Università degli Studi di Firenze Dottorato di Ricerca in ...

341
Università degli Studi di Firenze Dottorato di Ricerca in Scienze Cliniche Indirizzo Fisiopatologia Clinica e dell'invecchiamento CICLO XXVI Confronting the archipelago of primary myocardial diseases: from the comprehension of genetic basis, molecular mechanisms and clinical correlates to the development of novel therapeutic approaches. Dottorando Tutore Dott.ssa Tomberli Benedetta Prof.ssa Abbate Rosanna Coordinatore Prof. Laffi Giacomo Anni 2011/2013

Transcript of Università degli Studi di Firenze Dottorato di Ricerca in ...

Università  degli  Studi  di  Firenze  

Dottorato  di  Ricerca  in  Scienze  Cliniche  

Indirizzo  Fisiopatologia  Clinica  e  dell'invecchiamento    

CICLO  XXVI                  

Confronting  the  archipelago  of    primary  myocardial  diseases:    

from  the  comprehension  of  genetic  basis,  molecular  mechanisms  and  clinical  correlates    

to  the  development  of  novel  therapeutic  approaches.  

             

                                     Dottorando                                                                                                                        Tutore  Dott.ssa  Tomberli  Benedetta                                                        Prof.ssa  Abbate  Rosanna    

       

Coordinatore  Prof.  Laffi  Giacomo  

   

 

Anni  2011/2013    

 

 

 

 

 

To  Bianca,  my  little  lovely  niece.  

She  lights  up  my  heart  every  time  I  see  her  playing  and  smiling.  

She  has  been  a  true  blessing  to  our  family.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Index    

 

1.  Introduction:  Tales  of  the  Unexpected                    

1.1. Brief  history  and  contemporary  classification  of  cardiomyopathies.           Pag.  5  

1.2. A  thousand  conditions  with  a  lot  in  common.  Translational  overview  supporting  a  comprehensive  approach  to  primary  diseases  of  the  myocardium.     Pag.  22  

1.3. Making  sense  of  diversity:  finding  common  answers  in  clinical  practice.             Pag.  35  

1.4. Aim  of  the  thesis  and  project  design     Pag.  41  

 2.  Genotype-­‐Phenotype  Correlations  

2.1. Into  the  myocardium:  the  distinct  phenotypic  expression  of  thin  filament  mutations  in  hypertrophic  cardiomyopathy.             Pag.  47  

2.2. Early  cardiac  phenotype  in  patients  with  Anderson-­‐Fabry  disease.                 Pag.  60  

2.3. Next  Generation  Sequencing:  new  horizons  in  the  field  of  cardiomyopathies.             Pag.  76  

 3.  Environmental  Modifiers  

3.1. The  role  of  environmental  modifiers  on  the  phenotypic  expression  and  outcome  of  Hypertrophic  cardiomyopathy:  the  “weight”  of  obesity.           Pag.  109  

   

 

4.  Natural  History  and  Predictors  of  Outcome  

4.1. Predicting  the  risk  of  sudden  cardiac  death  using  cardiac  magnetic  resonance.             Pag.  121  

4.2. A  hundred  tales  the  blood  can  tell:  NT-­‐pro  BNP  as  a  clinical  barometer  of  disease  stability  in  HCM.       Pag.  134  

4.3. Long-­‐term  outcome  of  idiopathic  dilated  cardiomyopathy:  the  real  world.               Pag.  141  

4.4. Myocardial  damage  due  to  infectious  disease:  Chagas  cardiomyopathy.             Pag.  149  

 5.    Translational  Routes  from  Altered  Molecular  

Homeostasis  to  Treatment  Opportunities  

5.1. Electrophysiological  cardiomyocyte  remodeling  as  a  new  therapeutic  target  in  HCM         Pag.  164  

5.2. The  real  story  of  life-­‐saving  devices:  a  backstage  tour.                   Pag.  170  

5.3. Changing  the  destiny  of  unfolded  proteins:  pharmacological  chaperone  as  a  new  therapy  for  Anderson-­‐Fabry  disease.         Pag.  178  

 6.    Conclusive  Remarks           Pag.  191  

 7.    References               Pag.  193  

 8.  Publications  

8.1. List  of  papers.               Pag.  227  

8.2. Full-­‐text  papers  and  abstracts       Pag.  230  

 9.  Acknowledgments           Pag.  337  

 

 

1.  Introduction:  Tales  of  the  

Unexpected  

 

 

   

1.  Introduction:  tales  of  the  unexpected  

4  

 

 

 

 

 

 

“We hear only those questions for which

we are in a position to find answers”

Friedrich Nietzsche

 

   

1.  Introduction:  tales  of  the  unexpected  

5  

 

1.1   Brief   history   and   contemporary   classification   of  

cardiomyopathies.  

 

It   is   somewhat  of   a  paradox   that   cardiologists   invest  most  of   their  

time   treating   conditions   that   only   secondarily   affect   the   heart   muscle,  

due   to   coronary   disease,   hypertension   or   the   valvular   abnormalities.  

Conversely,  substantially  less  time  and  resources  are  devoted  to  the  large  

and   heterogeneous   family   of   diseases   originated   primarily   from   the  

myocardium   –   the   cardiomyopathies.   Although   less   prevalent   than   the  

previously   quoted   conditions,   cardiomyopathies   have   a   considerable  

impact   on   the   community,   with   a   3%   estimated   prevalence  worldwide,  

generating   mortality   and   morbidity   preferentially   in   the   young.  

Furthermore,   they   represent   valuable   paradigms   allowing   translational  

investigation  of   the  normal  and  abnormal   functions  of   the  myocardium,  

creating   opportunities   for   the   development   of   novel   treatment   with  

broad   implications   for  all   kinds  of   cardiac  patients.  Therefore,   increased  

awareness,   investments   and   research   efforts   in   this   field   are   highly  

desirable.      

In   its   present   definition,   the   term   “cardiomyopathy”   refers   to   a  

myocardial  disorder,  often  genetic  in  nature,  in  which  the  heart  muscle  is  

structurally  and  functionally  abnormal   in   the  absence  of  coronary  artery  

disease,   hypertension,   valvular   or   congenital   heart   disease   sufficient   to  

cause   the  observed  myocardial   abnormality.   This   term  was   first   used   in  

1957   by   Brigden,   who   described   a   group   of   uncommon,   non-­‐coronary  

myocardial   diseases   [1].   In   1961   Goodwin   defined   cardiomyopathies   as  

“myocardial  diseases  of  unknown  cause”  [2].  He  described  three  different  

entities,  namely   “dilated,  hypertrophic  and   restrictive”,   terms  which  are  

1.  Introduction:  tales  of  the  unexpected  

6  

 

still  in  use  today.  However,  only  in  the  70s  and  80s,  following  the  advent  

of  non-­‐invasive   imaging,  such  as  M-­‐mode  and  2D  echocardiography,   the  

true   frequency   and   spectrum   and   of   cardiomyopathies   began   to   be  

recognized.   In  an  attempt  to  provide  a  practical  framework  for  clinicians  

involved   in   the   care   of   these   patients,   the   first   classification   of  

cardiomyopathies   was   published   in   1980,   by   the   World   Health  

Organization   (WHO)   and   International   Society   and   Federation   of  

Cardiology   (ISFC),   and   included   the   three  entities  proposed  by  Goodwin  

[3].   The   definition   of   “myocardial   diseases   of   unknown   cause”   was  

maintained   to   define   cardiomyopathies,   as   opposed   to   “specific   heart  

muscle  diseases”,  comprising  heart  diseases  with  similar  phenotypes,  but  

due  to  an  identifiable  cause.    

In   the   last   30   years,   progress   in   imaging   techniques   and   intensive  

genetic   investigation   have   produced   major   advancements   in   our  

understanding   of   the   causes   and   manifestations   of   cardiomyopathies    

[4,5],   and   new   nosologic   entities   have   been   described.     This   led   to   the  

new   revision   of   the   classification,   carried   out   in   1996   by   the  WHO   and  

ISFC  [6].  Representing  a  major  advancement,  both  “arrhythmogenic  right  

ventricular   dysplasia”   (with   the   inappropriate   term   “dysplasia”   later  

changed   to   “cardiomyopathy”)   and   a   group   of   “unclassified  

cardiomyopathies'',  defined  as  “those  that  do  not  fit  in  any  group”,  were  

added  to  the  three  original  subgroups.  The  definition  of  cardiomyopathy  

was  changed  to  “diseases  of  the  myocardium  associated  with  myocardial  

dysfunction”.   Moreover,   three   additional   subgroups   termed  

“hypertensive”,   “valvular”   and   “ischemic”   cardiomyopathies   were   -­‐  

confusingly   -­‐   added   to   the   group   of   “specific   heart  muscle   diseases”   in  

order   to   resolve   a   terminology   controversy   between   US   and   European  

experts  [6].  These  were  defined  as  cardiac  conditions  characterized  by  the  

1.  Introduction:  tales  of  the  unexpected  

7  

 

presence  of  hypertension,  coronary  or  valvular  disease,   in  a  degree  that  

would   not   explain   the   magnitude   of   LV   dysfunction   observed.  

Nevertheless,  a  substantial  difference  in  terminology  persisted  on  the  two  

sides  of  the  Atlantic,  reflecting  the  refusal  of  these  fine  distinctions  by  US  

experts  [7].  

In  2006,  an  American  Historical  Association   (AHA)  panel  of  experts  

published  a  scientific  statement  on  the  “Contemporary  classification  and  

definitions  of  Cardiomyopathies”  [7].  They  proposed  a  novel  approach,  by  

which   the   etiology,   rather   than   the   phenotype,   was   used   as   the   main  

criterion.   “Primary”   cardiomyopathies   were   defined   as   those   “involving  

only   the   heart”,   as   opposed   to   the   “secondary”.   Primary  

cardiomyopathies   for   the   first   time  also   included  “ion  channel  diseases”  

and   were   differentiated   in   three   subgroups   based   on   their   etiology   as  

“genetic,  mixed  and  acquired”  [Figure  1.1-­‐1].    

 

Figure  1.1-­‐1:  American  Heart  Association  classification  of  the  cardiomyopathies    (2006)  

1.  Introduction:  tales  of  the  unexpected  

8  

 

Of  note,  the  term  “primary”  was  used  to  describe  diseases  in  which  

the  heart  is  the  sole  or  predominantly  involved  organ,  while  “secondary”  

described  diseases   in  which  myocardial  dysfunction   is  part  of  a  systemic  

disorder   [5].   However,   the   challenge   of   distinguishing   primary   and  

secondary   disorders   is   illustrated   by   the   fact   that  many   of   the   diseases  

classified   as   primary   cardiomyopathies   can   be   associated   with   major  

extra-­‐cardiac   manifestations;   conversely,   pathology   in   many   of   the  

diseases   classed   as   secondary   cardiomyopathies   can   predominantly   (or  

exclusively)  involve  the  heart.    

The  radical  shift  from  a  phenotypic  to  an  etiological  classification,  as  

well   as   the   inclusion   of   ion   channel   diseases   among   cardiomyopathies,  

although  proposed   for   research   rather   than   clinical   purposes,   sparked  a  

passionate  transatlantic  debate,  culminating  in  a  thorough  re-­‐visitation  of  

the   original   1995   classification   by   the   European   Society   of   Cardiology  

(ESC)  Working  Group  on  Myocardial  and  Pericardial  diseases,  in  2008  [8].  

Intrinsically  faithful  to  the  concept  of  classifying  cardiomyopathies  based  

on  phenotype,   the   2008   European   classification  maintained  each  of   the  

time-­‐honoured  categories   including  dilated,  hypertrophic,  restrictive  and  

arrhythmogenic   right   ventricular   cardiomyopathy.   The   confusing  

“hypertensive'',   “valvular''   and   “ischemic''   categories   were   removed.   In  

the   “unclassified”   subgroup,   “Left   Ventricular   Non-­‐compaction”   and  

“Tako-­‐Tsubo”   cardiomyopathy   made   their   official   debut   [Figure   1.1-­‐2].  

Conversely,   ion   channel   diseases   were   excluded,   despite   their   genetic  

nature,   in   view   of   their   lack   of   a   structural   cardiac   phenotype.     Each  

cardiomyopathy   subtype   was   subdivided   in   a   familial   and   non-­‐familial  

subset,   and,   to   replace   the   pre-­‐genetic   era   concept   of   “unknown  

etiology”,  a  list  of  potential  genetic  and  non-­‐genetic  causes  was  provided  

[Tables  1  to  5].    

1.  Introduction:  tales  of  the  unexpected  

9  

 

 

 

Figure  1.1-­‐2:  ESC  classification  of  the  cardiomyopathies  (2008)  

 

Table  1  to  table  5:  Genetic  and  non-­‐genetic  causes  of  cardiomyopathies  

 

1.  Introduction:  tales  of  the  unexpected  

10  

 

 

 

 

   

1.  Introduction:  tales  of  the  unexpected  

11  

 

The  precise  identification  of  the  disease  etiology  has  obvious  clinical  

implications,   by   virtue   of   its   direct   impact   to   totally   different  

management.   For   example,   amyloidosis,   Anderson   Fabry   diseases   and  

glycogen   storage   diseases   may   be   diagnosed   as   hypertrophic  

cardiomyopathy   (HCM);   yet   their   treatment   varies   widely.   Of   note,   the  

inclusion   of   amyloidosis   in   this   classification   was   widely   debated   [9].  

Substantial   doubts   also   regarded   Takotsubo,   a   disease   that   is   generally  

transient,  has  no  proven   inherited  cause,  and  appear  related  to  regional  

myocardial   hypoperfusion   rather   than   to   heart   muscle   abnormalities.  

Ultimately,  both  were  included  as  this  was  felt  to  be  conceptually  useful  

in  clinical  practice.    

To  follow  is  a  brief  overlook  of  the  major  cardiomyopathies  subtypes,  

based  on  contemporary  definitions.    

 

1.1.1   Hypertrophic  Cardiomyopathy  

HCM   is   a   genetic   disease   characterized   by   unexplained   LV  

hypertrophy,   associated   with   non-­‐dilated   ventricular   chambers,   in   the  

absence  of  another  cardiac  or  systemic  disease  capable  of  producing  that  

degree  of  hypertrophy  [Figure  1.1-­‐3].  HCM  is  diagnosed  by  a  maximal  LV  

wall  thickness  greater  than  15  mm,  based  on  echocardiography  (Echo)  or  

cardiac  magnetic   resonance   (CMR)   [10].   This   value   is   lowered   to   13-­‐14  

mm,   when   family   members   are   screened.   In   children,   a   wall   thickness  

greater   than   2   standard   deviations   (SD)   for   age,   sex   or   body   size   is  

considered  diagnostic.    

1.  Introduction:  tales  of  the  unexpected  

12  

 

 Figure  1.1-­‐3:  Figure  3.  Hypertrophic  cardiomyopathy.    

Echocardiographic   and   cardiac   magnetic   resonance   images   from   a   17-­‐  year  old  female  patient  with  HCM.  Parasternal   long  and  short  axis  views  show   severe   LV   thickness   values   (max   LV   wall   thickness   31   mm),   with  redundant  mitral  leaflets  (panels  A,  B  and  D)  and  small  cavity  size.  Apical  4   chambers   views   show   massive   hypertrophy   of   the   septum   and   the  antero-­‐lateral   wall   (panels   C   and   E).   Images   of   late   gadolinium  enhancement  showing   limited  and  nontransmural  area  of   fibrosis  of   the  IVS  (panel  F:  black  arrow).    

 

The   distribution   of   hypertrophy   is   usually   asymmetric   and  

sometimes   confined   to   one   or   two   LV   segments.   As   a   consequence,   LV  

mass   (measured   by   CMR)   can   be   within   the   normal   range.   LV   outflow  

tract   obstruction   is   an   important   feature   of   HCM,   and   may   be  

demonstrated   in   up   to   70%  patients   [11].  Overall,   the   clinical   course   of  

patients  with  HCM   is   relatively  benign,  with  an  annual  mortality   rate  of  

about  1%.  Contrary  to  prior  perceptions,  the  risk  of  sudden  cardiac  death  

is   relatively   low   [12],  although  still  a  major  concern   in  young   individuals  

and  athletes.   Furthermore,   about  half   of   patients   show   some  degree  of  

disease  progression  and  functional  limitation,  with  a  small  but  significant  

subset   of   about   5%   developing   the   so-­‐called   end-­‐stage   HCM.   Family  

1.  Introduction:  tales  of  the  unexpected  

13  

 

screenings,   following   the   introduction   of   genetic   testing,   has   led   to   the  

identification   of   genotype-­‐positive/phenotype-­‐negative   individuals,   a  

novel  category  within  the  HCM  spectrum,  characterized  by  absence  of  LV  

hypertrophy,  assessed  by  ECG  and  ECHO  [10].  

Sarcomeric   gene   mutations,   often   private,   are   the   most   frequent  

cause   of   HCM,   accounting   for   approximately   30-­‐65%   of   probands   in  

different   cohorts   [13].   In   the   remaining   subset   the   genetic   substrate   is  

unknown.   Furthermore,   a   small   proportion   of   patients   with   the   HCM  

phenotype  are  affected  by  cardiofacial  syndromes  (e.g.  Noonan,  LEOPARD,  

Costello),  neuromuscular  diseases  (e.g.  Frederich's  ataxia),  mitochondrial  

diseases   [14],   metabolic   disorders   of   lysosomal   storage   diseases   (i.e.  

Fabry,  Pompe,  Danon)  [15].  These  rare  conditions  sometimes  exhibit  an  X-­‐

linked  rather  than  the  autosomal  pattern  of  inheritance,  usually  observed  

in  HCM  [Table  1].  

 

1.1.2   Dilated  cardiomyopathy  

DCM  is  characterized  by  LV  dilatation  and  global  systolic  dysfunction  

(EF  <  50%),  in  the  absence  of  coronary  artery  disease  or  other  identifiable  

causes  (such  as  systemic  hypertension,  valve  disease,  drugs,  inflammatory  

heart  diseases)   capable  of   causing   that  magnitude  of   impairment   [Table  

2].   In   familial   DCM,   screening   of   first-­‐degree   relatives   will   identify   the  

disease   in   up   to   50%   [16].   As   for   many   other   cardiomyopathies,   the  

prevalence  of  DCM  is  underestimated,  because  many  patients  may  have  a  

subclinical  form  of  the  disease,  which  may  be  difficult  to  diagnose  for  the  

lack   of   symptoms.   Familial   and   sporadic   forms   of   DCM   have   similar  

morphological  manifestation  and  clinical  course  [Figure  1.1-­‐4].    

1.  Introduction:  tales  of  the  unexpected  

14  

 

However  some  gene  mutations,  such  as  Lamin  A/C  seem  to  carry  a  

more  adverse  outcome,  in  particular  for  sudden  death      [17-­‐19].  DCM  is  a  

progressive  disease,  with  a  prognosis  that,  although  improved  in  the  last  

decades,   is   usually   poor   due   to   heart   failure,   atrial   and   ventricular  

arrhythmias,   stroke   and   sudden   death   [20].   In   patients   with   refractory  

heart  failure,  heart  transplant  represent  the  final  option.  The  low  yield  of  

genetic  testing  for  DCM  (i.e.  30%)  limits  its  clinical  use  and  it  is  related  to  

the   large   number   of   potentially   disease-­‐causing   genes.   Furthermore,  

genetic   mutations   are   usually   private   and   the   interpretation   of   the  

analysis   results   may   be   difficult   [16].   However,   the   advent   of   new  

sequencing  technologies   is  probably  going  to  change  this  paradox   in  the  

near  future  (see  chapter  2).    

1.  Introduction:  tales  of  the  unexpected  

15  

 

 

Figure  1.1-­‐4:  Dilated  cardiomyopathy  

Echocardiographic   and   cardiac   magnetic   resonance   images   from   a   57-­‐year   old   female   patient   with   DCM   and   normal   coronary   angiogram.  Parasternal   long  axis  view  and  CMR   images  show  dilated  LV   (panels  A-­‐B  and  E-­‐F),  with  severe  systolic  dysfunction  –  EF  =  21%;  (panel  C  =  diastole,  panel  D  =  systole).  Abbreviations:  LV  =   left  ventricle,  RV  =  right  ventricle  IVS  =  inter-­‐ventricular  septum.  

   

 

1.  Introduction:  tales  of  the  unexpected  

16  

 

1.1.3   Restrictive  cardiomyopathy  

RCM  is  defined  by  the  presence  of  a  restrictive  LV  physiology,  with  

normal   or   more   often   reduced   diastolic/systolic   volumes,   normal   wall  

thickness   and   systolic   function,   marked   diastolic   flow   impairment   and  

biatrial  dilatation.  RCMs  are  rather  uncommon,  although  their  prevalence  

is   still   unknown.   Either   Amyloid   Light-­‐chain   (AL)   amyloidosis   or  

amyloidosis  due  to  transthyretin  gene  mutations  with  heart  involvement,  

often   cause   RCM   [Table   3]   [9].   A   striking   subtype   of   disease   with  

restrictive   physiology,   endomyocardial   fibrosis,   endemic   in   areas   of   the  

African  continent,  has  an  unknown  etiology  and  very  poor  prognosis  [21].  

Moreover  a  “restrictive  phenotype”  may  be  part  of  the  clinical  spectrum  

of  end-­‐stage  HCM  [22],  and  may  occasionally  originate  as  a  primary,  non  

HCM-­‐related  phenotype  from  sarcomere  gene  mutations  (generally  in  the  

thin   filament   protein   coding   genes   –   see   chapter   2).   RCM   is   usually  

associated   with   severe   functional   limitation,   mainly   related   to   the  

extreme   diastolic   dysfunction,   with   reduced   diastolic   filling   and   stroke  

volume,  and  a  poor  prognosis  [23].  

 

1.1.4   Arrhythmogenic  right  ventricular  cardiomyopathy  

ARVC   is   characterized   by   fibro-­‐fatty   replacement   of   the   right  

ventricular   myocardium   and   ventricular   arrhythmias   [24].   In   the   most  

common   right-­‐dominant   form,   structural   changes   may   be   absent   or  

confined   to   a   localized   region   of   the   right   ventricle   (inflow   and  outflow  

tract,   right   ventricular   apex,   known   as   the   `triangle   of   dysplasia')   at   an  

early   stage   [Figure   1.1-­‐5].   Progression   to   more   diffuse   right   ventricular  

disease  and  LV  involvement  (typically  affecting  the  posterior  lateral  wall),  

associated  with  ventricular  systolic  dysfunction,  is  common  at  later  stages  

[25].  Ventricular  arrhythmias  are  the  clinical  hallmark  of  the  disease,  but  

1.  Introduction:  tales  of  the  unexpected  

17  

 

atrial   fibrillation   may   also   occur.   The   diagnosis   of   ARVC   is   often  

challenging  for  the  cardiologist,   in  particular  during  the  early  “concealed  

phase”,   when   individuals   are   still   asymptomatic   and   structural  

abnormalities   are   subtle.   Predominant   LV   disease   has   also   been  

recognized   in   a   small   subset   of   patients   of   about   5%.   New   diagnostic  

criteria   with   higher   sensitivity   and   specificity   have   recently   been  

published   [24,26].   ARVC   is   generally   a   familial   disease   with   autosomal  

dominant   inheritance   but   it   may   be   recessive   when   associated   with  

woolly  hair  and  palmopalmar  hyperkeratosis  (eg,  Naxos  disease,  Carvajal  

syndrome).  Mutations   in   desmosomal   and  non-­‐desmosomal   genes  have  

been   identified,   but   interpretation   of   their   pathogenicity   is   often  

challenging  in  the  affected  individual  [Table  4].  

 Figure  1.1-­‐5:  Arrhythmogenic  cardiomyopathy  

38   year-­‐old   female   with   diagnosis   of   ARVC,   resuscitated   from   out-­‐of-­‐hospital   cardiac   arrest.   She   has   family   history   of   ARVC   (mother)   and  sudden   death   (brother,   28   year   old).   CMR   images   show   clearly   wall  aneurysms  within   the   so-­‐called   ``triangle   of   dysplasia’’   (panel   AC,  white  arrows:   evident   systolic   bulging   in   infundibular,   apical,   and   subtricuspid  regions  of  the  RV).  She  also  had  LV  involvement  (apex).    

1.  Introduction:  tales  of  the  unexpected  

18  

 

Abbreviations:   LV   =   left   ventricle,   RV   =   right   ventricle,   IVS=  interventricular  septum.  

 

1.1.5   Unclassified  cardiomyopathies  

Isolated  LV  non-­‐compaction  (LVNC)  is  characterized  by  prominent  LV  

trabeculae   and   deep   inter-­‐trabecular   recesses,   that   can   be   associated  

with  LV  dilatation  and  systolic  dysfunction  [Figure  1.1-­‐6].    

 

Figure  1.1-­‐6:  Left  ventricular  non  compaction  

Isolated  left  ventricular  non-­‐compaction  in  a  45  year-­‐old  male,  with  mild  systolic   dysfunction   (EF   48%),   ventricular   arrhythmias   and   normal   LV  diameters.  Multiple   trabeculations  and  recesses  are  evident,  particularly  

1.  Introduction:  tales  of  the  unexpected  

19  

 

in  the  apex  and  the  free  wall  of  the  LV  (panels  A  and  C:  apical  4  chambers  view;   panels   B   and   D:   apical   3   chambers   view).   CMR   confirmed   the  diagnosis   (panels   E-­‐F).   Abbreviations:   LV=   left     ventricle,   RV   =   right  ventricle  IVS  =  inter-­‐ventricular  septum.  

LVNC   is   familial,   with   25%   of   asymptomatic   first-­‐degree   relatives  

having   some   echocardiographic   abnormalities   [Table   5].   Of   note,   this  

rather   mysterious   disease   shows   substantial   phenotypic   overlap   with  

other  cardiomyopathies  (in  particular  HCM  and  DCM,  which  often  exhibit  

limited   areas   of   non-­‐compaction   in   the   left   ventricle),   as   well   as   a  

common   genetic   substrate   [8].   Furthermore,   LVNC   may   be   associated  

with  congenital  cardiac  disorders   (such  as  Ebstein's  anomaly  or  complex  

cyanotic  heart  disease)  and  some  neuromuscular  diseases.  Therefore,  it  is  

still   debated   whether   isolated   LVNC   should   be   considered   a   separate  

clinical   and   genetic   entity,   or   a   morphological   trait   shared   by   many  

distinct   cardiomyopathies.   As   a   result   of   the   difficult   comprehension   of  

this   clinical   entity,   the   real   prevalence  of   LVNC  and   its   outcome   remain  

largely  unknown.  

Takotsubo   cardiomyopathy,   also   known   as   LV   apical   ballooning   or  

stress-­‐induced   cardiomyopathy,   is   characterized   by   transient   regional  

systolic   dysfunction   involving   the   apex   and/or   mid-­‐ventricle   in   the  

absence   of   obstructive   coronary   artery   disease   on   angiogram   [8].   The  

condition  is  reported  all  over  the  world,  and  most  reported  cases  occur  in  

post-­‐menopausal  women  following  physical  or  psychological  stress,  but  it  

has   been   described   also   in   patients   with   intracranial   haemorrhage   or  

other   acute   cerebral   accidents   (so-­‐called   “neurogenic   myocardial  

stunning”).  Typically,  takotsubo  cardiomyopathy  has  a  sudden  onset,  with  

chest  pain,  diffuse  T-­‐wave   inversion  and  mild   cardiac  enzyme  elevation.  

Symptoms   are   often   preceded   by   emotional   or   physical   stress.   If   the  

patient   survives   the   acute   phase   of   disease,   the   prognosis   is   almost  

1.  Introduction:  tales  of  the  unexpected  

20  

 

invariably  favourable,  with  a  normalization  of  LV  function  over  a  period  of  

days  to  weeks;  recurrence  is  possible,  but  rare.  

 

1.1.6   A  never-­‐ending  story  

As   more   families   with   cardiomyopathies   are   genotyped,   and   new  

diseases   are   being   described,   the   paradigm   “one   gene,   one   disease”  

appears  no  longer  sustainable.  The  same  mutation  can  be  expressed  at  a  

different   age   and   give   rise   to   hugely   different   phenotypes   within   the  

same  family.  Different  phenotype  patterns  may  originate  from  the  same  

genetic   substrates,   in   a   spectrum   encompassing   HCM,   DCM,   RCM   and  

LVNC   (all   associated   with   sarcomere   genes),   or   ARVC/DCM   (associated  

with   desmosomal   genes).   Such   heterogeneity   is   thought   to   derive   from  

the   interaction  between  one  or  more  genetic  mutations,  modifier  genes  

and   environmental   factors   [10].   When   genetic   analysis   is   performed   in  

candidate   genes,   the   probability   of   identifying   the   pathogenic   gene  

mutation   is   in   the   range   of   40   60%,   for   patients   with   HCM,   with  

approximately   5%   of   complex   mutations   [11,12].   Results   for   dilated  

cardiomyopathy  (DCM),  restrictive  cardiomyopathy  (RCM)  and  isolated  LV  

non-­‐compaction   are   considerably   less   rewarding   [10],   although   the  

advent   of   next   generation,   genome-­‐wide   techniques   may   increase   the  

yield   substantially,   as   recent   data   on   titin   in   DCM   suggests   [27].   The  

recent   introduction   of   next   generation   sequencing   has   started   what  

promises  to  be  a  revolution   in  molecular  diagnostics,  allowing  rapid  and  

affordable   testing  of  hundreds  of  genes,  or  even  whole  genomes.  As  an  

example,   a   wide   range   of   truncating   gene   mutations   encoding   Titin,   a  

very   large  cytoskeleton  gene  which  could  not  be  assessed  by   traditional  

sequencing   techniques,   has   recently   been   discovered   to   represent   a  

prevalent  cause  of   familial  DCM,  up  to  25%  [27].   In   the  near   future,   the  

1.  Introduction:  tales  of  the  unexpected  

21  

 

list  of   causative  genes  will   therefore   likely   require  an  update.  The   focus  

for   researchers   will   necessarily   shift   from   analyzing   single   mutations   in  

candidate   genes,   to   interpreting   the   hundreds   of   variants   of   unknown  

significance   in   putative   causative   as   well   as   modifier   genes,   requiring  

entirely   new   skills   and   significant   interaction   with   biophysicists   and  

computer  scientists.    

At   present,   and   in   the   foreseeable   future,   however,   clinical  

classifications   of   cardiomyopathies   based   on   clinical   presentation   and  

morphological  criteria  represent  an  important  tool  for  clinicians  involved  

with  these  complex  diseases.  While  calling  for  constant  improvement  and  

update   in   the   light  of  advances  provided  by   imaging,   genetics  and  basic  

science,   individual  patient  phenotypes  continue  to  represent  the  core  of  

any   classification   in   clinical   medicine,   something   that   has   not   changed  

with  time.  

 

 

   

1.  Introduction:  tales  of  the  unexpected  

22  

 

1.2   A   thousand   conditions   with   a   lot   in   common.  

Translational   overview   supporting   a   comprehensive  

approach  to  primary  diseases  of  the  myocardium.  

 

The  pathophysiology  of  cardiomyopathies  is  extraordinarily  complex  

and  encompasses  a  constellation  of  different  mechanisms,  most  of  which  

at  present  unresolved.  Even  when  the  disease  model  is  narrowly  defined  

and   recognizes   a   well-­‐defined   etiology,   such   as   a   gene   mutation,   the  

processes   leading   to   the   phenotypic   manifestations   are   largely   beyond  

our  current  understanding.  For  example,  early  hopes  of  establishing  strict  

genotype-­‐phenotype  correlations  in  HCM,  probably  the  most  extensively  

studied  disease  in  this  group,  have  definitely  been  abandoned.  Even  when  

the   link   between   mutations   and   myocardial   damage   is   relatively  

understood,   as   in   Anderson   Fabry   disease,   the   reasons   of   clinical  

heterogeneity   observed   even   among   individuals   from   the   same   family  

remain  obscure.   It   is  now  well  established  that  the  same  genes  can  give  

rise   to   radically   different   phenotypic   and   clinical   manifestations   and   –  

conversely   –   that   the   same   phenotype   can   be   caused   by   mutations   in  

different   genes.   In   other   words,   gene  mutations   are   necessary   but   not  

sufficient  to  cause  clinical  phenotypes,  and  what  comes  in  between  is  at  

least   as   important   as   the   etiology   itself.   In   what   may   seem   like   an  

inextricable   labyrinth,   however,   a   number   of   general  mechanisms   seem  

to  represent  common  pathophysiologic  determinants  of  cardiomyopathy  

phenotypes.  While  not   specifically   related   to   the  disease  etiology,   these  

features  represent  shared  pathways  by  which  the  disease  becomes  overt  

and   leads   to   its   clinical   consequences;   in   some   cases   they   represent  

features  are  common  with  heart  failure  due  to  any  cause.  Any  attempt  to  

comprehensively  cover  this  field  goes,  is  would  be  too  ambitious.    

1.  Introduction:  tales  of  the  unexpected  

23  

 

What  follows  is  an  overview  of  some  of  the  most  intriguing  elements  

characterizing   cardiomyopathy   pathophysiology,   representing   both   keys  

to   further   understanding   of   the   “core”   of   heart   muscle   disease,   and  

potential  targets  for  treatment.  

 

1.2.1   Genetic  and  post-­‐transcriptional  mechanisms  

The   variable,   often   age   related,   penetrance   and   variable   disease  

expression  suggest  that  the  effects  of  cardiomyopathy-­‐causing  mutations  

are  modifiable   both   by  modifier   genes   and   environmental   factors   [28].  

Mutations  generally  cause  single  amino-­‐acid  substitutions  in  proteins  that  

become   incorporated   into   the   sarcomere   and   exert   their   pathological  

effects  by  acting  as  poison  peptides  that  alter  normal  sarcomere  function  

in   a   concentration   dependent   manner.   Thus,   homozygous   mutations,  

multiple  mutations,   and   compound   genotypes   (2   or  more  mutations   in  

multiple   genes)   often   result   into   earlier   presentation   and   rapid   disease  

progression       [29-­‐31]:   this   has   been   shown   for   HCM,   ARVC   and   ion  

channel  disease.  An  exception  to  this  rule  are  most  MYBPC3  mutations  in  

HCM,  that  result  in  insufficient  protein  production  for  normal  sarcomere  

function   (haploinsufficiency)       [32-­‐33].   Haploinsufficiency   can   be  

attributed  to  cell  surveillance  mechanisms,   including  nonsense-­‐mediated  

decay   of   mRNA   transcripts   that   contain   premature   termination   codons  

and/or   ubiquitin-­‐mediated   proteasomal   (UPS)   degradation   of  misfolded  

proteins.  It  remains  to  be  demonstrated  whether  impairment  of  UPS  due  

to  excess  degradation  of  mutant  proteins  may  trigger  phenotypic  onset  or  

contribute   to  disease  progression     [34].   In  addition,  differential   levels  of  

activity   in   these   cell   surveillance   mechanisms   may   explain   individual  

heterogeneity   in   phenotype,   eg   within   families   with   the   same   genetic  

mutation.   Finally,   MicroRNAs   (miRNAs)   are   small   conserved   RNA  

1.  Introduction:  tales  of  the  unexpected  

24  

 

molecules   nucleotides   which   negatively   modulate   gene   expression   in  

animals   and   plants.  MiRNAs   are   involved   in   a   variety   of   basic   biological  

processes,   for   example,   cell   proliferation   and   apoptosis   and   stress  

responses.  A  subset  of  miRNAs  are  either  specifically  or  highly  expressed  

in   cardiac   muscle,   providing   an   opportunity   to   understand   how   gene  

expression  is  controlled  by  miRNAs  at  the  post-­‐transcriptional  level  in  this  

muscle  type.  miR-­‐1,  miR-­‐133,  miR-­‐206,  and  miR-­‐208  have  been  found  to  

be   muscle-­‐specific,   and   thus   have   been   called   myomiRs;   among   their  

functions,   they   have   been   shown   to   regulate   cardiac   development   and  

differentiation.   MiRNAs   are   thought   to   play   an   important   role   in  

modulating   the   development   of   phenotype   in   patients   with  

cardiomyopathies.   For   example,   in   vivo   miR-­‐133   levels   are   down-­‐

modulated  in  patients  with  HCM,  and  other  MiRNAs  have  been  implicated  

in  the  regulation  of  cardiac  hypertrophy    [35].  Therefore,  both  the  initial  

genetic  burden  and  post-­‐transcriptional  mechanisms  seem  to  significantly  

impact  the  development  of  cardiomyopathies.    

 

1.2.2   Abnormal  calcium  homeostasis  

Most   models   of   heart   failure,   including   human   disease,   are  

characterized   by   decreased   SR   Ca2+-­‐   ATPase   (SERCA)   expression   and  

upregulation   of   Na+/Ca2+   exchanger   (NCX)   expression   and   function.  

Decreased   SERCA   activity,   by   slowing   down   Ca2+   reuptake   to   the  

sarcoplasmic   reticulum,   allows  more   Ca2+   to   be   extruded   via   the   NCX;  

coupled  with  the  increased  NCX  expression    [36]  this  results  in  a  net  loss  

of   cell   Ca2+   and   contributes   to   the   reduction  of   sarcoplasmic   reticulum  

Ca2+   load   [37].  Another   contributor   to   the   lower  Ca2+   content   in  heart  

failure   is   the   increased   diastolic   leakage   of   Ca2+   from   the   sarcoplasmic  

reticulum,  which  is  determined  by  the  hyperphosphorylation  of  ryanodine  

1.  Introduction:  tales  of  the  unexpected  

25  

 

receptors  by  protein-­‐kinase  A  and/or  Ca2+-­‐Calmodulin  dependent  protein  

kinase-­‐II   (CaMKII)   [38].   CaMKII   activity   is   increased   in   HF,   and   CaMKII-­‐

dependent   phosphorylation   of   RyR   enhances   Ca2+   spark   frequency   and  

thus  spontaneous  diastolic  sarcoplasmic  reticulum  Ca2+  leak  [39],  making  

it   a   leading   pathway   causing   contractile   dysfunction   and  

arrhythmogenesis   in   HF.   Enhanced   NCX   function,   combined   with   the  

higher   probability   of   spontaneous   Ca2+   release   from   the   SR,   contribute  

directly   to   arrhythmogenesis   via   delayed-­‐afterdepolarizations   (DADs).  

When   a   large   spontaneous   Ca2+   release   event   occurs   during   diastole  

giving   rise   to   a   generalized   Ca2+   wave,   part   of   the   released   Ca2+   is  

extruded   through   the   NCX,   which   generates   an   inward   current   that  

depolarizes  the  membrane  (i.e.  a  DAD).  If  large  enough,  a  DAD  may  reach  

the   threshold   for   a   premature  AP,   giving   rise   to   a   premature   activation  

that   can   propagate   through   the   myocardium,   triggering   sustained  

arrhythmias.  Thus,  abnormal  calcium  homeostasis   is  a  main  determinant  

of  several  manifestations  that  are  common  to  several  cardiomyopathies,  

including   diastolic   dysfunction   (due   to   the   excess   residual   cytoplasmic  

Ca2+  at  the  end  of  systole),  impaired  energetics,  myocardial  ischemia  and  

arrhythmgenesis.  This  has  been  specifically  shown  in  models  and  human  

tissue  with  HCM,  for  example.    

 

1.2.3   Lack  of  energetic  sustainability    

Primary   myocardial   disease   is   often   characterized   by   abnormal  

energy   generation   and/or   consumption.   In   rare   diseases,   such   as  

cardiomyopathies   associated   with  mitochondrial   disease,   this   feature   is  

taken   to   the   extreme.   However,   varying   levels   of   energetic   impairment  

can   be   found   in   virtually   all   models.   Notably,   this   is   not   always   due   to  

insufficient   energy   generation;   in   HCM   for   example,   disease   causing  

1.  Introduction:  tales  of  the  unexpected  

26  

 

mutations   are   often   gain-­‐of-­‐function,   and   lead   to   sarcomere   energetic  

inefficiency,   due   to   the   excess   ATP   utilization   required   to   generate  

isometric   tension     [40,   41],   which   may   ultimately   compromise   overall  

cardiomyocyte   energetic   balance     [42].   Energy   deficiency   would   be  

expected  to  reduce  the  activity  of  membrane-­‐bound  energy-­‐requiring  ion  

transporters,   potentially   triggering   arrhythmias   and   contributing   to  

diastolic   dysfunction,   and   to   decrease   contractile   reserve.   In   addition,  

cardiomyocyte   energetic   compromise  might   contribute   to   generation  of  

pathologic   hypertrophy   (and   potentially   adverse   remodeling)   as   a  

consequence   of   intracellular   energy   sensor   activation   [4].   In   addition,  

residual,   force-­‐generating,   ATP-­‐consuming   acto-­‐myosin   interactions  

during   diastole   lead   to   incomplete   relaxation   and   directly   contribute   to  

diastolic  dysfunction  while   increasing  the  energetic  compromise  of  HCM  

myocytes.   Sarcomeres   and   their   Z-­‐disk   components   are  now   recognized  

centers  of  mechano-­‐sensation,  -­‐transmission  and  -­‐transduction      [43,  44].  

Cardiac   stress   leads   to  mechanical   and   chemical   signals   which   remodel  

sarcomeres  and  either  offset  or  exacerbate   the   stress.   In  HCM  patients,  

altered   sarcomere  mechanics  due   to   faster   kinetics  of   force   generation,  

hypercontractility  or   incomplete   relaxation  may   trigger  hypertrophy  and  

adverse   remodeling.   That   this   may   represent   an   important   primary  

mechanism   is  supported  by  the  HCM-­‐causing  role  of  mutations   in  genes  

encoding   Z-­‐disk   proteins     [45].   In   the   long   term,   reduced   energy  

production   or   inefficient   utilization   may   become   non-­‐sustainable,   and  

directly   contribute   to   a   vicious   cycle   of   worsening   cardiomyocyte  

dysfunction,   increased   LV   wall   stress,   increased   oxygen   demand   and  

further   energetic   mismatch,   leading   to   disease   progression   and   heart  

failure.    

 

1.  Introduction:  tales  of  the  unexpected  

27  

 

1.2.4   Electrophysiological  remodeling  

The  fact  that  cardiomyopathies  may  express  an  electrophysiological,  

as   well   as   structural,   cellular   phenotype   has   only   recently   been  

appreciated.   While   clinicians   have   always   known   the   surface   ECG  

manifestations  associated  with  each  disease,   these  have  classically  been  

attributed   to   macroscopic   abnormalities   of   the   heart   such   as   disarray,  

strain,  hypertrophy  and  necrosis.  However,  it  is  now  evident  that  some  of  

these   manifestations   (such   as   QT   prolongation)   and   even   the  

arrhythmogenic   potential   associated  with   primary   heart  muscle   disease  

may  originate  at  the  level  of  the  cardiomyocyte  sarcolemma.  Among  the  

most  prominent  abnormalities  are  alterations  of   late  Na+  current   in  HF.  

Increased  [Na+]i   in  HF  may  be  due  to   increased  Na+   influx  or  decreased  

Na+   efflux.   Early   studies   suggested   that   an   excess   of   Na+   influx   is   the  

major  contributor  to  Na+  overload  and  the  main  source  of  the  increased  

Na+  entry  is  the  enhanced  “late”  or  “persistent”  Na+  current      [46,  47].  As  

explained  before,   a   component  of  Na+   current  with   slow  or   incomplete  

inactivation   can   be   measured   in   normal   human   and   animal   cardiac  

myocytes     [48].   However,   acquired   and   primary   cardiac   diseases   are  

commonly   characterized  by  abnormally   large   INaL.  Enhancement  of   late  

Na+   current   has   been   identified   in   HCM,   and   may   contribute   to   its  

pathogenesis.   In  addition,  besides  LQT3  syndrome,  which   is  directly  due  

to  Na+  channel  mutations  [49],  increase  INaL  was  found  as  a  consequence  

of  ankyrin  B  mutations  (LQT4  syndrome)  and  caveolin-­‐3  mutations  (LQT-­‐

CAV3)    [50,  51],  as  well  as  end  stage  heart  failure    [52,  53]  and  following  

myocardial   infarction   [54].   Increased   Ca2+   -­‐Calmodulin   and   calmodulin  

kinase   II   (CaMKII)   activity,   both   common   features   of   myocardial  

remodelling   in   HF,   have   been   shown   to   increase   INaL.   Recent   evidence  

identified   CaMKII-­‐mediated   phosphorylation   of   cardiac   Na+   channels   at  

multiple   sites   is   the   main   regulator   of   Na+   channel   inactivation.   INaL  

1.  Introduction:  tales  of  the  unexpected  

28  

 

enhancement   is   associated   with   prolonged   repolarisation   causing   a  

remarkable  increase  in  action  potential  duration    [55,  56].  Atrial  potential  

prolongation   leads   to   reduced   repolarisation   reserve   and   therefore  

increased   incidence   of   early   afterdepolarizations   (EADs,   i.e.   premature  

depolarizations  occurring  during  the  plateau  phase)  and  potentially   fatal  

arrhythmias     [57].  All   these  conditions  are  all  characterized  by   increased  

susceptibility   to   perturbations   of   repolarization   (e.g.   drugs   blocking   K+  

currents   or   electrolyte   imbalances)   and   overall   increased   risk   of  

arrhythmias.      

 

1.2.5   Coronary  microvascular  dysfunction    

By  definition,  cardiomyopathies  are  characterized  by  the  absence  of  

acquired  or  congenital  coronary  artery  disease  at  the  epicardial  level.  Yet,  

a  quota  of  myocardial   ischemia  is  virtually  always  present.  This   is  due  to  

impairment   of   flow   reserve   at   the   microvascular   level   –   a   crucial  

determinant  of  myocardial  perfusion.  Coronary  microvascular  dysfunction  

has   been   demonstrated   in   diseases   ranging   from   HCM,   DCM,   ARVC   to  

Anderson   Fabry   disease           [58-­‐61].   In   most   studies,   impairment   of  

coronary   reserve   at   this   level   has   been   shown   to   have   profound  

prognostic   implications     [62].   Therefore,   whatever   the   mechanism(s)  

leading  to  microvascular  dysfunction,  the  latter  tends  to  take  center  stage  

and   determine   disease   progression   and   outcome   when   severe,  

representing   an   important   (and   unfortunately   yet   unattainable)  

therapeutic   target.   Mechanisms   may   be   several:   the   most   common   is  

non-­‐specific,   represented   by   extravascular   compression   of   the   small  

coronary   vessels   due   to   increased   LV   wall   tension   and   fibrosis     [63].  

However,   disease-­‐specific   mechanisms   exist,   such   as   endothelial  

1.  Introduction:  tales  of  the  unexpected  

29  

 

infiltration  in  storage  disease    (most  notably  Anderson-­‐Fabry  disease)  and  

microvascular  remodeling  in  HCM.    

In   HCM   patients,   microvascular   remodeling   is   a   striking   and  

consistent  feature  which  occurs  independent  of  hypertrophy,  appears  to  

be   genetically   regulated   [64],   and   may   initiate   as   early   as   during  

development   [65].   Abnormalities   include   marked   thickening   of   the  

intramural  coronary  arteriole  wall,  due  to  smooth  muscle  hyperplasia  and  

an   abundance   of   disorganized   elastic   fibres,   causing   deformation   and  

irregular  narrowing  of  the  vessel  lumen:  as  a  consequence,  their  capacity  

to   vasodilate   in   response   to   physiological   stimuli   is   markedly   impaired.  

Other  factors  contributing  to  microvascular  dysfunction,  such  as  disarray,  

reduced  capillary  density  and  increased  extravascular  compressive  forces,  

are  probably  active  in  the  most  hypertrophied  regions  of  the  myocardium.    

 

1.2.6   Fibrosis    

Marked   increase   in   the   extracellular   matrix   is   another   common  

theme  in  cardiomyopathy.  Collagen  synthesis  may  be  primarily  triggered  

by   altered   fibroblast   function   (eg   due   to   paracrine   or   neuroendocrine  

influences)  or  as  a  reparative  phenomenon  following  myocyte  loss    [66].        

Primary   (i.e.   non   ischemia-­‐mediated)   activation   of   profibrotic  

pathways   is   a   consistent   finding   in   patients  with   cardiomyopathies,   and  

has   been   demonstrated   even   in   the   pre-­‐clinical   phase     [67].   These  

pathways   are   associated   with   variable   levels   of   interstitial   fibrosis,   the  

clinical   relevance   of   which   remains   uncertain.   Of   note,   biomarkers   of  

collagen   synthesis   and   degradation   reflect   collagen   metabolism   and  

correlate   with   adverse   outcomes   in   hypertension,   heart   failure,   and  

myocardial   infarction.   In   HCM,   studies   of   the   links   relating   sarcomere  

1.  Introduction:  tales  of  the  unexpected  

30  

 

protein  mutations   to   the  mechanisms   that   regulate  vascular   remodeling  

and  fibrosis  are  likely  a  key  to  our  understanding  of  disease  progression.  

Recent   studies   have   suggested   that   some   phenotypic   expressions  

correlate   more   with   altered   function   of   fibroblasts   than   with   myocyte-­‐

related   pathology.   Animal   models   of   HCM   that   recapitulate   human  

disease   have   recently   shed   light   on   the   earliest   cellular   and   molecular  

responses   to   sarcomere-­‐gene   mutations   [68].   Cardiac   transcriptional  

profiling   in   young   mice   in   which   hypertrophy   has   not   yet   developed  

shows  activation  of  pathways  involved  in  fibrosis  and  collagen  deposition.  

These  studies   indicate  that  a  profibrotic  milieu   is  present  early   in  hearts  

with  HCM  even  when  cardiac  histologic  findings  are  normal.    

Replacement   fibrosis   is   discrete,   rather   than   interstitial,   may   be  

transmural   and   occupy   significant   proportions   of   the   left   and/or   right  

ventricle,  can  be  visualized  in  vivo  as  late  gadolinium  enhancement  (LGE)  

by  CMR,  and  is  generally  associated  with  systolic  dysfunction                    [69-­‐76].  

LGE   is   believed   to   largely   reflect   a   reparative   process   following  

microvascular  ischemia-­‐mediated  damage  –  i.e.  a  scar  [77].    

The   deposition   of   LGE   varies   according   to   the   specific   disease.   In  

HCM,   areas   of   LGE   have   typical   mid-­‐wall   localization   sparing   the  

subendocardial   region   [70-­‐76].   CMR   late   gadolinium   enhancement   is  

present  in  about  two-­‐thirds  of  HCM  patients,  varying  from  very  limited  to  

large,  confluent,   infarct-­‐like  patches  occupying  significant  proportions  of  

the   LV   [70,   74].   LGE   localizes   preferentially   to   the   most   hypertrophied  

regions  of  the  ventricle,  often  represented  by  the  basal  and  mid-­‐septum,  

and  are  more  often  found  in  patients  with  diffuse  and  severe  hypertrophy.  

Conversely,  LGE  is  often  absent  in  patients  with  mild  HCM  phenotype  and  

limited   extension   of   hypertrophy   [70,71].   LGE   is   inversely   related   to   LV  

systolic   function   in   HCM   patients,   and   that   those   individuals   who   have  

1.  Introduction:  tales  of  the  unexpected  

31  

 

reached   the   end-­‐stage   phase   of   the   disease,   characterized   by   overt  

systolic   dysfunction   and   LV   remodelling   with   progressive   wall   thinning,  

constantly   exhibit   large   and   often   transmural   areas   of   LGE,   which  may  

occupy  as  much  as  50%  of  the  whole  ventricular  mass    [78].  Furthermore,  

preliminary   evidence   points   to   LGE   areas   as   a   potential   substrate   of  

ventricular  arrhythmias  [69,  72].    

In   ARVC   patients,   phenotype,   although   genetically   determined,  

develops  postnatally  and  is  progressive  with  age,  initiated  by  necrotic  cell  

death,   which   subsequently   triggers   an   inflammatory   response   and  

massive   calcification   within   the   myocardium,   followed   later   by   injury  

repair  with  fibrous  tissue  replacement.  In  a  Desmoglein  2  mutant  mouse  

model,  necrosis  always  preceded  other  pathological  signs  of  disease,  such  

as   inflammation   and   calcification,   and   later   on,   fibrosis,   ventricular  

dilation,   and   aneurysm   formation.   Furthermore,   myocyte   necrosis  

originated   in   the   subepicardial   myocardium,   followed   by   a   wave-­‐front  

extension  toward  the  endocardium  [79].  This  wave-­‐front  phenomenon  of  

myocardial   atrophy   is   well   documented   in   human   ARVC,   both   by  

histopathologic   examinations   and   cardiac   magnetic   resonance   studies    

[80,  81].  

Both   reactive   (interstitial   and   perivascular)   and   reparative  

(replacement)  myocardial  fibrosis  (MF)  are  hallmarks  of  DCM        [82-­‐84].  In  

vivo   assessment   of   myocardial   fibrosis   by   CMR   in   DCM   patients   have  

shown   a   prevalence   of   significant   LGE   in   almost   50%,   with   mid-­‐wall  

distribution  and  typical  sparing  of  the  subendocardium  –  a  useful  marker  

to   rule   out   ischemic   dilated   cardiomyopathy.   Fibrosis   is   a   predictor   of  

outcome  and  reverse  remodeling  following  HF  therapy;  of  note,   it   is   less  

prevalent  in  DCM  caused  by  myocarditis,  in  which  LV  dysfunction  may  be  

reversible,  compared  to  genetic  DCM  [85].    

1.  Introduction:  tales  of  the  unexpected  

32  

 

 

1.2.7   Developmental  aspects  

At   birth,   patients   with   genetic   cardiomyopathies   generally   exhibit  

normal   hearts,   and   the   full-­‐fledged   phenotype   may   develop   at  

adolescence   or   during   adult   life;   pediatric   onset   is   rare   but   possible.    

When  the  phenotype  develops,  a  number  of  tissues  and  cell  types  that  do  

not   express   the   mutated   gene   are   found   to   actively   participate   in   the  

disease  process,   in  ways   that  are  hard   to  explain   simply  on   the  basis  of  

secondary,  bystander,  involvement.  To  date,  the  link  between  the  genetic  

defect   such  “extended”  phenotype   remains  elusive.  Among   the  possible  

explanation,   the  hypothesis  of  cardiomyopathies  as  cell   lineage  diseases  

has  emerged,  by  which  pre-­‐natal  mechanisms  directly  linked  to  the  causal  

gene   defect   acts   upon   multipotent   progenitors   to   influence   their  

commitment  and  ultimate  development  [65].    

For  example,  theories  explaining  the  development  of  hypertrophy  in  

HCM   patients   fail   to   address   aspects   of   HCM   as   diverse   as   interstitial  

fibrosis,   microvascular   remodeling   and   mitral   valve.   Specific   features,  

such   as   direct   papillary   insertion   into   the   mitral   leaflet   or   myocardial  

bridging,   clearly   suggest   a   developmental   defect   [86].   Our   group   has  

proposed  [65]  that  a  common  lineage  ancestry  for  these  extramyocardial  

phenotypes   can   be   traced   back   to   the   proepicardial   organ,   originating  

from   the   posterior   component   of   the   secondary   heart   field   [87].   Early  

during  development,   the  migration  of  proepicardial  cells  over   the  naked  

heart   tube   originates   the   epicardium.   Following   a   process   called  

epithelial-­‐mesenchymal   transformation,   apparently   pluripotent  

epicardium-­‐derived  cells   (EPDCs)  subsequently  migrate  diffusely   into  the  

myocardium   and   differentiate   into   diverse   cell   types   which   give   rise   to  

cardiac   scaffolding  as   interstitial   fibroblasts,   to   the  coronary  vasculature  

1.  Introduction:  tales  of  the  unexpected  

33  

 

as   smooth   muscle   cells   and   adventitial   fibroblasts,   and   to   the   atrio-­‐

ventricular   cushion   tissue   as  mesenchymal   cells   [87].   At   the   time  when  

EPDC   migration   occurs   from   the   epicardium   into   the   myocardium,   the  

heart   has   already   begun   to   contract,   and   most   known   HCM-­‐causing  

mutations,   such   as   those   involving   the   beta-­‐myosin   heavy   chain   and  

myosin-­‐binding  protein  C  genes,  are  already  expressed   in  the  embryonic  

heart  [87,  88].  Therefore,  it  is  tempting  to  speculate  that  an  interference  

with   the   EPDC   migration   and   differentiation   processes,   by   a   putative  

mechanism   of   mechanotransduction   [89],   may   account   for   features   as  

diverse   as   myocardial   disarray,   interstitial   fibrosis,   mitral   valve  

abnormalities   and   microvascular   remodeling   [65].   Another   explanation  

for  why  a  mutation  in  sarcomeric  proteins  can  affect  valve  development  is  

that  during  development,  EPDCs—rather  than  becoming  hypertrophic  like  

other  cardiomyocytes—differentiate  or  revert  into  fibroblastic-­‐like  cells.  If  

this   is  true,  one  would  expect   increased  levels  of  periostin  production  in  

hypertrophic   hearts   since   the   hallmark   of   fibroblastic   differentiation   is  

expression   of   periostin.   Consistent   with   this   hypothesis,   markedly  

elevated  levels  of  periostin  are  indeed  expressed  in  HCM  mice  [90].    

Similar   hypotheses  may   explain   the   cellular   origin   of   adipocytes   in  

ARVC,  which   represents   an  enigma   [91].   In   the  heart,   the  only   cell   type  

known  to  express  desmosomal  proteins   is   the  cardiomyocyte,  which  are  

terminally   differentiated   in   the   adult   and   hence   not   candidates   to  

dedifferentiate  to  adipocytes.  However,  lineage  tracing  experiments  have  

shown  showed  that  adipocytes  in  ARVC  originate  from  second  heart  field  

progenitor   cells   that  preferentially  differentiate   into  adipocytes  because  

of  suppressed  canonical  Wnt  signaling.  Indeed,  Wnt/β-­‐catenin  signaling  is  

an   important   switch   regulator  of  myogenesis   versus   adipogenesis   and  a  

differentiation  of  cardiac  progenitor  cells.  These  findings  may  also  explain  

1.  Introduction:  tales  of  the  unexpected  

34  

 

the  predominant   involvement  of   the   right  ventricle   in  ARVC,  as   that   the  

second   heart   field   progenitors   give   rise   to   the   right   ventricle   and   its  

outflow  tracts  through  mechanisms  governed  by  canonical  Wnt  signaling.  

Further   understanding   of   the   effects   of   cardiomyopathy-­‐causing  

mutations  during  development,  and   their  protean   implication  on  clinical  

phenotype,   may   provide   important   clues   on   the   essence   of   genetic  

cardiac  disease.  These  are  difficult   studies   to  perform,  and   require  hard  

multidisciplinary  work.  However,   the   rewards  may   include   a   completely  

new  way  of  conceiving  the  spectrum  of  these  conditions,  as  well  as  novel  

therapeutic  targets.      

   

1.  Introduction:  tales  of  the  unexpected  

35  

 

1.3   Making   sense  of   diversity:   finding   common  answers  

in  clinical  practice.  

 

Imagining  a  disease  as  a  fruit  or  a  planet,  there  are  several  levels  at  

which   one   can   intervene   with   any   therapeutic   approach.   The   first   and  

most  obvious  is  to  simply  scratch  the  surface  and  control  symptoms.  This  

objective  can  be  achieved  in  most  cardiac  patients:  however,  it  is  the  very  

least  we  can  do.  The  second  step  is  to  interfere  and  possibly  halt  disease  

progression,   thus   preventing   its   consequences   on   outcome:   this   can   be  

done   in   several   cardiac   conditions,   but   is   definitely   harder   to   achieve      

[92-­‐93].   Third,   we   can   try   to   prevent   the   development   of   full-­‐blown  

disease   in   patients   who   are   predisposed   due   to   acquired   risk   factors  

and/or  genetic  substrate  [94].  And  fourth,  we  can  address  the  core  of  the  

problem  by  acting  directly  on  the  etiology,  removing  the  actual  cause  and  

ultimately  cure  the  patient  [95].    Despite  extraordinary  progress  over  the  

last   decades,   these   last   two   steps   have   hardly   ever   been   achieved   in  

cardiovascular  medicine.  As  a  consequence,  it  is  important  to  realize  that  

our   practice   is   based   on   highly   sophisticated   palliation.   What   this  

approach  usually  does  is  change  a  disease  into  a  milder  one.  For  example  

septal  myectomy  turns  obstructive  into  non-­‐obstructive  HCM,  and  the  ICD  

can  prevent  malignant  arrhythmias  in  ARVC  or  DCM,  all  highly  significant  

benefits   for   the  patients     [96,   97].   Therefore,   this   kind  of   very   effective  

palliation  is  something  we  should  definitely  keep  on  doing,  and  improving,  

until  a  cure  becomes  available.  However,  all  efforts  should  be  directed  at  

improving   the   state   of   things   by   accumulating   new   evidence   and  

knowledge  [98].  

1.  Introduction:  tales  of  the  unexpected  

36  

 

Despite  decades  of  increasing  attention  and  research  efforts  by  the  

scientific   community,   treatment   strategies   for   cardiomyopathies   remain  

largely  based  on  a  small  number  of  clinical   studies,  or  empirically  based  

on  personal  experience  or  extrapolation  from  other  cardiac  conditions.  As  

stated  in  the  recent  Report  of  the  Working  Group  of  the  National  Heart,  

Lung,   and   Blood   Institute   on   Research   Priorities   in   Hypertrophic  

Cardiomyopathy  [98],  “nearly  50  years  after  the  identification  of  HCM  as  

an   autosomal   dominant   disease,   and   20   years   after   its   linkage   to  

sarcomeric   protein   mutations,   we   still   do   not   understand   the   most  

proximal   mechanism(s)   that   initiates   the   disorder”;   and   “treatment  

recommendations   in   HCM   are   based   on   observational   series   without  

prospective   randomized   controls.   While   clinical   usage   provides   support  

that   various  pharmacologic   agents   reduce  HCM   symptoms,   no   evidence  

has  demonstrated  that  they  alter  disease  progression  or  outcomes.”  In  a  

recent   review   of   original   articles,   reviews   and   editorials   addressing   any  

pharmacological   agent   ever   used   in  HCM   cohorts,   only   45   studies  were  

identified  over   the   last   sixty   years   (i.e.   less   than  1  per   year),   enrolling  a  

total   of   2,121   HCM   patients   [95].   Of   these,   only   5   were   randomized,  

double  blind  placebo-­‐controlled   trials.   Remarkably,   a   comparison  of   the  

period  1991-­‐2011  vs.  1971-­‐1990  demonstrated  no  increase  in  the  number  

of  studies,  and  only  a  modest  increase  in  the  number  of  patients  enrolled  

(627  vs.  1,473,  patients  respectively).    

Several   reasons   -­‐   some   obvious,   other   less   so   -­‐   stand   behind   this  

state   of   things.   The   first   lies   with   the   practical   challenges   inherent   in  

designing  trials  with  cardiomyopathy  patients.  The  epidemiology  of  these  

conditions   is   complex   and   only   partially   known,   due   to   issues   such   as  

scarce   awareness,   incomplete   penetrance   and   prevalence   of   subclinical  

disease   [67].  Despite  not  being   rare,  cardiomyopathies  are  uncommonly  

1.  Introduction:  tales  of  the  unexpected  

37  

 

encountered  and  possibly  neglected  at  community-­‐based  cardiac  centers  

and   outpatient   clinics.   Furthermore,   even   when   overt   and   correctly  

diagnosed,  their  clinical  spectrum  is  highly  heterogeneous,  encompassing  

different  stages  that  may  not  be  directly  comparable.  A  preventive  trial  in  

genotype-­‐positive  /  phenotype-­‐negative  individuals  will  necessarily  enroll  

subsets   that   are   different   from   patients   with   end-­‐stage   disease.   Each  

research   question   should   be   addressed   by   targeting   the   appropriate  

patient   subgroups,   with   imaginable   problems   in   achieving   the   desired  

yield  in  any  given  cohort  [98].  

As  highlighted  in  the  previous  section,  several  targets  for  treatment  

have  been  identified,  some  of  which  overlap  with  other  cardiac  diseases  

and  with  heart  failure  at  large.    

 Figure  1.3-­‐1:  Therapeutic  targets  and  goals  in  cardiomyopathies  

 

1.  Introduction:  tales  of  the  unexpected  

38  

 

For   example,  progressive   interstitial   cardiac   fibrosis,   resulting   from  

non–myocyte   (e.g.,   fibroblast)-­‐mediated   activation   of   transforming  

growth  factorβ  signaling,  is  a  common  feature  of  most  cardiomyopathies  

[4].  The  finding  that  preemptive  angiotensin  II  type  1–receptor  inhibition  

prevented  myocardial   fibrosis   in   a  mouse  model   of   cardiomyopathy,   as  

well   as   encouraging   results   from  a   small   clinical   study,   supports   further  

investigation  of  this  approach  [28].  

Furthermore,   interventions   aimed   at   normalizing   energy  

homeostasis  represent  a  viable  approach,  as  shown  by  a  recent  study  on  

perhexiline,  a  metabolic  modulator  which  inhibits  the  metabolism  of  free  

fatty  acids  and  enhances  carbohydrate  utilization  by   the  cardiomyocyte.  

In   a   randomized,   double-­‐blind   placebo-­‐controlled   trial,   perhexiline   has  

recently   shown   the   capacity   to   improve   the   energetic   profile   of   the   LV,  

resulting   in   improved   diastolic   function   and   exercise   capacity   in   HCM  

patients  [99].  HCM  cardiomyocytes  exhibit  well-­‐established  abnormalities  

in   intracellular   calcium   handling,   contributing   to   excessive   energy  

expenditure   and   enhanced   arrhythmogenesis,   that   are   largelydue   to  

enhanced   membrane   late   sodium   current   [100].   Such   defect   may   be  

selectively  and  dramatically  reversed  in  vitro  by  ranolazine.  Following  the  

demonstration   of   its   beneficial   effects   on   HCM   cardiomyocytes,   a  

multicenter,   double   blind,   placebo-­‐controlled   pilot   study   is   currently  

underway   in   Europe,   to   test   the   efficacy   of   ranolazine   on   exercise  

tolerance  and  diastolic   function   in  symptomatic  HCM  patients   (RESTYLE-­‐

HCM;   EUDRA-­‐CT   2011-­‐004507-­‐20).   Besides   the   specific   merits   of  

ranolazine,   similar   examples   of   translational   approach   identify   a  

fundamental   pre-­‐requisite   for   the   identification   of   novel,   potentially  

effective  agents,  based  on  thorough   investigation  of   the  molecular  basis  

of  these  diseases.    

1.  Introduction:  tales  of  the  unexpected  

39  

 

In   the   future,  a  more   specific  approach  may  be   tailored   to   specific  

mutations  or   groups  of  mutations  associated  with   cardiomyopathies,  by  

screening  large  panels  of  candidate  molecules  in  assays  based  on  induced  

pluripotent   stem   cells   isolated   from   human   fibroblasts   [101].   As   shown  

recently,   the   possibility   of   modulating   the   activity   of   sarcomere  

contractile   proteins,   such   as   beta-­‐myosin,   is   beginning   to   surface,   with  

huge  potential  implications  for  treatment  of  DCM,  HCM  and  heart  failure  

in   general   [102].   Finally,   during   heart   development,   immature  

cardiomyocytes  proliferate  actively  to  accommodate  increasing  heart  size  

and   function   [103];   however,   this   proliferation   is   abruptly   abrogated  

shortly  after  birth,   leaving  the  heart  with  a  limited  regenerative  capacity  

insufficient  to  replace  substantial  amounts  of  tissue   lost  after   injury.  For  

conditions   characterized   by   loss   of   viable   myocardial   tissue   and  

dysfunction,   such   as   DCM   and   ARVC,   an   promising   approach   is  

constituted   by   the   possibility   of   reactivating   the   dormant   proliferative  

capacity  of  adult  cardiomyocytes  as  a  direct  effect  of  miRNA  delivery.  In  a  

recent   study,   selected   miRNAs   showed   the   ability   of   selectively   induce  

cardiomyocyte   proliferation   in   vitro   and   in   vivo.   miRNA   delivery   to   the  

infarcted  heart  resulted   in  structural  and  functional  recovery.  Therefore,  

the   broader   action   of  miRNAs   impacting  multiple   pathways   opens   up   a  

new   translational   perspective   for   the   treatment   of   complex   cardiac  

disease   as   a   stand-­‐alone   therapy   or   in   combination   with   other  

regenerative  resources.  Likewise,  control  of  gene  transcription  by  specific  

interaction   with   histone   acetylation   and   deacetylation   (by   the  

antagonistic   families   of   histone   acetyltransferases   and   histone  

deacetylases)   may   represent   a   viable   therapeutic   pathway   in   genetic  

heart   disease,   with   targets   ranging   from  modulation   of   hypertrophy   to  

cardiac  regeneration  [104].    

1.  Introduction:  tales  of  the  unexpected  

40  

 

 

Overall,   these   broad   concepts   provide   a   broad   intellectual  

framework  supporting  the   idea  of  a  common  pathophysiologic  “core”  of  

primary  heart  muscle  disease,   representing  a  unitary   target   for   research  

efforts  in  the  field.  Although  the  final  application  of  future  therapies  will  

be  necessarily   individualized   (i.e.  both  disease-­‐  and  patient-­‐specific),   the  

beginning   of   this   therapeutic   revolution   will   be   based   on   the  

comprehensive  understanding  of  cardiomyopathies  as  a  whole.  Similar  to  

what  is  happening  in  cancer  or  autoimmune  diseases,  it  will  be  impossible  

to  cure  a  single  entity  without  being  near  to  curing  the  rest.  Rather  than  

subdividing  the  field  in  water-­‐proof  niches  with  little  communication,  the  

approach   to   cardiomyopathies   should   constantly   strive   to   pursue   the  

inter-­‐disciplinary  cross-­‐fertilization.  It  is  hoped  that  the  present  work  may  

contribute  to  this  novel  perspective.    

 

   

1.  Introduction:  tales  of  the  unexpected  

41  

 

1.4   Aim  of  the  thesis  and  project  design.  

 

The   present   thesis   reflects   several   aspects   of   my   work   at   the  

Florence   Referral   Center   for   Cardiomyopathy   and   Careggi   University  

Hospital   during   the   last   3   years.   The   leading   theme   is   the   effort   to  

embrace   the   complexities   of   cardiomyopathies   using   a   translational  

approach  ranging  from  clinical  to  imaging,  to  genetics,  to  basic  science.    

Section   2   focuses   on   genotype-­‐phenotype   correlations   in   two  

specific   disease   models   (thin   filament-­‐associated   HCM   and   Anderson  

Fabry   disease)   and   the   impact   of   next   generation   sequencing   on   the  

diagnosis  of  clinically  challenging  cardiomyopathies.  Section  3  deals  with  

the   hypothesis   that   environmental   modifiers   may   exert   a   significant  

impact  on  phenotype  and  clinical  course,  by  addressing  one  of  the  most  

prevalent  cardiovascular   risk   factor   in   the  western  world,   i.e.  obesity,   in  

HCM  patients  undergoing  cardiac  magnetic  resonance  imaging.  Section  4  

addresses   clinical  markers   of   risk   and  predictors   of   outcome   in   patients  

with   HCM   (by   evaluating   the   value   of   NT-­‐pro   BNP   and   late   gadolinium  

enhancement   as   a   clinical   barometers   of   disease   progression   and  

arrhythmic  risk),  DCM  (assessing  the  impact  of  advances  in  management  

on  outcome),  and  an  acquired  model  of  myocardial  disease  involving  cell-­‐

mediated  immunity  –  Chagas  cardiomyopathy.  Section  5  illustrates  novel  

therapeutic  approaches  that  are  being  developed  for  patients  with  HCM  

and   Anderson-­‐Fabry   disease,   and   a   critical   reappraisal   of   a   well-­‐

established  –  but  not  perfect  –  preventive  option  such  as  the  implantable  

cardioverter  defibrillator.    Finally,  in  my  conclusive  remarks,  I  will  outline  

work   that   is   presently   ongoing   and   future   directions   for   research   to   be  

pursued  in  Florence.    

1.  Introduction:  tales  of  the  unexpected  

42  

 

 

 

   2.  Genotype-­‐Phenotype  Correlations  

   

2.  Genotype  –  phenotype  correlations  

  44  

 

 

 

“The important thing in science

is not so much to obtain new facts,

as to discover new ways

of thinking about them”

Sir William Bragg

 

 

 

 

   

2.  Genotype  –  phenotype  correlations  

  45  

Genetics   is   a   new   science.  It   is   little   more   than   a   century   since  

Mendel's  laws  were  rediscovered  in  1900,  and  less  than  60  years  since  the  

structure   of   DNA  was   discovered   in   1953.   Human   and  medical   genetics  

were  late  developers:  they  started  to  slowly  develop  during  the  first  half  

of  the  20th  century,  then  saw  an  increasingly  rapid  rise  and  continues  in  

the   21st   century.   Thanks   to   the   outstanding   efforts   of   Victor   Almon  

McKusick,   now   regarded   as   the   “father   of   medical   genetics”,   in   the  

second   half   of   the   20th   century   genetics  met  medicine.   Since   then,   the  

Holy  Grail   in  medical   genetic   has  been   the   ability   to  deduce   the   clinical  

phenotype   of   an   individual   from   his   genotype.   It   was   once   naively  

assumed   that,   at   least   for   ‘‘monogenic’’  disorders,   genotype–phenotype  

relationships  would  be  simple  and  straightforward  to  understand.  This  era  

of   substantial   optimism   conquered   the   whole   word   of   medicine:  

physicians   and   geneticists   shared   the   unrealistic   expectation   that  

molecular   genetics   would   lead   to   a   new   paradigm   in   predicting   the  

outcome  of  patients.    

What   was   initially   thought   to   be   one-­‐to-­‐one   gene-­‐disease   has  

turned  out  to  display  important  variability,  dependent  in  large  part  on  the  

genetic   and   environmental   backgrounds   into   which   the   genes   express.  

Therefore,   the   reality   is   that   we   cannot   readily   draw   straight   lines   of  

causation  from  known  genotypes  to  specific  clinical  phenotypes  [Fig  2-­‐1].  

Although   the   original   goal   to   link   genotype   to   phenotype   remains,   it   is  

now  clear  that  the  overall  complexity  of  this  relationship  will  require  a  far  

more   subtle   understanding   of   both   molecular   mechanisms   and   clinical  

correlates.  Furthermore,  there  is  an  additional  and  perhaps  central   issue  

that   compromise   our   ability   to   match   genotype   to   phenotype:   the  

progressive  nature  of  the  cardiac  pathogenic  process.  Longitudinal  studies  

of  patients  with  cardiomyopathies  have  documented  the  dynamic  nature  

2.  Genotype  –  phenotype  correlations  

  46  

of   the  ventricular   remodeling.  Thus,   it   is  apparent   that   focusing  only  on  

the  end  phenotype  as  the  supposed  “link”  to  the  molecular  mechanism  is  

not  only  limiting  but  also  likely  to  be  misleading.  

 

 

Figure  2-­‐1:  Genotype-­‐phenotype  correlations  

The   connections   between   phenotype   and   genotype   are   complex   and  quite  hard  to  understand.  Even  in  monogenic  disorders,  the  same  genetic  variant  can  lead  to  different  clinical  pictures.  The  expression  of  phenotype  may  be  modulated  by  a  variety  of  genetic  and  non-­‐genetic  factors.  Among  the  former,  the  type  of  mutation,  the  phenomenon  of  allele  dosage,  the  presence   of   modifiers   gene   and   epigenetics   modifications   are   those  better   known.   Environmental   factors   are   those  who   are  modifiable   and  can  be  have  a  vigorous   influence  on  phenotypic  expression  (see  chapter  3).    

     

2.  Genotype  –  phenotype  correlations  

  47  

2.1   Into   the   myocardium:   the   distinct   phenotypic  

expression   of   thin   filament   mutations   in   hypertrophic  

cardiomyopathy  

 

It  was  in  a  cold  and  rainy  day  of  November  that  we  first  have  the  

idea   of   designing   this   study.   At   the   end   of   a   very   busy  morning   in   the  

outpatient  clinic,  we  were  reviewing  the  most  interesting  cases  of  the  day.  

That  morning  we  evaluated,   totally  by   chance,   three  patients  with  HCM  

due   to   mutations   in   the   thin   filament   genes.   We   were   discussing   the  

patients,   their   clinical   history   and   disease   progression.   We   were   also  

analyzing   echo   images,   one   after   another,   and   in   that   moment   we  

realized  how  they  were  part  of  a  distinct  subgroup,  if  compared  to  other  

patients  with  mutations  in  thick  filament  genes.    

HCM  is  a  disease  of  the  sarcomere:  mutations  are  very  often  found  

in   one   of   the   two   genes   encoding   for   thick   filament   proteins   (myosin  

binding  protein  C  -­‐MYPC3  and  myosin  heavy  chain  -­‐  MYH7)  [Fig.  2.1-­‐1]  [1].  

Mutations   in   the   thin   filament   regulatory   protein   genes   accounts   for   a  

minority   of   molecular   defect   involved   in   HCM   and   includes   cardiac  

troponin   T   (TNNT2)   and   I   (TNNI3),   alpha-­‐tropomyosin   (TPM1),   cardiac  

actin   (ACTC)  and,   very   rarely,   troponin  C   [2].   These  mutations,   although  

rare,  have  always  seduced  physicians  and  geneticists  involved  in  the  field,  

because   of   them   ominous   outcome   and   high   prevalence   of   malignant  

arrhythmias  especially  in  the  young.    

Prior  reports  of  patients  with  thin  filament  mutations  described  a  

severe   form   of   HCM   characterized   by   early   onset,   mild   degrees   of  

hypertrophy  and  high  prevalence  of  juvenile  sudden  cardiac  death          [3-­‐6].  

Despite   the   low   statistic   power   of   these   studies,   limited   by   sample   size  

2.  Genotype  –  phenotype  correlations  

  48  

and   a   cross-­‐sectional   design,   such   rumor   spread   quickly   among  

cardiologists,   and   these   mutations   are   now   known   as   “malignant  

mutations”.   However,   recent   reports   have   shown   that   the   overall  

spectrum   of   thin   filament-­‐HCM   is   far   more   heterogeneous   than  

previously  thought,  extensively  overlapping  the  more  prevalent  forms  of  

HCM  associated  with  thick  filament  mutations  [7].    

 

 

Figure  2.1-­‐1:    The  sarcomere  

The   upper   panel   shows   a   transmission   electron  micrograph  of   a   human   cardiac   sarcomere.   The   lower   portion   of   the  figure  shows  a  simplified  illustration  of  the  sarcomere.    

 

Two   important   questions   arise   from   these   considerations:   is   thin  

filament   HCM   a   distinct   disease?   How   and   why   is   thin   filament   HCM  

different  from  the  more  common  thick-­‐filament  disease?  

2.  Genotype  –  phenotype  correlations  

  49  

Given  the  international  network  in  which  our  center  was  involved,  

we  decided  to  design  a  multicenter  study,  in  order  to  describe  the  clinical  

features   and   outcome   of   a   large   cohort   of   patients   with   thin   filament  

HCM,   compared   to   matched   patients   with   pathogenic   thick   filament  

mutations.   The   study   cohort   comprised   84   patients   with   a   clinical  

diagnosis   of   HCM   associated   with   one   or   more   thin   filament   gene  

mutations   (including   cardiac   troponin   T   (TNNT2)   and   I   (TNNI3),  

tropomyosin   (TPM1)   and   cardiac   actin   (ACTC),   while   no   troponin   C  

mutations   were   found),   while   157   HCM   patients   with   pathogenic  

mutations  in  the  thick  filament  genes  (MYBPC3  and  MYH7)  were  used  as  

controls   [Fig   2.1-­‐1].   Four   referral   centers   for   cardiomyopathies   were  

involved   in   the   study:   Careggi   University   Hospital   in   Florence,   Italy;  

Brigham  and  Women's  Hospital   in  Boston;   Stanford  Medical   Center   and  

University  of  Michigan  Medical  Center  in  Ann  Arbor.    

Patients   underwent   a   thorough   clinical   and   instrumental  

evaluation,  including  clinical  history,  echocardiography,  12-­‐lead  basal  and  

24-­‐hours   ambulatory   ECG   and   cardiac   magnetic   resonance.   They   were  

followed-­‐up   at   yearly   intervals   with   review   of   history   and   symptoms,  

physical   examination,   and   echocardiographic   examination,   and  

electrocardiography.  24-­‐  to  48-­‐hour  ambulatory  ECG  monitoring  and  CMR  

were  performed  if  clinically  indicated.    

The   phenotype   of   patients   with   thin-­‐filament   mutations   slowly  

started   to   reveal   itself.   Compared   with   patients   with   thick   filament  

disease,   thin   filament   HCM   seemed   to   represent   a   distinct   and   well-­‐

defined   subset,   in   terms   of   cardiac   morphology,   systolic   and   diastolic  

myocardial  function  and  patterns  of  disease  progression.    

 

2.  Genotype  –  phenotype  correlations  

  50  

2.1.1   Cardiac  morphology  and  arrhythmic  burden  

The   “thin   filament”   heart   appeared   to   be   less   prone   to   develop  

severe   hypertrophy.   Mean   maximal   LV   wall   thickness   values   were   on  

average   milder   than   that   observed   in   the   thick   filament   group.  

Furthermore,  the  distribution  of  hypertrophy  within  the  left  ventricle  was  

atypical,  with  high  prevalence  of  concentric  and  apical  patterns  whereas  

thick   filament   HCM   was   almost   uniformly   (94%)   manifest   as   classic  

asymmetric  LVH  involving  the  basal  septum  and  anterior  wall  [Figure  2.1-­‐

2].   The   atypical   distribution   of   hypertrophy,   together   with   the   mild  

degree  of  hypertrophy,  also  accounted  for  the   low  prevalence  of  resting  

LV  outflow  tract  obstruction.    

The  arrhythmic  risk  of  HCM  has  been  known  since  the  first  reports  

of  the  disease  in  the  fifties.  With  time,  due  to  the  increasing  knowledge  of  

the   complexity   of   this   cardiomyopathy,   many   other   features   of   the  

disease   have   been   described   and   ventricular   arrhythmias   are   now  

considered  only  part  of  a  heterogeneous  spectrum  of  characteristics,  with  

an   incidence   of   sudden   cardiac   death   of   1%/year   in   non   selected  

populations.   The  arrhythmogenic  burden  and   the   risk  of   sudden  cardiac  

death   of   thin   filament   mutations   have   always   gained   most   of   the  

attention.   Indeed,   our   results   are   consistent   with   previous   reports   of  

enhanced   arrhythmic   propensity   associated   with   thin   filament   HCM.   In  

our  cohort,  the  annual  rate  of  major  arrhythmic  events,  including  sudden  

cardiac   death,   resuscitated   cardiac   arrest   and   appropriate   ICD  

intervention,   was   almost   double   that   of   the   thick   filament   group  

(2%/year).    

 

2.  Genotype  –  phenotype  correlations  

  51  

 

Figure  2.1-­‐2:  Phenotypic  variability  in  thin  filament  HCM.    

 (A-­‐H)  Echocardiographic  apical  4-­‐chamber  views  showing  different  patterns  of  distribution  of  hypertrophy   (ID  number  and  mutation  for  each  patient  are  reported).      (A-­‐B)   Mild-­‐to-­‐moderate   hypertrophy,   with   “classical”   septal  localization  of  maximal  LV  thickness.      (C)  Moderate  septal  hypertrophy  with  apical  involvement;      (D)  mid-­‐apical  septal  hypertrophy;      (E)   moderate   mid-­‐septal   hypertrophy   with   severe   left   atrial  dilatation;      (F)  mild  concentric  hypertrophy      (G)  apical  hypertrophy  with  severe  left  atrial  dilatation;      (H),  moderate  concentric  hypertrophy  with  severe  apical  involvement  and   marked   bi-­‐atrial   enlargement.   (I)   Echocardiographic   and   cardiac  magnetic   resonance   (CMR)   images   from   a   patient   with   the   TNNT2-­‐R92W  mutation.   From   left:   apical   four-­‐chamber   and   parasternal   long  

2.  Genotype  –  phenotype  correlations  

  52  

axis   view   showing   marked   asymmetric   LV   hypertrophy   involving   the  septum  and  anterior  wall;  parasternal   short  axis  and  2-­‐chamber  CMR  section   confirming   the   marked   degree   of   hypertrophy   involving  multiple  LV  segments.    

 (L)  CMR  images  from  a  patient  with  the  TNNT2-­‐F110L  mutation.  From  left:  4-­‐chamber  and  3-­‐chamber   sections   showing  extensive   regions  of  non-­‐compaction  (black  arrowheads)  in  the  apical  and  apico-­‐lateral  wall  of   the   LV;     2-­‐chamber   section   and   4-­‐chamber   section   showing   large  areas   of   late   gadolinium   enhancement   (black   arrowheads)   in   the  anterior  free  wall  and  in  the  septum,  respectively.      

   

In   this   specific   subset  of  patients,   the   rate  of   lethal  or  potentially  

lethal  arrhythmic  events  was  significantly  higher,  suggesting  the  presence  

of   a   severe   arrhythmogenic   substrate   probably   linked   to   this   specific  

molecular   alteration.   In   mutant   mouse   hearts,   the   increased   Ca2+  

sensitivity  of  myofilament   induced  by   thin   filament  mutations   is  directly  

associated   with   a   susceptibility   to   arrhythmias,   which   can   be   observed  

even  in  the  absence  of  any  detectable  cardiac  hypertrophy  or  fibrosis  [8].    

However,   the   absolute   magnitude   of   such   risk   remains   low   and,  

consequently,  the  mere  identification  of  thin  filament  mutations  does  not  

justify  aggressive  management  strategies.      

 

2.1.2    Thin  filament  HCM  as  a  progressive  disease  

The  analysis  of  our  data  depicted  a  novel  and  unexpected  profile  of  

thin   filament   disease,   which   emerged   in   our   cohort   as   a   progressive  

disease,   more   than   as   a   purely   arrhythmogenic   disease,   a   feature   that  

appears  to  have  been  largely  underappreciated  in  the  past.  The  different  

2.  Genotype  –  phenotype  correlations  

  53  

architecture   of   the   thin   filament   HCM  was   accompanied   by   substantial  

functional  alterations,  regarding  both  systolic  and  diastolic  function.    

The   high   prevalence   of   severe   diastolic   dysfunction,   represented  

by  abnormal  filling  patterns  such  as  restrictive  MV  inflow  or  triphasic  LV  

filling,   reflected   a   profound   impairment   in   the   compliance   of   the   left  

ventricle.  In  particular,  the  presence  of  a  triphasic  pattern,  characterized  

by  prominent  mid-­‐diastolic  flow  velocity  (L-­‐wave),  reveals  the  reduced  LV  

compliance   and   elevated   filling   pressures   [Figure   2.1-­‐3].   Moving   from  

bedside   to   bench,   preliminary   data   of   isolated   myofibrils   with   thin  

filament  mutation  showed  that  the  “extra”  wave   in  the  diastolic  pattern  

could  probably  be  explained  by  their  incapacity  to  achieve  a  fast  and  fully  

relaxed  state  during  the  diastolic  phase.    

Thin   filament   HCM   were   associated   with   a   higher   likelihood   of  

major   clinical   outcomes,   as   reflected   by   composite   CV   death,   life-­‐

threatening   arrhythmia,   and   progression   to   NYHA   class   III-­‐IV.   This  

difference  was  largely  driven  by  the  higher  rate  of  symptoms  progression  

to  NYHA  Class  III/IV,  which  was  related  to  the  development  of  LV  systolic  

dysfunction  [Figure  2.1-­‐4  and  2.1-­‐5].    

The  prevalence  of  “end-­‐stage”  disease,  a  morpho-­‐functional  state  

represented   by   overt   systolic   dysfunction   and/or   restrictive   LV   filling  

pattern,   is   around   1%   in   unselected   HCM   populations     [9,   10].   In   our  

population,  adverse  LV  remodeling  and  disease  progression  was  found  in  

more   than  one  quarter,  with  an   incidence  of  end-­‐stage  disease  close   to  

3%  per   year.   Furthermore,   the   considerable  prevalence  of  heart   failure-­‐

related   symptoms   and   complications   are   only   rarely   associated   by  

dynamic   LV   outflow   tract   obstruction   in   thin   filament   HCM   and   rather  

reflect  progressive  systolic  and  diastolic  LV  dysfunction.  

2.  Genotype  –  phenotype  correlations  

  54  

 

Figure  2.1-­‐3  Morphologic  aspects  and  in-­‐vitro  correlates  of  triphasic  LV  filling.  

(A)   Representative   examples   of   transmitral   blood   flow   velocity  pattern   at   Doppler   echocardiography   from   different   patients   of   the  thin-­‐filament   cohort,   showing  examples  mid-­‐diastolic   flow  velocity   (L-­‐wave).      

(B)  Comparison  of  full  relaxation  from  maximal  Ca2+  activation  in  isolated  myofibrils  from  an  HCM  patient  with  the  MYH7  mutation  (red  tracing)  and  a  patient  with  the  TNNT2  mutation  (black  tracing).  In  spite  of  a  similar  initial  rate  of  tension  decay,  the  early  linear  isometric  phase  of  relaxation  is  prolonged  and  the  final  exponential  phase  of  relaxation  is   decelerated   in   the   thin   filament   mutant   myofibril,   suggesting  impairment  of  the  molecular  mechanisms  that  switch  contraction  off.    

2.  Genotype  –  phenotype  correlations  

  55  

 

Fig.  2.1-­‐4  Evidence  of  disease  progression  in  thin-­‐filament  HCM.    

Echo  and  CMR  images  from  patient  ID#5  carrying  the  TNNT2-­‐F110L  mutation.    

(A)  Echocardiographic   images   from  an  early  clinical  assessment   in  1992.  Left:  parasternal  short  axis  view  showing  severe  asymmetric  septal  hypertrophy.  Right:  color-­‐Doppler   image  displaying  turbulent  flow   in  the  LV  outflow  tract  (white  arrowhead)  due  to  severe  dynamic  obstruction.    

(B)   Same   views   from   last   evaluation   in   2013,   showing   marked  reduction   in   septal   thickness   and   spontaneous   loss   of   dynamic  obstruction,  with   laminar   flow   in   the  LV  outflow  (white  arrowhead);   the  left  atrium  is  markedly  enlarged.    

(C)   Left:   CMR   scan   from   2013   showing  mild   LV   hypertrophy   and  areas   of   non-­‐compaction   in   the   lateral   wall   (arrow).   Right:   progressive  septal   thinning   observed   over   the   years   is   associated   with   extensive  transmural   fibrous   substitution,   as   indicated   by   the   large   areas   of   late  gadolinium  enhancement  (white  arrowhead).  

2.  Genotype  –  phenotype  correlations  

  56  

 

Figure  2.1-­‐5.  Outcomes  of  thin-­‐  versus  thick-­‐filament  HCM    

Kaplan  Meier  survival  curves  showing:  (A)  cumulative  incidence  of  the  primary  end-­‐point  (combination  of  cardiovascular  death,  resuscitated  cardiac  arrest  or  appropriate  ICD  shock,  non-­‐fatal  stroke  and  progression  to   NYHA   class   III   or   IV)   during   follow-­‐up;   (B)   lifelong   occurrence   of   the  secondary  end-­‐point,   assessing   functional   changes   in   LV   function  due   to  adverse   remodeling,   based   on   the   echocardiographic   detection   of   LV  systolic  dysfunction   (ejection   fraction  <50%)  and/or     restrictive  LV   filling  (mitral  ratio  of  peak  early  to  late  diastolic  filling  velocity  ≥2  in  conjunction  with   deceleration   time   of   150   ms   or   less   or,   in   patients   with   atrial  fibrillation,  a  transmitral  deceleration  time  <120  ms).  

2.  Genotype  –  phenotype  correlations  

  57  

Notably,   a   purely   restrictive   evolution  with   preserved   LV   systolic  

function   was   observed   in   11%   of   patients   with   thin-­‐filament   HCM,  

consistent   with   prior   reports   emphasizing   the   prevalence   of   isolated,  

severe   diastolic   dysfunction   in   patients   with   troponin   mutations,   with  

particular  regard  to  troponin  I.    

Both   the   development   of   LV   systolic   dysfunction   and   restrictive  

filling,  bear  major  adverse  prognostic  implications  in  HCM  patients  [9,  11].  

Life-­‐threatening   arrhythmic   events   remain   an   important   feature   of   thin  

filament  HCM,  as  previously  emphasized,  but  their  absolute  prevalence  is  

low.  Preclinical  studies  on  animal  models  support  the  view  that  HCM  due  

to  thin  filament  mutations   is  a  progressive  disease,  and  suggest  that  the  

same  molecular  mechanisms  may  underlie  both  arrhythmogenesis  and  LV  

dysfunction   [2].  Skinned  tissue   from  patient  samples  and  animal  models  

have  consistently  shown  marked  increases  in  myofilament  Ca2+  sensitivity  

in  the  presence  of  thin  filament  mutations      [12,  13],  closely  related  with  

abnormalities  of  cardiac  relaxation    [14,  15],  diastolic  dysfunction  and  an  

early  increase  in  susceptibility  to  arrhythmias.    

These  elements,   consistent  with  a   recent   report  based  on  a   large  

group   of   HCM   patients   with   TNNT2   mutations,   depict   a   novel   and  

unexpected  profile  of  thin  filament  disease  [7],  potentially  relevant  to  risk  

stratification   and   management.   Specifically,   follow-­‐up   strategies   should  

not   be   limited   to   risk   stratification   for   potentially   lethal   ventricular  

arrhythmias,   but   also   focus   on   the   early   detection   of   adverse   LV  

remodeling,  significant   increases   in  myocardial   fibrosis  and  decline   in  LV  

function.  Present  options  and  future  advances  in  antiremodeling  therapy  

may   prove   useful,   if   introduced   in   a   timely   fashion,   to   prevent   disease  

progression  in  this  challenging  HCM  subset.    

2.  Genotype  –  phenotype  correlations  

  58  

Furthermore,  thin  filament  mutations  can  alter  cardiac  function  by  

increasing  the  energy  cost  of  contraction  [15,  16].  While  several  of  these  

abnormalities   are   in   common  with   other   HCM-­‐related   genes   [17],   their  

extent   is   generally   greater   in   thin   filament   mutant   samples.   The  

constellation   of   early   impairment   in   excitation-­‐contraction   coupling,  

myocardial   energetic   derangement   and   intrinsic   abnormalities   of  

sarcomeric   relaxation   constituting   direct   consequences   of   thin   filament  

mutation,   all   drive   an   aggressive   remodeling  process   at   the   level   of   the  

single  cardiomyocyte  [18].  The  ultimate  result  of  these  abnormalities  is  a  

reduction  in  contractile  capacity  both  at  the  molecular  and  cellular  level,  

which  precedes  structural  changes  and  clinically  evident  LV  dysfunction.    

Of   note,   thin   filament-­‐HCM   transgenic   mouse   lines   display   a  

remarkable   tendency   towards   disease   progression   by   developing  

restrictive   diastolic   patterns   and   systolic   dysfunction   over   time   [19],  

consistent  with  the  severe  diastolic  impairment  observed  in  our  patients.  

One  of  the  most  intriguing  findings  in  the  present  cohort  was  the  elevated  

prevalence   of   triphasic   LV   filling   pattern   in   the   thin-­‐filament   subset  

compared   to   the   thick-­‐filament   subgroup.   Trans-­‐mitral   diastolic   blood  

flow  assessed  by  pulsed  wave  Doppler  classically  comprises  two  velocity  

peaks,   the   E   and   A  waves,   occurring   during   early   rapid   filling   and   atrial  

contraction.  However,  a  triphasic  LV  filling  pattern  may  be  seen  when  an  

additional  velocity  peak  of  at   least  0.2m/s,  the  L  wave,   is  present  during  

diastasis   [20].   The   presence   of   the   L-­‐wave   has   been   associated   with  

severe  diastolic  dysfunction  and  extensive  septal  scarring  in  HCM  patients.  

Interestingly,   the   presence   of   the   L  wave   in   thin   filament-­‐HCM  patients  

was   independent   of   the   overall   pattern   of   LV   filling,   suggesting   that  

patients  with  various  degrees  of  diastolic  dysfunction,  and  not  only  those  

with  most  severe  impairment,  may  display  such  abnormality    [21,  22].    

2.  Genotype  –  phenotype  correlations  

  59  

These   data   therefore   support   the   view   that   triphasic   filling   may  

represent   the   clinical   counterpart   of   intrinsic   molecular   abnormalities  

associated  with  thin-­‐filament  mutations,  although  features  such  as  severe  

microvascular   ischemia   and   myocardial   fibrosis   are   likely   to   concur,   as  

shown   in   transgenic   TNNT2  mutant  mice   [23].  When   relaxation   kinetics  

were  comparable   in  myofibrils   from  HCM  patients  carrying  mutations   in  

TNNT2   and   MYH7,   overall   relaxation   upon   Ca2+   removal   was   clearly  

prolonged   in   the   former,   but   not   in   the   latter.     In   agreement   with  

available   evidence   from   the   literature,   these   findings   suggest   important  

differences  in  the  mechanisms  leading  to  diastolic  dysfunction  for  the  two  

forms   of   HCM.   Indeed,   while   diastolic   abnormalities   in   MYH7-­‐mutant  

HCM  hearts  are  likely  related  to  secondary  changes  in  energetics  and  E-­‐C  

coupling   of   HCM     [24,   25],   thin   filament   mutations   appear   to   directly  

impair   cardiac   relaxation.   This   idea   is   supported   by   the   finding   that,   at  

variance  with  thick  filament  mutant  myofibrils,  resting  tension  is  higher  in  

thin   filament   mutant   myofibrils   compared   to   controls.   If   confirmed   by  

ongoing  studies,  these  preliminary  findings  may  help  identify  novel,  gene-­‐

specific  therapeutic  targets  in  thin  filament  HCM.    

In   conclusions,   HCM   associated   with   thin   filament   mutations   is  

characterized  by   significant  differences   in  phenotype  and   clinical   course  

compared  to  the  more  prevalent  thick-­‐filament  HCM,  including  increased  

likelihood  of   LV   dysfunction   and  progressive   heart   failure.  Management  

strategies,   classically   focusing   on   arrhythmic   prophylaxis   in   this   subset,  

should  be   reconsidered   to   include   adequate   surveillance   for   adverse   LV  

remodeling   and   worsening   systolic   and   diastolic   function,   pointing   to  

specific   molecular   mechanisms   leading   to   diastolic   impairment   in   this  

challenging  HCM  subgroup.  

 

2.  Genotype  –  phenotype  correlations  

  60  

2.2   Early   cardiac   phenotype   in   patients   with   Anderson-­‐

Fabry  disease.    

 

  Those  who  are  familiar  with  Anderson  Fabry  disease  could  find  this  

simple  title  very  intriguing.  For  those  who  are  not,  we  should  take  a  step  

back.    

Anderson-­‐Fabry   disease   (AFD)   (OMIM#301500)   was   named   after  

two  dermatologists,  W.Anderson  and  J.  Fabry,  who  separately  described  

two  cases  of  patients  with  angiocheratoma  corporis  diffusum  in  1898  [26,  

27].   Almost   a   century   later   AFD   was   showed   to   be   a   rare   X-­‐linked  

multisystemic   lysosomal   storage   disorder   of   glycosphingolipids  

catabolism,  due  to  the  deficiency  of  the  lysosomal  enzyme  a  galactosidase  

A  (a-­‐Gal  A)    [28,  29].  As  a  consequence  of  α-­‐gal  A  deficiency,  progressive  

accumulation  of  globotriaosylceramide  (Gb3)  and  its  deacylated  form,  the  

globotriaosylsphingosine  (lyso-­‐Gb3),  occurs   in  various  tissues  throughout  

the  body,  within  the  lysosomes  and  in  the  plasma  [30].    

AFD  is  considered  a  rare  disease,  with  a  reported  prevalence  in  the  

general  population  of  about  1:117.000  [31].  Recently  however,  newborn  

screening  initiatives  have  found  an  unexpectedly  high  prevalence,  as  high  

as  1  in  ~3900  newborns    [32],  suggesting  that  prior  figures  may  represent  

a   substantial   underestimate.   While   the   classic   phenotype   of   AFD   is  

actually   rare,   these   data   show   that   milder   variant   with   late-­‐onset  

phenotype  may  be  much  more  frequent  than  expected    [33,  34].  The  real  

strength   of   these   newborn-­‐screening   initiatives   goes   well   beyond   the  

simple  data  itself.  They  shifted  a  historic  paradigm  of  a  rare  disease,  with  

multisystemic   involvement   in   young  males,   to   a  more   common  disease,  

with  a  wide  phenotype,   sometimes  with  disease  manifestation  confined  

2.  Genotype  –  phenotype  correlations  

  61  

to  one  organ   system   [Fig  2.2-­‐1].   Furthermore,   screening   for  AFD  among  

selected  groups  of  patients,  i.e.  patients  with  juvenile  cryptogenic  stroke,  

renal  failure  or   left  ventricular  hypertrophy,  suggests  that  many  patients  

are  misdiagnosed.    

 

Fig   2.2-­‐1:   Symptoms   onset   and   disease   progression   in   classic  Anderson-­‐Fabry  disease  (AFD).    

Signs  and  symptoms  of  AFD  progressively  increase  with  age.  In  infancy  and  adolescence  neuropathic  pain,  gastrointestinal  manifestations  and  angiokeratomas  are  the  most  frequent  manifestations.  Proteinuria,  the  first  sign  of  kidney  involvement,  is  also  present  in  young  affected  males.  Major  organ  involvement  usually  develops  slowly  with  age.    

 

Although   having   an   X-­‐linked   pattern   of   inheritance,   the   disease  

may  affect  males  and  females,  the  latter  with  an  average  10  years  delay  

[36].   Metabolites   storage   leads   to   progressive   cellular   and   multiorgan  

dysfunction,   with   either   early   and   late   onset   variable   clinical  

manifestations  that  usually  reduce  quality  of  life  and  life  expectancy  [37].  

2.  Genotype  –  phenotype  correlations  

  62  

Heart   and   kidney   failure,   stroke   and   sudden   death   are   the   most  

devastating  complications.  

A   specific   therapy   for  AFD,  enzyme   replacement   therapy   (ERT),   is  

available   since   2001[38].   New   treatment   approaches,   such   as   chemical  

chaperone  therapy,  alone  or  in  combination  with  ERT,  are  currently  under  

investigation    [39,  40].  While  long-­‐term  efficacy  of  ERT  in  advanced  stage  

is   still   debated,   increasing   evidence   shows   greater   efficacy   of   early  

treatment  initiation  [41].    

 

2.2.1   Hypertrophic   cardiomyopathy   and   Anderson   Fabry   disease:   the  

linking  point  

The   referral   center   for   cardiomyopathies   in   Florence   has   been  

historically  known  as  primary  committed  to  the  management  of  patients  

with  hypertrophic  cardiomyopathy.  However,   in  2004  genetic  analysis  of  

one  patient  with  an  established  diagnosis  of  HCM  revealed  a  mutation  in  

the  GLA  gene.  Later,  he  was  proved  to  have  a   late-­‐onset  variant  of  AFD,  

with   manifestation   confined   to   the   heart.   The   fact   that   he   was  

misdiagnosed  for  almost  4  years,  spurred  our  curiosity  and  we  started  to  

study   AFD   in   its   genetic   and   clinical   aspects.   To   present,   almost   70  

patients  with  AFD  have  been  evaluated   in  our  center  and  more   than  50  

are  in  regular  follow-­‐up.    

Given  the  expertise  our  center  had  with  the  issue  of  microvascular  

dysfunction  in  hypertrophic  cardiomyopathy,  in  2006  we  decided  to  study  

the  presence,  prevalence  and  clinical  significance  of  cardiac  microvascular  

dysfunction  (CMD)  in  our  cohort  of  AFD  patients.  

2.  Genotype  –  phenotype  correlations  

  63  

The   linking   point   between   AFD   cardiomyopathy   and   HCM   is   the  

myocardium:  both  these  conditions  affect  primary  the  heart  muscle.    

In  AFD  patients,  cardiomyopathy  represents  one  of  the  features  of  

a  multisystemic  condition,  which  affects  not  only  the  heart,  but  also  the  

kidney   and   the   peripheral   and   central   nervous   system   [29].   Cardiac  

involvement   has   been   described   in   both   genders   and   is   mainly  

characterized  by  variable  degrees  of  hypertrophy  and  interstitial  fibrosis.  

Although   commonly   classified   as   a   storage   disease   of   the   heart,   AFD  

cardiomyopathy   is   characterized   by   true   hypertrophy,   as   Gb3  

accumulation  only  accounts  for  a  very  limited  proportion  of  cardiac  mass  

increase.   In   hypertrophic   cardiomyopathy,   a   genetic  mutation   in   one   of  

the   gene   encoding   for   sarcomeric   proteins   leads   to   variable   degrees   of  

hypertrophy   [45].   Tissue   architecture   in   HCM   appears   overturned,   with  

cardiomyocytes   derangement   (the   so-­‐called   “disarray”)   and   interstitial  

fibrosis  [46].    

The   structure   and   function   of   coronary   microcirculation   are   also  

altered   in   both   these   conditions   [Fig   2.2-­‐2].  Narrowing   of   the   arterioles  

lumen  is  caused  by  endothelial  Gb3  storage  in  AFD  [47]  and  hypertrophy  

of   the   media   wall   in   HCM   [46],   and   it   is   accompanied   by   functional  

alterations.  Therefore,  blood  supply  of  the  myocardium  may  be  normal  at  

rest  but  it  is  usually  impaired  during  exercise  and  may  lead  to  myocardial  

ischemia,  cardiomyocytes  death  and  cardiac  dysfunction.    

Our  interest  in  the  issue  of  microvascular  function  arises  from  the  

fact  that  an  impaired  response  of  myocardial  blood  flow  to  dipyridamole  

has   been   proved   to   represent   a   strong   and   independent   predictor   of  

clinical  deterioration  and  death  and   is  associated  with  poor  prognosis   in  

patients   with   HCM   and   idiopathic   dilated   cardiomyopathy   [48].   Thus,  

2.  Genotype  –  phenotype  correlations  

  64  

since   microvascular   dysfunction   may   represent   a   common   pathway  

leading  to  disease  progression  in  different  cardiomyopathies,  we  thought  

to   investigate   the   presence,   characteristics   and   clinical   severity   of  

microvascular  function  also  in  patients  with  AFD.    

 

 

Fig  2.2-­‐2:  Gb3  inclusions  in  the  endothelium  and  cardiomyocytes.    

Panel   A   shows   an   intramural   coronary   artery   in   a   patient   with  hypertrophic   cardiomyopathy.  Wall   thickening   is  due  primarily   to  severe   thickening   of   medial   wall,   while   the   intima   is   mildly  thickened.  

Panel   B   shows   interstitial   capillaries   in   the   myocardium   of   a  patient  with  Anderson-­‐Fabry  disease.  Glycosphingolipid   inclusions  are   present   in   the   endothelium   (arrow)   and   cardiomyocytes  (arrowhead)  

 

At  that  time,  the  knowledge  of  coronary  microcirculation  in  Fabry  

disease   was   very   limited   [47].   CMD   had   been   described   only   in   male  

patients  with  hypertrophy  and  advanced  stage  of  disease  [49,  50].  Despite  

the   absence   of   available   data   about   this   issue,   we   believed   that   CMD  

2.  Genotype  –  phenotype  correlations  

  65  

could  be  a  feature  of  AFD  cardiomyopathy,  independently  of  the  presence  

of   LV   hypertrophy   and  other   instrumental   signs   of   cardiac   involvement.  

What  made   our   hypothesis   plausible  was   the   fact   that   in   patients  with  

sarcomeric  hypertrophic  cardiomyopathy,  CMD  was  known  to  be  a  diffuse  

phenomenon  within   the   LV,   involving   even  non-­‐hypertrophied   LV  walls,  

and  it  could  possibly  precede  LVH  development.    

This   data   spurred   our   curiosity:   was   CMD   also   present   in   AFD  

female   patients,   generally   exhibiting   more   subtle   cardiac   manifestation  

than  men?  Was  CMD  present  in  patients  without  any  instrumental  sign  of  

cardiac   involvement?   Thus,   the   present   study   was   undertaken   to  

investigate   coronary   microvascular   function   in   a   cohort   of   male   and  

female   AFD   patients   at   different   stages   of   disease,   with   and   without  

evidence  of  LVH,  in  order  to  assess  whether  CMD  may  occur  independent  

of  LVH  and  in  the  absence  of  any  other  sign  of  cardiomyopathy.    

 

2.2.2   Coronary  microvascular  dysfunction  as  a  universal  manifestation  

of  Fabry  cardiomyopathy.    

Thirty  patients  with  an  established  diagnosis  of  AFD  were  selected  

and   underwent   a   thorough   cardiac   evaluation   by   clinical   examination,  

resting  ECG,  24-­‐hours  Holter  monitoring  and  echocardiography.  The  same  

study   protocol   was   employed   in   24   healthy   controls,   who   were  

investigated   for   exclusion   of   heart   disease,   and   were   comparable   to  

patients   in   terms   of   gender   and   age.   Two-­‐third   of   our   patients   showed  

increased  LV  wall  thickness  values,  ranging  from  13  to  27  mm.  In  contrast  

to   patients   with   HCM,   the   distribution   of   LV   hypertrophy   was   mostly  

concentric,  with  milder  degree  of  hypertrophy  [Fig  2.2-­‐3  and  2.2-­‐4].    The  

remaining   10   patients   had   no   evidence   of   cardiac   involvement,   with  

2.  Genotype  –  phenotype  correlations  

  66  

normal  LV  wall  thickness  values  and  normal  Tissue  Doppler  Imaging  mitral  

septal  annulus  velocities  at  echocardiography.      

 

Fig  2.2-­‐3:  ECG  of  patients  with  Anderson–Fabry  disease  (AFD).  

The   ECG   on   the   top   shows   signs   of   atrial   enlargement,   LVH   and  marked   repolarization   abnormalities   in   a   45   year-­‐old   man   with   a   late  onset  variant.    

The  ECG  on   the  bottom  shows  sinus  bradycardia   in  a  23  year-­‐old  male  with  classical  phenotype.    

2.  Genotype  –  phenotype  correlations  

  67  

 

Fig  2.2-­‐4:  Echocardiography  images  of  a  patient  with  Anderson–Fabry  disease  (AFD),  carrying  the  N215S  mutation.  

Upper  and  middle  panel  show  different  echocardiographic  images  with  LV  hypertrophy,   which   is   concentric.   Right   ventricle   and   papillary   muscles  are   also   hypertrophied.   The   lower   panel   shows   diastolic   dysfunction  (from   left   to   right:   pulse-­‐waved   Doppler   of   mitral   inflow   showing   mild  diastolic  dysfunction;  TDI   images  with  reduced  velocities  and  pulmonary  vein  flow  with  prominent  A  reverse  wave).    

 

Coronary   microvascular   function   was   assessed   by   Positron  

emission  tomography  (PET),  a  technique  that  allows  a  direct  and  precise  

quantification   of   microvascular   function,   through   the   measurement   of  

maximal   global   and   regional   myocardial   blood   flow   after   dipyridamole  

(Dip-­‐MBF)  [51].  The  measurement  of  myocardial  blood  flow  in  conditions  

2.  Genotype  –  phenotype  correlations  

  68  

of   near-­‐maximal   vasodilatation,   obtained   by   intravenous   infusion   of  

dipyridamole,   permits   calculation   of   maximum  MBF.   In   the   absence   of  

obstructive   epicardial   coronary   disease,   flow   resistance   is   primarily  

determined  by  the  microvasculature  (>90%  of  coronary  resistance  resides  

in   arterioles   <300   um   in   diameter),   and   therefore   a   reduced   MBF   is   a  

marker   of   coronary   microvascular   dysfunction.   In   normal   subjects,  

maximal   myocardial   blood   flow   values   >3   ml/min/g   after   dipyridamole  

infusion  are  considered  normal.  Such  values  reflect  the  ability  of  increase  

myocardial  perfusion  to  match  increased  demand.    

All  AFD  patients  enrolled  in  this  study  exhibited  a  blunted  coronary  

microvascular  response  to  dipyridamole,  as  compared  to  control  subjects,  

with  a  mean  Dip-­‐MBF  of  only  2.0±0.4  mL/min/g,  compared  to  3.2±0.5  in  

normal  controls,  i.e.  a  60%  reduction  in  coronary  flow  [Fig.  2.2-­‐5].  

 

Fig   2.2-­‐5:   Coronary   microvascular   dysfunction   in   patients   with  Anderson–Fabry  disease.    

Myocardial  blood  flow  following  dipyridamole  infusion  is  markedly  impaired  in  AFD  patients  compared  with  control  subjects.    

2.  Genotype  –  phenotype  correlations  

  69  

As  expected,  patients  with  LVH  invariably  showed  marked  degrees  

of  CMD,  suggesting  that  the  profound  remodeling  of  the  heart  structure  

was   invariably   accompanied   by   changes   in   the   architecture   of   small  

vessels.  However,  even  patients  without  LVH  showed  a  blunted  response  

to  dipyridamole,  with  mean  myocardial  blood  values  ranging  from  2.4  to  

as  low  as  1.2  mL/min/g.  As  a  result,  CMD  in  patients  without  LVH  was  on  

average   milder,   but   not   statistically   different,   from   those   observed   in  

patients  with  LVH.    

Altogether,   these   findings   point   to   CMD   as   a   constant  

manifestation   of   AFD,   which   may   be   present   independent   of   other  

instrumental  evidence  of  cardiac  involvement  [Fig.  2.2-­‐6].  Moreover,  AFD  

patients  without  LVH  and  CMD  generally  had  none  of  the  other  features  

that   are   considered   very   early   disease  manifestations,   such   as   reduced  

diastolic  mitral  annulus  velocities  or  presence  of  LGE    [52,  53].  Therefore,  

this  observation  implies  that  myocardial  flow  abnormalities  can  indeed  be  

considered  to  represent   initial  cardiac   involvement,  possibly  followed  by  

overt  cardiomyopathy  over   time.  This  novel  concept   is  suggested  by  the  

young  age  of  patients  with  CMD  in  the  absence  of  LVH.      

Although   myocardial   blood   flow   was   globally   impaired   in   AFD  

hearts,   there   was   a   marked   regional   heterogeneity   of   myocardial   flow,  

with  prevalent  hypoperfusion  of  the  apical  region.  Such  regional  nature  of  

cardiac   involvement   may   appear   counterintuitive   in   a   systemic   storage  

disease.   However,   the   novel   idea   of   a   non-­‐homogeneous   cardiac  

involvement   in   AFD   is   in   line   with   prior   observations   in   a   number   of  

cardiomyopathies,   and   particularly   to   those   related   to   storage   or  

infiltrative   disorders,   such   as   for   example   amyloidosis   [54].   The  

mechanisms  accounting  for  such  regionally  heterogeneous  manifestations  

remain  unresolved.  

2.  Genotype  –  phenotype  correlations  

  70  

 

Fig   2.2-­‐6:   Relationship  of   coronary  microvasculature  dysfunction(CMD)  to  phenotype  in  individual  patients  with  Anderson–Fabry  disease  (AFD).  

(A)   A   28-­‐year-­‐old  male   with   extreme   sinus   bradycardia   (36   b.p.m.)   and  normal   interventricular   septal   thickness   values   (*echocardiographic  parasternal   long   axis   and   cardiac   magnetic   resonance   four-­‐chamber  views).   Colour-­‐coded   polar   map   obtained   by   positron   emission  tomography   (PET)   after   dipyridamole   infusion   showing   regional   CMD,  with  relatively  preserved  flow  in  the  antero-­‐lateral  region.    

(B)   A   60-­‐year-­‐old   female   with   normal   ECG,   without   normal   LV   wall  thickness   values.   The   polar  map   shows   severe   CMD,   despite   normal   LV  wall  thickness  values.    

(C)   A   52-­‐year-­‐old   male   with   marked   ECG   abnormalities,   severe   LV  hypertrophy   (LVH)   (*echocardiographic   apical   four-­‐chamber   view   and  

2.  Genotype  –  phenotype  correlations  

  71  

cardiac   magnetic   resonance   four-­‐chamber   view).   The   polar   map   shows  severe  CMD.    

(D)  A  47-­‐year-­‐old   female  with  markedly  abnormal  ECG,  and  severe  LVH.  The  polar  map  shows  relatively  preserved  microvascular  function,  despite  the  LVH.  Dip-­‐MBF,  myocardial  blood  flow  following  dipyridamole  infusion,  

 

2.2.3.     Cardiac   involvement   in   females   with   AFD   and   influence   of  

genotype  

Although   AFD   is   an   X-­‐linked   disease,   female   patients   are   well  

known  to  develop  the  clinical  manifestations  of  the  disease,  which  can  be  

severe  and  determine  outcome  [55].  Cardiomyopathy  is  not  an  exception  

to   this   rule,   and   has   been   described   in   women;   however,   cardiac  

manifestations   generally   have   a   later   onset   and   are   less   marked   than  

those  occurring  in  men    [56,  57].  Thus,  we  were  expecting  milder  degree  

of   microvascular   dysfunction   in   females.   However,   women   with   and  

without  LVH  had  considerable  degrees  of  CMD,  although   to  a   less   sever  

degree   than   males.   Of   note,   in   females   without   LVH,   a   reduced   MBF  

represented   the   only   detectable   evidence   of   cardiac   involvement.   As   a  

result,   heightened   awareness   should   be   considered   for   cardiac  

involvement   in   female   patients   with   AFD,   even   in   the   absence   of   an  

echocardiographic  phenotype.    

With   regard   to   the  genotype  of  patients,  we  had   the  opportunity  

to   study  a   recurrent  mutation   in  Fabry  disease.  The  c.644A>G  GLA-­‐gene  

mutation,  leading  to  the  p.Asn215Ser  amino  acid  substitution  was  present  

in   three   index   patients   and   seven   family   members.   This   mutation   is  

known  to  be  related  to  the  so-­‐called  “cardiac  variant”  of  the  disease  [58].  

Patients   harboring   this   mutation   usually   have   a   predominant   cardiac  

phenotype,  characterized  by  moderate  to  severe  degree  of  hypertrophy,  

2.  Genotype  –  phenotype  correlations  

  72  

with   an   asymmetrical   distribution,   which   is   rather   uncommon   in   AFD.  

Disease   onset   is   usually   late,   with   males   developing   signs   of   cardiac  

involvement   during   their   thirty.   Extracardiac   involvement,   such   as   renal  

or  cerebrovascular,  is  uncommon  although  not  impossible.    

In   our   cohort,   the   p.Asn215Ser   group   showed   similar   degree   of  

hypertrophy   compared   to   patients   with   other   genotype.   Nevertheless,  

myocardial   blood   flow   was   markedly   lower   when   compared   to   other  

genotypes   [Fig   2.2-­‐7],   suggesting   a   severe   impairment   in   the  

microvascular   function.  Furthermore,  at   logistic   regression  analysis,  only  

the  mutation  p.Asn215Ser  proved   to  be  an   independent  determinant  of  

severe   CMD   (hazard   ratio   for   Dip-­‐MBF<1.25   ml/g/min   9.0;   95%  

confidence  intervals:  1.3-­‐61.1;  p=0.03).    

 

Figure  2.2-­‐7:  Genotype  influence  on  microvascular  function  

Despite   similar   degree   of   hypertrophy,   patients   with   the  p.Ans215Ser  mutation   showed   a  more   severe   impairment   of  the  myocardial  perfusion  when  compared  to  other  patients.      

2.  Genotype  –  phenotype  correlations  

  73  

The  consistent  and  severe  blunting  of  MBF  in  patients  with  the  p.  

Ans215Ser   GLA   gene   mutation   may   suggest   a   role   of   genetic   status   in  

determining   the   severity   of   MBF.   Furthermore,   the   concept   of   the  

possible   influence   of   genetic   status   to  microvascular   function   has   been  

proved  in  other  more  common  genetic  cardiomyopathy  (i.e.  hypertrophic  

cardiomyopathy)   [59].   Such   variability   suggests   selective   microvascular  

involvement  activated  by  specific  gene  mutations,  and  is  consistent  with  

the  phenotypic  variability  of  clinical  manifestations  in  AFD.  In  the  light  of  

these   findings,   the   molecular   links   between   GLA   gene   mutations   and  

coronary  microvascular  remodeling  need  to  be  further  investigated.

 

2.2.4.    Potential  mechanisms  of  coronary  microvascular  dysfunction  

The  potential  pathophysiological  mechanisms  underlying  coronary  

blood  flow  impairment  in  AFD  are  several,  and  include  those  mediated  by  

LVH  (reduced  capillary  density,  extravascular  compression  forces)  as  well  

as   those  directly  affecting   the  microvasculature   (endothelial  dysfunction  

due   to   GB3   storage,   nitric   oxide   pathway   dysregulation,   microvascular  

remodeling)   [60].   However,   in   patients  without   LVH,   only   the   latter   are  

present,  suggesting  that  LVH  per  se  is  indeed  likely  a  contributor  to  CMD,  

rather  than  a  cause.    

Despite   considerable   advances   in   our   understanding   of   AFD,   the  

mechanisms   leading   to   LVH   are   not   well   understood.   Storage   of   Gb3  

within   cardiac   myocytes   accounts   for   a   small   amount   of   the   whole   LV  

mass,  which   is  mainly   represented  by   true  myocardial  hypertrophy   [44].  

One   hypothesis   is   that   intracellular   accumulation   of   Gb3   may   disturb  

cardiac   energetic   metabolism,   representing   an   early   trigger   for   the  

activation  of  the  intracellular  signaling  pathways  leading  to  hypertrophy,  

2.  Genotype  –  phenotype  correlations  

  74  

fibrosis,   apoptosis   and   necrosis   [61].   Furthermore,   microvascular  

dysfunction   and   chronic   hypoperfusion,   due   to   Gb3   accumulation   in  

endothelial   cells,   may   also   play   a   crucial   role   in   the   activation   and  

perpetuation  of  these  pathophysiological  processes,  even  at  early  stages.    

An   unavoidable   limitation   of   the   present   study   lies   in   the   small  

sample  size  and  heterogeneity  of  our  study  population.  Selecting  a  more  

homogeneous   study   cohort,  by  excluding  patients  with   comorbidities  or  

cardiovascular   risk-­‐factors,   would   not   have   been   feasible   in   a   rare   and  

multisystemic   disorder   such   as   AFD.   Thus,   myocardial   blood   flow   may  

have  been  affected  in  our  cohort  by  the  interplay  of  comorbidities  such  as  

hypertension,   smoking   or   dyslipidaemia,   as   well   as   ERT   itself.   This  may  

have  potentially  led  to  overestimation  of  CMD  in  our  patients  with  regard  

to  the  healthy  controls,  in  whom  none  of  the  conventional  cardiovascular  

risk   factors  were  present.  While  we   acknowledge   this   unavoidable   bias,  

however,   MBF   values   in   AFD   with   no   history   of   smoking,   hypertension  

and   dyslipidaemia,   ideally   representing   “pure”   AFD   patients,   were  

comparable   to   the   rest   of   the   cohort,   showing   similar   degree   of   MBF  

impairment.   Thus,   our   data   are   consistent   with   a   disproportionate  

microvascular  involvement  in  AFD,  overruling  the  effect  of  these  potential  

environmental  confounders.    

 

2.2.5.     Early  detection  of  heart   involvement   in   Fabry  disease:   a   crucial  

point  for  patient’s  management  

The  issue  of  early  organ  damage  identification  has  become  critical  

following  the  introduction  in  clinical  practice  of  ERT  and  novel  therapeutic  

molecules,  including  pharmacological  chaperone  therapy  [39,  40].  To  date,  

evidence   of   benefit   of   ERT   in   AFD   patients   with   overt   signs   of  

2.  Genotype  –  phenotype  correlations  

  75  

cardiomyopathy  and  LVH  is  disappointing,  and  earlier  timing  of  treatment  

initiation  has  been  advocated  in  order  to  improve  efficacy  [41].    

Our   findings   imply   that   a  normal   echocardiogram  cannot  exclude  

deterioration   of   microvascular   function   related   to   the   disease,   raising  

important   issues   regarding   risk   stratification   and   management.   Thus,  

early   detection   of   subclinical   cardiac   involvement,   as   allowed   by   PET  

studies   of   microvascular   function,   may   become   a   critical   element   in  

clinical   decision   making   especially   in   young   AFD   patients.   In   particular,  

CMD   may   represent   a   viable   treatment   target,   potentially   relevant   to  

prevention  of  disease  progression  and  outcome.  In  the  future,  the  advent  

of   cardiac  magnetic   resonance   (CMR),   by   virtue   of   its   larger   availability  

and   more   favourable   safety   profile   compared   to   PET   [62],   may   allow  

large-­‐scale   investigation   of   CMD   in   AFD   patients.   To   date,   however,  

quantitative  assessment  of  microvascular  flow  by  CMR  is  time-­‐consuming  

and  largely  limited  to  research  purposes.    

Furthermore,  is  it  possible  to  hypothesize  that  the  severity  of  CMD  

may   be   an   important   predictor   of   adverse   outcome,   as   for   other  

genetically  determined  cardiomyopathies  [48].  

These   findings   represent   a   picture   of   our   AFD   population   at   this  

time.   However,   since   everything   we   know,   especially   in   medicine,   is  

destined   to   change  or  modify,   our  present   goal   is   to   continue   to   follow  

this  patients   in  order   to  be  able   to  answer  many  more  questions  arisen  

from   this  work.  We   are   in   particular   interested   in   determining  whether  

CMD   may   predict   the   development   of   LVH   or   may   be   a   predictor   of  

outcome.    

 

Full  text  of  the  publication  may  be  found  in  chapter  7.    

2.  Genotype  –  phenotype  correlations  

  76  

2.3         Next   Generation   Sequencing:   new   horizons   in   the  

field  of  cardiomyopathies  

 

Cardiomyopathies   are   a   clinically   heterogeneous   group   of   heart  

muscle   disorders,   largely   genetic   in   nature,   defined   by   the   presence   of  

abnormal   myocardial   structure   and/or   function   in   the   absence   of  

ischemic  heart  disease  or  abnormal  loading  conditions.  Cardiomyopathies  

have  been  variously  classified  over  the  years  based  on  their  phenotypes.  

The  current  classifications  continue  to  be  based  on  phenotype  defined  by  

clinical   evaluation   of   affected   individuals   and   incorporating   genotype  

when   possible   (see   chapter   1)[63].   Contemporary   classifications  

distinguish   the   dilated   (DCM),   hypertrophic   (HCM)   and   restrictive   forms  

(RCM),   as   well   as   arrhythmogenic   right   ventricular   cardiomyopathy  

(ARVC)  and  an  unclassified  group   including   isolated   left   ventricular  non-­‐

compaction  (LVNC).  

While   the   familial   nature   of   cardiomyopathies   has   been   known  

since   their   earliest   clinical   description,   the   first   cardiac   disease-­‐causing  

mutation  was  identified  in  a  family  with  hypertrophic  cardiomyopathy  in  

1990   [64].   During   the   past   two   decades,   numerous   genes   and   genetic  

variants  associated  with  different  cardiomyopathies  have  been  identified.  

However,   the   great   complexity   of   genotype   is   paralleled   by   huge  

phenotype   variability,   thus   making   a   genotype-­‐phenotype   correlation  

almost  impossible  to  achieve.    

Many   attempts   at   providing   distinct   boundaries   between   these  

clinical   entities   have   been   hindered   by   the   increasing   evidence   of   bi-­‐

directional  overlap:  a)  different  cardiomyopathies  share  common  genetic  

background;   for  example,  genes  encoding  sarcomere  protein  genes  may  

2.  Genotype  –  phenotype  correlations  

  77  

be   associated   with   HCM,   DCM,   RCM   and   LVNC,   and   Z-­‐disc   or   calcium  

handling   protein   genes   may   cause   both   HCM   and   DCM;   b)   the   same  

clinical   phenotype   may   be   produced   by   defects   in   genes   that   are  

profoundly  diverse  in  structure  and  function,  such  as  the  lamin  A-­‐C  gene,  

titin  or  beta-­‐myosin  heavy  chain   in   the  case  of  DCM.  As  a  consequence,  

genetic   investigations   of   patients   with   cardiomyopathies   based   on  

traditional  sequencing  techniques  have  grown  at  a  relatively  slow  pace,  as  

each  phenotype  could  only  be   tested   for  a   limited  amount  of   candidate  

genes  in  clinical  practice.  

Sanger   sequencing,   even   when   performed   by   automated   high-­‐

throughput   machines,   analyzes   ~2   million   bases   per   day,   a   very   low  

performance   compared   to   the   collective   size   of   the   genes   involved   in  

familial   heart   disease.   This   has   led   different   institutions   and   companies  

over   the   years   to   design   small   panels   of   8-­‐20   genes   for   each   condition,  

with   yields   ranging   from   ~60%   in   HCM   to   ~20%   in   DCM.   The   various  

panels  were  often  not  all  available  in  single  institutions,  because  of  costs  

and   time   constraints,   forcing   patients   to   travel   and   perform   repeated  

analyses  before  reaching  a  diagnosis.    

The   recent   advent   of   next   generation   sequencing   (NGS)  

technologies  have  led  to  massive  increase  in  throughput,  up  to  ~50  billion  

sequenced   bases   per   day,   and   reduction   in   cost.   Therefore,   NGS,   also  

described   as   “second   generation”   or   “massively   parallel”,   has   replaced  

Sanger  sequencing  as  the  primary  methodology  employed  by  researchers  

and   clinicians   to   identify   disease   variant.   The   ability   to   simultaneously  

analyze  multiple   or   very   large   genes   at   a   cheaper   cost   per   base  makes  

next   generation   sequencing   an   attractive   solution   for   clinical   diagnostic  

testing  to  identify  the  disease-­‐causing  mutation  (or  mutations)  in  patients  

with   genetically   heterogeneous   disorders.   Three   different   approaches  

2.  Genotype  –  phenotype  correlations  

  78  

have   become   feasible   in   clinical   practice   (in   increasing   order   of  

complexity):  a  targeted  approach  (with  panels  possibly  including  over  100  

genes),   whole   exome   and   whole   genome.   While   the   last   two   remain  

expensive,   labor-­‐intensive   and   mainly   used   for   research   purpose,   a  

targeted  approach  is  becoming  increasingly  popular  in  referral  centers  for  

inherited  heart  diseases.  

 

2.3.1.    NGS  in  the  clinical  setting:  clinical  pictures  of  familial  phenotype  

and  genetic  study  

At   our   Institution,   genetic   screening   has   been   offered   to   HCM  

patients   since   2000.   At   that   time,   denaturing   high   pressure   liquid  

chromatography  (DHPLC)  was  used  as  an  initial  approach,  and  only  the  3  

most   prevalent   genes   (MYH7,   MYBPC3   and   TNNT2)   were   analyzed,   as  

more   comprehensive   testing   would   not   have   been   sustainable   in   a  

national   health   system   environment.   Furthermore,   turn-­‐around   times  

were   very   long   (close   to   2   years)   because   of   the   complex   and   lengthy  

procedures  employed.  By  2006,  only  88  index  cases  had  been  completed,  

with   an   overall   yield   of   mutations   approaching   60%.   In   2008,   robotic  

automation  allowed  an  expansion  of  the  standard  screening  set  of  genes  

from  3  to  8  (by  including  TNNI3,  MYL2,  MYL3,  ACTC1,  TPM1),  and  DHPLC  

was   abandoned   in   favour   of   direct   Sanger   sequencing.   Costs   and  

turnaround   time   decreased   significantly   (to   less   than   6  months).   At   the  

end  of  2010,  672  index  cases  had  been  completed,  with  an  overall  yield  of  

64%.  Thus,  even  considering  most  novel  variants  as  pathogenic  (an  issue  

that   remains   controversial   to   this   day),   over   one-­‐third   of   our   probands  

proved   negative   for   the  most   prevalent   sarcomere   genes   and   thus   the  

molecular  basis  of   their  disease  remains  unresolved  –  a  problem  shared  

2.  Genotype  –  phenotype  correlations  

  79  

by   all   laboratories   involved   in   HCM   screening.   However,   NGS   is   rapidly  

changing   the   landscape   of   genetic   testing   because   of   its   power   and  

sensitivity.    

In  the  present  section  I  would  like  to  illustrate  the  first  experience  

of  our  referral  center,  historically  committed  to  genetic  studies  of  familial  

cardiomyopathies,  with  these  new  genetic  technologies.  Thirteen  families  

with   different   form   of   cardiomyopathy,   negative   after   standard   genetic  

analysis,  were   selected   and   analyzed  using  whole   exome  analysis   and   a  

targeted  approach  [Table  2.3-­‐1].    

For   the  purpose  of   this   thesis,  only   the  most   informative   families  

have  been  selected  and  will  be  described  in  the  next  sections.      

 

 

Table  2.3-­‐1:  familial  cardiomyopathies  studied  using  NGS  

Whole  exome  analysis   Targeted  approach      

1  family  with  unexplained  juvenile  sudden  cardiac  death  and  ventricular  fibrillation    

1  heterogeneous  phenotype  *  (HCM  /  LVNC  cardiomyopathy  and  supraventricular  arrhythmias)  

8  families  with  HCM    1  family  with  DCM  *    1  family  with  ARVC  *    

1  family  with  LV  aneurism  *                        

[*  =  families  described  in  the  text].  

 

 

2.  Genotype  –  phenotype  correlations  

  80  

2.3.2  Whole  exome  analysis  

 

A  family  with  idiopathic  dilated  cardiomyopathy  

  The  proband  was  31  years  old  when  he  was  first  seen  at  our  center.  

He  was  totally  asymptomatic  and  came  to  our  center  because  of  familiar  

screening.  His  39-­‐year-­‐old  brother  had  died  suddenly  a  couple  of  months  

earlier   and   the   post-­‐mortem   examination   revealed   dilated  

cardiomyopathy.  His  63-­‐year-­‐old  mother  had  died  3  years  earlier  because  

of   refractory   heart   failure.   She   had   had   a   diagnosis   of   dilated  

cardiomyopathy  when  she  was  45  and  required  a  pacemaker  at  the  age  of  

53  [Figure  2.3-­‐2].    Despite  the  early  onset  of  the  disease  in  this  lady,  who  

had   no  major   cardiovascular   risk   factors,   the   possible   familial   nature   of  

the  disease  was  missed  and  none  of  the  doctors  advise  a  family  screening.    

In   our   patient,   echocardiography   revealed   a   dilatation   of   the   left  

ventricle,   with   a   mild   impairment   of   the   systolic   function   (ejection  

fraction   45%).   Furthermore,   the   ECG   showed   I   degree   atrio-­‐ventricular  

block   (PR   interval   420   msec),   while   dynamic   24-­‐hours   holter   showed  

many   episodes   of   type   2   II   degree   AV   block.   He   also   had   elevated   CPK  

level,  without  any  sings  of  skeletal  myopathy.  These  elements  prompted  

us   to   consider   a   diagnosis   of   cardiolaminopathy   as   the   most   plausible  

[Figure  2.3-­‐2].    

2.  Genotype  –  phenotype  correlations  

  81  

 

Figure  2.3-­‐2:  Clinical  features  of  the  proband  with  DCM  

Top  right:  family  pedigree  showing  a  dominant  inheritance  

Bottom   right:   echocardiogram   and   cardiac   magnetic   resonance   images  showing  dilated  LV  (EF  45%).    

ECG  performed  during  the  first  examination  (top  left)  and  during  a  follow-­‐up   visit   (bottom   left):   marked   first   degree   atrio-­‐ventricular   block   was  present.    

 

Therefore,  after  a  detailed  pre-­‐test  counseling  with  our  geneticist,  

a  blood  sample  was  drawn.  Since  the  clinical  picture  was  highly  suggestive  

of  a  genetic  cardiomyopathy  related  to  mutation  in  the  LMNA  A/C  gene,  

we   choose   standard   genetic   with   Sanger   sequencing   as   a   first-­‐line  

diagnostic   technique.   Surprisingly,   genetic   analysis   came   back   negative.  

Filled   with   curiosity   to   detect   the   mutation   responsible   for   such  

cardiomyopathy,  we  decided  to  analyze  the  whole  exome  of  this  subject.    

2.  Genotype  –  phenotype  correlations  

  82  

Initial   genetic   analysis   identified   almost   55000   variants.   The  

standard  bioinformatics  analysis   (as  described   in  methods)  did  not  allow  

the  identification  of  the  causative  mutation.    

Sanger  sequencing,  as  well  as  whole-­‐exome  sequencing,  have  been  

successfully  used  to  discover  the  great  majority  of  genomic  variants,   (i.e  

common   and   rare   single   nucleotide   variants   (SNVs),   small  

insertions/deletions   (indels)   and   breakpoints   of   structural   variations).  

However,  they  are  unsuitable  for  detecting  large  deletions  or  duplications  

because  they  span  one  or  both  primer  binding  sites.  This  can  be  achieved  

through   the   analysis   of   copy   number   variations   (CNVs),   a   comparative  

depth  of  coverage  analysis  between  normal  controls  and  patient  samples.  

In   order   to   do   that,   the   EXCAVATOR   software  was   applied     and   a   huge  

deletion  of  163±22  kb  was  found.  The  deleted  region,  located  on  the  long  

arm  of  the  1  chromosome  (1q22),  comprised  the  entire  LMNA  gene.    

 

A  family  with  arrhythmogenic  cardiomyopathy  

  The  proband  was  a  37-­‐year-­‐old  woman  who  was  admitted  to  our  

hospital   after   resuscitated   cardiac   arrest.   She  had  negative   cardiological  

clinical  history,  without  syncope,  dyspnea  or  palpitations.  She  had  been  a  

competitive  runner  until  her  thirties  and  at  the  age  of  35  she  gave  birth  to  

spontaneous  conceived  triplets.  At  the  time  of  the  cardiologic  evaluation  

she   presented   clinical   features   consistent   with   a   diagnosis   of  

arrhythmogenic   cardiomyopathy   with   biventricular   involvement,  

associated  with  palmar  keratoderma  [Figure  2.3-­‐3].  Echocardiography  and  

cardiac  magnetic   resonance   showed  a  mildly  dilated   right  ventricle  with  

reduced   systolic   function  and  multiple  areas  of  bulging  of   the   free  wall,  

associated  with  reduced  left  systolic  function  (EF  45%).  

2.  Genotype  –  phenotype  correlations  

  83  

A  therapy  with  ACE-­‐inhibitors,  amiodarone  and  beta-­‐blockers  was  

initiated   and   an   implantable   cardioverter-­‐defibrillator   was   implanted   in  

secondary   prevention.   She   also   had   family   history   of   juvenile   sudden  

cardiac  death:  her  brother,  with  a  history  of  syncope,  died  suddenly  at  the  

age   of   28   years   while   playing   soccer.   He   also   had   scalp   dermatitis   and  

woolly   hair.   A   post-­‐mortem   evaluation   of   echocardiograms   and  

electrocardiograms,   performed   a   couple   of   months   before   his   death,  

showed   clinical   findings   suggestive   of   arrhythmogenic   right   ventricular  

cardiomyopathy.   The   grandmother’s   sister   had   dilated   cardiomyopathy  

and  she  also  died  suddenly  at  the  age  of  forty.  A  mild  form  of  ARVC  and  

scalp  dermatitis  was  observed  both  in  the  mother  and  in  the  uncle  of  the  

proband.  Clinical  features  observed  were  consistent  with  the  diagnosis  of  

Carvajal  syndrome  [66],  although  the  family’s  pedigree  strongly  suggested  

a  dominant  model  of  inheritance  [Figure  2.3-­‐4].    

Traditional   Sanger   sequencing   failed   to   identify   any   mutation   in  

those   genes   usually   associated   with   ARVC   (transforming   growth   factor  

beta3,   ryanodine   receptor   2,   desmoplakin,   plakophilin2,   desmoglein2,  

desmocollin2  transmembrane  protein  43,  junction  plakoglobin  protein).    

A  whole  exome  sequencing  study  was  therefore  performed  in  the  

proband.  Data  analysis  identified  51337  variants,  7517  of  which  located  in  

coding   regions   and   intron-­‐exon   junctions.   After   frequency   filtering  

(variants  with  minor  allele  frequency  <  5%  in  1000  Genomes  Project),  834  

variants  were   selected.   Among   these,   101   variants  were   not   present   in  

dbSNP  Release  [Figure  2.3-­‐4].    

 

2.  Genotype  –  phenotype  correlations  

  84  

 

 

Figure  2.3-­‐3:  clinical  features  of  the  proband  with  ARVC  

A-­‐C:  echocardiogram  and  cardiac  MRI  images  show  wall  aneurysms  within  the   so-­‐called   ``triangle   of   dysplasia''   (white   arrows:   evident   systolic  bulging  in  infundibular,  apical,  and  subtricuspid  regions  of  the  RV).  The  LV  apex  is  also  involved.    

D:  ECG  of  the  proband        

E:  palmar  keratosis  

 

 

 

2.  Genotype  –  phenotype  correlations  

  85  

 

 

Figure  2.3-­‐4  

A:  NGS  workflow  analysis  (top)  and  the  structure  of  the  desmosome  (bottom).    

B:  family  pedigree  showing  a  dominant  pattern  of  inheritance  (top)  and    

IGV  images  of  DSP  c.878A>T,  p.Glu293Val  variant  (bottom).  

 

Then,  we  considered  the  evolutionary  conservation  of  the  affected  

nucleotide  (by  PhyloP  score)  and  the  pathogenic  role  of  these  variants  by  

in  silico  predictive  alghorithms  (MutationTaster,  SIFT,  PolyPhen2,  AGVGD,  

NNSplice,   NetGene2   and   Human   Splicing   Finder).   Prioritization   of   the  

variants   was   then   performed   by  matching  with   a   own   list   of   candidate  

genes,   chosen   by   querying   the   OMIM   Database   with   the   following   key  

words:   HCM-­‐   DCM-­‐   ARVC-­‐   RCM-­‐   LVNC-­‐   Sudden   Death-­‐   Brugada  

Syndrome-­‐  QT  Syndrome  –  Cardiomyopathy.  Non-­‐matched  variants  were  

re-­‐analyzed   by   the   Gene   Prioritization   portal   website  

!"#$%&'$

!"#$%&'$

!"#$%&'$

!"#$'&'$

!"#$'&'$

!"#$'&'$

()*!'+,#-$!"#$$$./012345/$

!"#!$6789:;&$9:<=7:'>?7:$@0:6A7:B$$

"#$$!%&'()*%+,%'-%%.)/0)+(1%

2$3%%

3$245$$):<=7:96$&$C+DE$$:7:'6789:;$$$$$$$$$$$$$$F9<G70<$H=>896<5I/>$>J>6<$$

$

662$$KL.#E$MNOP$$QRQS$$

#5#%!$$$8I"T#K3S$

!""#$%&"'()&*")$%+$',-"

UM)M$!5<5I5B>$$

7% 8%

2.  Genotype  –  phenotype  correlations  

  86  

(http://homes.esat.kuleuven.be/~bioiuser/gpp/tools.php)   by   using   the  

three  tools  ToppGene,  Endeavour  and  Suspects,  allowing  a  prioritization  

of  candidate  genes  based  on  functional  similarity  with  a  training  gene  list.    

Prioritization  identified  a  candidate  variant  in  DST  gene  (OMIM#614653),  

which   encodes   dystonin,   a   large   protein   member   of   the   plakin   protein  

family,   which   bridges   the   cytoskeletal   filament   networks.   Different   DST  

transcripts  are  expressed  in  the  central  nervous  system,  muscle,  and  skin,  

although   mutations   in   this   gene   are   not   usually   associated   with  

cardiomyopathies.   We   therefore   excluded   the   present   gene   from   our  

analysis.    

After  data  filtering  and  integration  of  filtered  results  with  patient’s  

clinical   features,  4  potential  mutations  were  selected.  Only   two  of  them  

co-­‐segregated   in   the   family:   c.878A>T,   p.Glu293Val     variant   in   the  

Desmoplakin  gene  and  c.626A>C,  p.Tyr209Ser  variant  in  the  cytochrome  c  

oxidase   assembly   gene   (SCO2).     Since   the   cardiomyopathy   related   to  

SCO2   gene   mutation   is   usually   associated   with   encephalopathy   and   is  

fatal  in  children,  we  excluded  the  causative  role  of  such  gene  in  our  family.  

Therefore,   we   considered   the   DSPGlu293Val   variant   as   disease   causing  

and  we  hypothesized  a  modifier  role  for  the  SCO2  variant.    

Naxos  disease  and  Carvajal  syndrome  

In   1986,   an   association   of   cardiomyopathy   with   wooly   hair   and  

palmoplantar  keratoderma  was  first  reported   in   families   from  the  Greek  

island  of  Naxos  [67].  This  autosomal  recessive  cardiocutaneous  syndrome  

(‘‘Naxos   disease’’)[68]   presented   clinical   and   histopathological  

characteristics   of   arrhythmogenic   right   ventricular   cardiomyopathy   [69].  

In  1998  Carvajal  [70]  reported  a  variant  of  Naxos  disease  in  families  from  

India   and   Ecuador,   respectively,   in   which   the   heart   disorder   presented  

2.  Genotype  –  phenotype  correlations  

  87  

with  a  more  pronounced  left  ventricular  involvement  and  early  morbidity.  

Naxos  disease  and  Carvajal   syndrome  are  now  considered  as  one  entity  

with  clinical  and  genetic  heterogeneity.    

Molecular   genetic   investigations   in   families   with   this  

cardiocutaneous  phenotype  have  identified  mutations  in  genes  encoding  

the   cell   adhesion  proteins   plakoglobin   and  desmoplakin.     The   structural  

and   functional   integrity   of   cardiac   tissue   is   supported   by   desmosomes,  

adherens  junctions  and  gap  junctions  located  at  intercalated  disks  [71].  In  

desmosomes,  plakoglobin,  plakophilin2  and  desmoplakin  anchor  desmin  

intermediate   filaments   to   desmosomal   cadherins,   securing   the  

mechanical   cell–cell   adhesion.   Desmosomal   cadherins   (desmoglein   and  

desmocollin)   are   transmembrane   proteins   forming   an   extracellular  

zipper‐like  dimer  with  the  corresponding  part  of  desmosomal  cadherins  

of   the   adjacent   myocardial   cell.   Plakoglobin   and   plakophilin2   are  

armadillo   proteins   located   at   the   outer   dense   plaque   of   desmosomes  

which   bind   with   the   N‐terminal   of   desmoplakin   and   with   the   C‐

terminal   of   desmosomal   cadherins.   Desmoplakin   is   a   larger   dumbbell‐

shaped  molecule  which  makes  up  the  inner  dense  plaque  with  its  middle  

coiled‐coiled   rod   domain   and   binds   via   its   C‐terminal   with   desmin  

intermediate   filaments.   Plakoglobin   is   the   only   desmosomal   protein  

which   is   also   found  at  adherens   junctions  where   it   is   involved   in   linking  

with  the  actin  cytoskeleton  of  adjacent  myocardial  cells.    

Normal   functioning   and   integrity   of   desmosomes   is   of   utmost  

importance   in   myocardium   and   skin   particularly   of   palms   and   soles,  

tissues  that  experience  constant  mechanical  stress.  Intercellular  junctions  

not   only   maintain   tissue   integrity   but   also   integrate   mechanical   and  

signaling   pathways   in   the   regulation   of   cell   growth,   differentiation   and  

development.    

2.  Genotype  –  phenotype  correlations  

  88  

A  family  with  early  onset  of  LV  aneurysm  and  ventricular  

arrhythmias  

  The   proband   was   a   28   year-­‐old   man   who   experienced   repeated  

episodes  of   sustained  ventricular   tachycardia,   treated   in   the  ER  with  DC  

shock.   The  ECG   showed  pathological  Q  waves   in   the   infero-­‐lateral   leads  

[Figure   2.3-­‐5],   while   the   echocardiogram   revealed   a   small   aneurysm   of  

the   basal   segment   of   the   infero-­‐lateral   wall.   The   coronary   angiogram  

performed   showed   normal   coronary   artery.   The   cardiac   magnetic  

resonance,  performed  after  a  few  months,  confirmed  the  presence  of  the  

LV   aneurysm   [Figure   2.3-­‐6].   The   patient   had   no   relevant   clinical   history  

and   a   normal   cardiovascular   risk   profile.   Therefore   a   diagnosis   of  

myocarditis  was  made.    

A   couple   of   months   later,   his   father   underwent   cardiological  

evaluation   as   a   part   of   pre-­‐operative   assessment.   His   ECG   was  

indistinguishable  from  that  of  his  son  and  the  echocardiogram  showed  an  

infero-­‐lateral  aneurism.  He  was  asymptomatic,  with  no  history  of  angina,  

dyspnea   or   palpitations.   Therefore,   we   supposed   a   familial   form   of  

cardiomyopathy.  The  brother  of   the  proband  was  also  examined  and  he  

presented  the  same  clinical  phenotype.    

 

Figure  2.3-­‐5:  ECG  of  the  proband  (next  page)  

ECG  showing  pathological  Q  waves  in  the  inferior  (II-­‐III-­‐  avF)  and  lateral  leads  (V5-­‐V6).  

Figure  2.3-­‐6:  Pedigree  and  clinical  phenotype  

Top  left  panel:  family  pedigree  showing  a  dominant  inheritance  Top  right  and  bottom  panels:  cardiac  magnetic  resonance  images  showing  a  small  aneurysm  of  the  basal  segment  of  the  infero-­‐lateral  wall,  with  transmural  fibrosis  (LGE).  

 

2.  Genotype  –  phenotype  correlations  

  89  

 

 

Figure  2.3-­‐5:  ECG  of  the  proband  

 

 

Figure  2.3-­‐6:  Pedigree  and  clinical  phenotype  

2.  Genotype  –  phenotype  correlations  

  90  

While   the   familial   nature   of   the   cardiac   disease   was   clear,   the  

clinical   phenotype   was   atypical   and   undetermined.   Therefore,   since  

standard  genetic  analysis  could  not  be  performed,  we  employed  NGS  to  

perform  a  whole  exome  sequencing  study.    

Data  analysis   identified  64115  variants,  19209  of  which   located  in  

coding   regions   and   intron-­‐exon   junctions.   After   frequency   filtering  

(variants   with   minor   allele   frequency   <   5%   in   1000   Genomes   Project),  

1343  variants  were  selected.  Among  these,  955  variants  were  not  present  

in   dbSNP   Release.   Prioritization   identified   a   candidate   variant   in   DSG2  

gene   (OMIM#610193),   desmoglein   2,   c.1912G>A   p.Gly638Arg,   that   co-­‐

segregated   in   the   family.   Desmoglein   is   an   essential   component   of  

desmosomes   and   it   is   known   to   be   associated   with   arrhythmogenic  

cardiomyopathy,  as  described  in  the  previous  paragraph.    

Genetic  analysis  allowed  the  definition  (re-­‐definition)  of  the  clinical  

phenotype   as   an   atypical,   non-­‐syndromic   form   of   ARVC   with   localized  

involvement  of  the  LV.  This  atypical  presentation,  initially  suspected  to  be  

novel   phenotypes,   has   been   reassigned   as   atypical   presentations   of   a  

well-­‐known  genetic  disorder,  expanding  its  phenotypic  spectrum.  

 

2.3.3     Targeted  approach  

Family  with  HCM,  noncompaction  and  supraventricular  

arrhythmias  

We  assessed  19  subjects  from  a  large  four-­‐generation  Italian  family  

living  in  central  and  northern  Italy,  who  remained  undiagnosed  following  

conventional  Sanger  sequencing  testing.  Affected  individuals  of  this  family  

had   evidence   of   cardiomyopathic   involvement,   transmitted   with   an  

2.  Genotype  –  phenotype  correlations  

  91  

autosomal   dominant   inheritance   pattern,   comprising   variable  

combinations  of  3  distinctive  features:  asymmetric  LV  hypertrophy  (LVH)  

consistent   with   HCM,   early   onset   of   supraventricular   arrhythmias   and  

atrioventricular  (AV)  block,  and  regional  LV  noncompaction    [Figure  2.3-­‐7:  

family  pedigree  and  figure  legend].    

 

 

Figure  2.3-­‐7:  pedigree  (next  page)  and  figure  legend.    

Pedigree   including  the  results  of  ACTN2  Met  228Thr  cosegregation   in  18  family   members.   Arrow:   proband.   +/-­‐   presence   of   the   heterozygous  Met228Thr;  -­‐/-­‐  absence  of  the  heterozygous  Met228Thr  .    

 

2.  Genotype  –  phenotype  correlations  

  92  

 

 

 

2.  Genotype  –  phenotype  correlations  

  93  

 

The  proband  (II-­‐15)  was  an  82  year-­‐old  man  with  mild,  asymmetric  

LV   hypertrophy   localized   to   the   basal   and  mid-­‐septum,  marked   bi-­‐atrial  

dilatation   and   a   restrictive   LV   filling   pattern   with   preserved   systolic  

function.  He  had  been  diagnosed  with  nonobstructive  HCM  almost  three  

decades  earlier,  and   followed  at  our   Institution  since  2005.  Remarkably,  

he  had  a  history  of  paroxysmal  atrial   fibrillation  (AF)  which  presented  at  

the   age   of   30,   which   subsequently   evolved   into   permanent   AF   with  

advanced  AV  block,  requiring  VVI  pacing  at  the  age  of  68  [Figure  2.3-­‐8].  In  

2008  he  proved   to  be  negative   for  mutations   in   the   coding   regions   and  

splice   sites   of   the   8  most   prevalent   sarcomere   genes.   Despite   his   early  

onset   of   disease   manifestations   and   adverse   cardiac   remodelling,  

consistent   with   restrictive   evolution   of   HCM,   he   remained   fully   active  

with   only   mild   functional   limitation   (functional   class   NYHA   class   II).  

Furthermore,   he   remained   free   from   cardioembolic   complications  

although   he   repeatedly   refused   treatment   with   oral   anticoagulants.   He  

currently   remains   on   diltiazem,   loop   diuretics,   kanrenone   and   low-­‐dose  

aspirin.   His   pacemaker   had   been   replaced   4   times,   and   has   never   been  

upgraded   to   an   implantable   defibrillator;   no   significant   ventricular  

arrhythmias  have  been  noted  on  repeated  24-­‐hour  ECG  Holter  monitoring.  

His  Pro-­‐BNP  in  2009  was  1013  pg/ml.      

2.  Genotype  –  phenotype  correlations  

  94  

 

Figure  2.3-­‐8:  Clinical  features  of  the  proband  (II-­‐15)  

A-­‐B:   Parasternal   long   axis   (2d   and   M-­‐mode)   of   the   proband,   showing  marked   left   atrial   dilatation   (52   mm),   with   mild   hypertrophy   of   the  septum  (16  mm)  and  small  LV  cavity  (telediastolic  diameter  40  mm).  

C-­‐D:   Apical   4   chamber   view   (diastole   and   systole).   Asymmetric   LV  hypertrophy,  with  maximal  LV  wall  thickness  of  the  basal  and  mid-­‐septum,  small  LV  cavity  (telediastolic  volume  63  ml)  and  marked  bi-­‐atrial  dilatation  (LA  volume  220  ml).  Ejection  fraction  was  normal  (70%).    

E:   Restrictive  mitral   inflow   filling  pattern,  with  deceleration   time  of   144  ms(rhythm:  AF  with  ventricular  pacing).    

2.  Genotype  –  phenotype  correlations  

  95  

F:   Tricuspid   regurgitation   jet   velocity   showing   pulmonary   hypertension,  with   an   RV/RA   gradient   of   44  mmHg.   Inferior   vena   cava   diameter   (not  showed)  was  3.1  cm,  with  respiratory  variation  of  diameter  <50%.    

G:  ECG   (DI,  DII   and  DIII,  V1-­‐3   leads)   showed  AF  with   complete  AV  block  and  VVI  pacing.    

 

Three   additional   family   members   had   similar   echocardiographic  

and   clinical   features,   characterized   by   nonobstructive   HCM   with  

restrictive   evolution,   AV   block   and   biatrial   dilatation:     the   proband’s  

brother   (II-­‐5),   aged   80,   who   developed   permanent   AF   at   the   age   of   64  

years  and  required  VVI  pacing  for  advanced  AV  block  at  68  years;  and  two  

of  his  nephews  (III-­‐6  and  III-­‐7).  Patient  III-­‐6  was  a  50-­‐year  old  man  with  a  

long-­‐standing  history  of  frequent  ventricular  ectopic  beats  and  sustained  

supraventricular  arrhythmias  associated  with  apical  HCM  and  regional  LV  

noncompaction;  he  recently  developed  paroxysmal  AF  and  advanced  AV  

block   requiring  permanent  pacing.  His  brother   (III-­‐7)   required  surgery  at  

the   age   of   15   due   to   a   large   atrial   septal   defect   (ostium   secundum)  

associated  with   severe   right-­‐sided   heart   failure.   At   that   age,   he   already  

showed   first   degree   AV   block   and   frequent   supraventricular   ectopic  

beats;   his   echocardiogram   showed   apical   HCM   with   marked   bi-­‐atrial  

dilatation   [Figure   2.3-­‐9].   He   unfortunately   died   of   heart   failure-­‐related  

complications  a  few  years  later.    

 

 

 

 

2.  Genotype  –  phenotype  correlations  

  96  

Figure   2.3-­‐9:   Marked   clinical   heterogeneity   in   family   members   (next  page).  

Panel  A-­‐F:  morphological  features  of  some  family  members.    

A:  PatientIII-­‐17  showedmild  left  atrial  dilatation  (index  volume  44  ml/m2).    

B:  The  15  year-­‐old  proband’s  nephew  (III-­‐7)  had  apical  HCM  with  marked  bi-­‐atrial   dilatation;   he   required   surgery   at   the   age   of   15   due   to   a   large  atrial  septal  defect  (ostiumsecundum).  At  that  age,  he  already  showed  1st  degree  AV  block  and   frequent   supraventricular  ectopic  beats.  He  died  a  few  years  later  due  to  right-­‐sided  heart  failure  complications.    

C:  Patient  III-­‐6  was  a  50-­‐year  old  man  had  HCM  with  restrictive  evolution,  marked  biatrial  dilatation  and  regional  LV  noncompaction.  He  had  a  long-­‐standing   history   of   frequent   ventricular   ectopic   beats   and   sustained  supraventricular   arrhythmias,   including  paroxysmal  AF.  He  also   required  permanent  pacing  due  to  advanced  AV  block  (see  also  panel  B6).  

D:   The   proband’s   brother   (II-­‐5),   aged   80,   had   nonobstructive  HCM  with  restrictive  evolution,  and  biatrial  dilatation:    he  developed  permanent  AF  at  the  age  of  64  years  and  required  VVI  pacing  for  advanced  AV  block  at  68  (see  also  panel  B5).      

E-­‐F:  Echocardiogram  and  cardiac  MRI  of  two  female  patients  (patient   III-­‐13  and   IV-­‐8respectively),  showing  LV  non  compaction  of   the  apex,  distal  septum  and  lateral  wall.    

 

Panel   G-­‐N:   broad   spectrum   of   electrocardiographic   abnormalities   and  supraventricular  arrhythmias.    

G:  Isolated  and  short  run  of  supraventricular  ectopic  beats  on  Holter  ECG  monitoring  (individual  III-­‐13).    

H:  Second  Degree  sinoatrial  block,  Type  II,  of  individual  III-­‐6,  at  the  age  of  9.  (Arrow  indicates  the  dropped  P  wave).    

I:  Supraventricular  tachycardia  (individual  III-­‐17).  Arrows  indicate  P  waves.    

L:  First  degreeatrio-­‐ventricular  block  (individual  III-­‐19).    

M:  Atrial  fibrillation  with  a  slow  ventricular  response  (individual  III-­‐24).      

N:   Junctional   rhythm   (P   waves   are   absent),   of   individual   III-­‐6,   who  required  permanent  pacing  at  the  age  of  50.    

2.  Genotype  –  phenotype  correlations  

  97  

 

2.  Genotype  –  phenotype  correlations  

  98  

The   4-­‐year   old   son   of   patient   III-­‐6   (IV-­‐2)   presented   at   birth   with  

esophageal  atresia  and  tracheal  fistula  associated  with  ostrium  secundum  

atrial   septal   defect,   requiring  multiple   surgery.   He   had  multiple   runs   of  

supraventricular  tachycardia,  but  no  evidence  of  LVH  or  noncompaction.  

In   addition   cardiomyocytes   show  hypertrophy  by   intraoperative   surgical  

biopsy  of  the  ventricular  septum  [Figure  2.3-­‐10].    

 

Figure  2.3-­‐10:  Intraoperative  surgical  biopsy  of  the  ventricular  septum    

A)  panoramic  view  of  the  surgical  biopsy  sample  with  endocardial  fibrous  thickening  and  mild  disarray  (trichrome  stain).  

B,C)  cardiomyocytes  show  hypertrophy  (mean  diameter  20  micron),  diffuse  cytoplasmic  vacuolization  with  perinuclear  halo  and  dysmetric  and  dysmorphic  nuclei,  associated  with  focal  fibrosis”  (haematoxylin  eosin  stain,  scale  bar  =100  micron).  

 

The  remaining  patients  all  showed  milder  forms  of  cardiac  disease,  

including   mild   apical   LVH   (patient   III-­‐26);   regional   LV   non-­‐compaction  

(patient   III-­‐13   and   IV-­‐8,   associated   with   first   degree   AV   block   in   the  

former);   left   atrial   dilatation   and   supraventricular   arrhythmias   (patients  

2.  Genotype  –  phenotype  correlations  

  99  

III-­‐17,  III-­‐21  and  III-­‐24,  associated  with  first  degree  AV  block  in  the  latter);  

and  left  atrial  dilatation  with  1st  degree  AV  block  (patient  III-­‐19).  None  of  

the   other   family   members   assessed   had   evidence   of   heart   disease  

suggesting   genetic   transmission   of   the   cardiomyopathic   trait.   Individual  

III-­‐18   died   suddenly   at   the   age   of   49:   autopsy   showed   evidence   of  

ischemic  heart  disease  associated  with  coronary  atherosclerosis,  with  no  

evidence  of  LVH,  disarray  or  interstitial  fibrosis.    

 

Genetic  analysis  

Following   genetic   counseling   and   informed   consent,   proband’s  

DNA   was   screened   by   targeted   massively   parallel   sequencing   of   36  

cardiomyopathy-­‐associated  genes  [Table  2.3-­‐2].    

Data   analysis   identified  1467   variants,   50  of  which   are   located   in  

coding   regions   and   intron-­‐exon   junctions.   In   order   to   identify   clinically  

relevant  variants,  data  obtained  from  the  analysis  were  filtered  based  on  

frequency   using   dbSNP   Release   137,   Exome   Sequencing   Project   (ESP),  

1000   Genomes   Project   (1KGP)   and   HGMDTM   Professional.   Then   they  

were   filtered   according   to   the   function   (coding,   5’   or   3’   junctions),   the  

evolutionary   conservation  of   the  affected  nucleotide   (PhyloP   score)   and  

pathogenic   potential   by   in   silico   predictive   algorithms   (MutationTaster),  

SIFT,  PolyPhen2.  Following  bioinformatics  analysis,  four  likely  pathogenic  

variants  were   identified:  TTN  NM_003319.4:c.21977G>A  (p.Arg7326Gln);  

TTN   NM_003319.4:c.8749A>C   (p.Thr2917Pro);   ACTN2  

NM_001103.2:c.683T>C   (p.Met228Thr)   and   OBSCN    

NM_052843.2:c.13475T>G   (p.Leu4492Arg).   The   novel   variant   ACTN2  

p.Met228Thr,  located  in  the  Actin–binding  domain,  proved  to  be  the  only  

mutation   fully   co-­‐segregating   with   the   cardiomyopathic   trait   in   18  

additional   family   members   (of   whom   11   clinically   affected).  

2.  Genotype  –  phenotype  correlations  

  100  

ACTN2_Met228Thr  was   absent   in   570   alleles   of   healthy   controls   and   in  

1000   Genomes   Project,   and   was   labelled   as   “Causative”   by   in   silico  

analysis   using   PolyPhen-­‐2,   as   “Deleterious”   by   SIFT   and   as   “Disease-­‐

Causing”  by  MutationTaster.  

Table  2.3-­‐2:  List  f  36  Hypertrophic  Cardiomyopathy-­‐associated  genes  

Gene Symbol NM Gene name

ACTA1 NM_001100.3 Actin, alpha 1 , skeletal muscle ACTC1 NM_005159.4 Actin alpha, cardiac muscle1 ACTN2 NM_001103.2 Actin,alpha 2 CALM3 NM_005184.2 Calmodulin 3 (phosphorylase kinase, delta) CALR3 NM_145046.3 Calreticulin 3 CASQ2 NM_001232.3 Calsequestrin 2 (cardiac muscle) CAV3 NM_033337.2 Caveolin 3 COX15 NM_078470.4 Cytochrome c oxidase subunit 15

ANKRD1 NM_014391.2 Ankyrin repeat domain 1 (cardiac muscle) CSRP3 NM_003476.2 Cysteine and glycine-rich protein 3

DES NM_001927.3 Desmin FXN NM_000144.4 Frataxin GLA NM_000169.2 Galactosidase-alpha JPH2 NM_020433.4 Junctophilin 2

LAMP2 NM_002294.2 Lysosomal-associated membrane protein 2 MYBPC3 NM_000256.3 Myosin binding protein C, cardiac

MYH6 NM_002471.3 Myosin heavy chain 6, cardiac muscle,alpha MYH3 NM_002470.2 Myosin heavy chain 6, skeletal muscle MYH7 NM_000257.2 Myosin heavy chain 7, cardiac muscle,beta MYL2 NM_000432.3 Myosin light chain 2, regulatory, cardiac MYL3 NM_000258.2 Myosin light chain 3

MYLK2 NM_033118.3 Myosin light chain kinase 2, skeletal muscle MYO6 NM_004999.3 Myosin VI

MYOZ2 NM_021245.2 Myozenin 2 NDUFV2 NM_021074.4 NADH dehydrogenase (ubiquinone) Flavoprotein 2

OBSCN NM_001098623.1

Obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF

PLN NM_002667.3 Phospholamban PRKAG2 NM_016203.3 Protein kinase, AMP-activated, gamma 2

RAF1 NM_002880.3 V-raf-1 murine leukemia viral oncogene homolog SRI NM_003130.2 Sorcin

TCAP NM_003673.3 Titin-cap or Telethonin TNNI3 NM_000363.4 Troponin I type3 (cardiac) TNNT2 NM_000364.2 Troponin T type2 (cardiac) TPM1 NM_000366.5 Tropomyosin 1 (alpha)

TTN NM_001256850 Titin

2.  Genotype  –  phenotype  correlations  

  101  

ACTN2  and  Z-­‐disc  protein  genes  as  a  cause  of  HCM    

Over  the  last  decade,  many  genes  that  do  not  strictly  belong  to  the  

sarcomere   have   been   associated   with   rare   forms   of   HCM   [72].   These  

include   genes   coding   for   proteins   involved   in   intracellular   calcium  

handling   or   constituting   the   Z-­‐disc   -­‐   the   interface   between   the  

cardiomyocyte  contractile  apparatus  and  the  cytoskeleton  [73].  

These  results  support  the  role  of  Z-­‐disc  protein  as  a  rare  cause  of  -­‐

LVH,   and   suggest   a   potential   involvement   of   ACTN2   mutations   in   the  

genesis   of   supraventricular   arrhythmias.   Notably,   our   family   displayed  

several   atypical   features   compared   to   classic   HCM.   First,   HCM   patients  

presented   with   mild   to   moderate   mid-­‐apical   LVH,   with   slow   but  

distinctive  progression  towards  a  restrictive  pathophysiology;  none  of  our  

patients  had  LVH  preferentially   localized  to  the  basal  septum  or  anterior  

wall,   and  none  had  dynamic   LV  outflow  obstruction.   These   features   are  

consistent  with   ACTN2-­‐related   HCM   recently   described   in   an   Australian  

family   [74].   Furthermore,   our   family   displayed   a   spectrum   of   clinical  

manifestations  beyond  LVH   itself,   including  supraventricular  arrhythmias  

and  regional  LV  non-­‐compaction,  which  were  associated  with  HCM  in  the  

most  affected  family  members  including  the  proband,  but  were  present  in  

isolation   (i.e.   in   the   absence   of   LVH)   in   subjects  with  milder   disease.   In  

addition,   ostium   secundum   atrial   septal   defect   was   present   in   two  

brothers  and  one  of  their  sons:  the  latter  finding,  however,  was  confined  

to  a  single  branch  of  the  family,  suggesting  fortuitous  association  with  a  

distinct  genetic  defect  superimposed  to  the  ACTN2  mutation.  Conversely,  

we   found   little   propensity   to   malignant   ventricular   arrhythmias   in   our  

patients,   in   that   none   of   the   affected   individuals   died   suddenly   or   had  

sustained  VT  or  cardiac  arrest,  even  when  marked  progression  of  disease  

was   noted.   The   most   striking   example   is   represented   by   the   proband,  

2.  Genotype  –  phenotype  correlations  

  102  

who  remains  active  and  with  only  mild  functional  limitation  at  90  years  of  

age.  The  only  patient  who  died  prematurely  had  undergone  repair  of  an  

extensive  atrial   septal  defect  during  adolescence,  and  his  demise   largely  

resulted  from  right  heart  failure  secondary  to  the  congenital  defect  on  a  

cardiomyopathic   substrate.   The   relatively   favourable   long-­‐term   clinical  

course   in   our   family   is   in   contrast   with   that   of   the   ACTN2   pedigree  

described   by   Chiu   et   al,   characterized   by   elevated   prevalence   of  

progressive   heart   failure   and   sudden   cardiac   death.   Such   discrepancy   is  

evident   despite   the   fact   that   both   ACTN2   mutations   occur   within   the  

actin-­‐binding   domain,   in   two   adjacent   calponin   homology   domains,  

suggesting   that   different   mutations   in   this   gene   may   dictate   radically  

diverse   clinical   evolution   and   arrhythmic   profile.   This   is   in   line  with   the  

heterogeneity  of  phenotypes  associated  with  ACTN2,  which  include  HCM  

with   sigmoidal   type  hypertrophy  and  even  dilated   cardiomyopathy   [74].  

In   a   larger   perspective,   such   diversity   highlights   the   broad  

pathophysiological   implications   of   mutations   affecting   the   molecular  

apparatus   connecting   the   cardiomyocyte   contractile   apparatus   to   the  

cytoskeleton   and   muscle   membrane,   involving   other   HCM   –associated  

genes  such  as  titin,  telethonin,  muscle  LIM,  and  myozenin.  

 

2.3.4.    Translation  of  NGS  into  a  diagnostic  tool  for  patients  with  genetic  

cardiovascular  disease:  the  targeted  approach  

Unlike   traditional   approaches,  where   genes   are   generally   studied  

one  at  a   time,  high  throughput  approaches  can  provide  a  global  view  of  

all  the  genes  in  a  genome  in  a  relatively  fast  and  cost‐effective  manner.  

Among   various   high   throughput   methods,   a   targeted   NGS   approach  

2.  Genotype  –  phenotype  correlations  

  103  

describes  a  strategy  where  a  specific  set  of  genes  related  to  the  patient’s  

phenotype  are  analyzed  within  the  context  of  a  genetic  “test”.  

By   including  virtually  all  known  cardiomyopathy-­‐associated  genes,  

these  panels  can  serve  as  a  first  line,  one-­‐fits-­‐all  approach  in  the  clinic  for  

any   given   patient,   irrespective   of   his/her   phenotype.   This   approach   has  

brought   several   advantages:   a)   most   diagnoses   may   find   molecular  

confirmation   at   any   center   implementing   NGS,   avoiding   the   need   for  

traveling   and   repeated   blood   sampling;   b)   global   costs   are   reduced;   c)  

even   rare   forms   and   phenocopies,   such   as   Anderson-­‐Fabry   disease   for  

HCM,  generally   requiring  several  years   for  correct   identification,  may  be  

diagnosed   at   first   attempt   (and   even  when   not   clinically   suspected);   d)  

very   large   genes,   such   as   titin   causing   DCM,   technically   off-­‐limits   by  

Sanger  techniques,  may  be  explored.    

A  very  important  implication  of  these  enhanced  possibilities  is  that  

unclassified,   atypical   phenotypes,   for  which   a   candidate   gene   approach  

could  not  be  proposed,  are  being  serendipitously  diagnosed  by  using  the  

powerful   targeted   NGS   approach.   For   example,   systematic   screening  

exploring   desmosomal   genes   have   led   to   the   recognition   of   forms   of  

ARVC  with  prevalent  or  even  isolated  LV  involvement  (thus  the  proposal  

to  rename  ARVC  simply  as  “arrhythmogenic  cardiomyopathy”).  Thus,  NGS  

is   helping   clinicians   redefine   the   phenotypic   spectrum   of   single  

cardiomyopathies   by   expanding   the   gold   standard   of   genetic   diagnosis  

beyond  the  limits  suggested  by  clinical  investigation.  

The   implementation   of   other   NGS-­‐based   approaches   such   as  

whole-­‐exome  sequencing  (WES)  and  whole-­‐genome  sequencing  (WGS)  is  

well  underway.  At  the  present  time,  these  approaches  remain  expensive,  

time-­‐consuming   and   fraught   with   interpretational   difficulties,   largely  

2.  Genotype  –  phenotype  correlations  

  104  

limiting  their  use  to  research  purpose  aimed  at  identifying  novel  disease-­‐

causing   genes.  Ultimately,  WES   or  WGS  will   become   part   of   a   standard  

assessment  for  most  patients.  The  pace  of  this  transition  will  depend  on  

the  presence  of  the  requisite  infrastructure,  regulatory  standards,  training  

and  best  practice  guidelines  for  reporting.    

 

2.3.5.   Challenges   and   opportunities:   the   evolving   role   of   the   medical  

geneticist.    

The  many  assets  of  NGS  come  at  the  cost  of  increasing  complexity.  

The  multidisciplinary  team  required  to  interpret  the  biostatistical,  genetic  

and   clinical   implication   of   NGS   findings,   even   when   a   focused   targeted  

approach   is   employed,   are   extremely   demanding.   Two   are   the   main  

challenges:  the  first  is  to  confidently  discriminate  disease-­‐causing  variants  

from   rare,   benign   mutations   with   no   clinical   relevance.   The   wealth   of  

information   derived   from   NGS   is   not   yet   paralleled   by   the   clinical  

knowledge   needed   to   gauge   the   value   of   each   identified  mutation.   For  

novel   mutations   (i.e.   the   majority),   this   mandates   clinical   studies   of  

familial   co-­‐segregation   involving   dedicated   physicians.   Unfortunately,  

large,  informative  families  are  not  always  available.  The  second  challenge  

(pertaining   more   to   the   whole-­‐exome   and   –genome   studies)   is  

represented  by   the  ethical   implications  of  unexpected   findings   that  may  

not  be  directly  relevant  to  the  original  question  (for  example  a  mutation  

in   a   cancer-­‐causing   gene   during   investigations   for   familial  

cardiomyopathies).   Clinical   implications,   often   uncertain,   need   to   be  

balanced   against   the   certainty   of   onerous   psychological   consequences  

and  a  substantial  risk  of  overdiagnosis  diseases  that  may  never  occur.        

2.  Genotype  –  phenotype  correlations  

  105  

The   NGS   era   of   gene   discovery   and,   ultimately,   molecular  

diagnoses   heralds   a   fundamental   change   for   medical   genetics   and  

medical   geneticists.   In   addition   to   continuing   to   define  phenotypes,   the  

medical  geneticist  of  the  NGS  era  will  have  an  unprecedented  opportunity  

to   identify   human  disease-­‐causing   genes,   enable   the   translation   of  NGS  

into   diagnostic   tools   and   understand   the   role   of   disease   modifiers   to  

advance  the  care  of  patients  with  rare  diseases.  These  geneticists  will  also  

become  vital  members  of  collaborative  teams  along  with  providers  from  

other   specialties   as   they   use   genomic   results   to   guide   patient   care.   As  

such,  medical  geneticists  will  need  to  complement  their  clinical  skills  with  

expertise  in  the  clinical  interpretation  of  NGS  data.    

In   the   future,  medical   geneticists  will   instead  phenotype  patients  

to  facilitate  the  interpretation  of  the  large  data  set  generated  by  WES  or  

WGS.  Perhaps  most  importantly,  as  increasing  molecular  insight  inevitably  

suggests   novel   therapeutic   avenues,   some   medical   geneticists   will   also  

become   interventionists,   configuring,   trialing   and   instituting   treatments  

for  genetic  disorders.  

 

In   conclusion,   NGS   represents   the   (ultimate)   revolution   for  

mutational   screening,   and   is   bound   to   change   our   practice   in   the   near  

future.  However,   the  wealth  of   information  derived  from  NGS   is  not  yet  

paralleled  by   the   clinical   knowledge  needed   to   gauge   the   value  of   each  

identified  mutation.  As  for  each  prior  revolution  in  genetic  diagnosis,  the  

only   reliable   key   to   understanding   is   represented   by   our   patients   and  

their  pedigrees.  The  psychological  and  ethical  challenges  associated  with  

the   massive   potential   of   NGS,   as   well   as   the   issue   of   over-­‐diagnosis,  

require  specific  investigation  in  patients  with  inherited  heart  disease.  

2.  Genotype  –  phenotype  correlations  

  106  

 

 

 

 

 

    3.  Environmental  Modifiers  

   

3.  Environmental  Modifiers  

  108  

“In nature we never see anything isolated,

but everything in connection with something else

which is before it, beside it, under it and over it.”

Johann Wolfgang von Goethe

 

   

3.  Environmental  Modifiers  

  109  

3.1    The  role  of  environmental  modifiers  on  the  

phenotypic  expression  and  outcome  of  hypertrophic  

cardiomyopathy:  the  “weight”  of  obesity  

 

Say  you  are  studying  three  individuals  who  carry  the  same  disease-­‐

causing   mutation;   two   of   these   individuals   suffer   from   the   disease   but  

exhibit   different   symptoms,   while   the   third   person   is   completely  

unaffected.  For  many  inherited  diseases,  the  same  mutation  is  not  always  

expressed  in  all  individuals  who  carry  it;  moreover,  when  the  mutation  is  

expressed,   it   is   not   always   expressed   in   the   same   way,   even   among  

different   individuals   of   the   same   family.   How   would   you   explain   this  

phenomenon?   How   is   it   possible   that   one   family   member   carrying   a  

sarcomere  mutation  has  HCM,  while  another  carrying  the  same  mutation  

does   not?   What   accounts   for   such   a   difference   in   disease   expression?  

Answering  these  questions  is  not  an  easy  task.  Nonetheless,  research  has  

shown   that   variable   phenotypes   can  be   caused  by   a   number  of   factors,  

including   complex   interactions   between   genetic   and   environmental  

factors.    

This  is  the  case  of  our  research,  conducted  in  a  cohort  of  patients  

with   hypertrophic   cardiomyopathy   (HCM).   HCM   is   the   most   common  

genetic   heart   disease,   characterized   by   heterogeneous   phenotypic  

expression   with   extreme   diversity   in   the   pattern   and   extent   of   left  

ventricular   hypertrophy   (LVH)   [1-­‐5].   The   reasons   of   such   diversity   are  

related   to   molecular   pathways   and   triggers   that   remain   largely  

unexplained.   In   the   vast  majority   of   genotype-­‐positive   patients,   HCM   is  

associated   with   mutations   in   genes   encoding   proteins   of   the   cardiac  

sarcomere,  most  commonly  beta-­‐myosin  heavy  chain  and  myosin-­‐binding  

protein  C.  While   these  molecular  defects  are  considered   responsible   for  

3.  Environmental  Modifiers  

  110  

the   development   of   LVH,   there   is   currently   no   conclusive   evidence   to  

explain   the   variability   in   phenotypic   expression   of   HCM,   ranging   from  

massive   degrees   to   absence   of   LVH   even   within   the   same   family   [6].  

Among   several   hypotheses,   the   interplay   of   modifier   genes   and  

environmental   factors   has   been   commonly   offered   as   a   potential  

explanation   for   phenotypic   diversity   [7,8].   However,   the   extreme  

heterogeneity   of   phenotypic   expression   among   HCM   patients,   even   in  

family   members   sharing   the   same   mutation,   implies   that   other  

determinants   of   cardiac   morphology   must   be   operative.   The   increased  

cardiac   mass   in   patients   with   obstructive   HCM   is   a   striking   example  

proving  that  extrinsic  factors  can  play  a  primary  role  in  the  modulation  of  

the   phenotype   [9,   10].   In   order   to   address   this   issue,   we   hypothesized  

that  obesity,  an  established  cardiovascular  risk  factor  known  to  promote  

LVH   in   the   general   population   [11-­‐14],   could   be   associated   with   an  

increased   left   ventricular  mass   and   cavity   remodeling   in   this   genetically  

determined  condition.    

 

3.1     Obesity  as  a  modulator  of  HCM  phenotype  

Obesity  is  a  leading  preventable  cause  of  death  worldwide,  and  it  is  

considered   one   of   the  most   serious   public   health   problems   of   the   21st  

century.  It  is  s  classified  as  a  disease,  though  it  was  widely  perceived  as  a  

symbol  of  wealth  and  fertility  at  other  times  in  history  [15,  16].  As  of  2008  

the  WHO  estimates  that  at  least  500  million  adults  (greater  than  10%)  are  

obese   [Figure   3-­‐1].   Obesity   is   known   to   promote   LVH   in   the   general  

population   due   to   numerous   pathophysiological   mechanisms,   such   as  

increased  sympathetic  tone  and  leptin  levels,  myocardial  fatty  infiltration,  

insulin   resistance,   and  enhanced   renin-­‐angiotensin  activity.  Obesity  may  

3.  Environmental  Modifiers  

  111  

also   cause   heart   failure,   and   has   been   shown   to   result   in   worsening  

diastolic  function  independent  of  other  comorbid  conditions  [17].  

 

 

Figure  3-­‐1:  A  world  map  showing  the  prevalence  and  distribution  of  obesity  

 

The   hypothesis   that   obesity   could   influence   the  magnitude   of   LV  

mass  and  prognosis   in  patients  with  HCM,  although   intuitive,  had  never  

been   studied,   and   in   2009   it   was   considered   a   mere   speculation.   We  

therefore  decided   to  design  an  observational  multicenter   study   in  order  

to  prove  this  hypothesis.    

Three   major   referral   HCM   centers   were   involved:   Minneapolis  

Heart   Institute   Foundation   (Minneapolis,   Minnesota),   Tufts   Medical  

Center  (Boston,  Massachusetts)  and  Careggi  University  Hospital  (Florence,  

Italy).   The   study   cohort   comprised   275   adult   patients   with   HCM  

3.  Environmental  Modifiers  

  112  

consecutively  referred  at  the  3  participating  referral  centers.  All  patients  

enrolled   underwent   a   thorough   clinical   and   instrumental   evaluation,  

including   ECG,   echocardiography,   cardiac   magnetic   resonance.   The  

population   was   divided   into   three   groups,   based   on   body   mass   index  

(BMI):  normal  weight  (BMI  <25Kg/m2),  pre-­‐obese  (BMI  25-­‐30  Kg/m2)  and  

obese   (BMI   <30Kg/m2).  Only   25%  of   patients  were   classified   as   normal,  

while  the  majority  of  individuals  were  pre-­‐obese  or  obese  (respectively  38  

and  37%).    

The   analysis   of   cardiac  morphology   and   function   showed   that   LV  

mass   index   progressively   increased   in   pre-­‐obese   and   obese   patients,  

reflecting   a   direct   relationship   between   BMI   and   LV  mass  measured   by  

CMR  [Figure  3-­‐2].  Not  only  the  heart  of  obese  and  pre-­‐obese  patients  was  

more  hypertrophied,  but  was  also   characterized  by  grater   LV   cavity   size  

and   volume,   indicating   profound   remodeling   of   cardiac   morphology  

[Figure  3-­‐3].  Conversely,  maximum  LV  wall  thickness  and  systolic  function  

were  identical  in  the  three  subgroups.      

 

 

Figure   3-­‐2   (left)   and   3-­‐3   (right):   Impact   of   BMI   on   LV  Mass   and  volume  

3.  Environmental  Modifiers  

  113  

Each  panel  shows  mean  for  unadjusted  LV  mass  and  end-­‐diastolic  volume   index,   in   each   of   the   3   BMI   classes.   Overall   p   value   for  hypertrophic  cardiomyopathy  patients  was  0.005  (obese  patients  p  <  0.05  vs.  each  of  the  other  2  groups).  *p  <  0.05  versus  normal  weight;  †p  <  0.05  versus  pre-­‐obese.    

 

The   heart   of   obese   patients   in   the   general   population   is  

characterized   by   profound   remodeling   of   the   LV,   with   chamber  

enlargement   and   greater   end-­‐diastolic   volume,   which   are   the   primary  

cause  of  mass  increase[18-­‐20].    Nevertheless,  preserved  systolic  function  

allows  the  stroke  volume  to  remain  normal,  ensuring  an  adequate  blood  

supply  even  in  the  presence  of  increased  oxygen  requirement  [Figure  3-­‐4].  

Therefore,   such   changes   are   an   obligate   consequence   of   obesity   and  

reflect   a   physiologic   adaptation   to   increased   body   weight,   triggered   by  

the   hemodynamic   and   neurohormonal   pathways   of   secondary  

hypertrophy.    

 

Figure  3-­‐4:  Impact  of  BMI  on  LV  stroke  volume  

This  panel  shows  mean  for  LV  stroke  volume   index,   in  each  of  the   3   BMI   classes.   Overall   p   value   for   hypertrophic  cardiomyopathy  patients  was  0.005  (obese  patients  p  <  0.05  vs.  each  of  the  other  2  groups).  *p  <  0.05  versus  normal  weight;  †p  <  0.05  versus  pre-­‐obese.  

3.  Environmental  Modifiers  

  114  

 

Notably,   in   our   cohort   the   absolute   LV   wall   thickness   was  

unaffected   by   body  weight,   suggesting   that   the   degree   of   regional   and  

asymmetrical  hypertrophy,  distinct   feature  of  HCM,   is  primary  driven  by  

genetic   factors   and   remain   largely   unaffected   by   environmental  

modulation.  Therefore,  neither   the  current  clinical  diagnostic  criteria   for  

HCM   [3]   nor   decision-­‐making   for   primary   prevention   of   sudden   death  

with   implantable   cardioverter-­‐defibrillators   (both   based   on   maximum  

absolute   LV   wall   thickness)   require   adjustment   with   respect   to   BMI   in  

adult.    

Myocardial   fibrosis,   represented   by   areas   of   late   gadolinium  

enhancement  (LGE)  at  CMR,  was  more  prevalent  in  obese  and  pre-­‐obese  

patients.  However,  average  percentage  of   fibrosis,  expressed  as  %  of  LV  

mass   occupied   by   LGE,   was   comparable   among   the   subgroups.   The  

multivariate  model   identified   four  variables  as   independently  associated  

with   an   increased   LV   mass:     showed   BMI,   male   sex,   hypertension   and  

outflow   obstruction.   In   particular   pre-­‐obese   and   obese   HCM   patients  

showed  respectively  a  65%  and  300%  increased  likelihood  of  assignment  

to  the  highest  LV  mass  index  quartile.    

Not   only   the   cardiac   morphology   and   function,   but   also   the  

outcome  was   related   to   the   BMI   class.   Although   all-­‐cause  mortality   did  

not  differ  among  the  three  different  subgroups,  obese  patients  who  were  

alive   at   the   end   of   follow-­‐up   showed   an   increased   risk   of   developing  

severe   functional   limitation   (NYHA   functional   class   III   to   IV     -­‐   HR   3.6)  

[Figures  3-­‐5  and  3-­‐6].  However,  the  presence  of  severe  symptoms  was  not  

due  to  progressive  systolic  dysfunction   (the  so-­‐called  “end-­‐stage  HCM”),  

since  mean  ejection  fraction  of  the  obese  patients  remains  in  the  normal  

range.   Therefore,   it   is   challenging   to   ascertain   whether   the   functional  

3.  Environmental  Modifiers  

  115  

limitation  was  directly  related  to  obesity  or  to  the  presence  of  HCM.  Both  

these  factors  may  be  closely  related  and  embraced  in  a  negative  cycle  of  

event  in  which  obesity  leads  to  a  sedentary  life-­‐style,  further  increases  in  

BMI,  and,  ultimately,  worsening  of  heart  failure  symptoms.    

Despite  the  impact  on  symptomatic  status,  the  presence  of  obesity  

itself  did  not  confer  a  survival  disadvantage  in  patients  with  HCM.  While  

this   is   partially   counterintuitive,   it   is   in   line   with   the   well   know  

phenomenon   of   “obesity   paradox”,   which   states   that,   in   patients   with  

chronic   heart   disease,   the   presence   of   obesity   is   a   strong   predictor   of  

favorable  outcome  [21].  Conversely,  in  the  general  population,  obesity  is  

associated  with  increased  mortality  and  morbidity  [11,  17,  22].    

 

Figure  3-­‐5:  Prevalence  of  HCM-­‐related  mortality  and  severe  heart  failure  symptoms  (NYHA  functional  classes  III  or  IV)  

among  survivors  at  the  end  of  follow-­‐up  period  

HCM:   hypertrophic   cardiomyopathy;   NYHA:   New   York  Heart   Association;   Wt:   weight.   CMR.   cardiac   magnetic  resonance  

 

3.  Environmental  Modifiers  

  116  

 

Figure  3-­‐6:  Cumulative  risk  of  all-­‐cause  mortality  in  normal  weight,  pre-­‐obese,  and  obese  patients  during  follow-­‐up  

(Abbreviations  as  in  figure  3.5)  

HCM   is   a   genetic-­‐determined   cardiac   disease,   whose   phenotype  

was  thought   to  be  entirely   the  expression  of  sarcomeric  mutations.  This  

study  proved,  for  the  first  time,  that  phenotype  and  outcome  of  patients  

with  a  genetically  determined  cardiac  hypertrophy  can  be  modulated  and  

influenced   by   environmental   and   modifiable   factors   such   as   obesity.  

These  data  also  raise  the  possibility  that  control  of  modifiable  risk  factors  

may   be   beneficial   to   cardiomyopathy,   although   further   study   are  

mandatory  in  order  to  determine  whether  reduction  of  BMI  could  lead  to  

an  improvement  in  clinical  course.    

Beyond   the   understanding   of   the   physiopathological  mechanisms  

leading  to  a  different  phenotypic  expression  of  the  disease,  this  data  may  

be  useful  in  our  everyday  clinical  practice.  Nowadays  the  primary  target  in  

the  treatment  of  HCM  is  symptoms  relief,  since  neither  drugs  nor  surgery  

capable  of  treating  the  disease  itself  are  currently  available  [23].  Therapy  

usually   employed   to   relief   symptoms   in   HCM  might   be   effective   when  

targeting   hemodynamic   alterations.   In   obese   HCM   patients,   symptoms  

may   be   caused   not   only   by   the   hemodynamic   changes,   but   mostly   by  

3.  Environmental  Modifiers  

  117  

deconditioning   and   excess   oxygen   requirements,   which   are   primarily  

related   to   the   obesity.   In   that   case,   both   medical   and   even   invasive  

therapies   risk   to   be   ineffective   and   could   have   a   limited   impact   on  

symptoms.    

So,   when   treating   an   obese   patient   with   HCM   and   deciding  

whether  to  start,  increase,  or  decrease  therapy,  it  is  extremely  important  

taking   into   account   that   his   symptoms   are   the   result   of   the   balance  

between   hemodynamics   and   excess   body   weight.   Yet,   treating   the  

hemodynamic  abnormalities  will  lead  to  less  than  satisfying  results  unless  

weight  loss  and  healthy  habits  are  taught  to  and  adopted  by  the  patients.  

Readers  with  sharp  eyes  would  have  noticed   that  only  a  minority  

of  patients  enrolled  was  in  the  normal  weight  range,  like  HCM  and  obesity  

were  somehow  related.  However,  the  challenging  question  is:  which  one  

comes  first?  Is  it  a  more  severe  expression  of  HCM  that  leads  to  obesity,  

or   is   it   the   general   trend   of   increasing   body  weight   in  Western   society  

that   complicates   HCM?   The   cross-­‐sectional   design   of   the   study   didn’t  

allow  the  understanding  of   this  association.  However,  both  patients  and  

physicians   should   be   aware   of   the   negative   implications   of   obesity   in  

outcome   of   HCM   and   should   therefore   prevent   it.   The   inappropriate  

suggestion   to   avoid   physical   exercise   arises   from   the   fact   that   the  

incidence   of   sudden   cardiac   death   in   HCM   patients   involved   in  

competitive   sports   is  much  higher   than   in   those  who  are  not.  However,  

the   extension   of   such   recommendation   to   regular,   non-­‐competitive  

exercise  might   lead   to   an   unhealthy   lifestyle,   including  weight   gain   and  

increased  cardiovascular  risk.    

 

Full  text  of  the  publication  may  be  found  in  chapter  7.    

   

4.  Natural  History  and  Predictors  of  Outcome  

  119  

 

 

4.  Natural  History  and  Predictors  

of  Outcome  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

4.  Natural  History  and  Predictors  of  Outcome  

  120  

 

 

 

“Risk stratification for any disease is, in many ways,

medicine’s attempt to predict the future”.  

Rod Passman and Jeffrey J. Goldberger  

 

 

 

   

4.  Natural  History  and  Predictors  of  Outcome  

  121  

4.1     Predicting   the   Risk   of   Sudden   Cardiac   Death   using  

Cardiac  Magnetic  Resonance  

 

Risk  stratification  for  sudden  cardiac  death  (SCD)  has  always  been  

painful   for   cardiologists,   especially   for   those   involved   in   the   filed   of  

cardiomyopathies.   Cardiomyopathies   are   disease   of   the   heart   muscle  

with   high   arrhythmogenic   propensity,   usually   affecting   young   subjects  

and  entire  families.  SCD  is  the  most  visible  and  devastating  complication  

of   cardiomyopathies   and   the   attempt   to   stratify   patients,   identifying  

those   who   are   at   higher   risk   for   malignant   arrhythmias,   is   difficult.  

Although   the  huge  amount  of   risk   factors   individuated  and   the  effort   to  

assemble  risk  score  system,  the  issue  of  risk  stratification  and  prevention  

of  SCD  remains  incomplete  and  very  far  from  perfect  [1-­‐10].  The  need  to  

better   stratify   patients,   with   the   aspiration   to   prevent   SCD,   has   been  

realized  with  the  systematic  use  of  implantable  cardioverter  defibrillators  

(ICDs)  only  in  the  past  10  years.    

Estimates   of   the   SCD   rate   in   HCM   emerged   from   hospital-­‐based  

cohorts  were  as  high  as  6%/year.  This  incredibly  high  incidence  of  SCD  in  

now   recognized   as   an   overestimate,   was   based   on   data   collected   in  

tertiary   center   contaminated   by   the   preferential   referral   of   high-­‐risk  

patients.   Recent   reports,   originated   from   less   selected   regional   or  

community-­‐based  cohorts  placed  annual  HCM  mortality   rates  at  a  much  

more   realistic   ≤1%.   Nevertheless,   the   traditional   profile   of   SCD   in   HCM  

remains   unchanged;   that   is,   it   usually   occurs   without   warning   in  

asymptomatic  or  mildly  symptomatic  young  patients  (predominantly  <25  

years  of  age).    

While   is   now   universally   accepted   the   need   for   secondary  

prevention  with  ICDs  for  patients  who  have  survived  a  cardiac  arrest  with  

4.  Natural  History  and  Predictors  of  Outcome  

  122  

documented  VF  or  an  episode  of  sustained  VT  [12,  13],  there  has  been  a  

substantial   effort   in   reliably   identifying   the   relatively   small   subset   of  

patients  within  the  wide  HCM  spectrum  who  are  at  unacceptably  high  risk  

for  SCD  and  could  benefit  for  ICD  in  primary  prevention.    

The  conventional  primary  prevention  risk  factors  in  HCM,  are  [14]:    

(1)  family  history  of  ≥1  HCM-­‐related  SCDs;    

(2)  ≥1  episode  of  unexplained,  recent  syncope;    

(3)  massive  LV  hypertrophy  (thickness  ≥30  mm);    

(4)  frequent  nonsustained  VT  on  serial  ambulatory  24-­‐h  Holter;    

(5)  hypotensive  or  attenuated  blood  pressure  response  to  exercise    

 

Furthermore,   certain   morphological   and   functional   features   of  

HCM   can   contribute   to   risk   stratification,   since   they   are   known   to   be  

associated  with  higher  risk  of  arrhythmic  event:    

(1)  LV  Apical  Aneurysms:  the  fibrotic  thin-­‐walled  aneurysm,  which  

is  usually  present  in  patients  with  mid-­‐ventricular  obstruction,  creates  the  

arrhythmogenic  substrate  triggering  VT  and  VF  [15].    

(2)  End-­‐stage  disease:   this  small   subset  of  patients   (around  5%  of  

HCM   population)   develops   a   systolic   dysfunction   characterized   by   wall  

thinning  and  cavity  dilatation,  due  to  a  widespread  and  often  transmural  

LV   scarring.   Inevitably,   an  adverse   clinical   course  with  progressive  heart  

failure  and  atrial  and  ventricular  tachyarrhythmias  occurs  [16].    

(3)   LV   Outflow   Obstruction:   a   gradient   ≥30   mmHg   at   rest   is   a  

quantitative  measure  of  elevated  intraventricular  pressure  and  wall  stress.  

Some   studies   showed   that   obstruction   had   a   very   modest,   though  

statistically  significant,  relationship  to  SCD  risk  [17,  18].    

4.  Natural  History  and  Predictors  of  Outcome  

  123  

(4)  Percutaneous  Alcohol  Septal  Ablation:  this   is  a  technique  used  

as   an   alternative   therapeutic   strategy   for   selected   obstructive   HCM  

patients   to   the   preferred   option   of   surgical   myectomy.   It   has   the  

capability   of   reducing   the   LV   outflow   gradient   by   creating   a   transmural  

scar  by  alcohol  injection  in  a  septal  coronary  artery.  There  is  accumulating  

evidence   and   concern   that   the   potential   arrhythmogenicity   of   the   scar  

created   by   alcohol   septal   ablation   can   augment   risk   in   the   HCM  

population  [19,  20].  

(5)   Genotype:   Although   now   commercially   available,   genetic  

testing   has   not   achieved   the   initial   expectation   that   it  would   become   a  

reliable  strategy  for  predicting  prognosis  or  selecting  patients  for  primary  

prevention   ICDs.  However,   the  presence  of  multiple  mutations,  with  the  

hypothesis   of   “gene   dosage   effect”,   has   been   proved   to   be   associated  

with  higher  risk  of  negative  outcome,  especially  development  of  systolic  

dysfunction  [21].    

Because   current   risk   stratification   cannot   precisely   guide   SCD  

prevention  for  each  HCM  patient,  and  SCD  is  known  to  occur  in  occasional  

patients   without   any   conventional   risk   factors,   there   is   the   ongoing  

aspiration  to  identify  more  sensitive  and  specific  clinical  markers.  Ideally,  

this   would   lead   to   a   single,   noninvasive,   repeatable   and   accurate  

quantitative  test.    

Ventricular   tachyarrhythmias,   emanating   from   regions   of  

structurally   abnormal   myocardium   (including   areas   of   disorganized  

architecture  and  myocardial   fibrosis),   represent   the   likely  mechanism  of  

SD   in   HCM     [22,   23].   Contrast-­‐enhanced   cardiovascular   magnetic  

resonance   (CMR)   imaging   with   late   gadolinium   enhancement   (LGE)   is  

capable  of  noninvasive  identification  of  myocardial  fibrosis.  While  recent  

investigations  in  HCM  have  demonstrated  strong  association  between  the  

4.  Natural  History  and  Predictors  of  Outcome  

  124  

presence  of  LGE  and  ventricular  tachyarrhythmias,  the  utility  of  LGE  as  a  

predictor  of  SD  events  remains  unresolved  [24-­‐26].    

Therefore,  we  have  assembled  a   large  multicenter  HCM  cohort  to  

investigate   the   independent  prognostic   value  of   LGE  with   respect   to   SD  

and   other   adverse   disease   consequences.   We   prospectively   evaluated  

1300  HCM  patients  presenting   to  7  HCM  centers.  HCM  patients  at  each  

institution   consecutively   eligible   for   CMR   imaging   comprised   the   initial  

study  cohort.    

 

4.1.1    Extension  of  LGE  as  a  powerful  predictor  of  SCD    

Most  of  the  contrast-­‐enhanced  CMR  studies  in  HCM  have  focused  

almost   entirely   on   the   association   between   presence   of   LGE   and   SD.  

However,  the  mere  presence  of  any  amount  of  LGE  cannot  be  regarded  as  

a   risk  marker,   since   this   designation   gives   equal  weight   to   LGE   across   a  

broad  spectrum  of  amounts,  from  minimal  to  extensive  [25].  Furthermore,  

attributing   increased   risk   to   the   presence   of   LGE   per   se   conveys   an  

impractical  and  also  imprudent  message,  since  in  some  studies  up  to  70%  

of  all  HCM  patients  have  some  LGE  [26],  all  of  whom  could  be  regarded  as  

potential   candidates   for   primary   prevention   ICDs,   including   a   very   large  

proportion   who   would   not   benefit   from   this   therapy   and   could   be  

exposed  only  to  potential  device  complications.    

Indeed,  our  data  showed  that  SD  risk  increased  in  direct  relation  to  

extent  of  LGE,  with  10%  increase  in  LGE  associated  with  40%  increase  in  

relative   SD   risk.     Notably,   LGE   ≥20%   conferred   a   2-­‐fold   greater   risk  

compared   to   the   absence   of   LGE   [Figure   4.1-­‐1].   Multivariable   analysis  

identified   extent   of   LGE   as   a   strong   independent   predictor   of   SD,  

independent  of  patient  age,  and  of  all  cause  mortality  (p=0.007).    

4.  Natural  History  and  Predictors  of  Outcome  

  125  

 

 Figure  4.1-­‐1.  Relation  between  extent  of  late  gadolinium  enhancement  (LGE)  and  sudden  death  (SD)  in  1293  patients  with  HCM.    

Top  panel:   Incidence  of  SD  events   increased  progressively  and  in  direct  relation  to  extent  of  LGE  (p<0.001  for  chi-­‐square  trend  test).    

Bottom   panel:   Hazard   plot   based   on   multivariable   Cox   regression  analysis  (p=0.02).  

More   than   half   patients   with   SD   events   had   none   of   the  

conventional   risk   markers.   Among   these   patients,   SD   risk   increased   in  

direct  proportion   to  extent  of   LGE,  with  20%  LGE   conferring  nearly   a  3-­‐

fold  greater  risk  of  SCD  [Figure  4.1-­‐2].    Therefore,  extensive  LGE  provided  

4.  Natural  History  and  Predictors  of  Outcome  

  126  

the   only   opportunity   to   identify   some   young   asymptomatic   patients  

otherwise  not   regarded  at   increased  risk,  given  absence  of  conventional  

risk   markers,   and   who   would   have   remained   unprotected   against   SD  

without   an   ICD.   Since   approximately   one-­‐half   of   all   clinically   identified  

HCM   patients   do   not   have   conventional   risk   factors   [27],   CMR   could  

potentially   identify   a  number  of  otherwise  under-­‐recognized  patients   at  

increased   risk   who   would   potentially   benefit   from   this   enhanced   risk  

stratification  model.    

 

Figure  4.1-­‐2:  Relation  between  extent  of  LGE,  conventional  risk  factors,  and  sudden  death  risk  in  1293  patients  with  HCM.      

Incidence  of  sudden  death  events  increased  progressively  with  increasing  amounts   of   LGE   in   patients   without   conventional   risk   factors,   while   in  HCM  patients  with   ≥1   risk   factor   the   incidence   of   sudden   death   events  was  highest  in  patients  with  >10%  LGE  compared  to  those  with  less  LGE.    

Comparably,   amongst   all   patients   with   ≥1   risk   factors,   sudden  

death  risk   increased   in  direct  relation  to  the  extent  of  LGE,  with  at   least  

moderate   amounts   of   LGE   (≥10%),   conferring   a   30%   increase   in   SD   risk  

compared  to  those  with  no  LGE.  For  patients   in  this  “grey  area”  of  HCM  

risk  stratification,  we  found  that  LGE  can  act  as  a  potential  arbitrator  for  

4.  Natural  History  and  Predictors  of  Outcome  

  127  

resolving   ambiguous   ICD   decisions   [Figure   4.1-­‐2].   These   data   support   a  

role  for  contrast  enhanced  CMR  in  more  precisely  defining  patients  at  risk  

for  SD,  even  in  the  presence  of  conventional  risk  factors,  with  important  

implications  for  ICD  decision-­‐making.  

On  the  other  hand,  the  absence  of  LGE  was  associated  with  a  low  

risk  of  SD  and  a  potential  source  of  reassurance  to  patients.  However,  this  

finding   did   not   absolutely   immunize   our   patients   against   SD   risk,  

suggesting   that   susceptibility   to   potentially   lethal   ventricular  

tachyarrhythmias   can   be   influenced   by   factors   other   than   myocardial  

fibrosis  [28].    

 

4.1.2    Identification  of  progressive  disease        

The   present   data   also   identified   an   association   between  marked  

and   diffuse   LGE   and   systolic   dysfunction   with   progressive   heart   failure  

[Figure  4.1-­‐3  A  and  4.1-­‐4].    

The  amount  of  LGE  was  greater  in  the  26  patients  who  developed  

end-­‐stage   during   the   follow-­‐up   compared   to   the   1206   HCM   patients   in  

whom  systolic   function  remained  normal.  Therefore,  such  extensive  LGE  

can  be  predictive  of  subsequent  evolution  into  the  end-­‐stage,  even  when  

initially   identified   in   patients  with   normal   ejection   fraction   and  without  

severe   symptoms,   with   each   10%   increase   in   LGE   associated   with   80%  

increase  in  relative  risk  of  developing  end-­‐stage  HCM.  Indeed,  there  was  a  

3-­‐fold   increase   in   risk   for   end-­‐stage   progression   when   LGE   was   ≥20%.  

Notably,  this  same  degree  of  fibrosis  was  also  strongly  associated  with  the  

much  different  risk  for  SD  in  HCM  (usually   in  the  absence  of  progressive  

heart   failure),   highlighting   the   power   of   extensive   LGE   as   a   noninvasive  

marker  with  dual  value  in  predicting  sudden  death  and  end-­‐stage  HCM.  

4.  Natural  History  and  Predictors  of  Outcome  

  128  

The  ability   to  prospectively   identify  patients  who  will   progress   to  

end-­‐stage  has   clinical   relevance.   Indeed,   this  patient   subset  experiences  

an   unpredictable   clinical   course   associated   with   unfavorable   (albeit  

treatable)   disease   consequences,   including   rapidly   progressive   heart  

failure,   that   require   alteration   in   management   strategies   including  

tailored   drugs   and   early   consideration   for   heart   transplant   and  

prophylactic  defibrillators  [16].    

On   the   other   hand,   advanced   heart   failure  with   normal   EF   (both  

with  and  without  obstruction)  was  associated  with  no  or   small  amounts  

of   LGE,   suggesting   that   myocardial   fibrosis   is   not   an   important  

determinant  of  heart  failure  in  the  presence  of  preserved  systolic  function  

[Figure  4.1-­‐3  B].  As  expected,  patients  with  progressive  heart  failure  due  

to  LV  outflow  obstruction  showed  a  very  low  amount  of  LGE,  of  only  2%.  

From   a   physiopatological   standpoint,   this   result   is   quite   intuitive,   since  

the  heart  muscle  needs  to  be  very  efficient  in  order  to  create  a  significant  

outflow  gradient.    

 

 

 

 

 

 

 

 

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  129  

Figure  4.1-­‐3  A-­‐C:  relationship  between  LGE  and  progression  to  End-­‐Stage.  

 

 

 

   

4.  Natural  History  and  Predictors  of  Outcome  

  130  

 

 

Figure  4.1-­‐3  A-­‐C:  relationship  between  LGE  and  progression  to  End-­‐Stage.  

A.  Hazard  plot  based  on  multivariable  Cox  regression  showing  the  risk  of  developing  the  end-­‐stage  among  1232  HCM  patients  with  normal  systolic  function   at   study   entry.   Incidence   of   end-­‐stage   development   increased  progressively  with  greater  amounts  of  LGE  (p<0.001)  

B.   Graph   illustrating   the   strong   relationship   between   the   extent   of   LGE  and   the   risk   of   progression   to   overt   systolic   dysfunction   (end-­‐stage),   of  all-­‐cause  death  and  sudden  cardiac  death.    

C.  Extent  of  LGE  among  26  patients  who  developed  end-­‐stage  HCM,  903  patients   with   normal   EF   without   outflow   obstruction,   and   303   patients  with  normal  EF  and  outflow  obstruction  (p<0.01).  

 

4.  Natural  History  and  Predictors  of  Outcome  

  131  

 

Figure  4.1-­‐4:  LGE  in  4-­‐chamber  vertical  long-­‐axis  images  of  representative  patients  from  the  4  LVEF  categories.  

Top   left,   Twenty-­‐year-­‐old   woman   with   end-­‐stage   progression   showing  extensive   transmural  myocardial   fibrosis   (LGE  occupying  43%  of  LV  wall;  arrows).    

Top   right,   Sixty-­‐one–year-­‐old   woman   with   low-­‐normal   EF   showing  transmural  LGE  occupying  24%  of  the  LV.    

Bottom   left,   Thirty-­‐five–year-­‐old   man   with   preserved   systolic   function  showing  limited  nontransmural  fibrosis  occupying  8%  of  the  LV.    

Bottom   right,   Forty-­‐five–45-­‐year-­‐old   man   with   supernormal   systolic  function  showing  absence  of  LGE.  

 

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  132  

4.1.3    Utility  of  risk  assessment  in  clinical  decision-­‐making    

ICDs  have  partially   changed   the  natural   history  of  HCM   for  many  

patients   and   provided   an   opportunity   to   longevity   [29].   Indeed,  

prevention  of  SCD  has  now  become  a  new  paradigm  in  the  management  

of  HCM.  

Targeting  candidates  for  prophylactic  ICD  therapy  can  be  complex,  

due  to  the  unpredictability  of  the  arrhythmogenic  substrate,  the  absence  

of  a  dominant   risk   factor,  and  difficulty   in  assembling   randomized  trials.  

Clinical   dilemmas   inevitably   arise   concerning   ICD   recommendations,  

because  many  HCM  patients  fall  into  ambiguous  gray  zones  in  which  the  

level   of   risk   cannot   be   assessed   with   precision   using   conventional   risk  

factors,  and  a  measure  of   individual  clinical   judgment  and  experience  of  

the   managing   physician   with   direct   knowledge   of   the   patient’s   clinical  

profile  and  desires  is  necessary.    

Implanting  an  ICD  in  primary  prevention  is  not  an  easy  call,  nor  for  

patients  nor  for  physicians.  Despite  the  advances  in  ICD  technology,  ICD-­‐

related  complications  are  well  documented  and  include  infection,  pocket  

hematoma,   pneumothorax   and   venous   thrombosis   [11].   Furthermore,  

25%   of   HCM   patients   experience   inappropriate   shocks   (5%/year),  

resulting   from   lead   fracture   or   dislodgement,   oversensing,   double  

counting   and   programming  malfunctions,   or  when   triggered   improperly  

by   sinus   tachycardia   or   AF   [11].   Unfortunately,   the   highest   rate   of  

complications   is   in   younger  HCM  patients,   largely   because   their   activity  

level   and  body  growth  places  a   continual   strain  on   the   leads,  which  are  

regarded  as  the  weakest  point  in  the  system.    

The   reputation   of   the   ICD   as   a   “shock   box”   may   even   push   the  

patient   to  delay  or   refuse   the  device.  Because  of   fear  of  present  and/or  

future  discharges,  some  patients  increasingly  limit  their  range  of  activities  

4.  Natural  History  and  Predictors  of  Outcome  

  133  

and   inadvertently  diminish  the  benefits  of   the   ICD   in   terms  of  quality  of  

life   [30].   In   such   patients,   especially   those   under   the   age   of   50,   the  

benefits  of  a  life-­‐saving  device  may  be  attenuated  by  symptoms  of  anxiety  

and   depression   due   to   significant   difficulties   in   emotional   adjustment  

after  ICD  implantation  [30].    

In  conclusion,  while  the  present  data  do  not  resolve  all  remaining  

questions  in  the  arena  of  risk  stratification  in  HCM,  the  imaging  capability  

of   contrast-­‐enhanced   CMR   with   extensive   LGE   advances   the   risk  

stratification   strategy   in   HCM   by   providing   the   opportunity   to   identify  

additional   patients   at   increased   SCD   risk   in   whom   prophylactic   ICD  

therapy  would  otherwise  not  be  considered.  Conversely,   the  absence  of  

LGE  was   associated  with   lower   SCD   risk.   In   addition,   extensive   LGE  was  

also   predictive   of   adverse   LV   remodeling   with   systolic   dysfunction  

(endstage)   and   therefore   is   associated   with   2   diverse   consequences   of  

HCM.   These   novel   findings   support   greater   application   of   CMR   in   the  

routine  clinical  evaluation  and  risk  stratification  of  patients  with  HCM.  

   

4.  Natural  History  and  Predictors  of  Outcome  

  134  

4.2      A  hundred  tales   the  blood  can  tell:  NT-­‐pro  BNP  as  a  

clinical  barometer  of  disease  stability  in  HCM    

 

There   is   an   embarrassing   gap   between   the   availability   of  

information  derived  from  serum  biomarkers  and  our  ability  to  understand  

their   true   significance   in   order   to   create   appropriate   personalized  

remedies.    

Natriuretic   peptides   have   been   validated   as   markers   of   severity  

and  decompensation  in  various  cardiac  disorders  and  represent  powerful  

predictors  of  outcome   in  heart   failure   [31,  32].  The  value  of  BNP  or  NT-­‐

proBNP  to   identify  those  at  highest  risk   for  adverse  outcome,  has   led  to  

the  concept  of  using  measurement  of  these  biomarkers  to  ‘monitor’  and  

‘guide’   adequacy   of   therapy.   They   have   also   been   useful   as   screening  

tools   in   large   populations   at   risk   of   developing   cardiovascular   events,  

including  diabetic  and  elderly  patients  [32].    

NT-­‐proBNP,   the   N-­‐terminal   part   of   the   BNP   pro-­‐hormone,   is  

released  during  hemodynamic   stress  by   stretched  cardiac  myocytes  and  

split   by   proteolytic   enzymes   into   2   peptides;   the   C-­‐terminal   fragment  

(BNP)   represents   the   biologically   active   hormone   [31,   33].   Because   of   a  

different   clearance   mechanism   (renal   for   NT-­‐proBNP   and   receptor  

mediated   for   BNP),   NT-­‐proBNP   represents   a   more   reliable   predictor   of  

outcome  than  BNP  [33].    

To  date,  the  prognostic  accuracy  of  natriuretic  peptides  in  patients  

with   hypertrophic   cardiomyopathy   (HCM),   the   most   common   genetic  

heart   disease,   is   unknown   [34,   35].   Therefore,   the   serum   NT-­‐proBNP  

levels   were   determined   in   218   consecutive   outpatients   with   HCM   who  

4.  Natural  History  and  Predictors  of  Outcome  

  135  

had   been   referred   to   the   Referral   Center   for   Cardiomyopathies   in  

Florence  (Italy)  before  January  2011.    

 

4.2.1    Enrollment  of  patients  and  clinical  follow-­‐up  

Of  the  218  patients,  35  with  known  coronary  artery  disease  (n=15)  

or  evidence  of  systolic  dysfunction  at  the  first  evaluation  (defined  as  a  LV  

ejection  fraction  <50%;  n=20)  were  excluded.  The  remaining  183  patients  

with  HC  constituted   the   study  group  enrolled   in   the  present  project.  All  

had   had   a   stable   clinical   course,   without   episodes   of   acute   HF   or  

worsening  of  symptoms,  in  the  previous  3  months.  

After   enrollment,   the   patients   were   evaluated   annually   or   more  

often  if  dictated  by  the  clinical  status,  using  12-­‐lead  electrocardiography,  

echocardiography,   and   24-­‐hour   electrocardiographic   Holter   monitoring.  

Therapy   was   prescribed   as   appropriate,   according   to   the   current   HCM  

guidelines.  

The   primary   end   point   (PE)   was   defined   as   a   composite   of  

cardiovascular   death   (including   sudden   cardiac   death),   heart  

transplantation,  and  resuscitated  cardiac  arrest.    

The  secondary  end  point  (SE)  was  a  composite  of  HF-­‐related  events,  

including   HF   death,   pulmonary   edema   requiring   hospitalization,  

progression  to  advanced  symptomatic  status  (New  York  Heart  Association  

class  III  or  IV),  end-­‐stage  disease,  onset  of  atrial  fibrillation,  and  stroke.    

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  136  

4.2.2    Results    

The  median  NT-­‐ProBNP  value   for   the   study  group  was  615  pg/ml  

(range  22  to  16,013).  Patients  in  the  upper  tertile,  with  higher  NT-­‐proBNP  

values,  had  a   larger   left   atrial  diameter  and  maximum  LV  wall   thickness  

and   were   more   likely   to   have   advanced   symptoms   (New   York   Heart  

Association   class   III),   atrial   fibrillation,   and   dynamic   LV   outflow   tract  

obstruction.  The  women  had  greater  NT-­‐proBNP  values  than  the  men  and  

represented   most   patients   in   the   upper   tertile.   These   data   are   in  

agreement  with  those  derived  from  previous  studies,  confirming  that  NT-­‐

proBNP  values  correlate  with  the  degree  of  symptomatic  impairment  and  

functional  capacity,  LV  mass  index,  left  atrial  volume,  and  LV  outflow  tract  

obstruction  [36-­‐38].  

In  our  HC  cohort,  followed  up  for  an  average  of  almost  4  years,  NT-­‐

proBNP   proved   to   be   an   independent   predictor   of   cardiovascular  

mortality  (our  primary  end  point),  with  a  six-­‐fold  increase  in  the  likelihood  

for   each   increment   in   the   log  NT-­‐proBNP   [Figure  4.2-­‐1].   The   cumulative  

rate  of  the  primary  end  point  at  the  end  of  the  follow-­‐up  period  was  5%  

(1.3%/yr)  and  8%  (2.1%/yr)   in  the  middle  and  upper  tertile,  respectively.  

Furthermore,   the   presence   of   a   restrictive   LV   filling   pattern   conferred  

additional  prognostic  stratification   for  patients   in   the  middle  NT-­‐proBNP  

tertile,  although  it  had  no  additional  value  for  patients  in  the  upper  tertile.    

In   the   present   analysis,   however,   sudden   death   represented   a  

potential  confounder  with  regard  to  the  predictive  values  of  NT-­‐proBNP,  

because   life-­‐threatening  ventricular  arrhythmias   can  occur   in   stable  and  

often   asymptomatic   or   only   mildly   symptomatic   patients,   lacking   LV  

overload   and   hemodynamic   decompensation   at   death   and,   thus,  might  

not  be  predictable  using  the  biomarkers  of  HF.  

4.  Natural  History  and  Predictors  of  Outcome  

  137  

 

Figure  4.2-­‐1.  

(A)   Survival   free   from   the   primary   end   point   (PE;   a   composite   of  cardiovascular   death,   heart   transplantation,   and   resuscitated   cardiac  arrest)   stratified  by  NT-­‐proBNP   tertiles   (overall   log-­‐rank  p  ¼  0.01).  After  pairwise  comparison  with  Bonferroni  correction,  only  the  lower  to  upper  tertile  comparison  reached  statistical  significance  (p  ¼  0.01;  HR  9.26,  95%  CI  1.58  to  53.9).    

(B)   Freedom   from   PE   stratified   by   NT-­‐proBNP   tertiles   and   presence   or  absence  of  mitral  pulsed  wave  restrictive  filling  pattern  (RFP).  

 

The  secondary  end  point,  specifically  focused  on  HF-­‐related  events,  

was  more   accurately   predicted  by   the  NT-­‐proBNP   levels,  with   favorable  

rate  of  survival  free  from  the  SE  in  the  lower  NT-­‐proBNP  tertile  compared  

with  the  middle  and  upper  tertiles  [Figure  4.2-­‐2].  The  cumulative  rates  of  

SE  were   18%   (4.6%/yr)   in   the   lower,   47%   (12.0%/yr)   in   the  middle   and  

44%  (11.2%/yr)   in  the  upper  tertile.  With  regard  to  the  SE,  the  presence  

of   congestive   symptoms   at   enrollment   (expressed   as   New   York   Heart  

Association   functional   class)   significantly   contributed   to   the   risk  

stratification  of  patients  within  the  middle  and  upper  NT-­‐proBNP  tertiles  

[Figure  4.2-­‐2].  

4.  Natural  History  and  Predictors  of  Outcome  

  138  

 

Figure  4.4-­‐2.  

(A)   Survival   free   from   the   SE   (a   composite   of   HF   death,   acute  decompensation,  progression  to  end-­‐stage  disease,  and  stroke)  stratified  by   NT-­‐proBNP   tertiles   (overall   log-­‐rank   p   ¼   0.002).   After   Bonferroni  correction,   the   lower   to  middle   and   lower   to   upper   tertile   comparisons  reached  statistical  significance  (p  ¼  0.001  and  p  ¼  0.002,  respectively).    

(B)   In  a  Cox   regression  model   including  other   independent  predictors  of  SE,   only   the   initial   New   York   Heart   Association   (NYHA)   functional   class  helped  to  further  stratify  high-­‐risk  patients.  

 

Receiver   operating   characteristic   curve   analysis   demonstrated  

moderate   power   for   NT-­‐proBNP   in   the   prediction   of   the   primary   and  

secondary  end  point  [Figure  4.2-­‐3].    

The  relatively  high  NT-­‐proBNP  value  of  810  pg/ml  proved  the  best  

cutoff  for  the  identification  of  patients  at  risk  of  cardiovascular  death  (PE),  

although  with   limited  specificity   (61%).  Comparably,  an  NT-­‐proBNP   level  

<310   pg/ml   was   associated   with   a   75%   reduction   in   risk   of   HF-­‐related  

events   compared   with   values   of   >310   pg/ml   [Figure   4.2-­‐3],   with   high  

sensitivity  (85%)  but  low  specificity  (45%).    

4.  Natural  History  and  Predictors  of  Outcome  

  139  

 

Figure  4.2-­‐3.  

Receiver   operating   characteristic   curves   evaluating   accuracy   of   NT-­‐proBNP  levels  for  prediction  of  (A)  primary  end  point  and  (B)  SE.  *95%  CI  0.61  to  0.86;  †95%  CI  0.58  to  0.74.  

 

The  threshold  of  310  pg/ml,   representing  the  cutoff  value   for   the  

lower   tertile,   had   very   high   negative   predictive   accuracy   (85%)   and  

retained   important   prognostic   value   even   after   adjustment   for   other  

powerful   adverse   clinical   features,   such   as   age,   New   York   Heart  

Association   functional   class,   and   LV   outflow   tract   obstruction.   Similarly,  

the  positive  predictive  accuracy  for  end-­‐stage  progression  was  low  (25%),  

despite  an  excellent  negative  predictive  value  (88%).    

Therefore,  NT-­‐proBNP  appeared  most  useful   for   its  high  negative  

predictive   value,   as   a   screening   test   to   identify   low-­‐risk   patients,   rather  

than  to  single  out  those  with  a  greater  risk  of  events.  

 

4.2.3   Understanding  the  language  of  serum  biomarkers  

In   stable   outpatients   with   HC,   plasma   NT-­‐proBNP   proved   a  

powerful   independent   predictor   of   death   and   HF-­‐related   events.  While  

4.  Natural  History  and  Predictors  of  Outcome  

  140  

the   positive   predictive   accuracy   of   the   elevated   NT-­‐proBNP   values   was  

modest,  low  values  reflected  true  clinical  stability,    

Low  NT-­‐proBNP  values  can   identify   truly   stable  disease  and  allow  

cautious   reassurance   of   patients   with   HC   regarding   the   risk   of   disease  

progression   and  HF,   even   in   the  presence  of   potentially   adverse   clinical  

features,   suggesting   the  possibility   of   avoiding  or   postponing   aggressive  

treatment   options.   For   patients   with   HC   and   dynamic   LV   outflow   tract  

obstruction,  for  example,  low  NT-­‐proBNP  values  might  represent  a  useful  

arbitrator,   supporting   the   decision   to   avoid   or   postpone   invasive   septal  

reduction  therapies,  particularly  when  the  symptoms  are  sufficiently  well-­‐

controlled  by  pharmacologic  treatment.    

In   contrast,   greater   NT-­‐proBNP   values   represent   a   rather  

nonspecific  “red  flag,”  lacking  sufficient  specificity  for  the  identification  of  

the   truly  high-­‐risk   subset,   and  needs   to  be  complemented  by  additional  

clinical  and  instrumental  workup.    

 

   

4.  Natural  History  and  Predictors  of  Outcome  

  141  

4.3   Long   term   outcome   of   idiopathic   dilated  

cardiomyopathy:  the  real  world    

 

Idiopathic  dilated  cardiomyopathy  (IDCM)   is  a  primary  myocardial  

disease   of   unknown   cause   characterized   by   cardiac   enlargement   and  

impaired   systolic   function   of   one   or   both   ventricles,   in   the   absence   of  

abnormal   load   conditions   (such   as   hypertension,   valve   disease,   or  

congenital  heart  disease)  or  coronary  artery  disease  of  sufficient  severity  

to   cause   global   impairment   of   ventricular   function   [39-­‐41].   Different  

causes  can  lead  to  DCM,  including  inherited,  infectious,  and  inflammatory  

diseases.   However,   the   majority   of   cases   remain   unexplained   after   a  

thorough   review   for   secondary   cause.   IDCM   is   an   important   cause   of  

sudden   cardiac   death   (SCD)   and   heart   failure   (HF)   and   is   one   of   the  

leading   indications   for   cardiac   transplantation   in   children   and   adults  

worldwide  [41].    

Over   the   last   three   decades,   the   outcome   of   IDCM   has   radically  

changed   due   to   major   advances   in   pharmacological   and   device-­‐based  

therapeutic   strategies.   However,   studies   addressing   the   outcome   of   HF  

have   been   characterized   by   patients   with   DCM,   with   a   relatively   small  

representation  of   individuals  with   IDCM,  so  that   limited  data  exists  with  

specific   regard   to   this   condition   [42-­‐45].     Furthermore,   the   everyday  

practice  can  be  very  different  from  that  described  in  the  trials,  with  rates  

of  patient’s  compliance  usually  considerably   lower  than  that  reported   in  

clinical  trials  [46-­‐48].    

The  present   study   is  based  on  a   real   clinical  experience,  whereby  

603   patients   with   angiographically   proven   idiopathic   dilated  

cardiomyopathy   have   been   followed   during   the   past   30   years   in   the  

Regional  referral  center  for  cardiomyopathies   in  Florence.  This  cohort  of  

4.  Natural  History  and  Predictors  of  Outcome  

  142  

unselected,   consecutively   enrolled   and   angiographically   negative   IDCM  

patients   was   evaluated   in   a   systematic   fashion   by   the   same   team,  

providing  substantial  continuity  of  care  during  an  extended  time  period.    

 

4.3.1.  Enrollment  of  patients  and  follow-­‐up  

All   study   patients   were   evaluated   and   followed   up   at   our  

institution   by   clinical   and   family   history,   physical   examination,   12-­‐lead  

ECG,  standard  chest  radiograph,  routine   laboratory  tests,  24-­‐hour  Holter  

ECG  monitoring   (since   early   1980s),   M-­‐mode   and   2D   echocardiography  

(since  1970s),  and  Doppler  echocardiography  (since  mid-­‐1980s).  Patients  

were  regularly  followed  up  by  outpatient  visits  every  6  months  (or  more  

frequently  when  clinically   indicated)  and,  when  necessary,  by   interviews  

with  referring  physicians  or  by  telephone  contacts.    

HF   treatment   has   radically   changed   during   the   past   decades,  

following  major  randomized  clinical  trials  and  their  subsequent  impact  on  

international  HF  guidelines[44,  49].  The  use  of  neurohormonal   inhibitors  

has  become  established  during  the  past  2  decades.  While  in  the  1980s  HF  

treatment  was  virtually  confined  to  diuretics  and  digoxin,  the  1990s  have  

seen  an  explosion  in  the  use  of  neurohormonal  blockers.    

Therefore,   to   assess   long-­‐term   changes   in  outcome   in   relation   to  

treatment  options,  we  subdivided  our  patients  with  IDCM  into  4  periods,  

coinciding  with  different  therapeutic  eras  of  HF  treatment:    

• period  1:  66  patients  (11%)  enrolled  from  1977  to  1984,  defined  as  the  pre-­‐ACE  inhibition  era,  when  standard  therapy  consisted  of  diuretic  agents,  digoxin,  and  early  vasodilators;    

• period  2:  102  patients  (17%)  enrolled  from  1985  to  1990,  marking  the  beginning  of  the  ACEI  era;    

4.  Natural  History  and  Predictors  of  Outcome  

  143  

• period   3:   197   patients   (33%)   enrolled   from   1991   to   2000,  characterized   by   increasing   use   of   ACEI   and   ARBs   and   the  introduction  of  β-­‐blockers;    

• period   4:   238   patients   (39%)   enrolled   from   2001   to   2011,   the  device-­‐era,   characterized  by   the   introduction  of   ICD  and  CRT  on  top  of  extensive  neurohormonal  blockade    

4.3.2  Evolving  treatment  opportunities  and  outcome  improvement    

At   initial   evaluation,   the   4   groups   of   patients   were   comparable  

with   regard   to   sex   and   NYHA   class.   However,   there   was   a   slight   trend  

toward   enrollment   of   older   patients,   with   less   severe   LV   dilatation   and  

dysfunction   during   the   years,  with   permanent   atrial   fibrillation   at   initial  

diagnosis  less  prevalent  over  time.    

At   the   end   of   follow-­‐up,   patients   enrolled   in   periods   3   and   4  

showed   a   better   clinical   profile,   both   in   terms   of   cardiac   function   and  

symptoms.   The   improvement   in   systolic   LV   function,   together   with   a  

reduction   in  end-­‐diastolic  diameter   index,  both  expression  of  LV  reverse  

remodeling,  was   paralleled   by   a   clear   improvement   of   functional   status  

over   time.   Conversely,   patients   enrolled   in   periods   1   and   2   showed  

progression   of   symptoms   and   limited   improvement   in   systolic   function  

[Figure  4.3-­‐1].    

Figure  4.3-­‐1  (following  page):    

Changes   in   New   York   Heart   Association   (NYHA)   class   [top   panel],   left  ventricular   ejection   fraction   (LVEF)   [middle   panel],   and   end-­‐diastolic  diameter   index   (iEDD)   [bottom  panel],   from   initial   evaluation   to   end   of  follow-­‐up   based   on   enrollment   period.   Each   bar   indicates   the   change  from  enrollment  (horizontal  line)  to  final  evaluation  (blunt  bar  extremity).  

4.  Natural  History  and  Predictors  of  Outcome  

  144  

 

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  145  

The  presence  of  such  favourable  clinical  profile  resulted  in  a  better  

outcome,   so   that   each   enrollment   period   was   associated   with   a   42%  

reduction   in   risk   of   all-­‐cause   mortality   and   transplantation,   compared  

with   the   previous   one   [Figure   4.3-­‐2   A].   Likewise,   an   earlier   period   of  

enrollment  proved  a  potent  independent  predictor  of  refractory  HF  death  

and  SD  [Figure  4.3-­‐2  B,C].    

HF   death   rates   declined   at   a   relatively   constant   rate   after   the  

introduction   of   ACE   inhibition,   in   the   transition   from   periods   1   to   2.  

Conversely,   marked   and   progressive   impact   on   SD   was   evident   in   the  

transition   to  periods  3  and  4,  after   the   introduction  of   the   ICD/CRT  and  

the   complete   penetration   of   β-­‐blocker   treatment   for   HF   in   real-­‐world  

practice.  

 

 

 

 

 

 

 

Figure  4.3-­‐2  (following  page)  

Cox   multivariate   regression   survival   plot   (adjusted   for   age,   New  York  Heart  Association  [NYHA]  class,  sex,  left  ventricular  ejection  fraction  and   indexed   left   atrium   diameter)   indicating   differences   in   outcome  based   on   enrollment   period   for   the   3   study   end   points:   A,   All-­‐cause  mortality/heart  transplantation;  (B)  death  for  refractory  heart  failure;  and  (C)  sudden  death.  

4.  Natural  History  and  Predictors  of  Outcome  

  146  

 

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  147  

It  is  important  to  notice  that  in  our  cohort,  patients  enrolled  later  

had  a  less  severe  profile  in  terms  of  symptoms,  LV  size  and  function.  This  

trend   presumably   reflects   increasing   awareness   of   the   disease   in   the  

cardiology   community  and  availability  of  more   sensitive  diagnostic   tools  

that  allowed  an  early  diagnosis  of  the  disease.  This  may  have  contributed  

to   the   reduction   in  mortality   observed   during   the   years,   resulting   in   an  

overestimation   of   benefits   related   to   treatment.   However,   this   trend   is  

counterbalanced   by   the  more   advanced   age   at   enrollment   of   the  most  

recent  groups.   In  our  multivariate  models,   the  enrolment  period  proved  

to   be   a   very   potent   predictor   of   outcome   independent   of   the   most  

relevant   baseline   clinical   and   demographic   features   including   well-­‐

recognized  prognostic  factors  (ie,  age,  sex,  NYHA  functional  class,  LV  and  

left  atrial  diameters,  LVEF,  and  degree  of  functional  mitral  regurgitation)  

[50-­‐54].   Although   it   is   virtually   impossible   to   quantify   the   net   result   of  

these  trends  on  outcome,   it   is  plausible  to  attribute  most  of  the  survival  

benefit   observed   to   improvements   in   management   rather   than   to   the  

evolving  patient  demographics.  

 

 

 

4.3.3  Conclusions  

The   present   study   demonstrates   that   the   long-­‐term   prognosis   of  

patients   with   idiopathic   dilated   cardiomyopathy   has   radically   improved  

during   the   past   30   years,   in   terms   of   overall  mortality,   refractory   heart  

failure  death,  and  sudden  cardiac  death,  reflecting  continuing  progress  in  

pharmacological  and  device-­‐based  management.    

The  power  of  our  data  goes  well  beyond  the  huge  number  of  highly  

selected  patients,  the  extend  period  of  follow-­‐up  and  the  stability  of  the  

4.  Natural  History  and  Predictors  of  Outcome  

  148  

team-­‐care  over   time.   It   indeed   resides   in   the  possibility   to   replicate   the  

setting   of   a   clinical   trial   in   the   real  world,   overcoming   those   limitations  

usually   associated   with   purely   retrospective   and   observational  

community   studies   with   long   follow-­‐up   where   data   are   not   usually  

collected  in  a  systematic  fashion.    

 

 

   

4.  Natural  History  and  Predictors  of  Outcome  

  149  

4.4    Myocardial  damage  due  to  infectious  disease:  Chagas  

cardiomyopathy  

 

Patients  suffering  from  spatial  neglect  may  eat  from  only  one  side  

of  a  plate,  write  on  only  one  side  of  a  page,  or  shave  only  one  side  of  the  

face.  The  neglect  may  be  so  strong  so  as  to  deny  ownership  of  the  other  

side,   stating   that   it   belongs   to   someone   else,   or   to   avoid   or  withdrawn  

from  the  contralateral  side  of  space.    

There  is  a  form  of  special  neglect  affecting  the  medical  community:  

more   than   one   billion   of   people   worldwide   suffer   from   a   group   of  

infections  caused  by  a  variety  of  pathogens,  responsible   for  a  significant  

numbers   of   death   in   tropical   and   sub-­‐tropical   areas.   However,   the  

majority  of  these  tropical  diseases  afflict  the  poorest  people,  who  live  on  

less  than  $2  per  day  [55].  Therefore,  despite  their  significance  in  terms  of  

burden   of   ill   carried   by  more   than   one-­‐sixth   of   the  world's   population,  

little   financial   support  has  been  provided  to  address   these  diseases,   like  

they   don't   even   exist.   That   is   the   reason   why   the   World   Health  

Organization   decided   to   unify   them   under   the   name   of   “neglected  

tropical  diseases”  and  prioritize  17  of   them   in  an  official   list,   in  order   to  

increase  their  awareness  among  physicians  of  the  eastern  countries  [55-­‐

57].   Moreover,   due   to   the   increasing   immigration,   international   travel  

and   adoption,   many   of   these   diseases   now   represent   a   matter   of  

international  concern  even  for  non-­‐endemic  countries,  such  as  Europe  or  

US  [58-­‐60].    They  are  a  ‘neglect’  too  important  to  ignore.    

We  started  to  explore  this  “new”  branch  of  cardiology  in  2011,  as  a  

result  of  our  collaboration  with  the  Infectious  Disease  Unit  of  our  Hospital.  

Two   of   young   women   with   the   chronic   form   of   Chagas   disease   were  

referred   to   our   center   for   cardiologic   evaluation.   They   showed   heart  

4.  Natural  History  and  Predictors  of  Outcome  

  150  

failure   due   to   dilated   cardiomyopathy   and   isolated   ventricular  

arrhythmias   as   dominant   features   of   cardiac   involvement,   which   was  

substantially  comparable  to  other  more  common  form  of  heart  disease.    

Therefore,  we  decided  to  share  our  experience  describing  the  story  

of   two   patients   with   CD,   in   order   to   emphasizes   the   role   of   Chagas  

disease  as  an  important  cause  of  cardiac  disease  in  patients  from  endemic  

regions,   even   when   long   removed   from   their   native   countries,  

highlighting  the  need  for  increased  awareness  in  non-­‐endemic  settings.  

 

4.4.1  Clinical  pictures  

Patient  #  1:    

A   46-­‐year   old   Brazilian   woman,   who   has   resided   in   Italy   for   24  

years,   was   admitted   to   our   hospital   following   the   onset   of   worsening  

dyspnea   and   cough   over   the   previous   3   months.   The   patient   had   a  

longstanding   history   of   smoking   (1   pack/day),   but   no   other   known  

cardiovascular  risk  factors.  Two  months  previously,  she  had  been  seen  by  

a  pneumologist,  and  had  a  chest  CT  and  pulmonary  function  tests,  upon  

which   a   tentative   diagnosis   of   interstitial   pulmonary   disease  was  made.  

Treatment  with  oral  steroids  had  been  started  over  the  ensuing  4  weeks,  

with   little  benefit.  On  admission,   she  complained  of   shortness  of  breath  

during   daily   activities   and   was   unable   to   climb   stairs   (NYHA   functional  

class  III),  but  had  no  history  of  chest  pain  or  palpitations.  On  examination,  

she  had  a  3rd  heart  sound  but  no  murmurs;  JVP  was  slightly  elevated,  and  

she  had  fine  bilateral  basal  crackles  on  chest  auscultation.  A  repeat  CT  of  

her  chest  showed  evidence  of  pulmonary  congestion,  with  mild  interstitial  

thickening;   pulmonary   function   tests   were   consistent   with   moderate  

restrictive   respiratory   impairment.  Her   electrocardiogram   (ECG)   showed  

4.  Natural  History  and  Predictors  of  Outcome  

  151  

sinus  rhythm  with  occasional  ventricular  ectopic  beats,  but  was  otherwise  

unremarkable.   A   transthoracic   echocardiogram,   however,   showed   a  

mildly   dilated,   diffusely   hypokinetic   left   ventricle   (LV),   with   an   ejection  

fraction   of   38%   and   severe   functional   mitral   regurgitation.   Routine  

laboratory   tests   and   standard   virology,   including   cardiotropic   and  

neurologic   agents,   were   inconclusive.   A   normal   coronary   angiogram  

excluded  ischemic  heart  disease  as  a  cause  of  LV  dysfunction.    

When   other   potential   etiologies  were   explored,   a   detailed   family  

history  revealed  that  the  patient’s  sister  had  died  suddenly  years  before  

in   Brazil   with   a   prior   diagnosis   of   Chagas,   prompting   specific  

investigations  for  T.  Cruzi.  Serology  tests  resulted  positive,  leading  to  the  

diagnosis  of  chronic  CD  complicated  by  cardiomyopathy.    

Standard   treatment   for   heart   failure   was   begun   with   carvedilol,  

ramipril   and   loop   diuretics.   Following   multidisciplinary   consultation,  

antitrypanosmomal   therapy  was   felt   not   indicated   at   this   stage   and   the  

patient  was  discharged  in  stable  conditions.  

After  one  month,  her  dyspnea  had  progressively  improved  and  she  

remained   in   NYHA   functional   class   II.   However,   she   complained   of  

recurrent   palpitations   and   a   24-­‐hour   ambulatory   Holter   ECG   showed  

extremely   frequent   polymorphic   premature   ventricular   beats,   with  

several   couples   and   triplets.   Amiodarone  was   added   to   her   therapeutic  

regimen  at  a  dose  of  200  mg/day.    

At   3   months,   she   reported   further   improvement,   with   only   mild  

exercise   limitation   and   no   further   episodes   of   palpitations.   A   repeat  

Holter   ECG   showed   dramatic   reduction   in   the   frequency   of   ventricular  

and  supraventricular  beats.  Her  echocardiogram  had  also  improved,  with  

significant   increment   in   LV   ejection   fraction   (to   52%)   and   only   mild  

residual  mitral   regurgitation   [Figure  4.4-­‐1].  Cardiac  MRI  showed  discrete  

4.  Natural  History  and  Predictors  of  Outcome  

  152  

LV  akinesia  localized  to  the  apical  region,  apical  septum  and  infero-­‐lateral  

wall;   following   gadolinium   injection,   there   was   evident   delayed  

enhancement   of   the   apex   with   prevalent   sub-­‐epicardial   distribution,  

consistent  with  Chagas  cardiomyopathy  [Figure  4.4-­‐2].    

 

Figure  4.4-­‐1:  Transthoracic  echocardiogram  from  patient  #1.  

Parasternal   long   axis   and   short   axis   views   (panel   A1   and   panel   A2)   and  apical   four   chamber   view   (panel   B1   and   panel   B2),   showed   mild   left  ventricular  dilatation  and  dysfunction,  with  functional  mitral  regurgitation  (panel   A3)   and  moderate   tricuspid   regurgitation   (panel   B3).   A   triphasic  pattern   of   left   ventricular   diastolic   filling   recorded  with   pulsed   Doppler  (panel  C1)  associated  with  reduced  tissue  Doppler   lateral   (panel  C2)  and  septal  E’  (panel  C3),  consistent  with  moderate  diastolic  dysfunction.  

 

 

4.  Natural  History  and  Predictors  of  Outcome  

  153  

 

Figure  4.4-­‐2:  Cardiac  MRI  from  patient  #1.    

Four-­‐chamber  enlargement   is  accompanied  by  a-­‐dyskinesia  of  apical  region,   distal   septum   and   infero-­‐lateral   wall   (panel   A-­‐C),   associated  with   transmurallate   gadolinium   enhancement   of   the   apical   region  (arrow)   (panel   B),   with   sub-­‐epicardial   distribution   evident   in   two-­‐chamber  view  (arrowhead)  (panel  D).  

 

After   one   year   of   optimal   medical   therapy,   the   patient   was   in  

stable  clinical  conditions,  with  no  symptoms  except  for  occasional  fatigue.  

An   implantable   cardioverter   defibrillator   (ICD)   was   discussed   with   the  

patient,   who   declined   based   on   her   excellent   response   to   medical  

treatment.    At  this  stage,  antitrypanosomal  treatment  with  benznidazole  

was   introduced   but   had   to   be   withdrawn   on   day   12   due   to   a   diffuse  

itching  maculopapular  skin  rash,  which  worsened  despite  oral  treatment  

with   hydroxyzine   dihydrochloride   and   prednisone.   Benznidazole   was  

4.  Natural  History  and  Predictors  of  Outcome  

  154  

therefore   discontinued   and   no   further   antytripanosomal   treatment   has  

been  considered  so  far.  She’s  currently  been  considered  for  nifurtimox.  

One  year  later,  during  a  scheduled  follow-­‐up  visit,  she  complained  

of  palpitations,   insomnia  and  anxiety,   started  a   couple  of  weeks  earlier.  

The   ECG   showed   frequent   isolated   ventricular   ectopic   beats,   while   LV  

function   was   stable.   Blood   tests   revealed   a   severe   hyperthyroidism  

probably   related   to   amiodarone,   with   T3   level   about   100   times   higher  

than   the   normal   range.   Therefore,   methimazole   was   started   with  

progressive   reduction   of   thyroids   hormones   level   and   clinical  

improvement.   Amiodarone   was   immediately   stopped,   but   no   other  

antiarrhythmic   drugs   could   be   considered   because   of   the   underlying  

cardiac   condition.   Thus,   after   a   careful   reevaluation   of   risk   factor   for  

sudden  cardiac  death,  the  ICD  was  reconsidered  and  then  implanted.    

 

Patient  #2  

A  48-­‐year  old  Bolivian  woman,   resident   in   Italy   for   32   years,  was  

referred   for   cardiac   evaluation   by   the   infectious   disease   unit   after   a  

recent   diagnosis   of   CD,   following   screening   of   the   local   Bolivian  

Community  in  central  Italy.  Her  father  and  sister  had  both  died  at  a  young  

age,   possibly   due   to   complications   of   CD.   She   complained   of   recurrent  

exertional   chest   discomfort,   but   no   dyspnoea   or   palpitations.   On  

examination  she  was   found   to  have  an   irregular  pulse,  while   the   rest  of  

her   examination   was   otherwise   unremarkable.   A   transthoracic  

echocardiogram   showed   normal   LV   function   with   trivial   mitral  

regurgitation   and   normal   pulmonary   pressures.   However,   her   24-­‐hours  

Holter  ECG  showed  numerous  monomorphic  premature  ventricular  beats  

with   frequent   periods   of   bigeminy   and   trigeminy.   A   symptom-­‐limited,  

maximal   exercise   test   ruled   out   inducible   ischemia.   Treatment   with  

4.  Natural  History  and  Predictors  of  Outcome  

  155  

amiodarone  was   started   at   the   dose   of   200  mg/day   followed   after   one  

month   by   antiparasitic   treatment  with   benznidazole   150  mg   twice   daily  

for  66  days.  The   latter  was  well   tolerated.  At  2  months,  a   repeat  Holter  

ECG   showed   marked   reduction   of   the   arrhythmic   burden,   an  

improvement   paralleled   by   relief   of   her   exertional   chest   discomfort.   At  

one   year,   she   was   asymptomatic   on   amiodarone,   with   no   evidence   of  

structural  heart  disease  on  her  echocardiogram.  

 

4.4.2    The  kissing  bug  

Chagas  disease  (CD),  also  known  as  American  Trypanosomiasis,  is  a  

parasitic  disease  caused  by  the  protozoan  Trypanosoma  cruzi,  endemic  to  

Central  and  South  America,  where  16-­‐18  million  people  are  infected  and  

about   100-­‐120  million  people   are   at   risk   of   contracting   the  disease   [61,  

62].    

T.  Cruzi   is  commonly  transmitted  to  humans  by  the  blood-­‐sucking  

triatomine   bug   (also   known   as   the   kissing   bug)   [62].   The   disease   is  

characterized  by  two  phases:  the  acute  infection,  which  occurs  a  few  days  

to  some  weeks  after  the  transmission,  which  is  usually  asymptomatic  [62,  

63].   Sometimes   patients   may   manifest   acute   symptoms   such   as   fever,  

inflammation  at  the  inoculation  site,  unilateral  palpebral  edema  (Romaña  

sign),   enlarged   lymph   nodes,   and   splenomegaly   that   resolve  

spontaneously  within  2-­‐4  months.  Rarely  acute   cardiac  and  neurological  

involvement,   such  as   severe  myocarditis   and  meningo-­‐encephalitis,  may  

also  develop  [64,  65].    

In  the  absence  of  successful  treatment,  individual  remains  infected  

for  life:  this  is  the  beginning  of  the  chronic  phase.  Individuals  may  remain  

asymptomatic  for  a  long  period  of  time,  usually  decades,  or  even  for  their  

4.  Natural  History  and  Predictors  of  Outcome  

  156  

entire  life,  although  representing  infected  reservoir.  Following  a  period  of  

20-­‐30   years,   approximately   30-­‐40%   of   subjects   develop   evidence   of  

cardiac   involvement  and  5-­‐10%  develop  gastrointestinal  signs  associated  

with  megaesophagus  and/or  megacolon  [62,  65].    

 

4.2.3    Chagas  cardiomyopathy  

Clinical   involvement   in   Chagas   disease   is   characterized   by  

myocardial   damage,   with   variable   combination   of   LV   dilatation   and  

dysfunction,   potentially   leading   to   heart   failure   [62,   66-­‐68   ].   The  

patological   mechanism   responsible   for   the   adverse   cardiac   remodeling  

and   chamber   dilatation   is   represented   by   chronic   fibrosing  myocarditis,  

leading  to  progressive  loss  of  cardiomyocites,  muscle  fibers  and  fascicles  

breakdown,   and   increasing   extent   of   replacement   myocardial   fibrosis.  

Such   profound   morphological   overturn   is   accompanied   by   functional  

alteration  with  decreased  systolic  function  over  time  and  a  high  likelihood  

of  HF  development  [62,  67].    

Furthermore,   malfunctioning   of   the   electrophysiological   syncytia  

are   responsible   for   potentially   lethal   ventricular   and   supraventricular  

tachy-­‐   and  bradyarrhythmias,  which   can  explain   the  high   risk  of   sudden  

death  in  patients  with  CD  cardiomyopathy  [66].  

From  a  physiopathological  standpoint,  the  pathogenesis  of  Chagas  

cardiomyopathy  may  result  from  a  direct  tissue  damage  by  the  parasite  or  

an   indirect   damage   mediated   by   inflammatory   and   immune   system  

responses  [69].  Although  obvious  triggers  of  reactivation  may  be  absent,  

conditions  such  as  immunosuppression  or  chronic  steroid  treatment  may  

predispose  to  chronic  CD  complications.  

4.  Natural  History  and  Predictors  of  Outcome  

  157  

The   clinical   spectrum   of   CD   cardiomyopathy   may   be   very  

heterogeneous,   encompassing   adverse   LV   remodeling   with   chamber  

enlargement   and   systolic   dysfunction   or   sub-­‐epicardial   fibrosis   localized  

to  the  apical  region.    

Characteristic   electrocardiographic   abnormalities   include   right  

bundle-­‐branch  block  (with  or  without  associated  left  anterior  hemiblock),  

premature  ventricular  beats,  second  or  third  degree  atrioventricular  block,  

sinus   bradycardia   and   atrial   fibrillation   [68,   70].   Arrhythmias   are   also  

frequent   features   of   CD   cardiomyopathy,   and   may   be   present   in   the  

absence   of   detectable   structural   heart   disease.   Of   note,   both   patients  

underscore   the   considerable   arrhythmic   potential   of   Chagas  

cardiomyopathy,   emphasizing   that   CD   should   be   considered   in   the  

differential   diagnosis   of   “idiopathic”   ventricular   arrhythmias.   Sudden  

cardiac   death   is   common   and  may   occur   even   in   patients   with   normal  

ECGs  [70].  A  risk  score  for  death  related  to  CD  has  been  developed  based  

on  6   independent  predictors,  of  which  3   relate   to   cardiovascular   status,  

including  an  abnormal  echocardiogram,  a  small  QRS  on  the  ECG  and  runs  

nonsustained  VT  on  ambulatory  Holter  monitoring  [68].    

 

4.2.4      Management  of  Chagas  cardiomyopathy  

Two   anti-­‐trypansomal   drugs   have   been   introduced   in   the   1970s,  

benznidazole   and   nifurtimox   and,   although   evidence   from   randomized  

control   trials   are   lacking,   benznidazole   is   currently   considered   first   line  

therapy   [71,  72].  However,  while   the  drug   is   considered  highly  effective  

for  eradication  during  the  acute  and  congenital   infection,  the  efficacy  of  

treatment  during  the  chronic  phase  is  highly  debated,  where  only  40-­‐60%  

of  patients  achieving  complete  eradication  [72].  Furthermore,  treatment  

is   associated   with   considerable   side   effects,   that   more   frequent   and  

4.  Natural  History  and  Predictors  of  Outcome  

  158  

severe  in  adult  than  in  children  [74].    The  most  frequent  side  effects  are  

gastrointestinal  disorder,  skin  rash  and  paresthesia.    

Nevertheless,  because  persistence  of  Trypanosoma  Cruzi  in  human  

tissue   is   considered   crucial   for   organ   damage   progression,   antiparasitic  

therapy  is  recommended  for  chronic  CD,  especially  in  patients  with  early  

stages  of  cardiomyopathy  [75].    

Despite   the   lacking   of   evidence-­‐based   studies   on   Chagas  

cardiomyopathy,   the  specific  management   relies  on   the  management  of  

heart   failure,  arrhythmias  and   thromboembolism.  Standard  heart   failure  

therapy   is   employed   for   treatment   of   LV   dysfunction   and   related  

symptoms,   including   ACE-­‐inhibitors   or   angiotensin   receptor   blockers,  

betablockers,   anti-­‐aldosterone   agents   and   loop   diuretics   [76,   77].  

Considering  the  high  risk  of  thromboembolism  and  the  elevated  incidence  

of   ischemic   stroke,   oral   anticoagulation   represent   a   possible   important  

therapeutic   strategy,   who   should   guided   by   standard   clinical  

recommendations.    

Amiodarone  is  considered  the  agent  of  for  treatment  of  ventricular  

arrhythmias   in   these   patients,   due   to   its   efficacy   in   reducing   the  

arrhythmic   frequency,   safety   profile,   and   a   reported   direct   antiparasitic  

effect  [78].   Indeed,  preliminary  data  suggest  that  amiodarone  treatment  

may   reduce   mortality   in   CD   patients.   Selected   high-­‐risk   patients   with  

Chagas   cardiomyopathy   may   require   an   implantable   cardioverter-­‐

defibrillator,   particularly   in   the   presence   of   sustained   ventricular  

tachycardia,  syncopal  episodes  or  persistent  LV  dysfunction  [79].    

 

4.  Natural  History  and  Predictors  of  Outcome  

  159  

4.2.5.    Chagas  disease:  why  should  European  cardiologists  care?  

Due   to   the   increasing   immigration,   international   travel   and  

adoption,   Chagas   disease   now   represent   a   matter   of   international  

concern   even   for   non-­‐endemic   countries,   such   as   Europe   or   US.    

According   to   the   World   Health   Organization,   59.000   to   108.000  

individuals  in  Europe  are  affected  with  CD.  A  recent  serological  survey  for  

T.  cruzi  infection  offered  to  all  migrants  from  Latin  American  living  in  the  

North   of   Italy,   has   shown   that   4%   are   infected.   Bolivian   and   Brazil  

migrants   are   at   particularly   high   risk,   with   a   prevalence   of   T.   cruzi  

infection  as  high  as  19.8%  [58,  59].  

In   non-­‐endemic   countries,   potential   mechanism   of   infection  

include   blood   transfusions,   transplacenteal   transmission,   solid   organ  

transplantation   and   ingestion   food   or   liquid   contamined   with   feces   of  

triatomines  [62].    

While   screening   programs   of   blood   donors   and   pregnant  women  

coming   from   or   exposed   in   endemic   countries   are   being   increasingly  

promoted   in   non-­‐endemic   areas,   the   majority   of   cases   are   still  

undiagnosed  or  probably  misdiagnosed  [60].  Of  note,  in  Europe  the  index  

of  underdiagnosis  of  T.  cruzi   infection  has  been  estimated  between  94%  

and   96%.   The   long   latency   period   from   infection   to   the   clinical  

manifestations,   often   ranging   from   10   to   30   years,   makes   CD   an  

extremely  challenging  diagnosis   in  non-­‐endemic  countries,  where  lack  of  

awareness   is   a   critical   cause   of   delay   or   misdiagnosis.   Furthermore,  

because  of  easier  access  to  health-­‐care  compared  to  endemic  countries,  

cardiac  involvement  in  Europe  and  the  US  may  be  detected  at  the  initial  

stages,   when   clinical   manifestations   of   CD   are   non-­‐specific   and   more  

difficult  to  interpret.      

4.  Natural  History  and  Predictors  of  Outcome  

  160  

4.2.6  Conclusions  

Despite  its  growing  epidemiological  relevance  in  the  western  world,  

and  considerable  emphasis  by  the  World  Health  Organization,  awareness  

of   CD   among   physicians   in   Europe   remains   low,   promoting   neglect   and  

misdiagnosis.   It   is   hoped   that   CD   may   increasingly   be   considered   as   a  

potential   diagnosis   in   European   residents   from   endemic   Latin   American  

regions   presenting   with   “idiopathic”   cardiac  manifestations,   even  when  

long  removed  from  their  country  of  origin,  with  potential  implications  for  

implementation  of  early  treatment  and  control  of  CD  transmission.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Translational  Routes  from    

Altered  Molecular  Homeostasis    

to  Treatment  Opportunities  

 

 

 

 

   

5.  Treatment  Opportunities  

  162  

 

 

 

“The art of medicine consists

in amusing the patient

while nature cures the disease”

Voltaire

 

 

 

   

5.  Treatment  Opportunities  

  163  

 

 

 

Despite   the   modern   recognition   cardiomyopathies   as   distinct  

clinical   entities   for   over   five   decades,   and   in   spite   of   considerable  

advances   in   its   phenotyping   and   molecular   genetics,   current  

pharmacological   treatment   of   these   patients   has   remained   largely  

unchanged   and   empiric.   In   conjunction   with   the   implementation   of   a  

DNA-­‐based   diagnosis   and   the   comprehension   of   molecular   phenotype,  

pharmacological   treatment   of   cardiomyopathies   is   also   likely   to   evolve  

and  become  largely  individualized.    

The   overview   of   molecular,   genetic   and   clinical   features   of  

cardiomyopathy   reviewed   in   the  previous   sections  gives   the  opportunity  

to   describe   the   possibility   to   translate   the   acquired   knowledge   into  

treatment  opportunities.        

The   present   section   illustrates   novel   therapeutic   approaches   that  

are  being  developed   for  patients  with  hypertrophic   cardiomyopathy  and  

Anderson-­‐Fabry  disease,  and  a  critical   reappraisal  of  a  well-­‐established  –  

but  not  perfect  –  preventive  option  such  as  the  implantable  cardioverter  

defibrillator.    

 

 

   

5.  Treatment  Opportunities  

  164  

5.1   Electrophysiological   cardiomyocyte   remodeling   as   a  

new  therapeutic  target  in  HCM  

 

Hypertrophic   cardiomyopathy   (HCM)   is   the   most   prevalent  

monogenic   cardiac   disorder,   with   a   reported   prevalence   of   1   in   500  

worldwide   [1].   Despite   its   epidemiological   relevance,   HCM   is   largely   an  

orphan   condition   because   it   lacks   a   disease-­‐specific   pharmacological  

treatment.   HCM   is   frequently   associated  with   reduced   exercise   capacity  

and  symptoms  such  as  angina  and  syncope  [1].    

The  pathophysiology  of  symptoms  and  disease  progression  in  HCM  

is   complex   and   only   incompletely   understood   [2-­‐4].   However,   several  

important   elements   have   been   identified   which   are   closely   interwoven,  

and   impact  decisively  on  the  genesis  of  symptoms  and   long-­‐term  clinical  

course:   A)   diastolic   dysfunction,   multifactorial   in   origin,   with   causes  

ranging   from   intracellular   calcium   overload   to   increased   interstitial  

fibrosis   [1-­‐4];     B)   dynamic   LV   outflow   obstruction,   whether   in   resting  

conditions   or   during   exercise   [5];   C)   microvascular   dysfunction   and  

blunted   coronary   flow   reserve,   secondary   to   marked   anatomic  

remodelling  of  the  arterioles  [6,  7];  D)  arrhythmias,  with  particular  regard  

to  atrial   fibrillation  and   its  consequences  [8].  Moreover,  HCM  represents  

the   most   common   cause   of   arrhythmic   sudden   cardiac   death   in   young  

athletes,   because   of   the   increased   propensity   for   potentially   life-­‐

threatening  ventricular  arrhythmias  [1].  HCM  is  associated  with  a  complex  

electrophysiological   cardiomyocyte   remodelling   involving   multiple  

changes  in  transmembrane  currents  ultimately  leading  to  susceptibility  to  

ventricular   arrhythmias;   particularly,   in   animal   models   of   ventricular  

hypertrophy,   ventricular   myocytes   show   functional   down   regulation   of  

potassium   currents   and   up-­‐regulation   of   inward   currents   (Calcium  

5.  Treatment  Opportunities  

  165  

currents,   Chloride   currents,   others),   all   leading   to   action   potential  

prolongation.  Prolonged  action  potential  can  lead  to  increased  duration  of  

QT   interval   at   the   surface   electrocardiogram,   a   feature   that   has   been  

found   associated   with   HCM   and   secondary   hypertrophy   in   patients   [9-­‐

12].Marked  prolongation  of  the  QT  interval  is  a  pro-­‐arrhythmic  risk  factor  

in  both  congenital  and  drug-­‐induced  long  QT  syndrome  (LQTS)  [11-­‐12].    

Developed   in   the   90s   as   a   cardiac   specific   partial   fatty   acid  

oxidation   inhibitor,   Ranolazine   was   first   experimented   as   a   possible  

antianginal  compound  due  to   its  ability   to  shift  cardiac  metabolism  from  

fatty  acid   to  glucose  consumption,   that   requires   less  O2   to  produce  ATP  

[13]:   this   metabolic   modulatory   effect   of   ranolazine   was   thought   to   be  

responsible   for   its   clear  protective  effect  on  myocardial   tissue   subjected  

to   ischemia/reperfusion   damage.   It   becomes   clear   that   the   antianginal  

and   antiischemic   effect   of   ranolazione   were   not   due   to   the   supposed  

metabolic  effects  (which  are  negligible  at  therapeutic  concentrations),  but  

rather   to   its   selective   blockade   of   the   late   sodium   current.   Its  

electrophysiological   effects   were   in   fact   described   in   2004   [14].  

Ranolazine  exerts  an  inhibitory  effect  on  IKr  and  a  slight  ICaL  block  but  the  

main   effect   was   a   potent   inhibition   of   INaL   ,with   small   or   no   effect   on  

peak   INa,  within   the   therapeutic  concentration   range.   Inhibition  of   IKr   is  

generally  considered  pro-­‐arrhythmic:  however,  in  a  large  scale  trial  on  non  

ST-­‐elevation   myocardial   infarction   patients,   Ranolazine   significantly  

reduced   the   incidence   of   ventricular   tachycardia   and   atrial   arrhythmias  

after   the   first   event   [15].   The   late   sodium   current   is   enhanced   under  

several   pathological   conditions   such   as   ischemia,   heart   failure,   cardiac  

hypertrophy   and   various   conditions   associated  with   oxidative   stress.   An  

increase   in   INaL   causes   Na+   overload,   which   in   turn,   promotes   an  

increased  exchange  of  intracellular  Na+  for  extracellular  Ca2+  through  the  

reverse  mode   of   the   NCX.   In   its   reverse  mode,   the   NCX   increases   Ca2+  

5.  Treatment  Opportunities  

  166  

entry   into   the   cell   in   exchange   to   the   extrusion   of   3   Na+   per   cycle,  

reducing   the  overall   cellular  capacity   to  eliminate  calcium  outside  of   the  

cytosol,  and  thus  causing  Ca  2+  overload.  The  antianginal  effect  observed  

at  therapeutic  concentrations  of  ranolazine  (≤  10  µM)  has  been  related  to  

its   ability   to   inhibit   the   late   INa   and,   as   a   consequence,   the   increase   in  

intracellular  Na+  and  Ca2+  overload  in  myocardial  cells  [16].    

Recently,   a   paper   published   by   our   group   described   the  

electrophysiological   profile,   Ca2+i   handling   properties,   and   contractile  

function   of   isolated   cardiomyocytes   and   trabeculae   from   HCM   patients  

undergoing   surgical   myectomy   [].   Among   the   several   ion   channel   and  

Ca2+i  handling  proteins  changes  identified,  an  enhanced  INaL  seems  to  be  

a   major   contributor   to   the   electrophysiological   and   Ca2+i   dynamic  

abnormalities  of  ventricular  myocytes  and  trabeculae   from  patients  with  

HCM.   These   data   suggest   a   favourable   electrophysiological   effect   of  

ranolazine   on   HCM   cardiomyocytes,   by   reverting   the   abnormal  

prolongation  of  action  potential  observed  [Figure  5.1-­‐1].  

 

Figure   5.1-­‐1:   Effects   of   INaL   inhibition   by   ranolazine   on   action  potentials.   Action   potentials   at   0.2   Hz   from   a   hypertrophic  cardiomyopathy   (HCM)  cardiomyocyte  before   (basal)   and  after  exposure  to  10  μmol/L  ranolazine  (Ran).  

5.  Treatment  Opportunities  

  167  

In   HCM   patients,   ranolazine   represents   a   promising   option,  

because  of  its  pharmacological  profile,  comprising  several  different  effects  

of   potential   benefit   to   their   condition.   By   reducing   intracellular   Na+  

overload,  and  thus  diastolic  Ca2+  ranolazine  has  the  potential  to  improve  

diastolic   function,   a   cause   of   symptoms   in   most   HCM   patients,   thus  

impacting  on  functional  limitation  and  quality  of  life.  In  the  long  term,  the  

effect  on  calcium  homeostasis  is  expected  to  down  regulate  a  number  of  

remodelling   pathways   that   strictly   depend   on  myocyte   driven   signaling:  

this  may  in  turn  bring  benefit  to  extracellular  matrix  remodelling,  reducing  

fibroblasts  growth  and  collagen  production  in  hypertrophied  myocardium.  

Second,  ranolazine  administration  has  been  shown  to  reduce  the  degree  

of  myocyte  hypertrophy   and   interstitial   fibrosis,   and   to   ultimately   lower  

the   propensity   to   arrhythmias   [18].   Third,   ranolazine   has   been   shown  

improve  myocardial  perfusion   indirectly,  by  normalizing   capillary  density  

in  the  ventricles,  as  well  as,  in  patients  with  stable  CAD,  via  a  direct  action  

on   the   microvasculature   leading   to   improved   endothelial   function   [19].  

Thus,   treatment  with   ranolazine  may  be   capable   of   alleviating   angina   in  

HCM   patients,   and,   most   importantly,   to   prevent   disease   progression  

towards   the   end-­‐stage   phase,   by   acting   upon   one   of   its   most   critical  

determinants   -­‐   microvascular   ischemia.   In   principle,   ranolazine   has   an  

ideal  profile   for   clinical  use   in  HCM  patients,   suggesting  a  wide   range  of  

positive  actions  which  may  critically  impact  on  acute  symptoms  as  well  as  

on   the  natural   history   of   the  disease.   Such   a   strong   rationale   calls   for   a  

concerted   action   aimed   at   investigated   the   efficacy   of   ranolazine   in   this  

not-­‐so-­‐uncommon   disease,   which   is   still   orphan   of   appropriate  

pharmacological  treatment.    

In  the  light  of  this  view,  a  pilot  study  has  been  designed  in  order  to  

test   the  effectiveness  of   ranolazine  on  exercise   tolerance  and  symptoms  

in   HCM   patients.   The   present   study   is   intended   to   represent   the   first  

5.  Treatment  Opportunities  

  168  

meaningful   step   in   such   direction,   by   assessing   the   clinical   and  

instrumental  effects  of  a  5-­‐month  treatment  with  ranolazine  in  a  selected  

cohort  of  HCM  patients.    

The  protocol  of  this  randomized,  Double  blind,  Placebo  controlled,  

study   is   here   presented:   a   total   of   120   patients  with   symptomatic  HCM  

(SHCM)  will  be  recruited  in  11  European  referral  centers  and  randomized  

to   receive   ranolazine   or   placebo   for   5   months.   During   the   5   months  

treatment  phase,  the  randomized  patients  will  perform  3  visits,  for  safety  

and  efficacy  assessments  [Figure  5.1-­‐2].  

Figure  5.1-­‐2:  study  design.    

Visit  1  to  visit  2:  up-­‐titration  of  drug  dose.    

Visit  4  to  Visit  6:  treatment  period  

Study  name  and  code:    

RESTYLE-­‐HCM:   RANOLAZINE   IN   PATIENTS   WITH   SYMPTOMATIC  HYPERTROPHIC   CARDIOMYOPATHY:   A   PILOT   STUDY   ASSESSING   THE  EFFECTS   ON   EXERCISE   CAPACITY,   DIASTOLIC   FUNCTION   AND  SYMPTOMATIC  STATUS  

Code:  MEIN/11/RAN-­‐HCM/001  (EUDRA-­‐CT  number:  2011-­‐004507-­‐20)  

5.  Treatment  Opportunities  

  169  

Improvement  in  exercise  capacity,  as  assessed  by  cardiopulmonary  

test  with  the  Peak  Oxygen  Consumption  (V02  peak)  technique,  will  be  the  

primary  endpoint.    

Secondary   objectives   will   be   to   demonstrate   the   efficacy   of  

ranolazine   on   diastolic   function,   symptomatic   status   and   natriuretic  

peptide  biomarker  proBNP  in  patients  affected  by  SHCM.  The  assessment  

of   safety   by   evaluation   of   adverse   events,   laboratory   findings,   the   rest  

standard  12-­‐lead  ECG,  detection  of  24-­‐hour  arrhythmic  burden  by  Holter  

ECG   monitoring   and   physical   examination   will   also   be   considered   a  

secondary  study  objectives.  

The   ongoing   study   is   still   recruiting   patients   in   Europe,   with   the  

leading  center  of  Florence  with  the  highest  number  of  enrolled  individuals.  

Despite   the   idea   of   using   established  drug   therapies   in   an   “old”   disease  

such   HCM,   the   real   purpose   of   the   study   is   to   take   a   step   toward   the  

world  of  evidence-­‐based  medicine.    

The   development   of   new   experimental   drugs,   such   new   sodium  

channel   blocker,   more   specific   than   ranolazine,   is   ongoing.   Interest   of  

pharmaceutical   company   in   this   fascinating   group   of   disease   is   growing  

faster  and  the  possibility  to  intervene  on  the  complex  pathophysiology  of  

the  disease  in  order  to  alter  its  natural  course  is  close  at  hand.  

   

5.  Treatment  Opportunities  

  170  

5.2   The  real  story  of  life-­‐saving  devices:  a  backstage  tour  

 

Hypertrophic  cardiomyopathy   (HCM)   is   the  most  common  genetic  

cardiac   disease,   with   mutations   in   genes   coding   for   myofilament  

contractile   proteins   of   the   cardiac   sarcomere   representing   the   most  

common   genetic   substrate.   In   most   cohort   studies   the   prevalence   of  

genotype  positive  patients  is  as  high  as  65%,  representing  over  two  third  

of   the   total   [20].   To   date,   large   clinical   studies   on   HCM   have   assessed  

outcome   irrespective   of   genetic   background.   Although   clinically  

indistinguishable,   this   genotype-­‐negative   subset   is   likely   to   include   a  

number  of  rare  etiologies,  including  phenocopies,  like  infiltrative  disease,  

whose   natural   history   might   differ   significantly   from   sarcomere-­‐related  

HCM  [20,  21].    

Therefore,   the   large   proportion   of   patients   with   no   detectable  

sarcomere  myofilament  gene  mutations  may  confound  the  natural  history  

of   HCM   with   proven   sarcomere   etiology.   Furthermore,   such   concept   is  

supported   by   the   finding   that   genotype-­‐positive   patients   have   more  

severe  outcome  compared  to  those  who  are  genotype-­‐negative  [20].  Thus,  

data  deriving  from  non-­‐genotyped  populations  may  significantly  confound  

our   perception   of   the   clinical   correlates   and   outcome   associated  with   a  

specific   genetic   background,   and   large   studies   on   genotyped   HCM  

populations  appear  desirable  [22].    

In  order   to  address   this   important   issue,  we  sought   to   investigate  

the   clinical   features   and   outcome   of   a   large   cohort   consisting   solely   of  

patients   with   proven  myofilament-­‐positive   HCM,   followed   prospectively  

at   our   Institution   after   systematic   genetic   screening.   In   addition,   the  

impact  of  the  implantable  cardioverter-­‐defibrillator  (ICD),  both  in  terms  of  

5.  Treatment  Opportunities  

  171  

appropriate   intervention   rates   and   adverse   effects,   were   specifically  

assessed.  

5.2.1    Clinical  picture  of  the  study  cohort  

We   followed   for   6±3   years   250   HCM   patients   (age   46±17   years,  

36%   female)   consecutively   found  positive  at  mutational   screening   in   the  

protein-­‐coding   exons   and   splice   sites   of   8   sarcomere   gene,   including  

myosin   binding   protein   C   (MYBPC3),   beta-­‐myosin   heavy   chain   [MYH7],  

regulatory   and   essential   light   chains   [MYL2   and   MYL3],   troponin-­‐T  

[TNNT2],   troponin-­‐I   [TNNI3],  alpha-­‐tropomyosin   [TPM1],   and  alpha-­‐actin  

[ACTC]).    

The  distribution  of  affected  genes  in  this  population  was  consistent  

with  most  reported  cohorts  internationally,  with  a  large  majority  carrying  

single  mutations  in  either  of  MYBPC3  and  MHY7  gene  [Figure  5.2-­‐1].  Only  

20   patients   (8%)   had   complex   genotypes   characterized   by   two   or  more  

mutations  in  the  same  or  in  different  sarcomere  genes.  

 

 

Figure  5.2-­‐21:  Distribution  of  sarcomere  mutation  in  the  study  cohort  

MYBPC3  (48%),  MHY7  (28%),  TNNT2  (4%),  or  the  other  genes  (12%);  

complex  genotype  (8%).    

5.  Treatment  Opportunities  

  172  

   

Overall,  64  patients  (26%)  received  an  ICD,  for  secondary  (n=10)  or  

primary   prevention   of   SCD   (n=54).   Among   the   latter,   the   ICD   was  

implanted  because  of  the  high-­‐risk  profile  (n=37)  or  progression  to  overt  

LV   systolic   dysfunction   (LVEF<50%;   n=17,   including   10   with   CRT  

capabilities)   [Figure   5.2-­‐2].   Three   clinical   scenarios   led   to   the  

recommendation   of   ICD   implantation   in   individual   our  HCM  patients:   1)  

prior   cardiac   arrest   or   sustained   ventricular   tachycardia   (secondary  

prevention);   2)   primary   prophylaxis   of   SCD   in   patients   with   ≥2   of   the  

established   risk   factors   indicated   by   current   guidelines,   i.e.   malignant  

family  history,  extreme  LV  wall  thickness,  unexplained  syncope,  abnormal  

blood  pressure   response   to  exercise  and   repeated   runs  on  nonsustained  

ventricular  tachycardia  (NSVT)  on  24-­‐hour  ECG  monitoring;    3)  progression  

towards   systolic   dysfunction,   the   so-­‐called   “end-­‐stage”   phase,   per   se  

associated  with   high   SCD   rated,   in  whom   cardiac   resynchronization  was  

routinely  considered  at  the  time  of  ICD  implantation.  

 

 

Figure  5.2-­‐2:  Patients  with  ICD  

64  patients  had  an  ICD  implanted  for  primary  or  secondary  prevention  

(respectively  54  and  10).  

5.  Treatment  Opportunities  

  173  

 

5.2.2.  Outcome    

At   final   evaluation,   the   incidence   of   death   from   cardiovascular  

causes  was  quite  low,  with  an  overall  6%  and  an  annual  incidence  of  1%.  

Indeed,  the  most  frequent  cause  of  death  was  related  to  progressive  heart  

failure,  while  SCD  appeared  to  be  less  frequent.    

The  comparison  of  subgroups  of  patients,  based  on  affected  gene  

was   not   statistically   significant,   although   complex   genotypes   showed  

more   severe   clinical   course   and   adverse   outcome.   However,   while   the  

incidence   of   SCD   and   appropriate   ICD   discharge   were   comparable   to  

previously  reported  unselected  HCM  cohorts,  progression  to  overt  systolic  

dysfunction   was   more   common   in   our   cohort   of   genotype-­‐positive  

patients.  Thus,   the  significant  propensity   towards  LV  systolic  dysfunction  

and  HF,  with  a  prevalence  of  10  and  14%  respectively,   is  consistent  with  

the  hypothesis  of  long-­‐term  energy  depletion  due  to  inefficient  energetic  

handling  by  the  mutated  sarcomere.   Indeed,   this  concept   is  accentuated  

in  patients  with  multiple  genetic  defects,  representing  extreme  paradigms  

of  deranged  sarcomere  function.    

Compared   to   patients   without   ICD,   those   who   received   a   device  

were   younger   at   HCM   diagnosis,   more   symptomatic,   had   greater  

maximum  LV  wall  thickness  and  left  atrial  dimensions,  and,  as  expected,  a  

greater   number   of   risk   factors   for   SCD.   Thus,   patients   with   ICD   had   an  

unfavorable  baseline   risk  profile,  with  a  greater  prevalence  of  end-­‐stage  

disease,   which   is   known   to   be   associated   with   a   particularly   ominous  

outcome.  Despite  that,  the  incidence  of  cardiovascular  mortality  was  only  

slightly   higher,   but   not   statistically   significant,   from   that   observed   in  

patients  without  ICD  [Figure  5.2-­‐3].  Of  note,  two  of  the  deaths  in  the  ICD  

group  were   sudden,  occurring  despite   the  device:  unfortunately,  neither  

5.  Treatment  Opportunities  

  174  

an  autopsy  nor  an  ICD  interrogation  was  performed  in  these  patients,  and  

the  exact  causes  of  death  could  not  be  ascertained.    

 

Figure  5.2-­‐3:  Survival  benefit  attributable  to  the  ICD  

ICD  allowed  favorable  (or  normalize)  survival  rates  in  a  subset  of  HCM  patients.    

 

5.2.2.  ICD:  the  good,  the  bad  and  the  ugly  

Implantable   cardioverter   defibrillators   have   now   been   in   clinical  

practice  for  25  years.  Despite  great  skepticism  and  opposition  in  the  early  

years,   the  weight   of   data   from  multiple   prospective   randomized   clinical  

trials  has  proved  beyond  any  doubt  that  ICD  therapy  is  highly  effective  in  

reducing  sudden  cardiac  death   in  patients  with  a  great  variety  of  cardiac  

pathologies.  Faced  with  ‘evidence-­‐based  medicine’,  HCM  guidelines  have  

become   increasingly   clear,   and   we   all   now   recognize   that   there   are  

patients  for  whom  an  ICD  is  highly  recommended.  Furthermore,  multiple  

trials   of   ICD   treatment   compared   with   drugs   showed   that   in   specific  

clinical  setting,  ICD  therapy  might  be  superior  to  drugs.    

5.  Treatment  Opportunities  

  175  

Overall,   11%   of   patients   experienced   an   appropriate   ICD  

intervention   (shocks   for   VT   of   VF),   with   an   annual   incidence   of   2%.  

Therefore,   ICD   allowed   favorable   survival   rates   in   a   subset   of   high-­‐risk  

HCM  patients  [Figure  5.2-­‐3].    

However,   16   patients   (25%   of   the   ICD   subset,   including   2   with  

appropriate   shocks)   experienced   device-­‐related   complications   such   as  

inappropriate   ICD   interventions   (n=10;   including   4   with   electric   storms  

due   to   lead   fracture),   infections   (n=4)   and   lead  dislocation   (n=6)   [Figure  

5.2-­‐4].   As   a   consequence   of   multiple   inappropriate   shock   and  

psychological   distress,   two   young   patients   required   their   ICD   to   be  

explanted,  5  and  7  years  after  implantation;  both  are  still  alive.  Finally,  31  

patients   required   one   or   more   substitutions   of   the   device   at   end   of  

battery  life.    

 

 

Figure  5.2-­‐4:  ICD-­‐related  complications  

Overall,  16%  of  patients  with  ICD  experienced  device-­‐related  complication,  while  only  11%  had  appropriate  device  intervention.  The  rate  of  

complication  increase  over  time  and  become  significant  after  3  year  from  implantation.    

5.  Treatment  Opportunities  

  176  

Therefore,   the   decision   to   implant   an   ICD   prophylactically   for   SD  

prevention   in   HCM   patients   involve   consideration   of   the   potential  

complications  and   inconvenience   incurred  by  a  permanent  device  versus  

obvious   lifesaving   benefit   [23,   24].   Particularly,   these   considerations  

should  arise  in  pediatrics  patients  when  physicians  are  confronted  by  the  

clinical   paradox   in   which   active   and   healthy-­‐appearing   HCM   patients  

(exposed  to  greatest  SD  risk  by  age)  have  the  highest  device  complication  

rates  over  long  time  periods  [25].  Device-­‐related  complications,  including  

infection,  pocket  hematoma,  pneumothorax,  and  venous  thrombosis,  are  

well   documented   and   occur   most   commonly   in   younger   patients,  

primarily   because   their   activity   level   and   body   growth   place   continual  

strain  on  leads,  considered  the  weakest  link  in  this  system  [25-­‐27].    

Although   controversial,   there   is   evidence   that   defibrillator   shocks  

can   cause   myocardial   damage   [28,   29],   and   the   shocks   have   been  

associated  with   increased  mortality   [30].  Recent   findings   from  one   large  

randomized   trial   showed   that   different   programming   approach   may  

reduce   potentially   dangerous   inappropriate   therapies   and   increased  

survival  among  patients  with  ICDs  [31].  Furthermore,  device  technologies  

move  on  at  a  fast  rate  and  new  alternative  to  the  classic  intravenous  ICD  

are  currently  available,  although  with  limited  clinical  experience  especially  

in  patients  with  cardiomyopathy  [32].    

 

 

 

 

5.  Treatment  Opportunities  

  177  

5.2.3    Conclusions  

In   our   large   cohort   of   HCM   patients   with   proven   sarcomere  

myofilament   disease,   risk   of   sudden   cardiac   death   or   appropriate   ICD  

shock  was   low  even   in   the  presence  of  multiple   risk   factors.  Conversely,  

end-­‐stage   progression   proved   relatively   common,   supporting   the  

hypothesis  of  long-­‐term  myocyte  energy  depletion  related  to  mutations  in  

sarcomeric  genes.    

The   ICD   allowed   favorable   survival   rates   in   a   subset   of   HCM  

patients  at  higher  risk,  at  the  cost  of  considerable  complication  rates,  and  

sudden  cardiac  death  occasionally  occurred  despite  the  device.    

   

5.  Treatment  Opportunities  

  178  

5.4   Changing   the   destiny   of   unfolded   proteins:  

pharmacological   chaperone   as   a   new   therapy   for  

Anderson-­‐Fabry  disease  

 

Fabry   disease   is   a   hereditary,   X-­‐linked   lysosomal   storage   disorder  

caused  by  a  deficiency  of  the  lysosomal  enzyme  α-­‐galactosidase  A,  which  

results  in  the  accumulation  of  the  glycosphingolipid  globotriaosylceramide  

(Gb3),   in   different   cells   and   organs,   especially   in   endothelial   cells   and  

smooth  muscle  cells  of  blood  vessel  [33,  34].    

To  date,  more  than  500  mutations  have  been  reported  for  the  GLA  

gene,   57%   of   which   are   missense   mutations.   Patients   with   missense  

mutations  often  have  some  residual  enzyme  activity,  ranging  from  2%  to  

25%   [33].   Studies   of   the   residual   GLA   activity   of   mutant   forms   of   the  

enzyme  revealed  that  many  had  kinetic  properties  similar  to  the  wildtype  

enzyme,   but  were   significantly   less   stable   [35-­‐37].   These   results   suggest  

that   the   compromised   enzyme   activity   in  many   Fabry   patients   is   due   to  

protein  misfolding  and  the  inability  to  traffic  the  enzyme  to  the  lysosomes,  

where  they  are  needed  to  break  down  substrate  [36].  Misfolded  enzymes  

may  be  stopped  by  the  ER  quality  control  system  and  the  mutant  protein  

is  retained  in  the  ER  and  degraded  prematurely  [Figure  5.4-­‐1].  Since  most  

misfolded   enzymes   are   never   sent   to   the   lysosome,   substrate   may  

accumulate  within  the  lysosome,  damage  the  cell,  and  cause  the  signs  and  

symptoms  of  a   lysosomal  storage  disorder   [36].  Therefore,   the  discovery  

of   small   molecules   that   assist   mutant   enzymes   to   fold   correctly   may  

rescue   them   from   premature   degradation   and   increase   the   amount   of  

active  enzyme  in  the  lysosomes.    

 

5.  Treatment  Opportunities  

  179  

 

 

Figure  5.4-­‐1:  A  simplified  schematics  of  the  molecular  chaperones  rescue  

mechanism,  sorting  proteins  for  folding  or  degradation  

 

ERT   is   presently   considered   the   standard   of   care   for   LSDs   [38].   It  

has  considerable  success  in  the  treatment  or  in  ameliorating  the  quality  of  

life   of   patients   with   several   of   these   diseases.   However,   ERT   has  

significant   limitations   in   terms   of   tissue   distribution   of   therapeutic  

enzymes,  impact  on  patients’  quality  of  life  and  high  costs  [].  ERT  is  based  

on   the   intravenous   infusion   of   recombinant   or   gene-­‐activated   human  

enzyme.  The  enzyme  is  delivered  into  the  blood  in  order  to  reach  specific  

receptor  cell  surfaces,  to  be  taken  up  by  cells  and  then  transported  to  the  

lysosome.   Upon   entering   the   lysosome,   this   enzyme   can   perform   the  

function   of   the   unstable   endogenous   enzyme.   However,   the   pH   in   the  

infusion   bag   and   in   blood   is   higher   than   the   enzyme’s   natural   acidic  

5.  Treatment  Opportunities  

  180  

environment   in   the   lysosome.   In   result,   the   infused   enzyme   rapidly  

denatures   and  may   be  misdirected   to   non-­‐target   tissues   or   delivered   in  

inactive   form   to   the   lysosome.   Exposure   to   these   infused   enzymes  may  

also   mount   an   immune   response   or   neutralizing   antibodies   than   can  

impact  efficacy  or  cause  adverse  effects.  Possible  problems  related  to  the  

unfolding  of  infused  enzyme  include:  rapid  denaturation  and  misfolding  in  

blood,  leading  to  short  circulating  half-­‐life,  immunogenicity,  poor  delivery  

and   uptake   of   active   enzyme   into   key   tissues   of   disease   and   reduced  

activity.    

Pharmacological  chaperone  therapy  (PC)  has  recently  emerged  as  a  

potential   therapeutic   alternative   for   Fabry   disease   and   appears  

advantageous   when   compared   to   ERT,   as   the   chaperones   are   better  

distributed   in   tissues,   including   the   brain,   and   because   therapy  may   be  

administered  orally  [36,  37,  40].  PCT,  however,  also  has  limitations,  since  

only  patients  with  responsive  mutations  will  be  amenable  to  this  therapy  

[40].  Pharmacological   chaperones  are   small  molecules   that   are  designed  

to   selectively  bind   to  a  misfolded  protein   thereby   increase   the  protein’s  

stability,  assisting  their  correct  folding,  maturation,  and  trafficking  to  their  

functional  site,  such  as  the  lysosome  [Figure  5.4-­‐1  and  5.4-­‐2].  Once  in  the  

lysosome,  the  pharmacological  chaperone  disassociates  and  the  enzyme  is  

free   to   break   down   substrate   [].   By   stabilizing   a   misfolded   protein,  

pharmacological   chaperones   may   be   able   to   restore   the   intended  

biological  function  of  the  protein.  Because  each  chaperone  is  designed  to  

bind   to   only   one   particular   lysosomal   enzyme,   a   specific   chaperone   is  

developed   for   each   targeted   lysosomal   disease   [].   PC   are   reversible  

enzyme  inhibitors  and  bind  to  the  active  enzyme  site,  thus  stabilizing,  but  

also  inhibiting,  the  enzyme.  To  be  effective,  PC  must  be  able  to  dissociate  

from  the  enzyme  once  they  have  reached  the  lysosome,  a  process  which  

is  promoted  by  the  acidic  environment  of  lysosomes  and  excess  of  natural  

5.  Treatment  Opportunities  

  181  

substrate,   with   a   higher   affinity   to   the   catalytic   sites   [].   Therefore,   the  

concentration   of   chaperone   in   the   ER   and   in   the   lysosome   is   a   critical  

factor.  If  the  amount  of  chaperone  in  the  ER  is  low,  they  are  ineffective  in  

assisting   the   enzyme   folding,   thus   resulting   in   a   reduced   enzyme  

concentration  (and  activity)  in  the  lysosome.  However,  the  dissociation  of  

the   PC   from   the   active   site   of   the   enzyme   is   impossible   if   the  

concentration  of  chaperone  in  the  lysosome  is  too  high.  In  that  case,  the  

PC   occupies   the   active   site   of   the   enzyme   and   the   enzyme   activity   is  

therefore   reduced.   In   theory,   an   enzyme   activator   or   a   pure   enzyme  

binder  with  chaperone  activity  would  be  a  better  choice  as  a  candidate  for  

drug  development.   If  an  enzyme  activator   is  used  as  a  therapy,  both  the  

chaperone   and   enzyme   stimulatory   actions   of   the   activator   would  

synergistically  increase  enzyme  activity  in  the  lysosomes.    

 

Figure  5.4-­‐2:  Proposed  Mechanism  of  Enzyme  Stabilization  by  Chemical  Chaperones.  

5.  Treatment  Opportunities  

  182  

Panel   A   shows   the   processing   of   normal   a-­‐galactosidase   A.   Newly  synthesized   a-­‐galactosidase   A   is   translocated   into   the   endoplasmic  reticulum,   where  molecular   chaperones   facilitate   its   proper   folding   and  dimerization   by   specialized   processing   enzymes.   The   molecular  chaperones   then   dissociate   from   the   folded,   dimerized   enzyme,   which  moves  to  the  Golgi  apparatus  and  then  to  lysosomes,  where  the  enzyme  is  stable   and   active   in   the   acidic   environment  of   these  organelles.   Panel   B  shows  the  processing  of  mutant  a-­‐galactosidase  A.  Most  mutations  in  the  α-­‐galactosidase   A   gene   encode   α-­‐galactosidase   A   molecules   that   are  misfolded,   misassembled,   or   aggregated   in   the   endoplasmic   reticulum,  where   they   are   degraded,   presumably   by   the   ubiquitin–proteasome  pathway.  However,   certain  missense  mutations   decrease   the   stability   of  the  enzyme,  but   the  conformation  of   the  active  site   is   retained.  Most  of  this   type   of   mutant   enzyme   is   degraded   in   the   endoplasmic   reticulum.  However,   these  mutant   forms  of  α-­‐galactosidase  A  may  be   stabilized  by  chemical  chaperones,  such  as  galactose,  that  bind  to  the  active  site  of  the  enzyme,  promote  folding,  and  stabilize  the  mutant  enzyme.  Some  of  the  enzyme  then  reaches  the  lysosomes,  where  it  retains  low  levels  of  activity.  In   the   lysosomes,   the   accumulated   glycosphingolipid   substrates   displace  the   chemical   chaperones   and   are   hydrolyzed   by   the   enzyme   [Modified  from    44].  

 

Recent  studies  suggest   that  new  solutions  to   improve  the  efficacy  

of   treatments   for   LSDs  may   lie   on   the   combination   of   distinct   therapies  

[45].   The   combination   of   ERT   and   PCT   resulted   in   a   synergistic   effect   in  

Pompe   and   Fabry   disease   models,   and   may   be   helpful   in   patients  

responding   poorly   to   ERT   and   in   tissues   where   corrective   levels   of  

recombinant  enzymes  are  difficult  to  obtain.  These  studies  greatly  expand  

the  use  of  pharmacological  chaperones  and  suggest  a  change  in  the  use  of  

these   drugs.   One   GLA   inhibitor,   1-­‐   deoxygalactonojirimycin   (DGJ,  

marketed   as   AmigalTM   by   Amicus   Therapeutics,   Inc.   [46])   is   currently  

being   studied,   as   a   chaperone   therapeutic   agent   for   Fabry   disease,   in  

phase  2  and  phase  3  clinical  trials:      

5.  Treatment  Opportunities  

  183  

1)  Migalastat  HCl  Monotherapy:  Phase  3  Study  011  (The  FACETS,  or  FAB-­‐

AT1001-­‐011   Study):   Study   of   the   Effects   of   Oral   AT1001   (Migalastat  

Hydrochloride)  in  Patients  with  Fabry  Disease.    Design:  Placebo-­‐controlled,  

double-­‐blind  Phase  3  study  of  migalastat  HCl  

2)   Migalastat   HCl  Monotherapy:   Phase   3   Study   012   (The   ATTRACT,   or  

FAB-­‐AT1001-­‐012  Study):  Study  to  Compare  the  Efficacy  and  Safety  of  Oral  

AT1001  and  Enzyme  Replacement  Therapy  in  Patients  with  Fabry  Disease.  

Design:   Randomized,   open-­‐label,   18-­‐month   Phase   3   study   investigating  

the  safety  and  efficacy  of  migalastat  HCI  compared  to  current  standard-­‐of-­‐

care  ERTs  Fabrazyme®  (agalsidase  beta)  or  Replagal®  (agalsidase  alfa)  for  

Fabry  disease  

3)  Migalastat  HCl  Monotherapy:   Phase   2   Extension   Study   205   (FAB-­‐CL-­‐

205  Study):  Open  Label  Long-­‐term  Safety  Study  of  AT1001  in  Patients  with  

Fabry   Disease   Who   Have   Completed   a   Previous   AT1001   Study.   Design:  

Open-­‐label  Phase  2  extension  study  to  evaluate  the  long-­‐term  safety  and  

tolerability  and   to  explore   the  efficacy  of  migalastat  HCl   in  patients  who  

have  previously   completed  a  Phase  2   clinical   study  of  migalastat  HCl   for  

Fabry  disease.  

4)  Migalastat  HCl  Co-­‐Administered  with  ERT:  Phase  2  Study  013  (AT1001-­‐

013  Study):  Drug-­‐Drug  Interaction  Study  Between  AT1001  and  Agalsidase  

in   Subjects   With   Fabry   Disease.   Design:   Open-­‐label   Phase   2   study   to  

compare   a   single   administration   of   oral   migalastat   HCl   co-­‐administered  

with   infused  ERT  (Fabrazyme  or  Replagal)  versus  ERT  alone.  Each  patient  

receives  their  current  dose  and  regimen  of  ERT  alone  at  one  infusion  and  

oral  migalastat  HCl  (150  mg  or  450  mg)  administered  prior  to  ERT  at  their  

next  infusion  

 

5.  Treatment  Opportunities  

  184  

5.2.1  The  ATTRACT  study  

ATTRACT  is  an  acronyms  for  “AT1001  therapy  compared  to  enzyme  

replacement  therapy  in  Fabry  patients  with  AT1001-­‐responsive  mutations:  

a   global   clinical   trial”.   The   ATTRACT   study   is   a   phase   3   clinical   trial   that  

aims   to   measure   the   effectiveness   and   safety   of   an   investigational  

pharmacological   chaperone  migalastat  HCl   (AT1001),  when   compared   to  

enzyme   replacement   therapy   (ERT)   alone,   for   the   treatment   of   patients  

with  Fabry  disease.    

The   study   enrolled   approximately   50   participants   currently  

receiving   agalsidase   (ERT),  who  have  been   randomized   to   receive   either  

migalastat  HCl  or  agalsidase  (ERT).  Approximately  30  participants  stopped  

their   agalsidase   (ERT)   regimen   and   started   with   migalastat   HCl   and   20  

participants   remained  on   their   prescribed   agalsidase   (ERT)   regimen.   The  

ATTRACT  study  was  fully  enrolled  on  December  4th,  2012.    

Study  participation  will   last   approximately   21  months,   including   a  

screening/baseline  period  (2  months),  an  open-­‐label  treatment  period  (18  

months),   and   a   follow-­‐up   period   (1   month).   After   completing   the   18  

month  treatment  period,  participants  will  have  the  option  to  continue  in  a  

12-­‐month  treatment  extension,  where  all  participants  will  be  treated  with  

Migalastat.    

The   primary   end-­‐point   of   the   study   is   the   assessment   of   renal  

function  by  measuring  the  glomerular  filtration  rate  (GFR)  as  assessed  by  

plasma  clearance  of   iohexol   (“iohexol  GFR”).   Iohexol   is   a  non-­‐ionic   x-­‐ray  

contrast  medium  of   low  osmolality,  extensively  used   in  clinical   radiology  

and   considered   essentially   free   from   side   effects.   Like   other   iodine-­‐

containing  contrast  media,   it   is  eliminated  from  the  body  by  excretion  in  

the   urine.   These   substances   are   therefore   potential   markers   for   renal  

function.  Iohexol   is  a  suitable  marker  for  glomerular  filtration  rate  (GFR):  

5.  Treatment  Opportunities  

  185  

after  intravenous  injection,  it  is  quantitatively  recovered  in  the  urine;  the  

elimination   occurs   by   glomerular   filtration,   with   no   signs   of   tubular  

secretion  or  reabsorbtion.  

The   secondary   end-­‐points   are  more   specifically   focused   on   those  

signs   expression   of   major   organ   involvement,   such   as   24-­‐hour   urine  

protein  for  kidney  disease,  cardiac  morphology  and  function  assessed  by  

echocardiography,   burden   of   pain   and   quality   of   life   reported   by   the  

patients   (standard   questionnaire).   Furthermore,   a   composite   clinical  

outcome   is   also   assessed   by   the   occurrence   of   renal,   cardiac,  

cerebrovascular  events  or  death.    

Our   center   is  actively   involved   in   the  ATTRACT  study.  Two   female  

patients   were   enrolled   on   July   2012   and   both   randomized   to   receive  

Migalastat   and   stop   ERT.   So   far,   no   serious   adverse   events   have   been  

reported  in  our  patients.      

 

5.2.2   Next-­‐Generation  Approach  for  Lysosomal  Storage  Diseases  (LSDs)    

A   substantial   amount   of   novel   and   promising   data   support   the  

potential   of   pharmacological   chaperones   as   therapeutic   agents   in   Fabry  

disease  [36].  Future  efforts  should  be  directed  towards  the  identification  

of  new  chaperones   for  additional  LSDs  and  the   identification  of   ‘second-­‐

generation’   molecules   with   a   good   safety   profile   and   better   enhancing  

properties   and   intracellular   distribution   [42].   An   ideal   compound   should  

have   weaker   inhibitory   effects   and   higher   enhancing   activity.   Novel  

chaperone   molecules   should   not   only   be   advantageous   in   terms   of  

improved  enhancing  profile,  but  may  also  increase  the  rate  of  responsive  

mutations  by  assisting  the  folding  of  enzymes  with  mutations  in  domains  

other  than  the  catalytic  site.  

5.  Treatment  Opportunities  

  186  

Given   the   limitations  of  all   therapeutic  approaches   so   far,   looking  

for  new  strategies  to  optimize  therapies  and  to  target  the  diverse  cellular  

and  phenotypic  aspects  of   these  diseases   is  becoming  an   important  goal  

of   current   research.   In   this   respect,  a   leap   forward  was  made,   thanks   to  

recent   studies   that   indicated   new   solutions   to   improve   the   efficacy   of  

treatments  for  LSDs  and  opened  new  avenues  to  the  use  of  PCT.    Although  

the   concept   of   PCT   is   based   on   the   enhancing   effect   of   chaperones   on  

mutated  misfolded  proteins,  some  evidence  points  to  a  possible  effect  of  

chaperones   on   wild-­‐type   enzymes   [45,   40].   Chaperones   induce  

conformational   stabilization   and   increase   thermal   stability   of   normal  

recombinant  enzymes  used  for  ERT,  which  may  be  prone  to  mistrafficking  

and   degradation   like   the  mutant   enzymes.   Some   studies   suggested   that  

protection  of  recombinant  enzymes  from  degradation  can  be  achieved  by  

chaperones  [47].    

The   CHART™   (Chaperone-­‐Advanced   Replacement   Therapy)  

platform   combines   unique   pharmacological   chaperones   with   enzyme  

replacement   therapies   (ERTs)   for   LSDs.   Amicus   is   leveraging   the   CHART  

platform   to   improve   currently  marketed   ERTs   through   co-­‐administration  

of   a   pharmacological   chaperone   prior   to   ERT   infusion,   and   to   develop  

next-­‐generation   ERTs   that   consist   of   a   proprietary   lysosomal   enzyme  

therapy   co-­‐formulated  with   a   pharmacological   chaperone.   This   platform  

has  demonstrated  proof-­‐of-­‐concept  in  the  clinic  and  in  multiple  preclinical  

studies.  In  the  clinic,  consistent  increases  in  active  enzyme  in  plasma  and  

enzyme  uptake   into   tissue  have  been  observed   following  chaperone-­‐ERT  

co-­‐administration   compared   to   ERT   alone.   In   preclinical   studies,   this  

increased   activity   and   tissue   uptake   has   lead   to   greater   substrate  

reduction   than   ERT   alone.   In   each   CHART   program,   a   unique  

pharmacological   chaperone   is   designed   to   bind   to   a   specific   therapeutic  

(exogenous)   enzyme,   stabilizing   the   enzyme   in   its   properly   folded   and  

5.  Treatment  Opportunities  

  187  

active  form.  This  may  allow  for  enhanced  tissue  uptake,  greater  lysosomal  

activity,   more   reduction   of   substrate,   and   lower   immunogenicity  

compared   to   standard   of   care   ERTs.   This   combination   approach   may  

benefit  patients  with   lysosomal   storage  diseases,   including  patients  with  

inactive   endogenous   proteins   who   are   not   amenable   to   chaperone  

monotherapy.  Therefore,  such  coadministration  may  provide  an  improved  

therapeutic  strategy  that   is  broadly  applicable  to  a  diverse  population  of  

Fabry  patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.  Treatment  Opportunities  

  188  

 

 

 

6.  Conclusive  Remarks  

 

 

   

6.  Conclusive  remarks  

  190  

 

 

 

"An investment in knowledge

pays the best interest."

Benjamin Franklin

 

   

6.  Conclusive  remarks  

  191  

Conclusive  remarks  

New  hopes  

 

After   more   than   fifty   years   of   passionate   clinical   and   molecular  

description   of   cardiomyopathy,   the   enthusiasm   for   these   fascinating  

heart  diseases  has   reached  a   record  high   level.  Now,   the   time   is   ripe   to  

consider  what  we  know  and  reflect  on  what  remains  to  be  discovered  in  

order  to  fill  the  existent  gaps.    

The  interest  of  the  scientific  world  and  pharmaceutical  companies  

is   slowly   emerging,   giving   to   physicians   and   researchers   involved   in   the  

fields   a   remarkable   opportunity   to   translate   basic   insights   into   new  

clinical  models   for   diagnosis,   prevention,   and   therapy.   Novel   initiatives,  

supported  by  private  companies  and   international  medical   societies,  are  

paradigmatic   examples   of   the   increased   awareness   and   subsequent  

interest  in  this  group  of  diseases.    

The  EURObservational  Research  Programme  (EORP)  was   launched  

by  the  European  Society  of  Cardiology  in  2009,  with  the  aim  to  provide  a  

better   understanding   of   medical   practice,   based   on   observational   data  

collected  with  more  robust  methodological  procedures.  Three  years  later,  

a  special  EORP  Registry  on  Cardiomyopathies  was  added  to  the  list,  with  

the   intent   to   collect   previously   unobtainable   data   on   the   epidemiology  

and  outcomes  of  patients  seen  across  referral  centers  in  Europe.  The  ESC  

Cardiomyopathy   Registry   is   a   prospective,   multicenter,   observational  

study  that  describes  the  demographic,  clinical  and  genetic  characteristics  

of  patients  with  cardiomyopathies.  The  study  was  conducted  as  a  pilot  for  

the   first   year   in   a   small   number   of   expert   centers,   with   1149   patients  

enrolled  in  the  first  twelve  months,  and  the  long-­‐term  registry  will  start  in  

2014.  

6.  Conclusive  remarks  

  192  

 

The   call   for   action,   emphasized   also   in   an   official   report   of  

international   working   group   [1],   lighted   up   the   enthusiasm   for  

cardiomyopathies,   making   them   a   group   of   diseases   particularly  

appealing   for   investments   of   private   and   public   companies,   and   the  

number   of   clinical   trials,   as   well   as   the   development   of   new   specific  

therapeutic  strategies,  will  hopefully  increase  in  the  immediate  and  near  

future.    

 

In   conclusion,   cardiomyopathies   are   not   uncommon,   but   remain  

orphan   diseases   with   regard   to   treatment.   In   the   era   of   translational  

research,  physicians  and   researchers  have  been  very  good  at  asking   the  

right  questions,  but  they  need  to  direct  more  effort  into  finding  the  best  

clinical   answers   for   these   patients.   The   changing   epidemiology   of   these  

diseases   now   allows   what   was   previously   impossible:   it   is   high   time   to  

move  cardiomyopathies  into  the  era  of  evidence-­‐based  management.  

In   a   broader   perspective,   cardiomyopathies   should   be   seen   as  

paradigms  providing  invaluable  insights  on  disease  mechanisms  that  may  

be   of   general   relevance   to   patients   with   more   prevalent   cardiac  

conditions.  What  has  long  been  considered  impossible  to  achieve  is  now  

closer  at  hand:  the  time  is  now  ripe  to  promote  robust  clinical  research  in  

these   complex   conditions,   in   order   to   advance   and   standardize  

management  of  patients.    

 

 

7.  References  

 

     

    7.  References  

 194  

Chapter  1:  Introduction    

1) Brigden   W.   Uncommon   myocardial   diseases:   the   non-­‐coronary  cardiomyopathies.  Lancet.  1957  Dec.  21;  273:7008,  1243-­‐1249.  

2) Goodwin   JF,   Gordon  H,   Hollman  A   and   Bishop  MB.  Clinical   aspects   of  cardiomyopathy.  Br  Med  J.  1961  Jan.14;  1:5219,  69-­‐79.  

3) [No   authors   listed].   Report   of   the   WHO/ISFC   Task   Force   on   the  definition  and  classification  of  cardiomyopathies.  Br  Heart   J.  1980;  44,  672-­‐673.  

4) Watkins  H,  Ashrafian  H  and  Redwood  C.  Inherited  cardiomyopathies.  N  Engl  J  Med.  2011  Apr.  28;  364:17,  1643-­‐1656.  

5) Bos   JM,   Towbin   JA   and   Ackerman   MJ.   Diagnostic,   prognostic,   and  therapeutic   implications   of   genetic   testing   for   hypertrophic  cardiomyopathy.  J  Am  Coll  Cardiol.  2009  July  14;  54:3,  201-­‐211.  

6) Richardson  P,  McKenna  W,  Bristow  M,  Maisch  B,  Mautner  B,  O'Connell  J,  Olsen  E,  Thiene  G  and  Goodwin   J.  Report  of   the  1995  World  Health  Organization/International   Society   and   Federation   of   Cardiology   Task  Force   on   the   definition   and   classification   of   cardiomyopathies.  Circulation.  1996;  93:841-­‐842.  

7) Maron   BJ,   Towbin   JA,   Thiene   G,   Antzelevitch   C,   Corrado   D,   Arnett   D,  Moss   AJ,   Seidman   C   and   Young   JB.   Contemporary   definitions   and  classification  of   the   cardiomyopathies.   An  American  Heart  Association  scientific   statement   from   the   Council   on   Clinical   Cardiology,   Heart  Failure  and  Transplantation  Committee;  Quality  of  Care  and  Outcomes  Research   and   Functional   Genomics   and   Translational   Biology  Interdisciplinary   Working   Groups;   and   Council   on   Epidemiology   and  Prevention.  Circulation.  2006;  113:1807-­‐1816.  

8) Elliott   P,   Anderson   B,   Arbustini   E,   Bilinska   Z,   Cecchi   F,   Charron   P,  Dubourg  O,  Kuhl  U,  Maisch  B,  McKenna  WJ,  Monserrat  L,  Pankuweit  S,  Rapezzi   C,   Seferovic   P,   Tavazzi   L   and   Keren   A.   Classification   of  cardiomyopathies:   a   position   statement   from   the   European   working  group  on  myocardial  and  pericardial  diseases.  Eur  Heart  J.  2008;  29:270-­‐276.  

9) Rapezzi  C,  Quarta  CC,  Riva  L,  Longhi  S,  Gallelli  I,  Lorenzini  M,  Ciliberti  P,  Biagini   E,   Salvi   F   and   Branzi   A.   Transthyretin-­‐related   amyloidoses   and  the  heart:  a  clinical  overview.  Nat  Rev  Cardiol.  2010  July;  7:7,  398-­‐408.  

10) Gersh  BJ,  Maron  BJ,  Bonow  RO,  Dearani  A,  Fifer  MA,  Link  MS,  Naidu  SS,  Nishimura  RA,  Ommen  SR,  Rakowski  H,  Seidman  CE,  Towbin  JA,  Udelson  JE  and  Yancy  CW.  ACCF/AHA  guideline  for  the  diagnosis  and  treatment  of   hypertrophic   cardiomyopathy:   executive   summary:   a   report   of   the  American  College  of  Cardiology  Foundation/American  Heart  Association  Task  Force  on  Practice  Guidelines.  Circulation.  2011;  124:2761-­‐2796.  

    7.  References  

  195  

11) Maron   MS,   Olivotto   I   and   Zenovich   AG   et   al.   Hypertrophic  cardiomyopathy   is   predominantly   a   disease  of   left   ventricular   outflow  tract  obstruction.  Circulation.  2006;  114:21,  2232-­‐2239.  

12) Maron   BJ.   Contemporary   insights   and   strategies   for   risk   stratification  and   prevention   of   sudden   death   in   hypertrophic   cardiomyopathy.  Circulation.  2010;  121:445-­‐456.  

13) Girolami  F,  Ho  CY,  Semsarian  C,  Baldi  M,  Will  ML,  Baldini  K,  Torricelli  F,  Yeates   L,   Cecchi   F,   Ackerman  MJ   and   Olivotto   I.   Clinical   features   and  outcome   of   hypertrophic   cardiomyopathy   associated   with   triple  sarcomere  protein  gene  mutations.  J  Am  Coll  Cardiol.  2010  Apr  6;  55:14,  1444-­‐1453.  

14) Schapira   AH.   Mitochondrial   diseases.   Lancet.   2012   May   12;  379(9828):1825-­‐1834.  

15) Keren   A,   Syrris   P   and  McKenna  W.  Hypertrophic   cardiomyopathy:   the  genetic   determinants   of   clinical   disease   expression.   Nat   Clin   Pract  Cardiovasc  Med.  Mar.  2008;  5:3,  158-­‐168.  

16) Jacoby  D  and  McKenna  WJ.  Genetics  of   inherited  cardiomyopathy.   Eur  Heart  J.  2012  Feb.;  33:3,  296-­‐304.  

17) Parks  SB,  Kushner  JD,  Nauman  D,  Burgess  D,  Ludwigsen  S,  Peterson  A,  Li  D,  Jakobs  P,  Litt  M,  Porter  CB,  Rahko  PS  and  Hershberger  RE.  Lamin  A/C  mutation  analysis   in  a  cohort  of  324  unrelated  patients  with   idiopathic  or  familial  dilated  cardiomyopathy.  Am  Heart  J.  2008;  156:161-­‐169.    

18) Van  Berlo  JH,  de  Voogt  WG  and  van  der  Kooi  AJ  et  al.  Meta-­‐analysis  of  clinical   characteristics   of   299   carriers   of   LMNA   gene   mutations:   do  lamin  A/C  mutations  portend  a  high  risk  of  sudden  death?.  J  Mol  Med.  2005;  83:79-­‐83.  

19) Meune  C,  Van  Berlo   JH,  Anselme  F,  Bonne  G,  Pinto  YM  and  Duboc  D.  Primary   prevention   of   sudden   death   in   patients   with   lamin   A/C   gene  mutations.  N  Engl  J  Med.  2006;  354:209-­‐210.  

20) Merlo  M,  Pyxaras  SA,  Pinamonti  B,  Barbati  G,  Di  Lenarda  A  and  Sinagra  G.   Prevalence   and   prognostic   significance   of   left   ventricular   reverse  remodeling   in   dilated   cardiomyopathy   receiving   tailored   medical  treatment.  J  Am  Coll  Cardiol.  2011;  57:13,  1468-­‐1476.  

21) Mocumbi   AO,   Yacoub   S   and   Yacoub   MH.   Neglected   tropical  cardiomyopathies:   II.   Endomyocardial   fibrosis:   myocardial   disease.  Heart.  2008  Mar.;  94:3,  384-­‐390.  

22) Kubo  T,  Gimeno  JR  and  Bahl  A  et  al.  Prevalence,  clinical  significance,  and  genetic   basis   of   hypertrophic   cardiomyopathy   with   restrictive  phenotype.   Journal   of   the  American  College  of   Cardiology.   June   2007;  49:25,  2419-­‐2426.  

23) Zangwill   SD,   Naftel   D,   L'Ecuyer   T,   Rosenthal   D,   Robinson   B,   Kirklin   JK,  Stendahl   G   and   Dipchand   AI.   Pediatric   Heart   Transplant   Study  Investigators.   Outcomes   of   children   with   restrictive   cardiomyopathy  

    7.  References  

 196  

listed   for   heart   transplant:   a   multi-­‐institutional   study.   J   Heart   Lung  Transplant.  2009  Dec;  28:12,  1335-­‐1340.  

24) Marcus   FI,   McKenna   WJ,   Sherrill   D,   Basso   C,   Bauce   B,   Bluemke   DA,  Calkins  H,  Corrado  D,  Cox  MG,  Daubert  JP,  Fontaine  G,  Gear  K,  Hauer  R,  Nava  A,  Picard  MH,  Protonotarios  N,  Saffitz  JE,  Sanborn  DM,  Steinberg  JS,   Tandri   H,   Thiene   G,   Towbin   JA,   Tsatsopoulou   A,   Wichter   T   and  Zareba   W.   Diagnosis   of   arrhythmogenic   right   ventricular  cardiomyopathy/dysplasia:   proposed   modification   of   the   Task   Force  Criteria.  Eur  Heart  J.  2010;  31:806-­‐814.  

25) Basso   C,   Bauce   B,   Corrado   D   and   Thiene   G.   Pathophysiology   of  arrhythmogenic   cardiomyopathy.   Nat   Rev   Cardiol.   2011   Nov   29;   9:4,  223-­‐233  

26) Ackerman   MJ,   Priori   SG   and   Willems   S   et   al.   HRS/EHRA   Expert  Consensus   Statement   on   the   State   of   Genetic   Testing   for  Channelopathies   and   Cardiomyopathies.   Europace.   2011   Aug;   13:8,  1077-­‐1109.  

27) Herman  DS,  Lam  L,  Taylor  MR,  Wang  L,  Teekakirikul  P,  Christodoulou  D,  Conner  L,  DePalma  SR,  McDonough  B,  Sparks  E,  Teodorescu  DL,  Cirino  AL,  Banner  NR,  Pennell  DJ,  Graw  S,  Merlo  M,  Di  Lenarda  A,  Sinagra  G,  Bos   JM,   Ackerman  MJ,  Mitchell   RN,  Murry   CE,   Lakdawala   NK,   Ho   CY,  Barton   PJ,   Cook   SA,   Mestroni   L,   Seidman   JG   and   Seidman   CE.  Truncations  of  titin  causing  dilated  cardiomyopathy.  N  Engl  J  Med.  2012  Feb.  16;  366:7,  619-­‐628.  

28) Ashrafian   H,   McKenna   WJ,   Watkins   H.   Disease   pathways   and   novel  therapeutic  targets  in  hypertrophic  cardiomyopathy.  Circ  Res.  2011  Jun  24;  109(1):86-­‐96.  

29) Ho   CY,   Lever   HM,   DeSanctis   R,   Farver   CF,   Seidman   JG,   Seidman   CE.  Homozygous   mutation   in   cardiac   troponin   T:   implications   for  hypertrophic   cardiomyopathy.   Circulation.   2000  Oct   17;   102(16):1950-­‐1955.  

30) Ingles   J,   Doolan   A,   Chiu   C,   Seidman   J,   Seidman   C,   Semsarian   C.  Compound   and   double   mutations   in   patients   with   hypertrophic  cardiomyopathy:  implications  for  genetic  testing  and  counselling.  J  Med  Genet.  2005  Oct;  42(10):e59.  

31) Girolami  F,  Ho  CY,  Semsarian  C,  Baldi  M,  Will  ML,  Baldini  K,  Torricelli  F,  Yeates   L,   Cecchi   F,   Ackerman   MJ,   Olivotto   I.   Clinical   features   and  outcome   of   hypertrophic   cardiomyopathy   associated   with   triple  sarcomere   protein   gene   mutations.   J   Am   Coll   Cardiol.   2010   Apr   6;  55(14):1444-­‐1453.  

32) Marston   S,   Copeland   O,   Jacques   A,   Livesey   K,   Tsang   V,  McKenna  WJ,  Jalilzadeh  S,  Carballo   S,  Redwood  C,  Watkins  H.  Evidence   from  human  myectomy   samples   that   MYBPC3   mutations   cause   hypertrophic  cardiomyopathy   through   haploinsufficiency.   Circ   Res.   2009   Jul   31;  105(3):219-­‐222.  

    7.  References  

  197  

33) Vignier   N,   Schlossarek   S,   Fraysse   B,   Mearini   G,   Krämer   E,   Pointu   H,  Mougenot  N,  Guiard  J,  Reimer  R,  Hohenberg  H,  Schwartz  K,  Vernet  M,  Eschenhagen   T,   Carrier   L.   Nonsense-­‐mediated   mRNA   decay   and  ubiquitin-­‐proteasome  system  regulate  cardiac  myosin-­‐binding  protein  C  mutant   levels   in   cardiomyopathic   mice.   Circ   Res.   2009   Jul   31;  105(3):239-­‐248.  

34) Schlossarek   S,   Frey   N,   Carrier   L.   Ubiquitin-­‐proteasome   system   and  hereditary  cardiomyopathies.  J  Mol  Cell  Cardiol.  2013  Dec  28  

35) Carè  A,   Catalucci  D,   Felicetti   F,   Bonci  D,  Addario  A,  Gallo   P,   Bang  ML,  Segnalini  P,  Gu  Y,  Dalton  ND,  Elia  L,  Latronico  MV,  Høydal  M,  Autore  C,  Russo  MA,  Dorn  GW  2nd,  Ellingsen  O,  Ruiz-­‐Lozano  P,  Peterson  KL,  Croce  CM,   Peschle   C,   Condorelli   G.   MicroRNA-­‐133   controls   cardiac  hypertrophy.  Nat  Med.  2007  May;  13(5):613-­‐618.  Epub  2007  Apr  29.  

36) Pogwizd,   S.M.;   Schlotthauer,   K.;   Li,   L.;   Yuan,   W.;   Bers,   D.M.  Arrhythmogenesis  and  contractile  dysfunction  in  heart  failure:  Roles  of  sodium-­‐calcium   exchange,   inward   rectifier   potassium   current,   and  residual  beta-­‐adrenergic   responsiveness.  Circulation   research  88  2001,  1159-­‐1167    

37) Hasenfuss,   G.;   Schillinger,   W.;   Lehnart,   S.E.;   Preuss,   M.;   Pieske,   B.;  Maier,   L.S.;   Prestle,   J.;  Minami,   K.;   Just,  H.  Relationship   between  Na+-­‐Ca2+-­‐exchanger   protein   levels   and   diastolic   function   of   failing   human  myocardium.  Circulation  99  1999,  641-­‐648  

38) Shannon,   T.R.;   Pogwizd,   S.M.;   Bers,   D.M.   Elevated   sarcoplasmic  reticulum  Ca2+  leak  in  intact  ventricular  myocytes  from  rabbits  in  heart  failure.  Circulation  research  93  2003,  592-­‐594  

39) Maier,   L.S.;   Zhang,  T.;  Chen,   L.;  DeSantiago,   J.;  Brown,   J.H.;  Bers,  D.M.  Transgenic   CaMKIIdeltaC   overexpression   uniquely   alters   cardiac  myocyte   Ca2+   handling:   reduced   SR   Ca2+   load   and   activated   SR   Ca2+  release.  Circulation  research  92  2003,  904-­‐911    

40) Belus  A,  Piroddi  N,  Scellini  B,  Tesi  C,  D'Amati  G,  Girolami  F,  Yacoub  M,  Cecchi   F,   Olivotto   I,   Poggesi   C.   The   familial   hypertrophic  cardiomyopathy-­‐associated   myosin   mutation   R403Q   accelerates  tension   generation   and   relaxation   of   human   cardiac   myofibrils.   J  Physiol.  2008  Aug  1;  586(Pt  15):3639-­‐3644  

41) Ferrantini  C,  Belus  A,  Piroddi  N,  Scellini  B,  Tesi  C,  Poggesi  C.  Mechanical  and   energetic   consequences   of   HCM-­‐causing   mutations.   J   Cardiovasc  Transl  Res.  2009  Dec;  2(4):441-­‐451  

42) Ashrafian   H,   Redwood   C,   Blair   E,   Watkins   H.   Hypertrophic  cardiomyopathy:a   paradigm   for   myocardial   energy   depletion.   Trends  Genet.  2003  May;  19(5):263-­‐268.  

43) Pyle  WG,  Solaro  RJ.  At  the  crossroads  of  myocardial  signaling:  the  role  of  Z-­‐discs   in   intracellular  signaling  and  cardiac   function.  Circ  Res.  2004  Feb  20;  94(3):296-­‐305.  

    7.  References  

 198  

44) Linke  WA.  Sense  and  stretchability:  the  role  of  titin  and  titin-­‐associated  proteins   in   myocardial   stress-­‐sensing   and   mechanical   dysfunction.  Cardiovasc  Res.  2008  Mar  1;  77(4):637-­‐648.  

45) Arimura  T,  Bos  JM,  Sato  A,  Kubo  T,  Okamoto  H,  Nishi  H,  Harada  H,  Koga  Y,   Moulik   M,   Doi   YL,   Towbin   JA,   Ackerman   MJ,   Kimura   A.   Cardiac  ankyrin   repeat   protein   gene   (ANKRD1)   mutations   in   hypertrophic  cardiomyopathy.   J   Am   Coll   Cardiol.   2009   Jul   21;   54(4):334-­‐342.   doi:  10.1016/j.jacc.2008.12.082.  

46) Pieske,   B.;   Houser,   S.R.   [Na+]i   handling   in   the   failing   human   heart.  Cardiovascular  research  57  2003;  874-­‐886    

47) Pogwizd,  S.M.;  Sipido,  K.R.;  Verdonck,  F.;  Bers,  D.M.   Intracellular  Na   in  animal   models   of   hypertrophy   and   heart   failure:   contractile   function  and  arrhythmogenesis.  Cardiovascular  research  57  2003;  887-­‐896  

48) Maltsev,   V.A.;   Sabbah,   H.N.;   Higgins,   R.S.;   Silverman,   N.;   Lesch,   M.;  Undrovinas,  A.I.  Novel,  ultraslow  inactivating  sodium  current   in  human  ventricular  cardiomyocytes.  Circulation  98  1998;  2545-­‐2552    

49) Bennett,   P.B.;   Yazawa,   K.;   Makita,   N.;   George,   A.L.,   Jr.   Molecular  mechanism  for  an  inherited  cardiac  arrhythmia.  Nature  376  1995;  683-­‐685  

50) Mohler,   P.J.;   Schott,   J.J.;   Gramolini,   A.O.;   Dilly,   K.W.;   Guatimosim,   S.;  duBell,  W.H.;  Song,  L.S.;  Haurogne,  K.;  Kyndt,  F.;  Ali,  M.E.;  Rogers,  T.B.;  Lederer,  W.J.;  Escande,  D.;  Le  Marec,  H.;  Bennett,  V.  Ankyrin-­‐B  mutation  causes   type   4   long-­‐QT   cardiac   arrhythmia   and   sudden   cardiac   death.  Nature  421  2003;  634-­‐639  

51) Vatta,  M.;  Ackerman,  M.J.;  Ye,  B.;  Makielski,  J.C.;  Ughanze,  E.E.;  Taylor,  E.W.;  Tester,  D.J.;  Balijepalli,  R.C.;  Foell,   J.D.;  Li,  Z.;  Kamp,  T.J.;  Towbin,  J.A.  Mutant   caveolin-­‐3   induces   persistent   late   sodium   current   and   is  associated  with  long-­‐QT  syndrome.  Circulation  114  2006;  2104-­‐2112  

52) Maltsev,   V.A.;   Sabbah,   H.N.;   Higgins,   R.S.;   Silverman,   N.;   Lesch,   M.;  Undrovinas,  A.I.  Novel,  ultraslow  inactivating  sodium  current   in  human  ventricular  cardiomyocytes.  Circulation  98  1998;  2545-­‐2552    

53) Maltsev,   V.A.;   Silverman,   N.;   Sabbah,   H.N.;   Undrovinas,   A.I.   Chronic  heart  failure  slows  late  sodium  current  in  human  and  canine  ventricular  myocytes:   implications   for   repolarization   variability.   European   journal  of  heart  failure  9  2007;  219-­‐227    

54) Huang,  B.;  El-­‐Sherif,  T.;  Gidh-­‐Jain,  M.;  Qin,  D.;  El-­‐Sherif,  N.  Alterations  of  sodium   channel   kinetics   and   gene   expression   in   the   postinfarction  remodeled  myocardium.  Journal  of  cardiovascular  electrophysiology  12  2001;  218-­‐225  

55) Undrovinas,   A.I.;   Maltsev,   V.A.;   Sabbah,   H.N.   Repolarization  abnormalities  in  cardiomyocytes  of  dogs  with  chronic  heart  failure:  role  of  sustained  inward  current.  Cellular  and  molecular  life  sciences:  CMLS  55  1999;  494-­‐505  

    7.  References  

  199  

56) Belardinelli,   L.;   Shryock,   J.C.;   Fraser,   H.   Inhibition   of   the   late   sodium  current   as   a   potential   cardioprotective   principle:   effects   of   the   late  sodium  current  inhibitor  ranolazine.  Heart  92  Suppl  4  2006,  iv6-­‐iv14    

57) Antzelevitch,   C.;   Belardinelli,   L.   The   role   of   sodium   channel   current   in  modulating   transmural   dispersion   of   repolarization   and  arrhythmogenesis.  Journal  of  cardiovascular  electrophysiology  17  Suppl  1  2006;  S79-­‐S85  

58) Maron  MS,  Olivotto  I,  Maron  BJ,  Prasad  SK,  Cecchi  F,  Udelson  JE,  Camici  PG.  The  case  for  myocardial  ischemia  in  hypertrophic  cardiomyopathy.  J  Am  Coll  Cardiol.  2009  Aug  25;  54(9):866-­‐875.  

59) Neglia   D,   L'Abbate   A.   Coronary   microvascular   dysfunction   and  idiopathic  dilated  cardiomyopathy.  Pharmacol  Rep.  2005;  57  Suppl:151-­‐155  

60) Paul  M,  Rahbar  K,  Gerss  J,  Kies  P,  Schober  O,  Schäfers  K,  Breithardt  G,  Schulze-­‐Bahr   E,   Wichter   T,   Schäfers   M.  Microvascular   dysfunction   in  nonfailing  arrhythmogenic  right  ventricular  cardiomyopathy.  Eur  J  Nucl  Med  Mol  Imaging.  2012  Mar;  39(3):416-­‐420.  

61) Tomberli  B,  Cecchi   F,   Sciagrà  R,  Berti  V,   Lisi   F,   Torricelli   F,  Morrone  A,  Castelli  G,  Yacoub  MH,  Olivotto  I.  Coronary  microvascular  dysfunction  is  an  early  feature  of  cardiac  involvement  in  patients  with  Anderson-­‐Fabry  disease.   Eur   J   Heart   Fail.   2013   Dec;   15(12):1363-­‐1373.   doi:  10.1093/eurjhf/hft104.  Epub  2013  Jun  30.  

62) Cecchi   F,   Olivotto   I,   Gistri   R,   Lorenzoni   R,   Chiriatti   G,   Camici   PG.  Coronary   microvascular   dysfunction   and   prognosis   in   hypertrophic  cardiomyopathy.  N  Engl  J  Med.  2003  Sep  11;  349(11):1027-­‐1035.  

63) Olivotto  I,  Cecchi  F,  Camici  PG.  Coronary  microvascular  dysfunction  and  ischemia   in   hypertrophic   cardiomyopathy.   Mechanisms   and   clinical  consequences.  Ital  Heart  J.  2004  Aug;  5(8):572-­‐80.  

64) Olivotto  I,  Girolami  F,  Sciagrà  R,  Ackerman  MJ,  Sotgia  B,  Bos  JM,  Nistri  S,  Sgalambro  A,  Grifoni  C,  Torricelli  F,  Camici  PG,  Cecchi  F.  Microvascular  function   is   selectively   impaired   in   patients   with   hypertrophic  cardiomyopathy  and  sarcomere  myofilament  gene  mutations.  J  Am  Coll  Cardiol.  2011;  58:839–848.  

65) Olivotto   I,   Girolami   F,   Nistri   S,   Rossi   A,   Rega   L,   Garbini   F,   Grifoni   C,  Cecchi  F,  Yacoub  MH.  The  many  faces  of  hypertrophic  cardiomyopathy:  from  developmental  biology  to  clinical  practice.  J  Cardiovasc  Transl  Res.  2009;  2:349–367.  

66) Lombardi,   R.,   Betocchi,   S.,   Losi,   M.   A.,   Tocchetti,   C.   G.,   Aversa,   M.,  Miranda,  M.,  et  al.  (2003).  Myocardial  collagen  turnover  in  hypertrophic  cardiomyopathy.  Circulation,  108,  1455–1460.  

67) Ho   CY,   López   B,   Coelho-­‐Filho   OR,   Lakdawala   NK,   Cirino   AL,   Jarolim   P,  Kwong   R,   González   A,   Colan   SD,   Seidman   JG,   Díez   J,   Seidman   CE.  Myocardial   fibrosis   as   an   early   manifestation   of   hypertrophic  cardiomyopathy.  N  Engl  J  Med.  2010  Aug  5;  363(6):552-­‐563.  

    7.  References  

 200  

68) Geisterfer-­‐Lowrance  AA,  Christe  M,  Conner  DA,  et  al.  A  mouse  model  of  familial  hypertrophic  cardiomyopathy.  Science  1996;  272:731-­‐734.  

69) Adabag  AS,  Maron  BJ,  Appelbaum  E,  Harrigan  CJ,  Buros  JL,  Gibson  CM,  Lesser   JR,  Hanna  CA,  Udelson  JE,  Manning  WJ,  Maron  MS.  Occurrence  and   frequency   of   arrhythmias   in   hypertrophic   cardiomyopathy   in  relation   to   delayed   enhancement   on   cardiovascular   magnetic  resonance.  J  Am  Coll  Cardiol.  2008  Apr  8;  51(14):1369-­‐1374.  

70) Maron  MS,   Appelbaum   E,   Harrigan   CJ,   Buros   J,   Gibson   CM,   Hanna   C,  Lesser   JR,   Udelson   JE,   Manning   WJ,   Maron   BJ.   Clinical   profile   and  significance   of   delayed   enhancement   in   hypertrophic   cardiomyopathy.  Circ  Heart  Fail.  2008  Sep;  1(3):184-­‐191  

71) Maron  MS.  The   current  and  emerging   role  of   cardiovascular  magnetic  resonance  imaging  in  hypertrophic  cardiomyopathy.  J  Cardiovasc  Transl  Res.  2009  Dec;  2(4):415-­‐425.  

72) Moon   JC,  Mogensen   J,   Elliott   PM,   Smith  GC,   Elkington  AG,   Prasad   SK,  Pennell   DJ,   McKenna   WJ.   Myocardial   late   gadolinium   enhancement  cardiovascular   magnetic   resonance   in   hypertrophic   cardiomyopathy  caused  by  mutations  in  troponin  I.  Heart.  2005  Aug;  91(8):1036-­‐1040.  

73) Moon   JC,   Prasad   SK.   Cardiovascular   magnetic   resonance   and   the  evaluation  of  heart  failure.  Curr  Cardiol  Rep.  2005  Jan;  7(1):39-­‐44.  

74) Olivotto   I,  Maron  MS,  Autore  C,  Lesser   JR,  Rega  L,  Casolo  G,  De  Santis  M,   Quarta   G,   Nistri   S,   Cecchi   F,   Salton   CJ,   Udelson   JE,   Manning   WJ,  Maron   BJ.   Assessment   and   significance   of   left   ventricular   mass   by  cardiovascular   magnetic   resonance   in   hypertrophic   cardiomyopathy.   J  Am  Coll  Cardiol.  2008  Aug  12;  52(7):559-­‐566.  

75) Schulz-­‐Menger  J,  Abdel-­‐Aty  H,  Rudolph  A,  Elgeti  T,  Messroghli  D,  Utz  W,  Boyé  P,  Bohl  S,  Busjahn  A,  Hamm  B,  Dietz  R.  Gender-­‐specific  differences  in   left   ventricular   remodelling   and   fibrosis   in   hypertrophic  cardiomyopathy:  insights  from  cardiovascular  magnetic  resonance.  Eur  J  Heart  Fail.  2008  Sep;  10(9):850-­‐854.  

76) Choudhury  L,  Mahrholdt  H,  Wagner  A,  Choi  KM,  Elliott  MD,  Klocke  FJ,  Bonow  RO,   Judd  RM,   Kim  RJ.  Myocardial   scarring   in   asymptomatic   or  mildly   symptomatic   patients   with   hypertrophic   cardiomyopathy.   J   Am  Coll  Cardiol.  2002  Dec  18;  40(12):2156-­‐2164.  

77) Basso  C,  Thiene  G,  Corrado  D,  Buja  G,  Melacini  P,  Nava  A.  Hypertrophic  cardiomyopathy  and  sudden  death  in  the  young:  pathologic  evidence  of  myocardial  ischemia.  Hum  Pathol.  2000  Aug;  31(8):988-­‐998.  

78) Yacoub   MH,   Olivotto   I,   Cecchi   F.   'End-­‐stage'   hypertrophic  cardiomyopathy:  from  mystery  to  model.  Nat  Clin  Pract  Cardiovasc  Med.  2007  May;  4(5):232-­‐233  

79) Krusche  CA,  Holthöfer  B,  Hofe  V,  van  de  Sandt  AM,  Eshkind  L,  Bockamp  E,  Merx  MW,  Kant  S,  Windoffer  R,  Leube  RE.  Desmoglein  2  mutant  mice  develop   cardiac   fibrosis   and   dilation.   Basic   Res   Cardiol.   2011   Jun;  106(4):617-­‐633.  doi:  10.1007/s00395-­‐011-­‐0175-­‐y.  Epub  2011  Apr  1.    

    7.  References  

  201  

80) Sen-­‐Chowdhry,   S.,   P.   Syrris,   S.K.   Prasad,   S.E.   Hughes,   R.  Merrifield,   D.  Ward,  D.J.  Pennell,  W.J.  McKenna.  2008.  Left-­‐dominant  arrhythmogenic  cardiomyopathy:  an  under-­‐recognized  clinical  entity.  J.  Am.  Coll.  Cardiol.  52:2175–2187  

81) Basso,   C.,   D.   Corrado,   F.I.   Marcus,   A.   Nava,   G.   Thiene.   2009.  Arrhythmogenic   right   ventricular   cardiomyopathy.   Lancet.   373:1289–1300.  

82) de  Leeuw  N,  Ruiter  DJ,  Balk  AH,  de  Jonge  N,  Melchers  WJ,  Galama  JM.  Histopathologic   findings   in   explanted   heart   tissue   from   patients   with  end-­‐stage  idiopathic  dilated  cardiomyopathy.  Transpl  Int.  2001;  14:299–306.  

83) Roberts   WC,   Siegel   RJ,   McManus   BM.   Idiopathic   dilated  cardiomyopathy:  analysis  of  152  necropsy  patients.  Am  J  Cardiol.  1987;  60:1340–1355.  

84) Unverferth   DV,   Baker   PB,   Swift   SE,   Chaffee   R,   Fetters   JK,   Uretsky   BF,  Thompson   ME,   Leier   CV.   Extent   of   myocardial   fibrosis   and   cellular  hypertrophy  in  dilated  cardiomyopathy.  Am  J  Cardiol.  1986;  57:816–820  

85) Masci   PG,   Schuurman   R,   Andrea   B,   Ripoli   A,   Coceani  M,   Chiappino   S,  Todiere   G,   Srebot   V,   Passino   C,   Aquaro   GD,   Emdin   M,   Lombardi   M.  Myocardial   fibrosis  as  a  key  determinant  of   left  ventricular  remodeling  in   idiopathic   dilated   cardiomyopathy:   a   contrast-­‐enhanced  cardiovascular   magnetic   study.   Circ   Cardiovasc   Imaging.   2013;   6:790-­‐799.  

86) Klues   HG,   Proschan  MA,   Dollar   AL,   Spirito   P,   Roberts   WC,   Maron   BJ.  Echocardiographic   assessment   of   mitral   valve   size   in   obstructive  hypertrophic   cardiomyopathy.   Anatomic   validation   from   mitral   valve  specimen.  Circulation.  1993  Aug;  88(2):548-­‐555.    

87) Lie-­‐Venema   H,   van   den   Akker   NM,   Bax   NA,   Winter   EM,   Maas   S,  Kekarainen  T,  Hoeben  RC,  deRuiter  MC,  Poelmann  RE,  Gittenberger-­‐de  Groot  AC.  Origin,  fate,  and  function  of  epicardium-­‐derived  cells  (EPDCs)  in   normal   and   abnormal   cardiac   development.   ScientificWorldJournal.  2007  Nov  12;  7:1777-­‐1798.  

88) Kattman   SJ,   Adler   ED,   Keller   GM.   Specification   of   multipotential  cardiovascular   progenitor   cells   during   embryonic   stem   cell  differentiation   and   embryonic   development.   Trends   Cardiovasc   Med.  2007  Oct;  17(7):240-­‐246.  

89) Dahl   KN,   et   al.   Nuclear   shape,   mechanics   and   mechanotransduction.  Circulation  Respiratory.  2008;  108,  173–189.    

90) Markwald   RR,   Norris   RA,   Moreno-­‐Rodriguez   R,   Levine   RA.  Developmental   basis   of   adult   cardiovascular   diseases:   valvular   heart  diseases.  Ann  N  Y  Acad  Sci.  2010;  1188:177-­‐183  

91) Lombardi   R,   Marian   AJ.   Arrhythmogenic   right   ventricular  cardiomyopathy   is   a   disease   of   cardiac   stem   cells.   Curr   Opin   Cardiol.  2010;  25:222-­‐228.    

    7.  References  

 202  

92) Braunwald   E.   Cardiovascular   science:   opportunities   for   translating  research  into  improved  care.  J  Clin  Invest.  2013;  123:6–10.  

93) Maron  BJ,  Braunwald  E.  Evolution  of  hypertrophic  cardiomyopathy  to  a  contemporary  treatable  disease.  Circulation.  2012;  126:1640–1644.  

94) Marian   AJ.   Experimental   therapies   in   hypertrophic   cardiomyopathy.   J  CardiovascTransl  Res.  2009;  2:483–492.  

95) Spoladore   R,   Maron   MS,   D’Amato   R,   Camici   PG,   Olivotto   I.  Pharmacological   treatment   options   for   hypertrophic   cardiomyopathy:  high  time  for  evidence.  Eur  Heart  J.  2012;  33:1724–1733.  

96) Gersh  BJ,  Maron  BJ,  Bonow  RO,  Dearani  JA,  Fifer  MA,  Link  MS,  Naidu  SS,  Nishimura  RA,  Ommen  SR,  Rakowski  H,  Seidman  CE,  Towbin  JA,  Udelson  JE,   Yancy  CW.  ACCF/AHA  guideline   for   the  diagnosis   and   treatment  of  hypertrophic   cardiomyopathy;   executive   summary:   a   report   of   the  American  College  of  Cardiology  Foundation/American  Heart  Association  Task  Force  on  Practice  Guidelines.  Circulation.  2011;  124:2761–2796.  

97) Ommen  SR,  Maron  BJ,  Olivotto  I,  Maron  MS,  Cecchi  F,  Betocchi  S,  Gersh  BJ,  Ackerman  MJ,  McCully  RB,  Dearani  JA,  Schaff  HV,  Danielson  GK,  Tajik  AJ,   Nishimura   RA.   Long-­‐term   effects   of   surgical   septalmyectomy   on  survival  in  patients  with  obstructive  hypertrophic  cardiomyopathy.  J  Am  CollCardiol.  2005;  46:470–476.  

98) Force  T,  Bonow  RO,  Houser  SR,  Solaro  RJ,  Hershberger  RE,  Adhikari  B,  Anderson  ME,  Boineau  R,  Byrne  BJ,  Cappola  TP,  Kalluri  R,  LeWinter  MM,  Maron   MS,   Molkentin   JD,   Ommen   SR,   Regnier   M,   Tang   WH,   Tian   R,  Konstam  MA,  Maron  BJ,  Seidman  CE.  Research  priorities  in  hypertrophic  cardiomyopathy:   report   of   a   Working   Group   of   the   National   Heart,  Lung,  and  Blood  Institute.  Circulation.  2010;  122(11):1130–1133.  

99) Abozguia   K,   Elliott   P,  McKenna  W,   Phan   TT,   Nallur-­‐Shivu   G,   Ahmed   I,  Maher   AR,   Kaur   K,   Taylor   J,   Henning   A,   Ashrafian   H,   Watkins   H,  Frenneaux   M.   Metabolic   modulator   perhexiline   corrects   energy  deficiency  and   improves  exercise  capacity   in  symptomatic  hypertrophic  cardiomyopathy.  Circulation.  2010;  122:1562–1569.  

100) Coppini  R,  Ferrantini  C,  Yao  L,  Fan  P,  Del  Lungo  M,  Stillitano  F,  Sartiani  L,  Tosi  B,  Suffredini  S,  Tesi  C,  Yacoub  M,  Olivotto  I,  Belardinelli  L,  Poggesi  C,   Cerbai   E,   Mugelli   A.   Late   sodium   current   inhibition   reverses  electromechanical  dysfunction   in  human  hypertrophic  cardiomyopathy.  Circulation.  2013;  127:575–584.  

101) Lan  F,  Lee  AS,  Liang  P,  Sanchez-­‐Freire  V,  Nguyen  PK,  Wang  L,  Han  L,  Yen  M,  Wang  Y,  Sun  N,  Abilez  OJ,  Hu  S,  Ebert  AD,  Navarrete  EG,  Simmons  CS,  Wheeler  M,   Pruitt   B,   Lewis   R,   Yamaguchi   Y,   Ashley   EA,   Bers   DM,  Robbins  RC,  Longaker  MT,  Wu  JC.  Abnormal  calcium  handling  properties  underlie   familial   hypertrophic   cardiomyopathy   pathology   in   patient-­‐specific   induced   pluripotent   stem   cells.   Cell   Stem   Cell.   2013;   12:101–113.  

102) Malik   FI,   Hartman   JJ,   Elias   KA,   Morgan   BP,   Rodriguez   H,   Brejc   K,  Anderson  RL,  Sueoka  SH,  Lee  KH,  Finer  JT,  Sakowicz  R,  Baliga  R,  Cox  DR,  

    7.  References  

  203  

Garard  M,  Godinez  G,  Kawas  R,  Kraynack  E,  Lenzi  D,  Lu  PP,  Muci  A,  Niu  C,  Qian  X,  Pierce  DW,  Pokrovskii  M,  Suehiro  I,  Sylvester  S,  Tochimoto  T,  Valdez  C,  Wang  W,  Katori  T,  Kass  DA,  Shen  YT,  Vatner  SF,  Morgans  DJ.  Cardiac  myosin  activation:  a  potential  therapeutic  approach  for  systolic  heart  failure.  Science.  2011;  331:1439–1443.  

103) Eulalio   A,   Mano   M,   Dal   Ferro   M,   Zentilin   L,   Sinagra   G,   Zacchigna   S,  Giacca   M.   Functional   screening   identifies   miRNAs   inducing   cardiac  regeneration.   Nature.   2012   Dec   20;   492(7429):376-­‐81.   doi:  10.1038/nature11739.  Epub  2012  Dec  5.    

104) Haberland   M,   Montgomery   RL,   Olson   EN.   The   many   roles   of   histone  deacetylases   in   development   and   physiology:   implications   for   disease  and   therapy.   Nat   Rev   Genet.   2009   Jan;   10(1):32-­‐42.   doi:  10.1038/nrg2485.  

 

 

 

 

   

    7.  References  

 204  

Chapter  2:  Genotype-­‐Phenotype  Correlations    

1) Olivotto   I,  Girolami  F,  Ackerman  MJ,  Nistri  S,  Bos   JM,  Zachara  E,  et  al.  Myofilament  protein  gene  mutation  screening  and  outcome  of  patients  with   hypertrophic   cardiomyopathy.   Mayo   Clin.   Proc.   2008   Jun;  83(6):630–638.    

2) Tardiff  JC.  Thin  filament  mutations:  developing  an  integrative  approach  to  a  complex  disorder.  Circulation  research  2011;  108:765-­‐782.  

3) Moolman  JC,  Corfield  VA,  Posen  B  et  al.  Sudden  death  due  to  troponin  T  mutations.  Journal  of  the  American  College  of  Cardiology  1997;  29:549-­‐555.  

4) Varnava  AM,  Elliott  PM,  Baboonian  C,  Davison  F,  Davies  MJ,  McKenna  WJ.  Hypertrophic  cardiomyopathy:  histopathological  features  of  sudden  death  in  cardiac  troponin  T  disease.  Circulation.  2001  

5) Anan   R,   Greve   G,   Thierfelder   L,  Watkins   H,  McKenna  WJ,   Solomon   S,  Vecchio  C,  Shono  H,  Nakao  S,  Tanaka  H,  Mares  AJ,  Towbin  JA,  Spirito  P,  Roberts   R,   Seidman   JG,   Seidman   CE.   Prognostic   implications   of   novel  beta   cardiac   myosin   heavy   chain   gene   mutations   that   cause   familial  hypertrophic  cardiomyopathy.    J  Clin  Invest.  1994  

6) Watkins  H,  McKenna  WJ,  Thierfelder  L,  Suk  HJ,  Anan  R,  O'Donoghue  A,  Spirito  P,  Matsumori  A,  Moravec  CS,  Seidman  JG,  et  al.  Mutations  in  the  genes   for   cardiac   troponin   T   and   alpha-­‐tropomyosin   in   hypertrophic  cardiomyopathy.  N  Engl  J  Med.  1995  Apr  20;  332(16):1058-­‐1064.  

7) Pasquale  F,  Syrris  P,  Kaski  JP,  Mogensen  J,  McKenna  WJ,  Elliott  P.  Long-­‐term  outcomes  in  hypertrophic  cardiomyopathy  caused  by  mutations  in  the  cardiac  troponin  T  gene.  Circ  Cardiovasc  Genet.  2012  Feb  1;  5(1):10-­‐17.  

8) Baudenbacher   F,   Schober   T,   Pinto   JR   et   al.   Myofilament   Ca2+  sensitization   causes   susceptibility   to   cardiac   arrhythmia   in   mice.   The  Journal  of  clinical  investigation  2008;  118:3893-­‐3903.  

9) Harris   KM,   Spirito   P,  Maron  MS   et   al.   Prevalence,   clinical   profile,   and  significance   of   left   ventricular   remodeling   in   the   end-­‐stage   phase   of  hypertrophic  cardiomyopathy.  Circulation  2006;  114:216-­‐225.  

10) Olivotto  I,  Cecchi  F,  Gistri  R  et  al.  Relevance  of  coronary  microvascular  flow   impairment   to   long-­‐term   remodeling   and   systolic   dysfunction   in  hypertrophic   cardiomyopathy.   Journal   of   the   American   College   of  Cardiology  2006;  47:1043-­‐1048.  

11) Pinamonti  B,  Di  Lenarda  A,  Nucifora  G,  Gregori  D,  Perkan  A,  Sinagra  G.  Incremental   prognostic   value   of   restrictive   filling   pattern   in  hypertrophic  cardiomyopathy:  a  Doppler  echocardiographic  study.  Eur  J  Echocardiogr.  2008  Jul;  9(4):466-­‐471.  

12) Lin  D,  Bobkova  A,  Homsher  E,  Tobacman  LS.  Altered  cardiac  troponin  T  in   vitro   function   in   the   presence   of   a   mutation   implicated   in   familial  

    7.  References  

  205  

hypertrophic  cardiomyopathy.  The  Journal  of  clinical  investigation  1996;  97:2842-­‐2848.  

13) Redwood   C,   Lohmann   K,   Bing   W   et   al.   Investigation   of   a   truncated  cardiac   troponin   T   that   causes   familial   hypertrophic   cardiomyopathy:  Ca(2+)  regulatory  properties  of  reconstituted  thin  filaments  depend  on  the   ratio   of   mutant   to   wild-­‐type   protein.   Circulation   research   2000;  86:1146-­‐1152.  

14) Miller  T,  Szczesna  D,  Housmans  PR  et  al.  Abnormal  contractile  function  in   transgenic  mice  expressing   a   familial   hypertrophic   cardiomyopathy-­‐linked   troponin   T   (I79N)  mutation.   The   Journal   of   biological   chemistry  2001;  276:3743-­‐3755.  

15) Chandra  M,  Tschirgi  ML,  Tardiff   JC.   Increase   in   tension-­‐dependent  ATP  consumption  induced  by  cardiac  troponin  T  mutation.  American  journal  of  physiology  Heart  and  circulatory  physiology  2005;  289:H2112-­‐2119.  

16) Javadpour   MM,   Tardiff   JC,   Pinz   I,   Ingwall   JS.   Decreased   energetics   in  murine   hearts   bearing   the   R92Q   mutation   in   cardiac   troponin   T.   The  Journal  of  clinical  investigation  2003;  112:768-­‐75.  

17) Ashrafian   H,   Redwood   C,   Blair   E,   Watkins   H.   Hypertrophic  cardiomyopathy:a  paradigm  for  myocardial  energy  depletion.  Trends  in  genetics:  TIG  2003;  19:263-­‐268.  

18) Tardiff   JC.   Sarcomeric   proteins   and   familial   hypertrophic  cardiomyopathy:   linking   mutations   in   structural   proteins   to   complex  cardiovascular  phenotypes.  Heart  failure  reviews  2005;  10:237-­‐248.  

19) He  H,  Hoyer  K,  Tao  H  et  al.  Myosin-­‐driven  rescue  of  contractile  reserve  and   energetics   in   mouse   hearts   bearing   familial   hypertrophic  cardiomyopathy-­‐associated  mutant  troponin  T  is  mutation-­‐specific.  The  Journal  of  physiology  2012;  590:5371-­‐5388.  

20) Keren  G,  Meisner  JS,  Sherez  J,  Yellin  EL,  Laniado  S.   Interrelationship  of  mid-­‐diastolic   mitral   valve   motion,   pulmonary   venous   flow,   and  transmitral  flow.  Circulation  1986;  74:36-­‐44.  

21) Debl  K,  Djavidani  B,  Buchner  S  et  al.  Triphasic  mitral  inflow  pattern  and  regional   triphasic   mitral   annulus   velocity   in   hypertrophic  cardiomyopathy.  Journal  of  the  American  Society  of  Echocardiography:  official  publication  of   the  American  Society  of  Echocardiography  2008;  21:407  e5-­‐6.  

22) Ha  JW,  Ahn  JA,  Moon  JY  et  al.  Triphasic  mitral  inflow  velocity  with  mid-­‐diastolic   flow:   the   presence   of   mid-­‐diastolic   mitral   annular   velocity  indicates   advanced   diastolic   dysfunction.   European   journal   of  echocardiography:   the   journal   of   the   Working   Group   on  Echocardiography  of  the  European  Society  of  Cardiology  2006;  7:16-­‐21.  

23) Ertz-­‐Berger   BR,   He   H,   Dowell   C   et   al.   Changes   in   the   chemical   and  dynamic   properties   of   cardiac   troponin   T   cause   discrete  cardiomyopathies   in   transgenic   mice.   Proceedings   of   the   National  Academy  of  Sciences  of  the  United  States  of  America  2005;  102:18219-­‐18224.  

    7.  References  

 206  

24) Belus  A,  Piroddi  N,  Scellini  B,  Tesi  C,  D'Amati  G,  Girolami  F,  Yacoub  M,  Cecchi   F,   Olivotto   I,   Poggesi   C.   The   familial   hypertrophic  cardiomyopathy-­‐associated   myosin   mutation   R403Q   accelerates  tension   generation   and   relaxation   of   human   cardiac   myofibrils.   J  Physiol.  2008  Aug  1;  586(Pt  15):3639-­‐3644.  

25) Ferrantini  C,  Belus  A,  Piroddi  N,  Scellini  B,  Tesi  C,  Poggesi  C.  Mechanical  and   energetic   consequences   of   HCM-­‐causing   mutations.   J   Cardiovasc  Transl  Res.  2009  Dec;  2(4):441-­‐451.  

26) Anderson  W.  A   case   of   angio-­‐keratoma.   Br   J   Dermatol   1898;   10:113-­‐117.  

27) Fabry   J.   Purpura   papulosa   haemorrhagica   Hebrae.   Arch   Dermatol  Syphilol  1898;  43:187-­‐201.  [In  German].  

28) Desnick   RJ,   Ioannou   YA,   Eng   CM.  a-­‐  Galactosidase   A   deficiency:   Fabry  disease.   In:   Scriver   CR,   Beaudet   AL,   Sly   WS   and   Valle   D,   eds.   The  metabolic  and  molecular  bases  of  inherited  disease,  8th  Ed.  New  York:  McGraw-­‐Hill;  2001.  pp  3733-­‐3774.  

29) Germain  DP.  Fabry  disease.  Orphanet  J  Rare  Dis  2010;  5:30-­‐79.  30) Aerts   JMFG,   Kallemeijn   WW,   Wegdam   W,   et   al.   Biomarkers   in   the  

diagnosis   of   lysosomal   storage   disorders:   proteins,   lipids,   and  inhibodies.  J  Inherit  Metab  Dis  2011;  1-­‐15.  

31) Meikle  PJ,  Hopwood  JJ,  Clague  AE,  Carrey  WF.  Prevalence  of   lysosomal  storage  disorders.  JAMA  1999;  281:249–254.  

32) Mechtler  TP,  Stary  S,  Metz  TF,  De  Jesús  VR,  Greber-­‐Platzer  S,  Pollak  A,  Herkner   KR,   Streubel   B,   Kasper   DC.  Neonatal   screening   for   lysosomal  storage  disorders:   feasibility  and   incidence   from  a  nationwide   study   in  Austria.  Lancet  2012;  379:  335-­‐341.  

33) Spada  M,   Pagliardini   S,   Yasuda  M,   et   al.  High   incidence   of   later-­‐onset  fabry   disease   revealed   by   newborn   screening.   Am   J  Hum  Genet   2006;  79:31-­‐40.  

34) 19.  Hwu  W-­‐L,   Chien   Y-­‐H,   Lee  N-­‐C,   et   al.  Newborn   screening   for   Fabry  disease   in   Taiwan   reveals   a   high   incidence   of   the   later-­‐onset   GLA  mutation   c.936+919G>A   (IVS4+919G>A).   Hum  Mutat   2009;   30:   1397-­‐1405.  

35) Linthorst   GE,   Bouwman   MG,   Wijburg   F   a,   et   al.   Screening   for   Fabry  disease  in  highrisk  populations:  a  systematic  review.  J  Med  Genet  2010;  47:217-­‐222.  

36) Wilcox   WR,   Oliveira   JP,   Hopkin   RJ,   Ortiz   A,   Banikazemi   M,   Feldt-­‐Rasmussen  U,  et  al.  Females  with  Fabry  disease  frequently  have  major  organ  involvement:  lessons  from  the  Fabry  Registry.  Mol.  Genet.  Metab.  2008  Feb;  93(2):112–128  

37) Waldek  S,  Patel  MR,  Banikazemi  M,  Lemay  R,  Lee  P.  Life  expectancy  and  cause  of  death  in  males  and  females  with  Fabry  disease:  findings  from  the  Fabry  Registry.  Genet.  Med  2009  Nov;  11(11):790–796.    

    7.  References  

  207  

38) Lidove  O,  West  ML,  Pintos-­‐Morell  G,  Reisin  R,  Nicholls  K,  Figuera  LE,  et  al.   Effects   of   enzyme   replacement   therapy   in   Fabry   disease-­‐A  comprehensive  review  of  the  medical  literature.  Genet.  Med.  2010  Nov;  12(11):668–679.  

39) IShii  BS.  Pharmacological  chaperone  therapy  for  Fabry  disease.  In  Vitro.  2012;  88:18–30.  

40) Porto  C,  Pisani  A,  Rosa  M,  Acampora  E,  Avolio  V,  Tuzzi  MR,  Visciano  B,  Gagliardo   C,   Materazzi   S,   la   Marca   G,   Andria   G,   Parenti   G.   Synergy  between  the  pharmacological  chaperone  1-­‐deoxygalactonojirimycin  and  the   human   recombinant   alphagalactosidase   A   in   cultured   fibroblasts  from  patients  with  Fabry  disease.  J  Inherit  Metab  Dis  2012;  35:513–520.  

41) Weidemann   F,  Niemann  M,   Breunig   F,  Herrmann   S,   Beer  M,   Sto¨rk   S,  Voelker  W,  Ertl  G,Wanner  C,  Strotmann  J.  Long-­‐term  effects  of  enzyme  replacement   therapy   on   Fabry   cardiomyopathy:   evidence   for   a   better  outcome  with  early  treatment.  Circulation  2009;  119:524–529.  

42) Cecchi   F,   Olivotto   I,   Gistri   R,   Lorenzoni   R,   Chiriatti   G,   Camici   PG.  Coronary   microvascular   dysfunction   and   prognosis   in   hypertrophic  cardiomyopathy.  N  Engl  J  Med.  2003;  349:1027–1035  

43) Eng  CM,  Fletcher  J,  Wilcox  WR,  Waldek  S,  Scott  CR,  Sillence  DO,  Breunig  F,   Charrow   J,   Germain   DP,   Nicholls   K,   Banikazemi   M.   Fabry   disease:  baseline  medical  characteristics  of  a  cohort  of  1765  males  and  females  in  the  Fabry  Registry.  J  Inherit  Metab  Dis.  2007;  30:184-­‐192.  

44) O'Mahony   C,   Elliott   P.   Anderson-­‐Fabry   disease   and   the   heart.   Prog  Cardiovasc  Dis.  2010  Jan-­‐Feb;  52(4):326-­‐335.  

45) Maron  BJ,  Niimura  H,  Casey  S  a,  Soper  MK,  Wright  GB,  Seidman  JG,  et  al.   Development   of   left   ventricular   hypertrophy   in   adults   in  hypertrophic  cardiomyopathy  caused  by  cardiac  myosin-­‐binding  protein  C  gene  mutations.  J.  Am.  Coll.  Cardiol.  2001  Aug;  38(2):315–321.    

46) Maron  MS,  Olivotto  I,  Maron  BJ,  Prasad  SK,  Cecchi  F,  Udelson  JE,  et  al.  The   case   for   myocardial   ischemia   in   hypertrophic   cardiomyopathy.   J.  Am.  Coll.  Cardiol.  2009  Aug;  54(9):866–875  

47) Elliott  PM,  Kindler  H,  Shah  JS,  Sachdev  B,  Rimoldi  OE,  Thaman  R,  Tome  MT,   McKenna   WJ,   Lee   P,   Camici   PG.   Coronary   microvascular  dysfunction   in   male   patients   with   Anderson-­‐Fabry   disease   and   the  effect   of   treatment   with   alpha   galactosidase   A.   Heart.   2006;   92:357-­‐360.  

48) Cecchi   F,   Olivotto   I,   Gistri   R,   Lorenzoni   R,   Chiriatti   G,   Camici   PG.  Coronary   microvascular   dysfunction   and   prognosis   in   hypertrophic  cardiomyopathy.  N.  Engl.  J.  Med.  2003  Sep;  349(11):1027–1035.    

49) Kalliokoski  RJ,  Kalliokoski  KK,  Sundell  J,  Engblom  E,  Penttinen  M,  Kantola  I,   Raitakari   OT,   Knuuti   J,   Nuutila   P.   Impaired   myocardial   perfusion  reserve   but   preserved   peripheral   endothelial   function   in   patients   with  Fabry  disease.  J  Inherit  Metab  Dis.  2005;  28:563-­‐573  

    7.  References  

 208  

50) Kalliokoski   RJ,   Kantola   I,   Kalliokoski   KK,   Engblom   E,   Sundell   J,  Hannukainen   JC,   Janatuinen   T,   Raitakari   OT,   Knuuti   J,   Penttinen   M,  Viikari  J,  Nuutila  P.  The  effect  of  12-­‐month  enzyme  replacement  therapy  on  myocardial  perfusion  in  patients  with  Fabry  disease.  J  Inherit  Metab  Dis.  2006  ;  29:112-­‐118.  

51) Camici  PG,  Crea  F.  Coronary  microvascular  dysfunction.  N.  Engl.  J.  Med.  2007  Feb;  356(8):830–840.  

52) Pieroni   M,   Chimenti   C,   Ricci   R,   Sale   P,   Russo   MA,   Frustaci   A.   Early  detection   of   Fabry   cardiomyopathy   by   tissue   Doppler   imaging.  Circulation  2003;  107:1978–1984.  

53) Niemann   M,   Herrmann   S,   Hu   K,   Breunig   F,   Strotmann   J,   Beer   M,  Machann  W,   VoelkerW,   Ert   F,Wanner   C,Weidemann   F.  Differences   in  Fabry  cardiomyopathy  between  female  and  male  patients  consequences  for  diagnostic  assessment.  JACC  Cardiovasc  Imaging  2011;  4:592–601.  

54) Perugini  E,  Rapezzi  C,  Piva  T,  Leone  O,  Bacchi-­‐Reggiani  L,  Riva  L,  Salvi  F,  Lovato  L,  Branzi  A,  Fattori  R.  Non-­‐invasive  evaluation  of  the  myocardial  substrate   of   cardiac   amyloidosis   by   gadolinium   cardiac   magnetic  resonance.  Heart  2006;  92:343–349.  

55) Wilcox   WR,   Oliveira   JP,   Hopkin   RJ,   Ortiz   A,   Banikazemi   M,   Feldt-­‐Rasmussen  U,  et  al.  Females  with  Fabry  disease  frequently  have  major  organ   involvement:   lessons   from  the  Fabry  Registry.  Mol  Genet  Metab  2008;  93:112–128.  

56) Pinto  LL,  VieiraTA,  Giugliani  R,  Schwartz  IV.  Expression  of  the  disease  on  female   carriers   of   X-­‐linked   lysosomal   disorders:   a   brief   review.  Orphanet  J  Rare  Dis  2010;  5:14.  

57) Kampmann  C,  Baehner  F,  Whybra  C,  Martin  C,  Wiethoff  CM,  Ries  M,  Gal  A,   Beck   M.   Cardiac   manifestations   of   Anderson–Fabry   disease   in  heterozygous  females.  J  Am  Coll  Cardiol  2002;  40:1668–1674.  

58) Nakao  S,  Takenaka  T,  Maeda  M,  Kodama  C,  Tanaka  A,  Tahara  M,  et  al.  An   atypical   variant   of   Fabry’s   disease   in   men   with   left   ventricular  hypertrophy.  N.  Engl.  J.  Med.  1995  Aug  3;  333(5):288–293.  

59) Olivotto   I,  Girolami  F,  Sciagrà  R,  Ackerman  MJ,  Sotgia  B,  Bos  JM,  et  al.  Microvascular   function   is   selectively   impaired   in   patients   with  hypertrophic   cardiomyopathy   and   sarcomere   myofilament   gene  mutations.  J.  Am.  Coll.  Cardiol  2011  Aug  16;  58(8):839–848.  

60) Camici   PG,   Olivotto   I,   Rimoldi   OE.   The   coronary   circulation   and   blood  flow   in   left   ventricular   hypertrophy.   J   Mol   Cell   Cardiol   2012;   52:857–864.  

61) MachannW,  Breunig  F,Weidemann  F,  Sandstede  J,  Hahn  D,  Ko¨  stler  H,  Neubauer  S,  Wanner  C,  Beer  M.  Cardiac  energy  metabolism  is  disturbed  in  Fabry  disease  and  improves  with  enzyme  replacement  therapy  using  recombinant  human  galactosidase  A.  Eur  J  Heart  Fail  2011;  13:278–283.  

62) Petersen   SE,   Jerosch-­‐Herold  M,  Hudsmith   LE,   Robson  MD,   Francis   JM,  Doll   HA,   Selvanayagam   JB,   Neubauer   S,Watkins   H.   Evidence   for  

    7.  References  

  209  

microvascular   dysfunction   in   hypertrophic   cardiomyopathy:   new  insights  from  multiparametric  magnetic  resonance  imaging.  Circulation  2007;  115:2418–2425.  

63) Elliott   P,   Andersson   B,   Arbustini   E,   Bilinska   Z,   Cecchi   F,   Charron   P,  Dubourg  O,  Kühl  U,  Maisch  B,  McKenna  WJ,  Monserrat  L,  Pankuweit  S,  Rapezzi   C,   Seferovic   P,   Tavazzi   L,   Keren   A.   Classification   of   the  cardiomyopathies:   a   position   statement   from   the   European   Society  Of  Cardiology  Working  Group  on  Myocardial  and  Pericardial  Diseases.  Eur  Heart  J.  2008  Jan;  29(2):270-­‐276  

64) Geisterfer-­‐Lowrance  AA,  Kass  S,  Tanigawa  G,  Vosberg  HP,  McKenna  W,  Seidman   CE,   Seidman   JG.   A   molecular   basis   for   familial   hypertrophic  cardiomyopathy:   a   beta   cardiac   myosin   heavy   chain   gene   missense  mutation.  Cell.  1990  Sep  7;  62(5):999-­‐1006.  

65) Alberto  Magi,   Lorenzo   Tattini,   Ingrid   Cifola,   Romina  D’Aurizio,  Matteo  Benelli,  Eleonora  Mangano,  Cristina  Battaglia,  Elena  Bonora,  Ants  Kurg,  Marco   Seri,   Pamela   Magini,   Betti   Giusti,   Giovanni   Romeo,   Tommaso  Pippucci,  Gianluca  De  Bellis,  Rosanna  Abbate  and  Gian  Franco  Gensini.  EXCAVATOR:   detecting   copy   number   variants   from   whole-­‐exome  sequencing  data.  Genome  Biology  2013,  14:R120.  

66) Boulé  S,  Fressart  V,  Laux  D,  Mallet  A,  Simon  F,  de  Groote  P,  Bonnet  D,  Klug   D,   Charron   P.   Expanding   the   phenotype   associated   with   a  desmoplakin   dominant  mutation:   Carvajal/Naxos   syndrome  associated  with   leukonychia  and  oligodontia.   Int  J  Cardiol.  2012  Nov  1;  161(1):50-­‐52.  

67) Protonotarios   N,   Tsatsopoulou   A,   Patsourakos   P,   Alexopoulos   D,  Gezerlis  P,  Simitsis  S,  Scampardonis  G.  Cardiac  abnormalities  in  familial  palmoplantar  keratosis.  Br  Heart  J  1986;  56:321–326.  

68) Luderitz  B.  Naxos  disease.  J  Interv  Card  Electrophysiol  2003;  9:405–406.  69) Fontaine   G,   Fontaliran   F,   Frank   R.   Arrhythmogenic   right   ventricular  

cardiomyopathies.   Clinical   forms   and   main   differential   diagnoses.  Circulation  1998;  97:1532–1535.  

70) Carvajal-­‐Huerta  L.  Epidermolytic  palmoplantar  keratoderma  with  wooly  hair   and   dilated   cardiomyopathy.   J   Am   Acad   Dermatol   1998;   39:418–  421.  

71) Perriard  J  C,  Hirschy  A,  Ehler  E.  Dilated  cardiomyopathy:  a  disease  of  the  intercalated  disk?.  Trends  Cardiovasc  Med  2003;  1330–1338.38.  

72) Bos   JM,   Towbin   JA,   Ackerman   MJ.   Diagnostic,   prognostic,   and  therapeutic   implications   of   genetic   testing   for   hypertrophic  cardiomyopathy.  J  Am  Coll  Cardiol.  2009;  54:201-­‐211.  

73) Wang  H,  Li  Z,  Wang  J,  Sun  K,    et  al.  Mutations   in  NEXN,  a  Z-­‐disc  gene,  are   associated   with   hypertrophic   cardiomyopathy.   Am   J   Hum   Genet.  2010;  87:687-­‐893.  

    7.  References  

 210  

74) Chiu   C,   Bagnall   RD,   Ingles   J,   et   al.  Mutations   in   alpha-­‐actinin-­‐2   cause  hypertrophic   cardiomyopathy.   A   genome-­‐wide   analysis.   J   Am   Coll  Cardiol.  2010;  55:1127-­‐1135.  

   

    7.  References  

  211  

Chapter  3:  Environmental  Modifiers    

1) Maron   BJ,   Maron   MS.   Hypertrophic   cardiomyopathy.   Lancet   2012;  381:242–255.  

2) Watkins  H,  Ashrafian  H,  Redwood  C.  Inherited  cardiomyopathies.  N  Engl  J  Med  2011;  364:1643–1656.  

3) Gersh  BJ,  Maron  BJ,  Bonow  RO,  et  al.  2011  ACCF/AHA  guideline  for  the  diagnosis   and   treatment   of   hypertrophic   cardiomyopathy:   executive  summary:   a   report   of   the   American   College   of   Cardiology  Foundation/American   Heart   Association   Task   Force   on   Practice  Guidelines.  J  Am  Coll  Cardiol  2011;  58:2703–2738.  

4) Olivotto   I,   Girolami   F,   Nistri   S,   et   al.   The   many   faces   of   hypertrophic  cardiomyopathy:   from   developmental   biology   to   clinical   practice.   J  Cardiovasc  Transl  Res  2009;  2:349–367.  

5) Olivotto   I,   Cecchi   F,   Poggesi   C,   Yacoub   MH.   Patterns   of   disease  progression  in  hypertrophic  cardiomyopathy:  an  individualized  approach  to  clinical  staging.  Circ  Heart  Fail  2012;  5:535–546.  

6) Ciró   E,   Nichols   PF   3rd,   Maron   BJ.   Heterogeneous   morphologic  expression   of   genetically   transmitted   hypertrophic   cardiomyopathy.  Two-­‐dimensional   echocardiographic   analysis.   Circulation   1983;  67:1227–1233.  

7) Wang   L,   Seidman   JG,   Seidman   CE.   Narrative   review:   harnessing  molecular  genetics   for   the  diagnosis  and  management  of  hypertrophic  cardiomyopathy.  Ann  Intern  Med  2010;  152:513–520,  W181.  

8) Daw   EW,   Chen   SN,   Czernuszewicz   G,   et   al.  Genome-­‐wide  mapping   of  modifier   chromosomal   loci   for   human   hypertrophic   cardiomyopathy.  Hum  Mol  Genet  2007;  16:2463–2471.  

9) Olivotto   I,  Maron  MS,   Autore   C,   et   al.  Assessment   and   significance   of  left   ventricular   mass   by   cardiovascular   magnetic   resonance   in  hypertrophic  cardiomyopathy.  J  Am  Coll  Cardiol  2008;  52:559–566.  

10) Piran   S,   Liu   P,   Morales   A,   Hershberger   RE.   Where   genome   meets  phenome:   rationale   for   integrating   genetic   and   protein   biomarkers   in  the   diagnosis   and   management   of   dilated   cardiomyopathy   and   heart  failure.  J  Am  Coll  Cardiol  2012;  60:283–289.  

11) Flegal   KM,   Kit   BK,   Orpana   H,   Graubard   BI.   Association   of   all-­‐cause  mortality  with  overweight  and  obesity  using  standard  body  mass  index  categories:  a  systematic   review  andmeta-­‐analysis.   JAMA2013;  309:71–82.  

12) Heckbert  SR,  Post  W,  Pearson  GD,  et  al.  Traditional  cardiovascular  risk  factors  in  relation  to  left  ventricular  mass,  volume,  and  systolic  function  by   cardiac   magnetic   resonance   imaging:   the   Multiethnic   Study   of  Atherosclerosis.  J  Am  Coll  Cardiol  2006;  48:2285–2292.  

    7.  References  

 212  

13) Rider  OJ,  Francis  JM,  Ali  MK,  et  al.  Determinants  of  left  ventricular  mass  in   obesity;   a   cardiovascular   magnetic   resonance   study.   J   Cardiovasc  Magn  Reson  2009;11:9.  

14) Turkbey  EB,  McClelland  RL,  Kronmal  RA,  et  al.  The  impact  of  obesity  on  the  left  ventricle:  the  Multi-­‐Ethnic  Study.  JACC  Cardiovasc  Imaging.  2010  Mar;  3(3):266-­‐274.  

15) Kahn  R,  Robertson  RM,  Smith  R,   Eddy  D.  The   impact  of  prevention  on  reducing   the   burden   of   cardiovascular   disease.   Circulation   2008;  118:576–585.  

16) Parikh  NI,  Pencina  MJ,  Wang  TJ,  et  al.   Increasing  trends  in   incidence  of  overweight  and  obesity  over  5  decades.  Am  J  Med  2007;  120:242–250.  

17) Kushner   RF.   Clinical   assessment   and   management   of   adult   obesity.  Circulation  2012;  126:2870–2877.  

18) Abel   ED,   Litwin   SE,   Sweeney  G.  Cardiac   remodeling   in   obesity.   Physiol  Rev  2008;  88:389–419.  

19) Danias   PG,   Tritos  NA,   Stuber  M,   Kissinger   KV,   Salton   CJ,  Manning  WJ.  Cardiac  structure  and  function  in  the  obese:  A  cardiovascular  magnetic  resonance  imaging  study.  J  Cardiovasc  Magn  Reson  2003;  5:431–438.  

20) Wong  CY,  O’Moore-­‐Sullivan  T,  Leano  R,  Byrne  N,  Beller  E,  Marwick  TH.  Alterations  of  left  ventricular  myocardial  characteristics  associated  with  obesity.  Circulation  2004;  110:3081–3087.  

21) Oreopoulos   A,   Padwal   R,   Kalantar-­‐Zadeh   K,   Fonarow   GC,   Norris   CM,  McAlister   FA.  Body  mass   index  and  mortality   in   heart   failure:   a  meta-­‐analysis.  Am  Heart  J  2008;  156:13–22.  

22) Kenchaiah  S,  Evans  JC,  Levy  D,  et  al.  Obesity  and  the  risk  of  heart  failure.  N  Engl  J  Med  2002;  347:305–313.  

23) Olivotto   I,   Tomberli   B,   Spoladore   R,   Mugelli   A,   Cecchi   F,   Camici   PG.  Hypertrophic   cardiomyopathy:   The   need   for   randomized   trials.   Global  Cardiology  Science  and  Practice  2013:31    

 

 

 

 

 

 

 

 

 

 

    7.  References  

  213  

Chapter  4:  Natural  History  and  Predictors  of  Outcome    

1) Jacoby  DL,  DePasquale  EC,  McKenna  WJ.  Hypertrophic  cardiomyopathy:  diagnosis,   risk   stratification   and   treatment.   CMAJ.   2013   Feb   5;  185(2):127-­‐134  

2) O'Mahony  C,   Jichi  F,  Pavlou  M,  Monserrat  L,  Anastasakis  A,  Rapezzi  C,  Biagini  E,  Gimeno  JR,  Limongelli  G,  McKenna  WJ,  Omar  RZ,  Elliott  PM.  A  novel   clinical   risk   prediction   model   for   sudden   cardiac   death   in  hypertrophic  cardiomyopathy  (HCM  Risk-­‐SCD).  Eur  Heart  J.  2013  Oct  14  

3) O'Mahony   C,   Elliott   P,   McKenna   W.   Sudden   cardiac   death   in  hypertrophic   cardiomyopathy.   Circ   Arrhythm   Electrophysiol.   2013   Apr;  6(2):443-­‐451  

4) Maron  BJ,  Maron  MS.  Hypertrophic   cardiomyopathy.   Lancet.   2013   Jan  19;  381(9862):242-­‐255.  

5) Maron   BJ.   Risk   stratification   and   role   of   implantable   defibrillators   for  prevention   of   sudden   death   in   patients   with   hypertrophic  cardiomyopathy.  Circ  J.  2010  Nov;  74(11):2271-­‐2282  

6) Okutucu   S,   Oto   A.   Risk   stratification   in   nonischemic   dilated  cardiomyopathy:  Current  perspectives.  Cardiol  J.  2010;  17(3):219-­‐229  

7) Klein  GJ,   Krahn  AD,   Skanes  AC,   Yee   R,  Gula   LJ.  Primary   prophylaxis   of  sudden   death   in   hypertrophic   cardiomyopathy,   arrhythmogenic   right  ventricular   cardiomyopathy,   and   dilated   cardiomyopathy.   J   Cardiovasc  Electrophysiol.  2005  

8) Meune   C,   Van   Berlo   JH,   Anselme   F,   Bonne   G,   Pinto   YM,   Duboc   D.  Primary   prevention   of   sudden   death   in   patients   with   lamin   A/C   gene  mutations.  N  Engl  J  Med.  2006  Jan  12;  354(2):209-­‐210  

9) Silvano  M,  Corrado  D,  Köbe  J,  Mönnig  G,  Basso  C,  Thiene  G,  Eckardt  L.  Risk   stratification   in   arrhythmogenic   right   ventricular   cardiomyopathy.  Herzschrittmacherther  Elektrophysiol.  2013  Dec;  24(4):202-­‐208  

10) Oechslin  E,  Jenni  R.  Left  ventricular  non-­‐compaction  revisited:  a  distinct  phenotype   with   genetic   heterogeneity?.   Eur   Heart   J.   2011   Jun;  32(12):1446-­‐1456  

11) Maron   BJ.   Contemporary   insights   and   strategies   for   risk   stratification  and   prevention   of   sudden   death   in   hypertrophic   cardiomyopathy.  Circulation.  2010  Jan  26;  121(3):445-­‐456.  

12) Massimo   Santini,   Carlo   Lavalle,   and   Renato   Pietro   Ricci.   Primary   and  secondary  prevention  of  sudden  cardiac  death:  who  should  get  an  ICD?.  Heart.  2007  November;  93(11):  1478–1483.  

13) N.A.   Mark   Estes.   Predicting   and   Preventing   Sudden   Cardiac   Death.  Circulation.  2011;  124:  651-­‐656  

14) Maron  BJ,  Spirito  P,  Shen  W-­‐K,  Haas  TS,  Formisano  F,  Link  MS,  Epstein  AE,  Almquist  AK,  Daubert  JP,  Lawrenz  T,  Boriani  G,  Estes  NA  III,  Favale  S,  Piccininno  M,  Winters  SL,  Santini  M,  Betocchi  S,  Arribas  F,  Sherrid  MV,  

    7.  References  

 214  

Buja   G,   Semsarian   C,   Bruzzi   P.   Implantable   cardioverter-­‐defibrillators  and   prevention   of   sudden   cardiac   death   in   hypertrophic  cardiomyopathy.  JAMA.  2007;  298:  405–412.  

15) Maron  MS,  Finley  JJ,  Bos  JM,  Hauser  RH,  Manning  WJ,  Haas  TS,  Lesser  JR,  Udelson  JE,  Ackerman  MJ,  Maron  BJ.  Prevalence,  clinical  significance  and  natural  history  of   left  ventricular  apical  aneurysms   in  hypertrophic  cardiomyopathy.  Circulation.  2008;  118:  1541–1549  

16) Harris  KM,   Spirito  P,  Maron  MS,   Zenovich  AG,   Formisano  F,   Lesser   JR,  Mackey-­‐Bojack   S,   Manning   WJ,   Udelson   JE,   Maron   BJ.   Prevalence,  clinical  profile,  and  significance  of  left  ventricular  remodeling  in  the  end-­‐stage   phase   of   hypertrophic   cardiomyopathy.   Circulation.   2006;   114:  216–225  

17) Maron  MS,  Olivotto  I,  Betocchi  S,  Casey  SA,  Lesser  JR,  Losi  MA,  Cecchi  F,  Maron  BJ.  Effect  of   left  ventricular  outflow  tract  obstruction  on  clinical  outcome   in   hypertrophic   cardiomyopathy.   N   Engl   J   Med.   2003;   348:  295–303.    

18) Elliott  PM,  Gimeno  JR,  Tomé  MT,  Shah  J,  Ward  D,  Thaman  R,  Mogensen  J,  McKenna  WJ.   Left   ventricular   outflow   tract   obstruction   and   sudden  risk  in  patients  with  hypertrophic  cardiomyopathy.  Eur  Heart  J.  2006;  27:  1933–1941.    

19) Sorajja  P,  Valeti  U,  Nishimura  R,  Ommen  SR,  Rihal  CS,  Gersh  BJ,  Hodge  DO,   Schaff   HV,   Holmes   DR.   Outcome   of   alcohol   septal   ablation   for  obstructive  hypertrophic   cardiomyopathy.   Circulation.  2008;  118:  131–139  

20) Boltwood  CM  Jr,  Chien  W,  Ports  T.  Ventricular  tachycardia  complicating  alcohol  septal  ablation.  N  Engl  J  Med.  2004;  351:  1914–1915.  

21) Girolami  F,  Ho  CY,  Semsarian  C,  Baldi  M,  Will  ML,  Baldini  K,  et  al.  Clinical  features  and  outcome  of  hypertrophic  cardiomyopathy  associated  with  triple  sarcomere  protein  gene  mutations.  J.  Am.  Coll.  Cardiol.  2010  Apr;  55(14):1444–1453  

22) Maron   BJ,   Spirito   P.   Implantable   defibrillators   and   prevention   of  suddendeath   in   hypertrophic   cardiomyopathy.   J   Cardiovasc  Electrophysiol.  2008;  19:1118  –1126.  

23) Elliott  PM,  Sharma  S,  Varnava  A,  Poloniecki  J,  Rowland  E,  McKenna  WJ.  Survival   after   cardiac   arrest   or   sustained   ventricular   tachycardia   in  patients  with  hypertrophic  cardiomyopathy.  J  Am  Coll  Cardiol.  1999;  33:  1596–1601.  

24) Moon  JC,  McKenna  WJ,  McCrohon  JA,  Elliott  PM,  Smith  GC,  Pennell  DJ.  Toward   clinical   risk   assessment   in   hypertrophic   cardiomyopathy   with  gadolinium  cardiovascular  magnetic  resonance.  J  Am  Coll  Cardiol.  2003;  41:1561–1567.  

25) Maron  MS,   Appelbaum   E,   Harrigan   C,   Buros   J,   Gibson   M,   Hanna   CA,  Lesser   JR,   Udelson   JE,   Manning   WJ,   Maron   BJ.   Clinical   profile   and  significance   of   delayed   enhancement   in   hypertrophic   cardiomyopathy.  Circ  Heart  Fail.  2008;  1:184  –191.  

    7.  References  

  215  

26) Adabag  AS,  Maron  BJ,  Appelbaum  E,  Harrigan  CJ,  Buros  JL,  Gibson  CM,  Lesser   JR,  Hanna  CA,  Udelson   JE,  Manning  WJ,  Maron  MS.  Occurrence  and   frequency   of   arrhythmias   in   hypertrophic   cardiomyopathy   in  relation   to   delayed   enhancement   on   cardiovascular   magnetic  resonance.  J  Am  Coll  Cardiol.  2008;  51:1369  –1374.  

27) Maron   BJ,   Maron   MS,   Lesser   JR,   Hauser   RG,   Haas   TS,   Harrigan   CJ,  Appelbaum   E,   Main   ML,   Roberts   WC.   Sudden   cardiac   arrest   in  hypertrophic  cardiomyopathy  in  the  absence  of  conventional  criteria  for  high  risk  status.  Am  J  Cardiol.  2008;  101:544  –547.  

28) Adabag  AS,  Casey  SA,  Kuskowski  MA,  Zenovich  AG,  Maron  BJ.  Spectrum  and   prognostic   significance   of   arrhythmias   on   ambulatory   Holter  electrocardiogram   in   hypertrophic   cardiomyopathy.   J   Am   Coll   Cardiol.  2005;  45:697-­‐704.  

29) Maron   BJ,   Shen   W-­‐K,   Link   MS,   Epstein   AE,   Almquist   AK,   Daubert   JP,  Bardy  GH,  Favale  S,  Rea  RF,  Boriani  G,  Estes  NA  III,  Spirito  P.  Efficacy  of  implantable   cardioverter-­‐defibrillators   for   the   prevention   of   sudden  death   in   patients   with   hypertrophic   cardiomyopathy.   N   Engl   J   Med.  2000;  342:365–373.  

30) Magyar-­‐Russell   G,   Thombs   BD,   Cai   JX,   Baveja   T,   Kuhl   EA,   Singh   PP,  Montenegro  Braga  Barroso  M,  Arthurs  E,  Roseman  M,  Amin  N,  Marine  JE,   Ziegelstein   RC.   The   prevalence   of   anxiety   and   depression   in   adults  with   implantable   cardioverter   defibrillators:   a   systematic   review.   J  Psychosom  Res.  2011  Oct;  71(4):223-­‐231.  

31) Daniels   LB,   Maisel   AS.   Natriuretic   peptides.   J   Am   Coll   Cardiol   2007;  50:e2357-­‐2368.    

32) Wang  TJ,  Larson  MG,  Levy  D,  Benjamin  EJ,  Leip  EP,  Omland  T,  Wolf  PA,  Vasan   RS.   Plasma   natriuretic   peptide   levels   and   the   risk   of  cardiovascular  events  and  death.  N  Engl  J  Med  2004;  350:e655-­‐663.  

33) Collinson   PO,   Barnes   SC,   Gaze   DC,   Galasko   G,   Lahiri   A,   Senior   R.  Analytical  performance  of  the  N  terminal  pro  B  type  natriuretic  peptide  (NT-­‐proBNP)  assay  on  the  Elecsys  1010  and  2010  analysers.  Eur  J  Heart  Fail  2004;  6:e365-­‐368.  

34) Mutlu   B,   Bayrak   F,   Kahveci   G,   Degertekin   M,   Eroglu   E,   Basaran   Y.  Usefulness   of   N-­‐terminal   pro-­‐B-­‐type   natriuretic   peptide   to   predict  clinical   course   in   patients   with   hypertrophic   cardiomyopathy.   Am   J  Cardiol  2006;  98:e1504-­‐1506.  

35) Kitaoka  H,  Kubo  T,  Okawa  M,  Takenaka  N,  Sakamoto  C,  Baba  Y,  Hayashi  K,   Yamasaki   N,   Matsumura   Y,   Doi   YL.   Tissue   Doppler   imaging   and  plasma  BNP  levels  to  assess  the  prognosis  in  patients  with  hypertrophic  cardiomyopathy.  J  Am  Soc  Echocardiogr  2011;  24:e1020-­‐1025.  

36) Maron  BJ,  Tholakanahalli  VN,  Zenovich  AG,  Casey  SA,  Duprez  D,  Aeppli  DM,   Cohn   JN.   Usefulness   of   B-­‐type   natriuretic   peptide   assay   in   the  assessment   of   symptomatic   state   in   hypertrophic   cardiomyopathy.  Circulation  2004;  109:e984-­‐989.  

    7.  References  

 216  

37) Park  JR,  Choi  JO,  Han  HJ,  Chang  SA,  Park  SJ,  Lee  SC,  Choe  YH,  Park  SW,  Oh   JK.   Degree   and   distribution   of   left   ventricular   hypertrophy   as   a  determining   factor   for   elevated   natriuretic   peptide   levels   in   patients  with   hypertrophic   cardiomyopathy:   insights   from   cardiac   magnetic  resonance  imaging.  Int  J  Cardiovasc  Imaging  2012;  28:e763-­‐772.  

38) Vanderheyden  M,  Goethals  M,  Verstreken  S,  De  Bruyne  B,  Muller  K,  Van  Schuerbeeck   E,   Bartunek   JJ.   Wall   stress   modulates   brain   natriuretic  peptide   production   in   pressure   overload   cardiomyopathy.   Am   Coll  Cardiol  2004;  44:e2349-­‐2354.  

39) Elliott   P,   Andersson   B,   Arbustini   E,   Bilinska   Z,   Cecchi   F,   Charron   P,  Dubourg  O,  Kühl  U,  Maisch  B,  McKenna  WJ,  Monserrat  L,  Pankuweit  S,  Rapezzi   C,   Seferovic   P,   Tavazzi   L,   Keren   A.   Classification   of   the  cardiomyopathies:   a   position   statement   from   the   European   Society  Of  Cardiology  Working  Group  on  Myocardial  and  Pericardial  Diseases.  Eur  Heart  J.  2008;  29:270–276.  

40) Codd  MB,  Sugrue  DD,  Gersh  BJ,  Melton  LJ  III.  Epidemiology  of  idiopathic  dilated  and  hypertrophic   cardiomyopathy.  A  populationbased   study   in  Olmsted  County,  Minnesota,  1975-­‐1984.  Circulation.  1989;  80:564–572.  

41) Manolio   TA,   Baughman   KL,   Rodeheffer   R,   Pearson   TA,   Bristow   JD,  Michels   VV,   Abelmann   WH,   Harlan   WR.   Prevalence   and   etiology   of  idiopathic  dilated  cardiomyopathy  (summary  of  a  National  Heart,  Lung,  and  Blood  Institute  workshop.  Am  J  Cardiol.  1992;  69:1458–1466.  

42) Fuster  V,  Gersh  BJ,  Giuliani  ER,  Tajik  AJ,  Brandenburg  RO,  Frye  RL.  The  natural   history   of   idiopathic   dilated   cardiomyopathy.   Am   J   Cardiol.  1981;  47:525–531.  

43) Gavazzi  A,  Lanzarini  L,  Cornalba  C,  Desperati  M,  Raisaro  A,  Angoli  L,  De  Servi   S,   Specchia   G.   Dilated   (congestive)   cardiomyopathy.   Followup  study  of  137  patients.  G  Ital  Cardiol.  1984;  14:492–498.  

44) Kubo  T,  Matsumura  Y,  Kitaoka  H,  Okawa  M,  Hirota  T,  Hamada  T,  Hitomi  N,  Hoshikawa  E,  Hayato  K,  Shimizu  Y,  Yamasaki  N,  Yabe  T,  Nishinaga  M,  Takata  J,  Doi  Y.  Improvement  in  prognosis  of  dilated  cardiomyopathy  in  the  elderly  over  the  past  20  years.  J  Cardiol.  2008;  52:111–117.  

45) Aleksova  A,  Sabbadini  G,  Merlo  M,  Pinamonti  B,  Barbati  G,  Zecchin  M,  Bussani   R,   Silvestri   F,   Iorio   AM,   Stolfo   D,   Dal   Ferro   M,   Dragos   AM,  Meringolo  G,  Pyxaras  S,  Lo  Giudice  F,  Perkan  A,  di  Lenarda  A,  Sinagra  G.  Natural   history   of   dilated   cardiomyopathy:   from   asymptomatic   left  ventricular   dysfunction   to   heart   failure–a   subgroup   analysis   from   the  Trieste  Cardiomyopathy  Registry.  J  Cardiovasc  Med  (Hagerstown).  2009;  10:699–705.  

46) Lenzen  MJ,  Boersma  E,  Reimer  WJ,  Balk  AH,  Komajda  M,  Swedberg  K,  Follath  F,  Jimenez-­‐Navarro  M,  Simoons  ML,  Cleland  JG.  Underutilization  of  evidence-­‐based  drug  treatment  in  patients  with  heart  failure  is  only  partially   explained   by   dissimilarity   to   patients   enrolled   in   landmark  trials:  a  report  from  the  Euro  Heart  Survey  on  Heart  Failure.  Eur  Heart  J.  2005;  26:2706–2713.  

    7.  References  

  217  

47) Bursi  F,  Weston  SA,  Redfield  MM,  Jacobsen  SJ,  Pakhomov  S,  Nkomo  VT,  Meverden   RA,   Roger   VL.   Systolic   and   diastolic   heart   failure   in   the  community.  JAMA.  2006;  296:2209–2216.  

48) Patel   P,   White   DL,   Deswal   A.   Translation   of   clinical   trial   results   into  practice:   temporal  patterns  of  beta-­‐blocker  utilization   for  heart   failure  at   hospital   discharge   and   during   ambulatory   follow-­‐up.   Am   Heart   J.  2007;  153:515–522.  

49) McMurray   JJV,   Adamopoulos   S,   Anker   SD,   Auricchio   A,   Böhm   M,  Dickstein   K,   Falk   V,   Filippatos   G,   Fonseca   C,   Gomez-­‐Sanchez   MA,  Jaarsma  T,   Køber   L,   Lip  GY,  Maggioni  AP,  Parkhomenko  A,  Pieske  BM,  Popescu  BA,  Rønnevik  PK,  Rutten  FH,  Schwitter  J,  Seferovic  P,  Stepinska  J,   Trindade   PT,   Voors   AA,   Zannad   F,   Zeiher   A;   ESC   Committee   for  Practice  Guidelines.  ESC  Guidelines   for   the  diagnosis  and   treatment  of  acute  and  chronic  heart  failure  2012.  Eur  Heart  J.  2012;  33:1787–1847.  

50) Bahler   RC.   Assessment   of   prognosis   in   idiopathic   dilated  cardiomyopathy.  Chest.  2002;  121:1016–1019.  

51) Miura   K,   Matsumori   A,   Nasermoaddeli   A,   Soyama   Y,   Morikawa   Y,  Sakurai  M,  Kitabatake  A,  Nagai  M,  Inaba  Y,  Nakagawa  H.  Prognosis  and  prognostic  factors  in  patients  with  idiopathic  dilated  cardiomyopathy  in  Japan—results  from  a  nationwide  study.  Circulation.  2008;  72:343–348.  

52) Karaca  O,  Avci  A,  Guler  GB,  Alizade  E,  Guler  E,  Gecmen  C,  Emiroglu  Y,  Esen  O,  Esen  AM.  Tenting  area  reflects  disease  severity  and  prognosis  in  patients   with   non-­‐ischaemic   dilated   cardiomyopathy   and   functional  mitral  regurgitation.  Eur  J  Heart  Fail.  2011;  13:284–291.  

53) Pecini   R,   Thune   JJ,   Torp-­‐Pedersen   C,   Hassager   C,   Køber   L.   The  relationship   between   mitral   regurgitation   and   ejection   fraction   as  predictors   for   the   prognosis   of   patients  with   heart   failure.   Eur   J  Heart  Fail.  2011;  13:1121–1125.  

54) Tamura  H,  Watanabe  T,  Nishiyama  S,  Sasaki  S,  Arimoto  T,  Takahashi  H,  Shishido   T,   Miyashita   T,   Miyamoto   T,   Nitobe   J,   Hirono   O,   Kubota   I.  Increased   left  atrial  volume   index  predicts  a  poor  prognosis   in  patients  with  heart  failure.  J  Card  Fail.  2011;  17:210–216.    

55) Dye   C,  Mertens   T,   Hirnschall   G,  Mpanju-­‐Shumbusho  W,   Newman   RD,  Raviglione  MC,   Savioli   L,   Nakatani   H.  WHO   and   the   future   of   disease  control  programmes.  Lancet.  2013  Feb  2;  381(9864):413-­‐418.  

56) World   Health   Organization   (WHO).   Working   to   overcome   the   global  impact   of   neglected   tropical   diseases:   first  WHO   report   on   neglected  tropical   diseases.   Geneva:   WHO;   2010.   Available   from:    http://www.who.int/neglected_diseases/2010report/en/9  

57) WHO.   Working   to   overcome   the   global   impact   of   neglected   tropical  diseases.   First   WHO   report   on   neglected   tropical   diseases   [online],  (2010).  

58) Repetto   E.C.,   Egidi   A.M.,   Angheben   A.,   Anselmi   M.,   Al   Rousan   A.,  Ledezma  G.,  Ruiz  R.,  Torrico  C.,  Buoninsegna  M.,  Andreoni  F.,  Maccagno  B.,  De  Maio  G.,  Garelli  S.  Addressing  the  challenge  of  Chagas  Disease  in  

    7.  References  

 218  

a   nonendemic   country:   The   collaboration   between   Mèdicines   Sans  Frontieres   (MSF),   the   NGO   OikosCenter   and   the   Center   of   Tropical  Diseases   of   Sacro   Cuore   Hospital   (Negrar)   in   Bergamo   Province,   Italy.  Rev  EspSaludPublica  2013;  87:61-­‐62.  

59) Angheben  A,  Anselmi  M,  Gobbi  F,  Marocco  S,  Monteiro  G,  Buonfrate  D,  Tais  S,  Talamo  M,  Zavarise  G,  Strohmeyer  M,  Bartalesi  F,  Mantella  A,  Di  Tommaso  M,  Aiello  Kh,  Veneruso  G,  Graziani  G,  Ferrari  M,  Spreafico   I,  Bonifacio  E,  Gaiera  G,  Lanzafame  M,  Mascarello  M,  Cancrini  G,  Albajar-­‐Vinas   P,   Bisoffi   Z,   Bartoloni   A.   Chagas   disease   in   Italy:   breaking   an  epidemiological  silence.  Euro  Surveill.  2011;  16(37)  

60) Guerri-­‐Guttenberg   RA.,   Grana   D.R.,   Ambrosio   G.,   Milei   J.   Chagas  cardiomyopathy:  Europe   is  not  spared.  Eur  Heart   J.  2008;  29(21):2587-­‐2591.  

61) Yacoub   S.,   Mocumbi   AO.,Yacoub   MH.   Neglected   tropical   disease:   I.  Chagas  disease:  myocardial  disease.  Heart  2008;  94:244-­‐248  

62) Rassi   A.   Jr.,   Rassi   A.   Marin-­‐Neto   JA.   Chagas   disease.   Lancet   2010;  375:1388-­‐1402  

63) Munoz-­‐Saravia   S.G.,   Haberland   A.,   Wallukat   G.,   Schimke   I.   Chronic  Chagas’   heart   disease:   a   disease   on   its  way   to   becoming   a  worldwide  health  problem:   epidemiology,   etiopathology,   treatment,   pathogenesis  and  laboratory  medicine.  Heart  Fail  Rev.  2012;  17(1):45-­‐64  

64) Shikanai-­‐Yasuda  MA,  Carvalho  NB.  Oral  transmission  of  Chagas  disease.  Clin  Infect  Dis  2012;  54:845-­‐852.  

65) Perez-­‐Molina   JA,   Norman   F,   Lopez-­‐Velez   R.   Chagas   disease   in   non-­‐endemic   countries:   epidemiology,   clinical   presentation   and   treatment.  Curr  Infect  Dis  Rep  2012;  14:263-­‐274.  

66) Biolo  A.,  Ribeiro  AL.,  Clausell  N.  Chagas  cardiomyopathy-­‐Where  do  we  stand  after  a  hundred  years?  Progress  in  Cardiovascular  Disease.  2010;  52:300-­‐316  

67) Marin-­‐Neto  JA.,  Cunha-­‐Neto  E.,  Maciel  BC.,  Simoes  MV.  Pathogenesis  of  chronic  Chagas  heart  disease.  Circulation  2007;  115:1109-­‐1123.  

68) Rassi   AJr,   Rassi   A,   Little  WC,   Xavier   SS,   Rassi   SG,   Rassi   AG,   Rassi   GG,  Hasslocher-­‐Moreno   A,   Sousa   AS,   Scanavacca   MI.   Development   and  Validation  of  a  Risk  Score  for  Predicting  Death  in  Chagas’  Heart  Disease.  N.  Eng  J  Med  2006;  355:799-­‐808  

69) Pinazo   MJ,   Espinosa   G,   Cortes-­‐Lletget   C,   Posada   Ede   J,   Aldasoro   E,  Oliveira  I,  et  al.  Immunosuppression  and  chagas  disease:  a  management  challenge.  PLoS  Negl  Trop  Dis  2013;  7:e1965.  

70) Rocha  MOC.,  Teixeira  MM.,  Ribeiro  AL.  An  update  on  the  management  of  Chagas  cardiomyopathy.  Expert  Rev.  Anti  Infect.  2007;  5(4):727-­‐743  

71) Marin-­‐Neto   JA   ,   Rassi   A   Jr,   Morillo   CA,   Avezum   A,   Connolly   SJ,   Sosa-­‐Estani   S,   Rosas   F,   Yusuf   S.   Rationale   and   design   of   a   randomized  placebo-­‐controlled   trial   assessing   the   effects   of   etiologic   treatment   in  

    7.  References  

  219  

Chagas'  cardiomyopathy:  The  BENznidazole  Evaluation  For  Interrupting  Trypanosomiasis  (BENEFIT).  Am  Heart  J.  2008;  156(1):37-­‐43  

72) Bern   C.,   Montgomery   SP.,   Herwaldt   BL,   Rassi   A   Jr,   Marin-­‐Neto   JA.,  Dantas  RO.,  Maguire  JH.,  Acquatella  H.,  Morillo  C.,  Kirchhoff  LV.,  Gilman  RH.,   Reyes   PA.,   Salvatella   R.,  Moore   AC.   Evaluation   and   treatment   of  chagas   disease   in   the  United   States:   a   systematic   review.   JAMA.   2007  Nov  14;  298(18):2171-­‐2181.  

73) Perez-­‐Molina   JA,   Perez-­‐Ayala   A,   Moreno   S,   Fernandez-­‐Gonzalez   MC,  Zamora   J,   Lopez-­‐Velez  R.  Use  of  benznidazole   to   treat   chronic  Chagas'  disease:   a   systematic   review   with   a   meta-­‐analysis.   J  AntimicrobChemother  2009;  64:1139-­‐1147.  

74) SosaEstani,  S.,  E.  L.  Segura,  A.  M.  Ruiz,  E.  Velazquez,  B.  M.  Porcel,  and  C.  Yampotis.  Efficacy  of  chemotherapy  with  benznidazole  in  children  in  the  indeterminate  phase  of  Chagas’  disease.  Am.   J.  Trop.  Med.  Hyg.  1998;  59:526–529  

75) De   Andrade,   A.   L.,   F.   Zicker,   R.   M.   de   Oliveira,   S.   Almeida   Silva,   A.  Luquetti,   L.   R.   Travassos,   I.   C.   Almeida,   S.   S.   de   Andrade,   J.   G.   de  Andrade,   and   C.   M.   Martelli.   Randomized   trial   of   efficacy   of  benznidazole   in  treatment  of  early  Trypanosomacruzi   infection.  Lancet.  1998;  348:1407–1413.  

76) Roberti  RR,  Martinez  EE,  Andrade  JL,  et  al.  Chagas  cardiomyopathy  and  captopril.  Eur  Heart  J  1992;  13:966-­‐970.  

77) Botoni   FA,   Poole-­‐Wilson   PA,   Ribeiro   AL,   et   al.   A   randomized   trial   of  carvedilol   after   renin-­‐angiotensin   system   inhibition   in   chronic   Chagas  cardiomyopathy.  Am  Heart  J  2007;  153:544-­‐548  

78) Singh  SN.,  Fletcher  RD.,  Fisher  SG.,  Singh  BN,  Lewis  HD,  Deedwania  PC,  Massie  BM,  Colling  C,  Lazzeri  D.  Amiodarone  in  patients  with  congestive  heart  failure  and  asymptomatic  ventricular  arrhythmia.  Survival  Trial  of  Antiarrhythmic   Therapy   in   Congestive   Heart   Failure.   N.   Engl.   J.   Med  1995;  333(2):77-­‐82  

79) Rassi   A.   Jr.   Implantable   cardioverter-­‐defibrillators   in   patients   with  chagas   heart   disease:  misperceptions,  many   questions   and   the   urgent  need  for  a  randomized  clinical  trial.  J.  Cardiovasc.  Electrophysiol.  2007;  18:1241-­‐1243  

     

    7.  References  

 220  

Chapter  5:    Translational  Routes  from  Altered  Molecular  Homeostasis  to  Treatment  Opportunities    

1) Maron,  B.J.,  Hypertrophic  cardiomyopathy:  a  systematic  review.  JAMA,  2002;  287(10):  p.  1308-­‐1320.  

2) Bos,   J.M.,   lA.  Towbin,  and  M.J.  Ackerman.  Diagnostic,  prognostic,  and  therapeutic   implications   of   genetic   testing   for   hypertrophic  cardiomyopathy.  J  Am  Coli  Cardiol,  2009;  54(3):  p.  201-­‐211.    

3) Maron,   B.J.,   et   al.   Implantable   cardioverter-­‐defibrillators   and  prevention   of   sudden   cardiac   death   in   hypertrophic   cardiomyopathy.  Jama,  2007;  298(4):  p.  405-­‐412.  

4) Olivotto   l,   Girolami   F,   Nistri   S,   Rossi   A,   Rega   L,   Garbini   F,   Grifoni   C,  Cecchi   F,   Yacoub   MH.   The   Many   Faces   of   Hypertrophic  Cardiomyopathy:From   Developmental   Biology   to   Clinical   Practice.   J  Cardiovasc  Trans  Res,  2009;  2:349-­‐367    

5) Maron  MS,  Olivotto  I,  Betocchi  S,  Casey  SA,  Lesser  JR,  Losi  MA,  Cecchi  F,   Maron   BJ.   Effect   of   left   ventricular   outflow   tract   obstruction   on  clinical  outcome   in  hypertrophic  cardiomyopathy.  N  Engl   J  Med.  2003;  348:295-­‐303.  

6) Cecchi   F,   Olivotto   I,   et   al.   Coronary   microvascular   dysfunction   and  prognosis   in   hypertrophic   cardiomyopathy.   N   Engl   J   Med.   2003;  349:1027-­‐1035.    

7) Olivotto   I,   Cecchi   F,   Gistri   R,   Lorenzoni   R,   Chiriatti   G,   Girolami   F,  Torricelli   F,   Camici   PG.   Relevance   of   coronary   microvascular   flow  impairment   to   long-­‐term   remodeling   andsystolic   dysfunction   in  hypertrophic  cardiomyopathy.  J  Am  Coli  Cardiol.  2006;  47:1043-­‐1048.  

8) Olivotto  I,  Cecchi  F,  Casey  SA,  Dolara  A,  Traverse  JH,  Maron  BJ.  Impact  of   atrial   fibrillation   on   the   clinical   course   of   hypertrophic  cardiomyopathy.  Circulation.  2001;  104:2517-­‐2524  

9) Goldenberg  I.,  et  al.  Long-­‐QT  syndrome  after  age  40.  Circulation,  2008;  117(17):  p.  2192-­‐2201.    

10) Hobbs  JB,  et  al.  Risk  of  aborted  cardiac  arrest  or  sudden  cardiac  death  during   adolescence   in   the   long-­‐QT   syndrome.   Jama,   2006;  296(10):1249-­‐1254.    

11) Jouven   X.,   et   al.   Relation   between   QT   duration   and   maximal   wall  thickness   in   familial   hypertrophic   cardiomyopathy.   Heart,   2002;  88(2):153-­‐157.    

12) Martin   A.B.,   A.   Garson,   Jr.,   and   J.c.   Perry.   Prolonged   QT   interval   in  hypertrophic  and  dilated  cardiomyopathy  in  children.  Am  Heart  J,  1994;  127(1):64-­‐70.  

13) James  G.  McCormack,  Rick  L.  Barr,  Andrew  A.  Wolff,  Gary  D.  Lopaschuk.  Ranolazine   Stimulates   Glucose   Oxidation   in   Normoxic,   Ischemic,   and  Reperfused  Ischemic  Rat  Hearts.  Circulation,  1996;  93:  135-­‐142.  

    7.  References  

  221  

14) Antzelevitch  C,  Belardinelli  L,  Zygmunt  AC,  Burashnikov  A,  Di  Diego  JM,  Fish   JM,   Cordeiro   JM,   Thomas   G.   Electrophysiological   effects   of  ranolazine,   a   novel   antianginal   agent   with   antiarrhythmic   properties.  Circulation,  2004;  110(8):  904-­‐910.  

15) Scirica  BM,  Morrow  DA,  Hod  H,  Murphy  SA,  Belardinelli   L,  Hedgepeth  CM,   Molhoek   P,   Verheugt   FW,   Gersh   BJ,   McCabe   CH,   Braunwald   E.  Effect   of   ranolazine,   an   antianginal   agent   with   novel  electrophysiological   properties,   on   the   incidence   of   arrhythmias   in  patients   with   non   ST-­‐segment   elevation   acute   coronary   syndrome:  results  from  the  Metabolic  Efficiency  With  Ranolazine  for  Less  Ischemia  in   Non   ST-­‐Elevation   Acute   Coronary   Syndrome   Thrombolysis   in  Myocardial  Infarction  36  (MERLIN-­‐TIMI  36)  randomized  controlled  trial.  Circulation,  2007;  116(15):  1647-­‐1652.  

16) Sossalla   S,  Wagner   S,   Rasenack   EC,   Ruff  H,  Weber   SL,   Schöndube   FA,  Tirilomis   T,   Tenderich   G,   Hasenfuss   G,   Belardinelli   L,   Maier   LS.  Ranolazine  improves  diastolic  dysfunction  in  isolated  myocardium  from  failing  human  hearts.  Role  of   late  sodium  current  and   intracellular   ion  accumulation.  J  Mol  Cell  Cardiol,  2008;  45(1):  32-­‐43  

17) Coppini  R,  Ferrantini  C,  Yao  L,  Fan  P,  Del  Lungo  M,  Stillitano  F,  Sartiani  L,   Tosi   B,   Suffredini   S,   Tesi   C,   Yacoub   M,   Olivotto   I,   Belardinelli   L,  Poggesi  C,  Cerbai  E,  Mugelli  A.  Late  sodium  current   inhibition  reverses  electromechanical  dysfunction  in  human  hypertrophic  cardiomyopathy.  Circulation.  2013  Feb  5;  127(5):575-­‐584.  

18) Rastogi   S,   Sharov  VG,  Mishra  S,  Gupta  RC,  Blackburn  B,  Belardinelli   L,  Stanley   WC,   Sabbah   HN.   Ranolazine   combined   with   enalapril   or  metoprolol  prevents  progressive  LV  dysfunction  and  remodeling  in  dogs  with   moderate   heart   failure.   Am   J   Physiol   Heart   Circ   Physiol.   2008;  295:H2149-­‐2155.  

19) Deshmukh  SH,  Patel  SR,  Pinassi  E,  Mindrescu  C,  Hermance  EV,  Infantino  MN,  Coppola  JT,  Staniloae  CS.  Ranolazine  improves  endothelial  function  in  patients  with  stable  coronary  artery  disease.  Coron  Artery  Dis.  2009;  20:343-­‐347.  

20) Olivotto  I,  Girolami  F,  Ackerman  MJ,  Nistri  S,  Bos  JM,  Zachara  E,  et  al.  Myofilament  protein  gene  mutation  screening  and  outcome  of  patients  with   hypertrophic   cardiomyopathy.   Mayo   Clin.   Proc.   2008   Jun;  83(6):630–638.  

21) Maron   BJ,   Maron   MS,   Semsarian   C.   Genetics   of   hypertrophic  cardiomyopathy   after   20   years:   clinical   perspectives.   J.   Am.   Coll.  Cardiol.   [Internet].   American   College   of   Cardiology   Foundation;   2012  Aug  21  [cited  2012  Oct  7];  60(8):705–715.  

22) Ali  J.  Marian.  Experimental  Therapies  in  Hypertrophic  Cardiomyopathy.  J.  of  Cardiovasc.  Trans.  Res.  (2009)  2:483–492.  

23) Lin   G,   Nishimura   RA,   Gersh   BJ,   Ommen   S,   Ackerman   M,   Brady   PA.  Device   complications   and   inappropriate   implantable  

    7.  References  

 222  

cardioverterdefibrillator   shocks   in   patients   with   hypertrophic  cardiomyopathy.  Heart.  2009;  95:709  –714.  

24) Maron  BJ,  Spirito  P.  Implantable  defibrillators  and  prevention  of  sudden  death   in   hypertrophic   cardiomyopathy.   J   Cardiovasc   Electrophysiol.  2008;  19:1118  –1126.  

25) Berul   CI,   Van   Hare   GF,   Kertesz   NJ,   Dubin   AM,   Cecchin   F,   Collins   KK,  Cannon   BC,   Alexander   ME,   Triedman   JK,   Walsh   EP,   Friedman   RA.  Results   of   a   multicenter   retrospective   implantable  cardioverterdefibrillator   registry   of   pediatric   and   congenital   heart  disease  patients.  J  Am  Coll  Cardiol.  2008;  51:1685–1691.  

26) Maisel   WH.   Transvenous   implantable   cardioverter-­‐defibrillator   leads:  the  weakest  link.  Circulation.  2007;  115:2461–2463.  

27) Jayatilleke   I,   Doolan   A,   Ingles   J,   McGuire  M,   Booth   V,   Richmond   DR,  Semsarian   C.   Long-­‐term   follow-­‐up   of   implantable   cardioverter  defibrillator   therapy   for   hypertrophic   cardiomyopathy.   Am   J   Cardiol.  2004;  93:1192–1194.  

28) Tereshchenko  LG,  Faddis  MN,  Fetics  BJ,  Zelik  KE,  Efimov  IR,  Berger  RD.  Transient   local   injury   current   in   right   ventricular   electrogram   after  implantable   cardioverter-­‐defibrillator   shock   predicts   heart   failure  progression.  J  Am  Coll  Cardiol  2009;  54:822-­‐828.  

29) Xie   J,   Weil   MH,   Sun   S,   et   al.   Highenergy   defibrillation   increases   the  severity  of  postresuscitation  myocardial  dysfunction.  Circulation  1997;  96:683-­‐688.  

30) Poole   JE,   Johnson   GW,   Hellkamp   AS,   et   al.   Prognostic   importance   of  defibrillator   shocks   in   patients  with   heart   failure.  N   Engl   J  Med  2008;  359:1009-­‐1017.  

31) Moss   AJ,   Schuger   C,   Beck   CA,   Brown   MW,   Cannom   DS,   Daubert   JP,  Estes   NA   3rd,   Greenberg   H,   Hall   WJ,   Huang   DT,   Kautzner   J,   Klein   H,  McNitt  S,  Olshansky  B,  Shoda  M,  Wilber  D,  Zareba  W,  MADIT-­‐RIT  Trial  Investigators.  Reduction  in  inappropriate  therapy  and  mortality  through  ICD  programming.  N  Engl  J  Med.  2012  Dec  13;  367(24):2275-­‐2283  

32) Bardy   GH,   Smith   WM,   Hood   MA,   Crozier   IG,   Melton   IC,   Jordaens   L,  Theuns  D,   Park   RE,  Wright  DJ,   Connelly  DT,   Fynn   SP,  Murgatroyd   FD,  Sperzel   J,   Neuzner   J,   Spitzer   SG,   Ardashev   AV,   Oduro   A,   Boersma   L,  Maass  AH,  Van  Gelder  IC,  Wilde  AA,  van  Dessel  PF,  Knops  RE,  Barr  CS,  Lupo   P,   Cappato   R,   Grace   AA.   An   entirely   subcutaneous   implantable  cardioverter-­‐defibrillator.  N  Engl  J  Med.  2010  Jul  1;  363(1):36-­‐44.  

33) Germain  DP.  Fabry  disease.  Orphanet  J  Rare  Dis  2010;  5:30-­‐79.  34) Cecchi  F,  Tomberli  B,  Morrone  A.  Anderson  Fabry  disease,  the  histrionic  

disease:   from  genetic  to  clinical  management.  Cardiogenetics,  2013;  3  (1s),  e3.  

35) Porto  C,  Pisani  A,  Rosa  M,  Acampora  E,  Avolio  V,  Tuzzi  MR,  Visciano  B,  Gagliardo   C,   Materazzi   S,   la   Marca   G,   Andria   G,   Parenti   G.   Synergy  between   the   pharmacological   chaperone   1-­‐deoxygalactonojirimycin  

    7.  References  

  223  

and   the   human   recombinant   alphagalactosidase   A   in   cultured  fibroblasts  from  patients  with  Fabry  disease.  J  Inherit  Metab  Dis  2012;  35:513–520.  

36) IShii  BS.  Pharmacological  chaperone  therapy  for  Fabry  disease.  In  Vitro.  2012;  88:18–30.  

37) Sugawara   K,   Tajima   Y,   Kawashima   I,   Tsukimura   T,   Saito   S,   Ohno   K.  Molecular   interaction   of   imino   sugars   with   human   a   -­‐galactosidase   :  Insight  into  the  mechanism  of  complex  formation  and  pharmacological  chaperone   action   in   Fabry   disease.   Mol.   Genet.   Metab.   2009;  96(4):233–238.    

38) Waldek   S,   Germain   DP,   Wanner   C,   Warnock   DG,   Deegan   P.   Enzyme  replacement  therapy  for  Fabry’s  disease.  Lancet  [Internet].  Elsevier  Ltd;  2010  May  [cited  2010  Aug  24];  375(9725):1523–1523  

39) Brady   R.   Enzyme   replacement   therapy:   conception,   chaos   and  culmination.   Philos.   Trans.   R.   Soc.   Lond.   B.   Biol.   Sci.   [Internet].   2003  May  [cited  2010  Aug  28];  358(1433):915–919  

40) Wu  X,  Katz  E,  Valle  C  Della,  Mascioli  K,  Flanagan  J,  Castelli   JP,  et  al.  A  pharmacogenetic  approach  to  identify  mutant  forms  of  α-­‐galactosidase  a  that  respond  to  a  pharmacological  chaperone  for  Fabry  disease.  Hum.  Mutat..  2011  May  [cited  2011  Jun  4];  

41) Yam  GH-­‐F,  Bosshard  N,  Zuber  C,  Steinmann  B,  Roth  J.  Pharmacological  chaperone   corrects   lysosomal   storage   in   Fabry   disease   caused   by  trafficking-­‐incompetent  variants.  Am.  J.  Physiol.  Cell  Physiol.  [Internet].  2006  Apr  [cited  2010  Aug  28];  290(4):C1076–1082.  

42) Shin  S,  Murray  G,  Kluepfel-­‐Stahl  S,  AM.  Screening  for  pharmacological  chaperones   in   fabry   disease.   Biochem..   2007   [cited   2010   Aug   27];  359(1):168–173.  

43) Kolter   T,   Wendeler   M.   Chemical   chaperones-­‐-­‐a   new   concept   in   drug  research.  Chembiochem  .  2003  Apr;  4(4):260–264.    

44) Galina  Kuznetsov,  Sanjay  K.  Nigam.  Folding  of  Secretory  and  Membrane  Proteins.  N  Engl  J  Med  1998;  339:1688-­‐1695.  

45) Benjamin  ER,  Khanna  R,  Schilling  A,  Flanagan  JJ,  Pellegrino  LJ,  Brignol  N,  et   al.  Co-­‐administration  With   the  Pharmacological   Chaperone  AT1001  Increases   Recombinant   Human   α-­‐Galactosidase   A   Tissue   Uptake   and  Improves   Substrate   Reduction   in   Fabry   Mice.   Mol.   Ther.   [Internet].  Nature  Publishing  Group;  2009.  

46) Khanna   R,   Soska   R,   Lun   Y,   Feng   J,   Frascella   M,   Young   B,   et   al.   The  pharmacological   chaperone   1-­‐deoxygalactonojirimycin   reduces   tissue  globotriaosylceramide   levels   in  a  mouse  model   of   Fabry  disease.  Mol.  Ther.   [Internet].   Nature   Publishing   Group;   2010   Jan   [cited   2010   Aug  26];  18(1):23–33.    

47) Shen   JS,   Edwards   NJ,   Hong   YB,   Murray   GJ.   Isofagomine   increases  lysosomal  delivery  of  exogenous  glucocerebrosidase.  Biochem  Biophys  Res  Commun  2008;  369:  1071-­‐1075.  

    7.  References  

 224  

Chapter  6:  Conclusive  remarks    

1) Force   T,   Bonow  RO,  Houser   SR,   Solaro   RJ,   Hershberger   RE,   Adhikari   B,  Anderson  ME,  Boineau  R,  Byrne  BJ,  Cappola  TP,  Kalluri  R,  LeWinter  MM,  Maron   MS,   Molkentin   JD,   Ommen   SR,   Regnier   M,   Tang   WH,   Tian   R,  Konstam  MA,  Maron  BJ,  Seidman  CE.  Research  Priorities  in  Hypertrophic  Cardiomyopathy.   Report   of   a   Working   Group   of   the   National   Heart,  Lung,  and  Blood  Institute.  Circulation.  2010  Sep  14;122(11):1130-­‐3.  

   

8.  Publications    

 

   

8.  Publications  

 226  

   

 

 

“If the facts don`t fit the theory,

change the facts”

Albert Einstein d

   

8.  Publications  

 227  

8.1    List  of  publications    

1. Tomberli  B,  Cecchi  F,  Sciagrà  R,  Berti  V,  Lisi  F,  Torricelli  F,  Morrone  A,  Castelli   G,   Yacoub   MH,   Olivotto   I.   “Coronary   microvascular  dysfunction  is  an  early  feature  of  cardiac  involvement  in  patients  with  Anderson-­‐Fabry  disease.”  Eur  J  Heart  Fail  2013  Dec;  15(12):1363-­‐73.    [Full  text  in  section    8.2]  

2. Olivotto   I,  Maron   BJ,   Tomberli   B,   Appelbaum   E,   Salton   C,   Haas   TS,  

Gibson   M,   Nistri   S,   Servettini   E,   Chan   RH,   Udelson   JE,   Lesser   JR,  

Cecchi   F,   Manning  WJ,   Maron  MS.   “Obesity   and   its   Association   to  Phenotype   and   Clinical   Course   in   Hypertrophic   Cardiomyopathy.   “   J  Am  Coll  Cardiol  2013  Jul  30;62(5):449-­‐57.  [Full  text  in  section    8.2]  

3. Castelli   G,   Fornaro  A,   Ciaccheri  M,  Dolara  A,   Troiani   V,   Tomberli   B,  

Olivotto   I,   Gensini   GF.   “Improving   survival   rates   of   patients   with  idiopathic   dilated   cardiomyopathy   in   Tuscany   over   three   decades:  impact  of  evidence  based  medicine”.  Circulation  Heart   Failure  2013  

Sep  1;6  (5):913-­‐21.  [Full  text  in  section    8.2]  

4. D'Amato  R,  Tomberli  B,  Castelli  G,  Spoladore  R,  Girolami  F,  Fornaro  

A,   Caldini   A,   Torricelli   F,   Camici   P,   Gensini   GF,   Cecchi   F,   Olivotto   I.  

“Prognostic   Value   of   N-­‐Terminal   Pro-­‐Brain   Natriuretic   Peptide   in  Outpatients  With  Hypertrophic  Cardiomyopathy”.  Am  J  Cardiol.  2013  

Oct  15;112  (8):1190-­‐1196.  [Full  text  in  section    8.2]  

5. Cecchi   F,   Tomberli   B,   Morrone   A.   “Anderson   Fabry   disease,   the  histrionic   disease:   from   genetic   to   clinical   management.”  

Cardiogenetics,  2013,  3  (1s),  e3.  [Full  text  in  section    8.2]  

6. Olivotto   I,   Tomberli  B,   Spoladore  R,  Mugelli  A,  Cecchi   F,  Camici  PG.  

“Hypertrophic   cardiomyopathy:   the   need   for   randomized   trials”.  Global  Cardiology  Science  and  Practice  2013:31.  [Full  text  in  section    

8.2]  

7. Tomberli   B,   Girolami   F,   Coppini   R,   Ferrantini   C,   Rossi   A,   Cecchi   F,  

Olivotto   I.   “Management   of   refractory   symptoms   in   hypertrophic  

8.  Publications  

 228  

cardiomyopathy  with  restrictive  pathophysiology:  novel  perspectives  for  ranolazine”.  [Article  in  Italian]  G  Ital  Cardiol  (Rome)  2012  Apr;13  

(4):297-­‐303.  [Full  text  in  section    8.2]  

8. Cecchi  F,  Tomberli  B,  Olivotto  I.  “Clinical  and  molecular  classification  of  cardiomyopathies.”  Review  article.  Global  Cardiology  Science  and  

Practice  2012.  Vol.  2012  1,  4.  [Full  text  in  section    8.2]  

9. Girolami   F,   Bardi   S,   Berti   L,   Cecchi   F,   Servettini   E,   Tomberli   B.,  

Torricelli   F,   Olivotto   I.   ”Rilevanza   clinica   del   test   genetico   nella  

cardiomiopatia   ipertrofica”   [Clinical   relevance   of   genetic   testing   in  hypertrophic   cardiomyopathy].  Recenti   progressi   in  medicina,  2011  

vol.  102;  p.  486-­‐493.  [Full  text  in  section    8.2]  

10. Chan  RH,  Maron  BJ,  Olivotto  I,  Assenza  EG,  Lesser  JR,  Haas  T,  Gruner  

C,   Crean   AM,   Rakowski   H,   Udelson   JE,   Rowin   E,   Lombardi   M,  

Tomberli   B,   et   al.   “Prognostic   Utility   of   Quantitative   Contrast-­‐Enhanced   Cardiovascular   Magnetic   Resonance   in   Hypertrophic  

Cardiomyopathy.”  Sumbitted.  [Abstract  in  section    8.2]  

11. Vannucchi  V,  Tomberli  B,  Zammarchi  L,  Fornaro  A,  Castelli  G,  Pieralli  

F,  Berni  B,  Yacoub  S,  Bartoloni  A,  Olivotto  I.  “Chagas  disease  as  a  cause  of  heart  failure  and  ventricular  arrhythmias  in  patients  long  removed  from  endemic  areas:  an  emerging  problem  in  Europe”.  Journal  of  Cardiovascular  Medicine,  in  press.  [Abstract  in  section    

8.2]  

12. Girolami   F,   Iascone  M,   Tomberli   B,  Bardi   S.   Benelli  M,  Marseglia  G,  

Pescucci   C,   Pezzoli   L,   Sana  ME,   Basso   C,  Marziliano   N,  Merlini   P.A,  

Fornaro   A,   Cecchi   F,   Torricelli   F,   Olivotto   I.   “Novel   alpha-­‐actinin-­‐2  variant   associated   with   familial   hypertrophic   cardiomyopathy   and  juvenile   atrial   arrhythmias:   a   massively   parallel   sequencing   study”.  

Submitted.  [Abstract  in  section    8.2]  

13. Coppini  R,  Ho  CY,  Ashley  E,  Day  S,  Ferrantini  C,  Girolami  F,  Tomberli  

B,   Bardi   S,   Torricelli   F,   Cecchi   F,   Poggesi   C,   Tardiff   J,   Olivotto   I.”  

8.  Publications  

 229  

Clinical   phenotype   and   outcome   of   Hypertrophic   Cardiomyopathy  associated   with   sarcomere   thin   filament   gene   mutations”.  

Submitted.  [Abstract  in  section    8.2]  

14. Tomberli  B,  Olivotto  I,  Ferrantini  C,  Coppini  R,  Fornaro  A,  Girolami  F,  

Castelli   G,   Pieragnoli   P,   Padeletti   L,   Cecchi   F.   “Outcome   of  Hypertrophic   Cardiomyopathy   associated   with   sarcomere   protein  gene   mutations:   impact   of   the   Implantable   Cardioverter-­‐

Defibrillator”.  [Abstract  in  section    8.2]  

15.  B.  Tomberli,  A.  Fornaro,  S.  Bardi,  F.  Torricelli,  M.  Benelli,  C.  Pescucci,  

F.   Cecchi,   F.   Girolami,   I.   Olivotto.   “A   novel   desmoplakin   dominant  mutation   responsible   for   Carvajal/Naxos   syndrome   identified   by  

exome  sequencing”.  [Abstract  in  section    8.2]    

16. E.J.   Rowin,   B.   Tomberli,   A.   Arretini,   B.J.   Maron,   S.A.   Casey,   R.  

Garberich,   M.S.   Link,   R.H.M.   Chan,   E.   Appelbaum,   J.R.   Lesser,   J.E.  

Udelson,  M.S.  Maron,  F.  Cecchi,   I.  Olivotto.  “Prevalence  and  clinical  significance   of   heart   failure   symptoms   in   patients   with  nonobstructive   hypertrophic   cardiomyopathy”.   [Abstract   in   section    

8.2]  

17. Girolami   F,   Tomberli   B,   Bardi   S,   Berti   L,   Pippucci   T,   ,   Cecchi   F,  

Torricelli   F,   Olivotto   I.   “Outcome   of   hypertrophic   cardiomyopathy  associated   to   MYBPC3   mutations:   a   founder   effect   in   Tuscany”.  

[Abstract  available  in  section    8.2].    

18. Fornaro  A,  Castelli  G,  Ciaccheri  M,  Tomberli  B,  Olivotto  I,  Gensini  GF.  

“Survival   of   chemotherapy-­‐induced   cardiomyopathy   in   the   last   two  

decades”.  [Abstract  available  in  section    8.2]  

 

   

8.  Publications  

 230  

8.2    Full-­‐text  papers  and  abstracts    

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coronary microvascular dysfunction is an earlyfeature of cardiac involvement in patients withAnderson–Fabry diseaseBenedetta Tomberli1,2*, Franco Cecchi1, Roberto Sciagra3, Valentina Berti3,Francesca Lisi4, Francesca Torricelli5, Amelia Morrone6, Gabriele Castelli2,Magdi H. Yacoub7, and Iacopo Olivotto1,2

1Department of Clinical and Experimental Medicine, University of Florence, Italy; 2Referral Center for Myocardial Diseases, Department of Cardiology, Careggi University Hospital,Florence, Italy; 3Nuclear Medicine Unit, Department of Clinical Physiopathology, Careggi University Hospital, Florence, Italy; 4Department of Radiology, Careggi University Hospital,Florence, Italy; 5Unit for Genetic Diagnosis, Careggi University Hospital, Florence, Italy; 6Metabolic and Muscular Unit, Clinic of Pediatric Neurology, Meyer University Hospital, Florence,Italy; and 7Heart Science Centre, Imperial College London, Harefield, UK

Received 27 February 2013; revised 31 May 2013; accepted 7 June 2013

Aims Male patients with Anderson–Fabry disease (AFD) often exhibit cardiac involvement, characterized by LV hypertrophy(LVH), associated with severe coronary microvascular dysfunction (CMD). Whether CMD is present in patients withoutLVH, particularly when female, remains unresolved. The aim of the study was to investigate the presence of CMD by posi-tron emission tomography (PET) in AFD patients of both genders, with and without evidence of LVH.

Methodsand results

We assessed myocardial blood flow following dipyridamole infusion (Dip-MBF) with 13N-labelled ammonia by PET in 30AFD patients (age 51+ 13 years; 18 females) and in 24 healthy controls. LVH was defined as echocardiographic maximalLV wall thickness ≥13 mm. LVH was present in 67% of patients (n ¼ 20; 10 males and 10 females). Dip-MBF was reducedin all patients compared with controls (1.8+ 0.5 and 3.2+0.5 mL/min/g, respectively, P , 0.001). For both genders,flow impairment was most severe in patients with LVH (1.4+0.5 mL/min/g in males and 1.9+0.5 mL/min/g infemales), but was also evident in those without LVH (1.8+ 0.3 mL/min/g in males and 2.1+ 0.4 mL/min/g in females;overall P ¼ 0.064 vs. patients with LVH). Analysis of variance (ANOVA) for the 17 LV segments showed marked regionalheterogeneity of MBF in AFD (F ¼ 4.46, P , 0.01), with prevalent hypoperfusion of the apical region. Conversely, con-trols showed homogeneous LV perfusion (F ¼ 1.25, P ¼ 0.23).

Conclusions Coronary microvascular function is markedly impaired in AFD patients irrespective of LVH and gender. CMD mayrepresent the only sign of cardiac involvement in AFD patients, with potentially important implications for clinicalmanagement.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Keywords Fabry disease † Coronary microvascular dysfunction † PET † Early phenotype

Introduction

Anderson–Fabry disease (AFD) is an X-linked disorder of glyco-sphingolipid catabolism caused by deficient or absent activity of thelysosomal enzyme a-galactosidase A (a-gal A). AFD is considereda rare disease, with a reported prevalence in the general populationof � 1:117 000.1,2 Recently, however, newborn screening initiatives

have found an unexpectedly high prevalence of AFD, as high as 1 in�3900 newborns,3,4 suggesting that previous figures may representa substantial underestimate.

As a consequence of a-gal A deficiency, progressive accumulationof globotriaosylceramide (Gb3) occurs in various tissues throughoutthe body, including the endothelium, and is associated with proteanclinical manifestations, including renal failure, juvenile stroke, dys-pnoea, angina, and sudden cardiac death.5,6 Cardiac involvement

* Corresponding author. Dipartimento Cuore e vasi, San Luca Vecchio, Centro di Riferimento Cardiomiopatie, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134,Firenze, Italy. Tel +39 055 7945138, Fax +39 055 7949335, Email: [email protected]

Published on behalf of the European Society of Cardiology. All rights reserved. & The Author 2013. For permissions please email: [email protected].

European Journal of Heart Failuredoi:10.1093/eurjhf/hft104

European Journal of Heart Failure Advance Access published June 30, 2013 by guest on July 1, 2013

http://eurjhf.oxfordjournals.org/D

ownloaded from

has been described in both genders and is mainly characterized byvariable degrees of LV hypertrophy (LVH) and interstitial fibrosis.7

Although commonly classified as a storage disease of the heart,AFD cardiomyopathy is characterized by true LVH, as Gb3 accumu-lation only accounts for a very limited proportion of cardiac mass in-crease.8

Coronary microvascular dysfunction (CMD) is an importantfeature of AFD cardiomyopathy, accounting for the considerableprevalence of angina, in the absence of epicardial coronarydisease.8,9 CMD has mostly been described in male AFD patientswith LVH.9– 11 However, in patients with sarcomeric hypertrophiccardiomyopathy, a different model of genetically determined LVH,CMD is a diffuse phenomenon within the LV, may involve non-hypertrophied LV walls, and may possibly precede LVH develop-ment.12–15 Whether CMD may be present in AFD patientswithout LVH remains unresolved. Furthermore, the prevalenceand severity of CMD in female AFD patients, generally exhibitingmore subtle cardiac manifestation than men, are undefined. Bothissues are potentially relevant to early diagnosis of AFD cardiomyop-athy and long-term risk stratification.12–15

Thus, the present study was undertaken to investigate coronarymicrovascular function in a cohort of male and female AFD patientsat different stages of disease, with and without evidence of LVH, inorder to assess whether CMD may occur independently of LVHand in the absence of any other sign of cardiomyopathy. We there-fore assessed maximal global and regional myocardial blood flowafter dipyridamole (Dip-MBF), as an expression of coronary micro-vascular function, using positron emission tomography (PET).

Methods

Study populationThirty patients from 13 families (12 males, 18 females; mean age 51+13years) with AFD were included in a cross-sectional study. Diagnosis wasbased on measurement ofa-gal A enzyme activity in leucocytes and con-firmed by direct sequencing of the a-gal A gene (GLA gene) on genomicDNA isolated from whole blood. Enzyme activity and genetic analysiswere assessed as previously described.16 In two patients (individual II-1from family 3 and individual III-7 from family 7), the final diagnosis ofAFD was achieved by means of endomyocardial biopsy from the rightinterventricular septum. Between 2006 and 2010, all patients underwentthorough cardiac evaluation by clinical examination, resting ECG, Holtermonitoring, and two-dimensional (2D) echocardiography includingtissue Doppler analysis.

Coronary microvascular function was assessed by PET as describedbelow. CAD was excluded in AFD patients at the time of enrolment bymaximal, symptom-limited treadmill or cycloergometer exercise test,in asymptomatic patients with low pre-test probability (i.e. young andwithout cardiovascular risk factors), followed by coronary angiographyor computed tomography (CT)-angiography in the presence of a positiveor dubious test result; patients with a high risk profile and/or angina weredirectly referred for coronary angiography or CT-angiography. Further-more, patients with diabetes were excluded. The same study protocolwas employed in 24 healthy controls, who were investigated for exclu-sion of heart disease, and were comparable with the patients in termsof gender and age (13 males and 11 females, P ¼ 0.55 vs. patients; age46+16 years, P ¼ 0.23 vs. patients). Healthy controls had no evidenceof cardiomyopathy, with normal ECG, echocardiographic examination,

and without common cardiovascular risk factors. The study protocolwas approved by the local research ethics committee, and writteninformed consent in lay Italian language was obtained from eachsubject included in the study

EchocardiographyStandard echocardiographic studies were performed with commerciallyavailable instruments. Clinical diagnosis of LVH was based on the demon-stration by 2D echocardiogram of a hypertrophied and non-dilated LV(wall thickness ≥ 13 mm) in the absence of another cardiac or systemicdisease capable of producing a similar degree of hypertrophy. The LVend-diastolic and end-systolic diameter, left atrial diameter, and magni-tude and distribution of LVH were assessed as previously described.17

In all patients, maximum LV wall thickness values were measured at thetime of PET. The LVEF was measured in the standard four-chamberviewby thearea–lengthmethod. Obstruction of theLVoutflowwascon-sidered present when a peak outflow gradient of ≥ 30 mmHg waspresent under basal conditions. Diastolic function was assessed accord-ingly to current guidelines.18

Positron emission tomographyAll cardiac PET scans were performed in the Nuclear Medicine Labora-tory (Nuclear Medicine Unit, Department of Clinical Physiopathology,Careggi University Hospital) in Florence between 2006 and 2011, afteran appropriate period of pharmacological wash-out for patients receivingpharmacological treatment. Patients were positioned on the couch of thePET scanner (General Electrics Advance PET, Milwaukee, WI, USA) and a5 min transmission scan was recorded for subsequent attenuation correc-tion of emission data, according to a previously described procedure.19

Then, near maximal hyperaemia was induced by i.v. administration ofdipyridamole (0.56 mg/kg of body weight over 4 min). Three minutes fol-lowing theendofdipyridamole infusion, abolusof370MBqofnitrogen-13ammonia (13N-labelled ammonia) diluted in 10 mL of saline solution wasinjected i.v. over a period of 15–20 s and followed by a 10 mL saline solu-tion flush at a rate of 2 mL/s. A dynamic scan with 15 frames of increasingduration was acquired for4 min, followed bya prolonged static acquisitionof 15min. Particular carewas taken toavoid anypatient motion in order tominimize possible misalignment problems between transmission andemission scans. Data were analysed with an operator interactive com-puter program [PMOD Cardiac Modelling (PCARD), version 3.3,PMOD Technologies, Zurich, Switzerland]. Briefly, anatomic imageswere reconstructed using the static acquisition, and reoriented accordingto the heart axis. After reconstruction, the dynamic images were reor-iented as well. On the short axis slices, regions of interest were manuallydrawn including: (i) therightventricularcavity; (ii) theLVcavity; and(iii) theLV wall from the apex through the base (identified by the appearance ofthe membranous septum). The regions of interest were edited by thestandard PMOD volume of interest (VOI) tool to derive the relatedVOIs. The three VOIs were then copied on all 13N-labelled ammoniadynamic images to extract the corresponding time–activity curves. Thearterial input function was obtained from the LV cavity time–activitycurve. The myocardial uptake was derived from the LV wall VOI. Myocar-dial perfusion was calculated from model fitting of the arterial input func-tion and tissue time–activity curves.20 The LV wall was divided into 17segments: septal (apical septal, midinferoseptal, midanteroseptal, basalinferoseptal, and basal anteroseptal), anterior (apical anterior, midanter-ior, and basal anterior), lateral (apical lateral, midlateral, and basal lateral),inferior (apical inferior, midinferolateral, midinferior, basal inferolateral,and basal inferior), and apical.21 Mean hyperaemic MBF for the entireleft ventricle was obtained by volume-weighted averaging of the 17 LVsegment territories (apex, septum, anterior, lateral, and inferior).

B. Tomberli et al.Page 2 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

All images studies were analysed by one expert observer (R.S.), blinded topatients’ genetic, clinical, and echocardiographic data.

Statistical analysisData are expressed as mean+ standard deviation. Two-tailed unpairedStudent’s t-testwasemployed for the comparison of normally distributeddata. x2 or Fisher’s exact test, as appropriate, were utilized to comparenon-continuous variables expressed as proportions. Independent deter-minants of CMD were evaluated by logistic regression analysis. P-valuesare two-sided and considered significant when ,0.05. Calculationswere performed using the SPSS 12.0 software (Chicago, IL, USA).

Results

Demographic features and mutationalstatusThe mean age of the 30 AFD patients, at the time of PET, was 51+13years (range 23–75); 12 patients (40%) were male (Table 1). Geneticanalysis identified 11 distinct mutations in the GLA gene (Table 2,Figure 1); three index patients and seven family members sharedthe c.644A . G GLA gene mutation leading to the p.Asn215Seramino acid substitution. As expected, mean a-gal A activity in leuco-cytes was lower in males than in females (2.1+ 1.4 vs. 21+12 nmol/mg/h, respectively; P , 0.001); conversely, mean levels were com-parable in patients with and without echocardiographic evidence ofLVH (13+13 and 14+14 nmol/mg/h, respectively; P ¼ 0.75).The two patients with endomyocardial biopsy, both with echocar-diographic evidence of LVH, had typical AFD histological findings.

Overall, 8 hadahistoryof smoking, 5werecurrent smokers, and11had hypercholesterolaemia (Table 1). Three patients were obese[body mass index (BMI) .30; 10%], while hypertension, well con-trolled by medical therapy, was present in 12 patients (40%)without differences between the two subgroups. Evidence of extra-cardiac involvement was present in 19 patients (63%) (detailed inTable 2): 12 patients (40%, 9 males) had proteinuria, 5 males hadmild to moderate renal impairment (17%), and 2 patients (6%, 1male) underwent renal transplantation. Five patients had priorstroke (17%, 2 males), while neuropathic pain was present in 11patients (37%, 5 males). Nine patients with angina and dubiousstress test underwent coronary angiogram or coronaryCT-angiogram (as reported in Table 2), in order to exclude epicardialCAD. In the remaining patients, coronary disease was excluded bysymptom-limited exercise test.

Eleven patients (37%) were receiving enzyme replacementtherapy (ERT) at the time of the study, eight patients with LVH andthree without LVH. Most patients were on ACE inhibitors/ARBs(57%) and antiplatelet agents (43%), whereas only a minority wereon beta-blockers or calcium channel antagonists (17% for each class).

Evidence of Anderson–Fabry diseasecardiomyopathyTwentyof the 30 AFD patients (67%, 10 males, 10 females) had echo-cardiographic evidence of LVH, with a maximum LV wall thicknessvalue of 20+4 mm (range 13–27 mm). The remaining 10 patients(33%, 2 males, 8 females) had normal LV wall thickness values.Most patients with LVH (76%) had ECG abnormalities compatible

with LV hypertrophy/strain. Conversely, only one of the patientswithout LVH (10%) had an abnormal ECG morphology (Table 1).

Compared with patients without LVH, those with LVH were moreoften males (10/20 or 50% vs. 2/10 or 20% respectively,P ¼ 0.23) andmore often symptomatic for chest pain or dyspnoea (P , 0.05 forboth; Table 1). Patients with LVH had larger atrial volumes andmore frequent evidenceofdiastolic dysfunction.Noneof thepatientshad LV outflow tract obstruction at rest. Of note, patients with LVHwere older (56+9 years vs. 42+ 16 in those without LVH, P ¼0.005), with a strong direct relationship between age and degree ofhypertrophy, particularly in males, suggesting age-related develop-ment of AFD cardiomyopathy (Figure 2A). Finally, 8 of the 10 patientswithout LVH (i.e. 7 females and 1 males) showed normal tissueDoppler imaging mitral septal annulus velocities (adjusted per age)and absence of late gadolinium enhancement (LGE) at cardiac mag-netic resonance imaging (MRI).

Evidence of coronary microvasculardysfunction by positron emissiontomographyCoronary microvascular response to dipyridamole was blunted in allAFD patients, as compared with control subjects (1.8+0.5 and3.2+ 0.5 mL/min/g, respectively; P , 0.001) (Figure 3). Dip-MBF inAFD patients ranged from 0.8 to 2.6 mL/min/g, and was ,1.25 mL/min/g, reflecting severe impairment of coronary microvascular func-tion, in 7 patients (23%). Patients with LVH invariably showed markeddegrees of CMD (Figure 2B). However, patients without LVH alsoshowed blunted Dip-MBF values, ranging from 2.4 to as low as1.2 mL/min/g. As a result, CMD in patients without LVH was onaverage milder, but not statistically different, from that of thosewith LVH (mean 2.0+ 0.4 vs. 1.6+ 0.5 mL/min/g, respectively;P ¼ 0.064) (Figure 3).

Analysis of variance (ANOVA) for the 17 LV segments showedmarked regional heterogeneity of MBF in AFD (P , 0.01), withprevalent hypoperfusion of the apical region (Figure 4). Conversely,controls showed homogeneous perfusion of the LV (patients, F ¼4.46, P , 0.01; controls, F ¼ 1.25, P ¼ 0.23).

To exclude the possible influence of common CMD risk factors,other than AFD, we compared MBF values between patients withno history of smoking, hypertension, and dyslipidaemia with therest of the cohort. Patients without risk factors (n ¼ 12) showed asimilar degree of MBF impairment, as compared with other patients(n ¼ 18; MBF ¼ 1.6+ 0.5 mL/min/g vs. MBF ¼ 1.9+0.4 mL/min/g,respectively; P ¼ 0.12). Furthermore, there was no difference inMBF between patients on ERT vs. naıve patients (1.7+0.5 mL/min/g vs. 1.7+ 05 mL/min/g, respectively; P ¼ 0.9).

Impact of gender on microvascularfunctionCoronary microvascular dysfunctionwas more severe in males, com-pared with female AFD patients (1.5+0.4 and 1.9+0.5 mL/min/g,respectively, P ¼ 0.01) (Figure 3). Unexpectedly, however, ablunted Dip-MBF was also present in the 18 female patients, irre-spective of the presence of LVH (1.9+0.5 mL/min/g in femaleswith LVH and 2.1+ 0.4 mL/min/g in females without LVH; P ¼0.38). Of note, a 61-year-old female patient without LVH had

Microvascular dysfunction in Fabry disease Page 3 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline and cardiac characteristics of 30 patients with Anderson–Fabry disease

All patients (n 5 30) LVH – (n 5 10) LVH 1 (n 5 20) P-value

Age, years 51+13 42+16 56+9 0.005

Age ,40 years, n (%) 6 (10) 5 (50) 1 (5) 0.009

Gender 0.23

Male, n (%) 12 (40) 2 (20) 10 (50)

Female, n (%) 18 (60) 8 (80) 10 (50)

Height, cm 167+8 165+9 168+7 0.42

Weight, kg 69+12 65+10 72+13 0.15

BMI 26+7 27+11 26+4 0.63

Genotype 0.98

p.Asn215Ser (c.644A . G), n (%) 10 (33) 3 (30) 7 (35)

Other mutations, n (%) 20 (67) 7 (70) 13 (65)

Cardiovascular risk factors

Smoking

Smokers, n (%) 5 (17) 1 (10) 4 (20) 0.64

Ex-smokers, n (%) 8 (27) 3 (30) 5 (25) 0.93

Hypercholesterolaemia, n. (%) 11 (37) 2 (20) 9 (45) 0.25

Hypertension, n (%) 12 (40) 2 (20) 10 (50) 0.23

BMI .30, n (%) 3 (10) 1 (10) 2 (10) 0.96

Therapy

Beta-blockers, n (%) 5 (17) 0 5 (25) 0.14

Calcium channel antagonists, n (%) 5 (17) 1 (10) 4 (20) 0.64

Amiodarone, n (%) 2 (7) 0 2 (10) 0.54

ACE inhibitors, n (%) 8 (27) 1 (10) 7 (35) 0.21

ARBs, n (%) 9 (30) 1 (10) 8 (40) 0.20

Antiplatelets, n (%) 13 (43) 1 (10) 12 (60) 0.017

ERT, n (%) 11 (37) 3 (30) 8 (40) 0.70

NYHA class 0.02

I, n (%) 17 (57) 9 (90) 8 (40)

II, n (%) 10 (33) 1 (10) 9 (45)

III/IV, n (%) 3 (10) 0 3 (15)

Dyspnoea, n (%) 13 (43) 1 (10) 12 (60) 0.017

Chest pain, n (%)

At rest 2 (7) 1 (10) 1 (5) 0.95

On effort 11 (37) 1 (10) 10 (50) 0.049

Palpitations, n (%) 16 (53) 5 (50) 11 (55) 0.99

Syncope, n (%) 5 (17) 2 (20) 3 (15) 0.97

NSVT, n (%) 3 (10) 0 3 (15) 0.53

PAF, n (%) 4 (13) 1 (10) 3 (15) 0.97

Pacemaker, n (%) 3 (10) 0 3 (15) 0.53

ECG

LVH, n (%) 14 (52) 1 (10) 13 (76) 0.001

Bradycardia, n (%) 11 (37) 4 (40) 7 (35) 0.94

Heart rate, b.p.m. 61+8 61+12 62+7 0.79

Short PR, n (%) 3 (10) 1 (10) 2 (10) 0.97

Mean flow ,1.25 mL/min/g, n (%) 7 (23) 1 (10) 6 (30) 0.37

Echocardiography

LV max WT, mm 16+6 9+1 20+4 ,0.01

IV septum, mm 15+6 9+1 18+5 ,0.01

LV posterior wall, mm 12+3 9+1 13+2 ,0.01

Left atrium, mm 37+7 31+5 40+6 ,0.01

Left atrium volume, mm/m2 39+13 29+9 45+11 ,0.01

Continued

B. Tomberli et al.Page 4 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

extreme degrees of coronary flow impairment (Dip-MBF ¼ 1.2 mL/min/g) (family 6, subject II-1 in Table 2). An inverse relationshipbetween mean Dip-MBF and degree of LVH, suggesting moresevere CMD in the presence of increasing LVH, was present only inmales (Figure2B). The10patientswith the p.Ans215SerGLA genemu-tation showed significant blunting of MBF as compared with patientswith other mutations (1.5+0.5 vs. 1.9+0.5 mL/min/g, respectively;P ¼ 0.019), despite a similar degree of hypertrophy (maximum LVwall thickness 18+8 mm vs. 15+ 5 mm, respectively, P ¼ 0.28).

Discussion

Coronary microvascular dysfunction isindependent of left ventricularhypertrophy in Anderson–Fabry diseaseThe present study demonstrates that microvascular function is mark-edly impaired in AFD patients, irrespective of any other evidence ofcardiac involvement. In our cohort, all AFD patients with normalechocardiographic findings exhibited blunting of the vasodilator re-sponse to dipyridamole, reflecting impaired microvascular function,with a mean Dip-MBF of only 2.0+ 0.4 mL/min/g, compared with3.2+ 0.5 mL/min/g in normal controls, i.e. a 60% reduction in coron-ary flow. Such a degree of CMD was only slightly milder than thatobserved in patients with clear evidence of AFD cardiomyopathyand LVH. Indeed the most severe impairment in microvascular func-tion was observed in a 61-year-old female patient, without evidenceof LVH (Dip-MBF 1.2 mL/min/g).

Of note, while MBF was globally impaired in AFD hearts, there wasmarked heterogeneity in flow, with prevalent hypoperfusion of theapical region of the left ventricle, suggesting a regional nature ofcardiac involvement. While counterintuitive in a systemic storagedisease, the novel idea of a non-homogeneous cardiac involvement

in AFD is in line with prior observations in a number of cardiomyop-athies, and particularly those related to storage or infiltrativedisorders, such as, for example, amyloidosis.22 The mechanismsaccounting for such regionally heterogeneous manifestationsremain unresolved.

Altogether, these findings point to CMD as a constant manifest-ationof AFD, which may be present independent of other instrumen-tal evidence of cardiac involvement. In males, the correlationbetween LV wall thickness and maximal MBF, and the direct relation-ship of LV wall thickness to age, both suggest that a reduced coronarymaximal blood flow may precede development of LVH (Figure 2).This concept is novel and strongly supported by the young age ofpatients with CMD in the absence of LVH. Furthermore, AFDpatients without LVH and CMD generally had none of the other fea-tures that are considered very early disease manifestations, such asreduced diastolic mitral annulus velocities or presence of LGE.23,24

Nevertheless, longitudinal studies are required to understandwhether flow abnormalities can indeed be considered to representinitial cardiac involvement followed by overt cardiomyopathy inAFD patients.

The consistent and severe blunting of MBF in patients with thep.Ans215Ser GLA gene mutation may suggest a role for geneticstatus in determining the severity of MBF. Furthermore, theconcept of the possible influence of genetic status on microvascularfunction has been proved in another more common genetic cardio-myopathy (i.e. hypertrophic cardiomyopathy).25 However, in thepresent study, the relatively small number of patients did not allowa meaningful comparison between individual mutations.

Coronary microvascular dysfunction infemale Anderson–Fabry disease patientsIn our cohort, females with LVH showed blunted Dip-MBF, althoughto a less severedegree thanmales (1.9+0.5 and 1.5+0.4 mL/min/g,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

All patients (n 5 30) LVH – (n 5 10) LVH 1 (n 5 20) P-value

LV telediastolic diameter, mm 48+6 48+5 49+6 0.75

LV telesystolic diameter, mm 27+8 27+5 27+7 0.86

LV telediastolic volume, mL 99+32 91+19 102+37 0.40

LV telesystolic volume, mL 37+20 33+13 39+23 0.42

EF, % 63+10 65+9 63+10 0.62

Diastolic pattern 0.03

Normal, n (%) 6 (20) 6 (60) 0

Delayed relaxation, n (%) 12 (40) 4 (40) 8 (40)

Pseudonormal, n (%) 11 (37) 0 11 (50)

Restrictive, n (%) 1 (3) 0 1 (5)

LVOT obstruction, n (%) 0 0 0 N/A

Mitral regurgitation (mild or moderate) 16 (53) 4 (40) 12 (60) 0.44

Aortic regurgitation (mild or moderate) 5 (17) 2 (20) 3 (15) 0.92

Data are shown as mean+ SD or n (%).BMI, body mass index; ERT, enzyme replacement therapy; IV, interventricular; LVH –,patientswithoutLVhypertrophy; LVH+, patientswithLVhypertrophy; LVmaxWT,LVmaximalwall thickness; LVOT, LV outflow tract obstruction; N/A, not applicable; NSVT, non-sustained ventricular tachycardia; PAF, paroxysmal atrial fibrillation.

Microvascular dysfunction in Fabry disease Page 5 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Clinical and genetic features of the study population at the time of positron emission tomography

Family Genotype(effect onprotein)

Subject Sex Age a-Gal ERT Symptoms(NYHA class)

LVH MaxLVWT

EF Dip-MBF CAD exclusion Major organinvolvement

At clinicalonset

Atdiagnosis

AtPET

1 p.Met1Val (c.1A . G)

III-1 M 4 28 29 0.9 Yes Palpitations (1) Yes 16 67 2.4 Stress test Proteinuria, acroparaesthesia,abdominal pain

II-1 F 16 47 48 46 Yes Dyspneoa, palpitations,syncope, angina (2)

Yes 16 62 2.3 Coronaryangiogram

Acroparaesthesia

2 p.Trp44X (c.131G . A)

III-1 M 12 52 54 0.01 Yes Dyspnoea, palpitations (2) Yes 23 70 1.1 CoronaryCT-angiogram

Acroparaesthesia, RI,proteinuria

III-2 F - 39 41 11.8 No Palpitations (1) No 9 60 1.8 Stress test None

3 p.Arg112Cys (c.334C . T)

II-1 M 11 34 52 1.9 Yes Angina (1) Yes 23 66 0.8 Coronaryangiogram

Acroparaesthesia stroke,renal transplant

4 p.Ala143Thr (c.427G . A)

III-2 F - 40 42 5.8 No Palpitations (1) No 8 64 2.4 Stress test None

5 p.Asn215Ser (c.644A . G)

II-1 M 44 56 60 1.82 No None (1) Yes 25 59 1.7 CoronaryCT-angiogram

None

6 p.Asn215Ser (c.644A . G)

II-1 F - 56 60 13 No Dyspnoea, palpitations (2) No 11 67 1.2 Stress test NoneII-2 M 48 55 55 3.4 No Dyspnoea, angina (2) Yes 28 58 1.2 Coronary

angiogramRI, proteinuria

II-3 F N/A 53 56 16 No Dyspnoea (2) Yes 13 70 0.9 Stress test AcroparaesthesiaII-4 M N/A 46 53 4.2 No Dyspnoea, palpitations (2) Yes 27 62 1.0 Stress test RI, proteinuriaII-5 M – 51 48 3.6 No Dyspnoea, angina (2) Yes 22 70 1.3 Stress test NoneIII-3 F - 24 27 44 No None (1) No 7 76 2.2 Stress test NoneIII-5 F 20 25 31 5.3 No Syncope, palpitations (1) No 9 67 2.3 Stress test Acroparaesthesia

7 p.Asn215Ser (c.644A . G)

III-7 M 59 69 69 3.2 No Palpitations, dyspnea,angina (3)

Yes 23 33 1.2 Coronaryangiogram

Proteinuria

III-12 M 50 68 69 2.8 No Dyspnea, angina (2) Yes 23 71 1.5 Stress test Proteinuria, RI, stroke

8 p.Arg220X (c.658C . T)

II-2 F 22 37 47 26.6 Yes None (1) Yes 21 82 1.6 Coronaryangiogram

Renal transplant

9 p.Leu243Ser (c.728T . C)

III-1 F N/A 63 62 26 No Palpitations, dyspnoea (2) Yes 16 62 2.3 Stress test NoneIII-2 F 36 56 57 22 No Dyspnoea, palpitations,

angina (3)Yes 23 47 2.2 Stress test Proteinuria

10 p Asp299Gly (c.896A . C)

II-1 F N/A 66 68 21 No None (1) Yes 17 58 1.9 Stress test NoneIII-1 F - 49 49 31 No Palpitations (1) No 11 59 1.9 Stress test NoneIII-2 M 18 46 49 0.01 Yes None (1) Yes 15 61 2.0 Stress test Proteinuria, RI,

acroparaesthesia,abdominal pain

11 p.Arg301Pro (c.902G . C)

III-2 F 16 49 63 13.5 Yes Palpitations, dyspnoea,syncope, angina (2)

Yes 21 58 1.6 Stress test Proteinuria, acroparaesthesia,strokes

III-4 F N/A 46 56 31.6 No None (1) Yes 14 63 2.6 Stress test NoneIII-5 F N/A 55 62 18.2 No Dyspnoea (2) Yes 15 63 1.4 Stress test StrokeIV-1 M 25 30 40 0.9 Yes None (1) No 10 59 2.0 Stress test Proteinuria

12 p.Arg301X (c.901C . T)

I-1 F – 70 75 No Palpitations (1) No 9 77 2.2 Coronaryangiogram

None

Continued

B.Tom

berlietal.P

age6

of11

by guest on July 1, 2013 http://eurjhf.oxfordjournals.org/ Downloaded from

respectively; P ¼ 0.01). In addition, and rather unexpectedly, womenwithout LVH also had considerable degrees of CMD, representingthe only evidence of AFD in some of these individuals. As a result,there should be heightened awareness of the consideration ofcardiac involvement in female patients with AFD, even in theabsence of an echocardiographic phenotype. Although AFD is anX-linked disease, female patients are well known to develop the clin-ical manifestations of the disease, which can be severe and determineoutcome.26 Cardiomyopathy is not an exception to this rule, and hasbeen described in women; however, cardiac manifestations generallyhave a later onset and are less marked than those occurring in men(Figure 4).27,28

Potential mechanisms of coronarymicrovascular dysfunction and implicationfor managementThere are several potential pathophysiological mechanismsunderlying coronary blood flow impairment in AFD, and theseinclude those mediated by LVH (reduced capillary density, extravas-cular compression forces) as well as those directly affecting themicrovasculature (endothelial dysfunction due to Gb3 storage,nitric oxide pathway dysregulation, or microvascular remodelling).13

However, in patients without LVH, only the latter are present, sug-gesting that LVH per se is indeed a likely contributor to CMD,rather than a cause.

Despite considerable advances in our understanding of AFD, themechanisms leading to LVH are not well understood. Storage ofGb3 within cardiac myocytes accounts for a small amount of thewhole LV mass, which is mainly represented by true myocardialhypertrophy.8 One hypothesis is that intracellular accumulation ofGb3 may disturb cardiac energetic metabolism, representing anearly trigger for the activation of the intracellular signalling pathwaysleading to hypertrophy, fibrosis, apoptosis, and necrosis.29 Further-more, microvascular dysfunction and chronic hypoperfusion, dueto Gb3 accumulation in endothelial cells, may also play a crucialrole in the activation and perpetuation of these pathophysiologicalprocesses, even at early stages.13

The issue of identification of early organ damage has become crit-ical following the introduction in clinical practice of ERT and noveltherapeutic molecules, including pharmacological chaperonetherapy.30–33 To date, evidence of benefit of ERT in AFD patientswith overt signs of cardiomyopathy and LVH is disappointing, andearlier timing of treatment initiation has been advocated in orderto improve efficacy.11,30

Thus, early detection of subclinical cardiac involvement, as allowedby PET studies of microvascular function, may become a criticalelement in clinical decision-making especially in young AFD patients.In particular, CMD may represent a viable treatment target, poten-tially relevant to prevention of disease progression and outcome.30

In the future, the advent of cardiac magnetic resonance (CMR), byvirtue of its wider availability and more favourable safety profile com-pared with PET, may allow large-scale investigation of CMD in AFDpatients. To date, however, quantitative assessment of microvascularflow by CMR is time-consuming and largely limited to research pur-poses.15

13c.

1235

_123

6de

lCT

II-1

F15

4054

6.6

Yes

Dys

pnoe

a,pa

lpita

tions

(2)

Yes

1376

1.8

Cor

onar

yC

T-a

ngio

gram

Acr

opar

aest

hesi

a,st

roke

s,ab

dom

inal

pain

III-1

M4

1528

2.4

Yes

Non

e(1

)N

o10

531.

5St

ress

test

Acr

opar

aest

hesi

a,ab

dom

inal

pain

,pro

tein

uria

III-3

F14

1023

13.8

Yes

Non

e(1

)N

o8

632.

3St

ress

test

Acr

opar

aest

hesi

a,ab

dom

inal

pain

a-G

al¼

a-g

alac

tosi

dase

Aac

tivity

assa

yed

onle

ucoc

ytes

(nor

mal

valu

es20

–60

nmol

/mg/

h);C

T-a

ngio

gram

,com

pute

dto

mog

raph

yan

giog

ram

;Dip

-MBF

,mea

nm

yoca

rdia

lblo

odflo

wfo

llow

ing

dipy

rida

mol

ein

fusi

on;E

RT

,enz

yme

repl

acem

ent

ther

apy;

LVH

,left

vent

ricu

larh

yper

trop

hy;M

ajor

orga

nin

volv

emen

t,on

lyki

dney

(RI,

rena

lim

pair

men

tdia

gnos

edas

glom

erul

arfil

trat

ion

rate

,60

mL/

min

),pe

riph

eral

.and

cent

raln

ervo

ussy

stem

invo

lvem

enta

rere

port

edin

this

tabl

e;M

axLV

WT,

max

imal

left

vent

ricu

lar

wal

lthi

ckne

ss;N

/A,a

geat

onse

tun

know

n(d

iagn

osis

mad

eby

fam

ilysc

reen

ing)

.

Microvascular dysfunction in Fabry disease Page 7 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

Furthermore, is it possible tohypothesize that the severityofCMDmay be an important predictor of adverse outcome, as for other gen-etically determined cardiomyopathies.12,34

Limitations of the studyAn unavoidable limitation of the present study lies in the smallsample size and heterogeneity of our study population. Selectinga more homogeneous study cohort, by excluding patients withco-morbidities or cardiovascular risk factors, would not havebeen feasible in a rare and multisystemic disorder such as AFD.Thus, myocardial blood flow may have been affected in ourcohort by the interplay of co-morbidities such as hypertension,

smoking, or dyslipidaemia, as well as ERT itself. This may have po-tentially led to overestimation of CMD in our patients with regardto the healthy controls, in whom none of the conventional car-diovascular risk factors was present. The presence of epicardialcoronary disease was not systematically excluded by coronaryangiogram or coronary CT-angiogram in all patients, based onradioprotection and safety considerations. Nevertheless, none ofour enrolled AFD patients, at .3 years average from the execu-tion of PET studies, has been found to have significant CADduring follow-up.

Whileweacknowledge this unavoidablebias, however,MBFvaluesin AFD with no history of smoking, hypertension, and dyslipidaemia,

Figure 1 Pedigree of the 13 index patients.

B. Tomberli et al.Page 8 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

ideally representing ‘pure’ AFD patients, were comparable with therest of the cohort. Likewise, MBF in patients who were on ERT atthe time of the study was comparable with that of those who wereuntreated at that time, consistent with previous studies which

confirmed the questionable efficacy of ERT in patients with clear-cutcardiomyopathy.9,11,30 Thus, our data are consistent with a dispro-portionate microvascular involvement in AFD, overruling the effectof these potential environmental confounders.

Figure 2 Relationship between LV wall thickness and myocardial flow. Linear regression analysis showed a direct relationship between age anddegree of LV hypertrophy (LVH) (A) and between degree of LVH and myocardial blood flow following dipyridamole infusion. (B). Both relationshipswere stronger in males, suggesting that the development of Anderson–Fabry cardiomyopathy is age related and that coronary microvasculaturedysfunction may precede LVH.

Figure 3 Comparison of microvascular dysfunction in patients with Anderson–Fabry disease (AFD), based on the presence of LV hypertrophy(LVH) and gender. Myocardial blood flow following dipyridamole infusion is markedly impaired in AFD patients compared with control subjects.Values are shown as mean+ SD.

Microvascular dysfunction in Fabry disease Page 9 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

Comparably, due to the small and heterogeneous patientcohort and the cross-sectional design of the study, it is not pos-sible to extrapolate whether CMD represents an early phase ofcardiac involvement in AFD, invariably followed by onset of aclear-cut cardiomyopathy over time. Likewise, it is not possibleat this stage to envisage whether these abnormalities are

susceptible to regression with specific therapy; both such hypoth-eses need to be specifically addressed in longitudinal studies.However, our findings imply that a normal echocardiogramcannot exclude deterioration of microvascular function relatedto the disease, raising important issues regarding risk stratificationand management.

Figure4 Relationship of coronary microvasculaturedysfunction (CMD) to phenotype in individual patients with Anderson–Fabrydisease (AFD).(A) A 28-year-old male with extreme sinus bradycardia (36 b.p.m.) and normal interventricular septal thickness values (*echocardiographic para-sternal long axis and cardiac magnetic resonance four-chamber views). Colour-coded polar map obtained by positron emission tomography(PET) after dipyridamole infusion showing regional CMD, with relatively preserved flow in the antero-lateral region (family 13, subject III-1; Table2). (B) A 60-year-old female with normal ECG, without normal LV wall thickness values. The polar map shows severe CMD, despite normal LVwall thickness values (family 6, subject II-1; Table 2). (C) A 52-year-old male with marked ECG abnormalities, severe LV hypertrophy (LVH) (*echo-cardiographic apical four-chamber view and cardiac magnetic resonance four-chamber view). The polar map shows severe CMD (family 3, subjectII-1; Table 2). (D) A 47-year-old female with markedly abnormal ECG, and severe LVH. The polar map shows relatively preserved microvascularfunction, despite the LVH (family 8, subject II-2; Table 2). Dip-MBF, myocardial blood flow following dipyridamole infusion,

B. Tomberli et al.Page 10 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

ConclusionsCoronary microvascular function is markedly impaired in AFDpatients irrespective of LVH and gender. CMD may represent thefirst sign of cardiac involvement in patients who would be otherwiseconsidered unaffected. These findings suggest that coronary bloodflow impairment may precede the development of cardiac hyper-trophy in AFD, representing an important element for patient clinicalmanagement and decision-making in this challenging disease.

AcknowledgementsThe authors would like to thank Katia Baldini, professional nurse (Re-ferral Center for Myocardial Diseases, Department of Cardiology,Careggi University Hospital, Florence, Italy).

Conflict of interest: F.C., B.T., and A.M. received speaker’s fees andresearch support from Shire HGT, Genzyme Corporation. All otherauthors report no potential conflict of interest.

References1. Meikle PJ, Hopwood JJ, Clague AE, Carrey WF. Prevalence of lysosomal storage dis-

orders. JAMA 1999;281:249–254.2. Poorthuis BJ, Wevers RA, Kleijer WJ, Groener JE, de Jong JG, van Weely S,

Niezen-Koning KE, van Diggelen OP. The frequency of lysosomal storage diseasesin The Netherlands. Hum Genet 1999;105:151–156.

3. Spada M, Pagliardini S, Yasuda M, Tukel T, Thiagarajan G, Sakuraba H, Ponzone A,Desnick RJ. High incidence of later-onset fabry disease revealed by newborn screen-ing. Am J Hum Genet 2006;79:31–40.

4. Mechtler TP, Stary S, Metz TF, De Jesus VR, Greber-Platzer S, Pollak A, Herkner KR,Streubel B, Kasper DC. Neonatal screening for lysosomal storage disorders: feasibil-ity and incidence from a nationwide study in Austria. Lancet 2012;379:335–341.

5. Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:306. Mehta A, Ricci R, Widmer U, Dehout F, Garcia de Lorenzo A, Kampmann C,

Linhart A, Sunder-Plassmann G, Ries M, Beck M. Fabry disease defined: baseline clin-ical manifestations of 366 patients in the FabryOutcome Survey. Eur J Clin Invest 2004;34:236–242.

7. Eng CM, Fletcher J, Wilcox WR, Waldek S, Scott CR, Sillence DO, Breunig F,Charrow J, Germain DP, Nicholls K, Banikazemi M. Fabry disease: baseline medicalcharacteristics of a cohort of 1765 males and females in the Fabry Registry. J InheritMetab Dis 2007;30:184–192.

8. O’Mahony C, Elliott P. Anderson–Fabry disease and the heart. Prog Cardiovasc Dis2010;52:326–335.

9. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R, Tome MT,McKenna WJ, Lee P, Camici PG. Coronary microvascular dysfunction in malepatients with Anderson–Fabry disease and the effect of treatment with alpha galac-tosidase A. Heart 2006;92:357–360.

10. Kalliokoski RJ, Kalliokoski KK, Sundell J, Engblom E, Penttinen M, Kantola I,Raitakari OT, Knuuti J, Nuutila P. Impaired myocardial perfusion reserve but pre-served peripheral endothelial function in patients with Fabry disease. J InheritMetab Dis 2005;28:563–573.

11. Kalliokoski RJ, Kantola I, Kalliokoski KK, Engblom E, Sundell J, Hannukainen JC,Janatuinen T, Raitakari OT, Knuuti J, Penttinen M, Viikari J, Nuutila P. The effect of12-month enzyme replacement therapy on myocardial perfusion in patients withFabry disease. J Inherit Metab Dis 2006;29:112–118.

12. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary micro-vascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med2003;349:1027–1035.

13. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in leftventricular hypertrophy. J Mol Cell Cardiol 2012;52:857–864.

14. MaronMS,Olivotto I, MaronBJ, PrasadSK,Cecchi F,Udelson JE,Camici PG.The casefor myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 2009;54:866–875.

15. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA,Selvanayagam JB, Neubauer S, Watkins H. Evidence for microvascular dysfunction

in hypertrophic cardiomyopathy: new insights from multiparametric magnetic res-onance imaging. Circulation 2007;115:2418–2425.

16. Ferri L, Guido C, la Marca G, Malvagia S, Cavicchi C, Fiumara A, Barone R, Parini R,Antuzzi D, Feliciani C, Zampetti A, Manna R, Giglio S, Della Valle CM, Wu X,Valenzano KJ, Benjamin R, Donati MA, Guerrini R, Genuardi M, Morrone A. Fabrydisease: polymorphic haplotypes and a novel missense mutation in the GLA gene.Clin Genet 2012;81:224–233.

17. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, Cecchi F, Maron BJ.Effect of left ventricular outflow tract obstruction on clinical outcome in hyper-trophic cardiomyopathy. N Engl J Med 2003;348:295–303.

18. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA,Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A. Recommendations forthe evaluation of left ventricular diastolic function by echocardiography. J Am SocEchocardiogr 2009;22:107–133.

19. Sotgia B, Sciagra R, Olivotto I, Casolo G, Rega L, Betti I, Pupi A, Camici PG, Cecchi F.Spatial relationship between coronary microvascular dysfunction and delayed con-trast enhancement in patients with hypertrophic cardiomyopathy. J Nucl Med 2008;49:1090–1096.

20. DeGrado TR, Hanson MW, Turkington TG, Delong DM, Brezinski DA, Vallee JP,Hedlund LW, Zhang J, Cobb F, Sullivan MJ, Coleman RE. Estimation of myocardialblood flow for longitudinal studies with 13N-labeled ammonia and positron emissiontomography. J Nucl Cardiol 1996;3:494–507.

21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ,Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group onMyocardial Segmentation and Registration for Cardiac Imaging. Standardized myo-cardial segmentation and nomenclature for tomographic imaging of the heart. Circu-lation 2002;105:539–542.

22. Perugini E, Rapezzi C, Piva T, Leone O, Bacchi-Reggiani L, Riva L, Salvi F, Lovato L,Branzi A, Fattori R. Non-invasive evaluation of the myocardial substrate of cardiacamyloidosis by gadolinium cardiac magnetic resonance. Heart 2006;92:343–349.

23. Pieroni M, Chimenti C, Ricci R, Sale P, Russo MA, Frustaci A. Early detection of Fabrycardiomyopathy by tissue Doppler imaging. Circulation 2003;107:1978–1984.

24. Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, Machann W,Voelker W, Ert F, Wanner C, Weidemann F. Differences in Fabry cardiomyopathybetween female and male patients consequences for diagnostic assessment. JACCCardiovasc Imaging 2011;4:592–601.

25. Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM, Nistri S,Sgalambro A, Grifoni C, Torricelli F, Camici PG, Cecchi F. Microvascular functionis selectively impaired in hypertrophic cardiomyopathy patients with sarcomeremyofilament gene mutation. J Am Coll Cardiol 2011;58:839–848.

26. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U,Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F,Wanner C, Warnock DG, Lemay RM, Germain DP, Fabry Registry. Females withFabry disease frequently have major organ involvement: lessons from the FabryRegistry. Mol Genet Metab 2008;93:112–128.

27. Pinto LL, Vieira TA, Giugliani R, Schwartz IV. Expression of the disease on female car-riers of X-linked lysosomal disorders: a brief review. Orphanet J Rare Dis 2010;5:14.

28. Kampmann C, Baehner F, Whybra C, Martin C, Wiethoff CM, Ries M, Gal A, Beck M.Cardiac manifestations of Anderson–Fabry disease in heterozygous females. J AmColl Cardiol 2002;40:1668–1674.

29. Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Kostler H, Neubauer S,Wanner C, Beer M. Cardiac energy metabolism is disturbed in Fabry disease andimproves with enzyme replacement therapy using recombinant human galactosi-dase A. Eur J Heart Fail 2011;13:278–283.

30. Weidemann F, Niemann M, Breunig F, Herrmann S, Beer M, Stork S, Voelker W,Ertl G, Wanner C, Strotmann J. Long-term effects of enzyme replacement therapyon Fabry cardiomyopathy: evidence for a better outcome with early treatment. Cir-culation 2009;119:524–529.

31. Ishii S. Pharmacological chaperone therapy for Fabry disease. Proc Jpn Acad Ser B PhysBiol Sci 2012;88:18–30.

32. Porto C, Pisani A, Rosa M, Acampora E, Avolio V, Tuzzi MR, Visciano B, Gagliardo C,Materazzi S, la Marca G, Andria G, Parenti G. Synergy between the pharmacologicalchaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase A in cultured fibroblasts from patients with Fabry disease. J InheritMetab Dis 2012;35:513–520.

33. Motabar O, Sidransky E, Goldin E, Zheng W. Fabry disease—current treatment andnew drug development. Curr Chem Genomics 2010;4:50–56.

34. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F,Camici PG. Relevance of coronary microvascular flow impairment to long-term re-modeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol2006;47:1043–1048.

Microvascular dysfunction in Fabry disease Page 11 of 11

by guest on July 1, 2013http://eurjhf.oxfordjournals.org/

Dow

nloaded from

Cardiomyopathy

Obesity and its Association to Phenotype andClinical Course in Hypertrophic Cardiomyopathy

Iacopo Olivotto, MD,* Barry J. Maron, MD,y Benedetta Tomberli, MD,* Evan Appelbaum, MD,zxCarol Salton, AB,zx Tammy S. Haas, RN,y C. Michael Gibson, MD,zx Stefano Nistri, MD,*

Eleonora Servettini, MD,* Raymond H. Chan, MD,x James E. Udelson, MD,k John R. Lesser, MD,yFranco Cecchi, MD,* Warren J. Manning, MD,zx Martin S. Maron, MDkFlorence, Italy; Minneapolis, Minnesota; and Boston, Massachusetts

Objectives This study sought to assess the impact of body mass index (BMI) on cardiac phenotypic and clinical course ina multicenter hypertrophic cardiomyopathy (HCM) cohort.

Background It is unresolved whether clinical variables promoting left ventricular (LV) hypertrophy in the general population, suchas obesity, may influence cardiac phenotypic and clinical course in patients with HCM.

Methods In 275 adult HCM patients (age 48 � 14 years; 70% male), we assessed the relation of BMI to LV mass, determinedby cardiovascular magnetic resonance (CMR) and heart failure progression.

Results At multivariate analysis, BMI proved independently associated with the magnitude of hypertrophy: pre-obeseand obese HCM patients (BMI 25 to 30 kg/m2 and >30 kg/m2, respectively) showed a 65% and 310%increased likelihood of an LV mass in the highest quartile (>120 g/m2), compared with normal weight patients(BMI<25 kg/m2; hazard ratio [HR]: 1.65; 95% confidence interval [CI]: 0.73 to 3.74, p¼ 0.22 and 3.1; 95% CI: 1.42to 6.86, p ¼ 0.004, respectively). Other features associated with LV mass >120 g/m2 were LV outflow obstruction(HR: 4.9; 95% CI: 2.4 to 9.8; p < 0.001), systemic hypertension (HR: 2.2; 95% CI: 1.1 to 4.5; p ¼ 0.026), and malesex (HR: 2.1; 95% CI: 0.9 to 4.7; p ¼ 0.083). During a median follow-up of 3.7 years (interquartile range: 2.5 to 5.3),obese patients showed an HR of 3.6 (95% CI: 1.2 to 10.7, p ¼ 0.02) for developing New York Heart Association(NYHA) functional class III to IV symptoms compared to nonobese patients, independent of outflow obstruction.Noticeably, the proportion of patients in NYHA functional class III at the end of follow-up was 13% among obesepatients, compared with 6% among those of normal weight (p ¼ 0.03).

Conclusions In HCM patients, extrinsic factors such as obesity are independently associated with increase in LV mass and maydictate progression of heart failure symptoms. (J Am Coll Cardiol 2013;62:449–57) ª 2013 by the AmericanCollege of Cardiology Foundation

Hypertrophic cardiomyopathy (HCM) is the most commongenetic heart disease, characterized by heterogeneousphenotypic expression with extreme diversity in the patternand extent of left ventricular hypertrophy (LVH), dueto molecular pathways and triggers that remain largely

unexplained (1–5). In the vast majority of genotype-positivepatients, HCM is associated with mutations in genesencoding proteins of the cardiac sarcomere, most commonlybeta-myosin heavy chain and myosin-binding protein C(1–3). While these molecular defects are consideredresponsible for the development of LVH, there is currentlyno conclusive evidence to explain the variability in pheno-typic expression of HCM, ranging from massive degrees toabsence of LVH even within the same family (1,4–6).

Among several hypotheses, the interplay of modifier genesand environmental factors has been commonly offered asa potential explanation for phenotypic diversity (7,8). To date,however, the possibility of an environmental modulation ofthe HCM phenotype remains speculative, and even the impact

See page 458

From the *Referral Center for Myocardial Diseases, Azienda Ospedaliera Universitaria

Careggi, Florence, Italy; yHypertrophic Cardiomyopathy Center, Minneapolis Heart

Institute Foundation, Minneapolis, Minnesota; zDepartment of Medicine,

Cardiovascular Division, Beth Israel Deaconess Hospital and Harvard Medical

School, Boston, Massachusetts; xPERFUSE Core Laboratory and Data Coordinating

Center, Harvard Medical School, Boston, Massachusetts; and the kDivision of

Cardiology, Tufts Medical Center, Boston, Massachusetts. This work was supported

by the Italian Ministry for University and Research (PRIN), and the European Union

(STREP Project 241577 “BIG HEART,” 7th European Framework Program).

Dr. B. J. Maron is grantee for GeneDx and Medtronic. All other authors have re-

ported that they have no relationships relevant to the contents of this paper to disclose.

Manuscript received October 3, 2012; revised manuscript received March 3, 2013,

accepted March 5, 2013.

Journal of the American College of Cardiology Vol. 62, No. 5, 2013� 2013 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2013.03.062

of an obvious candidate variablesuch as obesity, known to pro-mote LVH in the general pop-ulation, is unresolved (9–15). Inaddition, it is unknown whetherthe adverse metabolic and hemo-dynamic effects of obesity, towhich HCM patients may beexposed during the long-termcourse of their disease, ultimatelyaffect symptomatic status andprognosis (11,12,16–18). There-fore, the present study wasdesigned, in a consecutive multi-center cohort studied with cardiacmagnetic resonance (CMR), to

assess the impact of body mass index (BMI) on the phenotype,as well as clinical course, of HCM.

Methods

Study population. The study cohort comprised 275 adultpatients with HCM (age >18 years, mean 48 � 14 years atstudy entry; 70% male, maximum left ventricular (LV) wallthickness 21 � 5 mm) consecutively referred for CMRstudies between January 2005 and June 2008 at 3 partici-pating referral centers in the United States and Italy: Min-neapolis Heart Institute Foundation (Minneapolis,Minnesota; n ¼ 168); Tufts Medical Center (Boston,Massachusetts; n ¼ 45); and Careggi University Hospital(Florence, Italy; n ¼ 62). Diagnosis of HCM was based on2-dimensional echocardiographic evidence of a hypertro-phied, nondilated LV (maximal wall thickness �15 mm), inthe absence of another cardiac or systemic disease that couldproduce the magnitude of hypertrophy evident (1,3). Weexcluded significant atherosclerotic coronary artery disease(>50% stenosis in a major artery) by virtue of 2 specificclinical or CMR criteria: 1) no study patient experienced anacute coronary event associated with increased cardiacenzymes or Q waves on electrocardiogram; and 2) in allpatients with late gadolinium enhancement (LGE) distrib-uted in a single coronary vascular territory, hemodynamicallysignificant coronary artery disease was excluded by arteriog-raphy or computed tomography angiogram. Furthermore,patients with prior cardiac surgery (including septal myec-tomy), alcohol septal ablation, and chronic renal failure wereexcluded (3). The study protocol was approved by therespective Internal Review Boards or research ethicscommittees of each institution, and written inform consentwas obtained from each subject.Definitions. Body mass index was calculated as weight/(height $ height) and expressed in kg/m2. Patients were clas-sified as normal weight (BMI range <25 kg/m2), pre-obese(25 to 30 kg/m2), and obese (>30 kg/m2), according toexisting guidelines (14). Type 2 diabetes was defined (andtreated) according to standard guidelines (12,18).

Systemic hypertension was diagnosed based on restingblood pressure values >140/90 mm Hg on �3 differentexaminations and treated medically to optimize bloodpressure control, as per standard international guidelines(18). All patients with hypertension had a diagnosisof HCM based on 1 or more of the following criteria: 1)HCM-causing sarcomere gene mutation or family historyof HCM; 2) onset of hypertension occurring years after thediagnosis of HCM; 3) maximum LV wall thickness ex-ceeding that expected by hypertension alone (i.e., >20 mm);4) presence of marked mitral leaflet elongation (19); 5)dynamic LV outflow obstruction (�30 mm Hg) underresting conditions (20); and 6) distribution of LGE bycontrast CMR consistent with HCM (i.e., preferentiallymid-wall or transmural, and not confined to a singlecoronary vascular territory) (3,5,21).Echocardiography. Echocardiographic studies were per-formed with commercially available instruments. Leftventricular hypertrophy was assessed with 2-dimensionalechocardiography, and the site and extent of maximal wallthickness were identified. Maximal end-diastolic LV wallthickness was taken as the dimension of greatest magnitudeat any site within the chamber. Left ventricular outflowobstruction, due to mitral valve systolic anterior motion andmitral-septal contact, was identified by a peak instantaneousoutflow gradient �30 mm Hg occurring under basal con-ditions (n ¼ 57) (20). Two hundred and eighteen patientswere nonobstructive at rest (basal gradient <30 mm Hg), ofwhom 105 (age 43 � 13 years, 72% males) underwentmaximal symptom-limited exercise echocardiography, aspreviously described (18); 50 developed dynamicgradients �30 mm Hg during effort or recovery (range 48 to155 mm Hg), and were considered to have provokableoutflow obstruction (20).CMR. All CMR examinations were performed usingcommercially available scanners (Philips ACS-NT 1.5-TGyroscan-Intera, Best, the Netherlands) and a commercialcardiac coil. Electrocardiographic gated, steady-state, freeprecession breath-hold cines in sequential 10-mm short-axisslices (no gap) were acquired starting parallel to the atrio-ventricular ring and covering the entire ventricle. Leftventricular end-diastolic and end-systolic volumes, leftventricular mass and wall thickness were calculated withcommercially available work stations (View Forum, PhilipsMedical System, Best, the Netherlands) (19,21).

For calculation of LV mass, the endocardial and epicardialborders of the left ventricle were manually planimetered onsuccessive short-axis cine images at end-diastole. The mostbasal slice at end-diastole was visually inspected and, ifventricular myocardium was present, it was planimeteredand included in the mass calculation. If myocardium but nointracavitary blood pool was present on the most apical slice,it was included in the mass calculation by planimetering onlythe epicardial border. Particular care was taken to avoidincluding papillary muscles in the LV mass calculation.Left ventricular mass was derived by the summation of

Abbreviationsand Acronyms

BMI = body mass index

CMR = cardiovascular

magnetic resonance

HCM = hypertrophic

cardiomyopathy

HR = hazard ratio

LGE = late gadolinium

enhancement

LV = left ventricular

LVH = left ventricular

hypertrophy

NYHA = New York Heart

Association

Olivotto et al. JACC Vol. 62, No. 5, 2013Obesity and LV Mass in Hypertrophic Cardiomyopathy July 30, 2013:449–57

450

discs method and multiplying myocardial muscle volumeby 1.05 g/cm3 (21). Left ventricular mass was indexed tobody surface area. Maximum end-diastolic LV wall thick-ness was taken as the dimension of greatest magnitude atany site within the LV wall. CMR measurements wereperformed by an experienced investigator at each center,blinded to the results of echocardiography. The presence ofLGE was assessed by visual inspection 15 min after intra-venous administration of 0.2 mmol/kg gadolinium-diethylenetriaminepentaacetic acid (Magnevist, Schering,Berlin, Germany) with breath-held segmented inversion-recovery sequence (inversion time 240 to 300 ms), whichwas acquired in the same views as the cine images (21).Statistical methods. Continuous variables were expressed asmean� SD, or median or interquartile range, as appropriate.For the comparison of normally distributed variables, weemployed Student t test and 1-way analysis of variancefollowed by Bonferroni post-hoc test, as appropriate. Chi-square test (not adjusted for multiple comparisons) wasutilized to compare noncontinuous variables expressed asproportions; Fisher exact test was employed when 1 or morecells in the comparison table had an expected frequency of<5.

When comparing noncontinuous variables among the 3 BMIclasses, an overall p value was obtained using theMonte Carlomethod; when the p value was<0.05, individual comparisonsbetween the subgroups were then assessed by cross-tabulationanalysis.

Clinical features independently associated with increasedLV mass index were assessed by multivariate logisticregression analysis using the stepwise (forward conditional)method. Therefore, the multivariate model was ultimatelyconstructed only with the variables that proved significant atunivariate analysis. Survival was assessed by Cox propor-tional hazards regression. The survival curve was constructedaccording to the Kaplan-Meier method, and comparisonswere performed using the log-rank test; p values are 2-sidedand considered significant when <0.05. Calculations wereperformed with SPSS 12.0 software (Chicago, Illinois).

Results

Prevalence of obesity. The 275 HCM patients had anaverage BMI of 29.1 � 6.1 kg/m2, ranging from 16.2 to49.3 kg/m2. Sixty-nine patients (25%) were in the normal

Table 1 Clinical and Echocardiographic Features of the 275 HCM Patients in Relation to BMI

OverallNormal

BMI <25 kg/m2Pre-Obese

BMI 25–30 kg/m2Obese

BMI >30 kg/m2 p Value

n 275 69 (25%) 105 (38%) 101 (37%)

Male 192 (70%) 32 (46%) 81 (77%) 79 (78%) <0.001

Age at diagnosis, yrs 43 � 14 41 � 15 45 � 13 44 � 13 0.257

Age at CMR, yrs 48 � 14 46 � 14 50 � 14 49 � 13 0.123

Body surface area, m2 1.97 � 0.25 1.73 � 0.18 1.99 � 0.2 2.11 � 0.23y <0.001

BMI, kg/m2 29.1 � 6.1 22.3 � 2.1 27.4 � 1.4 35.4 � 4.8y <0.001

Height, m 1.71 � 0.12 1.68 � 0.09 1.75 � 0.12y 1.68 � 0.14 <0.001

Weight, kg 85 � 19 63 � 9 84 � 11 101 � 16y <0.001

NYHA functional class at first evaluation

I 149 (54%) 37 (54%) 64 (61%) 48 (47%) overall

II 67 (24%) 19 (27%) 22 (21%) 26 (26%) 0.183

III 15 (5%) 3 (4%) 3 (3%) 9 (9%)

Syncope 57 (20%) 10 (14%) 26 (25%) 21 (21%) 0.263

Atrial fibrillation 30 (11%) 4 (6%) 12 (11%) 14 (14%) 0.248

Hypertension 75 (27%) 8 (12%) 29 (28%) 38 (38%) 0.001

Type II diabetes 14 (5%) 4 (4%) 10 (10%) 0.012

Hypercholesterolemia 84 (31%) 9 (13%) 40 (38%) 35 (35%) 0.001

Echocardiography

Left atrial diameter, mm 44 � 8 42 � 7 44 � 8 46 � 7* 0.032

LV end-diastolic diameter, mm 45 � 6 43 � 6 45 � 6 46 � 6* 0.025

Maximum LV wall thickness, mm 21 � 5 22 � 6 21 � 5 21 � 5 0.272

With LV outflow obstruction 107 (39%) 15 (22%) 41 (39%) 51 (50%)* 0.001

Medical treatment

Beta-blockers 151 (55%) 28 (40%) 62 (59%) 61 (60%) 0.427

Verapamil 52 (19%) 9 (13%) 22 (21%) 21 (21%) 0.578

Amiodarone 15 (5%) 4 (6%) 6 (6%) 5 (5%) 0.850

Disopyramide 10 (4%) 2 (3%) 4 (4%) 4 (4%) 0.613

Diuretics 29 (10%) 2 (3%) 9 (8%) 18 (18%)* <0.001

ACE inhibitors/sartans 40 (14%) 4 (6%) 14 (13%) 22 (21%)* <0.01

Warfarin 14 (5%) 0 5 (5%) 9 (9%) 0.155

Values are n (%) or mean � SD. *p < 0.05 versus the other 2 groups; yp < 0.05 versus normal.ACE ¼ angiotensin-converting enzyme; BMI ¼ body mass index; CMR ¼ cardiac magnetic resonance; HCM ¼ hypertrophic cardiomyopathy; LV ¼ left ventricular; NYHA ¼ New York Heart Association.

JACC Vol. 62, No. 5, 2013 Olivotto et al.July 30, 2013:449–57 Obesity and LV Mass in Hypertrophic Cardiomyopathy

451

weight range (BMI <25 kg/m2; average 22.3 � 2.1),105 (38%) were pre-obese (BMI 25 to 30 kg/m2; average27.4 � 1.4), and 101 (37%) were obese (BMI >30 kg/m2;average 35.4 � 4.8) (Table 1). Overall, 107 patients (39%)were found to have LV outflow obstruction (i.e., a peakinstantaneous outflow gradient �30 mm Hg) occurringeither under basal conditions (n ¼ 57) or during physiologicexercise (n ¼ 50). Seventy-five patients (27%) had a historyof controlled systemic hypertension and 14 (5%) had adult-onset, type II diabetes. Left ventricular outflow obstruction,both under resting conditions and elicited by exercise, wasdisproportionally prevalent in pre-obese and obese patients(Fig. 1, Table 1). Likewise, systemic hypertension and dia-betes were more prevalent in pre-obese and obese compared

with normal weight patients (Table 1); 38 of the 101 obeseHCM patients (38%) were also hypertensive.Relation of BMI to LV mass, volume, and function. Av-erage LV mass index in the HCM patient cohort was 104 �40 g/m2, ranging from 41 to 329 g/m2 (highest quartilecutoff 120 g/m2), greater in males (109 � 41 g/m2 vs. 91 �36 in females, p < 0.001) (Table 2). Compared with normalweight patients, LV mass index progressively increased inpre-obese and obese patients: 95 � 46 g/m2, 100 � 31 g/m2,and 114 � 43 g/m2, respectively (overall p ¼ 0.005; obesepatients p < 0.05 vs. each other group) (Fig. 2), reflectinga direct relationship between LV mass and BMI (correlationcoefficient ¼ 0.23; p < 0.001). Thus, obesity in HCMpatients was associated with a 120% increase in indexedLV mass, compared with normal body weight. Conversely,maximum LV wall thickness was virtually identical innormal weight, pre-obese, and obese patients (22 � 6 mm,21 � 5 mm, and 21 � 5 mm, respectively; p ¼ 0.27).

Increased LV mass with respect to body weight wasassociated with higher LV end-diastolic volume index: 66 �14 ml/m2 in normal weight, 77 � 18 ml/m2 in pre-obese,and 83 � 20 ml/m2 in obese patients (overall p < 0.001)(Figs. 3 and 4). Therefore, obese patients showed a 126%increase in indexed LV cavity size compared with those ofnormal weight. Nevertheless, average LV end-diastolicdimension remained within the normal range for eachgroup (i.e., nondilated LV cavity) (Table 2). Notably, whenthe subset of 168 nonobstructive HCM patients wasanalyzed separately, the direct correlation of BMI andLV mass index persisted (correlation coefficient 0.22,p ¼ 0.004).

Conversely, LV systolic function, as expressed by ejectionfraction, did not differ among the 3 BMI classes (p ¼ 0.86);by virtue of greater end-diastolic volumes, stroke volumeindex increased from normal weight to pre-obese to obeseHCM patients, whereas mass/volume ratio was unchanged(Table 2). Prevalence of LGE was increased in pre-obeseand obese HCM patients (48% and 55%, respectively)compared with the normal weight patients (28%, overallp ¼ 0.001). However, average %LV mass occupied by LGE

Figure 1Prevalence of LV Outflow Obstruction inRelation to BMI

Bar graph illustrating the proportion of patients in each body mass index (BMI)

class with left ventricular outflow tract (LVOT) obstruction (�30 mm Hg) at rest or

with exercise. Increase in BMI is associated with greater likelihood of an

obstructive pathophysiology. *p < 0.05 versus normal weight. yp < 0.05 versus

pre-obese.

Table 2 Cardiovascular Magnetic Imaging Findings in 275 HCM Patients With Respect to BMI

OverallNormal

BMI <25 kg/m2Pre-Obese

BMI 25–30 kg/m2Obese

BMI >30 kg/m2 p Value

n 275 69 (25%) 105 (38%) 101 (37%)

LV end-diastolic volume, ml 151 � 45 115 � 29 154 � 38* 174 � 45y <0.001

LV end-systolic volume, ml 43 � 22 33 � 17 44 � 23* 49 � 25* <0.001

LV ejection fraction, % 72 � 10 71 � 11 72 � 10 72 � 9 0.864

Stroke volume, ml 108 � 33 82 � 23 109 � 28* 125 � 34y <0.001

Mass/volume ratio 1.3 � 0.5 1.3 � 0.5 1.3 � 0.4 1.4 � 0.5 0.428

Patients with LGE 125 (46%) 19 (28%) 50 (48%)* 55 (55%)* 0.001

LGE mass, g 10.4 (6.2–26.6) 14.4 (9.2–50.7) 15.6 (5.6–26.1) 9.5 (4.7–21.2) 0.240

LGE percent of LV volume 2.8 (1.8–6.5) 3.4 (1.8–12.1) 2.9 (1.9–7.3) 2.3 (1.5–5.2) 0.552

Values are n (%), mean � SD, or median (interquartile range). *p < 0.05 versus normal. yp < 0.05 versus each of the other 2 groups.LGE ¼ late gadolinium enhancement; other abbreviations as in Table 1.

Olivotto et al. JACC Vol. 62, No. 5, 2013Obesity and LV Mass in Hypertrophic Cardiomyopathy July 30, 2013:449–57

452

in individual patients did not differ between the subgroups(overall p ¼ 0.55) (Table 2).

Systemic hypertension was associated with increased LVmass index in our HCM cohort (118 � 44 g/m2 vs. 98 �36 g/m2 in normotensive; p < 0.001), although type 2 dia-betes was not (LV mass index 104 � 41 g/m2 vs. 104 �21 g/m2 in nondiabetic patients; p ¼ 0.98). Patients whowere both obese and hypertensive hadLVmass index values of126� 44 g/m2, comparedwith 93� 42 g/m2 in those patientswho were neither obese nor hypertensive (p < 0.001).Correlates of LV mass. A multivariate regression modelwas constructed to identify variables independently associ-ated with greater magnitude of LVH, defined by an LV massin the highest quartile for the overall cohort, or >120 g/m2.Variables assessed included BMI, age, sex, resting, or pro-vokable LV outflow obstruction, systemic hypertension, and

type 2 diabetes. The model was ultimately constructed withthe 3 variables that proved significant at univariate analysis(i.e., obesity, sex, and LV outflow obstruction). In thismodel, BMI proved an independent correlate of LV mass>120 g/m2, with a hazard ratio (HR) per unit increase of1.07 (95% CI: 1.01 to 1.13; p ¼ 0.019).

Pre-obese HCM patients showed a 65% increased like-lihood of assignment to the highest LV mass index quartile,compared with normal weight patients (HR: 1.65; 95% CI:0.73 to 3.74; p ¼ 0.22), while in obese patients this likeli-hood increased >300% (HR: 3.1; 95% CI: 1.42 to 6.86;p ¼ 0.004). Other variables associated with LV mass >120g/m2 were resting or provokable outflow obstruction (HR:4.9; 95% CI: 2.4 to 9.8; p < 0.001), systemic hypertension(HR: 2.2; 95% CI: 1.1 to 4.5; p ¼ 0.026), and male sex(HR: 2.1; 95% CI: 0.9 to 4.7; p ¼ 0.08).Symptomatic status and outcome. During a medianfollow-up of 3.7 years (interquartile range: 2.5 to 5.3 years)following CMR, there were 25 deaths (or equivalents), ofwhich 6 were noncardiac and 19 were HCM-related. Of thelatter 19 death events, 12 were sudden (including 7 deaths,2 patients resuscitated from cardiac arrest, and 3 appropriateimplantable cardioverter-defibrillator discharges for ventric-ular tachycardia/fibrillation). In addition, there were 6 heartfailure–related events (3 deaths and 3 heart transplants), and1 post-operative death (surgical septal myectomy). Therewas no difference in all-cause mortality among the 3 BMIclasses (Fig. 5).

In the 256 patients who were alive at the end of follow-up, those with obesity were however more likely to havedeveloped progressive New York Heart Association(NYHA) functional class III to IV symptoms at most recentevaluation, compared with normal weight patients (overallp ¼ 0.027). Noticeably, the proportion of patients in NYHAfunctional class III at the end of follow-up was 13% amongobese patients, compared with 6% among those of normalweight (p ¼ 0.03) (Fig. 5). Independent predictors ofNYHA functional class III to IV symptoms at end offollow-up were obesity (HR: 3.6; 95% CI: 1.2 to 10.7;p ¼ 0.02), female sex (HR: 4.3; 95% CI: 1.5 to 12.4;p ¼ 0.007), and LV outflow obstruction (HR: 2.7; 95% CI:0.9 to 7.8; p ¼ 0.07), whereas age, history of atrial fibrilla-tion, and hypertension were not.

Discussion

Obesity and the HCM phenotype. In HCM, the primarymorphologic expression of LVH has historically beenconsidered solely a consequence of the gene mutation, withno evidence to date that environmental variables can influ-ence phenotypic expression (2,5,7,8). However, the extremeheterogeneity of phenotypic expression among HCMpatients, even in family members sharing the same mutation(6), implies that other determinants of cardiac morphologymust be operative (2,3–5). For example, greater LV mass hasbeen observed in male patients and those with dynamic LV

Figure 2 Impact of BMI on LV Mass

Each panel shows mean (�95% confidence interval for mean) for unadjusted LV

mass and LV mass index in each of the 3 BMI classes. Overall p value for

hypertrophic cardiomyopathy patients was 0.005 (obese patients p < 0.05 vs.

each of the other 2 groups). *p < 0.05 versus normal weight; yp < 0.05 versus

Pre-Obese. Wt ¼ weight; other abbreviations as in Figure 1.

JACC Vol. 62, No. 5, 2013 Olivotto et al.July 30, 2013:449–57 Obesity and LV Mass in Hypertrophic Cardiomyopathy

453

outflow obstruction (21), suggesting the disease phenotypemay be sensitive to environmental modulation (22). In orderto address this issue, we have considered whether obesity, anestablished cardiovascular risk factor known to promoteLVH in the general population, may influence the magni-tude of LV mass and prognosis in a multicenter HCMcohort.

Our data demonstrate that obesity is independentlyassociated with increased LV mass, establishing a novelprinciple that environmental variables can influence diseaseexpression in a primary genetic cardiomyopathy such asHCM, a concept also relevant to other cardiomyopathies(22). Indeed, BMI was powerfully associated with severe LVmass increase in our HCM patients, independent of otherimportant determinants such as sex and dynamic LVoutflow obstruction (21), as well as systemic hypertension(18). In our HCM patients, the relationship between BMI

and LV mass became particularly evident for BMI values>30. Obese patients were >3 times as likely to havea marked increase in LV mass exceeding 120 g/m2,compared with those of normal weight. This increase in LVmass was driven primarily by greater end-diastolic volume(which nevertheless remained within normal limits whenindexed to body size). In the general population, LVremodeling associated with chamber enlargement is anestablished consequence of obesity, which normalizes strokevolume index in the presence of increased oxygen require-ment, thereby reflecting a physiologic adaptation to bodyweight (14,15,17,23,24). This principle was also supportedby our observation that greater LV cavity volume in obeseHCM patients was accompanied by preserved systolicfunction, resulting in an increased stroke volume index(14,15,23,24). Such impact of obesity on the HCMphenotype is likely mediated by the same triggers producing

Figure 3 Cardiac Remodeling in an Obese Patient With Hypertrophic Cardiomyopathy

Images from a 35-year-old male patient with a body mass index of 28 kg/m2. Left ventricular mass was 367 g (indexed 153 g/m2), with a maximal wall thickness of 29 mm.

Left ventricular end-diastolic volume was 235 ml (indexed 97 ml/m2) and left ventricular ejection fraction was 80%. (A) Cardiac magnetic resonance steady state free

precession 4-chamber showing diffuse thickening with sparing of the apex. (B) Corresponding late gadolinium enhancement imaging shows lack of fibrosis in LV.

*Subcutaneous fat, Dintrathoracic visceral fat. LA ¼ left atrium; LV ¼ left ventricle; RA ¼ right atrium; RV ¼ right ventricle.

Figure 4 Impact of BMI on LV Volume and Function

Panels show mean (�95% confidence interval for mean) LV end-diastolic volume index, LV ejection fraction, and stroke volume index for the 3 BMI classes. Overall p values for

each variable are provided in Table 1. *p < 0.05 versus normal weight; yp < 0.05 versus pre-obese. Wt ¼ weight; other abbreviations as in Figure 1.

Olivotto et al. JACC Vol. 62, No. 5, 2013Obesity and LV Mass in Hypertrophic Cardiomyopathy July 30, 2013:449–57

454

increased LV mass in obese individuals without HCM, viathe hemodynamic and neurohormonal pathways of sec-ondary hypertrophy (17). The alternative hypothesis thatexcess body weight may directly act upon the primaryetiology of HCM (e.g., by acting as a genetic modifier upondisease-causing sarcomere genes) cannot be excluded butappears much less plausible (22).

Notably, absolute LV wall thickness was unaffected bybody weight, with obese patients showing maximumthickness values virtually identical to those in patients ofnormal weight. This observation suggests that the 2 features,which most differentiate HCM from secondary forms ofLVH (i.e., the asymmetric distribution of LV thickeningand the often marked degree of regional hypertrophy) arelargely unaffected by environmental modulation (4,7).Therefore, neither the current clinical diagnostic criteria forHCM nor decision-making for primary prevention ofsudden death with implantable cardioverter-defibrillators(both based on maximum absolute LV wall thickness)(1,3,25–27) require adjustment with respect to BMI in adult

patients. In addition, our findings emphasize the importanceof assessing total LV mass (by CMR), rather than maximumLV wall thickness, in order to evaluate environmental in-fluences on the HCM phenotype (21). In the present study,for example, mere evaluation of maximum LV thickness inthe 3 BMI subgroups would have overlooked the impact ofexcess body weight on the total hypertrophic burden of ourpatients.Obesity and symptomatic status/outcome. During anaverage follow-up of almost 5 years, obese HCM patients hada 3.6-fold increased risk of developing severe functionallimitation (NYHA functional class III/IV) compared withnon-obese patients, independent of other known determi-nants of heart failure symptoms such as outflow obstruction(28) and atrial fibrillation (26). It is impossible to ascertainprecisely what proportion of functional limitation was duedirectly to obesity, as opposed to the consequences of HCMdisease state (1,3). Nevertheless, symptomatic obese patientsshowedno impairment inLV ejection fraction, indicating thattheir severe disease profile was not due to progressive systolicdysfunction (or “end-stage” HCM) (5). In the general pop-ulation, obesity is an important predictor of heart failure(12,16,18,29), associated with multiple and often profoundchanges in the cardiovascular system, including increasedcardiac oxygen requirement, sympathetic and neurohormonalactivation, increased oxidative stress, increased cardiac output,and expanded central blood volume causing hemodynamicoverload in the face of reduced cardiac efficiency (17,29–31).Likewise, our data suggest that excessive body weight inHCM patients may impact importantly on symptomprogression, potentially triggering a cycle of events in whichobesity leads to an obligatory sedentary lifestyle, furtherincreases in BMI, and, ultimately, worsening of heart failuresymptoms (16). Whether significant weight loss will lead toreduction of symptoms and LV mass in obese HCM patientsremains unresolved, although these data support futurelongitudinal studies aimed at clarifying this issue (32).

On the other hand, obesity itself did not confer anindependent survival disadvantage during follow-up in ourHCM cohort. Although the size of study population and thesmall number of events does not allow definitive conclusionsin this regard, our findings do suggest that other clinicalvariables may be more relevant than body weight in deter-mining survival in this complex disease (3,5,28), consistentwith the elusive relationship of body weight to outcome incardiovascular disease at large (29,30). Indeed, while obesityis associated with increased morbidity and mortality in thegeneral population (9,13,16,29), a high BMI representsa strong independent predictor of favorable outcome inpatients with chronic heart failure, a phenomenon known asthe “obesity paradox” (30).Significance of LV outflow obstruction and hypertension.Left ventricular outflow obstruction was >2-fold moreprevalent in obese HCM patients compared with those ofnormal weight, and associated with a further increase in LVmass (20,21). Although the mechanisms accounting for this

Figure 5 Impact of BMI on Survival

Cumulative risk of all-cause mortality in normal weight, pre-obese, and obese

patients during follow-up (top). Prevalence of HCM-related mortality and severe

heart failure symptoms (NYHA functional classes III or IV) among survivors at the

end of follow-up period (bottom). *p ¼ 0.03 versus other 2 groups. CMR ¼ cardiac

magnetic resonance; HCM ¼ hypertrophic cardiomyopathy; NYHA ¼ New York

Heart Association; Wt ¼ weight.

JACC Vol. 62, No. 5, 2013 Olivotto et al.July 30, 2013:449–57 Obesity and LV Mass in Hypertrophic Cardiomyopathy

455

relationship are uncertain, the abnormally increased adren-ergic drive associated with obesity may predispose todevelopment of intraventricular gradients (31). Such obser-vations may suggest that excess LVH in obese patients isprincipally mediated by outflow obstruction and afterloadmismatch (21). Nevertheless, when the present analysis wasrestricted to nonobstructive HCM patients, the associationbetween BMI and LV mass persisted, consistent with theconcept that cardiac remodeling due to excess body weight islargely independent of (although synergistic to) outflowobstruction (14,21). We acknowledge that the overallprevalence of LV outflow obstruction in the present cohort(39%) was significantly lower than that reported in a pre-vious study by our group (i.e., 70%) (20). This is largely dueto the fact that, in the quoted study, all patients withoutresting obstruction at baseline were systematically exercisedin order to assess provokable obstruction (20), whereas only105 of 218 such patients were assessed during exercise in thepresent cohort. Therefore, the true prevalence of obstructionelicited by physiological exercise may have been under-estimated in our study.

Systemic hypertension was another modifier of the HCMphenotype (9,13). As expected, the prevalence of elevatedblood pressure increased with body weight, and was presentin almost 40% of obese patients in our HCM cohort. Eventhough pharmacologically treated according to existingguidelines (18), hypertension doubled the likelihood ofsevere LVH in these patients, independent of other deter-minants of LV mass. Furthermore, the combination ofobesity and hypertension was associated with the highest LVmass values observed for any subset within the cohort. Thus,the present findings support the concept that the neuro-hormonal abnormalities associated with hypertension mayimpact LV mass in HCM patients (16,23,33), and therebyrepresent a relevant therapeutic target (16,18). To thisregard, it is important to acknowledge that environmentalinfluences of single cardiovascular risk factors on the HCMphenotype are unavoidably linked to a number of coexistingfactors (22). For example, obesity is per se associated with anincreased likelihood of hypertension, diabetes, and dynamicLV outflow obstruction (11,16). Therefore, interpretation ofthe clinical role of each of these factors, in isolation from theoverall pathophysiological picture, remains challenging.

Conclusions

The present study provides evidence that obesity is inde-pendently associated with adverse cardiac remodeling andincrease in LV mass in HCM patients. These observationsunderscore the novel principle that the primary phenotypicexpression in this complex, heterogenous heart disease is alsosubject to environmental variables and not solely the productof disease-causing sarcomere mutations. In addition, obesityappears to play a role in the development and progression ofheart failure symptoms in HCM, supporting the need for

follow-up studies clarifying whether modulating obesity canimprove clinical course.

Reprint requests and correspondence: Dr. Iacopo Olivotto,Dipartimento Cuore e Vasi, Azienda Ospedaliera UniversitariaCareggi, Viale Pieraccini 19, 50134 Firenze, Italy. E-mail:[email protected].

REFERENCES

1. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet 2012;381:242–55.

2. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies.N Engl J Med 2011;364:1643–56.

3. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guidelinefor the diagnosis and treatment of hypertrophic cardiomyopathy:executive summary: a report of the American College of CardiologyFoundation/American Heart Association Task Force on PracticeGuidelines. J Am Coll Cardiol 2011;58:2703–38.

4. Olivotto I, Girolami F, Nistri S, et al. The many faces of hypertrophiccardiomyopathy: from developmental biology to clinical practice.J Cardiovasc Transl Res 2009;2:349–67.

5. Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of diseaseprogression in hypertrophic cardiomyopathy: an individualizedapproach to clinical staging. Circ Heart Fail 2012;5:535–46.

6. Ciró E, Nichols PF 3rd, Maron BJ. Heterogeneous morphologicexpression of genetically transmitted hypertrophic cardiomyopathy.Two-dimensional echocardiographic analysis. Circulation 1983;67:1227–33.

7. Wang L, Seidman JG, Seidman CE. Narrative review: harnessingmolecular genetics for the diagnosis and management of hypertrophiccardiomyopathy. Ann Intern Med 2010;152:513–20, W181.

8. Daw EW, Chen SN, Czernuszewicz G, et al. Genome-wide mappingof modifier chromosomal loci for human hypertrophic cardiomyopathy.Hum Mol Genet 2007;16:2463–71.

9. Kahn R, Robertson RM, Smith R, Eddy D. The impact of preventionon reducing the burden of cardiovascular disease. Circulation 2008;118:576–85.

10. Parikh NI, Pencina MJ, Wang TJ, et al. Increasing trends in incidenceof overweight and obesity over 5 decades. Am J Med 2007;120:242–50.

11. Kushner RF. Clinical assessment and management of adult obesity.Circulation 2012;126:2870–7.

12. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-causemortality with overweight and obesity using standard body mass indexcategories: a systematic review andmeta-analysis. JAMA2013;309:71–82.

13. Heckbert SR, Post W, Pearson GD, et al. Traditional cardiovascularrisk factors in relation to left ventricular mass, volume, and systolicfunction by cardiac magnetic resonance imaging: the Multiethnic Studyof Atherosclerosis. J Am Coll Cardiol 2006;48:2285–92.

14. Rider OJ, Francis JM, Ali MK, et al. Determinants of left ventricularmass in obesity; a cardiovascular magnetic resonance study. J Car-diovasc Magn Reson 2009;11:9.

15. Turkbey EB, McClelland RL, Kronmal RA, et al. The impact ofobesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis(MESA). J Am Coll Cardiol Img 2010;3:266–74.

16. National Institutes of Health. Clinical guidelines on the identification,evaluation, and treatment of overweight and obesity in adultsdtheevidence report. Obes Res 1998;6 Suppl 2:51S–209S.

17. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity.Physiol Rev 2008;88:389–419.

18. Smith SC Jr., Benjamin EJ, Bonow RO, et al. AHA/ACCF secondaryprevention and risk reduction therapy for patients with coronary andother atherosclerotic vascular disease: 2011 update: a guideline from theAmerican Heart Association and American College of CardiologyFoundation. J Am Coll Cardiol 2011;58:2432–46.

19. Maron MS, Olivotto I, Harrigan C, et al. Mitral valve abnormalitiesidentified by cardiovascular magnetic resonance represent a primaryphenotypic expression of hypertrophic cardiomyopathy. Circulation2011;124:40–7.

Olivotto et al. JACC Vol. 62, No. 5, 2013Obesity and LV Mass in Hypertrophic Cardiomyopathy July 30, 2013:449–57

456

20. Maron MS, Olivotto I, Zenovich AG, et al. Hypertrophic cardiomy-opathy is predominantly a disease of left ventricular outflow tractobstruction. Circulation 2006;114:2232–9.

21. Olivotto I, Maron MS, Autore C, et al. Assessment and significance ofleft ventricular mass by cardiovascular magnetic resonance in hyper-trophic cardiomyopathy. J Am Coll Cardiol 2008;52:559–66.

22. Piran S, Liu P, Morales A, Hershberger RE. Where genome meetsphenome: rationale for integrating genetic and protein biomarkers inthe diagnosis and management of dilated cardiomyopathy and heartfailure. J Am Coll Cardiol 2012;60:283–9.

23. Danias PG, Tritos NA, Stuber M, Kissinger KV, Salton CJ,Manning WJ. Cardiac structure and function in the obese: A cardio-vascular magnetic resonance imaging study. J Cardiovasc Magn Reson2003;5:431–8.

24. Wong CY, O’Moore-Sullivan T, Leano R, Byrne N, Beller E,Marwick TH. Alterations of left ventricular myocardial characteristicsassociated with obesity. Circulation 2004;110:3081–7.

25. Maron BJ. Sudden death in hypertrophic cardiomyopathy. J CardiovascTransl Res 2009;2:368–80.

26. Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ.Magnitude of left ventricular hypertrophy and risk of sudden death inhypertrophic cardiomyopathy. N Engl J Med 2000;342:1778–85.

27. Olivotto I, Gistri R, Petrone P, Pedemonte E, Vargiu D, Cecchi F.Maximum left ventricular thickness and risk of sudden death in

patients with hypertrophic cardiomyopathy. J AmColl Cardiol 2003;41:315–21.

28. Maron MS, Olivotto I, Betocchi S, et al. Effect of left ventricularoutflow tract obstruction on clinical outcome in hypertrophic cardio-myopathy. N Engl J Med 2003;348:295–303.

29. Kenchaiah S, Evans JC, Levy D, et al. Obesity and the risk of heartfailure. N Engl J Med 2002;347:305–13.

30. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC,Norris CM, McAlister FA. Body mass index and mortality in heartfailure: a meta-analysis. Am Heart J 2008;156:13–22.

31. Grassi G, Seravalle G, Quarti-Trevano F, et al. Excessive sympatheticactivation in heart failure with obesity and metabolic syndrome:characteristics and mechanisms. Hypertension 2007;49:535–41.

32. Clarke R. Long-term weight loss and prevention of cardiovasculardisease. Circulation 2011;124:2801–2.

33. Tsybouleva N, Zhang L, Chen S, et al. Aldosterone, through novelsignaling proteins, is a fundamental molecular bridge between thegenetic defect and the cardiac phenotype of hypertrophic cardiomy-opathy. Circulation 2004;109:1284–91.

Key Words: cardiac magnetic resonance - hypertrophiccardiomyopathy - hypertrophy - obesity - outcome.

JACC Vol. 62, No. 5, 2013 Olivotto et al.July 30, 2013:449–57 Obesity and LV Mass in Hypertrophic Cardiomyopathy

457

EDITORIAL COMMENT

Obesity and HypertrophicCardiomyopathyChickens, Eggs, and Causality:Clinical Skills Remain the Key toCaring for Patients*

Steve R. Ommen, MD,

Francisco Lopez-Jimenez, MD, MSC

Rochester, Minnesota

The impact of obesity on the cardiovascular system con-tinues to reveal itself. In this issue, Olivotto et al. (1) sharethe results of a 3-center collaboration on body mass indexand its relation to left ventricular morphology in patientswith hypertrophic cardiomyopathy (HCM). The investiga-tors found that obese HCM patients had significantly largerleft ventricular mass, left ventricular mass index, and highersubsequent rates of symptom development. These resultssuggest that environmental/situational factors can influenceventricular morphology in a condition that is geneticallyinherited. Notably, only 25% of the patients in this study fell

See page 449

into the normal weight classification. So, like the age-oldquestion, can we tell which came first? Is it a more severeexpression of HCM that leads to obesity, or is it the generaltrend of increasing body weight in Western society thatcomplicates HCM?

Because this was an observational study, we cannot tell thedirection of the association. There are numerous potentialpathophysiologic mechanisms by which obesity could resultin more hypertrophy. These include increased sympathetictone, increased leptin levels, myocardial fatty infiltration,insulin resistance, and enhanced renin-angiotensin activity(2). Likewise, a more severe phenotypic expression of HCMcould readily lead to a less active life with all the attendantnegative impacts, including increasing body mass. While atbaseline, the study subjects had statistically similar symptomstatus; there is no indication of daily activity levels, nor

objective measures of exercise capacity. In the end, treatingpatients with HCM and obesity will necessarily involvetreating both aspects.

The impact of obesity on symptom status is a troublingclinical conundrum. Obesity is a well-known cause of heartfailure, and has been shown to result in worsening diastolicfunction independent of other comorbid conditions (3,4).Patients with obesity have higher overall oxygen require-ments as well as abnormal myocardial function as evidencedby strain and strain rate imaging (5). In the Olivotto et al.study, the patients with obesity were more likely to have leftventricular outflow tract obstruction, and to be receivingdiuretics, and/or pure vasodilators as part of their therapy.Those medications are well known to exacerbate leftventricular outflow tract obstruction.

Why is this a problem in patients with HCM? Other thandefibrillators for prevention of sudden cardiac death, alltherapies in HCM have the sole indication of symptomrelief (6). The therapies employed, including medicationsand invasive procedures, can be quite effective when com-bating symptoms due to hemodynamic derangements, butnot likely to be effective at when directed at problems such asdeconditioning and excess oxygen requirements. Similarly,the need to consider surgical or invasive therapy is based onpersistent symptoms that are unresponsive to pharmacologictherapy. However, if the symptoms are persistent becausethey are primarily related to the obesity, then the medica-tions (and the subsequent procedures) have little chance ofmaking an impact on symptoms.

So, when facing an obese patient with HCM and decidingwhether to start, increase, or decrease therapy one has to makeimportant considerations of the balance between hemody-namics and excess body weight. By the time such patientshave become highly symptomatic, the combination of sed-entary status, deconditioning, and increased tendency tooutflow tract obstruction may make therapeutic lifestylechange untenable. Yet, treating the hemodynamic abnor-malities will lead to less than satisfying results unless weightloss and healthy habits are taught to and adopted by thepatients.

How does one then approach this situation? With car-diopulmonary exercise testing we can determine whetherpatients exercise capacity is limited by cardiac output limi-tations based on a plateau in the peak oxygen consumption(VO2). Conversely, if a patient is purely limited due todeconditioning and obesity, then the peak oxygen con-sumption (VO2) will continue to rise through the point atwhich the patient has to stop exercising. Armed with thisinformation, appropriate therapeutic decisions and focusedcounseling can help our patients understand the expectedimpact, and their role in achieving a better quality oflife. Even with completely successful treatment of hemody-namic considerations, the obese patient needs to understandthis is the first step in their path to improved functionalcapacity. Long-term exercise and dietary modifications willneed to continue. Importantly, therapeutic lifestyle change,

*Editorials published in the Journal of the American College of Cardiology reflect the

views of the authors and do not necessarily represent the views of JACC or the

American College of Cardiology.

From the Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic,

Rochester, Minnesota. Both authors have reported that they have no relationships

relevant to the contents of this paper to disclose.

Journal of the American College of Cardiology Vol. 62, No. 5, 2013� 2013 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00Published by Elsevier Inc. http://dx.doi.org/10.1016/j.jacc.2013.03.063

particularly if the cardiac hemodynamic abnormalities aremild, may represent the most important step to recovery.Whether purposeful weight loss in symptomatic patientswith HCM improves left ventricular morphology andhemodynamics is yet to be determined.

The study by Olivotto et al. (1) suggested that some ofthese findings were independent of comorbid conditions.However, as clinicians we must not discount the increasedrates of hypertension, diabetes, coronary artery disease, andsleep apnea have important roles not only in the cardiovas-cular system but in general well-being. Furthermore, eachof these conditions has been shown to be associated withadverse outcomes in patients with HCM. Treating andcaring for patients with HCM means not just understandingthe pathophysiology of diastole and outflow tract obstruc-tion, but must incorporate treating comorbid conditionsaggressively.

Another of the management considerations for patientswith HCM deserves mention. Many patients perceive, or arein fact inappropriately counseled by their physicians, thatthey should not engage in regular exercise. This stems fromthe fact that sudden cardiac death among competitiveathletes is most often related to HCM such that competitiveathletics are discouraged for these patients. To extend thatdiscouragement to regular, noncompetitive exercise is a trav-esty. Counseling and encouraging healthy habits, includingmild to moderate intensity exercise, is an important aspect ofcaring for patients.

Hypertrophic cardiomyopathy is generally well tolerated,with a good prognosis, and completely compatible with anormal lifestyle (often with no therapeutic interventions).That obesity modifies the ventricular morphology, and theoverall well-being of our patients, provides further evidence

that we need to actively teach our patients about healthychoices. Which comes first? Maybe we will find out one day,but for now it is our responsibility to treat both. Clinically,we treat people, not just pathophysiology.

Reprint requests and correspondence: Dr. Steve R. Ommen,Mayo Clinic, College of Medicine, Division of CardiovascularDiseases and Internal Medicine, 200 First Street SW, Rochester,Minnesota 55905. E-mail: [email protected].

REFERENCES

1. Olivotto I, Maron BJ, Tomberli B, et al. Obesity and its association tophenotype and clinical course in hypertrophic cardiomyopathy. J AmColl Cardiol 2013;62:449–57.

2. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease:pathophysiology, evaluation, and effect of weight loss: an update ofthe 1997 American Heart Association Scientific Statement on Obesityand Heart Disease from the Obesity Committee of the Council onNutrition, Physical Activity, and Metabolism. Circulation 2006;113:898–918.

3. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorousphysical activity and the risk of heart failure among men. Circulation2009;119:44–52.

4. Cil H, Bulur S, Turker Y, et al., for the MELEN Investigators. Impactof body mass index on left ventricular diastolic dysfunction. Echocar-diography 2012;29:647–51.

5. Orhan AL, Uslu N, Dayi SU, et al. Effects of isolated obesity on leftand right ventricular function: a tissue Doppler and strain rate imagingstudy. Echocardiography 2010;27:236–43.

6. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline forthe diagnosis and treatment of hypertrophic cardiomyopathy: executivesummary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J AmColl Cardiol 2011;58:2703–38.

Key Words: body mass index - hypertrophic cardiomyopathy -

left ventricular hypertrophy - obesity - outcome.

JACC Vol. 62, No. 5, 2013 Ommen and Lopez-JimenezJuly 30, 2013:458–9 Obesity and HCM

459

Benedetta Tomberli, Iacopo Olivotto and Gian Franco GensiniGabriele Castelli, Alessandra Fornaro, Mauro Ciaccheri, Alberto Dolara, Vito Troiani,

Over 3 Decades: Impact of Evidence-Based ManagementImproving Survival Rates of Patients With Idiopathic Dilated Cardiomyopathy in Tuscany

Print ISSN: 1941-3289. Online ISSN: 1941-3297 Copyright © 2013 American Heart Association, Inc. All rights reserved.

75231is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TXCirculation: Heart Failure

doi: 10.1161/CIRCHEARTFAILURE.112.0001202013;6:913-921; originally published online July 25, 2013;Circ Heart Fail. 

http://circheartfailure.ahajournals.org/content/6/5/913World Wide Web at:

The online version of this article, along with updated information and services, is located on the

  http://circheartfailure.ahajournals.org//subscriptions/

is online at: Circulation: Heart Failure Information about subscribing to Subscriptions: 

http://www.lww.com/reprints Information about reprints can be found online at: Reprints:

  document. Permissions and Rights Question and Answer about this process is available in the

located, click Request Permissions in the middle column of the Web page under Services. Further information isthe Editorial Office. Once the online version of the published article for which permission is being requested

can be obtained via RightsLink, a service of the Copyright Clearance Center, notCirculation: Heart Failurein Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from at UNIV DI FIRENZE on October 25, 2013http://circheartfailure.ahajournals.org/Downloaded from

913

Idiopathic dilated cardiomyopathy (IDCM) is a severe myo-cardial disease characterized by dilatation and impaired

function of the left or both ventricles,1 affecting >36.5 indi-viduals per 100 000.2 IDCM accounts for ≈50 000 hospital-izations and 10 000 deaths each year and is responsible for ≈25% of all cases of heart failure (HF) in the United States.3 During the past 3 decades, the outcome of IDCM is presumed to have radically changed after major advances in pharma-cological and device-based therapeutic strategies for HF; however, studies addressing the outcome of HF have been characterized by relatively small representation of individu-als with IDCM, so that limited data exist with specific regard to this condition.4–11

Clinical Perspective on 921

In addition, real-world implementation of standard HF guidelines is challenging, with rates of compliance that can be considerably lower than those reported in clinical trials documenting survival benefits.12–17 As a result, the issue of long-term outcome of IDCM in the community remains largely unresolved. In the present study, we there-fore chose to examine the clinical features and prognosis of a sizeable cohort of unselected, consecutively enrolled and angiographically negative patients with IDCM from a well-defined regional population in Tuscany, evaluated dur-ing the past 30 years in a systematic fashion and by the same team, in relation to the evolving treatment strategies includ-ing evidence-based pharmacological and device-based interventions.

Original Article

© 2013 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org DOI: 10.1161/CIRCHEARTFAILURE.112.000120

Background—Contemporary therapeutic options have led to substantial improvement in survival of patients with heart failure. However, limited evidence is available specifically on idiopathic dilated cardiomyopathy. We thus examined changes in prognosis of a large idiopathic dilated cardiomyopathy cohort systematically followed during the past 30 years.

Methods and Results—From 1977 to 2011, 603 consecutive patients (age, 53±12 years; 73% men; left ventricular ejection fraction, 32±10%) fulfilling World Health Organization criteria for idiopathic dilated cardiomyopathy, including negative coronary angiography, were followed up for 8.8±6.3 years. Patients were subdivided in 4 enrollment periods on the basis of heart failure treatment eras: (1) 1977–1984 (n=66); (2) 1985–1990 (n=102); (3) 1991–2000 (n=197); (4) 2001–2011 (n=238). Rates of patients receiving angiotensin-converting enzyme inhibitors/angiotensin receptors blockers, β-blockers, and devices at final evaluation increased from 56%, 12%, 8% (period 1) to 97%, 86%, 17% (period 4), respectively (P<0.05). There was a trend toward enrollment of older patients with less severe left ventricular dilatation and dysfunction during the years. During follow-up, 271 patients (45%) reached a combined end point including death (heart failure related, n=142; sudden death, n=71; and noncardiac, n=22) or cardiac transplant (n=36). A more recent enrollment period represented the most powerful independent predictor of favorable outcome {period 2 versus 1 (hazard ratio [HR], 0.64; P=0.04), period 3 versus 1 (HR, 0.35; P<0.001), period 4 versus 1 (HR, 0.14; P<001)}. Each period was associated with a 42% risk reduction versus the previous one (HR, 0.58; 95% confidence interval, 0.50–0.67; P<0.001), reflecting marked decreases in heart failure–related mortality and sudden death (period 4 versus 1: HR, 0.10; P<001 and HR, 0.13; P<0.0001, respectively).

Conclusions—Evidence-based treatment has led to dramatic improvement in the prognosis of idiopathic dilated cardiomyopathy during the past 3 decades. The benefits of controlled randomized trials can be replicated in the real world, emphasizing the importance of tailored follow-up and long-term continuity of care. (Circ Heart Fail. 2013;6:913-921.)

Key Words: cardiac resynchronization therapy ■ cardiomyopathy, dilated ■ drug therapy ■ heart failure ■ outcomes assessment

Received December 29, 2012; accepted July 15, 2013.From the Heart and Vessel Department, Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy.Correspondence to Gabriele Castelli, MD, Cardiologia Generale 1–San Luca, Dipartimento del Cuore e dei Vasi, Azienda Ospedaliero Universitaria

Careggi, Largo Brambilla 1, 50134 Firenze, Italy. E-mail [email protected]

Improving Survival Rates of Patients With Idiopathic Dilated Cardiomyopathy in Tuscany Over 3 Decades

Impact of Evidence-Based Management

Gabriele Castelli, MD; Alessandra Fornaro, MD; Mauro Ciaccheri, MD; Alberto Dolara, MD; Vito Troiani, MD; Benedetta Tomberli, MD; Iacopo Olivotto, MD; Gian Franco Gensini, MD

914 Circ Heart Fail September 2013

MethodsSetting and Study PopulationThe Referral Center for Cardiomyopathies has been established in the mid-1970s in Careggi University Hospital, a large community-based multispecialty hospital in Florence, Italy. Careggi is a tertiary center with >1500 beds, serving the Florence metropolitan area (population ≈1 million) and the surrounding geographic region of Tuscany (total population ≈3 700 000 within ≈23 000 km2).18 In this setting, between January 1977 and September 2011, we consecutively enrolled 1085 pa-tients with a diagnosis of dilated cardiomyopathy. In 271 patients, the condition was judged to be secondary to ischemic heart disease, sys-temic hypertension, chemotherapy, alcoholic abuse, diabetes mellitus, cor pulmonalis, valve disease, or other cardiac or systemic diseases. In addition, 211 patients in whom a coronary angiogram was not available were excluded. The remaining 603 were classified as IDCM, accord-ing to the World Health Organization criteria and in the presence of a negative coronary angiogram: these comprise the present study cohort.

Evaluation and Follow-UpAll study patients were evaluated and followed up at our institution by clinical and family history, physical examination, 12-lead ECG, standard chest radiograph, routine laboratory tests, 24-hour Holter ECG monitoring (since early 1980s), M-mode and 2D echocardiogra-phy (since 1970s), and Doppler echocardiography (since mid-1980s). Exercise stress test and cardiac catheterization were performed as dictated by clinical requirements. Endomyocardial biopsy has been performed routinely until the early 1990s and thereafter only on se-lected patients with suspect active myocarditis. Although the family history of each patient was investigated, systematic family screenings have not been performed. In 51 patients (8%) a genetic transmission of IDCM was evident or suspected by virtue of clinical and echocar-diographic documentation of the disease in a relative or by a family history of HF-related death or premature sudden death (SD).

Patients were regularly followed up by outpatient visits every 6 months (or more frequently when clinically indicated) and, when necessary, by interviews with referring physicians or by tele-phone contacts. For the purposes of this study, follow-up ended on September 30th, 2011. In patients who died or were transplanted, end of follow-up was considered as time of death or heart transplanta-tion. In the minority of patients lost to follow-up (ie, not traceable by September 30th, 2011), the last clinical evaluation of telephone contact was considered. In the past 5 years of the study (2006–2011), the proportion of patients who were actively followed up, had died/transplanted, or were lost in period was 44%, 45%, and 11%, respec-tively. For the entire study period, patients were seen by the same cardiologists who assumed primary responsibility for management. The use of pharmacological agents, implantable cardioverter defibril-lator (ICD), and biventricular pacing for cardiac resynchronization therapy (CRT) was carefully considered as these became available and implemented when felt appropriate, according to existing guide-lines.19 Pharmacological treatment was carefully titered to achieve maximum tolerated doses of angiotensin-converting enzyme inhibi-tors/angiotensin receptors blockers (ACEI/ARBs) and β-blockers. Candidates for heart transplantation (HTx) were assessed jointly with the Regional Heart Transplant Referral Center in Siena, where the op-erations were performed. The study was approved by the institutional review committee and patients gave an informed consent.

Enrollment PeriodsTo assess long-term changes in outcome in relation to treatment op-tions, we subdivided our patients with IDCM into 4 periods, coin-ciding with different therapeutic eras of HF treatment: period 1: 66 patients (11%) enrolled from 1977 to 1984, defined as the pre-ACE inhibition era, when standard therapy consisted of diuretic agents, di-goxin, and early vasodilators; period 2: 102 patients (17%) enrolled from 1985 to 1990, marking the beginning of the ACEI era; period 3: 197 patients (33%) enrolled from 1991 to 2000, characterized by increasing use of ACEI and ARBs and the introduction of β-blockers;

and period 4: 238 patients (39%) enrolled from 2001 to 2011, the device-era, characterized by the introduction of ICD and CRT on top of extensive neurohormonal blockade.20

Statistical AnalysisStudent t test and 1-way ANOVA were used to compare continu-ous variables, whereas categorical variables were compared by χ2 test or Fisher method, as appropriate. Univariate survival estimates were obtained using Kaplan–Meier method. Forward conditional Cox proportional hazards regression analysis was used to evaluate the relationship between periods of enrollment, clinical and instru-mental baseline data of patients, and long-term outcome for the fol-lowing end points: (1) death from any cause including appropriate ICD interventions and HTx; (2) SD; (3) death because of refractory HF. The following variables were included in the models: age, New York Heart Association (NYHA) class, sex, left ventricular ejection fraction (LVEF), baseline LV end-diastolic diameter index, left atrial diameter index, and the presence of moderate to severe mitral regur-gitation at enrollment. A P value <0.05 was considered statistically significant. Statistical analysis was performed with the SPSS pack-age, version 20 (SPSS Inc, Chicago, IL).

ResultsBaseline Clinical FeaturesMean age of the 603 patients at first evaluation was 53±12 (range, 16–75) years; 442 (73%) were men. In 51 patients (8%) there was a family history of IDCM. Average NYHA functional class was 2.3±0.8; 82 patients (14%) were in class I, 265 (44%) in class II, 198 (33%), and 58 (10%) in class III or IV. Mean end-diastolic diameter index was 36±6 mm/m2, LVEF was 31±10%, and left atrial diameter index was 24±4 mm/m2; moderate to severe mitral regurgitation was diagnosed in 106 patients (18%). One hundred seventeen patients (19%) had ECG evidence of left bundle-branch block, whereas a history of paroxysmal or permanent atrial fibrillation was recorded in 123 (21%). Of the 531 patients with 24-hour ambulatory Holter monitoring, 183 (30%) showed non–sustained ventricular tachycardias ≥3 beats and sustained ventricular tachycardias (Table 1).

Comparison of Enrollment PeriodsAt initial evaluation, the 4 groups of patients identified based on the period of enrollment were comparable with regard to sex and NYHA class (Table 1). However, there was a slight trend toward enrollment of older patients with less severe LV dilatation and dysfunction during the years: in period 4 versus period 1, age was 55±12 versus 50±11 years, respec-tively (P<0.0001); end-diastolic diameter index was 34±5 versus 39±6 mm/m2 (P<0.0001), and LVEF was 33±9 versus 29±11% (P=0.016). The overall prevalence of atrial fibrilla-tion was similar in the 4 periods; however, permanent atrial fibrillation at initial diagnosis became less prevalent over time (overall P<0.001; Table 1).

Evolution in ManagementExpectedly, medical treatment at enrollment differed signifi-cantly between the 4 patient periods (Table 2; Figure 1). ACEI and ARBs were extensively used at our institution since early 1990s, reaching a 96% rate at enrollment after 2001 versus 4% before 1985 (P<0.0001). The use of β-blockers increased significantly after 2001: 79% of patients were already treated with these agents at enrollment in period 4 compared with 0%

Castelli et al Long-Term Outcome of IDCM in Tuscany 915

in period 1, 1% in period 2, and 21% in period 3 (P<0.0001). These differences were still evident at the end of follow-up, although the rate of treated patients considerably increased in all patient subgroups, reflecting changes in management over time (Table 2). Of note, 97% and 86% of patients in period 4 were on ACEI/ARBs and β-blockers, respectively, at final evaluation. The use of mineralocorticoid receptor antagonists

also increased progressively in periods 1 to 4, whereas that of digoxin decreased (at final evaluation, only 37% of patients in period 4 were on digoxin versus 92% in period 1; P<0.0001). The ICD and CRT were introduced in 1998 and 2000, respec-tively, and their use increased steadily over time (Table 2). Overall, 79 patients (13%) were implanted with an ICD, whereas 69 (11%) received combined ICD/CRT (Figure 1).

Table 1. Baseline Clinical and Instrumental Characteristics of Patients at Enrollment

TotalPeriod 1 (1977–1984)

n=66Period 2 (1985–1990)

n=102Period 3 (1991–2000)

n=197Period 4 (2001–2011)

n=238 P Value

Men, % 442 (73%) 50 (76%) 75 (73%) 149 (76%) 168 (71%) NS

BSA, kg/m2 1.9±0.2 1.8±0.2 1.8±0.2 1.8±0.2 1.9±0.2 <0.001

Age, y 53±12 50±11 48±13 54±12 55±12 <0.001

Follow-up, mo 106±75 113±108 135±99 122±64 79±47 <0.001

Familial IDCM, % 51 (8%) 1 (1%) 2 (2%) 22 (11%) 26 (8%) 0.003

LBBB, % 117 (19%) 19 (29%) 32 (31%) 35 (18%) 31 (13%) NS

Paroxysmal AF 29 (5%) 0 (0%) 2 (2%) 8 (4%) 19 (8%) <0.001

Chronic AF 94 (16%) 18 (27%) 21 (21%) 29 (15%) 26 (11%) <0.001

Complex VA 183 (30%) 27 (41%) 46 (45%) 65 (33%) 45 (19%) <0.001

NYHA class I 82 (14%) 6 (9%) 10 (10%) 31 (16%) 35 (15%) NS

NYHA class II 265 (44%) 33 (50%) 50 (49%) 89 (45%) 93 (39%)

NYHA class III 198 (33%) 21 (32%) 31 (30%) 63 (32%) 83 (35%)

NYHA class IV 58 (10%) 6 (9%) 11 (11%) 14 (7%) 27 (11%)

EDD, mm 67±8 69±8 69±9 67±9 65±8 <0.001

iEDD, mm/m2 36±6 39±6 38±6 36±5 34±5 <0.001

LVEF, % 31±10 29±11 30±10 31±9 33±9 0.016

LVFS, % 18±6 16±5 17±6 19±6 19±6 0.015

ARD, mm 33±4 33±4 32±4 32±4 33±4 0.022

iARD, mm/m2 17±3 17±5 18±3 17±2 17±3 NS

LAD, mm 44±7 45±7 46±8 44±7 44±7 NS

iLAD, mm/m2 24±4 25±4 25±5 24±4 23±4 <0.001

Moderate to severe MR 106 (18%) 3 (4%) 12 (12%) 29 (15%) 62 (26%) <0.001

Data are presented as mean±SD or percentages. AF indicates atrial fibrillation; ARD, aortic root diameter; BSA, body surface index; EDD, end-diastolic diameter; iARD, aortic root diameter index; IDCM, idiopathic dilated cardiomyopathy; iEDD end-diastolic diameter index; iLAD, left atrial diameter index; LAD, left atrial diameter; LBBB, left bundle-branch block; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; MR, mitral regurgitation; NS, not significant; NYHA, New York Heart Association; and VA, ventricular arrhythmias.

Table 2. Treatment at Enrollment and at the End of Follow-Up

TotalPeriod 1 (1977–1984)

n=66Period 2 (1985–1990)

n=102Period 3 (1991–2000)

n=197Period 4 (2001–2011)

n=238 P Value

Enrollment End F-Up Enrollment End F-Up Enrollment End F-Up Enrollment End F-Up Enrollment End F-Up Enrollment End F-Up

ACEI/ARBs 467 (77%) 552 (91%) 3 (4%) 37 (56%) 53 (52%) 93 (91%) 182 (92%) 192 (97%) 229 (96%) 230 (97%) <0.001 <0.001

β-Blockers 232 (38%) 344 (57%) 0 (0%) 8 (12%) 1 (1%) 22 (22%) 42 (21%) 110 (56%) 189 (79%) 204 (86%) <0.001 <0.001

Digoxin 338 (56%) 359 (59%) 60 (91%) 61 (92%) 80 (78%) 83 (81%) 117 (59%) 127 (64%) 81 (34%) 88 (37%) <0.001 <0.001

Diuretics 483 (80%) 502 (83%) 61 (92%) 63 (95%) 87 (85%) 91 (89%) 153 (78%) 164 (83%) 182 (76%) 184 (77%) 0.01 0.001

MRA 155 (26%) 243 (40%) 7 (11%) 24 (36%) 12 (12%) 39 (38%) 41 (21%) 77 (39%) 95 (40%) 103 (43%) <0.001 <0.001

Vasodilators 58 (10%) 96 (16%) 8 (12%) 20 (30%) 5 (5%) 13 (13%) 22 (11%) 37 (19%) 23 (10%) 26 (11%) NS 0.001

Warfarin 131 (22%) 203 (34%) 6 (9%) 27 (41%) 20 (20%) 44 (43%) 43 (22%) 56 (28%) 62 (26%) 76 (32%) 0.03 0.04

Amiodarone 103 (17%) 155 (26%) 10 (15%) 26 (39%) 20 (20%) 36 (35%) 33 (17%) 44 (22%) 40 (17%) 49 (21%) NS 0.001

ICD … 79 (13%) … 5 (8%) … 9 (9%) … 24 (12%) … 41 (17%) … NS

CRT … 69 (11%) … 3 (4%) … 7 (7%) … 18 (9%) … 41 (17%) … 0.003

ACEI indicates angiotensin-converting enzyme inhibitors, ARBs, angiotensin receptor blockers; CRT, cardiac resynchronization therapy; ICD, implantable cardioverter defibrillator; MRA, mineralocorticoid receptor antagonists; and NS, not significant.

916 Circ Heart Fail September 2013

Notably, 52% of patients that received an ICD and 59% of those with CRT were enrolled in period 4; the remaining were implanted in patients enrolled in previous periods, who were still actively followed up when the devices became available.

Changes in Functional Status and Reverse RemodelingOn average, patients enrolled in periods 3 and 4 improved their functional status during follow-up, whereas those enrolled earlier showed symptomatic progression (Figure 2). Improvement in systolic LV function compared with baseline was observed in all groups, although most evident in periods 3 and 4. Likewise, a reduction in end-diastolic diameter index occurred to a greater extent in those patients enrolled most

recently (Figure 2). This was paralleled by a less common occurrence of worsening mitral regurgitation after 1990 (33% in period 1; 37% in period 2; 28% in period 3; and 11% in period 4; overall P<0.0001).

Long-Term Outcome and Predictors of RiskDuring an average follow-up of 8.8±6.3 years, 271 patients (45%) reached the combined end point including all-cause mortality and HTx. Of these, 142 patients (23%) died because of refractory HF, 71 (12%) because of SD, 22 (4%) died of noncardiac causes, and 36 patients (6%) underwent HTx. Overall survival was 79% and 63% at 5 and 10 years, respec-tively. There was marked and progressive improvement in outcome from periods 1 to 4 for all end points (Figure 3).

A B

C D

E

Figure 1. Evolution in pharmacological and device therapy from initial evaluation to end of follow-up based on enrollment period. A to D, The dotted line indicates treatment rates at enrollment for each period, whereas the straight line indicates treatment rates at final evalua-tion. E, The dotted line indicates implant rates at enrollment for each period, whereas the straight line indicates implant rates at final eval-uation. ACEI/ARB indicates angiotensin-converting enzyme inhibitor/angiotensin receptor blockers; and MRA, mineralocorticoid receptor antagonists.

Castelli et al Long-Term Outcome of IDCM in Tuscany 917

When adjusted for age, sex, NYHA class, LVEF, and left atrial diameter index, event-free rates for the combined end point (all-cause mortality and HTx) at 5 years were 62%, for patients enrolled in period 1; 74% for period 2; 84% for period 3; and 93% for period 4 (Figure 3A). At multivari-ate analysis, an earlier enrollment period proved the most powerful predictor of the combined end point, independent of age, NYHA functional class, LVEF, left atrial diameter index, and sex (Table 3). Of note, each enrollment period was associated with a 42% reduction in risk compared with the previous one (hazard ratio, 0.58; 95% confidence inter-val, 0.50–0.67; P<0.001).

Likewise, an earlier period of enrollment proved a potent independent predictor of refractory HF death and SD. Risk

Figure 2. Changes in New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), and end-diastolic diameter index (iEDD) from initial evaluation to end of follow-up based on enrollment period. Each bar indicates the change from enrollment (horizontal line) to final evaluation (blunt bar extrem-ity). Overall P values (ANOVA) for average differences based on enrollment period are shown.

Figure 3. Cox multivariate regression survival plot (adjusted for age, New York Heart Association [NYHA] class, sex, left ventricu-lar ejection fraction and indexed left atrium diameter) indicating differences in outcome based on enrollment period for the 3 study end points: A, All-cause mortality/heart transplantation; (B) death for refractory heart failure; and (C) sudden death.

918 Circ Heart Fail September 2013

of refractory HF mortality decreased (53%, 74%, and 90% in periods 2, 3, and 4, respectively) compared with period 1. Conversely, likelihood of SD declined sharply in patients enrolled after 2000, with a 87% risk reduction in period 4 compared with period 1. Notably there was also a trend of risk reduction from 1991 to 2000 (48%; P=0.09; Figure 3B and 3C).

DiscussionThe present study demonstrates that the long-term prognosis of patients with IDCM has radically improved during the past 30 years, in terms of overall mortality, refractory HF death, and SD, reflecting continuing progress in pharmacological and device-based management.19 Among our patients, each of 4 consecutive HF management eras implied a 42% reduction in mortality compared with the previous one, paralleled by greater degrees of reverse LV remodeling.21 As a consequence, patients enrolled during the past decade, maximally treated with ACEI/ARBs and β-blockers and with unrestricted access to ICD/CRT, showed a 86% relative risk reduction in cardio-vascular mortality compared with those enrolled before 1985, who were essentially managed with diuretics and digoxin.20

Causes of Death: Changing Patterns Over TimeWith regard to specific causes of death, the greatest reduc-tion in refractory HF mortality was observed in the transition from periods 1 to 2 after the introduction of ACE inhibition; thereafter, HF death rates declined at a relatively constant rate. Conversely, marked and progressive impact on SD was evident in the transition to periods 3 and 4. Such advantageous trend of SD mortality reflects both the introduction of the ICD/CRT and the complete penetration of β-blocker treatment for HF in real-world practice. Indeed, because of the relatively small number of patients receiving ICD and ICD/CRT in our cohort, the fall in SD rates suggests a crucial prophylactic role of

β-blockers. Consistent with this concept, Zecchin et al22 have recently demonstrated the efficacy of optimized pharmacolog-ical treatment in reducing SD risk of IDCM. In their cohort, accurate titration of ACEI/ARBs and β-blockers led to a sub-stantial improvement in the clinical and instrumental profile of patients with IDCM initially meeting the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT)23 criteria for pro-phylactic ICD implantation, two thirds of whom did not retain such indication at 6 months. Of note, the long-term outcome in this subgroup was comparable with that of patients with IDCM without SCD-HeFT criteria at enrollment.22 Of note, similar results in patients with new-onset HF and severely depressed LVEF have been recently reported by Teeter et al.24

Impact of Clinical Setting on Pharmacological Therapy ImplementationHF treatment is constantly evolving and has led to remark-able achievements during the past decades. The use of neu-rohormonal inhibitors has become established during the past 2 decades, following major randomized clinical trials25–32 and their subsequent impact on international HF guidelines.19,33,34 Compared with the early observations from the 1980s, when HF treatment was virtually confined to diuretics and digoxin, the 1990s have seen an explosion in the use of neurohormonal blockers: an extensive analysis by Stevenson et al showed that 86% of patients with HF were treated with ACEI after 1990 compared with 46% before 1990.35 Nonetheless, the use of evidence-based pharmacological therapies in the real world has consistently failed to reach the rates reported in landmark randomized clinical trials. The EuroHeart Failure Survey,36 investigating the clinical profile and treatment of >11 000 patients hospitalized for or with HF in 115 hospitals from 24 European countries between 2000 and 2001, showed that diuretics were still the most widely used agents in HF, prescribed in 87% of patients at the time, followed by ACEI

Table 3. Independent Predictors of Adverse Outcome and Cardiovascular Mortality, Death for Refractory Heart Failure, and Sudden Death at Multivariate Cox Regression Analysis

Variable*

Cardiovascular Mortality/Heart Transplantation Refractory Heart Failure Sudden Death

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Women 0.69 (0.47–1.02) 0.06 0.58 (0.35–0.97) 0.04 … NS

Age, per year† 1.02 (1.01–1.04) <0.001 1.03 (1.01–1.05) <0.001 … NS

Period 2 (vs 1) 0.64 (0.42–0.98) 0.04 0.47 (0.28–0.80) 0.005 0.96 (0.44–2.10) 0.96

Period 3 (vs 1) 0.35 (0.24–0.53) <0.001 0.26 (0.16–0.42) <0.001 0.52 (0.24–1.12) 0.09

Period 4 (vs 1) 0.14 (0.08–0.23) <0.001 0.10 (0.06–0.19) <0.001 0.13 (0.04–0.38) <0.001

NYHA class† 1.89 (1.53–2.33) <0.001 2.37 (1.81–3.11) <0.001 … NS

Left atrial size, per mm‡ 1.07 (1.04–1.1) <0.001 1.07 (1.03–1.11) 0.001 … NS

LVEF, per unit† 0.99 (0.97–1.00) 0.06 … NS … NS

Mitral regurgitation (moderate to severe)†

1.2 (1.05–1.42) 0.04 … … … …

CI indicates confidence interval; HR, hazard ratio; LVEF, left ventricular ejection fraction; NS, not significant; and NYHA, New York Heart Association. *The following baseline variables were also tested but failed to reach statistical significance in the multivariate analysis: family history of idiopathic dilated

cardiomyopathy, atrial fibrillation, left bundle-branch block, and indexed left ventricular end-diastolic diameter at enrollment (the latter because of colinearity with LV ejection fraction).

†At enrollment.‡Left atrium diameter index at enrollment.

Castelli et al Long-Term Outcome of IDCM in Tuscany 919

(62%), β-blockers (37%), cardiac glycosides (36%), nitrates (32%), calcium channel blockers (21%), and spironolactone (20%). Notably only 17.2% of patients received the combi-nation of diuretic, ACEI, and β-blockers. These rates have significantly improved in more recent HF registries, such as the S-HFR registry37 or the EURObservational Research Pro-gramme: the Heart Failure Pilot.38 Yet, in the S-HFR registry, as many as 18% of patients with HF did not receive ACEI/ARBs, whereas 11% did not receive a β-blocker in the absence of any reported contraindication or side effect. Similar results originated from other extensive studies of HF cohorts show-ing that, in spite of the widely available evidence-based inter-national treatment guidelines, recommended therapies are slowly adopted and inconstantly applied in clinical practice, with considerable proportions of eligible patients failing to receive optimal treatment.39,40

Conversely, our observations support the view that, in appro-priate settings, the treatment rates and benefits of controlled randomized HF trials can be replicated in the real world.41 The present IDCM cohort is representative of those seen at other com-munity hospitals, in that ≈95% of our patients were from a well-defined geographic region in Central Italy, most of them having lived virtually their entire life in Tuscany. All patients were sys-tematically followed up on a 6-month basis by the same team >3 decades, providing a high level of continuity of care during this extended time period and allowing continuous reassessment of risk profile and management of the primary condition as well as cardiovascular risk factors and comorbidities. This provided the opportunity to gradually optimize pharmacological therapy, including uptitration of ACEI/ARBs and β-blockers to the maxi-mum tolerated dosage.19 It is noteworthy that 92% and 57% of the overall population received ACEI/ARBs and β-blockers during the whole study period, reflecting stringent implementation of international guidelines even in the earliest cohorts, as soon as new treatments became available. In the past decades, these rates were as high as 97% and 86%, respectively, resembling those of land-mark HF randomized control trials, rather than most HF surveys and registries.36 However, our data are consistent with selected reports from dedicated tertiary hospital settings based on patients with chronic systolic HF because of ischemic heart disease.42 Overall, these findings considerably expand previous observa-tions showing favorable temporal trends in the outcome of IDCM and HF, based on smaller cohorts and less extended follow-up. Matsumura and Kubo9,10 have shown significant improvement in the prognosis of a relatively small group of Japanese patients with IDCM, partly explained through an increased use of ACEI/ARBs and β-blockers and a declining use of class Ia/Ib antiar-rhythmic drugs after the 1990s, and a similar trend was observed by Aleksova et al11 in a study focusing mainly on asymptomatic patients with IDCM without prior history of HF.

Changes in Demographics Among Enrollment PeriodsIt is important to acknowledge that, in our IDCM cohort, patients enrolled later had a less severe profile in terms of symptoms, LV size and function. This trend presumably reflects increasing awareness of the disease and availability of more sensitive diagnostic tools and may have contributed to the reduction in mortality observed during the years, resulting

in an overestimation of benefits related to treatment. However, this trend is counterbalanced by the more advanced age at enrollment of the most recent groups. Although it is virtually impossible to quantify the net result of these trends on out-come, their opposite prognostic weight is likely to limit their combined effect substantially. In our multivariate models, the enrolment period proved to be a very potent predictor of out-come independent of the most relevant baseline clinical and demographic features including well-recognized prognostic factors (ie, age, sex, NYHA functional class, LV and left atrial diameters, LVEF, and degree of functional mitral regurgita-tion).43–47 Thus, it is plausible to attribute most of the survival benefit observed to improvements in management rather than to the evolving patient demographics.

ConclusionsThe evolution of evidence-based treatment has led to progres-sive improvement in the prognosis of IDCM, with dramatic reduction in heart failure–related mortality and SD during the past 3 decades. In the appropriate setting, the benefits of controlled randomized trials can be replicated in the real world, emphasizing the importance of tailored and systematic follow-up providing long-term continuity of care.

Sources of FundingThis work was supported by the Italian Ministry for University and Research (Programmi di Ricerca di rilevante Interesse Nazionale) and the European Union (Specific Targeted Research Projects, STREP Project 241577 “BIG HEART,” 7th European Framework Program).

DisclosuresNone.

References 1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P,

Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–276.

2. Codd MB, Sugrue DD, Gersh BJ, Melton LJ III. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation. 1989;80:564–572.

3. Manolio TA, Baughman KL, Rodeheffer R, Pearson TA, Bristow JD, Michels VV, Abelmann WH, Harlan WR. Prevalence and etiology of id-iopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop. Am J Cardiol. 1992;69:1458–1466.

4. Fuster V, Gersh BJ, Giuliani ER, Tajik AJ, Brandenburg RO, Frye RL. The natural history of idiopathic dilated cardiomyopathy. Am J Cardiol. 1981;47:525–531.

5. Gavazzi A, Lanzarini L, Cornalba C, Desperati M, Raisaro A, Angoli L, De Servi S, Specchia G. Dilated (congestive) cardiomyopathy. Follow-up study of 137 patients. G Ital Cardiol. 1984;14:492–498.

6. Ciaccheri M, Castelli G, Nannini M, Santoro G, Troiani V, Di Lenarda A, Miani D, Sinagra G, Mestroni L, Risoli A. Valutazione prognostica della cardiomiopatia dilatativa: follow up di 138 pazienti. G Ital Cardiol. 1990;20:645–650.

7. Di Lenarda A, Secoli G, Perkan A, Gregori D, Lardieri G, Pinamonti B, Sinagra G, Zecchin M, Camerini F. Changing mortality in dilated cardiomyopathy. The Heart Muscle Disease Study Group. Br Heart J. 1994;72(6 Suppl):S46–S51.

8. Gavazzi A, De Maria R, Porcu M, Beretta L, Casazza F, Castelli G, Luvini M, Parodi O, Recalcati F, Renosto G; on behalf of the SPIC. Dilated cardiomyopathy: a new natural history? The experience of

920 Circ Heart Fail September 2013

the Italian Multicenter Cardiomyopathy Study (SPIC). G Ital Cardiol. 1995;25:1109–1125.

9. Matsumura Y, Takata J, Kitaoka H, Kubo T, Baba Y, Hoshikawa E, Hamada T, Okawa M, Hitomi N, Sato K, Yamasaki N, Yabe T, Furuno T, Nishinaga M, Doi Y. Long-term prognosis of dilated cardiomyopa-thy revisited: an improvement in survival over the past 20 years. Circ J. 2006;70:376–383.

10. Kubo T, Matsumura Y, Kitaoka H, Okawa M, Hirota T, Hamada T, Hitomi N, Hoshikawa E, Hayato K, Shimizu Y, Yamasaki N, Yabe T, Nishinaga M, Takata J, Doi Y. Improvement in prognosis of dilated cardiomyopathy in the elderly over the past 20 years. J Cardiol. 2008;52:111–117.

11. Aleksova A, Sabbadini G, Merlo M, Pinamonti B, Barbati G, Zecchin M, Bussani R, Silvestri F, Iorio AM, Stolfo D, Dal Ferro M, Dragos AM, Meringolo G, Pyxaras S, Lo Giudice F, Perkan A, di Lenarda A, Sinagra G. Natural history of dilated cardiomyopathy: from asymptomatic left ventricular dysfunction to heart failure–a subgroup analysis from the Trieste Cardiomyopathy Registry. J Cardiovasc Med (Hagerstown). 2009;10:699–705.

12. Cleland JG, Cohen-Solal A, Aguilar JC, Dietz R, Eastaugh J, Follath F, Freemantle N, Gavazzi A, van Gilst WH, Hobbs FD, Korewicki J, Madeira HC, Preda I, Swedberg K, Widimsky J; IMPROVEMENT of Heart Failure Programme Committees and Investigators. Improvement programme in evaluation and management; Study Group on Diagnosis of the Working Group on Heart Failure of The European Society of Cardiology. Management of heart failure in primary care (the IMPROVEMENT of Heart Failure Programme): an international survey. Lancet. 2002;360:1631–1639.

13. Lee DS, Mamdani MM, Austin PC, Gong Y, Liu PP, Rouleau JL, Tu JV. Trends in heart failure outcomes and pharmacotherapy: 1992 to 2000. Am J Med. 2004;116:581–589.

14. Lee DS, Tu JV, Juurlink DN, Alter DA, Ko DT, Austin PC, Chong A, Stukel TA, Levy D, Laupacis A. Risk-treatment mismatch in the pharma-cotherapy of heart failure. JAMA. 2005;294:1240–1247.

15. Lenzen MJ, Boersma E, Reimer WJ, Balk AH, Komajda M, Swedberg K, Follath F, Jimenez-Navarro M, Simoons ML, Cleland JG. Under-utilization of evidence-based drug treatment in patients with heart failure is only partially explained by dissimilarity to patients enrolled in land-mark trials: a report from the Euro Heart Survey on Heart Failure. Eur Heart J. 2005;26:2706–2713.

16. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, Meverden RA, Roger VL. Systolic and diastolic heart failure in the community. JAMA. 2006;296:2209–2216.

17. Patel P, White DL, Deswal A. Translation of clinical trial results into practice: temporal patterns of beta-blocker utilization for heart failure at hospital discharge and during ambulatory follow-up. Am Heart J. 2007;153:515–522.

18. Cecchi F, Olivotto I, Montereggi A, Santoro G, Dolara A, Maron BJ. Hypertrophic cardiomyopathy in Tuscany: clinical course and outcome in an unselected regional population. J Am Coll Cardiol. 1995;26:1529–1536.

19. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A; ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur Heart J. 2012;33:1787–847.

20. Staylor A. Heart Failure Therapy: Past, Present and Future posted 05/07/2002 on Medscape Cardiology. http://www.medscape.org/view-article/433746. Accessed June 20, 2012.

21. Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G. Prevalence and prognostic significance of left ventricular reverse remod-eling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol. 2011;57:1468–1476.

22. Zecchin M, Merlo M, Pivetta A, Barbati G, Lutman C, Gregori D, Serdoz LV, Bardari S, Magnani S, Di Lenarda A, Proclemer A, Sinagra G. How can optimization of medical treatment avoid unnecessary implantable cardioverter-defibrillator implantations in patients with idiopathic dilated cardiomyopathy presenting with “SCD-HeFT criteria?”. Am J Cardiol. 2012;109:729–735.

23. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH; Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT)

Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–237.

24. Teeter WA, Thibodeau JT, Rao K, Brickner ME, Toto KH, Nelson LL, Mishkin JD, Ayers CR, Miller JG, Mammen PP, Patel PC, Markham DW, Drazner MH. The natural history of new-onset heart failure with a severely depressed left ventricular ejection fraction: implications for timing of implantable cardioverter-defibrillator implantation. Am Heart J. 2012;164:358–364.

25. The CONSENSUS Trial Study Group. Effects of enalapril on mortal-ity in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987; 316:1429–1435.

26. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302.

27. Cohn JN, Tognoni G; Valsartan Heart Failure Trial Investigators. A ran-domized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–1675.

28. Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Olofsson B, Ostergren J, Pfeffer MA, Swedberg K; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet. 2003;362:772–776.

29. Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, Gilbert EM, Johnson MR, Goss FG, Hjalmarson A. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Lancet. 1993;342:1441–1446.

30. CIBIS-II Investigators. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomized trial. Lancet. 1999;353:9–13.

31. Metoprolol CR/XL. Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF) Study Group. Effect of metoprolol CR/XL in chronic heart failure. Lancet. 1999;353:2001–2007.

32. Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holcslaw TL, Amann-Zalan I, DeMets DL; Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106:2194–2199.

33. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collabora-tion with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.

34. Heart Failure Society of America, Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, Givertz MM, Katz SD, Klapholz M, Moser DK, Rogers JG, Starling RC, Stevenson WG, Tang WH, Teerlink JR, Walsh MN. Executive Summary: HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Cardiac Fail. 2010;16:475–539.

35. Stevenson WG, Stevenson LW, Middlekauff HR, Fonarow GC, Hamilton MA, Woo MA, Saxon LA, Natterson PD, Steimle A, Walden JA. Improving survival for patients with advanced heart failure: a study of 737 consecutive patients. J Am Coll Cardiol. 1995;26:1417–1423.

36. Komajda M, Follath F, Swedberg K, Cleland J, Aguilar JC, Cohen-Solal A, Dietz R, Gavazzi A, Van Gilst WH, Hobbs R, Korewicki J, Madeira HC, Moiseyev VS, Preda I, Widimsky J, Freemantle N, Eastaugh J, Mason J; Study Group on Diagnosis of the Working Group on Heart Failure of the European Society of Cardiology. The EuroHeart Failure Survey programme–a survey on the quality of care among patients with heart failure in Europe. Part 2: treatment. Eur Heart J. 2003;24:464–474.

37. Jonsson A, Edner M, Alehagen U, Dahlström U. Heart failure registry: a valuable tool for improving the management of patients with heart fail-ure. Eur J Heart Fail. 2010;12:25–31.

38. Maggioni AP, Dahlström U, Filippatos G, Chioncel O, Leiro MC, Drozdz J, Fruhwald F, Gullestad L, Logeart D, Metra M, Parissis J, Persson H, Ponikowski P, Rauchhaus M, Voors A, Nielsen OW, Zannad F, Tavazzi L; Heart Failure Association of ESC (HFA). EURObservational Research Programme: the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail. 2010;12:1076–1084.

39. Fonarow GC, Albert NM, Curtis AB, Stough WG, Gheorghiade M, Heywood JT, McBride ML, Inge PJ, Mehra MR, O’Connor CM, Reynolds

Castelli et al Long-Term Outcome of IDCM in Tuscany 921

D, Walsh MN, Yancy CW. Improving evidence-based care for heart fail-ure in outpatient cardiology practices: primary results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Circulation. 2010;122:585–596.

40. Komajda M, Lapuerta P, Hermans N, Gonzalez-Juanatey JR, van Veldhuisen DJ, Erdmann E, Tavazzi L, Poole-Wilson P, Le Pen C. Adherence to guidelines is a predictor of outcome in chronic heart fail-ure: the MAHLER survey. Eur Heart J. 2005;26:1653–1659.

41. Albert NM, Fonarow GC, Yancy CW, Curtis AB, Stough WG, Gheorghiade M, Heywood JT, McBride M, Mehra MR, O’Connor CM, Reynolds D, Walsh MN. Influence of dedicated heart failure clinics on delivery of rec-ommended therapies in outpatient cardiology practices: findings from the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF). Am Heart J. 2010;159:238–244.

42. Franke J, Zugck C, Wolter JS, Frankenstein L, Hochadel M, Ehlermann P, Winkler R, Nelles M, Zahn R, Katus HA, Senges J. A decade of devel-opments in chronic heart failure treatment: a comparison of therapy and outcome in a secondary and tertiary hospital setting. Clin Res Cardiol. 2012;101:1–10.

43. Bahler RC. Assessment of prognosis in idiopathic dilated cardiomyopa-thy. Chest. 2002;121:1016–1019.

44. Miura K, Matsumori A, Nasermoaddeli A, Soyama Y, Morikawa Y, Sakurai M, Kitabatake A, Nagai M, Inaba Y, Nakagawa H. Prognosis and prognostic factors in patients with idiopathic dilated cardio-myopathy in Japan—results from a nationwide study. Circulation. 2008;72:343–348.

45. Karaca O, Avci A, Guler GB, Alizade E, Guler E, Gecmen C, Emiroglu Y, Esen O, Esen AM. Tenting area reflects disease severity and prognosis in patients with non-ischaemic dilated cardiomyopathy and functional mitral regurgitation. Eur J Heart Fail. 2011;13:284–291.

46. Pecini R, Thune JJ, Torp-Pedersen C, Hassager C, Køber L. The rela-tionship between mitral regurgitation and ejection fraction as predic-tors for the prognosis of patients with heart failure. Eur J Heart Fail. 2011;13:1121–1125.

47. Tamura H, Watanabe T, Nishiyama S, Sasaki S, Arimoto T, Takahashi H, Shishido T, Miyashita T, Miyamoto T, Nitobe J, Hirono O, Kubota I. Increased left atrial volume index predicts a poor prognosis in patients with heart failure. J Card Fail. 2011;17:210–216.

CLINICAL PERSPECTIVEThe present study is based on a clinical experience whereby 603 patients with angiographically proven idiopathic dilated cardiomyopathy have been followed by the same team during the past 30 years in a Regional Hospital in Florence, providing substantial continuity of care during an extended time period. Outcome in our cohort was associated with the treatment era in which each patient was enrolled (1977–1984; 1985–1990; 1991–2000; and 2001–2011), reflecting progress in management and changing demographics of patients with idiopathic dilated cardiomyopathy. Of note, each period was associated with a 40% reduction in mortality compared with the previous one, with patients enrolled during the most recent decade showing a 75% relative risk reduction in cardiovascular mortality compared with those enrolled before 1985. With regard to specific causes of death, the greatest reduction in mortality related to refractory heart failure was observed in the transition from periods 1 to 2 after the introduction of angiotensin-converting enzyme inhibition. Conversely, progressive impact on sudden death was evident in the past 2 periods, reflecting the introduction of device-based therapies and full penetration of β-blocker treatment. These results quantify the impact of evolving treatment options for idiopathic dilated cardiomyopathy in the real world, emphasizing the importance of tailored follow-up and long-term continuity of care.

Prognostic Value of N-Terminal Pro-Brain Natriuretic Peptidein Outpatients With Hypertrophic Cardiomyopathy

Rossella D’Amato, MDa, Benedetta Tomberli, MDb,c,*, Gabriele Castelli, MDb, Roberto Spoladore, MDa,Francesca Girolami, BSce, Alessandra Fornaro, MDb, Anna Caldini, BScd, Francesca Torricelli, BSce,Paolo Camici, MDa, Gian Franco Gensini, MDb, Franco Cecchi, MDc, and Iacopo Olivotto, MDb

In hypertrophic cardiomyopathy, the plasma levels of N-terminal pro-brain natriureticpeptide (NT-proBNP) correlate with functional capacity. However, their prognostic rele-vance remains unresolved. We followed up 183 stable outpatients with hypertrophiccardiomyopathy (age 50 – 17 years, 64% men) for 3.9 – 2.8 years after NT-proBNPmeasurement. The primary end point included cardiovascular death, heart transplantation,resuscitated cardiac arrest, and appropriate implantable cardioverter-defibrillator inter-vention. The secondary end point (SE) included heart failure-related death or hospitaliza-tion, progression to end-stage disease, and stroke. The median NT-proBNP level was 615 pg/ml (intertertile range 310 to 1,025). The incidence of the primary end point in the lower,middle, and upper tertiles was 0%, 1.3%, and 2.1% annually, respectively (overall p[ 0.01).On multivariate analysis, the only independent predictors of the primary end point were NT-proBNP (hazard ratio for log-transformed values 5.8, 95% confidence interval 1.07 to 31.6;p [ 0.04) and a restrictive left ventricular filling pattern (hazard ratio 5.19, 95% confidenceinterval 1.3 to 21.9; p [ 0.02). The NT-proBNP cutoff value of 810 pg/ml had the bestsensitivity for the primary end point (88%), but the specificity was low (61%). The incidenceof the SE in the lower, middle, and upper NT-proBNP tertiles was 4.6%, 12.0%, and 11.2%annually, respectively (overall p [ 0.001). An NT-proBNP level of <310 pg/ml was asso-ciated with a 75% reduction in the rate of SE compared with a level of ‡310 pg/ml (hazardratio 0.25, 95% confidence interval 0.11 to 0.57; p [ 0.001), independent of age, leftventricular outflow tract obstruction, or atrial fibrillation. In conclusion, in stable outpatientswith hypertrophic cardiomyopathy, plasma NT-proBNP proved a powerful independentpredictor of death and heart failure-related events. Although the positive predictive accuracyof an elevated NT-proBNP level was modest, low values reflected true clinical stability,suggesting the possibility of avoiding or postponing aggressive treatment options. � 2013Elsevier Inc. All rights reserved. (Am J Cardiol 2013;112:1190e1196)

Natriuretic peptides have been validated as markers ofseverity and decompensation in various cardiac disorders andrepresent powerful predictors of outcome inheart failure (HF).1

They have also been useful as screening tools in large pop-ulations at risk of developing cardiovascular events, includingdiabetic and elderly patients.2 To date, the prognostic accuracyof natriuretic peptides in patients with hypertrophic cardio-myopathy (HC), the most common genetic heart disease, is

unknown.3e9 In the present study,we assessed the outcomes ofa consecutive outpatient cohort of patients with HC, who werelargely asymptomatic ormildly symptomatic at enrollment andwere followed up for almost 4 years after a comprehensiveclinical evaluation that had included serum N-terminal pro-brain natriuretic peptide (NT-proBNP) titration. NT-proBNP,theN-terminal part of the BNPpro-hormone, is released duringhemodynamic stress by stretched cardiacmyocytes and split byproteolytic enzymes into 2 peptides; the C-terminal fragment(BNP) represents the biologically active hormone.1,10 Becauseof a different clearance mechanism (renal for NT-proBNP andreceptor mediated for BNP), NT-proBNP represents a morereliable predictor of outcome than BNP10 and was, therefore,chosen for our analysis.

Methods

The serum NT-proBNP levels were determined in 218consecutive outpatients with HC who had been referred tothe Referral Center for Cardiomyopathies in Florence (Italy)before January 2011 as a part of a comprehensive nonin-vasive cardiovascular evaluation, including clinical history,physical examination, 12-lead electrocardiography, andechocardiography. The diagnosis of HC was determined by

aVita Salute University and San Raffaele Scientific Institute, Milan,Italy; bReferral Centre for Cardiomyopathies, dGeneral Laboratory, andeCytogenetics Unit, Careggi University Hospital, Florence, Italy; andcDepartment of Clinical and Experimental Medicine, University Florence,Italy. Manuscript received March 18, 2013; revised manuscript receivedand accepted June 11, 2013.

Drs. D’Amato and Tomberli contributed equally to the report.This work was supported by the Italian Ministry for University and

Research (Research Project of National Interest, Florence, Italy) and theEuropean Union (STREP Project 241577 “BIG HEART,” Seventh Euro-pean Framework Program, Florence, Italy).

See page 1195 for disclosure information.*Corresponding author: Tel: (þ39) 055-794-5138; fax: (þ39) 055-794-

9335.E-mail address: [email protected] (B. Tomberli).

0002-9149/13/$ - see front matter � 2013 Elsevier Inc. All rights reserved. www.ajconline.orghttp://dx.doi.org/10.1016/j.amjcard.2013.06.018

2-dimensional echocardiographic identification of leftventricular (LV) hypertrophy associated with nondilatedventricular chambers in the absence of any other cardiac orsystemic disease capable of producing the magnitude ofhypertrophy evident.11 Of the 218 patients, 35 with knowncoronary artery disease (n ¼ 15) or evidence of systolicdysfunction at the first evaluation (defined as a LV ejectionfraction <50%; n ¼ 20) were excluded. The remaining 183patients with HC constituted the study group enrolled in thepresent project. All had had a stable clinical course, withoutepisodes of acute HF or worsening of symptoms, in theprevious 3 months.

The local ethics committee approved the study, and allpatients gave informed consent to participate. Peripheral bloodsamples, collected after 30 minutes of complete rest, weremeasured using an electrochemiluminescent immunoassay(Elecsys proBNP II assay, Roche Diagnostics, Indianapolis,Indiana) on a Cobas E601 analyzer (Roche Diagnostics).12

Transthoracic echocardiography was performed usingcommercially available equipment. The standard evaluationincluded M-mode, 2-dimensional, and Doppler study,according to the recommendations of the American Society ofEchocardiography.13 LV systolic dysfunction, characterizingend-stage HC, was defined as an LV ejection fraction <50%.A restrictive LV filling pattern was defined as a ratio of early tolate velocity ofmitral inflow�2, associatedwith a decelerationtime of�150 ms (or a deceleration time<120 ms for patients

with atrial fibrillation).14 LV outflow tract obstruction wasconsidered presentwhen a peak instantaneous outflowgradientof�30mmHgwas measured using continuous wave Dopplerechocardiography under basal (at rest) conditions or withphysiologic provocation (Valsalva maneuver or exercise).

After enrollment, the patients were evaluated annually ormore often if dictated by the clinical status, using 12-leadelectrocardiography, echocardiography, and 24-hour electro-cardiographic Holter monitoring. Pharmacologic therapy wasprescribed as appropriate, according to the current HC guide-lines.3 Patientswith refractory symptoms related toLVoutflowtract obstruction despite optimal medical therapywere referredfor surgical myectomy; alcohol septal ablation was reservedfor patients at high operative risk owing to advanced age andco-morbidities.3 An implantable cardioverter-defibrillator wasoffered to survivors of cardiac arrest or sustained ventriculararrhythmias, for primary prevention in high-risk patientsevaluated using established risk markers for sudden cardiacdeath, and in patients with end-stage disease.3

Genetic counseling and mutational analysis were offeredto all patients as a part of the standard policy at our center.After providing informed consent, 133 of the study patients(73%) were screened for mutations in the protein-codingexons and splice sites of 8 myofilament genes, includingmyosin binding protein C, b-myosin heavy chain, theregulatory and essential light chains (MYL2 and MYL3),troponin-T, troponin-I, a-tropomyosin, and a-actin. Direct

Table 1Baseline patient characteristics within each N-terminal pro-brain natriuretic peptide (NT-proBNP) tertile

Variable Overall Population(n ¼ 183)

Lower Tertile(<310 pg/ml;

n ¼ 61)

Middle Tertile(310e1,025 pg/ml;

n ¼ 61)

Upper Tertile(>1,025 pg/ml;

n ¼ 61)

p Value

Men 118 (64%) 53 (86%)*,† 39 (64%)† 26 (42%)* <0.01z

Age (yrs) 50 � 17 47 � 17 52 � 16 50 � 19 0.256NYHA class III-IV at first evaluation 33 (18%) 4 (6.5%)*,† 13 (21%) 16 (26%) 0.01z

Atrial fibrillation 48 (26%) 7 (11%)*,† 19 (31%) 22 (36%) <0.01z

LA diameter (mm) 44 � 7 42 � 6*,† 45 � 8 46 � 7 <0.01z

Restrictive LV filling pattern 12 (6.5%) 1 (1.6%) 6 (10%) 5 (8%) 0.26Peak LVOT gradient �30 mm Hg 65 (36%) 14 (23%)*,† 25 (41%) 27 (44%) 0.03z

Positive genotype 98 (53%) 30 (49%) 32 (52%) 36 (59%) 0.14Maximum LV wall thickness (mm) 22 � 6 20 � 3*,† 24 � 5 23 � 8 <0.01z

b-Blocker use 122 (67%) 34 (55%)* 45 (74%) 43 (70%) 0.07Amiodarone use 23 (12%) 5 (8%) 8 (13%) 10 (16%) 0.38With ICD 21 (17%) 7 (11%) 11 (18%) 14 (23%) 0.24Primary end point 8 (4%) 0*,† 3 (4.9%) 5 (8.1%) 0.01z

Sudden death 4 (2%) 0 2 (3.3%) 2 (3.3%) 0.18HF-related death 2 (1%) 0 1 (1.6%) 1 (1.6%) 0.44Cardiac surgery-related death 1 (0.5%) 0 0 1 (1.6%) 0.20Heart transplantation 1 (0.5%) 0 0 1 (1.6%) 0.20Appropriate ICD discharge 0 0 0 0 —

Secondary end point 67 (37%) 11 (18%)*,† 29 (47%) 27 (44%) <0.01z

Hospitalization for HF 38 (21%) 4 (6.5%)*,† 15 (24.5%) 19 (31%) <0.01z

Progression to NYHA III-IV (during follow-up) 20 (11%) 4 (6.5%) 9 (15%) 7 (11.5%) 0.17Progression to end-stage disease 21 (11.5%) 2 (3%)*,† 9 (15%) 10 (16%) <0.01z

New-onset AF 14 (8%) 4 (6.5%) 6 (10%) 4 (6.5%) 0.59Cerebrovascular event 8 (4%) 0† 2 (3%) 6 (10%) <0.01z

ICD ¼ implantable cardioverter-defibrillator; LA ¼ left atrial; LVOT ¼ LV outflow tract; NYHA ¼ New York Heart Association.* p <0.05 versus middle tertile.† p <0.05 versus upper tertile.z statistically significant.

Cardiomyopathy/NT-ProBNP and Outcome in HC 1191

deoxyribonucleic acid sequencing was performed usingABI-Prism 3730 (Applied Biosystems, Foster City,California), as previously described.15

The primary end point was defined as a composite ofcardiovascular death, heart transplantation, and resuscitatedcardiac arrest. Death was considered to be of cardiovascularorigin if due to worsening HF, sudden death, or related tocardiac surgery. Sudden cardiac death was defined as unex-pected sudden collapse or death occurring during sleep inpatients who had previously experienced a stable clinicalcourse.16 The secondary end point (SE) was a composite ofHF-related events, including HF death, pulmonary edemarequiring hospitalization, progression to advanced symp-tomatic status (New York Heart Association class III or IV),end-stage disease,4,17 onset of atrial fibrillation, and stroke.

The differences between groups were analyzed usingPearson’s chi-square test for discrete variables and the unpairedStudent t test or 1-way analysis of variance, as appropriate, forcontinuous variables.Because theNT-proBNPvalueswere notnormally distributed in our population, logarithmic trans-formation was applied. For the same reason, the patients weredivided into tertiles according to their NT-proBNP levels.Nonparametric tests were used for the comparisons among thegroups (Mann-Whitney U test) and for correlation analysis(Spearman’s test). Survival curves were estimated using theKaplan-Meier method, and the log-rank test was used tocompare the survival distributions of the groups. The perfor-mance of NT-proBNP in predicting the primary end point andSE was assessed using receiver operating characteristic anal-ysis. Calculationswere performed using the Statistical Packagefor Social Sciences, version 19.0.0, software (SPSS, Chicago,Illinois).

Results

The mean age of the 183 study outpatients was 50 �17 years. Most were men (64%) and had no or only mild

symptoms at their initial evaluation (New York HeartAssociation class I or II for 82%); 26% had a history ofatrial fibrillation (Table 1). On echocardiographic exami-nation, the maximum LV wall thickness was 22 � 6 mm,36% had at rest or inducible LV outflow tract obstruction,and 12 patients (6.5%) had a restrictive LV filling pattern.Of the study population, 2/3 were receiving long-termtherapy with b blockers, and 12% were taking amiodarone.Also, 32 patients (17%) received an implantable car-dioverter-defibrillator for primary prophylaxis of suddencardiac death because of their risk profile (Table 1).

The median NT-ProBNP value for the study group was615 pg/ml (range 22 to 16,013). Because the NT-ProBNPdistribution was not normally distributed in our population,the patients were grouped according to the tertiles, with the33rd and 67th percentile values used as cutoffs (i.e., 310 and1,025 pg/ml, respectively). Patients in the upper tertile hada larger left atrial diameter and maximum LV wall thickness

Figure 1. (A) Survival free from the primary end point (PE; a composite of cardiovascular death, heart transplantation, and resuscitated cardiac arrest) stratifiedby NT-proBNP tertiles (overall log-rank p ¼ 0.01). After pairwise comparison with Bonferroni correction, only the lower to upper tertile comparison reachedstatistical significance (p ¼ 0.01; HR 9.26, 95% CI 1.58 to 53.9). (B) Freedom from PE stratified by NT-proBNP tertiles and presence or absence of mitralpulsed wave restrictive filling pattern (RFP).

Table 2Univariate predictors of the primary end point*

Variable Univariate

p Value HR 95% CI

Log NT-proBNP 0.02 5.56 1.21e25.5Restrictive LV filling pattern 0.01 6.32 1.49e26.8Age (per yr increase) 0.38 1.02 0.97e1.06Male gender 0.62 1.42 0.34e5.96Atrial fibrillation 0.28 2.14 0.53e8.59NYHA class III-IV 0.40 1.96 0.39e9.79LA diameter 0.53 1.03 0.93e1.13Maximum LV wall thickness 0.28 0.94 0.84e1.05Peak LVOT gradient >30 mm Hg 0.97 0.97 0.23e4.10Positive genotype 0.88 1.13 0.22e5.85

Abbreviations as in Table 1.* Multivariate predictors are reported in the text.

1192 The American Journal of Cardiology (www.ajconline.org)

andwere more likely to have advanced symptoms (NewYorkHeart Association class III), atrial fibrillation, and dynamicLV outflow tract obstruction (Table 1). The women hadgreater NT-proBNP values than the men (median 1,074 vs401 pg/ml, respectively; p ¼ 0.001) and represented mostpatients in the upper tertile (Table 1). The NT-proBNP valueswere comparable in patients taking and not taking b blockers(1,097 � 1,314 vs 1,178 � 2,362 pg/ml, respectively;p¼ 0.76), verapamil (1,021� 1,328 vs 1,147� 1,844 pg/ml,p ¼ 0.69), and amiodarone (1,107 � 1,828 vs 1,231 �1,250 pg/ml, p ¼ 0.27). Of the 119 patients who underwentcardiacmagnetic resonance imaging, we found no differencesin the NT-proBNP values between the 73 patients with lategadolinium enhancement and the 46 without (1,098 � 1,485vs 1,143 � 1,903 pg/ml, respectively; p ¼ 0.86).

Of the 134 patients who had underwent genetic screening,98 (73%) were genotype positive and 36 (27%) had negativetest results. The relative prevalence of genes involved was

45% for myosin binding protein C, 35% for b-myosin heavychain, 5% for both regulatory light chain and troponin-T, and1% for troponin-I. Of genotype-positive patients, 8% hadmultiple mutations (including 7% with double and 1% withtriplemutations). TheNT-proBNPvalueswere similar amongthe genotype-positive and genotype-negative patients(median value 1,297 vs 1,041 pg/ml; p¼ 0.44). Furthermore,no differences were found among the genotype-positivepatients regarding the specific gene affected (overallp [analysis of variance] ¼ 0.97).

During 47 � 34 months of follow-up, 8 patients (4%)reached the primary end point. Of these, 4 died suddenly—2patients died from HF-related causes, 1 patient died peri-operatively after surgical myectomy, and 1 patient under-went transplantation. None of the patients experiencedappropriate implantable cardioverter-defibrillator interven-tion. The SE occurred in 67 patients (37%) during thefollow-up period, at a rate of 9.4% annually; 33 patients

Figure 2. Receiver operating characteristic curves evaluating accuracy of NT-proBNP levels for prediction of (A) primary end point and (B) SE. *95% CI 0.61to 0.86; †95% CI 0.58 to 0.74.

Table 3Univariate and multivariate predictors of the secondary end point (SE)

Variable Univariate Multivariate

p Value HR 95% CI p Value HR 95% CI

Log NT-proBNP 0.00 2.73 1.67e4.4 <0.01 2.6 1.5e4.3Restrictive LV filling pattern 0.06 1.96 0.9e4.0Age (per yr increase) 0.001 1.02 1.01e1.04 <0.01 1.02 1.0e1.04Male gender 0.06 1.58 0.96e2.5Atrial fibrillation 0.03 1.72 1.0e2.8 0.07 0.51 0.25e1.05NYHA class III-IV 0.001 2.61 1.5e4.5 0.02 2.07 1.1e3.8LA diameter 0.03 1.03 1.0e1.06 0.28 1.02 0.98e1.05Maximum LV wall thickness 0.30 0.97 0.9e1.02Peak LVOT gradient >30 mm Hg 0.41 1.22 0.7e2.5Positive genotype 0.29 1.37 0.7e2.5

Abbreviations as in Table 1.

Cardiomyopathy/NT-ProBNP and Outcome in HC 1193

(18%) experienced >1 event. The cumulative rates ofHF-related events were 21% (5.3%/yr) for acute HF requiringhospitalization, 11% (2.8%/yr) for worsening of symptomaticstatus to New York Heart Association class III or IV; and 8%(1.9%/yr) for new-onset atrial fibrillation. Eight patients (4%;1.1%/yr) experienced cerebrovascular events judged to becardioembolic. The global rate of progression to end-stagedisease was 11.5% (n ¼ 21, 2.8%/yr).

When the events were analyzed with regard to the NT-proBNP distribution, the cumulative rate of the primary endpoint at the end of the follow-up period was 5% (1.3%/yr)and 8% (2.1%/yr) in the middle and upper tertile, respec-tively. No event occurred in the lower tertile. As shown inFigure 1, the patients in the lower tertile (<310 pg/ml) hada favorable outcome compared with those in the other ter-tiles (overall p ¼ 0.01). The patients in the middle and uppertertiles, however, had comparable survival rates. On multi-variate Cox regression analysis, only NT-proBNP anda restrictive LV filling pattern were independently associ-ated with the primary end point (hazard ratio [HR] for log-transformed NT-proBNP 5.8, 95% confidence interval [CI]1.07 to 31.6, p ¼ 0.04; HR for a restrictive LV filling pattern5.19, 95% CI 1.23 to 21.9, p ¼ 0.02; Table 2). Of thepatients in the middle NT-proBNP tertile, the presence ofa restrictive LV filling pattern conferred additional prog-nostic stratification, although it had no additional value forpatients in the upper tertile (Figure 1). Receiver operatingcharacteristic curve analysis demonstrated moderate powerfor NT-proBNP in the prediction of the primary end point(area under the curve 0.73, p ¼ 0.02). The NT-proBNPvalue of 810 pg/ml proved the best threshold for the iden-tification of patients at risk of cardiovascular death, withhigh sensitivity (88%) but low specificity (61%; Figure 2).

On multivariate analysis, NT-proBNP proved a powerfulpredictor of the SE, independent of other relevant clinicalvariables such as age, atrial fibrillation, and left atrial

dimensions (HR for log-transformed NT-ProBNP 2.6,95% CI 1.5 to 4.3, p <0.01; Table 3). Specifically, anNT-proBNP level <310 pg/ml was associated with a 75%reduction in risk of HF-related events compared with valuesof �310 pg/ml (HR for HF-related events 0.25, 95% CI 0.11to 0.57; p ¼ 0.001). On receiver operating characteristicanalysis, the sensitivity for the cutoff value of NT-proBNPof 310 pg/ml was 85%; the specificity, however, was low(45%; Figure 2). Overall, the negative predictive accuracyfor the SE associated with an NT-proBNP level <310 pg/mlwas 85%. Similarly, the positive predictive accuracy forend-stage progression was low (25%), despite an excellentnegative predictive value (88%). The combination of an NT-proBNP level in the upper tertile with left atrial dilation of�50 mm was associated with a 2.8 HR for the SE (95% CI1.39 to 5.69; p ¼ 0.004).

The cumulative rates of SE were 18% (4.6%/yr) in thelower, 47% (12.0%/yr) in the middle and 44% (11.2%/yr) inthe upper tertile. The rate of the SE among the patients in thelower tertile was similar for the patients with and without LVoutflow tract obstruction (p¼ 0.73). Survival free from the SEwas favorable in the lower NT-proBNP tertile compared withthe middle and upper tertiles (overall p <0.01; Figure 3). Asobserved for the primary end point, however, the middle andupper tertiles had comparable event-free SE survival rates.The presence of congestive symptoms at enrollment(expressed as New York Heart Association functional class)significantly contributed to the risk stratification of patientswithin the middle and upper NT-proBNP tertiles (Figure 3).

Although serial NT-proBNP testing was not systemati-cally performed, repeat values were available at variableintervals from the original titration (2.6� 1.2 years) for 48 ofthe 183 study patients (26%). Of these 48 patients, 24 showedan increase inNT-proBNP during the follow-up period (range30 to 5,958 pg/ml; average 1,207� 1,412) and 24 a decrease(range �5 to �3,558 pg/ml; average �663 � 740). The

Figure 3. (A) Survival free from the SE (a composite of HF death, acute decompensation, progression to end-stage disease, and stroke) stratified by NT-proBNPtertiles (overall log-rank p ¼ 0.002). After Bonferroni correction, the lower to middle and lower to upper tertile comparisons reached statistical significance(p ¼ 0.001 and p ¼ 0.002, respectively). (B) In a Cox regression model including other independent predictors of SE, only the initial New York HeartAssociation (NYHA) functional class helped to further stratify high-risk patients.

1194 The American Journal of Cardiology (www.ajconline.org)

prevalence of the SE was almost 3 times more common in thegroup with an NT-BNP increase (n ¼ 8; 33%) than in thepatients with an NT-BNP decrease (n ¼ 3; 12%; p ¼ 0.03,univariate survival analysis).

Discussion

In patients with HC, the natriuretic peptides are oftenelevated and have been shown to correlate with the degree ofsymptomatic impairment and functional capacity,18 LV massindex, left atrial volume, and LV outflow tract obstruc-tion.19,20 To date, however, the predictive accuracy of natri-uretic peptides with regard to outcomes in this complexdisease has received limited attention.21,22 In our HC cohort,followed up for an average of almost 4 years, NT-proBNPproved to be an independent predictor of cardiovascularmortality (our primary end point), with a sixfold increase inthe likelihood for each increment in the log NT-proBNP. Therelatively high NT-proBNP value of 810 pg/ml proved thebest cutoff for the identification of patients at risk of cardio-vascular death, althoughwith limited specificity (61%) owingto the expected paucity of events during the follow-up period.In the present analysis, however, sudden death representeda potential confounder with regard to the predictive values ofNT-proBNP, because life-threatening ventricular arrhythmiascan occur in stable and often asymptomatic or only mildlysymptomatic patients, lacking LV overload and hemody-namic decompensation at death and, thus, might not bepredictable using the biomarkers of HF.

Our SE was more specifically focused on HF-relatedevents and, as expected, was more accurately predicted bythe NT-proBNP levels. However, NT-proBNP appearedmost useful for its high negative predictive value (i.e., asa screening test to identify low-risk patients, rather than tosingle out those with a greater risk of events). The threshold of310 pg/ml, representing the cutoff value for the lower tertile,had very high negative predictive accuracy (85%) andretained important prognostic value even after adjustment forother powerful adverse clinical features, such as age, NewYorkHeart Association functional class, and LVoutflow tractobstruction. However, neither this nor other cutoffs were ableto further stratify the risk in the 2 upper tertiles, despite a widespectrum of values ranging to >16,000 pg/ml. These datahave confirmed and expanded those of previous studies21e23

showing a significant association between the NT-proBNPlevel and HF-related prognosis in patients with HC. Veryrecently, Coats et al23 reported a sevenfold increased risk ofdeath and transplantation in patients with HC and abnormalNT-proBNP values. That study enrolled patients with overtsystolic dysfunction at baseline, a subgroup with particularlyominous short-term outcomes9; however, that subgroup wasexcluded from our cohort to avoid a potential confounder.23

The most important clinical implication of our findingswas that low NT-proBNP values can identify truly stabledisease and allow cautious reassurance of patients with HCregarding the risk of disease progression and HF, even in thepresence of potentially adverse clinical features. For patientswith HC and dynamic LV outflow tract obstruction, forexample, low NT-proBNP values might represent a usefularbitrator, supporting the decision to avoid or postponeinvasive septal reduction therapies, particularly when the

symptoms are sufficiently well-controlled by pharmacologictreatment.24 This hypothesis deserves to be tested in specifi-cally designed, longitudinal studies. In contrast, greaterNT-proBNP values represent a rather nonspecific “red flag,”lacking sufficient specificity for the identification of the trulyhigh-risk subset, and needs to be complemented by additionalclinical and instrumental workup.4 For example, the presenceof a restrictive LV filling pattern significantly increased therisk of the primary end point in our patients with HCbelonging to the intermediate NT-proBNP tertile.14 Further-more, in a subgroup of 48 of the 183 study patients for whomNT-BNP repeat values were available during follow-up, theprevalence of the SE was almost 3 times more common in thegroupwith anNT-BNP increase than in those with decreasingtiters. Thus, it is plausible that longitudinal, serial testing ofNT-proBNP during follow-up could provide incrementalclinical benefit comparedwith a single baseline evaluation, byrevealing the trend of over time and the response totreatment.25

Our results have suggested that the prognostic value ofNT-proBNP is only partly explained by other covariablestraditionally regarded as determinants of pressure overload,such as diastolic dysfunction and LV outflow tract obstruction,indicating that someadditionalmechanism, other thanmyocytestretch,must be involved. InnonobstructiveHC, the ventricularexpression of BNP has been suggested to partly reflectmyocardial disarray, hypertrophy, and fibrosis, rather thansolely a response to the hemodynamic load.26 For example,recent evidence that a quota ofBNP can beproducedby cardiacfibroblasts, involved in the regulation of extracellular matrixturnover,27 might explain the correlation observed among theNT-proBNP levels, the extent of late gadolinium enhancementat cardiac magnetic resonance imaging,19 and plasmabiochemical markers of collagen turnover.28 Finally, micro-vascular dysfunction, a key pathophysiologic feature ofHC, might represent an additional stimulus to NT-proBNPproduction in asymptomatic patients.29 This concept isconsistent with the work by Nakamura et al,30 demonstratingthat myocardial ischemia might stimulate peptide release inpatients with HC and angiographically normal coronaryarteries.

In conclusion, in stable outpatients with HC, plasmaNT-proBNP proved a powerful independent predictor ofdeath andHF-related events. Although the positive predictiveaccuracy of the elevated NT-proBNP values was modest, lowvalues reflected true clinical stability, suggesting the possi-bility of avoiding or postponing aggressive treatment options.

Disclosures

The authors have no conflicts of interest to disclose.

1. Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol2007;50:2357e2368.

2. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, WolfPA, Vasan RS. Plasma natriuretic peptide levels and the risk ofcardiovascular events and death. N Engl J Med 2004;350:655e663.

3. GershBJ,MaronBJ, BonowRO,Dearani JA, FiferMA, LinkMS,NaiduSS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA,Udelson JE, Yancy CW; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; Amer-ican Association for Thoracic Surgery; American Society of Echocar-diography; American Society of Nuclear Cardiology; Heart Failure

Cardiomyopathy/NT-ProBNP and Outcome in HC 1195

Society of America; Heart Rhythm Society; Society for CardiovascularAngiography and Interventions; Society of Thoracic Surgeons. 2011ACCF/AHA guideline for the diagnosis and treatment of hypertrophiccardiomyopathy: executive summary: a report of the American Collegeof Cardiology Foundation/American Heart Association Task Force onPractice Guidelines. Circulation 2011;124:2761e2796.

4. Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of diseaseprogression in hypertrophic cardiomyopathy: an individualized approachto clinical staging. Circ Heart Fail 2012;5:535e546.

5. Maron BJ. Sudden death in hypertrophic cardiomyopathy. J CardiovascTransl Res 2009;2:368e380.

6. Olivotto I, Girolami F, Nistri S, Rossi A, Rega L, Garbini F, Grifoni C,Cecchi F, Yacoub MH. The many faces of hypertrophic cardiomyop-athy: from developmental biology to clinical practice. J CardiovascTransl Res 2009;2:349e367.

7. Ommen SR, Maron BJ, Olivotto I, Maron MS, Cecchi F, Betocchi S,Gersh BJ, Ackerman MJ, McCully RB, Dearani JA, Schaff HV,Danielson GK, Tajik AJ, Nishimura RA. Long-term effects of surgicalseptal myectomy on survival in patients with obstructive hypertrophiccardiomyopathy. J Am Coll Cardiol 2005;46:470e476.

8. Maron BJ. Controversies in cardiovascular medicine: surgical myec-tomy remains the primary treatment option for severely symptomaticpatients with obstructive hypertrophic cardiomyopathy. Circulation2007;116:196e206.

9. Yacoub MH, Olivotto I, Cecchi F. “End-stage” hypertrophic cardio-myopathy: from mystery to model. Nat Clin Pract Cardiovasc Med2007;4:232e233.

10. Collinson PO, Barnes SC, Gaze DC, Galasko G, Lahiri A, Senior R.Analytical performance of the N terminal pro B type natriuretic peptide(NT-proBNP) assay on the Elecsys 1010 and 2010 analysers. Eur JHeart Fail 2004;6:365e368.

11. Maron BJ,MaronMS. Hypertrophic cardiomyopathy. Lancet 2012;381:242e255.

12. Yeo KT, Wu AH, Apple FS, Kroll MH, Christenson RH, LewandrowskiKB, Sedor FA, Butch AW. Multicenter evaluation of the RocheNT-proBNP assay and comparison to the Biosite Triage BNP assay. ClinChim Acta 2003;338:107e115.

13. Nagueh SF, Bierig SM, Budoff MJ, Desai M, Dilsizian V, Eidem B,Goldstein SA, Hung J, Maron MS, Ommen SR, Woo A. AmericanSociety of Echocardiography clinical recommendations for multi-modality cardiovascular imaging of patients with hypertrophic cardio-myopathy: endorsed by the American Society of Nuclear Cardiology,Society for Cardiovascular Magnetic Resonance, and Society ofCardiovascular Computed Tomography. J Am Soc Echocardiogr2011;24:473e498.

14. Pinamonti B, Di Lenarda A, Nucifora G, Gregori D, Perkan A, SinagraG. Incremental prognostic value of restrictive filling pattern in hyper-trophic cardiomyopathy: a Doppler echocardiographic study. Eur JEchocardiogr 2008;9:466e471.

15. Olivotto I, Girolami F, Ackerman MJ, Nistri S, Bos JM, Zachara E,Ommen SR, Theis JL, Vaubel RA, Re F, Armentano C, Poggesi C,Torricelli F, Cecchi F. Myofilament protein gene mutation screeningand outcome of patients with hypertrophic cardiomyopathy. Mayo ClinProc 2008;83:630e638.

16. Maron BJ, Olivotto I, Spirito P, Casey SA, Bellone P, Gohman TE,Graham KJ, Burton DA, Cecchi F. Epidemiology of hypertrophiccardiomyopathy-related death: revisited in a large non-referral-basedpatient population. Circulation 2000;102:858e864.

17. Harris KM, Spirito P,MaronMS, ZenovichAG, Formisano F, Lesser JR,Mackey-Bojack S, Manning WJ, Udelson JE, Maron BJ. Prevalence,

clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006;114:216e225.

18. Maron BJ, Tholakanahalli VN, Zenovich AG, Casey SA, Duprez D,Aeppli DM, Cohn JN. Usefulness of B-type natriuretic peptide assay inthe assessment of symptomatic state in hypertrophic cardiomyopathy.Circulation 2004;109:984e989.

19. Park JR, Choi JO, Han HJ, Chang SA, Park SJ, Lee SC, Choe YH,Park SW, Oh JK. Degree and distribution of left ventricular hyper-trophy as a determining factor for elevated natriuretic peptide levels inpatients with hypertrophic cardiomyopathy: insights from cardiacmagnetic resonance imaging. Int J Cardiovasc Imaging 2012;28:763e772.

20. Vanderheyden M, Goethals M, Verstreken S, De Bruyne B, Muller K,Van Schuerbeeck E, Bartunek JJ. Wall stress modulates brain natri-uretic peptide production in pressure overload cardiomyopathy. AmColl Cardiol 2004;44:2349e2354.

21. Mutlu B, Bayrak F, Kahveci G, Degertekin M, Eroglu E, Basaran Y.Usefulness of N-terminal pro-B-type natriuretic peptide to predictclinical course in patients with hypertrophic cardiomyopathy. Am JCardiol 2006;98:1504e1506.

22. Kitaoka H, Kubo T, Okawa M, Takenaka N, Sakamoto C, Baba Y,Hayashi K, Yamasaki N, Matsumura Y, Doi YL. Tissue Dopplerimaging and plasma BNP levels to assess the prognosis in patients withhypertrophic cardiomyopathy. J Am Soc Echocardiogr 2011;24:1020e1025.

23. Coats CJ, Gallagher MJ, Foley M, O’Mahony C, Critoph C, Gimeno J,Dawnay A, McKenna WJ, Elliott PM. Relation between serum N-terminal pro-brain natriuretic peptide and prognosis in patients withhypertrophic cardiomyopathy. Eur Heart J 2013 Mar 8.

24. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA,Cecchi F, Maron BJ. Effect of left ventricular outflow tract obstructionon clinical outcome in hypertrophic cardiomyopathy. N Eng J Med2003;348:295e303.

25. Jourdain P, Jondeau G, Funck F, Gueffet P, Le Helloco A, Donal E,Aupetit JF, Aumont MC, Galinier M, Eicher JC, Cohen-Solal A,Juillière Y. Plasma brain natriuretic peptide-guided therapy to improveoutcome in heart failure: the STARS-BNP Multicenter Study. J AmColl Cardiol 2007;49:1733e1739.

26. Hasegawa K, Fujiwara H, Doyama K, Miyamae M, Fujiwara T, SugaS, Mukoyama M, Nakao K, Imura H, Sasayama S. Ventricularexpression of brain natriuretic peptide in hypertrophic cardiomyopathy.Circulation 1993;88:372e380.

27. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC Jr. Brain natriuretic peptide isproduced in cardiac fibroblasts and induces matrix metalloproteinases.Circ Res 2002;91:1127e1134.

28. Lombardi R, Betocchi S, Losi MA, Tocchetti CG, Aversa M, MirandaM, D’Alessandro G, Cacace A, Ciampi Q, Chiariello M. Myocardialcollagen turnover in hypertrophic cardiomyopathy. Circulation2003;108:1455e1460.

29. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F,Torricelli F, Camici PG. Relevance of coronary microvascular flowimpairment to long-term remodeling and systolic dysfunction inhypertrophic cardiomyopathy. J Am Coll Cardiol 2006;47:1043e1048.

30. Nakamura T, Sakamoto K, Yamano T, Kikkawa M, Zen K, HikosakaT, Kubota T, Azuma A, Nishimura T. Increased plasma brain natri-uretic peptide level as a guide for silent myocardial ischemia in patientswith non-obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol2002;39:1657e1663.

1196 The American Journal of Cardiology (www.ajconline.org)

[Cardiogenetics 2013; 3(s1):e3] [page 13]

Anderson-Fabry, the histrionicdisease: from genetics toclinical managementFranco Cecchi,1 Benedetta Tomberli,1,2Amelia Morrone3,41Department of Clinical and ExperimentalMedicine; 2Department of Heart andVessels, Referral Center forCardiomyopathies, Careggi Hospital;3Department of Neurosciences,Psychology, Pharmacology and ChildHealth, University of Florence;4Molecular and Cell Biology Laboratory,Paediatric Neurology Unit, NeuroscienceDepartment, Meyer Children’s Hospital,Florence, Italy

Abstract

Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder of glycosph-ingolipid catabolism, due to deficiency orabsence of a galactosidase A (a-gal A) enzyme.The disease may affect males and females, thelatter with an average 10 years delay.Metabolites storage (mostly Gb3 and lyso-Gb3)leads to progressive cellular and multiorgandysfunction, with either early and late onsetvariable clinical manifestations that usuallyreduce quality of life and life expectancy. Heartand kidney failure, stroke and sudden deathare the most devastating complications. AFD isalways been considered a very rare disease,although new epidemiologic data, based onnewborn screening, showed that AFD preva-lence is probably underestimated and muchhigher than previously reported, especially forlate-onset atypical phenotypes. Currently, thediagnosis may be easier and simpler by evalu-ating a-gal A enzyme activity and geneticanalysis for GLA gene mutations on dried bloodspot. While a marked a-gal A deficiency leadsto diagnosis of AFD in hemizygous males, themolecular analysis is mandatory in heterozy-gous females. However, referral to a centerwith an expert multidisciplinary team is high-ly advisable, in order to ensure careful man-agement and treatment of patients, based alsoon accurate molecular and biochemical datainterpretation. While long-term efficacy ofenzyme replacement therapy (ERT) inadvanced stage is still debated, increasing evi-dence shows greater efficacy of early treat-ment initiation. Concomitant, organ-specifictherapy is also needed. New treatmentapproaches, such as chemical chaperone ther-apy, alone or in combination with ERT, are cur-rently under investigation. The present reviewillustrates the major features of the disease,

focusing also on biochemical and geneticaspects.

Introduction

Anderson-Fabry disease (AFD) (OMIM#301500) is named after two dermatologists, W.Anderson and J. Fabry, who separately describedtwo cases of patients with angiocheratoma cor-poris diffusum in 1898.1,2 Almost a century laterAFD was showed to be a rare X linked multisys-temic lysosomal storage disorder of glycosphin-golipid catabolism, due to the deficiency of thelysosomal enzyme a galactosidase A (a-Gal A;EC 3.2.1.22).3,5 This deficiency leads to systemicaccumulation of globotriaosylceramide (Gb3)and its deacylated Gb3, the globotriaosylsphin-gosine (lysoCTH or lyso-Gb3), throughout thebody within the lysosomes and in the plasma. Insymptomatic AFD male patients Gb3 and lyso-Gb3 are both increased, in plasma as well as inurine.6 However, symptomatic female patientsoften have Gb3 values within the normal range.Contrary to Gb3, lyso-Gb3 is absent in healthycontrols and it is also markedly increased insymptomatic female patients. Furthermore, theabsence of manifestations in male AFD childrenwith no residual enzyme activity, and Gb3 accu-mulation within the cells, suggests that Gb3may not be directly responsible for diseasesigns and symptoms, while lyso-Gb3 is likely toplay a direct role in the pathogenesis of AFD.7

A specific therapy for AFD, enzyme replace-ment therapy (ERT), is available since 2001.The clinical and scientific interest in this raredisease is growing all over the world, withmore than 2600 papers published up to date(Figure 1).

Lysosomes anda-galactosidase A

Glycosphingolipids are an essential part ofthe lipid bilayer in the intra and extracellularhuman membranes. The lysosomal enzyme a-Gal A is involved in the catabolism of glycosph-ingolipids within the lysosomes whereas it cat-alyzes the hydrolysis of a-galactosidic linkagesof glycosphingolipids, glycoproteins and poly-saccharides.3 This complex catabolic pathwayallows a reutilization of the membrane compo-nents. Mutations in the GLA gene encoding thea-Gal A may affect the synthesis, processing,and stability of the enzyme, leading to theimpairment of glycosphingolipids catabolismand to their progressive accumulation withinthe lysosomes. The storage of Gb3 and othertoxic metabolites involves every cell of thehuman body and starts during the fetal life.8

However, cellular dysfunction and organ dam-age usually become evident with early signsand symptoms in infancy (classic phenotype),or decades later, in the late-onset variant.5

Genetic bases

The lysosomal enzyme a-GAL A is encodedby the GLA gene (MIM 300644) mapping on theX chromosome at locus Xq22.1 and organizedin seven exons encompassing over 12 Kb.9 TheGLA cDNA of 1290 bp encodes for a precursorprotein of ~50kDa (429 amino acids), which isproteolytically cleaved into the lysosomalmature protein.10,11

The mature a-GAL A enzyme is a homod-imeric glycoprotein of about 46 kDa (398amino acids). Each monomer is composed oftwo domains. The domain 1 contains the activesite (encompassing amino acids 32-330), atthe center of the b strands in the (b/a)8 barrel,while the domain 2 contains antiparallel bstrands.12

At present 665 GLA gene mutations, most of

Cardiogenetics 2013; 3(s1):e3

Correspondence: Benedetta Tomberli, Diparti-mento Cuore e Vasi, San Luca Vecchio, Centro diRiferimento Cardiomiopatie, Azienda OspedalieroUniversitaria Careggi, Largo Brambilla 3, 50134,Firenze, Italy.Tel. +39.055.7945138 - Fax: +39.055.7949335.E-mail: [email protected]

Key words: Anderson-Fabry, heart failure, renalfailure, stroke, genetics, enzyme replacementtherapy.

Acknowledgments: the authors would like tothank, for their constant support in research andeducation, Genzyme Corporation and Shire HGT,which had no direct role in the developmentand/or content of this manuscript.

Contributions: all authors contributed equally.

Conflict of interests: FC, BT, received speaker’sfees and research support from Shire HGT,Genzyme Corporation; AM, received financialsupport for research from Shire HGT andGenzyme Corporation.

Received for publication: 14 November 2012.Revision received: 21 January 2013.Accepted for publication: 4 February 2013.

This work is licensed under a Creative CommonsAttribution NonCommercial 3.0 License (CC BY-NC 3.0).

©Copyright F. Cecchi et al., 2013Licensee PAGEPress, ItalyCardiogenetics 2013; 3(s1):e3doi:10.4081/cardiogenetics.2013.s1.e3

Non-co

mmercial

use o

nly

[page 14] [Cardiogenetics 2013; 3(s1):e3]

them private and spread throughout all exons,have been reported (HGMD professional2012.2), confirming a high genetic hetero-geneity. Over 65% of the AFD causing geneticvariants are missense or nonsense mutations,while 5% are splicing mutations, 22% smalldeletions/small insertions or regulatory muta-tions, and only 6% are gross deletion/insertion.While missense mutations not affecting theactive site may lead to partial reduction of a-GAL A activity, no residual enzyme activity isexpected for the remaining mutations.AFD is transmitted as an X-linked disorder.

Sons of affected males are always disease free,while their daughters are obligate heterozy-gotes. The heterozygous females can transmittheir mutated allele to their male and femaleoffspring. Thus in each pregnancy 50% of theirsons can be hemizygotes and 50% of theirdaughters can be heterozygotes. Although X-linked, penetrance and expres-

sivity rate are high in both genders (100% inmales and 70% in females).13 Heterozygousfemales are usually affected with a milder andlate-onset disease (about 10 years later thanmales), but in a minority, symptoms and organdamage can be as severe and early as in males.Therefore it would be preferable to discontinuefemale carrier and X-linked recessive terms, asmisleading.13 This huge variability of femalephenotype can be partially explained by therandom X inactivation process.A genotype-phenotype correlation is often

difficult, as most of the AFD mutations are pri-vate and unique within single families.However some common missense mutations,leading to residual a-GAL activity, have beenlinked mainly to specific organ involvement inAFD patients (e.g. N215S [c.644A>G➔p.Asn215Ser] to hypertrophic cardiomyopathy).14,15

Epidemiology

AFD is rare disease, with a reported preva-lence in the general population ranging from1:117,000 to 1:467,000.16,17 However, recent bio-chemical and genetic screening data in new-borns report an unexpectedly much higher

incidence (Table 1).18-21 While the classic phe-notype of AFD is actually rare, these data showthat milder variant with late-onset phenotypemay be much more frequent than expected.The late-onset subgroup comprises patientswith disease onset much later in life thanpatients with classic AFD, usually in the fourthto six decades, and manifestations confinedmainly to one organ system. Patients withatypical late-onset variants have residualenzyme activity, which ranges from 2 to 20% ofnormal values and results in a milder pheno-type. However the correlation between resid-ual enzyme activity and disease phenotype isnot strong.22 The real strength of these new-born-screening initiatives goes well beyondthe simple data itself. They shifted a historicparadigm of a rare disease, with multisystemicinvolvement in young males, to a more com-mon disease, with a wide phenotype, some-times with disease manifestation confined toone organ system.Furthermore, screening for AFD among

selected groups of patients, i.e. patients with

juvenile cryptogenic stroke, renal failure or leftventricular hypertrophy, suggests that manypatients are misdiagnosed.23 Indeed, the preva-lence of AFD among patients with hypertrophiccardiomyopathy (HCM) ranges from 0.5% to6%, depending on different selection criteriafor age and gender, and diagnostic meth-ods.24,25 It is about 1% if only males older than35 years at diagnosis of HCM are selected. AFD is a pan-ethnic disease, with few areas

of high prevalence (i.e. Canada and WestVirginia, USA), probably due to a foundereffect.4

Clinical manifestations, clinicalcourse and prognosis

AFD is a progressive disease, characterizedby a wide variability of signs, symptoms andpatterns, which, for the classical phenotype,are clearly different in three periods of life(Figure 2):

Review

Figure 1. The number of papers on Anderson-Fabry disease is significantly increased sincethe advent of enzyme replacement therapy, in 2001.

Table 1. Epidemiology of Anderson-Fabry disease. Data from newborn screening based on a-Gal A activity and GLA gene analysis ondried blood spot.

Gender CountryRef Total incidence Male incidence Classic phenotype Late-onset phenotype

M Italy18 - ∼1:3100 ∼1:37,000 ∼1:3400M+F Taiwan19 1:2300* ∼1:1250* ∼1:22,600 (M)* ∼1:1400 (M)*M+F Taiwan20 1:2500* ∼1:1400* ∼1:57,000 (M)* ∼1:1500 (M)*M+F Austria21 ∼1:3900 - ∼1:17,000 ∼1:4100M, male; F, female. *Newborn screening in Taiwan reveald a high incidence of the IVS4+919G>A cryptic splicing mutation, probably due to a founder effect. This mutation has been described in late-onset cardiacphenotype.19,20

Non-co

mmercial

use o

nly

[Cardiogenetics 2013; 3(s1):e3] [page 15]

- Childhood: although the pathologic accumu-lation of sphingolipids in various tissuesthroughout the body usually starts in thefetal life,8 early symptoms, mostly neuro-pathic pain, usually emerge in infancy.26

- Age 20 to 30: progressive cellular dysfunc-tion, related to the slow but continuousintracellular storage, leads to organ damageand failure. Symptoms tend to progress, andthe first, subclinical signs of organ involve-ment may be detected [e.g. proteinuria,electrocardiogram (ECG) changes and silentcerebral abnormalities].

- Over age 30: major organ involvement, suchas renal, cerebrovascular and cardiovascu-lar, may lead to disease progression andeventually to an end-stage phase.27 Averagereduction of life expectancy is about 20years in males and 10 in females.28

Anderson-Fabry disease in thechildhood: first signs andsymptoms

The first clinical symptom is usually neuro-pathic pain, which occurs in 70% of patients andusually emerges between age 4 and 12, earlier inmales than in females.29 The pain is located atthe extremities and can either be chronic orcharacterized by crisis. It may be triggered byexercise, fever, sun exposure, changes in tem-peratures or stress.30 The burning pain may be sointense to interfere with every-day life and sub-stantially reduce quality of life.31 Neurologicexamination is normal, as well as electromyogra-phy (EMG) and electroneurography.32 Bothexaminations only assess large nerve fibersfunction, while in AFD small nerve fibers areinvolved, and their reduced density on skin biop-sy is sometimes required to diagnose AFD neu-ropathy.33 The neuropathic pain is difficult tomanage with standard analgesic and mayrespond to narcotic analgesic (such as codeine ormorphine) or anticonvulsant drugs (such as car-bamazepine).34 Anhidrosis and hypohidrosis, areduced or absent ability to sweat, can cause heatand exercise intolerance, often reported as recur-rent fever after exercise by the patients and theirparents. They may also trigger AFD pain crisis.35

Gastrointestinal involvement, characterizedby abdominal pain, diarrhea, nausea, can alsobe reported during childhood as well as in theadult life.36

Retinal vessel tortuosity and cornea verticil-lata, a corneal lesion caused by Gb3 deposition,can also be detected in childhood.37 Vertigo,tinnitus and sudden hearing loss have beenreported at an early stage and are thought to berelated to small vessel involvement.38

Angiokeratoma is another early feature ofAFD.39 Small purple skin lesions may be present

in children and tend to increase in size andnumber with age. They can be found typically onthe lower back, thighs, genital areas, umbilicusand sometimes on mucosae (Figure 3). Histo-logically they are characterized by vessel dilata-tion (angiomas) and hyperkeratosis. Major organ involvement, such as renal,

cerebrovascular or cardiovascular is uncom-

mon in children.40 Microalbuminuria and pro-teinuria, signs of early renal damage, may bedetected in the second decade of life.41 Smallwhite matter lesion on magnetic resonanceimaging (MRI) may reveal an initial centralnervous system involvement, as well as ECGchanges of the heart. Although the early clinical picture is sugges-

Review

Figure 2. Symptoms onset and disease progression in classic Anderson-Fabry disease(AFD). Signs and symptoms of AFD progressively increase with age. In infancy and ado-lescence neuropathic pain, gastrointestinal manifestations and angiokeratomas are themost frequent manifestations. Proteinuria, the first sign of kidney involvement, is alsopresent in young affected males (Modified from Zarate and Hopkin4).

Figure 3. Various aspects of angiokeratoma in Anderson-Fabry disease patients: angioker-atoma of the periungual and subungual area (panel A), of the palms, lips and umbilicus(panel B-D respectively) (Reprinted with permission of the publisher from Zampetti et al.39).

Non-co

mmercial

use o

nly

[page 16] [Cardiogenetics 2013; 3(s1):e3]

tive of AFD, the diagnosis is rarely made inchildhood and adolescence, with an averagediagnostic delay of 10 years for both genders.Recognition of early and advanced clinicalmanifestations of AFD represents a real chal-lenge for clinicians, due to variable clinicalmanifestations and symptoms that may resem-ble other common diseases.42

Anderson-Fabry disease in theadult life The full spectrum of AFD phenotype slowly

develops with age.

Cardiac involvementGb3 and related sphingolipids storage may

occur in cardiomyocites, cardiac valves,endothelial cells and conduction system.43

While ECG changes may be found in youngpatients, an overt cardiomyopathy with leftventricular hypertrophy (LVH), with diastolicdysfunction, preserved systolic function, oftenwith mild valvular regurgitation emerges inthe third or fourth decade of life in affectedmales, more rarely in a few females.44

Conduction abnormalities andarrhythmiasECG changes are often present in AFD

(Figure 4). A short PQ interval (<120 ms),described as a feature of AFD, is a non-specif-ic and rather uncommon finding with a preva-lence of 14%.45 Signs of LVH on ECG, alongwith repolarization changes (including deep Twaves inversion) are frequent. They may bedetected even in patients without a markedincrease of left ventricular wall thickness atechocardiography.45,46

Bradycardia, sinus node disease, prolongedPQ intervals with variable degree of AV-block,and QRS broadening (particularly with a rightbundle branch block pattern) are ECG alter-ations often seen later in life.47 PQ interval andQRS duration are directly proportional to age,suggesting a relationship to progressive stor-age of sphingolipids and development of fibro-sis. Apoptosis and autonomic nervous systeminvolvement might also play a role. Recently AVand sinus node disease were showed to becommon in AFD patients.47 The prevalence ofatrial fibrillation and non-sustained ventricu-lar-tachycardia (VT) are higher in AFDpatients when compared to the general popula-tion.48 Furthermore the risk of arrhythmiasincreases with age, while there are no gender-related differences. Sudden cardiac death mayoccur, usually in the end stage phase, althoughits prevalence is unknown.48 It may be trig-gered by episodes of sustained VT.

Anderson-Fabry diseasecardiomyopathyAFD cardiomyopathy is characterized by

diastolic dysfunction and LVH, usually con-centric and non-obstructive. Basal LV outflowtract obstruction (LVOTO) is rare, while exer-cise provokable LVOTO has been detected in43% of patients,49 most of them with LV smallcavity size. LVH is usually mild, although male patients

may also show severe and asymmetric septal orapical hypertrophy, both in classical and late-onset disease (Figure 5). Systolic function isusually preserved in most patients until

advanced stage, but a few patients may gradu-ally develop a systolic dysfunction, often lead-ing to progressive refractory heart failure.50

The use of some echocardiographic technique,such as tissue doppler imaging or strain rateimaging, may detect early cardiac involvementbefore LVH develops.51,52 Replacement fibrosis,detected by cardiac MRI usually in the inferioror posterolateral wall, is considered a sign ofdisease progression (Figure 6).53 Myocardialfibrosis may also be present in female patients

Review

Figure 4. Electrocardiogram in a male patient with Anderson-Fabry disease showing leftventricular hypertrophy with T-waves inversion and a relatively short PR (133 ms)(Reprinted with permission of the publisher from O’Mahony and Elliott46).

Figure 5. Typical echocardiographic aspect of Anderson-Fabry disease-related cardiomy-opathy. The 2-D images in panel A and B show mild, concentric left ventricular hypertro-phy. There is also mild diastolic dysfunction (panel C and D) (Reprinted with permissionof the publisher from O’Mahony and Elliott46).

Non-co

mmercial

use o

nly

[Cardiogenetics 2013; 3(s1):e3] [page 17]

without LVH, suggesting that hypertrophy andfibrosis are not necessarily associated.54 Theendocardial binary appearance (binary sign)was suggested as an echocardiographic hall-mark of AFD cardiomyopathy;55 however, recentstudies showed that these echo features can bedetected also in patients with sarcomericHCM.56 The binary sign is of limited utility indistinguishing the cause of LVH. Of note, rightventricular hypertrophy, is detected by MRI inabout 2/3 of patients with LVH.57

Angina and coronary artery diseaseChest discomfort and angina may be pres-

ent, despite the absence of atheroscleroticcoronary artery disease. Both are likely to berelated to microvascular dysfunction (Figures7 and 8).58-60 Coronary microvascular blood flowimpairment can be detected in both genders,even without LVH. It can lead to chronicischemia and myocardial replacement fibrosis.

Other cardiac abnormalitiesThe prevalence of mild aortic root enlarge-

ment is higher in male AFD patients,61 whileexercise capacity is usually reduced, whenmeasured by a cardiorespiratory test.62

Kidney involvementMicroalbuminuria and proteinuria, due to

kidney impairment related to Gb3 accumula-tion and glomerular fibrosis, are usually pres-ent by the third decade of life, sometimes ear-lier when a-GAL enzyme activity is <1%(Figure 9).63,64 Proteinuria levels may varywidely, but tend to increase in severity withage and are inversely correlated to kidneyfunction, based on glomerular filtration rate,which is often normal or even higher in youngpatients.65 After renal dysfunction has pro-gressed to end-stage, dialysis and renal trans-plant may be necessary.66-67

Cerebrovascular involvementTransient ischemic attack and strokes are

the most relevant and disabling complicationof AFD and may significantly contribute to dis-ease-related morbidity and mortality.68

Multifocal leukoencephalopathy is the typicallesions of AFD and results from small vesselsinvolvement and microvascular dysfunction(Figure 10).69 The prevalence of strokes in AFDis about 7% in males and 5% in females, usual-ly in the third and the fourth decade of life.However, the prevalence of cerebrovascularinvolvement rises up to 60-70% if minor signsor symptoms and abnormal brain MR imageare considered.68 Psychiatric disorders, depres-sion and dementia may be present and theycan only be partially attributed to the cerebralmicrovascular disease.70 The severity of cere-brovascular disease may vary widely.71

Combining neurologic symptoms and instru-

Review

Figure 6. Myocardial fibrosis as a sign of disease progression. Panel A) cardiovascularmagnetic resonance image showing an area of myocardial fibrosis involving the postero-lateral wall (arrows in four-chamber horizontal long-axis view). Panel B) the extension offibrosis is significantly increased, despite 6 years of enzyme replacement therapy(Reprinted with permission of the publisher from Imbriaco et al.101).

Figure 7. Gb3 inclusions in the endothelium and cardiomyocytes. Panel A shows an intra-mural coronary artery in a patient with hypertrophic cardiomyopathy. Wall thickening isdue primarily to severe thickening of medial wall, while the intima is mildly thickened.Panel B shows interstitial capillaries in the myocardium of a patient with Anderson-Fabrydisease. Glycosphingolipid inclusions are present in the endothelium (arrow) and cardiomy-ocytes (arrowhead) (Reprinted with permission of the publisher from Camici e Crea58).

Figure 8. Microvascular dysfunction detected by myocardial positron emission tomogra-phy. Male patients with Anderson-Fabry disease (AFD) show a marked reduction inmyocardial blood flow (MBF) during adenosine-induced hyperaemia (ADO), comparedto controls (Reprinted with permission of the publisher from Elliott et al.59).

Non-co

mmercial

use o

nly

[page 18] [Cardiogenetics 2013; 3(s1):e3]

mental findings, CNS disease can be brieflyclassified into 3 categories: i) symptomaticpatients with repeated cerebrovascular events,ii) patients with minor neurological manifes-tation such as vertigo, dizziness, hearing loss,headache and migraine; iii) asymptomaticpatients with abnormal brain MRI findings.68

Other findings Symptoms compatible with autonomic dys-

function, such as arterial hypotension, sinusbradycardia or gastrointestinal symptoms,have always been attributed to autonomicnervous system neuropathy,72 which is oftenneglected in the single patient. Obstructive airway disease and osteopenia/

osteoporosis in AFD patients have also beenreported.73,74

Diagnosis

Once the clinical pictures rises a suspicionof AFD, biochemical and genetic tests arerequired to confirm the diagnosis.

Biochemical diagnosisThe detection of markedly reduced or absent

a-gal A activity in leukocytes is sufficient toconfirm AFD diagnosis,3 although it should becarefully evaluated with clinical and geneticmolecular findings. While patients with amilder AFD phenotype usually have residual a-gal A activity, in classically affected youngmales enzyme activity it is very low or unde-tectable.75,76

a-gal A activity can be assessed in plasma.However, when reduced, its value needs to beconfirmed in leukocytes or fibroblasts, in orderto avoid diagnostic pitfalls, due to enzymepseudodeficiency in plasma.77 The GLA genesequence analysis should always be performedand correctly interpreted, in order to revealpolymorphisms, that potentially lead to anenzymatic pseudodeficiency.78 Biochemicaldiagnosis may be unreliable in heterozygousfemales, as they can have a normal or onlymildly reduced a-gal A activity, due to randomX-chromosome inactivation. Therefore, it iscrucial to combine biochemical assays withappropriate molecular analyses of the GLAgene in order to attribute or exclude the AFDheterozygous status in females.79

More recently, screening tests on driedblood spot (DBS), using fluorescent methods,were introduced,80 together with multiplexassays of lysosomal enzymes by tandem massspectrometry.81,82 The availability of multiplextechnology using DBS on filter paper madepossible newborn screening programs of treat-able lysosomal storage diseases.83 DBS is sim-ply transportable and represent an easier,

faster and less expensive method for enzymeactivity evaluation in selected at risk popula-tion. As false positive or negative results mayoccur, it is necessary to confirm a reducedresidual enzyme activity by standard laborato-ry diagnostic procedures.84,85

Genetic analysisMolecular analysis is usually performed in

probands by direct sequencing analysis of theGLA gene coding regions, of its exons/intronsboundaries and of the intronic region encom-passing the known deep intronic muta-tions.86,87 Rarely, in males with low or noenzyme activity, and females with AFD clinicalmanifestations and normal or low enzymeactivity, exon-based sequence analysis may failto identify the disease-causing mutation. Suchin these cases, further molecular and cellularlaboratory investigations are needed to evalu-ate the GLA gene expression profile at mRNAand protein level. Both Ishii and Filoni identi-fied, by mRNA analysis, deep intronic patho-genic mutations, which alter the GLA splicingregulation.86,87 In females, due to the presenceof the wild-type allele, gross GLA generearrangements, such as deletion or insertionof entire exons, may be missed, unless specif-ic laboratory technique, such as multiplex liga-tion-dependent probe amplification analysisand/or quantitative polymerase chain reactionamplification, are used.88,89

Additional investigations are also necessaryin order to assess the pathogenicity of new vari-ants. In silico and mRNA analysis, computation-al modeling, and functional studies are neededto prove or exclude the effect of the new identi-fied variant as a disease-causing mutation.78

Co-segregation in male family members, tissuebiopsies and determination of specific metabo-lites (i.e. Gb3 or lyso-Gb3) may also be neces-sary. Recently, several authors suggest to con-sider GLA gene mutations on the bases of theirpathogenic significance, with variants predict-

ed to have high (Class 1) or low probability to bedisease-causing (Class 2, polymorphisms).90

Single nucleotide polymorphisms (SNPs) areexonic or intronic nucleotide variants detectedwith incidence higher than 1% in a healthy con-trol population. They are usually interpreted asnot disease-causing mutation. Several GLAgene polymorphisms, leading to molecular het-erogeneity have been described (SNP, http://www.ncbi.nlm.nih.gov/SNP).79 Sometime exon-ic polymorphisms, including rare variants lead-ing to aminoacid change, may be found in maleswith normal or decreased enzyme activity, butstill well above the pathologic range of values.They are almost certainly non-pathogenic vari-ants or Class 2 mutations and they include poly-morphisms or sequence changes described aspseudodeficiency alleles, e.g. c.937 G>T(p.D313Y).89,90 Pseudodeficiency is a conditionin which individuals show a reduced a-Gal Aactivity in vitro, but remain clinically healthy. However, in a few patients, when the combi-

nation of clinical, histological, biochemical andfunctional data are still not clear-cut, the AFDdiagnosis may remain uncertain91 (Figure 11).

Role and significance of Gb3and lyso-Gb3

Biomarkers are chemical molecules that canbe clinically useful to assess disease progres-sion, therapeutic efficacy, as well as diagnosticconfirmation. Although many attempts havebeen made in order to identify a biomarker forAFD, a valid and reliable molecule is still miss-ing. Gb3 is the primary storage molecule andcan be find inside cells and in biologic fluids,such as urine and plasma. For many years Gb3has been considered a reliable marker for AFD,so that its reduction in tissue biopsies hasserved has a major criteria to prove the effica-cy of the enzyme replacement therapy. With

Review

Figure 9. Evidence of Gb3 inclusions in the kidney. Panel A) sphingolipid inclusions inpodocytes (arrow) and distal tubule epithelial cells (double arrow). Panel B) lysosomalinclusions in podocytes (arrow), endothelial (open arrow) and mesangial cells (openarrowhead) (Reprinted with permission of the publisher from Tøndel et al.64).

Non-co

mmercial

use o

nly

[Cardiogenetics 2013; 3(s1):e3] [page 19]

time, new research investigations proved thatGb3 do not correlate with disease manifesta-tions. Plasma Gb3 levels are abnormally high ata very young age (sometimes detectable evenin utero), while clinical manifestations devel-op much later in life.92 Furthermore, Gb3 mightbe within the normal range in symptomaticfemale. The diagnostic value of this parameterhas been questioned as well, since it can bedetected in normal healthy subjects.7

Globotriaosylsphingosine, also known aslyso-Gb3, is the deacylated form of Gb3. In con-trast to Gb3, this relatively new biomarker isabnormally high in male and female patientswith AFD while this is absent in control healthysubjects.7,93 lyso-Gb3 may be a useful additionalelement for confirmation of AFD diagnosis inpatients with GLA variant of unknown signifi-cance (Figure 11). Furthermore, lifetime expo-sure to lyso-Gb3 correlates with disease severi-ty, even after adjustments for age, gender and

cardiovascular risk factors, and suggests itspathophysiological role. However, the useful-ness of lyso-Gb3 as a biomarker for assessingthe response to ERT is still under investiga-tion.94,95

Genetic counseling andmulti-disciplinary approach

Once biochemical and molecular geneticdata are ascertained and/or available, theirinterpretation should be performed by a multi-disciplinary team with expertise in AFD, usual-ly available in referral centers, in order evalu-ate the appropriate treatment strategy. Geneticcounseling should then be offered to theproband, and his family members, who shouldundergo clinical screening.

Review

Figure 10. Brain magnetic resonance imag-ing of an asymptomatic 54-year old femaleshowing multifocal leukoencephalopathy(Reprinted with permission of the publish-er from Buechner et al.68).

Figure 11. Diagnostic flow chart of Anderson-Fabry disease (AFD) in males and females: step-by-step approach. Panel A) males. 1)Clinical picture indicative of AFD, family history compatible with an X-linked transmission. 2) In males, normal values of a-gal A activ-ity exclude the diagnosis of AFD. Reduced (<20%) or absent enzyme activity values confirm the suspicion of AFD and require genetictesting. Biochemical analysis on dried blood spot (DBS) must be confirmed by standard laboratory procedures (i.e. whole blood analy-sis). 3) If no mutations are identified by genetic analysis, and the a-gal A activity is low or undetectable, further laboratory analyses arerequired to confirm the diagnosis (e.g. mRNA and protein analysis, tissue biopsies). Comparably, the identification of new unknownvariant requires laboratory analysis, along with co-segregation studies within the family. Panel B) females. 1) Clinical picture indicativeof AFD, family history compatible with an X-linked transmission. 2) In female the a-gal A activity can be within the normal range.Therefore genetic analysis is mandatory to confirm the diagnosis; if no mutations are identified by genetic analysis, and the clinical sus-picion is high, further laboratory analyses are needed (e.g.multiplex ligation-dependent probe amplification to detect deletions or inser-tions, mRNA and protein analysis, tissue biopsies). Comparably, the identification of new unknown variant requires laboratory analy-sis, along with co-segregation studies within the family. 3) Enzyme activity may be helpful in diagnosis and management of female AFDpatients and should be measured after the genetic diagnosis is made. Biochemical analysis on DBS must be confirmed by standard lab-oratory procedures (i.e. whole blood analysis).

Non-co

mmercial

use o

nly

[page 20] [Cardiogenetics 2013; 3(s1):e3]

Management and follow-up

AFD is a multi-systemic disorder and a thor-ough evaluation of organ involvement is high-ly recommended. Neurologic assessment comprises diagnosis

and staging of neuropathic pain, through EMGand skin biopsy, if needed.33 Since leukoen-cephalopathy may be present even in youngpatients without symptoms and with a normalneurologic exam, brain MRI is required at initialassessment.29 It should be repeated at a 2-3years interval, depending on clinical picture. Nephrologic assessment is based on microal-

buminuria, 24 h proteinuria, renal function(creatinine level and estimated glomerular fil-tration rate), which should be routinely andrepeatedly assessed.5 Ultrasound abdominalexamination is also required for kidney mor-phology, as well as, in selected cases, renalbiopsy.

Cardiologic evaluationPatients should undergo ECG, colordoppler

echocardiography, 24 h ambulatory ECG moni-toring and exercise (possibly cardiorespirato-ry) test, in order to define cardiac involvementand future risk.96 Since arterial hypertension,although rare in these patients, may increasethe risk of cerebrovascular and cardiovasculardisease, blood pressure should be carefullycontrolled even with 24 h blood pressure mon-itoring. Pulmonary function tests are some-

times required in patients whose main symp-tom is dyspnea. A rigorous control of conventional atheroscle-

rotic risk factors is mandatory. Indeed, meas-urement of blood cholesterol, homocysteinelevel, and fasting glucose, should be performedonce or twice a year, although it was suggestedthat statin treatment might be deleterious inAFD patients. Lifestyle change, especially smok-ing cessation, dietary modifications and mildphysical activity, are also recommended.

Therapy

Since 2001 ERT is available and it has beenvalidated as standard treatment for AFD patientsin more than 45 countries. In Europe ERT isavailable in two commercial formulations: agal-sidase a (Replagal®; Shire, Cambridge, MA,USA) and agalsidase b (Fabrazyme®; GenzymeCorp., Cambridge, MA, USA), but the former isnot yet approved by Food and DrugsAdministration in USA. Randomized, placebo-controlled clinical trials assessed safety and effi-cacy of both enzyme formulations. However,these trials enrolled small cohort of patients and,despite over 10 years of clinical practice, manyquestions about ERT long-term efficacy remainunanswered. Both preparations are infusedintravenously once every other week, at differ-ent dose regimens (0.2 mg/kg for Replagal®; 1mg/kg for Fabrazyme®). Patients should be

treated with licensed recommended doses ofagalsidase a and agalsidase b. Currently thereis no level 1 scientific evidence showing superi-ority of one enzyme preparation over theother.97,98 Treatment failures may occur withboth drugs and are probably related to age andadvanced disease stage, because severe organdamage is often irreversible (Figure 6).99,100

Moreover patients can develop complicationsdespite receiving optimal treatment, with con-comitant therapy and ERT at licensed recom-mended dose.97

There is increasing evidence that ERT ismore effective when started in the early stageof disease, and early diagnosis is highly prefer-able.100,101 However, timing of ERT, especially inchildren and females, is still a matter of debateand may vary in different countries. Currentexpert opinions about timing of ERT are pre-sented in Table 2,98 but real guidelines havenever been written. Concomitant treatment: appropriate organ-

specific and adjuvant therapy must always beconsidered for all patients, along with ERTinfusion, for symptom control and disease sta-bilization (Table 3).

Conclusions and futureperspectives

AFD is a lysosomal storage disease withmultiorgan involvement and reduced life

Review

Table 2. Priority stages for treatment in naïve male and female patients with Anderson-Fabry disease.

High priorityChildren Adults

Neuropathic pain unresponsive to optimal medical therapy Neuropathic pain unresponsive to optimal medical therapyPersistent microalbuminuria Normal or mild to moderate reduction of renal function

(GFR 30-90 mL/min)Proteinuria >250 mg/day Proteinuria >300 mg/day

Left ventricular mass index >90th percentile (age adjusted) LVH without extensive fibrosis (on MRI)TIA/stroke or white matter lesion on MRI Cerebrovascular disease

- Disease onset <50 yearsIntermediate priority

Age onset >50 years ➔ Less severe diseaseLVH with fibrosis

Severe renal dysfunction (GFR<30 mL/min) ➔ Less reversible disease

Low priority

Severe cardiac or CNS disease (end stage)Multiple organ failure

Other comorbidities with reduction of life expectancy <1 yearVery mild multiorgan disease (e.g. normal renal function, no LVH, neuropathic pain well controlled by conventional medical therapy)

GFR, glomerular filtration rate; LVH, left ventricular hypertrophy; MRI, magnetic resonance imaging; TIA, transient ischemic attack; CNS, central nervous system.A consensus of expert wrote this document, on October 2010, in order to support clinicians’ decisions during the period of enzyme replacement therapy (ERT) shortage. Although the present recommendations arenot supposed to represent real treatment guidelines, they underline some important issues about the efficacy of ERT in advanced stage of Anderson-Fabry disease. Priority to receive ERT was based on diseaseseverity, potential reversibility and rate of disease progression, while age and gender did not represent valid criteria (Modified from G.E. Linthorst et al. 201293).

Non-co

mmercial

use o

nly

[Cardiogenetics 2013; 3(s1):e3] [page 21]

expectancy in many affected patients. AFDhas always been considered a very rare dis-ease. However, new screening data reporteda much higher incidence. Currently, AFDdiagnosis may be easier and simpler by eval-uating a-gal A enzyme activity and geneticanalysis for GLA gene mutations on driedblood spot. A marked a-gal A deficiency leadsto diagnosis of AFD in hemizygous males,while molecular analysis is mandatory in het-erozygous females. However, referral to acenter with an expert multidisciplinary teamis highly advisable, in order to ensure carefulmanagement and treatment of patients,based also on accurate molecular and bio-chemical data interpretation. Enzyme replacement therapy in patients

with early symptoms and initial organ disease,such as microalbuminuria and neuropathicpain, seem to be effective. Furthermore, newtreatment approaches are currently underinvestigation, such as chemical chaperonetherapy alone (phase III clinical studies;http://www.clinicaltrials.com) or in combina-tion with ERT (preclinical studies).102-104

While many aspects of this disease havebeen elucidated, further clinical and laborato-ries studies are still needed to clarify residualareas of doubt.

References

1. Anderson W. A case of angio-keratoma. BrJ Dermatol 1898;10:113-7.

2. Fabry J. [Purpura papulosa haemorrhagi-ca Hebrae]. Arch Dermatol Syphilol1898;43:187-201. [In German].

3. Desnick RJ, Ioannou YA, Eng CM. a-Galactosidase A deficiency: Fabry disease.In: Scriver CR, Beaudet AL, Sly WS andValle D, eds. The metabolic and molecular

bases of inherited disease, 8th Ed. NewYork: McGraw-Hill; 2001. pp 3733-74.

4. Zarate Y, Hopkin R. Fabry’s disease. Lancet2008;372:1427-35.

5. Germain DP. Fabry disease. Orphanet JRare Dis 2010;5:30-79.

6. Aerts JMFG, Kallemeijn WW, Wegdam W, etal. Biomarkers in the diagnosis of lysoso-mal storage disorders: proteins, lipids, andinhibodies. J Inherit Metab Dis 2011;1-15.

7. Rombach SM, Dekker N, Bouwman MG, etal. Plasma globotriaosylsphingosine: diag-nostic value and relation to clinical mani-festations of Fabry disease. BiochimBiophys Acta 2010;1802:741-8.

8. Bouwman MG, Hollak CEM, van den BerghWeerman M, et al. Analysis of placental tis-sue in Fabry disease with and withoutenzyme replacement therapy. Placenta2010;31:344-6.

9. Kornreich R, Desnick R, Bishop D.Nucleotide sequence of the human a-galactosidase A gene. Nucleic Acids Res1989;17:3301-2.

10. Bishop DF, Calhoun DH, Bernstein HS, etal. Human a-galactosidase A: nucleotidesequence of a cDNA clone encoding themature enzyme. Proc Natl Acad Sci U S A1986:83:4859-63.

11. Lemansky P, Bishop DF, Desnick RJ, et al.Synthesis and processing of a-galactosi-dase A in human fibroblasts. Evidence fordifferent mutations in Fabry disease. JBiol Chem 1987:262:2062-65.

12. Garman SC, Garboczi DN. The moleculardefect leading to Fabry disease: structureof human a-galactosidase. J Mol Biol2004;337:319-35.

13. Pinto LL, Vieira TA, Giugliani R, SchwartzIV. Expression of the disease on femalecarriers of X-linked lysosomal disorders: abrief review. Orphanet J Rare Dis 2010;5:14-23.

14. Nakao S, Takenaka T, Maeda M, et al. An

atypical variant of Fabry’s disease in menwith left ventricular hypertrophy. N Engl JMed 1995;333:288-93.

15. Sachdev B, Takenaka T, Teraguchi H, et al.Prevalence of Anderson-Fabry disease inmale patients with late onset hypertrophiccardiomyopathy. Circulation 2002;105:1407-11.

16. Meikle PJ, Hopwood JJ, Clague AE, CarreyWF. Prevalence of lisosomal storage disor-ders. J Am Med Assoc 1999;281:249-54.

17. Poorthuis BJ, Wevers R, Kleijer WJ, et al.The frequency of lysosomal storage dis-eases in The Netherlands. Hum Genet1999;105:151-6.

18. Spada M, Pagliardini S, Yasuda M, et al.High incidence of later-onset fabry diseaserevealed by newborn screening. Am J HumGenet 2006;79:31-40.

19. Hwu W-L, Chien Y-H, Lee N-C, et al.Newborn screening for Fabry disease inTaiwan reveals a high incidence of thelater-onset GLA mutation c.936+919G>A(IVS4+919G>A). Hum Mutat 2009;30:1397-405.

20. Lin H-Y, Chong K-W, Hsu J-H, et al. Highincidence of the cardiac variant of Fabrydisease revealed by newborn screening inthe Taiwan Chinese population. CircCardiovasc Genet 2009;2:450-6.

21. Mechtler TP, Stary S, Metz TF, et al.Neonatal screening for lysosomal storagedisorders: feasibility and incidence from anationwide study in Austria. Lancet2012;379:335-41.

22. Schaefer E, Mehta A, and Gal A. Genotypeand phenotype in Fabry disease: analysisof the Fabry Outcome Survey. ActaPaediatr 2005;94:87-92.

23. Linthorst GE, Bouwman MG, Wijburg F a,et al. Screening for Fabry disease in high-risk populations: a systematic review. JMed Genet 2010;47:217-22.

24. Monserrat L, Gimeno-Blanes JR, Marín F,

Review

Table 3. Conventional medical treatment in Anderson-Fabry disease.

Symptomatic management of Anderson-Fabry disease

Analgesics to control neuropathic painAvoidance of triggers of acute pain crisis

Anti-arrhythmic drugsRigorous control of any coronary risk factor (smoke, dyslipidemia, hypertension, hyperhomocysteinemia)

Long-term therapy to prevent organ damage

ACEi/ARB for proteinuria and kidney dysfunctionAnti-aggregant (aspirin, clopidogrel) or anticoagulant (warfarin) to prevent TIA and strokes

End-stage disease management

Dialysis or kidney transplantation for renal failureHeart transplantation for patient with refractory heart failure

ACEi, angiotensin-converting-enzyme inhibitors; ARB, angiotensin receptor blockers; TIA, transient ischemic attack.

Non-co

mmercial

use o

nly

[page 22] [Cardiogenetics 2013; 3(s1):e3]

et al. Prevalence of Fabry disease in acohort of 508 unrelated patients withhypertrophic cardiomyopathy. J Am CollCardiol 2007;50:2399-403.

25. Elliott P, Baker R, Pasquale F, et al.Prevalence of Anderson-Fabry disease inpatients with hypertrophic cardiomyopa-thy: the European Anderson-Fabry DiseaseSurvey. Heart 2011;1957-61.

26. Hopkin RJ, Bissler J, Banikazemi M, et al.Characterization of Fabry disease in 352pediatric patients in the Fabry Registry.Pediatr Res 2008;64:550-5.

27. Eng C, Fletcher J, Wilcox WR, et al. Fabrydisease: baseline medical characteristicsof a cohort of 1765 males and females inthe Fabry Registry. J Inherit Metab Dis2007;30:184-92.

28. Waldek S, Patel MR, Banikazemi M, et al.Life expectancy and cause of death inmales and females with Fabry disease:findings from the Fabry Registry. GenetMed 2009;11:790-6.

29. Salviati A, Burlina AP, Borsini W. Nervoussystem and Fabry disease, from symptomsto diagnosis: damage evaluation and fol-low-up in adult patients, enzyme replace-ment, and support therapy. Neurol Sci2010;31:299-306.

30. Pagnini I, Borsini W, Cecchi F, et al. Distallimb pain as presenting feature of fabrydisease. Arthrit Care Res 2010;63:390-5.

31. Gibas AL, Klatt R, Johnson J, et al. A surveyof the pain experienced by males andfemales with Fabry disease. Pain Res ClinMan 2006;11:185.

32. Lacomis D, Roeske-Anderson L, Mathie L.Neuropathy and Fabry’s disease. MuscleNerve 2005;31:102-7.

33. Liguori R, Di Stasi V, Bugiardini E, et al.Small fiber neuropathy in female patientswith Fabry disease. Muscle Nerve2010;41:409-12.

34. Burlina AP, Sims KB, Politei JM, et al. Earlydiagnosis of peripheral nervous systeminvolvement in Fabry disease and treat-ment of neuropathic pain: the report of anexpert panel. BMC Neurol. 2011;11:61.

35. Schiffmann R, Scott LJC. Pathophysiolo-gy and assessment of neuropathic painin Fabry disease. Acta Paediatr 2002;91:48-52.

36. Hoffmann B, Schwarz M, Mehta A, KeshavS. Gastrointestinal symptoms in 342patients with Fabry disease: prevalenceand response to enzyme replacement ther-apy. Clin Gastroenterol 2007;5:1447-53.

37. Sodi A, Ioannidis AS, Mehta A, et al. Ocularmanifestations of Fabry’s disease: datafrom the Fabry Outcome Survey. Br JOphthalmol 2007;91:210-4.

38. Palla A, Hegemann S, Widmer U,Straumann D. Vestibular and auditorydeficits in Fabry disease and their

response to enzyme replacement therapy.J Neurol 2007;254:1433-42.

39. Zampetti A, Orteu CH, Antuzzi D, et al.Angiokeratoma: decision-making aid forthe diagnosis of Fabry disease. Br JDermatol 2012;166:712-20.

40. Ramaswami U, Parini R, Pintos-Morell G,et al. Fabry disease in children andresponse to enzyme replacement therapy:results from the Fabry Outcome Survey.Clin Genet 2011:1-6.

41. Ries M, Gupta S, Moore DF, et al. PediatricFabry disease. Pediatrics 2005;115:e344-55.

42. Marchesoni CL, Roa N, Pardal AM, et al.Misdiagnosis in Fabry disease. J Pediatr2010;156:828-31.

43. Sheppard MN, Cane P, Florio R, et al. Adetailed pathologic examination of hearttissue from three older patients withAnderson-Fabry disease on enzymereplacement therapy. Cardiovasc Pathol2009;19:293-301.

44. Linhart A, Kampmann C, Zamorano JL, etal. Cardiac manifestations of Anderson-Fabry disease: results from the interna-tional Fabry outcome survey. Eur Heart J2007; 28:1228-35.

45. Namdar M, Steffel J, Vidovic M, et al.Electrocardiographic changes in earlyrecognition of Fabry disease. Heart 2011;97:485-90.

46. O’Mahony C, Elliott PM. Anderson-Fabrydisease and the heart. Progr CardiovascDis 2010;52:326-35.

47. O’Mahony C, Coats C, Cardona M, et al.Incidence and predictors of anti-bradycar-dia pacing in patients with Anderson-Fabry disease. Europace 2011;13:1781-8.

48. Shah JS, Hughes DA, Sachdev B, et al.Prevalence and clinical significance of car-diac arrhythmia in Anderson-Fabry dis-ease. Am J Cardiol 2005;96:842-6.

49. Calcagnino M, O’Mahony C, Coats C, et al.Exercise-induced left ventricular outflowtract obstruction in symptomatic patientswith Anderson-Fabry disease. J Am CollCardiol 2011;58:88-9.

50. Shah JS, Lee P, Hughes D, et al. The natu-ral history of left ventricular systolic func-tion in Anderson-Fabry disease. Heart2005;91:533-4.

51. Pieroni M, Chimenti C, Ricci R, et al. Earlydetection of Fabry cardiomyopathy by tis-sue Doppler imaging. Circulation 2003;107:1978-84.

52. Weidemann F, Breunig F, Beer M, et al. Thevariation of morphological and functionalcardiac manifestation in Fabry disease:potential implications for the time courseof the disease. Eur Heart J 2005;26:1221-7.

53. Koeppe S, Neubauer H, Breunig F, et al.MR-based analysis of regional cardiacfunction in relation to cellular integrity inFabry disease. Int J Cardiol 2012;160:53-8.

54. Niemann M, Herrmann S, Hu K, et al.Differences in fabry cardiomyopathybetween female and male patients conse-quences for diagnostic assessment. JACCCardiovasc Imaging 2011;4:592-601.

55. Pieroni M, Chimenti C, De Cobelli F, et al.Fabry’s disease cardiomyopathy: echocar-diographic detection of endomyocardialglycosphingolipid compartmentalization. JAm Coll Cardiol 2006;47:1663-71.

56. Mundigler G, Gaggl M, Heinze G, et al. Theendocardial binary appearance (‘binarysign’) is an unreliable marker for echocar-diographic detection of Fabry disease inpatients with left ventricular hypertrophy.Eur J Echocardiogr 2011;12:744-9.

57. Palecek T, Dostalova G, Kuchynka P, et al.Right ventricular involvement in Fabrydisease. J Am Soc Echocardiogr 2008;21:1265-8.

58. Camici PG, Crea F. Coronary microvasculardysfunction. N Engl J Med 2007;356: 830-40.

59. Elliott PM, Kindler H, Shah JS, et al.Coronary microvascular dysfunction inmale patients with Anderson-Fabry dis-ease and the effect of treatment with agalactosidase A. Heart 2006;92:357-60.

60. Kalliokoski RJ, Kantola I, Kalliokoski KK,et al. The effect of 12-month enzymereplacement therapy on myocardial perfu-sion in patients with Fabry disease. JInherit Metab Dis 2006; 29:112-8.

61. Barbey F, Qanadli SD, Juli C, et al. Aorticremodelling in Fabry disease. Eur Heart J2010; 31:347.53.

62. Bierer G, Kamangar N, Balfe D, et al.Cardiopulmonary exercise testing in Fabrydisease. Respiration 2005;72:504-11.

63. Breunig F, Wanner C. Update on Fabry dis-ease: kidney involvement, renal progres-sion and enzyme replacement therapy. JNephrol 2008;21:32-7.

64. Tøndel C, Bostad L, Hirth A, Svarstad E.Renal biopsy findings in children and ado-lescents with Fabry disease and minimalalbuminuria. Am J Kidney Dis 2008;51:767-76.

65. Ortiz A, Oliveira JP, Waldek S, et al.Nephropathy in males and females withFabry disease: cross-sectional descriptionof patients before treatment with enzymereplacement therapy. Nephrol Dial Trans-plant 2008;23:1600-7.

66. Cybulla M, Walter KN, Schwarting A, et al.Kidney transplantation in patients withFabry disease. Transpl Int 2009;22:475-81.

67. Shah T, Gill J, Malhotra N, et al. Kidneytransplant outcomes in patients with Fabrydisease. Transplantation 2009;87:280-5.

68. Buechner S, Moretti M, Burlina AP, et al.Central nervous system involvement inAnderson-Fabry disease: a clinical andMRI retrospective study. J NeurolNeurosurg Psychiatry 2008;1249-54.

Review

Non-co

mmercial

use o

nly

[Cardiogenetics 2013; 3(s1):e3] [page 23]

69. Fellgiebel A, Müller MJ, Ginsberg L. CNSmanifestations of Fabry’s disease. LancetNeurol 2006;5:791-5.

70. Schermuly I, Müller MJ, Müller K-M, et al.Neuropsychiatric symptoms and brainstructural alterations in Fabry disease. EurJ Neurol 2011;18:347-53.

71. Møller AT, Jensen TS. Neurological mani-festations in Fabry’s disease. Nat ClinPract Neurol 2007;3:95-106.

72. Biegstraaten M, van Schaik IN, Wieling W,et al. Autonomic neuropathy in Fabry dis-ease: a prospective study using the auto-nomic symptom profile and cardiovascularautonomic function tests. BMC Neurol2010;10:38.

73. Magage S, Lubanda JC, Susa Z, et al.Natural history of the respiratory involve-ment in Anderson-Fabry disease. J InheritMetab Dis 2007;30:790-9.

74. Germain DP, Benistan K, Boutouyrie P,Mutschler C. Osteopenia and osteoporosis:previously unrecognized symptoms ofFabry disease. Clin Genet 2005;68:93-5.

75. Nakao S, Kodama C, Takenaka T, et al.Fabry disease: detection of undiagnosedhemodialysis patients and identificationof a “renal variant” phenotype. Kidney Int2003;64:801-7.

76. Nakao S, Takenaka T, Maeda M, et al. Anatypical variant of Fabry’s disease in menwith left ventricular hypertrophy. N Engl JMed 1995;333:288-93.

77. Hoffmann B, Georg Koch H, Schweitzer-Krantz S, et al. Deficient a-galactosidase Aactivity in plasma but no Fabry disease-apitfall in diagnosis. Clin Chem Lab Med2005;43:1276-7.

78. Filocamo M, Morrone A. Lysosomal storagedisorders: molecular basis and laboratorytesting. Hum Genomics 2011;5:156-69.

79. Ferri L, Guido C, La Marca G, et al. Fabrydisease: polymorphic haplotypes and anovel missense mutation in the GLA gene.Clin Genet 2012;81:224-33.

80. Gelb MH, Turecek F, Scott CR, ChamolesNA. Direct multiplex assay of enzymes indried blood spots by tandem mass spec-trometry for the newborn screening oflysosomal storage disorders. J InheritMetab Dis 2006;29:397-404.

81. Li Y, Scott CR, Chamoles NA, et al. Directmultiplex assay of lysosomal enzymes indried blood spots for newborn screening.Clin Chem 2004;50:1785-96.

82. La Marca G, Casetta B, Malvagia S, et al.New strategy for the screening of lysoso-mal storage disorders: the use of theonline

trapping-and-cleanup liquid chromatogra-phy/mass spectrometry. Anal Chem 2009;1:6113-21.

83. Lin H-Y, Chong K-W, Hsu J-H, et al. Highincidence of the cardiac variant of Fabrydisease revealed by newborn screening inthe Taiwan Chinese population. CircCardiovasc Genet 2009;2:450-6.

84. Reuser AJ, Verheijen FW, Bali D, et al. Theuse of dried blood spot samples in thediagnosis of lysosomal storage disorders-current status and perspectives. Mol GenetMetab 2011;104:144-8.

85. Linthorst GE, Vedder AC, Aerts JMFG,Hollak CEM. Screening for Fabry diseaseusing whole blood spots fails to identifyone-third of female carriers. Clin ChimActa 2005;353:201-3.

86. Ishii S, Nakao S, Minamikawa-Tachino R,et al. Alternative splicing in the a-galac-tosidase A gene: increased exon inclusionresults in the Fabry cardiac phenotype. AmJ Hum Genet 2002;70:994-1002.

87. Filoni C, Caciotti A, Carraresi L, et al.Unbalanced GLA mRNAs ratio quantifiedby real time PCR in Fabry patients’ fibrob-lasts results in Fabry disease. Eur J HumGenet 2008;16:1311-7.

88. Schirinzi A, Centra M, Prattichizzo C, et al.Identification of GLA gene deletions inFabry patients by multiplex ligation-dependent probe amplification (MLPA).Mol Genet Metab 2008;94:382-5.

89. Yoshimitsu M, Higuchi K, Miyata M, et al.Identification of novel mutations in the a-galactosidase A gene in patients withFabry disease: pitfalls of mutation analy-ses in patients with low a-galactosidase Aactivity. J Cardiol 2011;57:345-53.

90. Gal A, Hughes DA, Winchester B. Toward aconsensus in the laboratory diagnostics ofFabry disease recommendations of aEuropean expert group. J Inherit MetabDis 2011;34:509-14.

91. Al-Thihli K, Ebrahim H, Hughes DA, et al.A variant of unknown significance in theGLA gene causing diagnostic uncertaintyin a young female with isolated hyper-trophic cardiomyopathy. Gene 2012;497:320-2.

92. Vedder AC, Strijland A, Bergh WeermanMA, et al. Manifestations of Fabry diseasein placental tissue. J Inherit Metab Dis2006;29:106-11.

93. Togawa T, Kodama T, Suzuki T, et al.Plasma globotriaosylsphingosine as a bio-marker of Fabry disease. Molecular genet-ics and metabolism. 2010;100:257-61.

94. Togawa T, Kawashima I, Kodama T, et al.Tissue and plasma globotriaosylsphingo-sine could be a biomarker for assessingenzyme replacement therapy for Fabry dis-ease. Biochem Biophys Res Commun2010;399:716-20.

95. van Breemen MJ, Rombach SM, Dekker N,et al. Reduction of elevated plasma globo-triaosylsphingosine in patients with clas-sic Fabry disease following enzymereplacement therapy. Biochim BiophysActa 2011;1812:70-6.

96. Pieruzzi F, Pieroni M, Chimenti C, et al.[Cardiological follow-up in patients withFabry disease]. G Ital Cardiol 2010;11:566-72. [In Italian].

97. Linthorst G, Burlina A, Cecchi F, et al.Recommendations on reintroduction ofAgalsidase Beta for patients with Fabrydisease in Europe, following a period ofshortage. J Inherit Metab Dis Rep2013;8:51-6.

98. Linthorst GE, Germain DP, Hollak CEM, etal. Expert opinion on temporary treatmentrecommendations for Fabry disease dur-ing the shortage of enzyme replacementtherapy (ERT). Mol Genet Metab 2011;102:99-102.

99. Pisani A, Visciano B, Roux GD, et al.Enzyme replacement therapy in patientswith Fabry disease: State of the art andreview of the literature. Mol Genet Metab2012;107:267-75.

100.Weidemann F, Niemann M, Breunig F, etal. Long-term effects of enzyme replace-ment therapy on fabry cardiomyopathy:evidence for a better outcome with earlytreatment. Circulation 2009;119:524-9.

101.Imbriaco M, Messalli G, Avitabile G, et al.Cardiac magnetic resonance imagingillustrating Anderson-Fabry disease pro-gression. Br J Radiol 2010;83:e249-51.

102.Porto C, Pisani A, Rosa M, Acampora E.Synergy between the pharmacologicalchaperone 1-deoxygalactonojirimycin andthe human recombinant a-galactosidase Ain cultured fibroblasts from patients. JInherit Metab Dis 2012;35:513-20.

103.Motabar O, Sidransky E, Goldin E, ZhengW. Fabry disease - current treatment andnew drug development. Curr Chem Genom2010;4:50-6.

104.Benjamin ER, Khanna R, Schilling A, et al.Co-administration with the pharmacologi-cal chaperone AT1001 increases recombi-nant human a-galactosidase A tissueuptake and improves substrate reductionin Fabry mice. Mol Ther 2012;20:717-26.

Review

Non-co

mmercial

use o

nly

 

Non-co

mmercial

use o

nly

 

Non-co

mmercial

use o

nly

OPEN ACCESS Review

Hypertrophic cardiomyopathy:The need for randomized trialsIacopo Olivotto1,2,3,*, Benedetta Tomberli1,2,3, Roberto Spoladore1,2,3,

Alessandro Mugelli1,2,3, Franco Cecchi1,2,3, Paolo G Camici1,2,3

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a complex cardiac condition characterized by variable degrees

of asymmetric left ventricular (LV) hypertrophy, generally associated with mutations in sarcomere

protein genes. While generally perceived as rare, HCM is the most common genetic heart disease with

over one million affected individuals in Europe alone and represents a prevalent cause of sudden

cardiac death in the young. To date, HCM remains an orphan disease, as recommended treatment

strategies are based on the empirical use of old drugs with little evidence supporting their clinical

benefit in this context. In the six decades since the original description of the disease, less than fifty

pharmacological studies have been performed in HCM patients, enrolling little over 2,000 HCM

patients, mostly comprising small non-randomized cohorts. No specific agent has been convincingly

shown to affect outcome, and critical issues such as prevention of myocardial energy depletion,

microvascular ischemia, progressive myocardial fibrosis and the peculiar mechanisms of

arrhythmogenesis in HCM still need to be addressed in a systematic fashion. However, there is

increasing evidence that a variety of drugs may counter the effects of sarcomere protein mutations and

the resulting pathophysiological abnormalities at the molecular, cellular and organ level. Following

major advances in our understanding of HCM and increasing opportunities for networking among large

international referral centres, the opportunity now exists to identify potentially effective treatments and

implement adequately designed pharmacological trials, with the ultimate aim to impact the natural

course of the disease, alleviate symptoms and improve quality of life in our patients.

Keywords: hypertrophic cardiomyopathy, translational research, pharmacological therapy, clinical trials,outcome

Cite this article as: Olivotto I, Tomberli B, Spoladore R, Mugelli A, Cecchi F, Camici PG.Hypertrophic cardiomyopathy: The need for randomized trials, Global Cardiology Science andPractice 2013:31 http://dx.doi.org/10.5339/gcsp.2013.31

http://dx.doi.org/10.5339/gcsp.2013.31

Submitted: 1 September 2013Accepted: 20 September 2013ª 2013 Olivotto, Tomberli,Spoladore, Mugelli, Cecchi, Camici,licensee Bloomsbury QatarFoundation Journals. This is an openaccess article distributed under theterms of the Creative CommonsAttribution license CC BY 3.0, whichpermits unrestricted use,distribution and reproduction in anymedium, provided the original workis properly cited.

1Referral Center for Cardiomyopathies

(IO, BT, FC), Careggi University Hospital,

Florence, Italy2Vita-Salute University and San Raffaele

Scientific Institute, Milan, Italy (RS, PGC)3Section of Pharmacology, Neurofarba

Department, University of Florence, Italy

(AM)

*Email: olivottoi@aou-careggi.

toscana.it

Imagining a disease as a fruit or a planet, there are several levels at which one can intervene with any

therapeutic approach (Figure 1). The first and most obvious is to simply scratch the surface and control

symptoms. This objective can be achieved in most cardiac patients: however, it is the very least that we

can do. The second step is to interfere and possibly halt disease progression, thus preventing its

consequences on outcome: this can be done in several cardiac conditions, but is definitely harder to

achieve.1,2 Third, we can try to prevent the development of full-blown disease in patients who are

predisposed due to acquired risk factors and/or genetic substrate.3 And fourth, we can address the

core of the problem by acting directly on the etiology, removing the actual cause and ultimately cure

the patient.1,4 Despite extraordinary progress over the last decades, these last two steps have hardly if

ever been achieved in cardiovascular medicine.

As a consequence, it is important to realize that our practice is based on highly sophisticated

palliation. What this approach usually does is change a disease into a milder one. For example, septal

myectomy turns obstructive into non-obstructive hypertrophic cardiomyopathy (HCM), a highly

significant change for the patient.5,6 Therefore, this kind of very effective palliation is something we

should definitely keep on doing and improving until a cure becomes available.2 However, all efforts

should be directed at improving the state of things by accumulating new evidence and knowledge.4,7

HYPERTROPHIC CARDIOMYOPATHY AS AN ORPHAN DISEASE

HCM is a complex cardiac condition characterized by variable degrees of left ventricular (LV)

hypertrophy occurring in the absence of secondary triggers, generally associated with mutations in

sarcomeric protein genes.2,5 Although perceived as rare, HCM is the most common genetic heart

disease, as well as a prevalent cause of sudden cardiac death in the young. Based on the reported

prevalence of 1:500 in the general population, a total estimate exceeding one million individuals with

HCM are expected in Europe alone. HCM is characterized by a very complex pathophysiological

background that accounts for the heterogeneity of its clinical manifestations and natural history.5

Established features of the disease, besides left ventricular (LV) hypertrophy, include a constellation of

deranged cardiomyocyte energetics, diastolic dysfunction, microvascular ischemia, enhanced

myocardial fibrosis, autonomic dysfunction and enhanced arrhythmogenesis.8,9 In addition, most

patients exhibit dynamic LV outflow tract obstruction either at rest or with physiological provocation.10

Outflow obstruction is a major determinant of symptoms, such as dyspnea, chest pain or presyncope

and, together with sudden death prevention, has represented the most visible and consistent target of

therapeutic efforts in HCM.2,5–7

Despite decades of increasing attention and research efforts by the scientific community, treatment

strategies for HCM remain largely based on a small number of clinical studies, or empirically based on

personal experience or extrapolation from other cardiac conditions. As stated in the recent Report of

the Working Group of the National Heart, Lung, and Blood Institute on Research Priorities in

Hypertrophic Cardiomyopathy,7 “nearly 50 years after the identification of HCM as an autosomal

dominant disease, and 20 years after its linkage to sarcomeric protein mutations, we still do not

understand the most proximal mechanism(s) that initiates the disorder”; and “treatment

recommendations in HCM are based on observational series without prospective randomized controls.

While clinical usage provides support that various pharmacologic agents reduce HCM symptoms,

no evidence has demonstrated that they alter disease progression or outcomes.”

In a recent review of original articles, reviews and editorials addressing any pharmacological agent

ever used in HCM cohorts, only forty-five studies were identifiedover the last sixty years (i.e. less than

1 per year), enrolling a total of 2,121 HCM patients.4 Of these, only 5 were randomized double blind

SYMPTOMS

PROGRESSION

SYMPTOMS

ETIOLOGY

DEVELOPMENT

ETIOLOGY

Figure 1. Levels of therapeutic intervention: towards the core.

Page 2 of 6

Olivotto et al. Global Cardiology Science and Practice 2013:31

placebo-controlled trials. Remarkably, a comparison of the period 1991–2011 vs. 1971–1990

demonstrated no increase in the number of studies, and only a modest increase in the number of

patients enrolled (627 vs. 1,473, patients respectively). With regard to sample size, only 7 studies (15%)

enrolled more than 50 patients, whereas 22 (49%) had less than 20 patients.4 The maximum number of

patients in a single prospective study was 118, in a multicenter registry evaluating the efficacy and

safety of disopyramide.11 Overall, these data eloquently demonstrate how poorly pharmacological

research in HCM compares with that performed in other, more prevalent conditions such as coronary

artery disease and heart failure.1

Notably, when randomized trials have been performed in HCM, results have been far less intuitive

than expected. The story of dual-chamber pacing for control of LV outflow obstruction is certainly the

best case in point. Based on anecdotal observations showing an effect of LV pacing on obstruction,

several and often intriguing pathophysiological explanations were provided, leading to three

randomized trials. All three showed that pacing had in fact little if any effect on the gradient or exercise

capacity in most patients, and that any improvement in symptoms was largely related to a placebo

effect of the device.5,12 Thus, we should be aware that several widely accepted recommendations for

management of HCM based on expert opinion or case series still need to stand the test of properly

designed trials.

INHERENT CHALLENGES OF CLINICAL TRIALS IN HCM

Several reasons – some obvious, other less so – stand behind this state of things. The first lies with

the practical challenges inherent in designing trials with HCM patients (Table 1). The epidemiology of

HCM is complex and as yet only partially resolved, due to issues such as incomplete penetrance and

prevalence of subclinical disease.3,13 Despite not being rare, HCM is uncommonly encountered and

possibly neglected at many community-based cardiac centers and outpatient clinics. Furthermore,

even when overt and correctly diagnosed, its clinical spectrum is highly heterogeneous, encompassing

different stages that may not be directly comparable.9 A preventive trial in genotype-positive/

phenotype-negative individuals will necessarily enroll subsets that are different from HCM patients with

classic phenotype and dynamic outflow obstruction, or in the end-stage phase. Each research question

should be addressed by targeting the appropriate patient subgroups, with imaginable problems in

achieving the desired yield in any given cohort.7,9

Another very complex issue concerns the assessment of outcome in HCM, and the effects of

treatment on survival. Even at tertiary referral centers, cardiovascular mortality rates in contemporary

HCM cohorts are very low, i.e. 1–2%/year, although the selected subset with systolic dysfunction and

end-stage progression may exceed 10%/year.2,5,9,14 Rates of sudden cardiac death, formerly believed

to be very common among HCM patients, are even lower, i.e. ,1% in most cohorts and only 3%/year

even in patients carrying implantable defibrillators because judged to have a “high-risk” status.15

Based on these estimates, large patient cohorts and extended follow-up duration are required to detect

differences in survival, even when a highly effective drug or procedure is tested. Thus, the relatively

favorable long-term prognosis of most HCM patients may represent a formidable obstacle to clinical

trials targeting outcome, including a hypothetical study comparing surgical myectomy and

percutaneous alcohol septal ablation.16

In order to overcome the limitations associated with the low hard event rates, surrogate end-points

have often been employed in HCM trials, including indexes of LV performance, functional capacity and

oxygen consumption, progression of symptoms, prevalence of arrhythmias and appropriate

Table 1. Challenges for clinical trials in HCM.

Relatively low prevalence (1:500) Need for adequate networking, hard to perform single-center trialsHeterogeneous disease spectrum Need to tailor trials to specific subsets, hard to include all patients

in a single studyLow event rates Difficult to power studies to assess differences in survival/hard

outcome end-pointsSurrogate end-points End-points such as oxygen consumption, variation in symptoms,

regression of LV hypertrophy or arrhythmias may be difficult todefine and/or have un uncertain relation to outcome

Complex, unresolved pathophysiology Need to identify appropriate targets for treatmentPerceived as economically irrelevantto the pharmaceutical industry

However, this is a wrong perception based on absolute number ofpatients and need for very extended treatment

Page 3 of 6

Olivotto et al. Global Cardiology Science and Practice 2013:31

defibrillator shocks, circulating markers of collagen synthesis and natriuretic peptides.4,13,17–19

Advanced imaging techniques such as positron emission tomography (PET) and cardiac magnetic

resonance (CMR) can be exploited today to quantify the effect of novel treatments on relevant features

including coronary microvascular dysfunction and tissue fibrosis, respectively.13,20–23 Each of these

may represent reasonable end-points in certain contexts, particularly in proof-of-concept and pilot

studies. Furthermore, pilot studies based on these surrogate end-points might provide the rationale

and justify the effort of large, multicenter, prospective studies enrolling the number of patients

necessary to determine the benefit of novel treatments on more robust measures of outcome.4,7 At the

same time, the favourable long-term prognosis associated with HCM identifies control of symptoms

and improvement in quality of life as major objectives for pharmacological treatment, to be pursued

and investigated independent of outcome.4

Last but not least, HCM has never been the focus of strong economic interest by pharmaceutical

companies, because of the perceived rarity of the disease as well as the lack of novel and expensive

therapeutic agents such as have been approved, for example, in rare conditions such as Fabry disease

or pulmonary arterial hypertension.24 This aspect, however, may be expected to change soon. In recent

years, the widespread use of imaging and genetic testing for familial screening, as well as an increasing

awareness in the medical community, have led to the identification of large HCM populations, regularly

followed at international referral centers.2,4 For the first time in the history of this disease, it has

become feasible to address HCM management issues in an evidence-based fashion, by means of

adequately designed clinical trials. The full exploitation of this potential may lead to a paradigm shift in

research methodology involving the whole field of genetic heart diseases. Such favorable conjunction

is beginning to attract the interest of private companies, promoting investments that are likely to reach

a critical mass for effective clinical research in a very near future.4,25 When this time comes, the

powerful combination of basic science, clinical knowledge and adequate trial methodology may finally

come to fruition.

POTENTIAL TARGETS OF PHARMACOLOGIC TREATMENT

Progress in HCM treatment is hindered by the incomplete knowledge of its pathophysiologic

mechanisms and lack of specific agents capable of interfering with disease-causing pathways.7–9

However, several targets for treatment have been identified (Figure 2), some of which overlap with

other cardiac diseases and with heart failure at large.8,26 For example, interventions aimed at

normalizing energy homeostasis represent a viable approach, as shown by a recent study on

perhexiline, a metabolic modulator which inhibits the metabolism of free fatty acids and enhances

carbohydrate utilization by the cardiomyocyte. In a recent randomized double-blind placebo-controlled

trial, perhexilinehas have shown the capacity to improve the energetic profile of the LV, resulting in

improved diastolic function and exercise capacity in HCM patients.18

Furthermore, HCM cardiomyocytes exhibit with well-established abnormalities in intracellular

calcium handling, contributing to excessive energy expenditure and enhanced arrhythmogenesis that

are largely due to enhanced membrane late sodium current.26 Such defect may be selectively and

dramatically reversed in vitro by ranolazine.26 Following the demonstration of its beneficial effects on

HCM cardiomyocytes, a multi-center, double blind, placebo-controlled pilot study is currently underway

in Europe to test the efficacy of ranolazine on exercise tolerance and diastolic function in symptomatic

HCM patients (RESTYLE-HCM; EUDRA-CT 2011-004507-20). Besides the specific merits of ranolazine,

similar examples of translational approach to HCM identifies a fundamental pre-requisite for the

identification of novel, potentially effective agents, based on thorough investigation of the molecular

basis of the disease.1 In the future, a more specific approach may be tailored to specific mutations or

groups of mutations, by screening large panels of candidate molecules in assays based on induced

pluripotent stem cells isolated from human fibroblasts.27 As shown recently, the possibility of

modulating the activity of sarcomere contractile proteins, such as beta-myosin, is beginning to surface,

with huge potential implications for HCM treatment.28

Finally, an option that is less seductive but should not be underestimated, is to investigate potential

role in HCM patients of drugs that represent the standard of care for other cardiac patients. Agents such

as modulators of the renin-angiotensin system, statins and calcium antagonists have all shown

promise in preventing development of LV hypertrophy in genotype positive individuals,3 and may

potentially normalize cellular homeostasis, prevent microvascular remodeling and ischemia, reduce

fibrosis and prevent end-stage progression.4,8,9,17,21,22 However, the indications, timing and doses of

Page 4 of 6

Olivotto et al. Global Cardiology Science and Practice 2013:31

these treatments remain unresolved in HCM, and their efficacy in impacting its natural history remains

untested. Likewise, the effects of betablockers and antiarrhythmics, such as amiodarone, in preventing

appropriate defibrillator shocks and sudden cardiac death has only been addressed retrospectively

and inconclusively.29 As noted above, many recommendations present in current HCM guidelines still

require adequate evidence to their support, including several that few would dare question. And while

it is unrealistic to expect that each of these indications will become evidence-based in the near future,

it is the change of attitude that really matters, from passive acceptance of the empirical to

uncompromising quest for the methodologically appropriate and convincing.2,4,7

CONCLUSIONS

HCM is not uncommon, but remains an orphan disease with regard to pharmacological treatment.

In the era of translational research, physicians and researchers have been very good at asking the

right questions, but need to direct more effort into finding the best clinical answers for HCM patients.

In a broader perspective, cardiomyopathies should be seen as paradigms providing invaluable insights

on disease mechanisms that may be of general relevance to patients with more prevalent cardiac

conditions. What has long been considered impossible to achieve is now closer at hand: the time is

now ripe to promote robust clinical research in this complex condition in order to advance and

standardize management of HCM patients.

AcknowledgementsThis work was supported by the European Union (STREP Project 241577 “BIG HEART,” 7th EuropeanFramework Program).

REFERENCES

[1] Braunwald E. Cardiovascular science: opportunities for translating research into improved care. J Clin Invest.2013;123:6–10.

[2] Maron BJ, Braunwald E. Evolution of hypertrophic cardiomyopathy to a contemporary treatable disease. Circulation.2012;126:1640–1644.

[3] Marian AJ. Experimental therapies in hypertrophic cardiomyopathy. J CardiovascTransl Res. 2009;2:483–492.[4] Spoladore R, Maron MS, D’Amato R, Camici PG, Olivotto I. Pharmacological treatment options for hypertrophic

cardiomyopathy: high time for evidence. Eur Heart J. 2012;33:1724–1733.

LEVEL OFINTERVENTION

TARGET GOAL

MOLECULAR

Abnormal Sarcomere Function

Enhanced Ca++ Sensitivity

Unfavourable EP Remodeling

Improve Contractile Efficiency

Inhibit Triggers for LVH

Reduce Arrhythmogesis

CELLULARDeranged Energy Homeostasis

Disturbed Biomechanical Stress Sensing

Abnormal Ca++ Handling

Prevent Energy Depletion

Prevent Hypertrophy/Apoptosis

Control Collagen Synthesis

ORGANMicrovascular remodelling

Myocardial Fibrosis

Diastolic Dysfunction

Reentry Arrhythmias

Reduce Myocardial Ischemia

Preserve Systolic Function

Improve Diastole

Prevent Arrhythmias

Figure 2. Therapeutic targets and goals in HCM.

Page 5 of 6

Olivotto et al. Global Cardiology Science and Practice 2013:31

[5] Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H,Seidman CE, Towbin JA, Udelson JE, Yancy CW. ACCF/AHA guideline for the diagnosis and treatment of hypertrophiccardiomyopathy; executive summary: a report of the American College of Cardiology Foundation/American HeartAssociation Task Force on Practice Guidelines. Circulation. 2011;124:2761–2796.

[6] Ommen SR, Maron BJ, Olivotto I, Maron MS, Cecchi F, Betocchi S, Gersh BJ, Ackerman MJ, McCully RB, Dearani JA,Schaff HV, Danielson GK, Tajik AJ, Nishimura RA. Long-term effects of surgical septalmyectomy on survival in patientswith obstructive hypertrophic cardiomyopathy. J Am CollCardiol. 2005;46:470–476.

[7] Force T, Bonow RO, Houser SR, Solaro RJ, Hershberger RE, Adhikari B, Anderson ME, Boineau R, Byrne BJ, Cappola TP,Kalluri R, LeWinter MM, Maron MS, Molkentin JD, Ommen SR, Regnier M, Tang WH, Tian R, Konstam MA, Maron BJ,Seidman CE. Research priorities in hypertrophic cardiomyopathy: report of a Working Group of the National Heart,Lung, and Blood Institute. Circulation. 2010;122(11):1130–1133.

[8] Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2012;9:91–100.[9] Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: an

individualized approach to clinical staging. Circ Heart Fail. 2012;5:535–546.[10] Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ.

Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation.2006;114:2232–2239.

[11] Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, Casey S, Maron BJ. Multicenter study of theefficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol.2005;45:1251–1258.

[12] Binder J, Ommen SR, Sorajja P, Nishimura RA, Tajik AJ. Clinical and echocardiographic variables fail to predict responseto dual-chamber pacing for hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2008;21:796–800.

[13] Ho CY, Lopez B, Coelho-Filho OR, Lakdawala NK, Cirino AL, Jarolim P, Kwong R, Gonzalez A, Coan SD, Seidman JG,Diez J, Seidman CE. Myocardialfibrosisas an early manifestation of hypertrophic cardiomyopathy. N Engl J Med.2010;363:552–563.

[14] Harris KM, Spirito P, Maron MS, Zenovich AG, Formisano F, Lesser JR, Mackey-Bojack S, ManningWJ, Udelson JE, Maron BJ.Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophiccardiomyopathy. Circulation. 2006;114:216–225.

[15] Schinkel AF, Vriesendorp PA, Sijbrands EJ, Jordaens LJ, ten Cate FJ, Michels M. Outcome and complications afterimplantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy: systematic review and meta-analysis.Circ Heart Fail. 2012;5:552–559.

[16] Olivotto I, Ommen SR, Maron MS, Cecchi F, Maron BJ. Surgical myectomy versus alcohol septal ablation for obstructivehypertrophic cardiomyopathy. Will there ever be a randomized trial? J Am Coll Cardiol. 2007;50:831–834.

[17] Penicka M, Gregor P, Kerekes R, Marek D, Curila K, Krupicka J, Candesartan use in Hypertrophic And Non-obstructiveCardiomyopathy Estate (CHANCE) Study Investigators. The effects of candesartan on left ventricular hypertrophy andfunction in nonobstructive hypertrophic cardiomyopathy: a pilot, randomized study. J Mol Diagn. 2009;11:35–41.

[18] Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H,Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacityin symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122:1562–1569.

[19] Coats CJ, Gallagher MJ, Foley M, O’Mahony C, Critoph C, Gimeno J, Dawnay A, McKenna WJ, Elliott PM. Relation betweenserum N-terminal pro-brain natriuretic peptide and prognosis in patients with hypertrophic cardiomyopathy. Eur HeartJ. 2013;34(32):2529–2537. doi:10.1093/eurheartj/eht070

[20] Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol CellCardiol. 2012;52:857–864.

[21] Mourad J, Hanon O, Deverre JR, Camici PG, Sellier P, Duboc D, Safar ME. Improvement of impaired coronary vasodilatorreserve in hypertensive patients by low dose ace-inhibitor/diuretic therapy: a pilot PET study. J Renin AngiotensinAldosterone Syst. 2003;4:94–95.

[22] Neglia D, Fommei E, Varela-Carver A, ManciniM, Ghione S, LombardiM, Pisani P, Parker H, D’Amati G, Donato L, Camici PG.Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. JHypertens. 2011;29:364–372.

[23] Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc MagnReson. 2012;14:13. doi: 10.1186/1532-429X-14-13

[24] Mehta A, Beck M, Elliott P, Giugliani R, Linhart A, Sunder-Plassmann G, Schiffmann R, Barbey F, Ries M, Clarke JT, FabryOutcome Survey investigators. Enzyme replacement therapy with agalsidase alfa in patients with Fabry’s disease: ananalysis of registry data. Lancet. 2009;374:1986–1996.

[25] http://www.myokardia.com/approach-programs.php accessed on 31/04/2013.[26] Coppini R, Ferrantini C, Yao L, Fan P, Del LungoM, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, YacoubM, Olivotto I,

Belardinelli L, Poggesi C, Cerbai E, Mugelli A. Late sodium current inhibition reverses electromechanical dysfunction inhuman hypertrophic cardiomyopathy. Circulation. 2013;127:575–584.

[27] Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD,Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT,Wu JC. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–113.

[28] Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, Sueoka SH, Lee KH, Finer JT, Sakowicz R,Baliga R, Cox DR, Garard M, Godinez G, Kawas R, Kraynack E, Lenzi D, Lu PP, Muci A, Niu C, Qian X, Pierce DW,Pokrovskii M, Suehiro I, Sylvester S, Tochimoto T, Valdez C, Wang W, Katori T, Kass DA, Shen YT, Vatner SF, Morgans DJ.Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science. 2011;331:1439–1443.

[29] Melacini P, Maron BJ, Bobbo F, Basso C, Tokajuk B, Zucchetto M, Thiene G, Iliceto S. Evidence that pharmacologicalstrategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart. 2007;93:708–710.

Page 6 of 6

Olivotto et al. Global Cardiology Science and Practice 2013:31

297G ITAL CARDIOL | VOL 13 | APRILE 2012

Trattamento dei sintomi refrattari nella cardiomiopatiaipertrofica con fisiopatologia restrittiva:

nuove prospettive per la ranolazinaBenedetta Tomberli1, Francesca Girolami2, Raffaele Coppini3, Cecilia Ferrantini4, Alessandra Rossi1,

Franco Cecchi1, Iacopo Olivotto1

1Centro di Riferimento per le Cardiomiopatie, Azienda Ospedaliero-Universitaria Careggi, Firenze2SOD Diagnostica Genetica, Azienda Ospedaliero-Universitaria Careggi, Firenze

3Dipartimento di Farmacologia Clinica e Preclinica, Università degli Studi, Firenze4Dipartimento di Scienze Fisiologiche, Università degli Studi, Firenze

The management of patients with hypertrophic cardiomyopathy (HCM) and refractory symptoms due to mas-sive hypertrophy and severe diastolic dysfunction represents a real challenge for the clinical cardiologist. Suchpatients often require novel therapeutic approaches, both invasive and pharmacological, involving multidis-ciplinary teamwork; however, the implementation of potentially viable treatment options is hindered by lackof disease-specific evidence.

We report the case of a young woman with severe HCM and restrictive physiology, who underwent exten-sive myectomy via the transaortic and transapical approach, followed by biventricular pacing for cardiac re-synchronization, with significant but incomplete symptomatic improvement. The subsequent introduction ofranolazine, based on promising preclinical data, has led to an excellent final result. An ongoing randomizedclinical trial is currently testing the efficacy of ranolazine in symptomatic HCM.

Key words. Angina; Hypertrophic cardiomyopathy; Massive hypertrophy; Ranolazine; Restrictive cardiomy-opathy.

G Ital Cardiol 2012;13(4):297-303

La cardiomiopatia ipertrofica (CMI) è la più frequente malattiagenetica del muscolo cardiaco, con una prevalenza di 1:500nella popolazione generale1 ed è caratterizzata da espressionemorfologica e decorso clinico estremamente eterogenei2. In unsottogruppo di pazienti con CMI, ad espressione fenotipicaestrema, si riscontrano gradi molto marcati di ipertrofia asso-ciata a ridotte dimensioni cavitarie del ventricolo sinistro (VS) efisiopatologia restrittiva. Tali pazienti presentano quasi sempresintomi limitanti, quali dispnea o angina per sforzi anche lievi,e sono di difficile gestione clinica3,4. Le strategie terapeutichevengono rese ancor più complesse dalla mancanza di evidenzescientifiche specifiche per la malattia5.

Viene qui presentato un caso clinico, la cui gestione è ri-sultata particolarmente impegnativa ed ha richiesto nel tempoil ricorso ad approcci innovativi, sia da un punto di vista chirur-gico che farmacologico. Il caso rappresenta un buon esempiodi come, per una corretta gestione del paziente con cardio-miopatia, sia necessario un team davvero multidisciplinare.

CASO CLINICO

La paziente è una giovane donna giunta alla nostra osservazio-ne all’età di 30 anni, in seguito alla diagnosi di CMI, sulla basedi accertamenti per limitazione funzionale. Alla prima valuta-zione presso il nostro centro riferiva palpitazioni, astenia, dolo-re toracico e dispnea da sforzo inquadrabile in una classe NYHAIII, di intensità molto variabile a seconda dei giorni, ma abba-stanza marcati da impedire lo svolgimento delle normali attivi-tà lavorative nel suo negozio (Figura 1). L’esame obiettivo si ca-ratterizzava per bassi valori pressori a riposo (100/55 mmHg) edun terzo tono, in assenza di soffi patologici o segni di scom-penso. L’ECG a 12 derivazioni mostrava ritmo sinusale con iper-trofia e sovraccarico del VS (Figura 2, pannello 1C). All’ecocar-diografia era presente un’ipertrofia diffusa del VS di grado mar-cato, a massima espressione medio-apicale, con spessore mas-simo 30 mm a livello del setto basale anteriore (Figura 3, pan-nelli A-C). Il ventricolo sinistro appariva ipercinetico, con una ca-vità ridotta, a “piede di ballerina” e obliterazione completa del-l’apice in sistole. Era presente una grave disfunzione diastolicadel VS, con pattern del flusso transmitralico restrittivo (Figura 2,pannello 1B; Figura 3, pannelli D). I lembi mitralici erano ridon-danti, con accenno a movimento sistolico anteriore, ma non era-no misurabili gradienti sistolici al tratto di efflusso né in sedemedio-ventricolare. Si riscontravano inoltre una insufficienza mi-tralica centrale, di grado lieve, ed un’ipertensione polmonaremoderata (Figura 2, pannello A1; Figura 3, pannelli D1-D2). Intale occasione venne iniziata una terapia farmacologica con na-

© 2012 Il Pensiero Scientifico EditoreRicevuto 23.02.2012; accettato 27.02.2012.Il dr. Iacopo Olivotto è investigator per lo studio pilota “Ranolazina inpazienti con cardiomiopatia ipertrofica sintomatica: studio pilota”,sponsorizzato da Menarini. Gli altri autori dichiarano nessun conflittodi interessi.Per la corrispondenza:Dr.ssa Benedetta Tomberli Dipartimento Cuore e Vasi, Centro diRiferimento per le Cardiomiopatie, Cardiologia c/o San Luca Vecchio,AOU Careggi, Largo Brambilla 3, 50134 Firenzee-mail: [email protected]

CASO CLINICO

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

G ITAL CARDIOL | VOL 13 | APRILE 2012298

B TOMBERLI ET AL

Figura 1. Decorso clinico ed interventi terapeutici. Dall’alto in basso: classe funzionale NYHA per la dispnea,angina, terapie (farmacologica e chirurgica), episodi di TVNS (registrati all’ECG dinamico o al controllo ICD),livelli di NT-proBNP ed esami strumentali. ICD, defibrillatore impiantabile; NT-proBNP, porzione N-terminale del propeptide natriuretico di tipo B; PET, to-mografia ad emissione di positroni; PM, pacemaker; RMN, risonanza magnetica nucleare; TVNS, tachicardiaventricolare non sostenuta.

Figura 2. Quadro elettrocardiografico ed ecocardiografico alla valutazione preoperatoria, postoperatoria e dopoterapia di resincronizzazione cardiaca (CRT). Pannello 1: alla prima valutazione è presente un’insufficienza mitralicadi grado lieve, una disfunzione diastolica severa ed un quadro elettrocardiografico di ipertrofia e sovraccarico delventricolo sinistro. Pannello 2: a 6 mesi dall’intervento di miectomia si riscontra un’insufficienza mitralica di gra-do marcato con dilatazione della cavità ventricolare sinistra, pattern diastolico restrittivo sostanzialmente invariato.L’ECG presenta ritmo sinusale con blocco di branca sinistra. Pannello 3: 3 mesi dopo impianto di pacemaker bi-ventricolare si osserva una netta riduzione del grado di insufficienza mitralica, con miglioramento del patterndiastolico. L’ECG conferma il buon grado di resincronizzazione.AS, atrio sinistro; SIV, setto interventricolare; VS, ventricolo sinistro.

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

299G ITAL CARDIOL | VOL 13 | APRILE 2012

CMI SINTOMATICA E RANOLAZINA

dololo, titolato fino alla massima dose tollerata di 80 mg/die,ottenendo una parziale remissione dei sintomi.

Nel corso di controlli successivi, una tomografia ad emissio-ne di positroni mostrava una disfunzione microvascolare diffu-sa, complessivamente di grado lieve (flusso medio per l’intero VSdopo dipiridamolo 2.6 ml/min/g), ma con aree settali marcata-mente ipoperfuse; alla risonanza magnetica cardiaca veniva con-fermata l’ipertrofia massiva con obliterazione medio-apicale (Fi-gura 4); erano inoltre presenti estese aree di impregnazione tar-diva con gadolinio, suggestive per fibrosi miocardica. Un eco-color-Doppler cardiaco da sforzo, in terapia, non evidenziavagradienti significativi in sede subaortica o medio-ventricolare;venivano evidenziati una ridotta capacità funzionale (test inter-rotto per dispnea al termine 100 W), anche se con adeguato in-cremento pressorio (90/60 mmHg al basale, 160/80 mmHg alpicco). La paziente presentava inoltre frequenti salve di tachi-cardia ventricolare non sostenuta all’ECG dinamico e valori del-la porzione N-terminale del propeptide natriuretico di tipo B (NT-proBNP) ripetutamente elevati (Figura 1). Infine, all’esame ge-netico veniva documentata una doppia mutazione in eterozi-gosi sul gene della proteina C legante la miosina (Figura 5).

In seguito a peggioramento della dispnea e soprattutto del-l’angina, la terapia farmacologica è stata progressivamente po-tenziata; nel corso di un follow-up di circa 5 anni sono stati ag-

giunti al nadololo sia calcioantagonisti che nitrati transdermici (Fi-gura 1), con modesti risultati. All’età di 35 anni, in seguito ad ag-gravamento dei sintomi, la paziente veniva ricoverata per ulterioriaccertamenti. Una coronarografia mostrava vasi epicardici inden-ni da lesioni, con modesto bridging miocardico al tratto medio del-l’arteria interventricolare anteriore, di dubbio significato clinico; al-la ventricolografia veniva confermata la grave riduzione di cavitàdel VS, con obliterazione sistolica dell’apice in toto (Figura 6).

Data la gravità del quadro clinico e la refrattarietà dei sinto-mi alla terapia medica, venne proposta alla paziente la possibi-lità di un intervento di miectomia estesa, allo scopo di aumen-tare le dimensioni del VS e la gittata sistolica. In assenza di indi-cazioni “classiche” all’intervento, tale proposta era basata suuna positiva esperienza, maturata presso questo ed altri centri,nel trattamento delle forme di CMI con ostruzione medio-ven-tricolare, che presentano una fisiopatologia per molti aspetti si-mili al caso in questione6. La paziente è stata quindi operata nel2009 dal prof. Magdi Yacoub e dall’equipe del dr. Pierluigi Ste-fano, mediante un approccio combinato per via transaortica etransapicale. Quest’ultimo, mediante incisione a “bocca di pe-sce” dell’apice ventricolare, ha permesso di rimuovere porzionidi miocardio a livello del VS medio-apicale, con significativo am-pliamento della cavità (Figura 4). Il decorso postoperatorio è sta-to complicato da fibrillazione atriale parossistica, per cui è stata

Figura 3. Ecocardiogramma preoperatorio. Proiezione parasternale asse lungo(A), asse corto (B) e apicale 4 camere (C). È presente ipertrofia severa e diffusa, conspessore massimo a livello del setto medio. Si noti la completa obliterazione del-la cavità in sistole nelle varie proiezioni e l’iper-riflettenza irregolare del setto in-terventricolare. L’analisi Doppler del flusso mitralico mostra una disfunzione dia-stolica severa, con pattern restrittivo ad andamento trifasico (D1) e notevole ri-duzione della velocità dell’anulus mitralico al Doppler tissutale (D3-D4). Il flussodelle vene polmonari è alterato, con una A reverse prominente (D2).AS, atrio sinistro; SIV, setto interventricolare; VS, ventricolo sinistro.

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

G ITAL CARDIOL | VOL 13 | APRILE 2012300

B TOMBERLI ET AL

iniziata terapia con amiodarone. L’ecocardiogramma alla dimis-sione confermava l’ottimo esito dell’intervento, con un volumeventricolare residuo ora ai limiti della norma per dimensioni cor-poree, una funzione sistolica globale conservata ed una insuffi-

cienza mitralica lieve. A poche settimane dall’intervento, la pa-ziente riferiva netto miglioramento della dispnea (classe funzio-nale NYHA II stabile), associato a riduzione dei valori di NT-proBNP (Figura 1).

Figura 4. Risonanza magnetica nucleare pre- e postoperatoria. Immagini di risonanza magnetica nucleare ottenu-te con sequenze cine in telediastole e telesistole, 2 mesi prima (A, B) e 8 mesi dopo la miectomia (C, D). A e C: leimmagini in 4 camere mostrano l’importante ispessimento del setto interventricolare e della parete laterale medio-apicale. La rimozione di miocardio a livello del setto e della parete postero-laterale (*) mediante miectomia ha per-messo la creazione di una cavità ventricolare. Evidente in C il rimodellamento post-chirurgico della parete laterale(frecce). B e D: sezione coronale asse corto a livello della valvola mitrale e dei muscoli papillari: è evidente l’oblite-razione sistolica a livello medio-apicale prima dell’intervento (B).AS, atrio sinistro; SIV, setto interventricolare; VS, ventricolo sinistro.

Figura 5. Elettroferogramma della sequenza del DNA che mostra la presenza di un genotipo complesso, caratte-rizzato da due mutazioni nello stesso gene (MYBPC3, proteina C legante la miosina). I rettangoli indicano la posi-zione della mutazione nella sequenza. A: mutazione di frameshift caratterizzata dalla duplicazione di una singolabase che ha come conseguenza la creazione di un codone di stop a valle. La sintesi della corrispondente proteinasi arresta prematuramente. B: mutazione missense caratterizzata dalla sostituzione di una singola base (citosina)con un’altra (timina) che comporta a livello della proteina il cambiamento dell’aminoacido prolina con leucina.

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

301G ITAL CARDIOL | VOL 13 | APRILE 2012

CMI SINTOMATICA E RANOLAZINA

Dopo circa 6 mesi veniva effettuato un nuovo controllo cli-nico per significativa riaccentuazione della dispnea nelle ultimesettimane. Veniva evidenziato un aumento spiccato del grado diinsufficienza mitralica, attribuibile a rimodellamento della pare-te laterale, che si associava a dilatazione dell’anulus, ipomobilitàe tethering del lembo mitralico posteriore (Figura 2, pannelli 2A-C). Veniva inoltre ipotizzato che la presenza di un’asincronia mar-cata del VS, secondaria al blocco di branca sinistra postoperato-rio, costituisse un fattore aggravante della valvulopatia. Negli an-ni era stata più volte discussa con la paziente l’indicazione ad undefibrillatore impiantabile in prevenzione primaria, dati i nume-rosi fattori di rischio presenti. Venne pertanto proposto di pro-cedere all’impianto di un dispositivo biventricolare, con il razio-nale che la terapia di resincronizzazione potesse migliorare il gra-do di insufficienza mitralica7, come confermato dal successivodecorso. A 3 mesi dall’impianto del dispositivo, l’insufficienza mi-tralica era solo di poco superiore a quella pre-miectomia, stima-bile di grado moderato (Figura 2, pannelli 3A-C), e si rifletteva inun notevole miglioramento della dispnea. Restava invece inva-riata la severità dell’angina, sia come intensità che come fre-quenza degli episodi.

Nel tentativo di potenziare in modo massimale la terapiamedica, data la scarsa tolleranza ai betabloccanti ed un’intol-leranza assoluta agli inibitori dell’enzima di conversione del-l’angiotensina, veniva aggiunto al trattamento in atto (nadolo-lo a basse dosi ed amiodarone), una dose scalare di ranolazina.Tale raccomandazione si basava sulla letteratura disponibile perla cardiopatia ischemica8,9 e sugli ottimi risultati preliminari ot-tenuti in vitro su campioni di miectomia di pazienti con CMI,compreso quello della paziente (Figura 7). Il farmaco è stato ti-tolato fino ad un dosaggio di 1000 mg 2 volte/die, ben tolle-rato eccetto che per disturbi gastrointestinali lievi, che si sonoattenutati dopo le prime somministrazioni. A pochi giorni dal-l’assunzione della dose piena di ranolazina la paziente riferivaun netto miglioramento dei sintomi, con scomparsa degli epi-sodi anginosi durante le normali attività quotidiane e gli sforzimoderati. Non si sono osservate variazioni significative del QTc.Nei 6 mesi successivi la paziente è rimasta stabilmente in clas-se funzionale NYHA II, con buona qualità di vita, mantenendoinvariata una terapia a base di nadololo e ranolazina.

COMMENTI E IMPLICAZIONI CLINICHE

Il caso descritto, fortunatamente raro nella sua complessità,presenta numerosi spunti di interesse. Anzitutto, un grado mas-sivo di ipertrofia nel giovane con CMI si associa molto spesso avari altri marcatori di gravità della malattia, quali un genotipocomplesso10, disfunzione microvascolare e fibrosi del VS, aritmie

ventricolari all’ECG dinamico, elevati livelli di biomarcatori e dis -funzione diastolica di grado severo con pattern restrittivo, tut-ti indicatori di prognosi avversa. Spesso si osserva anche un ri-dotto incremento pressorio allo sforzo, non presente in questo

Figura 6. Ventricolografia preoperatoria. La ventricolografia mostra la riduzione della cavità ventricolare sinistra durante lasistole, che appare molto ridotta (frecce).

Figura 7. Misure del potenziale d’azione e del transiente di calciointracellulare sui cardiomiociti isolati al momento della miectomia. A:pezzo chirurgico di miectomia settale della paziente. Il pezzo è mo-strato sul lato endocardico (A1), dove è possibile apprezzare ampiezone di fibrosi, e nella sua porzione profonda (A2). La barra corri-sponde a 3 mm. B: tramite digestione enzimatica del pezzo chirur-gico sono stati ottenuti cardiomiociti ventricolari isolati, mostrati nel-l’immagine fotomicroscopica in figura. La barra corrisponde a 20µm. C: le cellule sono state utilizzate per simultanee misure di patch-clamp e calcio intracellulare (previo caricamento con il colorante fluo-4). Il pannello C1 mostra un potenziale d’azione ottenuto da unacellula della paziente, nettamente prolungato rispetto a un norma-le potenziale d’azione ventricolare; il pannello C2 mostra un tran-siente di calcio ottenuto dalla stessa cellula, anch’esso di durata au-mentata. L’esposizione al farmaco accorcia la durata del potenzialed’azione e del transiente di calcio, con potenziali benefici sulla fun-zione miocardica.

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

G ITAL CARDIOL | VOL 13 | APRILE 2012302

B TOMBERLI ET AL

caso, che esprime il precario equilibrio emodinamico di questipazienti durante l’esercizio fisico. Sul piano clinico, l’esaspera-ta espressione fenotipica e fisiopatologica della malattia si tra-duce nella comparsa di una sintomatologia severa, in partico-lare angina e dispnea da sforzo, causati dal notevole aumentodelle pressioni di riempimento, dall’assenza di cavità con ridu-zione della gittata sistolica e dalla dis funzione microvascolare.I sintomi, limitanti e difficili da trattare, si collocano nel conte-sto di un progressivo rimodellamento del VS, caratterizzato dagradi crescenti di fibrosi alla risonanza magnetica cardiaca3. Al-cuni studi italiani hanno dimostrato che un pattern di riempi-mento restrittivo del VS nella CMI è un fattore predittivo fortee indipendente per l’evoluzione verso la fase terminale e loscompenso refrattario4,11.

In casi di questa gravità una terapia farmacologica standard,basata su betabloccanti e calcioantagonisti, è raramente in gra-do di raggiungere un adeguato controllo dei sintomi. Inoltre, ipazienti con fisiopatologia restrittiva tendono a non tolleraredosi massimali di questi farmaci e sono notoriamente intolle-ranti ai diuretici. D’altra parte il trattamento chirurgico di que-ste forme è un territorio ancora inesplorato. Appaiono invecepromettenti i risultati ottenuti nella risoluzione chirurgica del-l’ostruzione medio-ventricolare nella CMI12,13, un intervento tec-nicamente complesso, che, se eseguito in centri altamente spe-cializzati, può portare ad ottimi risultati a distanza. Nel nostrocaso era di fatto presente la fisiopatologia dell’ostruzione me-dio-ventricolare (e cioè il contatto sistolico di papillari anomalicon il setto interventricolare), anche se la totale obliterazionedell’apice del VS non consentiva lo sviluppo di gradienti a que-sto livello. Il razionale per l’impiego di una miectomia nella pa-ziente presentata appariva quindi promettente, purché asso-ciato ad un gesto specificamente rivolto alla “creazione” di vo-lume intraventricolare. La difficoltà di ottenere tale risultatosenza interferire con la meccanica del VS è ben esemplificatadalla complicanza osservata nel breve termine: un eccessivo ri-modellamento della parete laterale, secondario alla miectomia,ha infatti prodotto una perdita di coaptazione dei lembi mitra-lici, dalle conseguenze potenzialmente gravi. Fortunatamente,il ricorso ad una terapia di resincronizzazione, anch’essa sug-gerita dalla letteratura7, ha permesso di correggere in buonaparte il problema. Il decorso postoperatorio della nostra pa-ziente pone tuttavia l’accento sulla necessità di approfondire lenostre conoscenze sulla fisiopatologia di questa condizione, perstandardizzare un intervento chirurgico risolutivo e privo di dan-ni collaterali. Le nuove possibilità offerte dall’imaging contem-poraneo14 possono consentirci oggi un tale risultato.

Razionale dell’utilizzo della ranolazina in pazienti con cardiomiopatia ipertroficaLe terapie farmacologiche impiegate nella CMI si basano su far-maci antichi, utilizzati in modo empirico, e privi di azioni speci-fiche sui meccanismi fisiopatologici peculiari della malattia2.

Terapie sperimentali, testate su modelli animali, hanno for-nito risultati promettenti soprattutto per quanto riguarda la pre-venzione dello sviluppo di ipertrofia nei soggetti con genotipopositivo, ma non esistono dati riguardo ad interventi poten-zialmente efficaci sui meccanismi molecolari della disfunzioneventricolare sinistra e della progressione di malattia. Un recen-te studio del gruppo di Oxford ha mostrato dei risultati inco-raggianti per quanto riguarda l’efficacia della perexilina sui sin-tomi e sulla limitazione funzionale nei pazienti con CMI. La pe-rexilina è un farmaco noto da molti anni che svolge un’azione

favorevole dal punto di vista metabolico, spostando il metabo-lismo cardiomiocitario dalla catena ossidativa alla glicolisi15-17.Tale farmaco risulta però poco maneggevole per una tossicitàepatica ed una neuropatia dose-dipendente, che rendono ne-cessaria la misurazione della concentrazione ematica del far-maco. Ne appare pertanto improbabile l’uso clinico su vastascala nel prossimo futuro. Lo studio rappresenta tuttavia un uti-le proof of concept, in quanto ha evidenziato il potenziale ef-fetto favorevole di farmaci metabolici nella CMI.

La ranolazina è un inibitore selettivo della corrente lenta delsodio, che ha dimostrato una notevole efficacia antischemicanei pazienti con malattia coronarica, senza interferire in ma-niera significativa sui parametri emodinamici, in quanto legataad una normalizzazione delle elevate concentrazioni di calciointracitoplasmatico tipica del cardiomiocita ischemico. Oltre al-l’effetto antischemico la ranolazina ha mostrato un promet-tente effetto antiaritmico e lusitropo, entrambi oggetto di stu-di clinici in corso8,9. Questi dati fanno ipotizzare un effetto fa-vorevole della ranolazina in una patologia come la CMI, carat-terizzata da elevata calcio-sensibilità miocardica ed elevati va-lori di calcio intracellulare. A conferma di ciò, dati preliminari ot-tenuti presso il laboratorio di farmacologia dell’Università di Fi-renze hanno dimostrato che la corrente lenta del sodio è iper -attivata nei cardiomiociti umani di pazienti con CMI, provo-cando un marcato allungamento del potenziale d’azione e lacomparsa di post-potenziali tardivi18. In tali cellule la ranolazi-na, a concentrazioni terapeutiche, è in grado di accorciare si-gnificativamente il potenziale d’azione e di produrre un nettomiglioramento del profilo elettrofisiologico, con scomparsa deipost-potenziali e riduzione del calcio intracitoplasmatico. A li-vello clinico tali effetti hanno prodotto nella nostra paziente unbuon controllo dei sintomi legati ad ischemia microvascolare.Tale riscontro, sebbene aneddotico, rappresenta un risultatopromettente per l’impiego del farmaco su più ampia scala inpazienti con CMI. Oltre all’azione antischemica, un possibile ef-fetto sulla disfunzione diastolica e sul rischio aritmico, suggeri-to dai dati in vitro, completano il profilo di un razionale estre-mamente forte per un impiego clinico della ranolazina in que-sto contesto.

Seguendo un approccio traslazionale fortemente invocatodalla comunità scientifica internazionale5, i dati preclinici otte-nuti a Firenze sono sfociati in uno studio multicentrico rando-mizzato europeo, volto a valutare l’effetto della ranolazina sucapacità funzionale, biomarcatori e parametri diastolici in pa-zienti con CMI sintomatica, attualmente in corso. Questo stu-dio rappresenta una delle primissime iniziative metodologica-mente solide in questo ambito. Dopo cinque decadi di empiri-smo appassionato la speranza è che stia iniziando anche per ipazienti con cardiomiopatie genetiche l’era di una medicina ba-sata sull’evidenza.

RIASSUNTO

La gestione dei sintomi nei pazienti con cardiomiopatia ipertrofica(CMI) associata a gradi marcati di ipertrofia, ridotte dimensioni ca-vitarie del ventricolo sinistro e fisiopatologia restrittiva, rappresen-ta una vera sfida per il cardiologo clinico. Le strategie terapeutichevengono rese ancor più complesse dalla mancanza di dati relativialle opzioni mediche e chirurgiche potenzialmente più idonee peri pazienti con CMI; soprattutto sul piano farmacologico, la malat-tia è a tutt’oggi da considerarsi orfana di opzioni specifiche e ba-sate sulle evidenze.

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

303G ITAL CARDIOL | VOL 13 | APRILE 2012

CMI SINTOMATICA E RANOLAZINA

Presentiamo il caso di una giovane paziente affetta da CMI confisiopatologia restrittiva, sottoposta ad un intervento chirurgicodi miectomia estesa, con approccio transaortico e transapicale,ed a terapia di resincronizzazione cardiaca, con miglioramentosignificativo ma incompleto dei sintomi. Il successivo potenzia-mento della terapia con ranolazina, introdotta sulla base di da-

ti preclinici promettenti, ha portato ad un netto miglioramen-to. È in corso uno studio clinico multicentrico randomizzato pervalutare l’efficacia della ranolazina in pazienti sintomatici conCMI.

Parole chiave. Angina; Cardiomiopatia ipertrofica restrittiva; Iper-trofia massiva; Ranolazina.

1. Gersh BJ, Maron BJ, Bonow RO, et al.2011 ACCF/AHA guideline for the diagno-sis and treatment of hypertrophic car-diomyopathy: executive summary: a reportof the American College of CardiologyFoundation/American Heart AssociationTask Force on Practice Guidelines. Circula-tion 2011;124:2761-96.2. Maron BJ. Hypertrophic cardiomyopathy:a systematic review. JAMA 2002;287:1308-20.3. Biagini E, Spirito P, Rocchi G, et al. Prog-nostic implications of the Doppler restrictivefilling pattern in hypertrophic cardiomyopathy.Am J Cardiol 2009;104:1727-31.4. Pinamonti B, Di Lenarda A, Nucifora G,Gregori D, Perkan A, Sinagra G. Incrementalprognostic value of restrictive filling pattern inhypertrophic cardiomyopathy: a Dopplerechocardiographic study. Eur J Echocardiogr2008;9:466-71.5. Force T, Bonow RO, Houser SR, et al. Re-search priorities in hypertrophic cardiomyopa-thy: report of a Working Group of the Na-tional Heart, Lung, and Blood Institute. Circu-lation 2010;122:1130-3.6. Cecchi F, Olivotto I, Nistri S, Antoniucci D,Yacoub MH. Midventricular obstruction andclinical decision-making in obstructive hyper-trophic cardiomyopathy. Herz 2006;31:871-6.7. Kanzaki H, Bazaz R, Schwartzman D, DohiK, Sade LE, Gorcsan J 3rd. A mechanism for

immediate reduction in mitral regurgitationafter cardiac resynchronization therapy: in-sights from mechanical activation strain map-ping. J Am Coll Cardiol 2004;44:1619-25.8. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E, Skene A, McCabe CH, Braun-wald E; MERLIN-TIMI 36 Investigators. Evalu-ation of a novel anti-ischemic agent in acutecoronary syndromes: design and rationale forthe Metabolic Efficiency with Ranolazine forLess Ischemia in Non-ST-elevation acute coro-nary syndromes (MERLIN)-TIMI 36 trial. AmHeart J 2006;151:1186.e1-9.9. Wilson SR, Scirica BM, Braunwald E, et al.Efficacy of ranolazine in patients with chron-ic angina: observations from the randomized,double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency With Ranolazinefor Less Ischemia in Non-ST-Segment Eleva-tion Acute Coronary Syndromes) 36 Trial. JAm Coll Cardiol 2009;53:1510-6.10. Girolami F, Ho CY, Semsarian C, et al.Clinical features and outcome of hypertrophiccardiomyopathy associated with triple sar-comere protein gene mutations. J Am CollCardiol 2010;55:1444-53.11. Melacini P, Basso C, Angelini A, et al.Clinicopathological profiles of progressiveheart failure in hypertrophic cardiomyopathy.Eur Heart J 2010;31:2111-23.12. Schaff HV, Brown ML, Dearani JA, et al.Apical myectomy: a new surgical technique

for management of severely symptomatic pa-tients with apical hypertrophic cardiomyopa-thy. J Thorac Cardiovasc Surg 2010;139:634-40.13. Dearani JA, Ommen SR, Gersh BJ, SchaffHV, Danielson GK. Surgery insight: Septalmyectomy for obstructive hypertrophic car-diomyopathy - the Mayo Clinic experience. NatClin Pract Cardiovasc Med 2007;4:503-12.14. Maron MS. Clinical utility of cardiovascu-lar magnetic resonance in hypertrophic car-diomyopathy. J Cardiovasc Magn Reson 2012;14:13.15. Marian AJ. Experimental therapies in hy-pertrophic cardiomyopathy. J CardiovascTransl Res 2009;2:483-92.16. Abozguia K, Elliott P, McKenna W, et al.Metabolic modulator perhexiline correctsenergy deficiency and improves exercise ca-pacity in symptomatic hypertrophic car-diomyopathy. Circulation 2010;122:1562-9.17. Horowitz JD, Chirkov YY. Perhexiline andhypertrophic cardiomyopathy: a new horizonfor metabolic modulation. Circulation 2010;122:1547-9.18. Olivotto I, Coppini R, Ferrantini C, et al. Atranslational approach to treatment of hyper-trophic cardiomyopathy: pre-clinical rationaleand design of a prospective randomized pilottrial with ranolazine [abstract]. G Ital Cardiol2011;12(12 Suppl 3):e75.

BIBLIOGRAFIA

© Il Pensiero Scientifico Editore downloaded by BENEDETTA TOMBERLI IP 87.12.247.5 Sat, 01 Sep 2012, 17:32:02

OPEN ACCESS

http://dx.doi.org/10.5339/gcsp.2012.4

Published: 3 July 2012c© 2012 Cecchi, Tomberli &Olivotto, licensee BloomsburyQatar Foundation Journals. This isan open access article distributedunder the terms of the CreativeCommonsAttribution-NonCommercial licenseCC BY-NC 3.0 which permitsunrestricted non-commercial use,distribution and reproduction inany medium, provided the originalwork is properly cited.

Review article

Clinical and molecular classificationof cardiomyopathiesFranco Cecchi*, Benedetta Tomberli, Iacopo Olivotto

Referral Center for Myocardial Diseases,Careggi University Hospital, Florence,Italy*Email: [email protected]

ABSTRACTThe term ‘‘cardiomyopathies’’ was used for the first time 55 years ago, in 1957. Since thenawareness and knowledge of this important and complex group of heart muscle diseases haveimproved substantially. Over these past five decades a large number of definitions, nomenclature andschemes, have been advanced by experts and consensus panel, which reflect the fast and continuedadvance of the scientific understanding in the field.Cardiomyopathies are a heterogeneous group of inherited myocardial diseases, which represent animportant cause of disability and adverse outcome. Although considered rare diseases, the overallestimated prevalence of all cardiomyopathies is at least 3% in the general population worldwide.Furthermore, their recognition is increasing due to advances in imaging techniques and greaterawareness in both the public and medical community.Cardiomyopathies represent an ideal translational model of integration between basic and clinicalsciences. A multidisciplinary approach is therefore essential in order to ensure their correct diagnosisand management.In the present work, we aim to provide a concise overview of the historical background, genetic andphenotypic spectrum and evolving concepts leading to the various attempts of cardiomyopathyclassifications produced over the decades.

Keywords: classification, cardiomyopathies, myocardial disease

Cite this article as: Cecchi F, Tomberli B, Olivotto I. Clinical and molecular classification ofcardiomyopathies, Global Cardiology Science and Practice 2012:4http://dx.doi.org/10.5339/gcsp.2012.4

Page 2 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

INTRODUCTIONCardiomyopathies (CM) are a fascinating group of myocardial diseases, which constitute an importantcause of disability and adverse outcome due to heart failure or sudden and unexpected death. Theirrecognition is increasing due to advances in imaging techniques and greater awareness in themedical community, although the majority of patients are still likely to be undiagnosed ormisdiagnosed with more prevalent cardiac conditions. Population cross-sectional studies show thatthe overall estimated prevalence of all cardiomyopathies is at least 3% in the general populationworldwide. They are often inherited heart muscle diseases, generally with an autosomic dominant,more rarely recessive or X-linked transmission. As a variety of gene abnormalities are identified as thecause of cardiomyopathies, the need for a close cooperation among clinicians, geneticists andmolecular biologists, in addition to imaging experts, pathologists, neurologists, nephrologists andpaediatricians is well recognized: a multidisciplinary approach is essential in order to ensure theircorrect diagnosis and management. Furthermore, cardiomyopathies represent an ideal translationalmodel of integration between basic and clinical sciences. In the present work, we aim to provide aconcise overview of the historical background, genetic and phenotypic spectrum and evolvingconcepts leading to the various attempts of cardiomyopathies classifications produced by expertsover the decades.

HISTORYThe term ‘cardiomyopathy ’ was first used in 1957 by Brigden, who described a group of uncommon,non-coronary myocardial diseases [1]. In 1961 Goodwin defined cardiomyopathies as ‘‘myocardialdiseases of unknown cause’’ [2]. He described three different entities, namely ‘‘dilated, hypertrophicand restrictive’’, terms which are still in use today. In the 70s, the expanding clinical use ofnon-invasive imaging, such as m-mode and 2D echocardiography, allowed cardiologists andinternists to easily measure left ventricular (LV) wall thickness, cavity dimension and systolic function.Cardiomyopathies began to be recognized with increasing frequency in different populations. In anattempt to provide a useful intellectual framework for clinicians involved in the care of these patients,the first classification of cardiomyopathies was published in 1980, by the World Health Organization(WHO) and International Society and Federation of Cardiology (ISFC), and included the threesubgroups proposed by Goodwin [3]. The definition of ‘‘myocardial diseases of unknown cause’’ wasmaintained to define cardiomyopathies, which were distinguished from ‘‘specific heart musclediseases’’, the latter comprising heart diseases with similar phenotypes, but due to an identifiablecause.In the last 30 years, intensive genetic investigation carried out with linkage analysis on large

affected families lead to major breakthroughs in the identification of genes associated with familialcardiomyopathies [4,5]. Meanwhile, new nosologic entities were described and the new revision ofthe classification was carried out in 1996 by the WHO and ISFC [6].Representing a major advancement, both ‘‘arrhythmogenic right ventricular dysplasia’’ (with the

inappropriate term ‘‘dysplasia’’ later changed to ‘‘cardiomyopathy’’) and a group of ‘‘unclassifiedcardiomyopathies’’, defined as ‘‘those that do not fit in any group’’, were added to the three originalsubgroups. The definition of cardiomyopathy was changed to ‘‘diseases of the myocardiumassociated with myocardial dysfunction’’. Moreover, three additional subgroups termed‘‘hypertensive’’, ‘‘valvular’’ and ‘‘ischemic’’ cardiomyopathies were – somewhat confusingly – addedto the group of ‘‘specific heart muscle diseases’’ in order to resolve a terminology controversybetween US and European experts [6]. These were defined as cardiac conditions characterized by thepresence of hypertension, coronary or valvular disease, in a degree that would not explain themagnitude of LV dysfunction observed. Nevertheless, a substantial difference in terminology persistedon the two sides of the Atlantic, reflecting the refusal of these fine distinctions by US experts [7].In 2006, an American Historical Association (AHA) panel of experts published a scientific

statement on the ‘‘Contemporary classification and definitions of Cardiomyopathies’’ [7]. Theyproposed a novel approach, by which ‘‘Primary ’’ cardiomyopathies were defined as those ‘‘involvingonly the heart ’’, as opposed to the ‘‘secondary ’’, characterized by a ‘‘generalized multiorganinvolvement ’’. Primary cardiomyopathies for the first time also included ‘‘ion channel diseases’’ andwere differentiated in three subgroups based on their etiology as ‘‘genetic, mixed and acquired ’’ [Fig. 1]. The radical shift from a phenotypic to an etiological classification, as well as the inclusion ofion channel diseases among cardiomyopathies, although proposed to guide future research rather

Page 3 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

PRIMARY CARDIOMYOPATHIES(Predominantly involving the heart)

Genetic Mixed Acquired

HCM

ARVC/D

LVNC

PRKAG2

Danon

Glycogenstorage

Conduction defects

Mitochondrial myopathies

Ion channel disorders

LQTS Brugada

AsianSUNDS

SQTS CVPT

DCM Restrictive(non-hypertrophied

and non-dilated)

Inflammatory (myocarditis)

Stress provoked("takotsubo")

Peripartum

Tachycardia - induced

Infants of insulin-dependentdiabetic mothers

Figure 1. Classification of the cardiomyopathies – American Heart Association.Modified from [7].

than to be employed in the clinical arena, sparked a passionate transatlantic debate, culminating in athorough reworking of the original 1995 classification by the European Society of Cardiology (ESC)Working Group on Myocardial and Pericardial diseases, in 2008 [8]. Intrinsically faithful to theconcept of classifying cardiomyopathies based on phenotype, the 2008 classification aimed toprovide a simple operational framework for the medical community, which might have a direct impactin diagnosing and managing these complex diseases. Each of the time-honoured categories dilated,hypertrophic, restrictive and arrhythmogenic right ventricular were maintained, divided into familialand non-familial to replace the pre-genetic era concept of ‘‘unknown etiology’’. Furthermore, only twonew entities were included into the unclassified group, while the confusing ‘‘hypertensive’’, ‘‘valvular’’and ‘‘ischemic’’ categories were removed.

CURRENT CLASSIFICATION OF CARDIOMYOPATHIES (ESC WORKING GROUP ON MYOCARDIALAND PERICARDIAL DISEASES)The panel felt the proposed classification should be useful for everyday clinical practice. The verydefinition of cardiomyopathies was changed, from ‘‘myocardial diseases of unknown cause’’, to‘‘myocardial disorders in which the heart muscle is structurally and functionally abnormal in theabsence of coronary artery disease, hypertension, valvular or congenital heart disease sufficient tocause the observed myocardial abnormality’’ [8]. Ion channel diseases were excluded, despite theirgenetic nature, in view of their lack of a structural cardiac phenotype affecting the heart muscle.Because cardiomyopathies are diagnosed based on clinical examination and imaging, the four

classical morphological subgroups of ‘‘hypertrophic, dilated, restrictive, arrhytmogenic ’’ weremaintained, with a fifth subgroup of ‘‘unclassified ’’, comprising the recently described ‘‘LVnon-compaction’’ and ‘‘Takotsubo cardiomyopathy’’ [Fig. 2].Each category was subdivided in a familial and non-familial subset, with the latter including all

known causes that might be responsible for that phenotype. A list of potential genetic andnon-genetic causes is provided for each subgroup of cardiomyopathies [Tables 1–5]. The precise

Page 4 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

Figure 2. Classification of the cardiomyopathies – European Society of Cardiology.Modified from [8].

Table 1. Hypertrophic cardiomyopathy.FAMILIAL Unknown gene

Sarcomeric protein disease ß myosin heavy chain, Cardiac myosin binding protein C Cardiac troponin I,T and C, a-tropomyosin, Essential myosin light chain, Regulatory myosin light chain,Cardiac actin, a- myosin heavy chain, Titin

Glycogen storage diseases (e.g. GSD II (Pompe’s disease); GSD III (Forbes’ disease),AMP kinase (WPW, HCM, conduction disease)

Lysosomal storage diseases (e.g. Anderson-Fabry disease, Hurler’s syndrome)Disorders of Fatty Acid Metabolism Carnitine, Phosphorylase B kinase deficiencyMitochondrial cytopathies (e.g. MELAS, MERFF, LHON)Syndromic HCM Noonan’s syndrome, LEOPARD syndrome, Friedreich’s ataxia,

Beckwith-Wiedermann syndrome; Swyer’s syndrome (pure gonadal dysgenesis)Other: Muscle LIM protein Phospholamban promoter Familial Amyloid

NON-FAMILIALObesity; Infants of diabetic mothers; Athletic training; Amyloid (AL / prealbumin)

Table 2. Dilated cardiomyopathy.FAMILIAL, unknown gene

Sarcomeric protein mutations (see HCM)Z band : Cypher/Zasp, Muscle LIM protein, TCAPCytoskeletal genes: Dystrophin, Desmin, Metavinculin, Sarcoglycan complex, CRYAB, EpicardinNuclear membrane: Lamin A/C, EmerinMildly dilated CMIntercalated disc protein mutations (see ARVC)Mitochondrial cytopathy

NON FAMILIALMyocarditis (infective/toxic/immune)Kawasaki diseaseEosinophilic (Churg Strauss syndrome)Viral persistenceDrugs, Pregnancy, EndocrineNutritional: thiamine, carnitine, selenium, hypophosphataemia, hypocalcemia.AlcoholTachycardiomyopathy

identification of the disease etiology has obvious clinical implications, by virtue of its direct impact tototally different management. For example, amyloidosis, Anderson Fabry diseases and glycogenstorage diseases may be diagnosed as hypertrophic cardiomyopathy (HCM); yet their treatment varieswidely. Of note, the inclusion of amyloidosis in this classification was widely debated [9]. Substantialdoubts also regarded takotsubo, a disease that is generally transient, has no proven inherited cause,and appear related to regional myocardial hypoperfusion rather than to heart muscle abnormalities.Ultimately, both were included as this was felt to be conceptually useful in clinical practice.Finally, a stepwise approach was proposed for diagnostic work-up. Step one is the identification of

cardiomyopathies on the basis of the presenting morphologic features. Following diagnosis in theproband, a comprehensive family screening by ECG and echocardiography should be offered tofirst-degree relatives, in order to assess whether there is a familiar transmission. The third step

Page 5 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

Table 3. Restrictive cardiomyopathy.FAMILIAL, unknown gene

Sarcomeric protein mutations: Troponin I (RCM+/− HCM), Essential myosin light chainFamilial Amyloidosis Transthyretin (RCM+ neuropathy)

Apolipoprotein (RCM+ nephropathy)DesminopathyPseuxanthoma elasticumHaemochromatosisAnderson-Fabry diseaseGlycogen storage diseaseEndomyocardial fibrosis (Familial) (Fusion FIP1-like-1 / PDGFRA genes)

NON FAMILIALAmyloid (AL/prealbumin)SclerodermaEndomyocardial fibrosis

Hypereosinophilic syndrome, Idiopathic chromosomal causeDrugs: serotonin, methysergide, ergotamine, mercurial agents, busulfan, anthracyclinesCarcinoid heart disease, Metastatic cancers, Radiation

Table 4. Arrhythmogenic right ventricular cardiomyopathy.FAMILIAL, unknown gene

Intercalated disc protein mutations: Plakoglobin,DesmoplakinPlakophilin 2Desmoglein 2Desmocollin 2

Cardiac ryanodine receptor (RyR2)Transforming growth factor-β3 (TGFβ3)

NON FAMILIALInflammation?

Table 5. Unclassified cardiomyopathies.FAMILIAL unknown gene

Left ventricular non-compaction:Barth SyndromeLamin A/CZASPa-dystrobrevin

NON FAMILIALTakotsubo cardiomyopathy

consists in the search for the specific cause of the disease, with the help of genetic analysis, metabolicand biochemical laboratory tests, additional imaging and, in selected instances, myocardial biopsy.

ROLE OF GENETIC TESTINGMany cardiomyopathies are believed to derive from the interaction between one or more geneticmutations, often unidentified modifier genes and environmental factors [10]. When genetic analysisis performed in candidate genes, the probability of identifying the pathogenic gene mutation is in therange of 40–60%, for patients with HCM, with approximately 5% of complex mutations [11,12].Results for dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM) and isolated LVnon-compaction are considerably less rewarding [10], although the advent of next generation,genome-wide techniques may increase the yield substantially, as recent data on titin in DCMsuggests [13].In the meantime, however, cross-talk between geneticists and clinicians has developed slowly, with

modalities of interaction and degree of mutual comprehension that vary wildly in various settings. Inmany institutions, particularly in the US, a geneticist is not available on-site, and genetic testing isoften performed remotely via private companies [14]. In addition, clinicians often question theclinical utility of genetic testing in cardiomyopathy patients and their families. The apparent lack ofpractical benefit, in the face of considerable costs, has long hindered large-scale diffusion of genetictesting, and still accounts for understandable (but not always justifiable) resistance by the clinician.An indisputable benefit of systematic genetic testing lies in the cross-fertilization between

Page 6 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

cardiologists and geneticists. The former, generally show limited expertise and propensity atinvestigating the hereditary nature of cardiac diseases, and at identifying complex, syndromicphenotypes associated with cardiomyopathies (e.g. Noonan’s, Leopard’s, mitochondrial disease andAnderson Fabry) [15–18]. Standard protocols for genetic testing routinely include pre-testcounselling by a multidisciplinary team involving clinical geneticists [15]. This is a valuable momentfor reciprocal education among professionals, ultimately benefitting a wide spectrum of patients withrare conditions.

HYPERTROPHIC CARDIOMYOPATHYHCM is a genetic disease characterized by unexplained LV hypertrophy, associated with non-dilatedventricular chambers, in the absence of another cardiac or systemic disease capable of producingthat degree of hypertrophy [Fig. 3]. HCM is diagnosed by a maximal LV wall thickness greater than15 mm, based on echocardiography (ECHO) or cardiac magnetic resonance (CMR) [19]. This value islowered to 13–14 mm, when family members are screened. In children, a wall thickness greater than2 standard deviations (SD) for age, sex or body size is considered diagnostic.

A B C

D E F

Figure 3. Hypertrophic cardiomyopathy. Echocardiographic and cardiac magnetic resonance images from a 17-year old female patient with HCM. Parasternal long and short axis views show severe LV thickness values (maxLV wall thickness 31 mm), with redundant mitral leaflets (panels A, B and D) and small cavity size. Apical 4chambers view shows massive hypertrophy of the septum and the antero-lateral wall (panels C and E). Imageof late gadolinium enhancement showing limited and nontransmural area of fibrosis of the IVS (panel F: blackarrow). Abbreviations: LV= left ventricle, RV= right ventricle IVS= inter-ventricular septum.

The distribution of hypertrophy is usually asymmetric and sometimes confined to one or two LVsegments. As a consequence, LV mass (measured by CMR) can be within the normal range. LV outflowtract obstruction is an important feature of HCM, and may be demonstrated in up to 70%patients [20]. Overall, the clinical course of patients with HCM is relatively benign, with an annualmortality rate of about 1%. Contrary to prior perceptions, the risk of sudden cardiac death is relativelylow [21], although still a major concern in young individuals and athletes. Furthermore, about half ofpatients show some degree of disease progression and functional limitation, with a small subset ofabout 5% developing the so-called end-stage HCM. Family screenings, following the introduction ofgenetic testing has led to the identification of genotype-positive phenotype-negative individuals, anovel category within the HCM spectrum, characterized by absence of LV hypertrophy, assessed byECG and ECHO [19].Sarcomeric gene mutations, often private, are the most frequent cause of HCM, accounting for

approximately 30–65% of probands in different cohorts [22]. In the remaining subset the geneticsubstrate is unknown. Furthermore, a small proportion of patients with the HCM phenotype areaffected by cardiofacial syndromes (e.g. Noonan, LEOPARD, Costello), neuromuscular diseases(e.g. Frederich’s ataxia), mitochondrial diseases [23], metabolic disorders of lysosomal storage

Page 7 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

diseases (i.e. Fabry, Pompe, Danon) [24]. These rare conditions sometimes exhibit an X-linked ratherthan the autosomal pattern of inheritance, usually observed in HCM [Table 1].

DILATED CARDIOMYOPATHYDCM is characterized by LV dilatation and global systolic dysfunction (EF < 50%), in the absence ofcoronary artery disease or other identifiable causes (such as systemic hypertension, valve disease,drugs, inflammatory heart diseases) capable of causing that magnitude of impairment [Table 2]. Infamilial DCM, screening of first-degree relatives will identify the disease in up to 50% [10]. As formany other cardiomyopathies, the prevalence of DCM is underestimated, because many patients mayhave a subclinical form of the disease which may be difficult to diagnose for the lack of symptoms.Familial and sporadic forms of DCM have similar morphological manifestation and clinical course[Fig. 4]. They are progressive diseases, with a prognosis that, although improved in the last decades,is usually poor due to heart failure, atrial and ventricular arrhythmias, stroke and sudden death [25].In patients with refractory heart failure, heart transplant represent the final option.

A B

C

E F

D

Figure 4. Dilated cardiomyopathy. Echocardiographic and cardiac magnetic resonance images from a 57-yearold female patient with DCM and normal coronary angiogram. Parasternal long axis view and CMR imagesshow dilated LV (panels A–B and E–F), with severe systolic dysfunction - EF = 21%; (panel C = diastole, panelD= systole). Abbreviations: LV= left ventricle, RV= right ventricle IVS= inter-ventricular septum.

The low yield of genetic testing for DCM (i.e. 30%) limits its clinical use. This is related to the largenumber of potentially disease-causing genes. Furthermore, genetic mutations are usually private andthe interpretation of the analysis results may be difficult [10]. As noted above, the advent of nextgeneration sequencing may radically change this scenario [13]. However some gene mutations, suchas Lamin A/C seem to carry a more adverse outcome, in particular for sudden death [26–28].

RESTRICTIVE CARDIOMYOPATHYRCM is defined by the presence of a restrictive LV physiology, with normal or more often reduceddiastolic/systolic volumes, normal wall thickness and systolic function, marked diastolic flow

Page 8 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

impairment and biatrial dilatation. RCM are rather uncommon, although their prevalence is stillunknown. Either Amyloid Light-chain (AL) amyloidosis or amyloidosis due to transthyretin genemutations with heart involvement, often cause RCM [Table 3] [9]. A striking subtype of disease withrestrictive physiology, endomyocardial fibrosis, endemic in areas of the African continent, has anunknown etiology and very poor prognosis [29]. Moreover a ‘‘restrictive phenotype’’ may be part ofthe clinical spectrum of end-stage HCM [30], and may occasionally originate as a primary, nonHCM-related phenotype from sarcomere gene mutations (generally in the thin filament protein codinggenes). RCM is usually associated with severe functional limitation, mainly related to the extremediastolic dysfunction, with reduced diastolic filling and stroke volume, and a poor prognosis [31].

ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHYARVC is characterized by fibrofatty replacement of the right ventricular myocardium and ventriculararrhythmias [32]. In the most common right-dominant form, structural changes may be absent orconfined to a localized region of the right ventricle (inflow and outflow tract, right ventricular apex,known as the ‘triangle of dysplasia’) at an early stage [Fig. 5]. Progression to more diffuse rightventricular disease and LV involvement (typically affecting the posterior lateral wall), associated withventricular systolic dysfunction, is common at later stages [33]. Ventricular arrhythmias are theclinical hallmark of the disease, but atrial fibrillation may also occur. The diagnosis of ARVC is oftenchallenging for the cardiologist, in particular during the early ‘concealed phase’, when individuals arestill asymptomatic. Predominant LV disease has also been recognized. New diagnostic criteria withhigher sensitivity and specificity have recently been published [32,34]. ARVC is generally a familialdisease with autosomal dominant inheritance but it may be recessive when associated with woollyhair and palmopalmar hyperkeratosis (eg, Naxos disease, Carvajal syndrome). Mutations indesmosomal and non-desmosomal genes have been identified, but interpretation of theirpathogenicity is often challenging in the affected individual [Table 4].

A

B

C

Figure 5. Arrhythmogenic right ventricular cardiomyopathy. 38 year old female with diagnosis of ARVC,resuscitated from out-of-hospital cardiac arrest. She has family history of ARVC (mother) and sudden death(brother, 28 year old). CMR images show clearly wall aneurysms within the so-called ‘‘triangle of dysplasia’’(panel A–C, white arrows: evident systolic bulging in infundibular, apical, and subtricuspid regions of the RV).Abbreviations: LV= left ventricle, RV= right ventricle.

UNCLASSIFIED CARDIOMYOPATHIESIsolated LV non-compaction (LVNC) is characterized by prominent LV trabeculae and deepinter-trabecular recesses, that can be associated with LV dilatation and systolic dysfunction [Fig. 6].LVNC is familial, with 25% of asymptomatic first-degree relatives having some echocardiographicabnormalities [Table 5]. Of note, this rather mysterious disease shows substantial phenotypic overlapwith other cardiomyopathies (in particular HCM and DCM, which often exhibit limited areas ofnon-compaction in the left ventricle), as well as a common genetic substrate [8]. Furthermore, LVNCmay be associated with congenital cardiac disorders (such as Ebstein’s anomaly or complex cyanotic

Page 9 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

A B

C D

E F

Figure 6. Unclassified cardiomyopathy. Isolated left ventricular non-compaction in a 45 year-old male, with mildsystolic dysfunction (EF 48%), ventricular arrhythmias and normal LV diameters. Multiple trabeculations andrecesses are evident, particularly in the apex and the free wall of the LV (panels A and C: apical 4 chambers view;panels B and D: apical 3 chambers view). CMR confirmed the diagnosis (panels E–F). Abbreviations: LV = leftventricle, RV= right ventricle IVS= inter-ventricular septum.

heart disease) and some neuromuscular diseases. Therefore, it is still debated whether isolated LVNCshould be considered a separate clinical and genetic entity, or a morphological trait shared by manydistinct cardiomyopathies. As a result of the difficult comprehension of this clinical entity, the realprevalence of LVNC and its outcome remain largely unknown.Takotsubo cardiomyopathy, also known as LV apical ballooning or stress-induced cardiomyopathy,

is characterized by transient regional systolic dysfunction involving the apex and/or mid-ventricle inthe absence of obstructive coronary artery disease on angiogram [8]. The condition is reported allover the world, and most reported cases occur in post-menopausal women following physical orpsychological stress, but it has been described also in patients with intracranial haemorrhage orother acute cerebral accidents (so-called ‘‘neurogenic myocardial stunning’’). Typically, takotsubocardiomyopathy has a sudden onset, with chest pain, diffuse T-wave inversion and mild cardiacenzyme elevation. Symptoms are often preceded by emotional or physical stress. If the patientsurvives the acute phase of disease, the prognosis is almost invariably favourable, with anormalization of LV function over a period of days to weeks; recurrence is possible, but rare.

LIMITATIONS OF CURRENT CLASSIFICATIONS AND NOVEL PERSPECTIVESAs more families with cardiomyopathies are genotyped, and new diseases are being described, theparadigm ‘‘one gene, one disease’’ appears no longer sustainable. The same mutation can beexpressed at a different age and give rise to hugely different phenotypes within the same family, dueto environmental factors and modifier genes. Different phenotype patterns may originate from thesame genetic substrates, in a spectrum encompassing HCM, DCM, RCM and LVNC (all associated withsarcomere genes), or ARVC/DCM (associated with desmosomal genes).

benedetta
Sticky Note

Page 10 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

Furthermore, the recent introduction of next generation sequencing has started what promises tobe a revolution in molecular diagnostics, allowing rapid and affordable testing of hundreds of genes,or even whole genomes. As an example, a wide range of truncating gene mutations encoding Titin, avery large cytoskeleton gene which could not be assessed by traditional sequencing techniques, hasrecently been discovered to represent a prevalent cause of familial DCM, up to 25% [13].In the near future, the list of causative genes will therefore likely require an update. This should

ideally become an ongoing process, under the auspices of the ESC Working Group on Myocardial andPericardial Diseases and AHA experts. The focus for researchers will necessarily shift from analyzingsingle mutations in candidate genes, to interpreting the hundreds of variants of unknown significancein putative causative as well as modifier genes, requiring entirely new skills and significant interactionwith biophysicists and computer scientists. At present, and in the foreseeable future, however, clinicalclassifications of cardiomyopathies based on clinical presentation and morphological criteriarepresent an important tool for clinicians involved with these complex diseases. While calling forconstant improvement and update in the light of advances provided by imaging genetics and basicscience, individual patient phenotypes continue to represent the core of any classification in clinicalmedicine, something that has not changed with time.

LIST OF ABBREVIATIONS:ESC: European Society of CardiologyAHA: American Heart AssociationECHO: echocardiographyCMR: Cardiac magnetic resonanceLV: left ventricularEF: ejection fractionHCM: hypertrophic cardiomyopathyDCM: dilated cardiomyopathyRCM: restrictive cardiomyopathyARVC: arrhythmogenic right ventricular cardiomyopathyLVNC: left ventricular non compaction

COMPETING INTERESTSThe authors have no competing interests.

ACKNOWLEDGMENTS:This work was supported by Ministero Istruzione Università e Ricerca (PRIN), and European Union(STREP Project 241577 ‘‘BIG HEART,’’ 7th European Framework Program).

References[1] Brigden W. Uncommon myocardial diseases: the non-coronary cardiomyopathies. Lancet. 1957 Dec.

21;273:7008, 1243–1249.[2] Goodwin JF, Gordon H, Hollman A and Bishop MB. Clinical aspects of cardiomyopathy. Br Med J. 1961 Jan.

14;1:5219, 69–79.[3] Report of the WHO/ISFC Task Force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44,

672–673.[4] Watkins H, Ashrafian H and Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011 Apr. 28;364:17,

1643–1656.[5] Bos JM, Towbin JA and Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for

hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009 July 14;54:3, 201–211.[6] Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G and Goodwin J. Report

of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on thedefinition and classification of cardiomyopathies. Circulation. 1996;93:841–842.

[7] Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman C andYoung JB. Contemporary definitions and classification of the cardiomyopathies. An American Heart Associationscientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Qualityof Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary WorkingGroups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–1816.

[8] Elliott P, Anderson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ,Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L and Keren A. Classification of cardiomyopathies: aposition statement from the European working group on myocardial and pericardial diseases. Eur Heart J.2008;29:270–276.

Page 11 of 11Cecchi, Tomberli & Olivotto. Global Cardiology Science and Practice 2012:4

[9] Rapezzi C, Quarta CC, Riva L, Longhi S, Gallelli I, Lorenzini M, Ciliberti P, Biagini E, Salvi F andBranzi A. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010 July;7:7,398–408.

[10] Jacoby D and McKenna WJ. Genetics of inherited cardiomyopathy. Eur Heart J. 2012 Feb.;33:3, 296–304.[11] Olivotto I, Girolami F and Ackerman MJ et al. Myofilament protein gene mutation screening and outcome of

patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008 June;83:6, 630–638.[12] Friedrich FW and Carrier L. Genetics of hypertrophic and dilated cardiomyopathy. Curr Pharm Biotechnol. 2012

Jan. 20;[Epub ahead of print].[13] Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B,

Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM,Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG andSeidman CE. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012 Feb. 16;366:7, 619–628.

[14] Olivotto I, Kassem HS and Girolami F. Genetic testing for hypertrophic cardiomyopathy: ongoing voyage fromexploration to clinical exploitation. DOI: 10.4081. Cardiogenetics. 2011.e3 Published: 2011-07-05 10:15:10.

[15] Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna WJ, Monserrat L,Pankuweit S, Perrot A, Rapezzi C, Ristic A, Seggewiss H, van Langen I and Tavazzi L. Genetic counselling andtesting in cardiomyopathies: a position statement of the European Society of Cardiology Working Group onMyocardial and Pericardial Diseases. Eur Heart J. 2010;31:2715–2726.

[16] Wang L, Seidman JG and Seidman CE. Narrative review: harnessing molecular genetics for the diagnosis andmanagement of hypertrophic cardiomyopathy. Ann Intern Med. 2010;152:513–520.

[17] Hershberger RE, Lindenfeld J and Mestroni L et al. Genetic evaluation of cardiomyopathy- a Heart Failure Societyof America practice guideline. J Card Fail. 2009;15:83–97.

[18] van Langen IM, Birnie E and Leschot NJ et al. Genetic knowledge and counselling skills of Dutch cardiologists:sufficient for thegenomics era?. Eur Heart J. 2003;24:560–566.

[19] Gersh BJ, Maron BJ, Bonow RO, Dearani A, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H,Seidman CE, Towbin JA, Udelson JE and Yancy CW. ACCF/AHA guideline for the diagnosis and treatment ofhypertrophic cardiomyopathy: executive summary: a report of the American College of CardiologyFoundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124:2761–2796.

[20] Maron MS, Olivotto I and Zenovich AG et al. Hypertrophic cardiomyopathy is predominantly a disease of leftventricular outflow tract obstruction. Circulation. 2006;114:21, 2232–2239.

[21] Maron BJ. Contemporary insights and strategies for risk stratification and prevention of sudden death inhypertrophic cardiomyopathy. Circulation. 2010;121:445–456.

[22] Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, Torricelli F, Yeates L, Cecchi F, Ackerman MJ andOlivotto I. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere proteingene mutations. J Am Coll Cardiol. 2010 Apr 6;55:14, 1444–1453.

[23] Schapira AH. Mitochondrial diseases. Lancet. 2012 Apr 4;Epub ahead of print.[24] Keren A, Syrris P and McKenna W. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease

expression. Nat Clin Pract Cardiovasc Med. Mar. 2008;5:3, 158–168.[25] Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A and Sinagra G. Prevalence and prognostic significance

of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am CollCardiol. 2011;57:13, 1468–1476.

[26] Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, Peterson A, Li D, Jakobs P, Litt M, Porter CB, Rahko PSand Hershberger RE. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familialdilated cardiomyopathy. Am Heart J. 2008;156:161–169.

[27] van Berlo JH, de Voogt WG and van der Kooi AJ et al. Meta-analysis of clinical characteristics of 299 carriers ofLMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death?. J Mol Med. 2005;83:79–83.

[28] Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM and Duboc D. Primary prevention of sudden death inpatients with lamin A/C gene mutations. N Engl J Med. 2006;354:209–210.

[29] Mocumbi AO, Yacoub S and Yacoub MH. Neglected tropical cardiomyopathies: II. Endomyocardial fibrosis:myocardial disease. Heart. 2008 Mar.;94:3, 384–390.

[30] Kubo T, Gimeno JR and Bahl A et al. Prevalence, clinical significance, and genetic basis of hypertrophiccardiomyopathy with restrictive phenotype. Journal of the American College of Cardiology. June 2007;49:25,2419–2426.

[31] Zangwill SD, Naftel D, L’Ecuyer T, Rosenthal D, Robinson B, Kirklin JK, Stendahl G and Dipchand AI. Pediatric HeartTransplant Study Investigators. Outcomes of children with restrictive cardiomyopathy listed for heart transplant: amulti-institutional study. J Heart Lung Transplant. 2009 Dec;28:12, 1335–1340.

[32] Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP,Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H,Thiene G, Towbin JA, Tsatsopoulou A, Wichter T and Zareba W. Diagnosis of arrhythmogenic right ventricularcardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31:806–814.

[33] Basso C, Bauce B, Corrado D and Thiene G. Pathophysiology of arrhythmogenic cardiomyopathy. Nat Rev Cardiol.2011 Nov 29;9:4, 223–233.

[34] Ackerman MJ, Priori SG and Willems S et al. HRS/EHRA Expert Consensus Statement on the State of GeneticTesting for Channelopathies and Cardiomyopathies. Europace. 2011 Aug;13:8, 1077–109.

486

Rilevanza clinica del test genetico nella cardiomiopatia ipertrofica

Francesca Girolami1, Sara Bardi1, Laura Berti1, Franco Cecchi2, Eleonora Servettini2, Benedetta Tomberli2,Francesca Torricelli1, Iacopo Olivotto2

1Struttura Organizzativa Dipartimentale Diagnostica Genetica, Azienda Ospedaliero-Universitaria Careggi, Firenze;2Centro di Riferimento per le Cardiomiopatie, Firenze.

Pervenuto il 15 luglio 2011.

Riassunto. Sono trascorsi più di 20 anni dalla scoperta delprimo gene sarcomerico associato all’insorgenza della car-diomiopatia Ipertrofica (CMI). Durante tale periodo lo svi-lupparsi di moderne tecnologie per il sequenziamento delgenoma umano, unitamente alla crescita delle conoscenzesulla genetica, hanno reso disponibile un test genetico spe-cifico per la CMI effettuabile a scopo diagnostico e diffusoin molti paesi. Nel frattempo, per l’intensificarsi dello scam-bio reciproco di conoscenze tra cardiologi e genetisti, èemersa la necessità di discutere sulla vera utilità clinica deltest genetico. La prescrizione del test ha incontrato spessodifficoltà da parte del cardiologo perché ritenuto di scarsautilità nella pratica clinica anche a fronte del costo elevato.In realtà tale resistenza è in contrasto con una serie di evi-denze che supportano la necessità del test genetico nellagestione del paziente con CMI. Tali ragioni sono passate inrassegna nel presente lavoro e spaziano dall’importanzadell’identificazione dei genotipi complessi perché progno-stici di un decorso più sfavorevole della malattia, alla possi-bilità di effettuare diagnosi nei casi dubbi mediante l’iden-tificazione della mutazione, fino a porre diagnosi differen-ziale con le forme non sarcomeriche. In ultimo, ma non perimportanza, vale la pena sottolineare che il test geneticopermette di stabilire la natura ereditaria della malattia, ren-dendo possibile la diagnosi talvolta presintomatica nei fa-miliari del probando.

Parole chiave. Cardiomiopatia ipertrofica, consulenza ge-netica, mutazioni sarcomeriche, test genetico specifico perla cardiomiopatia ipertrofica.

Clinical relevance of genetic testing in hypertrophic cardiomy-opathy.

Summary. More than two decades have elapsed since thediscovery that sarcomere gene defects cause familial hy-pertrophic cardiomyopathy (HCM). Since then, genetic test-ing in HCM has developed, and become an important tool inclinical practice for diagnosis and prognosis overall in theWestern countries. However its practical benefits are still un-derstimated and clinicians often question about cost-effec-tiveness of genic testing in HCM patients and their families.This resistance is in contrast with considerable evidence sup-porting the role of genetics in tailoring management forHCM patients. Several current clinical uses of genetic test-ing in HCM, ranging from diagnosis in ambiguous situations,identification of disease phenocopies and HCM complexgenotypes and confirmation of inherited disease in familymembers are reviewed.In the near future it is hoped that next generation sequenc-ing will provide further diffusion of genetic testing in HCMand improvement in care.

Key words. Genetic counselling, genetic test in hyper-trophic cardiomyopathy, sarcomeric mutation.

venne descritta come entità clinica a sé stante,denominata «ostruzione funzionale del ventrico-lo sinistro» e «ipertrofia settale asimmetrica»grazie alle osservazioni pubblicate dal patologoTeare. Nel 1957, in seguito ad esami autoptici ef-fettuati su nove pazienti (di cui otto morti dimorte improvvisa), Teare individuò una spiccataipertrofia del muscolo cardiaco e ne intuì la na-tura familiare2. Poco dopo, nel 1959, venne effet-tuata per la prima volta una diagnosi di CMI invivo, presso il Clinical Center of National Insti-tutes of Health, negli USA3. Negli anni ’70, l’in-troduzione della metodica ecocardiografica e isuoi continui progressi hanno consentito di ca-ratterizzare con precisione il grado e la sede del-

Introduzione

La cardiomiopatia ipertrofica (CMI) è la piùfrequente malattia genetica del muscolo cardia-co, con una prevalenza di 1:500 nella popolazio-ne generale, pari a oltre 100.000 pazienti stima-ti in Italia. La patologia è caratterizzata daespressione morfologica e decorso clinico etero-genei1, e si identifica per la presenza di ipertro-fia ventricolare sinistra, generalmente asimme-trica, in assenza di malattie cardiache o sistemi-che in grado di produrre tale ipertrofia. Nel 1869,Liouville e Hallopeau descrissero per la primavolta quadri di ipertrofia asimmetrica del settointerventricolare, ma solo negli anni ’50 la CMI

Rassegna Recenti Prog Med 2011; 102: 486-493

F. Girolami et al.: Rilevanza clinica del test genetico nella cardiomiopatia ipertrofica 487

l’ipertrofia, di visualizzare in tempo reale il con-tatto sistolico del lembo anteriore della mitrale(SAM) con il setto interventricolare, e di misura-re i gradienti sistolici intraventricolari e i flussiintracavitari4-7. L’ecocardiografia ha inoltre per-messo di osservare l’evoluzione nel tempo dei pa-zienti con CMI, portando alla luce i diversi profilievolutivi della malattia8,9 e di eseguire screeningfamiliari su ampia scala. Recenti contributi nel-la diagnosi di CMI sono stati portati dall’intro-duzione della RMN cardiaca che permette unamigliore definizione anatomica rispetto all’eco-cardiografia, ma soprattutto la valutazione dellapresenza ed estensione della fibrosi intramiocar-dica10 (figura 1).

Le manifestazioni morfofunzionali e clinichedella malattia sono molto eterogenee. I pazienticon CMI possono rimanere asintomatici per tut-ta la vita; nella maggioranza dei casi, tuttavia,sono presenti sintomi che possono comparire aqualsiasi età e che comprendono la dispnea,l’astenia, il dolore toracico tipico o atipico per an-gina pectoris, le palpitazioni e la sincope. Il qua-dro sintomatologico è in genere di entità lieve omoderata, e risulta compatibile con uno stile divita normale: nei bambini e negli adolescenti lamalattia viene spesso riconosciuta solo nel corsodi studi di screening familiari. In circa un terzodei pazienti, tuttavia, la CMI progredisce verso

lo scompenso cronico, chepuò divenire refrattario, fi-no ad una fase ipocinetico-dilatativa definita “end-stage”. Sfortunatamente,predire il decorso clinico el’esito della malattia neisingoli pazienti con CMI siè rivelato molto difficile. Leprime grandi casistiche dipazienti con CMI, raccoltepresso i Centri di riferi-mento internazionali neglianni ’70, presentavano laCMI come una condizionead alto rischio, soprattuttonei giovani, con una morta-lità annuale del 3-6%11,12.Studi più recenti, in popo-lazioni con minor grado diselezione, hanno mostratoche la CMI presenta in re-altà un decorso relativa-mente stabile, una progno-si complessivamente beni-gna ed una mortalità glo-bale assai minore di quan-to precedentemente ripor-tato (intorno all’1% all’an-no)1,13,14. La complicanzapiù temibile, la morte im-provvisa aritmica, si osser-va in una minoranza di pa-zienti; purtroppo, l’identifi-

cazione dei soggetti a rischio resta molto difficile,in assenza di marker specifici per la prevenzioneprimaria.

La cardiomiopatia ipertroficacome malattia del sarcomero

La scoperta delle basi genetiche della CMI èscaturita dalla collaborazione tra clinici, genetisti,ricercatori e famiglie di pazienti. La natura fami-liare della malattia era nota fin dagli anni ’50; tut-tavia l’identificazione della prima mutazione ge-netica associata a CMI, nel gene codificante la ca-tena pesante della β-miosina (MYH7), risale al1987, in seguito a studi di linkage su famiglieestremamente ampie15. Oggi la CMI è universal-mente conosciuta come una malattia autosomicadominante del sarcomero, causata da varianti inalmeno 13 geni codificanti proteine dell’apparatocontrattile del cardiomiocita. (figura 2 e tabella 1).Tra i geni sarcomerici, 8 sono quelli comunementeanalizzati a scopo diagnostico: il gene della protei-na C legante la miosina, la cui sigla internaziona-le è MYBPC3; il gene della catena pesante della β-miosina, o MYH7; il gene della catena essenzialeleggera 1 della miosina, o MYL3; il gene della ca-tena regolatrice leggera 2 della miosina, o MYL2;il gene della troponina T cardiaca, o TNNT2;

Figura 1. Paziente di 32 anni affetta da cardiomiopatia Ipertrofica con ipertrofia di grado marcatoprevalente a livello medio-apicale. Immagini di risonanza magnetica nucleare ottenute con se-quenze cine in telediastole (A,B,C) ed in telesistole (D,E,F). A,D: Le immagini in 4 camere mostranol’importante ispessimento del setto interventricolare e della parete anteriore medio-apicale, e di-latazione biatriale. B,E: Sezione coronale asse corto a livello medio-ventricolare: è evidente l’oblite-razione sistolica di cavità a questo livello. C,F: Immagini ottenute rispettivamente in 4 camere ed as-se corto, dopo somministrazione di mezzo di contrasto: sono evidenti le aree di impregnazione tar-diva del setto interventricolare (frecce), espressione di fibrosi intramiocardica. AD atrio destro; ASatrio sinistro; SIV setto interventricolare; VD ventricolo destro; VS ventricolo sinistro

Recenti Progressi in Medicina, 102 (12), dicembre 2011488

il gene della troponina I, o TNNI3; il gene dell’al-fa-actina, o ACTC; ed il gene dell’alfa-tropomiosi-na, o TPM1. Una mutazione in questi geni vieneidentificata in circa i due terzi dei pazienti sotto-posti a screening genetico. I difetti di MYH7 eMYBPC3 sono i più frequenti, caratterizzando cir-ca il 50% delle diagnosi genetiche; gli altri 6 genicoprono una percentuale che va da un 3% ad un15% del totale a seconda dei Centri16.

Inoltre, dal 3% al 6% dei soggetti con CMI pre-senta un genotipo complesso, caratterizzato cioèda più mutazioni coesistenti, sia nello stesso gene(eterozigote composto) sia in geni diversi (eterozi-gote doppio); nell’1% dei pazienti sono addiritturadescritte triple mutazioni17.

Al contrario di altre malattie genetiche qualila fibrosi cistica o l’emofilia, in cui le mutazionigenetiche sono ricorrenti, la CMI è caratterizza-ta da estrema variabilità nelle mutazioni riscon-trate. Nei geni sarcomerici sono state infatti de-scritte oltre 1000 varianti diverse, la maggiorparte delle quali identificate in una sola famigliae perciò definite “private” Eccezionalmente sonodescritte mutazioni con “effetto founder” e perciòtipiche di una precisa area geografica18,19. Le va-rianti identificate, soprattutto nel gene MYH7,sono di tipo missense, ossia caratterizzate dallasostituzione di una singola base di DNA che dàluogo a sua volta alla sostituzione di un singoloaminoacido nella struttura proteica. Nel geneMYBPC3, invece, circa la metà delle varianti so-no di tipo frameshift, dette anche mutazioni dascivolamento.

Figura 2. Il Sarcomero cardiaco. (Immagine modificata da Watkins,2003).

Tabella 1. Geni coinvolti nella cardiomiopatia Ipertrofica.

Gene Simbolo Locus Prevalenza (%)

• Proteine sarcomeriche

Catena pesante della β-miosina MYH7 14q11.2-q12 25-30

Proteina C legante la miosina MYBPC3 11p11.2 25-30

Troponina T TNNT2 1q32 5

Troponina I TNNI3 19p13.4 ~5

α-tropomiosina TPM1 15q22.1 <5

Catena leggera della miosina

Essenziale MYL3 3p21.2-p21.3 <1

Regolatrice MYL2 12q23-q24.3 <1

Catena pesante dell’α-miosina MYH6 14q11.2-q12 rara

Troponina C TNNC 15q14 rara

Actina ACTC 3p21 rara

• Altre proteine

Proteina LIM CSRP3 10q22.2-q23.3 <2

α-actina 2 ACTN2 1q42-q43 rara

Titina TTN 2q13-33 rara

Fosfolambano PLN 6q22.1 rara

Caveolina-3 CAV3 3p25 rara

Teletonina TCAP 17q12-q21.1 rara

Giuntofilina JPH2 20q12 rara

LIM binding domain 3 (ZASP) LBD3 10q22.2-q23.3 rara

Queste sono caratterizzate dall’aggiunta (in-serzione) o eliminazione (delezione) di uno o po-chi nucleotidi alterando tutta la struttura dellaproteina a valle (in inglese: frame). Molto fre-quentemente tale meccanismo porta ad un arre-sto della sintesi proteica e conseguentemente al-la produzione di una proteina tronca. Per le for-me di CMI associate a mutazioni frameshift diMYBPC3, è stato ipotizzato un meccanismo pa-togenetico di aploinsufficienza, per cui l’allelenon mutato (wild-type) non riesce a compensarela carenza di proteina determinata da quello mu-tato. Per le mutazioni missense, la maggior par-te dei modelli transgenici indica che la CMI deri-va da effetti di dominanza negativa (cioè da uneffetto “tossico” della proteina mutata), più cheda aploinsufficienza1. Ad oggi, tuttavia, la pato-genesi della CMI a partire dalla mutazione sar-comerica resta largamente ignota, e verosimil-mente sono coinvolti più meccanismi, come sug-gerito dalla marcata eterogeneità di espressioneinterindividuale della malattia20.

Nell’ambito delle casistiche cliniche di CMI, èstata inoltre accertata in tempi recenti la pre-senza delle cosiddette “fenocopie”, cioè di patolo-gie con espressione morfologica molto simile o in-distinguibile dalla CMI sarcomerica, ma causateda meccanismi molecolari diversi e associate a si-gnificative differenze sul piano prognostico e te-rapeutico. Sono state, ad esempio, identificatecardiomiopatie a fenotipo ipertrofico associate amutazioni nei geni del metabolismo energetico edella produzione di ATP. Rientrano in questogruppo le cardiomiopatie secondarie a deficit del-la catena respiratoria mitocondriale, le cardio-miopatie da alterazioni del metabolismo lipidicoe un gruppo geneticamente eterogeneo rappre-sentato dalle cardiomiopatie da accumulo. Traqueste ultime troviamo due malattie X-linkedquali la sindrome di Anderson Fabry (da difettodel gene per l’alfa-galattosidasi A) in cui le ma-nifestazioni cardiologiche si associano spesso aun quadro clinico con interessamento multiorga-no, e la malattia di Danon (da difetto del geneLAMP2)21,22, caratterizzata da aumento estremodella massa cardiaca in età pediatrica. Infine,una cardiomiopatia di incerta classificazione èquella secondaria a mutazioni nella subunità ca-talitica �2 della proteina chinasi AMP-attivata(PRKAG2), in cui il fenotipo ipertrofico si associaa frequente e precoce comparsa di pre-eccitazioneventricolare23.

Ipotesi patogenetiche

L’incorporazione di proteine mutate nel sar-comero porta alla compromissione del normalefunzionamento delle proteine wild-type: è laprincipale causa di sviluppo dell’ipertrofia nellaCMI24. Inizialmente si pensava che mutazioninei geni sarcomerici fossero la causa di una de-pressione della funzione contrattile, con conse-

guente deplezione energetica del cardiomiocitadeterminando così un’ipertrofia di tipo compen-satorio25. Tuttavia, studi successivi hanno dimo-strato che mutazioni a carico della miosina pos-sono addirittura portare ad un incremento del-l’attività contrattile e ad un aumento della sen-sibilità al Ca2+ delle proteine regolatorie dei fi-lamenti sottili26,27. Per questo, alcuni autori han-no ipotizzato che la CMI rappresenti non tantoil risultato di un deficit contrattile, quanto delladeplezione energetica del cardiomiocita, a causadi un inefficiente impiego dei depositi di energiacellulare. Ashrafian, nel 2003, ha dimostrato chela presenza di proteine mutate nel sarcomeroporta ad un incremento della richiesta energeti-ca causata da un inefficiente utilizzo dell’ATP.Questa alterazione comporta una ridotta capaci-tà del cardiomiocita di mantenere i livelli ener-getici nel compartimento responsabile della con-trazione e compromette importanti funzioniomeostatiche come il re-uptake del calcio intra-cellulare. Il conseguente, prolungato transientedi calcio stimola i processi trascrizionali, attra-verso l’attivazione di messaggeri cellulari (pro-tein chinasi calcio-calmodulina-dipendente; viadelle MAP-chinasi; fattori di trascrizione): l’in-sieme di tutti questi segnali può indurre lo svi-luppo dell’ipertrofia, come meccanismo di com-penso.

Nuove ipotesi sullo sviluppo della CMI riguar-dano la possibilità che le mutazioni sarcomericheinterferiscano con lo sviluppo embriologico delcuore, in particolare con i meccanismi di migra-zione e differenziazione delle cellule pluripotentiche derivano dal pro-epicardio. Durante le fasi ini-ziali dello sviluppo embrionale, cellule pro-epicar-diche migrano a costituire l’epicardio, e da qui mi-grano diffusamente all’interno del miocardio e sidifferenziano in varie linee cellulari, che dannoluogo ai fibroblasti interstiziali, alla muscolaturaliscia vascolare, alle cellule avventizie, alle valvo-le atrioventricolari. Le mutazioni del sarcomero el’alterata contrattilità del cuore primordiale al-l’epoca di questa colonizzazione, potrebbero in-fluenzare l’espressione genica delle cellule epicar-diche, mediante un meccanismo di meccano-tra-sduzione. Infatti, al momento della migrazione diqueste cellule dall’epicardio al miocardio, il cuoreha già iniziato a contrarsi e le mutazioni causa diCMI sono già espresse28. Tale meccanismo potreb-be spiegare le molte espressioni fenotipiche dellaCMI che riguardano tessuti diversi dal miocardio,in cui le mutazioni non sono espresse: come, adesempio, le alterazioni della valvola mitralica, ilrimodellamento del microcircolo e la fibrosi inter-stiziale.

Correlazioni genotipo-fenotipo

La CMI è caratterizzata da una grande eteroge-neità genetica, fenotipica e clinica, con scarsa cor-relazione tra i vari aspetti nel singolo individuo.

F. Girolami et al.: Rilevanza clinica del test genetico nella cardiomiopatia ipertrofica 489

Per tale motivo, una volta identificata la mutazionecausante CMI in un paziente, non è in genere possi-bile trarne informazioni prognostiche o implicazioniriguardo allo sviluppo di un fenotipo più o menomarcato nei familiari. La stessa mutazione può de-terminare un ampio spettro di fenotipi perfino nel-l’ambito della stessa famiglia, e suggerisce l’impor-tanza di geni modificatori (varianti in cis o in trans,polimorfismi, varianti rare), fattori epigenetici (gra-do di metilazione del DNA, di acetilazione degli isto-ni, e modificazioni post trascrizionali), e fattori am-bientali (età, attività sportiva, fumo di sigaretta,ecc.) nel determinare le manifestazioni morfologichee cliniche della malattia. Sebbene labili, correlazio-ni genotipo-fenotipo sono state ricercate attivamen-te in passato, soprattutto nei primi anni dopo la sco-perta dei geni coinvolti nella CMI. Ad esempio, in al-cuni studi le mutazioni nel gene MYH7 venivano as-sociate ad insorgenza precoce della malattia, eleva-ta penetranza ed ipertrofia di grado marcato, men-tre le mutazioni nel gene TNNT2 sembravano com-portare una ipertrofia di grado modesto ma un altorischio di morte improvvisa, e mutazioni del geneMYBPC3 si correlavano ad insorgenza tardiva dimalattia, penetranza incompleta e prognosi favore-vole1. Inoltre, specifiche mutazioni, identificate neigeni MYH7 e TNNT2, fortunatamente rare, sonostate correlate con un alto rischio di morte improv-visa in giovane età e perciò definite “maligne”29. Tut-tavia, tali associazioni genotipo-fenotipo si basavanosu piccoli numeri di pazienti, appartenenti a fami-glie molto ampie, altamente selezionate per rischioaritmico. In realtà, studi successivi su grandi casi-stiche hanno spesso contraddetto tali assunti. Unesempio eclatante è quello delle mutazioni diTNNT2, che in alcuni Centri venivano consideratedi per sé un fattore di rischio maggiore per morte im-provvisa, indipendentemente dal profilo clinico.L’esperienza del nostro e di altri Centri ha dimo-strato che la CMI da TNNT2 può associarsi a profi-li estremamente diversi di malattia, che spaziano daforme lievi e asintomatiche fino a forme con ipertro-fia marcata e sintomi invalidanti, con un rischio dimorte improvvisa non diverso dagli altri geni30.

Ruolo clinico del test genetico

Fino a poco tempo fa considerata un mero stru-mento di ricerca, la diagnostica genetica è oggi unmomento estremamente importante dell’inquadra-mento di pazienti con CMI e delle loro famiglie, e ri-veste un ruolo pratico che è ancora poco apprezza-to dai cardiologici, anche per le limitate opportuni-tà di interazione con i genetisti in ambito cardiolo-gico. Il contributo del test genetico si riflette su va-ri momenti dell’iter clinico dei pazienti con CMI.

CONFERMA DELLA DIAGNOSI NEI FENOTIPI DUBBI

Nell’ambito della CMI, sono frequenti i co-siddetti casi “grigi”: il grado di ipertrofia è tal-mente lieve da non consentire una diagnosi si-

cura, e i restanti reperti strumentali (soprattut-to l’ECG) sono nella norma. Questa situazione èricorrente ad esempio nel caso degli atleti. Inquesti individui, l’identificazione di una muta-zione in uno dei geni sarcomerici consente diconfermare diagnosi di CMI31. Tale possibilitàha consentito di svelare gli aspetti più lievi del-la malattia e di caratterizzare meglio lo spettrofenotipico, soprattutto in ambito di screening fa-miliare; questo ha permesso di validare le ma-nifestazioni ancillari della malattia (dilatazioneatriale sinistra, aspetti di non compattazionedel VS, anomalie della mitrale) che vengono de-scritte frequentemente con le tecniche di ima-ging oggi disponibili.

DIAGNOSI DIFFERENZIALE

Il test genetico può essere utile per distinguereuna CMI primitiva, cioè causata da mutazioni ingeni sarcomerici, dalle forme cosiddette pseudo-ipertrofiche (fenocopie). Particolarmente impor-tante è la possibilità di distinguere forme autoso-miche dominanti da forme X-linked e perciò la pos-sibilità di stabilire un preciso rischio di ricorrenzae di trasmissibilità familiare32.

IDENTIFICAZIONE DEI GENOTIPI COMPLESSIE RISCHIO DI PROGRESSIONE DI MALATTIA

La possibilità di identificare genotipi comples-si rappresenta un elemento prognostico impor-tante. La presenza di due o più mutazioni in unostesso paziente è solitamente associata ad insor-genza precoce della malattia, decorso sfavorevolee rischio aumentato di morte improvvisa o perscompenso16. Questi dati sono importanti nel-l’identificazione del paziente a rischio. In un re-cente lavoro del nostro gruppo17, si descrivonoquattro famiglie con CMI, in cui il soggetto indi-ce presenta un genotipo complesso con tre muta-zioni in vari geni. Anche se la presenza di tre mu-tazioni si riscontra raramente (0,8%), essa costi-tuisce un rischio aumentato di progressione versola fase end-stage e di aritmie ventricolari, sugge-rendo un’associazione tra genotipo complesso eprogressione sfavorevole di malattia. Escludendoquesti casi estremi, è comunque regola generaleche il gruppo di pazienti con test genetico positi-vo presenti un aumentato rischio di decorso sfa-vorevole della malattia rispetto al gruppo dei pa-zienti negativi al test16.

RIVALUTAZIONE CRITICA DELLA DIAGNOSINEI PAZIENTI GENOTIPO-NEGATIVI

I pazienti negativi al test genetico rappresen-tano un gruppo composito, in cui la malattia è ve-rosimilmente causata da geni non ancora identifi-cati, oppure è ad eziologia non genetica1,16.

Recenti Progressi in Medicina, 102 (12), dicembre 2011490

Nella pratica clinica, ciascun paziente con fe-notipo CMI e test genetico negativo deve essere ri-valutato, sottoponendolo ad ulteriori esami. In par-ticolare, è importante escludere una CMI associa-ta a malattie neuromuscolari, o mutazione nei ge-ni che possono produrre fenocopie. Soprattutto seil soggetto è un giovane, è fondamentale andare al-la ricerca di manifestazioni extra-cardiache qualidimorfismi facciali, deficit neurologico, coinvolgi-mento renale etc. Queste evidenze, che spesso sfug-gono al cardiologo, possono invece essere utili perorientare la diagnosi nella giusta direzione. Unaconsulenza genetica clinica di II livello può per-mettere di distinguere le forme sindromiche asso-ciate a cardiomiopatia, come ad esempio le sindro-mi di Noonan e di Leopard, la malattia di Ander-son-Fabry, ecc.16,21,22,30. Perciò nei protocolli stan-dard per l’esecuzione del test genetico deve essereinclusa la consulenza pre test e post test eseguitain team multidisciplinare.

DIAGNOSI PRE-NATALE

In situazioni in cui la CMI familiare è associa-ta ad un’insorgenza precoce ed in forma partico-larmente severa, con più soggetti morti improvvi-samente in giovane età, la diagnosi prenatale po-trebbe essere effettuata allo scopo di identificarela presenza della mutazione nel feto33.

Tuttavia a causa delle incerte correlazioni ge-notipo-fenotipo, dovute alla variabile espressioneclinica, non si ha indicazione ad effettuare la dia-gnosi prenatale nel caso della CMI primitiva.

PROCEDURA SEGUITAPER EFFETTUARE IL TEST GENETICO

Il rapporto del paziente (edel cardiologo) con la geneti-ca va ben oltre il semplicetest, e comporta un vero eproprio iter con diverse tappedi significato diverso (figura3). La procedura seguitapresso il Centro di Riferi-mento per le Cardiomiopatiein Firenze negli ultimi 10 an-ni prevede una consulenzapre-test (fase pre-analitica),la fase analitica durante laquale viene eseguito il test inlaboratorio ed una consulen-za post-test (fase post-anali-tica). Le procedura è la stessaper probandi e familiari. Du-rante la fase pre-analitica, ilcardiologo propone al pazien-te di concordare una consu-lenza genetica con il geneti-sta. Per tale colloquio si im-piegano circa 30-45 minuti.

F. Girolami et al.: Rilevanza clinica del test genetico nella cardiomiopatia ipertrofica 491

La consulenza genetica è stata definita come“Processo di comunicazione che concerne i problemipsicologici, etici e sociali correlati all’occorrenza o alrischio di ricorrenza di una patologia genetica inuna famiglia”32. Durante la consulenza geneticapre-test vengono raccolte informazioni e quesiti po-sti dal consultando, viene costruito l’albero genea-logico della famiglia, si effettua una prima valuta-zione del rischio di ricorrenza, si discute con l’inte-ressato di ciò che è possibile fare per meglio preci-sare l’entità del rischio, chiarendo il significato e i li-miti del test genetico; infine viene raccolto uno spe-cifico consenso informato.

La consulenza genetica ed il consenso informa-to sono parti integranti di un test genetico poichépermettono la discussione preliminare di tutte lepossibili implicazioni dei diversi risultati ottenutidal test e devono fornire gli strumenti per la com-prensione della malattia genetica; per questo im-plicano l’utilizzo di particolari procedure atte adaffrontare le problematiche psicologiche, etiche esociali inerenti all’utilizzo dei test genetici32.

Segue una fase analitica durante la quale vieneeffettuata la ricerca di mutazioni nei geni implica-ti nella CMI mediante sequenziamento diretto, apartire da DNA estratto da un prelievo di sangueperiferico.

Nella fase post-analitica vengono effettuate laverifica dei risultati, la preparazione del referto ela consulenza genetica post-test. La consegna delreferto al paziente viene fatta dal cardiologo insie-me al genetista, secondo una procedura multidi-sciplinare che prevede in particolare la spiegazio-ne delle ricadute pratiche del test.

Paziente con Cardiomiopatia

Ipertro�ca (probando)

Consenso InformatoDNA

Consulenza genetica pre-test Cardiologo-Genetista

Screening Molecolaredei geni sarcomerici

Consulenza genetica post-test Comunicazione del risultato

Cardiologo-Genetista-Psicologo

Mutazione presente

No Mutazione Rivalutazioneclinica

Diagnoside�nitiva su

base genetica

Conferma della diagnosi nei fenotipi dubbiDiagnosi di!erenziale

Identi�cazione dei genotipi complessi

Screening genetico peri familiari del probando

Figura 3. Procedura per la diagnosi genetica di cardiomiopatia ipertrofica.(Modificata da Torricelli F. et al 2003)30.

Talvolta è presente anche uno psicologo. È inquesta fase che si apre la possibilità di far accede-re al test genetico i familiari del probando.

Il test genetico effettuato in un paziente conCMI può dare tre risultati diversi:

1. Identificazione di una mutazione sicura-mente patogenetica già descritta in letteratura; inquesto caso la diagnosi genetica è certa, per cui ilgenotipo osservato è compatibile con la diagnosiclinica e viene sempre proposto il test ai familiari.

2. Non identificare alcuna mutazione nei genistudiati a scopo diagnostico; in questo caso vieneprecisato che l’eventuale causa genetica della CMIpotrebbe trovarsi o in geni non analizzati (più ra-ri) oppure in geni al momento ancora non identifi-cati. Ovviamente non può essere esclusa la dia-gnosi clinica sulla base di un risultato negativo deltest.

3. Identificazione di una variante non classifi-cabile (UVs), ossia di una alterazione precedente-mente non descritta, per la quale è necessario de-finire una probabilità di associazione con la ma-lattia tramite ulteriori approfondimenti34.

Test presintomatico

In questa situazione il probando è clinicamen-te sano, con un ecocardiogramma ed un elettro-cardiogramma normali, appartenente ad una fa-miglia che presenta uno o più casi di CMI. Il pa-ziente richiede il test genetico perché vuole sape-re se ha ereditato o meno la mutazione responsa-bile della malattia nella sua famiglia. Il rischioteorico di presentare la mutazione è del 50% (pro-babilità a priori), nel caso in cui il soggetto sia fa-miliare di primo grado del paziente con CMI. Tut-tavia la penetranza è incompleta (70% nell’adul-to), incrementa con l’età ed è legata al sesso, oltreche a fattori ambientali (abitudini di vita quali fu-mo, alcol, attività sportiva). La ragione per cui unsoggetto richiede il test è frequentemente duplice:il rischio di essere “portatore” della mutazionecausa della malattia e di sviluppare la malattiastessa, e il rischio di trasmettere la malattia alladiscendenza.

Tuttavia non è noto nessun trattamento medi-co in grado di prevenire o ritardare l’insorgenzadella malattia. Il solo trattamento efficace nel pre-venire la morte improvvisa è un defibrillatore im-piantabile, ma esso viene proposto solo per i pa-zienti con CMI ad alto rischio di morte cardiaca im-provvisa1. Nei pazienti sani, portatori della muta-zione, può essere raccomandata la restrizione del-l’attività fisica, tuttavia l’effetto di tale provvedi-mento nel prevenire la morte improvvisa è pura-mente speculativo32.

Nel caso in cui il soggetto risulti positivo, sa-rà necessario un follow-up medico, volto alla dia-gnosi precoce dell’espressione fenotipica dellamalattia e alla valutazione – se possibile – del ri-schio di morte improvvisa. Questo soggetto sarà,inoltre a rischio di trasmettere la mutazione.

Nel caso, invece, di negatività al test, il pa-ziente avrà un notevole beneficio a livello psico-logico, e con l’interruzione dei controlli clinici pe-riodici, si avrà un vantaggio anche per il sistemasanitario30,32.

Il test genetico nei minori a scopo presintomatico

L’applicazione del test genetico a scopo presin-tomatico nei bambini è un argomento controverso:alcuni studi hanno enfatizzato i potenziali beneficî,specialmente perché la morte improvvisa può esse-re il primo sintomo della malattia; altri, per man-canza di efficaci trattamenti per prevenire l’insor-genza della malattia e la morte improvvisa, consi-derano deleterio il test presintomatico nei bambi-ni, per i possibili risvolti psicologici negativi32. At-tualmente molti gruppi hanno riserve nell’effet-tuare il test genetico presintomatico prima dellamaggiore età, riferendosi al decreto del Garantedella Privacy, dove si dice che: «I trattamenti di da-ti connessi all’esecuzione di test genetici presinto-matici possono essere effettuati sui minori non af-fetti, ma a rischio per patologie genetiche, solo nelcaso in cui esistano concrete possibilità di terapie odi trattamenti preventivi prima del raggiungimen-to della maggiore età» (Autorizzazione generale deltrattamento dei dati genetici, pubblicato nella Gaz-zetta Ufficiale della Repubblica Italiana n. 159dell’11 luglio 201130.

Conclusioni

Il test genetico rappresenta un punto di forzaper il clinico allo scopo di inquadrare correttamen-te i pazienti con cardiomiopatia ipertrofica. Risul-ta fondamentale al fine di confermare la diagnosinei fenotipi dubbi, riveste un ruolo importante nel-la diagnosi differenziale ed è utile nell’identifica-zione dei genotipi complessi. Inoltre, stabilendo lanatura ereditaria della malattia, interessa anche ifamiliari del probando, nei quali può essere impie-gato a scopo presintomatico.

Lo sviluppo di nuove tecnologie per l’analisi si-multanea di molti geni, quali le piattaforme diNext-Generation Sequencing, unitamente allasempre più stretta collaborazione tra clinici e ge-netisti, permetterà di ampliare sempre più le co-noscenze sulla genetica di questa malattia.

Bibliografia

1. Maron BJ. Hypertrophic Cardiomyopathy. A syste-matic review. JAMA 2002; 287: 1308-20.

2. Teare D. Asymmetrical hypertrophy of the heart inyoung adults. British Heart Journal 1958; 20: 1-8.

3. Maron BJ, MCKenna WJ, Danielson GK, et al.ACC/ESC EXPERT CONSENSUS DOCUMENTAmerican College of Cardiology/European Society ofCardiology Clinical Expert Consensus Document onHypertrophic Cardiomyopathy. J Am Coll Cardiol2003; 42: 1687-713.

Recenti Progressi in Medicina, 102 (12), dicembre 2011492

F. Girolami et al.: Rilevanza clinica del test genetico nella cardiomiopatia ipertrofica 493

4. Morrow AG, Braunwald E. Functional aortic steno-sis; a malformation characterized by resistance toleft ventricular outflow without anatomic obstruc-tion. Circulation 1959; 20: 181-9.

5. Shah PM, Gramiak R, Adelman AG, et al. Role ofechocardiography in diagnostic and hemodynamicassessment of hypertrophic subaortic stenosis. Cir-culation 1971; 44: 891-8.

6. Epstein SE, Morrow AG, Henry WL, et al., Editorial:The role of operative treatment in patients with idio-pathic hypertrophic subaortic stenosis. Circulation1973; 48: 677-80.

7. McKenna W, Deanfield J, Faruqui, et al. Prognosisin hypertrophic cardiomyopathy: role of age and cli-nical, electrocardiographic and hemodynamic featu-res. Am J Cardiol 1981; 47: 532-8.

8. Marian AJ, Roberts R. The molecular genetic basisfor hypertrophic cardiomyopathy. J Mol Cell Cardiol2001; 33: 655-70.

9. Olivotto I, Cecchi F, Gistri R, et al. Relevance of co-ronary microvascular flow impairment to long-termremodeling and systolic dysfunction in hypertro-phic cardiomyopathy. J Am Coll Cardiol 2006; 47:1043-8.

10. Nagueh SF, Bierig SM, Budoff MJ, et al. AmericanSociety of Echocardiography clinical recommenda-tions for multimodality cardiovascular imaging ofpatients with hypertrophic cardiomyopathy: Endor-sed by the American Society of Nuclear Cardiology,Society for Cardiovascular Magnetic Resonance, andSociety of Cardiovascular Computed Tomography.American Society of Echocardiography; AmericanSociety of Nuclear Cardiology; Society for Cardiova-scular Magnetic Resonance; Society of Cardiovascu-lar Computed Tomography. J Am Soc Echocardiogr2011; 24: 473-98.

11. Watkins H, McKenna WJ, Thierfelder L, et al. Mu-tations in the genes for cardiac troponin T and al-pha-tropomyosin in hypertrophic cardiomyopathy. NEngl J Med 1995; 332: 1058-64.

12. Marian AJ, Roberts R. The molecular genetic basisfor hypertrophic cardiomyopathy. J Mol Cell Cardiol2001; 33: 655-70.

13. Niimura H, Patton KK, McKenna WJ, et al. Sarco-mere protein gene mutations in hypertrophic car-diomyopathy of the elderly. Circulation 2002; 105:446-51.

14. Nistri S, Olivotto I, Girolami F, et al. Looking for hy-pertrophic cardiomyopathy in the community: whyis it important? J Cardiovasc Transl Res 2009; 2:392-7.

15. Seidman CE, Seidman JG. Identifying sarcomere ge-ne mutations in hypertrophic cardiomyopathy: a per-sonal history. Circ Res 2011; 108: 743-50.

16. Olivotto I, Girolami F, Ackerman MJ, et al. Myofila-ment protein gene mutation screening and outcomeof patients with hypertrophic cardiomyopathy. MayoClin Proc 2008; 83: 630-8.

17. Girolami F, Ho CY, Semsarian C, et al. Clinical fea-tures and outcome of hypertrophic cardiomyopathyassociated with triple sarcomere protein gene muta-tions. J Am Coll Cardiol 2010; 55: 1444-53.

18. Girolami F, Olivotto I, Passerini I, et al. A molecularscreening strategy based on beta-myosin heavychain, cardiac myosin binding protein C and tropo-nin T genes in Italian patients with hypertrophiccardiomyopathy. J Cardiovasc Med 2006; 7: 601-7.

19. www.angis.org.au/Databases/Heart/heartbreak.htmlcardiogenomics.med.harvard.edu; www.gdb.org;www.hgmd.cf.ac.uk

20. McKenna WJ, Elliott PM. Cardiomiopatia Ipertrofica.Textbook of Cardiovascular Medicine 2009; 28: 433-47.

21. Patel MR, Cecchi F, Cizmarik M, et al Cardiovascu-lar events in patients with fabry disease natural hi-story data from the fabry registry. J Am Coll Cardiol2011; 57: 1093-9.

22. Maron BJ, Roberts WC, Arad M, et al. Clinical Out-come and Phenotypic Expression in LAMP2 Cardio-myopathy. JAMA 2009; 301: 1253-9.

23. Giordano C, D’Amati G. Cardiomyopathies due todefective energy metabolism: morphological and fun-ctional features]. Pathologica 2005; 97: 361-8.

24. Ashrafian H, Redwood C, Blair E, et al. Hypertro-phic cardiomyopathy: a paradigm for myocardialenergy depletion. Trends Genet 2003; 19: 263-8.

25. Watkins H, McKenna WJ, Thierfelder L, et al. Mu-tations in the genes for cardiac troponin T and al-pha-tropomyosin in hypertrophic cardiomyopathy. NEngl J Med 1995; 332: 1058-64.

26. Lowey S. Functional consequences of mutations inthe myosin heavy chain at sites implicated in fami-lial hypertrophic cardiomyopathy. Trends Cardio-vasc Med 2002; 12: 348-54.

27. Elliott P, Andersson B, Arbustini E, et al. Classifica-tion of the cardiomyopathies: a position statementfrom the european society of cardiology workinggroup on myocardial and pericardial diseases. EurHeart J 2008; 29: 270-276.

28. Olivotto I, Girolami F, Nistri S, et al. The many fa-ces of hypertrophic cardiomyopathy: from develop-mental biology to clinical practice. J CardiovascTrans Res 2009; 2: 349-67.

29. Ackerman MJ, VanDriest SL, Ommen SR, et al. Pre-valence and age-Dependance of maliganant muta-tions in the Beta-myosin heavy chain and troponin Tgenes in Hypertrophic Cardiomyopathy. J Am CollCardiol 2002; 39: 2042-8.

30. Torricelli F, Girolami F, Olivotto I, et al. Prevalenceand clinical profile of troponin T mutations amongpatients with hypertrophic cardiomyopathy in tu-scany. Am J Cardiol 2003; 92: 1358-62.

31. Baldi M, Girolami F. A new type of “tracing” for car-diologists? G Ital Cardiol 2009; 10: 266.

32. Charron P, Heron D, Gargiulo M, et al. Genetic te-sting and genetic counselling in hypertrophic car-diomyopathy: the French experience. J Med Genet2002; 39: 741-6.

33. Charron P, Héron D, Gargiulo M, et al. Prenatal mo-lecular diagnosis in hypertrophic cardiomyopathy: re-port of the first case. Prenat Diagn 2004; 24(9): 701-3.

34. Clinical Molecular Genetics Society (CMGS). Prati-ce guidelines for the interpretation and reporting ofunclassified variants (UVs) in clinical molecular ge-netics. Avaible at: http://www.cmgs.org/.

Indirizzo per la corrispondenza:Dott. Francesca GirolamiStruttura Organizzativa Dipartimentale Diagnostica GeneticaAzienda Ospedaliero Universitaria CareggiLargo Brambilla, 350134 FirenzeE-mail: [email protected]

Disc

laim

er: T

he man

uscrip

t and it

s conte

nts ar

e

confid

entia

l, inte

nded fo

r journ

al re

view p

urpose

s

only,

and n

ot to b

e furth

er d

isclo

sed.

1

Quantitative Contrast-Enhanced Cardiovascular Magnetic

Resonance Predicts Sudden Death in Patients with

Hypertrophic Cardiomyopathy

1,2Raymond H. Chan, MD, MPH, 3Barry J. Maron, MD, 4Iacopo Olivotto, MD, 5Michael J. Pencina, PhD,

6Gabriele Egidy Assenza, MD, 3Tammy Haas, RN, 3John R. Lesser, MD, 7Christiane Gruner, MD,

7Andrew M. Crean, MD, 7Harry Rakowski, MD, 8James E. Udelson, MD, 8Ethan Rowin, MD, 9Massimo

Lombardi, MD, 4Franco Cecchi, MD 4Benedetta Tomberli, MD, 10Paolo Spirito, MD, 10Francesco

Formisano, MD, 11Elena Biagini, MD,11Claudio Rapezzi, MD, 6Carlo Nicola De Cecco, MD, 6Camillo

Autore, MD, 12E. Francis Cook, PhD, 1,2Susie N. Hong, MD,1,2 C. Michael Gibson, MD, MS, 1,2Warren J.

Manning, MD,1,2Evan Appelbaum, MD and 8Martin S. Maron, MD

1PERFUSE Study Group, Harvard Medical School, Boston, Massachusetts; 2Department of Medicine, Cardiovascular Division,

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; 3The Hypertrophic Cardiomyopathy

Center, Minneapolis Heart Institute Foundation, Minneapolis MN; 4Referral Center for Myocardial Diseases, Azienda

Ospedaliera Universitaria Careggi, Florence Italy; 5 Harvard Clinical Research Institute and Boston University Biostatistics;

6Ospedale Sant’Andrea Universita “La Sapienza”, Rome, Italy; 7Division of Cardiology, Toronto General Hospital, University

Health Network, University of Toronto, Toronto, Ontario, Canada; 8Hypertrophic Cardiomyopathy Center, Division of

Cardiology, Tufts Medical Center, Boston, Massachusetts; 9Fondazione C.N.R./Regione Toscana G. Monasterio, Pisa, Italy;

10Ente Ospedaliero Ospedali Galliera, Genoa, Italy; 11Policlinico S. Orsola-Malpighi, Bologna, Italy; 12Department of

Epidemiology, Harvard School of Public Health, Boston, MA,

Running title: LGE and sudden death in HCM Address for Correspondence: Martin S. Maron, MD 800 Washington St, #70 Boston, MA 02111 Email: [email protected] Phone/Fax: 617 636-8066/617 636-7175

Disc

laim

er: T

he man

uscrip

t and it

s conte

nts ar

e

confid

entia

l, inte

nded fo

r journ

al re

view p

urpose

s

only,

and n

ot to b

e furth

er d

isclo

sed.

3

ABSTRACT

Background. Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden

cardiac death (SCD) in the young, although not all patients eligible for SCD prevention with the

implantable cardioverter-defibrillator (ICD) are identified. Contrast-enhanced cardiovascular

magnetic resonance (CMR) with late gadolinium enhancement (LGE) has emerged as an in vivo

marker of myocardial fibrosis, although its role in stratifying SCD risk in subgroups of HCM

patients remains unresolved.

Methods. We prospectively assessed the relation between LGE (as % of left ventricular mass)

and cardiovascular outcomes in 1293 consecutive HCM patients followed for a median of 3.3

years.

Results. Sudden cardiac death events occurred in 37 (3%) patients. A continuous relationship

was evident between %LGE (p=0.001) and SCD risk in HCM patients. Extent of LGE was

independently associated with increased risk of SCD (HRadj 1.4/10% increase in LGE; p=0.002),

even after adjustment for other relevant disease variables. LGE of ≥15% of LV mass

demonstrated a 2-fold increase for SCD in those patients otherwise considered to be at low risk,

with an estimated likelihood for SCD of 6% at 5 years. Performance of the SD risk model was

enhanced by LGE (net reclassification index of 12.9%; 95% CI: 0.3-38.3% with a relative

integrated discrimination improvement of 0.565; 95% CI: 0.019-3.564). Absence of LGE was

associated with lower risk for SD (HRadj 0.39; p=0.02). Extent of LGE also predicted

development of the end-stage of HCM with systolic dysfunction (HRadj 1.8/10% increase in

LGE; p<0.03).

Disc

laim

er: T

he man

uscrip

t and it

s conte

nts ar

e

confid

entia

l, inte

nded fo

r journ

al re

view p

urpose

s

only,

and n

ot to b

e furth

er d

isclo

sed.

4

Conclusions. Extensive LGE measured by quantitative contrast-enhanced CMR is an

independent predictor of SCD in HCM and a new marker for judging high-risk status, identifying

patients otherwise considered to be at low risk and who may benefit from ICD therapy.

CHAGAS DISEASE AS A CAUSE OF HEART FAILURE AND VENTRICULAR

ARRHYTHMIAS IN PATIENTS LONG REMOVED FROM ENDEMIC AREAS: AN

EMERGING PROBLEM IN EUROPE

Vieri Vannucchi MD, Benedetta Tomberli MD, Lorenzo Zammarchi* MD,

Alessandra Fornaro MD, Gabriele Castelli MD, Filippo Pieralli** MD, Andrea Berni*** MD, Sophie

Yacoub**** MD, Alessandro Bartoloni* MD, Iacopo Olivotto MD

Referral Center for Myocardial Diseases, Internal Medicine and Infectious Disease Unit, CareggiUniversity Hospital, Florence, Italy

* Dipartimento di Medicina Sperimentale e Clinica, Sezione Medicina Critica e Medicine Specialistiche, Clinica Malattie Infettive, Università degli Studi di Firenze, Firenze, Italia** Internal and Emergency Medicine Unit, Careggi Uninersity Hospital, Florence, Italy*** Medicina Interna all'Orientamento all'alta complessità aziendale 2, Università degli Studi di Firenze, Italia**** Department of Medicine, Imperial College, Hammersmith Campus, Du Cane Rd, London, UK

Running Head: Chagas in Europe

Total word count: 2052

Address for correspondence: Dr. Vieri Vannucchi, MDUnità Medicina Interna e di UrgenzaAzienda Ospedaliera Universitaria CareggiViale Pieraccini 19, 50134 Firenze, ItalyTel/Fax: 39 055 7949335Email: [email protected]

Keywords: Chagas’ cardiomyopathy, Trypanosomiasis cardiovascular, Heart failure.

Conflict of Interest Disclosures: None.

1

ABSTRACT

Chagas disease (CD) is a parasitic disease caused by the protozoan Trypanosoma cruzi. In endemic

areas (South and Central America), CD represents a relevant public health issue, and is the most frequent

cause of cardiomyopathy. In non-endemic areas such as Europe, CD represents an emerging problem

following the establishment of sizeable communities from Brazil and Bolivia. Chagas cardiomyopathy

represents the most frequent and serious complication of chronic CD, affecting about 20-30% of patients,

potentially leading to heart failure, arrhythmias, thromboembolism, stroke and sudden death. Because late

complications of CD may develop several years or even decades after the acute infection, it may be

extremely challenging to reach the correct diagnosis in patients long removed from the countries of origin.

We report two examples of Chagas cardiomyopathy in South American women permanently residing in Italy

for >20 years, presenting with cardiac manifestations ranging from left ventricular dysfunction and heart

failure to isolated ventricular arrhythmias. The present review emphasizes that CD should be considered as a

potential diagnosis in patients from endemic areas presenting with “idiopathic” cardiac manifestations, even

when long removed from their country of origin, with potential implications for treatment and control of CD

transmission.

Word count = 195

2

 

 

1      

NOVEL ALPHA-ACTININ-2 VARIANT ASSOCIATED WITH

FAMILIAL HYPERTROPHIC CARDIOMYOPATHY AND JUVENILE

ATRIAL ARRHYTHMIAS:

A MASSIVELY PARALLEL SEQUENCING STUDY

1Girolami F. (BSc), 2Iascone M. (BSc), 3Tomberli B. (MD), 1Bardi S. (BSc), 1Benelli

M.(PhD), 1Marseglia G. (BSc), 1Pescucci C. (BSc), 2Pezzoli L. (BSc), 2Sana ME.(PhD), 4Basso C. (MD), 5-6Marziliano N.(BSc), 6Merlini P.A. (MD), 3Fornaro A. (MD), 7Cecchi

F.(MD), 1Torricelli F.(BSc), 3Olivotto I.(MD).

1Genetic Diagnostic Unit, Careggi University Hospital, Florence, Italy; 2USSD Laboratorio Genetica Medica, Ospedali Riuniti, Bergamo, Italy

3Referral Centre for Myocardial Diseases, Careggi University Hospital, Florence, Italy. 4Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of

Padua, Padua, Italy. 5Azienda Ospedaliera Ospedale Niguarda Cà Granda, IV Division of Cardiology, Milan, Italy

6 Azienda Ospedaliera Universitaria di Parma, Division of Cardiology, Parma, Italy 7University of Florence, Department of Clinical and Experimental Medicine, Florence, Italy

(Short title: ACTN2-related HCM identified by deep sequencing)

Address for correspondence: Dr. Francesca Girolami SOD Diagnostica Genetica Azienda Ospedaliera Universitaria Careggi Largo Brambilla 3, 50134 Firenze Tel. ##39-0557949364 - Fax. 0557949686 e-mail: [email protected]

Acknowledgments: This work was supported by Ministero Istruzione Università e Ricerca (PRIN), European Union (STREP Project 241577 “BIG HEART,” 7th European Framework Program), and RF2010-2313451”Hypertrophic Cardiomyopathy:new insights from deep sequencing and psycosocial evaluation”.

 

 

2      

ABSTRACT

Aims. Next generation sequencing (NGS) analysis might be particularly advantageous in genetically heterogeneous conditions, such as familial hypertrophic cardiomyopathy (HCM), in which a considerable proportion of patients remain undiagnosed following conventional Sanger sequencing testing. In the present study we present an Italian family with atypical HCM in which a novel disease-causing variant in alpha-actinin2 (ACTN2) was identified by NGS.

Methods and Results. A large family spanning four generations was examined, exhibiting an autosomal dominant cardiomyopathic trait comprising a variable spectrum of a) mid-apical HCM with restrictive evolution with marked bi-atrial dilatation, b) early onset atrial fibrillation and atrioventricular block, and c) left ventricular (LV) noncompaction. In the proband, 36 candidate genes for HCM (based on published reports) were studied by targeted resequencing with a customized enrichment system. Following bioinformatics analysis, four likely pathogenic variants were identified: TTN NM_003319.4:c.21977G>A (p.Arg7326Gln); TTN NM_003319.4:c.8749A>C (p.Thr2917Pro); ACTN2 NM_001103.2:c.683T>C (p.Met228Thr) and OBSCN NM_052843.2:c.13475T>G (p.Leu4492Arg). The novel variant ACTN2 p.Met228Thr, located in the Actin–binding domain, proved to be the only mutation fully co-segregating with the cardiomyopathic trait in 18 additional family members (of whom 11 clinically affected). ACTN2_Met228Thr was absent in 570 alleles of healthy controls and in 1000 Genomes Project, and was labelled as “Causative” by in silico analysis using PolyPhen-2, as “Deleterious” by SIFT and as “Disease-Causing” by MutationTaster.

Conclusions. A targeted NGS approach allowed the identification of a novel ACTN2 variant associated with mid-apical HCM and juvenile onset of atrial fibrillation, emphasizing the potential of this technique in HCM diagnostic screening.

Word count= 249

 

CLINICAL  PHENOTYPE  AND  OUTCOME  OF    

HYPERTROPHIC  CARDIOMYOPATHY  ASSOCIATED  WITH    

SARCOMERE  THIN  FILAMENT  GENE  MUTATIONS      

Raffaele  Coppini1,  Benedetta  Tomberli1,  Caroly  Ho2,  Euan  Ashley3,  Sharlene  Day4,  Cecilia  Ferrantini1,  Francesca  Girolami1,  Sara  Bardi1,  Franco  Cecchi1,  

Corrado  Poggesi1,  Jil  Tardiff5,  Iacopo  Olivotto1.  

 

1. Centro  Interuniversitario  di  Medicina  Molecolare  e  Biofisica  Applicata  (CIMMBA),  University  of  Florence,  Italy.  

2. Referral  Center  for  Cardiomyopathies,  Careggi  University  Hospital,  Florence,  Italy.    

3. Brigham  and  Women's  Hospital,  Boston,  US.  4. Cardiovascular  Medicine,  Stanford  Medical  Center,  Stanford,  US.  5. University  of  Michigan  Medical  Center,  Ann  Arbor,  US.  6. Department  of  Cellular  and  Molecular  Medicine,  University  of  Arizona,  

Tucson,  US.  

 

   

 

ABSTRACT    

Purpose:  HCM  may  be  associated  with  a  variety  of  causal  genes.  In  a  distinct  subgroup  

of   patients,   HCM   is   caused   by   mutations   of   sarcomere   thin   filament   protein   genes,  

including   cardiac   troponin   T   and   I   (TNNT2,  TNNI3),   tropomyosin   (TPM1)   and   cardiac  

actin  (ACTC).  The  phenotype  and  clinical  course  of  thin  filament  HCM,  compared  to  the  

more   prevalent   thick   filament   form,   is   still   unresolved.  We   sought   to   characterize   the  

phenotypic  correlates  and  outcome  of  84  patients  with  thin  filament  HCM,  followed  for  

an   average   of   5   years,   compared   to   157   HCM   patients   with   thick   filament-­‐related  

disease.   Results.   Compared   with   thick   filament   patients,   patients   with   thin   filament  

HCM  showed:  (1)  lesser  maximal  LV  wall  thickness  values  (18±5  vs  24±6  mm,  p<0.001),  

with  larger  prevalence  of  atypical  distribution  of  hypertrophy;  (2)  higher  rate  of  adverse  

events,   including   cardiovascular   death,   resuscitated   cardiac   arrest,   appropriate   ICD  

shock,  nonfatal   stroke  or  progression   to  NYHA  class   III/IV   (annual  event   rate  4.6%  vs  

2.7%,   p=0.032);   (3)   higher   likelihood   of   progression   towards   LV   systolic   dysfunction  

(EF<50%)   and/or   restrictive   diastole,   the   so-­‐called   end-­‐stage   of   HCM   (30%   vs   18%,  

p=0.02).  Furthermore  patients  with  thin  filament  HCM  had  2.2  fold  higher  prevalence  of  

triphasic  LV  filling  pattern  (26%  vs  12%  in  thick  filament  HCM,  p<0.001).  Conclusions.  

HCM   related   to   thin   filament   mutations   is   characterized   by   significant   differences   in  

phenotype   and   clinical   course   compared   to   the   more   prevalent   thick-­‐filament   HCM,  

including   higher   risk   of   adverse   events   related   to   ventricular   arrhythmias   as   well   as  

progressive  LV  dysfunction.  Triphasic  LV  filling  is  distinctively  common  in  thin  filament  

HCM,  pointing  to  peculiar  molecular  determinants  of  diastolic  dysfunction  in  this  genetic  

subset  

Outcome  of  Hypertrophic  Cardiomyopathy  

 associated  with  sarcomere  protein  gene  mutations:    

 impact  of  the  Implantable  Cardioverter-­‐Defibrillator      

Tomberli  B  (MD1),  Ferrantini  C  (MD,  PhD2),  Coppini  R  (MD,  PhD3),    Girolami  F  (BSc5),  Pieragnoli  P  (MD6),  Olivotto  I  (MD4),  Padeletti  L  (MD6),  Cecchi  F  (MD1).  

 

 (1)  University  of  Florence,  Department  of  Clinical  and  Experimental  Medicine,  Florence,  Italy  (2)  University  of  Florence,  Department  of  Human  Physiology,  Florence,  Italy  (3)  University  of  

Florence,  Department  of  Pharmacology,  Florence,  Italy  (4)  Careggi  University  Hospital,  Referral  Center  for  Cardiomyopathies,  Florence,  Italy  (5)  Careggi  University  Hospital,  Genetic  Unit,  Florence,  Italy  (6)  Careggi  University  Hospital,  Electrophysiology  Unit,  Florence,  Italy  

 

Purpose  

To   date,   large   clinical   studies   on   hypertrophic   cardiomyopathy   (HCM)   have  assessed   outcome   irrespective   of   genetic   background.   However,   the   large  proportion   of   patients   with   no   detectable   sarcomere   myofilament   gene  mutations,  possibly  including  phenocopies,  may  confound  our  perception  of  the  the   natural   history   of   HCM   due   to   sarcomeric   myofilament   mutations.   We  therefore   investigated   the   clinical   features   and   outcome   of   250   HCM   patients  followed  6±3  years  after  genetic  identification  of  such  mutations.  The  impact  of  the   implantable   cardioverter-­‐defibrillator   (ICD),   both   in   terms   of   appropriate  intervention  rates  and  adverse  effects,  was  specifically  assessed.    

 

Results  

Overall,   16   pts   (6%;   incidence   1%   per   year)   died   of   cardiovascular   causes,  including  progressive  heart  failure  (n=7),  SCD  (n=5),  ischemic  stroke  (n=1)  and  other   non-­‐cardiac   diseases   (n=3).   Of   these,   9(5%)   occurred   in   the   subset   of  patents   without   ICD   (group   1)   including   3   sudden   deaths;   while   7   (11%)  occurred   among   pts   with   ICD   (group   2),   of   whom   3   had   prior   appropriate  interventions.  Two  of  the  deaths  in  group  2  were  sudden,  occurring  despite  the  device:   unfortunately,   neither   an   autopsy   nor   an   ICD   interrogation   was  performed  in  these  pts,  and  the  exact  causes  of  death  could  not  be  ascertained.  At  final  evaluation,  6±3  years  after  genetic  testing,  34  pts  (14%)  were  in  NYHA  class  III/IV  and  25  (10%)  had  overt  LV  systolic  dysfunction  (LVEF  <50%).  A  total  of  53  (21%)   pts   had   received   invasive   management   of   LV   obstruction   by   surgical  myectomy  (n=33)  or  alcohol  septal  ablation  (n=20).  Survival   in  the  two  groups  was   comparable   (p=0.15)   despite   more   severe   clinical   profile   and   greater  prevalence  of  end-­‐stage  in  group  2.  No  difference  in  survival  was  observed  based  on  the  affected  gene.  Among  the  64  pts  with  ICD,  only  7  (11%;  2  in  primary  and  5  in  secondary  prevention)  experienced  appropriate  shocks  for  VT  of  VF,  with  an  

overall   annual   incidence   of   2%.   However,   16   pts   (25%   of   the   ICD   subset,  including  2  with  appropriate   shocks)  experienced  device-­‐related  complications  such  as  inappropriate  ICD  interventions  (n=10;  including  4  with  electric  storms  due  to  lead  fracture),  infections  (n=4)  and  lead  dislocation  (n=6).    

 

Conclusions  

In   HCM   patients   due   to   sarcomere   myofilament   mutations,   cardiovascular  mortality  and  sudden  cardiac  death  was  low  even  in  the  presence  of  multiple  risk  factors.   End-­‐stage   progression   appeared   to   be   common,   supporting   the  hypothesis   of   long-­‐term   disease   progression   to   heart   failure.   The   ICD   allowed  favourable   survival   rates   in   a   subset   of   high   risk   HCM   patients,   at   the   cost   of  considerable  complication  rates,  even  when  no  appropriate   interventions  were  recorded.  Sudden  cardiac  death  may  occur  even  after  ICD  implantation.      

A  novel  desmoplakin  dominant  mutation    

responsible  for  Carvajal/Naxos  syndrome    

identified  by  exome  sequencing    

B.  Tomberli  (1),  A.  Fornaro  (1),  S.  Bardi  (2),  F.  Torricelli  (2),    M.  Benelli  (2),  C.  Pescucci  (2),  F.  Cecchi  (3),  F.  Girolami  (2),  I.  Olivotto  (1)  

 (1)  Careggi  University  Hospital,  Referral  Center  for  Cardiomyopathies,  Florence,  Italy    

(2)  Careggi  University  Hospital,  Genetic  Unit,  Florence,  Italy    (3)  University  of  Florence,  Department  of  Clinical  and  Experimental  Medicine,  Florence,  Italy  

   

Purpose  

Naxos  and  Carvajal  syndrome  are  rare   forms  of  recessive  Arrhythmogenic  Right  Ventricular  

Cardiomyopathy   (ARVC),   characterized   by   ventricle   dysplasia/dilated   cardiomyopathy   and  

ventricular  arrhythmias,  associated  with  palmoplantar  keratoderma  and  woolly  hair.      

We   report   the   case   of   an   Italian  37-­‐year-­‐old  woman  with   a   form  of  ARVC   characterized  by  

phenotypic   features   overlapping   Naxos/Carvajal   syndrome,   with   a   dominant   model   of  

inheritance.  Whole  Exome  Sequencing  (WES)  allowed  the  identification  of  a  novel  mutation  in  

the  desmoplakin  gene  (DSP),  which  was  previously  missed  by  traditional  Sanger  sequencing.    

 

Methods  

The   woman   was   admitted   to   the   hospital   after   resuscitated   cardiac   arrest.   Clinical   and  

instrumental   evaluations   showed   mild   biventricular   systolic   dysfunction,   with   dilated  

ventricles   and   areas   of   bulging   in   the   lateral   wall   of   the   right   ventricle.   She   also   had  

palmoplantar  keratoderma  and   family  history  of   juvenile  sudden  cardiac  death  (brother,  28  

year-­‐old).  Traditional  Sanger  sequencing  failed  to  identify  any  mutations  in  the  genes  usually  

associated  with  ARVC  (transforming  growth  factor  beta-­‐3,  ryanodine  receptor  2,  desmoplakin,  

plakophilin-­‐2,  desmoglein-­‐2,  desmocollin-­‐2  transmembrane  protein  43,    junction  plakoglobin  

protein).   Whole   exome   sequencing   was   therefore   performed   on   the   Illumina   HiScan   SQ  

platform.   After   bioinformatics   analysis,   data   were   filtered   by   frequency,   function,  

conservation   scores   and   predicted   deleteriousness   by   means   in   silico   3D   modeling.  

Prioritization  of  variants  was  performed  by  Gene  Prioritization  Portal  and  then  cosegregation  

was  tested  in  the  family.  

Results  

Family’s  pedigree  showed  a  dominant  model  of  inheritance.  65993  variants  were  individuated  

by  bioinformatics  analysis;  after  data  filtering  and  integration  of  filtered  results  with  patient’s  

clinical  features,  4  potential  mutations  were  selected.  Only  two  of  those  variants  cosegregated  

with   the   disease   in   the   family:   c.878A>T,   p.Glu293Val     in   the   DSP   gene   and   c.626A>C,  

p.Tyr209Ser   in   the   cytochrome   c   oxidase   assembly   gene   (SCO2).   Since   the   cardiomyopathy  

related   to   SCO2   gene   mutations   is   usually   associated   with   encephalopathy   and   is   fatal   in  

children,  we  excluded  the  causative  role  of  such  gene  in  our  family.  Therefore,  we  considered  

the   DSP-­‐Glu293Val   variant   as   disease-­‐causing   and  we   hypothesized   a  modifier   role   for   the  

SCO2  variant.    

Conclusions  

We  identified  a  novel  DSP  gene  variant  associated  to  a  rare  dominant  form  of  Carvajal/Naxos  

syndrome,  by  Whole  Exome  Sequencing.  Our  study  confirmed  the  high  efficiency  of  NGS,  both  

in  terms  of  accuracy  and  sensitivity,  when  compared  to  traditional  sequencing.  However,  due  

to   the   huge   amount   of   data   arising   from   NGS   analysis,   bioinformatics   management   becomes  

crucial   and   traditional   genetic   rules   are   still   needed   to   understand   and   interpret   the   real  

significance  of  new  variants.    

PREVALENCE AND CLINICAL SIGNIFICANCE

OF HEART FAILURE SYMPTOMS

IN PATIENTS WITH NONOBSTRUCTIVE HCM

E.J. Rowin, B. Tomberli, A. Arretini, B.J. Maron, S.A. Casey, R. Garberich, M.S. Link, R.H.M.

Chan, E. Appelbaum, J.R. Lesser, J.E. Udelson, M.S. Maron, F. Cecchi, I. Olivotto.

Background. One-third of patients with HCM do not have left ventricular outflow tract (LVOT)

obstruction and the natural history of this subgroup remains undefined. We therefore sought to

evaluate clinical features and outcome of 416 HCM patients, followed for 6.3±2.1 yrs.

Furthermore, we assessed the prevalence of heart failure (HF) symptoms (NYHA class III/IV),

with regard to the presence or absence of LVOT obstruction, in order to evaluate its clinical

implications.

Results. At baseline, LVOT obstruction (≥30 mmHg at rest or following exercise) was present in

436 (64%), while 242 (36%) were non-obstructive. At the end of follow-up, 231 patients (34%)

developed progressive HF symptoms; of these, 201 were obstructive and 30 nonobstructive (87

vs 13%, p<0.001). However, nonobstructive patients who developed HF symptoms, were more

likely to require heart transplant compared to obstructive patients (0.7 vs 2.1%; p=0.02).

Furthermore, nonobstructive HCM patients showed increased risk for end-stage progression

(EF<50%; 8% vs 4% for patients with obstruction; p=0.05). Overall mortality and HCM-related

event rate were comparable in the two subgroups.

Conclusions: Development of HF symptoms in nonobstructive patients, although less common

than in the obstructive group, was associated with higher risk of end-stage progression and the

need of heart transplant. While HF occurring in the context of LVOT obstruction, usually

associated with little or no fibrosis within the LV, is possibly reversible following surgery, HF in

nonosbtructive patients is often subtended by huge LGE and it is usually progressive and

irreversible. This observation suggests the need for close surveillance, even though systolic

function is preserved, and potentially early initiation of antiremodeling treatment.

 

MYBPC3-­‐Glu258Lys  RELATED  HYPERTROPHIC  CARDIOMYOPATHY:    

A  FOUNDER  EFFECT  IN  TUSCANY  

Francesca  Girolami  BSc  (*),  Sara  Bardi  BSc  (*),  Laura  Berti  BSc  (*),Tommaso  Pippucci  (°)  ,  Benedetta  

Tomberli  MD  (*),  Franco  Cecchi  MD(*),  Francesca  Torricelli  BSc(*),  Iacopo  Olivotto  MD  (*).    

 

(*)   Referral   Center   for   Myocardial   Diseases,   Genetic   Diagnostic   Unit,   Careggi   University   Hospital,  

Florence,  Italy;    

(°)  Medical  Genetic  Laboratory,  Policlinico  S.  Orsola-­‐Malpighi  ,University  of  Bologna,  Italy.  

     

ABSTRACT  

Background.   MYBPC3   is   the   most   common   gene   involved   in   HCM.   Even   if   the  

majority   of   mutations   identified   are   novels,   it   is   possible   to   find   some   recurrent  

pathogenic  mutations.  A  few  founding  mutations  have  been  defined,  and  the  most  

of   them  are   in  MYBPC3  gene.  The  occurrence  of  a   founder  effect    has  never  been  

reported  in  Italy  so  far.  

Objectives.  The  aim  of  the  present  study  was  to  describe  a  founder  effect  in  Tuscany  

caused  by  MYBPC3-­‐Glu258Lys  mutation.  

Methods  and  Results.  A   total  635   Italian  unrelated   index  HCM  patients  underwent  

screening  for  myofilament  gene  mutations  by  direct  sequencing  of  8  genes,  including  

MYBPC3,  MYH7,  TNNI2,  TNNI3,  ACTC,  TPM1,  MYL2  and  MYL3.  In  211/635  (33%)  was  

identified  a  MYBPC3  mutation  and  54/635   (8.5%)   consecutive  unrelated  probands,  

all   were   born   in   Tuscany,     harboured     the   same   MYBPC3   Glu258Lys   pathogenic  

mutation.  Disease  haplotypes  analysis  examined  in  4  families  using  9  intragenic  loci,  

showed  a  unique  haplotype  extended  for  a  2Mb  genomic  region.  To  confirm  these  

results  haplotype  analysis  was  extended  to  all   index  cases  and  in  100  healthy  adult  

subjects  were  born  in  the  same  geographical  region  of  Tuscany.    

Conclusions.   MYPC3-­‐Glu258Lys   mutation   is   a   founder   effect   in   Tuscany   HCM  

population.   Further   studies   in   family   members   are   currently   ongoing,   in   order   to  

assess   the   cardiac   phenotype   in  mutation   carriers   and   potential  modifier   SNPs   or  

genes.  

SURVIVAL  OF  CHEMOTHERAPY-­‐INDUCED  CARDIOMYOPATHY    

IN  THE  LAST  TWO  DECADES.  

 

Alessandra  Fornaro,  Gabriele  Castelli,  Mauro  Ciaccheri,    

Benedetta  Tomberli,  Iacopo  Olivotto,  Gian  Franco  Gensini.  

 

Background:   cardio-­‐oncology   is   an   emerging   field   with   an   increasing   amount   of  

patients   suffering   from   cardiotoxic   effects   of   antineoplastic   drugs.   In   this   context  

chemotherapy-­‐induced   cardiomyopathy   (CI-­‐CM)   is   a   challenging   problem   and   has  

been  considered  one  of  the  most  life-­‐threatening  conditions  so  far.    

Aim:   to   analyze   the   actual   survival   of   a   cohort   of   CI-­‐CM   pts   in   comparison   to   a  

population  of  pts  with  idiopathic  dilated  CM  (IDCM),  both  followed  at  our  Center  in  

the  last  two  decades.    

Methods:  we  consecutively  enrolled  62  pts  (32,3%  male,  age  49±14  y)  presenting  at  

our  Center  with  CI-­‐CM  from  1990  to  2012.  Global  follow  up  was  70±62  months.  At  

baseline  mean  left  ventricular  (LV)  ejection  fraction  (EF)  was  39.5±10%,  mean  LV  end  

diastolic  index  32.1±5  mm/m2,  mean  NYHA  class  2.6±1.2.  Hypertension  was  present  

in   15%,   diabetes   in   7%   and   hypercholesterolemia   in   10%   of   pts;   10%   of   pts  were  

smokers.  The  majority  of  pts  received  chemotherapy  (mainly  anthracyclines)  due  to  

Non-­‐Hodgkin’s   Lymphoma   (64%);  12%  were   treated  because  of  Hodgkin’s  disease,  

10%  due  to  breast  cancer  while  a  minority  of  pts  were  treated  because  of  leukemia,  

osteosarcoma,   hepatocellular   carcinoma   and   glioblastoma.   Twenty-­‐three   pts  

received   a   previous   antineoplastic   treatment   regimen,  while   41%  had   a   history   of  

mediastinum  radiotherapy  (RT).  63%  of  pts  showed  symptoms  of  heart  failure  (HF).  

Two   or   more   antineoplastic   treatment   and   RT   related   complications,   beyond   LV  

dilatation   and   dysfunction,   were   evident   in   21%   of   pts.   Mean   time   from   last  

antineoplastic   treatment   dose   and   CI-­‐CM   diagnosis  was   39±64  months  with  most  

cases   reporting  a   late-­‐onset  cardiotoxicity  with  LV  dilatation/dysfunction  occurring  

even   after   23   years.   At   the   end   of   follow   up   64,5%   of   pts   were   receiving   ACE-­‐

inhibitors,  18%  ARBs  (ACEI+ARBs:  82%)  and  90%  betablockers  (BB)  with  a  mean  dose  

of   67%,   75%   and   39%   of   the   international   HF-­‐guidelines   recommended   dosage,  

respectively.   Mineral   corticoid   receptor   antagonists   (MRA)   were   administered   in  

45%  of  pts;  76%  of  pts  received  a  combination  of  ACEI/ARBs  plus  BB  while  only  12%  

of  cases  received  a  combination  of  ACEI/ARBs+BB+MRA.    

Results:   twenty-­‐five  patients   (40,3%)   reached   the  combined  end-­‐point  of  all   cause  

death/heart   transplantation.  Causes  of  death  were  refractory  HF   in  23.8%,  cancer-­‐

related  in  14.3%  and  other  (non  cardiac)  in  61.9%  of  pts.    Overall  survival  was  72,6%  

at   60  months,   47,7%   at   120  months,   considerably   lower   compared   to   a  matched  

population   of   451   patients   with   IDCM,   enrolled   and   followed   at   our   Center   from  

1990  (86,1%  and  68,8%,  respectively),  but  far  better   in  respect  to  data  available   in  

current  literature.    

Conclusions:  CI-­‐CM,  even  when  treated  with  optimal  HF  therapy,    portends  a  severe  

prognosis,   especially   when   compared   to   IDCM.   Our   data   show   anyway   an  

improvement  in  survival  with  respect  to  data  available  in  current  literature.    

 334  

 

   

   

 335  

 

   

9.  Acknowledgments  

       

 336  

   

 

 

"Let us be grateful to people

who make us happy;

they are the charming gardeners

who make our souls blossom"

Marcel Proust

     

 337  

9.1   Acknowledgments  

 

Love  is  all  around  me        

Love  for  medicine,  research  and  cardiomyopathies  

Foremost,   I  would   like   to   express  my   sincere   gratitude   to  my   supervisor  and  mentor  Dr.  Iacopo  Olivotto  for  his  continuous  support  during  my  Ph.D  study,  for  his  patience,  motivation,  enthusiasm  and  immense  knowledge.  He  taught  me  everything  I  know,  from  reading  an  ECG  to  writing  a  paper  (although   I   am   still   working   on   it!).   He   has   been   invaluable   on   both,  academic  and  personal  level.  Most  importantly,  he  cares  for  patients  and  he  showed  me  the  importance  of  being  a  good  person  in  order  to  become  a  good  doctor.  His  guidance  helped  me  all  along  the  research  and  writing  of  this  thesis.  I  could  not  have  asked  for  a  better  mentor.    

I   am   also   very   grateful   to   Prof.   Franco   Cecchi   for   instilling   in   me   a  profound  sense  of   love   for   research  and  cardiomyopathies.  He  also  gave  me  the  opportunity  to  start  this  experience  and  he  helped  me  understand  who  I  want  to  be  in  my  life.    

Special  thanks  to  Katia  Baldini,  our  professional  nurse,  who  helps  us  with  patients   and   research,   and   supports   us   even   during   our   crazy   and   over-­‐crowded  outpatients  sessions.    

Many  thanks  to  Dr.  Francesca  Girolami,  our  passionate  geneticist,  for  the  incredible  amount  of  work  she  did   in  these  years.  Without  her  help  none  of  this  would  have  been  possible.      

To  my  collegues  and  friends,  Dr.  Gabriele  Castelli,  Dr.  Alessandra  Fornaro,  Dr.  Ceclia  Ferrantini  and  Dr.  Raffaele  Coppini,   for  their  constant  help   in  clinical  and  research  work.    

 

 

 

 

 338  

Love  for  people  and  family  

Last  but  not  least,  I  would  like  to  thank  my  entire  family,  especially  those  who  are  no  longer  here  among  us.  I  wish  they  could  have  lived  a  few  more  years  to  see  me  now:  married,  graduated  and  PhD.  Thanks  to  every  single  component  of  my  very  big  and  chaotic  family,  for  the  unconditioned  trust,  great  respect  and  immense  love.    

Special  thanks  to  Filippo,  my  soul  mate  and  husband.  He  has  been  a  true  and  great  supporter  and  he  has  unconditionally  loved  me  during  my  good  and  bad  times.  I  truly  thank  him  for  sticking  by  my  side  when  I  was  happy  and   satisfied,   and   even   when   I   was   irritable   and   depressed.   I   want   to  thank   him   also   for   his   patience   during   the   innumerable   evenings   and  weekends   I   spent   studying,   writing   papers   and   doing   research   for   this  thesis.