Valence electronic state density in thorium dioxide

9
VALENCE ELECTRONIC STATE DENSITY IN THORIUM DIOXIDE by Anton YU. TETERIN 1 , Mikhail V. RYZHKOV 2 , Yury A. TETERIN 1 , Labud VUK^EVI] 3 , Vladimir A. TEREKHOV 4 , Konstantin I. MASLAKOV 1 , and Kirill E. IVANOV 1 Received on July 23, 2008; accepted on October 2, 2008 This work analyses the fine low energy (0-40 eV) X-ray photoelectron spectra of ThO 2, taking into account relativistic X a -discrete variation electronic structure calculations for the ThO 8 12– (D 4h ) cluster reflecting thorium's close environment in ThO 2 . As a result, it was theoretically shown and experimentally confirmed that Th5f electrons in ThO 2 can participate directly (~0.6 Th5f electrons) in chemical bond formation.Th6p electrons were shown to be a significant part (~0.44 Th6p electrons) not only of inner valence mo- lecular orbitals, but to play a significant role in outer valence molecular orbitals forma- tion, as well. Inner valence molecular orbitals composition and sequent order were es- tablished to belong to the binding energy range of 13 eV to 40 eV. The valence electronic state density in the range of 0-40 eV in ThO 2 was also calculated. For the first time, these data allowed an interpretation of the fine X-ray photoelectron spectra (0-40 eV) and high resolution O 4,5 (Th) X-ray emition spectral structure (~60 – ~85 eV) of ThO 2 . Key words: X-ray photoelectron spectra, thorium oxide, outer and inner valence molecular orbitals INTRODUCTION While studying X-ray photoelectron spectra (XPS) from thorium oxide in the 0-40 eV binding en- ergy range, the observed lines were found to be several eV wide, which was wider than some corresponding core lines [1]. For instance, the O1s (E b = 530.2 eV) line in the spectrum from ThO 2 is 1.4 eV wide, while the corresponding O2s line (E b ~ 22.0 eV) is observed to be more than 4 eV wide and structured [1]. It contra- dicts the uncertainty ratio DEDt ~ h/2p, where h is the Plank’s constant, the natural width of the level from which an electron was removed, and DE – the in- versely proportional to the lifetime Dt of the formed ion (“hole”). Indeed, since the lifetime of the “hole” (Dt) decreases while the absolute energy of the atomic level increases, the XPS lines of low-energy levels must be narrower for atmos. In the case of ThO 2 and other actinide oxides, the picture was reversed. This caused intense theoretical and experimental studies of the nature of the chemical bond in actinide com- pounds. One of the reasons of the observed widening of the low-energy (0-40 eV) spectral lines of thorium dioxide is the formation of the outer valence molecu- lar orbitals (OVMO) – 0-13 eV binding energy, and in- ner valence molecular orbitals (IVMO) – 13-40 eV binding energy, molecular orbitals with effective par- ticipation of An6p filled atomic shells [2, 3]. Practi- cally, these spectra reflect the valence band structure (0-40 eV), and are observed as several eV wide bands. Furthermore, it was shown that, under certain condi- tions, IVMO can form in compounds of any elements of the periodic table [3]. Despite the fact that atomic thorium does not have Th5f electrons, some experimental [4, 5] and rel- ativistic and non-relativistic theoretical [6] results show the presense of filled Th5f states in the valence band of thorium oxide, which suggests the participa- tion of Th5f atomic shells in the formation of molecu- lar orbitals. This principially novel fact needs to be yet confirmed. 34 Nuclear Technology & Radiation Protection –2/2008 Nuclear Technology & Radiation Protection Scientific paper UDC: 546.795:535.333:543.428.4 BIBLID: 1451-3994, 23 (2008), 2, pp. 34-42 DOI: 10.2298/NTRP0802034T Authors' addresses: 1 Russian Research Centre “Kurchatov Institute” Kurchatov square, Moscow 123182, Russia 2 Institute of Solid State Chemistry of Ural Dept. of RAS 91, Pervomaiskaya Str., GSP-145 620041 Ekaterinburg, Russia 3 Faculty of Natural Sciences and Mathematics University of Montenegro P. O. Box 211, Podgorica, Montenegro 4 Voronezh State University 1, University square 394006 Voronezh, Russia E-mail address of corresponding author: teterin@ignph.kiae.ru (Yu. A. Teterin)

Transcript of Valence electronic state density in thorium dioxide

VA LENCE ELEC TRONIC STATE DEN SITY IN THO RIUM DI OX IDE

by

Anton YU. TETERIN1, Mikhail V. RYZHKOV2, Yury A. TETERIN1, Labud VUK^EVI]3, Vladimir A. TEREKHOV4, Konstantin I. MASLAKOV1, and Kirill E. IVANOV1

Re ceived on July 23, 2008; ac cepted on Oc to ber 2, 2008

This work anal y ses the fine low en ergy (0-40 eV) X-ray pho to elec tron spec tra of ThO2,

tak ing into ac count rel a tiv is tic Xa-dis crete vari a tion elec tronic struc ture cal cu la tions forthe ThO8

12– (D4h) clus ter re flect ing tho rium's close en vi ron ment in ThO2. As a re sult, itwas the o ret i cally shown and ex per i men tally con firmed that Th5f elec trons in ThO2 canpar tic i pate di rectly (~0.6 Th5f elec trons) in chem i cal bond for ma tion.Th6p elec tronswere shown to be a sig nif i cant part (~0.44 Th6p elec trons) not only of in ner va lence mo -lec u lar orbitals, but to play a sig nif i cant role in outer va lence mo lec u lar orbitals for ma -tion, as well. In ner va lence mo lec u lar orbitals com po si tion and se quent or der were es -tab lished to be long to the bind ing en ergy range of 13 eV to 40 eV. The va lence elec tronicstate den sity in the range of 0-40 eV in ThO2 was also cal cu lated. For the first time, these data al lowed an in ter pre ta tion of the fine X-ray pho to elec tron spec tra (0-40 eV) andhigh res o lu tion O4,5(Th) X-ray emition spec tral struc ture (~60 – ~85 eV) of ThO2.

Key words: X-ray pho to elec tron spec tra, tho rium ox ide, outer and in ner va lence mo lec u larorbitals

IN TRO DUC TION

While study ing X-ray pho to elec tron spec tra(XPS) from tho rium ox ide in the 0-40 eV bind ing en -ergy range, the ob served lines were found to be sev eral eV wide, which was wider than some cor re spond ingcore lines [1]. For in stance, the O1s (Eb= 530.2 eV)line in the spec trum from ThO2 is 1.4 eV wide, whilethe cor re spond ing O2s line (Eb ~ 22.0 eV) is ob servedto be more than 4 eV wide and struc tured [1]. It con tra -dicts the un cer tainty ra tio DEDt ~ h/2p, where h is the

Plank’s con stant, the nat u ral width of the level fromwhich an elec tron was re moved, and DE – the in -versely pro por tional to the life time Dt of the formedion (“hole”). In deed, since the life time of the “hole”(Dt) de creases while the ab so lute en ergy of the atomiclevel in creases, the XPS lines of low-en ergy lev elsmust be nar rower for atmos. In the case of ThO2 andother ac ti nide ox ides, the pic ture was re versed. Thiscaused in tense the o ret i cal and ex per i men tal stud ies ofthe na ture of the chem i cal bond in ac ti nide com -pounds. One of the rea sons of the ob served wid en ingof the low-en ergy (0-40 eV) spec tral lines of tho riumdi ox ide is the for ma tion of the outer va lence mo lec u -lar orbitals (OVMO) – 0-13 eV bind ing en ergy, and in -ner va lence mo lec u lar orbitals (IVMO) – 13-40 eVbind ing en ergy, mo lec u lar orbitals with ef fec tive par -tic i pa tion of An6p filled atomic shells [2, 3]. Prac ti -cally, these spec tra re flect the va lence band struc ture(0-40 eV), and are ob served as sev eral eV wide bands.Fur ther more, it was shown that, un der cer tain con di -tions, IVMO can form in com pounds of any el e mentsof the pe ri odic ta ble [3].

De spite the fact that atomic tho rium does nothave Th5f elec trons, some ex per i men tal [4, 5] and rel -a tiv is tic and non-rel a tiv is tic the o ret i cal [6] re sultsshow the presense of filled Th5f states in the va lenceband of tho rium oxide, which sug gests the par tic i pa -tion of Th5f atomic shells in the for ma tion of mo lec u -lar orbitals. This principially novel fact needs to be yetcon firmed.

34 Nu clear Tech nol ogy & Ra di a tion Pro tec tion –2/2008

Nu clear Tech nol ogy & Ra di a tion ProtectionSci en tific pa perUDC: 546.795:535.333:543.428.4BIBLID: 1451-3994, 23 (2008), 2, pp. 34-42DOI: 10.2298/NTRP0802034T

Au thors' ad dresses:1 Rus sian Re search Centre “Kurchatov In sti tute”

Kurchatov square, Mos cow 123182, Russia2 In sti tute of Solid State Chem is try of Ural Dept. of RAS

91, Pervomaiskaya Str., GSP-145620041 Ekaterinburg, Rus sia

3 Fac ulty of Nat u ral Sci ences and Math e mat icsUni ver sity of MontenegroP. O. Box 211, Podgorica, Montenegro

4 Voronezh State Uni ver sity1, Uni ver sity square394006 Voronezh, Rus sia

E-mail ad dress of cor re spond ing au thor:[email protected] (Yu. A. Teterin)

The data of the qual i ta tive in ter pre ta tion of XPS of ThO2 [1], tak ing into ac count the non-reletivistic cal cu la -tion re sults, al lowed a pre lim i nary iden ti fi ca tion of thehigh-res o lu tion O4,5(Th) X-ray emis sion spec tral (XES)struc ture [7]. The ab sence of rel a tiv is tic cal cu la tion re sultsham pered a cor rect in ter pre ta tion of fine XPS andO4,5(Th) XES spec tral struc tures.

This work anal y ses the fine low en ergy (0-40 eV)XPS and high-res o lu tion O4,5(Th) XES spec tra ofThO2, tak ing into ac count the rel a tiv is tic Xa-dis cretevari a tion (RXa-DVM) elec tronic struc ture cal cu la tionsfor the ThO8

12– (D4h) clus ter re flect ing tho rium's closeen vi ron ment in ThO2.

EX PER I MEN TAL

XPS spec tra of ThO2 were mea sured with anelec tro static spectrometer HP5950A, us ing mono-chromatized AlKa1,2 (hn = 1486.6 eV) ra di a tion un der1.3×10–7 Pa at room tem per a ture. The de viceresolution was 0.8 eV mea sured as full width on thehalf-max i mum (FWHM) of the Au4f7/2 line on thestan dard rect an gu lar gold plate . The bind ing en er giesEb(eV) were mea sured rel a tively to the bind ing en ergy of the C1s elec trons from hy dro car bons absorbed onthe sam ple sur face, ac cepted to be equal to 285.0 eV.For the gold stan dard, the cal i bra tion bind ing en er giesEb(C1s) = 284.7 eV and Eb(Au4f7/2) = 83.8 eV [1]were used. The O1s XPS from ThO2 was ob served as a sin gle, 1.4 eV wide peak, while the C1s XPS from thesur face hy dro car bons was 1.3 eV wide.

The ThO2 sam ple for the XPS study was pre -pared from the finely dis persed pow der ground in ag -ate mor tar as a dense thick layer with a flat sur facepressed in indium on a metal sub strate. The XPS pa -ram e ters of the sam ple (bind ing en er gies) within themea sure ment er ror did not dif fer from the stan dardval ues for ThO2 formed on the me tal lic tho rium plate[8]. The elas tic scat ter ing re lated spec tral back groundwas sub tracted by Shir ley [9].

The O4,5(Th) XES re flect ing the Th6p andTh7p,5f states in the va lence band was mea sured bythe pri mary pro ce dure with a RSM-500 spec trom e terwith an en ergy res o lu tion of 0.3 eV [7] at the volt ageon the X-ray tube of 3 kV (2 mA) dur ing 60 min utes.The vari a tion in the en ergy of ex ci ta tion elec trons al -lowed for a change in the ef fec tive mea sure ment depth from 15 nm to 50 nm. The area of the ex ci ta tion elec -tron spot was 5 ´ 5 mm2. The sam ple was ground intothe ag ate mor tar and as a powder pressed into agrooved silver plate attached to the X-ray an ode. Asec ond ary elec tronic mul ti plier, VEU-1, was used forspec tra reg is tra tion. A CsI film was used as aphotocathode with the quan tum yield within the ana -lysed spec tral range. To ex clude the in flu ence of thecom po si tion change ef fect un der the elec tron beam,the O4,5(Th) spec trum was col lected three times. The

lines of Zr (75.55 eV) and Nb (85.85 eV) were used for en ergy cal i bra tion in the sec ond re flec tion or der Mx.

The ThO812–(D4h) clus ter re flect ing tho rium's

close en vi ron ment in ThO2 is a body-cen tered cube withTh in side and oxygens in the cor ners with an in ter atomicdis tance of RTh-O = 2.425×10–10 m [10]. In this work, thecal cu la tions were done for the first time in theRXa-DVM [11, 12], based on the Dirack-Slat er equation so lu tion for 4-com po nent spinors with ex change-cor re -la tion po ten tial [13]. The ex tended ba sis of the nu mericatomic orbitals from the Dirack-Slat er equa tion so lu tionfor iso lated at oms in cluded va cant Th5f,7p1/2,7p3/2 statesbe sides the filled ones. The ba sis also took into ac countclus ter sym me try, i. e. lin ear com bi na tions con verted bythe ir re duc ible rep re sen ta tions of the bi nary D4h groupwere con structed from reg u lar atomic orbitals (AO), us -ing the tech nique of pro ject ing op er a tors [11]. To ob tainthe rel a tiv is tic ba sis, an orig i nal symmetrization pro gram was used [13-15]. The nu meric Diophantine in te gra tionfor the cal cu la tion of ma trix el e ments of the sec u lar equa -tion was done by a num ber of 22 000 points dis trib uted inthe clus ter space. It pro vided the con ver gence of mo lec u -lar orbitals (MO) en er gies of not less than 0.1 eV. The lo -cal ex change-cor re la tion po ten tial was taken in form ofXa with a equal to the mean atomic val ues. Since the clus -ters were frag ments of a crys tal, the renormalization ofthe ligand va lence MO pop u la tion was done dur ingself-con sis tency. It al lowed us to ef fec tively take into ac -count the stoichiometry and charge re dis tri bu tion be -tween the lig ands and the sur round ing crys tal.

RE SULTS AND DIS CUS SION

The low bind ing en ergy (0-40 eV) XPS fromThO2 can be con di tion ally sub di vided into two ranges(fig. 1). The first one, 0-13 eV, ex hib its the OVMO re -lated struc ture formed from the not com pletely filledva lence Th6d,7s,5f,7p and O2p AOs (tab. 1). The sec -

A. Yu. Teterin, et al.: Va lence Elec tronic State Den sity in Tho rium Dioxide 35

Fig ure 1. XPS from ThO2, sep a ra tion into in di vid ualcom po nents is shown

36 Nu clear Tech nol ogy & Ra di a tion Pro tec tion –2/2008

Ta ble 1. Com po si tions and MO en er gies E0 of the ThO812–(Oh) clus ter at RTh–O = 2.425×10–10 m (RXa-DVM) and

photoionization cross-sec tions si

MO–E0

[eV]

MO composition

Th O

6s 6p1/2 6p3/2 6d3/2 6d5/2 7s 5f5/2 5f7/2 7p1/2 7p3/2 2s 2p1/2 2p3/2

si(a) 1.09 0.89 1.24 0.79 0.74 0.13 2.74 2.56 0.07 0.09 0.96 0.07 0.07

22g -+

25g 6+

21g -+

24g --

28g 6-

24g 6+

27g 6-

23g --

22g --

26g 6-

21g --

25g 6-

23g 6+

20g -+

24g 6-

20g --

–11.47

–11.15

–11.15

–9.27

–9.10

–8.70

–8.44

–8.43

–7.91

–7.90

–7.90

–7.69

–7.39

–7.37

–7.15

–7.11

0.44

0.44

0.39

0.39

0.82

0.38

0.38

0.46

0.46

0.87

0.19

0.04

0.04

0.76

0.78

0.78

0.14

0.12

0.73

0.50

0.86

0.85

0.21

0.08

0.08

0.45

0.02

0.02

0.43

0.47

0.07

0.06

0.10

0.09

0.75

0.77

0.05

0.04

0.04

0.01

0.04

0.07

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.09

0.02

0.03

0.03

0.01

0.02

0.01

0.01

0.01

0.01

0.06

0.05

0.05

0.04

0.12

0.11

0.04

0.02

0.04

0.01

0.03

0.02

0.02

0.04

0.01

0.10

0.10

0.07

0.07

19g -– (b)

23g 6-

22g 6-

18g --

22g 6+

19g -+

21g 6+

21g 6-

18g -+

17g -+

20g 6+

17g --

16g --

20g 6-

19g 6-

19g 6+

15g --

18g 6-

14g --

16g -+

18g 6+

15g -+

14g -+

17g 6+

0.00

0.00

0.26

0.26

0.45

0.45

0.47

0.68

0.72

0.74

0.74

0.85

1.23

1.24

1.48

1.91

2.00

2.00

2.01

2.17

2.19

2.19

2.81

2.82

0.01

0.01

0.01

0.09

0.09

0.01

0.01

0.01

0.01

0.01

0.07

0.06

0.06

0.06

0.01

0.11

0.05

0.05

0.09

0.09

0.06

0.02

0.02

0.03

0.01

0.01

0.01

0.01

0.02

0.01

0.01

0.03

0.04

0.01

0.01

0.01

0.02

0.02

0.02

0.05

0.05

0.05

0.01

0.01

0.01

0.01

0.29

0.15

0.34

0.34

0.15

0.15

0.64

0.75

0.05

0.49

0.48

0.30

0.15

0.08

0.41

0.32

0.19

0.17

0.62

0.51

0.03

0.35

0.28

0.28

0.59

0.73

0.66

0.66

0.85

0.85

0.34

0.21

0.94

0.50

0.51

0.63

0.77

0.84

0.52

0.60

0.78

0.80

0.34

0.36

0.84

0.53

0.57

0.57

17g 6-

13g --

16g 6-

12g --

16g 6+

13g -+

12g -+

15g 6+

11g --

15g 6-

14g 6-

14g 6+

10.54

10.54

14.95

15.16

15.54

15.54

15.54

15.94

16.39

16.32

19.06

34.40

0.01

0.98

0.16

0.82

0.76

0.76

0.14

0.14

0.03

0.01

0.02

0.02

0.04

0.04

0.07

0.01

0.01

0.01

0.01

0.04

0.01

0.01

0.01

0.02

0.02

0.13

0.13

0.80

0.98

0.95

0.95

0.94

0.92

0.82

0.84

0.15

0.01

0.02

0.04

0.01

0.08

0.06

0.01

0.01

(a) photoionization cross-sec tions si (10–25 m2 per one elec tron) cal cu lated by V. G. Yarzhemsky(b) up per filled MO (2 elec trons), fill ing num ber for all orbitals is 2

ond one, 13-40 eV, shows the IVMO re lated struc tureformed due to the strong in ter ac tion of the com pletelyfilled in ner Th6p and O2s AOs. The OVMO struc turehas some typ i cal fea tures and can be sub di vided intofour com po nents (1-4). The IVMO XPS shows ex -plicit peaks and can be sub di vided into five com po -nents (5-9) (fig. 1). Al though this sub di vi sion is for -mal, it al lows a qual i ta tive and quan ti ta tivecom par i son of XPS pa ram e ters with the o ret i cal cal cu -la tion re sults for the ThO8

12–(D4h) clus ter.Relativistic cal cu la tion re sults for the ground

state of the ThO812–(D4h) clus ter and MO com po si tion

are given in tab. 1. Since, in the ex cited state, elec tronphotoemission re sults with a hole on some of the lev -els, for a more strict com par i son of ex per i men tal andthe o ret i cal bind ing en er gies, the cal cu la tions wereper formed for the tran si tion state [16]. How ever,within a cer tain ap prox i ma tion, one can sug gest that,for the va lence band, the bind ing en er gies cal cu latedfor the transition state dif fer from those of the groundstate by a con stant shift to ward higher bind ing en er -gies. There fore, in this work, cor re spond ing the o ret i -cal bind ing en er gies were in creased by 5.96 eV (tab.2). Tak ing into ac count MO com po si tions (tab. 1) andphotoionization cross-sec tions [17], si for Th in tab. 1,were cal cu lated by prof. V. G. Yarzhemsky and the o -ret i cal in ten si ties for some of the spec tral ranges de -ter mined (tab. 2). Com par ing ex per i men tal XPS andthe o ret i cal data, one has to take into ac count that theXPS from ThO2 re flects the band struc ture and con -sists of bands wid ened due to the solid-state ef fects.De spite cal cu la tion er rors, a sat is fac tory qual i ta tiveagree ment be tween the the o ret i cal and ex per i men talre sults was ob served. In deed, cor re spond ing the o ret i -cal and ex per i men tal rel a tive in ten si ties and widths ofthe in ner and outer va lence bands are com pa ra ble.Also, a sat is fac tory agree ment be tween the ex per i -men tal and cal cu lated bind ing en er gies for some lev elswas reached (tab. 2). The worst dis crep ancy was ob -served for the mid dle IVMO part (12g 7

- –15g 6- ). Ear -

lier, the non-rel a tiv is tic Xa-DVM re sults were usedfor in ter pre ta tion of the IVMO range XPS from ThO2

[1, 18]. It al lowed a qual i ta tive iden ti fi ca tion of thefine spec tral struc ture only in the bind ing en ergy rangeof 0-20 eV, be cause the O2s AO by the binding en ergyare lo cated some where around the mid dle of Th63/2

and Th61/2 elctronic shells. There fore, non-rel a tiv is ticcal cu la tions could not al low even for a qual i ta tive in -ter pre ta tion of the IVMO struc ture in ThO2. Takinginto account rel a tiv is tic ef fects, the re sults of the pres -ent work al low an iden ti fi ca tion of XPS from ThO2

over the whole range of 0-40 eV.Thus, the in ten sity of the outer va lence band

predominantly co mes from the outer va lenceTh5f,6d,7s,7p and O2p AOs, and to a lesser de gree,from the in ner va lence Th6p and O2s AOs. Th5f elec -trons contribute sig nif i cantly to OVMO in ten sity(tabs. 1 and 2), since the Th5f photoionization

cross-sec tion is pretty high (tab. 1). The au thors of [5]have shown that, with out tak ing into ac count the par -tic i pa tion of Th5f elec trons in the chem i cal bond inThO2, the cal cu lated OVMO/IVMO inten sity ra tio is0.20, much lower than the cor re spond ing ex per i men -tal value of 0.35. Tak ing the Th5f par tic i pa tion in thechem i cal bond into ac count, yields an OVMO/IVMOintensity ra tio of 0.4, which is in a qual i ta tive agree -ment with the ex per i men tal value (tab. 2). Prac ti cally,di rect par tic i pa tion of Th5f elec trons in the for ma tionof the chem i cal bond with out the loss of their f-na turewas experimentally con firmed. Th5f states by thebind ing en ergy are close to the top and middle of theouter va lence band (tab. 1). Th6d states are lo cated atthe bot tom of the outer va lence band.

In the IVMO XPS range, a satisfactory agree -ment was reached; for ex am ple, for the 17g 6

- , 13g 7- (4),

and 14g 6- (8) IVMOs de ter min ing the band width for

these or bitals. It has to be noted that the o ret i cal and ex -per i men tal to tal rel a tive OVMO and IVMO in ten si ties are com pa ra ble, which is in fa vour of theapproximation cho sen for these cal cu la tions (tab. 2).The cal cu lated and ex per i men tal rel a tive IVMO in ten -si ties, ex cept for the 16g 6

- IVMO, are prac ti cally inweak agree ment.

Tak ing into ac count rel a tiv is tic cal cu la tions datafor the ThO8

12–(D4h) clus ter and ex per i men tal core andouter lev els bind ing en ergy dif fer ences [19] in the MOLCAO (mo lec u lar orbitals as lin ear com bi na tions ofatomic orbitals) ap prox i ma tion, one can build a MOscheme for this clus ter (fig. 2). The scheme pro vides anun der standing of the real XPS struc ture of ThO2. In thisap prox i ma tion, one can sep a rate the antibonding 17g 6

- ,13g 7 (4), and 16g 6

- (5), as well as the cor re spond ingbond ing 15g 6

- , 11g 7- (7), and 14g 6

- (8) IVMOs, and alsothe quasiatomic 12g 7

- , 16g 6+ , 13g 7

+ , 12g 7+ , and 15g 6

+ (6)IVMOs, ba si cally re lated to O2s elec trons. This ex per i -men tal data shows that the bind ing en er gies of thequasiatomic IVMOs re lated, ba si cally, with the O2s AOs must be close in mag ni tude. In deed, the O1s XPS fromThO2 al lows us to eval u ate that their chem i calnon-equiv a lence must not ex ceed 0.1 eV, since this peakwas ob served sym met ric and 1.4 eV wide. The O2s bind -ing en ergy must be 22.2 eV, since DEO = 508.0 eV, whilethe O1s bind ing en ergy in ThO2 is Eb = 530.2 eV (fig. 2).These data par tially agree with the the o ret i cal cal cu la tion re sults. Tak ing into ac count that DETh = 316.5 eV, DE1==j317.8 eV, one can find D1=1.3 eV [3]. Since the 17g 6

- ,13g 7

- (4) and 14g 6- (8) IVMO bind ing enrgy dif fer ence is

9.1 eV, and the Th6p spin-or bit split ting in atomic Th isDEsl(Th6p) = 9.2 eV (cal cu lated [20]) and DEsl(Th6p) == 9.3 eV (ex per i men tal [19]), one can eval u ate the dis tur -bance D1 = 0.2 eV, which does not agree with the cor re -spond ing value of 1.3 eV found at the core – va lenceband bind ing en ergy dis tance. Such a dif fer ence can beex plained by IVMO formation, al though this com par i -son may not be suf fi ciently cor rect. The IVMO FWHMdoes not al low us to reach a con clu sion about the na ture

A. Yu. Teterin, et al.: Va lence Elec tronic State Den sity in Tho rium Dioxide 37

of orbitals (bond ing or antibonding). How ever, one cansug gest that the 10% ad mix ture of O2p and 1% of Th7pAOs to the 17g 6

- , 13g 7- (4) IVMOs make these orbitals

par tially loose their antibonding na ture (tabs. 1 and 2, fig. 2, [3]).

Ex per i men tal ev i dence of IVMO for ma tion inThO2 is the O4,5(Th) XES struc ture (fig. 3). Pre vi ously,

this struc ture was in ter preted on the ba sis of non-rel a tiv -is tic cal cu la tion re sults [1]. In this work, the O4,5(Th)XES struc ture was in ter preted on the ba sis of XPS datafor ThO2 and rel a tiv is tic cal cu la tion data for theThO8

12–(D4h) clus ter (tab. 3).The con sid ered XES [7, 21] re flect ing

Th5/2,3/2¬Th6p3/2,1/2,7p,5f [O4,5(Th)¬P2,3OVI(Th)] elec -

38 Nu clear Tech nol ogy & Ra di a tion Pro tec tion –2/2008

Ta ble 2. Pa ram e ters of the XPS from ThO2 and ThO812-(Oh) clus ter at RTh–O = 2.425×10–10 m (RXa-DVM) and the Th6p-

and Th5f-elec tron state den sity ri (e–)

MO–E(c)

[eV]

XPSTh6p- and Th5f-electron state density ri(e–), e–

Energy(d)

[eV]Intensity, [%]

Experiment Theory Experiment 5f5/2 5f7/2 6p1/2 6p3/2

19g 7– (a)

5.96 4.1 (1.2) 2.9 5.4 0.04 0.02 0.18

23g 6–

5.96 5.2 (1.8) 2.9 9.7 0.04 0.02 0.18

22g 6–

6.22 0.2

18g 7–

6.22 0.2

22g 6+

6.41 0.2

19g 7+

6.41 0.2

21g 6+

6.86 6.8 (1.8) 0.2 9.2

21g 6–

6.64 1.5 0.06 0.02

18g 7+

6.68 0.4

17g 7+

6.70 0.4

20g 6+

6.70 0.4

17g 7–

6.81 2.8 0.06 0.08

16g 7–

7.19 1.2 0.02 0.02 0.02

20g 6–

7.20 1.2 0.02 0.02 0.02

19g 6–

7.44 0.8 0.02 0.02

19g 6+

7.87 0.5

15g 7–

7.96 1.3 0.02 0.04

18g 6–

7.96 1.3 0.02 0.04

14g 7–

7.97 1.7 0.04 0.04

16g 7+

8.13 1.5

18g 6+

8.15 1.5

15g 7+

8.15 1.5

14g 7+

8.77 10.8 (0.7) 1.8 0.1

17g 6+

8.78 1.8

SI i(b)

28.4 24.4 0.26 0.36 0.04 0.40

17g 6–

16.50 16.5 (3.0) 13.6 41.4 1.52

13g ––

16.50 13.6 1.52

16g 6–

20.91 20.8 (2.1) 4.7 6.3 0.32

12g ––

21.12 4.0 0.02 0.02

16g 6+

21.50 3.7

13g –+

21.50 22.1 (2.3) 3.7 10.1

12g –+

21.50 3.8

15g 6+

21.90 3.4

11g ––

22.35 23.8 (2.1) 5.9 7.3 0.02 0.02 0.28

15g 6–

22.28 5.0 0.28

14g 6–

25.02 25.6 (2.2) 10.2 10.7 1.64

SI i(b)

71.6 75.6 0.04 0.04 1.96 3.60

14g 6+

40.36 41.7(3.8) 11.9 10.5

(a) Up per filled MO (2 elec trons), fill ing num ber for all orbitals is 2(b) To tal Th6p elec tron state den si ties and peak in ten si ties(c) En er gies are shifted to ward the higher val ues (down) by 5.96 eV(d) Peak widths [eV] are given in pa ren the ses

A. Yu. Teterin, et al.: Va lence Elec tronic State Den sity in Tho rium Dioxide 39

Fig ure 2. MO scheme for the ThO812– (D4h) clus ter built on the ba sis of the o ret i cal and ex per i men tal data; chemical shifts

are not shown; some of the ex per i men tally mea sur able bind ing en ergy dif fer ences are shown as ar rows; experimentalbind ing en er gies [eV] are given to the left; energy scale is not kept

Ta ble 3. X-ray O4,5(Th) emis sion Th5d¬Th6p,np tran si tions in Th and ThO2 (given in eV) by XPS and XES

Th ThO2

Transition XPS Transition(a) XPS XES

5d5/2¬15g 6– , 11g 7

– (7) 62.5 63.5

66.8

5d3/2¬6p1/2 68.0 5d3/2¬14g 6– (8) 67.7 67.6

68.1

5d5/2¬6p3/2 68.8 5d5/2¬17g 6– , 13g 7

– (4) 69.8 69.5

5d3/2¬15g 6– , 11g 7

– (7) 69.5 69.5

5d3/2¬16g 6– , (5) 72.5 75.4

5d3/2¬6p3/2 75.9 5d3/2¬17g 6– , 13g 7

– (4) 76.8 77.0

5d5/2¬OVMO 80.5 80.7

5d3/2¬OVMO 87.5

(a) Data for the ThO812– (D4h) clus ter

tronic tran si tions in the en ergy range of 60 < hn < 85 eV inthe short-wave re gion over lap with the ab sorp tion spec tra[22] which can lead to a dis tor tion, due to the self-ab sorp -tion ef fect (fig. 3). Ear lier [22], on the ba sis of XES data,the long-wave peak group was at trib uted to the tran si tiontrip let be tween the core lev els in Th Th5d5/2,3,2¬¬Th6p3/2,1/2, [O4,5(Th)¬P2,3(Th)] (fig. 3, tab. 3). How -ever, this in ter pre ta tion does not ex plain the in flu ence ofox y gen and can not de scribe this XES struc ture. There -fore, the in ter pre ta tion of this spec trum took into ac countthe fact that the Th6p lev els in ThO2 are not core and takean ac tive part in IVMO for ma tion [1, 3].

In the con sid ered XES from ThO2, the low en -ergy wide band is poorly re solved, al though the de vice res o lu tion en ables us to see the cal cu lated peaks in theen ergy range of 60-76 eV (fig. 3; tab. 3). It can be par -tially ex plained by ex tra tran si tions not listed in tab. 3.

The ThO2 XES ex hib its seven peaks in the en -ergy range of 63.5-78.0 eV and a sharp peak at 80.7 eV. Tak ing into ac count the con sid ered sug ges tions, onecan come to the con clu sion that the peaks in the en ergyrange of 63.5-78.0 eV can be at trib uted to tran si tionsfrom the IVMO, the sharp one – to the tran si tion fromthe OVMO to the Th5d level (fig. 3, tab. 3). Ac cord ingto the di pole se lec tion rules (Dl = 1 and Dj = 0; 1), a holeon the Th5d level can be filled with a p- or an f OVMOelec tron. It agrees with cal cu la tion re sults [1, 18]which in di cate that the O2p states con trib ute sig nif i -cantly to the OVMO, aside from the con tri bu tion ofTh5f states. This con sid er ation is rea son able only inthe ap prox i ma tion that the MO elec trons main taintheir par tial atomic na ture. The con sid ered spec trumdoes not al low us to con clude am big u ously about thecon tri bu tion of Th5f to OVMO.

Dur ing ThO2 XES for ma tion, the ini tial state ofthe sys tem with a hole on the Th5d level tran sits intothe fi nal state with a hole on one of the MOs, whiledur ing ThO2 XPS for ma tion, the ini tial state withoutany holes tran sits into the fi nal state with a hole on thecore level. There fore, en ergy shemes for these twopro cesses are dif fer ent and the com par i sons of theXPS and XES in this work are rough (tab. 3). Fur ther -

more, more de tailed and pre cise cal cu la tions are re -quired.

The ob tained data shows that the O4,5(Th) XESfrom ThO2 can be in ter preted only tak ing into ac countef fec tive IVMO for ma tion, in par tic u lar, with the par -tic i pa tion of the rel a tively deep filled Th6p and O2sAOs.

We would like to note that, for the first time, thiswork stud ied the fine, low en ergy (0-40 eV) XPS andO4,5(Th) XES from ThO2 and es tab lished the cor re la -tion of the fine OVMO (0 – ~13 eV) and IVMO(~13-~40 eV) re lated spec tral struc ture pa ram e terswith the pos si ble par tic i pa tion of Th5f elec tronicstates in the for ma tion of chem i cal bonds.

Prac ti cally, on the ba sis of O4,5(Th) XES andtak ing into ac count the fine XPS struc ture pa ram e ters,an experimental con fir ma tion of IVMO for ma tion inThO2 has been achieved [3].

CON CLU SIONS

1. Tak ing into ac count the RXa-DVM re sults forthe ThO8

12–(D4h) clus ter, a quan ti ta tive in ter pre ta tionof fine XPS outer va lence (0-13 eV) and in ner va lence(13-40 eV) elec tronic struc ture in ThO2 was done forthe first time.

1.1. Al though tho rium does not have Th5f elec -trons, filled Th5f elec tronic states (~0.6 Th5f elec -trons) in the outer va lence band of ThO2 were shownto ap pear dur ing the for ma tion of the chem i cal bond.

1.2. Th6p elec trons were shown to be a sig nif i -cant (ex per i men tally ob served) part (~0.44 Th6p elec -trons) of not only IVMO, but of OVMO for ma tion aswell. The most sig nif i cant roles in the for ma tion ofIVMO in ThO2 were es tab lished to be long toTh6p3/2,1/2 and O2s AOs of the neigh bor ing Th and Oions.

1.3. IVMO com po si tion and the se quent or derin ThO2 was es tab lished in the bind ing en ergy rangeof 13 eV to 40 eV. The va lence elec tronic state den -sity in the range of 0-40 eV in ThO2 was cal cu lated.Thus, for the bond ing 15g 6

- , 11g 7- (7) and the

antibonding 17g 6- , 13g 7

- (4) the cal cu la tion found out(14% of Th6p3/2 + 84% of O2s and 76% of Th6p3/2 ++ 10% of O2p), while for the bond ing 14g 6

- (8) andantibonding 16g 6

- (5) the cal cu la tion found out (82%of Th6p1/2 + 15% of O2s and 16% of Th6p1/2 + 80%of O2s + 4% of Th7p).

2. For the first time, these data for the ThO812–

(D4h) clus ter al lowed an in ter pre ta tion of the fine XPS(0-40 eV) and high res o lu tion O4,5(Th) XES spec tralstruc ture (~60-~85 eV) of ThO2. This struc ture wasshown to be formed with the OVMO (0-~13 eV) andthe IVMO (~13-~40 eV) elec trons. Prac ti cally, onemore ex per i men tal ev i dence of IVMO for ma tion fromTh6p and O2s AOs in ThO2 was ob tained.

40 Nu clear Tech nol ogy & Ra di a tion Pro tec tion –2/2008

Fig ure 3. X-ray O4,5(Th) emis sion spectrum re flect ing theTh5d¬Th6p,7p tran si tions in ThO2 mea sured at 3 kV(2mA) [7, 21]

AC KNOWL EDGE MENT

The work was sup ported by the RFBR grants08-03-00314 and 06-08-00808 and the State Pro gramfor Lead ing Sci en tific Schools, grant NSh-616.2008.3.

REF ER ENCES

[1] Teterin, Yu. A., Baev, A. S., Gagarin, S. G., Klimov,V. D., Struc ture of Pho to elec tron Spec tra of Tho riumCom pounds (in Rus sian), Radiohimiya, 27 (1985), 1,pp. 3-13

[2] Teterin, Yu. A., Teterin, A.Yu., Struc ture of X-RayPho to elec tron Spec tra of Light Ac ti nide Com pounds,Rus sian Chem i cal Re views, 73 (2004), 6, pp. 541-580

[3] Teterin, Yu. A., Gagarin, S. G., In ner Va lence Mo lec u -lar Orbitals in Com pounds and the X-Ray Pho to elec -tron Spec tra Struc ture (in Rus sian), Rus sian Chem i cal Re views, 65 (1996), pp. 825-847

[4] Makarov, L. L., Karaziya, H. I., Batrakov, Yu. F.,Chem i cal Ef fects in the L-Spec tra of Th. The Signs ofEx is tence of the Bound 5f- State in Th Compounds (in Rus sian), Radiohimiya, 20 (1978), 1, pp. 116-124

[5] Teterin, Yu. A., Teterin, A. Yu., The An5f-States ofActinides (Th, U, Np, Pu, Am, Cm, Bk) in Com -pounds and Pa ram e ters of Their X-Ray Pho to elec tronSpec tra (in Rus sian), Con densed Me dia andInterphase Bor ders, 2 (2000), 1, pp. 60-66

[6] Gubanov, V. A., Rosen, A., Ellis, D. E., Elec tronicStruc ture of Mono- and Di ox ides of Tho rium andUra nium, J. Inorg. Nucl. Chem., 41 (1979), pp.975-986

[7] Teterin, Yu. A., Terekhov, V. A., Teterin, A.Yu.,Utkin, I. O., Lebedev, A. M., Vukchevich, L., In nerVa lence Mo lec u lar Orbitals and the X-Ray O4,5(Th)-Emis sion Spec tra Struc ture in ThO2 and ThF4 (in Rus -sian), DAN (Re ports of the Rus sian Acad emy of Sci -ence), 358 (1998), 5, pp. 637-640

[8] Veal, B. W., Lam, D. J., Di a mond, H., Hoekstra, H. R., X-Ray Pho to elec tron Spec tros copy Study of Ox idesof the Transuranium El e ments Np, Pu, Am, Cm, Bkand Cf, Phys. Rev., 15 (1977), 6, pp. 2929-2942

[9] Shir ley, D. A., High-Res o lu tion X-Ray Pho to elec tronSpec trum of the Va lence Bands of Gold, Phys. Rev. B., 5 (1972), 12, pp. 4709-4714

[10] Keller, C., Tho rium, Verbindungen mit Edelgasen,Wasserstoff, Sauerstoff, Gmelin Handbuch derAnorganischen Chemie, Teil C1, Springer, Berlin-Hei -del berg-New York, 1978

[11] Rosen, A., Ellis, D. E., Rel a tiv is tic Mo lec u lar Cal cu -la tions in the Dirac-Slat er Model, J. Chem. Phys., 62(1975), 8, pp. 3039-3049

[12] Adachy, H., Rel a tiv is tic Mo lec u lar Or bital The ory inthe Dirac-Slat er Model, Technol. Re ports OsakaUniv., 27 (1977), 1364-1393, pp. 569-576

[13] Gunnarsson, O., Lundqvist, B. I., Ex change and Cor -re la tion in At oms, Mol e cules and Sol ids by theSpin-Den sity-Func tional Formalisma, Phys. Rev. B.,13 (1976), pp. 4274-4298

[14] Pyykko, P., Toivonen, H., Ta bles of Rep re sen ta tionand Ro ta tion Ma tri ces for the Rel a tiv is tic Ir re duc ibleRep re sen ta tions of 38 Point Groups, Acta AcademiaeAboensis, B, 43 (1983), 2, pp. 1-50

[15] Varshalovich, D. A., Moskalev, A. N., Hersonsky, V.K., Quan tum The ory of An gu lar Mo ment, Nauka, Le -nin grad,1975

[16] Slat er, J. C., John son, K. H., Self-Con sis tent-Field XClus ter Method for Polyatomic Mol e cules and Sol ids, Phys. Rev. B, 5 (1972), 3, pp. 844-853

[17] Band, I. M., Kharitonov, Yu. I., Trzhaskovskaya, M.B., The Photoionization Cross-Sec tions and An gu larDis tri bu tions, Atomic Data and Nu clear Data Ta bles,23 (1979), pp. 443-505

[18] Gubanov, V. A., Rosen, A., Ellis, D. E., Elec tronicStruc ture and Bond ing in ThO2 and UO2, Sol. StateCommun., 22 (1977), 4, 975-986, pp. 219-223

[19] Huang, K. N., Aojogi, M., Chen, M. N., Graseman, B.,Mark, H., Neu tral Atom Elec tron Bind ing En er giesfrom Re laxed-Orbitals Rel a tiv is tic Hartree-Fock-Slat -er Cal cu la tions, Atom. Data and Nucl. Data Ta bles, 18(1976), pp. 243-291

[20] Fugle, J. S., Burr, A. F., Watson, L. M., Fa bian, D. Y.,Lang, W., X-Ray Pho to elec tron Stud ies of Tho riumand Ura nium, J. Phys. F: Metal. Phys., 4 (1974), 2,pp. 335-342

[21] Teterin, Yu. A., Terekhov, V. F., Teterin, A. Yu., Utkin, I. O., Lebedev, A. M., Vukchevich, L., The Struc tureof the X-Ray Pho to elec tron and X-Ray Emis sionSpec tra of ThO2 and ThF4 Re lated to the Elec trons ofMo lec u lar Orbitals (in Rus sian), J. of Struct. Chem is -try, 39 (1998), 6, pp. 1052-1054

[22] Lyahovskaya, I. I., Ipatov, V. M., Zimkina, T. M.,The Long-Wave X-Ray 5d Spec tra of Tho rium andUra nium in Com pounds with Ox y gen and Fluorine(in Rus sian), J. of Struct. Chem is try, 18 (1977), 4, pp.668-672

A. Yu. Teterin, et al.: Va lence Elec tronic State Den sity in Tho rium Dioxide 41

42 Nu clear Tech nol ogy & Ra di a tion Pro tec tion –2/2008

Anton J. TETERIN, Mihail V. RI@KOV, Jurij A. TETERIN, Labud VUK^EVI],Vladi mir A. TEREHOV, Konstantin I. MASLAKOV, Kiril E. IVANOV

GUSTINA VALENTNIH ELEKTRONSKIH STAWA U TORIJUMDIOKSIDU

U radu se analiziraju fini niskoenergetski (0-40 eV) rendgenom indukovanifotoelektronski spektri ThO2 sa relativisti~kim prora~unom Xa–diskretnih varijacijaelektronske strukture ThO8

12–(D4h) klastera koji odra`ava torijumovo blisko okru`ewe u ThO2.Kao rezultat, teorijski je pokazano i eksperimentalno potvr|eno da Th5f elektroni u ThO2 mogudirektno da u~estvuju (~0.6 Th5f elektrona) u obrazovawu hemijskih veza. Pokazano je tako|e da suTh6p elektroni deo (~0.44 Th6p elektrona) ne samo unutra{wih valentnih molekularnih orbitalave} da imaju zna~ajnu ulogu i u formirawu spoqa{wih valentnih molekularnih orbitala.Ustanovqeno je da kompozicija i redosled unutra{wih valentnih molekularnih orbitalapripadaju energijama veze u opsegu od 13 eV do 40 eV. Tako|e je izra~unata gustina valentnihelektronskih stawa u opsegu od 0 eV do 40 eV u ThO2. Po prvi put, ovi podaci omogu}avaju tuma~ewefinih rendgenom indukovanih fotoelektronskih spektara (0-40 eV) i rendgenom indukovanuemisionu spektralnu strukturu O4,5(Th) visoke rezolucije (~60 – ~85 eV) ThO2.

Kqu~ne re~i: rendgen-indukovana fotoelektronska spektroskopija, torijumoksid, spoqa{wejjjjjjjjjjjjjjjjjjjjjjjji unutra{we valentne molekularne orbite