The morphologies and masses of extremely red galaxies in the Groth Strip

21
Mon. Not. R. Astron. Soc. 000, 1–?? (2011) Printed 17 February 2011 (MN L A T E X style file v2.2) The morphologies and masses of extremely red galaxies in the Groth Strip A. Hempel, 1,3? D.Crist´ obal-Hornillos, 2,5 M.Prieto, 1,3 I.Trujillo, 1,3 M.Balcells, 1,3,7 C.L´opez-Sanjuan, 1,3,6 D. Abreu, 1,3 M.C. Eliche-Moral, 4 L. Dom´ ınguez Palmero 1,3 1 Instituto de Astrof´ ısica de Canarias, C./V´ ıa L´ actea s/n, La Laguna, 38200, Spain 2 Instituto de Astrof´ ısica de Andaluc´ ıa (CSIC), Camino Bajo de Huetor 50, Granada, Spain 3 Universidad de La Laguna, C./Francisco S´ anchez s/n, La Laguna, Spain 4 Departamento de Astrof´ ısica y Ciencias de la Atm´osfera, Facultad de C.C. F´ ısicas, Universidad Complutense de Madrid, Madrid, Spain 5 Centro de Estudios de F´ ısica del Cosmos de Arag´on, C. General Pizarro, 1-3, 44001 Teruel, Spain 6 Laboratoire d’Astrophysique de Marseille, Pˆ ole de l’Etoile Site de Chˆ ateau-Gombert 38, rue Fr´ ed´ eric Joliot-Curie, 13388 Marseille, France 7 Isaac Newton Group of Telescopes, Apartado de Correos 321, E-38700 Santa Cruz de la Palma, Islas Canarias, Spain Accepted 2011 February 14 ABSTRACT We present a new catalogue of EROs from the Groth strip and study the relation between their morphology and mass. With a selection criterion F814W-K s >4 and K s 6 21.0 we find 102 EROs, over a survey area of 155 arcmin 2 , leading to a surface density of 0.66 arcmin -2 . The photometric data include U,B,F 606W, F 814W, J, K s bands. Morphologies are based on a by eye classification and we distinguish between 3 basic classes: compact objects, targets with a disc and/or a bulge component and irregular or merger candidates. An additional group consists of the few objects which could not be classified. The majority of our targets has either a very compact morphology (33±6%), or show more or less distinct disc components (41±6%). 14±4% are merger or irregulars and 7 objects (approximately 10%) could not be classified. We also study the dependence of structural parameters (effective radius: r eff , S´ ersic index: n) on morphological appearance. As expected, EROs that are either compact or show a distinct bulge component have smaller median effective radii (1.22±0.14 kpc and 3.31±0.53 kpc) than disc dominated (5.50±0.51 kpc) or possible irregular galaxies or merger candidates (4.92±0.14 kpc). More importantly, the S´ ersic index changes from 2.30±0.34 and 3.24±0.55, to 1.03±0.24 and 1.54±0.40 respectively. As found in previous studies, most the EROs in our sample have redshifts between z = 1 and z = 2; however, compact EROs in our sample are found at redshifts as low as z =0.4 and as high as z =2.8; the latter qualify as well as distant red objects (DRGs). Disc-like EROs are also found up to z =2.8; however those with a bulge-disc structure are only seen at z< 1.5. For each of these EROs we determined the stellar mass and mean population age by fit- ting synthetic Bruzual (2007) spectra to the photometric spectral energy distributions, via χ 2 minimisation. Mass estimates were obtained by assuming an exponentially de- clining star formation rate with a wide set of parameters, e.g. decay time, redshift of last star formation, metallicity and optical depth. Total stellar masses for our sample are in the range 9.1 < log(M/M ) < 11.6. We cannot detect significant differences between the stellar mass distribution of the morphological classes. EROs with masses of log(M/M ) > 11.0 dominantly show compact morphologies, but also include a significant number of sources with a disc morphology. Key words: galaxies: photometry, galaxies: high-redshift, galaxies: structure, galax- ies: evolution, galaxies: star formation ? E-mail: [email protected] arXiv:1102.3302v1 [astro-ph.CO] 16 Feb 2011

Transcript of The morphologies and masses of extremely red galaxies in the Groth Strip

Mon. Not. R. Astron. Soc. 000, 1–?? (2011) Printed 17 February 2011 (MN LATEX style file v2.2)

The morphologies and masses of extremely red galaxies inthe Groth Strip

A. Hempel,1,3? D.Cristobal-Hornillos,2,5 M.Prieto,1,3 I.Trujillo,1,3 M.Balcells,1,3,7

C. Lopez-Sanjuan,1,3,6 D. Abreu,1,3 M.C. Eliche-Moral,4 L. Domınguez Palmero1,31Instituto de Astrofısica de Canarias, C./Vıa Lactea s/n, La Laguna, 38200, Spain2Instituto de Astrofısica de Andalucıa (CSIC), Camino Bajo de Huetor 50, Granada, Spain3Universidad de La Laguna, C./Francisco Sanchez s/n, La Laguna, Spain4Departamento de Astrofısica y Ciencias de la Atmosfera, Facultad de C.C. Fısicas, Universidad Complutense de Madrid, Madrid, Spain5Centro de Estudios de Fısica del Cosmos de Aragon, C. General Pizarro, 1-3, 44001 Teruel, Spain6Laboratoire d’Astrophysique de Marseille, Pole de l’Etoile Site de Chateau-Gombert 38, rue Frederic Joliot-Curie, 13388 Marseille, France7 Isaac Newton Group of Telescopes, Apartado de Correos 321, E-38700 Santa Cruz de la Palma, Islas Canarias, Spain

Accepted 2011 February 14

ABSTRACTWe present a new catalogue of EROs from the Groth strip and study the relationbetween their morphology and mass. With a selection criterion F814W-Ks >4 andKs 6 21.0 we find 102 EROs, over a survey area of 155 arcmin2, leading to a surfacedensity of 0.66 arcmin−2. The photometric data include U,B, F606W,F814W,J,Ks

bands. Morphologies are based on a by eye classification and we distinguish between3 basic classes: compact objects, targets with a disc and/or a bulge component andirregular or merger candidates. An additional group consists of the few objects whichcould not be classified.The majority of our targets has either a very compact morphology (33±6%), or showmore or less distinct disc components (41±6%). 14±4% are merger or irregulars and7 objects (approximately 10%) could not be classified.We also study the dependence of structural parameters (effective radius: reff , Sersicindex: n) on morphological appearance. As expected, EROs that are either compactor show a distinct bulge component have smaller median effective radii (1.22±0.14kpc and 3.31±0.53 kpc) than disc dominated (5.50±0.51 kpc) or possible irregulargalaxies or merger candidates (4.92±0.14 kpc). More importantly, the Sersic indexchanges from 2.30±0.34 and 3.24±0.55, to 1.03±0.24 and 1.54±0.40 respectively.As found in previous studies, most the EROs in our sample have redshifts betweenz = 1 and z = 2; however, compact EROs in our sample are found at redshifts as lowas z = 0.4 and as high as z = 2.8; the latter qualify as well as distant red objects(DRGs). Disc-like EROs are also found up to z = 2.8; however those with a bulge-discstructure are only seen at z < 1.5.For each of these EROs we determined the stellar mass and mean population age by fit-ting synthetic Bruzual (2007) spectra to the photometric spectral energy distributions,via χ2 minimisation. Mass estimates were obtained by assuming an exponentially de-clining star formation rate with a wide set of parameters, e.g. decay time, redshift oflast star formation, metallicity and optical depth. Total stellar masses for our sampleare in the range 9.1 < log(M/M) < 11.6. We cannot detect significant differencesbetween the stellar mass distribution of the morphological classes. EROs with massesof log(M/M) > 11.0 dominantly show compact morphologies, but also include asignificant number of sources with a disc morphology.

Key words: galaxies: photometry, galaxies: high-redshift, galaxies: structure, galax-ies: evolution, galaxies: star formation

? E-mail: [email protected]

c© 2011 RAS

arX

iv:1

102.

3302

v1 [

astr

o-ph

.CO

] 1

6 Fe

b 20

11

2 A. Hempel et al.

1 INTRODUCTION

It has been 20 years since the first discovery of a populationof galaxies with optical to near-infrared (NIR) coloursquite different from typical field sources (Elston et al. 1988,1989; Hu & Ridgway 1994). Usually defined by R-K>=5..7or I-K>=4..6 colours (in the Vega system), extremely redgalaxies are a subset of extremely red objects (EROs) andwe will use this more general term throughout this paper.As diverse as the selection criteria are the stellar popula-tions which produce such red spectral energy distributions.Today, the classification as ERO is beyond the two classicgalaxy types, namely old evolved galaxies with no or verylimited recent star formation or dusty galaxies with starformation rates (SFR) associated with starbursts, typicallywith redshift between 1 and 2. The ERO population alsocomprises normal spiral galaxies (Gilbank et al. 2003; Yan& Thompson 2003; Moustakas et al. 2004) at slightly lowerredshifts. The latter contains a large fraction of edge-ongalaxies, where inclination puts a reasonable amount ofdust into our line of sight and reddens the SED. Alsogalaxies harbouring an AGN (Alexander et al. 2002; Brusaet al. 2005), and starburst/AGN combinations (Afonsoet al. 2001) are found among the ERO samples. In addition,several other red galaxy populations have been found, e.g.infrared-detected galaxies (Yan et al. 2004), distant redgalaxies (DRGs) (Labbe et al. 2005; Papovich 2006) andBzK selected galaxies (Daddi et al. 2005; Hayashi et al.2007).EROs are relevant because they allow to explore the abun-dance of massive old ellipticals, which in turn poses a strongtest for the two competing scenarios of elliptical galaxyformation: early assembly (zf >2-3), e.g. by monolithiccollapse, and passive luminosity evolution thereafter (PLEmodels) (Tinsley & Gunn 1976; Pozzetti et al. 1996), orhierarchical merging of smaller sized objects (White &Rees 1978; Kauffmann et al. 1993; Somerville et al. 2001).Observational evidence has been found for both scenarios:several surveys have detected a deficit of ellipticals atz >1, supporting the hierarchical merging models (Rocheet al. 2003; Kitzbichler & White 2006), while others areconsistent with PLE (Im et al. 2002; Cimatti et al. 2002;Somerville et al. 2004).In recent years the hierarchical merging scenario in aΛCDM universe has been established as the favouredmodel. Nevertheless, the vast number of different renditionsleaves room for dramatically different predictions regardingcritical parameters like the number density of massivegalaxies at specific times (Fontana et al. 2004; Treu et al.2005, and references therein).As a whole, extremely red galaxies are among the moremassive galaxies (M& 1011M) (Glazebrook et al. 2004;Gonzalez-Perez et al. 2008) and the existence of suchgalaxies with evolved stellar populations at high red-shifts is one of the challenges to the hierarchical galaxyformation model (White & Rees 1978; Kauffmann et al.1993; Somerville et al. 2001). However, stellar ages do notnecessarily correlate with the build-up of the galaxy massthrough merging (De Lucia et al. 2006; Trujillo et al. 2006;Conselice 2006; Eliche-Moral et al. 2010).In the local universe, masses can be determined accuratelyby studying the dynamical mass of galaxies and obtaining

scaling relations such as the fundamental plane for earlytype galaxies (Dressler et al. 1987; Reda et al. 2005; LaBarbera et al. 2008) and dwarf irregulars (Vaduvescu& McCall 2008) and the Tully-Fisher relation for spiralgalaxies (Tully & Fisher 1977; Kassin et al. 2007). Thoserelations have been used successfully out to z∼1.3, but themost active area of mass assembly, z>1.5, is not accessibleat current times, although first steps have been takenby e.g. Cenarro & Trujillo (2009) and Cappellari et al.(2009). At higher redshifts, the baryonic mass derived frombroadband photometry is comparable to the predictions ofstellar population models, like Bruzual & Charlot (2003),Maraston (2005) and Bruzual (2007).In this paper we present an analysis of the ERO populationin the Groth strip (Prieto et al. 2005), based on opticaland NIR photometry from the GOYA photometric surveyand HST imaging. We describe the morphology, stellarmasses and ages, derived from broadband photometry.Specifically we address, first whether all EROs fit in theclassic morphological types, and second whether the typicalstellar mass of the ERO population changes with cosmictime, and finally, whether at a given redshift the differentmorphologies of the ERO population correlate with thestellar mass.The paper is structured as follows. In §2 we describe brieflythe data available from the GOYA survey and the sampleselection. §3 describes the morphological classification, and§4 gives an overview how stellar masses were derived usingmultiband photometry. §5 gives details on the morphologyand mass estimates for each ERO class.All magnitudes are given in the Vega system and we assumeΩM=0.3, ΩΛ=0.7 and H0=70 kms−1Mpc−1 throughout thiswork.

2 DATA AND SAMPLE SELECTION

We have selected a sample of extremely red galaxies(EROs) from the GOYA (Galaxy Origins and YoungAssembly) survey (Balcells et al. 2002). This is a combinedKs selected catalogue covering the Groth-Westphal strip(≈ 155 arcmin2) in 4 optical bands, U,B,F606W andF814W, as well as J,Ks in the NIR.The U and B imaging were taken with the Wide FieldCamera (WFC) at the prime focus of the 2.5m IsaacNewton Telescope (INT); data reduction and cataloguegeneration are described in Eliche-Moral et al. (2006) andDomınguez-Palmero et al. (2008): 50% detection efficienciesare 24.8 mag in U and 25.5 mag in B. The F606W andF814W data originate from the Wide Field and PlanetaryCamera (WFPC2) on-board HST, as part of the originalGroth strip survey (Groth et al. 1994), that was lateranalysed for the Medium-Deep Survey (MDS: see, e.g.Ratnatunga et al. (1999), and by the Deep ExtragalacticEvolutionary Probe (DEEP; see, e.g., Simard et al. (2002)).The NIR JKs data were obtained with the 1024×1024-pixelINGRID camera at the Cassegrain focus of the 4.2mWilliam Herschel Telescope (WHT). Data processing andcatalogue generation are described in Cristobal-Hornilloset al. (2003). The 50% detection efficiencies range betweenKs = 21.2 mag and Ks = 20.2 mag, depending on the

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 3

Figure 1. Colour-magnitude diagram for the full Ks selected

catalogue (black) in the Groth strip and the final ERO sample(red). The horizontal line represents our colour threshold, the

upper envelope is the result of the detection limit in F814W.

Black dots above the colour threshold show objects which wereexcluded from our sample during the morphological classification

due to their bad image quality.

seeing of the individual pointings.The EROs selection is done by running SExtractoron the original Ks-band images, and photometry on allbands, including Ks, is obtained on apertures of 2.6 arcsecFWHM, in double-image mode, on the images convolvedto 1.3 arcsec FWHM. All sources which were classified asstellar objects, based on stellarity greater than 0.8 (givenby SExtractor) in the I-band (F814W ) were excluded fromour sample. Figure 1 shows the colour-magnitude diagramof the whole GOYA catalogue and the final ERO sample.

All our EROs have colours redder than F814W-Ks >4.0. Our initial sample contains 114 objects which we havestudied by eye to exclude sources close to the edge of eitherthe F814W or Ks-band image were we have a lower imagequality. As result we have excluded 6 objects from our orig-inal catalogue. Additional objects have been excluded dueto their unresolved morphology (see section 5.2).Several surveys have obtained spectroscopic redshifts for dif-ferent galaxy populations in the Groth strip (Weiner et al.2005; Sarajedini et al. 2006)1. However, the paucity of emis-sion lines in ERO spectra, plus the lack of prominent emis-sion lines in the visible range at redshifts above 1.4, re-sult in very few EROs having spectroscopically-determinedredshifts. We therefor used photometric redshifts availablefrom the GOYA catalogue. These were derived using Hyperz(Bolzonella et al. 2000), redshift errors were estimated fromσzphot= σδz×(1+zphot) with σδz=0.07 (Lopez-Sanjuan et al.

1 http://deep.berkeley.edu

Figure 2. Histograms of the distribution of photometric red-shifts, zphot, for our 102 EROs. The inset shows the result for the

full Ks selected catalogue of the Groth strip.

2009).Based on our photo-z we can see that the used colour thresh-old of F814W-K s >4 is fairly efficient at selecting galaxiesin a redshift range of 16 z 62. However, this specific colourselection is not very stringent, due to the large variety of starforming histories galaxies may have followed. Figure 2 showsthe redshift distribution of our final ERO sample, comparedto the whole K-selected catalogue. As expected, most EROshave redshifts between 1 and 2, although exceptions at lowerand higher redshifts exist. The redshift distribution of ourERO sample peaks at z=1.32±0.02, which is in good agree-ment with Conselice et al. (2008) who find an average red-shift for an I-K>4 selected sample of 〈z〉=1.43±0.32 (Con-selice et al. 2008).

3 MORPHOLOGICAL CLASSIFICATION OFEROS

Morphologies were classified by visual inspection of theF814W image of each individual galaxy (Yan & Thompson2003; Moustakas et al. 2004). Sometimes down-valued forbeing subjective, visual classification has a long history andis in fact the method employed to establish the morpholog-ical classification of nearby galaxies (de Vaucouleurs 1948;Ellis et al. 2001; Desai et al. 2007). We compare this visualclassification with the results of a machine-based methodbased on fitting 2D surface-brightness Sersic profiles (Rocheet al. 2002; Simard et al. 2002; Fu et al. 2005; Stockton et al.2006), using GALFIT (Peng et al. 2002). The later avoidhuman subjectivity but are also subject to limitations, e.g.,when galaxy isophotes are not concentric, aligned ellipses orgalaxies with large inclinations. We did not base our classi-fication on automatic determined concentration-asymmetryindices (Abraham et al. 1996; Huertas-Company et al. 2008;

c© 2011 RAS, MNRAS 000, 1–??

4 A. Hempel et al.

Figure 3. HST WFPC2 F814W images of the different morphological classes. The panels are 7.′′0 in size, N is up and E left.

Conselice et al. 2008). Concentration and asymmetry indicesare difficult to interpret in EROs which tend to be compactand hence have few pixel where to measure the indices. Fur-thermore, important systematic errors may occur above z∼1where the F814W filter samples the rest-frame UV.Compared to both methods, a visual inspection can pick upthe more subtle morphological details and the sample sizeis small enough to allow detailed inspection of each of theimages.With a mean redshift of 1.32 for the ERO sample, theWFPC2 data sample a rest-frame wavelength of 3500 A andthus the F814W image is sensitive to star formation and topatchy dust extinction. Our morphologies may thus sufferfrom a ’morphological K-correction bias’. We partially com-pensate for any such biases by inspecting the ground-basedK-band image together with the HST/WFPC2 NIR chan-nel.Each galaxy in our sample of 102 EROs was classified indi-vidually by four of the authors (A.H., M.P., I.T. and M.B.).Sources for which at least 3 classifications agree are consid-ered as “secure”. Besides the HST/F814W image, in a fewcases we used either the radial profile or the surface bright-ness isophotes to refine our classification. Initially, we aimedat classifying 3 different morphological types: compact forearly type galaxies; extended for disc types; and irregularand merging. However, the second class proved to be quitediverse, containing both galaxies with a bulge and a disccomponent and galaxies which show no clear bulge com-ponent. An examples for each class which show a distinctmorphology can be seen in Fig. 3.

Finally we differentiate between 6 classes:

(i) class 1: objects with very compact morphology, likeexpected for early type galaxies;

(ii) class 2a: objects with bulge and disc component (earlytype discs);

(iii) class 2b: disc galaxies with no clear bulge component,including edge-on discs (late type discs);

(iv) class 2c: extended objects with bulge and/or disccomponent, for which no clear classification as either class2a or class 2b was possible;

(v) class 3: irregular or merger candidates;(vi) class 4: no clear classification at all.

We complemented the visual classification with a 2-dimensional surface-brightness fit of each source in ourEROs sample, in order to compare the result of both meth-ods, to determine physical sizes and to explore the mass-sizecorrelation between the different morphological classes.The structural parameters were estimated with the GALFITpackage (Peng et al. 2002), using the HST/WFPC2 F814W.GALFIT simultaneously fits several parameters of an ana-lytic light distribution, thereby minimising χ2, the residualbetween the original image and the model. As result we candescribe the global morphology of our objects in terms ofstructural parameters, like sizes (given as half-light radiusor effective radius reff along semimajor axis ae) and Sersicindex n.All our targets were modelled with a Sersic profile (I(r) ∝exp(−(r/reff)1/n)). Despite our morphological classification,we keep also the Sersic index as free parameter, hence notforcing a pure de Vaucouleurs profile (n=4) on “elliptical”EROs or exponential disc profiles (n=1) on objects withbulge and disc components. All models were convolved witha PSF obtained from unsaturated stars in the image andextremely bright close-by neighbours were masked. The ini-tial values for the parameters to be fitted were derived bySExtractor. For objects where derived parameters like mag-nitude, size or position seemed extremely off, the modelswere tuned by keeping either Imag or the position fixed. Fig-ure 4 presents examples of the results, using a single Sersicprofile.

Results of the morphological classification are presentedin paragraph 5.1.

4 DETERMINING STELLAR MASSES ANDAGES

Stellar masses are estimated by fitting the photometric datato synthetic spectra convolved by the filter transmissionfunction, assuming a known photometric redshift. We use

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 5

Figure 4. Examples of the HST/WFPC2 surface brightness mod-

elling with GALFIT. For one galaxy of class 1, class 2a and class

2b we modelled a single Sersic profile (middle column), the panelson the right show the residual image. Each panel is 5.5 arsec in

size.

magnitudes corrected for aperture effects and scaled to thebest fit spectral energy distribution, which also provides thevalue for photometric redshift. For 5 objects this procedureproduces K-band magnitudes fainter than the detectionlimit and hence were excluded at this point.

EROs with a compact morphology are considered to beold evolved systems, whose stellar population formed in aburst like event over a time span much shorter than theirage. As such, population models comprising a single stellarpopulation (SSP) or composite population ’τ -models’ withrapidly declining SFR (∝ exp(-t/τ)) should be adequate.For morphologically extended EROs, for their similaritieswith galaxy discs, τ -models with more extended values of τshould provide a reasonable approximation to their star for-mation history. The masses presented here are therefore esti-mated using τ -models. Clearly, the true SFH of these galax-ies may be more complex, and we have fitted each galaxySED with composite populations comprising a SSP and a τ -model. However, considering the small number of availablebands, these models suffer from too much degeneracy.The model predictions are based on the models from Charlotand Bruzual (Bruzual 2007), and both stellar mass and agefor various star formation histories were derived (see section4.1). The term “age” indicates the time between the startof the last episode of star formation (zf) and the time thesegalaxies were observed, and therefor represents a “upper”limit. To simplify, we use “mass” as synonym for “stellarmass” throughout the paper.

4.1 Models

Independent of morphology, we have modelled all EROs withthe same set of models and parameters, described in Tab. 1.The extinction was modelled with the Calzetti extinction

Table 1. Model parameter for mass estimates.

Parameter Range

IMF Salpeter

redshift of last SF a zf= 3-8, ∆z=1age limit [Gyr] 0.01 - ageuniverse at z

exponential decay time [Gyr] 0.05, 0.1, 0.5, 1.0, 4.0, 7.0

metallicity /Z 0.2, 0.4, 1, 2.5AV (Calzetti extinction law) 0.6, 1.0, 2.0, 3.0

a redshift at which the last episode of extended star formation

started.

law (Calzetti et al. 2000), assuming an average inclination,i.e. orientation effects were not included.

The fitting procedure determines which combination ofmass and age produces the best fit to the photometric data.

From all models (624 models for each ERO) we selectedthe one with the lowest χ2 as best fit. Figure 5 shows anexample for the χ2 values obtained for one specific ERO(ero 141715.09+522142.6), one of the EROs with a compactmorphology.

The shaded area (upper left plot) identifies the modelswith χ2 − χ2

best ≡ ∆χ2 6 2.3, representing a confidenceinterval of 68.3% assuming 2 free parameter, stellar massand age. The majority of models fit the available datapoorly, but 10 models result in χ2 values similar to the bestsolution (for two pairs of models the χ2 values can not beseparated in this plot). The stellar mass for these modelsranges from 0.7 ×Mbest up to 1.8 ×Mbest.In the remaining three panels we kept some of the modelparameters fixed, in order to better separate the influenceof specific parameters on χ2. The upper right plot showsthe influence of formation redshift (symbols) and dustcontent (colour), while the other parameters (metallicityand exponential decay time) cover the whole range. For thisspecific object, models with higher formation redshifts andlow extinction show significant better results. Nevertheless,the quality of these models does not improve very muchby varying additional parameters like metallicity and expo-nential decay time. The combination of these parametersmight change the stellar mass considerably (as seen in theupper left panel), without improving the quality of already“good” fits.In the lower left panel we compare only models with anextinction of Av=0.6 and τ = 0.5 Gyr. We can see, that forzf=6, the metallicity improves the fit quality significantly,while the stellar mass increases only slightly. A formationredshift zf=7 provides better results in general, however,changing the metallicity does not lead to a lower χ2. Ingeneral, the initial metallicity becomes less influential if theobject has been formed at earlier times. The lower rightpanel in this figure shows models with zf=7, τ = 0.5, 7.0Gyr and Av=0.6, 1.0. All models shown by the same symboland same colour vary only in their initial metallicity. Itbecomes clear that for longer exponential decay times, theinitial metallicity becomes more important. The χ2 valuesfor τ = 0.5 Gyr and Av=0.6 and 1.0 vary noticeable lessthan for τ = 7.0 Gyr.

c© 2011 RAS, MNRAS 000, 1–??

6 A. Hempel et al.

Figure 5. Example for the variation of χ2 as result of template

fitting (ERO: ero 141715.09+522142.6). The dotted line repre-

sents the minimal χ2 value. The masses have been normalised tothe mass of the best solution Mbest. Upper left: lower χ2 values

for all possible parameter settings. The shaded region indicatesthe mass range where χ2

min − χ2 6 2.3, representing a confidence

interval of 68.3% with 2 degrees of freedom (mass and age of the

stellar population). Upper right: The symbols represent differ-ent formation redshifts: zf= 4 and 8 (cross, open circles). The

colours show different values of Av: red: Av=0.6, green: Av = 1.0

and blue: Av=2.0. The metallicity and exponential decay timecover the whole range. Lower left: AV=0.6, τ = 0.5 Gyr, zf=

4,6 and 7 (cross, diamond, open circles). Lower right: models

with zf=7, maximal or minimal decay times (τ = 0.5 Gyr: black),τ = 7 Gyr: red), metallicity: not restricted.

This plot clearly illustrates that all the parameters influenceeach other in non linear way, e.g. the effect of one parameteron χ2 does not have to be constant, if one of the remainingparameters changes.At the moment we have not calculated the error in ageand mass, however, the plot shows that the later can varyby a factor of 2.5 with almost constant χ2, depending onthe specific SED template. At the same time, the age forthis object will vary by less than 30%. Such uncertaintiesin stellar mass agree well with the results of Elsner et al.(2008), who estimated that errors in redshift, M/LK-ratio,photometry and errors attributed to template fitting canadd up to a mean uncertainty of about σlogM = 0.33 dex.For an extensive study of stellar mass estimators, theirlimitations and uncertainties see Longhetti & Saracco(2009).

5 RESULTS

In this section we present our results regarding morpholo-gies, stellar masses, ages and their evolution. Our catalogue

Figure 7. Spatial distribution of EROs in a section of Groth

strip. The black symbols show all EROs in this section of thefield, red circles mark compact objects (class 1) with redshifts of

0.9 6 zphot 6 1.0. The black circle with a radius of 1.1 arcmin,

corresponds to 0.5 Mpc at redshift 0.95.

is presented in tabular form in the Appendix in Tables A1and A2, where we list both photometric, morphological,structural and stellar population parameters. Figure 6shows the redshift distribution for each morphological class(see section 3). The sample of compact objects (class 1,upper left panel in Fig. 12 and Fig.13) and EROs with bulgeand/or disc component (class 2a,b,c, upper right panels inFig. 12 and Fig. 13) show the clearest redshift distributions,with a peak between redshift 1 and 2. The large numberof compact objects with redshifts of 0.9 6 zphot 6 1.0 cannot be explained by pure low number statistics, hence welooked at the spatial distribution of compact EROs in thisregion (Figure 7). 4 of the compact objects lie within a fieldof 1.1 arcmin radius (0.5 Mpc at z=0.95). The large numberof such EROs in a very narrow redshift bin hints at anoverdensity of compact objects, as we find only a total of 8such galaxies in the whole 155 arcmin2 field. The resultingsurface density is 20 times higher than the average value.However, the 4 EROs lie in an interval ∆zphot = zmax-zmin

= 0.07 which, given our typical zphot errors, is consistentwith zero. In order to proof the physical association of theseEROs, spectroscopic redshifts are required.

In Figure 8 we show a summary of the photomet-ric properties (colour vs apparent magnitude (Ks), abso-lute magnitude (MK) and redshift) of our EROs sample.We detect EROs from the detection limit of our survey,Ks ∼ 21, up to Ks ≈ 18. In Fig. 8, left panel, the distri-bution in colour-apparent magnitude has an apparent trian-gular shape, such that the reddest EROs are only found atintermediate apparent magnitudes. On the faint side of thisdistribution, this is due to an observational bias given bythe detection limit in F814W . On the bright side, the trendis real. It originates from the fact that the reddest EROs

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 7

Figure 6. Redshift distribution for all classes. The second panel shows the result for all objects with bulge and disc component, disc

dominated objects and objects which could not be clearly classified as belonging to either of those.

are among the most intrinsically luminous of the sample,as portrayed in the central panel of Figure 8, which showsobserved colour against K-band absolute magnitude. We de-tect a mild colour-absolute magnitude relation, but no sig-nificant trend of colour with redshift (right panel of Fig. 8).

All morphological classes are found at all magnitudesand colours, nevertheless, most of the faint objects withirregular of merger characteristics have bluer colours thantheir brighter counterparts. Brighter EROs (Ks 619.5) areslightly dominated by disc-like morphologies and EROs withan undetermined morphology are found at the fainter mag-nitudes (see also Fig. 9). Based on our data set, we see noclear distinction of the photometric properties between themorphological classes.

5.1 Morphology

From the visual classification of our sample we find that33%±6% of our EROs have a compact morphology and41%±6% have a disc component. Irregular galaxies andmerger candidates contribute 14%±4%, while 10%±3% arenot classifiable due to low image quality. The uncertaintiesare quoted solely on the basis of the statistical error of thenumber of EROs in this morphological class.Our result agrees well with Gilbank et al. (2003), whoalso find an almost equal fraction of spheroidal/compactEROs and disc-like objects among a sample of 224 EROs(K<20,I814-K)> 4.0), 30% and 35% respectively. 15% oftheir EROs show a disturbed/irregular morphology. Never-theless, this result is in contradiction to Yan & Thompson(2003) and Moustakas et al. (2004). The former performeda visual classification of 115 EROs (F814W-K s > 4, 5σmedian limiting Ks magnitude of ≈ 18.7) into 4 broad cat-egories: spheroids or pure bulge galaxies, bulge-dominatedgalaxies, disc-like systems with some evidence of a bulgeand discs which show no obvious bulge component. Yanand Thompson use the same data set (Medium DeepSurvey) as Gilbank et al. and find that approximately66% of their EROs are discs or disc dominated and only34% have morphologies consistent with bulges or are bulgedominated. These numbers refer to a total of 101 EROs (outof 115) for which the visual classification is either bulge,

bulge dominated, discs or disc dominated. However, ourresults agree in regard to a large fraction of edge-on spirals,57%±11% of EROs with discs show such an orientation,compared to 40% in the Yan et al. sample. Moustakas etal. find a combination of 36% early type galaxies, 55% latetype and 5% irregulars.

The most secure classifications of our sample (i.e. atleast three out of four classifiers agree) have been obtainedfor the objects in class 1 (33 of 34), class 2a (13 of 13) andclass 2b (24 of 24). The classification for the members ofclass 2c and class 4 is the least reliable, almost no objectin either class (5/5 and 8/9 for class 2c and class 4 respec-tively) shows a easy to distinguish or unique morphology.For class 3, consisting of irregular and merger candidates,the classification is secure in about 50 % (8 of 14) of thesample.

5.2 Structural Parameters

In Table A1. we list effective radii, Sersic index, axis ra-tios and model magnitudes, with their errors, for all of theEROs as produced by GALFIT (if not stated otherwise, theeffective radii are not circularised), figure 10 shows the re-sults of the structural analysis for the different morpholog-ical classes. For 6 objects with a compact or undeterminedmorphology (5+1 objects of class 1 and class 4, respectively),the effective radii are extremely small, . 0.1 kpc. The visualinspection of the original images revealed, that these EROsare barely resolved and although the overall quality of thefit is comparable to the other targets, all parameters showlarge errors and are very likely faint stars instead of galaxies(these objects have been marked in Tab. A1). On this basiswe excluded these objects from our analysis.The EROs with compact morphology show the smallestmedian effective radii (1.19±0.14 kpc), followed by EROsof mixed morphology (bulge+disc) and disc dominated,3.31±0.53 kpc and 5.38±0.50 kpc respectively. Objectswhich could belong to either of the last two classes (objectswith class 2c morphology) have median sizes of 4.91±0.14kpc. Sources which appear irregular or might be part of

c© 2011 RAS, MNRAS 000, 1–??

8 A. Hempel et al.

Figure 8. Photometric properties of the complete EROs sample: dependency of F814W −Ks colour on Ks, MK and redshift. The samesymbols and colours are used in all three panels, the sloped line indicates the colour limit assuming a detection limit of F814Wlim=25.8

Figure 9. Ks-magnitude distribution (left panel) and F814W-Ks colour distribution (right panel) for our EROs sample, The colours are

based on the magnitudes derived from the best fit SED, and not aperture magnitudes. The red histograms represent EROs of class 1,green indicates objects of class 2a,b, and c, i.e. EROs with discs. Irregular galaxies or merging candidates and not classified objects are

shown in blue and black.

an ongoing merger and hence show a disturbed morphol-ogy have median sizes of about 4.92±1.06 kpc. The mediansize of objects with no discernible morphology (class 4) is2.59±0.69 kpc.The median Sersic index for our compact EROs (class 1),n=2.30±0.34, is within the errors, in the range for quies-cent galaxies, n>2.5, used by Trujillo et al. (2007), basedon the comparison with local galaxies. EROs which appearto be pure discs or at least disc dominated are best fittedwith a Sersic index of n=1.03±0.24, compared to a Sersicindex of 1 for exponential profiles. Objects with bulge anddisc components have a median Sersic index of n=3.24±0.55.This implies that the light distribution seems to be domi-nated by the bulge component, similar to the compact ob-jects in class 1. The result for irregulars or merger candi-dates (n=1.54±0.40) lies between compact EROs and discdominated objects, as we have seen for the effective radius.A median Sersic index of n=5.06±1.61 would imply a verysteep surface brightness profile for objects with an unclas-

sified morphology, however, the images have either a lowquality and/or the targets are almost unresolved.In our visual classification we consider “edge-on” disc dom-inated as separate morphological class (class 2b) and wewould expect that these objects show smaller axis ratios(semi minor axis/semi major axis) than the other morpho-logical types. The plot in figure 11 confirms this expec-tation, showing an increasing axis ratio from an apparent“edge-on” morphology, to “disc+bulge” morphologies andthe more compact elliptical EROs (0.3±0.03, 0.45±0.06 and0.62±0.04 respectively).

Using the masses determined in section 4, we showin Figure 17 the stellar mass-size relation for EROs. Thedashed-dotted line shows the relations for early type galaxies(n>2.5) and the dashed line for late type galaxies (n<2.5),based on the analysis of SDSS galaxies by Shen et al. (2003).This figure shows that compact galaxies deviate more clearlyfrom the local relation than the other morphological types,supporting the strong evolution of the stellar mass-size re-

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 9

Figure 10. Distribution of effective radius (for different mor-phological classes). The black solid line in the central panel

shows the result for the total of class 2.

Figure 11. Comparison of the axis ratios (derived with GAL-FIT), for all morphological classes. Colours are assigned to

morphological class as in Figure 10.

lation, as described by Trujillo et al. (2007) for the mostmassive galaxies.

5.3 Stellar Masses

We now present stellar masses for 97 EROs in our sam-ple, computed as outlined in sec. 4. The output of themass code, namely stellar mass and population age, areshown against redshift in Figures 12 and 13, respectively(see also Table A2.). The vertical error bar in the top-leftpanel of Figure 12 indicates the typical uncertainty of 0.3dex. In Figure 13, where ages are shown against redshift,lines correspond to formation redshifts as detailed in the leg-end. The median and rms of the total stellar mass of eachmorphological class are given in Table 2, and displayed inFigure 14. Stellar masses for our ERO sample range fromlog(M/M) = 10.0 to log(M/M)=11.8. Median stellarmasses lie between log(M/M) = 10.7 and 11.0. The me-dian masses change little from one morphological class toanother. Such independence of stellar mass with morpholog-ical class is the main result of this paper. This result was notexpected. The common understanding that the most mas-sive galaxies are ellipticals led us to expect EROs with discor (major) merger morphologies to have significantly lowermasses than EROs with compact morphologies. One third ofthe EROs with a disc dominated morphology (24 EROs inclass2b) have masses above 1011M suggests a mechanismto build up massive galaxies that does not involve dissi-pationless mergers. Such galaxies may have grown throughcold accretion (Dekel et al. 2009); alternatively, massive disc-shaped EROs, which must contain vast amounts of dust, arealso candidates for remnants of very gas-rich major merg-ers (Hopkins et al. 2009). That EROs include disc-shaped

objects with a range of bulge prominence may indicate thatthe build-up of bulge components in disc galaxies betweenredshifts 2 and 1 (e.g., Dekel et al. 2009) includes importantdusty phases.

Due to the large scattering in mass between the mem-bers of each class and the low numbers, no significantdifference in median stellar mass is evident, includingthe EROs belonging to class 4, whose mean stellar mass(log(M/M) =10.7) differs by approx. 1σ from from theother morphological classes (see Fig. 14).

Below we discuss each morphological class in moredetail.

(i) class 1: compact EROsThe compact morphology of these objects is rather distinctand closely resembles those of an elliptical galaxy with adominant old stellar population and no or very low ongoingstar formation. For most EROs (21 of 34) in this samplethe decay times are 100 Myr and less, i.e. the period of starformation is extremely short and on first look resemblesa single burst. However, Fig. 15 illustrates that for someobjects the ratio between t(zf)-t(z) and τ is rather small,indicating that these EROs might still form a certainamount of stellar mass. Using a threshold of age/τ=6(Fontana et al. 2009) to separate active and quiescentgalaxies, 67±14% (23/34) of our compact galaxies qualifyas quiescent. The fraction of quiescent galaxies among the“bulge+disc” galaxies is 84±25% (11/13), and drops to58±15% (14/24) for disc dominated galaxies. Combiningthe galaxies which are either pure bulges (class 1) or showbulge+disc structure (class 2a), we find that approximately72% (34/47) of this sub-sample would qualify as quiescent

c© 2011 RAS, MNRAS 000, 1–??

10 A. Hempel et al.

Figure 12. Total (stellar) masses for all morphological classes. The error bar in the upper left panel indicates the uncertainties in themass estimates based on the SED fitting (Mmax/Mmin=2).

galaxies.

Nevertheless, we find that more than 50% of the entirecompact ERO sample have ages of less than 1 Gyr. Theyoungest object in this class has an apparent age of 0.1 Gyr.The deficiency of low mass objects (M <5×1010M) athigher redshifts is result of the limited depth of our survey.This impression is largely caused by two z ∼ 1 objects withmasses log(M/M)< 10. We have tested the detectabilityof these two low-mass objects at higher redshifts by simu-lating their appearance as a function of z, assuming passive

evolution (Fig.16). The simulations show that the lack oflow-mass objects at higher redshift is the result of the lim-ited depth of our survey.

(ii) class 2a, 2b, and 2c: EROs with disc componentIn this class we find no objects with masses belowlog(M/M)<10. Contrary to the compact class, ob-jects with disc-components and with masses between10.2< log(M/M) <11.5 are found in the whole redshiftrange, up to redshift 2.5. This behaviour is clearly visiblein panels assigned to class 2 objects in Fig. 12. The mass

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 11

Figure 13. Stellar ages based on an exponential declining star formation. The lines correspond to the maximal possible age for a galaxy

formed at zf=8, 6, 4, 3, if observed at the given redshift (from top to bottom, red line corresponds to zf=6).

distributions of the three sub-classes differ due to thelimited redshift intervals where objects of each class arefound, the mean stellar of all morphological types (withdisc-component) agree well within their accuracy (seeTab.2).Similar to compact EROs, we find a significant numberof objects with stellar populations of more than 1 Gyr ofage, both among EROs with and without bulge component.However, no object seems to be younger than 0.3 Gyr,although we would expect these to have lower ages than the

compact EROs. For approximately 2/3 of this population,the last star formation event started not later that zf=3(see also Fig. 13).

(iii) class 3: irregular/merging EROsThe majority of objects in this class have masses ofapproximately 1011M, similar to the masses of compactobjects or disc-like systems. For none of these objects thelast episode of star formation started later than redshift 4,suggesting that population ages of less than 1 Gyr are the

c© 2011 RAS, MNRAS 000, 1–??

12 A. Hempel et al.

Table 2. Median of total stellar mass, size (ae) and Sersic index (n) for each morphological class. The results for reff) and Sersic index

consider only the EROs for which also masses are available. We have excluded objects which diver more than 3 standard deviationsfrom the median value.

morphological class log(M?) σlog(M?) size (ae) σae n σn

[kpc] [kpc]

class 1 : compact 10.99 0.07 1.22 0.14 2.30 0.34

class 2a : disc + bulge 10.95 0.09 3.31 0.53 3.24 0.55

class 2b : pure (edge-on) disc 10.93 0.08 5.50 0.51 1.03 0.24class 2c : disc + bulge (unclassified) 10.93 0.07 4.91 0.14 1.72 0.40

class 3 : irregular or merger 10.98 0.07 4.92 1.06 1.54 0.40class 4 : unclassified 10.69 0.13 2.59 0.69 3.89 1.56

all: 10.66 0.04 3.48 0.29 2.07 0.20

Figure 14. Distribution of total stellar mass for distinct mor-phologies. The vertical lines show the median of each distribution

(see Table 2).

result of continuous star formation.

(iv) class 4: unclassifiedThe median stellar mass of this class is slightly lower,4.6×1010M. Like the irregular or merging EROs, the mem-bers of this class started forming their stellar mass veryearly, at redshift 4 and higher. With one notable excep-tion, the ERO at redshift 2.98 (ero 141755.44+522928.5),the stellar population in this group is older than 1 Gyr.

Considering that the mass estimates can vary by factors of

Figure 15. Ratio between population age at the time of observa-

tion and the exponential decay time τ against redshift, for EROs

with compact morphology (red), bulge+disc (purple) and discdominated (green).

2, we find no dependency of average total mass on the mor-phological type of our ERO sample. The stellar mass-sizerelation (Fig. 17) shows a clear dependence on morphologi-cal type, with compact galaxies (class 1) having significantsmaller sizes than EROs with different morphologies.

SUMMARY

In this paper we have presented a sample of 102 extremelyred galaxies with F814W-K s > 4 found within the GOYAsurvey. The EROs morphology was visually classified. Wefound an almost equal fraction of compact objects (37%)and objects with a disc component (40%). Among the laterwe find a substantial fraction of edge-on spirals, 58% of allclass 2 objects, which is extremely good agreement with theresults of Gilbank et al. (2003) and Yan & Thompson (2003).

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 13

Figure 16. Ks distribution for galaxies in Groth (black dots)and selected EROs (red dots). The lines are Ks-band magnitudes

derived from evolving the spectral energy distribution of two lowmass EROs and the model used to fit these SEDs. The two ob-

jects have redshifts of 0.75 (red) and 0.905 (green), and total

stellar masses of 0.13×1010M and 0.78×1010M respectively.The solid lines represent a SSP model, the dashed line a model

with extended star formation. The horizontal line represents a

measure of our limiting K-band magnitude.

Figure 17. The (stellar) mass size distribution for all morpholog-

ical classes. The effective radii are circularised, reff=ae

√(1 − ε),

with ε being the ellipticity of the object (1-axis ratio). The dash-

dot line shows the local mass size of early type galaxies (n>2.5)and the dashed line for late type galaxies (n<2.5) the Sloan Digi-

tal Sky Survey (Shen et al. 2003). The stellar mass has been eval-

uated using a Salpeter IMF. The error bars represent a possibleuncertainty in mass by a factor of 2, and the standard deviation

for reff (see Table 2).

However, there is a discrepancy between the fraction of edgeon spirals in respect to the total ERO sample of Yan &Thompson (2003).Our visual classification agrees well with the results of 2Dsurface brightness fitting (GALFIT), showing that galaxieswhich appear compact have both smaller effective radii andlarger Sersic indices than galaxies with bulge+disc compo-nents (larger reff but also larger Sersic index). Pure ”discgalaxies” have both the largest effective radii and the small-est Sersic index, while the irregular galaxies or merger can-didates seem to represent an intermediate state.Photometric masses were derived by fitting Charlot &Bruzual (Bruzual 2007) τ -population models to the SEDof the galaxies. Derived stellar masses for our ERO samplerange from log(M/M) = 10 to log(M/M) < 11.6. Ourmedian stellar mass is log(M/M) ≈ 11.0. Most notably,the median stellar mass is independent of morphology, ar-guing against the notion that massive galaxies are spheroids.We note that some of the EROs at high redshift (z>2), haveages close to the age of the Universe at the redshifts they areobserved, which in case of compact objects poses a challengeto the current models of galaxy formation, in which evolvedgalaxies form at later times through the merger of low massobjects. However, the young objects in class 1 agree wellwith merger scenarios (see also Ricciardelli et al. 2010).We do not observe a strong evolution within 1< z <2 for1011M mass objects, neither among the compact class norfor EROs with a star forming component. Similar resultshave been found by Conselice et al. (2008) for massive EROswith M? > 1011M detected in the DEEP2/Palomar fields.The EROs within their K< 19.7 selection have the same up-per range of masses at z∼0.8-2.0, therefore indicating littlemass growth for this population at this K-band limit. Alsowe detect a substantial fraction of EROs with total stel-lar masses below 1011M while Conselice et al. (2008) statethat almost all of their EROs at K <19.7 have masses abovethis value.Looking at the mass-size relations we find that our sampleof compact galaxies deviates strongly (circa factors of 4-5)from the local relation, while the galaxies in the remainingmorphological classes lie closer to the local mass-size rela-tion for late type galaxies, which is in agreement to previousstudies like Trujillo et al. (2007).

ACKNOWLEDGEMENTS

This work was supported by the Consolider-Ingenio 2010Program grant CSD2006-00070: First Science with theGTC and by grants AYA2006-12955 and AYA2009-11137from the Spanish Ministry of Science and Innovation.Facilities: HST (WFPC2); ING: William Herschel Telescope(INGRID); ING: Isaac Newton Telescope (WFC)

REFERENCES

Abraham R. G., van den Bergh S., Glazebrook K., EllisR. S., Santiago B. X., Surma P., Griffiths R. E., 1996,AJSSeries, 107, 1

c© 2011 RAS, MNRAS 000, 1–??

14 A. Hempel et al.

Afonso J., Mobasher B., Chan B., Cram L., 2001, ApJL,559, L101

Alexander D. M., Vignali C., Bauer F. E., Brandt W. N.,Hornschemeier A. E., Garmire G. P., Schneider D. P.,2002, AJ, 123, 1149

Balcells M., Cristobal-Hornillos D., Prieto M., Guzman R.,Gallego J., Serrano A., Cardiel N., Pello R., 2002, TheNewsletter of the Isaac Newton Group of Telescopes, 6,11

Bolzonella M., Miralles J.-M., Pello R., 2000, A&A, 363,476

Brusa M., Comastri A., Daddi E., Pozzetti L., ZamoraniG., Vignali C., Cimatti A., Fiore F., Mignoli M., CiliegiP., Rottgering H. J. A., 2005, A&A, 432, 69

Bruzual A. G., 2007, in Vazdekis A., Peletier R. F., eds,IAU Symposium Vol. 241 of IAU Symposium, On TP-AGB stars and the mass of galaxies. pp 125–132

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koorn-neef J., Storchi-Bergmann T., 2000, ApJ, 533, 682

Cappellari M., di Serego Alighieri S., Cimatti A., DaddiE., Renzini A., Kurk J. D., Cassata P., Dickinson M.,Franceschini A., Mignoli M., Pozzetti L., Rodighiero G.,Rosati P., Zamorani G., 2009, ArXiv e-prints

Cenarro A. J., Trujillo I., 2009, ApJL, 696, L43Cimatti A., Pozzetti L., Mignoli M., Daddi E., Menci N.,Poli F., Fontana A., Renzini A., Zamorani G., BroadhurstT., Cristiani S., D’Odorico S., Giallongo E., Gilmozzi R.,2002, A&A, 391, L1

Conselice C. J., 2006, ApJ, 638, 686Conselice C. J., Bundy K., U V., Eisenhardt P., Lotz J.,Newman J., 2008, MNRAS, 383, 1366

Cristobal-Hornillos D., Balcells M., Prieto M., Guzman R.,Gallego J., Cardiel N., Serrano A., Pello R., 2003, ApJ,595, 71

Daddi E., Dickinson M., Chary R., Pope A., Morrison G.,Alexander D. M., Bauer F. E., Brandt W. N., GiavaliscoM., Ferguson H., Lee K.-S., Lehmer B. D., Papovich C.,Renzini A., 2005, ApJL, 631, L13

De Lucia G., Springel V., White S. D. M., Croton D., Kauff-mann G., 2006, MNRAS, 366, 499

de Vaucouleurs G., 1948, Annales d’Astrophysique, 11, 247Dekel A., Birnboim Y., Engel G., Freundlich J., GoerdtT., Mumcuoglu M., Neistein E., Pichon C., Teyssier R.,Zinger E., 2009, Nature, 457, 451

Dekel A., Sari R., Ceverino D., 2009, ApJ, 703, 785Desai V., Dalcanton J. J., Aragon-Salamanca A., JablonkaP., Poggianti B., Gogarten S. M., Simard L., Milvang-Jensen B., Rudnick G., Zaritsky D., Clowe D., HallidayC., Pello R., Saglia R., White S., 2007, ApJ, 660, 1151

Domınguez-Palmero L., Balcells M., Erwin P., Prieto M.,Cristobal-Hornillos D., Eliche-Moral M. C., Guzman R.,2008, A&A, 488, 1167

Dressler A., Lynden-Bell D., Burstein D., Davies R. L.,Faber S. M., Terlevich R., Wegner G., 1987, ApJ, 313, 42

Eliche-Moral M. C., Balcells M., Prieto M., Garcıa-DaboC. E., Erwin P., Cristobal-Hornillos D., 2006, ApJ, 639,644

Eliche-Moral M. C., Prieto M., Gallego J., Barro G.,Zamorano J., Lopez-Sanjuan C., Balcells M., Guzman R.,Munoz-Mateos J. C., 2010, A&A, 519, A55+

Ellis R. S., Abraham R. G., Dickinson M., 2001, ApJ, 551,

111Elsner F., Feulner G., Hopp U., 2008, A&A, 477, 503Elston R., Rieke G. H., Rieke M. J., 1988, ApJL, 331, L77Elston R., Rieke M. J., Rieke G. H., 1989, ApJ, 341, 80Fontana A., Pozzetti L., Donnarumma I., Renzini A.,Cimatti A., Zamorani G., Menci N., Daddi E., GiallongoE., Mignoli M., Perna C., Salimbeni S., Saracco P., Broad-hurst T., Cristiani S., D’Odorico S., Gilmozzi R., 2004,A&A, 424, 23

Fontana A., Santini P., Grazian A., Pentericci L., FioreF., Castellano M., Giallongo E., Menci N., Salimbeni S.,Cristiani S., Nonino M., Vanzella E., 2009, A&A, 501, 15

Fu H., Stockton A., Liu M., 2005, ApJ, 632, 831Gilbank D. G., Smail I., Ivison R. J., Packham C., 2003,MNRAS, 346, 1125

Glazebrook K., Abraham R. G., McCarthy P. J., SavaglioS., Chen H.-W., Crampton D., Murowinski R., JørgensenI., Roth K., Hook I., Marzke R. O., Carlberg R. G., 2004,Nature, 430, 181

Gonzalez-Perez V., Baugh C. M., Lacey C. G., Almeida C.,2008, ArXiv e-prints

Groth E. J., Kristian J. A., Lynds R., O’Neil Jr. E. J.,Balsano R., Rhodes J., WFPC-1 IDT 1994, in Bulletinof the American Astronomical Society Vol. 26 of Bulletinof the American Astronomical Society, A Survey with theHST. pp 1403–+

Hayashi M., Shimasaku K., Motohara K., Yoshida M., Oka-mura S., Kashikawa N., 2007, ApJ, 660, 72

Hopkins P. F., Somerville R. S., Cox T. J., Hernquist L.,Jogee S., Keres D., Ma C., Robertson B., Stewart K., 2009,MNRAS, 397, 802

Hu E. M., Ridgway S. E., 1994, AJ, 107, 1303Huertas-Company M., Tasca L., Rouan D., Kneib J. P., LeFevre O., Pelat D., McCracken H. J., Salvato M., CapakP., Sanders D., Willott C., 2008, ArXiv e-prints

Im M., Simard L., Faber S. M., Koo D. C., Gebhardt K.,Willmer C. N. A., Phillips A., Illingworth G., Vogt N. P.,Sarajedini V. L., 2002, ApJ, 571, 136

Kassin S. A., Weiner B. J., Faber S. M., Koo D. C., LotzJ. M., Diemand J., Harker J. J., Bundy K., Metevier A. J.,Phillips A. C., Cooper M. C., Croton D. J., Konidaris N.,Noeske K. G., Willmer C. N. A., 2007, ApJL, 660, L35

Kauffmann G., White S. D. M., Guiderdoni B., 1993, MN-RAS, 264, 201

Kitzbichler M. G., White S. D. M., 2006, MNRAS, 366,858

La Barbera F., Busarello G., Merluzzi P., de la Rosa I. G.,Coppola G., Haines C. P., 2008, ApJ, 689, 913

Labbe I., Huang J., Franx M., Rudnick G., Barmby P.,Daddi E., van Dokkum P. G., Fazio G. G., SchreiberN. M. F., Moorwood A. F. M., Rix H.-W., RottgeringH., Trujillo I., van der Werf P., 2005, ApJL, 624, L81

Longhetti M., Saracco P., 2009, MNRAS, 394, 774Lopez-Sanjuan C., Balcells M., Garcıa-Dabo C. E., PrietoM., Cristobal-Hornillos D., Eliche-Moral M. C., Abreu D.,Erwin P., Guzman R., 2009, ArXiv e-prints

Maraston C., 2005, MNRAS, 362, 799Moustakas L. A., Casertano S., Conselice C. J., DickinsonM. E., Eisenhardt P., Ferguson H. C., Giavalisco M., Gro-gin N. A., Koekemoer A. M., Lucas R. A., Mobasher B.,Papovich C., Renzini A., Somerville R. S., Stern D., 2004,ApJL, 600, L131

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 15

Papovich C., 2006, New Astronomy Review, 50, 134Peng C. Y., Ho L. C., Impey C. D., Rix H., 2002, AJ, 124,266

Pozzetti L., Bruzual A. G., Zamorani G., 1996, MNRAS,281, 953

Prieto M., Balcells M., Domınguez-Palmero L., Cristobal-Hornillos D., Erwin P., Eliche-Moral C., Abreu D., 2005,in A. M. Hidalgo-Gamez, J. J. Gonzalez, J. M. RodrıguezEspinosa, & S. Torres-Peimbert ed., Revista Mexicana deAstronomia y Astrofisica Conference Series Vol. 24 of Re-vista Mexicana de Astronomia y Astrofisica ConferenceSeries, The EROs at z < 1.5 in the Groth-Westphal fieldof the GOYA survey. pp 270–270

Ratnatunga K. U., Griffiths R. E., Ostrander E. J., 1999,AJ, 118, 86

Reda F. M., Forbes D. A., Hau G. K. T., 2005, MNRAS,360, 693

Ricciardelli E., Trujillo I., Buitrago F., Conselice C. J.,2010, MNRAS, 406, 230

Roche N. D., Almaini O., Dunlop J., Ivison R. J., WillottC. J., 2002, MNRAS, 337, 1282

Roche N. D., Dunlop J., Almaini O., 2003, MNRAS, 346,803

Sarajedini V. L., Koo D. C., Phillips A. C., KobulnickyH. A., Gebhardt K., Willmer C. N. A., Vogt N. P., LairdE., Im M., Iverson S., Mattos W., 2006, AJSSeries, 166,69

Shen S., Mo H. J., White S. D. M., Blanton M. R., Kauff-mann G., Voges W., Brinkmann J., Csabai I., 2003, MN-RAS, 343, 978

Simard L., Willmer C. N. A., Vogt N. P., Sarajedini V. L.,Phillips A. C., Weiner B. J., Koo D. C., Im M., IllingworthG. D., Faber S. M., 2002, AJSSeries, 142, 1

Somerville R. S., Moustakas L. A., Mobasher B., GardnerJ. P., Cimatti A., Conselice C., Daddi E., Dahlen T., Dick-inson M., Eisenhardt P., Lotz J., Papovich C., Renzini A.,Stern D., 2004, ApJL, 600, L135

Somerville R. S., Primack J. R., Faber S. M., 2001, MN-RAS, 320, 504

Stockton A., McGrath E., Canalizo G., 2006, ApJ, 650, 706Tinsley B. M., Gunn J. E., 1976, ApJ, 203, 52Treu T., Ellis R. S., Liao T. X., van Dokkum P. G., TozziP., Coil A., Newman J., Cooper M. C., Davis M., 2005,ApJ, 633, 174

Trujillo I., Conselice C. J., Bundy K., Cooper M. C., Eisen-hardt P., Ellis R. S., 2007, MNRAS, 382, 109

Trujillo I., Feulner G., Goranova Y., Hopp U., LonghettiM., Saracco P., Bender R., Braito V., Della Ceca R., DroryN., Mannucci F., Severgnini P., 2006, MNRAS, 373, L36

Tully R. B., Fisher J. R., 1977, A&A, 54, 661Vaduvescu O., McCall M. L., 2008, A&A, 487, 147Weiner B. J., Phillips A. C., Faber S. M., Willmer C. N. A.,Vogt N. P., Simard L., Gebhardt K., Im M., Koo D. C.,Sarajedini V. L., Wu K. L., Forbes D. A., Gronwall C.,Groth E. J., Illingworth G. D., Kron R. G., Rhodes J.,Szalay A. S., Takamiya M., 2005, ApJ, 620, 595

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341Yan H., Dickinson M., Eisenhardt P. R. M., Ferguson H. C.,Grogin N. A., Paolillo M., Chary R.-R., Casertano S.,Stern D., Reach W. T., Moustakas L. A., Fall S. M., 2004,ApJ, 616, 63

Yan L., Thompson D., 2003, ApJ, 586, 765

APPENDIX A: TABLE A1

Summary of photometric, morphological and structural pa-rameters ((1) target name, (2): photometric redshift, (3):visual classification, (4): security of the vote, (5): aperturemagnitude-F814W, (6) aperture magnitude - Ks, (7): colour,(8): size (ae (half-light radius along semimajor axis), (9):Sersic index, (10): axis ratio (b/a), (11): F814W magni-tude from GALFIT, (12): reduced χ2 by GALFIT). Objectsmarked with ∗ fulfil also the colour criteria for DRGs: J-K>2.3. The small photometric errors are SExtractor errors only.Objects marked with # show extremely low effective radii(reff 60.01 kpc) and were excluded from our final target list.

c© 2011 RAS, MNRAS 000, 1–??

16 A. Hempel et al.T

able

A1.

Sum

mary

of

photo

met

ric,

morp

holo

gic

al

and

stru

ctura

lpara

met

ers.

For

an

expla

nati

on

of

the

colu

mns

ple

ase

see

the

text

inth

isse

ctio

n.

Nam

ez p

hot

class

vote

F814W

Ks

F814W

-Ks

ae

naxis

rati

oF

814W

GA

LF

ITχ

2 GA

LF

IT/m

ag

/m

ag

/m

ag

/kp

c/m

ag

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

ero

141520.4

3+

520300.8

0.9

0.1

31

secu

re23.8

0.0

819.8

0.1

44.0

50.6

0.1

76.8

3.9

90.3

0.1

223.5

0.0

80.7

20

ero

141521.6

7+

520358.0

0.9

0.1

41

secu

re23.6

0.0

319.6

0.8

94.0

11.3

0.1

81.7

0.6

30.8

0.1

624.1

0.0

00.7

20

ero

141521.7

2+

520354.2

1.0

0.1

43

un

-sec

ure

23.7

0.0

118.9

0.0

14.7

71.3

0.1

91.7

0.6

30.8

0.1

624.1

0.0

00.7

20

ero

141524.8

0+

520419.0

0.9

0.1

41

secu

re23.6

0.0

319.3

0.0

34.2

92.7

0.3

51.7

0.3

80.7

0.0

723.3

0.0

80.7

16

ero

141526.1

2+

520555.9

1.6

0.1

82c

un

-sec

ure

24.1

0.0

219.2

0.0

34.9

14.6

1.0

21.5

0.4

90.3

0.0

523.9

0.1

40.7

09

ero

141526.2

9+

520417.5

2.3

0.2

32b

secu

re25.1

0.0

120.6

0.5

34.4

73.5

0.3

50.3

0.2

50.1

0.0

524.4

0.1

00.7

34

ero

141526.5

4+

520258.1

1.7

0.1

91

secu

re24.9

0.0

220.4

0.9

54.5

31.7

0.4

12.5

1.8

10.2

0.1

324.4

0.1

20.7

33

ero

141526.6

5+

520405.0

0.9

0.1

31

secu

re24.9

0.0

220.8

0.2

74.1

20.5

0.1

40.1

2.5

10.7

0.3

624.9

0.0

80.7

55

ero

141528.8

9+

520415.9

#2.0

0.2

11

secu

re24.4

0.4

620.4

0.5

14.0

30.0

0.5

69.0

174.9

60.9

3.9

324.1

12.9

50.7

42

ero

141530.4

7+

520504.3

0.6

0.1

22b

secu

re21.7

0.0

017.7

0.0

34.0

320.1

1.8

81.5

0.1

30.2

0.0

120.5

0.0

81.5

91

ero

141531.9

1+

520339.0

1.5

0.1

81

un

-sec

ure

23.9

0.3

719.7

0.6

14.2

40.5

0.0

73.2

1.6

60.9

0.2

223.5

0.0

40.7

15

ero

141532.1

9+

520438.6

1.4

0.1

71

secu

re24.0

0.0

320.0

0.1

34.0

10.4

0.2

612.8

17.9

30.2

0.1

423.8

0.3

80.7

18

ero

141534.6

3+

520303.0

2.6

0.2

62b

secu

re24.9

0.0

120.4

0.2

64.5

42.6

0.6

10.0

0.6

00.4

0.1

425.0

0.2

51.9

59

ero

141541.3

4+

520749.7

1.0

0.1

53

secu

re22.7

0.0

218.5

0.0

24.2

510.3

1.6

82.0

0.2

80.6

0.0

421.8

0.1

30.7

44

ero

141541.9

3+

520639.0

1.7

0.1

91

secu

re23.5

0.0

319.2

0.4

34.2

71.6

0.1

51.5

0.4

70.4

0.0

623.4

0.0

40.7

30

ero

141542.1

4+

520643.8

0.9

0.1

42b

secu

re23.7

0.0

119.4

0.0

14.2

88.2

0.5

70.1

0.0

80.1

0.0

423.7

0.1

61.0

96

ero

141544.2

3+

520731.9

1.0

0.1

52b

secu

re24.1

0.0

120.0

0.0

14.1

38.3

10.2

40.0

0.1

20.1

0.0

424.5

0.0

00.7

76

ero

141546.6

0+

520921.1

1.7

0.1

94

un

-sec

ure

24.8

0.0

120.4

0.7

84.4

33.1

6.0

60.0

0.4

80.2

0.0

824.9

0.1

30.7

18

ero

141547.5

7+

520653.5

1.5

0.1

82b

secu

re24.2

0.0

220.1

0.8

74.0

53.0

0.7

42.3

0.9

90.4

0.0

923.8

0.1

50.7

40

ero

141547.8

1+

520912.0∗

1.8

0.2

03

un

-sec

ure

23.1

0.0

319.1

0.0

74.0

530.8

94.1

319.7

18.0

80.2

0.0

422.3

0.9

20.7

64

ero

141550.1

6+

520706.3

1.6

0.1

82b

secu

re23.8

0.0

119.4

0.4

24.3

74.4

0.4

20.7

0.1

60.5

0.0

423.4

0.0

60.7

32

ero

141551.3

1+

520954.3

0.9

0.1

41

secu

re24.0

0.0

319.7

0.0

44.2

80.7

0.1

95.8

4.2

00.6

0.1

723.7

0.1

50.7

23

ero

141551.5

9+

521030.1

1.0

0.1

42a

secu

re23.5

0.0

319.2

0.0

24.3

67.2

4.6

16.2

2.6

20.3

0.0

522.8

0.2

90.7

27

ero

141552.9

3+

520701.4

1.5

0.1

81

secu

re23.6

0.0

319.3

0.5

44.3

11.7

0.2

02.3

0.7

40.4

0.0

723.4

0.0

60.7

36

ero

141552.9

5+

520739.5

1.7

0.2

01

secu

re24.3

0.0

320.0

0.1

64.3

40.8

0.2

23.8

2.7

90.7

0.1

724.0

0.1

30.7

64

ero

141553.3

3+

520718.4

1.3

0.1

63

secu

re23.8

0.0

119.2

0.0

24.5

53.0

1.8

40.0

0.2

10.6

0.0

824.0

0.0

90.8

08

ero

141557.8

0+

521052.2

0.9

0.1

32b

secu

re23.0

0.0

018.8

0.3

74.2

56.0

0.4

30.8

0.1

10.4

0.0

222.7

0.0

50.7

19

ero

141559.9

6+

521057.4

0.9

0.1

41

secu

re22.5

0.0

318.4

0.0

74.0

515.2

15.2

411.1

4.0

70.8

0.0

621.4

0.4

00.7

56

ero

141600.3

8+

520846.2

1.7

0.1

92b

secu

re24.2

0.0

020.0

0.6

84.1

74.6

0.3

50.2

0.1

40.3

0.0

423.9

0.0

80.7

49

ero

141600.9

7+

520908.0

1.3

0.1

62b

secu

re24.4

0.0

220.2

0.6

84.1

93.1

0.2

60.3

0.2

00.3

0.0

424.2

0.0

70.7

11

ero

141601.2

2+

521101.4∗

0.9

0.1

42c

un

-sec

ure

23.4

0.0

318.9

0.0

24.4

75.1

0.9

12.1

0.4

70.3

0.0

323.1

0.1

10.7

58

ero

141603.1

5+

521140.8

1.0

0.1

43

secu

re24.1

0.0

019.2

0.0

14.9

04.4

7.0

30.0

0.1

50.7

0.1

024.2

0.0

00.7

50

ero

141604.2

9+

520925.9

2.7

0.2

61

secu

re24.5

0.0

220.2

0.0

54.2

80.9

0.1

20.7

0.6

00.4

0.1

024.3

0.0

60.7

20

ero

141605.1

6+

520903.5

0.9

0.1

34

secu

re24.5

0.0

120.4

0.4

44.1

16.8

3.7

63.0

1.6

40.1

0.0

424.0

0.3

10.7

43

ero

141608.8

7+

521132.3

2.3

0.2

33

un

-sec

ure

23.9

0.0

319.8

0.8

24.0

538.0

98.6

911.7

10.4

00.1

0.0

322.7

1.0

10.7

25

ero

141611.7

7+

521316.9

1.2

0.1

61

secu

re23.9

0.7

219.9

0.0

44.0

30.3

82.8

30.0

99.0

00.6

99.0

024.6

99.0

01.0

52

ero

141617.8

1+

521413.4

#1.7

0.1

91

secu

re24.1

0.3

119.8

0.9

34.2

90.0

0.0

67.0

17.2

30.7

11.8

623.9

0.0

00.7

81

ero

141620.2

3+

521317.2

2.2

0.2

22b

secu

re25.3

0.0

121.1

0.4

94.1

53.9

0.4

40.0

0.2

90.2

0.0

524.8

0.1

20.7

23

ero

141628.3

3+

521419.3

1.8

0.2

02b

secu

re24.2

0.0

120.2

0.1

94.0

36.5

1.8

41.9

0.7

20.1

0.0

423.9

0.1

80.7

04

ero

141629.5

2+

521507.6

1.2

0.1

62a

secu

re24.8

0.0

220.5

0.8

14.3

11.2

0.1

70.8

0.7

10.1

0.1

724.5

0.0

70.7

43

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 17

Table

A1

(cont’

d)

Nam

ez p

hot

class

vote

F814W

Ks

F814W

-Ks

ae

naxis

rati

oF

814W

GA

LF

ITχ

2 GA

LF

IT/m

ag

/m

ag

/m

ag

/kp

c/m

ag

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

ero

141631.8

7+

521739.0

0.7

0.1

23

secu

re23.9

0.0

219.9

0.0

54.0

54.7

0.4

10.6

0.2

10.2

0.0

323.7

0.0

70.7

06

ero

141633.3

6+

521639.7

2.1

0.2

21

secu

re24.7

0.0

919.9

0.9

44.8

30.5

0.1

20.6

1.4

21.0

0.3

924.6

0.0

60.7

11

ero

141634.2

3+

521722.7

1.2

0.1

62c

un

-sec

ure

23.5

0.0

119.4

0.4

54.0

88.4

1.7

41.8

0.3

90.3

0.0

423.0

0.1

50.7

12

ero

141634.7

5+

521728.8

2.5

0.2

51

secu

re24.0

0.0

319.7

0.9

64.2

71.1

0.2

43.2

1.8

60.5

0.1

124.0

0.1

10.7

38

ero

141635.7

4+

521451.0

1.4

0.1

71

secu

re23.0

0.0

318.8

0.0

84.1

91.2

0.1

02.9

0.6

00.5

0.0

522.6

0.0

30.7

09

ero

141636.3

2+

521805.9

1.2

0.1

64

un

-sec

ure

24.8

0.0

120.6

0.5

44.2

52.7

2.6

04.0

3.7

30.9

0.3

424.3

0.5

10.7

29

ero

141636.4

1+

521449.0

1.6

0.1

92b

secu

re24.1

0.0

220.0

0.2

74.1

44.8

0.5

00.5

0.1

40.2

0.0

323.8

0.0

70.7

17

ero

141636.6

7+

521806.8

1.3

0.1

62a

secu

re23.7

0.0

319.1

0.6

74.6

35.3

1.0

01.8

0.4

40.4

0.0

423.3

0.1

20.7

31

ero

141639.5

7+

521810.2

1.7

0.1

92b

secu

re23.9

0.0

119.8

0.1

34.0

95.9

0.2

40.1

0.0

90.1

0.0

223.6

0.0

60.7

22

ero

141642.0

5+

521601.7

1.4

0.1

72b

secu

re24.0

0.0

019.8

0.2

64.2

29.0

0.6

80.2

0.1

10.2

0.0

223.6

0.0

70.7

07

ero

141642.2

0+

521641.7

0.9

0.1

32b

secu

re25.1

0.0

120.2

0.8

24.9

32.2

0.3

20.7

0.3

70.4

0.0

924.5

0.1

00.8

01

ero

141642.2

5+

521820.2

0.9

0.1

32c

un

-sec

ure

25.2

0.0

120.9

0.5

64.3

51.5

0.3

51.4

1.0

90.6

0.1

724.7

0.1

40.7

34

ero

141643.7

9+

521915.4

1.8

0.2

01

secu

re23.9

0.0

319.7

0.2

24.1

82.8

0.4

92.3

0.7

20.5

0.0

723.5

0.1

10.7

19

ero

141644.2

9+

521828.4

1.5

0.1

72a

secu

re23.8

0.0

319.6

0.8

94.1

83.8

1.8

14.9

2.1

90.4

0.0

823.3

0.2

30.7

49

ero

141645.1

8+

521650.7

0.6

0.1

22a

secu

re22.0

0.0

317.9

0.5

14.1

212.2

1.7

93.0

0.3

20.4

0.0

121.0

0.1

00.7

21

ero

141646.0

1+

521833.1

#1.4

0.1

71

secu

re24.1

0.3

020.0

0.8

54.1

50.0

0.2

612.1

114.8

11.0

2.4

523.6

6.9

30.7

10

ero

141650.0

5+

522119.6

1.2

0.1

62c

un

-sec

ure

22.9

0.0

318.9

0.5

94.0

53.4

0.1

00.3

0.0

60.4

0.0

222.7

0.0

30.7

28

ero

141650.6

5+

521825.5

#1.6

0.1

94

un

-sec

ure

24.4

0.4

420.0

0.4

94.3

80.0

0.0

38.9

7.3

90.9

3.7

924.1

0.0

00.7

36

ero

141659.1

1+

521920.7

1.2

0.1

62a

secu

re23.0

0.0

318.8

0.0

34.2

83.2

0.4

11.6

0.4

10.4

0.0

523.2

0.0

81.0

49

ero

141705.0

4+

522306.0

0.3

0.1

01

secu

re22.8

0.0

318.7

0.0

24.1

329.9

59.3

014.3

7.5

60.6

0.0

621.2

0.7

40.7

08

ero

141705.1

5+

522212.4

0.9

0.1

41

secu

re22.2

0.0

318.1

0.0

34.1

24.4

0.7

24.8

0.6

40.8

0.0

421.5

0.0

80.6

98

ero

141706.8

4+

522225.9

0.9

0.1

32b

secu

re22.3

0.0

418.1

0.0

24.1

85.9

0.4

22.3

0.2

00.2

0.0

121.9

0.0

40.7

67

ero

141709.1

9+

522135.3

1.3

0.1

63

un

-sec

ure

23.5

0.0

719.5

0.5

64.0

13.4

0.5

21.8

0.3

60.9

0.0

923.1

0.1

00.7

21

ero

141709.7

0+

522449.3

1.5

0.1

82b

secu

re23.9

0.0

219.3

0.6

84.6

54.9

0.3

50.3

0.1

50.2

0.0

323.8

0.0

70.7

29

ero

141710.6

2+

522109.6

2.0

0.2

11

secu

re23.7

0.2

319.6

0.5

54.1

20.1

0.1

712.2

16.2

50.4

0.2

223.3

0.3

50.7

21

ero

141711.4

2+

522111.4

1.2

0.1

51

secu

re24.4

0.1

120.3

0.5

14.1

20.6

0.1

43.1

2.3

90.8

0.2

724.1

0.1

00.7

25

ero

141714.0

3+

522332.6

1.0

0.1

43

secu

re22.8

0.0

318.6

0.1

54.1

62.9

0.1

21.1

0.1

10.5

0.0

222.5

0.0

20.6

94

ero

141714.1

4+

522538.9

1.7

0.2

01

secu

re24.4

0.0

319.8

0.1

44.6

01.4

2.1

010.8

11.1

80.4

0.2

024.0

0.3

30.7

47

ero

141715.0

9+

522142.6

2.6

0.2

61

secu

re24.7

0.2

820.0

0.5

84.6

73.4

4.4

810.8

11.3

70.0

0.0

724.1

0.4

50.7

23

ero

141716.6

9+

522549.1

1.9

0.2

04

un

-sec

ure

24.7

0.0

120.1

0.6

64.6

00.8

0.2

12.1

1.9

70.4

0.2

224.6

0.0

01.0

46

ero

141721.0

2+

522343.5

1.4

0.1

71

secu

re23.4

0.0

319.2

0.7

94.1

61.1

0.1

02.0

0.5

60.4

0.0

623.1

0.0

30.7

03

ero

141722.5

5+

522345.6

1.4

0.1

71

secu

re22.3

0.0

518.1

0.1

24.2

00.7

0.0

65.5

0.9

30.8

0.0

522.0

0.0

20.7

04

ero

141723.6

1+

522555.2∗

1.2

0.1

63

secu

re23.4

0.0

218.9

0.0

14.5

111.0

0.6

30.2

0.0

60.3

0.0

223.1

0.0

60.7

48

ero

141726.6

8+

522415.1

1.1

0.1

52a

secu

re24.1

0.2

919.9

0.0

94.2

13.7

1.2

13.2

1.3

30.2

0.0

623.7

0.1

80.7

11

ero

141726.9

5+

522449.6∗

1.1

0.1

52b

secu

re22.9

0.0

018.7

0.0

24.2

311.2

0.6

00.1

0.0

80.1

0.0

123.3

0.0

00.7

65

ero

141727.7

3+

522411.6

1.4

0.1

72a

secu

re23.9

0.0

319.6

0.3

04.2

61.7

0.1

51.3

0.4

40.2

0.0

623.6

0.0

40.7

17

ero

141728.3

5+

522606.0

2.3

0.2

31

secu

re24.8

0.0

319.7

0.1

75.0

41.3

0.3

01.5

1.2

80.1

0.1

924.7

0.0

80.7

14

ero

141730.6

4+

522823.8

1.2

0.1

63

un

-sec

ure

24.8

0.0

220.7

0.3

04.0

70.8

0.3

23.5

3.6

30.7

0.2

624.5

0.2

00.7

20

ero

141731.3

1+

522507.0

2.9

0.2

73

un

-sec

ure

24.8

0.5

020.7

0.5

24.0

210.2

20.3

25.3

5.7

60.3

0.1

423.9

1.0

40.7

40

ero

141735.4

9+

522554.4

1.4

0.1

71

secu

re23.7

0.1

318.9

0.0

24.8

41.4

0.2

13.1

1.2

20.6

0.0

723.4

0.0

80.7

78

c© 2011 RAS, MNRAS 000, 1–??

18 A. Hempel et al.

Table

A1

(cont’

d)

Nam

ez p

hot

class

vote

F814W

Ks

F814W

-Ks

ae

naxis

rati

oF

814W

GA

LF

ITχ

2 GA

LF

IT/m

ag

/m

ag

/m

ag

/kp

c/m

ag

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

ero

141739.0

7+

522843.8

0.9

0.1

32a

secu

re23.7

0.0

319.5

0.0

34.2

52.0

0.1

71.9

0.4

60.6

0.0

623.2

0.0

60.7

20

ero

141740.2

2+

522905.9

1.6

0.1

91

secu

re24.7

0.0

319.4

0.0

35.2

55.1

2.1

94.2

1.3

60.6

0.0

823.8

0.2

30.9

30

ero

141740.8

4+

522649.4

1.7

0.1

91

secu

re24.4

0.0

219.7

0.0

34.7

12.2

7.7

619.9

46.5

91.0

0.3

523.5

1.2

50.7

02

ero

141742.3

8+

523034.4

1.0

0.1

52a

secu

re24.2

0.0

219.6

0.9

04.6

024.3

59.4

78.7

8.1

30.2

0.0

723.0

1.0

80.7

25

ero

141742.3

9+

522811.5

0.9

0.1

42b

secu

re23.6

0.0

019.3

0.0

34.2

69.3

0.9

00.6

0.1

30.2

0.0

223.1

0.0

70.7

13

ero

141744.0

8+

522631.2

#1.9

0.2

11

secu

re25.0

0.3

620.5

0.0

64.5

50.0

6.6

03.1

333.1

90.7

9.0

424.8

10.7

30.7

21

ero

141744.2

8+

522925.0

0.7

0.1

21

secu

re25.3

0.0

320.7

0.0

14.6

20.9

0.2

33.5

2.4

30.6

0.1

825.1

0.1

40.9

36

ero

141745.1

3+

523045.9

1.4

0.1

74

un

-sec

ure

25.0

0.0

020.8

0.5

24.1

93.5

0.7

20.9

0.3

40.5

0.0

924.3

0.1

40.7

33

ero

141746.7

1+

522857.8

1.5

0.1

82b

secu

re25.4

0.0

221.1

0.0

24.2

62.5

0.2

20.2

0.1

90.5

0.0

525.1

0.0

70.9

24

ero

141749.1

1+

522759.6

0.9

0.1

41

secu

re24.2

0.0

620.2

0.0

14.0

40.9

0.0

92.1

0.6

80.5

0.0

624.1

0.0

31.0

71

ero

141749.2

4+

522811.0

1.0

0.1

53

secu

re23.1

0.1

619.0

0.0

34.0

81.6

0.1

05.7

0.6

90.3

0.0

423.1

0.0

01.2

55

ero

141749.5

9+

522806.2

1.5

0.1

82b

secu

re24.3

0.0

320.1

0.0

34.1

94.4

0.3

00.6

0.1

60.2

0.0

224.1

0.0

51.3

71

ero

141751.2

9+

523040.3

1.5

0.1

82a

secu

re23.8

0.0

319.6

0.8

14.1

92.7

0.2

61.1

0.2

10.7

0.0

623.4

0.0

60.7

10

ero

141751.3

8+

523049.8

1.5

0.1

83

secu

re24.8

0.0

119.7

0.4

75.0

94.9

0.3

40.1

0.1

50.2

0.0

424.3

0.0

90.7

12

ero

141751.7

6+

523136.8

1.3

0.1

62a

secu

re23.2

0.0

318.5

0.0

84.7

23.1

0.4

42.4

0.5

00.7

0.0

622.9

0.0

90.7

16

ero

141754.5

0+

523023.4

4.6

0.3

91

secu

re24.9

0.2

320.4

0.4

64.4

70.3

0.1

96.9

12.9

90.7

0.5

124.6

0.3

70.7

23

ero

141755.4

4+

522928.5

2.9

0.2

84

un

-sec

ure

24.7

0.0

420.4

0.6

24.2

70.8

0.1

11.2

1.1

00.2

0.1

624.4

0.0

70.7

08

ero

141756.7

4+

523157.2

1.3

0.1

62c

un

-sec

ure

23.0

0.0

318.6

0.1

44.4

04.9

0.5

11.3

0.1

70.6

0.0

422.8

0.0

70.7

26

ero

141756.9

1+

523118.1

1.4

0.1

74

un

-sec

ure

24.2

0.0

120.2

0.4

74.0

42.7

3.1

16.1

6.9

20.5

0.2

024.3

0.5

40.7

18

ero

141757.1

5+

523242.6

1.6

0.1

81

secu

re24.2

0.0

719.6

0.1

64.5

80.8

0.2

96.3

5.6

60.4

0.2

024.1

0.1

40.7

21

ero

141757.2

7+

523224.5

#1.3

0.1

61

secu

re24.2

0.6

019.4

0.7

14.8

00.0

17.8

74.8

3912.2

70.8

119.2

624.0

738.0

60.7

19

ero

141757.6

6+

522910.3

1.3

0.1

62b

secu

re24.0

0.0

019.8

0.0

04.1

94.4

1.5

52.3

0.8

60.5

0.1

023.6

0.2

20.7

39

ero

141800.8

7+

523203.0

1.5

0.1

82a

secu

re23.9

0.0

319.0

0.0

34.8

62.0

0.3

62.9

1.0

00.8

0.0

823.4

0.1

10.7

20

ero

141802.0

3+

523015.5

1.6

0.1

82b

secu

re24.0

0.0

319.7

0.0

84.3

52.6

0.1

70.0

0.3

20.2

0.0

524.4

0.0

80.7

11

ero

141802.5

7+

523251.8

1.7

0.1

94

un

-sec

ure

25.0

0.0

119.8

0.5

95.1

45.8

2.0

41.5

0.7

80.1

0.0

524.5

0.2

20.7

19

ero

141803.0

0+

523033.9

1.3

0.1

64

un

-sec

ure

24.9

0.0

120.9

0.4

94.0

51.2

0.3

40.1

1.0

60.8

0.2

124.8

0.0

80.7

36

ero

141803.3

4+

523228.4

1.1

0.1

51

secu

re24.6

0.0

819.9

0.5

24.6

51.2

0.5

47.0

6.3

80.0

0.1

224.2

0.1

80.7

17

ero

141809.2

6+

523112.5

0.8

0.1

32b

secu

re23.4

0.0

219.1

0.0

14.2

76.6

0.5

41.1

0.1

70.2

0.0

122.9

0.0

50.7

26

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 19

Table A2. Results of mass and age analysis : (2): formation redshift zf , (3): exponential decay time τ , (4): optical depthAv, (5): metallicity Z, (6): luminosity distance DL, (7): total stellar mass Mtot, (8): age, (9) χ2

Name zf τ Av Z DL Mtot age χ2

Gyr /103Mpc /1010M /108yr(1) (2) (3) (4) (5) (6) (7) (8) (9)

ero 141520.43+520300.8 3 7.00 2.0 0.004 5.92+1.05−1.09 2.216 18.000 0.45

ero 141521.67+520358.0 3 0.50 1.0 0.008 6.40+1.10−1.14 3.690 21.000 1.04

ero 141521.72+520354.2 4 0.50 1.0 0.020 6.94+1.16−1.20 11.596 23.000 3.13

ero 141524.80+520419.0 5 1.00 0.6 0.050 6.20+1.08−1.12 8.735 45.000 5.92

ero 141526.12+520555.9 3 0.05 0.6 0.050 11.95+1.65−1.69 32.103 10.150 28.18

ero 141526.29+520417.5 8 4.00 0.6 0.004 18.82+2.27−2.31 2.575 21.000 39.75

ero 141526.54+520258.1 3 0.05 0.6 0.050 13.19+1.76−1.80 8.471 5.088 16.25

ero 141526.65+520405.0 3 0.10 2.0 0.020 5.84+1.04−1.08 0.781 4.535 12.43

ero 141528.89+520415.9 3 0.10 0.6 0.050 15.49+1.97−2.01 6.118 4.535 1.33

ero 141530.47+520504.3 3 0.50 2.0 0.020 4.11+0.85−0.89 12.818 12.780 1.78

ero 141531.91+520339.0 3 0.05 1.0 0.050 11.13+1.57−1.61 6.340 3.210 1.53

ero 141532.19+520438.6 3 0.10 0.6 0.050 10.02+1.46−1.50 5.981 6.405 3.36

ero 141534.63+520303.0 6 0.50 1.0 0.008 22.09+2.55−2.59 16.444 12.780 7.02

ero 141541.34+520749.7 4 0.05 1.0 0.050 7.39+1.20−1.24 2.473 1.805 42.22

ero 141541.93+520639.0 3 0.05 0.6 0.050 12.68+1.72−1.76 23.354 5.088 20.08

ero 141542.14+520643.8 3 0.10 2.0 0.050 6.08+1.07−1.11 2.988 4.042 3.00

ero 141544.23+520731.9 8 1.00 0.6 0.008 7.35+1.20−1.24 7.365 47.500 1.79

ero 141546.60+520921.1 4 0.50 0.6 0.004 13.42+1.78−1.82 4.458 16.090 8.64

ero 141547.57+520653.5 6 1.00 0.6 0.004 11.13+1.57−1.61 9.129 30.000 8.72

ero 141547.81+520912.0 4 0.05 0.6 0.050 13.94+1.83−1.87 12.119 2.861 5.97

ero 141550.16+520706.3 3 0.10 0.6 0.050 11.81+1.64−1.67 18.843 7.187 8.84

ero 141551.31+520954.3 3 0.10 2.0 0.020 6.36+1.10−1.14 2.688 4.535 5.68

ero 141551.59+521030.1 3 0.50 1.0 0.020 7.14+1.18−1.22 5.610 16.800 3.00

ero 141552.93+520701.4 3 0.10 0.6 0.050 11.31+1.59−1.63 10.474 5.709 7.64

ero 141552.95+520739.5 5 1.00 1.0 0.050 13.61+1.80−1.84 18.458 21.000 1.20

ero 141553.33+520718.4 4 0.50 0.6 0.004 9.36+1.40−1.44 10.254 27.500 12.49

ero 141557.80+521052.2 3 0.05 2.0 0.004 5.76+1.03−1.07 3.210 3.602 2.41

ero 141559.96+521057.4 3 0.05 1.0 0.050 6.49+1.11−1.15 8.592 6.405 9.32

ero 141600.38+520846.2 5 1.00 0.6 0.004 12.82+1.73−1.77 7.748 23.000 0.47

ero 141600.97+520908.0 3 0.10 0.6 0.050 9.53+1.42−1.46 3.119 5.088 0.65

ero 141601.22+521101.4 3 0.50 1.0 0.020 6.16+1.08−1.12 8.560 24.000 0.67

ero 141603.15+521140.8 4 0.50 0.6 0.050 7.06+1.17−1.21 8.658 27.500 1.62

ero 141604.29+520925.9 7 1.00 0.6 0.004 22.79+2.61−2.65 8.224 14.340 8.32

ero 141605.16+520903.5 ... ... ... ... 5.76+1.03−1.07 ... ... ...

ero 141608.87+521132.3 4 0.05 0.6 0.008 18.87+2.27−2.31 7.863 2.550 2.36

ero 141611.77+521316.9 3 0.10 0.6 0.050 9.01+1.37−1.41 5.529 7.187 4.97

ero 141617.81+521413.4 3 0.05 0.6 0.050 13.24+1.77−1.81 14.111 4.535 21.89

ero 141620.23+521317.2 5 0.50 0.6 0.004 17.46+2.15−2.19 5.069 14.340 6.35

ero 141628.33+521419.3 3 0.05 0.6 0.008 13.70+1.81−1.85 4.239 4.042 3.27

ero 141629.52+521507.6 3 0.10 0.6 0.050 8.88+1.35−1.39 2.272 7.187 9.82

ero 141631.87+521739.0 4 1.00 0.6 0.050 4.33+0.87−0.91 1.683 40.000 1.17

ero 141633.36+521639.7 3 0.05 3.0 0.008 16.64+2.07−2.11 26.603 0.905 5.54

ero 141634.23+521722.7 3 0.50 0.6 0.020 8.54+1.32−1.36 5.580 16.090 3.45

ero 141634.75+521728.8 4 0.10 1.0 0.008 20.84+2.44−2.48 28.976 4.535 0.21

ero 141635.74+521451.0 3 0.05 0.6 0.050 9.97+1.46−1.50 18.914 6.405 23.77

ero 141636.32+521805.9 5 1.00 0.6 0.020 8.45+1.31−1.35 3.656 35.000 2.26

ero 141636.41+521449.0 3 0.05 0.6 0.050 12.27+1.68−1.72 11.295 5.088 14.06

ero 141636.67+521806.8 4 0.50 0.6 0.004 9.62+1.43−1.47 15.017 30.000 3.09

ero 141639.57+521810.2 3 0.10 0.6 0.004 12.78+1.73−1.76 3.340 4.042 0.28

ero 141642.05+521601.7 3 0.10 0.6 0.050 10.82+1.54−1.58 9.549 7.187 7.50

c© 2011 RAS, MNRAS 000, 1–??

20 A. Hempel et al.

Table A2 (cont’d)

Name zf τ Av Z DL Mtot age χ2

Gyr /103Mpc /1010M /108yr(1) (2) (3) (4) (5) (6) (7) (8) (9)

ero 141642.20+521641.7 3 0.10 2.0 0.050 5.92+1.05−1.09 1.086 4.535 12.90

ero 141642.25+521820.2 ... ... ... ... 5.80+1.04−1.08 ... ... ...

ero 141643.79+521915.4 3 0.10 2.0 0.050 13.84+1.82−1.86 17.196 2.273 0.52

ero 141644.29+521828.4 3 0.05 0.6 0.008 10.91+1.55−1.59 5.097 5.088 0.30

ero 141645.18+521650.7 3 0.50 2.0 0.004 4.04+0.84−0.88 12.094 22.000 0.32

ero 141646.01+521833.1 3 0.05 0.6 0.050 10.64+1.52−1.56 14.935 10.150 125.76

ero 141650.05+522119.6 3 0.05 0.6 0.050 9.10+1.38−1.41 10.042 5.088 7.84

ero 141650.65+521825.5 4 0.10 0.6 0.004 12.45+1.70−1.73 7.379 9.048 9.01

ero 141659.11+521920.7 3 0.05 0.6 0.004 8.71+1.34−1.38 9.050 11.390 3.01

ero 141705.04+522306.0 3 2.00 2.0 0.020 1.98+0.58−0.62 2.888 70.000 3.37

ero 141705.15+522212.4 3 0.10 2.0 0.008 6.57+1.12−1.16 16.754 5.088 16.63

ero 141706.84+522225.9 3 0.10 2.0 0.020 5.76+1.03−1.07 8.713 4.535 6.68

ero 141709.19+522135.3 4 0.10 0.6 0.020 9.53+1.42−1.46 6.695 7.187 1.41

ero 141709.70+522449.3 4 0.50 0.6 0.020 11.41+1.60−1.64 17.260 21.000 1.14

ero 141710.62+522109.6 3 7.00 2.0 0.050 15.63+1.99−2.02 7.967 1.805 11.11

ero 141711.42+522111.4 6 1.00 0.6 0.008 8.37+1.30−1.34 5.265 40.000 1.65

ero 141714.03+522332.6 6 1.00 0.6 0.008 6.73+1.14−1.18 18.328 47.500 4.06

ero 141714.14+522538.9 3 0.10 0.6 0.050 13.61+1.80−1.84 16.819 7.187 14.47

ero 141715.09+522142.6 7 0.50 1.0 0.004 21.84+2.53−2.57 31.400 16.090 5.68

ero 141716.69+522549.1 6 1.00 1.0 0.004 14.69+1.90−1.94 14.913 23.000 2.68

ero 141721.02+522343.5 3 0.05 1.0 0.050 10.28+1.49−1.53 8.020 3.210 1.14

ero 141722.55+522345.6 3 0.05 0.6 0.020 10.06+1.47−1.51 28.027 6.405 3.96

ero 141723.61+522555.2 4 0.10 0.6 0.050 9.01+1.37−1.41 8.897 6.405 4.12

ero 141726.68+522415.1 5 1.00 1.0 0.004 7.60+1.23−1.27 7.882 40.000 2.70

ero 141726.95+522449.6 3 0.05 1.0 0.020 8.02+1.27−1.31 12.238 6.405 1.32

ero 141727.73+522411.6 3 0.05 0.6 0.050 10.60+1.52−1.56 16.332 9.048 77.89

ero 141728.35+522606.0 4 0.10 0.6 0.050 18.92+2.28−2.32 32.707 6.405 2.68

ero 141730.64+522823.8 4 0.05 1.0 0.050 8.88+1.35−1.39 1.711 3.602 7.15

ero 141731.31+522507.0 6 0.50 0.6 0.004 24.41+2.75−2.79 8.577 11.390 21.13

ero 141735.49+522554.4 6 0.50 0.6 0.020 10.46+1.51−1.55 47.326 32.500 13.43

ero 141739.07+522843.8 4 1.00 0.6 0.050 5.88+1.05−1.09 7.750 45.000 0.08

ero 141740.22+522905.9 4 0.05 0.6 0.020 12.27+1.68−1.72 26.014 20.000 21.29

ero 141740.84+522649.4 3 0.05 1.0 0.050 13.24+1.77−1.81 11.417 3.602 3.72

ero 141742.38+523034.4 3 0.50 0.6 0.050 7.27+1.19−1.23 5.637 25.000 5.11

ero 141742.39+522811.5 3 1.00 0.6 0.020 6.53+1.11−1.15 5.522 35.000 1.00

ero 141744.08+522631.2 3 0.10 0.6 0.050 15.40+1.96−2.00 6.521 5.088 1.80

ero 141744.28+522925.0 3 7.00 0.6 0.050 4.64+0.91−0.95 0.131 37.500 10.83

ero 141745.13+523045.9 4 0.50 0.6 0.050 10.02+1.46−1.50 4.447 18.000 1.46

ero 141746.71+522857.8 4 0.50 0.6 0.050 11.77+1.63−1.67 8.992 23.000 3.39

ero 141749.11+522759.6 6 1.00 1.0 0.050 6.04+1.06−1.10 7.208 50.000 8.95

ero 141749.24+522811.0 5 1.00 0.6 0.008 7.31+1.20−1.24 13.825 42.500 0.73

ero 141749.59+522806.2 5 0.50 0.6 0.050 11.00+1.56−1.60 48.593 30.000 1.70

ero 141751.29+523040.3 3 0.05 0.6 0.004 11.00+1.56−1.60 5.025 6.405 8.02

ero 141751.38+523049.8 4 0.10 0.6 0.050 11.31+1.59−1.63 20.260 16.090 32.35

ero 141751.76+523136.8 3 0.10 0.6 0.050 9.40+1.41−1.44 27.221 11.390 18.94

ero 141754.50+523023.4 ... ... ... ... 42.29+4.22−4.27 ... ... ...

ero 141755.44+522928.5 4 7.00 0.6 0.004 25.17+2.81−2.85 1.144 3.602 18.40

ero 141756.74+523157.2 3 0.05 0.6 0.004 9.36+1.40−1.44 11.389 11.390 2.64

ero 141756.91+523118.1 ... ... ... ... 10.73+1.53−1.57 ... ... ...

ero 141757.15+523242.6 3 0.05 1.0 0.050 11.90+1.64−1.68 8.622 3.602 2.93

c© 2011 RAS, MNRAS 000, 1–??

The morphologies and masses of extremely red galaxies in the Groth Strip survey 21

Table A2 (cont’d)

Name zf τ Av Z DL Mtot age χ2

Gyr /103Mpc /1010M /108yr(1) (2) (3) (4) (5) (6) (7) (8) (9)

ero 141757.27+523224.5 7 0.50 0.6 0.020 9.49+1.41−1.45 29.389 37.500 15.33

ero 141757.66+522910.3 3 0.05 0.6 0.004 9.40+1.41−1.44 1.768 3.602 2.56

ero 141800.87+523203.0 3 0.05 0.6 0.050 11.77+1.63−1.67 27.766 8.064 16.26

ero 141802.03+523015.5 ... ... ... ... 12.18+1.67−1.71 ... ... ...

ero 141802.57+523251.8 4 0.50 0.6 0.050 12.96+1.74−1.78 12.385 20.000 2.95

ero 141803.00+523033.9 4 0.50 0.6 0.020 9.62+1.43−1.47 2.889 16.800 1.33

ero 141803.34+523228.4 4 1.00 1.0 0.020 7.48+1.21−1.25 6.106 32.500 0.39

ero 141809.26+523112.5 6 1.00 0.6 0.050 5.37+0.99−1.03 10.680 55.000 1.14

c© 2011 RAS, MNRAS 000, 1–??