSlT'SS L t it,S^ L> HHK L fcfUln]£STl' S o

(7) = X h

7 * * V 77 7-(c j;6^##x@^/fl:7°[MrX0 3X MtS<b Ltllc £

(i\ h-7;i/6 *§ S

tztltc £> tl 3 *> £1' 7 J&fc ® 5 O

Mx.ZtitcFgMRMkli'MMo&t' 7 * h'M i/x-r 5ilK-©

$vxx % ju¥~&£> Mi MUtex ^L^U'fc £ § ©H&7°5

& £>(cEsItoVAtiZti&iz&Kte$£$k®$£M

LT^a@go#Bo#(c £ £')6 5 c t&M£ Ll'o

§ icN 7 * h/<4" VX7A^ j; fflS&Tl#

c ^ £ f a - mmmmmm#K =kawm# & #5 „ ttz^

Kg biomass

30 45 60tons/Ha/yr

ill 1 &#3 X h <b£.m§h^O$& 14\ :I$itt^4 FF (75>X75»

— 272 —

& ¥$% & tlO O cr> § o

^ u ^ a 6 7 o

Tapie6^(±ElllK^Ly=j;9(c^ 1985#^-%%=##7^ b/'W# V 77 7-(c<k

57c##EE##KMLT3% MfS^M^-Tl^o fl'jT^^-TUfSli^fr

< L=I y7 U-i'a y^K±7?§§7 V y b^&S^x M

J:0'x>y--;i/7 >y 7°/<?7 -7©S^CD^FE^£&£'£&tf T i'6o

4.3.6 * V 77

(±#E 7 * b V 7 7 7 - ^HEEiM" 6^6 ?7-7^#S

%8K\ 2 @E©SE^ j:«Si#-^E^yco £ < fcx

M7l£jW £S&7 tz&©g@gm H<h LT?g© I/* D 5>'-©S

leol'T%#%(u^if^rff -5 7co

(1) i§E^-f * V 7 7 7 - ©Igtf-Mf-

«7* b ^ * y 77 7 -ohmwc&Mx mm^m^m

4>te7ifLx f <D&#x 5feES@S^

4>£-£&*:a6fcx ^iy 77 SBVMEU7

7 7-^fflVx %7 y^/<-l!:j;K)#F*gic#^f3^&x & 3 V (iE^E^E©¥85

IqloEAK4: i) 6&#& (7 5 y S'=.&&#)

<£-%xTVBo

(1) -1 fa © M?6S-n

5fc^(iE@s< ic^

£ 6(^E#:«SMcD^vMMTKSMSb.J:SP1

% tlEo

5vM ©E£& Ja> j:e>iir43 d x EE^fflvyc7* b *

V 77 7-<bLrfflVB^^(ix EE (S3fe®) («§&) t®I

-273-

-i®7 7 y s/a0#;c«k D^6^%^J:

&%#&%# L-ri' a o

(1)-2 igftcD y* n >7-

Polysaccharideft ^©fflUS^REtl^^SS-tirS^-^iC |±%%% &±# L x —^

XS'fk & & V' TAm# * IrJ±.& ^ £ fc * gg$ © Hilgig# ##%* fc

LfcEMift & x i/*a 7-%##^-a- h 5>^-a.-

h y&%:l'&'tt3iZ.iptl&o

#isi ©##^m#x&j; «%#xiiMit c,

t> ^T § o

$ 5>(c,

e c T\ *S^"e(i^ySiSfi©¥S5lq]©^#ES^1/8S5-S <k # x SigjM £

©KH^S-IKS C 6KJ; D 7 ^ h* V 77 7-##©f:)6©^]#^#5o

(2)

#mm-?immeom#<t.vium®r7 v jummmmMm^m^tc0 #i#^2m-e,

^ ftWHUti&E{il.lOmT: & So M Ltcm&7k&<k£ LTtfc£MSS^

#&%#"?& & Xanthan*@#&# l' x T&IH^SiTfglfP L fcQ tfx £ Ltfilifc <k XS

SM^fflv/co 7* ht y 77 ^-t©^i^xoiiagKii^xis®

©K&«t D##FT#T#& £Talbot6* fi"Cl'&©Tx

tt© <k vfco

7&41 © # X * - ;u K 7 y 7° M St - tektyifc&tCo

%fzxb\z.' ^&mm^&^xmmLtzWLm^fe®ffiAK§m

afitea&mu m*(cm@#ALy:##mm7a-7icj:

5£L/c0 #»J: «fflIi©MMWiIikLa^tfe$ ^ ttlt©

t fc«, *vwn-y©&g^#^is] k&m £ -a- s c. t k

<k t) x mm <%(c#jm$ ntz0

— 274 —

(3) ##&###

(3)-l F 7 7 7°

EH2fc7kS.O'0.4wt%Xanthan7k^?S©S^C>N * - 71/ K 7 v 7° 6

g<h©M^L7t0 g#mg©#mtmm$titz0

Xanthan##: h r=k (d. //dt)n : k = 0.905 Pa's\

n=0.355) ©#AK(j:#%^#mg©#A0 tL. ±

mym©±#mg#± ©amm# ©#an^?m $ utc 0

0.4 wt% xanthan •water

a 0.12

0.06 •

DT =114 mm

Superficial gas velocity [Ncm/s]

mn nmmft<oxx*-Ji, kt», -ftxxgmmmtnMft

(3)-2

#mi4rnrn©m^#&mix 7k&(fXanthan7k#%©#AKW &%%#####

EkLa’©i§^E^l9M^H^fc0 H13{cXanthan7k^©^©^^^ LtzfiK

a C £«f3£ fttco

(3)-3 ¥MlRl©¥«gM^RE-tMg©B#

-5s BI14(C—(UG= 1 cm/s) TtEMSdjl L tf:^ © *g#ES

2SS©¥Sffl©jt¥gM©^^^Lfc0 ctW; %zk%^©@%g#T

©S^^<k < ($E5piBfj:^ESEgM^^LTva5k iff*

fizz t&frfr-otz o

— 275 —

0.025

0.02

~ 0.015

0.01

0.005

___

-

-^1 —3 —14.14

DT=114 mm, 0.4 wt% (anthan

0.2 0.4 0.6 -Dimensionless radius r/R [-]

0.8

@13 0.4wt%Xanthan7jciS$$pJffl•UG=1.0cm/sN ■UG=3.0cm/sx AUG=14.1cm/s

Dimensionless radius r/R (-)

Radial profile of O 2 concentration (UG=1cm/s)

@14 (ue=i.ocmZs-s)•tKx ■0.4wt%Xanthan7j<iSiS

(4) IS #

7 * * V 77 7 o©£fl.iL£; LT¥

EET-ES©iET^l. 6 tifco

l ssm ©ebm-et & 5 0

— 276 — '

4.3.7 JOEE® *: 46 ©ft] jl

flUEMES & X f- u y^p - * j/ lx y ©E<b7° a-tzxN Xf i/y ^S4fc MMtK

#{k7°o-k%%2\ JA^k^yn-fexfc&VTEfflSftTVS4344^

L y= D x ME^#^0&^b^ e a D ?% <\Ifi^ET<k ttgfc -3 %##&#-#-O

Dewes 3<5) ti®:*:O3E10ME©i«EM'/£i§ (MllSnmu i^S 1.37m) £fl|V> $EE

V — ^ a (i#E#V — yzk#^i#(^#@45—70 fim<Dff y X#? CChlorella

t£ <b'©^SIS^ES(t^)10^m>. Spirulana<Di^^\Z.\tMM^lb iim-^ S&ifclf jum) £

2vol%EAL«?lE*^ e5'mm&#%WC#a/L##&;c:WamETT©MEE###& a«

(1) AnEME#m?©^EME##

E*©illDti:MEIFIil!I:ft£M4>$-ti-49)^ ^©f:46ME|B|±©#^(c j; aA—J: D t?

l a 51 s ti aiiini ^ ^ a 0Tsuge341)ti>&iEEMES£fi§vr, 5ME©##<&m#%

@#%%efvwc j; i6ET?&SE

vmwmts u h-meitmmkp$ vme

§a:i *ifc0

(2) MEMEigftT©ff X *-> FT-y7°

Dewes3<5)tiflnEMEiSM V, #"E^3 8MEK# #a#X^-71/ F7y

Ls <-©0#^ #X*-;|/ K7 y y eol±i#tn^-

a c tL^co

(3) mEME#m?©#m#m

£ 3^^ HEfflMIii^ffl^l«liil^h§lit 5 c ifcj: 19. #

HMSe«kLa’£:$46, $ 3 KE» y 7° >J y *"gE£ffiEEv - ^SMbEfc <k«9#

&##$ fc (9 ©MEg=M@#a’£l!i!l L T v a o

1115^ LfckLa’£ tfx£3g^K<b ©i^ <k D , 8 MET?iikLa’K&t$iM£T© I*

m «1. 1 MET (c± # %kLa'^# 3tl/c0

-#> ^ D 0MliiIia’ii;'x$IIgt0iit|5l'Ta^(JIS

kLa’<b|5lS^ 8 MET?W##(cj#±L ? V a c ttmztitz0 t^oiifiS^xS

iiT?a’%m=fm'PS-ti-a{i/J\$ Vo

— 277 —

QAn G/L system

• ■ 2 vol.% solids P = 8 bar

(4) SnEM-/SiiS7* h^*9 7^

6nES’/Sjt©7* h y 77 7—'Oj&fB&amT#, m#A#^#^©mE©B#,

±7 7^f /<-leXSCDES<kO'3 % h < ©#@g#&6#

* let? It fc—o ©££% £ L Hi MET&5 7 o

ea (EEtfx-M: mo.03%) zimmmmt * v*4 * V 77 7 %^©#@##le^^Tgg####x#g(f#

0.750)~5%®K24)t^^^T^§fc46. Wie|lie^E<h1-Stc^ie|i> SE£23~17

OMEief EBoimSSTkH #####%If ie#&f a

tv?&@t>/hS < ±M$ & /.h£ V fc6 39ES ft t> /> S v ,& te & v T If 7 * h * y 7

7 7-£ LT(Dmm%W-?T\'%

4.3.8 # S

3K##-T(±x 3-n >y/N°SL^'F-t y |c & If & ^ X x 4wi/ 4? -£MIkCFfOTttjir

SlRDB-S-ie-o VTSlSS-fiHfco

te^f-t§tm&mm7°n^^7 h £ iti^

©fijffl ft i£im if e>tLn^o

fM 7 t>MH»lE^©SlS(fE < N @#$##X^ 5#x tt#% £le -o i \ % (f

tvxigS®-'LT^ 7* h* V 77 7-

— 278 —

IBM7 * I'/'f'f * V 77 D@3% b7"-<b£vi>A &A##%

iay^U-Va yil't'o V%7&&S^ ®&&fc£©®IlK t>A§ i'o

—2fN SM7 * b '<4 * V 7 7 7 - #i#3X b "C$a####nr#T& i) > %#%#

& o wmimmweg.miz-o^x

■hm&bnx&'O' &mxm*mx,

*fc«kJ)v t«k Dso § ^«tbit>j 7 h

4% y7°OflJffly$ jfffinx b'fb©M^%^<;fTt)tlT#T\-^o

SVMS7* b'M* >J 7 7 7-©H^©yci6oMiF^<!: 8t

«k CfL y^o

m&m&®m&^\$^W5n<Dmux*ftm$'b'£ < > ¥»isjom&itm&x&zw^

m&g®±#<b££¥&5fa®S$#S©MA;§ < tl^tzo c*U;!K

In L~, Polysaccharides# 3 EE/"W b-'^'f

* y 777-&i£ff(c^t)fi5

4.3.9 &t> D K

mW&Wl&b. \Z. & £ B ihSE ©S^S -3 VT(4. iEESHHEB © Erlangen

-NiirnbergA#^30#m - ##^B@©Mm"e^(cAt)#^^ 4"#, igEMfS#

Tv<^tt-e^s0

4.4 4#mm#0s#© » © m K## t # a

mA*E#©wj6#(c&gf &##©ms

&^(±m?y-3 v^n lf»m#s.om^im

%7 y+ y7";i/(cg^^T##o CtiB4 £l'3Hllfc<fcD^tg7r©^;fcJ;3fcJjl3o

mmt^m*mmmm.L, 4-E©imto#s«%^is^«■5y=&©mim^m^m6

^#&6K(4iIFa^&0iIfHlT"5 3 o

— 279 —

4.5 i

120HUE© F>f yft£&5l'W:Sgttfc«k5x*Jn/3?--S>3Si£

6ES®©M@iR %Ex SMBU

^^^(450%i^ilt^§o $w#m• iptr■

ssex©sii«#s^iSVo

6 < Kx jbgfcfc t-oT (iEE© /'■c 2d CD X ^ >4^ - D x M 7 Tit IBS K

-Y #±(f a^'|S](c#a-'3'o&So trL

LTlRt9±lf btlT&Dx (EU)

Tl'&o

5.

1) Hall, D. O. and de Groot, P. and Coombs, J. : Present and future status of

biomass as a source of

renewable fuel in the world energy scene, Proc. 4 th European Congress on

Biotechnology, Vol. 4, p.503 (1987).

2) Community Research and Development Information Service : http : //www.

cordis.lu/

3) Hoffmann, A. : Die jetzige Situation der Deutschland, Sociatats - Verlag,

Frankfurt/Main (1993).

4) Becker, E. W. : Microalgae Biotechnology and microbiology, Cambridge

University Press (1994).

5) Roux, J. C. and de Ortega, A. R. : Intensive culture of micro - algae in flat

solar thermoregulated bioreactors, Proc. 4 th European Congress on

Biotechnology , Vol. 2, p.446, (1987).

6) UMWELT • Einzeller nutzen Kohlendioxide aus Abgasen als Nahrung,

"Algen schlucken Treibhausgas”, VDI nachrichten, Nr.37, 15th Sep. (1995) .

7) Negoro, M., Hamasaki, A., Ikuta, Y., Makita, T., Hirayama, K. and Suzuki,

S. : Carbon dioxide fixation by micro algae photosy nthesis using actual flue

gas discharged from a boiler, Applied Biochemistry and biotechnology,

280 —

39/40, 643-653 (1993).

8) Morales, I. and De La Rosa, F.F. : Hydrogen peroxide photoproduction by

immobilized cells of the blue-green alga Anabaena variabilis : a way to

solar energy conversion, Solar Energy, 49(1), 41-46 (1992).

9) Morales, I. and de la Rosa, F. F. : Continuous photosynthetic production of

hydrogen peroxide by the blue - green algae Anacystis nidulans R 2 as a

way to solar energy conversion, Solar Energy, 43(6), 373-377 (1989).

10) Pohl, P., Hoffmann, M. and Bahr - Loeffler, S. : Axenic mass cultivation of

microalgae in automated photobioreactors and screening of algal biomass

and medium for biochemicals, DECHEMA Biotechnology Conferences

3-VCH Verlagsgesellshaft (1989).

11) SBSSJS (1984).

12) ###% = ###%!%(cZ&SCPommx 34, 287-293 (1976).

13) : X LIf'—■LTORltitt, New Food Industry,

17, 7 -13 (1980).

14) Matsumoto, H. and Hamasaki, A. : Influence of dissolved oxygen on

photosynthesis rate of micro algae, Kagaku Kogaku, 58(5), 382-383 (1994).

15) Akin, C. : Final technical report. Removal of CO 2 from flue gases by algae,

DOE report (1993).

16) Javanmardian, M. and Palsson, B. O. : High-density photoautotrophic

algal cultures : Design, construction, and operation of a novel photobioreactor

system, Biotech, and Bioeng., 38, 1182-1189 (1991).

17) Grima, E. M., Camacho, F. G., Perez, J. A. S., Sevilla, J. M. F., Fernandez,

F. G. A., and Gomez, A. C. : A Mathematical - model of micro algal growth

in light - limited chemostat culture, J. Chem. Technol. and Biotechnol,

61 (2), 167-173 (1994).

18) Grima, E. M., Camacho, F. G., Perez, J. A. S., Cardona, J. U., Fernandez,

F. G. A., and Sevilla, J. M. F. : Outdoor chemostat culture of phaeodactylum

-tricornutum UTEX-640 in a tubular photobioreactor for the production of

eicosapentaenoic acid, Biotechnol. and Appl. Biochem., 20, 279-290 (1994).

— 281 —

19) Grima, E. M., Perez, J. A. S., Camacho, F. G., Fernandez, F. G. A., Sevilla,

J. M. F. and Sanz, F. V. : Effect of dilution rate on eicosapentaenoic acid

productivity of phaeodactylum-tricornutum UTEX-640 in outdoor chemostat

culture, Biotechnol. Lett., 16(10), 1035-1040 (1994).

20) Grima, E. M., Perez, J. A. S., Camacho, F. G., Sanchez, J. L. G., Fernandez,

F. G. A. and Alonso, D. L. : Outdoor culture of IsocKrysis- Galbana Alii- 4

in a closed tubular photobioreactor, J. Biotechnol., 37 (2), 159-166 (1994).

21) Grima, E. M., Perez, J. A. S., Camacho, F. G., Sevilla, J. M. F., Fernandez,

F. G. A. and Cardona, J. U. : Biomass and icosapentaenoic acid productivities

from an outdoor batch culture of Phaeodactylum - Tricomutum UTEX -

640 in an airlift tubular photobioreactor, Appl. Microbiology and Biotechnol.,

42 (5), 658-663 (1995).

22) Grima, E. M., Perez, J. A. S., Camacho, F. G. and Media, A. R. : Gas - Liquid

transfer of atmospheric CO 2 in Microalgal cultures, J. Chem. Tech.

Biotechnol., 45, 329-337 (1993).

23) Pirt, S. J., Lee, Y. -K., Walach, M. R., Pirt, M. W., Balyuzi, H. H. M. and

Bazin, M. J. : A tubular bioreactor for photosystem production of biomass

from carbon dioxide : Design and performance, J. Chem. Tech. Biotechnol.,

33B, 35-58 (1983).

24) m ii:®MH-<kSC02@5£ 3. ? a Uy t7kmMM<D

(1993).

25) Watanabe, Y. and Hall, D. O. : Photosynthetic CO 2 fixation techologies using a

helical tublar bioreactor incorporating the filamentous cyanobacterium

Spirulina platensis, Energy conversion and management, 36 ( 6 -9), 721-724

(1995).

26) Mori, K. : Photoautorophic Bioreactor using visible solar rays condensed by

■fresnel lenses and transmitted through optical fibers, Biotechnol.

Bioengineering Symp. N0.15, 331-345 (1985).

27) Takano, H„ Takeyama, H., Nakamura, N., Soda, K., Burgess, J. G., Manabe,

E., Hirano, M. and Matsunaga, T. : CO 2 removal by high - density culture of

— 282 —

a marine cyanobacterium Synechococcus sp. using an improved

photobioreactor employed light-diffusing optical fibers, Applied

Biochemistry and biotechnology, 34/35, 449-459 (1992).

28) Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Akiura, S., Takano,

H., Hirano, M., Burgess, J. G., Sode, K. and Nakamura, N. : Glutamate

production from GO 2 by marine Cyanobacterium Synechococcus sp. using

a novel biosolar reactor employing light - diddusing optical fibers, Applied

Biochemistry and biotechnology, 28/29, 157-167 (1991).

29) Burgess, J. G., Iwamoto, K., Miura, Y., Takano, H. and Matsunaga, T. : An

optical fibre photo bioreactor for enhanced production of the marine

unicellular alga Isochrysis aff. galbana T-Iso (UTEX LB 2307) rich in

docosahexaenoic acid, Appl. Microbial Biotechnol., 39, 456-459 (1993).

30) Lee, C.-G. and Palsson, B. O. : High-density algal photobioreactors using

light - emitting - diodes, Biotech, and Bioeng., 44(10), 1161-1167 (1994).

31) Cornet, J. F., Dussap, C. G., Gros, J. B., Binois, C. and Lasseur, C. : A

simplified monodimensional approach for modeling coupling between

radiant light transfer and growth kinetics in photobioreactors, Chem.

Eng. Sci., 50 (9), 1489-1500 (1995).

32) Tapie, P. and Bernard, A. : Micro algae production : Technical and

economical evaluations, Biotechnol. and Bioeng., 32, 873-885 (1988).

33) Arad, S. M. : Production of sulfated polysaccharides from red unicellular

algae, Algal Biotechnology, (ed.) Stadler, T. el al., Elsevier Applied Science,

London and New York, pp.65-87 (1988).

34) Dubinsky, O., Lerental, Y. B., Christiaen, D., Glaser, R., Barak, Z. and

Arad, S. M. : Production and characterization of polysaccharides' in the

unicellular red alga Phodella reticulata, Algal Biotechnology, (ed.) Stadler,

T. el al., Elsevier Applied Science, London and New York, pp.451-461 (1988).

35) Terasaka, K. and Tsuge, H : Mass transfer in highly viscous liquid in bubble

column with constant flow nozzles, J. Chem. Eng. Japan, 24, 424-429 (1991).

36) • m # : yf- (1987).

— 283 —

37) Gessner, F. : Ruhland, W. (ed.) Encyclopedia of Plant Physiology.

Vol. XVI, pp.668, Springer - Verlag, Berlin (1961).

38) Gross, J. A., : Science, 147, 741 (1965).

39) Vidaver, W. : Inst. Revue, Gas. Hydrobial., 54, 698 (1965).

40) Peaese, D. "C. : Biol. Bull. Mar. Biol. Lab. Woods Hole, 91, 145 (1964).

41) Terasaka, K. and Tsuge, H. : Bubble formaion at an orifice in liquid under

highly pressurized conditions, Int. J. Eng. Fluid Mechanics,

5 (4), 439-457 (1992).

42) Tsuge, H. Nakajima, Y. and Terasaka, K. • Behavior of bubbles fromed

from a submerged orifice under high system pressure, Chem. Eng. Set,

47 (13/14), 3237-3280 (1992).

43) Dewes, I. and Schumpe, A. : The gas density effect on mass transfer in the

bubble column, Preprint of The 3rd German/Japanese Symposium

"Bubble Columns”, pp.147-152 (1994).

44) Schumpe, A. : Pressure effect on slurry bubble column performance,

CHISA '93, Paper No. 3022, pp.l- 8 (1993).

45) Dewes, I., Kueksal, A. and Schumpe, A. : Gas density effect on mass

transfer in three-phase sparged reactors, Trans. IChemE,

73(A), 697-700 (1995).

46) Lee, Y.-K. and Pirt, S. J. : CO 2 absorption rate in an algal culture, effect

of pH, J. Chem. Tech. Biotechnology, 34B, 28-32 (1984).

47) Sanchez, S., Martinez, M. E., Molina, E. and Delacasa, J. A. : The influence

of temperature on the growth and fatty-acid composition of Skeletonema-

Costatum in a batch photobioreactor • J. Chem. Technol. and Biotechnol.,

62 (2), 148-152 (1995).

48) Talbot, P. Gortares, M. P. and de la No e, J. : Absorption of CO 2 in algal

mass culture system : A different characterization approach, Biotechnol.

and Bioeng., 37, 834-842 (1991).

49) Massoudi, R. and King, A. D. Jr. : Effect of pressure on the surface tension

of water. Adsorption of low molecular weight gases on water at 25°,

— 284 —

J. Physcal Chem. 78(22), 2262-2266 (1974).

50) Miyamoto, K., wable, O. and Benemann, J. R. : Vertical tubular reactor for

micro algae cultivation, Biotechnol. Lett., 10 (10), 703-708 (1988).

6. m s*

^ (rite)

##########%: a & % c t zm <LttoK 'f y SASM OBraunschweigZC^-A#^#]!##^#? & -x fcIBLx

£ V/c?i'V/"cDr. Adrian SchumpeifeBt£ & C 26 £ 5

7°y

*ESE%(^ELT, U SB ^ V *: tf: V /cKolnA^: © Dr.

M. MelkonianSfcSx TiibingenA#®Dr. E. W. BeckerS>. L

Tl'fc/f V 9 — KFA (Kerunforschungsanlage) H 3 y’*>f * T ^ V o

^—#05^7 (Institut fiir Biotechnologie 3) ©Dr. F. H. MohnKi^r {£ E 26 V — 4- V it

*f (c LtiTo

— 285 —

(1) JECAT' 951 ©Eit

m# M- m 4£

E m # M m 3 #M

4.

— 287 —

xsmi^

& # $ 02

JECAT '95

1.m Sg E - EC WE WS 7 - ? * a y 7°

Second JAPAN-EC Joint Workshop on the Frontiers of

CATALYTIC SCIENCE & TECHNOLOGY for Energy, Environment

and Risks Prevention (JECAT ’95)

2.

x*-«/¥- • >f y h • 7-

? 5/ 3 y 7°o S 1 HI© 7 - 7 * a y 7“&1991#12J3 2~4 B & ftTV-S

^IHBtEC^^) VTEffiS tlfco (± JECAT’95%###.^^ European Federation of

Catalysis Societies^ S.C£ (B#) 5 o

3.

6# = Claude BernardV 3 (V 3 7 5^)

ftfi/f : 43, Boulevard du 11 Novenbre 1918

69622 Villeurbanne Cedex, France

4. ^EfMBB#

1995# 4 ^ 268 - 4 ^288 (3 BE)

5.

4 ^ 26B fp# Welcome^.^Introduction Conference

Automotive Emissions -te y v” a V

— 289

4 E 27H

4J328H

4^# Automotive Emissions, Fixed Plants Emissions-b y v” a V

Posters Session I

4=-ffi Upgrading of Refinery Pro ducts-b y is a y

4^^ Synthetic Fuels, Water Treatment,

GO 2 Fixation and Use-b y is a y

^32? Banquet

^pfiJ Catalytic Combustion, Energy Production-b y '> a y

M Posters Session II

4Pl£ VOC Removal-b y i/ a y

Round Table (Substitution of Liquid Acids) ,

Concluding Remarks

6.

#AoA# : 1454=, (List of participantstitcKWi)

{IjJitMl (International Scientific Committee y —)

J. Blanco, (Spain, Inst Catalysis Madrid)

J. Bousquet (France, Elf Aquiaine)

M. Breysse (France, IRC Villeurbanne)

G. Centi (Italy, Univ. Bologna)

D. Chadwick (U.K., Imperial College, London)

M. Che (France, Univ.P. et M. Curie, Paris)

B. Delmon (Belgium Univ. Louvain-la-Neuve)

E. Derouane (U.K., Leverhulme Cent. Inov. Catal.)

C. Geantet (France, IRC Villeurbanne)

P.C. Gravelle (France, CNRS, Paris)

N. Guilhaume (France, LACE, Villeurbanne)

T. Inui (Japan, Kyoto Univ.)

T. Kabe (Japan, Tokyo Univ. of Agri. and Eng.)

E. Kikuchi (Japan, Waseda Univ.)

E. Lox (Germany, DEGUSSA AG.)

— 290—"

M. Misono (Japan, Univ. Tokyo)

J.E. Naber (The Nederlands, SHELL)

A. Nishijima (Japan, NIMC, Tsukuba)

D. Olivier (France, ONES, Paris)

S. Ono (Japan, NIMC, Tsukuba)

M. Primet (France, LACE, Villeurbanne)

J. Saint-Just (France, GDF)

K. Segawa (Japan, Sophia Univ.)

K. Takehira (Japan, NIMC, Tsukuba)

I. Tkatchenko (France, IRC Villeurbanne)

mm

wmmx

c^mxmmmm^wr, -itw, «f)

±b m

c^mxmmmm^m, -mmumm, warn)

8.1 i®Si

• Welcome 4 f{0

•Introduction Conference (H^'dlJiEC'®!! 1 #*d‘o)

• Oral Presentations (□gl^lilE'. A89#=)

— 291 —

F*3 Plenary Lecture (45:53") 5 #s Keynote (3053") 6 #x

Communication (1553") 28#

• Poster Sessions (4^X ^ —A52#)

• Round Table %M##0)

• Concluding Remarks ($9 — 7 S/ a v 7°©^ng)

["fe >y '7 a

• Exhaust gas treatment (#xt#X#ik) • P@il2#, 4<X 7 —20#

Automotive emissions (###±#0%|#i)

Fixed plants emissions (iE/S^fezE^fSI)

• Clean fuels production (7 V — y##©A#) • PH 9 #, *KX *? —17#

Upgrading of refinery products (SfifefflSnn© 7 v 7° 7" 7“ "T 4 y 7*)

Synthetic fuels derived from organic matter (W##^ 3 ©##A^%)

• Water treatment (tKMS) : PIS 4 #, 4^ X 7 — 2 #

• CO2 fixation and use (COaS/E^k <hfOT) : PH4 #, zHx7~ 5#

• Catalytic combustion of hydrocarbons (#{kzK#©####)

: PI10#, ^x^-7#

Energy production (x 4; A/4r —±ii)

Volatile Organic Compounds removal (VOC#t@)

8.2 ^m©m#

±15© -fe y 'X a y#gR#lc^ L ±^^#ifc£MT X o ^$^E©*±# h t° v7x7 v -y##©±m&^±%k#©mm##T®D, c©3^©^v

s/a y ©#### (± A#©84% & ^ 36 S o

*&;e&#m©^','©d#aa'x?Mk©-tz^ s%a #

&#!%53"g6 LTH-ECOV-ftUc&VTtiftoRjW^Eti-^ilTVS C <k£5KLT

V6o # K B jX-o © teM7kS J; 3 NO ©M jE55& Mih 3 §§§E T & 5 o 4-IH©#E

T %)Keynote##&fr-3 5Cu-ZSM- 5 ShIt&n #

7 V - y##©-hy S/ a y-etts %^©##Mia^oil©refiningi)^#(C j; V) *1

r#±©(c^Lx -f y/f? ? 4 y^x-f;ti©Mllf^“ h iitinLoo^a^iS]#

— 292 —

co2fijffl©-fe>y i/a y?(±co%©*^<1:Kj;%y 9 y©co2 y 7 * - $

y/K-o-?4-@#(^BSrL^-ofc©(i^ C02x tKS&CFt y^e-r©

RfSfcJiSy f^T $ y<D&f&KM-t%Baikerifcgb © ¥F%BS 1: <o ^ 0

M##m©t y '>3 yeG^-fTa/s a- h^#&m^f:M#©m^#©%#x

MSMM©# x * - k- y-^ora, y * y©^#ikK j;6co/H2^©a^* y

7°V yf EfS©##%a'-? %o V0CS@^ELT(i*E5fefUffl

yiftilli©ffffl> bEM?©MS£ LT©fOTWm-

stifco

8.3

. 7° o *" 7 a (#Ao# V X h &##) A33^-

• =fmm m-ftffi m«s) A298^-^

• ?## S-S-E d^-fer^y) A314-;-$?

9. itfEroRS?

EftokS <k 5 NO 0MS®7Cis£ M L r x Eg5© (i####© m# & S x nm$k

£EJSy # -XA0Pli:f !)oo^ §0 4E Lx tifcii

#©mff^Km=y *-XA^^a6#t)^5@x &m%#©±3mf-&KfSy *-XA#^

i^ijs M-#©%^6 y h?&&o 4-#©#^©#MK#i^ «&D#—

ttc^ if.V'-V '>3 V 7°©ll^fcllvfctl;fcRound Tabled#\'T & FEf$EMB©i!l

£ V 7 t-vH LTRSB5$T'©lf$ tltza #E^E^£'©

LTffll'5Il7'DWli|^^ ESSE©M&^a'©Fnm^^< x

(c J:5##©ft#d#^l^5o L^LW'^x &#©# * ^%©

#% *9 x £ -? TWo

5 nJE# K-3L\T(±*^I9^G, MM &%$aL L tc o

10. Miteom/c ufcSEy^#6T###&MMLx ##K#W6 C £ (c j: D B -EC©#^

— 293 —

(##, &m, m#, ±m

VOGM-te y y 3 tis&tco (^S)

ot©dmisi#0s#©mm&#tr)o

• Hydrogenation of Carbon Dioxide over Metal Catalysts Prepared Using

Micro emulsion (##)

• Desulphurization of High Sulphur Coal in Mild Conditions with Super Acid

(Trifluoromethane Sulphonic Acid) without Hydrogen (tFII)

• Preparation of Nickel-Tungstate Catalysts by a Novel Impregnation Method

cm#)

• Determination of Fe - Substituted Sites in ZSM- 5 Structure by Fe K-edge

EXAFS (##)

• Synergism in Methanol Synthesis from CO 2 over Gold Catalysts Supported

on Metal Oxides (Sc#1)

• Low - temperature Catalytic Combustion of Methanol and its Decomposed

Derivatives over Supported Gold Catalysts (Pgi^§iS>> JhEB)

m1

1.m % mi

First World Congress Environmental Catalysis - For a better World

and Life

2.

1 &Ds 4-m3^$ ft 3 TCo --H-9-

Politecnico di Milano9 V T 5 o

— 294 —

3. smnmtm

: Palazzo dei Congress! (b°1f >. A ^ V T)

■Q:Efi : Matteotti 1, Pisa, Italy

4. g-mmmum

1995^5E 1 B-5J35B (5HFB1)

5. £-m£fo(DZ<rS> 3.-JU5^ 1 H (^Welcome Party

5 E 2 B Control of Emissions from Stationary Sources -& y is 3 y

4-° 7, 9 - -b >y 3 y 1

5 B 3 B Mobile Engine Emission Control-b y is 3 V

Social Excursion^.^Symposium Banquet

5 E 4 B Clean Fuels-b y is 3 y

More Friendly Chemical Productions and Catalysis-b y is 3 V

Pollution Abatement in Water-b y is 3 'S

4? x 9 — -b y y 3 y 2

5 £i 5 B Catalytic Combustion-b y i/ 3 v

Recent Research Reports-b y i/ 3 y (^ % 9 —b y i/ 3 y?Bi^)

Reduction of Greenhouse Effect-b y i/ 3 y

Unsteady - State Technologies-b y i/ 3 y

6.

: 340^ (List of participants IBffi $ tl/cAit)

(International Scientific Committee/ yy'? —)

J. Armor (U.S., Air Product Allentown)

J. Blanco, (Spain, Inst Catalysis Madrid)

R. McCabe (U.S., Ford Motor)

R. Della Betta (U.S., Catalytica)

B. Delmon (Belgium Univ. Louvain-la-Neuve)

— 295 —

J.M. Herrman (France, CNRS Lyon)

M. Iwamoto (Japan, Catal. Res. Center Sapporo)

E. Kikuchi (Japan, Waseda Univ.)

M. Misono (Japan, Univ. Tokyo)

M. Najbar (Poloand, Jagiellonian Univ. Krakow)

F. T. Janseen (The Netherlands, Kema Arnhem)

E. Lox (Germany, DEGUSSA AG.)

D. Sanfilippo (Italy, Snamprogetti)

F. Trifiro (Italy, Univ. Bologna)

M.V. Twigg (U.K., Johnson Matthey Royston)

7. I*

T, I5SIS)

±e m

s.

8.1

• Oral Presentations (dS##^x ^52-f^)

1^3 Plenary Lecture (60:53") 1WExtended Lecture (40:53") 4-f£ '£?

— 296 —

• Poster Sessions (4% X f A118#)

• Recent Research Reports (4^ X—3h§§E>. A39#)

• Concluding Remarks |###g)##)

r-fe y y 3 ySEl

• Control of Emissions from Stationary Sources

(@5£ii£'»3o&tfjffiM®) : mill#, #x*-25#

• Mobile Engine Emission Control

3= nmio#, -27#

• Clean Fuels O V - y») : PH 5 #, # X * - 9 #

• More Friendly Chemical Productions and Catalysst

atms) : mis#, #x*-m#

• Pollution Abatement in Water '• PH 5 #, ^ X ^ — 7 #

• Catalytic Combustion (####) : PH 6#, ^ X ^ —24#

• Reduction of Greenhouse Effect

: DUS#, X*-9#

• Unsteady-State Technologies

: mi4#, d*° X ^ — 3 #

8.2

±E©-fey y a

#t?) #43%x ^ y - ym#6m#^wk#ao#m#2o%. mm#m^i8%&66Tt\ a0 ctifrb #95o zcDip-F&m&tp&ffi

x yyymm6NOx#mm^#-7

u?® ny-fe^K\ i«#xM^iiLtuiMi$*i

a o

MSS^o-b y y 3 y-e(i, vocMSf-M^a SJ«St;:|li-raSBi

3/^ o y h 7°5 y bToWffitTlifS< WSE^'frbftTVsG ? y - y##o

-by y s y?(±#y y X f - y ? ffllftPI o aTtgtt^o t'T$ift£fT-3 -3 fco

&Key?9 ; zkMffSIKj.it ©-by y a yttts

— 297 —

VOCMSS.EC£>

6 A6 6® LTB6 ©m#(1^: < x u ti 5> ©BF%&Hvfr©

Bv^EKre&So MA%#©@M©-ky '>a y-rdCOzO^#KMf x

Ngooa-#^*^ g, ? vo^m^ziiKm-t^

¥£%.&tl£titz0

8.3 3E%A#M#• ?#m -mm) A683^-^

• ?## ^fift (Resent Research Reports) A78^ — ^

• -f a ? v A (#tQ# V X h &##) A33^- ^

mtJkmd J; S NO ©MSE5E-SMih S Ttiygmfz1411^&StLTVSo WSft

MS^tix m=ku #AM (8Ax Ax ##) ffi0tMSS<kco,Cu-zSM- 5 6

NOxM^H^Lx V y X y >? y ©SES^M LTV § 0 ■£*:, @^14

#(C#0LT(±X ^#XO/vi/-y^y ^ y^ffll,'f:#^xyv?y0NOxM^Co-ZSM

- 5##Tfrtx 4000B# fy3©iIES§E;fc'<9So L&L##&x t w --trUi/x y j?y&g,©

«stirv§KJ©y *-XA(^s-eS

Dx «i ^fcx ### mximmmo*#) t

T-©SJS* *xx'A(cf|tStI^ft^0

io.4?x^--fe>y y 3 y^r#tirsmm^l.MLx #4#K#Aof 5 c 6(c j; o@&©###

6Wm#[ql&K@L/Co (##, ^S, m#, $#, ±E)

kt®psisl^^x ^ -mm^o tc (#Ri#m#©mm&#tf)o

• Study on Platinum Catalysts for Complete Combustion of Propane

(□simSx #=#)

• Two Stage Upgrading of Middle and Heavy Distillates over Newly Prepared

— 298 —

Catalysts (g#)

• Nature of Hydrogenation Active Sites on Aromatic Hydrogenation Catalysts

(##)

• Reduction of Nitrogen Monoxide with Propene over Supported Gold Catalys

ts in the Presence of Excess Oxygen and Moisture ChEE)

— 299 —

itmm % u m &

>MM • EfMkmW%m<DttFti1. W55fc£

fn £ yMS •

Institute de Catalysis y Petroleoquimica

2.

3. mmfto&m

Campus U. Automa, 28049 Madrid, Spain

4. m$um

1995#5^8 B (1 BiD

5. m3®Xirz>3.-!V(i) wimommwm

(ii)

(m)

6.

J.L.G.Fierro

7. nmmztm

300-'

s. mmm

iiLtWill^nyxi;^ b Ltz0

£ffl VTifc=pEtfi8cD y A 7-rX h -? 6 -o ^o ^a

h©E%-e(i^66E<DE% £tiMtoMittMBfM©M®ovrS W

#%BA& 3% D #/,TU/:o

301-

(2) s 5 inhaME

4.

iim: & m#

-303-

SFS64

A m is

1. 6#^

# ^ H5HI A

THE 5 TH KOREA-JAPAN SYMPOSIUM ON CATALYSIS

2.

C2>#mw\ bhh

t Lfct>(DT~& {9. AII&fiffl'ffc^X^A MB^lSX^OT®X

'fSTfft^tL/Co

3. ammgamm

(Korea Advanced Institute of Science and Technology)

Kusong-dong, Yusong-gu, Taejon, 305-701 Korea

4. &mrmam1995*F5J326B~5J328B (3 BiHD

5. ##&#(%)X5-S> %-;i/

5 £25B CX) = ^CfflrU Hong-In*-fvi/#A

5B26B (A) = 09:00—18:00 5/ v $ i? *J A-

18:00— i/-fe7°i/ 3 y

5J327B (±) : 09:00—13:00 A

13:00-18:00 KA,

5J328B (B) : 09:00-12:00 75\

-305 —

6.

a osax), wm%. m (a^x), ca^x),

am mm cmx^a), %#&# olamx), ^ # (s*x), geiwax), c^±x), ow*x), ±b # cax^max)©fife. 3 mso#) ^^rmo^min

In A#to#^^ioo#@#T& -o fCo

7. mm###

$###^#©###T&6A m# (mAX) a> A###/ yyV*r — b

y E'fbKJS'x CD Sffl fc-O U T X ? - Srfr -s 0

8.1 am©##

£IilUB©5 J326B&. 1 ©#giJSz$l113#©UW^mm^ntzo 5J327B&> *F

{- 5 # © □ mmm 6 ss# ©#%?-0

8.2 ##©A#

a W31 Eg (#AX) (cj:^rfir^tL/-cM©#SiJSzilT-(iN '/> •

AtlT-&)& Lfc y V o # v t> O T& «9 ^ %fifOxf;H-kf“ SISSESfrbft

^©^&KZ a##©&### (S.J. Uhm, KISTk b

M^b-^ti©tJtt<b y y©7kS'fk’®tt (Wl#±, Ii^Ds PtMSfc<fc5DM

MP©^-#(C^f 5S#:©%#| (In-Sik Nam, POSTECHA XPS, EXAFS&<fcX}%)\s

^ -k y X ^ ^(c j; 5Zr-81X76#^###©###]^ 6 ^ ©###^6 (£&1E-, E

WAXX H-ZSM- 5 ©7°n b y©#EK*f 3^m©Na+4" ^ y©B@ (###^, %

XAX)x MCM-4ly y #-7ay V4=- h©A# (R. Ryoo, KAIST)n -tr> b *

©Tkmmt/)^i^?6©#%#sfpm axA%mib), t ye-T©#^

— 306 —

mklz-ZZ-V*?* hoittlois (M #, am

^o#2#ggx ^ ;u#-ra&ct ####&(cmf-5mss®icovTiijAvsfs^

Y.G. Kim (POSTECH) £> (tCuZZnOZALOs^-X ©MB£Ji V A:

-E'fk^S<h7kSty-cti-E'fk^S<i:7KS^e»C)y -

mm^i'TWELfCo tfc. SES5A ## (r*I) it v V i] icfi# L /•cRME-fk

yWMV/c-E<kWSo^jS7nSS^SVx s/ V § iPt

©TkSx < ±#f 6 <bl'5iS4ffi§lfc0 ESM

3 DEBS (irk 3 Wfft>ti, o % 3^ T # & # #?#& dsfrt) y= o£f\ &]%km (filW*:E) LmSn207^'500°CBl±^NO<DS-S'Stt

Sn©-S£Co £ tc (iMnT-Sm L fcMS^iE VStt£^ih u t L/c0 £tz,

8.1. Woo (KAIST) £&gfZSM- 5±T'OZa h°lx LTJ1 WcNO#®KJ®

^-X^toUTXPS, IR, TPD, Cu (II)-NOz&#Af S#r

u^jmssmizc^ m%>z.ttz£>e,, i<

Kn&frbomnmte&zKm&g'fr^tzo oovr, mam m (s^d h\

PdE3t-fe>7-f hMS^.k^ESjlPJ^frTTCDy * y£ffl vSNOoli^fcPLTx -if

HdEj^^EMcd^SJ^E^-L/cRMS^ovtEIQLx iu©Woo£>©fi§<h

<bmlKmmtz£&-x§ < n& d, \t^%*)Lizmfai£x~\mz>tzfr->tz0 ^©

«KS> y y v<DMm* -yzv yy\ ^n^ytDWlkAZ'coi'top

-mmtt, mM#£&mmfflmte£^®Mm®jfcMizffl?&mm&mftsi±&

io, cnxhmx<D&mimtzmm (2 m a#B&#atc ttz,

*m\'tzWM®mmmm&2wtt£*74 hmm®^mmm^®Mn. ^*74 mdstl

fco

8.3 £&x#sm

^B©BSIIWM&t t&tz^mM (PROCEEDINGS OF THE 5 TH KOREA-

JAPAN SYMPOSIUM ON CATALYSIS)

307 —

9. jrjifflAW

(A *j§) 5&sf=ro fc# x 9 (A# A#/ v #- ? x v JJ A- l* ©Aj&

t^©^" 1x7 ^ yE^JS^©M) T#x #ac©@©7 V tH - 7 X '7 v ^ - h ©AJ&

fSl#^<x £?Cx *©^Jffl2f&Kioi'Tl4n ifijlKJSS-5v teSKW-i:£'©E^RfE^©«k o^ < ©m#Am^%###%*^*c^m(=%

Di&tf c tfr&WV&Z 7 toMR&g-fr-otZo f©flfe©^8tfi©iJilfl§li:7^TttN ±IB©AE©AWK^L/"c6#9 T&So #B©#W#t)oT&>h'rrt>Utz ix-bT0^ a

yTttx £#S#J£ftSLTx ^l©ifit$^y-;W.Y. Lee #g (V9A/^) #B

#©##m^#©#^#A 6 B#M# >/ v ^ ^ A © A#©##^^ VT©##^%E^x

B*©SM-£ft§ Lt*AB©*IWHB5t& -= fcAtil M #g CEZLASI) (c<kS

B$& 6 ©#Ao#©igA6@gg& 3£ Eg CHAD ^ 6> BWWH©^ VE%^©89

10. Sit#©MfcUfc^SJ

Al5l©##^#STfft)i%A c 6 & & D x B^A#io#iM#J©#W^J;^i:M

tjt©R?t^3 s s^-i'a vtm^m^-$r%'®m:&$ktzLtztm>*>*iz>0 ttz^

AEim#L A A# K#*L A#mmiJ ©# i&^< x SrlA'7 v tf-

7X'yj^-h ©Aj&^jsSM fcM-tSSB^^frbiifco c © «k ? % jt$0%&i^#©

#^##6##K#AQLf:c 6(cck-^Tx <k <0Mit#}ffi3Z?3¥£^<z>M%:&W&£ tiZo

-308-

(3) tT7>f h

mmmssm: m# m

4.

gR m # Mi:

— 309 —

t=t m

mmi

m *

1.(#8) l)tf7 0lll« FPEP* y 5 - -if©ESSM

;c &<ktf

2)

(•5^8) 1 ) Satellite Meeting on “Cellular Environmental Regulation

of PEP carboxylase” and

2 ) The 10th International Photosynthesis Congress

2.

Wt§li©lMSSBE5fe

7 5 y X :)£-□ Jz£3lil^T#@i (iPaul MathisiSdbo

1) (iBE^ir^E^#ELT5FlESiL/cvhBEM#®-o

x*xy tr y# (PEP)

LLED, m?WK£Z

5 %)0o Brulfert , P. Gadal

t J. Vidalif ±0

3. #0 cum##

$IS^.CDd->-h- (7 7 yx)

4.

1 ) hBEW%S^(il995^8J318B—8J319B

2 ) S10@BI8E3fe^tic^Ettl995^8J320B~8£25B

5. £-m±fa(DZfr2 3.-)U

1 ) tf7^ h BEW2iu=ft#

2) SIOEBE^^E

2 B P^^FSfj 9 B#& 64^m 5 Btii g* T#E t ##c

Wi tiiM-cmeiE £#z?-mm

tziz U 23B4Fm^a^@mMo (*1

6. m1) tT7^ hBEE§£S£ #50&

2) SlOEBE^^^I

rE/cSSSnS

R. Chollet (Nebraska U., USA)

M. O’leary (Nebraska U., USA)

P. Gadal (Universite Paris - Sud, France)

H. G. Nimmo (Glasgow U., UK)

&J1400£

(SI4i^I)

R. Chollet (Nebraska U., USA)

N. H. Chua (Rockefeller U., USA)

J. Gray (Cambridge U., USA)

S. Huber (Raleigh U., USA)

7. mmmwg

@ (i ^)

— 312— ’

8. i <dmj&

i) tr^ hhee^s# (21m, 1 mo#) a##o

2 ) SlOUHE^E^Ii ^Flfjlil-^TfmSSKME) -#^(%!OOOE)

A (29%-7) £ftH^

8.2

1) ^ttvA hSmf9ZM£: *2) #m

2) sioinBE^^E^m * 3) mm

8.3

1) tf7^hHE

2) SlOllHE^^

n^'i:B;

red ($ll§Photosynthesis

Research <D 1995^Snpplement 1 )

$ b fcx W L I'lra^tS^Photosynthesis: from Light to Biosphere <hE LT 5

# (^ol^TSOOO^— v5) Kluwer Academic Publishers & £>^£ffc5 tlfc0

9. MlraF*3^

c 4 © pep * > * * y ? - ^ © EM® v r (iSES^ BJ^#T*e© y vlKfc

&J:TTCDI£y y#4k<D^?##^—"3CD b fcfy ^ HCtl

(C##(C##© * ;i/ y * A^##7°o % d" y**--t£^IHI#LTi'£ nt&^MLT&io^

itlra^iiE T C © C <h£> it 3T § fco L&L^ £§HEE

v c "3 fco PEP* y 5 --t? ©SFIE^E(±A^W^TE^#E©^g &

io. mm^o^tz u/c^sj

1) tfH bHEE05##

tBffiMWi&ff fco E=S &’’Involvement of calcium - dependent protein kinase

(CDPK) in the regulatory phosphorylation of PEP carboxylase in maize

-313 —

: Purification and characterization of the CDPK and cloning of several

cDNA clones

2)

:& (£”Enzymological evidence for the involvement of a calcium - dependent

protein kinase in regulatory phosphorylation of PEP carboxylase in maize”

WSB&8IJE4) £SEo

— 314 —

HORAIRETIMETABLE

ycn

DIMANCHE 20SUNDAY

LUNDI 21MONDAY

MARDI 22TUESDAY

MERCREDI 23WEDNESDAY

JEUDI 24THURSDAY

VENDREDI 25FRIDAY

9.00 Opening 9.00 Plenary lecture 9.00 Plenary lecture 9.00 Plenary lecture 9.00 Plenary lecture9.30 Plenary lecture 9.30 Plenary lecture 9.30 Plenary lecture 9.30 Plenary lecture 9.30 Plenary lecture

10.00 Plenary lecture 10.00 Plenary lecture 10.00 Plenary lecture 10.00 Plenary lecture 10.00 Break10.30 Break 10.30 Break 10.30 Break 10.30 Break 10.30 Symposia11.00 Poster viewing ■ 11.00 Poster viewing 11.00 Poster viewing 11.00 Poster viewing

(with authors) (with authors) (with authors) (with authors)

LUNCH LUNCH LUNCH LUNCH LUNCH

14.00 Registration 13.30 Symposia 13.30 Symposia Afternoon: 13.30 Symposia 13.30 Symposia| and Excursion ending

23.00 poster hanging 15.30 Break 15.30 Break in the "Camargue" 15.30 Break 15.30 Break(wild Rhone delta)

16.00 Discussion sessions Evening: 16.00 Discussion sessions 16.00 Discussion sessions16.00 Discussion sessions Banquet (both 18.00 Historical lectures

18.00 Special session are included in on Photosynthesis 17.30 Official closure19.00 Buffet reception 18.30 Special meetijig on of commercial registration fee, and Founding

1 socio-economic scientific for active and meeting of Interna■Y questions ' r exhibition and accompanying 1 ■ tional Society

23.00 20.00 (in French) 20.00 Free poster viewing participants) 19.30 of PhotosynthesisOpening hours of registration desk

Sunday : 14.00 Monday, Tuesday, Thursday : 8.00

Wednesday, Friday : 8.00

23.0020.00 18.00

Heures d'ouverture du comptoir d'enregislrement Dimanche : 14.00 - 23.00

Lundi, Mardi, Jeudi: 8.00 - 20.00Mercredi, Vendredi: 8.00 - 18.00

TSB

Iig

W2

Xth International Photosynthesis Congress 10 eme Congres International de Photosynthese,

Montpellier, 20-25 aout 1995

SATELLITE MEETING

CELLULAR ENVIRONMENT AND REGULATION OF PEP-CARBOXYLASE

18-19 August 1995

Institut de Biotechnologie des Plantes, Universite de Paris-Sud,Orsay, France.

CENTRE NVTIONA- DE LA RECHERCHE SCIENnn'QtJE

— 316 —

HB

Programme

Thursday 17 th AugustAfternoon from 16:00 : Arrival (KER B) at Gif/Yvette station and

transport to accomodation places.19:00-21:00 : Registration of participants, informal meeting and

buffet (Centre de Formation Permanente, CNRS campus at Gif/Yvette).

Friday 18th August (Institut de Biotechnologie des Plantes, Orsay) 9:00-9:10 : Introduction by the organisers

SESSION 1: Biochemistry and Physiology

9:10-9:40: ML O'Leary: Mechanism of action of PEPC. 9:40-10:10: J. Rivoal, R. Dunford, W.C. Plaxton and D.H.

Turpin: Purification and characterization of four PEPC isoforms from the green alga Selenastrum minutum.

10:10-10:40: R.A. Munoz-Clares: Allosteric properties of PEPC from maize leaves.

10:40-11:00: coffee-brealc

11:00-11:30 : R.P. Walker and R.C. Leegood: Regulation of PEP carboxykinase activity in plants.

11:30-12:00 : W. Outlaw Jr.: The role of guard-cell PEPC in stomatal movements.

12:00-12:30 :1.P. Ting: Effect of water and light on the expression of PEPC in Peperomia during ontogeny.

12:45-14:00: lunch

14:00-14:30 : C. Foyer, E. Murchie, M.H. Valadier and S. Ferrario: The relationship between nitrate reductase activity and PEPC activity in conditions of limiting nitrogen or H2O.

14:30-15:00 : F.J. Cejudo, M.C. Gonzalez, L. Osuna, J.Vidal and C. Echevarria: PEPC in wheat grains.

15:00-15:30 : L.V. Dever, R.C. Leegood and P.J. Lea: The characterisation of a mutant of Amaranthus edulis lacking PEPC.

15:30-16:00 : coffee-break

16:00-16:30: A. Sheriff and J. Schmitt: Ubiquitination inhibits enzymic activity of PEPC from Mesembryanthemum crystallinum.

16:30-17:00: A.S. Bhagwat: Truncation of maize PEPC.

17:00: General discussion.

— 317 —

SESSION2: Covalent Regulation

9:00-9:30: R. Chollet, B. Li, X-Q. Zhang, S.M.G. Duff and Y.H. Wang: Regulatory phosphorylation of non-photosynthetic PEPC. Studies with Cg leaves and Ng-fixing root nodules.

9:30-10:00: M. Kluge and P. Maier:'Diurnal patterns of carbon flow and PEPC activity in CAM: an integrative approach with Kalanchoe uniflora.

10:00-10:30: L. Smith, C. Lillo, M.B. Wilkins and H.G. Nimmo: Coordination of carbon and nitrogen metabolism and the regulation of PEP carboxylase in Cg plants.

Saturday 19th August

10:30-10:50: coffee-brealc

10:50-11:20: J. Gayathri and A.S. Raghavendra: Differential effect of calcium on PEPC and PEPC-protein kinase in leaves of Amaranthus hypochondriacus L., a NAD-ME type C4 plant.

11:20-11:50: K. Izui, N. Yabuta, N. Ogawa, Y. Ueno, T. Furumoto, Y. Saijo, S. Hata and J. Sheen: Involvement of calcium-dependent protein kinase (CDPK) in the regulatory phosphorylation of PEPC in maize: purification and characterization of the CDPK and cloning of several cDNA clones for CDPKs.

11:50-12:20: N. Giglioli-Guivarc'h, J.N. Pierre, V. Pacquit, S. Brown, J. Brulfert, J. Vidal and P. Gadal: PEPC phosphorylation in C4 plants: identification of some components of the light-transduction pathway.

12:30-14:00: lunch

SESSION 3 : Molecular Biolo&v

14:00-14:30: T. Sugiyama: Cytokinin action in nitrogen- responsible expression of C4Ppcl in maize.

14:30-15:00: C. Wadham, H. Winter and K.A. Schuller: PEPC in Soybean nodules.

15:00-15:30: H. Gehrig, B. Vinson and M. Kluge: PEPC . gene sequences in-vascular plants: a comparative approach using the malagasy orchids. 1

15:30-16:00: J. Stockhaus, O. Biasing, J. Burscheid, K. Ernst, M. Streubel, P. Svensson and P. Westhoff: The molecular evolution of C4 photosynthesis: The PEPC gene family in the genus Flaveria.

16:00-16:20: coffee break

16:20-17:20: General discussion

17:20 : Let's have a drink together

— 318 —

mm 3

PROGRAMME

PROGRAMME

CONFERENCES PLENIERESPLENARY LECTURESBABCOCK G.T. (East Lansing, United Statcs):Watcr/Oxygcn Metabolism in Photosynthesis and Respiration

CHUA N.H. (New York, United States): Photocontrol of Plant Development CROFTS A.R. (Urbana, United States): Cytochromes b-c Complexes FEHER G. (La Jolla, United States): Reaction Center of Purple BacteriaGEST H. (Bloomington, United States): Physiological Responses of Photosynthetic Bacteria to Environmental

ChangesGLAZER A. (Berkeley, United States): Phycobiliproteins GRAY J. (Cambridge, United Kingdom): Regulation of Chloroplast Biogenesis

HUBER S. (Raleigh, United States): Sucrose-Phosphate Synthase

JOYARD J. (Grenoble, France): Chloroplast EnvelopeLONG S.P. (Colchester, United Kingdom): Photosynthesis and Rising C02 Atmosphere

MURATA N. (Okazaki, Japan): Acclimatization to Temperature Stress

WALKER J.E. (Cambridge, United Kingdom): Atomic Structure of F[-ATPase

WITT H.T. (Berlin, Germany): Structure of Photosystem ITREBST A. (Bochum, Germany); WALKER D. (Sheffield, United Kingdom): Historical session

ANIMATEURS DE DISCUSSIONSDISCUSSION LEADERSANDERSSON B. (Stockholm, Sweden): Auxiliary Enzymes of the Thylakoids - Composition, Organization, Function

and RegulationBERRY J:A. (Stanford, United States): Photosynthesis in the Global Environment

BLANKENSHIP R.E. (Tcmpe, United States): Evolutionary Origins of Linked Photosystems and the Oxygen

Evolution ComplexDUTTON P.L. (Philadelphia, United Stales): Electron Transfer ReactionsGOLBECK J. (Lincoln, United States): Pathway and Mechanism of Electron Transfer1 within Iron-Sulfur Clusters of

Type I Reaction CentersHATCH M.D. (Canberra, Australia): Variation in Partitioning and Storage of Photosynthate in Leaves: The Basis and

Rationale .HELDT H.W. (Gottingen, Germany): Mechanism and Function of the Movement of Metabolites between Subcclluiar

Compartments of a Plant CellKAPLAN S. (Houston. United States): Gene Regulation in Photosynthetic ProkaryotesLORIMER G. (Wilmington, United States):.Post Translational Protein Metabolism in Photosynthetic Organisms

OSMOND B, (Canberra, Australia): Photoinhibition in vivo: Photosynthetic Regulation of Excess Photons PARSON W. (Seattle, United States): Initial Charge Separation in Bacterial Reaction Centers

ROCHAIX J.D. (Geneve, Switzerland): Regulation of Chloroplast Gene Expression

RUTHERFORD A.W. (Saclay, France): Photosystem 2: the Donor Side

VAN'GRONDELLE R. (Amsterdam, The Netherlands): Dynamics of Excitation Transfer and Trapping by Reaction

Centers

WRAIGHT C. (Urbana, United States): Electrochemistry and Mechanisms of Quinonc Function in vivo

— 319 —

SYMPOSIUMSSYMPOSIA

Other speakers will he announced for some symposia

1-2. Antenna systems: structure and functionChairpersons: HORTON P. (Sheffield, United Kingdom), k0HLBRANDT W. (Heidelberg, Germany)

BRYANT D.A. (University Park, United States); FETISOVA Z. (Moscow, Russia); FLEMING G.R. (Chicago, United States); HILLER R. (Sydney, Australia); HOLZWARTH A. (MUlheim, Germany); MIMURO M. (Okazaki, Japan); PAULSEN H. (Munchen, Germany); ROBERT B. (Saclay, Franco)

3-4. Reaction centers: purple bacteria and PS2 Chairpersons: BRETON J. (Saclay, France), second to be announced

ALLEN J.P. (Tempe, United States); DE GROOT H.J.M. (Leiden, The Netherlands); GUNNER M. (New-York, United States); LUBITZ W. (Berlin, Germany); MAROTI P. (Szeged, Hungary); STYRING S. (Stockholm, Sweden); TIEDE D. (Argonne, United States); VAN GORKOM H.J. (Leiden, The Netherlands)

5. Reaction centers: green sulfur bacteria and PS1 Chairperson: HAUSKA G. (Regensburg, Germany)

CHITNIS P.R. (Manhattan, United States); SET1F P. (Saclay, France); STEHLIK D. (Berlin, Germany)

6. CarotenoidsChairperson: FRANK H.A. (Storrs, United States)

ARMSTRONG G.A. (Zurich, Switzerland); H1RSCHBERG J. (Jerusalem, Israel); MOORE T.A. (Tempo, United States); TELFER A. (London, United Kingdom); ZAMIR A. (Rchovot,- Israel)

7. Oxygen evolutionChairperson: GIRERD J.-J. (Orsay, France)

BRITT R.D. (Davis, United Stales); DINER B. (Wilmington, United States); NOGUCHI T. (Wako, Japan); PENNER-HAHN J.E. (Ann Arbor, United States)

8. Cytochrome b-c complexes Chairperson: CRAMER W.A. (West Lafayette, United Stales)

DALDAL F. (Philadelphia, United States); POPOT J.-L. (Paris, France); SEMENOV A. (Moscow, Russia)

9. Electron transfer proteins Chairperson: GOMEZ-MORENO C. (Zaragoza, Spain)

MARKLEY J.L. (Madison, United States); SCHURMANN P. (Neuchatel, Switzerland); YEATES T.O. (La Jolla, United States)

10. ATPase, protons and energy transduction Chairperson: JUNGE W. (Osnabriick, Germany)

GRABER P. (Freiburg, Germany); McCARTY R.E. (Baltimore, United States); NELSON N. (Nutley, United States)

11. Organization of the photosynthetic apparatus Chairperson: JOLIOT P. (Paris, France)

ALBERTSSON P.A. (Lund, Sweden); FORD R.C. (Manchester, United Kingdom); HUNTER C.N. (Sheffield, United Kingdom); VERMEGLIO A. (Cadarache, France)

12. Alternative electron transfer pathways and regulation Chairperson: LAISK A. (Tartu, Estonia)

DAY D.A. (Canberra, Australia); JOUANNEAU Y. (Grenoble, France); OGAWA T. (Wako, Japan)

13. Expression and regulation of genes: prokaryotes Chairperson: OESTERHELT D. (MartinSried, Germany)

GOLDEN S.S. (College Station, United States); GROSSMAN A. (Stanford, United States); HOUMARD J. (Paris, France); KRANZ R. (St Louis, United States)

14. 'Expression and regulation of genes: eukaryotes Chairperson: MALIGA P. (Piscataway, United States)

LERBS-MACHE S. (Grenoble, France); MAYFIELD S. (La Jolla, United States); MERCHANT S. (Los Angeles, United Stales); STERN D.B. (Ithaca, United States)

-320-

15-16. Protein translocation and assembly Chairpersons: KEEGSTRA K. (Madison, United States); SATOH K. (Okayama, Japan)

CLINE K. (Gainesville, United States); GATENBY A.A. (Wilmington, United Stales); HERRMANN R. (Munchen, Germany); PAKRASI H. (St Louis, United States); ROBINSON C. (Coventry, United Kingdom); WEISBEEK P.J.

(Utrecht, The Netherlands); WOLLMAN F.-A. (Paris, France)

17. Biosynthesis of letrapyrrolcs Chairperson: SCHEER H. (Munchen, Germany)

ADAMSKA l. (Hannover, Germany); BAUER C.E. (Bloomington, United Stales); BEALE S.l. (Providence, United States)

18. Evolution of photosynthesis Chairperson: CERFF R. (Braunschweig, Germany)-

HOWE C. (Cambridge, United Kingdom); NITSCHKE W. (Frpibtirg, Germany); TURMEL M. (Quebec, Canada)

19-20. Enzymology of the photosynthctic metabolism Chairpersons: CHOLLET R. (Lincoln, United Stales); DOUCE R. (Grenoble, France)

ANDREWS T.J. (Canberra, Australia); GUTTERIDGE S. (Wilmington, United States); HARTMAN F.C. (Oak Ridge, United States); LEEGOOD R.C. (Sheffield, United Kingdom); MIGINIAC-MASLOW M. (Orsay, France);PORTIS A.R. (Urbana, United States); PREISS J. (East Lansing. United States); ROY H. (Troy, United States)

21. Integration of C, N, S metabolisms Chairperson: CABOCHE M. (Versailles, France)

DUMAS R. (Lyon, France); LARA C. (Sevilla, Spain); SA1TO K. (Chiba, Japan); TURPIN D.H. (Kingston, Canada)

22. PhotoinhibitionChairperson: OHAD I. (Jerusalem, Israel) ■

BARBATO R. (Padova, Italy); BARBER J. (London, United Kingdom); INZE D. (Gent. Belgium); MULLET J. (College Station, United States)

23. Water deficiency and salt stress Chairperson: BOHNERT H.J. (Tucson, United States)

BARTELS D. (KOIn, Germany); KROGER G.H.J. (Potchcfstrom, South Africa); SHINOZAK1 K. (Tsukuba, Japan)

24. Temperature stressChairperson: BAKER N.R. (Colchester, United Kingdom)

HAVAUX M. (Codarache, France); ORT D.R. (Urbana, United States); POLLOCK C. (Aberystwyth, United Kingdom)

25. Intra- and inter-cellular exchanges Chairperson: HEBER U. (Wurzburg, Germany)

FLOGGE U.I. (Kbln, Germany); LUCAS W.J. (Davis, United States)

26. Diffusion of C02 to the chloroplast

Chairperson: HEDRICH R. (Hannover, Germany)COLEMAN J.R. (Toronto, Canada): SCHREIBER U. (Wurzburg, Germany); TARDIEU F. (Montpellier. France); TERASHIMA I. (Tsukuba, Japan)

27. Carbon partitioning and productivity Chairperson: EDWARDS G. (Pullman. United States)

DELROT S. (Poitiers, France); SHARKEY T.D. (Madison, United States); WILLMITZER D.L. (Berlin, Germany)

28. Photosynthesis and ecosystems productivity Chairperson: CARR N.G. (Coventry, United Kingdom)

CHEKALYUK A.M. (Moscow, Russia); DRING M.J. (Helgoland, Germany); FALKOWSKI P.G. (Brookhaven, United States)

29. Photosynthesis: global aspects Chairperson: BOWES G. (Gainesville, United Stales)

BAZZAZ F.A. (Cambridge, United States); DRAKE B.G. (Edgcwaler, United States); JARVIS P.G. (Edinburgh, United Kingdom); KORNER C. (Basel, Switzerland); SCHAPENDONK A.H.C.M. (Wngcningcn, The Netherlands)

— 321 —

*4

ENZYMOLOGICAL EVIDENCE FOR THE INVOLVEMENT OF A CALCIUM-DEPENDENT PROTEIN KINASE IN REGULATORY PHOSPHORYLATION OF PEP CARBOXYLASE IN MAIZE

Katsura IZUI, Naohiro YABUTA, Noriyuki OGAWA, Yoshihisa UENO, Tsuyoshi FURUMOTO, Yusukc SAIJO, Shingo HATA, Jen SHEEN*

Faculty of Agriculture, Kyoto University,- Sakyo-ku, Kyoto 606-01, Japan, and ’Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA

1. Introduction

In C4 plants phosphoe/io/pyruvatc carboxylase (PEPC; EC4.1.1.31) plays a key role in the C4 pathway which efficiently traps and concentrates atmospheric CO2. Under light conditions, the transcription of the PEPC gene is enhanced, and the sensitivity of PEPC to the feedback inhibitor, malatc, is diminished through phosphorylation by certain protein kinasc(s) (for review see ref.l). The primary sequence of maize PEPC was deduced from the nucleotide sequence of its eDNA (2, 3) and the site of regulatory phosphorylation by a mammalian cAMP-dcpcndcnt protein kinase (A-PIC) was found to be Scr-15 (4). Later Scr-15 was identified to be the site of in vivo phosphorylation (5). Although Chollct and his colleagues found that the protein kinase for PEPC (PEPC-PK) docs not require Ca-+ for its activity (6), we obtained the data suggesting the involvement of Ca2+-dcpcndcnt protein kinase (CDPK) (7, 8). Here we show that both types of PEPC-PK arc present in maize leaves, and report partial purification and characterization of CDPK. Preliminary observation made by the use of rccominant PEPC whose Scr-15 is replaced by Asp and cloning of eDNAs for maize CDPK arc also reported.

2. Materials and Methods

2.1 Preparation and assay of enzymesFor the purification of the enzymes 10-week-old maize plants (Zea mays H84) were used. For the estimation of relative activities of CDPK and Ca2+-indcpcndcnt protein kinase (CIDPK), Zea mays L. cv.B73 and cv. Golden Cross Bantam were also used. Assays of PEPC and PK, and detection of renatured PK in the polyacrylamide gels ("activity gel method'.') were carried out as described (8).

2.2 Phosphorylation of synthetic peptide with maize CDPK and mammalian A-PKA peptide consisting of 21 residues from Mct-1 to Arg-21of maize PEPC was used as a substrate. Four nmole of the peptide was added to the reaction mixture of 20 p 1. After the reaction at 30*C for-lhr, the reaction mixture was passed through a colum of AG1-X8 and eluted with 30% acetic acid according to (9). Radioactivity eluted in the peptide fractions were measured.

2.3 Site-directed mutagenesis of recombinant maize PEPCThe DNA fragment carrying full length eDNA for maize PEPC (10) was cloned into an

163

P. Mathis (cd.). Photosynthesis: front Light to Biosphere, Vol. V, 163-166.© 1995 Kluwer Academic Publishers. Printed in the Netherlands.

— 322

166

ZMCDPK No9 l

ZMCDPK2l

90 281 347 531a a a elI - -

Kinase Domain

200

“f ” jnn .I J

:dpk-likc t 420

EF-tikc motifs

CaM-likc Domain

JunctionDomain

516 .606

ZProlinc-ricli Kinase Domain EF-like motifDomain

FIGURE 4. Schematic representation of eDNA clones for CDPK from maize.

phosphoryiated to various extents. These results, taken together, suggests that CDPK phosphorylatcs not only Scr-15 but also the other Ser/Thr rcsiduc(s) of PEPC.

3.5 Cloning of eDNA for CDPKTwo clones of putative CDPK were sequenced (Fig. 4). The one named ZMCDPK No9 had a typical calmodulin-like domain and junction domain in addition to protein kinase domain. The coding region of eDNA was subcloncd into a bacterial expression vector and its PK activity and substrate specificity is now under investigation. The other clone named ZMCDPK2 had only one copy of EF-hand structure and no junction domain, but had prolinc-rich domain upstream of kinase domain.

3.6 ConclusionThe data obtained in our study suggest the involvement of CDPK in the regulatory phosphorylation of PEPC. The physiological significance of CDPK relative to Ca-+- lndcpcndcnt PK must await further investigation.

References1 Lcpinicc, L., Vidal, J., Chollct, R., Gadal, P. and Cretin, C. (1994) Plant Sci. 99,

111-1242 Izui, K., Ishijima, S., Yamaguchi, Y., ICatagiri, F., Murata, T.,Shigcsada, K.,

Sugiyama, T. and Katsuki, H. (1986) Nucleic Acids Res. 14, 1615-16283 Yanagisawa, S., Izui, K., Yamaguchi, Y., Shigesada, K. and Katsuki, H. (1988)

FEES Lett. 229,107-1104 Tcrada, K., Kai, T., Okuno, S., Fujisawa, H. and Izui, K. (1990) FEES Lett. 259,

241-2445 Jiao, J., Vidal, J., Echevarria, C. and Chollct, R. (1991) Plant Physiol. 96, 297-3016 Wang, Y.-H. and Chollct, R. (1993) Arch. Biochcm. Biophys. 304, 496-5027 Ogawa, N., Okumura, S.-and Izui, K. (1992) FEES Lett. 302, 86-888 Ogawa, N. and Izui, K. (1992) in Research in Photosynthesis (Murata, f4.- cd.),

Vol. 3, pp: 831-8349 Woldegiorgis, G. and Shargo, E. (1985) J. Biol. Chem. 260, 7585-7590

10 Yanagisawa, S. and Izui, K. (1990) Agr. Biol. Chem. 54, 241-24311 Li, B. and Chollct, R. (1993) Arch. Biochcm. Biophys. 307, 416-419

-323-

165

Ca2+-dependent PEPC-PK3000

2000

1000

Fraction Number

A-kinase6000

5000

4000

> 3000

o 2000

1000

Fraclion.Numbcr

FIGURE 2. Phosphorylation of synthetic peptide (Mct-1 to Arg-21) with maize CDPK and mammalian A-PK. The sequence of synthetic peptide was as follows; Mct-Ala-Scr-Thr-Lys-Ala-Pro-Gly-Pro-Gly-Glu-Lys-His-His-Ser-Ilc-Asp-AJa-Gln-Lcu-Arg.

3.3 Phosphorylation of synthetic peptide by CDPKTo test whether the site of phosphorylation by obtained CDPK is identical to the site phosphorylatcd in vivo, an oligopeptide was used as a substrate. As shown in Fig. 2 the peptide containing Scr-15 was phosphorylatcd with the CDPK as well as with mammalian A-PK.

3.4 Phosphorylation ofPEPC from maize and recombinant PEPCs by mammalianA-PK and maize CDPK

The preparations of dark-form PEPC from maize, which had been phosphorylatcd with cither A-PK or CDPK, were digested with lysylcndopcptidasc and liberated peptides were analysed by HPLC as in (4). Only one major peak of p2P]-labelcd peptide was obtained with the sample phosphorylatcd with A-PK, while one more redioactivc peak was observed when phosphorylatcd with CDPK besides the peak with A-PK(data not shown).

Several maize mutant PEPCs were prepared whose Scr-15 was replaced by Asp (S15D), or Lysl2 was replaced by Gly (K12G) and Asn (K12N). Figure 3 shows that the sensitivity to an inhibitor, malate, was significantly diminished for S12D, while it was not changed for K12G and K12N. When partially purified prearation of these recombinant enzymes were preliminarily subjected to phosphorylation with cither A-PK or CDPK, not only wild-type enzyme,K12G and K12N, but also S15D were

S1 5 D

K12N

FIGURE 3. Inhibition of recombinant mutant PEPCs by malate.

— 324 —

164

expression vector pTV119N. Site-directed mutagenesis was carried out using "Transformer site-directed mutagenesis kit" (Clontcch). The enzymes were expressed in E. coli,, and partially purified by ammonium sulfate fractionation and hydrophobic chromatography on butyl-Toyopcarl.

2.4 Clonig of cDNAs for maize CDPKOligonucleotides were synthesized according to the conserved amino acid sequences of CDPK and were used as primers to amplify short eDNA fragments by PCR. Four kinds of short cDNA clones were obtained and were used as probes to screen 2 gtlO cDNA library.

3. Results and Discussion

3.1 Presence of CDPK and CIDPK in crude extract of maize leavesLeaves were harvested at noon and at midnight. Extracts were prepared from these leaves and were fractionated by (NH4)iSC>4 between 0-60% saturation. Kinase activities in the precipitates were assayed in the presence and absence of 1 mM EGTA. For the extracts from “light leaves" the activity in the absence of EGTA (in the presence of 0.1 mM Ca2+ ) was much higher than that in the presence of EGTA, and for the extracts from "dark leaves" no activity was detected in the presence of EGTA while significant activity was detected in its absence (data not shown).

Ammonium sulfate fraction was passed through a bluc-Scpharosc column and proteins eluted with 1M KCl were subjected to gel-filtration chromatography (Supcrosc 12). Twopeaks of major PEPC-PK activity were detected whose estimated molecular sizes were iabout 100 kDa and 30 kDa. The former enzyme was shown to be Ca2+-dcpcndcnt and thelatter Ca2+-indepcndcnt. The observation is similar to that of (11). x.

3.2 Partial purification of CDPK phosphorylalmg PEPCFigure 1 shows SDS-PAGE of samples at various purification steps. Since the major protein on lane 7 (indicated by an arrowhead) was shown to have autophosphorylating activity as assayed by the "activity gel method", the CDPK can be said to be highly purified. The molecular size of the peptide was about 50 kDa. Thus native form of the CDPK seems to be homo-dimer or hetero-oligomer with other protcin(s). The //-terminal amino acid sequencing of SDS-PAGE-purified CDPK is now in progress.

FIGURE 1. Partial purification of CDPK for PEPC. SDS-PAGE of protein samples (total lug each) at various steps. Proteins were silver- stained. Lane 1, crude extract; lane 2, (NH4)2S04 35-50%; lane 3, Bluc- Scpharosc; lane 4, Scpharosc CL-6B; lane 5, Mono Q; lane 6, Supcrosc 6; lane 7, hydroxyapatite. Arrowhead indicates the protein band having CDPK activity.

— 325 —

(4) y 7 ~ * S' a y 7°& # %

: W#7°y s y##^o#%#

4.x.

— 327 —

m m m -

1. emg

y y a y 7°

Tentative agenda for workshop in Bergen 18 August 1995

Dissolution of CO 2 in the ocean - Practical steps

COiliaVKyil^l

Greenhouse Gases : Mitigation Options Conference

2. AiS©1i*&£Sft

7-? y3 y 7Woy F y BEAU & tf 5 SiW^ttlqlESS. O'CO 2 © EE £ IE ^

f yt;i/yyfp / >7x>f

a y F y##Bl^A0# a y K y

4.

1995^8^178^6 8^278 (118 HD

5.

8 £178 OK)

8 £1188 (A)

8 £198 (±)

8£20B (8)

8 £218 (£)

y >9 x>f cD^oi/y y#

y 7 — y y 3 y 7°

CO7 ^3;i/ KH3fe

n y K y (c##

a y f yBEAE©^ttltt£

— 329 —

8J322B (*)

8 J323B (7k)

8^248 (*)

8 £25B (A)

8^ 268 (±)

8J327B (B)

a y k yHEAB OS-B © co 2giJBSiSI-o vr)

a y K yBEASi (co2S#M- i, n#)

D y’F y@EAE (C02iTiM)

a y K yBEAB (NgO*#x co2©W^W#)

a y K y^

6.

1995# 8 £ 18 B K7 ;u x >f © y TOO 2 © BBM M1" 5 7-)'73»;

^©#8^22B^625BK^^Tx n y Fyt'CO!©i'Mt§i

EA«^§SSSn/c0 ±IB7-y y3 V7°RCFBEA«T(iC02©M (##, %*) K

6-1 y 9 - y y a y 7°

# gFf: ^ou-'r y# ty^yi^

lESl^W • Tentative agenda for workshop in Bergen 18 August 1995

Dissolution of C02 in the ocean - practical steps

iUSBlft :

$## & CO 2 © #### ## && K L tc %

y3 B* OE;kX (mit\ /O-v^v

mwmim') y - Fts 3

CO2©6o6#(cy

Ititei'tcDzt’e&fy' cti6©##iR#^B%(c^ nedo&> 6> Sin ©EM t> &

TAEi^SSnLfco

l$g§SES :

®ty-feyMliiiM®^a”; T V

5L /'fyVy?7?-k7°f y^i)R3@%W^ "fM&MMPls x

-reWLTvSo

©L^L^^b^©ck £'?^3©;Hi3:/;:-o&TV&vrik &&##?

C02^r 7 -f 3 71/ K tCZ^A L> h 1/ — "9" — ir 7 h ^rfr 7 o (SS (ipre - project©!^

330 —

TifeSo) rx b Uf^ h fc-f’D-fci.'o

(DfcfilftftC 02^fx ifcftDx C02©£ffi#ffl=§J&»J&»S£H:fc>*lSo

(Wffl «1#M)'

6-2

# Eft : ay h* yfftfalESl^W • Greenhouse Gases:Mitigation Options Conference

tiSBlft :

(^International Energy Agency (IEA) ^4];5(c^C (] L x 39#Bx

moo^mmi/ccozijE^M-r5mmmm, mmmm,

6&o ncoz'nmc: m l x co2©bm^ ctie,

©mai6]&K@f & c <k r—

finLfco

(l)^m#SD#«39SB^ £>St! LT Vfc^x BgijK^St^gx B^x ^S©#An#

^< X LT&«3x

=b:fc&o ^SM7C©WWS^'SS c: ^<£-S®-^^i(^x fflx B#d#:##(::8&,b

~C&5 £\*'x.&0

(2) £ /c|^S6tiiv(*±EBESi-E®S tlT V 3 <b & D x C02S!lM<Da-Tti < x N:0*

mizMMtzmm&$&&<%■£*u mftommmmt^x-Zc

(3) 4-B©*;5mmB%-e$aco2o##m^x iWMLt[i2 BPH1{-t>fcJ3x

(i)

(1) K 5 ^ X WC02£1000M©iMfc&A LfcBt<DpH©E<t;Sr $ a. 1%- hf

5o (Usa)

(2) ##(cco2<&&ALf=#A-x ix-h (i-^ivia^TPSgtffl^

(illfe 5 o) (Canada)

(3) C0z&##(!:&A'#'&#A©^xf V©#S#t (200barT30kmiS.&) (Denmar

k)

— 331 —

(4) C02&#p(^&A'#'6#'a (Norway)

(5) C02&1000&tf4000MO##(c&AL&B##K6:&0 2@0 E-ol'TS/ S * u- Y

(Japan)

(6) m^Lx^t^K^<oco2^m^st co2^iA

Bo (Austria)

(7) CO2Wfc^ir Z 150~100%© 3 X h©7?a x h

^<#0 (France)

(8K* h U4 h LTC02&##(c|##f go (Italy)

(9)^ 7 X U'i H#i5©$S#^' 5 3L l/~ H (Japan)

• ix$ x.u-i/3 E§&&M<£ D@v^-x-e<bB .kSA^ftBo

it^-T& VBA/ft&BLtZo

(n) l^i^iiil

(DmT^coz^&A ltzmo^m^mMx^-to (u.k)

(2) CO 2 ^#TK&A L fZ#Ax PiBiSFSo (Norway)

(3) C02 S-EORTEE^ B BlO/’M n >y hKH (Canada)

(4) C02 &EORTE#f B#© 3 x MfS (Canada)

(5) C0 2 <gr#T KE# L A © CO 21 5 * yJl'f&fttQKjB (Russia)

(6) C02£JiTi::Egl L £*!£•© nx HS«f (U.K)

(7) Cap Rock&%^B Lyz#TE#LfzB#©C02 ©#&#&## (Denmark)

• 3xnf»i»<, mmzit&tz£%x.t>nz>o

• ^^tefcoVTlxi: & £A^4U£&ofcC02&:iirFfcPIItUT&i9^ A^(c—

SuiiSftTkx b°- kj&SjK ^ -tts.t>%'P:BLte<bxT$M\$ts.\'tt&WiLx\'Z><D\t

mM*%z-tz o

(PE W2#E)

-332 —

v 3 "J 7°

1. BB# : 1995# 8 18B 9 : 15-14 : 30

2. dfcjjjf: (NERSC)

3. gft:

#^©#T^ co 2 ©##B#©^gT##%a:# & a B ^ / >7 =

MU ^##^©^l=l#©##tf &o

4.

5. (###%) =

#ck D TE©##^$ ^ %o

2000£tKC02mftM®mf&nimmte/J>te < -» o0i?WTt% 1995#BerlinT©

CUPTCO2 ©M# <hMfc-oVTUECD24*S C t^r^LtzC t lilil

WC 6T&&0

Xs COzm^-KML, Haugan©m% L%####(C &

©-U 4-11© 7 - ^ y 3 v 7°^§i*>iL/'-co

jeiTE^Ss^SEi'^EI’o

(1) Herzog (MIT)

C02##M@© £ tVc0 K

7^ T-f Xi$©M&i<V;U CO^li L T GIGCC - kCO 2 $ 401t - CO 2 T#

(2) Lie (^;i/yy^#)

CO 2^AK j: S #7k©pH@Td# (c$, j; ^ X hG pH7.0&#KB#^AK

-333-

ft So < 12116E* £ &0.2~0.3pH^ffi~F"t S 0 XC02<D

mmzxmffi'v «ph »2 ~ 3 k ft 5 0

(3) Kildow (MIT)

C02##m^-KMLTx iS&tJx %%%x 9o C02^n y

(##&^) ©WH^lfcft S&i? 9^{igray zoneCltb S £%ATVSo

(4) Adams (MIT)

CO 2 © ##&A# 0 CO 2 ## x i£B»©rfSs Mi-pH<t»

(5) SH

C02##^@O3% Ky-f 7-f %&6jt$&LTx ®=i x

hT&So

(6) fyf«Bff

#&stB4:OCO2©##&A##(±x y X ©@T I)FnlH (i ft

V£SA £>tlS Lx EfcfFRi&ilTVSo #&I±x pre-projectT<b D > C02S£EM1I

O^d* o -y t-fX! CD^Bx HrtS.O^"a -^Ol/^jgi^^LSOnrtgftfFffiOSPg-e^So

^cD#E(i*Sfc*A &S##?C0z^7 ^ a;i/ KK&ALx h

a. (/m#x smAimT^DA^o co2©^x

h 5>ilS0

(7) lUEx /JvglU

(lUB)

mAx MITx ETH (^ - V -y k%#A#) 3 A#O##*m#05© C

02##^?ft < X SATMLTV5S#-e©^SS3gi-l91*SE^©-^j: IT

ft6 3A#$)#^OgM6ftD#So

(/JnSlU)

C02O###^-e#)&< 6 6A& 6x ##^A&©&Tft < x i^T"©gix^^-

&#8 LACOzS^Mtr®S* b ky&ft£&&S0

(8) £Ii©S§lro

(D#

y a.-y cD*-#y^[#;C\K9 —^yx ^4" a v h %% t> ©

SJ£<'£t>A. S#&At>^< ©*© 1 ^omnt LTSA, B$^@

h k/i&#&#^E6 LT##f

(9)4"#©RITE©*^

®C02S?^MO^M D y b T X b^©ftj®

B *T- kfc/MISftSIHT I) BS^E £ tl 8 fc *A / JlsV x.4\z X'*4 a >y hT©

T-f %%#©#:&##6 =h,8 Cililpa-E?®^ ##©###aK^##gg(c

Tl@SW%L/cSIl^K^d-ti-85lnITiiti8o

vm*^©&a&# ? eh

A f-y^7%%%co,a^K#(±4-#©#0£

— 335 —

□ y k y # !

1. Bm : 1995*E8J3220 ~8J3250

2. : n y K yTfrft a y F y*@|^ ###

3. gft:

(^International Energy Agency (IEA) D L x 39#fflN #200

£tmm l/cco2mm\m-t%mmmx e^$x a o #m

TitCOaMEicEjlL, C02CDSM^> utLb©E%®lS]^jE

M-rs c a s^##gs r-E^soEEM&%#>##K#%0L 7=o

4.

4-1) Preliminary Session (220 9 • 00—

1) IEA/GHGOT^OP-FreundS-O'* ± ZOCANMET© Kelly Thambimuthu (G

2) IEA©H.J.Koch^x MOT^Mlh 3fflESlRlfco

vr®Eo #Kx iea/oecdeStctiiz-o^tsRo

3) IEAO J.Tilley^x IEA/OECDX n - t'y ^ f ^ Ko^Tp^o

#>f y F

1) IEA/GHG©'g®{=o^T«NED0^7^ d-UU^ RITEti^SBfiSM#

T#3%o

2) X3-b"y/x^f^[is 0* (MITI-NEDO) -'V7f ^^IRoTl'S

SttT&Stik USAS-h LTMB&tf&ibOTx #f-RITE<h L"CR##(c##

iftSx t>©Tti7j:Vo

— 336— ’

4-2) Session 1 -International Dimensions I (22H .10 45~

1) IEA/GHGMB0P.Riemer^cO2®[IlJR*S?B^ fOTx RCXFuU Fuel Cycle

StudyKM^&GHGya 7 A©j&||&.oqfSftSfco^TfiSo

2 ) M (A.F.Armor ; EPRI) y h

9co2<o%m#%yy + >cdMISS{covrii&o »isi±©<&-??(±co2o#m

Jtfln3 o

3) B* OF ; m^) #x ^i{!i^{^*»ij0f;fecDgiiiWt9l'ti

So CTIfc^ol'Ts Long Term Technology R CO 2 Removal Technology & B

HMSE<b LT^DJbtf SfrlTVSC <b£3£I@o 6

LT\ -a-f-yy + ^f yftiSOxnx^fiJriii^a l'&.O'WE-NET'T'a ^

? h*

4) eo#x *-x l 7 V Tx % y-7-^x — *.-s?-7 y H\ *7 y^J: Ds #i®

•Mlk • C02##^o^y± V *S-iEfto ®Eo x y7-? s.c» 7 y/0fllttg||fffl7'o f 7 &@o - * - s?- 7 y k*>

6(ix V VTo

5) £fcx ^B©eei^£>&x liiWtStS^yff“©**Si^t^-

b f £ fc J6 © y x r a ico l® -5 fc 0

y h

1) #{cRITEt abSV&egM-51"^i !>®(i:&Vo

4-3) Session 6 -Full Fuel Cycle Studies I (23B 10 : 45—

1 ) B.Schlamadinger ; ORNL) J; D x ## t '*4 * vx &fflM Lf=#A©* -

**yiRS©WffiSSSIicoVT^So

2 ) M.Holland (^ffl ; ETSU) <k {9 x EU© Joule n 7° □ ?" 7 A T## L fc ^ a - /< ;u

/y -^37 h 0#@{cM-#-a#^^#{Cot^T^So

3) (B* ; MEL) #x C02©IeIJK'S@ (#*/#*) fell

#T°7 y h©7-f 7*M jrfrTi- V yx©S^{cot^TMSo4) C.Hope (3£B ; 4-yy V 7 ^) ^x FuU Fuel Cycle©« n 7 h ©^#{C# 9

^###0#@{Col\T#So

5 ) E.Nieuwlaar (tf 7 y ? ! ^ h y k h^:) **x CHPx icHMx IGCC© 3 o©x

— 337 —

6) IBA/GHG###©H.Audus^k B 7° n S? a. 7 h © Full Fuel Cycle Studies©

fifcSfcol'T^'o

d-° -f v h

1) * vx©Wffifco vr&IS^Bi: Lt^##ict^§o

2) «3X hWfit^vrtk M (#^M) T#D^ #^BK(±#

S* * ti£nifftv0

3) LCA. «=jx hM©l''ftii-o^Tt>^»f£©M&fi!!o

if 9'^'ttfi'J;^©^

1) 'M &fft>ti’C&t>-?^ <&

mKh 5«i & & 6 ? 0

2) EA/GHG©Full Fuel Cycle Study P LT&KfcNEDO*- £> ©$ET§.E:£

(£fi : ^#) $ ^Expert 6 LT & 2 k

3 k 5) ©am# 6 (±@A%;c ifarnw-ck

^VT|> » TRITE t L Xf&JBi" & jfeJffi ti&V0

4—4) Session 14: Carbon Dioxide Storage—Underground (24 B 10 • 45—

y S/a y&4-IhI ©E3EB Rj ©WeS> ® D > BlT^©E$®E^rt £a6fc0

i*i # : Natural Occurrences as Analogues for the Geological Disposal of Carbon

Dioxide

a§$# : J. M. Pearce, British Geological Survey, U.K.

# H : 5^^(^%#Elf^6©CO2|giR&^lEliR6ft7tCO2©jl:##^©#[|:#fO-^50f

Slio-iibk 4'y3jM(cSSC02lf®S (=#E©##@

TJi±^© SIS (i579-899m) ©f-^3775 y K## : 80°C,

200bar) iiig-dilWeoCOzMK fiP^C02 illTRR^S i ©ffllii

(^oVTSS^rlr^TVSo

$ # : Escape of CO 2 from Large Horizontal Aquifers Confined Only by a

Cap Seal

aiS# • E. Lindeberg, IKU Petroleum Research, Norway

— 338 —

mr tmjiTk K## t /c co 2 ©w • k&z&m*

fILTs yx^f-f-^IIL/Co EA^#I3\ C02EA*

5.5MtZ3A EA%^25#Tx ^ElOOOm, Jg@200m©7W^lSl^lflV/-c^7Kfl

(77U^i-f©^ h ’>'7l^Ig) C02©^S^-8000^^rtS L fco

(±2000mD-x>y-X <h LTS 50~4000mD1: TWfc S ii T V S 0

tS : New Feasibility Study of Carbon Dioxide Production from Coal — fired

Power Plants for Enhanced Oil Recovery: A Canadian Perspective

# : P. Toniwachwuthikul, University of Regina, Canada

H : 3 bSttidit

SCO2&73 ^-©C02^E0R(ufflVSya '7* 7 h CD

VTBCTVSo 7 3 y##ya-tx(c-3l'T&;##LTt':5o

300MW©5^A*^TO^ £73 j; D8000t-C02/day©C02&lEl

JRt5i^ 7 3 yfiF^**5000Btu/lbmol-C02i-r5 £> CO2(±0.4

~1.8$Zmscf£ftS0 COT’as?*^ h ©3 X h f±600~250M$§0

—2k L$Zbbl©#A^ E0R7Bas?** SCO;

iiE$H±1.25 $ Z mscfT® 5 o

: Technical and Economic Feasibility of CO 2 Disponsal in Aquifers within

the Alberta Sedimentary Basin, Canada

: W. D. Gunter, Alberta Research Council, Canada

: # t ?(O 7 JW<- f ##&#%>#*#(c& $ COzWM-fcoVTlIUTVSo

»(-EA$tifcco2@^b(-(±. mmie.

tt&o #*(^EA^^^C026#&#6©Rf6(c-3i\Ti/3 XL i/-y=,

fcfx^fco ^mm@©#A@T(±, c©Si6K<k?)@^StiSC02©SttiI>«:i.'

fc*5?o mm#©#7k@Tft£ ©RJSfc«k D CO2 (±$ *1 s rtf

59o d©Rj®fc(±, LTA>& &&&m

i+^-(o/j\$t'0 — 2k 7;i/^- ^##^#©#a#(±

10~50mDx SJl7k©j$S(± 1 ~10cmZyear@S^#X. 6>tlSo gS$6mDT

Z x.ls-1/m *@13mT&250t/d/well©CO2EA;$sRTSE7-f

CO 2E A1 & &'b>milfltHhhfzhOo 500MW5> C02 £ A 5

j; D HIIRLn 15#©EA#Tl000t/day©C02§7^-^##&

h©&^ttteoi'T4fetfr£?To;fcM^N b tt$j

50$ At—C02 h.t&-o tz0

Carbon Dioxide Utilization in an Aquifer: Method for Mitigation of

Greenhouse Effect

A. S. Kelebeev, Moscow State Geological Prospecting Academy. Russia

S7kfl^©co2M-fcB9Lta EASii/cCGa<b Ad’ESgcDfflSfMmo vr

y S a lx-5/a yx* Aw -£fi/Tl'5o g5^co2mSS^5 35ft##k

A b V 9 A y©##^CS/c5 9o ^©0#, Sj^lEA b U 9

An Overview of the Joule II Project

The Underground Disposal of Carbon Dioxide

S. Holloway, British Geological Survey, U.K.

z©iHSE&ECmd;5Joule n b<D—mt LxmMStitCo

if Z.'fc b ©CO.HIIR • & techno - economic A 71/ <£: |H !q§ L tz0

Z ©A- A7bm <fc § A#Aa'&X©#TC02%@mW>:b6 3X b^Ait'o

dfcSm^STkV^Afl^-fflV/cCOaWMAa y* ? h^l996^mx A y b *

A vi/mEU&Cf/ 71/9 * A m&tf-SCOaiffiWil

tt'WtfxzMWLt-tzt#65Gt-coa-r&So

0##^##*#t700Gt-COam±6%6o

The Linde Structure, Denmark an Example of a C02 - depository with

a Secondary Chalk Cap Rock

F. L. Jacobsen, Geological Survey of Denmark and Greenland, Denmark

K. K. Ispen, Elsamprojekt A/S, Denmark

— 340 —

$£ g : fyr-7 K^^aC02#W^©###©D6-7(c V yf#B^@6o CO V

vromww&^-o^xmm^^tltzo (Jacobsen) ttz^ 'J yfiI(-C02

&EALoCOZL lx-3/a

StL/Co 50°c. 140barT\ (calcite) ©K®^©EAS

tl fcCO 21 g5 £ 0Xk#Kj^ iflLtl'So

#4" y h

-y^a y-y 3 S$JfcC02%*MJ£7>VT$ltfSiLTv;6 £©EPS^rS^/co £v? 6S&SC Sftfco 4-^7*d-ltv<

^S^E<2: LT&> * f yOEOR%.C^7;W<- ^##&#^OC02#[##^-x Joulen 7° p y* ? b> 403^^©/ ;i/£x —ox ? y b ^-4" ;i/(cj;5C02#4:#^7°p v^x) b

t'^5) iS^tL^o

-341-

4. m

(5) 3 -;!/ F x 7° V y 5 - -r ^ y

: RITE^-f i 'J 7 ^ ^-7’n ^ h

*# #&

m m m m ■■ * v r? ?-7a i?* ? b

— 343 —

*4*1)79 9—7 #gEM

# # # 6

1.fn^ 1995^7° a fv

The 1995 Meeting on Programmed Cell Death

2.

6Cold Spring Harbor Laboratory (/KB) &>. ##g)# 2:

#»K 1995#K

7°D A|BJB5E#Ea> yo f 7 Amm^E^MLTCold

Spring Harbor Laboratory##? 7 & C &6""C<D®f%A <b V 7 C 6 T\ § &3h B&M&>

ft o 4-0O#«T{i;, y O f 7 A (C a AT O ##&##-#- & <b t' 7 C 6 T, l£

(3Ss ####. Aik##) oe^#(cj;D,

fr^tt/co

3.

Cold Spring Harbor Laboratory OKIE)Cold Spring Harbor, New York 11724-2213

4. SiliQH

1995# 9 ^208-9 ^248 (5 BiMD

5. AlAftOXy^a-JI/

9/20 7 : 30PM - SESSION 1 Invertebrate Development

9/21 9 • 00AM-SESSION 2 Immunology/Neurology

— 345 —

2

7

9/22 9

2

7

9/23 9

1

3

9/24 9

: 00PM-SESSION 3 Poster Session I

: 30PM-SESSION4 bcl- 2 Family-

: 00AM-SESSION 5 Biochemistry

: 00PM-SESSION6 Poster Session II

: 30PM-SESSION 7 Viral

: 00AM-SESSION8 Oncogenesis

: 30PM-SESSION 9 Vertebrate Development

: 30PM - SESSION10 Poster Session III

: 00AM - SESSIONll Disease

6.

#An# #250%

0# SEBlt—, J. Yuan, G. Evan, A, Levine,

M. Raff, E. White, S. Horowitz,

7. mmm%m

s. emm#

8.1

Oral Presentation : 8 nMWL ###f62^

Poster Session : 3 ####144^

8.2

CEE]• Apoptosis (c §8 LTti\ 94^*tiEtil, L' /c S ilT V fc 0 p53, bcl-2, Fas25.

CfFas ligand, ICET&So Ztl LTiH' tz V) gK L fz

D S l'=bkm%#^ < bcl- 2 7 7 S 'J -<hICE7 r 5 V - ti\ ^ Mil 10

a®< W&fh d £tc^ ICECDSE^X FasK^Af a phosphatase

— 346 —

%^&##&tlx Apoptosis&Bg&D 9&S?(±x o LfrLtZ

-o^cD^^rStJ/s^-rXi^S !><D0x C tiA> 6 od:#"C& 5 3 o £ fcx apoptosis(c (i

• ilElS©5E{^(ix apoptosisinecrosis^® 4"[Hld)##T(tx ##$09&^Ex

/N#0#B<D5E%2\ # D 6 LTWcE^fc&d)

(£-0 VTx apoptosisT'43 5 Cl £ ^fRcTc? tlx apoptosis^x t&^d) HL^fJK-hfc—

g!Snr& act ^t>*> ^ t § fc0

•gene targetting^transgenic mouseO^&mK 4 #cr cF tlx apoptosi

sOW^fCioTx £ k&m£tltZo

C h t° «y ? ]

Dr. Nagata

Pas-/-moused)##r%-#'ao time-dependentfeJJFSSd)IE^ (senescent hepatocyte

StlfcVu b.K&.%> k><Dt£?> 9)0 Fasd>@lB](ix senescent cells ©35§f£?5 9^?

Dr. Strausser

V y/'f#Oapoptosis#^Kol\TOtT;i/ (HI)

Fas

Mortl (FADD) ?

,:crmA------- ICE

7 -irradiation ceremide ? ^

t ^p53

^ j-^-——bd-2

VCPP32 f or other

V cystein protease

prate olysis

cell death

1 y y/i#Oapoptosis#S#tfVl/

— 347 —

Dr. Li

bcl- 2 <D$bM

11-2, IL-3, GM - CSFe CD cytokine © £ PES"2" 5 o NFAT©^A&im#f 5 o

(no effect) f ni/y© >J immediate early gene (myc, fos/jun, nnr77)

Dr. Yuan

ICE family coy lK7iIIo^ot^!9s S £> < IZlOmM&M

ICE(D%iM : IL1 £©#$k ic & if 6 ECM © TvStt-ffc ^ TSSSTCDICE©

IRE- 1 dependent^##

ICE©SR : Pro-IL 1 b, PRAP, U 1 -70kD?, Laminin?, Actin?

Dr. Seshadri

ICE knockout mouse

ICE is not essential for embryonic development.

No significant physiological defect in Fas-mediated apoptosis was observed.

Dr. Evan

DECISION - TRIGGER* y*A> (gj 2 )

cytoplasmic Target

LaminTRIGGER > Mch

PRADCPP32

ZVADE1A/Myc

DECISION

bcl2/bcl-Xi_ Fas/TNF bak/bax

M2 DECISION-TRIGGERS^

DNA/DAMAGE

— 348 —

Dr. Naik

pancreatic tumor ©?E2$ui[llT© apoptosis (El 3 )

tumor 14-16 weeks

pancreatic >bud

Tag + Hyperplasia AngiogenicHyperplasia

Vascularizedtumors

EIO 2 weeks 4-6 weeks 8 -10 weeks 14-16 weeks

TUNEL&T! ©apoptotic Z^> cell©#

—100% 50% 10% 2%

El 3 pancreatic tumor0Bfi£i®|i'^©apoptosis

IGFII-/- mouse

Rip-Tag©#©##T^ apoptosis(i 5 fnfcJh# tumor formation&6T L/c0

IGFII-/-was not sufficient in providing complete protection form apoptosis.

Bax © ##—k L

Bel- 2 ©^E-BS"e©^-±#L/c

Dr. Raff

Staurosporin (PKC inhibitor, STS) -indeuced cell death ©M^f

ICE-like protease^v&SIcb'ih %>

STSti\ PRAP 6 CPB32©cleavage&##f 5

Dr. Morrison

p53-/-mouse©®Hf

^7 T - LT 7^9 S survive

ir tctz'MMfe <!: tr^-Fapoptosis (i© H <6 ©"£:» p53 independent

— 349 —

8.3

1995#%y D V' V

9. 5RitS©mfc Ufc&S

#%?--&? '>3 y#TOM-#(C#@%K#an Lx 4-i©7"nv!x^

(-^E^i»|g©JRS^ff o yco

10. ±iBo^EJat^ois^jRa

(1) Harvard University, Prof. Wang

WangW&x topoisomeraseCDP-^}^ V ~ F L"C # tzW('^M.~£' z> & o

topoisomerase#^ 5 d” 7°©apoptosis©mediator £ LTfifc £> < L £ ififyij* -o T V'

-BOTx #S©topoisomerase©^/ftl^6^yj:9F%i^^) t^T-fnlo tca Ha/Ex Wang#7T#

?LS[©topoisomeraselll^r 9 a — — y *f L tc Z. £ fS. £'©IS^T/Co

(2) Harvard Medical Schhol, Prof. Nakanishi

NakanishiSf (ix ##3#!T©gene targetting&^E Kff -? TV & WS^sETx ? Ji/ 9 <

gene targetting © iRS © §T L V

C £ft~Z:%tz0

(3) Lowrence Berkeley Laboratory, Dr. Campisi

CampisiW (ix in vitro ^/ft©W^5fc^'<'T5^^©P:^^r;fi-o X l' § o Campisi#

T-oW^x # Kilt § ^?H?©i5L© S^x itfjfcMtb&tlT

c i^-egy-c0

— 350 —

am g #2

= RITE

— 351 —

sew m p m

m a £

#mam# a h x

1. 6#^-95 0 t

2.

t g s t ot©® t> -e& * „

0#^#g§r©gR#©#6(± T s? LT L' & o

04# w\

04#ttl£fcftffi8!£*iN'r:&eK M/ll«©7k^6B<zW=E e»«B^S^S: Eiho

owsiil *'/vm®«n m#mt c(±,

B* t njng t% C. £ § & 1'0

OB* E^-o T ©SS&iiBvfc £> n &## L % ^ 3 ^ilBtttofco

Ou 9 l y-ciiETsa Ltz-t <* terns* tmmy ? ^ £ 4# im& •4#©^EtM^W&ofeikt v ?

C 6T&&0

3. - mm# - %*#

£ I f: *B±#3c@*#s B4^' + -35«i®-fe v * -

4##mm# = ±mm######X ±#T|]#######^^

B• ssssis^is^ss (nedox b*b±

— 353—

—we—

m S YIi4i®0 4(W

(*m## ai,iH) m om

(*B oaaN) # %^m#KB(8)

###$ 08 : 0T—08 : 6

08 : 6 ~00 : 6

08 : 81-00 : 6 (#) fZ/ll

- > 00 : 08—00 : 8T (#) 88/TT

*9

B 98-Bfr8 if 11*5661

iHSMI? 9

° s n%n (% %

v2}#H[ll?9'-£aiMffl^i£T °§vU0Ili?

"ivcm v»* vwe

3YoooA#smmm vy^8^®^# ^a^z

#Yn#g:%i ?#w^m2#^^9zm* ^£B^ac>*a.*rii vfi^¥i$iTo

^^otU^YcaH^MMo^ £/: yoTi^^tmm "EE^E^ °?

\i%#$w?) =##2%2?mK*0v a g?zw©iiff • ^©h* v?j§*to

#YE3f#T

mm#

1*B(R) V(03A) #«I$B

10 : 30-12 : 00 S###

13 : 30-18 : 30 &&&##

(16 : 55—17 : 20' OjP # (RITE SMV)

18 : 30—20 : 30 ^ -

11/25 (±) 8 : 30—17 : 30

8 : 30-12 : 00 B*«$£

13 : 30-17 : 30 W####

(*13 : 30-17 : 30

18 : 30-20 : 30 BMMSI^ (SHE)

7.

tpmmti^25ox^s»Dltco ^ommmorpKit^ m#

fifeow. tzt^z\U it&

Bfr. B*»5>ti\ 53&T\

NEDO, RITEO j; 9 3 L

tz0 SSnS-©EMtL^?>> $ oy y^-^ssj^siirv

* H#J <d#M©ftSrisit^6tJ4>75fr-itzo CttKx

K & a #& 6 ## lt^

NEDO, RITE, Mtl© @3^ ti\ #0#^#©^%

— 355 —

8.1.1

KX<d 5 ®-fe >y y a y=k DSj&x #

• ^#^A® "7 ^ a %##

• • fx^;i/+'-

• E*5a@s®

•^7 511

8.1.2

A. ##&A® "7 ^ a %##

H«j(t> mm • cstisa&x re*

rNEDo©®BK

rm#^A##K^%^#©mmjx rw^wmis *®bemsjj 4>H#j(iN [±m®mkt&&-m.mt<DW,m$}?m\mLx}

csmmm\ rswss^csiiofiiim r*a©m#&©#jmikjx ra$i

*a ©mmmAK#©#^6mm jx r±#©m#^#©m

®£WEJ LrmSLfco 6&6a 6J3TF®=k9T$aoOB*(*2S©*>f 3 y ?&##-#-&*T^ #M&^##L%^6x

tz<0<D*% >4r-yiiKir£E%-tz.t MS L/Co cti&x %#©j##© &6 VteScSM;bLM^T& % x SSHtofcB*

4; Lx *

/'9©##%)0-#T&5o

OB^^mmmK-ovrtix "ggTmm«©mm^ff?^

TEtt®®S©^^rE$±L/Co 6@©###^<k D h/>

$ < ffucLT&x t'oxoft* §tiWkttk^tzz.t

356—

06 ^SUSoSTOEx ©^@#%

Wct'SSte'^VT !>m- Lfc0

a t mmt a £ ? tmm^xm^>x%tz0L^Lx #######%LTl'&o €©@6<bLT(i,

iSSE^SM t SStfim©l!EEx 3g^a x h £+#teESfc-ta i>& & act

OMtM%MULtzi§i'&fc^ e^Bt t> S & WOT * 7°;/ a y(i#%^;i/4:-T6a t&34%

Tl'So

B. R####

*^et\ h4:mB©##^m©#Bm(i#^#©m^m&^#^©m#mmR#

©ssife&fr 0 c t&x^tzo HMtix rroemjx r##x stox m##mjx r%##

tk^Jx r^mf9m^±&#Jx mgi$jx r y*-*y h tmmmmmjx r*=>

wzxtmmrw kx*b#j(*x r^momr# x ft ?c £ ^sExt tc p 1- a

e%Jx rMis*nsBtcM-rajx te£'50&&mmLtzo

8.2

m^lix 11/24&g, 11/25^TNEDO, RITE, E**^ES^fifr©Mic<k-o Tfft>

9. u^%m

OiliDSilli^Bicffiff StifcEEt LTx A#%x btz0ORITE©SEft t LT^E©^Sj^-5:x.TT§ fc t IWfcMEr y 7°

tact fe-pifc o

OSfflx

10. B*S±E©BES©^iroi'T

8% : 1995^11^258 19B#—215#

±@##J :

iqi# mm (nedo)

lilP 111! (RITE)

(nedo)

iMS (NEDO)

W (B^k (#))

cf/H g njn y 5L * —SE^tUSEiS-fe y ^ —

# #§S# (RITE)

#

(±otswm)

(±#^@^#)

% (±#35#*#)

(±yS3eii*¥BE35M)

^BlfcAKx ’95H*3gW^j:MS^E©^$ic-oVTcDSB35BR^B*E^

a^MSoS^S*)^" <h v 9@h*efft)tL/c t>©Tab ac ^©tltu&i'T

<hKT©j@Dlrzb§o

10. i *95 h *#### t matm&m KMt%

0$##Kx ±#3c@±#t04>^vf + -35'^M-byf-<3;t;###

±B%3D&iR8 act# y^o

0$A#&#LTx ### A©3c^BK#&Cf % 6 L T l \ a c

i. 1 < c t£& Zlzm

<m#f ac

0*A«Tx B *WBoM^Eot ©EMUS.©MSEM

©35%&fr 3 c t ^'T # fc0

0#(^x B*#J(iB*oSS®ABit a "t <" iit / 9 ^ 9 x S.CXESJ • ^Sfc©M£*B#JfcilM>id8A Lx $fzNEDO, RITE&rfm^*^#05^(±l^^##%m

^A^-fiVx ^:#©E##&i@^ act# y:o *B#J teeter US < SS©S£

-358 —

Wo Ltz0o^n©^t±x t racMyf fy ^ - j

mmmftomm c±s) t«sii'9i»oiii©iii^-y.; v&Mt^tc %)0?6 3o T©jkMT#g^tlTl'£<DWtB & 0SrSHEi/^A' • #^y^;i/T#%Lx t)0

£#A£tl£ (NEDO)o

10.2 c ti*) g, ©frl&tf®

LTx ^Ijx-tfx 22 @81####%

S2niB*^m(is -e^s^ttB^ s^<^*l/cv0

0^#©#C5x B $T APEC####3C^t -k y^-^^-7"yf ectlc^cTl'^o

LT$) 6 9 9 *c6«k % timi^Rlx NEDO, RITE6

l r *>mm®K.mw&mm<z>mm.*Wi&?a £ ? l £ v 0 its ne

DO(±4-#x @#x ±#^MA#E##(CNEDO©##f#0S^m©### (B*EE)

Lfci'o senic*ixmm®M%mt>l/c.

O tf:> ^I^[iT^J*=i-t-^ Ctl*.

(##=#)o

o^m®mmm\$-k%tzi$Mxtoz>i)K m^±mxit^tntmt-?/-ct^d-e\ ^®m &at/i3©#Aa^m©#^^®b®Km^x\^0 b$A#

#(C±#0##^#(C&#LT < yf $ a ck 9 Lfzl'' (SBS)o

OBttjfts 4'##m©*m©m#^m#pm^B$<&m^LB*©'gm#©A^ tmmf <k9*g#jK%#LTW6o NEDO6 LT&x

tuv^VM^LfcVo #Kx ±SWAKHA Dx ^'&MW

M'M&% <k 9 M LTu § o

ONEDOdCM"ejksOS#6^%o LvfcLx C©##T©*g©%

^tfemiiFplioaSMtfliiifiiol^ • lltW§IP!ii®li

o*ffl©m^is&*&ro©3LEx 3$<#m

— 359 —

•e§teV<bJS9o t<DWZ.^y V7.<DW

(iiinss@y)o

O^fc-x NEDO&95W;;

L V t^m LT^Sdil^LTx ft#®*

ti\ ^MLfc5>s 2sgtt±ST-|Stz:L A V <h E o „

ONEDOti^ t>

tit>fl\U B*^©E^So^SJ^S/cLfcV0

O##^ ill□ SMSr#S#JO$)±# (*ffl£lilSllJb<hB:fc<D£tl]S±llj£imV;fc

#) ^o^T©II^T0l9l^fc0 FB(i—SS7kT^So iiW^E'fbx

*'/'smm, e-mizmmMMk<Dmm*M®Lir^t^\c&,

HT#A& C t tt-eiftl'o ztit T2000^jBl±Kt>tz^0 £E£ W/l "e § & "6s

$y=x c5>%)&AT&D##5T&5?t£gc>A*fcB$®tCfiy:##%#<&-if

— 360 —

(7) ^io@A#oam

mmmizm ■ ritew^hsb vm

m. it % M : RITE

4.

-361-

1.

SlO0APECESMrWG

2. £IS0f4t&£BRl

198W*-X h 7 V T ©£ PgTigM L /-cAPECtis H •Tfc'ftl'-^~

^-7 y K • A# * #@ • ASEAN 6 *B • V • ^ + 5/ 3 ©18©B •

filfifcStU SSMB i: D ®!S $ *15 o

SUMWGti. c©TOTE£ LT## • SSS®{-B9t>5f-?Kol'T%# LT

40S1O0£ LTM^tLfCo

■i y + HORIZON HOTEL

4. ^11IQ@

1996S1 £170-180 (2 0m

5. ##±#:©%4S>%-;P

i £ 170 mm&m

* — 7° — y 7"-t? y t ——

mms si0#^K#m^±B4A©#^4E, (0$)

—we—

MB

ssmum mmmmm(»M-

mm##w v ^#5##

moaav i^hb m pc

(S¥?i n-b vx-^-^-x/:0v/ '##) H^mer

XU * 1. " y 6 VS^° Mr —##/:/$ v/t«R fi > z: z: 6-<<- = — v c z? * k vg^

z y vh* v-£# vyif'VA vx n 4 4 %-f v*h vww •

a T2) v( aEcsd_m SS^oBrm^WW • BonffSoacrv

###?##(%)## *9

i^^Q9/< E {i —'If /£ Z C — fl <h-4

a.v'i c-2)x E ^ —'[(G/i C — fi <£-4-

J.v'ic.^OMSSS^oil^

##o#0a-

UT^' a/L##0#

(#85)

4 T ^ o 41=1^ w $Si$a. =^g¥B@M#M@ T S

(#6 )

4 4 =;% a¥m#24#2|7 6/ a/:x E Z Z=Z#3S## A:

(# 6)

^#0 4 ^ ^ Z a/:Zm)Xgg# 9

7. SEME

7.1

. ck tfg-SET LtzzfnVx.t V ©#g^ $ 6tLfcT0n s?*

? h fc-o VT\ $1SB • M<k 59 SS:/^5® 59 ^ SB • S@^5>E^S.O't x*s&S

it /c o

T-7& LT#&mfTt#<DT--? 9#, SrSSS9#, # 1 it/:28

^itsiiy-co

B6 KA# 6 L TlSM^x o

7.2 £B©rtS

4® (»)J mi©SS©i:$A

BIT VT©£B©t£E£E$Bf' S o

«k 59in(c-oi\TOHP. *#(CckD#m(cmmm#a%Li:o

fcfcN 2^^tT-icSB -«©jl^«Bi©Sn^BLTTl< ck-^MLiro

*~x h 5 V Tj&>e»s TIB©j@i9*B©Sl1^llvi:o

*-X h 7 V 70g|iMklKltl^o ** y b 9 - ^ (±##^%©—O©#

?$Ds 4-#c©#%m(9m&^APEc©##K#A^©a? v ? - &9&M

ftLTUSo

•4 y f — * y hT©* y ^gO'fey^-if-att) tf;uTii

#<%)-? 6##%&©r&3o

±E©ifB{c$-5^*^B©-9-v v -n y^>-^3 yfc&vr^

7.3 £KA#im

About Internet Thailand Services

— 365 —

8. SitSOEfcU/dS

BE^0Lx ' ##©#An#(h©@M3c#^31L. apecSI

WGicMl-3fiSteoVTW^ft£njl,£*§£ ztfr~£%tzo

RITE©«(co^r^^V7 Uy h <&-## L#An##(z## Lx RITE!

ae&mx RiTE©m#m#^@^©%dm.^’o^rmm^ntz0

9. mm. %ss

&frt>ti^ l /:##t n o fc0

4'/7a iMClLtiiK. 7KSRC?RS&LT5tim

6 ^T^a^%"e&5o (6km&

1 O fc„)

iWBViifc-o vrt>. EBti 3 UK 1

■£tz^ fflE£E^;M> /< y 3 y 7 5 ##&#;%. 6 tt. -f lc$$tf64 y

9 - * y b fOTtfiESilS L tz o

cmsissH)

5p^8#1^19B~21B

(#m)

7 -i -. /< y 3 y 7 flJ ft

(SSftS)

hWffliK

SEtcoi'T^S^fr^fco

§t>*TMSjt(i;S<x ESS £&tfr r##31#%#©#J £

3M4 y?3©##B&m6TU%o

%^,T. • M3iMM\$% V h (##4; y h : Thai SarmX

>f y 7 - * y h%M##(±3#/LTl\6o

— 366 —

KWBT# stKSifc&s o

mmmm& m)

f/f 7/1/7 7 /## 6 =PR (40M?i]ffl ©#A, 14.4Kb/s)

IP## 30035 n (512Kb/s)

y3 7 ?TOSHTfrtd i l>&5-f y?

&6irm<, c«t^vTraii!w±B

£7^ Ilffllfft^^fco 4-^<hl>^y3 7 ^ (4SW7^7©*,C,>6t/tiWo

-oi LT##LTl/ tfgCS C t^?Sfco

^ + /N'y a 7 ^ SSfcJ:5 l>©

MPnIElilUJ^ttiElz.&%tm\:t>titz0

io. m mco$x "f y K* 'y7ToHE#EK£t}S-e§

•To 4-Elo^E(*APECS^T'©SSMivM1- 5 7 - v? l/crik ±(c#S -

5## • (f A#358%(^-o ^T#A<&^ ###&###&& fiT# ^

c o^#o###&##f 6#^?#^ Ltc0

4-#, mmu%###K-3L'TRiTEo#^Mm#mo#mK@m

LT$5<0lr?o

— 367

(8) GLOBE’ 96

:RiTEMS mm # mi%m m m m: rite

-369 —

ii-wi m m %

e&si5B3e§* m# mm

1. $mm%GLOBE96 — (Global Opportunities for Bussiness and the Environment)

2. £SH<Z>t4&<i:BRl

GLOBE'> V — Xl£^ h Lfc &©T\ 4*

§s &mm%jPSMfemm0w*z? + yz&m

&£tl50

ZB (i, f / a - 7TOT'& D> *i- «|f, 7'Jfo^aoy

3. na«

CANADA VANCOUVER TRADE&CONVENTION CENTER

(CANADA VANCOUVER TRADE&CONVENTION CENTERA##%&#13 #(D 2)

-371-

4. mmae

1996# 3^ 268 -298 (4BfS)

5.

3J326B :ll-Sli/-ir/'>3V

3J327B : BEGEMS

3B28B : BE#E

3^ 298 : gBBW, SE#E, fflAiS;

6. mmtmnm

SMB : 67*B

SAoAB =#1^2=PA

mmA##E : 350A##

gmmmM ■■ n

mnm

mmmm m

m& mm

8.

8.1 BE## (#m -

##t±x fa

$c£tlTWc0

3 BFbIits^ Tg-B ©iHS tf >? * x o&iMASk #BMj@S#S©S

#E^©#infcoVT(iN < GL0BE96©#

ft if n —BoVlu^EAE S-l&VTgfi (c#ao T#y=o

GLOBE96(D#iaS-ttx §x~^©#Et#Jn^CDfifeOBtFSteo VTkU g

JaJL## £$11^ L tz0

-373-

8.2 jgBM*Tl3

V T'^Ts a - a y 6 f 3 SSOA#^^-, hi/- K • n y^'yy 3

y-fey^-O 1®7dt-^1 (&j5,000nf) %\ LT^ #f

K#'. #T#aa-\ /Co

tkmss> sswsmssetu-ov©s^'^<

a*-A^-y\

it o

10. Ufc&Sti

10.1

a6mmij^Ama(c&gf m#j (c-3i\T@ee%*6K

tB)SL-fco

10.1.1 Corporate Innovations in CO 2 Reduction

tij-m? yxT>^3£om##m<b *■ tucg-d < * > tn * * y

y 3 v&&-otzo

—375—

% i- LT0CO2##c#l%[fai#7 * - XT?<DMfctfJM D ffl

«&.fcol'Tfi2fe©®DT?^ofc0

LT077"n-f W\ COz^:###®^6 LTx

&® 4 *gfc^ co2©«fcIK t> Ifl//-e§o®i2imt;iIiSfii©|[i(D$®:ioii:^o®«ix ^ ;i^+- (tKSx

©IMfik (D^SSfrStfxoSJB (tll7x-X)

10.1.2 Pushing the Regulatory Envelope in Europe

^#6 LTx C^3K#LT^©«k9(C)[%LTU<^#^(c-pt\'Cx K^fy n* n-

F>f ytr©j^SMri;iJ©!M;©**£\ d* D-5ti:tix

7 7*£tttf-Tgt±©SHtl(*Sy:^*ET^O-S-r 5#:SJ<£• fp D ±(f /c0

F ± - y v 7°&#-3Tx ^tL-r^^i'©

«k9%E&#^T%f6LTtX Lii4^yhi4'50

10.2 WMM#rfr

&Bnm\ mmem# © y- % <gr *,5 L y: o

10.2.1 /'Jfyr>x 3DVP7 (BC)

BCSEIIjjEll&ti:©SyjvlE^WSR.C^Bryan J.Hughes##©^B^-T|5|%#M##©S.

BCMmm^##9J3fcEfPLtf:*-At-V*mkLiz0

m# • &it® 111' i wi* - a lto §s

/jpfv ;h — A t — -J? (o-ol'T {£>, 3Mt& • ^S^OMs. Jennifer Ireland#^%|^(C D y b°.=. —

ftvx h y-y 3 y^'if-oX^tctz^tzo

^■t-A^-^ii, ig®f:DT# 1^5 =PA^7? -trx Ltl^o

apec^- ^ 7 y7Ltztcz^ ±m©@DBcm

lUr-Zlz*- a #Zma##T&5 9 <h©<hT2b-3%o

(7 K y%....... http : //WWW.gov.bc.ca)

— 377 —

(BCiN'IiTOiiS • &M©Ms. Jennifer Ireland^APEC/^-^f^iz^^-om#

10.2.2 CEIAy-XiuT

|5) C ^ CEIA (Canadian Environmennt Industry Association)

©Mr. G. Steve Hart^#6>>. APEC^"<—-f f 7l/-k y ^ —#i@ ©#=#&#%

CEIAic&VT&x f ?(c%^4500%© 9 S1500####f 5 * - A /<-

s^fEELT&Dx 6©ca?&cy:o

(CEIA^gMr. G. Steve Hart'\©APECv\‘-9L*JHz

-379-

ii. immmimm

6 (±s RlTEO##m%&^APEC/<-f t Az-fe vf-w^owgmmz'n^ito

11.1.1 ijjfflft

BC Reserch Inc. (BCRI) University of British Columbia!*!

11.1.2 S #

1996^3^ 25 0 03)

11.1.3 )Sg#

Dr. Hugh Wynne-Edwards President & Chief Exective Officer

Dr. James Hill Director,Environmental Services and Technology

(BCRI President Dr.Wynne-Edwards&UDirector Dr. Hilli)

11.1.4 mmm

BCRI(iN 1945^^18!*$ fts 2 5>SMM t LTigg LT V 5 0 CtiSISfix

u f y yZL 3 o yt'T^o^lufiiLTUS^

— 381 —

/"W 3hT? / D s?-fcol'T«N ##S#K-o^T(ix

t^'So * V - yg®S»fcoVTtt. ^

S^&»N RITEOiEEEBM-O'APEC^-^ -Wlz-te y * fc6 C 5^ BCRI(if"%TK^-x #Snfcol'T#®fi?Mz:tfei^ LTU £

tc^t<DZ k-e&^tZo

(T K kX.......http : //www.bcr.bc.ca)

APEC”EMINENT PERSONS” GROUP®ft 2 £©$WH&§tf-;fco

• Macdonald Detwiler Associalts^i President Mr. John Macdonald

• Philips Environmental^ Vice President Mr. Stuart Smith

ink President Dr. Hugh Wynne - Edwards » dO^Ou—T7°©—M.~£'&>%>o

BCRITtik 9 V - y

11. 2.1 SS^yfe

Bcmmmmm6%

British Columbia Trade Development Corporation

(/<y f —/<— -ti-yy-fv — x-fey^— ft)

11.2.2 B B#

1996^,3^260 (40

11.2.3 JfSg#

B*-WW 6*WS

Trade Manager Services Branch Mr. Bryan J.Hughes

11.2.4 BUEBE

BC^g#B#6%(d^ BC^i®#dlA#®#^"\®3 y^ ^ WM%rMMt&

zt&BtttL ® Mlr & a 0 (c## 6 ®#P! xf v

L"C^^ teSSrSti-fcdfeS*1£>b^X

-383 —

iil'LTVSo

GLOBE96tD#E&ra*:r}?K^ §»E© 7’ V - 7 -f yf&*W'f & 6

#(cRiTEom#m%&^APEc^-^ + >-fe y ?f ^ yc <h u 5 > bc

E®y<--9L

ra^-Lyc^ioe: t-V^-otZo X^ GL0BE96Odj###K#^##TB^-M^a C 6

ttl-ofz o

11.3.1 #1%

-9N ? h V TA^IESVic

Institute for Integrated. Energy Systems of University of Victoria

(BCjfitf? h V Trfr)

11.3.2 EB#

1996*E3J327B (7k)

11.3.3 fB##

Director,System Analysis

Senior Researcher

Project Coordinator

Research Associate

11.3.4 mum#

IES(ix x^wu^'- '>Xf otl'So

BPS^ AHao^Aa-f-tfa (M : M) fi&#&»T#W&y=a6K\

m: m?^mm)x mm# m •■ #v v y. m#x

% (M : BBSs ##§#) ©Silo—*yx 7" a 0

-9*- K'X-E©

Ds c © y x t a©—f--Ex^g*

f&A4&6cT#A9Ba#©mi't C5T&&0 SS^*9©(is e©#^7

Dr. Hans - Holger Rogner ( 7 #%RITE@#W0SM)

Dr. Jeff Hall

Ms. Patricia Crane

— 384 —

I)©MCEfccfc3 &< x gfe3©fla99©fc*T*5o

LTtix ®giffflM%ISLT©^fxMgf©

W^x ©SlJ$e^m®/-c*©ME’?&oE%S.^(D^^>^- • ESF • 3M©tl&

(Dm^L/z^Tx gEM5ivfc©ttx 3z&#zmmw'v&zo &5#©######

©Wfct£S<b0FWfc#dST©ia$Ei£4fc/£@Jll LT Adiabatic Demagnetize) x

^^jftjfccx^^-^^itsSffi^Dx *fx b7°5 yhWtl

uteri* £EHJ§£Stf-/c0

He#X

iiogiiJx ^<mm

&;h,TVteri^fc0 L^Lx ^1~2 'rfl-c-rz VfyV hgI©^trec:ffJt/;t01it'^ofc o

©^C® § IttSffl'S^I-STfe1C -o V T & x Ballard#x British Gas## (C Simon Fraser

±#6#m#0E&fTl'x EKx Vancouverr^mmm^^Tx V So

i^x c0/<%t±x i,$ ftrv*:o

®^CD# Dr.Rognerri* b x APEC^~ ^ * ;H? y ? -$H ©^Sl <b te 5 ©

m-SrStf-fco

-385-

— 386 —

CIESVicSfeffi Dr.Hans-Holger RogneriVICTORIAA^gftKT)

11.4.1 toto

NRG (National Research Council) -- (University of British Columbia A)

11.4.2 BUI1996# 3 B 29B (&)

11.4.3 fG##Regional Director-BC/Yukon Dr. Desmonnd Mullan

n.4.4 timtgNRC(ix 1916#^ISSdtt^o A^f/Kl

6cMi^vtl5u s 3000A©ffl£##5H?BOte®BEffiS&£filo TV'a0

50#S^KftT?{is gM9F%££#:<b LTVfcrik

5Cii

BCjli ONRCT IRAP (Industrial Research Assistannce Program <k W V n

D.Mullan^fEgg L a 7 A ) LTx SSx

LTM&TvManning

-387 —

Awards 1995%^% Lit o

12. m m

GLOBE96@E£IiTti\ IS014000^©^^M^#J#ffl&^fc# 9^$©>tffS

mm^jo <%*

0s»£ltm- (»> snrvyci)©^ mm^LTmwLT^c

m@#(±B$©27#^ ADti2,700^fAH#LTilj±(c^ &£ VLT

kZMBltCo 6^<h©^S(tx § *f <!: A* ©& fcStt V T V 6 OX It t£ *>

5?K

X> PH(uLTlt^^o^B^©+ + v^Ty c

— 389 —

f 6®SUSTAINABLE

DEVLOPMENT(ct£T l' & £ Mt> tl i 0

#Kx VANCOUVER &x LAA¥#fc® Ltzil ± ^©3ES®rP'T?

<o Dx A* tiWhTil£9T'<b 5o

<A@®##%^6x A@#giJfe&C htur&g&We£ao

B*TWx(t\ i\M^t*ftfc*eg 6 tW^^o iio^HSUKttU^ -^-^~

7 y Vt£k<UX\,'Z>tmLtzi3j-?Km'tz0 CO 2

k>?te1rVZ>o

4 v74 7 y®SS*e FSSJ &#f -bStbiiTVSH^oil

*k 6^ a ^

jfco

— 391 —

4.

(9)

il8M: RITE

393 —

1.

Molecular to Global Photosynthesis

2. smom&tmh

(RITE) ts. £ tfdNEDOMC: J;

3. g-mtommm

>r *' v xCenter for photomolecular Sciences, Imperial College, Imperial Instutute Rd.,

London

4.

1996££3J328B~29B ( 2 BfH1)

5. &m£fa(OX'ri> 3.-1 V

28 B ^Fffj Photochemistry and Charge Separation

Photosystem I and II - Structure and Function

Photosystem II-Dynamics and Photoinhibition

29 B m RuBisCO and Photorespiration

Environmental Constraints on Photosystem II

Efficiency

Global Photosynthesis

-395-

Special Lecture

6.

Lord Porter (UK), Dr. B. Andersson (Sweden), Dr. J. Barber (UK), Dr. J.

Berry (USA), Dr. G. Badcock (USA), Dr. J. Bornman (Sweden), Dr. Demming

-Adams (USA), Dr. J. R. Durrant (UK), Dr. D. Godde (Germany), Dr. I.

Ikegami (Japan), Dr. N Murata (Japan), Dr. C. B. Osmond (Australia), Dr. S.

Gutteride (USA) fife

7. ma###

## in—■

8.1 &m©#m

28 H £

29 B Photoinhibition# <£ CfRuBisCO fc-o

8.2 ##©m#

mi $ utcm s0

RuBisCOfi—© OH/El (carboxylaseSfS) <k <k |> t> ii$£ (oxygenase

SfS) -tzm <1 ^ ti T § S fz If

oxygenaseSlS#sii3£ J; 9 LT§ tc0 ■€■©—*o(£N MWlfc & %> tl Z> ZiSS-fb

% 9 —3 GRuBisCO @ # ©#<k (!: «k & oxygenases IS & S

carboxylaseSlS©_h#T'® S0 "trUS©RuBisGOX &carboxylaseS

St£J£^oxygenaseSJ&©SJ£;WESfc4>ft V Z tfrt>fr-zX%tc0 LfrLWb^ Ztl

3 © Effi CMk#########-#- So C©C6i±Cft6© RuBisCO © Km

"( o i:&]M.WiX'i&> S £>#/S (Dr. Ravin)Q

— 396 —

^ifi^UT0lP^^TitU5o vivo

TCD—n a 7 ^ o TE

tL'&tlX%tzb®~Z%>2>o f ©##^ a n 7 -f ^WcBRlRS *

;i/h* y D- -f 7 ;i/ fc X £ —E^SB^BScIfc (c T##T gti^tztbK&C 5k©T

&Z£k&frfr-oT%tz0 %®tz&' ffi^-EtfcEStESffi

o X triple? tl£>o iZtz^ I## (C 5 RuBisCO © oxygenase^fG © ## K

SE-IMtm!, «S#cSTM@S^S^^1-vck^ t"V 3-

i<Dt"J\s? 5 y#y y-b^ --lz©#^#(c j; < < #& C 6#^

£>^ oyegenase^ti^I’e^ D > C tl%1$. X) |& < £ k Bill: i ^ X^&VltlZ l' i U

& tlfc (Dr. Osmomd, Dr. Takeba)0

ttz^ RuBisCOfcW.mMt%b<DkLX' RuBisCO ©xm#m##©#m^#^^%

SiL/Co #l^»loitS '><> A UWIfOlltlSW

T%6CABP6 0M#K-3l\T^ -? ^RuBisCO k © Jtg^j; $ ^

RuBisCO©Jt#Mtt^Oli#^^$tl/-c (Dr.Gutteridge)0

k LT^ (C^^5#@RuBisC0©#3#KMf (Dr.Gutteridge)o

irt£t>t>' ? '* => © RuBisCO;*: 1h 7*^- — y h ©#&?& tV7 'J ft £ X$fc y V#© & ©

&###&&&©lc-7i'T©####3fi,^ WittEPfc&^r^ ^AK^^3©#g^6

©gi^^.^RFII'e® 5 i©i§t® & tpfcy y#©#6?ic-oi\T(±^/<3*ic

6x b-?7 V K-7l\T(±#f

3%@&) %#^%,WLTL'&6©##T&c^o C fl 6 ©RuBisCOme?&#^ ^ ^

/o (±? y#© #)©&&

b v 7 V © I) ©*e tiE'fe <b ft in vivoT©##^#<&^# LTl^fto i%#@#3©

RuBiscomm?©m#^ 3 ^ ft d , l

T##(c##ft##-e^ -5 ftQ

Porter#U;(9±|#^4;;i/f-©W##jmK7)l\T©6m^^^tlx 4-EftF£l

< x ftfEb fctil-il k&>&W:X& *) x ^©ft&ft tiWjogfc:

m;c j;

A#©R3#6 L*7\ fflt/©5t-7^^©fiJffl^ii^-c^S £ k%%tii>XMBX%tz£;

Mx&itz o

-397-

9. urns

£> tifc c £ (±4"#O#05K* L %##(;:##(;:% D n ##% I> ©Tab -? fcQ

tfc. -s tf:fiS<zW<i: b-fSE^Siz:^SE

^Ed^VTff^TV^RuBisCQiCig-rSES^ES^-o VT. ^SOMOlifc^

£##-#"&c£(c«kD^ 7fe^W^©tflSl^5 c USuol^lnoii

x (Dmm%m&% z. t %tz tm.fr *i%o

-398 —