Wave transport in anisotropic media

37
Wave transport in anisotropic media ric Savin eric.savin@{onera,centralesupelec}.fr (+ Jean-Luc Akian, Ibrahim Baydoun, Didier Clouteau, RØgis Cottereau, Johann Guilleminot) Onera DØpt. MØcanique des Fluides NumØrique 29, avenue de la Division Leclerc F-92322 Chtillon cedex CentraleSupØlec DØpartement MØcanique et GØnie Civil Grande Voie des Vignes F-92295 Chtenay-Malabry

Transcript of Wave transport in anisotropic media

Wave transport in anisotropic media

Éric Savineric.savin@{onera,centralesupelec}.fr

(+ Jean-Luc Akian, Ibrahim Baydoun, Didier Clouteau, Régis Cottereau, Johann Guilleminot)

Onera – Dépt. Mécanique des Fluides Numérique29, avenue de la Division Leclerc

F-92322 Châtillon cedex

CentraleSupélec – Département Mécanique et Génie CivilGrande Voie des Vignes

F-92295 Châtenay-Malabry

Elastic waves and anisotropyUltrasonic monitoring of polycrystals

Example: recrystallization of inco c© 718 superalloy (NiCr19Fe19Nb5Mo3) in hot compression.

Estimate of the grain size ` from the attenuation Σ = 2πλQ

such that Iout ≡ Iine−Σh:

Σ ∝ `3f 4 λ� ` (Rayleigh regime) ,Σ ∝ `f 2 λ ' ` (stochastic regime) ,Σ ∝ `−1 λ� ` (diffusive regime) .

Stanke-Kino JASA 75(3), 665 (1984)Goebbels Materials Characterization for Process Control and Product Conformity, CRC Press, Boca Raton FL (1994)

É. Savin Atelier Imagerie LMA 8/06/2015 2 / 30

Elastic waves and anisotropyGlobal seismology

Example: texture and dynamics of the inner core from observations of PKiKP and PKIKPwaves (PKJKP are seldom observed and the reported evidences are highly controversial).

Cao-Romanowicz-Takeuchi Science 308, 1453 (2005)Wookey-Helffrich Nature 454, 873 (2008)

Monnereau-Calvet-Margerin-Souriau Science 328, 1014 (2010)

É. Savin Atelier Imagerie LMA 8/06/2015 3 / 30

Elastic waves and anisotropyTriclinic random medium

Example: Velocity field in a half-space constituted by heterogeneous anisotropic materialswith an homogeneous isotropic background, impacted by a monopole on its surface;cP = 2000 m/s, cS = 1000 m/s, % = 2000 kg/m3.

Spectral FEM with LGL + PML7 · 107 dofs, O = 5× 5× 2.5 km3

Ta-Clouteau-Cottereau Eur. J. Comp. Mech. 19(1-3), 241 (2010)

É. Savin Atelier Imagerie LMA 8/06/2015 4 / 30

Elastic waves and anisotropyAnisotropic diffusion

Example: "localization". Privileged directions for diffusion corresponding to the principalaxes of diffusion → localization when λ ∼ `sc?

f = 664± 40 kHz f = 195± 40 kHz

Lobkis-Weaver JASA 124(6), 3528 (2008)

É. Savin Atelier Imagerie LMA 8/06/2015 5 / 30

Outline

1 The acoustic tensor

2 The Wigner measure

3 Random media

É. Savin Atelier Imagerie LMA 8/06/2015 6 / 30

Outline

1 The acoustic tensor

2 The Wigner measure

3 Random media

É. Savin Atelier Imagerie LMA 8/06/2015 7 / 30

Elastic waves in heterogeneous media

Hypotheses: linear, visco-elastic materials with density %(x) and relaxation tensor C(x, t),x ∈ O ⊆ R3, t ∈ R+.

Local balance of momentum for the displacement field u in O × R:

%∂2t u = Divσ .

Constitutive equation for the stress field σ in O × R+ as a function of the strain fieldε(u) = ∇x ⊗s u:

σ(x, t) = C(x, 0)ε(u) + ∂tC(x, ·) ∗t ε(u)︸ ︷︷ ︸ineffective in the high-frequency limit

.

É. Savin Atelier Imagerie LMA 8/06/2015 8 / 30

Ultrasonic waves 1/2

High frequencies correspond to ε→ 0 for strongly "ε–oscillatory" initial conditions:

uε(x, 0) = u0ε(x) , ‖|ε∇x|u0ε‖L2loc<∞ ,

and:∂tuε(x, 0) = v0ε(x) , ‖|ε∇x|v0ε‖L2loc

<∞ .

Example: plane waves, ε ≡ (|k|L)−1, i =√−1,

u0ε(x) = εA(x)eiεk·x , v0ε(x) = B(x)e

iεk·x .

É. Savin Atelier Imagerie LMA 8/06/2015 9 / 30

Ultrasonic waves 2/2

Introduce the acoustic (Christoffel) tensor Γ of the medium:

[Γ(x, k)]jk = %−1(x)(ej ⊗ k) : C(x) : (ek ⊗ k) , k ∈ R3 ,

where (ej , ek ) = δjk , 1 ≤ j , k ≤ 3.

The local balance of momentum for the displacement field uε in O × Rt is the elastic waveequation:

%(x)(Γ(x, iε∇x)− (iε∂t)2

)uε = O(ε) ,

supplemented with (e.g. Neumann or Dirichlet) boundary conditions on ∂O × Rt .

In Dirac formalism the acoustic tensor is %(x)[Γ(x, k)]jk = 〈k, j |C|k, k〉 and the waveoperator is %(x)[Γ(x, iε∇x)]jk = 〈i x

ε, j |C| k, i x

ε〉, for 〈j |k〉 = 〈ej |ek 〉 = δjk .

É. Savin Atelier Imagerie LMA 8/06/2015 10 / 30

Some properties of Γ

Γ is symmetric, real, positive definite (in O × R3 \ {k = 0}): it has 3 (possibly rα-multiple)positive eigenvalues ω2α such that:

ωα(x, k) = cα(x, k)|k| , 1 ≤ α ≤ 3 ,

where k := k/|k|, and the real eigenvectors pα(x, k) = pα(x, k) can be orthonormalized,

Γ =3∑α=1

ω2αpα ⊗ pα , I =3∑α=1

pα ⊗ pα .

Example: three-dimensional isotropic medium C = λI⊗ I + 2µI � I, rP = 1, rS = 2, and

Γ(x, k) = c2P(x)k⊗ k + c2S(x)(I− k⊗ k) , ∀k ∈ S2 ,

with cP =√λ+2µ%

and cS =õ%.

É. Savin Atelier Imagerie LMA 8/06/2015 11 / 30

Elastic waves and anisotropyThree propagation speeds

Transverse isotropic medium

Orthotropic medium

É. Savin Atelier Imagerie LMA 8/06/2015 12 / 30

Energy and power flow densities

The energy density (real, positive) and the power flow density (vector) are:

Eε(x, t) =12

(%|∂tuε|2 + σε : εε) = Tε + Uε ,

πε(x, t) = −σε∂tuε .

They satisfy for all fixed ε ∈]0, ε0] a conservation equation:

∂tEε + divπε = 0 .

What happens when ε→ 0???

For constant coefficients the usual parametrix (where Γ12 =

∑α ωαpα ⊗ pα):

uε(x, t) = F−1k→x

[cos(tΓ

12 (k)

)]? u0ε(x) + F−1k→x

[Γ−

12 (k) sin

(tΓ−

12 (k)

)]? v0ε(x)

propagates oscillations of wavelength ε which inhibit (uε) from converging strongly in asuitable sense since Γ is positive.

É. Savin Atelier Imagerie LMA 8/06/2015 13 / 30

Outline

1 The acoustic tensor

2 The Wigner measure

3 Random media

É. Savin Atelier Imagerie LMA 8/06/2015 14 / 30

Why quadratic observables?

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

u

ε(x)

m(x)w[u

ε]0.5

Let:uε(x) = m(x) + σ(x) sin

x

ε,

then (uε) ⇀ m weakly in L2(R) as ε→ 0, but (uε) has no strong limit.

É. Savin Atelier Imagerie LMA 8/06/2015 15 / 30

Why quadratic observables?

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

u

ε(x)

m(x)w[u

ε]0.5

Now for any observable ϕ ∈ C0(R):

limε→0

(ϕ(x)uε, uε)L2 =

∫Rϕ(x)

((m(x))2 +

12

(σ(x))2)

dx .

É. Savin Atelier Imagerie LMA 8/06/2015 15 / 30

Why quadratic observables?

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

u

ε(x)

m(x)w[u

ε]0.5

Take an observable of the form:

ϕ(x , ∂x )uε(x) =12π

∫R

eik·xϕ(x , ik)uε(k)dk .

É. Savin Atelier Imagerie LMA 8/06/2015 15 / 30

Why quadratic observables?

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

u

ε(x)

m(x)w[u

ε]0.5

Take an observable of the form:

ϕ(x , ε∂x )uε(u) =12π

∫R

eik·xϕ(x , iεk)uε(k)dk .

É. Savin Atelier Imagerie LMA 8/06/2015 15 / 30

Why quadratic observables?

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

1.5

2

u

ε(x)

m(x)w[u

ε]0.5

Then:limε→0

(ϕ(x , ε∂x )uε, uε)L2 =

∫∫R2ϕ(x , ik)W[uε](dx , dk) ,

where W[uε] is the (positive) Wigner measure of (uε).

É. Savin Atelier Imagerie LMA 8/06/2015 15 / 30

Wigner measure

Let ϕ ∈ C∞0 (R3x × R3

k) (a smooth observable), and for u ∈ L2(R3):

Opε[ϕ]u(x) = ϕ(x, ε∇x)u(x) = ϕ(x, ε∇x)

(∫eix·ku(k) dk

):=

∫eix·kϕ(x, iεk)u(k) dk .

Then if (uε) is bounded, ∀ϕ a smooth observable:

limε→0

(ϕ(x, ε∇x)uε, uε)L2 = Tr∫∫

ϕ(x, ik)W[uε](dx, dk) ,

and the positive, Hermitian measure W[uε] of the sequence (uε) always exists—up toextracting a sub-sequence if need be.

Lions-Paul Rev. Mat. Iberoamericana 9(3), 553 (1993)Gérard-Markowich-Mauser-Poupaud Commun. Pure Appl. Math. L(4), 323 (1997)

Martinez An Introduction to Semiclassical and Microlocal Analysis, Springer, Berlin (2002)Zworski Semiclassical Analysis, American Mathematical Society, Providence RI (2012)

É. Savin Atelier Imagerie LMA 8/06/2015 16 / 30

Wigner measureKinetic and strain energies

Example: the overall kinetic and strain energy densities are in the high-frequency limit ε→ 0

limε→0Tε(x, t) =

12%(x)

∫R3

TrW[ε∂tuε(·, t)](x, dk) ,

limε→0Uε(x, t) =

12%(x)

∫R3

Γ(x, k) : W[uε(·, t)](x, dk) ,

(eventually one can prove that they are equal in this very limit), or

limε→0Eε(x, t) =

3∑α=1

∫R3

Wα(x, t; dk) .

É. Savin Atelier Imagerie LMA 8/06/2015 17 / 30

Wigner transform

The Wigner transform of u, v ∈ S′(R3):

Wε[u, v](x, k) =1

(2π)3

∫R3

eik·yu(x− εy)⊗ v(x) dy .

Then (T∗R3 ≡ R3x × R3

k):

(ϕ(x, ε∇x)u, v)L2 = Tr∫T∗R3

ϕ(x, ik)Wε[u, v](dx, dk) , ∀ϕ .

k allows to keep track of the direction of propagation of the oscillations of u, v.Let s = (x, t) ∈ O × R and ξ = (k, ω) ∈ Rd × R, the space-time Wigner transform reads:

Wε[u, v](s, ξ) =1

(2π)4

∫R4

ei(k·y+ωτ)u(x− εy, t − ετ)⊗ v(x, t) dydτ .

É. Savin Atelier Imagerie LMA 8/06/2015 18 / 30

Wigner measure of the elastic wave equationDispersion properties

The dispersion matrix H of the medium, or inverse Green function in wave vector space:

H(s, ξ) = %(x)(Γ(x, k)− ω2I

)= %(x)

3∑α=1

(ω2α(x, k)− ω2)pα(x, k)⊗ pα(x, k) .

Then the wave equation reads:

H(s, ε∇s)uε(s) = O(ε) .

Let ϕ be a smooth observable on T∗(O × R):

O(ε) = (ϕ(s, ε∇s) ◦H(s, ε∇s)uε, uε)L2

= ((ϕH)(s, ε∇s)uε, uε)L2 ,

by the rule of composition Opε[ϕ1 ◦ϕ2] = Opε[ϕ1ϕ2 − iε∇ξϕ1 ·∇sϕ2 + O(ε2)].

É. Savin Atelier Imagerie LMA 8/06/2015 19 / 30

Wigner measure of the elastic wave equationDispersion properties

Taking the limit ε→ 0:

0 = Tr∫T∗(O×R)

(ϕH)(s, ξ)W[uε](ds, dξ) , ∀ϕ ,

and thus:

0 = HW[uε] = %

( 3∑α=1

(ω2α − ω2)pα ⊗ pα

)W[uε] .

Since Hα = ω2α − ω2 6= Hβ whenever α 6= β, one finally has:

W[uε] =3∑α=1

Wαδ(Hα) pα ⊗ pα , Wα = p∗αW[uε]pα .

É. Savin Atelier Imagerie LMA 8/06/2015 19 / 30

Wigner measure of the elastic wave equationEvolution properties

Again from the wave equation:

O(ε) = (ϕ(s, ε∇s) ◦H(s, ε∇s)uε, uε)L2 − (ϕ(s, ε∇s)uε,H(s, ε∇s)uε)L2

=1ε

([ϕ,H](s, ε∇s)uε, uε)L2 − i ({ϕ,H}(s, ε∇s)uε, uε)L2

by the rules of composition and transposition Opε[ϕ]∗ = Opε[ϕ∗ − iε∇ξ ·∇sϕ∗ + O(ε2)],where:

[A,B] = AB− BA (Lie bracket)

{A,B} = ∇ξA ·∇sB−∇sA ·∇ξB (Poisson bracket) .

Taking the limit ε→ 0:

0 = Tr∫T∗(O×R)

{ϕ,H}W[uε](ds, dξ) , ∀ϕ s.t. [ϕ,H] = 0 .

Choosing for instance ϕ = ϕI yields the Liouville transport equation:

dWα

dt= {Hα,Wα} = 0 .

É. Savin Atelier Imagerie LMA 8/06/2015 20 / 30

Outline

1 The acoustic tensor

2 The Wigner measure

3 Random media

É. Savin Atelier Imagerie LMA 8/06/2015 21 / 30

Waves in random elastic mediaRandom elasticity tensor

Assume now that C depends on ε:

C(x) = C0(x) + εsC1

(xε

),

where (C1(y), y ∈ R3) is a second order, mean-zero, homogeneous random (fourth-order)tensor.

The correlation length of the random perturbations is the same as the (small) wavelength ε,ensuring maximum interactions between waves and the underlying medium.

Heterogeneities are small and their size is s = 12 , which is the unique scaling that allows

them to significantly modify the energy in the transport regime.

É. Savin Atelier Imagerie LMA 8/06/2015 22 / 30

Waves in random elastic mediaRandom wave equation

Let ϕ be a smooth observable on T∗(O × R), then the wave equation reads:

O(ε32 ) = (ϕ ◦H0(x, t, ε∇x+∇y, ε∂t)uε, uε)L2 +

√ε (ϕ ◦H1(y, ε∇x+∇y)uε, uε)L2 ,

where y ≡ xε, ∇x ≡ ∇x + 1

ε∇y, and:

[H1(y, k)]jk = (ej ⊗ k) : C1(y) : (ek ⊗ k) , k ∈ R3 .

Taking the limit ε→ 0:

0 = Tr∫T∗(O×R)

(ϕH0)(s, ξ)W[uε](ds, dξ) , ∀ϕ ,

and the spectral expansion of the Wigner measure W[uε] is unchanged from thedeterministic case.

É. Savin Atelier Imagerie LMA 8/06/2015 23 / 30

Waves in random elastic mediaEvolution properties of the Wigner measure

Again from the wave equation:

O(√ε) =

(ϕ ◦H0(x, t, ε∇x+∇y, ε∂t)uε, uε

)L2

+1√ε

(ϕ ◦H1(y, ε∇x+∇y)uε, uε

)L2

−1ε

(ϕ(s, ε∇s)uε,H0(x, t, ε∇x+∇y, ε∂t)uε

)L2−

1√ε

(ϕ(s, ε∇s)uε,H1(y, ε∇x+∇y)uε

)L2

=1ε

([ϕ,H0](s, ε∇s)uε, uε)L2 − i ({ϕ,H0}(s, ε∇s)uε, uε)L2

+i√ε

(L1(y, ε∇x+∇y)uε, uε)L2 .

It can be shown that:

limε→0

1√εE{(L1(y, ε∇x + ∇y)uε, uε)L2} =

∫T∗(O×R)

(ϕQ)(s, ξ)E{W[uε]}(ds, dξ) , ∀ϕ ,

in return for a mixing lemma–like assumption.

Then:

{Hα,E{Wα}} =3∑β=1

QαβE{Wβ} ,

where Qαβ are collision operators.

É. Savin Atelier Imagerie LMA 8/06/2015 24 / 30

Radiative transfer in anisotropic elastic media

The radiative transfer (linear Boltzmann) equations for the specific intensitiesWα = p∗αE{W[uε]}pα of the three pseudo-modes 1 ≤ α ≤ 3:

∂tWα + {ωα,Wα} =3∑β=1

∫R3σαβ(x, k, k′)Wβ(t, x, k′)dk′ − Σα(x, k)Wα(t, x, k) ,

where by energy conservation Σα(x, k) =∑3β=1

∫R3 σαβ(x, k, k′)dk′: the attenuations (or

scattering cross-sections).

σαβ(x, k, k′): the differential scattering cross-sections.

���������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������

σαβ ( k k’),

k ’

kW

W

β

α

Ryzhik-Papanicolaou-Keller Wave Motion 24(4), 327 (1996)Bal Wave Motion 43(2), 132 (2005)

Bal-Komorowski-Ryzhik Kinet. Relat. Models 3(4), 529 (2010)

É. Savin Atelier Imagerie LMA 8/06/2015 25 / 30

Scattering cross-sections

The random tensor C1 has 21 different coefficients {cj (y), 1 ≤ j ≤ 21} in the generaltriclinic case.

Correlations of the random tensor:

E{cj (k)ck (q)} := (2π)3δ(k + q)Rjk (k) ,

where Rjk (y1 − y2) = E{cj (y1)ck (y2)} by the (statistical) homogeneity assumption.

The differential scattering cross-sections:

σαβ(x, k, q) =π

2Rαβ(x, k, k− q, q)

(2π)3ωα(x, k)ωβ(x, q)δ(ωα(x, k)− ωβ(x, q))

where:(2π)3δ0(p)Rαβ(x, k, p, q) := E{[p∗α(x, k)H1(x, k, p, q)pβ(x, q)]2} ,

and:[H1(x, k, p, q)]jk = %−1(x)(ej ⊗ k) : C1(p) : (ek ⊗ q) , k, p, q ∈ R3 .

In Dirac formalism Rαβ(x, k, ·, q) ∝ E{〈k, α|C1|β, q〉〈q, β|C1|α, k〉} i.e. the "square of aT-matrix", while the "on-shell" condition ωα(x, k) = ωβ(x, q) holds.

Baydoun-Savin-Clouteau-Cottereau-Guilleminot Wave Motion 51(8), 1325 (2014)

É. Savin Atelier Imagerie LMA 8/06/2015 26 / 30

Scattering cross-sectionsEarth inner core

Example: (normalized) attenuation coefficients Σ#αβ of hcp-Fe (T = 5500◦K, P = 360GPa).

Vočadlo EPSL 254(1-2), 227 (2007)

É. Savin Atelier Imagerie LMA 8/06/2015 27 / 30

Waves in heterogeneous mediaScattering mean free path

Scales: λ – wave length, ` – correlation length, L – propagation/observation distance...

...and a mesoscopic scale `sc ∝ Σ−1 – the mean free path.

Ryzhik HFWP’05 (2005)

É. Savin Atelier Imagerie LMA 8/06/2015 28 / 30

Waves in heterogeneous mediaScattering mean free path

Example: heterogeneous medium.

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

k ’β k

WW α

k

W γ

’’

É. Savin Atelier Imagerie LMA 8/06/2015 28 / 30

Waves in heterogeneous mediaScattering mean free path

Example: bounded medium, SEA method.

Phase distribution of the radial velocity

Herdic et al. JASA 117(6) 3667 (2005)

É. Savin Atelier Imagerie LMA 8/06/2015 28 / 30

Hot topics

Time-dependent acoustic tensor;

Diffusion limit(s);

Mode crossings, boundary conditions (very difficult).

Further reading...I Akian J.-L. Asymp. Anal. 78(1-2):37-83 (2012).I Alshits V.I., Lothe J. Wave Motion 40(4):297-313 (2004).I Bal G. Wave Motion 43(2):132-57 (2005).I Bal G., Komorowski T., Ryzhik L. Kinet. Relat. Models 3(4):529-644 (2010).I Brassart M. Limite semi-classique de transformées de Wigner dans des milieux périodiques ou

aléatoires. PhD Thesis, University of Nice Sophia Antipolis (2002).I Calvet M., Margerin L. J. Acoust. Soc. Am. 131(3):1843-61 (2012).I Gérard P., Markowich P.A., Mauser N.J., Poupaud F. Commun. Pure Appl. Math. L(4):323-79

(1997).I Margerin L., Sato H. J. Acoust. Soc. Am. 130(6):3674-90 (2011).I Papanicolaou G.C., Ryzhik L.V. Waves and transport. In: Caffarelli L, E W, editors. Hyperbolic

equations and frequency interactions. IAS/Park City Mathematics Series, vol. 5. AmericanMathematical Society, Providence RI (1999); pp. 305-82.

É. Savin Atelier Imagerie LMA 8/06/2015 29 / 30

Funding: Fédération Francilienne de Mécanique (F2M) CNRS-FR2609.

Collaborators:

É. Savin Atelier Imagerie LMA 8/06/2015 30 / 30